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ABSTRACT 

The aim of this thesis is to develop an efficient method for the nonlinear 

analysis of space structures with high degree of freedom such as cable 

structures. Space structures can provide large uninterrupted covered areas such 

as sport centres, aircraft hangars, tensile cables, etc. The proposed theory for 

nonlinear analysis of 3D space structure is based on the minimization of the 

total potential dynamic work. The minimization of the total potential dynamic 

work is an indirect method which is based on the principle of the convergence 

of energy in structures. Conventional methods such as superposition methods 

are direct methods. 

The dynamic response analysis of a nonlinear system is based on the 

evaluation of response for a series of short time intervals using different types 

of time integration techniques. In dynamic problems, the differential equations 

arising from the equilibrium of the dynamic forces acting on the mass is solved 

by implicit or explicit methods. In order to verify the proposed theory, static 

and dynamic testing of the model is performed. The degree of error by elastic 

deformation of the frame and degree of symmetry of the model during the 

static test shows that the boundary condition of the frame is rigid and the frame 

is symmetric. The results of the dynamic test show that the theoretical and 

experimental values of the natural frequencies, mode shapes, and modal 

damping ratios are in good agreement. The dynamic responses calculated due 

to the exciting structure with various load intensities from different points are 

also in agreement with the finite element modelling. The influence of the 

magnitude of the damping ratios in different modes while using an orthogonal 

damping matrix is negligible. Finally, in comparison to conventional methods, 

the computational time taken by the proposed method is acceptable. 
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In general, the reduction in time and cost as well as the highly accurate 

results obtained justify the use of indirect methods such as the optimization 

theory. The developed method is found to be a suitable technique for the 

minimization of the total potential energy function, especially in cases where 

the number of variables is large and the structure is highly nonlinear. The 

proposed method decreases computational time and the number of iterations 

required per time step.  



iii 
 

 ABSTRAK 

Tujuan thesis ini adalah untuk membangunkan satu kaedah baru untuk 

analisis tak linear bagi struktur ruang yang mempunyai darjah kebebasan yang 

tinggi seperti struktur kabel. Struktur ruang boleh memberikan kawasan ruang 

besar tanpa gangguan seperti pusat sukan, hangar pesawat, kabel tegangan, dan 

sebagainya. Teori yang dicadangkan untuk analisis tak linear struktur ruang 3D 

adalah berdasarkan pengurangan jumlah potensi kerja dinamik. Pengurangan 

Mengurangkan jumlah potensi kerja dinamik adalah satu kaedah tak langsung 

yang berdasarkan prinsip penyatuan tenaga dalam struktur. Kaedah 

konvensional seperti kaedah tindihan adalah kaedah langsung. 

Sistem tak linear tidak mempunyai set tetap bagi vektor eigen dan nilai 

eigen. Set baru bagi vector eigen dan nilai eigen mesti dikira pada setiap 

langkah masa dan matriks kekukuhan mesti dinilai semula pada akhir setiap 

langkah masa. Analisis gerakbalas dinamik bagi sistem tak linear adalah 

berdasarkan penilaian gerakbalas untuk satu siri jeda masa yang singkat dengan 

menggunakan pelbagai jenis teknik integrasi masa. Dalam masalah yang 

dinamik, persamaan pembezaan yang timbul daripada keseimbangan kuasa-

kuasa dinamik yang bertindak ke atas jisim diselesaikan dengan kaedah tersirat 

atau tersurat. Kaedah tersirat atau tersurat menyediakan penyelesaian berangka 

untuk persamaan gerakan yang dibina untuk satu jeda masa. Mereka 

mengandaikan bahawa sifat-sifat struktur kekal malar semasa jeda, tetapi ianya 

dikira semula pada akhir langkah masa. Walau bagaimanapun, ini mungkin 

tidak mencukupi untuk struktur yang sangat tak linear. 

Kaedah tersirat menawarkan kestabilan tanpa syarat pada keupayaan 

operasi dengan matriks uraian yang agak padat apabila digunakan ke atas 

struktur linear, tetapi kehilangan kelebihan daripada kestabilan tanpa syarat 
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apabila digunakan ke atas sistem tak linear. Kaedah-kaedah yang tersurat, 

sebaliknya, menggunakan kurang ruang untuk penyimpanan didalam 

komputer, tetapi dihalang oleh ketidakstabilan yang menghadkan saiz langkah-

langkah masa. Kaedah tersirat, apabila digunakan ke atas struktur tak linear, 

memerlukan penyelesaian satu set persamaan tak linear, sedangkan 

kebanyakan kaedah tersurat memerlukan penyongsangan kepada matriks 

bukan-pepenjuru. Ini menjadikan penggunaan kaedah konvensional secara 

meluas memakan masa dan mahal. 

Dalam usaha untuk mengesahkan teori yang dicadangkan, ujian statik 

dan dinamik keatas model telah dilakukan. Darjah kesilapan dengan 

menggunakan ubah bentuk anjal bagi kerangka dan simetri model semasa ujian 

statik menunjukkan bahawa keadaan sempadan kerangka adalah tegar dan 

kerangka adalah simetri. Keputusan ujian dinamik menunjukkan bahawa nilai-

nilai teori dan uji kaji bagi frekuensi tabii, bentuk mod, dan mod nisbah 

redaman adalah menyamai diantara satu sama lain dengan baik. Gerakbalas 

dinamik yang dikira semasa struktur dikenakan dengan pelbagai keamatan 

beban dari sudut yang berbeza juga adalah menyamai dengan Permodelan 

Unsur Terhingga. Pengaruh magnitud nisbah redaman dalam mod yang 

berbeza semasa menggunakan matriks redaman ortogon boleh diabaikan. Akhir 

sekali, berbanding dengan kaedah konvensional, masa pengiraan yang diambil 

oleh kaedah yang dicadangkan adalah memadai untuk diterima. 

Secara umum, pengurangan masa dan kos serta keputusan yang sangat 

tepat memberikan justifikasi kepada penggunaan kaedah tak langsung seperti 

teori pengoptimuman. Kaedah yang dicadangkan ini didapati menjadi satu 

teknik yang sesuai untuk meminimumkan jumlah fungsi tenaga keupayaan, 

terutama dalam kes-kes di mana bilangan pembolehubah yang besar dan 
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keadaan struktur yang sangat tak linear. Kaedah yang dicadangkan 

mengurangkan masa pengiraan dan bilangan lelaran yang diperlukan setiap 

langkah masa. 
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CHAPTER 1: INTRODUCTION 1 

1.1 Introduction 2 

The main aim of this thesis is to provide an efficient method for all aspects of 3 

the analysis of space structures. Space structures are structures which resist 4 

external actions by distributing their effects among three dimensions. Examples 5 

of space structures include multi-layer grids, braced domes, and tensile 6 

structures. The conventional analysis methods are usually direct methods 7 

which are often employed for the solution of these structures. The conventional 8 

methods for structural analysis cannot predict the response of space structures 9 

accurately and precisely. Space structures are commonly analysed by indirect 10 

methods. Indirect methods are based on the principle of convergence of energy 11 

in structures. Space structures can provide large uninterrupted covered areas 12 

such as sport centres, aircraft hangars, railway platforms, airport terminals, 13 

shopping centres, and warehouses. In mathematics, a nonlinear structure is a 14 

structure which does not follow the superposition principle. A nonlinear 15 

structural problem is a problem where the variables of the equations cannot be 16 

written as linear combinations of independent components. Hence, for the 17 

analysis of space structures under nonlinear behaviours, special techniques are 18 

required to achieve accurate results. 19 

In the present work, an efficient method is proposed for the nonlinear 20 

dynamic analysis of space structures such as a cable-stayed bridge. The cable-21 

stayed bridge belongs is a tension structure (Aschheim et al., 2007). Tensile 22 

steel cable is commonly used in tension structures. There are two advantages of 23 

using tensile steel in cables. Firstly, the tensile steel in cables increases the 24 

load-carrying capacity of the structure elements. Secondly, the tensile steel 25 

cables enable the use of large spans for roofs and bridges. These types of 26 
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structures belong to the category of geometrically nonlinear structures and their 1 

nonlinear behaviour must be taken into account in analysis. A number of 2 

methods for the nonlinear static analysis of cable structures are investigated by 3 

Buchholdt (1982), Guo (2007), and Kaveh (2008). These researchers present 4 

theoretical analysis utilizing the continuous membrane approach. Tension 5 

structures can be presumed to be discrete systems and thereby unknown nodal 6 

variables can be obtained by solving the set of governing equations for all 7 

elements of the discrete system. The tension structure consists of a finite 8 

number of elements connected at joints or nodes. Nonlinear equations are set 9 

up for the condition of joint equilibrium in terms of joint displacements from 10 

which the equilibrium displacements can be found using an iterative process. 11 

Some researchers such as Kukreti (1989) discuss cable structures as discrete 12 

systems, but confine themselves to using variations of the Newton-Raphson 13 

method to establish static equilibrium. Other researchers such as Lopez and 14 

Yang (López-Mellado, 2002; Yang & Stepanenko, 1994) have used the 15 

steepest descent method to determine the static load equilibrium.  16 

It is worth mentioning that the theory of nonlinear dynamic response 17 

analysis is still under development. Nevertheless, a number of methods have 18 

been developed for the dynamic response analysis of structural systems, but 19 

there are only a few methods which can be employed in nonlinear dynamic 20 

response analysis (Stefanou, Moossavi, Bishop, & Koliopoulos, 1992). In the 21 

present work, a theory for nonlinear dynamic response analysis of 3D space 22 

structures is developed based on the minimization of total potential dynamic 23 

work. 24 

 25 

 26 
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1.2  Problem statement 1 

In general, various types of cable roof arrangements including beams, 2 

nets and grids have been investigated by previous researchers using the 3 

conventional linear method. The linear method overestimates the displacement 4 

when a structure is stiffening and underestimates the displacement when it is 5 

softening. It has been observed that when using conventional methods the 6 

number of iterations increased with the increase of degree of freedom and that 7 

these methods need large computer storage for solution of the equation of 8 

motion. The computational time in conventional methods increase with the 9 

increasing degree of freedom in the structures. 10 

Several methods are available for the dynamic response analysis of a 11 

linear structure. The mode-superposition method has been used to comparison 12 

result in present study. However, nonlinear systems do not have fixed sets of 13 

eigenvectors and eigenvalues; instead new sets of eigenvectors and eigenvalues 14 

must be revaluated for each time step. This makes the use of the mode-15 

superposition method very time consuming and costly. Apart from the above 16 

mentioned, the dynamic response analysis of nonlinear systems in general is 17 

based on the evaluation of the response for a series of short time intervals using 18 

different types of time integration techniques. 19 

All the currently available methods predict the response of nonlinear 20 

assemblies by forward integration in the time domain. The methods are either 21 

implicit or explicit. They provide a numerical solution to the equation of 22 

motion set up for one interval of time. In the case of nonlinear systems, most of 23 

the methods assume that the structural properties remain constant during the 24 

interval, but revaluate them at the end and, in some cases, also in the middle of 25 

the time step. For highly nonlinear assemblies this may not be sufficient and in 26 
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such cases it is important to revaluate both the stiffness and the damping during 1 

the time step. The implicit methods do usually permit continuous revaluation of 2 

stiffness and damping during the iterative process, which is necessary to 3 

establish dynamic equilibrium at the end of each time step. However, the 4 

revaluation process makes these methods more expensive to use. The 5 

difference between the explicit and implicit methods is notable.  6 

The implicit methods offer unconditional stability at the expense of 7 

operating with relatively dense decomposed matrices when applied to linear 8 

structures, but lose the advantage of unconditional stability when applied to 9 

nonlinear systems. The explicit methods, on the other hand, have relatively less 10 

computer storage and computation requirements than implicit methods, but 11 

they are hampered by instability which limits the size of the time steps. The 12 

implicit methods when applied to nonlinear structures require the solution of a 13 

set of nonlinear equations, whereas most explicit methods require the inversion 14 

of a non-diagonal matrix if consistent mass and non-diagonal damping matrices 15 

are used. A considerable amount of information is available concerning the 16 

effect of the size of the time intervals on the stability as well as on the accuracy 17 

of different methods. However, little attention has been paid to the loss of 18 

accuracy caused by updating the stiffness at the end of each time step. 19 

In many cases, the effect of variation of damping has been investigated 20 

but has received less attention and the stability criteria have been discussed to 21 

the smallest extent possible. For highly nonlinear structures such as cable 22 

structures the effect of assuming that stiffness remains constant during each 23 

time step can lead to a considerable degree of inaccuracy even when the time 24 

steps are small. There may not necessarily be one method for the whole time 25 

span of response, since the step-by-step integration permits switching from one 26 
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method to another. For some type of structures it may be advantageous to apply 1 

one method while dynamic load is applied and another method for the 2 

continuation of response after the excitation has been ceased.  3 

As mentioned above, one cannot determine which if any of these 4 

methods is the best unless the type of structure to be analysed is specified. 5 

Hence, it is necessary to find a common method which will be the optimum 6 

method based upon the minimization of the total potential dynamic work in 7 

order to achieve the dynamic equilibrium at the end of each time step.  8 

 9 

1.3 Proposed solution  10 

In the dynamic problem, the task of the analyst is to solve the 11 

differential equation arising from the equilibrium of the dynamic forces on the 12 

mass. Equilibrium of dynamic forces is established at the beginning and end of 13 

each time interval. For this reason, the devising of a proposed method which 14 

considers the establishment of each time interval for dynamic analysis under 15 

linear and nonlinear structural behaviour is necessary.  16 

Hence, the proposed method should be applicable for the dynamic 17 

response analysis of the linear analysis and it should be possible to extend its 18 

application to the nonlinear analysis. The new sets of eigenvectors and 19 

eigenvalues for each time step for the proposed theory should not be required 20 

and stability and accuracy should be achieved. It is anticipated that the 21 

proposed theory could be used to evaluate the dynamic response analysis of 22 

nonlinear systems based on the response for a series of short time intervals. 23 

The proposed theory should be able to converge more rapidly to the 24 

neighbourhood of the solution and achieve good accuracy cause of less 25 

iteration to achieve result. It is anticipated that that the proposed theory could 26 
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be used as a new technique for minimization of total potential energy function, 1 

especially in cases where the number of variables is large. The proposed 2 

method is based on the step-by-step time integration of the equations of 3 

motion. The majority of these methods have been used to minimize the 4 

function representing the total potential energy of 3D space structures 5 

subjected to static load. The proposed theory converges more rapidly to the 6 

neighbourhood of the solution and achieves good accuracy. The present work 7 

indicates that this method is the most suitable technique for minimization of 8 

total potential energy function, especially in cases where the number of 9 

variables is large. The optimization of energy in the proposed theory achieves a 10 

decrease in computational time and in the number of iterations per time step.  11 

