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ABSTRACT 

Performance of reciprocating machines relies heavily on health condition 

of its moving components, most importantly the valve. Non-intrusive methods such as 

vibration or acoustic emission (AE) technique are preferable in valve failure diagnosis 

as they can provide earlier fault detection. In this study, a valve failure detection 

methodology is proposed by using the AE technique. Wavelet packet transform (WPT) 

is chosen as the signal processing method over continuous wavelet transform (CWT) 

and discrete wavelet transform (DWT). This is because WPT can overcome high 

computational time and high redundancy problem in CWT and capable of providing 

detailed analysis of high frequency components which is found feeble in DWT. The 

features of AE signal can be extracted by computing normalized WPT coefficients 

under different valve conditions and machine operating conditions through statistical 

method. Finally, a classifying strategy is proposed to discriminate the signal under 

different valve conditions. Vibration signal will serve as a reference in comparing the 

effectiveness of AE signal in valve failure detection. 
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ABSTRAK 

Prestasi pemampat salingan banyak bergantung kepada keadaan komponen yang 

bergerak, terutamanya injap. Kaedah pengesanan yang tidak intrusif seperti getaran atau 

acoustic emission (AE) adalah lebih digemari dalam diagnosis kegagalan injap sebab ia 

boleh memberikan pengesanan kegagalan injap yang lebih awal. Dalam kajian ini, satu 

metodologi pengesanan kegagalan injap dicadangkan dengan menggunakan teknik AE. 

Wavelet packet transform (WPT) dipilih sebagai kaedah pemprosesan isyarat 

berbanding dengan continuous wavelet transform (CWT) dan discrete wavelet 

transform (DWT). Ini adalah kerana WPT boleh mengatasi masalah seperti masa 

pengiraan yang panjang dan pengiraan lebihan yang tinggi dalam CWT. Selain itu, 

WPT boleh memberikan analysis terperinci ke atas komponen frekuensi yang tinggi 

berbanding dengan DWT. Ciri-ciri isyarat AE boleh diekstrak dengan menilai pekali 

WPT yang dinormalisasi di bawah keadaan injap dan keadaan operasi mesin yang 

berbeza melalui kaedah statistik. Akhirnya, satu klasifikasi strategi dicadangkan untuk 

mendiskriminasi isyarat di bawah keadaan injap yang berbeza. Isyarat getaran akan 

menjadi rujukan dalam pembandingan keberkesanan isyarat AE untuk mengesan 

kegagalan injap.  
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CHAPTER 1 INTRODUCTION 

1.1 Introduction  

The competitiveness in industry nowadays has urged plant personnel to reduce 

operating cost without sacrificing plant efficiency. In fact, the industry environment has 

evolved to the extent that requires the process plants to improve plant efficiency and 

maintain optimal operating condition while reducing cost and wastage at the same time. 

One of the cost-effective approaches is by implementing predictive or condition based 

maintenance as it can monitor current and future condition of plant equipments 

(Sikorska and Mba, 2008). Non-destructive testing (NDT) techniques such as vibration, 

wear particle analysis, oil analysis, infrared thermograph, and the newer technique, 

acoustic emission (AE) analysis prevailed over destructive method as they can save 

both time and money. This is because the destructive methods such as pressure and 

temperature analysis often require proper installation of transducer. Poor installation of 

probe will lead to leakage or changes in the operating condition of machinery, thus 

increasing the risk of introducing faults to the system. In this research, the acoustic 

emission (AE) technique is utilized as the diagnostic tool as it can provide early fault 

detection in reciprocating machines (Sikorska and Mba, 2008). 

Reciprocating compressor is one of the rotating machinery widely found in oil 

and gas industry such as in refinery and gas transmission line. In reciprocating 

compressor, the greatest concern is those parts with a finite life, such as bearings, seals, 

and valves, or parts that are highly stressed. This research focuses on the failure 

detection of valve as it is the major moving component in reciprocating compressor. It 

has higher probability of contributing to most of the failures as there are always more 

than two valves in a reciprocating compressor. Moreover, the large number of valves in 
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a reciprocating compressor often makes task difficult for identifying faulty valve, 

resulting in a longer repairing time for the machine. The faulty valve can eventually 

cause secondary damage to the compressor especially when the chips from valve enter 

the rotating crankshaft area. To avoid further breakdown, changing all the valves in a 

reciprocating compressor is the normal practice in industry despite there maybe just one 

defective valve. This practice has led to enormous wastage and high operating cost.  

Therefore, AE technique is applied in this study to identify and detect common 

valve failures such as valve leakage, contaminated lubrication in valve, and valve plate 

deformation, enabling the machine to be repaired timely and efficiently. By developing 

the condition monitoring system, condition of valves in a reciprocating compressor can 

be monitored and assessed easily. This will ultimately help in reducing maintenance 

cost of the machines. As the system can detect valve failures, early replacement of 

valves can be done before it causes any breakdown to the machines, thus reducing 

unplanned shutdown and production losses in a plant. Besides, plant maintenance can 

be better planned and it can be carried out in co-ordination with the operation and 

maintenance departments. Thus both the production and maintenance requirements can 

be fulfilled at the same time. 

 

 

1.2 Background of problem 

Condition monitoring has been proposed by many researchers as one of the 

predictive maintenance in the plant. In contrast to the breakdown maintenance where 

the machine is run until failure or the preventive maintenance where the maintenance is 

performed at a fixed time schedule irrespective of machine’s health condition, the 
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predictive maintenance is more flexible as the parts are only changed when needed and 

maintenance is only performed when convenient. Thus, it helps in saving time as the 

number of overhauls reduces to a minimum besides decreasing costly inventories for 

machine parts replacement. Moreover, production loss is reduced tremendously as 

unexpected catastrophic breakdowns are avoided in addition to eliminating unnecessary 

interventions to the machine (Courrech, 1996). 

Condition monitoring is especially needed in detecting valve failures in the 

reciprocating compressor. According to the technical note by Dresser-Rand (Foreman, 

2002), 36% of the unscheduled shutdowns of reciprocating compressor was attributed to 

the valve failure. There are a number of reasons which contributed to the valve failures, 

and they can be categorized into two broad categories; failures caused by environmental 

effects or abnormal mechanical action. Valve plate corrosion and crack are some of the 

examples of failures caused by environmental effects as these valves are mostly 

deformed by the corrosive contaminants or foreign particles carried by the gas. 

Meanwhile, valve failures due to abnormal mechanical action normally happen when 

the valves are operated beyond designed range of conditions or under pressure 

pulsations.  

Condition of a machine can be determined by observing various parameters 

related to mechanical condition of the machine. A few measurement techniques have 

been utilized for the past decade to monitor the condition of reciprocating compressors, 

namely vibration monitoring, rod-drop monitoring, pressure-volume analysis, and 

temperature measurement (Schultheis et al., 2007). Vibration analysis is the measure of 

physical movement of machine relative to a reference point over a frequency range. The 

type of transducer for vibration analysis is dependent on the frequency range intended to 

measure by the personnel. The accelerometer is utilized for high frequency 
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measurements (above 1000 Hz) while the velocity transducer and displacement 

transducer is applied for medium (10 to 1000Hz) and low (below 10 Hz) frequency 

measurement respectively (Girdhar, 2004). The measured vibration level will be plotted 

against time. Abnormal condition of the machine will be detected if the vibration level 

exceeds pre-set threshold. 

Meanwhile, rod-drop monitoring is especially useful in monitoring reciprocating 

compressors with horizontal cylinders and piston. The gravity force experienced by the 

horizontal cylinders causes more friction at the bottom than the top, which results in 

more wear at the bottom part of the piston. To avoid damage the cylinder wall is usually 

covered with rider band as a protective measure. Nevertheless, excessive wear of the 

rider band will eventually damage the cylinder lining in the long run. Thus, rod-drop 

monitoring which utilizes a proximity probe located under the piston rods to monitor the 

vertical position of the piston rod from time to time is a preferred monitoring technique 

in detecting the rider band wear.  

Pressure-volume analysis and temperature measurement are conducted 

traditionally to monitor condition of reciprocating compressors with respect to piston 

position (Schultheis et al., 2007). The condition of valves, rings, and packing can be 

monitored closely by installing the pressure and temperature transducer in the cylinder. 

Thus, the valve leakage, bearing damage and packing leakage can be identified clearly 

by tracing the pressure and temperature measurement for a period of time. The API 618 

(1995) has recommended cylinder discharge temperature as one of the protection 

parameter as ring and valve leakages are often reflected in the discharge temperature 

due to the recompression of gas. For valve monitoring, pressure and temperature 

transducer are installed through the valve cover and the measurements are trended with 

its corresponding crank angle position for comparison. However, these measurement 
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techniques often reflect significant changes when the machinery condition becomes too 

critical, with the possibility of causing sudden shutdown and imposing secondary 

damage to the machine itself. 

In this study, the AE technique was chosen to monitor condition of valve in 

reciprocating compressors. This technique measures transient elastic waves generated 

when a material undergoes deformation or fracture development. Besides, this technique 

is also sensitive to leakages and friction between two surfaces. As the measurement 

itself is non-destructive, it will not disturb the existing system, thereby reducing the 

possibility of introducing unwanted disturbances to the machines. Hence, it is a 

prevailing measurement technique compared to other intrusive techniques such as the 

pressure and temperature measurement. Most importantly, this technique ensures earlier 

fault to be detected before it can cause any major damage to the machine. The 

superiority of AE in early fault detection mainly attributes to its ability to measure 

material deformation, as opposed to vibration measurement technique where it measures 

the response of the structure to the developing fault (Sikorska and Mba, 2008). 

Therefore, it becomes supplementary to conventional vibration technique. Current work 

aims to develop a methodology in detecting valve failures through analysis of AE 

signals. Vibration signals will serve as the reference to AE signals to compare the 

effectiveness of the AE technique in identifying valve failures.  
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1.3 Objectives  

Objectives of the study are shown as follows: 

i) To correlate acoustic emission (AE) and vibration signatures with valve timing 

at three different valve conditions and two compressor speeds under no load 

condition.  

ii) To identify and compare the acoustic emission (AE) and vibration signatures at 

different valve conditions for different compressor speeds and determine the 

frequency ranges at various valve timing and conditions. 

iii) To enable automated classification of valve signature at different conditions. 

 

 

1.4 Scope of the study 

This study is proposed with the intention of increasing efficiency of 

reciprocating compressor and reducing possibility of machine shutdowns. It examines 

the effectiveness of acoustic emission (AE) as a reliable measurement technique in 

detecting valve failures in reciprocating compressors. The output of AE analysis will be 

compared with the conventional non-intrusive condition monitoring technique, the 

vibration measurement for reference.  

The scopes of study are listed as follows: 

a) The valve of the reciprocating compressor is chosen for the study. 

b) Three valve conditions will be simulated experimentally based on the actual valve 

problems in industry. This includes the normal, grease, and leakage valve condition.  

c) Acoustic emission technique is chosen as the measurement technique and the results 

will be compared with that from vibration technique. 
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d) The signals are analyzed based on simulated valve problems, without monitoring the 

initiation and propagation of defects continuously. 

e) The methodology developed can distinguish the normal and abnormal valve 

condition automatically. 

 

 

1.5 Outline of thesis 

The thesis consists of 6 chapters. It begins by providing information about 

background and objectives of the study in Chapter 1. Chapter 2 includes a 

comprehensive review regarding valves of reciprocating compressor, AE measurement 

technique in machine condition monitoring and characteristics of AE signal. Besides, 

different time-frequency analysis methods will be discussed in Chapter 2, together with 

the strengths and weaknesses for each analysis method. Moreover, details about 

machine learning technique for automated classification of signal will also be included 

in this chapter.  

Chapter 3 describes work flow of the study. This includes hardware setup and 

data acquisition, signal conditioning and synchronous time-averaging, and parameter 

comparison. Different parameters will be introduced in this chapter and the parameter 

best describing different conditions of valve will be discussed in following chapter.  

Additionally, the time-frequency analysis technique employed in the current study will 

be discussed and justified in detail.  

Chapter 4 presents signal analysis of AE and vibration signal, which includes 

visual inspection and time-frequency analysis of signals. In addition, this chapter 

evaluates different parameters indicating the health condition of valve through statistical 

hypothesis testing. Besides, time segments and frequency range which discriminate the 
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normal valve condition from the abnormal valve condition will be identified. 

Comparison will be made between each rotating speed for both signals under three 

different valve conditions. 

Chapter 5 involves implementing machine learning technique for automated 

valve failure classification. It includes training the input data and fine tuning the 

parameters of classifier before testing the classifier with the test data. The performance 

of classifier at each frequency range is assessed and compared under different rotating 

speed.  

Finally, Chapter 6 provides a summary of the current work, achievement of the 

study and recommendations for future study. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Overview 

This chapter begins with introduction of valves in reciprocating compressors. It 

explains the need for valve monitoring and further discusses the valve mechanism and 

some examples of valve failures in the plant. Characteristics of AE signal and 

application of AE technique in condition monitoring will be discussed in the later 

section of the chapter. The chapter continues with the review of time-frequency analysis 

in condition monitoring. The strengths and weaknesses of each time-frequency analysis 

method are discussed and reasons of selecting wavelet packet transform (WPT) for 

signal analysis in the current study is justified.  

This chapter ended with comparison of 2 supervised learning technique, namely 

the neural network (NN) and support vector machine (SVM). The SVM technique is 

found to be more suitable for the current study due to its small sample size requirement, 

attainment of global minimum, fast training time and robustness towards larger number 

of features/ fault conditions.  

 

 

2.2 Reciprocating Compressor Valves 

Reciprocating compressors are one of the oldest yet widely used compressors in 

the gas-transmission, refinery and petrochemical industry. They provide a broad range 

of capacity control and high compression-ratio regardless of molecular weight, which 

are properties very much needed in the gas-transmission line (Ramesh, 2007). Figure 

2.1 shows a typical horizontal balanced reciprocating compressor.  
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Figure 2.1: Typical horizontal balanced reciprocating compressor  (Courtesy 

Sulzer-Burckhardt, Winterthur, Switzerland) 

 

However, the maintenance cost of the reciprocating compressors is relatively 

higher compared to the others, such as the centrifugal compressor. It can be increased to 

the extent that the ratio of maintenance cost of reciprocating compressor to centrifugal 

compressor become 5:1(Diab and Howard, 2004). In fact, the cost of unscheduled 

shutdown for reciprocating compressor can be as high as USD 100, 000.00 per day 

(Leonard, 1997). Therefore, condition monitoring is essential to reduce the possibility 

of sudden shutdown in the plant. 

Some investigations were conducted to study the causes of sudden shutdown of 

reciprocating compressor. According to a survey conducted by the Dresser-Land 

company (Foreman, 2002), the compressor valves ranked the top among the 

components causing compressor shutdown, followed by pressure packing and process 

problems, as summarized in Table 2.1.  
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Table 2.1: Components of reciprocating compressor shutdown (Foreman, 2002) 

Component Percentage (%) 

Compressor valves 36 

Pressure packing 17.8 

Process problems 8.8 

Piston rings 7.1 

Rider bands 6.8 

Unloaders 6.8 

Cylinder lube systems 5.1 

Instrumentation 5.1 

Others 3.4 

Piping 1.3 

Frame and running gear 0.7 

Frame lube systems 0.4 

Foundation 0.3 

Cylinder coolant system 0.2 

Partition packings 0.2 

 

Indeed, valve failures such as the valve leakage alone may not be sufficient to 

cause a compressor shutdown. It is the effect of valve failures which imposes additional 

dynamic forces to the compressor and eventually causes secondary damage to other 

parts of the compressor (Griffith and Flanagan, 2001), such as overloading and 

lubrication problem as displayed in Table 2.2. Hence, it can be deduced that valve 

failure is the source for most of the problems in reciprocating compressor.  

 

Table 2.2: Distribution of reciprocating compressor failures (Smith et al., 1997) 

Cause Percentage (%) 

Overload 28 

Liquid or foreign object ingestion 18 

Lubrication 12 

Fatigue 9 

Freezing 6 

Other or undetermined causes 27 

 

Therefore, the cost of valves accounted for 50% of the total maintenance costs of 

reciprocating compressor is not something coming out of the blue, as displayed in the 
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cost breakdown in Table 2.3. This is followed by the cost of packing and piston rings, 

which has a percentage of 20% each.  

 

Table 2.3: Breakdown of maintenance costs of reciprocating compressor (Smith 

et al., 1997) 

Component Cost Percentage (%) 

Valves 50 

Packing 20 

Piston rings 20 

Rider bands 7 

Piston rods 2 

Cylinder liners 0.5 

Bearings 0.5 

 

As valve is the major concern for the rising cost of maintenance, it is necessary 

to understand both the valve design and valve dynamics within the reciprocating 

compressor. Figure 2.2 shows the structure of a typical reciprocating compressor.  

 

 

Figure 2.2: Structure of a typical reciprocating compressor 

 

The crankshaft is usually driven by a prime mover to compress the fluid through 

reciprocating motion of a piston. As the piston moves downwards from the top-dead-
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centre (TDC), as indicated by Point 1 in Figure 2.3, volume occupied by the cylinder 

head and the piston head is increased. Volume expansion will reduce the pressure 

within the space, to a certain extent that the pressure within the cylinder is equal to the 

pressure in the suction line, as indicated by Point 2 in Figure 2.3. As the piston moving 

further downwards from Point 2 to Point 3 in Figure 2.3, pressure difference between 

the suction line and cylinder causes the suction valve to open. Hence, the suction valve 

lift can be observed at Point 2 in Figure 2.3. The pressure difference between the 

suction line and cylinder become smaller as the fluid flows into the cylinder through 

suction valve. When the piston reaches the bottom dead centre (BDC), as shown in 

Point 3, there is almost no pressure difference. Thus, the suction valve starts to close, as 

displayed by the valve movement from the valve guard/ stop plate to valve seat in 

Figure 2.3.     

 

 

Figure 2.3: Pressure-Volume (PV) diagram and valve event of a reciprocating 

compressor 
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During the compression cycle, piston starts to move from BDC to TDC. As the 

volume decreases, the pressure within the cylinder increases, as displayed by Point 3 to 

Point 4 in Figure 2.3. At Point 4, pressure within the cylinder is equal to the pressure at 

the discharge line. Any further compression will force the discharge valve to open as the 

pressure within the cylinder is greater than the pressure at the discharge line. Thus, a 

discharge valve opening as displayed by the movement of valve from valve seat to valve 

guard can be clearly seen at Point 4 in Figure 2.3. As the fluid discharges from cylinder 

through the discharge valve, the pressure difference between the cylinder and the 

discharge line becomes smaller and eventually the discharge valve closes at Point 1.     

In fact, the opening and closing event of the valves are activated by the pressure 

difference between the cylinder and the suction/ discharge line. To understand the valve 

dynamics, it is vital to study structure of the valve. Figure 2.4 shows the cross-section of 

a typical plate valve.  

 

 

Figure 2.4: Structure of typical plate valve (Courtesy Dresser Rand Company) 

 

When the valve is closed, the sealing element namely the valve plate/ ring is set 

firmly against the valve seat. As the pressure difference is sufficient to overcome 

pressure within the cylinder, spring load force, and sticking effect of lubrication 
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(Hoerbiger, 2007), the sealing element lifts off the suction valve seat and accelerates 

towards the valve guard/ stop plate, thus producing an impact on the valve guard/stop 

plate. The lifting of sealing element against the spring enables fluid to flow into the 

cylinder through the valve. When the pressure difference is insufficient to support the 

suction valve opening event, the spring bounces off and pushes the sealing element to 

return back to the valve seat, thus blocking fluid from entering the cylinder. This 

suction valve closing event occurs when the piston is at the BDC.  

Further illustration on the valve dynamics is lucidly shown in Figure 2.5. 

Similarly, discharge valve opens and closes with the same principle as suction valve. 

The only difference between the suction and discharge valve is the position of valve 

mounted at the cylinder wall. In fact, discharge valve is mounted in the inverse position 

of suction valve, as illustrated in Figure 2.5.   

 

 

Figure 2.5: Sealing element movement in suction and discharge valve  

(Hoerbiger, 2007) 
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As valve opens and closes with each revolution of crankshaft, the possibility of 

valve failure is always higher compared to other components of reciprocating 

compressor. A compressor with a rotational speed of 800 rpm can easily have more than 

a million of valve opening and closing event throughout one day of operation. 

Therefore, establishing a valve failure monitoring system is paramount to the plant 

maintenance team. Valve problems such as the valve fluttering can reduce the 

compressor efficiency. This is because when the sealing element flutters between the 

valve seat and valve guard, as shown in Figure 2.6(a), the effective suction/discharge 

volumetric efficiency decreases. Meanwhile, valve delayed closure displayed in Figure 

2.6 (b) can ultimately reduce the valve life as it is often associated with deterioration of 

spring.  

 

   

                                   (a)                                                                      (b) 

Figure 2.6: (a) Valve fluttering (b) Valve delayed closure (Hoerbiger, 2007) 

 

There are a number of reasons contributed to the valve failure. Environmental 

factors such as contaminated fluid or improper lubrication can lead to clogged valve 

problem, as depicted in Figure 2.7(a). Moreover, foreign materials or impurities carried 

by the fluid through the valve and the valve delay closing can bring damage to the 

sealing element, as shown in Figure 2.7(b). These problems can be detected earlier 

through condition monitoring before they cause any additional damage to the machine. 

Current study investigates the problem of valve failures by using acoustic emission 
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(AE) technique. A broad review of the AE technique and its characteristics in condition 

monitoring will be explained in the following section.   

 

         

                                        (a)                                                         (b) 

Figure 2.7: (a) Clogged valve (b) Broken valve ring (Courtesy of Hoerbiger 

Company) 

 

2.3 Characteristics of Acoustic Emission (AE) 

Acoustic emission (AE) is defined as the generation of transient elastic waves 

due to the release of rapid and localized energy as a result of deformation or dislocation 

within or on the surface of a material (Scruby, 1987; Mba and Rao, 2006). This 

technology began with Kaiser’s (1950) research on the characteristics of AE in 

engineering materials by using the tensile test. His discovery is then termed the Kaiser 

effect, which is the immediate irreversible characteristics of AE phenomenon where 

there is little or no AE signals generated in a material until the stress levels exceed its 

previous value (McElroy, 1975).  

In rotating machinery, AE signals are usually generated during asperities 

contact, cyclic fatigue, friction, turbulence, material loss, cavitations, and leakage. The 

type of AE waves generated depends on material properties, its mechanical behaviour 

and level of stresses at the source. Elastic waves such as longitudinal (dilatational, P) 

wave, shear (transverse, S) wave, Rayleigh (surface) wave, and Lamb (plate) wave are 

commonly detected and analyzed in AE testing (Muravin, 2009). AE signal is usually 

measured by AE transducer made from piezoelectric materials. The transducer mostly 
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captures Rayleigh wave as it has relatively higher amplitude compared to P and S wave 

amplitude (Hill et al., 1996), as shown in Figure 2.8. 

 

               

Figure 2.8: Types of Acoustic Emission Waves (Muravin, 2009) 

 

This is due to the nature of Rayleigh wave in which it attenuates lesser as it 

spreads two-dimensionally rather than three-dimension. Thus, most of the waves 

acquired at the surface of structure are comprised of Rayleigh wave especially when the 

distance of AE transducer from the source is large (Scruby, 1987). 

Unlike the vibration transducer which is direction dependent, AE transducer can 

receive signals from all directions (omnidirectional). Therefore, the AE transducer is not 

necessary to be attached near to the source of emissions. Once attached to a large 

structure, AE transducer can scan the entire structure by placing the transducer at 1-10 

m intervals. It offers advantages over other non-destructive tools such as the ultrasonic 

where the later requires more transducers to scan through every part of the examined 

structure. One of the limitations of AE technique is on its generation of low energy 

pulses, which is mostly near the lower level of detection of piezoelectric transducers. 

Thus, complicated and expensive electronic apparatus is required to amplify the signals 

acquired (Williams, 1980). However, this issue is resolved nowadays with cheaper 

transducer produced as a result of a great improvement in instrumentation technology. 
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Figure 2.9: Spectrum of vibration and sound used for inspection and testing 

(Williams, 1980) 

 

AE waves are typically in the frequency range of 100 kHz to 1 MHz (Leahy et 

al., 2006). Figure 2.9 shows the spectrum of vibration and sound used for inspection and 

testing. In contrast to vibration technique which focused on frequency range less than 

100 kHz, AE technique is focused on the higher frequency range, where most of the 

microscopic defects within a material can be detected. Therefore, AE technique can 

provide superior early fault detection capabilities over vibration analysis (Sikorska and 

Mba, 2006). In high frequency range, signals from other machine components and its 

environment are attenuated easily, thus enabling AE signal to have a higher signal-to-

noise ratio compared to signals acquired by accelerometer. However, the high frequency 

nature of AE also causes the signals captured to be much smaller, in the unit of milli or 

micro Volt (Sikorska and Pan, 2003). Low noise signal conditioning hardware and 

amplifiers are normally used to enlarge the AE signals. To have a better signal 

acquisition, AE sensors are normally placed as close as possible to the AE source and 

suitable couplant is applied between the sensor and its mounting surface to enable better 

signal transmission.  
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Figure 2.10: Types of AE Signals (a) Burst (b) Continuous (c) Mixed mode 

(Sikorska and Mba, 2006) 

 

There are generally three types of AE signals, namely burst, continuous, and 

mixed mode type as shown in Figure 2.10. The burst types are associated with discrete 

transient signals with short decay time and rise time. Continuous types are bursts that 

occur too close to each other, thus appear as background signal level. The mixed mode 

type is a combination of both burst type and continuous type signal (Sikorska and Mba, 

2006). The opening and closing mechanisms of valve in the compressor is usually 

represented by the burst signals in the time domain (Gill et al., 1998), along with the 

background noise. Due to the broadband nature of acoustic emission, AE signals are 

usually analyzed in the time domain (Sikorska and Mba, 2006). There are a few features 

which can be extracted from the AE signals plotted in time domain, namely peak 

amplitude, AE hits or counts, and burst duration as shown in Figure 2.11.  
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Figure 2.11: Traditional features of an AE Signal (Sikorska and Mba, 2006) 

 

Peak amplitude is the highest amplitude of the signals while AE hits or counts 

are the number of AE bursts which exceeds certain threshold (Sikorska and Mba, 2006). 

A consecutive of AE hits or counts is termed AE event. The threshold level shown in 

Figure 2.11 is usually determined according to background noise and applications. 

There are two types of threshold, namely fixed threshold and floating threshold. Fixed 

threshold is a constant value set for the whole duration of test while floating threshold is 

the threshold level set as a fix amount above the background level. Generally, floating 

threshold will be utilized to avoid overloading of the data acquisition hardware when 

there is any increment of the background level due to the fluctuations in operating 

conditions (Sikorska and Mba, 2006).  

Nevertheless, both thresholds are not employed in the current study. Instead of 

acquiring the AE hits/ counts, this study emphasizes on capturing the whole AE signal 

in the time domain as it can give more information about the valve condition. The 

following section provides a broad review regarding application of AE technique in 

condition monitoring of rotating machineries. 
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2.4 Acoustic Emission (AE) in Condition Monitoring 

Condition monitoring plays a major role in predictive maintenance where it 

helps predicting the time of failure of a machine. It allows remedial action to be taken 

before significant permanent damage occurs. In recent years, industries are more 

inclined to adopt condition monitoring method as it allows machines to work more 

efficiently while reducing the cost of damage. The process involves monitoring certain 

parameters of machine condition without disturbing the operation. The parameters are 

typically byproducts generated when converting potential energy to kinetic energy, in 

the form of wear and tear, heat, vibration, and noise. There are few methods available to 

measure these byproducts such as vibration analysis, infrared thermograph, wear 

particles analysis, oil analysis or acoustic emission approach. In this research, condition 

monitoring system based on acoustic emission (AE) technique is chosen to provide a 

timely detection for valve failures in reciprocating machine. 

