UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Suriafazlin Binti Ismail (I.C/Passport No: 830131-06-5684)

Registration/Matric No: KGA 070072

Name of Degree: MEngSc

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

Mechanical Properties of Ultra High Performance Concrete Containing Silica Fume

Field of Study: Concrete Technology

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature

Date

Name: Designation:

ABSTRACT

This thesis presents an investigation to produce ultra-high performance concrete (UHPC) incorporating silica fume with or without steel fibers. The study was carried out to develop UHPC mixes to achieve the targeted strength of 120 MPa at the age of 28 days. The early stage of this study is to determine appropriate materials and cement content to achieve not only the targeted strength of 120 MPa but as well the workability of concrete of 150-300 mm slump flow. Several factors such as method of curing, selected materials and production cost were put into consideration during the investigations in order to develop economical and green concrete. Various UHPCs were produced using Sherbrooke design method with some modification since no coarse aggregates were used. UHPC mixtures were designed with fixed water-binder (W/B) ratio of 0.22, two series of cement content i.e. 875 and 900 kg/m^3 and silica fume content in the range of 0 to 30% of cement by weight. Other materials used to produce UHPC of 120 MPa were silica sand with two sizes i.e. 70% of 600µm size and 30% of 0.6-2.0 mm size and superplasticizer of 2% of binder content. The fresh UHPCs were tested for workability with respect to slump flow. Test results for fresh properties showed that the slump flow increased with higher amount of total binder. The hardened UHPCs were tested for compressive strength, flexural strength, splitting tensile strength, ultrasonic pulse velocity, static modulus of elasticity, surface hardness, the rebound number and initial surface absorption test. In general, UHPC indicated good durability. From the studies carried out, it can be concluded that UHPC can be produced by incorporating silica fume and suitable to be used in precast industry, thus supporting the Governments initiatives in promoting industrialized building systems (IBS) usage in the local construction industry.

ABSTRAK

Tesis ini membentangkan hasil penyelidikan untuk menghasilkan konkrit perlakuan ultratinggi (UHPC) dengan menggunakan wasap silika serta menggunakan gentian besi atau tidak. Penyelidikan ini dijalankan untuk mencapai kekuatan sebanyak 120 MPa pada usia 28 hari. Tahap awal penyelidikan adalah untuk menentukan bahan-bahan dan kandungan simen yang sesuai untuk mendapat kekuatan konkrit sebanyak 120 MPa beserta kebolehkerjaan turun sebanyak 150-300 mm. Beberapa faktor seperti jenis pengawetan, pilihan bahan-bahan dan kos produksi turut diambil kira semasa penyelidikan dijalankan bagi menghasilkan konkrit yang ekonomikal dan mesra alam. UHPC dihasilkan dengan menggunakan kaedah rekabentuk Sherbrooke tetapi dengan beberapa perubahan oleh kerana tidak menggunakan batuan kasar. UHPC direkakan dengan menggunakan nisbah air-bahan pengikat (W/B) sebanyak 0.22 yang telah ditetapkan, serta dua kumpulan kandungan simen iaitu 875 dan 900 kg/m³ dan juga kandungan wasap silika sebanyak 0 – 30% dari kandungan simen. Bahan-bahan lain yang turut digunakan ialah pasir silika dengan dua saiz iaitu 70% dari saiz 600µm dan 30% dari saiz 0.6-2.0 mm, turut digunakan ialah 2% superplasticizer dari bahan pengikat. Kebolehkerjaan UHPC ditentukan dengan menggunakan ujian alir turun. Hasil ujian menunjukkan aliran slump meningkat dengan kenaikan jumlah bahan pengikat. Konkrit terkeras ditentukan dengan kekuatan mampatan, kekuatan lenturan, kekuatan tegangan pemecahan, ultrabunyi halaju denyut, keanjalan moduls statik, kekuatan permukaan, ujian tukul pantulan dan ujian penyerapan mula permukaan. Secara keseluruhannya, UHPC memberikan hasil ketahanlasakan yang baik serta dapat dihasilkan dengan menggunakan wasap silika dan sesuai digunakan di dalam industri pra tuang, yang mana menyokong inisiatif kerajaan dalam menggunakan sistem binaan berindustri (IBS) dalam industri pembinaan tempatan.

ACKNOWLEDGEMENT

I would like to express sincere gratitude to my supervisor Dr. Hilmi Mahmud, Professor, Department of Civil Engineering for his precious guidance, advice, and encouragement throughout the research program.