 12 

1.4 Objectives  13 

The main objective of the present work is to develop an efficient 14 

nonlinear dynamic method for the nonlinear analysis of 3D space structures 15 

with high degree of freedom. The present work develops a nonlinear dynamic 16 

response theory for the analysis of high degree of freedom structures subjected 17 

to various types of static and dynamic loading. 18 

 19 

1.5 Scope 20 

The proposed theory is carried out by numerical testing and 21 

experimental work as follows; 22 

1. To carry out static tests to check boundary to be endcaster condition.  23 

2. To assess the degree of error by elastic deformation of the frame by 24 

assuming a rigid boundary; 25 

3. To perform static tests to check the degree of symmetry of the model; 26 
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4. To conduct static tests with different pattern and intensities of static 1 

loading in order to compare the experimental and theoretical values of 2 

the static deformation; 3 

5. To find a damping ratio for each mode shape by the calculation of the 4 

logarithmic decrement, δ;  5 

6. To evaluate natural frequencies and mode shapes by performing free 6 

vibration analysis; 7 

7. To validate theoretical results of natural frequencies through comparison with 8 

experimental values; 9 

8. To measure dynamic response due to exciting the structure by using the finite 10 

element method with different intensity from different points in order to verify 11 

the proposed theory; 12 

9. To compare the predicted nonlinear responses with those obtained by linear 13 

modal analysis; 14 

10. To study the influence of the magnitude of damping ratios in different modes 15 

while using an orthogonal damping matrix;  16 

11.  To compare the computational time and number of iterations of the proposed 17 

theory with those of the conventional methods; 18 

12. To study the influence of the time step upon stability and accuracy. 19 

 20 

1.6 Thesis outline   21 

The proposed theory is verified with a mathematical model, analytical 22 

and in experimental work.  23 

 In chapter 2, a number of methods which are usually used for dynamic 24 

response analysis are reviewed and uniformly presented. In the review, 25 

attention is drawn to some of the problems usually associated with dynamic 26 
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analysis and the possibility of extending the reviewed methods to cope with 1 

nonlinearity due to the significant changes in the geometry of structural 2 

systems. The methods reviewed are based on step-by-step time integration of 3 

equations of motion.  4 

 In chapter 3, the minimization of the total potential dynamic work and 5 

the problem of minimization for function of several variables such as the 6 

steepest descent, the Newton-Raphson, and Fletcher-Reeves methods are 7 

reviewed. The abstract mathematical problems of minimization for function of 8 

several variables also are discussed. The optimization technique aims to find a 9 

solution to problems by looking for a way to minimize a real function by 10 

methodically selecting the integer value of variables from a predefined set. The 11 

optimization theory and techniques are used widely in a real-valued objective 12 

function.  13 

 In chapter 4, a proposed theory for the nonlinear dynamic analysis of 14 

space structures is presented. The theory is based on the minimization of the 15 

total potential dynamic work. In this chapter a method is presented for 16 

predicting the nonlinear dynamic response of a space structure such as a 17 

stayed-cable bridge which is assumed to be pin-jointed. Structural property 18 

matrices such as mass matrix, stiffness matrix, and orthogonal damping are 19 

discussed. The gradient of total potential work and steplength by Fletcher-20 

Reeves method are calculated. 21 

The mathematical model chosen is a flat net and two chapters 5 and 6 22 

are devoted to the verification of the proposed theory through experimental 23 

work and finite element analysis. The numerical analysis and experimental 24 

work is conducted to verify the proposed nonlinear dynamic theory. 25 
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 In chapter 5 the proposed theory is verified through experimental work 1 

and a mathematical model. The mathematical model chosen is a flat net. A 2 

brief description of the type of mass, damping and stiffness matrices used in 3 

the numerical analysis are given in this chapter. In this chapter, the proposed 4 

theory is investigated through static tests. Static tests are used to check the 5 

stiffness of boundary and the degree of symmetry of the model. A static test is 6 

used to assess the degree of error by elastic deformation of the frame by 7 

assuming it is a rigid boundary. The experimental and theoretical values of the 8 

static deformation with different patterns and intensities of static loading are 9 

compared. 10 

 Chapter 6 is devoted to the verification of the proposed theory through 11 

experimental work and finite element analysis. The flat net is excited by simple 12 

harmonic loading, resulting in the measurement of natural frequencies and 13 

damping ratios in the first five modes of vibration. In this chapter, the damping 14 

for each mode shape is found by the calculation of logarithmic decrement, δ. 15 

Natural frequencies and mode shapes are evaluated by performing free 16 

vibration analysis. The theoretical results of natural frequencies are validated 17 

through comparison with the experimental values. Dynamic response due to 18 

exciting the structure by the finite element method with different intensity from 19 

different points is measured in order to verify the proposed theory. The 20 

influence of the magnitude of damping ratios in different modes while using an 21 

orthogonal damping matrix is studied. The computational time and number of 22 

iterations required by the proposed theory and conventional method are 23 

compared. The influence of the time step upon stability and accuracy is 24 

investigated. 25 
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 In chapter 7, conclusions regarding the complete work are discussed 1 

along with the recommendations for future work. A solution scheme for 2 

nonlinear analysis of 3D space structures subjected to various types of dynamic 3 

loading is presented. A general conclusion is then made, namely that the 4 

proposed theory can successfully be used for the nonlinear dynamic response 5 

analysis of 3D structures with fixed boundaries.  6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 
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 2. CHAPTER 2: SCRUTINIZATION OF NONLINEAR OF DYNAMIC 1 

RESPONSE METHODS FOR THE ANALYSIS OF STRUCTURAL SYESTEMS 2 

 3 

2.1    Introduction 4 

The objective of this chapter is to review the methods most commonly 5 

used to predict the dynamic response of discrete nonlinear structural systems. 6 

Several methods are available for the dynamic response analysis of the linear 7 

structure. Of these the mode-superposition method is best known and most 8 

commonly used. The method can be extended to the nonlinear analysis. The 9 

new sets of eigenvectors and eigenvalues must be calculated at each time step 10 

and the stiffness matrix must be revaluated at end of each time step. This 11 

makes the use of the mode-superposition method time consuming and costly. 12 

However, a version of this method, which does not require the recalculation of 13 

the eigenvalue problem, was adopted by Avitabile (2009) and Kirsch and 14 

Bogomolni (2007) for the analysis of nonlinear stochastic systems. In general, 15 

apart from the above mentioned, the dynamic response analysis of nonlinear 16 

system is based on the evaluation of the response for a series of short time 17 

intervals using different types of time integration techniques.  Basically two 18 

classes of algorithms can be identified; 19 

A. Implicit 20 

B. Explicit 21 

The implicit methods are those which predict the response at the end of each 22 

time step in terms of the known variables at the beginning of the time step and 23 

the unknown variables at the end of the time step. Hence the implicit methods 24 

are trial and error producers involving either iterative schemes or the solution 25 

of simultaneous equations. 26 
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The explicit method predicts the response at the end of time step in terms of the 1 

responses at the previous time steps. They do not normally need the solution of 2 

a system of equations. In the evaluation of the structural property matrices the 3 

mass is assumed to be constant and it can usually be represented as an 4 

equivalent system of lumped masses. The damping forces are usually assumed 5 

to be viscous and the damping matrix often proportional to the mass and/or the 6 

stiffness of the structure. For the structural system with evenly distributed 7 

stiffness, a damping matrix evaluated from the knowledge of the damping 8 

ratios in the various modes can be used. The stiffness matrix of a nonlinear 9 

structure is assumed to consist of elastic and geometric term (Noels, et al., 10 

2004). 11 

 12 

2.2 The equation of motion and their solution 13 

The dynamic problems don‟t have a single solution like static 14 

counterparts. Instead the analyst must establish a succession of solution 15 

corresponding to all times of interest in the response period. In the dynamic 16 

problems the task of the analyst is to solve the differential equations arising 17 

from the equilibrium of the dynamic forces acting on the mass. The differential 18 

equation of motion themselves could be derived using Hamilton‟s principle, 19 

the principle of virtual displacements or direct equilibration of the dynamic 20 

forces uses D‟Alembert‟s principle  (Daston, 1979). 21 

 22 

2.2.1 Hamilton's principle 23 

Hamilton's principle demonstrates that the dynamics of a physical system is recognized 24 

by a variation problem for a functional corresponding a single function. The variation 25 

problem is equivalent to permit for the derivation of the various equations of motion of 26 
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the physical system (Vujanovic, 1978). Hamilton's principle explains that the true 1 

evolution of a system described by generalized coordinates between two specified 2 

times. The simple example of such a problem is to achieve the curve of small length 3 

connecting two points (Synge & Conway, 2000). 4 

 5 

2.2.2 D'Alembert's principle 6 

The principle in writing is the total amounts resulting from the forces 7 

perform and moment on a system. It is the dynamic analogue to the principle of 8 

virtual work for applied forces in a static system (Harrison & Nettleton, 1997; 9 

Udwadia & Kalaba, 2002). The total force is written; 10 

,
)(

i
a

i
m

T
i

F                                                                                                                   2.1 11 

where        F         is the total forces acting on the system's particles 12 

                  M x a    are the inertial forces that result from the total forces 13 

Interchange the inertial forces to the left side shows; 14 

0
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
i

a
i

m
T

i
F                                                                                                             2.2               15 

It should be noted that the original vector equation can be recovered by 16 

recognizing displacements. This results to the formulation of D'Alembert's 17 

principle, which states that, the difference of applied forces and inertial forces 18 

for a dynamic system (Chang Jong, 2005). 19 
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mFW                                                                                             2.3 20 

 21 

2.2.3 Virtual displacement 22 

A virtual displacement (δ) is a supposed extremely small change of 23 

system coordinates occurring while time is constant. The total differential of 24 

any set of system position vectors that are functions of other variables, {q1, 25 

q2,..., qm}, and time, t might expressed as follows: 26 

http://en.wikipedia.org/wiki/Total_differential
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The equations are utilized in Lagrangian mechanics to relate generalized 3 

coordinates, qj, to virtual work, δW  ( Torby & Bruce, 1984). 4 

 5 

2.3 The equation of dynamic motion 6 

  The equation of dynamic motion for a system can be written as:  7 

              M   + C (t)   + K(t)X= P (t)                                                                            2.6 8 

where   M= mass determinant 9 

C (t) = Damping matrix                 K (t) = stiffness matrix 10 

X = Displacement vector                  = Velocity vector 11 

   = Acceleration vector                 P (t) = Load vector, t= time 12 

The solution of equation cannot be expressed in the functional form and it is 13 

necessary to plot or tabulate to solution curve point by point, beginning at (t0 , 14 

x0) and then at selected intervals of t, usually equally spaced, until the solution 15 

has been extended to cover the required range. Thus the solutions of the 16 

nonlinear equations require a step-by-step approach and are normally based on 17 

the use of the interpolation or the finite difference equations. The independent 18 

variable t is divided into equal intervals   , over the range of the desired 19 

solution. Thus the variables after n and (n+1) intervals are given by tn= n.   , 20 

and tn+1=(n+1)   respectively. At time tn it is assumed that the values of all the 21 

parameters as well as the values for same parameters at all previous intervals 22 

(n-1), (n-2),…..,2,1 are known. At time tn+1 it is assumed that the values of the 23 

http://en.wikipedia.org/wiki/Lagrangian_mechanics
http://en.wikipedia.org/wiki/Generalized_coordinates
http://en.wikipedia.org/wiki/Generalized_coordinates
http://en.wikipedia.org/wiki/Virtual_work
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variable parameters are not known and the purpose of the analysis is to find the 1 

value of xn+1 and its derivatives which satisfy  2 

                 1n1n1n1n1n1n PXKXCXM  





                                                    2.8 3 

In the following sections, the equations of motion for single degree of freedom 4 

system and multi degree of freedom system will be discussed. 5 

 6 

2.4 A formal assessment of nonlinear dynamic response methods 7 

2.4.1  The linear acceleration method 8 

This method is based on the step-by-step time integration of the equations of 9 

motion. A method is linear change of acceleration during each time step is 10 

assumed. Equilibrium of the dynamic forces is established at the beginning and 11 

at the end of each time interval. The nonlinear nature of a structure is in 12 

accordance with the deformed state at the beginning of each time increment. 13 

 14 

2.4.1.1 The incremental equation of motion 15 

At time tn and time tn+1 = tn+∆t the condition of dynamic equilibrium is as follows; 16 

nnnnnn PXKXCXM 





                                                                                  2.9 17 

1n1n1n1n1n1n PXKXCXM  





                                                                 2.10 18 

Since      19 

           
XXX nn 1                                                                                                   2.11     20 

           

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



 XXX n1n                        








 XXX n1n  21 

CCC nn 1                          
KKK nn 1  22 

Equation 2.9 may be written as 23 
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121 RRXkXcXM nnnnn 





                                                          2.12 1 

nnnnnn XkXcXMpR 





 1              )()( XXKXXcR nn2 





                                                                            2 

Equation 2.12 is the incremental equation of motion. If it is assumed that the 3 

damping and stiffness of a system remain constant during the time step the 4 

above equation is simplified as R2 becomes zero ( Stefanou, et al., 1992). 5 

 6 

2.4.1.2 Hypothesis of integration of equation of motion 7 

The basic assumption for solving equation 2.10 is the acceleration varies linearly 8 

during each time increment. The motion of a mass point as a result of this assumption is 9 

indicated in Figure 2.1. In this graph acceleration, velocity and displacement at any time 10 

during the time step, when   =0 at time t n and   =∆t at time t n+1 are given.11 

 12 

               Figure ‎2.1: Visual equation of motion in acceleration method. 13 

 14 
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At the end of the time interval when  =∆t results to the following expressions 1 

for the incremental velocity and displacement:  2 

  tX
2

1
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In general it has been found to be convenient to use the incremental 5 

displacement as the basic variable and hence the ∆   and ∆   in terms of ∆X. 6 

rearranging   equations 2.13 and 2.14 yield; 7 
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Interchange of equation 2.15 into equation 2.16 and suppose K (stiffness) and 10 

C (damping) remain constant during the time interval leads to; 11 
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 13 

2.4.1.3 Scrutinization of calculation procedure of acceleration method 14 

For any given time step beginning at time tn where the initial values of 15 

Cn, Kn, Xn, and   n are known either from the initial conditions or from the 16 

calculations of the previous time interval, the analysis consist of the following 17 

steps; 18 

Step 1: Calculate the value of   n from  19 
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Thus, unbalanced force resulting from the assumption of constant damping and 1 

stiffness during the previous step is controlled and the accumulation of the 2 

error in the acceleration from this source is avoided. 3 

Step 2: Calculate the next value of ∆  , ∆X by solving equations 2.16 and 2.14. 4 

Step 3: Calculate the values of x n+1 and    n+1 using equation 2.11. 5 

The above steps complete the calculation for one time increment and 6 

then are repeated for the next interval. The supposition that the stiffness and 7 

damping remain constant during a time interval may result in inaccuracies for 8 

highly nonlinear system. In such cases an iterative method can be used to 9 

update these values during the time step in order to achieve a more correct 10 

equilibrium of the dynamic forces. If this is desirable the expression for R2 11 

must be included in equation. 2.18, which will yield  12 
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       2.19   13 

The summary of the calculation procedure in this case the values of Cn, kn, Xn, 14 

  n and   n are given by the initial conditions or from the calculation of the 15 

previous time step is as follows: 16 

Step 1: Calculate the first estimate of ∆x using equation 2.18. 17 

Step 2: Calculate the value of ∆   and   ∆    using equation 2.17. 18 

Step 3: Calculate the values of   X n+1,    n+1,     n+1, C n+1 , K n+1 using equation 2.11. 19 

Step.4: Calculate the resultant dynamic force F from 20 
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 If F is less than a desired value the calculation for the step complete, otherwise  22 

Step 5: Calculate ∆x from equation 2.14 and return to step 2 above. 23 
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2.4.1.4 Accuracy and stability 1 

According to hypothesis of acceleration method that acceleration varies 2 

linearly during any time increment, the accuracy of the method depends on the 3 

size of ∆t. The time step must be short enough to justify this assumption and 4 

also short enough to ensure correct representation of the loading history. The 5 

method is only conditionally stable and will diverge if ∆t is greater than 6 

approximately half the period of vibration. The time step must, however, be 7 

considerably smaller than this value to provide accurate result. 8 

2.4.1.5 The linear acceleration method to multi degree of freedom systems 9 

When the above method is employed for the analysis of multi degree of 10 

freedom systems the derivation of the incremental equations of motion can be 11 

carried out exactly as the one for single degree of freedom systems with 12 

equation 2.8. By assuming constant stiffness and damping during the time 13 

interval. The final matrix equation by analogy with equation 2.20 will be:   14 
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In 1973, Wilson presented a general solution scheme for the dynamic 16 

analysis of an arbitrary assemblage of structural elements with both physical 17 

and geometrical nonlinearity. The scheme is unconditionally stable and 18 

therefore relatively large time steps can be used. 19 

 20 

2.4.2 The Wilson-θ method 21 

The Wilson-θ method is a modification of the standard linear 22 

acceleration method. The modification is based on the assumption that 23 

acceleration varies linearly over an extended computational time step τ, where      24 

t . , this assumption leads to a set of new equations for the dynamic 25 

equilibrium at the end of the extended time interval τ. This method is a set of 26 
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equations relating the accelerations, velocities and the displacement at the end 1 

of the actual time step t . Time step is also changed by variation of 2 

displacement at the end of the extended time step τ. The above requires the 3 

introduction of a third subscript t + τ in addition to the subscripts n and n+1 in 4 

order to identify the variable parameters at time  nt  (Harrison & Nettleton, 5 

1997; Wilson & Callis, 2004). 6 

 7 

2.4.2.1  The Wilson-θ method for MDOF system 8 

The condition of dynamic equilibrium at the end of an extended time 9 

increment τ, assuming damping and stiffness remain constant during the time 10 

increment is expressed as: 11 
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where    14 
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Calculation of X  involves the solution of a set of simultaneous equations as 16 

implicit methods. The method is only conditionally stable and as a rule of 17 

thumb the size of the time step should be equal to or less than half the smallest 18 

natural period of a system to avoid instability. This condition implies the 19 

calculation of a large number of steps to cover the required range of analysis. 20 

Thus unconditionally stable methods which permit the use of large time steps 21 

are likely to be more advantageous when analysing multi degree of freedom 22 

system.  23 
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 1 

2.4.2.2 Unconditionally stable linear acceleration of Wilson θ -method 2 

Several different unconditionally stable step-by-step methods have been 3 

developed for dynamic analysis of linear and nonlinear structural system. In 4 

linear system solution a recurrence matrix solution is used. Many researchers 5 

such as Hughes (1976) investigated about Wilson-θ method by assumption of 6 

linear acceleration. For the nonlinear system, however, most of the 7 

investigations have been concerned with a particular type of structure and 8 

nonlinearity. Where r is a projected load vector given as: 9 
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With above notation the analysis proceed in a similar way to that of the linear 13 

change of acceleration method. Substituting equation 2.25 in equation 2.24 will 14 

gives the incremental equation of motion for the extended time step . 15 
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The basic relationships arising from the assumption that the acceleration varies linearly 17 

during the extended time step are given by analogy with equation 2.26 as; 18 
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Which when solved to express 


