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CRAPTER II

THE PCISSON AFPPROXINATION

When m with Bemoulli trisle, one uses the forela
v(ks n, ) = (B)p g =5 ioes the ,robability that »m Bernoulli trials
with prodabilitice p for success and ¢ = i~p for failure, result
in k suceesses and n-k failures (0< X <m). However whken n is
relatively largs srd p is smsll, with the jroduct

A= BRPp

is of moderase magnitude, ome csm gather that the compulation of
the formuls may be ladborious. In such ouses, it will be more convenient
to use am approximation formula to b{kj n, p) which gives good recults

whan p is very small (say, p<0.1) or near gero and n ia relatively

large (=ay, n>50).

let us examine the relatiom botween the Binonial and loiason
distributions by using the bionomial formula through the Poisson
postulates (1. 3a, by, ¢). Suppose that the Foisson postulates
bold for changes along a t—axis, considering in perticular am
interval of eise t. lLet x be as alwvays the mumber of changes in an
interval of sise t. Let A demote the average mumber of changes in
a unit interval . Then subdivide the interval of width t into n
equal parts, each of width t/n. Consider thet each of these sub-
intemlaun“trial“andsumwaofaahaminsgim
dnterval. Aetually, thers may be more than cpme change iu a sub-
interval t/a, tut Wy iostulate (I, 3e) this is comparatively unlikely
i1f the subinterval is small.

ienoe in eash trial, there is eitber "E" (a change) o=
"not E" (no cnange)s The rxrobhbility of "E" isy W Fostulate (L.3a),
approximately )$%/n. Therefore, the probabdility of "not E" ie
apyroximately 1 « At/n. Using A/n and 1 = M/n as p and ¢
of the binomislformula respeotively, ome finds that:

X = k)., » {k E's asong the n sub-intervals)
- Kk "trials” result in E)2(D)(ANE (1- &)™

Rewriting ik above approximation with a slight r
of some of the factors, ome obtainss=



-1 nkad  { A)F 4~k s
'2‘0‘2";"" '0.‘ n ki (1_.5-;) (l-h-n-)n

One would like %0 kmow what happens to the approximations as n 3,5 .
When n —> .5 , then the sub-interval width approaches zero, and the
approximations involved get better and better. However as n =~ pO
the first k fuctors —> I, the next factor is fixed, the next
> I, and the last factor becomes

:

g 3\\[(1--?-)]-#\*}”“
= h, 4he last factor becomes
[i:no(l +h)1/y")‘i - o MY

as the quantity in the bracket is a definition of e. Therefore,
the approximation to the probability that X « k approaches the
Poisson Distritution expression '

o QeF

Doubtlese, this limit-type relationship ir an interesting application
of the binomial probability formula. However, the practieal
significance ia due to the faot that the approximate equality

ML Al o - A

where n is large,

may be read reversely, and the binomial probability may be aprroximated
by the Poisson. If one puts p = At/n in the above expressions,
one obtains: ,

k
(2) P8 - pF o= o0 L2

——

where n ie large and
p is small.

When applying the Poisson distridbution as a convenient grproximation
to the binomial distributiom, one always statee that a must be
sufficiently large and p relatively small so that np is of moderate
magnitude, in order %o get a more acourate or betier approximatiom.

One may illustrate the implication and importance of this " thumb-rule®.

Fdr gimplicity in nalenlatioﬁ, one may fix tha expected number



of BLCOOB80S, E(B) = np, at the value 1. Tabdble 2.1

5 different binomial distributions,
10, 20 and 40, with p respec

s0 that in each cuse np = l.

BINOMIAL DISTRIBUTION WITH np

TABLE 2.1,

eoIrTes
tively 1/2,

/s

1

-l

1

onding ton = 2, 5,
, 1/10, 1/20, and 1/40,

below shows
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ne?2 |ne=j n«lo n =20 n = 40 | Poisson Approximation
p=1/2| p=1/5|p = 1/10| » = 1/20| p = 1/40| n very large
, ' p=1/n_
v=0] 0.2500 | 0.3277 |0.3487 | 0.3585 | 0.3632 043679
1{ 0.5000 | 0.4096 |0.3874 | 0.3774 | 0.3725 0.3679
2| 0.2500 | 0.2048 |0.1937 | 0.1887 | 0.1863 0.1839
3] 0.0512 | 0.0574 | 0.0596 | 0.0605 0.0613
4 0.0054 | 0.0112 | 0.0133 | 0.0143 0.0513
5 0.0003 | 0.0015 | 0.0022 | 0.0026 0.0031
3 0.0001 | 0.0003 | 0.0004 0.0005
7 0.0001

inocreused und p decreased.
ag P
of P

Comparing the first two rows of the Table, it is obvious
that the values of P(B « O) and P(B = 1) come closer together us n is

o3

Bsl
0.
0.