Acoustic emission (AE) is a phenomenon of transient elastic waves generation 

by rapid release of energy from localized sources within or on the surface of a material 

(Leahy et al., 2006). It usually occurs when a small surface displacement of a material is 

produced. There are many sources of acoustic emission which include plastic 

deformation, micro fracture, wear, bubble collapse, friction, and impacts. It is measured 

and detected by the acoustic emission sensors (typically piezoelectric devices) when it 

propagates to the surface of the material (Sikorska and Mba, 2006).  

In general, the application of acoustic emission has been largely neglected by the 

scientific and engineering communities, until the great advancement in modern 

instruments and transducer in the past fifty years, which eventually enables researchers 

to detect dislocation phenomena in metals (Liptai et al., 1972). Recently, acoustic 

emission technique has been used as a nondestructive testing (NDT) technique for 
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condition monitoring to examine either structural integrity or incipient fault in rotating 

equipment. The application of AE technique in fault detection of rotating equipment 

such as rolling element bearings, mechanical seals and journal bearings, gearboxes, 

pump and reciprocating machinery has been investigated by many researchers. The 

following section shows reviews on some of the common equipment of rotating 

machinery.   

 

2.4.1 AE in Bearing Monitoring 

Balerston (1969) is one of the earlier researchers who applied AE technology to 

identify artificially seeded defects in rolling element bearings. The defects simulated 

include outer and inner race defects, ball defects, and lack of lubrication. About a 

decade after Balerston, researchers found that AE offer better incipient fault detection of 

rolling element bearings over vibration. Roger (1979) commented that  

“because of the slow rotational speed of the crane, application of conventional 

vibration analysis (0-20 kHz) was of limited value for on-line condition 

monitoring”   

He suggested using 100 to 300 kHz AE resonant transducer for on-line monitoring of 

bearings. Additionally, McFadden and Smith (1983) found that by using a AE 

transducer with frequency response beyond 300 kHz, minute strains (local distortions) 

of bearing housing can be detected at slow speed bearings (10 rpm) which could not be 

detected by accelerometer as the vibration energy is small and easily overlapped with 

other machine rotational speed. However, vibration analysis is better in detecting 

bearing fault in higher rotational speed range (850 rpm) (McFadden and Smith, 1983) as 

AE signals appear to be low frequency noise under higher rotating speed.  
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Al-Ghamd and Mba (2006) supported this finding when examining AE and 

vibration analysis for bearing defect identification and estimation of defect size. They 

found that over a range of speed (10-4000 rpm) and load conditions (up to 16 kN), AE 

technique can provide earlier detection of bearing defects compared to vibration 

technique. Furthermore, the AE burst duration and amplitude can indicate defect size, 

which is not achievable through vibration analysis. Thus, the propagation of defect and 

severity of fault can be monitored closely through AE technique, enabling defective 

bearings to be changed in time. The AE technique is capable of detecting the growth of 

subsurface cracks, whereas the vibration technique can only detect defects when they 

appear at the surface. In addition, the high frequency range of AE signals generated also 

offers an extra advantage compared to vibration signals as the former will not be 

masked by other machinery noise which is usually present in lower frequency range (up 

to 50 kHz) (Tandon and Choudhury, 1999). 

    The AE technique is particularly good in detecting defects of rolling element 

bearings with rotational speed below 16 rpm. Jamaludin et al. (2001) commented that 

vibration technique has difficulty in detecting bearing failures at low rotational speed 

due to limitations of the instrument itself, besides the fact that vibration energy is 

usually weak and occurs over a longer period (Kuboyama, 1997). He showed that AE 

technique is capable of detecting early stages of bearing damage at rotational speed as 

low as 1.12 rpm, although complicated signal processing and clustering techniques are 

needed in the analysis. In fact, advanced signal processing technique such as adaptive 

line enhancer and peak-hold down sampling are employed in industries nowadays for 

online monitoring of slow rotating machinery as the former can improve the signal-to-

noise ratio while the later can reduce the burden of handling huge amount of data (Kim 

et al., 2009).  



25 

 

The development of AE monitoring in bearing diagnosis is in fact the most 

established application of AE in rotating machinery monitoring (Mba and Rao, 2006). 

This is proved by the ubiquitous commercial software in the current market for AE 

monitoring of rolling element bearing. Nevertheless, there are still rooms to enhance the 

current diagnosis and prognosis techniques.   

 

2.4.2 AE in Gear Monitoring  

For the gear fault diagnosis, Miyachika et al. (1995) examined AE waves by 

conducting the bending fatigue test on spur gear. He found that crack initiation can be 

predicted by using AE technique for case hardened gear. Besides, cumulative event 

count of AE increased with the crack growth until a specific depth of hardness. 

However, the same observation is difficult in the case of normalized gear.  

Detection of gear pitting can be seen clearly in the research done by Singh et al. 

(1996). Gear pitting is the result of a combination of Hertzian fatigue forces and surface 

tension. It occurs when loads applied on the gear far exceeding the designed load or due 

to some metallurgical problems. Eventually, tooth breakage can happen after gear 

pitting as the remaining core of gear is weakened when the hard outer layer is 

penetrated. According to Singh et al. (1996), both the AE and vibration technique can 

detect the gear pitting. Nevertheless, AE signals have a greater signal-to-noise ratio 

compared to vibration signals. He stated that gear pitting cannot be detected at a very 

high speed or unloaded conditions for both the AE and vibration techniques. This is 

because under such circumstances the background noise level increases while the 

amplitude of AE or vibration signals due to pitting decreases. Singh et al. (1999) later 

investigated on the capability of AE in detecting gear tooth breakage. When compared 

to the vibration analysis technique, AE shows a better performance as it can detect the 
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initial stage of crack propagation while there is no significant change in the vibration 

level. This once again shows that AE technique offers an advantage over vibration 

monitoring techniques. 

The superiority of AE maybe attributed to the mechanism of AE generation. Tan 

et al. (2007) mentioned that the major source of AE activity at gear mesh is the asperity 

contact during sliding or rolling of gear teeth. The AE activity is more sensitive to the 

rotational speed than applied load under the same operating temperature (Tan and Mba, 

2005a). On the other hand, a change in the stiffness of gear as a result of gear damage 

will alter the vibration signals collected from the gears (Tan et al., 2007). However, the 

change of gear stiffness needs to be large enough for a change in the vibration level. 

This is supported by the finding that the vibration level only started to rise after a 

minimum gear pitting area of 25%. Nonetheless, AE is more sensitive than vibration 

and spectrometric oil analysis in detecting the natural life degradation of spur gear. In 

fact, AE level increases linearly with increasing pitted area, which is not the case for 

vibration and spectrometric oil analysis. Hence, it can be concluded that AE performs 

better in pit growth monitoring of gear while vibration technique can only detect the 

gear defect at a later stage, when the pit development was advanced. 

Although AE is sensitive in detecting natural pitting of spur gear, it seems to be 

challenging in identifying defects of artificially seeded spur gear (Tan and Mba, 2005b). 

Besides having non-consistent of AE burst with gear defect location, it was found that 

the lubricant temperature has an influence on the AE level, in addition to other variables 

such as the load and rotational speed which had been discovered by other researchers 

(Tandon and Mata, 1999; Toutountzakis and Mba, 2003). Thus, the timing of data 

acquisition, in effect the lubricant temperature, will affect the AE level, which causes 

the problem of inconsistencies of data. In contrast, the seeded defects of helical gear can 
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contribute to an obvious burst of AE signal. In fact, Eftekharnejad and Mba (2009) 

stated that the burst occurred at the exact location of the seeded defect, which is not 

possible for the similar test with spur gear (Toutountzakis et al., 2005; Tan and Mba, 

2005b). Further finding on the direct relation between AE level and the volume of 

removed material of helical gear demonstrate potential of AE technique as a diagnostic 

tool in future.   

Despite the fact that the application of AE in gear diagnosis is still in its infancy, 

this technique has started to display its potential as a promising diagnostic tool in gear 

monitoring. It is expected to become a complementary tool for vibration technique in 

gear diagnostics in the near future, after more investigations performed to ensure 

robustness and reliability of the technique, which include understanding the effect of   

operational variables on the generation of AE activity (Mba and Rao, 2006).  

 

2.4.3 AE in Valve Monitoring 

Conventionally, condition of valves in reciprocating compressor is monitored 

through pressure-volume (PV) and temperature measurement. These techniques have 

been proven to be successful and applied widely in the industry (Afimiwala and 

Woollatt, 1984; Davis, 2004). Indeed, software for monitoring reciprocating compressor 

through pressure and temperature measurements is prevalent in the current market. By 

superimposing current PV diagram and temperature data to the baseline data from time 

to time, condition of the valves can be monitored closely. In addition, the suction and 

discharge volumetric efficiency and flow balance acquired from the PV measurement 

can give important information about the health condition of valve (Schirmer et al., 

2004). Although these measurement techniques can effectively detect valve leakage 

before causing any secondary damage to other parts of the compressor namely the 
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crosshead pin bushing or piston rod, these intrusive measurement techniques always 

require proper installation of transducer. Besides, these techniques may not be able to 

detect early changes of valve condition such as degradation of spring or initiation of 

cracks in the valve plate. Recently, other non-intrusive technique such as the 

instantaneous angular speed (IAS) was introduced due to the ease of installation and 

flexibility in giving minimum interference to the operating conditions (Elhaj et al., 

2008; Elhaj et al., 2010). Nevertheless, this technique can only prove to be capable of 

detecting valve leakage based on previous research. No further studies are conducted to 

examine other valve failure conditions by using IAS to date. 

Due to the mechanism of AE signal generation as discussed in the previous 

section, this non-intrusive technique can be a better measurement technique for valve 

failure detection. Although AE monitoring has been applied to the detection of valve 

leakage in reciprocating compressors, there are still limited resources in this field. Gill 

et al. (1998) proposed to use AE technique as a non-destructive testing tool (NDT) in 

monitoring a large reciprocating compressor. The poppet valves of a two stage, 

horizontally opposed reciprocating compressor with working pressure from 260 to 3200 

Barg had been investigated on site. Gill et al. (1998) found that majority of the poppet 

valve failures were due to degradation of impact valve faces and springs. There were 

also other possible causes such as the sticking of valves due to uneven loading, 

excessive wear of the valve guides or broken springs. The AE root-mean-square (RMS) 

signal corresponding to the angular position of crankshaft was acquired and compared 

between normal and faulty compressor. The opening and closing of the suction and 

discharge valve can be detected clearly both by the accelerometer and the AE sensor, 

thus the timing of all valves can be monitored.  These events were displayed as signals 

with a sudden rise followed by a gradual decay. However, whilst AE technique can 
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detect fluid-mechanical motion in the valve due to its wide frequency range, the fluid 

movement around the valve cannot be detected by using the vibration technique as it is 

not sensitive to the high frequency noise emitted by the fluid motion.  

Gill’s work was mainly focused on the fault diagnosis of valve through visual 

inspection of AE and vibration time signal. With the advance of technology, there are 

some researchers introduce the idea of automated pattern recognition techniques where 

the fault of reciprocating compressors can be identified automatically by applying some 

feature extraction algorithms. El-Ghamry et al. (2003) proposed pattern recognition and 

statistical feature isolation techniques to identify problems in reciprocating machines. 

The authors intended to develop a generic algorithm for diagnosing problems in any 

reciprocating machines by relating the mechanical events with signals recorded. By 

employing suitable filters to locate the features of AE signal, faulty conditions were 

detected automatically when the statistical parameters exceed certain threshold value. 

They further concluded that this diagnostic method can reduce intense computation of 

AE signals while obtaining an accurate result of fault diagnosis. Meanwhile, the mean 

value of AE RMS signal was selected as the best parameter in valve monitoring. 

However, detailed comparison such as the time-frequency analysis between vibration 

and AE technique in valve diagnosis of reciprocating machine is yet to be conducted.   

As AE and vibration signals exhibit non-stationary behaviour such as having 

different pulse timing and amplitude under different valve conditions, it is believed that 

time-frequency analysis can provide better diagnosis on the valve condition. Elhaj et al. 

(2001) used time-frequency analysis technique namely continuous wavelet transform 

(CWT) to analyze vibration and airborne sound signals for valve diagnosis. Yang et al. 

(2004) further demonstrated the use of discrete wavelet transform (DWT) in 

combination with higher order statistics and neural networks for automated quality 
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examination in the production line of small reciprocating compressors through vibration 

signals. It was found that features of the vibration signals revealing the condition of 

compressors can be extracted through DWT and served as the inputs for neural 

networks.  

Lin, et al. (2006, 2009) later proposed on using some time-frequency analysis 

techniques and classification strategy to examine the valve condition in a reciprocating 

machine. A single stage, two cylinder reciprocating compressor is used as a test bed for 

simulating seeded valve faults and the signals generated are acquired by using an 

accelerometer with the resonant frequency of more than 50 kHz. Three time-frequency 

analysis techniques, namely the Short Time Fourier Transform (STFT), smoothed 

pseudo Wigner-Ville distribution (SPWVD), and reassigned smoothed pseudo WVD 

(RSPWVD) are used as the basis for classification strategy. Data reduction algorithm 

such as the mean variation method, min/max method, and the unit standard deviation 

method are used to reduce the large number of data sets for practical system 

classification. The authors concluded that though better resolution of time-frequency 

images can be obtained through SPWVD and RSPWVD, they do not produce better 

classification results by using the current extraction mechanism. In fact, STFT can 

provide similar classification results with less computation time. This is indicated by the 

full success of classification (with zero percent of misclassification) by using the mean 

variation method and the STFT datasets.  

Despite several attempts to examine the effectiveness of time-frequency analysis 

by other researchers in detecting valve failures, most of the studies were focused on 

analyzing vibration signals under different valve conditions. There is limited study 

conducted in analyzing AE signal through time-frequency analysis method. Moreover, 

most of the valve diagnoses through AE signal are emphasized on detecting the valve 
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leakage, when there are possibilities for other valve failures such as spring deterioration, 

valve misplacement, cracked valve plate, and over/inadequate tightening of valve 

cover/seat which occur much earlier before they cause serious leakage in the valve. This 

study is intended to fill up the gap by analyzing the AE signal under different valve 

conditions by using the time-frequency analysis method. Details of different time-

frequency analysis technique will be discussed and the decision of selecting a particular 

time-frequency technique will be justified in the following section. 

 

 

2.5 Time-Frequency Analysis 

 Signal generally represents physical phenomenon such as temperature 

fluctuations in a room, pressure changes in a chamber or displacement changes in a 

structure. A signal captured is usually displayed as a time history. To study and classify 

a signal, one has to know the type or behaviour of the signal. Signals are generally 

classified as deterministic and random, as shown in Figure 2.12 .  

 

 

Figure 2.12: Classification of signals (Shin and Hammond, 2008) 

 

Behaviour of a deterministic signal can be predicted exactly while in turn for a 

non-deterministic or random signal, it could not be forecasted accurately. However, in 
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practical applications, this classification can only serve as a reference because most of 

the signals are mixtures of different types of signal.  

 Most of the information embedded in signal could not be displayed in the time 

domain. This is especially true when the signal is a combination of different frequency 

content. If one of the components is of smaller amplitude compared to the others, it will 

be hidden under the signal of larger amplitude and will not be differentiated in the time 

domain. This phenomenon often causes difficulty in extracting important information 

from a signal. Thus, signal transformation is needed to extract the frequency 

components of the signal. One of the popular ways is by the Fourier transformation. 

 

2.5.1 Fourier Transform 

 Fourier transform (FT) enables a periodic or stationary signal to be decomposed 

to its constituent frequency components, which is a combination of sine and cosine 

waves. The coefficients of Fourier transform indicates how closely the signal is related 

to a particular frequency component. The higher the value of coefficient )( fX , the 

more dominant is the frequency component f  in the signal being analyzed. Fourier 

transform is shown in Equation 2.1, where )(tx  denotes the time domain signal and f  

represents frequency of the signal. 

                                            

dtetxfX ftj 2)()( 







                                                    (2.1) 

These sine and cosine waves can be summed up to form the original signal through the 

inverse Fourier transform, as shown in Equation 2.2.  
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                                                    (2.2) 

Fourier transform is very useful in solving linear partial differential equations in heat 

conduction, magnetic, wave propagation to name a few. In engineering application, it is 

utilized widely in signal processing, image processing, and vibration analysis. 

However, as Fourier transform is the integration of inner product of the signal 

)(tx  with sine and cosine functions, 
ftje 2

 where these two functions are global 

functions, the Fourier transform exhibit global information of the signal. In other words, 

a small perturbation of signal in the time domain will spread through the entire 

frequency domain. Therefore, one can only observe the frequency components of the 

signal without knowing the time properties of these frequency components. This made 

Fourier transform unsuitable in analyzing non-stationary signals as the local property of 

the signal could not be extracted. Hence, other methods such as the short time Fourier 

transform (STFT) and wavelet transform are introduced to enable time-frequency 

analysis in the same platform.  

 

2.5.2  Short Time Fourier Transform (STFT) 

 Short Time Fourier Transform (STFT) is introduced by Gabor (1946) to 

overcome the inadequacy of Fourier transform. In STFT, the signal is divided into small 

segments, where each segments is assumed to be stationary. This is achieved when the 

signal )(tx  is multiplied with a window function )(tg  centered at certain time location 

 , as shown in Equation 2.3, where * denotes the complex conjugate of the function 

and ),( fS   represents the coefficient at time   and frequency f .  
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Indeed, the time and frequency resolution of signal are dependent on the width 

of window. A wide window will result in better frequency resolution but poor time 

resolution while a narrow window will result in better time resolution but poor 

frequency resolution, as shown in Figure 2.13.  
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Figure 2.13: Time frequency plane of STFT for (a) Narrow window (b) Wide 

window 

 

Since the width of windowing function is fixed, the resolution of STFT is fixed. 

Therefore, better frequency resolution is achieved with the compromise on time 

resolution and vice versa for the entire time-frequency plane. This is due to the fact that 

the windowing function is lower-bounded by the Heisenberg uncertainty principle, as 

displayed in Equation 2.4.  

                                                                  4

1
 tf

                                                 (2.4) 

This principle states that the exact time frequency representation of a signal cannot be 

achieved. One can only know the time intervals within certain frequency band, but not 
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the exact point in the time-frequency plane. Therefore, the time and frequency 

resolution, ∆f and ∆t cannot be arbitrarily small as they have a lower bound. 

 Due to the limitation of fixed resolution, STFT is not favourable in the analysis 

of non-stationary signal, especially when the signal is a combination of extremely high 

and low frequency components. Although one can vary the windowing function at 

certain time instant to change the time-frequency resolution, this method is not 

preferable as knowledge of windowing function is needed for analysis and comparison 

is difficult to be made as the whole signal is analyzed with different windowing 

function. 

 

 

2.5.3  Wavelet Transform 

2.5.3.1 Continuous Wavelet Transform (CWT) 

 The wavelet transform had been a subject of study since 1930s, where several 

studies were performed on developing the representation of functions through scale-

varying basis functions (Graps, 1995). The multi-resolution analysis proposed by Mallat 

(1989) had accelerated the wavelet theory as he managed to develop the link between 

quadrature mirror filters, pyramid algorithms and orthonormal wavelet bases. 

 Similar to STFT, the wavelet coefficient is obtained by multiplying the time 

signal with a basis function. However, the wavelet basis function is utilized instead of 

the windowing function in STFT. In addition, no Fourier transform is performed on the 

multiplied signal. In other words, the wavelet transformed signal is not a time-frequency 

representation. In fact, it is a time-scale representation. This is because, as opposed to a 

fixed window width in STFT, the wavelet basis has variable width of window. This 

property enables the signal to be analyzed under different scale or resolution. Higher 
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scale corresponds to a dilated signal while lower scale corresponds to a compressed 

signal. Heisenberg uncertainty principle is still satisfied under wavelet transform and 

the wavelet basis inherited the property of having good time resolution and poor 

frequency resolution at smaller scale and good frequency resolution and poor time 

resolution at larger scale, as shown in Figure 2.14.  
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Figure 2.14: Time-scale plane of wavelet transform 

 

Fortunately, most of the signals in real world application are of this property. Therefore 

the wavelet transform is good in representing real world signal and excellent in 

detecting signal discontinuity.   

 The wavelet coefficients are computed by shifting a given scaled wavelet 

through the whole time signal. The operation is repeated over a number of scales until 

the wavelet covered the whole frequency range of signal. The wavelet coefficients 

computed represent a level of correlation between the signal and the scaled wavelet 

basis at a certain time instant. A higher value of coefficient will be obtained if the signal 

has the same scale as the wavelet basis and vice versa. 

 For wavelet analysis, the signal being analyzed must contain finite energy. In 

other words, the signal must be square integrable, as shown in Equation 2.5. The 

continuous wavelet transform (CWT) is shown in Equation 2.6. ),(  s  denotes the 
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wavelet coefficient at scale factor s  and translation parameter  . )(*
, ts   is the 

conjugate of mother wavelet. It is given in Equation 2.7, where the normalization factor 

s

1
 ensures that energy remain the same at different scales.   
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Mother wavelet is a prototype function generating wavelets at different scales. All other 

wavelets at different scales are derived from the mother wavelet. Compressed, high-

frequency (low scale) of the mother wavelet enables temporal analysis while dilated, 

low frequency (high scale) of the same wavelet enables frequency analysis. This is 

because the former has higher time resolution while the later has higher frequency 

resolution. Figure 2.15 shows the compressed and dilated function of a Morlet wavelet. 
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Figure 2.15: Mother wavelet with scale 0.5 and scale 1.5 

 

 In fact, certain mathematical requirements are needed to be satisfied before a 

function can be chosen as a mother wavelet. These mathematical requirements will 

determine the properties of a mother wavelet. Firstly, to ensure that a signal is analyzed 

and reconstructed without any loss of information, the admissibility condition must be 

satisfied, as displayed in Equation 2.8.  
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                                           (2.8)

 

This condition restricts the class of functions that can be wavelets. It implies that the 

Fourier transform of wavelet )(  is zero at zero frequency, given in Equation 2.9.   

                                                        0)0( 


                                                             (2.9)                                                                                                                                      
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This property enables wavelet to have a band-pass spectrum characteristic (Valens, 

1999), which is very useful in discrete wavelet transform. Equation 2.9 also implies that 

average value of wavelet is zero in the time domain, given in Equation 2.10. 

                                                               

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 0)( dtt

                                               (2.10)                                                                                                               

 

Hence, the wavelet is oscillatory and behaves like a wave. In fact, the term wavelet 

signifies “small wave”. The admissibility condition provides the requirement for a 

function to behave like a wave while the regularity condition ensures that the function 

to be small. In other words, the wavelet should have some degree of smoothness and 

concentration which enable it to have a fast decay. This also suggested that the wavelet 

have to be compactly supported (with finite width of length). 

 The regularity condition depends on the number of vanishing moments in a 

wavelet function. The vanishing moments is given in Equation 2.11. 
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)( pf  denotes the p
th

 derivative of function f  while )1( nO  denotes the rest of the 

Taylor series expansion at zero time instant (Valens, 1999). Equation 2.11 can be 

further rewritten as Equation 2.12. From Equation 2.12, the vanishing moment Mp can 
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be expressed as Equation 2.13. The higher the number of vanishing moments Mp, the 

faster is the decay of wavelet coefficients. Hence, if a scaling function or wavelet has p  

vanishing moments, the scaling function can represent the signal up to a polynomial 

degree of 1p .  

 One of the important features of wavelet basis is its orthogonality, which ensures 

the signal to be non-overlapped in the wavelet space. Therefore the signal can be 

transformed to the wavelet space back and forth without any loss of energy. The 

orthogonality condition is satisfied in the Fourier transform as its basis function, the 

sine and cosine function are orthogonal to each other.
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                                                           kl = {1, k1; 0, k 1} 

In wavelet transform, Equation 2.14 must be satisfied for orthogonality. Equation 2.14 

implies that the scaling function, )(t , which is a basis for  wavelet function 

construction, must be orthogonal to its translation. Further information on orthogonality 

will be discussed in the section of discrete wavelet transform (DWT). 

 In CWT, the scale varies indefinitely until it covers the entire spectrum. 

However, the possible number of resolution or scale levels is dependent on the signal 

length. A signal with length of 
j2 will have a maximum resolution of j  level. Due to 

the high computational time and high redundancy of CWT, discrete wavelet transform 

(DWT) is introduced as a preferable method in signal analysis.  
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2.5.3.2 Discrete Wavelet Transform (DWT) 

 Discrete wavelet transform (DWT) can reduce the number of scaled wavelets 

required for covering the entire spectrum, thus reducing the computational time. This 

provides an extra advantage compared to CWT especially when the signal length is very 

long. Besides, DWT can overcome the redundancy problem in CWT. As opposed to 

CWT where the wavelets are continuously scalable and translatable, discrete wavelets 

are scaled and translated in discrete steps, as shown in Equation 2.15, where j and k 

denotes the scale factor and translation parameter respectively. 
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 DWT is performed based on the two-scale relations. It relates the scaling 

function and wavelet at a given scale with the scaling function at the next-higher scale. 

This can be expressed in Equation 2.16.  

                                                                 001 WAA 
                                              (2.16) 

The scaling function at the higher scale, A1 is composed of the scaling function, A0 and 

wavelet W0 at the next lower scale, as shown in Figure 2.16(a).  
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Figure 2.16: Two-scale relations for (a)Primal space (b) Dual space 

 

This relation enables multi-resolution analysis (MRA) to be performed on a signal as 

the signal can be decomposed under different scales. As shown in Equation 2.17 and 

2.18, where )2( tj A0A1and )2( tj W0A1, the coarser resolution of the scaling 

function, )2( tj and wavelet, )2( tj at lower space can be represented as the finer 

resolution scaling function, )2( 1tj at the next higher space by the two-scale relations. 
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 To perform two-scale relations, the orthogonality of subspaces must be satisfied 

first. The scaling function must be orthogonal with respect to its translation in a given 

scale, as given in Equation 2.14 while the wavelet must be orthogonal with respect to its 

scale and translation. This implies that A0W0 such that A0W0=A1. However, the 

orthogonality and linear phase (symmetry) property of wavelets cannot be satisfied at 

the same time, except the Haar wavelet family (Vetterli et al., 1995). The non-linear 

phase property of orthogonal wavelets such as Daubechies, Symlet, and Coiflet will 

result in phase distortions. Thus, biorthogonal wavelets are introduced to overcome the 
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limitations of orthogonal wavelets. The characteristics of orthogonal and biorthogonal 

wavelets are shown in Table 2.4. 

 

Table 2.4: Characteristics of orthogonal and biorthogonal wavelets 

Orthogonal wavelets Biorthogonal wavelets 

 Analysis and synthesis filter are of the 

same function. 

 Generally do not have closed-form 
expressions. 

 Usually not symmetric (linear phase), 
except Haar wavelet. 

 Higher-order filters (with more 

coefficients) have poor time-frequency 

localization. 

 

 

 

 

 Analysis and synthesis filter are of 

two different functions. 

 Normally have explicit expression. 

 Symmetric (linear phase). 

 Good time-frequency localization 

even at higher-order. 

 

 

 Biorthogonal wavelet has a dual space, as shown in Figure 2.16 (b). The duality 

in biorthogonal wavelet ensures that W0    0 and A0   W 0. In other words, the 

biorthogonal wavelet is not orthogonal to its primal space, but to its dual space. This 

ensures the linear phase property of biorthogonal wavelets. Besides, more freedoms are 

achieved in designing biorthogonal wavelets as the analysis and synthesis filters are 

composed of different functions.   

 The two-scale relations enable signal decomposition by passing the signal 

through a series of filter bank. The whole signal can be represented as a combination of 

scaling function )(t and wavelet )(t , as shown in Equation 2.19 and 2.20, 
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where )2( t , )12( t
1A  and ]})[{]},[({ 11 kgkh  are the low pass and high pass filter in 

the square integrable space 
2 . Both equations can be combined to form the 

decomposition equation, Equation 2.21 at a given scale j. 
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From Equation 2.21, the signal is passed through a low pass filter (scaling filter) and 

high pass filter (wavelet filter) simultaneously, where the detailed wavelet coefficients 

at the higher frequency range are extracted through the high pass filter while the 

remaining portion, which forms the approximation coefficients are extracted from the 

low pass filter. The approximation coefficients will then split into its detailed and 

approximation portion again and the process is iterated until the number of samples is 

smaller than the length of the high pass or low pass filter (Valens, 1999). This process is 

termed sub-band coding, as shown in Figure 2.17, where G[n] and H[n] denote high 

pass and low pass filter respectively.   