 X  and 


 X  in terms of X  yields; 21 
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Substituting equations 2.29 and 2.30 in equation 2.26 gives; 2 
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The determination of X  requires the solution of a set of simultaneous 5 

equations. This is a feature of implicit methods. The setting up of the global 6 

stiffness matrix, however, is not usually necessary since the product nn XK  can 7 

be calculated. Finally the acceleration, velocity and displacement vectors at the 8 

end of the normal time step t  are given by: 9 
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These become in turn the initial vectors for the next time step. It should be 13 

noted that in the Wilson  -method the stiffness and damping are assumed to 14 

remain constant during the extended time step and are only updated at the end 15 

of the real time increment t . 16 

 17 



23 
 

2.4.2.3 Scrutinization of calculation procedure of Wilson-θ method 1 

Different calculations procedures are given for the analysis of linear and 2 

nonlinear systems together with the following values of   to ensure 3 

unconditionally stable algorithms: 4 

      Linear systems                   37.1  5 

      Nonlinear system              37.1  6 

For nonlinear system and for any time step (n+1) where the values of 7 

nnnn XXKC


,,,  and nX


 are known either from the initial conditions or 8 

from the calculation of the previous step. The calculations procedure as 9 

follows: 10 

Step 1: From the dynamic stiffness matrix 
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6
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3
K

2nn
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 11 

Step 2: From the effective load vector by calculating equation 2.25. 12 

Step 3: Calculate X  from equation 2.28.  13 

Step 4: Calculate the acceleration, velocity and displacement vectors 1n1n XX 


,   and 14 

1nX  respectively at the end of the real time increment t  using equations 2.32 to 2.34. 15 

Step 5: Update the stiffness and damping matrices. 16 

Step 6: Return to step 1 for the next time step. 17 

 18 

2.4.2.4 Discussion of the size of the time step in Wilson-θ method 19 

The two factors which affect the size of the time increment to be used in 20 

step-by-step integration methods are stability and accuracy. For 21 

unconditionally stable methods such as the Wilson-θ method the size of the 22 

time step is chosen only with regard to the accuracy. Hence for a given 23 

problem it is necessary to evaluate the frequency components of the dynamic 24 
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load in order to select a time increment which will enable accurate 1 

representation of the loading. In highly nonlinear systems, a smaller time step 2 

is required and stability of time step is necessary to ensure sufficient accuracy. 3 

The Wilson-θ method appears to be relatively efficient when applied to the 4 

analysis of linear and slightly nonlinear systems for which the updating of the 5 

stiffness and damping matrices at the end of the time increment only are not 6 

likely to lead to large accumulation of errors. For highly nonlinear methods the 7 

efficiency of the method may be more questionable as relatively smaller time 8 

steps will be needed to ensure sufficient accuracy. 9 

2.4.3 The Newmark method 10 

The methods presented in previous sections were implicit and based 11 

upon the assumption of the linear change of acceleration during each time step. 12 

Hypothesis in Newmark method will indicate how much of the acceleration at 13 

the end of the interval enters into the relationships for velocity and 14 

displacement. In 1959 Newmark presented a method which permits different 15 

types of variation of acceleration to be taken into account. The main features of 16 

this method are given in the following sub-sections. The Newmark-beta 17 

method is a method of numerical integration used to solve differential 18 

equations  (Bradford & Yazdi, 1999). It is used in finite element analysis to 19 

model dynamic systems. A differential equation is a mathematical equation for 20 

an unknown function of one or several variables that relates the values of the 21 

function itself and its derivatives of various orders. The Newmark-β method 22 

states that the first time derivative (velocity in the equation of motion) can be 23 

solved as, 24 
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Because since the acceleration also varies with time, however, the extended 3 

mean value theorem must also be extended to the second time derivative to 4 

obtain the correct displacement. Thus, 5 
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Newmark showed that a reasonable value of γ is 0.5, therefore the update rules are, 8 

             )( 1nnn1n XX
2

t
XX 











                                                                        2.40             9 

            1n
2

n
2

nn1n XtXt
2

21
XtXX 











 


                                     2.41             10 

Setting β to various values between 0 and 1 can give a wide range of results. 11 

Typically β = 1 / 4, which yields the constant average acceleration in Newmark 12 

method. In current Chapter, a framework is presented for solving general 13 

problems in solid mechanics. Zienkiewicz (2005), considered several classical 14 

models for describing the behaviour of engineering materials. Each model we 15 

describe is given in a strain-driven form in which a strain or strain increment 16 

obtained from each finite element solution step is used to compute the stress 17 

needed to evaluate the internal force as well as a tangent modulus matrix, or its 18 

approximation, for use in constructing the tangent stiffness matrix.  19 

 20 
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2.4.3.1 Newmark's relationships for acceleration, velocity and displacement 1 

Newmark method expressed the velocities and displacements at the end 2 

of a time increment in terms of the known parameters at the beginning and the 3 

unknown acceleration at the end of the time step as: 4 
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where   and   are parameters which can be varied at will. The value of   is 7 

taken to be equal to 
2

1
 as other values will produce numerical damping. 8 

Equation 2.44 can therefore be written as: 9 
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In addition to the expressions for the displacement and velocities the condition 11 

of dynamic equilibrium at the end of the time interval is given by; 12 
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Yield the following expression for the acceleration at the end of the time step. 14 
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An equation 2.44 is used for the nonlinear analysis of the structural systems by 16 

Newmark method. In general unless   is taken as zero the calculation 17 

procedure for one time increment can be summarized as in section below. 18 

2.4.3.2 Summary of analysis using the Newmark method 19 

Step 1: Assume value for the acceleration vector 1nX 


 at the end of the time step.    20 
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Step 2: Compute the velocity and displacement vectors 1nX 


 and 1nX  at the 1 

end of the time step using equations 2.43 and 2.42. 2 

Step 3: Update the stiffness and damping matrices. 3 

Step 4: Calculate the acceleration vector 1nX 


 using equation 2.45. 4 

Step 5: Compare the computed acceleration vector 1nX 


 with the assumed one. 5 

If these are equal or within a permissible difference the calculations 6 

for the step have been completed, if not 7 

Step.6: Assume the last calculated value of 1nX 


 to be the initial value in the 8 

next iteration of step 2. 9 

The convergence of the process close to the equality of the derived and 10 

assumed acceleration (Bernard & Fleury, 2002) . The criterion of the 11 

convergence given by Newmark is the equality of the assumed and calculated 12 

values of the acceleration at the end of the time step. It is highly unlikely that 13 

all the elements in the calculated vector will be equal to the corresponding 14 

elements in the assumed vector. A convergence criterion must be included in 15 

the process. The criterion may be based upon a comparison of the values of the 16 

norm of the vectors and / or upon a comparison of the individual elements 17 

given either as a percentage or an absolute difference. The choice of type and 18 

magnitude of the permissible difference is a function of the required accuracy 19 

and is left to the experience and judgment of the analyst. 20 

 21 

2.4.3.3 Interpretation of the parameter β 22 

It is of interest to note how the acceleration during the time interval 23 

varies with variations in the values of β. Although it is not possible to define a 24 
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relationship for all values of β but at least four values, the variation in the 1 

acceleration during the time step can be described. Three of these variations are 2 

shown in Figure 2.2. 3 

                                        4 

 5 

                            Figure ‎2.2: Acceleration variation of Newmark Method. 6 

It appears that a choice of  
2

1
  corresponds to assuming a uniform value of 7 

the acceleration during the time interval equal to the mean of the initial and 8 

final value. A value of 
2

1
  corresponds to assuming a step function with a 9 

uniform value to the initial value for the first half of the time increment and a 10 

uniform value equal to the final value for the second half.  A choice of 
6

1
  11 

corresponds to a linear change of acceleration during the time interval. The 12 

latter value of β results in the basic equations as developed in the standard 13 

linear acceleration method. The main difference between the two algorithms is 14 

that in the Newmark method equilibrium of the total acceleration, velocity and 15 

displacement vectors at time tn+1 whilst in the other equilibrium is only ensured 16 

for the incremental acceleration, velocity and displacement vectors. The latter 17 

may result in an accumulation of errors unless the acceleration is recalculated 18 

from the equations of motion at the end of the time step. The fourth value of β  19 
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which can be given a physical interpretation,  β =0, will be discussed in the 1 

next section (Roy & Dash, 2002). 2 

 3 

2.5  The Newmark  =0 method 4 

The value  =0 leads to an explicit algorithm for the Newmark method and is 5 

therefore discussed separately. When 0  the expression for the 6 

displacement at 1nt  is given as; 7 
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Substituting the expression for 1



nX  given by equation 2.51 into equation 2.27 9 

and solving for 1



nX   yields: 10 
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The phrase 1nX  is known 1nK  can be calculated from the product 1nK 1nX . 12 

In some cases this product can be built up as a column vector without 13 

formulating the global stiffness matrix. The value of  =0 corresponds to 14 

double pulses of acceleration at the beginning and end of the time interval with 15 

each double pulse consisting of a part equal to half of the acceleration times. 16 

The time interval is occurring just before the end of the preceding interval and 17 

the other just after the beginning of the next interval. 18 

 19 
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2.5.1 Summary of analysis using the Newmark (  =0) method 1 

With the value of  


nnnn XXCK ,,,  and nX


 given either at the end of the 2 

previous time step or from initial conditions the calculation procedure of 3 

Newmark ( =0) method for one time interval can be summed as follows: 4 

Step 1: Calculate 1nX  from equation 2.46.  5 

Step 2: Set up 1nK  and 1nC . 6 

Step 3: Calculate 1nX 


 using equation 2.47. 7 

Step 4: Calculate 1nX 


 using equation 2.43. 8 

The above steps complete the calculations for one time interval which may 9 

now be repeated for the next step. From the above it can be seen that the 10 

calculation of 1nX 


 as a function of Calculate 1nC  is only possible for cases 11 

where the damping matrix is not a function of the velocity. 12 

2.5.2 Stability and accuracy of the Newmark method 13 

The Newmark method is of the second order accuracy and only 14 

conditionally stable. This means that the time interval ∆t must be less than a 15 

certain value to ensure stability. The size of ∆t is a function of the value of β 16 

and the smallest period of vibration of a system. Recommendations with 17 

respect to the choice of values for β  and the size of time intervals are given in 18 

Stochastic Newmark scheme (Bernard & Fleury, 2002). 19 

 20 

2.5.3 The central difference method 21 

2.5.3.1 The difference equations for acceleration and velocity 22 

The use of difference equations for the solution of ordinary differential 23 

equations permits the transformation of the equations of motion into equations 24 
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which only include the deflection ordinates at the ends of several successive 1 

time steps. Probably the most commonly used different in equations for the 2 

acceleration and velocity is those given below: 3 

                          1n1nn XX
t2

1
X  





                                                                 2.48 4 

                          1nn1n2
n XX2X

t

1
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



                                                      2.49       5 

It leads to give the derivatives of X at the intermediate of three successive time steps. 6 

 7 

2.5.3.2 The explicit central difference algorithm 8 

The condition for equilibrium of the dynamic forces at time  nt   is given by: 9 

                  0PXKXCXM nnnnnn 





                                                           2.50 10 

Substituting the expressions for 


nX  and 

nX  given by equation 2.48 and 2.49 11 

into equation 2.50 and solving for 1nX  yields: 12 
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Equation 2.56 predicts the displacement vector 1nX  at time 1nt  explicitly in terms of 14 

the variable parameters at time nt  and the displacement vector at time 1nt . Given the 15 

displacement vectors 1nX  and nX  at time 1nt  and nt  respectively the calculation 16 

sequence for the central difference method is as follows: 17 

Step 1: Update the damping and stiffness matrices 1nC  and 1nK  to nC  , and nK . 18 

Step 2:  Calculate the displacement vector 1nX  at time 1nt  from equation 2.51. 19 

Step 3: Calculate the velocity and acceleration vectors nX


 and nX


 at time  nt .
 20 
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Step 4: Proceed to the next interval and return to step 1. It should be noted that to start 1 

the central difference algorithm from the initial values 


XX ,  and 


X , the value of  2 

1X   can be determined from  3 

          2

1 tX
2

1tXXX 





 
                                                                     2.52 4 

 5 

2.5.3.3 Stability and accuracy of the central difference method 6 

The central difference method is only conditionally stable and requires 7 

the time intervals ∆t  are required to be less than twice the smallest period of a 8 

system to ensure stability (Li & Yuan, 2008). The method is of the second 9 

order accuracy as far as the step by step integration is concerned. However, the 10 

fact that the displacement vector at time tn+1 is calculated in terms of the 11 

dynamic load vector as well as the stiffness and damping matrices at time nt  12 

are likely to result in a considerable degree of inaccuracy. This will particularly 13 

be so if there are any sudden changes in the dynamic forces or if the degree of 14 

nonlinearity of the system is high. For such cases, therefore, the size of the 15 

time steps may have to be considerably smaller than that dictated by stability 16 

(Rio, Soive, & Grolleau, 2005). 17 

 18 

2.5.4 The Fu method of dynamic analysis 19 

Fu method is published an explicit algorithm for the solution of ordinary 20 

differential equations for two dimensional wave propagation in solids, in which 21 

he presented difference equations for a two step calculation within each time  22 

interval (Telles & Carrer, 1994). When the method is applied to the structural 23 

systems, it first predicts the displacement vector and then calculates the 24 

acceleration and velocity vectors at the middle of a time step. It then predicts 25 
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the displacement vector and from that calculates the acceleration and velocity 1 

vectors at the end of the time step. 2 

 3 

2.5.4.1 The application of Fu's algorithm to nonlinear structural systems 4 

In the middle of a time step t  at time   tntn  2
1

1   Fu gives the 5 

following expressions for the displacement and vectors: 6 
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Substituting the above expression for 
2

1n
X  and 

2
1nX 



 into the equation of 9 

motion of time 
2

1n
t  and solving for 

2
1nX 


 yields:  10 
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             2.55 11 

Where the damping and stiffness matrices may or may not be update at this 12 

stage, depending upon the degree of the nonlinearity of the system.               At 13 

the end of the time step t  Fu gives the expressions for the displacement and 14 

velocity vectors as: 15 
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Interchange equations 2.56 and 2.57 into equation 2.5, the equation of motion 1 

at time 1nt , and solving for 1nX 


 yields: 2 
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The resulting explicit algorithm can take any nonlinearity into account by 4 

updating the damping and stiffness matrices both in the middle and end of a 5 

time increment.  6 

 7 

2.5.5 Summary of the calculation procedure for Fu's method  8 

Step 1: Calculate the predicted displacement vector at time
2

1n
t using equation 2.56. 9 

Step 2: Update the damping and stiffness matrices to time
2

1n
t . 10 

Step 3:  Calculate the acceleration at time 
2

1n
t  using equation 2.58. 11 

Step 4:   Update the damping and stiffness matrices to time
2

1n
t . 12 

Step 5: Calculate the velocity vector at time 
2

1n
t  using equation 2.57. 13 

Step 6:    Proceed to the next time step and return to step1. 14 

If  


XX ,  and 


X  are the initial values the procedure may be started by calculating 15 

the value of 
2

1X  from       2

2
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                                         2.59       
16 

 
17 

2.5.5.1 Stability and accuracy of Fu's method   18 

The results of a stability investigation of the two variants of Fu's 19 

algorithm are presented in (Huang & Chang, 2002). The stability analysis 20 

indicates the presence of numerical damping and shows an effective stability 21 

limit of 2t < 0.22 MINT , where MINT   is the smallest natural period of a 22 



35 
 

system. This is lower than the central difference method. The method is of 1 

fourth order accuracy, but again for highly nonlinear systems may require 2 

smaller time steps than those required to ensure the stability.  3 

 4 

2.5.6 Trujillo's method  5 

Trujillo presented an explicit algorithm for the dynamic response 6 

analysis of structural systems in 1977 (Trujillo, 1977)  and tested the method 7 

for linear problems. For the linear undamped systems the method was shown to 8 

be unconditionally stable. An algorithm based upon Trujillo's method has been 9 

developed for nonlinear systems by Raman & Kumar but it does not take into 10 

account the effect of damping (Raman, Surya Kumar, & Sreedhara Rao, 1988). 11 

 12 

2.5.6.1 The Trujillo algorithm  13 

Trujillo splits the stiffness and damping matrices into upper and lower 14 

triangular forms as indicated below.  The stiffness and damping matrices is 15 

given into the subscripts U and L respectively. The following algorithm is 16 

divided into a forward and a backward substitution.  17 

Forward substitution: 18 
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Backward substitution: 1 
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An advantage of this algorithm is that, since it is restricted to the use of 4 

diagonal mass matrices only, the coefficient matrices of 
2

1n
X  and 1nX  are 5 

obtained respectively in the upper and lower triangular forms. Thus the 6 

solution of the equations at time 
2

1n
t  is reduced to forward and at time 1nt  to 7 

backward substitution only. Trujillo suggests two ways of splitting the stiffness 8 

and damping matrices. The first one is a symmetric splitting which satisfies the 9 

conditions: 10 

                        T

ULUL KKKKK  ;                                                                  2.64  11 

                        T

ULul CCCCC  ;                                                                 2.65  12 