%hen B = 2, P(B = 1) is twice &a large

i.0. 0.5000 = 2 x 0.,2500. But when n = 40, the ratio

2
32

to P (B =« 0) is only

- 10026

This suggests that when n is very large, FP(B = 1}

very close to 1,
could be ussd for both P(B = 1) and P(B

this suggestion. Ié
and the fact that (&)

‘ n
P(B = G) w q

- 0)0

P(B=0O
@0 that to a good epproximation, the scme value
One may easily verify
x the formuda for binomial probabilities

follows tha
-1, and (1) « n that
P(B = 1) = apa™ "

might be

Since we ere dealing wita the ouse mp = 1, tiis me ans
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If p is olose to zerc, thea q = l-p is close to 1, therefore } ie
close to 1. This proves the su.gestion that the ratio qa =

%{g——f-a— will be near 1 if v is near zero. Therefore,
for lirge n, and p = 1/n is correspondingly sm:ll, we huive

#(B e 1) AP(Ba0)

cimilarly, P(B = 2) will be olose to 1/2 when n is

: PiBw l :
large and p is small, and np = 1. Sinoe P(B = 2) is about kalf
a8 lurge v P(B » 1) and #(3 = 1) ic in turn olose to ?(E = 0), we
have ths upproximstilionie

?(B = 2) = (1/3(B = 0)
Similiorly, ons mey find thad :

st - 32 “1/3. :yz #(Bad) = 1/6 P(B = e% ~
P(B = 4) " 1/4. i/3¢ i/2 (B = 0) = 1/24 P(B = 0) uad so forth.
Ac all possible value. of B add up to unity, so
1 « P(Bw© *?{'Bnlgé-?(‘aﬂz)ﬁP(Bﬂ}) +* gen =
P(BwO) + (BuwGG)el/2P{Ba0)+1/6P(3=20) +1/24P€3»0) + sse
s P(BaO [1 + 1 + 1/2 + l/é + }./26 4+ eee ssssscses 4’5)
The fussor [1 ¢ 1 +13f2 +1/6 +1/24 ...._7
ccn ba computed mumpyricully to mny desired degree of acouruqy, sa
ghown in iuble 2.2 oS~
CILOUL:PICGH OF 1 +1 +1/241/6 ¢ 1/24 + eoo wm @

1 = 1.,0000

1 = 1.0000
1/2 = 05000
1/2.1/3 = 1/6 = 0.1667
1/2.1/3.1/4 = 1/24 = 0.0417
1/2 o 1/3 1/4.1/5 = 1120 = 0,008}
1/2. 1/3 « 1/4 1/5.1/6 = 1/7:0 = 0.0014




One may aeontinue to add up as many terms as one wishes, but the
remaining terms are so0 small that they can be termed as negligible.

Substituting in equation (2), we find that
12 P(B = 0) 2.7183

o o P(B‘. O)-_{}_ -57’-%33- - 3.3679 ’7."'1‘

That is to say that if n is large so that p = 1/n ismall, the
prcbg?ility 4hat there will bs no success is approximately 0.3679

or e -, regardless of the precise values of n and p = 1/n. This
approximation is already reasonably good whea m = 40, vhere the

correct valus is 0.3632, and the larger a is, the betitgr the approximation
will be. Since P(B = 13:&;?{3 = Gg, the same valus @ , i.e. 0.3679

may be us:d to approximate P(B = 1). Since P(B = 2) 1/2P(B = 0),

the value 1/2(0.3679) =.1839 may be us:d to approximate ?(B = 2), and

gso forth., In Table 2.1, the lcst column siows the approximatec: values.

Poisson Approximation - General Case -
In the fore-going section only np = 1 is‘eansiaared.' But

the method is applicable to any fixed vilue of E(B) = np. One may
consider the binomial distributions with np fixed at the value

np =)\
The aim is to obtain an approximation to these distridutions when p

is close to zero, and hbkmnce n is very large. As im the case np = 1,
one has P(B = 0) = ¢B P(Bwl) = agq?”&

", HMB=1) _ oz
** P(B=0 q

S5ince q is close to 1, and np = )\, 5, one has for large n,

PVB w 1
P BVB o ﬂ&)\ sessevee (3)

or P(B = 1)‘¢- AP(B =0)

Similarly, by sznalogous argument

{3 = i\s = /2% | | (4)




To illustrate how these rslz:tions can be used to obtain approximate
probabilities, let A equal, say, 2. Thean it can be found by exactly
the same method as for the oase mnp= ) = 1, that

Pz.z;iu/z.ws.og
P(B = 3)=-1/6. BP(B = 0 (5)

P(B = 0) =~1/24. 1/26P(B = 0) and so forth.

Adding the probabilities and factoring the ocommon factor P(B = 0),
one obtains, in analogy to 1 = P(B = 0) / 1+4144+1/641/24 + ..

1 =P(Bwo0) [1+2¢4.4 + 1/6. 8 + .0s/

[1+248.4 + 1/6. 8 + ...] can be csloulated to any desired degree of
acouracy. Taking only the first twelve terms, one obtains the value
7.3891, hence P(B = 0) <= 0.1353. The probabilities of the other
values can be computed from (3) and (5). By this method, ome can
obtain the Poisson approximation corresponding to any given value of N

Although only the Poisson approximation to the binomial
distribution has been discussed, but this approximstion is not
limited to applications of approximating the bimomial distribution,
it has a wider range of application. Independuné trials with different
but emall success probabilities may be approx: u%ed hy the Poisson
Distributicn. Suppose there are S number of su:oessss on n independent
trials with success pfobabilities Pys Py ceee Do If these
probabilities are small, the Poisson AppRoximatiol with

7\- B(S) = Py + P, oo + 0

will give a high degree of acouraey and work well though the
probability of suceess varies for each trial.
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