CHAPTER III
“APFLICATICHS

The Poisson Distribution ocours in a wide range of situations,
involving events occurring in time intervals of fixed length, space
of fixed volume, areass of fixed size, segments of fixed length, etoc.
These situations are those where a large number of observations is
involved and the probability of an event ocourring in aay specifiec
observation is very small, Indeed, most of the temporal and spatial
distributions foklow the Poisson formula.

By temporal distributions, one refers to those distributions
dealing with events which may be supposed to occur in equal intervals
of time of small btut fixed duration. Spatial distributions deal with
avents which may be supposed to ocour in intervals of equal lengths
along & straight line, in regions of equal areas and so forth.

Bxamples of Temporal Distributione Obe ; the Poisson Dietribution

1. Distribution of numbers of telephone calls received at a
particular switch-board per mimite for a large number of minutes
during a certain bour of the day. '

2. Distribution of numbers of death per day due to a specific
disease (not in epidemic form) such as hemt disease in a certain
city for a great mumber of daye. o

3, Distributioan of numlers of amtomobiles passing a given point
on a highway per minute, for a2 large number of minute at & given
time of the day. ‘

4. Distribution of numbere of gt particles emitted by a radio-
active substance and received at a oertain portion of a plate
during intervals, say, of 7.5 seoonds, for a great number of
these intervals. | '

Examples of Spatial Distribution following the Poisson Distribution

1. Distribution of numbers of flying-bomb hite on London during the
Second World War. (The London area was divided into 576 units
of 1/4 square kilometer each, and the number of unite which
received 0, 1, 2, ... k bomb~hits were recorded and the distribution
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wae found to follow the Poieson law Temerkably well.)

2. Distribution of numbers of typographiczl errors per page for
a grert numbar of pages.

3. Distribution of numbers of bacterial colonies in a given
culture on .. slide por 0.0l square millimetre for a large
numbees of such units.

4. Distributions of the nuwb:rs of defective sorews‘per box for
a largo numbor of boxes.

Terlier, the purameter )\ is referred to cs the mean rate
ocourrance of events. The following example may show the function
gtoted:-

v oo
w by

Suppose one is observimg the times at which autonobiles
arrive at the toll ccllsotor booth on the Ipok-Kuala Lumpur route.
Let us assume that we are informed thut the mean rate N of arrivael
of automobiles is given hy A = 2 asutomobiles per minute. Hence in
a time pericd of length h = 1 second = 1/60 minute, exuctly one car
will arrive with approximate probability Za « 2.1/88 = 1/30 (according
to Coisson postulute l.3a); whereas exactly zero ear will arrive with
appr;ximata probability l=Ah = 29/30 (a8 stated by Poisson postulate
1.3b).

Similarly, one may compute the probability that a sample
of two cubic centimetres of water will contein (i) no bacteria
(ii) at least two baoteria, provided it is kmown that bucteria of a
certain kind ooccur in water «t the rate of 1.5 bacteria per ocubio
centimetre aof water.

From the uss.mptions made earlier, one may conclude that
the number of baoteria in & two-cubic—centimetre sample of water
obeys o Poissomn Probability law with parameter Ht =(231.5)= 3. Here
A denotes the rate at which bacteria ocour in a unit volume and t
denotes the volume of the sample of water under oo sideration. Thus
the probability of no baoteria in the sampls“sg e ~, and the probability
of two or more baoteria in the sample is l-@ ~.

The valus of the parameter ) , cannot be deduced theoreticaily.
It must be determined empirically as the following example illustrates:

Connections to wrong numbers - Table 3.1 shows statistica of telephone
connections to a wrong number.
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mBLE 3.1
CONNECTIONS TO WRONG NUMBER
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No. of HWrong
Connections Observed Nos. | Theoretical Valuss
k N, Hp(k; 8.74)
O=2 1 2,05
3 5 4.76
4 11 1 10.39
5 14 18.16
6 22 ‘ 26.45
7. 43 33.03
8 31 36.09
9 , 40 35.04
10 35 ' © 30463
11 20 P4.34
12 18 |  17.72
13 12 11.92
14 , 1 T.44
15 6 4e33
= 16 2 4465
267 267.00

where k denotes wrong oonmactions
Hk denotes the number with exactly k wrong connestions.
Since
216
T = k§.0:jj kN, = (2e1 + 305 + 441l 4 o0s + ’16.2) a 2334

i total of N = 267 numbess wes observed.