The second way differs from the first only by the manner in which the diagonal 13 

elements are distributed. But Kumar, who extended Trujillo's work to apply to 14 

nonlinear systems, excludes damping and thus reduces the equilibrium 15 

equations at the n
th

 step to 16 

                         nnn PRXM 


                                                                                 2.66  17 

Where nR the internal force is vector, and presents the following algorithm for 18 

the middle and the end of step: 19 
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Nonlinearity is taken into account by updating the stiffness matrix at the end 5 

and if necessary in the middle of each time step. For nonlinear problems the 6 

algorithm loses its unconditional stability and becomes similar to the Newmark 7 

 
4

1  method. The size of the time step is, however, mainly governed by 8 

the required accuracy. 9 

 10 

2.5.7 Additional methods  11 

Apart from those methods which were described in the foregoing 12 

sections of this chapter, there are many other methods which are in one way or 13 

another interesting and can be applied to different types of structures. The 14 

scope of this work does not permit a detailed review of all these methods, but 15 

attention is drawn to the papers of the following authors. Argyris (1979)  has 16 

developed a method for linear systems which permits the use of large time 17 

steps by taking into account higher terms in the Hermetian interpolation 18 

polynomial. Kilic (2009) has used the method of dynamic relaxation to predict 19 

the static and dynamic response of cable networks, and Park (1975) has also 20 

contributed to the improvement of direct integration methods. 21 
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 1 

2.6 Conclusions  2 

All the methods reviewed by the author predict the response of 3 

nonlinear assemblies by forward integration in the time domain. In general, the 4 

methods are either implicit or explicit provide numerical solutions to the 5 

equations of motion set up for one interval of time. They are mainly concerned 6 

with the two ends of a given interval and how to get from one end to the other, 7 

and for establishing starting values for the next time step. This is satisfactory 8 

for the methods developed for the analysis of linear systems. 9 

 In the case of nonlinear systems, most of the methods assume the 10 

structural properties to remain constant during the interval, but revaluates them 11 

at the end and in some cases also in the middle of the time step. For highly 12 

nonlinear assemblies this may not be sufficient and in such cases it is important 13 

to revaluate both the stiffness and the damping during the time step. The 14 

implicit methods do usual permit continuous revaluation of the stiffness and 15 

damping during the iterative process to establish dynamic equilibrium at the 16 

end of each time step. The revaluation process, however, makes the methods 17 

more expensive to use.  18 

The implicit method offer unconditional stability at the expense of 19 

operating with relatively dense decomposed matrices when applied to linear 20 

structures, but lose the advantage of unconditional stability when applied to 21 

nonlinear system. The explicit methods, on the other hand, have relatively less 22 

computer storage and computation than the implicit methods, but are hampered 23 

by instability which limits the size of the time steps. The implicit methods 24 

when applied to nonlinear structures require the solution of a set of nonlinear 25 

equations whilst most explicit methods require the inversion of a non-diagonal 26 
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matrix if consistent mass and non-diagonal damping matrices are used. A 1 

considerable amount of information is available concerning the effect of the 2 

size of the time intervals on the stability as well as the accuracy of the different 3 

methods.  4 

The effect of variation of damping has attracted even less attention. In 5 

many cases the stability criteria has been discussed in the absence of damping 6 

even though for assemblies with high damping. For highly nonlinear structures 7 

such as cable and membrane structures, the stiffness is assumed to be constant 8 

during each time step. This assumption can lead to a considerable degree of 9 

inaccuracy even when the time steps are small. The degree of inaccuracy will 10 

increase as the prediction time increases. One cannot choose any of these 11 

methods as the best, unless the type of structure to be analysed is specified. 12 

Once known problem is when the most suitable method is selected for 13 

the analysis, this may not necessarily be suitable method for the whole time 14 

span of response. Hence, the step by step integration that permits switching 15 

from one method to another method is useful to nonlinear analysis. Some types 16 

of structures it is advantageous to apply one method while dynamic loads such 17 

as sudden shocks or wind gusts are applied and another method for the 18 

continuation for response is used after the excitation has ceased.  19 

The present method is based upon the minimization of the total dynamic 20 

work in order to achieve in accuracy result in during less time to compare 21 

conventional methods. In the following chapter, therefore, a review and a 22 

comparison are made of the relevant optimization methods in order to choose 23 

the most appropriate minimization algorithm. 24 

 25 

 26 
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3. CHAPTER 3: SCRUTINIZATION OF TECHNIQUES TO OPTIMIZING 1 

FUNCTIONS OF SEVERAL VARIABLES. 2 

 3 

3.1  Introduction 4 

In this chapter, the techniques used for minimization of functions of 5 

several variables will be discussed. The first optimization technique known is 6 

steepest descent. The optimization technique find solution of problems in 7 

which it minimizes a real function by integer value of variables from within 8 

permission set. The optimization theory and techniques use a real-valued 9 

objective function.  10 

 11 

3.1.1  Lagrange multipliers, and Euclidean space 12 

The Lagrangian is defined as that which appears under the action 13 

integral. In the viewpoint of optimization technique, the method of Lagrange 14 

multipliers supplies a strategy for searching the minimum of a function 15 

subordinate constraint(Ha, 2005). In mathematics, Euclidean space applies to 16 

three-dimensional space of Euclidean geometry. In modern mathematics, it is 17 

more common to define Euclidean space using Cartesian coordinates. The 18 

result is always a real number (Celebi, et al., 2009; Qi, et al, 2002). Differential 19 

geometry of curves is the branch of geometry that deals with smooth curves in 20 

the Euclidean space by methods of differentials. The special case of the theory, 21 

response to static load is employed to demonstrate the application of the chosen 22 

method of minimization. This also enables the presentation of the algorithm for 23 

static analysis in line with the forthcoming dynamic theory. 24 

 25 

 26 

http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Differential_calculus
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3.2 Scrutinization of problems by advance mathematical 1 

In general the problem of minimization of function of several variables 2 

can be stated as:  3 

                     Minimize                 w = F (X)   f 4 

                     Subject to                Fi (X) = bi       ( i= 1, 2, …, m)     m < n 5 

Where    X = [X1, X2… Xn ]  represents a point in an n-dimensional Euclidean 6 

space. The problem is reduced to that of locating an unconstrained minimum of 7 

the function f.  In such case: W* = F (X ) is said to be the global minimum of   8 

F(X) at X= X   if   F(X )   F(X) for all X (Doltsinis & Kang, 2004; Farshi & 9 

Alinia-ziazi, 2010). The majority of available methods attempt to locate the 10 

unconstrained minimum of a function by generating a set of estimates, each of 11 

is intended to nearer to the solution than all previous ones. Figure 3.1 shows 12 

geometric representation of decent through the contours of a function of two 13 

variables. 14 

 15 

Figure ‎3.1: Geometric representation of decent through the contours of a function of two 16 

variables. 17 
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Typically, the position of a new point is found by an iterative process 1 

according to the formula: 2 

                 kkk1k VSXX                                                                                       3.1            3 

where        V is a descent direction vector, 4 

                  S is the steplength, and 5 

                  K is the iteration number. 6 

 7 

3.3 The steplength 8 

The steplength S which defines the position along V, where W is a 9 

minimum can usually be determined by: 10 

            
0)( 11   kk XXf

                                                                                         3.2        11 

However, the computational effort involved is high and it may sometimes 12 

prove more advantageous to calculate S. The steplength is only at selected 13 

points or attempt to set bounds on its value rather than to evaluate it exactly. 14 

The calculation of the steplength depends on the method of minimization and it 15 

is a compromise between the numbers of iterations. The computational efforts 16 

involved in each one from iteration and the obtainable accuracy. The term 17 

steplength implies that the descent vector V is normalized, although this is not 18 

explicitly required in the resulting algorithms. 19 

 20 

3.4 Choice of descent direction 21 

The descent method can be classified according to the way in which the 22 

descent direction V is found. The descent direction can either be calculated 23 

from the values of the function alone, or form values of the function together 24 

with values of its partial derivative. The descent direction can also be 25 

calculated by the additional information gained from the second partial 26 
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derivative of the function. In general the methods using the second partial 1 

derivatives require less iteration than those relying on the values of the first 2 

derivative, but they clearly involve more computation per iteration. 3 

Minimization method according to all aspects can further be classified. The 4 

information gained in previous iterations is used to calculate the next descent 5 

direction. A brief description featuring the outline of the three major classes of 6 

methods appear below.  7 

Direct search methods, (C0- methods) are methods which rely only on 8 

evaluation of F(X) at a sequence of point X1, X2 … in order to reach the 9 

minimum point X . These methods are normally used when the function f is 10 

not differentiable. These methods are also subjected to random error or the 11 

derivatives are discontinuous. 12 

First order methods (C1- methods) are methods which make use of the 13 

first partial derivatives of the function f for calculation of the descent vector. 14 

The existence and continuity of the first partial derivative of f, and g, is 15 

essential for this class of methods. Examples of such methods are the method 16 

of steepest descent, the method of conjugate gradients and the method of 17 

Fletcher-Reeves.  18 

Second order methods (C2- methods) are methods which require the 19 

second partial derivatives as well as the first derivative of f. C2- methods are 20 

suitable for minimization of functions which can be differentiated twice and in 21 

which both derivatives are continuous. Hence, the second partial derivative of a 22 

function of several variables is a matrix. These classes of methods require 23 

considerable computer storage.  The best example of this type of methods is the 24 

Newton-Raphson method. 25 

 26 
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3.5 Gradient methods for the determination of descent directions 1 

The present work represents only these methods which in general are 2 

suitable for minimization of potential dynamic work.  3 

3.5.1  The method of steepest descent 4 

This method is characterized by using the negated value of the first 5 

partial derivative or gradient of the descent vector. The gradient g can be 6 

constructed from: 7 

     n21ixxfxgg iii ,...,,)()(                                                             3.3   8 

And has the Euclidean norm  9 
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n
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ggR 
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

                                                                                                      3.4 10 

 The direction of steepest descent is given by:  11 

       gV                                                                                                                   3.5 12 

The process of minimization is carried out by successive approximation to the 13 

location of the minimum value of V in equation 3.1 until R    , where  a 14 

given tolerance or some other convergency criterion is reached, Figure 3.2. 15 

 16 

Figure ‎3.2:  Geometric representation of the steepest descent method for a function 17 

of two variables. 18 
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Figure 3.3 show Geometric representation of relaxed steepest descent for a 1 

function of two variables. The resulting oscillatory movement toward the 2 

minimum makes the method rather slow. 3 

 4 

Figure ‎3.3: Geometric representation of relaxed steepest descent for a function of two 5 

variables. 6 

 Figure ‎3.4: Geometric representation of the Fletcher-Reeves method for a 7 

function of two variables 8 
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The rate of convergency can however be improved by relaxation of the 1 

steplength S, in which case the steplength in each iteration is given by h*S 2 

instead of S, where 0 < h < 1.0. Geometric representation of relaxed steepest 3 

descent for a function of two variables is shown in Figure 3.4 If a relaxation 4 

factor is used, equation 3.1 may be written as: 5 

                             kk1k VShXX                                                                    3.6   6 

The steplength (S) is either calculated by using the relation given by equation 7 

3.2 or estimated in some other way. 8 

 9 

3.5.2 The method of conjugate gradients 10 

The minimization algorithm behaves efficiently in the case of functions of 11 

higher order when using conjugate gradient method (Ademoyero, et al., 2004; 12 

Yuan, Lu, & Wei, 2009). This serves as a motive for investigating methods 13 

developed for the solution of system of linear equations. The conjugate 14 

gradients summarize as follow; A set of direction vectors V are said to be 15 

conjugate or K-conjugate (k being a positive definite matrix) if: 16 

            ),...,,,(, n21jiji0VKV i

T

i                                                        3.7       17 

 It can be shown that descent vectors at the k
th

 and (k+1)
th

  iteration, Vk and 18 

Vk+1 satisfy the condition (Babaie-Kafaki, et al., 2001)  as follows; 19 

 20 

                             0VKV k

T

1k 
                                                                              3.8       21 

Then          0ggV 1kk

T

k   )(
   

And           0ggV k1k

T

k  )(  22 

The descent vector V at the (k+1)th iteration is determined by a family of linear 23 

combinations of -gk+1 and Vk . It is given by: 24 

                           kk1k1k VgV *                                                                       3.9                                     25 
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The most commonly used expression for beta  is given by Fletcher and 1 

Sorenson (Fletcher, 1972; Sorenson, 1969)  and further stated by Fletcher and 2 

Reeves  as: 3 

                    
k

T
k

1k
T

1k

k gg

       g    g    


                                                                        3.10  4 

The solution is processed for a single degree of freedom system by using the 5 

tangential stiffness method. Visual solution process for system by using the 6 

tangential stiffness method is given Figure 3.5.               7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

(a)  Stiffening System                                            (b) Softening system 16 

Figure ‎3.5: Visual solution process for system by using the tangential stiffness method. 17 

This solution process is for a single degree of freedom system by using the tangential 18 
stiffness method. 19 

3.5.3 The method of Newton-Raphson 20 

The basic idea behind this method is to approximate the given function 21 

to a quadratic in each iteration and then use the minimum of this quadratic Xt 22 

as the starting point for the next iteration. Equations 3.1 and 3.9 provide the 23 

basic algorithm for function minimization by the method of conjugate 24 

gradients. Another expression for   to be used for nonlinear functions is given 25 

by Yuan (2009) as: 26 
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                                                                        3.11                                    1 

At the kth iteration, function f can be approximated to a quadratic in the 2 

neighborhood of Xt = Xk   as: 3 

     k
g

T

k
xtx

k
xtxk

T

k
xtx

2
1txf

k
f





 





 





 





        3.12                 4 

Where k is the Hessian matrix whose (i, j) th element is found from  ji

2

xx
f


  .      5 

Now if Xk has a minimum at Xt =X  , then for   6 

                             
XXX k 

                                                                           3.13 7 

Using Taylor's series and ignoring cubic and higher order terms, the gradient at 8 

the (k+1) th iteration can be written as: 9 
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                                                              3.14 10 

The Newton-Raphson method uses X  as the next point, hence 1kg
=0 and 11 

equation 3.14 becomes 12 

                            
k

g1
k

kX                                                                            3.15   13 

The iterative formula for the process of minimization is given as: 14 

                            X
K

X
1k

X 


                                                              3.16 15 

Substituting the expression for X  given by equation 3.15 into equation 3.16 16 

yields 17 

                        
  kkkK gkXX

1

1



 
                                                                      3.17 18 

The criterion of convergency is that Xk = Xk+1 or that their differences 19 

  kk gk
1


 become negligible. The process of minimization by the Newton-20 

Raphson method, described above is normally termed as the tangential stiffness 21 
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method. For nonlinear problems, it requires the updating and inversion at each 1 

iteration (Gopalakrishna & Greimann, 1988; Thai & Kim, 1977). The solution 2 

process for a single degree of freedom system is illustrated in Figure 3.6. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

    (a)  Stiffening System                                            (b) Softening system 12 

Figure ‎3.6: Visual solution process for system by using the initial stiffness method. 13 

This solution process is for a single degree of freedom system by using the initial 14 

stiffness method. 15 

  A variation of the above method is the initial stiffness method, in which the 16 

tangential stiffness matrix is replaced, at all iterations by the initial stiffness 17 

matrix. In this case a complete solution of equation is required for the first 18 

iteration. This reduces the computational effort significantly although the 19 

number of iterations may be larger than that of the tangential stiffness method. 20 

The initial stiffness method can be shown to be convergently more stable than 21 

the tangential stiffness method (El-Beltagy & Keane, 1999; Gloeckner, et al., 22 

1976). 23 

 24 

3.5.4 The method of Fletcher-Reeves 25 

This method was originally devised by Davidon and later improved by 26 

Fletcher and Powell and finally is updated by Reeves. The method avoids 27 
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explicit construction and inversion of the Hessian matrix k, by using the 1 

iterative formula (Wang & Lian, 2006): 2 

                  kkkK gHXX 1                                                                             3.18             3 

Where 4 
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And 8 

                   iii gg  1                                                                                          3.21  9 

In the first iteration Hi = I, the identity matrix. Thus the first step is in the 10 

direction of steepest descent. V is descent vector and x is displacement. The 11 

slow convergency of the steepest descent method interchanges to overcome by 12 

choosing the sequence of H such that as i approach k, Hk becomes 13 

approximately equal to k
-1

. In linear problems, the method converges in n+1 14 

steps in which case Hn+1 = k
-1

. In the nonlinear problems, approximately n 15 

iterations of equation 3.18 are required to avoid one inversion of the 16 

instantaneous stiffness matrix in the Newton-Raphson method. 17 

 18 

3.6 Choice of method 19 

The number of methods described in previous section been employed by 20 

different researchers to minimize the total potential energy function. The 21 

behaviour of each method has been extensively investigated and compared 22 

with each other. Buchholdt (1982) in his initial work on cable structures used 23 

both the direct and relaxed steepest descent methods and found them to be 24 

inefficient in term of computational time. Gopalakrishna (1988) and other have 25 
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used the Newton-Raphson method with and without modifications, to solve the 1 

resulting set of nonlinear equations for cable beams and nets. Thi (1977) also 2 

used the Newton-Raphson method to minimize the total potential energy 3 

function. He found that method converged rapidly near the solution, but that a 4 

slow start made it rather costly to use because of the matrix inversion or 5 

complete solution of equations required at each one per iterations. Hence, 6 

Newton-Raphson method when applied to function with a larger number of 7 

variables requires considerable computer storage to store the Hessian matrix 8 

(Buchholdt & Moossavinejad, 1982). 9 

In present work, the Fletcher-Reeves formulation of the conjugate 10 

gradient method for minimization of the energy function is presented and 11 

comparison with the Newton-Raphson method is done. A more detailed 12 

comparative study of minimization techniques will been carried out by this 13 

work for finding Fletcher-Reeves method to be one of the most suitable 14 

techniques for minimizing the total potential energy function of space 15 

structures especially where the number of variables is large. This method 16 

pointed out that this new algorithm converges more rapidly to the 17 

neighborhood of the solution.  18 

 19 

3.7 Application of Fletcher-Reeves method for minimizing of strain 20 

energy of system and potential energy of loading 21 

 22 

In the following the minimization of the total potential energy function 23 

is demonstrated by utilizing of the Fletcher-Reeves method and a new 24 

algorithm for dynamic analysis is developed. 25 

 26 
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3.7.1 The expression for the total potential energy 1 