Deep thanks are due to all technical staff in the Civil Engineering Department, University of Malaya, particularly Mr Azhar, Mr Yusup, Mr Khairul, Mr Sreedharan, and Mr Rafeedi for their valuable input and assistance during the research program. Special thanks also go to all of my colleagues, particularly Mr Syamsul Bahari, Mr Asrizal Jasni, Mr Hazren Mohamad, Mr Azirul Hazimi, and Mr Payam Shafigh for their great help in experimental investigation. Many thanks also go to Mr Shaari Mohd Noor for his help in proofreading my thesis. Deepest appreciation also goes to my family especially my husband, Shahrul Nizar Shaari for their invaluable supports.

I am thankful to Mr. Pierre Favre, Sales Manager of Sika Kimia Sdn Bhd for supplying chemical admixtures, and for his valuable support. Sincere and great appreciation goes to University of Malaya for the financial support.

TABLE OF CONTENTS

			Page
Title I	Page		i
Declaration			ii
Abstract			iii
Abstra	ak		iv
Ackno	owledgei	nents	v
Conte	nts		vi
List of	f Figures	;	Х
List of	f Tables		xi
List of	f Abbrev	viation and Symbols	xii
CHAI	PTER 1	: INTRODUCTION	1
1.1	Genera	1	1
1.2	Probler	n statement	3
1.3	Objecti	ves of study	4
1.4	Scope	of work	4
CILAI	DTED A		6
	Genero		0
2.1	General 0		
2.2	0111 <i>a</i> -11		0
	2.2.1	Characteristics	0 7
	2.2.2		, 7
	2.2.3	Applications and design recommendations of UHPC	, 8
	2.2.4	Cost impact of UHPC in construction industry	9
2.3	Backgr	ound of UHPC	10
2.4	Types	of UHPC	11
2.5	Micros	tructure of UHPC	11
2.6	Materia	al Aspects for UHPC	13
2.0	2.6.1	Aggregate	13
	2.6.2	Portland Cement	14
		2.6.2.1 Physical Properties	15
		2.6.2.2 Chemical Composition	15
	2.6.3	Silica Fume	16

v

			2.6.3.1	Physical Properties	16
			2.6.3.2	Roles in Concrete	16
		2.6.4	Superpla	asticizer	19
			2.6.4.1	Physical Properties	20
			2.6.4.2	Chemical Structure	21
			2.6.4.3	Mechanisms of Water Reduction	21
		2.6.5	Steel Fil	ber	23
		2.6.6	Water		26
			2.6.6.1	Physical Quality	26
			2.6.6.2	Chemical Quality	26
2	.7	Mixture	Design fo	or Ultra-high Performance Concrete	27
		2.7.1	Justifica	tion for a Different Method of Mixture Design	27
		2.7.2	Current	Methods of Mixture Design	28
2	.8	Mixing	of Ultra-h	igh Performance Concrete	28
2	.9	Curing	of Ultra-hi	gh Performance Concrete	29
2.	10	Testing	of Ultra-h	igh Performance Concrete	31
2.	11	Mechan	ical Prope	orties	31
		2.11.1	Compres	ssive Strength	32
		2.11.2	Modulus	s of Elasticity and Poisson's Ratio	33
		2.11.3	Flexural	Strength and Flexural Toughness	33
		2.11.4	Ultrason	ic Pulse Velocity	34
		2.11.5	Absorpt	ion	34
		2.11.6	Permeab	bility	35
2.	12	Therma	l Treatmer	nt	36
2.	13	Durabili	ity Improv	rements	36
C	HAI	PTER 3:	MATER	RIAL CHARACTERISTICS AND	
E	XPE	RIMEN	TAL PRO	DCEDURES	38
•	3.1	General			38
		3.1.1	Experim	ental Investigation	38
	3.3	Materia	ls Used		39
		3.2.1	Cement		39
		3.2.2	Silica Fu	ime	41
		3.2.3	Aggrega	ite	41
		3.2.4	Superpla	asticizer	42

	3.2.5	Water	43
	3.2.6	Steel Fiber	43
3.3	Testing	of Material Used	44
	3.3.1	Specific Gravity Test for Cement and Silica Fume	44
	3.3.2	Specific Gravity Test for Fine Aggregates	45
3.4	Optimiz	ation of Concrete Mixes	45
	3.4.1	Preliminary Work	45
	3.4.2	Properties of Optimum Mixes	47
	3.4.3	Mix Design Method	47
	3.4.4	Preparation of Concrete Specimens	48
	3.4.5	Size and Curing of Specimens	50
3.5	Testing	of Concrete	51
	3.5.1	Properties of Fresh Concrete	51
		3.5.1.1 Slump Flow Test	51
	3.5.2	Test for Hardened Concrete	52
		3.5.2.1 Compressive Strength of Concrete Cubes	52
		3.5.2.2 Static Modulus of Elasticity	53
		3.5.2.3 Splitting Tensile Test	54
		3.5.2.4 Flexural Tensile Strength Test	54
	3.5.3	Non-destructive Test	55
		3.5.3.1 Rebound Hammer Test	56
		3.5.3.2 Ultrasonic Pulse Velocity Test (UPV)	56
	3.5.4	Durability Test	58
		3.5.4.1 Initial Surface Absorption Test (ISAT)	58
CHAI	PTER 4:	RESULTS AND DISCUSSIONS	60
4.1	Introduc	tion	60
4.2	Propertie	es of Material	60
	4.2.1	Cement	60
	4.2.2	Silica Fume	61
	4.2.3	Fine Aggregate	61
	4.2.4	Superplasticizer	62
	4.2.5	Steel Fiber	62
4.3	Prelimin	ary Results	62
	4.3.1	Compressive Strength	63