 

 

Figure 2.17: Sub-band coding algorithm (Valens, 1999) 
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 When the signal is passed through the high pass or wavelet filter, its spectrum is 

doubled as the compression of wavelet by a factor of 2 in time domain will result in an 

upward frequency shift by a factor of 2. The same principle applies to the scaling 

function, thus producing a low pass spectrum. This enables the wavelet to cover the 

higher frequency portion and the scaling function to cover the lower frequency portion. 

Eventually, the scaling function and wavelet will cover the entire spectrum of the signal, 

where the detailed components are extracted every iteration, as shown in Figure 2.18. 

Since the frequency range of scaling function and wavelet spectrum is halved every 

iteration, the signal is decimated by a factor of 2 with every iteration, causing the 

number of samples reduced by a factor of 2 with every iteration.   

 

Wavelet spectrum (ψ)Scaling function spectrum (φ)

 

Figure 2.18: Splitting the signal spectrum with an iterated filter bank (Valens, 

1999)  

 

 

2.5.3.3 Wavelet Packet Transform (WPT) 

 In DWT, signal is further decomposed in the low pass result (approximation 

coefficient) only. No further analysis is performed on the high pass results, which is the 

detailed coefficients. Therefore, DWT is not suitable for analyzing signal with high 
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frequency band (Wu and Liu, 2009), or in applications where detailed features of every 

frequency band are needed such as in signal compression. Wavelet packet transform 

(WPT) is introduced to address the limitations of DWT.  

 The working principle of WPT is similar to DWT. However, instead of further 

analyzing the approximation coefficients, both the detailed and approximation 

coefficients are further analyzed in WPT. The wavelet packet function is similar to 

DWT, with additional index n as the modulation parameter or the oscillation parameter 

(Yen and Lin, 2000), as shown in Equation 2.22,  
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where j and k represent scale factor and translation parameter respectively. To initiate 

the decomposition, the scaling function )(t and the mother wavelet )(t are utilized, as 

shown in Equation 2.23 and 2.24.  

                                                         
)()(0

0,0 ttW                                                   (2.23) 

                                                        
)()(1

0,0 ttW                                                   (2.24) 

When n= 2,  , …, further decomposition is achieved by using the recursive 

relationships shown in Equation 2.25 and 2.26,  
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where )(kh  and )(kg  are the quadrature mirror filter (QMF) associated with the 

predefined scaling function and mother wavelet function. Eventually, the wavelet packet 

coefficient, n

kjw ,  is computed as in Equation 2.27.  
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kj
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Indeed, the wavelet packet coefficient is a measure of how closely related the signal is 

to certain frequency range, determined by the scale factor, j, at certain time instant tj2 , 

shifted by translation parameter k. The concept of WPT is shown in Figure 2.19. 

 

 

Figure 2.19: WPT under three level decomposition (Yen and Lin, 2000) 

 

The dashed lines indicate swapping between subspaces after high pass filter, to 

overcome the effect of aliasing which exchanges frequency ordering of subspaces. 

Thus, subspaces in Figure 2.19 are displayed in increasing frequency order, which are 

also referred as the Paley ordering (Wickerhauser, 1994). In Figure 2.19, the original 
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signal 0
0S  is decomposed into three resolution levels. 0

3S  represents the first subspace at 

third resolution level. In the present study, the AE and vibration signals are decomposed 

into four resolution levels, producing a total of 16 subspaces. The frequency intervals of 

each subspace can be computed as in Equation 2.28, where m denotes the subspace 

number, j denotes the resolution level and sf   denotes the sampling rate (Hu et al., 

2005). 

                                     s
j

s
j fmfm 11 2,21                                             (2.28) 

For instance, in the present study, sf  = 102.4 kHz, the frequency interval of the original 

signal 0
0S  is (0, 51200]. Similarly, the frequency interval of the third subspace of fourth 

level 
2
4S  is (6400, 9600].  

 

 

2.5.4 Review of different time-frequency analysis in condition monitoring 

Conventionally, Fourier transform (FT) is most widely used for spectral analysis 

of signals in fault diagnosis of machinery. As Fourier analysis is confined to stationary 

signals, the time-frequency analysis techniques are introduced for the analysis of 

transient signals. The Short Time Fourier transform (STFT), Wigner-Ville distribution 

(WVD), continuous wavelet transform (CWT), discrete wavelet transform (DWT) and 

wavelet packet transform (WPT) are examples of time-frequency analysis technique. 

Table 2.5 displayed some of the reviews regarding time-frequency analysis technique in 

condition monitoring. It can be seen that the aforementioned techniques were applied in 

monitoring of machine components such as pump, bearing, gear, internal combustion 

engine and valve of compressors. Besides, the wavelet transform was found useful in 

monitoring the propagation of crack width of structure (Gabbanini et al., 2004). In fact, 

these time-frequency analysis techniques can be a reliable tool in processing 
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contaminated and weak signals. This is proven by the implementation of discrete 

wavelet transform (DWT) in de-noising and extraction of electromyography (EMG) 

signals from the human muscle (Phinyomark et al., 2011). 
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Table 2.5: Some reviews of time-frequency analysis technique in condition monitoring 

Components Measurement 

Technique 

References Time-

frequency 

analysis 

Remarks 

Reactor coolant pump Vibration Koo and Kim (2000) FT, WVD Monitor abnormalities and extract features for neural network 

Bearing Motor stator current Zarei and Poshtan (2007) WPT Incipient bearing failure detection 

Gear Vibraton and 

acoustics 

Baydar and Ball (2003) CWT Early detection of gear failures 

Gear Vibraton and 

acoustics 

Baydar and Ball (2001) SPWVD Early detection of failures and its propagation 

Gear and bearing  Vibration Lin and Qu (2000) CWT To denoise signal and increase signal-to-noise ratio 

Gear and bearing  of model 

driveline 

Vibration Paya and Esat (1997) Wavelet 

Transform 

(WT) 

WT as a preprocessor of signal before neural network 

Gear and bearing  of model 

driveline 

Vibration Rafiee et al. (2010) CWT Proposed selection of best mother wavelet through similarity of shape 

between mother wavelet and vibration signal. CWT was utilised to extract 

features of bearing and gear problems.   

Valve of reciprocating 

compressor 

Vibration Lin et al. (2009) STFT, 

SPWVD, 

RSPWVD 

To obtain time-frequency characteristics for fault classification 

Valve of reciprocating 

compressor 

Pressure and 

temperature 

Ramesh (2007) WPT To extract features for fault classification 

Valve of reciprocating 

compressor 

Vibration and 

acoustics 

Elhaj et al. (2001) CWT Leakage detection of compressor valves 

Compressor Vibration Yang et al. (2004) DWT Quality examination in production line of compressors 

Washing machine Laser vibration 

velocity 

Goumas et al. (2002) DWT Employed DWT for feature extraction 

Structure Displacement Gabbanini et al. (2004) WPT Crack width monitoring on dome of cathedral. 

Internal combustion engine Acoustics/ Sound Wu and Liu (2009) WPT WPT as signal processing technique for feature extraction of fault condition 

before neural network 

Human body Electromyography 

(EMG)  

Phinyomark et al. (2011) DWT To denoise signal and extract useful information 
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There are always strengths and weaknesses for a particular time-frequency 

analysis technique. Thus, it is necessary to compare the performance of each time-

frequency analysis technique and select the most suitable technique for the study. Table 

2.6 shows the details of WVD, STFT, CWT, DWT, and WPT in increasing order of 

speed. As STFT can only be limited to a fixed time or frequency resolution, it is not 

flexible in analyzing non-stationary signals. Indeed, STFT is more suitable in the 

analysis of quasistationary signals (Peng and Chu, 2004). Meanwhile, WVD is better in 

analyzing time varying signal as it is good in its time and frequency resolution. 

Nevertheless, WVD suffers from severe interference terms due to the overlapping of 

different components of signals. Although the performance of WVD can be improved 

through smoothed pseudo Wigner-Ville distribution (SPWVD) and reassigned 

smoothed pseudo WVD (RSPWVD), these techniques require much computational time 

compared to the other techniques. 

 

Table 2.6: Comparison of the performances of different time-frequency analysis 

Methods Resolution Interference 

term 

Speed 

FT Frequncy resolution only No Fast 

WVD Good time and frequency 

resolution 

Severe 

interference terms 

Slower than STFT 

STFT Dependent on windowing 

function, good time or frequency 

resolution 

No Slower than CWT                              

CWT Good frequency resolution and 

low time resolution for low-

frequency components; low 

frequency resolution and good 

time resolution for high-

frequency components 

No Slower than DWT 

DWT Good time and frequency 

resolution in lower frequency 

band 

No Faster than CWT 

WPT Good time and frequency 

resolution in lower and higher 

frequency band 

No Faster than CWT 
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Therefore, the wavelet transform (WT) is a preferable time-frequency analysis 

technique for the current study as it is more flexible than STFT and performs faster than 

SPWVD and RSPWVD. Though CWT can give thorough time-frequency analysis, its 

redundancy problem due to overlapping may lead to the smearing of spectra features 

(Yang, 2004), in addition to the long computational time required compared to DWT 

and WPT. In fact, discretized wavelet transform such as DWT and WPT are employed 

widely in condition monitoring as the discretized features extracted can combine easily 

with other artificial intelligence techniques for automated fault classification. Since 

WPT can provide good time and frequency resolution in both lower and higher 

frequency band as displayed in Table 2.6, it is chosen over DWT for the current study.   

 

 

2.6 Artificial Intelligence (AI) techniques in fault identification 

The time-frequency analysis technique enables extraction of signal features for 

machine monitoring. These features are usually monitored by the plant personnel with 

broad knowledge and experiences. With the advance of computational technology, it is 

now feasible for the implementation of artificial intelligence (AI) techniques in fault 

identification. Indeed, the demand for automated fault identification is growing as it 

provides a fast and reliable diagnosis due to removal of human subjectivity and 

reduction of interpretation time during the diagnostic process.     

It is always desirable for the plant personnel to monitor the machine without any 

prior knowledge regarding the operating condition and working principle of the 

machine. Therefore supervised learning techniques such as the neural networks (NN) 

and support vector machine (SVM) are preferable for fault identification. Both 

techniques are based on the concept of learning from examples. They involve training a 
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set of samples and producing a target function which predicts the output correctly for 

any input inserted into the learning algorithm. Absolutely, it is important for the 

learning algorithm to have good generalization ability to avoid over-fitting or under-

fitting problem. Over-fitting problem occurs when the learning algorithm fails to 

generalize the problem by memorizing the training data and exaggerating minor 

variation of data. Meanwhile, the failure of algorithm in learning pattern of the training 

data will lead to the under-fitting problem. Both problems are not desirable in NN and 

SVM.  

NN is inspired by the biological learning process of the human brain (Anderson, 

1972). The development of NN follows a heuristic approach where extensive 

experimentation comes before proper theory development. The objective of NN is to 

obtain a set of coefficient values (weight) which minimize the training error. This is 

termed empirical risk minimization (ERM). In contrast, the SVM starts from a sound 

theory and enters into implementation gradually. It is developed from the principle of 

structural risk minimization (ERM), which controls the capacity of algorithm by 

maximizing the margin between the two classes being classified. Burges (1998) stated 

that the capacity is the ability of the learning algorithm to learn any training set without 

error. Large capacity will result in the over-fitting problem while small capacity will 

lead to the under-fitting problem. He highlighted that the right balance between training 

error and capacity is the key towards best generalization performance.  

As the learning algorithm of NN is developed based on the principle of 

minimizing the training errors, it requires large number of samples to reduce the errors. 

On the other hand, only a small number of samples are required by SVM to achieve 

good classification performance as the learning algorithm minimizes the upper bound of 

expected risk which controls the capacity while simultaneously minimizing the training 
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errors. Therefore, SVM is a favourable machine learning technique in the fault 

diagnosis of valves of reciprocating compressors as it is not practical to collect adequate 

samples in every failure modes (Ren et al., 2005 ; Cui et al., 2009; Chen and Lian, 

2010; Qin et al., 2012). More importantly, unlike conventional NN which suffers from 

local minimum, SVM attempts to obtain global minimum of the problem. Thus the 

generalization ability of SVM is always higher than conventional NN. 

In condition monitoring, robustness of the learning algorithm towards large 

number of features is always one of the sought-after properties. This property ensures 

little limitation on the number of features inputted into the algorithm and thus causing 

the algorithm to be more practical and efficient in fault diagnostics. Conventional NN 

often suffers from the curse of dimensionality, where the amount of training data needed 

increases exponentially with the number of features/dimension. Thus, pre-processing of 

input data is often needed in NN to reduce the dimensional space and training data 

required for a complex problem, with the aim of reducing long computational time and 

avoiding over-fitting problem. On the contrary, SVM can accommodate larger feature 

space as it involves separating the two classes through a linear function. In the case of 

non-linearly separable data, the linear classification can be achieved by transforming 

data from the original space into higher dimensional space through kernel functions 

which satisfy Mercer’s condition  In fact, Ahmed et al. (2011) stated that SVM 

performed better than NN in the time domain for larger number of features, where 

multiple fault conditions are inputted into the algorithm for classification. Details of the 

kernel function will be further discussed in Chapter 5.    

A number of comparisons between NN and SVM were conducted in various 

fields such as in the biomedical science for eye events classification from 

electroencephalographic (EEG) signal (Singla et al., 2011) and in the chemical industry 
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for drug classification (Byvatov et al., 2003). The former found that overall 

performance of SVM is better than feed forward back propagation neural network while 

the later concluded that SVM classifier is more robust with smaller error compared to 

standard NN. In fault diagnostics, Yang et al. (2005) employed NN and SVM in the 

classification of small reciprocating compressors in the production line. He later 

concluded that SVM and learning vector quantisation (LVQ) are the best techniques in 

small compressor fault classification. Besides, Tyagi (2008) compared the effectiveness 

of NN and SVM in the diagnosis of rolling element bearing. He commented that SVM 

performed better than NN in most cases and proposed the possibility of SVM in on-line 

monitoring due to fast training time of the classifier. This is further supported by 

Saravanan et al. (2010) who highlighted that NN has longer training and classifying 

time compared to SVM in the monitoring of spur bevel gearbox. More reviews 

regarding the implementation of SVM in the monitoring of pumps, induction motors, 

engine, machine tools and the list goes on can be found in Widodo and Yang (2007). 

With regard to the advantages of SVM discussed above, it is chosen as the machine 

learning technique for automated fault classification in the diagnosis of valve failure.    

 

 

2.7 Summary 

Past researches showed the potential of AE technique as a promising tool in 

condition monitoring. This technique can serve as a complementary tool to vibration 

technique as it is sensitive to both mechanical and fluid motion. Moreover, various 

studies revealed that AE technique is superior in providing earlier fault detection of 

rotating machinery components. Since this study requires inspection of valve dynamics 

and fluid flow within the cylinder, AE technique appears to be a suitable measurement 

technique for valve failure detection. Nevertheless, due to the broad frequency range 
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and omnidirectional property of AE sensor, AE signal requires advanced signal 

processing technique to ascertain signal at different time and frequency domain. This 

chapter compares different time-frequency analysis method namely FT, STFT, CWT, 

DWT, and WPT and justifies the reason of selecting WPT as the post-processing 

method for AE signal. Features computed from WPT decomposed AE signal will serve 

as the input vectors for automated classification. The last section of this chapter 

compares 2 artificial intelligence (AI) techniques in fault identification and highlights 

that SVM is more suitable for automated signal classification in this study due to its 

small sample size requirement.  

The next chapter proposes methodology of the study, starting from data 

acquisition, parameter selection, and signal analysis to fault classification. Features of 

valve under different condition will be examined through combination of WPT and 

statistical analysis. This is followed by classifying the features into its corresponding 

valve conditions through SVM technique.   
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CHAPTER 3 METHODOLOGY 

3.1 Overview 

This chapter presents instrumentation and work flow of the study. First of all, 

raw AE and vibration signals will be obtained from experimental test bed simulated 

with different valve problems. These signals will be processed through a synchronous 

time averaging algorithm with the purpose of reducing noise which is non-synchronous 

with the piston movement before they are saved for further analysis. The saved signals 

will be post-processed by passing the signal through a WPT algorithm to decompose 

signals into 16 frequency ranges. To enable extraction of features corresponding to 

different valve movements, signals in each frequency ranges will be further segregated 

to 4 time segments, resulting in 64 time frequency segments. Different parameters will 

be computed next from the WPT decomposed signals in these time frequency segments. 

Finally, parameter best indicating valve conditions will be selected as the best parameter 

for signal analysis and signal classification. Figure 3.1 displays entire flow chart of the 

study.   
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Figure 3.1: Entire flow chart of the study 

 

 

3.2 Experiment set-up 

3.2.1 Test bed setup 

Figure 3.2 shows experimental test rig of the current study which consists of a 

single stage, 2 cylinder and air cooled reciprocating compressor. The AE sensor and 

accelerometer are mounted on the suction valve cover, as shown in Figure 3.2 (a). A 

laser tachometer is incorporated into the data acquisition system to trigger the 

acquisition of AE and vibration signal whenever it receives a pulse from the reflective 

tape attached on the flywheel, as displayed in Figure 3.2 (b). Details on the 

specifications of the test compressor can be seen in Table 3.1.   

 

 

Raw signal

Synchronous time averaging

WPT decomposition and 
signal segregation

Parameter comparison

Selection of best parameter

Signal analysis Signal classification

64 time frequency segments
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Figure 3.2: Test compressor for valve failure simulation 

(a) Accelerometer mounted on the valve cover. (b) Reflective tape for tachometer. 

 

Table 3.1: Specifications of test compressor 

Model VA-80 

Motor power 2.2 kW 

Cylinder number 2 

Cylinder bore (mm) 80 

Cylinder stroke (mm) 60 

Rotational speed (rpm) 800 

Piston displacement 462 L/ min (16.32 CFM) 

CFM) CFM) 
Actual air delivery (at 7 kg/cm

2
G or 100 PSIG) 

PSIG) PSIG)PSIG) 

346.5 L/min (12.24 CFM) 

CCFM)CFM) 
Working pressure 7 kg/cm

2
G 

Air receiver dimension  350x1160 mm 
Air receiver capacity 105 L 

Net weight 145 kg 

 

 

 The experiment had been conducted when the compressor was running under the 

free load condition, by simulating three suction valve conditions at two compressor 

speed of 450 and 800 rpm. Figure 3.3 shows the suction and discharge valve and its 

mounting location in the cylinder of the test compressor.  

(a) (b) 
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Figure 3.3: Structural diagram of cylinder indicating location of (a) Suction 

valve (b) Discharge valve 

 

Three valve conditions namely the normal, grease and leakage condition had 

been simulated for the current study. The greased condition of the suction valve had 

been simulated by applying a layer of grease onto the valve plate to emulate the 

condition of valve stickiness due to excessive oil distribution. On the other hand, the 

leakage condition had been simulated by grinding a small passage of 3 mm width on the 

valve plate to emulate the condition of valve degradation. Physical condition of the 

valve plate is displayed in Figure 3.4. 

                                                        

Figure 3.4: Physical condition of valve plate (a) Normal (b) Grease (c) Leakage 

 

Accelerometer/ AE sensor

Suction valve Discharge valve

Piston

Crankshaft

(a) (b) 

(a) 

(b) 

(c) 
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3.2.2 Instrumentation 

The acquisition process of AE and vibration signals is displayed in Figure 3.5. 

Firstly, the AE signal is acquired by the AE sensor while the vibration signal is obtained 

through the uniaxial Integrated Electronic Piezoelectric (IEPE) accelerometer. Both 

sensors are connected to the data acquisition device (DAQ) NI USB 4431 for signal 

conditioning before the signals are saved and displayed by the in-house developed 

LabVIEW software installed in a laptop. The acquisition of both signals commences 

whenever the DAQ receives a reference signal from a laser tachometer. Each reference 

signal sent corresponded to the position of piston at the top dead centre (TDC). Thus, 

both signals can be acquired for one period of time with regard to its piston position. 

Details of the equipments utilized during the data acquisition process are shown in 

Table 3.2. 

 

 

Figure 3.5: A schematic diagram of data acquisition system 
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Table 3.2: List of equipments 

Equipment Description 

AE sensor and preamplifier 

      

Operating specifications: 

Physical: 

Dimensions: 35(H) x 60(W) x 65(L) mm  

Weight: 270g 

 

Performance: 

Frequency range: 100-450 kHz 

Resonant frequency: 150 kHz 

Temperature range: -50-100 
0
C 

Capacity: 350pF 

Peak sensitivity: -63 dB re 1V/  bar 

 

Electrical: 

Pre-amplifier gain: 34dB 

Power supply: 28VDC 

Output connector: BNC 

Magnet hold-down force: 3 x 60N 

Sensor hold-down force: 10N (spring loaded) 

 

Accelerometer PCB C320 

                 

 

Operating specifications: 

Physical: 

Dimensions: 20.6(Height)x12.7(Hex)  mm  

Weight: 10.5g 

 

Performance: 

Frequency range: 1-6 kHz 

Resonant frequency:  35 kHz 

Temperature range: -73-163 
0
C 

Sensitivity: 1.02 mV/ms
-2

 

 

Electrical: 

Excitation voltage: 18-30 VDC 

Constant current excitation: 2-20mA  

Electrical connector: 10-32 Coaxial Jack 

Mounting Torque: 113-225 Ncm 

 

Data acquisition device NI 4431 

 

Operating specifications: 

Physical: 

Dimensions: 142x180x38 mm  

Weight: 675g 

Analog input channels: 4 

Analog output channels: 1 

Connection: BNC 

 

Analog input: 

Sampling rate: 1-102.4 kS/s 

Input range:  10Vpk 
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 ADC resolution: 24 bits 

Input coupling: AC or DC (software selectable 

IEPE current excitation: 0 or 2.1mA (software 

selectable) 

 

Analog Output: 

Frequency range: DC to 43.5 kHz 

 DAC resolution: 24 bits 

Output signal range:  3.5 Vpk 

Output coupling: DC 

Operating temperature: -30-70
0
C 

 

Laser tachometer PLT 200 

 

Operating specifications: 

Physical: 

Dimensions: 17.58(H) x 6.10(W) x 4.06(D) cm  

Weight: 210g 

 

Performance: 

Display: 5 digits, Alphanumeric LCD 

Range(s): Optical: 5 to 200000 rpm 

                 Contact:  0.5 to 20000 rpm  

Accuracy: Optical:  0.01% of reading 

          Contact:  0.05% of reading  

Resolution: 0.001 to 10 rpm (range dependent)  

Operating distance: 5cm to 7.62m, 

                          70
0
C from perpendicular 

Power: (2) “AA” 1 5 VDC batteries (30 hours) 

Environmental: 5° to 40°C (40° to 105°F) 

                  80% RH up to 31°C (88°F) 

 

 

 

 

3.3 Synchronous time averaging 

Prior to saving the signal, synchronous time averaging with linear weighting had 

been performed to improve signal-to-noise ratio (S/N) of the signal acquired. By using 

this method, signals which are synchronous to the TTL pulse from the tachometer will 

be reinforced while non-synchronous components will be averaged to zero, thus 

producing a cleaner signal in the time domain (Rahman et al., 2010). 
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For a time domain signal )(tx  with period P and N number of averages, the 

synchronous average with linear weighting )(ty  is computed via Equation 3.1. 

                                                 






1

0

)(
1

)(
N

r

rPtx
N

ty

                                    (3.1) 

This method helps in reducing unwanted noise effectively. In fact, the signal-to-

noise ratio (S/N) is proportional to the square root of number of averages. Thus, a 

sufficient number of averages are needed to produce the desired result.  

The software architecture of data acquisition process is illustrated by Figure 3.6 

and Figure 3.7. Figure 3.6 shows the block diagram of configuration setting of sensors 

in LabVIEW. Specifications of sensors such as the maximum and minimum value, 

sensitivity value, units, and input terminal configuration had been set in the block 

diagram. Besides, the sampling rate and sample mode had been configured through the 

front panel of the software.  The laser tachometer had been connected to channel 0 

while the AE sensor and accelerometer had been connected to channel 1 and 2 of the 

DAQ device respectively. The VI started to acquire signal when it received a rising 

pulse from the tachometer at channel 0  The signal was then transmitted into a “for 

loop” to perform linear time averaging before it was being saved and displayed. The 

number of averages for the linear time averaging can be configured by changing the 

number of iterations in the “for loop”  Figure 3.7 shows the linear time averaging 

program in LabVIEW. 
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Figure 3.6: Block diagram of configuration setting of sensors in LabVIEW 
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Figure 3.7: Block diagram of linear averaging in LabVIEW
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Figure 3.8 shows the comparison of AE signal between different number of 

averages for a suction valve under normal condition. A crank angle of 0
o
 corresponds to 

the piston position at the top dead centre (TDC) while a crank angle of 180
o
corresponds 

to the piston position at the bottom dead centre (BDC). From Figure 3.8, it can be 

observed that the transient signal becomes clearer when the number of averages 

increased from 10, 30, 50, to 100, as parts of the non-synchronous components are 

averaged out during the averaging process. In this study, all signals acquired are 

averaged over a number of 50 averages as this number is sufficient enough to remove 

the background noise.    

 

Figure 3.8: Comparison of AE signal between different numbers of averages 

 

 

 

3.4 Mother wavelet selection for WPT 

Though some non-synchronous background noises can be removed through 

synchronous time averaging, there is always possibility for synchronous noise to mask 

10 Averages 30 Averages

50 Averages 100 Averages
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the signals and causes them insensitive to minor changes of valve condition. Therefore, 

post-processing of AE and vibration signal through wavelet packet transform (WPT) 

had been proposed to extract the features of the signal under different valve conditions.  

The wavelet analysis was performed by shifting the wavelet function across the 

time domain at different scales. The wavelet function is originated from a mother 

wavelet. Therefore, selection of mother wavelet is of utmost important as the right 

mother wavelet will give the best time-frequency representation of the signal analyzed. 

In fact, selection of mother wavelet is dependent on the characteristics of signal being 

analyzed. 

 One property of determining the mother wavelet selection lies on its regularity, 

which is related to the degree of smoothness of the function. Unser (1999) states that 

regularity of the scaling function must be smaller than the approximation order L. From 

Table 3.3, it can be seen that B-spline scaling function has the maximum regularity 

compared to Daubechies scaling function at a given approximation order L. By 

comparing the regularity between different wavelets such as Haar, Daubechies, Symlet, 

Coiflet, and B-spline in Table 3.4, it can be concluded that the B-spline function has the 

highest regularity; therefore it is more suitable to be the mother wavelet. 

 

Table 3.3:   lder e ponent α(L) estimates for the Daubechies scaling function 

)(t of order L and regularity of B-spline scaling function of the same order L 

(Daubechies, 1992) 

L 2 3 4 5 6 7 8 9 10 

Db L regularity: α(L) 0.500 0.92 1.28 1.60 1.89 2.16 2.42 2.66 2.90 

 -spline (L L ): L-2 0 1 2 3 4 5 6 7 8 
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As this study is focused on detecting abnormalities such as sudden changes in a 

signal, scaling function with small finite support is desirable. From Table 3.4, it can be 

observed that the B-spline scaling function has the smallest support size compared to 

the others. Additionally, unlike the Daubechies, Symlet, and Coiflet function which are 

generated implicitly from an iterative filter bank, the B-spline scaling function can be 

expressed explicitly, thus enabling faster computation of the wavelet analysis. 