The total potential energy of a loaded pre-tensioned cable assembly is given by 2 

as:           W=U+V                                                                                                  3.22 3 

Where  4 

     W= the total potential energy 5 

      U= the strain energy of the system 6 

      V= the potential energy of the loading 7 

Taking the unloaded position of the assembly as datum, 8 
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111                                                                                     3.23 9 

Where 10 

     M= total number of members, 11 

     J= total number of cable joints, 12 

     Fji= external applied load on joint j in direction i, and 13 

     Xji= displacement of joint j in direction i. 14 

The condition for structural equilibrium is that the minimum of total potential 15 

energy of the system and it is written as; 16 

               
)3,2,1(&),...2,1(0  ijjXW ji                                                      3.24  17 

Thus at the solution the gradient vector of the total potential energy function is 18 

zero. 19 

3.7.2 Expression for the gradient of the total potential energy  20 

Differentiating equation 3.23 with respect to Xji gives the gji element of the 21 

gradient vector g as; 22 

                       
jijin

q

n

jiji FXUXWg  
1                                               3.25   23 

Let 24 
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     T
 jn  the initial tension in member jn, 1 

     T
jn    the instantaneous tension in member jn, 2 

     e
jn   elastic elongation of member jn, 3 

     E   = Young Modulus of Elasticity, 4 

     A   = cross-sectional area of cable, 5 

     L
jn  length of member jn, and 6 

     Q = number of member meeting at joint j as shown in Figure 3.7. 7 

 8 

 9 

 10 

 11 

  12 

                                                      13 

 14 

                                Figure ‎3.7: Number of member meeting at joint j. 15 

The expression for g ji  can then be written as: 16 
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The strain energy of member jn is given as: 18 
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Differentiating 
jnU  with respect to 

jne  yields 20 
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The initial and elongated length of member jn may be expressed as: 22 
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Where 
jiX  is the coordinate of joint j in direction i. Simplifying equation 3.30 and 2 

substituting for L
jn

from equation 3.29 yields the following expression for
jne : 3 
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Differentiating equation 3.30 with respect to 
jiX  yields 5 
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Substituting equations 3.28 and 3.32 into equation 3.26 yields the expression 7 

for the gradient as: 8 
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Where )( jnjnjnjn eLTt   is the tension coefficient of member jn. 10 

 11 

3.7.3 The position of minimum total potential energy in the direction of descent 12 

The correct value of X for which W is a minimum i.e., g=0 can now be 13 

found by the iterative process  14 

     )()()()1( kjikkjikji VSXX                                                                                  3.34   15 

Where the suffices (k) and (k+1) denote the (k)th and (k+1)th iteration 16 

respectively. 17 

     jiV
= the element of the direction vector. 18 

     S )(k = the steplength which defines the position along )(kjiV
where the      19 

total potential energy is a minimum. 20 

The expression for jiV
 when Fletcher-Reeves formulation of the conjugate 21 

gradients method is used, given by: 22 
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 2 

The stationary point in the direction of descent can be found by expressing the 3 

total potential energy as a function of the steplength along
jiV . Thus the 4 

required value of S )(k  can be determined by the condition 5 
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 7 

3.7.4 Calculation of the steplength 8 

The required polynomial for steplength is found by substituting the expression 9 

for 
)( 1kjiX 
 given by equation 3.34 into a suitable expression for the total 10 

potential energy W. Writing the strain energy term in equation 3.27 as a 11 

function of the elongation, equation 3.31, and at the same time substituting for 12 

jiX  using equation 3.34 lead to first expression for the elongation. It is written 13 

as; 14 
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And secondly to the expression for W in terms of the steplength S and its 1 

derivative with respect to S as given below: 2 
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3.7.5 Iterative process for the minimization of the total potential energy 12 

 13 

The iterative process for the minimization of the total potential energy 14 

can be summarizes as follow: 15 

a) Assumptions of a zero value for the displacement vector X.  16 

b) Calculation of the gradient vector g for the assembly from equation 3.33.  17 

c) Calculation of the Euclidean norm of g from   2
1

ggR T . 18 

If R is less than a predetermined value, or less than a percentage of the norm of 19 

the first gradient, then last calculated value of X is the solution and the iteration 20 

process is terminated, otherwise proceed with next step. 21 

d) Calculation of the direction vector (V) from equation 3.35. 22 

e) The direction vector ( V) in the first iteration   gV   23 
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f) Calculation of the parameters 21 ,aa  3a from equation 3.37. 1 

g) Calculation of the coefficients C
1
 to C5 from equations 3.39.  2 

h) Determination of the value of S by equation 3.36.  3 

i) Calculation of the displacement vector, X from equation 3.34.  4 

j)  Calculation of elongation of each member either from equation 3.31 5 

k)  Determination of new tension in each member from e
L

EA
TT   .  6 

l) Return to step 2 above for the next iteration. 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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CHAPTER 4: PROPOSED THEORY 1 

4. NONLINEAR DYNAMIC RESPONSE ANALYSIS BY MINIMIZATION OF 2 

TOTAL POTENTIAL DYNAMIC WORK 3 

 4 

4.1 Introduction 5 

In this chapter, a method for predicting the nonlinear dynamic response 6 

of space structure such as stayed-cable bridge is presented. The cable structures 7 

are light and flexible and they undergo appreciable deflections when subjected 8 

to external loading. It is also noted that the method of structural analysis should 9 

consider the changes of geometry of structures. Hence, the classical linear 10 

theories of structural mechanisms cannot be used for the solutions of highly 11 

nonlinear structures because high nonlinear structure has maximum changes of 12 

geometry and classical theories could not support high nonlinearity behaviour 13 

of structure ( Wang, Lin, & Tang, 2002; Stefanou & Nejad, 1995).  14 

The numerical example considers is a 7x5 flat net with 105 degrees of 15 

freedom. The 7*5 net was also built as an experimental model and tested in 16 

order to verify the static and dynamic nonlinear theories. The construction of 17 

the experimental model and the results of the tests are given in the next 18 

chapters. The cable structures endure significant geometrical displacements 19 

particularly for non-symmetrical loading. The proposed method may be used 20 

for analysing structures with high degree of freedom and it is able to cope with 21 

the inherent nonlinearity of the problem. One of the common methods is 22 

Newton-Raphson method and it involves the use of the instantaneous stiffness 23 

matrix which has been investigated treating cable structures as discrete system. 24 

However, the proposed theory based on Fletcher-Reeves can be achieved in the 25 

analysis by minimizing the Total Potential Energy (TPE) of the structural 26 
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assembly using an iterative procedure. A TPE of a three dimensional structure 1 

such as space structure is represented in Figure 4.1 All the points on contour 2 

line represent the displacements for which the TPE is constant (Stefanou & 3 

Nejad, 1995). The minimum TPE position can be achieved by moving down 4 

the energy surface in a given direction until the TPE is a minimum in that 5 

direction. The optimization of TPE on descent direction is shown in Figure 4.2. 6 

Thus the displacement vector at the (K+1)th iteration is give as;   7 
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Figure ‎4.1: Visual total potential dynamic work. 15 
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Figure ‎4.2:  Visual optimization of total potential dynamic work on descent direction. 24 
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Where 
n

V ][  is the unit descent vector and 
n

S  is the step length along 
n

V ][ to 1 

the point where the TPE is minimum. This can be done by replacing the actual 2 

displacement vector [x] with a transformed vector [u] where 3 

                        ]][[][ uHx                                                                                             4.2 4 

And [H] is the scaling matrix. From equation 4.1, and 4.2 [u] at the (n+1) the 5 

intersection may be expressed as: 6 
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                                                                          4.3 7 

It has been shown that when [x] is substituted in the TPE expression [K] is 8 

transformed to [K
‟
], where 9 
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If [H] is chosen such that all the elements on the leading diagonal of [


K ] are 11 

unit and [


K ] is symmetric, with its off-diagonal terms tending to zero, then the 12 

eigenvalues of [


K ] will be approximately equal. Hence, the rate of 13 

convergence of proposed method will be improved. In practice, however, 14 

considerable benefit is obtained computationally by choosing [H] as equation 15 

4.5. The convergence in one direction is shown in  16 

                           
.

21
]1[

ii
K

ii
H                                                                            4.5 17 

 18 

 19 

 20 

 21 

 22 

 23 

                         Figure ‎4.3: Convergency in one direction. 24 
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4.2  Structural property matrices 1 

4.2.1 The general mass determinant 2 

The mass matrix can be evaluated as a consistent mass determinant or as 3 

a lumped mass determinant depending on the structure to be analysed. The 4 

consistent mass determinant for a pin jointed member with three degrees of 5 

freedom at each end may be evaluated from 6 
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                                                 4.6                                         7 

where      is the mass per unit length and L is the length of member. 8 

The lumped mass determinant for the same member is given as: 9 
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                                          4.7 10 

                                              11 

These matrices represent the self load as well as distributed load along the 12 

member. Any concentrated static load applied at a joint must be added to the 13 

diagonal element of mass determinant. 14 

From the analysis point of view, experience has shown that as far as cable 15 

structures are concerned good accuracy can be achieved by using a lumped 16 

mass determinant. The mass matrices for the mathematical model in the present 17 

work are considered as lumped mass matrices. 18 
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4.2.2  The stiffness determinant for a pin jointed member 1 

For structures subjected to finite displacement the stiffness determinant 2 

for structural elements, which may be considered as pin jointed member, must 3 

include the change in stiffness caused by geometrical deformations as well as 4 

the added stiffness due to the axial force. 5 

The global stiffness determinant for a pin jointed element in such structures is 6 

given by: 7 
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 11 

Where T is the axial force in the member for any position in displacement 12 

space and λ1, λ2, and λ3 are the corresponding direction cosines. 13 

 14 

4.2.3  The orthogonal damping matrices 15 

The damping is energy lost in vibration due to work done by forces 16 

resisting the motion. These forces are caused by hysteresis losses in the 17 

member, friction in joints and resistance by the surrounding mass of air. In 18 

practice the damping matrices are usually constructed from knowledge of the 19 

damping ratios in different modes as value for these are more easily obtainable 20 
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by standard resonance testing. A general orthogonal damping matrix can be set 1 

up as a combination of the mass and stiffness matrix and can be shown to be of 2 

the from 3 
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In which as many terms may be included as desired, and which the values of 5 

the constants 
ba  can be found from the equation 6 
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  where  n the damping ratio for mode n, and n  the frequency of mode n. 8 

Rayleigh damping which is given by 9 
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And in which 
0a  and 

1a  are arbitrary proportionality factors and the use of 11 

value Rayleigh damping assumes that the damping ratios in all modes can be 12 

expressed by the relationship 13 
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The proposed method of analysis is step by step response calculation in the 15 

time domain for a series of small time increments during which equilibrium of 16 

dynamic forces at the end of each increment is established by minimization of 17 

the total potential dynamic work. In the development of theory it is assumed 18 

that the boundary joints are fixed and that the static and dynamic loading is 19 

applied at the jointly only. The simplify notation and in order to avoid treble 20 

suffices, the following notation have been used. In general elements of the 21 

mass and damping matrices M and C are symbolized by double suffices the 22 

elements of the displacement, velocity, acceleration and descent vectors by a 23 

single. The combination of the two suffices indicates one degree of freedom. 24 
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The orthogonal damping matrix is the modal damping matrix which takes 1 

advantage of the orthogonality properties of the mode shapes relative to the 2 

mass matrix. This damping matrix in which as many modes may be in included 3 

as desired is given by: 4 
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Where       n =the mode number, 6 

                 n =the nth mode shape vector, and 7 

                  M=diagonal mass matrix. 8 

The result is non-banded symmetric dynamic matrix irrespective of the number 9 

of modes included. To include the damping of all the modes of vibration in 10 

equation 4.14 is not a practical proposition, since in most cases only the 11 

damping ratios of the first few modes are known with any degree of 12 

approximate certainty. In equation 4.14 the contribution to the damping matrix 13 

from the damping in a given mode is directly proportional to the magnitude of 14 

the modal damping ratio, thus any undamped mode will contribute nothing. In 15 

other words, only those modes specifically included in the formulation of the 16 

damping matrix will be damped, all another modes will be undamped. The use 17 

of equation 4.14 makes it possible to assume values for the damping ratios in 18 

higher modes and to study the effect of variations in the damping ratios in the 19 

different modes. It should be noted that in this work, since the nonlinear 20 

structures in question do not possess fixed mode shapes and frequencies the 21 

equivalent linear mode shapes and frequencies are used to obtain the required 22 

damping matrix from equation 4.14 The physical interpretation of equation 23 

4.14 is a damping mechanism in which each joint is connected to all the other 24 

joints of a structure through viscous dampers. Experience indicates that for 25 
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structural system with evenly distributed stiffness, such as cable nets, the use of 1 

modal damping matrix yields reasonable results. In the numerical 2 

experimentation which follows, the modal damping matrix given by equation 3 

4.14 is used to permit variation in the damping ratios in all modes in order to 4 

study the effect of these variations on the dynamic response. 5 

 6 

4.3 Theory of Fletcher-Reeves method 7 

4.3.1  The total potential dynamic work (TPDW) by Fletcher-reeves method 8 

The total potential dynamic work of a vibrating structure at time   is given by: 9 
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And at time    , taking the static equilibrium position as datum, by: 11 
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where 15 

 
WW , ,    = TPDW at times   and )(   . 16 


U

O
U ,  = initial strain energy and strain energy at time . 17 


QV ,   = Potential energy of static and dynamic load at time . 18 


D   = Energy dissipated by damping forces up to time . 19 
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
I  ,m,N  =   Inertia energy at time , Number of members , and degree of freedom. 1 

ee ,    = Elongation of a member at time and during time  . 2 

TTTO ,,  = Tension of primary, time , and during time step T . 3 



XXX ,,      = displacement, velocity and acceleration vectors. 4 

s
Pand

s
P )()(   , 

s
F   = elements of dynamic load vectors P( ) and 5 

)(  P  at time   and )(    and Static load vector F. 6 

sr
M
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C ,     = elements of damping and mass matrices C and M. 7 

Using the relationship 8 
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Equation 4.14 can be transformed to 13 
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Where sX  is the change in the displacement element sX  during  . 17 
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4.3.2  The gradient of the total potential dynamic work 1 

The terms for dynamic equilibrium at the end of time increment T  is given 2 

by: 3 
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Differentiating equation 4.19 with respect to sx  gives the sth element of the 5 

gradient vector g as: 6 
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And also 11 
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Where the suffix jn refers to the two ends of member n, and q is the number of 13 

members meeting at joint j as shown in Figure 4.4. 14 

 15 
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                Figure ‎4.4:.Scheme of connection members to joint. 19 
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An expression for sg  above demands the improvement of work for 1 
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Where 
jnL  represents the length of member jn and ji represents the coordinates 6 

of joint j in direction i. The expression for jne  found from equations 4.23 and 7 

4.24 are given by: 8 
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Differentiating equation 4.25 with respect to jix  yields 12 
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The expression for the velocity and acceleration vectors 

x  and  

 

x  are found by 14 

making the assumption that the acceleration varies linearly during the time step15 

 . It is assumed that the change of acceleration remains constant during the 16 

time interval. A detail of the motion of a mass point which moves according to 17 

the above assumption are and leads to the following expressions for x ,

x  and 


x  18 

in condition of the change of movement x  during the time interval. 19 
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which when x  has assumed the correct value will also be equal to zero. 5 

 6 

4.4 Minimization of the total potential dynamic work by Fletcher-7 

Reeves method 8 

The accurate amount of sx  at time     for which 0sg  is achieved by 9 

minimization the total potential dynamic work, applying the iterative process 10 
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At the location which the suffices k and (k+1) denote the kth and (k+1)th iterate 12 

respectively, and 13 

       KsV  The sth element of descent vector, and 14 

       kS  The steplength to the point along  KsV  , where the total potential 15 

dynamic work is a latest possible amount.  16 

Using of the Fletcher-Reeves formula for expression for the kth descent vector. 17 
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The starting point in direction of descent can now be achieved by conveying 1 

the total potential dynamic work as a function of the steplength and applying 2 

the condition that at the stationary point 3 
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 5 