4.4	Workat	bility of Fresh Concrete	65
	4.4.1	Comparison with Published Data	66
4.5	Mechar	nical Properties	67
	4.5.1	Compressive Strength	67
	4.5.2	Effect of Silica Fume on the Compressive Strength	69
	4.5.3	Effect of Curing on the Compressive Strength	70
	4.5.4	Comparison with Published Data	71
4.6	Modulu	is of Rupture	73
	4.6.1	Effect of Silica Fume on the Modulus of Rupture	73
	4.6.2	Effect of Curing on the Modulus of Rupture	75
	4.6.3	Effect of Steel Fiber to the Modulus of Rupture	75
	4.6.4	Relationship between Modulus of Rupture and Compressive	75
		Strength	
	4.6.5	Comparison with Published Data	77
4.7	Splittin	g Tensile Strength	77
	4.7.1	Effect of Silica Fume on the Splitting Tensile Strength	77
	4.7.2	Effect of Curing on the Tensile Splitting Tensile Strength	80
	4.7.3	Relationship between Tensile Splitting Strength and	82
		Compressive Strength	
	4.7.4	Relationship between Tensile Splitting Strength and	82
		Modulus of Rupture	
	4.7.5	Comparison with Published Data	82
4.8	Static N	Adulus of Elasticity	82
	4.8.1	Effect of Silica Fume on Static Modulus of Elasticity	84
	4.8.2	Effect of Steel Fiber on Static Modulus of Elasticity	84
	4.8.3	Comparison with Published Data	85
4.9	Non-de	structive Tests	86
	4.9.1	Ultrasonic Pulse Velocity (UPV)	87
		4.9.1.1 Effect of Silica Fume on UPV	87
		4.9.1.2 Effect of Curing on UPV	88
		4.9.1.3 Effect of Steel Fiber on UPV	89
		4.9.1.4 Comparison with Published Data	89
	4.9.2	Rebound Number	90
		4.9.2.1 Effect of Silica Fume on Surface Hardness	90

		4.9.2.2	Effect of Curing on Rebound Number	90
		4.9.2.3	Comparison with Published Data	90
4.10	Absorpt	tion: Initia	l Surface Water Absorption	91
	4.10.1	Effect o	f Silica Fume on Initial Surface Water Absorption of	91
		Concret	e	
	4.10.2	Effect o	f Curing on Initial Surface Water Absorption	93
	4.10.3	Compar	ison with Published Data	94
CHA	PTER 5:	CONCL	USIONS AND RECOMMENDATIONS	97
5.1	Introduc	ction		97
5.2	Conclus	sions		97
5.3	Recomm	nendation	s for Future Research	100
REFI	ERENCE	S		102
APPI	ENDIX A	: MIX DI	ESIGN CALCULATION SHEET &	113
PRO	CEDURE	ES		

ix

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Microfilling effect of silica fume	17
2.2	Pozzolanic effect of silica fume	18
2.3	Chemical structure of polycarboxylate superplasticizer	21
2.4	Cement-water agglomeration in absence of Superplasticizer	22
2.5	Dispersion of cement particles in presence of Superplasticizer	22
3.1	Overall research program	40
3.2	Gradation chart for fine aggregate	42
3.3	Steel fiber diagram and L/d ratio	43
3.4	Equipments for testing hardened properties of UHPC (a) Compression strength test, (b) & (c) Before and after failure of Modulus of rupture test, (d) & (e) Tensile splitting strength test, (f) Static modulus of elasticity test	55
3.5	Rebound hammer test	56
3.6	Ultrasonic pulse velocity (UPV) test	57
3.7	Experimental set-up for Initial Surface Absorption Test	59
4.1	Compressive strength development: OPC 875 kg/m ³	64
4.2	Compressive strength development: OPC 900 kg/m ³	65
4.3	Compressive strength development for various mixes without steel fibers	69
4.4	Compressive strength development for various mixes with steel fibers	69
4.5	Modulus of rupture of Control and SF concretes without steel fibers under water and air curing conditions	74
4.6	Modulus of rupture of Control and SF concretes with steel fibers under water and air curing conditions	74
4.7	Tensile splitting strength of concretes under water and air curing conditions	79
4.8	Tensile splitting strength of steel fiber concretes under air and water curing conditions	79
4.9	Effect of curing on static modulus of elasticity of concretes	85
4.10	Curing effect on static modulus of elasticity of steel fiber concretes	85
4.11	Pulse velocity of selected concretes without steel fibers	88
4.12	Pulse velocity of selected concretes with steel fibers	89
4.13	ISA of concretes cured in water and air for a period of 7, 28 and 56 days	95
4.14	ISA of concrete with steel fiber inclusion cured in water and air for a period of 7, 28 and 56 days	96