 

Table 3.4: Summary of properties of commonly used finite support wavelets 

(Ahuja et al., 2005) 

Name Haar(B-spline 1) Daub L Symlet L Coiflet L  -spline L, L  

Explicit 

expression 

yes no no no yes 

ϕ(x) support 1 2L-1 2L-1 3L-1 L 

ψ( ) support 1 2L-1 2L-1 3L-1 L L -1 

Frequency 

decay 
1/   1/

)(L
  

N/A N/A L-2 

Regularity not regular  0.2L N/A N/A L-2 

Vanishing 

moments 

1 L L L L  

Orthogonal/ 

biorthogonal 

orth orth orth orth biorth 

Time-

bandwidth 

product 

∞ asymp  ∞ asymp  ∞ asymp ∞  approaches ¼ 

as L∞ 

Linear phase yes no no no yes 

1
N/A= not available but similar to that of the Daubechies wavelet 

2
L= order of the wavelet, which is the number of zeros at z=-1 in the filter G(z) corresponding to the 

scaling function; specifically, in the B-spline case, the box function is denoted as the first order B-spline 

3
Asymp ∞ indicates that the time-bandwidth product approaches ∞as L∞ 

4
α(L) is the   lder exponent given in Table 3.3  
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 As discussed previously in the prior chapter, the linear phase (symmetry) 

property of a scaling function is more desirable as it enables filter designed to retain the 

phase information without distortion. However, most of the orthogonal scaling 

functions such as the Daubechies, Symlet and Coiflet functions are not symmetric as the 

orthogonality and linearity of finitely supported functions are mutually exclusive. 

Therefore, biorthogonal scaling functions such as the B-spline functions are introduced 

to achieve its linearity by sacrificing its orthogonality in its primal space. Hence, the 

biorthogonal scaling functions are more suitable in the wavelet analysis. 

 It is known from the Heisenberg uncertainty principle that good time resolution 

and good frequency resolution cannot be achieved simultaneously. In selecting mother 

wavelet, it is desirable to select the wavelet functions with the lowest time-bandwidth 

product. From Table 3.4, it can be observed that the time-bandwidth product of most 

wavelet functions approaches infinity when the order of wavelet, L approaches infinity, 

except the B-spline wavelet. The B-spline wavelet approaches ¼ as L approaches 

infinity, indicating the good time-frequency localization of the function. 

 Due to the high regularity, small finite support, good linearity, and good time-

frequency localization of the B-spline function, the biorthogonal function was chosen as 

the mother wavelet for signal analysis.  

 

 

3.5 Signal segregation 

In the current study, 40 samples of AE and vibration signals had been acquired 

under the normal, grease and leakage conditions at the speed of 450 and 800 rpm. They 

were further decomposed into 16 smaller frequency ranges by using the wavelet packet 
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transform (WPT) algorithm with a B-spline mother wavelet function and fourth level of 

resolution in MATLAB. 

To correlate the signal with the major valve events in each frequency range, 

signals after WPT were further segregated into 4 time segments, with the first, second, 

third, and fourth time segments corresponded to a crankshaft movement of 

approximately 0
o
-18.8

o
, 18.8

o
-131.4

o
, 131.4

o
-244

o
, and 244

o
-360

o
 respectively. The 

valve failure can then be identified by comparing the parameters in Section 3.6 for each 

time segments under different frequency ranges and valve conditions by using statistical 

method. Equation 3.2 expressed the parameter Z, where 
i

w  denotes the parameter in 

Section 3.6, and u and t shows the beginning and ending time of a particular time 

segment. 

                                                             



t

ui
iwZ                                                         (3.2) 

The concept of signal segregation is further illustrated in Figure 3.9 for a third 

level WPT decomposition. In fact, for the current study, the raw AE/ vibration signals 

acquired had been segregated into 64 time frequency segments. Different parameters 

were computed and compared between these time frequency segments. These 

parameters will be introduced in the next section. 
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Figure 3.9: Segregation of signal at different time segments and frequency 

ranges 

 

 

3.6 Parameter Comparison 

Previous research had been conducted on comparing the AE and vibration 

signals visually under normal and abnormal condition (Gill et al., 1998). However, 

visual inspection is not a good method in examining the health condition of valve as 

most of the judgments are bound to be subjective. Therefore, a few statistical 

parameters such as the root-mean-square (RMS) value, crest factor, skewness, kurtosis, 

and normalized energy were studied to analyze contributing parameter to the valve 

condition. 

 

3.6.1 Root-mean-square (RMS) 

 The root-mean-square (RMS) value, m of a time signal ix is derived 

mathematically as in Equation 3.3,  

T1 T2 T3 T4 
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where n is the total number of samples within the time series. It measures the magnitude 

of the time signal. 

                                                                                                            

3.6.2 Crest factor 

 The crest factor is the ratio of peak, A to the average of the signal,  . It is 

computed as in Equation 3.4, 

                                                             


A
C 

                                                           (3.4) 
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where μ can be computed from Equation 3.5. It measures the amount of impacts in a 

signal. This parameter is frequently used in detecting bearing faults (Williams et al., 

2001). 

 

3.6.3 Skewness 

Skewness S is a measure of the degree of asymmetry of a signal about its mean. 

Generally, a symmetric signal has zero skewness. Meanwhile, a negatively skewed 

signal has a longer tail to the left of the mean value and a positively skewed signal is 

represented by a long tail towards the right of the mean value. Skewness is 

mathematically expressed as Equation 3.6,  
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where n is the number of samples for a time series ix ,  is given in Equation 3.5 and 

the standard deviation   is computed as in Equation 3.7. This parameter is commonly 

used in monitoring machinery components such as bearing (Kim et al., 2007) and 

induction motor (Günal et al, 2009). 

 

3.6.4 Kurtosis 

Kurtosis, K is the ratio of fourth moment about the mean to the square of 

variance. It measures the flattening of a probability function near its mean and shows 

the contributing portion of the high amplitude signal in time (Sikorska, 2006). It is 

computed as in Equation 3.8, 
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where n is the number of samples for a time series ix ,  is shown in Equation 3.4 and 

  is given in Equation 3.7. This parameter is served to differentiate the continuous and 

the burst signal. The burst or impulsive signal spends lesser time at higher amplitudes 

and thus producing higher kurtosis value (Sikorska, 2006). On the other hand, 

continuous signal is generally a Gaussian distribution, and has a kurtosis value of 3. 

Therefore, a significant increase of kurtosis value from 3 to a higher value could suggest 

a change from continuous to burst signal. 
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3.6.5 Normalized energy 

The normalized energy, W of a time signal ix is shown mathematically in 

Equation 3.9, 
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where u and t denote the beginning and ending time of a particular time segment, and T 

denotes period of the signal. This parameter represents the ratio of energy in a particular 

time segment with regard to its overall energy.  

 

 

3.7 Summary  

This chapter includes experiment test bed, hardware utilized, and signal 

conditioning process (synchronous time averaging) for acquisition of AE and vibration 

signals. These signals had been post-processed through WPT decomposition and signal 

segregation before different parameters were computed from the resulted time 

frequency segments. 

The significant difference of each parameter Z namely the RMS, crest factor, 

skewness, kurtosis, and normalized energy value between three simulated valve 

conditions will be investigated through one way analysis of variance (ANOVA) and 

Tukey test in Chapter 4. By comparing the results of Tukey test, the best parameter 

representing valve conditions can be selected. This parameter will be further analyzed 

through one way ANOVA and Tukey test at each time segment and frequency range, 
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with the aim of retrieving the time frequency segments which can distinguish each valve 

condition clearly from the parameter. The parameter selection and signal analysis 

section will be discussed thoroughly in Chapter 4. Meanwhile, the parameter computed 

can be served as the input feature vector for automated signal classification through a 

multiclass support vector machine. Comparisons of success rate between each 

frequency range at different speed will be performed and discussed in Chapter 5.  
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CHAPTER 4 SIGNAL ANALYSIS 

4.1 Overview 

The analysis of AE and vibration signal acquired at two different speeds under 

different valve conditions is presented in this chapter. The first section of the chapter 

presents visual inspection of AE and vibration signal at its corresponding crank angle. It 

is followed by methodology involved in the analysis of these signals. Comparison of a 

few parameters was performed as to obtain the best parameter representing condition of 

valves. By using the best parameter, time-frequency segments which are significantly 

different between valve conditions were identified. The results were compared between 

AE and vibration signals at both speeds. The chapter ends with a case study of an actual 

reciprocating compressor where the proposed technique was applied to assess the valve 

condition.  

 

 

4.2 Visual inspection of signal 

4.2.1 Validation of AE and vibration signals with valve motion 

To validate the relationship of AE and vibration signals with valve motion, both 

signals acquired at 450 rpm were compared with the experimental and analytical results 

of suction and discharge valve displacement obtained from a study conducted by 

MacLaren and Kerr (1969). Figure 4.1 shows the valve displacement and pressure 

difference at its corresponding crank angle obtained from a compressor at 400 rpm and 

pressure ratio 7.7. It can be seen that the suction valve plate achieves its maximum 

displacement at crank angle approximately 50
0
 and flutters between the valve seat and 

valve guard before it starts to close at crank angle approximately 170
0
. Meanwhile, the 

discharge valve starts to open at crank angle approximately 320
0
 and closes at 360

0
. 
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Figure 4.1: Valve displacements and pressure difference at its correspondin g 

crank angle (MacLaren and Kerr, 1969) 

 

As displayed in Figure 4.2, the suction valve in AE and vibration signals started 

to open at crank angle approximately 60
0
, which is almost the same as that in Figure 

4.1. This finding shows that both signals are good in revealing the valve opening 

motion. Nevertheless, the discharge valve timing obtained from this study occurred at 

crack angle approximately 250
0
 - 360

0
, which is much earlier than the result obtained 

from MacLaren and Kerr (1969). The earlier discharge valve timing in the current study 

is attributed to the zero load of test compressor, as opposed the full load of test bed in 

MacLaren and Kerr (1969), which recorded a pressure ratio of 7.7. 
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Figure 4.2: Comparison of (a) Vibration (b) AE signal at 450 rpm under normal 

condition 

 

The validation shows that both AE and vibration signals correlate well with the 

major valve motion. Further comparisons of both signals at different speeds and valve 

conditions will be presented in the next section.  

 

4.2.2 Comparison of signals under different valve conditions 

The AE and vibration signal acquired at suction valve were compared at low and 

high speed (450 and 800 rpm) under different valve conditions. Figure 4.3 shows both 

signals at its corresponding crank angle after WPT decomposition. The valve opening 

event is displayed by a sudden rise of vibration signal at crank angle approximately 60
0
 

under normal valve condition, when the piston was moving from top dead centre (TDC) 

to bottom dead centre (BDC) as shown in Figure 4.3(d).  Nevertheless, the impact of 

valve opening event cannot be observed from AE signal at low speed (450 rpm) and low 

frequency range, F1 (0 – 3.2 kHz), as displayed in Figure 4.3(a). Only flow of fluid into 

cylinder can be observed at the crank angle approximately 100
0
. However, this valve 

opening event can be seen clearly at higher speed (800 rpm) as higher speed creates 

larger pressure differential and thus higher rate of flow of fluid which can be detected 

easily by AE sensor. 
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Figure 4.3: AE (a) – (c) and vibration (d) – (f) signal acquired at F1(0 – 3200 

Hz) under different conditions and speeds 

 

Meanwhile, under normal valve condition, a few transient events can be 

observed at crank angle 250
0
 - 360

0
, which is equivalent to the movement of piston 

from BDC to TDC. Indeed, during the compression cycle, the pressure within cylinder 

increased when the piston was moving towards the TDC, thereby increasing pressure 

difference between cylinder and discharge line. When the pressure difference is 

sufficient to push open discharge valve, fluid from cylinder will exit through discharge 

valve, as shown in Figure 4.3(a) and (d) from 250
0
 - 360

0
. However, the flow of fluid 
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into discharge valve is not obvious in vibration signal if compared to AE signal. It can 

be deduced that accelerometer is more sensitive in detecting mechanical motion of 

adjacent structure (localized vibration). As accelerometer was mounted at suction valve 

cover, it might not be sensitive enough to detect discharge valve opening event. In 

contrast, AE sensor is good in detecting both mechanical and fluid motion (Gill, et al., 

1998). Hence, the flow of fluid into discharge valve can be seen clearly from AE sensor 

which was mounted at suction valve cover.    

In addition, by comparing Figure 4.3(d) and (e), it can be seen from vibration 

signal that the valve opening event under grease condition occurred slightly earlier than 

that under normal condition at 450 rpm, with the valve timing almost the same as the 

opening event at 800 rpm under normal condition. It can be deduced that the valve 

stickiness condition causes the suction valve to open partially, thus resulting in earlier 

valve opening timing as pressure required to open suction valve is significantly smaller 

compared to the normal condition. However, this observation is not shown clearly from 

AE signal at 450 rpm and low frequency range, F1 (0-3.2 kHz). Due to the nature of the 

transducer, the valve opening event is found significant at higher frequency range, F16 

(48 – 51.2 kHz). Figure 4.4(b) shows early valve opening impact of AE signal at high 

frequency range under grease condition.  
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Figure 4.4: AE signal at 450 rpm and F16 (48 – 51.2 kHz) under (a) Normal (b) 

Grease (c) Leakage condition 
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There is a transient event at crank angle approximately 190
0
 from the vibration 

and AE signal under grease condition, as depicted in Figure 4.3(e) and Figure 4.4(b). 

This may attribute to valve fluttering motion during valve closing event, which further 

demonstrates that the suction valve plate was not fully closed under grease condition. 

For suction valve under leakage condition, the valve opening event occurred at 

crank angle much earlier than that under normal condition, but slightly later than that 

under grease condition, as displayed in Figure 4.3(f) and Figure 4.4(c). Besides, at the 

compression cycle, the amplitude of AE and vibration signal increases tremendously 

from crank angle 250
0
 - 360

0 
compared to normal condition, as illustrated in Figure 

4.3(c) and (f). It can be deduced that instead of flowing through discharge valve during 

compression stroke, a portion of fluid had leaked into suction line through suction 

valve. Therefore, the amplitude of vibration signal rises almost two folds compared to 

that under normal condition. Similarly, AE signal under leakage condition has higher 

amplitude compared to that under normal condition, as displayed in Figure 4.4(c) at 

high frequency range, F16 (48 – 51.2 kHz). 

 

4.2.3 Comparison of signals at different speed 

To examine the effect of rotational speed on valve movement, the AE and 

vibration signals were compared between the low speed and high speed at F1 (0 – 3.2 

kHz) under normal, grease and leakage valve conditions. It can be observed from Figure 

4.3(a), (c), (d), and (f) that there are shifts in the valve timing under normal and leakage 

conditions for both AE and vibration signals. The valve opening event at 800 rpm 

occurred slightly earlier than the opening event at 450 rpm. It can be inferred that higher 

rotational speed produces larger pressure difference between the suction valve and 

cylinder, thus enabling the valve plate to open at a smaller crank angle. In contrast, 
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lower rotational speed results in smaller pressure difference, therefore piston needs to 

move slightly further such that the pressure difference is sufficient to push open the 

valve. Hence, the valve opening event at 450 rpm occurred at a crank angle slightly 

larger than that at 800 rpm.  

However, the shift in valve timing at higher speed is not apparent under grease 

condition especially for the vibration signal, as displayed in Figure 4.3(e). This is 

because the grease condition had caused the valve timing to shift to a smaller crank 

angle compared to the normal condition. Thus the increase of rotational speed does not 

cause significant change to the valve opening timing. 

It is obvious that all valve events of AE signal at F1 (0 – 3.2 kHz) is not as 

distinct as that of vibration signal. In fact, the AE signal shows a lower signal-to-noise 

ratio at lower frequency range. Gill et al. (1998) suggested that AE signal appeared to 

have more noise as it depicted a combination of fluid and mechanical events of valve, as 

opposed to vibration signal which depicted mostly mechanical event. Since the health 

condition of the valve is hard to be determined through visual inspection of the AE 

signal, statistical analysis of parameters through one way analysis of variance 

(ANOVA) is preferred as the later can ease the inspection and improve the valve 

diagnosis result. 

 

 

4.3 Methodology for signal analysis 

4.3.1 One way analysis of variance (ANOVA) 

Different parameters namely RMS, crest factor, skewness, kurtosis, and 

normalized energy values computed from 2
nd

 resolution level of WPT coefficients of 

AE and vibration signal were compared between different conditions. Generally, 

parameter with the most discriminating power between each valve conditions is selected 
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as the best parameter representing condition of valve. This is normally performed by 

comparing the mean value of a set of data under one condition to the other. Parameter 

which shows the greatest difference between each condition will be selected as the best 

parameter.  

By using the best parameter, the state of valve can be identified by comparing 

the mean value of this parameter with that under different valve failure conditions, after 

the signal decomposed at 4
th

 level of WPT decomposition. It should be noted that the 

resolution level of WPT decomposition is doubled when compared to those during 

parameter comparison to obtain finer time-frequency segment of the signal. Time-

frequency segments which show significant difference of mean value between different 

valve conditions will be selected as the characteristic segments for monitoring. 

 Nevertheless, the method of obtaining the best parameter and characteristic 

time-frequency segments by comparing the difference of mean value between each 

condition often casts doubt as the difference of mean value between each condition 

might be resulted from variability of data within each condition. In the current study, 

one way analysis of variance (ANOVA) was chosen as the signal analysis method in 

selecting the best parameter and characteristic time-frequency segments representing the 

condition of valve. It was performed by comparing the variation between each condition 

to the variation within them. A null hypothesis was made where there are no differences 

between each condition, and all conditions are normally distributed with the same mean 

and variance (Ross, 2004). In other words, the mean of one condition was assumed to 

be equal to all other conditions. This hypothesis was tested at 0.05 significance level. If 

the probability computed is less than 0.05, the null hypothesis can be rejected and thus 

the values measured are from different condition. 
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To determine the probability of null hypothesis, the F-ratio, which is the ratio of 

between to within group (condition) variance, is computed as in Equation 4.1. The 

variance of between group 2

b
  and within group 2

w
  are displayed in Equation 4.2 and 

4.3,  
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where c denotes the total number of groups (conditions) to be compared, n represents 

the total number of samples within each group (conditions), 
i

X  denotes the mean in i
th

 

group (condition), 
ij

X  represents the value of parameter in i
th

 group (condition) and j
th

 

samples, and X  denotes the total mean value computed over all i
th

  groups (conditions) 

and j
th

 samples. The formulation of X  is shown in Equation 4.4.  

Table 4.1 shows a summary of one way ANOVA. In fact, the two mean squares 

(variance), 
2
b and 

2
w  were computed by dividing the sum of squares by its 

corresponding number of degrees of freedom (d.o.f.). Besides, the total sum of squares 

(variation) is equal to the sum of the between-group and within group sum of squares.    
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Table 4.1: One way ANOVA 

Source of variation Sum of squares d.o.f. Mean square 

Between groups 

(between conditions)  
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i
i XXn
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The F-ratio, 2
b / 2

w  can be computed from Table 4.1. From the F-ratio, the 

probability of null hypothesis can be determined from the F-distribution. If the 

probability of null hypothesis computed is smaller than 0.05, it can be concluded that at 

least one group (condition) is significantly different from the other groups (conditions).  

 

4.3.2 Tukey comparison test 

If the one way analysis of variance leads to a conclusion that at least one group 

(condition) is different from others, the Tukey honest and significance difference (HSD) 

test can identify which pair of groups (conditions) are significantly different from each 

other. This post-hoc test is frequently used in examining the performance of different 

research methods (Hu and Loizou, 2007). The confidence interval, C for each pair of 

groups (conditions) is computed from the studentized range (q) distribution and is 

shown in Equation 4.5. 
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ji
XX   denotes the mean difference between i

th
 group and j

th
 group, cNcq ;;  denotes 

the critical value of the studentized range at significant level  , c groups and N-c 

degree of freedom with N represents the total number of samples in all groups, and n 

represents the number of samples in each group with the assumption that the sample 

size for each group is equal. The within group mean-square 
̂ can be computed from 

Equation 4.6. 

If the confidence interval, C does not include a zero, the pair of mean differs 

significantly and vice versa. This is because zero value indicates overlapping of 

confidence interval between different groups (conditions). Thus, time-frequency 

segment with zero crossing is not suitable for monitoring as parameter within this 

segment does not show significant difference of mean value between each condition 

(Sim et al., 2012). In fact, parameter with the highest number of non-zero crossing of 

time-frequency segments will be selected as the best parameter. Similarly, the 

performance of AE and vibration signals in detecting valve failures was assessed by 

analyzing number of characteristic time-frequency segments under different speeds. 

Results of one-way ANOVA in selecting the best parameter and characteristic time-

frequency segment will be displayed and discussed in the following section. 

 

 

4.4 Parameter selection 

As visual inspection of signal is subjective, some parameters were introduced to 

provide better indication on health condition of valves. A few parameters such as RMS, 

crest factor, skewness, kurtosis, and normalized energy were compared under different 

conditions by analysing the result of one-way ANOVA. 
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4.4.1 Results 

4.4.1.1 AE Signal at 450 rpm 

One way ANOVA was performed on 5 parameters at each time-frequency 

segments. Each analysis produced an ANOVA table similar to Table 4.1. The result of 

one way ANOVA for kurtosis at F2 (12.8 – 25.6 kHz) and time segment 1 (F2T1) is 

displayed in Table 4.2. As there were only 3 groups (conditions) considered in this 

study, the number of degree of freedom (d.o.f.) between groups is 2. Meanwhile, the 

d.o.f. value within groups is 117, computed according to the formula displayed in Table 

4.1. These two d.o.f. values are consistent throughout the entire study.    

 

Table 4.2: One way ANOVA result for kurtosis at F2 and time segment 1 

(F2T1) 

Source Sum of squares df Mean squares F-ratio Prob>F 

Columns 39.346 2.000 19.673 2.359 0.099 

Error 975.682 117.000 8.339 - - 

Total 1015.028 119.000 - - - 

 

 

The probability of parameter having the same mean value under different 

conditions was computed from the F-ratio. Table 4.3 shows the p value for all 

parameters of AE signal at 450 rpm. It can be observed from Table 4.3 that the p values 

greater than 0.05 are highlighted in bold. The mean value obtained from these time-

frequency segments failed to show difference between groups significantly. In other 

words, the three mean values obtained from different valve conditions are of the same 

distribution statistically. Thus, valve conditions cannot be identified by comparing the 

mean value at these time-frequency segments.   
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Parameters such as normalized energy and RMS value give better indication on 

condition of valves as all of the time-frequency segments are of p value smaller than 

0.001. Thus, it can be concluded that at least one group is significantly different from 

other groups in these segments. In contrast, parameters with their differentiating power 

listed in descending order are kurtosis, crest factor and skewness. The skewness 

performed worst as there are only two time-frequency segments with non-bolded p 

value.  
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Table 4.3: p value for all parameters at 450 rpm (AE signal) 

AE 450 Kurtosis (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 0.034 < 0.001 

2 
(12.8 – 25.6k Hz) 

0.099 < 0.001 < 0.001 < 0.001 

3 
(25.6 – 38.4k Hz) 

0.503 < 0.001 < 0.001 0.032 

4 
(38.4 – 51.2k Hz) 

0.026 < 0.001 < 0.001 0.007 

AE 450 Crest factor (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 0.265 0.132 < 0.001 

2 
(12.8 – 25.6k Hz) 

0.129 < 0.001 < 0.001 0.578 

3 
(25.6 – 38.4k Hz) 

0.611 < 0.001 < 0.001 0.477 

4 
(38.4 – 51.2k Hz) 

0.030 < 0.001 < 0.001 0.021 

AE 450 Normalized energy (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

2 
(12.8 – 25.6k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

3 
(25.6 – 38.4k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

AE 450 RMS (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

2 
(12.8 – 25.6k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

3 
(25.6 – 38.4k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

AE 450 Skewness (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 0.501 0.059 

2 
(12.8 – 25.6k Hz) 

0.706 0.643 0.201 0.087 

3 
(25.6 – 38.4k Hz) 

0.671 0.500 0.786 0.522 

4 
(38.4 – 51.2k Hz) 

0.865 0.736 0.864 0.395 
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In evaluating the pair of groups which are significantly different from each 

other, a post-hoc test namely Tukey comparison test was conducted on the time-

frequency segments with p value smaller than 0.05. Figure 4.5 shows the Tukey test 

result for kurtosis at F2 and time segment 1 (F2T1). The overlapping of confidence 

interval between all three groups further proved that time-frequency segment with p 

value greater than 0.05 cannot be characteristic segment to monitor valve conditions. 

Nevertheless, even the segments have p value smaller than 0.05, there are also 

possibilities for these segments to have overlapping confidence interval, as one way 

ANOVA only ensures that at least one group is significantly different from the others, 

instead of all groups. Figure 4.6 shows the overlapping confidence interval of group 2 

(grease condition) and group 3 (leakage condition) of RMS at F3T3 although its p value 

is smaller than 0.001. Hence, F3T3 cannot be the characteristic segment as not all 

groups are completely separable. 

 

 

Figure 4.5: Tukey test result for kurtosis at F2 and time segment 1 (F2T1)  
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Figure 4.6: Tukey test result for RMS at F3 and time segment 3 (F3T3) 

 

Time-frequency segments with separable confidence interval for all conditions 

are regarded as characteristic segments. The condition of valves can be identified 

clearly by observing the mean value in these segments. Figure 4.7 shows that F1T1 of 

normalized energy can be the characteristic segment as the mean value are completely 

separable in all groups. The results of Tukey comparison test for all parameters are 

attached in Appendix A.   

 

 

Figure 4.7: Tukey test result for normalized energy at F1 and time segment 1 

(F1T1) 
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Table 4.4 shows a summary of characteristic segments for all parameters 

obtained from Tukey test. It is obvious that 2 parameters namely crest factor and 

skewness are not suitable to be the indicator for valve monitoring as none of the time-

frequency segments of these parameters have completely separable confidence interval. 

This might happen because the change of valve impact under different conditions is not 

large enough to impose significant changes to the mean value. As opposed to RMS and 

normalized energy which evaluate the average value of signal, crest factor and skewness 

are more dependent on the peak amplitude within the time segments. Thus, smaller 

changes in impact resulted in the poor performance of crest factor and skewness.  

  

Table 4.4: Characteristic segments for all parameters at 450 rpm (AE signal) 

AE (450 rpm) 

Parameter 
Frequency 

F1 F2 F3 F4 

RMS T1 T1, T3, T4 T1, T2, T4 T3, T4 

Crest factor         

Skewness         

Kurtosis  - -  -  T2 

Normalized energy T1, T2 T1, T4 T1, T2, T4 T1, T2, T4 

 

 

Meanwhile, normalized energy is the best parameter indicating condition of 

valves, followed by the RMS value. In fact, normalized energy just performed slightly 

better than RMS value, where the former has 10 characteristic segments while the later 

has 9 characteristic segments. However, most of the characteristic segments of 

normalized energy have larger gap between confidence intervals of different groups if 

compared to RMS value. Therefore, normalized energy is selected as the monitoring 

parameter for AE signal under 450 rpm.   
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4.4.1.2 Vibration Signal at 450 rpm 

 Table 4.5 shows the p value of vibration signal at 450 rpm for all parameters. 

Generally, the performance of parameter for vibration signal is almost the same as AE 

signal. Normalized energy and RMS performed the best as all of the time-frequency 

segments have p value smaller than 0.001, followed by kurtosis, crest factor and 

skewness. In fact, for vibration signal, the number of time-frequency segments with p 

value smaller than 0.001 are same as that in AE signal for crest factor and kurtosis. 