4.5  Determination of the steplength 6 

The required function for steplength polynomial is achieved by 7 

substituting the statement for ∆xr given by equation 4.19 into a suitable 8 

statement for the total potential dynamic work. Interchange of the statement for 9 

acceleration and velocity are provided by equations 4.28 and 4.29 into equation 10 

4.19 and at the equal time writing strain energy terms as a function of the 11 

elongation of the members gives first 12 
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 And then after carrying out the integrations 18 
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where 
n

E is the Young's Modulus of Elasticity and 
n

A is the cross-sectional 5 

area of member n. The required statement for 
jne  as a function of s could be 6 

obtained by combining equation 4.28 and 4.31 and is shown by: 7 
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Interchange the statement for e and x , as given by equations 4.26 and 4.34 1 

respectively, into equation 4.38 yield the engage in fourth order steplength 2 

polynomial for the total potential dynamic work at time    : 3 
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and its derivative with respect to s as: 5 
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The value of 5C  need not be computed whereas only the derivative of W is 3 

required S in order to calculate the steplength. The eigenvalue analysis is not 4 

directly required by the method. The stability of the method depends on the 5 

size of the time increment, which usually should be equal to or less than half 6 

the smallest periodic time of the structure. The determination of the size of   7 

therefore requires the determination of the largest eigenvalue of the system.  8 

Another way of determining the size of   which avoids the eigensolution is 9 

to start with an estimated value for   and then check for stability. If the time 10 

step is too large, ∆   changes sign at every time step before the method becomes 11 

unstable. This will usually occur quite early in the integration process. The 12 

procedure can therefore be stabilized at an early stage of the calculation by 13 

reducing the time step if necessary. Indications of instability due to a too large 14 

time step may show up even more clearly if in the formulation of the theory the 15 

main variable is taken as the change of acceleration rather than the change of 16 

displacement. Not only the stability but also the accuracy of the predicted 17 

response depends upon the size of the time increment. If the magnitude of the 18 

dynamic loads varies rapidly,   must be small enough to take into account 19 

all the frequency components of the dynamic load. Hence, the equilibrium of 20 

the dynamic forces at the end of each time step is determined by an iterative 21 
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process, the accuracy of the predicted response is also a function of degree of 1 

convergency imposed. 2 

4.6 Calculation procedure of Fletcher-Reeves algorithm 3 

The flowchart of present algorithm is given in Figure 4.5. The description of all 4 

algorithm stages is written as;  5 

 Step 1: Determination of the coordinator vector and internal force vector. 6 

Step 2:   Assembly of mass matrix and damping matrix. 7 

Step 3: Establishment of the forcing function  P  and size of the time increment  . 8 

Step 4:  Initiation of the next time interval by calculation of P  9 

Step 5: Calculation of the gradient vector g from equation 4.33. In general it is 10 

better to use equation 4.34 which gives the total gradient at time    and 11 

avoids the accumulation of errors. 12 

Step 6: Calculation of the Euclidean norm of g from
2
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Step 7:  If R is less than a predetermined value or a percentage of the norm of the first 14 

gradient the time step proceed with step 14 otherwise continue with step 9. 15 

Step 8:  Calculation of the direction vector in the first iteration gv     16 

Step 9:  Calculation of the parameters
1a , 

2a  and 3a from equation 4.39. 17 

Step 10:   Calculation of the coefficients 
1C  to 

4C from equation 4.42. 18 

Step 11:  calculation of the value of S by equating the dynamic load and of x . 19 

Step 12:  Determination of new tension in each member from e
L

EA
TT o  . 20 

Step 13:  Return to step 6 above the next iteration. 21 

Step.14: Calculation of the starting point for the next time increment from 22 

equation 4.12. If the required time span of response analysis is covered, the 23 

calculation is terminated, if not return to step 5 above. 24 
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4.7  The optimization of the total potential dynamic work by Newton-1 

Raphson method 2 

For comparison between Fletcher-Reeves and Newton Raphson method 3 

is needed to explain a Newton-Raphson method in more details. Minimization 4 

of the total potential dynamic work can be carried out by the Newton-Raphson 5 

method described in chapter 3. In Newton-Raphson method ∆x is written as; 6 
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At which point 
IK  is the instantaneous static stiffness matrix and K  is the 9 

instantaneous dynamic stiffness matrix. The contribution to 
IK  from a pin 10 

jointed member jn in tension is given as: 11 
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Where      T = instantaneous tension in member jn, 13 
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The convergency criterion can be the reduction of the total out of balance 17 

forces. At each on from iteration the incremental displacement is given as:  18 
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programming the proposed nonlinear 
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CHAPTER 5: STATIC TEST       1 

5. NUMERICAL ANALYSIS AND EXPERIMENTAL WORK 2 

  RESULTS AND DISCUSSION         3 

 4 

5.1 Introduction 5 

In this chapter the analytical method and mathematical model presented 6 

in chapter 4 are used in experimental works. The mathematical model chosen 7 

was a 7x5 flat net with 105 degrees of freedom. The 7x5 net was built as an 8 

experimental model and tested in order to verify the static and dynamic 9 

nonlinear theories given in the previous chapters. The construction of the 10 

experimental model and the results of the static tests are given in this chapter. 11 

 The objectives of the numerical work described in this chapter are to 12 

verify the proposed theory in chapter 4 and to check the programme based 13 

upon the static theory given in chapter 3. A rectangular flat net was chosen in 14 

order to provide a structure with a high degree of nonlinearity (Nazmy & 15 

Abdel-Ghaffar, 1990; Such, et al., 2009). Flat nets are also less difficult to 16 

construct accurately than curved nets and thus can be easily represented by a 17 

mathematical model.  18 

 The main objectives are: 19 

A. To check the stiffness of the boundary and to assess the degree of 20 

error introduced by any elastic deformation of the frame when 21 

assuming a rigid boundary; 22 

B. To check the degree of symmetry of the model; 23 

C. To compare the experimental and theoretical values of the static 24 

deformation by using tests with different pattern and intensities of 25 

static loading. 26 
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5.2 Design and construction of the model 1 

The grid line of the flat net model together with node numbers is given 2 

in Figure 5.1. Figure 5.2 shows a general view of the 7x5 cable net; the cables 3 

are at 500 mm intervals and the cable diameter is 15.24 mm. At the points of 4 

intersection the cables were clamped together with thin wires. The cable net 5 

was contained within a 4 m by 3 m rectangular steel frame. The specification 6 

of the steel frame is given in Table 5.1. 7 

 8 

 9 

 Figure ‎5.1: Grid lines of the flat net. 10 
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 1 

    Figure ‎5.2:  General view of the steel frame. 2 

Table ‎5.1: Details and specifications of the steel frame. 3 

Frame Supported Specification 

Column 1400 mm (box)  Height 

Beam 300mm  x  400mm (box) Length by width 

Beam Size 100 x 200 x 9 mm (hollow section) 

Column Size 200 x 200 x 9 mm (hollow section) 

Wedge                        12 nos 

Barrel                       12 nos 

Hollow              

Cylindrical Steel 

                       12 nos 

General views of construction of column and beam steel frame made are given 4 

in Figure 5.3 and Figure 5.4. 5 
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 1 

           Figure ‎5.3: Steel columns to support the frame. 2 

 3 

          Figure ‎5.4: Steel beams fitted with hollow cylindrical steel sections. 4 

 5 
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In order to make the boundary as rigid as possible the frame was stressed to the 1 

floor by means of post tensioning rods passing through the columns. The 2 

clamping attachment made for the steel frame is shown in Figure 5.5. 3 

 4 

 5 

Figure ‎5.5: Clamping cables to the frame by using hollow cylindrical steel section and 6 

wedge and barrel. 7 

 8 

Each steel cable was initially tensioned to about 1 KN and then left for 9 

two weeks to permit the individual wires in the strands to bed in. Then, the 10 

tension on the cables was readjusted to 11.5 KN. This tension was maintained 11 

throughout the test programme by checking it at intervals. The wedge and 12 

barrel was used on the hollow cylindrical steel section to provide endcaster 13 

degree of freedom for the boundary condition of cables. Endcaster joints are 14 

used to fix the boundary condition. The specifications of the erected 15 

rectangular net and cables are given in Table 5.2. 16 

 17 
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       Table ‎5.2: The specifications of flat net and cables. 1 

                         Description Details 

Overall dimensions 3000 x 4000 

Spacing of the cables 500 mm 

Number of free joints 35 

Number of fixed boundary joints 24 

Number of links 82 

Diameter(mm) 15.34 

Section area (mm
2
) 142.90 

Y/Strength 1% (kN) 244.40 

Young‟s Modulus 192.60 e11 N/ mm
2
 

Y/Strength
 

244.40 KN
 

Pretension 11500 N/link 

Breaking Load (kN) 272.89 

Proof Load (kN) 250.17 

Total Elongation (%) 6.00 

Relax Loss (%) 1.90 

 2 

The values of tensile strength and Young‟s Modulus were obtained 3 

from laboratory testing of the steel frame. The values from laboratory make 4 

ensure to verify values of tensile strength and Young‟s Modulus from its 5 

catalogs. The construction of beam steel is shown in Figures 5.6. 6 

 7 

 8 

 9 
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 1 

       Figure ‎5.6: Construction of beam steel. 2 

 3 

5.3  Instrumentation and Equipment 4 

5.3.1 Pressure gauge 5 

The standard instruments used in this calibration are based on the 6 

national standards maintained at the National Metrology Laboratory, SIRIM 7 

Berhad. The pressure gauges are shown in Figure 5.7 and Figure 5.8. The 8 

pressure gauges are used to create tension on the cables of frame. 9 

Measurement uncertainty:   451965 Pascal 10 

Coverage factor:                  K= 2.31 11 

Average temperature:                24°C 12 

Average Relative Humidity:     56 RH 13 

 14 
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 1 

            Figure ‎5.7: Visual view of handle of pressure gauge. 2 

 3 

              Figure ‎5.8: Tensioning of the cable with the pressure gauge. 4 

 5 
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5.3.2 Data acquisition / logger (Type: TDS – 530 (Touch Screen)) 1 

A data logger is used to store the values of strain and deflection on the 2 

cables of frame. The TDS-530 is an automatic, multi-channel, scanning data 3 

logger used to read strain gauges, thermocouples, Pt RTD temperature sensors, 4 

strain gauge based (full bridge) transducers and DC voltage. The data loggers 5 

used are shown in Figure 5.9 and Figure 5.10.  6 

Features: 7 

a) Colour LCD monitor with touch panel having excellent contrast  8 

b) Computer interface with RS-232C, USB2.0 or Ethernet LAN 9 

c) Storage of media with onboard data memory and flash memory 10 

d) Simultaneous measurement of strain and temperature                             11 

These data loggers have a switch box and can support various sensors. They can also 12 

support LAN, USB, and RS-232C ports.           13 

 14 

            Figure ‎5.9: The channels of the TDS-530 data logger. 15 

 16 
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 1 

             Figure ‎5.10: Top view of TDS – 530 Data logger. 2 

 3 

5.3.3 Strain gauge (KFG-5-120–C1-11) 4 

A strain gauge is a device used to measure the strain of an object. A 5 

strain gauge takes advantage of the physical property of electrical conductance 6 

and its dependence on not merely the electrical conductivity of a conductor, 7 

which is a property of its material, but also the conductor's geometry. The 8 

strain gauges used are shown in Figure 5.11 to Figure 5.13. The specifications 9 

and features are as follows: 10 

Type: KFG -5- 120 – C1 -11     Gauge Factor: 2.1 (24 C, 50%RH) 11 

Gauge Length: 5 mm                  12 

Gauge Resistance: 119.8 Ω (24 C, 50%RH) 13 

Adoptable Thermal Expansion: 11.7 PPM/C 14 
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 1 

           Figure ‎5.11:  Strain gauge used on the hollow cylindrical steel section. 2 

 3 

              Figure ‎5.12: Strain gauge used on the wedge and barrel. 4 

 5 

 6 
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 1 

                Figure ‎5.13: Strain gauge used on fabricated steel frame. 2 

 3 

5.3.4 LVDT: Linear variable differential transformer 4 

A LVDT is an electrical transformer used to measure linear 5 

displacement. The transformer has three solenoidal coils placed end-to-end 6 

around a tube. The LVDT is shown in Figure 5.14 and Figure 5.15. 7 

The specifications and features are as follows: 8 

a) Type: PCA – 116 Series 9 

b) Plunger extend: Spring 10 

c) Measuring ranges from ±0.5 mm to ±550 mm  11 

d) Heavy, rugged construction for demanding environments  12 

e) Conditioned outputs available; 4-20 mA, 0-5 V, 0-10 V, ±2.5 V  13 

f) Core + extension, spring loaded and guided core with rod end bearing 14 

options  15 
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 1 

           Figure ‎5.14: Linear variable differential transformer used on nodes. 2 

 3 

            Figure ‎5.15: Linear variable differential transformer used on steel frame. 4 
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5.3.5 Dial Indicator Metric 1 

A dial indicator metric is used to monitor deflections on both sides of 2 

the frame and axis z-deflections on the wedge and barrel. The dial indicator 3 

metric is shown in Figure 5.16. 4 

 5 

          Figure ‎5.16: Dial indicator metric used on steel frame. 6 

 7 

5.3.6 Weights (static loads) 8 

The intensities and the pattern of weight are between 2.5 kg and 20 kg. 9 

The static load was applied by means of hangers with the attachments of the 10 

transducers. The weights used are shown in Figure 5.17. The position and the 11 

amount of the weight for each position depend on the type of test during 12 

experimental work. 13 

 14 
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 1 

           Figure ‎5.17:.General view of the intensities and pattern of static loads. 2 

 3 

 In order to record the static deformation at different points of the net, 4 

the core of the eleven linear variable differential transformer (LVDT) were 5 

attached to joints 15, 16, 17, 18, 19, 20, 21, 4, 11, 25, and 32. 6 

 7 

5.3.7 Calibration of the recording equipment 8 

Calibration is a comparison between the measurements of the known 9 

magnitude of one device and another measurement made in a similar way with 10 

a second device. Each LVDT was connected to a specific channel and 11 

calibrated together with its extension lead by using the dial gauge. 12 

 13 
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5.3.8 Software 1 

5.3.8.1 Visual Basic language 2 

Visual Basic (VB) is used to develop the programme in the present 3 

project because the interface between the input data and the connection to the 4 

database is easy to use and flexible. This programme connects to Microsoft 5 

Access to use the database. In this programme, the saving of data during 6 

iteration of equations is done by Object Linking and Embedding (OLE) and 7 

macro in VB. Visual Basic is not only a programming language, but also a 8 

complete graphical development environment. This environment allows users 9 

with little programming experience to quickly develop useful Microsoft 10 

Windows applications which have the ability to use OLE objects, such as an 11 

Excel spreadsheet. Visual Basic also has the ability to develop programs that 12 

can be used as a front-end application to a database system, serving as the user 13 

interface which collects user input and displays formatted output in a more 14 

appealing and useful form than many Structured Query Language (SQL) 15 

versions are capable of. A macro is a series of commands and functions that are 16 

stored in a Microsoft Visual Basic module. In Microsoft Visual Basic, a 17 

module is a collection of declarations, statements, and procedures stored 18 

together as one named unit. 19 

 20 

5.3.8.2 Abaqus software 21 

Abaqus is a suite of software applications for finite element analysis 22 

(FEA) and computer-aided engineering (CAE). In this project, Abaqus is used 23 

because it is suitable for cable structures and it is also used in automotive, 24 

aerospace, and industrial products. The Abaqus software is popular with 25 

academic and usually is used to verification result from theoretical methods.  26 
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5.4 Theoretical analysis (mathematical modelling) 1 

The theoretical result based on proposed theory in chapter 4 is 2 

calculated by structural property matrices for a pin-jointed member with three 3 

degrees of freedom at each end. 4 

 5 

5.5 Linear Static Finite Element Analysis  6 

The finite element analysis method is a numerical technique used to find 7 

approximate solutions of partial differential equations. In finite element, mesh 8 

is programmed to contain the material and structural properties which define 9 

how the structure will react to certain loading conditions. Nodes are assigned at 10 

a certain density throughout the material depending on the anticipated stress 11 

levels of a particular area. In this case, the type of line element is B31 and the 12 

details are given in Table 5.3. Figure 5.18 shows the mesh of the cable 13 

structure. 14 

In the present study, the modelling space is 3D and wire is used for the 15 

shape of model. This type of model is deformable and planar. Mass density 16 

according laboratory testing is 7860 kg/m
3
 and Young‟s Modulus is  17 

1.926e11 N/m
2
.
 