;Th@ observations are taken from P. Thorndike, Applicutions
of Poisson's probability summation, The Bell System Technicul Journal,
Vole. 5(1926), pp. §04-624.
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Thus from the exprossiong\s T/K = 1/§ kN,
k=0
AL
I\ ',—%s% = 8.7415 = 8.74

If it is believad that connections to wrong number obey
the Poisson probability lew at & mean rate of 8.74 per minute. ‘Then
one may oong&uﬁg that the probability of wrong conneoctions per
minute is e Thie provide a means of testing the hypothesis
that oonnections to wrong numbers at the rate of 8.74 per minute.
Since this is the case, then the probability that in a minute
there will be k wrong connections is obtained by:

‘ k
j;(k; %076) - ﬁ‘8'74 La—i'!l&)' ¥ vhere k = 0’ 1; 2 e
The expected mumber in ¥ mimiltes in which k wrong connections
ooour, which is equul to Np(k; 8.74) mey be computed and compared
with the obssrved number of minutes im whioch k wrong connsctions hove
ocourred. Hence from Table 3.1 one notes that the thecretical values
Np(k; 8.74) are rather close to the observed mumbers N, . To be more
ocertuin, one may compare the obs d and expected numbsrs by
statistical eriteria such «8 the X -cyiterion to judge whether the
observations are compatible with the hypothesis that the number of
connections to wrong number follows a Poisson probability law at a
mezn rate of 3.74.

txpected Vilue (Mean) = Parumeter

Let us consider & cuse in which we may apply the faot thut
the expscted vulue of tne iroisson Distribution is equal to its
purumeter.

Suppose m is the average number of pulses stioking an
object in t seconds. The pulses are independent and randomj and
the chance of o hit is rare. Since tkias proocess obeys the roisson
Distribution, we muy coanclude that the parameter is equal to its
expected vilue, i.2. m. Hence the probability thet k of the pulses
hitting the objeot in t seconds is approximately

k
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The following exumples show the applicition of the Poisson
Jistribution us an approximation to the Binomial Distridbution.

rrom the following examples one may observe the euse in computation
whero the Poisson Distribution is ampplicable.

iffect of Innooulation: Suppose that the probability that a certain
type of innooulation has an adverse effect is 0.005. Suppose one
would like to know the probability that 2 out of 1,000 people =
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given the innoculution will be adversely affected.

If we let ¥ be number of people out of 1,000 who are ac
wffected, this is binomiully distributed. The probubility thit i = 2
computed by the binomiul probability law isi—

1,000 2 8
p(2) = (}*9%) (0.005)? (1-0.005)"?
000\ 4
- (1’2 2 (9.095)‘ (0.995)9§3 seenease (ﬂ)

fzther than compute (a), one nay compute inste:d the
wpproximation given by the ‘oisson formula, witk

At = np = 1!000((;.().05) - 51=
p(2) 00”2 g;— . 25 0 0.0842
2,5

¥rom this the euse of ocomputation by the :'cieson formuls is apparent.
S5inilarly, one may compute

p(no more thin 2 are ciffected) = p(x = 0, 1, or 2)

« p(0) + p(1) #+p(2)

e
s 0'5‘4 o2 -‘;}! +e? %-

2
."’5 (1 + % + gr);.ﬂ.‘. 9.125

Tossing Coins

The probability of obtaiming 5 heads k tinmes when % coinw
sre tossed 1.8 tinmes, by the binomial distridbution is:

128y 1 koo Bk
R et a-5F

- 1) (FF B e (@)

i approximite valué to_iha ubove is given by the roisson
Distribution, with A= np = 128( 32) = 4y 1e0,

s

k! ..0.0"."D.'.G.Q.G'FOOGDOQ.‘QDQO (b)

shen k = 2, the value of {ug = 0,1458
the vulue of (b) = 0.1465

“rom this one wmay conclude thut the Poiasson Metribution 15 w good
cuprox mation to the binomial distribution. Yoreover tne Joiuson

- 19 -



Matdbution enadbles ezse in caloulation compared with the bimomial
distritaation.

In recent yeurs, tue Poisson prodadility law has become
increncingly importunt s more and more randoa phenomens to whigh
the luw wpulies hive bien studied. In physios, the rundom emission
of sleotrons froa the filament of & vaguum Sube, or from a photow
sensitive substance under the influence of light and the spontaneous
Jecom;csition of rulicuotive Ltomic nmuclei lewd to phenomensa obeying
& ‘oisson probability law. This liw ocours fre usntly in the fielda
of operutions resesraen anl amfcgement soience, sinee deamunds for
sirvice irrespeotive of whether on human beings or ejulpment, und
nlve the rete ut which sarvioce ie renlered, oftea iecd to randoa
phienocwen. elther exuetly or approximutely obeyiag a Poisson probability
L

suoh random phenomen: are also found in comnection with ihe
ocourrence o1 socidents, errors, brealdowms and otier aimilsr calamitiesn,
™e :oisson distribution is uued, for example, in the field of
ciusdilty insurameoe, where the probability thit any givea house will
be deuiroyed by fire is very sm:ll uwhile the insured nuaber of houses
is very lurge. Limilirly, the prodability that & person will got
¥illed in un cutomobile is very small while the number of people
whe ride in ours, is large. The “aisson distribution is :lso used in
problem ds:ling with the imspection of manufectured yroducts when
the _rob.bility that any omne piecss is defeotivs ie vexry small und
the lote are very ladXge.