Nevertheless, in search of characteristic segments, none of the time-frequency segment 

of kurtosis and skewness has completely separable confidence interval, as displayed in  

Table 4.6. This is slightly different from the result of AE signal. In addition, the 

total number of characteristic segments for normalized energy and RMS are lesser 

compared to AE signal. For vibration signal, normalized energy occupies a number of 8 

characteristic segments while RMS has 7 characteristic segments. Due to larger number 

of characteristic segments, normalized energy is selected as the best parameter for 

vibration signal at 450 rpm. Tukey test results for all parameters can be referred from 

Appendix A. 
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Table 4.5: p value for all parameters at 450 rpm (Vibration signal) 

Vib 450 Kurtosis (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 < 0.001 0.831 

2 
(12.8 – 25.6k Hz) 

0.141 < 0.001 < 0.001 0.033 

3 
(25.6 – 38.4k Hz) 

0.031 < 0.001 < 0.001 0.016 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 0.003 

Vib 450 Crest factor (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 < 0.001 0.704 

2 
(12.8 – 25.6k Hz) 

0.150 < 0.001 < 0.001 0.464 

3 
(25.6 – 38.4k Hz) 

0.146 < 0.001 < 0.001 0.134 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 0.277 

Vib 450 Normalized energy (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

2 
(12.8 – 25.6k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

3 
(25.6 – 38.4k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

Vib 450 RMS (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 0.003 < 0.001 

2 
(12.8 – 25.6k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

3 
(25.6 – 38.4k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

Vib 450 Skewness (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

0.025 < 0.001 0.848 0.458 

2 
(12.8 – 25.6k Hz) 

0.788 0.280 0.954 0.611 

3 
(25.6 – 38.4k Hz) 

0.197 0.041 0.701 0.793 

4 
(38.4 – 51.2k Hz) 

0.170 0.540 0.490 0.983 
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Table 4.6: Characteristic segments for all parameters at 450 rpm 

 (Vibration signal) 

 

Vibration (450 rpm) 

Parameter 

Frequency 

F1 F2 F3 F4 

RMS T2, T4 T1, T4 T4 T3, T4 

Crest factor T2 -  -  -  

Skewness         

Kurtosis         

Normalized energy T2, T3, T4 T2, T3, T4 T2 T1 

 

 

4.4.1.3 AE Signal at 800 rpm 

For AE signal at 800 rpm, almost all of the parameters have time-frequency 

segments with p value smaller than 0.05. Table 4.7 shows that for crest factor, 

normalized energy and RMS, there exists at least one group in all of the time-frequency 

segments which differs significantly from the other groups. Therefore, all segments in 

these parameters have higher possibility of becoming characteristic segments. 

Meanwhile, for kurtosis, there is only one time-frequency segment with no significant 

difference across all other groups. Skewness performed the worst as there are only 5 

time-frequency segments with p value smaller than 0.05.   

In comparing the significant difference between each and every pair of groups, it 

was found that RMS performed the best with 12 characteristic segments, followed by 

skewness and kurtosis with 2 characteristic segments each. Crest factor and normalized 

energy performed the worst with 1 characteristic segment each, as displayed in Table 

4.8. It can be deduced that AE signal acquired at higher speed has lower signal-to-noise 

ratio due to limitation of data acquisition device, which can only achieve a maximum 

sampling rate of 102.4 kHz. Therefore, the valve opening event acquired at this speed 

was not distinctive to cause significant change to the value of crest factor and 
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normalized energy at different valve conditions. Since these parameters are the ratio of 

peak/ energy within a time segment to mean value/ total energy in a given signal, higher 

noise can easily cover the valve impact event and thus producing little difference to 

these parameters. Nevertheless, RMS can produce better result as this value measures 

and compares a combination of impacts and noise at different conditions. Thus, RMS is 

selected as the best parameter for AE signal at 800 pm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 

 

Table 4.7: p value for all parameters at 800 rpm (AE signal) 

AE 800 Kurtosis (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 0.069 < 0.001 0.003 

2 
(12.8 – 25.6k Hz) 

< 0.001 < 0.001 < 0.001 0.008 

3 
(25.6 – 38.4k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

AE 800 Crest factor (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 0.042 < 0.001 0.015 

2 
(12.8 – 25.6k Hz) 

< 0.001 < 0.001 < 0.001 0.007 

3 
(25.6 – 38.4k Hz) 

< 0.001 < 0.001 0.003 < 0.001 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

AE 800 Normalized energy (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 < 0.001 0.010 

2 
(12.8 – 25.6k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

3 
(25.6 – 38.4k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

AE 800 RMS (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

2 
(12.8 – 25.6k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

3 
(25.6 – 38.4k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

4 
(38.4 – 51.2k Hz) 

< 0.001 < 0.001 < 0.001 < 0.001 

AE 800 Skewness (p value) 

Frequency 
Time 

1 2 3 4 

1 
(0 - 12.8k Hz) 

0.048 < 0.001 < 0.001 < 0.001 

2 
(12.8 – 25.6k Hz) 

0.887 0.715 0.366 0.022 

3 
(25.6 – 38.4k Hz) 

0.782 0.935 0.334 0.127 

4 
(38.4 – 51.2k Hz) 

0.605 0.904 0.970 0.742 
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Table 4.8: Characteristic segments for all parameters at 800 rpm 

 (AE signal) 

 

AE (800 rpm) 

Parameter 

Frequency 

F1 F2 F3 F4 

RMS T1, T2, T3 T1, T2, T3, T4 T1, T3, T4 T1, T4 

Crest factor T3 -  -  -  

Skewness T2, T3  -  -  - 

Kurtosis T3  - -  T3 

Normalized energy -   - T4 -  

 

4.4.1.4 Vibration Signal at 800 rpm 

Opposing to AE signal at 800 rpm, vibration signal produces better result at 

higher speed. Table 4.9 shows that all parameters in all time-frequency segments have p 

value smaller than 0.05, except skewness. It can be deduced that higher speed produces 

greater mechanical impacts which can be detected by the accelerometer easily. Thus, the 

impact of valve motion is more significant in vibration signal compared to AE signal as 

the former is more sensitive to mechanical motion and less sensitive to other noises. 

Skewness remained as the worst parameter as the impacts still insufficient to alter the 

skewness of distribution. 

The performance of Tukey comparison test listed in descending order is 

normalized energy, RMS, and crest factor. Normalized energy performed the best with 

7 characteristic segments, followed by RMS with 6 characteristic segments, and crest 

factor with 2 characteristic segments. It can be seen from Table 4.10 that there are no 

characteristic segments in kurtosis and skewness. This might happen when the noise 

masked the impact event and caused little changes to the distribution. In contrast, 

normalized energy and RMS value are sensitive to the combination of impacts and noise 

in signal as they measure the energy ratio/ average value of signal. Due to the excellent 



101 

 

performance of normalized energy, it is selected as the best parameter for vibration 

signal at 800 rpm. 

Table 4.9: p value for all parameters at 800 rpm (Vibration signal) 

Vib 800 Kurtosis (p value) 

Frequency 
Time 

1 2 3 4 

1 

(0 - 12.8k Hz) 
< 0.001 < 0.001 < 0.001 0.034 

2 

(12.8 – 25.6k Hz) 
< 0.001 < 0.001 < 0.001 0.009 

3 

(25.6 – 38.4k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

4 

(38.4 – 51.2k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

Vib 800 Crest factor (p value) 

Frequency 
Time 

1 2 3 4 

1 

(0 - 12.8k Hz) 
< 0.001 0.001 < 0.001 < 0.001 

2 

(12.8 – 25.6k Hz) 
< 0.001 < 0.001 < 0.001 0.014 

3 

(25.6 – 38.4k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

4 

(38.4 – 51.2k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

Vib 800 Normalized energy (p value) 

Frequency 
Time 

1 2 3 4 

1 

(0 - 12.8k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

2 

(12.8 – 25.6k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

3 

(25.6 – 38.4k Hz) 
< 0.001 < 0.001 < 0.001 0.004 

4 

(38.4 – 51.2k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

Vib 800 RMS (p value) 

Frequency 
Time 

1 2 3 4 

1 

(0 - 12.8k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

2 

(12.8 – 25.6k Hz) 
< 0.001 0.011 0.252 < 0.001 

3 

(25.6 – 38.4k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

4 

(38.4 – 51.2k Hz) 
< 0.001 < 0.001 < 0.001 < 0.001 

Vib 800 Skewness (p value) 

Frequency 
Time 

1 2 3 4 

1 

(0 - 12.8k Hz) 
0.351 0.002 0.004 0.107 

2 

(12.8 – 25.6k Hz) 
0.209 0.909 0.003 0.642 

3 

(25.6 – 38.4k Hz) 
0.666 0.863 0.993 0.932 

4 

(38.4 – 51.2k Hz) 
0.102 0.824 0.953 0.672 
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Table 4.10: Characteristic segments for all parameters at 800 rpm 

 (Vibration signal) 

 

Vibration (800 rpm) 

Parameter 

Frequency 

F1 F2 F3 F4 

RMS T3, T4 T4 T3, T4 T1 

Crest factor T1 -  -  T2 

Skewness         

Kurtosis         

Normalized energy T2, T3, T4 T3 T2 T3, T4 

 

4.4.2 Discussions 

It can be observed from previous section that parameters such as crest factor, 

skewness, and kurtosis are not reliable indicators to valve condition, though they have 

been applied widely in monitoring of other rotating equipment namely bearings. This is 

because these parameters require large changes in signal to alter their values 

significantly, i.e. insensitive to insignificant variation of data. In contrast, parameters 

such as normalized energy and RMS value are more sensitive to changes in valve 

conditions. They can identify each valve conditions though the signal was covered with 

noise. Therefore, these two parameters remained as the best parameter for both AE and 

vibration signal at 450 rpm and 800 rpm.  

Nevertheless, normalized energy performed poorly for AE signal at higher 

compressor speed, i.e.800 rpm. It can be postulated that the sampling rate used in this 

study is insufficient to capture the characteristic of AE signal due to excessive fluid 

noise at higher speed. In order to obtain a clean AE signal, it is advisable to acquire the 

signal at higher sampling rate, preferably at sampling rate above 1 MHz. However, 

RMS value has excellent performance at this speed, with 12 characteristic segments 

from a total of 16 time-frequency segments. Indeed, RMS is less susceptible to noise as 

this value computes the average value of signal which is inclusive of noise, in contrast 
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to normalized energy which computes the ratio of energy in a given time segment to the 

total energy of signal. The later will have little difference between conditions if the 

noise masked the impact event and caused the impact to be insignificant compared to 

total energy.  

At lower compressor speed (450 rpm), normalized energy performed the best 

while RMS ranked secondly. Meanwhile, crest factor, skewness, and kurtosis performed 

poorly at lower speed. AE signal is better in detecting the difference between conditions 

compared to vibration signal as the former has more characteristic segments for both 

normalized energy and RMS. This is consistent with the observation from previous 

research which stated that AE signal is superior in monitoring of bearings at low speed 

(McFadden and Smith, 1983).  

However, at higher compressor speed (850 rpm), AE signal performed poorly 

compared to vibration signal. Normalized energy computed at higher speed is poor in 

representing valve conditions due to low signal-to-noise ratio of AE signal. 

Nevertheless, RMS can replace normalized energy as the best parameter since it is less 

affected by noise. In fact, all other parameters performed poorly for AE signal at higher 

speed except RMS value. This further proved that AE signal is inferior to vibration 

signal at higher speed. In contrast, the normalized energy and RMS value computed 

from vibration signal are capable to indicate different valve conditions clearly. This 

might happen as higher speed resulted in greater mechanical impact which produced 

distinct peak from intensely noised signal.  

It was found that both skewness and kurtosis have no characteristic segments at 

low and high compressor speed. It can be deduced that the valve opening impact is not 

large enough to change the distribution of signal significantly. Meanwhile, for AE 

signal, there are no characteristic segment for crest factor and skewness at low speed. 
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However, at high speed, crest factor, skewness and kurtosis have at least 1-2 

characteristic segments due to the higher mechanical impacts. It is believed that these 

three parameters can perform better if the AE signal is acquired at higher sampling rate. 

In short, normalized energy is selected as the best parameter of AE signal and 

vibration signal for valve monitoring due to their good performance discussed above, 

except for AE signal acquired at 800 rpm. Although RMS is a better parameter for AE 

signal at high speed, normalized energy is still chosen for signal analysis in the 

following section to enable equal comparison with other operating conditions. The 

following section presents results of one way ANOVA for normalized energy under 4
th

 

resolution level of WPT. It is encouraging that the performance of normalized energy 

for AE signal at high speed improved at higher level of resolution, with more 

characteristic segments compared to that during parameter comparison. This shows that 

normalized energy is still a good parameter for AE signal at high speed.  

 

 

4.5 Signal Analysis 

To enable detailed signal analysis, raw AE and vibration signals were 

decomposed into the 4
th

 level of resolution, which is equivalent to 16 frequency ranges. 

Signals in each frequency range were further segregated into 4 time segments which 

correspond to different valve movements, resulting in 64 time-frequency segments for 

each signal. Characteristic segments of each signal under different speed were identified 

through one way ANOVA and Tukey test. The results showed characteristics of AE and 

vibration signal at different speed.    
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4.5.1 Results 

4.5.1.1 Signals acquired at low speed (450 rpm) 

Table 4.11 shows characteristic segments of AE and vibration signal from the 

result of Tukey test. Detailed result can be found in Appendix B. AE signal performed 

the best at higher frequency range, namely F9 (25.6 – 28.8 kHz), F11 (32.0 – 35.2 kHz), 

F12 (35.2 – 38.4 kHz), F14 (41.6 – 44.8 kHz) and F15 (44.8 – 48.0 kHz). They were 

considered as the best frequency ranges as they have the most characteristic segments 

compared to other frequency range. At these frequency ranges, the mean values of 

normalized energy at different conditions are significantly different at 3 time segments. 

The 95% confidence interval (C.I) of these time-frequency segments is displayed in 

Table 4.12. 

Table 4.11: Characteristic segments of AE and vibration signal at 450 rpm 

Frequency 
450 rpm 

AE Vibration 

F1 
(0 – 3.2 kHz) 

T1, T2 T1 

F2 
(3.2 – 6.4 kHz) 

T1, T4 T1 T2 T4 

F3 
(6.4 – 9.6 kHz) 

T2, T3 T1 T4 

F4 
(9.6 – 12.8 kHz) 

T1 T2 T3 

F5 
(12.8 – 16.0 kHz) 

T1 T2 

F6 
(16.0 – 19.2 kHz) 

T2, T4 T2 T3 

F7 
(19.2 – 22.4 kHz) 

T2, T3 T2 T3 

F8 
(22.4 – 25.6 kHz) 

T1, T4 T2 T3 

F9 
(25.6 – 28.8 kHz) 

T1, T2, T4 T2 

F10 
(28.8 – 32.0 kHz) 

T1, T3 T2 T3 

F11 
(32.0 – 35.2 kHz) 

T1, T2, T4 T3 

F12 
(35.2 – 38.4 kHz) 

T1, T3, T4 T2 T3 

F13 
(38.4 – 41.6 kHz) 

T1, T4 T2 T3 T4 
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Table 4.11, continued 

Frequency 
450 rpm 

AE Vibration 

F14 
(41.6 – 44.8 kHz) 

T1, T2, T4 T2 

F15 
(44.8 – 48.0 kHz) 

T1, T2, T4 T4 

F16 
(48.0 – 51.2 kHz) 

T1, T2 T2 T3 T4 

 

Table 4.12 displays interval of normalized energy of AE signal for identification 

of valve conditions. As their probability of hypothesis was greater than 0.05, these 

intervals were proven to be sensitive to valve condition, instead of fluctuations or errors 

within measurements. Hence, the condition of plate valve can be identified by 

comparing its normalized energy value with the confidence interval, for compressors 

operated at 450 rpm. However, this method of inspection is more reliable for valves 

suffering from grease or leakage problem as other valve conditions have not been tested 

in this study.  

Table 4.12: 95% confidence interval (C.I) of AE signal at 450 rpm in the best 

frequency range 

Frequency range 
Valve conditions 

Normal Grease  Leakage 

F9T1 0.0228 - 0.0294 0.0369 - 0.0436 0.0027 - 0.0093 

F9T2 0.437 - 0.485 0.178 - 0.226 0.361  0.409 

F9T4 0.295 - 0.350 0.545 - 0.600 0.469 - 0.524 

F11T1 0.031 - 0.038 0.055 - 0.062 0.001 - 0.009 

F11T2 0.362 - 0.395 0.143 - 0.176 0.302 - 0.335 

F11T4 0.350 - 0.396 0.583 - 0.628 0.477 - 0.522 

F12T1 0.017 - 0.027 0.050 - 0.060 0 - 0.010 

F12T3 0.183 - 0.215 0.150 - 0.181 0.100 - 0.131 

F12T4 0.290 - 0.339 0.611 - 0.661 0.417 - 0.467 

F14T1 0.030 - 0.040 0.055 - 0.064 0.003 - 0.013 

F14T2 0.413 - 0.447 0.181 - 0.215 0.305 - 0.338 

F14T4 0.355 - 0.402 0.573 - 0.620 0.502 - 0.549 

F15T1 0.052 - 0.074 0.094 - 0.116 0.012 - 0.035 

F15T2 0.407 - 0.441 0.145 - 0.178 0.320 - 0.354 

F15T4 0.347 - 0.395 0.527 - 0.575 0.441 - 0.489 
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From Table 4.12, it can be observed that the characteristic of AE signal for a 

particular valve condition is similar in the same time segment, regardless of frequency 

range. At time segment 1 (T1), which is equivalent to crank angle 0
o
-18.8

o
, the lowest 

value of C.I is obtained from valve under leakage condition. C.I computed from normal 

valve condition ranked second while grease condition has the largest value of C.I. This 

sequence is the same for all confidence intervals computed at T1, as highlighted in 

yellow colour in Table 4.13.     

 

Table 4.13: Sequence of confidence interval (C.I) of AE signal at 450 rpm in 

ascending order (1: lowest mean value and 3: highest mean value)  

Frequency range 
Valve conditions 

Normal Grease  Leakage 

F9T1 2 3 1 

F9T2 3 1 2 

F9T4 1 3 2 

F11T1 2 3 1 

F11T2 3 1 2 

F11T4 1 3 2 

F12T1 2 3 1 

F12T3 3 2 1 

F12T4 1 3 2 

F14T1 2 3 1 

F14T2 3 1 2 

F14T4 1 3 2 

F15T1 2 3 1 

F15T2 3 1 2 

F15T4 1 3 2 

 

Similar trend can be seen in time segment 2 (T2). At crank angle 18.8
o
-131.4

o
, 

which corresponds to event of valve opening, the lowest value of C.I is achieved by that 

under grease condition. This is followed by C.I under leakage and normal condition, 

which ranked second and third respectively. The consistency of the trend can be seen 

clearly in Table 4.13, where those similar segments are coloured in green. It further 
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shows that AE signal under the same valve condition has same characteristic in the 

same time segment, which is obvious especially in the best frequency range.  

From Table 4.13, it is apparent that only F12 (35.2 – 38.4 kHz) has 

characteristic segment in the third time segment 3 (T3), which corresponds to suction 

valve closing event at crank angle 131.4
o
-244

o
. In this time segment, C.I under leakage 

condition has the lowest value, followed by grease and normal condition which ranked 

second and third respectively. It was found that T3 can be a better segment in detecting 

grease condition if the length of time segment is shortened. From Figure 4.8, it is 

noticeable that there is a delay from the impulse in T3 under grease condition. For 

normal and leakage condition, this impulse occurred at crank angle approximately 131
o
-

175
o
. On the other hand, under grease condition, a sudden impulse appeared at crank 

angle approximately 175
 o
 - 200

 o
. It can be postulated that the stickiness of valve plate 

resulted in the delay of impulse, which signifies delay of valve closing event. In fact, it 

can be observed from Appendix C that the delay is consistent in all frequency ranges 

except F1 (0 – 3.2 kHz) as the impulse was masked by other machinery noise in low 

frequency range. Thus, time segment of crank angle 175
 o

 - 200
 o

 can be the key 

characteristic for valve suffered in grease condition, which promotes a more effective 

way to detect greased valve compared to the current T3 time segment.  

 

Figure 4.8: Comparison of AE signal at F12 (35.2 – 38.4 kHz) and 450 rpm 

under (a) normal (b) grease (c) leakage condition 
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At the fourth time segment (T4) with crank angle 244
o
-360

o
, normalized energy 

under normal condition shows the lowest C.I. Meanwhile, normalized energy under 

leakage condition has the second largest C.I. The largest value of C.I is attained by that 

under grease condition. The blue colour highlighted in Table 4.13 shows the traits of 

AE signal at time segment 4 (T4) under different frequency ranges. 

Meanwhile, for vibration signal, although the Tukey test result displayed in 

Table 4.11 shows a number of characteristic segments at high frequency ranges, these 

frequency ranges are beyond operating frequency range of accelerometer. Therefore, 

characteristic segments in the higher frequency range are not reliable for valve 

monitoring. It has been shown further in Figure 4.9 and Figure 4.10 that the valve 

opening impact in the higher frequency range (F7) is less distinctive compared to that in 

the lower frequency range (F1).  

 

Figure 4.9: Comparison of vibration signal at F1 (0 – 3.2 kHz) and 450 rpm 

under (a) normal (b) grease (c) leakage condition 

 

 

Figure 4.10: Comparison of vibration signal at F7 (19.2 – 22.4 kHz) and 450 

rpm under (a) normal (b) grease (c) leakage condition 
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In fact, it can be observed from Appendix C that vibration signals started to 

contain more noise and have less distinct peaks in frequency range greater than F6 (16 – 

19.2 kHz). This due to the fact that the operating frequency of accelerometer in this 

research is in the range of 0.35 – 15000 Hz, at 3dB tolerance level, as shown in 

Appendix D. Thus, despite having many characteristic segments in the higher frequency 

range, the best frequency range was found in F2 (3.2 – 6.4 kHz), F3 (6.4 – 9.6 kHz), and 

F4 (9.6 – 12.8 kHz), with 3, 2, 2 characteristic segments respectively, as shown in Table 

4.11.   

Table 4.14 shows the C.I of characteristic segments for vibration signal at 450 

rpm in the best frequency range. Although the value of C.I differs compared to that in 

AE signal, the sequence of C.I in ascending order is exactly the same as in AE signal, 

regardless of frequency range, except time segment 3 (T3). From Table 4.14, at time 

segment 1 (T1), C.I under leakage condition has the lowest value, followed by the 

normal condition which ranked second. Normalized energy obtained under grease 

condition has the largest value of C.I. On the other hand, for time segment 2 (T2), 

grease condition shows the lowest value of C.I, followed by leakage and normal 

condition which ranked second and third respectively. In the fourth time segment (T4), 

the lowest value of C.I is achieved by normal condition, while leakage condition has the 

second largest of C.I. The highest C.I was found under grease condition.        
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Table 4.14: 95% confidence interval (C.I) of vibration signal at 450 rpm in the 

best frequency range 

Frequency range 
Valve conditions 

Normal Grease  Leakage 

F2T1 0.018 - 0.027 0.047 - 0.056 0.002 - 0.011 

F2T2 0.603 - 0.664 0.195 - 0.256 0.530 - 0.590 

F2T4 0.229 - 0.295 0.590 - 0.656 0.341 - 0.407 

F3T1 0.009 - 0.015 0.029 - 0.036 0.001 - 0.006 

F3T4 0.189 - 0.256 0.451 - 0.518 0.269 - 0.336 

F4T2 0.791 - 0.839 0.620 - 0.667 0.712 - 0.759 

F4T3 0.084 - 0.107 0.121 - 0.144 0.056 - 0.079 

 

 

By comparing Table 4.13 and Table 4.15, it is obvious that the sequence of C.I 

in both tables is the same for the same time segment. Therefore, it can be said that AE 

and vibration signals obtained at the best frequency range are good in representing the 

valve conditions as both signals correlated well. From the result presented, it is clear 

that under low rotating speed, AE signal can perform better in the high frequency region 

while vibration signal is more reliable in the low frequency region.  

 

Table 4.15: Sequence of confidence interval (C.I) of vibration signal at 450 rpm 

in ascending order (1: lowest mean value and 3: highest mean value)  

Frequency range 
Valve conditions 

Normal Grease  Leakage 

F2T1 2 3 1 

F2T2 3 1 2 

F2T4 1 3 2 

F3T1 2 3 1 

F3T4 1 3 2 

F4T2 3 1 2 

F4T3 2 3 1 
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Figure 4.11: Comparison of vibration signal at F4 (9.6 – 12.8 kHz) and 450 rpm 

under (a) normal (b) grease (c) leakage condition 

 

Nevertheless, the sequence of C.I at time segment 3 (T3) is different between 

AE and vibration signal. It can be seen from Table 4.15 that leakage condition has the 

lowest value of C.I, followed by normal and grease condition, which is different from 

AE signal at the second and third rank. This might due to the long time segment of T3 

which causes the segment insensitive to changes of valve condition. However, the delay 

of impulse at T3 under grease condition is the same for both AE and vibration signal, as 

displayed in Figure 4.11 for vibration signal at F4 (9.6 – 12.8 kHz). In fact, the ability 

of vibration signal to detect grease valve problem can be further improved if the length 

of T3 is shortened to 175
 o
 - 200

 o
. It is believed that with the improved T3, the sequence 

of C.I between AE and vibration signal can be the same.  

 

4.5.1.2 Signals acquired at high speed (800 rpm) 

Table 4.16 shows characteristic segments of AE and vibration signal at 800 rpm. 

Frequency ranges shaded in grey represents no characteristic segments within the 

frequency range. Detailed result of Tukey test can be found in Appendix E while a 

sample of AE and vibration signals at all frequency range can be seen in Appendix F. 
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Table 4.16: Characteristic segments of AE and vibration signal at 800 rpm 

Frequency 800 rpm 

AE Vibration 

F1 
(0 – 3.2 kHz)  

T3 T4 

F2 
(3.2 – 6.4 kHz) 

T3 T4 T2 T4 

F3 
(6.4 – 9.6 kHz) 

T4 T2 

F4 
(9.6 – 12.8 kHz) 

T4 T2 T4 

F5 
(12.8 – 16.0 kHz)  

T3 

F6 
(16.0 – 19.2 kHz) 

T4 T2 T4 

F7 
(19.2 – 22.4 kHz) 

T1 T2 
 

F8 
(22.4 – 25.6 kHz) 

T3 
 

F9 
(25.6 – 28.8 kHz) 

T4 
 

F10 
(28.8 – 32.0 kHz) 

T2 T3 T4 

F11 
(32.0 – 35.2 kHz)  

T2 

F12 
(35.2 – 38.4 kHz)  

T2 T3 

F13 
(38.4 – 41.6 kHz)  

T3 

F14 
(41.6 – 44.8 kHz) 

T3 T4 T2 

F15 
(44.8 – 48.0 kHz) 

T2 
 

F16 
(48.0 – 51.2 kHz) 

T3 T4 T4 

 

It can be scrutinized that AE signal characterizes valve condition better at 

frequency range namely F2 (3.2 – 6.4 kHz), F7 (19.2 – 22.4 kHz), F14 (41.6 – 44.8 

kHz) and F16 (48.0 – 51.2 kHz). On the other hand, vibration signal shows better 

performance at F1 (0 – 3.2 kHz), F2 (3.2 – 6.4 kHz), F4 (9.6 – 12.8 kHz) and F6 (16.0 – 

19.2 kHz). As mentioned in previous section, characteristic segments of vibration signal 

beyond F6 are neglected as these frequencies lie above the working range of 
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accelerometer, thus causing them to be less reliable and less effective in representing 

valve conditions.  

Table 4.17 shows the C.I of normalized energy for AE signal in the best 

frequency range. By comparing normalized energy value in a particular frequency range 

and time segment, condition of valve can be deduced.  

 

Table 4.17: 95% confidence interval (C.I) of AE signal at 800 rpm in the best 

frequency range 

Frequency 

range 

Valve conditions 

Normal Grease  Leakage 

F2T3 0.0555 - 0.0851 0.316 - 0.345 0.0898 - 0.119 

F2T4 0.265 - 0.315 0.206 - 0.256 0.331 - 0.382 

F7T1 0.00324 - 0.0497 0.0781 - 0.125 0.270 - 0.316 

F7T2 0.786 - 0.847 0.653 - 0.715 0.522 - 0.583 

F14T3 0.101 - 0.141 0.228 - 0.267 0.0577 - 0.0975 

F14T4 0.137 - 0.164 0.0413 - 0.0684 0.0785 - 0.106 

F16T3 0.111 - 0.156 0.232 - 0.277 0.0558 - 0.101 

F16T4 0.111 - 0.137 0.0383 - 0.0648 0.0810 - 0.107 

 

For time segment 1 at F7 (F7T1), it is obvious that C.I increases from normal, 

grease to leakage condition. On the contrary, under the same frequency range F7, C.I 

decreases from normal, grease to leakage condition at time segment 2. It can be 

postulated that valve opening event occurred earlier under leakage condition, resulted in 

highest C.I among other conditions at T1. Consequently, during the valve opening event 

of normal and grease condition as represented by T2, leakage condition has the lowest 

value of C.I. Similarly, since there was no leakage under normal valve condition, it has 

the lowest value of C.I at T1 and the highest value of C.I at T2. As grease condition has 

little leakages, its C.I lies between the two conditions at T1 and T2.  