The selected property type is isotropic elastic. The analysis has 18 

different steps. The model is considered as symmetric and linear. A general 19 

static test is selected to analyse the model. Total number of nodes and line 20 

elements are 17319 and 17460, respectively. The mesh is hex mesh with hybrid 21 

formulation and kinematic strain. 22 



95 
 

 1 

                    Figure ‎5.18: Visual of elements mesh. 2 

 3 

 4 

The cable is modelled as three-dimensional tensioned beam elements. It 5 

includes the nonlinearities due to low strain large deformation and pre-tension. 6 

A hybrid beam element is used to model the cable. It is hybrid because it 7 

employs a mixed formulation involving six displacements and axial tension as 8 

nodal degrees of freedom. The hybrid beam element is selected for easy 9 

convergence, because linear or nonlinear truss elements can also be considered 10 

with associated limitations. The three-dimensional stiffness matrixes in Abaqus 11 

are capable of including the geometric stiffness matrix with the elastic stiffness 12 

matrix. And hex mesh is used for this modelling. 13 
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           Table ‎5.3: Details of procedure of finite element analysis. 1 

PART 

Modelling space 3D 

Shape Wire 

Type         Deformable 

Type              Planar 

PROPERTY 

   Mass Density        7860 kg/m
3
 

 Poisson‟s Ratio       0.3 

   Type of Elasticity  Isotropic 

Young‟s Modulus  1.926e11 N/m
2
 

STEP 

               Step 1 Initial Static, Linear 

             Step 2 Perturbation, Method: direct   Matrix 

             Step 3  Symmetric, Static, Linear perturbation 

             Step 4 Direct   Matrix: symmetric, General static                                          

MESH 

Total number of nodes       17319    

Total number  of linear line elements                    17460 

Type of linear line elements                     B31 

Total number of elements                    17460 

 2 

 3 

 4 

 5 
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5.6   Static testing of the model 1 

5.6.1  The boundary frame 2 

To check the rigidity of the frame a dial gauge and LVDT is used to 3 

measure its movements. The maximum horizontal movement of the boundary 4 

due to 2400 N per joint occurred at joints 16 and 20 and measured 0.04 mm at 5 

each side. Hence, there is a total change of 0.08 mm in the distance between 6 

the two joints. This deflection caused a maximum calculated change of  7 

11.5 kN in tension, i.e., changes of 0.0016% of initial tension in the cable in 8 

length of cable, which means that the horizontal deflection is zero. Based on 9 

the result, the differences in deflections are considered to be sufficiently small. 10 

Hence, it can be assumed that boundary condition for the frame is rigid. 11 

 12 

5.6.2 The cable net 13 

Any deficiency in the model could influence the dynamic behaviour and 14 

subsequently influence the comparison of experimental and theoretical values 15 

difficult. Hence, a static test is carried out to investigate the degree of 16 

symmetric behaviour on the frame. The investigation consisted of checking the 17 

degree of symmetric behaviour about the major and minor axes. The degree of 18 

symmetric behaviour about the minor axis is investigated by first placing an 19 

increasing load on joint 11 and then comparing the resultant displacements 20 

with those obtained by placing similar loads on joint 25. The degree of 21 

symmetric behaviour about the minor axis is similarly studied by first loading 22 

joint 16, then joint 20.  23 

Tables 5.4 and 5.5 show the degree of symmetric behaviour about the 24 

minor axes of joint 18 and joint 11 respectively. The tables also show the 25 

percentage differences between the experimental and theoretical calculated 26 
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displacements. The average lack in symmetric behaviour about the minor axis 1 

over the load range as measured by the percentage difference in the movements 2 

of joints 4 and 32 is approximately 0.09%. The lack of symmetry about the 3 

minor axis as expressed in terms of the percentage difference in the movements 4 

of joints 11 and 25 is approximately 0.07%. The symmetric behaviour charts 5 

are given in Figures 5.20 to 5.23. 6 

The final part of the static test consisted of subjecting the net to two different 7 

types of concentrated loading. In the first case, the net was loaded with 8 

increasing load at joint 18 only. In the second case, the net was subjected to 9 

equal and increasing load at joints 1, 7, 29, and 35. In both cases the 10 

displacements of major and minor axes were recorded and compared with the 11 

theoretically calculated values. The results of the four loading cases, theoretical 12 

and experimental, for the major axis and minor axis are shown in Table 5.6. 13 

The major axis contains nodes 15, 16, 17, 18, 19, 20, and 21. The minor axis 14 

contains nodes 4, 11, 18, 25, and 32. All the static test results, namely the 15 

numerical values, visual deflections, and strain graphs are given in Appendix 16 

E. 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 



99 
 

Table ‎5.4: Degree of symmetry about the major and minor axes for joint 18 and 1 

deflections due to concentrated load on joint 18. 2 

LOAD(N) = 2400 
THEORETICAL 

(T) 

EXPERIMENTAL 

(E) 

(T – E)/ 

T*100 

Z AXIS DEFLECTIONS (m) 

NODE 18  ( LVDT ) 

178.6E-03 177.6E-03 0.56 

Z AXIS DEFLECTIONS (m)  

NODE 11 ( LVDT ) 
129.3E-03 127.9E-03 1.08 

Y AXIS DEFLECTIONS (mm)  

BETWEEN NODE 46 – 47 (LVDT ) 
 0.093  

STRAIN GAUGE (µE) 

BETWEEN 42-43 (HORIZONTAL) ON 

FRAME 

 45.63E-6  

STRAIN GAUGE (µE) 

BETWEEN 39-40 (HORIZONTAL) ON 

FRAME 

 38.76E-6  

STRAIN GAUGE (µE) 

BETWEEN 42-43 (VERTICAL) ON FRAME 
 67.98E-6  

STRAIN GAUGE (µE) 

BETWEEN 39-40 (VERTICAL) ON FRAME 
 46.783E-6  

STRAIN GAUGE (µE) 

BETWEEN 56-57 (VERTICAL) ON FRAME 
 67.51E-6  

STRAIN GAUGE (µE) 

BETWEEN 56-57 (HORIZONTAL) ON 

FRAME 

 42.95E-6  

STRAIN GAUGE (µE) 

NODE 58 (VERTICAL) ON 

WEDGE&BARREL 

 13.15E-6  

STRAIN GAUGE (µE) 

NODE 38 (VERTICAL) ON HOLLOW 

CYLINDRICAL STEEL 

 73.27E-8  

STRAIN GAUGE (µE) 

BETWEEN 49-50 (HORIZONTAL) ON 

FRAME 

 17.56E-6  

STRAIN GAUGE (µE) 

BETWEEN 49-50 (VERTICAL) ON FRAME 
 28.257E-6  

STRAIN GAUGE (µE) 

ELEMENT 69 ( VERTICAL) ON 

CABLE 

179.6E-06 175.3E-06 2.39 

STRAIN GAUGE (µE) 

ELEMENT 16 ( VERTICAL) ON 

CABLE 

6.416E-06 6.255E-06 2.51 

  3 
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LOAD(N) = 2400 
THEORETICAL 

(T) 

EXPERIMENTAL 

(E) 

(T – E)/ 

T*100 

STRAIN GAUGE (µE) 

ELEMENT 44 ( VERTICAL) ON 

CABLE 

21.12E-06 20.65E-06 2.23 

STRAIN GAUGE (µE) 

ELEMENT 15 ( VERTICAL) ON 

CABLE 

6.43E-06 6.12E-06 4.82 

STRAIN GAUGE (µE) 

ELEMENT 45 ( VERTICAL) ON 

CABLE 

21.15E-06 20.44E-06 3.36 

DEFLECTIONS (mm)  

BETWEEN NODE 43–44   

( DIAL INDICATOR METRIC ) 

 0  

AXIS Z – DEFLECTIONS (mm)  

NODE 37 ON WEDGE&BARREL 

( DIAL INDICATOR METRIC ) 

 0.78  

Z AXIS DEFLECTIONS (m) 

NODE 4  ( LVDT ) 

50.75E-03 50.11E-03 1.26 

Z AXIS DEFLECTIONS (m) 

NODE 25  ( LVDT ) 

127.9E-03 127.15E-03 0.59 

Z AXIS DEFLECTIONS (m) 

NODE 32  ( LVDT ) 

50.75E-03 50.15E-03 1.18 

Z AXIS DEFLECTIONS (m) 

NODE 15  ( LVDT ) 

25.83E-03 24.33E-03 5.81 

Z AXIS DEFLECTIONS (m) 

NODE 16  ( LVDT ) 

74.46E-03 72.56E-03 2.55 

Z AXIS DEFLECTIONS (m) 

NODE 17  ( LVDT ) 

135.7E-03 133.25E-03 1.81 

Z AXIS DEFLECTIONS(m) 

NODE 19  ( LVDT ) 

135.7E-03 134.99E-03 0.52 

Z AXIS DEFLECTIONS (m) 

NODE 20  ( LVDT ) 

74.46E-03 73.25E-03 1.63 

Z AXIS DEFLECTIONS (m) 

NODE 21  ( LVDT ) 

25.83E-03 25.45E-03 1.47 

Z AXIS DEFLECTIONS (m) 

NODE 1  ( LVDT ) 

8.298E-03 8.112E-03 2.24 

Z AXIS DEFLECTIONS (m) 

NODE 7  ( LVDT ) 

8.298E-03 8.211E-03 1.05 

Z AXIS DEFLECTIONS (m) 

NODE 29  ( LVDT ) 

8.298E-03 8.256E-03 0.51 

Z AXIS DEFLECTIONS (m) 

NODE 35  ( LVDT ) 

8.298E-03 8.0253E-03 3.29 

 1 

 2 
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 1 

                  Figure ‎5.19: Deflections due to concentrated load on joint 18.2 

 3 

              Figure ‎5.20: Displacement of major, minor axes. 4 

 5 
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 1 

 2 

                    Figure ‎5.21: Strain of elements (2457, 2246, 1883, 2100, and 2921). 3 

 4 

 5 

 6 

 7 

 8 

 9 
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Table ‎5.5: Degree of symmetry about the major and minor axes for joint 11 and 1 

deflections due to concentrated load on joint 11. 2 

LOAD(N) = 2400 
THEORETICAL 

(T) 

EXPERIMENTA

L 

(E) 

(T – E)/ 

T*100 

Z AXIS DEFLECTIONS (m) 

NODE 18  ( LVDT ) 

127.9E-03 125.2E-03 2.11 

Z AXIS DEFLECTIONS (m)  

NODE 11 ( LVDT ) 
142.3E-03 141.5E-03 0.56 

Y AXIS DEFLECTIONS (mm)  

BETWEEN NODE 46 – 47 ( LVDT ) 
 0.097  

STRAIN GAUGE (µE) 

BETWEEN 42-43 (HORIZONTAL) ON 

FRAME 

 45.63E-6  

STRAIN GAUGE (µE) 

BETWEEN 39-40 (HORIZONTAL) ON 

FRAME 

 38.76E-6  

STRAIN GAUGE (µE) 

BETWEEN 42-43 (VERTICAL) ON FRAME 
 67.98E-6  

STRAIN GAUGE (µE) 

BETWEEN 39-40 (VERTICAL) ON FRAME 
 46.783E-6  

STRAIN GAUGE (µE) 

BETWEEN 56-57 (VERTICAL) ON FRAME 
 67.51E-6  

STRAIN GAUGE (µE) 

BETWEEN 56-57 (HORIZONTAL) ON 

FRAME 

 42.95E-6  

STRAIN GAUGE (µE) 

NODE 58 (VERTICAL) ON 

WEDGE&BARREL 

 13.15E-6  

STRAIN GAUGE (µE) 

NODE 38 (VERTICAL) ON HOLLOW 

CYLINDRICAL STEEL 

 73.27E-8  

STRAIN GAUGE (µE) 

BETWEEN 49-50 (HORIZONTAL) ON 

FRAME 

 17.56E-6  

STRAIN GAUGE (µE) 

BETWEEN 49-50 (VERTICAL) ON FRAME 
 28.257E-6  

STRAIN GAUGE (µE) 

ELEMENT 69 ( VERTICAL) ON 

CABLE 

297.5E-06 295.6E-06 0.64 

STRAIN GAUGE (µE) 

ELEMENT 16 ( VERTICAL) ON 

CABLE 

236.7E-06 234.3E-06 1.01 

  3 
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LOAD(N) = 2400 
THEORETICAL 

(T) 

EXPERIMENTAL 

(E) 

(T – E)/ 

T*100 

STRAIN GAUGE (µE) 

ELEMENT 44 ( VERTICAL) ON 

CABLE 

31.94E-06 31.00E-06 2.94 

STRAIN GAUGE (µE) 

ELEMENT 15 ( VERTICAL) ON 

CABLE 

236.7E-06 236.2E-06 0.21 

STRAIN GAUGE (µE) 

ELEMENT 45 ( VERTICAL) ON 

CABLE 

8.79E-06 8.22E-06 6.48 

DEFLECTIONS (mm)  

BETWEEN NODE 43–44   

( DIAL INDICATOR METRIC ) 

 0  

AXIS Z – DEFLECTIONS (mm)  

NODE 37 ON WEDGE&BARREL 

( DIAL INDICATOR METRIC ) 

 0.78  

Z AXIS DEFLECTIONS (m) 

NODE 4  ( LVDT ) 

67.78E-03 65.28E-03 3.69 

Z AXIS DEFLECTIONS (m) 

NODE 25  ( LVDT ) 

78.68E-03 77.28E-03 1.78 

Z AXIS DEFLECTIONS (m) 

NODE 32  ( LVDT ) 

29.54E-0 29.24E-0 1.02 

Z AXIS DEFLECTIONS (m) 

NODE 15  ( LVDT ) 

20.70E-03 20.32E-03 1.84 

Z AXIS DEFLECTIONS (m) 

NODE 16  ( LVDT ) 

54.46E-03 53.23E-03 2.26 

Z AXIS DEFLECTIONS (m) 

NODE 17  ( LVDT ) 

104.2E-03 101.5E-03 2.59 

Z AXIS DEFLECTIONS (m) 

NODE 19  ( LVDT ) 

104.2E-03 102.1E-03 2.02 

Z AXIS DEFLECTIONS (m) 

NODE 20  ( LVDT ) 

59.30E-03 57.22E-03 3.51 

Z AXIS DEFLECTIONS(m) 

NODE 21  ( LVDT ) 

20.70E-03 20.52E-03 0.87 

Z AXIS DEFLECTIONS (m) 

NODE 1  ( LVDT ) 

7.726E-03 7.700E-03 0.34 

Z AXIS DEFLECTIONS (m) 

NODE 7  ( LVDT ) 

7.726E-03 7.700E-03 0.34 

Z AXIS DEFLECTIONS (m) 

NODE 29  ( LVDT ) 

5.590E-03 5.40E-03 3.4 

Z AXIS DEFLECTIONS (m) 

NODE 35  ( LVDT ) 

5.590E-03 5.40E-03 3.4 

 1 

 2 
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 1 

                 Figure ‎5.22: Deflections due to concentrated load on joint 11. 2 

3 
  4 

                Figure ‎5.23: Displacements of minor axis (4, 11, 18, 25, 32). 5 
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 1 

                   Figure ‎5.24: Strain-time graph of elements (1883, 2100, 2246, 2457, 2921). 2 

 3 

 4 

 5 

 6 
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 1 

5.7 Discussion and comparison of results 2 

In this section, the theoretical and experimental results are compared. The 3 

results indicate that the percentage difference between the theoretical and 4 

experimental displacements decreases with increasing loading. For the 5 

maximum loading at joint 18, the percentage differences of measured 6 

displacement between the theoretical and experimental ranged from 2.1% to 7 

5.3%.  Hence, the percentage differences between theoretical and experimental 8 

result are acceptable. Figure 5.25 shows the relationship between loads and 9 

deflection in the minor axis when concentrated load is placed on node 16 and 10 

node 20. The deflection in the graph is measured in units, each of which is 11 

equivalent to one metre. The deflection steadily climbs from 2.55 cm in node 4 12 

and is projected to reach 7.45 cm on node 18. From this point onwards, it is 13 

projected to decline dramatically until it reaches 2.55 cm on node 32.  14 

 15 

Figure ‎5.25: Degree of symmetry about minor axis when the load is placed on nodes 16 16 

and 20. 17 

ELN 16:  Experimental result of load on node 16   ELN 20:  Experimental result of load on node 20 18 

TLN 16:  Theoretical result of load on node 16      TLN 20:  Theoretical result of load on node 20 19 

4 11 18 25 32 

ELN 16 2.55E-02 5.93E-02 7.45E-02 5.93E-02 2.55E-02 

ELN 20 2.55E-02 5.93E-02 7.45E-02 5.93E-02 2.55E-02 

TLN 16,20 2.60E-02 5.70E-02 7.90E-02 5.70E-02 2.60E-02 
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The graphs of the experimental result and the theoretical result confirm 1 

that the difference between them is negligible. Figure 5.26 shows the 2 

relationship between loads and deflection in the major axis. When the 3 

concentrated load is placed on node 20, the deflection gradually increases from 4 

0.535 cm on node 15. It reaches a peak of 12.7 cm on node 20. From this point 5 

onwards, it is projected to drop sharply until it reaches 0.607 cm on node 15. 6 

When concentrated load is placed on node 16, the deflection from about 0.607 7 

cm on node 15 rapidly rises to reach a peak of 12.7 cm on node 16. From this 8 

point onwards, it is projected to fall slightly until it reaches 0.535 cm units on 9 

node 21. The difference between the theoretical and experimental values is 10 

negligible. The degree of symmetry about the corner of frame when the load is 11 

placed on nodes 16 and 20 is almost zero, as shown in Figure 5.26.12 

 13 

Figure ‎5.26: Degree of symmetry about minor axis when the load is placed on nodes 16 14 

and 20. 15 

ELN 16:  Experimental result of load on node 16    ELN 20:  Experimental result of load on node 20 16 