LIST OF TABLES

TABLE NO	TITLE	PAGE
1.1	Phases of work and its description	5
2.1	Basic composition of Reactive Powder Concrete	7
2.2	Applications of ultra-high performance concrete	9
2.3	Typical chemical composition of portland cement	15
2.4	Physical properties of silica fume	16
2.5	Typical Properties of Steel Fiber in UHPC	25
3.1	Comparison of chemical and physical composition for OPC and silica fume	41
3.2	Sieve analysis for fine aggregate	42
3.3	Properties of steel fiber used	43
3.4	The series of mixture cast for the preliminary work	46
3.5	Mix Design Calculation Sheet	50
3.6	Details of curing methods for different types of test	51
4.1	Chemical composition of OPC and SF	61
4.2	Compressive strength of concrete mixes for preliminary works	64
4.3	Mix proportion and workability of selected mixes	65
4.4	Comparison on concrete workability with other researches	67
4.5	Compressive strength of cement and silica fume concretes without and with steel fibers	68
4.6	Comparison of compressive strength for UHPC	72
4.7	Modulus of rupture for selected mixes	73
4.8	Ratio of the MOR and compressive strength of Control and SF concretes	76
4.9	Comparison of modulus of rupture with published data	78
4.10	Tensile splitting strength of concretes under water curing and air drying conditions	79
4.11	Ratio of tensile splitting strength to compressive strength for concretes	81
4.12	Ratio of tensile splitting strength to modulus of rupture	83
4.13	Development of static modulus of elasticity	89
4.14	Comparison of static modulus of elasticity with published data	86
4.15	Ultrasonic wave velocities for UHPC cubes with and without fibers	87
4.16	Rebound hammer test for selected mixes	91
4.17	Initial surface absorption test for selected concrete mixes	94

LIST OF ABBREVIATION AND SYMBOLS

Notation	Meaning
b	Width of cross section (mm)
d	Depth of cross section (mm)
$\sigma_{\scriptscriptstyle b}$	Basic stress
$\sigma_{_a}$	Upper loading
ρ	Density
f_{cyl}	Cylinder compressive strength
E_{c}	Static modulus of elasticity in compression
f_{sp}	Splitting tensile strength
f_r	Modulus of rupture
ACI	American concrete institute
BET	Nitrogen absorption method test
С	Celcius
d	Diameter
ELE	Engineering Laboratory Equipment
F	Load
f_{cu}	Compressive strength of cube
FRC	Fiber reinforced concrete
G	Specific gravity of cement or pozzolanic material
G_{sp}	Specific gravity of material
G_{ssd}	Specific gravity of aggregates in saturated state
H ₂ O	Water
HPC	High performance concrete
HSC	High strength concrete
ISAT	Initial surface absorption test
ITZ	Interfacial transition zone
L	Length
LOI	Loss on ignition
М	Metal
т	Mass
MOR	Modulus of rupture

M _{sol}	Normal strength concrete
OPC	Ordinary Portland cement
RH	Relative humidity
RN	Rebound number
RPC	Reactive powder concrete
SCC	Self compacting concrete
Sp	Superplasticizer
SF	Silica fume
t	Time
UHPC	Ultra high performance concrete
UHPdC	Ultra high performance ductile concrete
UPV	Ultrasonic pulse velocity
v	Velocity
\mathbf{V}_{liq}	Volume of water and superplasticizer
$\mathbf{V}_{\mathrm{sol}}$	Volume of superplasticizer
\mathbf{V}_{w}	Water correction for superplasticizer
w/b	Water to cementitious ratio
W _{abs}	Water absorption
W _c	Water correction for aggregates
\mathbf{W}_{tot}	Moisture content
XRD	X-ray diffraction
XRF	X-ray flourescence
ε _a	Strain under upper loading stress