 For time segment 3 under higher frequency range F14 and F16, it can be seen 

that leakage condition has the lowest value of C.I, followed by normal and grease 
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condition. These same sequences of segments are highlighted in orange colour as 

displayed in Table 4.18. However, the sequence of C.I is different at F2. At this 

frequency range, the lowest value of C.I is achieved by normal condition, followed by 

leakage and grease condition. The difference in sequence at F2 might happen as AE 

signal is prone to be influenced by other noises at lower frequency range. In fact, 

vibration signal has the same sequence of C.I as in F14 and F16 at F1, as highlighted in 

orange in Table 4.20. This further supports the postulation that F2 might not good in 

representing valve conditions. The intense noise of AE signal at F2 compared to F14 

and F16 can be seen clearly from Figure 4.12. 

 

Table 4.18: Sequence of confidence interval (C.I) of AE signal at 800 rpm in 

ascending order (1: lowest mean value and 3: highest mean value) 

Frequency range 
Valve conditions 

Normal Grease  Leakage 

F2T3 1 3 2 

F2T4 2 1 3 

F7T1 1 2 3 

F7T2 3 2 1 

F14T3 2 3 1 

F14T4 3 1 2 

F16T3 2 3 1 

F16T4 3 1 2 
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Figure 4.12: Comparison of AE signal at F2 (a) – (c), F14 (d) – (f), and F16 (g) 

– (i) under different valve conditions at 800 rpm 

 

As stated in the previous section, one of the characteristic of greased valve 

condition at 450 rpm is the delay of transient event at time segment 3 compared to that 

under normal valve condition. However, this delay is not obvious for signal captured at 

higher speed. It can be seen from Figure 4.12 (e) and (h) that there are little delay of 

transient event in T3 at F14 and F16 compared to normal condition. The difference of 

transient event at low and high speed will be explained in the discussion section. 

It can be observed that F14 and F16 have same sequence of C.I at time segment 

4, as highlighted in red in Table 4.18. At this time segment, grease condition ranked 

first, followed by leakage and normal condition. However, for F2T4, the lowest value of 

C.I is achieved by grease condition, followed by normal and leakage condition.  The 
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inconsistency of sequence of C.I can be attributed to the low signal-to-noise ratio of AE 

signal at lower frequency range namely F2.   

Table 4.19 shows the C.I of vibration signal in the best frequency range. By 

comparing the sequence of C.I at time segment 2, it was found that AE and vibration 

signal have the same sequence, as highlighted in green colour in Table 4.18 and Table 

4.20. At this time segment, leakage condition shows the lowest value of C.I, followed 

by grease and normal condition. This is consistent with the postulation that leakage 

causes earlier valve opening and therefore resulted in lowest C.I at T2 compared to 

normal and grease condition.  

 

Table 4.19: 95% confidence interval (C.I) of vibration signal at 800 rpm in the 

best frequency range 

Frequency 

range 

Valve conditions 

Normal Grease  Leakage 

F1T3 0.169 - 0.199 0.249 - 0.279 0.0115 - 0.0415 

F1T4 0.180 - 0.215 0.224 - 0.259 0.0674 - 0.102 

F2T2 0.779 - 0.838 0.538 - 0.596 0.351 - 0.409 

F2T4 0.0818 - 0.126 0.135 - 0.179 0.217 - 0.262 

F4T2 0.887 - 0.944 0.821 - 0.878 0.469 - 0.526 

F4T4 0.0330 - 0.0452 0.0462 - 0.0584 0.0181 - 0.0303 

F6T2 0.844 - 0.897 0.694 - 0.747 0.443 - 0.496 

F6T4 0.0622 - 0.0811 0.105 - 0.124 0.0341 - 0.0529 

 

 

Similarly, vibration and AE signal at higher frequency range have same 

sequence of C.I at T3, as highlighted in orange in Table 4.18 and Table 4.20. As grease 

condition shows the highest value of C.I in T3 consistently for both vibration signal and 

AE signal at higher frequency range, this time segment T3 can be the feature for greased 

valve condition. Nevertheless, opposing to AE signal which shows little delay of 
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transient event at higher speed, vibration signal demonstrates more distinct delay and 

higher amplitude of transient event at T3 and 800 rpm, as displayed in Figure 4.13. This 

is because accelerometer is able to detect mechanical impacts better especially at higher 

rotational speed compared to AE signal. It is suggested that performance of AE signal 

can be improved by increasing sampling rate of data acquisition system, due to the fact 

that AE sensor needs higher resolution to represent signal at higher speed. 

 

Table 4.20: Sequence of confidence interval (C.I) of vibration signal at 800 rpm 

in ascending order (1: lowest mean value and 3: highest mean value)  

Frequency 

range 

Valve conditions 

Normal Grease  Leakage 

F1T3 2 3 1 

F1T4 2 3 1 

F2T2 3 2 1 

F2T4 1 2 3 

F4T2 3 2 1 

F4T4 2 3 1 

F6T2 3 2 1 

F6T4 2 3 1 

 

 

 

Figure 4.13: Comparison of vibration signal at F1 and 800 rpm under (a) normal 

(b) grease (c) leakage condition  
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For time segment 4, sequence of C.I at F1, F4, and F6 are the same, as 

highlighted in blue in Table 4.20. Leakage condition has the lowest value of C.I, 

followed by normal and grease condition. Nevertheless, at F2, the lowest value of C.I is 

achieved under normal condition, followed by grease and leakage condition. It is 

deduced that some of the signal characteristics are confined in the frequency range of 

3.2 - 6.4 kHz (F2), thus causes different sequence of C.I at F2 compared to other 

frequency range. However, more studies are needed to confirm the deduction. 

The following section discusses Tukey test result at low (450 rpm) and high 

(800 rpm) speed for both AE and vibration signals.  

 

 

4.5.2 Discussions 

By comparing Tukey test result of AE and vibration signal under low speed (450 

rpm), it is obvious that both signals have same sequence of C.I at T1, T2, and T4 

regardless of best frequency ranges, as displayed in Table 4.13 and Table 4.15. This 

consistency shows that C.I in these characteristic segments are reliable for effective 

valve monitoring as sampling rate selected in this study is sufficient to capture 

characteristics of signal under different valve conditions at low speed. 

Nevertheless, sequences of C.I for both signals are different at T3 under 450 

rpm. As mentioned in previous section, the sequences might be the same if the length of 

T3 is shortened. It was found that sequence of C.I of vibration signal under lower speed 

is the same as that under higher speed, for vibration signal and AE signal at higher 

frequency range, as displayed in Table 4.15, Table 4.18, and Table 4.20. Indeed, grease 

condition shows significant peak at higher speed, thus resulted in highest C.I value 

among other conditions. It is postulated that higher speed causes larger suction volume 
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flow rate and thus greater impact forces during valve fluttering event. This is further 

supported by the fact that C.I at higher speed lies in the range of 0.23 – 0.28 (for 

vibration and AE signal at higher frequency range), which is much higher than that at 

lower speed, which lies between 0.12 – 0.18 (for AE and vibration signal).  

In fact, valve dynamics under different conditions can be deduced clearly from 

the sequence of C.I of both signals. For normal and leakage condition, valve opening 

event occurred at T2 (18.8
o
-131.4

o
). The opening impact causes normal condition to 

show highest C.I value at T2. As leakage condition has less opening impact, it recorded 

lower C.I value compared to normal condition. Meanwhile, for grease condition, valve 

opening event occurred earlier at T1 (0
o
-18.8

o
), resulted in highest C.I value at T1 and 

lowest C.I value at T2. In addition, leakage condition has lowest C.I value at T1 as the 

simulated leak is too small to cause significant changes at lower speed. However, 

leakage condition is accounted for significant changes of C.I value in T1 at higher 

speed. This will be discussed in the later part of this section.   

The valve closing event is postulated at T3 (131.4
o
-244

o
), when piston was in 

transition between expansion and compression stroke.  This event is most significant 

under grease condition due to valve fluttering motion. For vibration signal, the C.I value 

shows approximately 0.13 under grease condition, while normal and leakage condition 

has C.I value around 0.096 and 0.068 respectively. It is deduced that during this 

transition period, as pressure is built up consistently, suction plate closes from valve 

guard to valve seat, resulted in transient event at approximately 131
0
 – 200

0
 for normal 

and leakage condition, and a sharper peak at 175
0
 - 200

0
 for grease condition. In fact, 

the grease condition causes delay in timing as larger crank angle is needed to increase 

pressure which is sufficient to close the suction valve. This delay is consistent for both 
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AE and vibration signal, and therefore it can be a key feature in identifying greased 

valve.  

The opening event of discharge valve occurred at T4 (244
o
-360

o
). Grease 

condition shows highest value of C.I as part of the fluids leaked through suction valve 

instead of discharge valve during compression cycle. This is because valve plate was 

not fully closed under grease condition. Hence, this condition has C.I value greater than 

0.5 for all frequency ranges. Compared to normal condition which recorded C.I value 

around 0.3, at least 20% of energy is lost through suction valve under grease condition. 

Similarly, leakage condition has second highest C.I value due to the leakage of fluid 

across simulated passage at valve plate. In fact, the C.I value of leakage condition 

around 0.4 signifies approximately 10% of energy lost into suction valve. Lowest C.I 

value is achieved by normal condition as most fluids flow through discharge valve.  

On the other hand, at higher speed, the sequence of C.I is different. This 

indicates different valve event compared to that under lower speed. Indeed, as opposed 

to 450 rpm which shows lowest C.I value in T1 under leakage condition, the C.I value is 

highest at 800 rpm. AE signal attained C.I value of approximately 0.29, which is very 

much higher, compared to grease and normal condition, where they recorded C.I value 

of 0.10 and 0.026 respectively. This is due to the fact that more fluid leaked into 

cylinder through simulated groove at higher speed, resulting in earlier valve opening 

event. Besides, loose closing of valve plate under grease condition also causes its C.I 

value at T1 to be the second highest after leakage condition. Consequently, leakage and 

grease condition shows lowest and second lowest C.I value at T2 respectively. As valve 

plate under normal condition closed tightly, greater valve opening impact can be 

observed and thus accounted for highest C.I value at T2. It was found that sequence of 

C.I has no difference between AE and vibration signal at T2. This feature can be the key 
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characteristic in detecting valve failures at higher speed. Nevertheless, more studies are 

needed in future at obtain the relationship between C.I value and severity level of 

different valve conditions.  

With regard to valve closing timing at T3, it is obvious that vibration signal 

performed better in detecting valve closing impact and valve fluttering motion both at 

lower and higher speed. On the other hand, AE signal shows little delay in the valve 

fluttering event, as opposed to sharp delay of vibration signal, for grease condition at 

higher speed. In fact, higher rotation speed results in chaotic turbulent flow, increases 

the difficulty of signal processing of AE signal compared to vibration signal, due to 

broad frequency range of the former compared to the later. It is postulated that the 

current sampling frequency of 102.4 kHz is insufficient to extract actual mechanical and 

fluid motion at higher speed. Higher sampling rate of 1 MHz is suggested for improved 

performance of AE signal in future.  

Inadequacy in sampling frequency is further shown in T4 at higher speed. Table 

4.21 and Table 4.22 displayed combined C.I of AE and vibration signals at T3 and T4 

under low and high speed. It can be seen that C.I value in T4 is much higher at lower 

speed under all valve conditions. Besides, by comparing both tables, it can be observed 

that the difference of C.I value between T3 and T4 at higher speed is almost the same 

while the difference is much larger at lower speed. These findings further support the 

postulation that discharge valve opening event at higher speed is not depicted well in 

AE and vibration signal. It also explained the inconsistency of C.I value between AE 

and vibration signal. Nevertheless, delay of discharge valve opening event can be seen 

clearly in Figure 4.12 (f) and (i) at F14 and F16. Due to fluid leakages, piston needs to 

move further upwards, producing larger crank angle and pressure difference in order to 
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open the discharge valve. As mentioned previously, larger sampling frequency may 

improve result of AE signal at higher speed.  

 

Table 4.21: Joint confidence interval (C.I) of AE and vibration signal at T3 

under different speed and valve conditions 

Speed 
AE and vibration C.I at T3 

Normal Grease Leakage 

450 rpm 0.084 - 0.22 0.12 - 0.18 0.056 - 0.13 

800 rpm 0.056 - 0.20 0.23 - 0.28 0.012 - 0.10 

 

 

Table 4.22: Joint confidence interval (C.I) of AE and vibration signal at T4 

under different speed and valve conditions 

Speed 
Joint C.I at T4 

Normal Grease Leakage 

450 rpm 0.19 - 0.4 0.45 - 0.66 0.27 - 0.55 

800 rpm 0.033 - 0.32 0.038 -0.26 0.018 - 0.38 

 

 

4.5.3 Conclusions 

This sub-section compares the effect of speed and valve conditions on AE and 

vibration signal. It was found that effect of grease is greater at lower speed while 

leakage shows larger impact at higher speed. This causes difference in sequence of C.I 

in T1, T2 and T4 at different speed. Nevertheless, sequence of C.I at T3 is the same at 

both speeds, where grease condition records highest C.I value consistently regardless of 

speed. This feature can be the key characteristic of grease condition.  

In comparing performance of AE and vibration signal at different speed and 

valve conditions, it is clear that AE is more sensitive in higher frequency range (19.2 

kHz and above) while vibration signal shows better result at lower frequency range 
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(19.2 kHz and below). These two signals are consistent at lower speed (450 rpm) with 

same sequence of C.I regardless of frequency range. However, both signals show 

different sequence of C.I at higher speed (800 rpm), especially during compression 

stroke at T4. Due to complexity of fluid flow at higher speed, AE signal requires higher 

resolution and advanced signal processing technique to depict the fluid flow and 

mechanical motion. It is believed that the performance of AE signal can be further 

improved if the sampling frequency is increased to 1 MHz. 

Statistical theory suggested that better estimation of C.I can be achieved with 

larger sample size. Therefore more data can be collected from specific time interval in 

future for better representation of valve conditions from C.I. It must be noted that the 

C.I computed in this study is limited to compressors in the same operating condition, 

namely rotational speed and work load.  

In the coming section, the data collected from compressor operating in gas 

cooling plant will be compared with the test result in the current section. 

 

 

4.6 Test data study 

A compressor operated in Makhostia KLCC Gas District Cooling plant is 

selected as the test compressor for this study. Three measurements were taken over 4 

months (August 2012 – December 2012), with 40 samples in each measurement, from a 

suction valve cover. Figure 4.14 and Figure 4.15 show the plan view and actual view 

while Table 4.23 displays specifications of this double acting, horizontal compressor. 

The objective of this test data study is to monitor condition of suction valve in the 

compressor, besides examining characteristics of AE and vibration signal compared to 

that in the test rig. 
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Figure 4.14: Plan view of test compressor JGJ/2 

 

 

 

 

Figure 4.15: Test compressor JGJ/2 
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Table 4.23: Specification of test compressor JGJ/2 

Model No JGJ/ 2 

Type Double acting, horizontal compressor 

Number of throw 2 

Speed 1485 rpm 

Fluid Methane 

Pressure suction line (kPaG) 722.98 

Temperature suction line (Deg C) 46.23 

Pressure discharge line (kPaG) 2862.97 

Temperature discharge line (Deg C) 142.15 

 

As the speed of compressor in plant is almost twice the speed of test rig, more 

noise can be seen from raw signal acquired. Hence, it is necessary to perform WPT 

decomposition in order to obtain signal with high signal-to-noise ratio. Figure 4.16 and 

Figure 4.17 show comparison between raw and WPT decomposed signal. It is obvious 

that raw AE signal contains more noise compared to raw vibration signal as it detects 

both mechanical and fluid motion. After decomposing these raw signals into 16 

frequency ranges, it was found that these test signals correlates well with that in the test 

rig. Suction valve opening event can be seen clearly at crank angle approximately 35
0
-

45
0
 while valve closing event is shown at crank angle approximately 165

0
-175

0
 for both 

signal at F16 (48.0 – 51.2 kHz), as displayed in Figure 4.16 (b) and Figure 4.17(b). Due 

to high rotational speed which produces larger mechanical impact, vibration signal 

remain clear in F16.  
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Figure 4.16: Comparison of AE signal (a) Raw signal (b) WPT decomposed 

signal 

 

 

Figure 4.17: Comparison of vibration signal (a) Raw signal (b) WPT 

decomposed signal 

 

Result from test rig suggested that under grease valve condition, valve opening 

event occurred at crank angle smaller than 50
0
. For valve closing event, grease 

condition shows delay in valve timing at crank angle approximately 175
0
, with 

amplitude almost the same as the valve opening impact. Figure 4.18 (c) shows increased 

amplitude of valve closing event while Figure 4.18 (d) shows delay in valve closing 

event, for vibration and AE signal acquired from test rig under grease condition at 800 
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rpm. Earlier valve opening event at crank angle approximately 25
0 

under grease 

condition can be observed in Figure 4.18 (d) for AE signal.  

 

 

Figure 4.18: Comparison of vibration and AE signal at 800 rpm under normal 

(a)-(b) and grease (c)-(d) condition 

 

In fact, early opening of valve at crank angle approximately 30
0
 can be seen 

consistently over three measurements from vibration signals acquired from plant, as 

displayed in Figure 4.20. For AE signal, the opening impact is most distinct during 

September, as shown in Figure 4.19 (b). Both signals show characteristic of greased 

valve condition.  
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Figure 4.19: Comparison of AE signal during different months (a) August (b) 

September (c) December 
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Figure 4.20: Comparison of vibration signal during different months (a) August (b) 

September (c) December 
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For valve closing event, AE and vibration signal shows delayed valve timing at 

crank angle approximately 175
0
 during August and December. Nevertheless, the valve 

closing timing is approximately 200
0
 during September, as shown in Figure 4.19 (b) and 

Figure 4.20 (b). More measurements are needed in future to confirm the postulation of 

increasing grease condition in the suction valve.   

In comparing amplitude trend of normalized energy for AE and vibration signals 

over three measurements, mean of 40 samples was computed for each measurement.  

Figure 4.21 shows normalized energy value of both signals in different time 

segments over three measurements from August to December 2012. It was found that 

normalized energy value during valve closing event increases consistently from August 

to December for AE signal, which further supports the postulation of grease condition 

in the suction valve. Similarly, vibration signal shows highest peak at T3 for each 

measurement, with a slight decrease during September. As the normalized energy value 

during valve closing event (T3) is significantly larger than that during valve opening 

event (T2) for all measurements, it is deduced that valve fluttering event occurred at T3 

due to grease valve condition. However, more measurements should be taken to confirm 

the diagnosis. 
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Figure 4.21: Comparison of normalized energy over three measurements for (a) AE 

signal (b) Vibration signal 
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It must be noted that characteristics of signals obtained from test rig under 

different simulated condition were based on the assumption that compressor was 

working in the same operating condition. Nevertheless, in actual plant measurement, 

there are always possibilities that compressor operating condition altered due to 

increasing workload or changing of suction line pressure. These external factors may 

affect the signal trend monitored. Thus, it is advisable to gather all plant information 

before valve diagnosis. Machine learning techniques such as support vector machines 

can ease valve diagnosis in future by training each and every characteristics of signal 

under different operating condition. Valve diagnosis result will then be obtained in 

consideration of compressor operating condition, thus providing fast and accurate 

estimation of valve condition.            

 

 

4.7 Summary 

This chapter began with signal comparison of AE and vibration signal under 

different conditions and speeds. To enable fast and effective inspection of valve, a few 

parameters were suggested as indicators for valve monitoring. By employing one way 

analysis of variance (ANOVA) and Tukey comparison test, normalized energy was 

selected as the best parameter representing valve conditions. Characteristics of AE and 

vibration signals were obtained later by comparing sequence of C.I of normalized 

energy under different speeds and valve conditions. It was found that effect of valve 

leakage is more significant at higher speed, as it showed much earlier valve opening 

impact than grease condition at higher speed.  
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In addition, grease condition showed early valve opening event and late valve 

closing event at both low and high speed. Besides, amplitude of valve closing event was 

extremely high under grease condition due to valve fluttering motion. The 

characteristics of greased valve signal were found in a test data study in the last section 

of the chapter. However, more measurements are needed to confirm the diagnosis result. 

Next chapter presents an advanced valve diagnosis technique by using machine 

learning method. As C.I computed in this chapter requires large sampling size for better 

estimation of valve condition, it often causes inconvenience among plant personnel as it 

is impractical to collect and analyze huge amount of information from the plant. 

Machine learning in the next chapter can overcome this deficiency by classifying 

signals into its corresponding condition automatically without interpretation from plant 

personnel. In fact, this method can be further improved in future by including 

compressor operating condition into the system, thus enabling fast and efficient valve 

diagnosis. 
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CHAPTER 5 SIGNAL CLASSIFICATION 

5.1 Overview 

One way analysis of variance (ANOVA) and Tukey test in the previous chapter 

identified characteristic time-frequency segments which described condition of valves. 

For automated classification of signals, these time-frequency segments will serve as the 

input vectors as they carry much information about the valve conditions. This chapter 

explains classification of normal, grease, and leakage condition of valves through 

support vector machine (SVM). SVM is a supervised learning technique developed 

based on statistical learning theory, with the objective of obtaining optimal separating 

hyper-plane which separates two classes being tested with maximum distance.  

To apply the SVM technique in signal classification, some of the theoretical 

backgrounds of this technique must first to be understood. Hence, this chapter begins 

with some mathematical backgrounds of SVM concept before proceeds to the 

methodology of signal classification. This is followed by parameter tuning to obtain the 

best parameters for SVM classifiers. The chapter ends with comparison of classification 

results between AE and vibration signals at low speed (450 rpm) and at high speed (800 

rpm).    

 

 

5.2 Theoretical background 

5.2.1  Risk minimization 

There are various ways to classify two sets of data. The classical pattern 

recognition method such as the artificial neural networks (ANN) involves obtaining a 

set of coefficient values (weights), ),...,( 1 nwww   representing a set of linear indicator 

functions through empirical risk minimization (ERM), which minimizes the error of 
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training data. This set of linear indicator function will be substituted into the learning/ 

decision function to classify test data. Nevertheless, upper bound of the actual risk, 

)(wR  is actually dependent on the empirical risk and the Vapnik Chervonenkis (VC) 

confidence (Vapnik, 1995), as shown in Equation 5.1. The first term on the right hand 

side is empirical risk, )(wRemp  which measures error on training data while the second 

term is VC confidence, which incorporates the VC dimension, h, total number of 

training data, l, and confidence level,   in its formulation. Equation 5.2 displays the 

empirical risk, )(wRemp formulation, where l denotes total number of training data, 

jy denotes actual output of training data, ),( wxf j  denotes decision function in which 

the predicted output is determined, and w is the coefficient values (weights) for the 

indicator function.  
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wRwR emp
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                       (5.1) 
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2)),((
1

)(                                              (5.2) 

In fact, the VC confidence is affected by VC dimension, h where it measures 

capacity of learning machine (decision functions). A right balance should be made 

between training accuracy and capacity of the learning machine for best generalization 

performance, which is the ability to learn any training set without errors (Burges, 1998). 

As most of the classical pattern recognition methods such as the ANN develop their 

algorithms mainly based on ERM, which minimizes the first term of Equation 5.1, they 

tend to over-fit data especially when the network is too complex for the given number 

of training data. This is because the VC confidence will still be large due to large VC 

dimension even the algorithm can minimize empirical risk to zero. Moreover, 

coefficient values (weights) found by using ERM through back propagation method are 
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not guaranteed to be the global minimum as the empirical risk functional has many local 

minima (Vapnik, 1999). The optimization procedures might converge to some local 

minimum and thus lead to large testing error. 

To minimize actual risk, it is necessary to minimize empirical risk while 

controlling VC dimension of the learning machine. It can be achieved through structural 

risk minimization (SRM). SRM introduces the concept of structure, where possible sets 

of learning (decision) function S are composed of nested subsets of functions, as 

displayed in Equation 5.3, where each subset has its own capacity. Figure 5.1 shows the 

nested subsets of functions with increasing capacity h. SRM involves finding subsets 

which minimizes bounds on the actual risk (Burges, 1998). In other words, SRM 

minimizes both the empirical risk and the VC confidence at the same time. 

                                      nSSSSS ...4321                                            (5.3) 

 

Figure 5.1: Nested subset of functions (Burges, 1998) 
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5.2.2 Support vector machine (SVM) 

As shown in Figure 5.2, there are several possible ways to separate two classes. 

Support vector machine (SVM) involves getting the optimal separating hyper-plane 

which separates two different classes with maximal margin without error.  

 

 

Figure 5.2: Possible hyper-planes to separate two classes  

 

In fact, maximizing the margin is equivalent to minimizing VC dimension h, as 

illustrated in Equation 5.4, where   denotes the margin, R denotes radius of the hyper-

sphere enclosing all data points and n denotes dimension of the space.      

                                   1,min
2

2

























 n

R
h                                                (5.4) 

According to Vapnik (1999), VC dimension of the set of linear indicator 

functions in n dimensional coordinate space is equal to 1 nh . By maximizing the 

margin between the two classes  , upper bound of the VC dimension h can be 

minimized and thus reducing the VC confidence. This can ultimately reduce the actual 

risk. 

Suppose there are l sets of training data, as shown in (5.5), which can be 

separated by the optimal separating hyper-plane into two classes, 1iy  and 1iy . 
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                    ),(),...,,( 11 ll yxyx ,   n
ix  ,     1,1y                               (5.5) 

                     0)(:  bwxxH ii


                                                             (5.6) 

The optimal separating hyper-plane H in Equation 5.6 separates the two classes in such 

a way that the distance between the hyper-plane and the nearest data points in each class 

is maximal. Thus, sign of hyper-plane H can be decision function for classifier, as 

expressed in Equation 5.7, where data which fall in the range of 0 bwxi


 belong to 

class 1y  while data in the range of 0 bwxi


 belong to class 1y . 

                            )()( bxwsignxf i 


                                                      (5.7) 

Nevertheless, redundancy occurs when there are many planes with 

0)(  kbwkxi


 for any 0k . Thus, Vapnik (1995) introduced a canonical hyper-plane 

by enforcing constraint which states that the closest points to the hyper-plane should be 

at a unit distance from the plane. Equation 5.8 and 5.9 describe this concept:  

                          1:1 bwxxH ii


  for 1iy                                   (5.8) 

                         1:2 bwxxH ii


   for 1iy                                   (5.9) 

                       0i   i                                                                          (5.10) 

where, ix


is the training data, w


is the vector normal to the hyper-plane and b defines 

location of the plane. To enable SVM classifier to classify data with some tolerance for 

misclassification, especially when training data are non-separable, the positive slack 

variable i is introduced, as expressed in Equation 5.10. Equation 5.8 and 5.9 can be 

combined to form Equation 5.11.  

                               1)( bwxy ii


 i                                                 (5.11) 
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Figure 5.3 shows classification of two classes through SVM concept. It should 

be noted that the nearest data points to optimal hyper-plane H lie in plane 1H and 2H . 

They are termed as the support vectors (SVs) and displayed as black and white circles in 

Figure 5.3. The optimal hyper-plane H will lie in the middle of 1H and 2H . 

Perpendicular distance from the optimal hyper-plane H to origin, O is computed as 

b / w


 while distance from the plane of one class ( 1H or 2H ) to the misclassified data 

is computed as i / w


, where w


 is the Euclidean norm of w


. 