Conssquently, the Poisson MMeiribution may be used to
appreive radicul divergencs from uniformity or ‘rom the state of
et tistic:1l con'rol. Indeed, the Poissom Distribution hue pleyed &
large part in s.ay industrisul suapling problems, particulirly in those
de.ling with lurge sounle mass produstion. let us consider the
c.88 of defeotive tarch bittaries.

sappose that a muaufagturer of tarch butteries kmows thut
deepite every preceution there is a small uanvoiduble percentage of
defective utteries not up to specafici:tion. This his been estublished
.t Oe3x o about 8 defective batteries per 1,000. The batteries are
packed for retailing im cartons oaeh contaiming 200. The manufuoturer
wunte to know the oh:noce of & curton containing k defective batteriaes
vhere k may be Oy 1, 25 eee .+ The manufacturing oconditions are such
thit each carton cun be assumed to contain a random sample of produstion.
Thie is unother cuse where the Poissom Distribution holde. The average
number of defestives per ecarton, )\ is givea by

Ao 200 x 0,008 = 1.6

ani the chunce of a curton oontaining k defectives is
‘ k ; ‘
Pk A) = o ?‘A“‘k,




The results obtzined for the different valuss of k ave shownm in
the Table 3.2 below:- ,

TABLE 3.2
Numbsr of Bfectives ‘Probability that & Carton
in u Carton - Contains k defectives
k -~ pl(ky N)
'+ SR 0,202
1 e v e s e e s e 0.323
2 e 6 0 e o0 b o s s 0.258
3 e e e s s e s e s e 0.138
4 o e o 0 e 0 02 e e 0,055
5 e e s e s 0 e w0 e 0.018
6 o o s c e e s e e 0.005
T o e e o oeoeesce 0.001
Total . 1.000

In such situations, the munufacturer ias usually interested
not so much in the individucl prodabilities of getting different
nunbsrs of defectives in a ousienj but rather in the chunoe of getting
k or mare defectives in a curton. Thus from the above Tauble, the
chunce of getting 5 or more defeotives isi-

0.018 + 0,005 + 0.001 = 0,024 or

neurly 23%. This type of information on the product is of great
importance. This ie beouuse in srea of production munagement, scmpling
of the manufacture procees is oftea used to maintain the quality of
product economicsilly. o

tgain one cauld use the Poisscn Distribution to gauge the
response to advertisingi~ ,

aﬂ DG4

Suppose a pianc is advertissd for sale im & newspapsr
having o cireulstiom of 100,000 readers. Assuming probability that
any ome reuder will respend to the advertisement is

- s ae may 1iks to know the probability of

Puﬁo’ } one may pr

gotting 0,1,2, 3 «u. k reaponses to the advertisement.

sssentially, thie is a mm of finding the probabilities
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of getting "k successes in 100,000 trisle’ when probability of an
“individual success is p = 1/50,000. Since p is small, n is large,

N =« np = 100,000 x 1/50,000 = 2,

Therefore, on the average, one may expect 2 responses to such an
dverticement. The respective probabilities for the dirfferent number
of responses can b obtained by the Poisson Distribution:

2~

p(kj 8) =8 13

The following Table 3.3 showe the reapective grebabilitias pl(k; 2).

TABLE 3.3

Ho. of Responses Prcbabilitx

k — plk; A= 2)
0.1353
0.2207
0.2707
0.1804
0.0902
0.0361
0.0120
0.0034
0.0009
0,002

O O =~ AR P WO

i logically, it is possible to obtain the probability of more than g
- responses to the advertisement. But the probability of this is
extremely small.

Various biological problems involve the use of the Poisson
Distribution, notably those urising when estimating the demsity of
cells or orgenisms by baemaoytometer counts or by the pluting method.
The sume situation is encountered when measuring the density of plants
in the wild by the use of quadrat counts. From these limited examples,

i one may conclude the Poiseon Distribution is one of the moat useful

methods of computing probabilities. It is applicable in diverse
fields from operations research, physical experiments such s the
computation of probability of radiocactive disintegrations of certain
 substunces, to such cases us the freguenay of yeurs in which exuaotly
k centenzrians will die, or the frequenmcy of loaves with exaotly k
 raisine with )\ as the measure of the density of raisins in the dough.