 

 

Figure 5.3: Classification of two classes using SVM  

 

In Figure 5.3, margin of SVM classifier  is the distance from plane 1H to 2H . 

It can be computed as in Equation 5.12 (Gunn, 1998). Hence, to maximize the margin, 

w


 needs to be minimized.   

                                       
w

2

                                                             (5.12) 

An objective function can be constructed to achieve this goal, as stated in 

Equation 5.13, under the constraints shown in Equation 5.10 and 5.11. Thus, by 

minimizing the objective function, margin  can be maximized while training errors can 
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be minimized, as
i

i represents upper bound of number of training errors. C is the 

penalty parameter determined by user, where larger C corresponds to assigning higher 

penalty to the training errors.  

                                
,,

min
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 
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l
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


                                               (5.13) 

The optimal hyper-plane can be obtained by solving this quadratic programming 

problem. A primal Lagrangian is formed where the constraint equations are multiplied 

by positive Lagrange multipliers and subtracted from the objective function, as 

displayed in Equation 5.14: 

                      
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iiii
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iP bwxyCwL  1)(
2

1 2 
           (5.14) 

where, i and i are positive Lagrange multipliers for the constraint, and i is the index 

of training data, with i=1,…,l. In fact, i is the Lagrange multiplier introduced to ensure 

the positivity of i . For a convex quadratic programming problem, the primal 

Lagrangian PL can be solved by obtaining derivatives of PL with respect to w


, b, and i  

at its optimal point, as shown in Equation 5.15 to 5.17. 
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It must be noted that the Lagrangian has to be minimized with respect to w


and b 

and maximized with respect to 0i (Gunn, 1998). This Lagrangian duality enables the 

problem to be solved either in the primal or dual way. In other words, the solution can 
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be obtained by minimizing the primal Lagrangian PL with respect to w


and b or 

maximizing the dual Lagrangian DL subjects to the constraint that the derivative of 

PL with respect to w


and b vanish and 0i , as displayed in Equation 5.18.   

                                     



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


 PD L

bw
L

,

minmaxmax


                                       (5.18) 

As dual Lagrangian offers a much easier way to solve the problem, solution of 

the derivatives, Equation 5.19 and 5.20, will be substituted back into Equation 5.14 to 

form dual Lagrangian. Hence, the solution can be obtained by maximizing DL with 

respect to , as displayed in Equation 5.21, subject to constraints as shown in Equation 

5.20 and 5.22. The penalty error C will serve as the upper bound of i to ensure i =0 

(Burges, 1998).  
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Ci 0

                                                            
(5.22) 

Thus, by maximizing Equation 5.21, the Lagrange multiplier i of every training 

point can be obtained. Those points with i >0 are termed “support vectors” as they are 

closest to the optimal hyper-plane, and lie on one of the hyper-plane 1H or 2H . The 

solution w


can be found by substituting i of every training point into Equation 5.19 

while the value of b can be obtained by substituting the value of w


, i , i  and training 

samples ( ii yx , ) into Equation 5.23.  

                                   
  01)(  iiii bwxy 


                                    (5.23) 
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Support vectors on hyper-plane 1H or 2H  will decide location of the optimal 

separating hyper-plane, which serves as a decision boundary for data classification.  

Once the optimal separating hyper-plane was found, all other training samples can be 

removed from the SVM classifier. Other samples can be tested on this classifier for its 

classification performance.  

 

 

5.3 Methodology for SVM signal classification   

5.3.1  Non-linear classification kernel 

The optimal separating hyper-plane above is obtained based on the assumption 

that the decision function is a linear function of data. However, in real world 

applications, data acquired might not be linearly separable. To enable classification of 

non-linearly separable data, data are mapped from its original input space X to a higher 

dimensional feature space F, as shown in Equation 5.24.  

                                      Fxx ii  )(:





                                            (5.24) 

Therefore, data which are not linearly separable in the original space X might be linearly 

separable after transforming them into higher dimensional feature space F, as illustrated 

in Figure 5.4. The optimal separating hyper-plane will be constructed in this feature 

space to classify transformed feature vectors )( ix


 . The feature vectors )( ix


 will then 

be transformed back to its original space X. Thus, the linear decision boundary in F will 

appear as a non-linear decision boundary in X. 
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Figure 5.4: (a) Data in original input space X (b) Data in transformed feature 

space F 

 

Nevertheless, it is computationally intensive to transform all input data ix


into its 

corresponding feature vectors )( ix


 . Since the objective and decision function in the 

classifier involve only the inner product of input vectors ji xx

 , kernel function 

),( ji xxK


is introduced to compute the inner products of feature vectors 

)()( ji xx  from the input vector ix


, without computing each feature vector explicitly, 

as shown in Equation 5.25. Therefore, the decision function is computed in the form of 

kernel function, as expressed in Equation 5.26.  
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                  (5.26)                                                                                                                                          

The kernel function enables efficient non-linear mapping from input space X to 

feature space F. Nevertheless, only functions that satisfy Mercer’s condition can be 

considered as kernel function (Vapnik, 1995). Generally there are four common kernel 

functions in SVM classification, namely linear, polynomial, Gaussian radial basis, and 
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sigmoid function. These kernel functions are computed according to the list of formulae 

in Table 5.1.   

Table 5. 1: Type of kernel functions 

Type of kernel Kernel function, )( ji xxK

  

Linear 
ji xx

  

Polynomial p
ji xx )1( 


 

Gaussian radial basis  






 

2
exp ji xx


  

Sigmoid    ji xx


tanh  

 

In fact, the selection of kernel function is depending on the classification 

problem.  Gaussian radial basis function is chosen as the kernel function in the present 

study due to its popularity and high success rate in various classification problems 

(Wang et al., 2009). Besides, the number of hyper-parameters is lesser in Gaussian 

radial basis function compared to polynomial function. These hyper-parameters are not 

desirable as they may affect complexity of model selection (Hsu, et al., 2010). 

Moreover, the Gaussian radial basis function has fewer numerical difficulties, as its 

value lies in the range of 0 to 1, as opposed to the polynomial function where its value 

may reach infinity. On the other hand, the sigmoid function is not preferable as not all 

sigmoid functions fulfil the Mercer’s condition (Vapnik, 1995)  It is often used as a 

proxy for neural networks.  

However, linear function is preferable over Gaussian radial basis function if the 

number of features is large (Hsu, et al., 2010). In this study, as there are only four 

features being tested, the Gaussian radial basis function still remains as the most 
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suitable kernel function. The best value of   in the kernel function is obtained through 

cross-validation technique and included in section 5.4. 

 

5.3.2 Multiclass classification 

Since SVM classifier is a binary classifier in nature, it can only perform 

classification for a two-class problem. Nevertheless, most of the real world problems are 

multiclass problem. In the current study, three classes were investigated, namely the 

normal, grease, and leakage conditions. Hence, a multiclass classification strategy 

should be developed to extend the binary classifier to a multiclass classifier. This can be 

achieved by either solving a few larger optimization problems which includes data from 

all classes or by combining several binary classifiers through a voting system. Detailed 

explanations regarding the two strategies are described in the following section.  

 

5.3.2.1  One-against-all (OAA) 

One-against-all (OAA) strategy is the earliest implementation of SVM 

multiclass classification. It constructs k SVM classifiers where k is the number of 

classes. In s
th

 SVM classifier, one class is trained with data from the s
th

 class and 

labelled as positive while the other class is trained with all the other data and labelled as 

negative. Hence for l training data ),( 11 yx ,…, ),( ll yx , where 
n

ix  , i = 1,…, l and 

 kyi ,...,1  is the class for ix , the s
th

 SVM classifier solves the optimization problem as 

in Equation 5.27 subject to the constraints imposed by Equation 5.28 to 5.30, where C is 

the penalty parameter.   
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 if syi                                   (5.29) 

                           0s
i , li ,...,1                                                             (5.30) 

The function   mapped the training data ix


to a higher dimensional space for 

non-linear classification. Solving Equation 5.27 will result in k decision functions. The 

class of data, c will be the class having the largest value of the decision function, as 

illustrated in Equation 5.31. The concept of OAA method is shown in Figure 5.5. 

                             sTs
ks bxwc   )()(maxarg ,...,1 


                                   (5.31) 

 

 

Figure 5.5: One-against-all (OAA) strategy 

 

5.3.2.2  One-against-one (OAO) 

The one-against-one (OAO) method trains all possible pair of classes and the 

final class is determined through a voting system. Generally, it constructs 

2/)1( kk classifiers where each one is trained on data from two classes. The 

classification problem is solved as in Equation 5.32 for training data obtained from s
th

 

and m
th

 classes, subject to constraints 5.33 to 5.35. 
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To determine the class of data, a voting strategy is applied on the result of 

decision function (Friedman, 1996). If the decision function  smTsm bxwsign )()( 


 

shows that the training data ix


is from s
th

 class, one vote will be given to the s
th

 class. 

Else, the vote for m
th 

class will be added by one. The class of data c will be the class 

having the largest vote. For the case where two classifiers have the same vote, the 

classifier with smaller index will be selected, though it may not be a good strategy. This 

voting approach is described as the Max Win strategy. The concept of OAO method is 

illustrated in Figure 5.6. 

 

 

Figure 5.6: One-against-one (OAO) strategy 
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This study employed one-against-one (OAO) approach for multi-class 

classification. Though number of classifiers constructed are usually larger compared to 

one-against-all (OAA) approach, the OAO strategy requires lesser training time, thus it 

is more suitable for practical usage (Hsu and Lin, 2002). This is because training data 

for each classifier are usually smaller under OAO strategy. In fact, for the OAO 

strategy, each classifier requires 

d

k

l







 2
 training data, where d is the dimension size of 

the optimization problem. Meanwhile, for the OAA method, each classifier requires 

dl training data. Hence, as the number of class k increases, training data required for 

each classifier are generally smaller for OAO method compared to OAA, although the 

total training data for OAO is 





















d

k

l
O

kk 2

2

)1(
, which is in fact larger than the OAA 

method, as the later requires a total training data of  )( dlkO  (Lin, 2006). 

 

5.3.3 Process flow for SVM classification 

Signal classification of AE and vibration signal began with feeding input vectors 

of 4 features into the classifier. These input vectors are normalized energy value at 4 

time segments obtained from the previous chapter, which represent 4 main features of 

signals. To enable non-linear classification, the data were transformed into a higher 

dimensional space through Gaussian radial basis kernel function.  

There are two parameters to be determined for the Gaussian radial basis function 

kernel classifier, namely penalty error C from the objective function (Equation 5.32) 

and  from the Gaussian radial basis function. To obtain better classification result, the 

best  ,C should be chosen. A cross-validation procedure was proposed to identify 

suitable  ,C such that the classifier can predict unknown data (testing data) accurately. 
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As there were three valve conditions simulated in this study, three binary classifiers 

were constructed, namely Class 1-2, Class 1-3, and Class 2-3 where Class 1, Class 2, 

and Class 3 represent normal, grease, and leakage condition respectively.  

Each classifier obtained its best  ,C  from cross validation. These  ,C  

values were then fed into its corresponding classifier for training purposes. During the 

training process, SVM algorithm computes support vectors i  and b for optimal hyper-

plane construction. This optimal hyper-plane can classify unknown data into its 

corresponding class if they have similar features as trained data. Finally, a set of test 

data were fed into the classifier to examine its performance by computing the 

classification success rate of these data. Figure 5.7 shows SVM classifiers with 2 time 

segments as features. Data displayed in circles are support vectors for optimal hyper-

plane construction. In this study, all time segments are included as features. Due to its 

large dimensionality (4D), this optimal separating hyper-plane cannot be displayed in a 

2- D graph.  

 

 

Figure 5.7: Optimal separating hyper-plane with features from (a) Time 

segment 1 and 2 (b) Time segment 3 and 4 

 

Lastly, all binary classifiers were integrated into a multiclass classifier through 

one-against-one (OAO) strategy. The test data will serve as input vectors for Class 1-2, 
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Class 1-3, and Class 2-3 classifier. If the test data have similar patterns as that in Class 

1, one vote will be given each from Class 1-2 and Class 1-3 classifier to Class 1. Thus, 

Class 1 has the highest number of votes and displays as the final class decision. Figure 

5.8 displays a summary of process flow for SVM classification. 

 

Figure 5.8: Flow chart for signal classification 

 

5.4 Cross validation  

Cross validation procedure involves tuning parameter C and   for best testing 

accuracy. Three binary classifiers, namely Class 1-2, Class 1-3, and Class 2-3 were 
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constructed to train data from the normal (Class 1), grease (Class 2) and leakage (Class 

3) condition before they were integrated into a multiclass classification system though 

one-against-one (OAO) strategy. In the present study, data in each condition (40 

samples) were segregated into 4 sets with 10 samples each. The cross-validation 

procedure was started by training each classifier on the first 3 sets of data with various 

pairs of  ,C . It was followed by testing the remaining 1 set of data on the trained 

classifier. Parameter C and   which produces highest testing accuracy will be 

considered as best parameter for classification. Indeed, testing accuracy was chosen as 

classifier’s performance indicator over training accuracy to avoid over-fitting problem. 

If the classifier’s performance was assessed based on its training accuracy, the classifier 

might be over trained and thus produces poor testing result.    

The cross validation procedure was conducted through the grid search method 

(Hsu, et al., 2010). A number of exponentially growing sequences of C and   were 

tried on the classifier and the best pair of  ,C was chosen based on the best testing 

accuracy. In this study, the classifier was tested with value of  1535 2,...,2,2 C  

and 31315 2,...,2,2  . A loose grid search was conducted first to identify potential 

region for better testing accuracy. It was followed by a fine grid search on this potential 

region to identify the pair of   ,C  for best classification result. The best pair of 

 ,C in each classifier will be substituted into the multiclass classification system to 

generate final classifier.  

 

5.4.1 Cross validation results 

This section compares the cross validation results between AE and vibration 

signals at F1 (0 - 3.2 kHz) under low speed (450 rpm) and high speed (800 rpm). 
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Classification success rate of Class 1-2, Class 1-3, and Class 2-3 classifiers within a 

specified range of C and   value will be discussed in detail.  

5.4.1.1 Low speed (450 rpm) 

Figure 5.9 shows the classification success rate of Class 1-2 classifier for loose 

and fine grid search. This classifier attempted to classify the normal (Class 1) and 

grease (Class 2) condition of valve plate from the AE signal at F1 (0-3.2 kHz) and 450 

rpm. It can be seen that 100% of testing accuracy can be achieved by setting the value 

of C2log in the range from -5 to 9 and G2log in the range from -15 to 1.   

 

 

Figure 5.9: Classification success rate for AE signal, Class 1 -2 classifier on (a) 

Loose grid (b) Fine grid at F1 and 450 rpm 

 

 The classification success rate of Class 1-3 classifier which classified normal 

(Class 1) and leakage (Class 3) valve plate condition from AE signal at F1 and 450 rpm 

is shown in Figure 5.10. The potential region was identified in the loose grid with 

C2log  value range from -3 to 7 and G2log  value range from -15 to -5. After 

performing fine grid search as shown in Figure 5.10 (b), it can be observed that the best 

parameter of  ,C lies in the diagonal of this potential region.  
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Figure 5.10: Classification success rate for AE signal, Class 1 -3 classifier on 

(a) Loose grid (b) Fine grid at F1 and 450 rpm 

 

 

Figure 5.11: Classification success rate for AE signal, Class 2 -3 classifier at F1 

and 450 rpm 

 

Meanwhile, for the Class 2-3 classifier which classified the AE signal at F1 and 

450 rpm from grease (Class 2) and leakage (Class 3) condition, the classification 

success rate is better than the other two classifiers as a high success rate of more than 

95% was achieved even at the loose grid region, as shown in Figure 5.11. Therefore, no 

fine grid search is needed for the Class 2-3 classifier.  

It should be noted that at the loose grid region, both Class 1-2 and Class 2-3 

classifier can achieve high success rate of almost 100%. This may attribute to 
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discriminant features of AE signal under grease condition (Class 2) compared to other 

conditions at F1 and 450 rpm. Therefore, the trained classifier can obtain high 

classification success rate on the testing data irrespective of parameter C and  . 

Nevertheless, the other 2 conditions namely the normal (Class 1) and leakage (Class 3) 

condition are still remain discriminant as all of the classifiers achieved more than 88% 

of success rate even at the coarse grid region.   

For the vibration signal, the classification success rate of Class 1-2 classifier at 

F1 and 450 rpm is displayed in Figure 5.12. By comparing the classification result 

between AE and vibration signal, it is obvious that AE signal can distinguish between 

normal and grease valve condition better than vibration signal at this frequency range 

and speed. This can be observed from the high classification success rate of AE signal at 

coarse grid, which range from 90% to 100%, compared to the vibration signal, as the 

later can only have a classification success rate range from 65% to 82%. After 

performing fine grid search, the Class 1-2 classifier for vibration signal can achieve 

highest classification success rate of 85%.  

 

 

Figure 5.12: Classification success rate for vibration signal, Class 1 -2 classifier 

on (a) Loose grid (b) Fine grid at F1 and 450 rpm 
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Figure 5.13 displays classification success rate of Class 1-3 classifier at F1 and 

450 rpm. Loose grid of Class 1-3 classifier shows slightly better result than Class 1-2 

classifier constructed from vibration signal, with its classification success rate range 

from 77% to 88%. It can be observed that higher success rate can be achieved at 

C2log value range from 4 to 12 and G2log value range from -8 to -6. By conducting 

fine grid search, a 90% success rate can be obtained with C and   value at this potential 

region. However, its performance is still lower than the AE signal which has almost 

100% of classification success rate at the same frequency range and speed.  

 

 

Figure 5.13: Classification success rate for vibration signal, Class 1 -3 classifier 

on (a) Loose grid (b) Fine grid at F1 and 450 rpm 

 

Class 2-3 classifier shows the best result compared to its counterparts, as it 

displays a minimum classification success rate of 80% even at the loose grid region. 

Figure 5.14 (b) shows that 90% success rate can be achieved by the classifier after fine 

grid search. Nevertheless, Class 2-3 classifier of AE signal still remain as a better 

classifier compared to that of vibration signal as the former shows its highest 

performance of almost 100% success rate.  
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Figure 5.14: Classification success rate for vibration signal, Class 2 -3 classifier 

on (a) Loose grid (b) Fine grid at F1 and 450 rpm 

 

By comparing the region of high classification success rate of the three 

classifiers for AE and vibration signal, it is obvious that AE signal shows higher 

classification success rate for all classifiers, irrespective of C and   value at the 

specified range. Thus, it can be deduced that AE signal has better discriminating power 

at F1 and 450 rpm. Comparison of classification success rate between AE and vibration 

signal at all frequency ranges will be discussed in Section 5.5. 

 

5.4.1.2 High speed (800 rpm) 

Figure 5.15 displays classification success rate of Class 1-2 classifier under 

coarse and fine grid search for AE signal at F1 and 800 rpm. The result at loose grid 

indicates poorer performance of classifier compared to that at lower speed which 

achieved almost 100% classification success rate, as Class 1-2 classifier at higher speed 

has success rate range between 50% and 75%. Finer grid search shows maximum 

classification success rate of 75% within specified range of C2log  and G2log , as 

depicted in Figure 5.15 (b).  
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Figure 5.15: Classification success rate for AE signal, Class 1 -2 classifier on 

(a) Loose grid (b) Fine grid at F1 and 800 rpm 

 

Meanwhile, Class 1-3 and Class 2-3 classifier show 100% classification success 

rate for AE signal at F1 and 800 rpm, at all values of C2log and G2log . It can be 

inferred from the high success rate of both classifiers that leakage condition (Class 3) 

shows dominant features at higher speed. Thus, it can be distinguished from normal 

(Class 1) and grease (Class 2) condition easily and achieved 100% of success rate 

regardless of parameter C and  . This finding is in line with the deduction from the 

previous chapter which stated that features of leakage condition are more apparent at 

higher speed.   

On the other hand, vibration signal shows better result in success rate at higher 

speed, ranging from 75% to 95%, as demonstrated in Figure 5.16 (a). Further fine grid 

search showed that 100% success rate can be attained at specific C2log and 

G2log range indicated in Figure 5.16 (b). 
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Figure 5.16: Classification success rate for vibration signal, Class 1-2 classifier 

on (a) Loose grid (b) Fine grid at F1 and 800 rpm 

 

It was found that vibration signal at F1 and 800 rpm performed better than those 

at lower speed. As opposed to Class 1-3 classifier which shows classification success 

rate of 77- 90% at lower speed, the Class 1-3 classifier at higher speed achieved 100% 

classification success rate at all range of C2log and G2log . Similarly, Class 2-3 

classifier of vibration signal shows higher success rate of almost 100% at higher speed, 

as displayed in Figure 5.17.  

 

Figure 5.17: Classification success rate for vibration signal, Class 2 -3 classifier 

at F1 and 800 rpm 
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In comparing performance of classifiers at 800 rpm, it is noticeable that Class 1-

3 and Class 2-3 classifier have better success rate results compared to Class 1-2 

classifier. In fact, both classifiers from vibration and AE signals have almost 100% 

classification success rate at higher speed  The consistent trend of both classifiers’ 

performance for vibration and AE signal further supports the postulation that leakage 

(Class 3) condition is more pronounced at higher speed.   

 

5.4.2 Discussions on cross validation results 

5.4.2.1 Classification success rate at low and high speed  

The main objective of cross validation procedure is to obtain the best C and   

within a specified range for best testing result. It was found that some classifiers have 

high classification success rate irrespective of its C and   value. This finding has lead 

to the deduction that training data of these classifiers have distinctive features which 

result in high classification success rate regardless of its C and   value.      

It is observable that AE signal at lower speed shows almost 100% classification 

result within a specified range ( 1535 2,...,2,2 C  and 31315 2,...,2,2  ). On the other 

hand, the highest classification success rate of Class 1-2 classifier is 75% for AE signal 

at higher speed. These findings show that AE signal at F1 and 800 rpm has poor 

features in differentiating normal (Class1) and grease (Class 2) condition. Meanwhile, 

distinct features of AE signal at 450 rpm enable test data to be distinguishable between 

normal, grease and leakage condition. Nevertheless, higher speed produces more 

apparent features for signal under leakage condition, resulted in 100% success rate of 

Class 1-3 and Class 2-3 classifier at higher speed irrespective of C and   value.    
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Vibration signal shows poorer classification result compared to AE signal at 

lower speed. Fine grid search is required to obtain C and   value with highest success 

rate. However, at higher speed, vibration signal performed the best in classifying normal 

(Class 1) and grease (Class 2) condition compared to AE signal. Indeed, the Class 1-2 

classifier recorded 100% success rate for vibration signal, compared to 75% success rate 

for AE signal at higher speed, after fine grid search. For Class 1-3 and Class 2-3 

classifier, both shows success rate of 100% due to distinct features of leakage condition 

at higher speed.  

In comparing classification result of vibration signal at low and high speed, it 

was found that vibration signal showed better result at higher speed. The high 

performance of all classifiers at higher speed further confirmed the postulate that 

significant features of vibration signal can be acquired at higher speed as a result of 

large mechanical impacts during the valve opening and closing event. 

Again, one should be reminded that the comparison of AE and vibration signal 

is confined to signal with frequency content of F1 (0 - 3.2 kHz). More comparisons of 

both signals at different frequency range will be presented in Section 5.5. 

 

5.4.2.2 Best parameters for Gaussian radial basis kernel 

The results from cross validation show that there are a number of pairs of 

 ,C with the same classification success rate. Yang et al. (2005) suggested selecting   

value with the highest classification success rate and considerably low number of 

support vectors (SVs) as the best parameter. Indeed, the generalization ability of 

classifiers is affected by number of SVs, as it represent the upper bound of 
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generalization error. In other words, larger number of SVs will produce higher upper 

bound of generalization error (Vapnik, 1995; Burges, 1998) .  

Figure 5.18 shows classification success rate and number of SVs at different 

gamma values ( 15.89 2,...,2,2  ) at C=2 for Class 2-3 classifier to categorize AE 

signal at F4 (9.6 – 12.8 kHz) and 450 rpm. It can be seen from Figure 5.18 (a) that 

maximum classification success rate of 90% was recorded at 14 different   values. In 

order to decide the best   value, number of SVs at different   value should be taken 

into consideration. As each classifier was trained with a total of  60 training data, the 

best   value should have number of SVs lies between 10 and 60, as too few the number 

of SVs in a classifier will cause under-fitting problems while too many the number of 

SVs will result in over-fitting problem. Figure 5.18 (b) shows that the highest 

classification success rate can be achieved at 177.0  or 5.2log2 G , with the 

lowest number of SVs at 33. Therefore, this value was chosen as the best parameter for 

the Class 2-3 classifier.  

 

Figure 5.18: Effect of gamma values at C=2 on (a) Classification success rate 

(b) Number of support vectors in Class 2-3 classifier of AE signal at F4 and 450 

rpm 
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It must be noted that penalty parameter C can affect classification result and 

number of SVs in a classifier, as it represents tolerance level to misclassification error. 

Higher C value will tolerate more misclassification error. Therefore, if a classifier has 

the same success rate and considerably low number of SVs at the same   value,  lower 

C value is always preferred. 

Table 5.1 displays the best pair of  ,C selected based upon the aforementioned 

guidelines for Class 1-2, Class 1-3 and Class 2-3 classifier trained with AE and 

vibration signal at all frequency range and 450 rpm. It is noticeable that some classifiers 

have   ,C  value with more than 50 SVs, as shown in bold in Table 5.1. This is 

inevitable especially if the trained data do not show distinct features between different 

conditions (class). At this instant, more support vectors are needed to construct the 

hyper-plane, to the extent that all trained data were utilized as support vectors. To avoid 

over-fitting problem, more trained data should be added into classifier for better 

learning of pattern in these data. If the number of SVs remained the same after training, 

it can be inferred that training data in that particular frequency range failed to capture 

features of valve condition.   

 

Table 5.1: Best parameters of Gaussian radial basis kernel classifier for AE and 

vibration signal at 450 rpm 

Frequency Classifier 
AE  Vibration  

C G SVs C G SVs 

F1 

Class 1-2 1.000 0.500 43 2.000 0.125 49 

Class 1-3 2.000 0.008 59 32.000 0.008 37 

Class 2-3 1.000 0.500 41 2.000 0.125 37 

F2 

Class 1-2 2.000 0.125 45 2.000 0.125 33 

Class 1-3 32.000 0.500 48 128.000 0.125 12 

Class 2-3 32.000 2.000 46 2.000 0.125 24 

F3 

Class 1-2 4.000 0.177 55 0.125 0.500 60 

Class 1-3 8.000 0.125 46 32.000 0.008 36 

Class 2-3 8.000 0.125 42 2.000 0.125 39 
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Table 5.1, continued 

Frequency Classifier 
AE  Vib  

C G SVs C G SVs 

F4 

Class 1-2 512.000 0.500 18 8.000 0.008 45 

Class 1-3 11.314 0.008 45 32.000 0.008 48 

Class 2-3 2.000 0.177 33 2.000 0.500 47 

F5 

Class 1-2 32.000 0.500 24 2.000 0.500 44 

Class 1-3 4096.000 0.008 17 2.000 0.008 58 

Class 2-3 32.000 0.500 18 90.510 0.002 43 

F6 

Class 1-2 8.000 0.125 38 32.000 0.500 27 

Class 1-3 2.000 0.125 26 1024.000 0.002 42 

Class 2-3 8.000 0.500 26 256.000 0.001 30 

F7 

Class 1-2 2.000 0.125 40 2.000 0.031 39 

Class 1-3 8.000 0.125 17 8.000 0.008 51 

Class 2-3 1.000 0.022 52 8.000 0.500 25 

F8 

Class 1-2 2.000 0.031 40 2.000 0.031 38 

Class 1-3 2.000 0.125 33 128.000 0.008 23 

Class 2-3 8.000 2.000 48 2.000 0.125 31 

F9 

Class 1-2 2.000 0.500 40 2.000 0.125 26 

Class 1-3 4.000 1.414 51 8.000 0.031 34 

Class 2-3 2.000 0.500 38 2.000 0.125 28 

F10 

Class 1-2 32.000 0.002 35 181.019 1.000 29 

Class 1-3 8.000 0.031 34 0.031 2.000 60 

Class 2-3 2.000 0.125 27 8.000 0.125 36 

F11 

Class 1-2 128.000 2.000 47 2.000 0.500 46 

Class 1-3 8.000 0.031 33 2.000 0.002 59 

Class 2-3 32.000 0.008 20 4.000 0.354 56 

F12 

Class 1-2 2.000 0.500 39 2.000 0.125 40 

Class 1-3 1.414 0.044 49 32.000 0.500 43 

Class 2-3 0.500 0.125 44 8.000 0.125 44 

F13 

Class 1-2 8.000 0.031 18 2.000 0.125 30 

Class 1-3 2.000 0.031 54 8.000 0.008 39 

Class 2-3 2.000 0.125 24 8.000 0.125 37 

F14 

Class 1-2 2.000 0.125 29 2.000 0.125 29 

Class 1-3 8.000 0.125 35 1.000 0.011 59 

Class 2-3 2.000 0.125 30 2.000 0.125 29 

F15 

Class 1-2 2.000 0.125 29 2.000 0.125 37 

Class 1-3 2.000 0.031 47 1448.155 0.088 51 

Class 2-3 362.039 0.022 12 2.000 0.125 32 

F16 

Class 1-2 0.125 2.000 27 2.000 0.125 28 

Class 1-3 8.000 0.031 37 2.000 0.031 41 

Class 2-3 32.000 0.002 43 2.000 0.125 24 

 

Meanwhile, the best parameter of Gaussian radial basis kernel for all classifiers 

with trained data at 800 rpm is displayed in Table 5.2. It is notable that the C value is 

enormously high for Class 1-2 classifier trained with AE signal at F9 (25.6 – 28.8 kHz). 
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The high C value of  16384 may due to the postulation that trained data at this 

frequency range failed to differentiate normal (Class 1) and grease (Class 2) condition, 

thus requiring higher tolerance level to achieve higher classification success rate. 

Nevertheless, higher tolerance level may result in under-fitting problem as the classifier 

tolerates most of the misclassification. More testing data are required to test the 

classifier in future to verify its performance against different data sets.   

 

Table 5.2: Best parameters of Gaussian radial basis kernel classifier for AE and 

vibration signal at 800 rpm 

Frequency Classifier 
AE Vibration 

C G SVs C G SVs 

F1 

Class 1-2 2.000 0.031 58 128.000 0.250 24 

Class 1-3 2.000 0.125 27 32.000 0.002 34 

Class 2-3 2.000 0.125 25 2.000 0.125 39 

F2 

Class 1-2 16.000 0.006 38 8.000 0.125 29 

Class 1-3 8.000 0.006 38 2.000 0.125 27 

Class 2-3 2.000 0.063 31 2.000 0.125 32 

F3 

Class 1-2 2.000 0.031 44 8.000 0.125 29 

Class 1-3 2.000 0.008 53 2.000 0.031 46 

Class 2-3 2.000 0.125 30 2.000 0.125 32 

F4 

Class 1-2 8.000 0.354 54 128.000 2.000 49 

Class 1-3 8.000 0.031 30 2.000 0.125 39 

Class 2-3 32.000 0.031 24 2.000 0.125 41 

F5 

Class 1-2 181.019 0.354 42 128.000 0.125 50 

Class 1-3 2.000 0.125 41 2.000 0.125 34 

Class 2-3 2.000 0.125 41 2.000 0.125 36 

F6 

Class 1-2 32.000 0.008 46 8.000 0.500 30 

Class 1-3 2.000 0.125 38 2.000 0.125 33 

Class 2-3 2.000 0.125 40 2.000 0.125 29 

F7 

Class 1-2 2.000 0.500 44 1.000 0.008 60 

Class 1-3 128.000 0.031 14 128.000 0.031 9 

Class 2-3 512.000 0.008 29 2.000 0.500 45 

F8 

Class 1-2 32.000 0.500 46 2.000 0.125 40 

Class 1-3 2.000 0.125 28 8.000 0.125 19 

Class 2-3 0.125 2.000 60 2.000 0.500 38 

F9 

Class 1-2 16384.00

0 
0.031 28 2.000 0.031 49 

Class 1-3 1.000 0.125 34 512.000 5.657 55 

Class 2-3 128.000 0.031 13 0.500 0.125 56 

F10 

Class 1-2 2.000 0.002 60 2.000 0.500 44 

Class 1-3 2.000 0.125 33 128.000 8.000 50 

Class 2-3 2.000 0.125 36 32.000 0.031 15 
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Table 5.2, continued 

Frequency Classifier 
AE Vibration 

C G SVs C G SVs 

F11 

Class 1-2 32.000 0.500 36 2.000 0.031 45 

Class 1-3 32.000 0.500 25 0.031 2.000 60 

Class 2-3 2.000 0.125 34 8.000 0.500 28 

F12 

Class 1-2 2.000 0.002 60 2.000 0.031 48 

Class 1-3 2.000 0.125 39 2.000 0.125 24 

Class 2-3 2.000 0.125 28 2.000 0.031 36 

F13 

Class 1-2 2.000 0.002 60 2.000 0.125 33 

Class 1-3 2.000 0.125 42 2.000 0.125 22 

Class 2-3 2.000 0.031 43 2.000 0.125 24 

F14 

Class 1-2 2.000 0.125 39 2.000 0.125 32 

Class 1-3 2.000 0.125 38 8.000 2.000 42 

Class 2-3 2.000 0.125 33 2.000 0.125 28 

F15 

Class 1-2 2.000 0.125 40 2.000 0.125 28 

Class 1-3 2.000 0.031 39 2.000 0.125 36 

Class 2-3 8.000 0.031 20 2.000 0.125 31 

F16 

Class 1-2 2.000 0.125 40 2.000 0.125 24 

Class 1-3 32.000 0.125 21 2.000 0.125 30 

Class 2-3 2.000 0.125 30 32.000 0.500 19 

 

After obtaining the best parameters for all classifiers trained with data from 

different conditions and speed, the Class 1-2, Class 1-3 and Class 2-3 classifier at each 

frequency range were integrated into a multiclass system through one-against-one 

(OAO) strategy. Next section presents classification results of the multiclass system for 

AE and vibration signal at different frequency ranges.   

 

5.5  Multiclass classification 

In this study, the multiclass system at each frequency range was tested with 3 

different sets of data with 10 samples each, which correspond to data under normal 

(Class 1), grease (Class 2) and leakage (Class 3) condition. Final class decision was 

given to class with maximum vote. It is assumed that input vectors computed from 
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normalized energy have distinct features which can discriminate themselves from other 

conditions, thus preventing chances of getting equal votes in the classifier.      

 

5.5.1 Classification results of each testing class 

5.5.1.1 Low speed 

Table 5.3 shows classification success rate of multiclass system trained with AE 

and vibration signals acquired at 450 rpm. The first three columns of each signal (AE/ 

vibration) from the left represent classification result tested with data from normal 

(Class1), grease (Class 2) and leakage (Class 3) condition respectively. Final 

classification result which includes data in all conditions is displayed in shaded column 

on the right of each signal.  

 

Table 5.3: Classification success rate of multiclass system trained with data at 

450 rpm 

Frequency 
AE Vibration 

Class 1 Class 2 Class 3 Total Class 1 Class 2 Class 3 Total 

1 100.0 100.0 100.0 100.0 70.0 90.0 70.0 76.7 

2 50.0 80.0 90.0 73.3 100.0 100.0 100.0 100.0 

3 80.0 60.0 100.0 80.0 100.0 100.0 90.0 96.7 

4 100.0 50.0 90.0 80.0 100.0 90.0 70.0 86.7 

5 100.0 80.0 80.0 86.7 100.0 80.0 60.0 80.0 

6 70.0 80.0 100.0 83.3 100.0 80.0 80.0 86.7 

7 80.0 100.0 90.0 90.0 100.0 100.0 70.0 90.0 

8 90.0 100.0 100.0 96.7 100.0 100.0 90.0 96.7 

9 80.0 90.0 100.0 90.0 100.0 100.0 90.0 96.7 

10 90.0 100.0 90.0 93.3 90.0 90.0 80.0 86.7 

11 90.0 90.0 100.0 93.3 90.0 60.0 100.0 83.3 

12 100.0 100.0 100.0 100.0 90.0 100.0 70.0 86.7 

13 90.0 100.0 100.0 96.7 90.0 80.0 60.0 76.7 

14 100.0 100.0 90.0 96.7 100.0 100.0 90.0 96.7 

15 90.0 100.0 90.0 93.3 90.0 100.0 80.0 90.0 

16 80.0 80.0 80.0 80.0 90.0 100.0 90.0 93.3 
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It can be seen that the classifiers achieved more than 90% classification success 

rate at all frequency range except F1 (0 – 3.2 kHz) when tested with vibration signal 

from normal (Class 1) condition. This is because vibration signal at F1 has only 1 

characteristic segment namely time segment 1 (T1), as presented in Table 4.11 (Chapter 

4). Due to poorer feature at this time segment compared to T2, and T3 where the later 

depicted the valve opening and closing event, classification result at its corresponding 

frequency range recorded a poor result of 70% success rate.  

 y observing classifiers’ performance tested with vibration signal acquired from 

grease (Class 2) condition, it is obvious that classifier at F11 (32.0 – 35.2 kHz) 

performed poorly compared to other frequency ranges. It hits the lowest success rate of 

60% compared to others which have more than 80% of success rate. This might 

attribute to insufficient features representing grease condition in F11, as it has only 1 

characteristic segment at time segment 3 (T3), as displayed in Table 4.11. As mentioned 

in Chapter 4, T3 can reflect grease condition better if the length of the time segment is 

shortened. Due to insufficient characteristic segments and lower signal-to-noise ratio at 

F11, the classifier has disappointing classification results compared to that in other 

frequency ranges.      

Classification results were less satisfactory when being tested with vibration 

signals obtained from leakage (Class 3) condition. This supports the postulate in 

Chapter 4 that the features obtained under leakage condition are less significant at lower 

speed. Nevertheless, the classifiers achieved 100% classification results at F2 (3.2 – 6.4 

kHz) and F11. Signal analysis in the previous chapter suggested that classifier at F2 is 

more reliable in reflecting leakage condition compared to F11 as the former has more 

characteristic segments, namely T1, T2, T4 and higher signal-to -noise ratio compared 
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to the later. Indeed, any unreliable classifier is always not preferred as it may give false 

alarm to the system. 

On the other hand, for classifiers tested with AE signal acquired from normal 

(Class 1) condition, it was found that the classifiers performed better at higher 

frequency range, as it attained more than 90% classification success rate from F10 (28.8 

-32.0 kHz) to F15 (44.8 – 48.0), which is in good agreement with findings obtained 

from previous chapter. Classifiers hits its lowest and second lowest success rate at F2 

and F6 (16.0 – 19.2 kHz), with classification result of 50% and 70% respectively. Thus, 

it is reasonable to infer that AE signal has a lower signal-to-noise ratio at lower 

frequency range, which resulted in poor performance of classifiers with data tested from 

these frequency ranges. 

Compared to that under normal (Class 1) condition, the classification success 

rate is slightly better for classifiers tested with AE signal under grease (Class 2) 

condition. In fact, classifiers achieved 100% success rate at 8 frequency ranges, out of 

which 6 frequency ranges are from the higher frequency range. Classifiers with the 

poorest performance come from F3 (6.4 – 9.6 kHz) and F4 (9.6 – 12.8), with 60% and 

50% success rate respectively. It further confirms the deduction that AE technique can 

extract signal features better in higher frequency range.  

Surprisingly, classifiers tested with AE signals obtained under leakage (Class 3) 

condition show better classification result compared to that tested under normal (Class 

1) and grease (Class 2) condition. All classifiers have success rate greater than 80% in 

all frequency range. This is in contrast with the result obtained from vibration signal 

discussed above, which inferred that leakage condition has less significant features at 

lower speed. The difference of results between AE and vibration signal implied that AE 
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technique is more sensitive in detecting fluid motion such as fluid leakages through 

suction valve compared to vibration technique. 

By comparing classifier’s performance tested with each testing class, it is 

obvious that classifier of AE signal achieved 100% classification result for all testing 

class at F1 and F12 (35.2 – 38.4 kHz), bolded in Table 5.3. However, classifier tested 

with AE signal at F12 is preferable as it is better in revealing valve events with lesser 

noise. Meanwhile, classifier of vibration signal attained 100% success rate for all testing 

class at F2. This finding further supports the postulation that AE technique is more 

sensitive in higher frequency range (F8 and above) while vibration technique is better in 

lower frequency range.   

 

5.5.1.2 High speed 

Table 5.4 shows classification results of classifiers trained with AE and 

vibration signals acquired at 800 rpm.  

Table 5.4: Classification success rate of multiclass system trained with data at 

800 rpm 

Frequency 
AE Vibration 

Class 1 Class 2 Class 3 Total Class 1 Class 2 Class 3 Total 

1 70.0 80.0 100.0 83.3 100.0 100.0 100.0 100.0 

2 80.0 90.0 100.0 90.0 100.0 100.0 100.0 100.0 

3 90.0 100.0 90.0 93.3 100.0 100.0 100.0 100.0 

4 80.0 90.0 100.0 90.0 90.0 90.0 100.0 93.3 

5 70.0 70.0 100.0 80.0 80.0 90.0 100.0 90.0 

6 80.0 100.0 100.0 93.3 100.0 100.0 100.0 100.0 

7 90.0 100.0 80.0 90.0 100.0 100.0 100.0 100.0 

8 80.0 60.0 80.0 73.3 100.0 90.0 90.0 93.3 

9 90.0 100.0 100.0 96.7 100.0 100.0 100.0 100.0 

10 80.0 100.0 100.0 93.3 100.0 100.0 90.0 96.7 

11 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

12 80.0 100.0 100.0 93.3 100.0 100.0 100.0 100.0 

13 80.0 100.0 100.0 93.3 90.0 100.0 100.0 96.7 

14 80.0 100.0 100.0 93.3 100.0 100.0 100.0 100.0 

15 90.0 100.0 100.0 96.7 100.0 90.0 100.0 96.7 

16 70.0 100.0 100.0 90.0 100.0 90.0 100.0 96.7 
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Classifiers tested with vibration signals from normal (Class 1) condition 

demonstrate good results with a minimum of 80% success rate at all frequency ranges. 

Similarly, the classification results of classifiers tested with vibration signal from grease 

(Class 2) and leakage (Class 3) condition show at least 90% of success rate at all 

conditions.  It is noteworthy that classifiers tested with data from leakage (Class 3) 

condition at higher speed show tremendous increase in success rate compared to that at 

lower speed. In fact, the classifiers have 100% success rate at 14 frequency ranges, 

which is very much higher, compared to the result of 100% success rate at 2 frequency 

ranges acquired at lower speed. This is in agreement with previous postulations that 

features of leakage condition are more apparent at higher speed.  

Results from one way analysis of variance (ANOVA) suggested that vibration 

signals have no significant segments at F7 (19.2 – 22.4 kHz), F8 (22.4 – 25.6 kHz), F9 

(25.6 – 28.8 kHz), and F15 (44.8 – 48.0 kHz). Nevertheless, SVM multiclass classifiers 

show more than 90% success rate for all test data at these frequency ranges. This further 

proved the superior performance of SVM classifiers in classifying vibration signals to 

its corresponding conditions (Class) although the input feature vectors are less 

significant. 

Meanwhile, by comparing performance of classifiers tested with AE signal from 

normal (Class 1) condition, it is apparent that AE signal is less capable in extracting 

features of normal (Class 1) condition at higher speed. Although all classifiers obtained 

a minimum of 70% success rate, there is only 1 classifier managed to categorize all 

normal data correctly, compared to 5 classifiers at lower speed. The 100% success rate 

of this classifier in F11 (32.0 – 35.2 kHz) is shown in bold in Table 5.4. This finding 

concurs with previous postulation that AE signal appears to have more noise at higher 
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speed. Indeed, the noise may mask features of normal (Class 1) condition, resulting in 

less satisfactory classification result.  

Nevertheless, classification results of classifiers tested with grease AE signal 

improved at higher speed. There are 11 classifiers attained classification result of 100%, 

out of which 8 classifiers are from higher frequency range (F9 and above). Unlike weak 

features of normal (Class 1) condition which can be masked by noise easily, it is 

believed that features of grease (Class 2) condition become more significant at higher 

speed. By filtering away intense noise, these features can be detected clearly at higher 

frequency range.   

Similarly, when tested with AE signal obtained from leakage (Class 3) 

condition, the classifiers show improved classification results at higher speed. It can be 

observed from Table 5.4 that all leakage (Class 3) data were categorized successfully in 

13 classifiers, compared to 8 classifiers with 100% success rate at lower speed. It must 

be noted that the improved results of classifiers tested with grease (Class 2) and leakage 

(Class 3) condition are in contrast with previous findings obtained from one way 

ANOVA, where the later suggested poor performance of AE signal at higher speed. 

Indeed, more noise can be seen from AE signal acquired at higher speed, which 

eventually mask the signals carry information of valve condition. However, these 

masked features were intensified after being transformed into a higher dimensional 

space through Gaussian radial basis kernel. Therefore, the features of grease (Class 2) 

and leakage (Class 3) condition can be detected at higher speed. Nevertheless, due to 

less significant features under normal condition (Class 1), the classification success rate 

does not have great improvement at higher speed. The strength of kernel function also 

explained good classification results of classifiers in F1 (0 – 3.2 kHz), F5 (12.8 – 16.0 

kHz), F11 (32.0 – 35.2 kHz), F12 (35.2 – 38.4 kHz), and F13 (38.4 – 41.6 kHz) though 
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one way ANOVA results demonstrated no significant segments in these frequency 

ranges.  

 

5.5.2 Overall classification results 

5.5.2.1 Comparison between different signals 

Figure 5.19 displays total classification success rate for classifiers tested with 

AE and vibration signal from a combination of normal (Class 1), grease (Class 2) and 

leakage (Class 3) condition. Once again, vibration signal shows its superiority over AE 

signal in identifying valve problems in lower frequency range at lower speed, especially 

at F2, F3, and F4, each with success rate greater than 85%. Indeed, these frequency 

ranges were regarded as the best frequency range in Table 4.14 of Chapter 4. 

Meanwhile, AE signal demonstrates higher success rate than vibration signal at higher 

frequency range, namely F10, F11, F12, F13, and F15. All these frequency ranges have 

more than 90% classification result at lower speed. This finding also agrees well with 

the result of one way ANOVA, which suggested that the best frequency range lays in 

the higher frequency range namely F9, F11, F12, F14, and F15, as shown in Table 4.13 

of Chapter 4. 
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Figure 5.19: Total classification results of AE and vibration signals at (a) 450 

rpm (b) 800 rpm 

 

The classification result shows in Figure 5.19 (b) suggested that vibration 

technique is far better than AE technique at higher speed. Due to larger mechanical 

impact, vibration signal has 100% success rate at 9 frequency ranges, compared to AE 

signal at 1 frequency range. Nevertheless, AE signal still perform greatly especially at 

F9, F11 and F15, each with classification result of 96.7%, 100%, and 96.7% 

respectively. It is believed that performance of AE technique can be improved by 

increasing sampling frequency to 1 MHz and above. 
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5.5.2.2 Comparison between different speed 

Figure 5.20 displays total classification success rate of AE and vibration signal 

at different speed. Compared to the classification results of AE signal at 800 rpm, AE 

signal at 450 rpm shows better performance in higher frequency range especially F8, 

F12, F13, and F14. On the contrary, AE signal at 800 rpm demonstrates fluctuating 

classification success rate across different frequency ranges. It has higher success rate 

than signal at 450 rpm in lower frequency range, namely F2, F3, F4, and F6 while 

displays a sudden drop at F8. It is postulated that the poor performance of AE signal 

(800 rpm) in higher frequency range is attributed to its low resolution. Due to increased 

speed, the sampling frequency at higher speed needs to be increased for higher 

resolution. Nevertheless, the signals at both speeds achieved highest success rate at 

higher frequency range. It can be seen from Figure 5.20 (a) that AE signal at 450 and 

800 rpm shows 100% success rate at F12 and F11 respectively. Although 100% 

classification result of AE signal (450 rpm) can be seen in F1, this frequency range is 

not as reliable as that in F12 due to its low signal-to-noise ratio discussed previously.     
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Figure 5.20: Total classification results of (a) AE (b) Vibration signal at 

different speed 

 

 

As shown in Figure 5.20 (b), the classification result of vibration signal has 

improved at higher speed. It displays consistent high classification success rate of 100% 

at both low and high frequency range. As mentioned in Section 4.4.2 in Chapter 4, 

higher speed produces greater mechanical impact especially during valve opening and 

closing motion, resulted in better performance at most of the frequency ranges 

compared to that at lower speed. In contrast, vibration signal at lower speed shows 

fluctuations in classification result across different frequency ranges. The signal (450 
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rpm) hits its maximum classification result of 100% at F2 and experiences a sudden 

drop at F1, F5, F11, and F13, with success rate of 76.7%, 80%, 83.3%, and 76.7% 

respectively. The best performance of vibration signal is achieved at F2 as this 

frequency range lies in the best operating frequency range of accelerometer (0 – 6 kHz), 

as displayed in Appendix D. However, due to lower mechanical impact and limitation 

of operating frequency range of accelerometer, the signal (450 rpm) shows poorer 

performance especially at higher frequency range.     

 

5.6 Summary 

In this study, normalized energy values computed in time-frequency segments 

under 3 different conditions were trained and tested through SVM classifier. These 

classifiers were optimized by fine tuning the best parameters through cross validation 

technique before they were tested with a combination of signals acquired under different 

conditions.  It was found that AE technique performed better in the higher frequency 

range at lower speed while vibration technique precedes AE technique by showing high 

classification success rate at higher speed. It is postulated that insufficient sampling 

frequency is accounted for poor classification performance of AE technique at higher 

speed. Meanwhile, the fluctuating performance of vibration technique in higher 

frequency at lower speed is elucidated by limitation of accelerometer’s operating 

frequency range. These findings agree well with postulations made in Chapter 4.   
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

Health condition of valves plays a vital role in maintaining high efficiency of 

reciprocating compressors. This study shows the necessity of valve monitoring to avoid 

sudden shutdown and reduce maintenance cost of compressors. Poor monitoring of 

valve will lead to reduction in compressors’ efficiency and cause secondary damage to 

other machine components. 

To monitor valve conditions, valve dynamics must first to be understood. 

Previous studies showed that under normal condition, valve opens at crank angle 

approximately 50
0 

and closes at approximately 170
0
. In this study, the impact of valve 

opening and closing were observed by using AE and vibration technique. By observing 

AE and vibration signals obtained through fourth level of wavelet packet transform 

(WPT), three simulated valve conditions namely normal, grease, and leakage condition 

were monitored.  

To identify different valve conditions, a few parameters were suggested as 

indicators namely crest factor, kurtosis, skewness, RMS (root-mean-square) and 

normalized energy value. The reliability of these parameters were compared by using 

one way analysis of variance (ANOVA) and Tukey Test. Results obtained showed best 

performance of  RMS and normalized energy value in distinguishing different valve 

conditions. Due to better sensitivity in reflecting sudden impacts of valve motion, 

normalized energy was selected as the monitoring parameter over RMS value.       

Features of WPT decomposed AE and vibration signal at different valve 

conditions were obtained by computing confidence interval (C.I) of normalized energy 

through Tukey test. Four major time segments of signal were monitored, where each of 
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them corresponds to features of valve events at different crank angle, namely T1 (0
o
-

18.8
o
), T2 (18.8

o
-131.4

o
), T3 (131.4

o
-244

o
), and T4 (244

o
-360

o
). Under normal 

condition, both AE and vibration signals show highest C.I value in T2 compared to 

other time segments, as this segment represents the valve opening motion. Meanwhile, 

under the same condition, valve closing event can be observed in T3 with considerably 

low C.I value. Results from Chapter 4 demonstrated slight delay of valve closing event 

and highest amplitude of C.I at T3 under grease valve condition. This key feature of 

grease condition is consistent for both signals at low (450 rpm) and high (800 rpm) 

speed. Indeed, the characteristics of greased valve signal were observed in a plant 

compressor study with speed of 1485 rpm.  

By comparing sequence of C.I of both signals at low and high speed, it is 

obvious that features of signals under different valve conditions change with regards to 

compressor speed. This study shows that grease signal is more significant at lower (450 

rpm) speed while leakage signal shows apparent changes at higher (800 rpm) speed. In 

fact, at lower speed, grease signal shows highest C.I value at T1 and lowest C.I value at 

T2 due to early valve opening event. Nevertheless, at higher speed, these features were 

apparent in leakage signal as the signal shows much earlier valve opening event than 

grease condition at higher speed. Thus, it is important to consider speed and other 

operating conditions of compressor being monitored before establishing confidence 

interval for each valve condition.  

To have a better estimation of valve condition, statistical analysis mentioned 

above requires larger number of data. This often causes inconvenience among plant 

personnel as it is difficult to collect and analyze huge amount of information from plant. 

Moreover, complications arise when there are a number of compressors operated at 

different speeds and working conditions. Therefore, later part of this study presented an 
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automated classification system to classify normal and abnormal signal through support 

vector machine (SVM).  

Four input vectors obtained from features in 4 time segments were fed into SVM 

classifiers for automated signal classification. There were 3 binary classifiers 

constructed at each frequency range, namely Class 1-2, Class 1-3 and Class 2-3 

classifier to classify normal (Class 1), grease (Class 2) and leakage (Class 3) condition. 

By fine tuning  ,C  value through cross validation technique, the best parameter of 

each classifier is obtained before integrating them into a multiclass system through one-

against-one (OAO) vote strategy.   

Results from Chapter 5 suggested good performance of AE signal at the higher 

frequency range as it displayed high classification success rate at frequency range above 

F8 (22.4 – 25.6 kHz) at lower speed. On the other hand, vibration signal shows better 

classification results in lower frequency range namely F2 (3.2 – 6.4 kHz), F3 (6.4 – 9.6 

kHz), and F4 (9.6 – 12.8 kHz) at lower speed. These findings agree well with 

deductions obtained from Chapter 4. However, AE signal shows fluctuating result of 

classification success rate compared to vibration signal at higher speed. It is deduced 

that higher sampling rate and advanced signal processing technique are needed to 

acquire and analyze AE signal which reflects complicated fluid flow at higher speed. In 

contrast, vibration signal shows 100% classification result at most of the frequency 

ranges due to pronounced mechanical impacts at higher speed. It is believed that 

performance of AE signal can be improved by increasing sampling rate to 1MHz and 

above. 
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6.2  Recommendations for future works  

Some of the recommendations for improvement on the current study are listed as 

follows: 

a) Sampling rate of AE signal should be increased to 1MHz and above to capture 

complicated fluid flow in valves. Due to unavailability of equipment, this issue 

was not addressed during the period of study. The poor performance of AE 

technique at higher speed can be complemented by vibration technique in this 

study. 

 

b) Time segment T3 can be shortened to 175
0
 – 200

0
 for better detection of grease 

condition. This issue was not addressed during the study as the SVM technique 

is capable of classifying signals into its corresponding valve conditions 

regardless of delay in valve timing. Nevertheless, the reduction of length in T3 

can provide better diagnosis result in signal analysis, especially for analyzing the 

propagation of defects in future. 

c) Other plant operating conditions such as speed and work load can be included in 

SVM classifier for better prediction of valve condition. As different operating 

conditions may result in different features of input vectors, inclusion of these 

parameters into the classifier can increase the accuracy and robustness of the 

system. 

d) Other valve problems such as spring deterioration, and fracture plate valve can 

be considered for future study. These are other common valve problems found in 

the reciprocating compressor. 

e) More training data should be added in SVM classifiers to avoid over-fitting as 

some of the classifiers have large number of support vectors. 
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f) Continuous monitoring of valve problems which comprised of initiation and 

propagation of defects should be included in future.  
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