TLN 16:  Theoretical result of load on node 16        TLN 20:  Theoretical result of load on node 20 17 

 18 

15 16 17 18 19 20 21 

ELN 16 6.07E-02 1.27E-01 1.13E-01 7.45E-02 4.11E-02 1.83E-02 5.35E-03 

ELN 20 5.35E-03 1.83E-02 4.11E-02 7.45E-02 1.13E-01 1.27E-01 6.07E-02 

TLN 16 6.00E-02 1.20E-01 1.20E-01 7.50E-02 4.00E-02 1.50E-02 5.20E-03 

TLN 20 5.30E-03 1.80E-02 4.10E-02 7.40E-02 1.10E-01 1.20E-01 6.00E-02 
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The degree of symmetry about the corner of frame when the load is 1 

placed on nodes 16 and 20 is shown in Figure 5.27. When the concentrated 2 

load is placed on node 16, the deflection rapidly increases from node 1 until 3 

node 7 and from this node onward, deflection drops slightly and is projected to 4 

reach minimum deflection on node 35. The experimental and theoretical results 5 

are in good agreement. 6 

 7 

 8 

Figure ‎5.27: Degree of symmetry about corner of frame when the load is placed on 9 

nodes 16 and 20. 10 

ELN 1:  Experimental result of load on node 1         ELN 7:  Experimental result of load on node 7 11 

ELN 29: Experimental result of load on node 29      ELN 35: Experimental result of load on node 35 12 

 13 

Figure 5.28 shows the relationship between loads and deflection in 14 

minor axis.  When concentrated load is placed on node 18, the deflection 15 

climbs slowly between nodes 4 and 18 from 5.08 cm until 17.9 cm of 16 

deflection and dropped slowly to node 32.   17 

 18 
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 1 

Figure ‎5.28: Degree of symmetric about minor axis when the load is placed on nodes 2 

17, 18, and 19. 3 

 4 

Figure 5.29 shows what occurs when concentrated load is placed on node 17, 5 

18, and node 19. The deflection of node 18 soars between nodes 15 and 17 6 

from 4.31 cm until 16.7 cm. From this point onwards, it is projected to decline 7 

slightly to reach 1.31 mm on node 21. The differences of deflection in the 8 

minor and major axes are negligible.  9 

 Figure 5.30 shows the degree of symmetry about the minor axis when 10 

the load is placed on nodes 17, 18, and 20. The comparative deflection, when 11 

the load is placed on nodes 17 and 19 separately, suggests that the degree of 12 

symmetry is probably zero. Therefore the boundary condition of the frame is 13 

rigidity. 14 

 15 
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 1 

 2 

Figure ‎5.29: Degree of symmetry about major axis when the load is placed on nodes 17, 3 

18, and 19. 4 

 5 

Figure ‎5.30: Degree of symmetry about corner of frame when the load is placed on 6 

nodes 17, 18, and 19. 7 
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Figure 5.31 shows the relationship between loads and deflection in the 1 

major axis when the load is placed on nodes 11 and 25. The deflection between 2 

node 15, 16, 17 and 19, 20, and 21 is subsequently compared. The behaviour 3 

and value of the deflection are in good agreement. 4 

 Figure 5.32 shows that when the load is placed on node 1, 7, 29, and 35, 5 

the deflection of node 18 soars to 2.58 cm until it reaches 17.9 cm. From this 6 

point onward, the deflection declined to 2.58 cm on node 21. The theoretical 7 

and experimental values are in good agreement. 8 

 Figure 5.33 shows that the deflection appears to level off and remained 9 

constant at about 0.77 cm of deflection. From this point onwards, the deflection 10 

drops slowly from nodes 7 to 29 and remains constant from about 0.559 cm on 11 

nodes 29 to 35. Hence, the boundary condition is rigidity. The values of 12 

deflection when loads are placed on the minor and major axes at the same time 13 

are given in Table 5.5 and Table 5.6 and Appendix C. 14 

 15 

 16 

Figure ‎5.31: Degree of symmetry about major axis when the load is placed on nodes 11 17 

18, and 25. 18 
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 1 

Figure ‎5.32:.Degree of symmetric about major axis when the load is placed on node 11, 2 

18, and 25 3 

 4 

 5 

Figure ‎5.33: Degree of symmetry about corner of frame when the load is placed on 6 

nodes 11, 18, and 25. 7 
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Table ‎5.6: Degree of symmetry about the minor axis when loads are placed on nodes 4, 1 

11, 16 , 25, and 32. 2 

 3 

Load on 

Node 

4 11 18 25 32 

Def.Node Minor Axis 

4  67.78E-03 50.75E-03 29.54E-03  

11  142.3E-03 129.3E-03 78.68E-03  

18  127.9E-03 178.6E-03 127.9E-03  

25  78.68E-03 127.9E-03 142.3E-03  

32  29.54E-3 50.15E-03 67.78E-03  

      

15  20.70E-03 25.83E-03 20.70E-03  

16  54.46E-03 74.46E-03 59.30E-03  

17  104.2E-03 135.7E-03 104.2E-03  

18  127.9E-03 178.6E-03 127.9E-03  

19  104.2E-03 135.7E-03 104.2E-03  

20  59.30E-03 74.46E-03 59.30E-03  

21  20.70E-03 25.45E-03 20.70E-03  

      

1  7.726E-03 8.298E-03 5.590E-03  

7  7.726E-03 8.298E-03 5.590E-03  

29  5.590E-03 8.298E-03 7.726E-03  

35  5.590E-03 8.298E-03 7.726E-03  

 4 

 5 
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 1 

Table ‎5.7:Degree of symmetry about the major axis when loads are placed on nodes 16, 2 

17, 18, 19, and 20. 3 

 4 

Load on 

Node 

16 17 18 19 20 

Def.Node Major Axis 

4 25.46E-03 43.02E-03 50.75E-03 43.02E-03 25.46E-03 

11 59.30E-03 104.2E-03 129.3E-03 104.2E-03 59.30E-03 

18 74.46E-03 135.7E-03 178.6E-03 135.7E-03 74.46E-03 

25 59.30E-03 104.2E-03 127.9E-03 104.2E-03 59.30E-03 

32 25.46E-03 43.02E-03 50.15E-03 43.02E-03 25.46E-03 

      

15 60.67E-03 43.12E-03 25.83E-03 13.09E-03 5.348E-03 

16 127.2E-03 112.9E-03 74.46E-03 40.58E-03 18.32E-03 

17 112.9E-03 166.6E-03 135.7E-03 81.88E-03 41.11E-03 

18 74.46E-03 135.7E-03 178.6E-03 135.7E-03 74.46E-03 

19 41.11E-03 83.74E-03 135.7E-03 165.5E-03 112.9E-03 

20 18.32E-03 41.11E-03 74.46E-03 110.5E-03 127.2E-03 

21 5.348E-03 13.09E-03 25.45E-03 45.55E-03 60.67E-03 

      

1 15.82E-03 13.64E-03 8.298E-03 4.008E-03 1.527E-03 

7 1.527E-03 4.008E-03 8.298E-03 13.54E-03 15.82E-03 

29 15.82E-03 13.64E-03 8.298E-03 4.008E-03 1.527E-03 

35 1.527E-03 4.008E-03 8.298E-03 13.54E-03 15.82E-03 

 5 
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5.8  Conclusion 1 

The values between the calculated and experimental static deflections 2 

are in agreement with each other. The small differences are due to 3 

experimental devices and environment condition. The static test checked the 4 

stiffness of the boundary and shows that the degree of error for any elastic 5 

deformation of the frame is almost negligible. Hence, the result verifies that the 6 

frame is symmetric and rigid. Tests conducted with different patterns and 7 

intensities of static loading in order to compare the experimental and 8 

theoretical values of the static deformation showed that the deflection 9 

calculated by the proposed nonlinear method gives reasonably accurate results. 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 
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CHAPTER 6: DYNAMIC TEST 1 

6. NUMERICAL ANALYSIS AND EXPERIMENTAL WORK  2 

RESULTS AND DISCUSSION 3 

6.1 Introduction 4 

The objectives of the experimental work described in this chapter are to 5 

validate the dynamic theory proposed in chapter 4 and to check the software 6 

programme based upon the static theory given in chapter 3. This chapter 7 

presents the dynamic part of the numerical analysis (theoretical modelling and 8 

Finite Element Analysis) and dynamic testing of the experimental model. In 9 

dynamic theory, it is assumed that the cable attachments at the boundary do not 10 

move. Thus, a net with as rigid a boundary as possible had to be constructed. 11 

The objectives of the numerical analysis and the dynamic experimental work in 12 

this chapter can be summarized as the follows: 13 

A. To carry out modal testing in order to compare the theoretical and 14 

experimental values of natural frequencies, mode shapes, and 15 

modal damping ratios; 16 

B. To perform a parametric study of the dynamic response due to 17 

exciting the structure with different intensities from different 18 

points in order to verify the proposed theory;  19 

C. To compare the predicted nonlinear responses with those obtained 20 

by linear modal analysis; 21 

D. To study the influence of the magnitude of the damping ratios in 22 

the different modes when using an orthogonal damping matrix;  23 

E. To compare the computational time by using the Fletcher-Reeves 24 

and Newton-Raphson algorithms; 25 
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F. To study the influence of the time step upon stability and 1 

accuracy. 2 

 3 

6.2 Numerical analysis and experimental work 4 

In this chapter, the details are presented of the mathematical modelling, 5 

Finite Element Analysis, modal testing, and parametric study conducted on the 6 

dynamic response of the experimental model. 7 

 8 

6.3 Theoretical analysis (mathematical modelling) 9 

The theoretical result based on the proposed theory in chapter 4 is 10 

calculated based on the structural property matrices presented in chapter 5 for a 11 

pin-jointed member with three degrees of freedom at each end. 12 

 13 

6.3.1 The lumped mass matrices for a pin-jointed member 14 

 15 
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                                                            6.1   16 

Equation 6.1 represents the lumped mass matrices for a pin-jointed member 17 

where     is the mass over length (L) and L is the length of member.  18 

 19 
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6.3.2 The stiffness matrix for a pin-jointed member 1 
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where T is the axial force in the axial force and 
21  ,  and 

3  
are the 3 

corresponding direction cosines. 4 

 5 

6.3.3 The orthogonal damping matrices 6 

This damping matrix is one in which many modes can be given by: 7 
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                                                                            6.3      8 

where       n  = the mode number. 9 

                 n  
= the nth mode shape vector. 10 

                  M = diagonal mass matrix. 11 

 12 

6.4 Dynamic finite element analysis using Abaqus 13 

As mentioned in chapter 5, the type of line element is B31 and the 14 

modelling space is 3D. Wire is used for the shape of the model. The model 15 

type is deformable and planar. According to laboratory testing, mass density is 16 

7860 kg/m
3
 and Young‟s Modulus is 1.926e11 N/m

2
.
 
The selected property is 17 

isotropic elastic. During dynamic testing, the type of analysis is changed 18 

according to the kind of structural analysis being undertaken. In this case, the 19 

Lanczos frequency solver and dynamic modal analysis of normalized 20 

eigenvalues by mass is considered. The parameters of the model according to 21 
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finite element modelling are given in Table 6.1. Figure 6.1 shows the visual 1 

mesh of the finite element structure. Table ‎6.1: The features of finite element 2 

modelling. 3 

Part 

Modelling space 3D 

Shape Wire 

Type         Deformable, planar 

Property 

   Mass density        7860 kg/m
3
 

 Poisson‟s Ratio      0 .3 

   Type of elasticity  Isotropic 

Young‟s Modulus  1.926e11 N/m
2
 

Step 

                       Step 1 Initial Static, Linear 

Step 2 

Perturbation, Method: direct   Matrix, 

Method: direct   Matrix storage: 

symmetric. 

Step 3 

Symmetric, Static, Linear perturbation, 

Static, Linear perturbation    Method: 

direct   Matrix storage: symmetric. 

Step 4 
Frequency ,  Eigensolver: Lanczos  

Normalize eigenvectors by mass. 

Step 5 
Modal dynamic, Load variation with 

time is instantaneous. 

Mesh 

Total number of nodes       19755    

Total number  of linear line elements                   19879 

Linear line elements type                    B31 
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 1 

 2 

                          Figure ‎6.1: Visual of finite element structure. 3 

 4 

6.5 Modal Testing 5 

Modal analysis is defined as the process of characterizing the dynamics 6 

of a structure in terms of its modes of vibration. The eigenvalues of the 7 

equations of motion correspond to the frequencies at which the structure tends 8 

to vibrate with a predominant, well-defined deformation. The amplitude of this 9 

wave motion on the structure is specified by the corresponding eigenvector. 10 

Each mode of vibration, then, is defined by an eigenvalue (resonant frequency) 11 

and a corresponding eigenvector (mode shape). Preliminary modal testing 12 

showed that the net possessed very low damping. This finding, together with 13 

the fact that the only one point is excited, made it difficult to achieve standing 14 

mode shapes. Ideally, to obtain pure modes of vibration the number of exciters 15 

should equal the number of degrees of freedom. In the end, stand waves were 16 
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obtaining after different testing methods such as the Nyquist, Bode, and 1 

CoQuad were applied. The advantages of the transfer function method are:             2 

a) Impact testing is quick and inexpensive; 3 

b) Prior knowledge of modes is not required; 4 

c) Digital accuracy and repeatability; 5 

d) Essentially unlimited frequency resolution; 6 

e)  Easier to make measurements and statistical estimation of modal 7 

parameters;      8 

f) Reduced effects of noise and nonlinear distortion. 9 

 10 

 In modal testing, it is assumed that structural motion can be described by linear 11 

second order equations and that only one mode exists at each pole location. The 12 

scrutinizing process used to characterize the dynamics of a structure in modal testing 13 

needs to be given the signal processing parameters. The signal processing parameters 14 

are provided in the following subsections 6.5.1 to 6.5.4.   15 

 16 

6.5.1 Spectrum, Power spectrum, and Power of a signal 17 

The spectrum is the Fourier transform of the signal. The result is an 18 

array of coefficients with units that are the same as the signal per Hz. The 19 

power spectrum is the square of the Fourier transform of the signal. The result 20 

is an array of coefficients with units of power per Hz. The power of a signal is 21 

equal to the square-root of the average of the squares of the magnitude of each 22 

time point of the signal.  23 

6.5.1.1 Energy spectrum, Convolution, and Auto-Covariance 24 

The energy spectrum is the square of the Fourier transform of the signal. 25 

The result is an array of coefficients with the units of power per Hz per second 26 
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or in other words energy per Hz. Convolution is an operation in which the time 1 

points of two signals are mapped to each other.  The result is a single value. 2 

The auto-covariance function is a function of lag or the shift in time of a 3 

function or time series. The result is a single value for each lag. 4 

 5 

6.5.2 Auto-spectrum, Cross-covariance, and Cross-spectrum 6 

An auto-spectrum is the Fourier transforms of an auto-covariance 7 

function of a signal or time series. The result is an array of coefficients. The 8 

coefficients are squared to convert the result into an auto-power spectrum. The 9 

cross-covariance function is a function of the lag or the shift in time between 10 

two signals or time series. The result is a single value for each lag. A cross-11 

spectrum is the Fourier transform of a cross-covariance function between two 12 

signals or time series. The result is an array of coefficients. The units are the 13 

same as the input signals. The coefficients are squared to convert the result into 14 

a cross-power spectrum. 15 

 16 

6.5.3 Coherence spectrum, Time domain, and Time Domain Measurements 17 

The coherence spectrum normalizes the cross-spectrum. Normalization 18 

is achieved by dividing each coefficient of the cross-spectrum by the square 19 

root of the product of the spectrum for each individual signal. The values are 20 

between 0 and 1. The coefficients are squared to convert the result into a 21 

coherence spectrum. The time domain is a term used to describe the analysis of 22 

mathematical functions, or physical signals, with respect to time. In the time 23 

domain, the signal or function's value is known for all real numbers. In order to 24 

display operating deflection shapes (ODSs) or mode shapes from a set of time 25 

domain measurements, they must be acquired so that each measurement 26 
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represents a shape component of the structure at the same moment in time. This 1 

procedure is typically too expensive. Instead, the data is usually acquired a few 2 

channels at a time in separate measurement sets (Trench, 1961). 3 

 4 

6.5.4 Frequency response, Frequency spectrum, and Spectrum analysis 5 

Frequency response is the measure of any system's output spectrum in 6 

response to an input signal. The frequency spectrum of a time-domain signal is 7 

a representation of that signal in the frequency domain. The frequency 8 

spectrum can be generated via a Fourier transform of the signal, and the 9 

resulting values are usually presented as amplitude and phase, both plotted 10 

versus frequency. Spectrum analysis is the technical process of decomposing a 11 

complex signal into simpler parts. Spectrum analysis can be performed on the 12 

entire signal. A signal can be broken into short segments and spectrum analysis 13 

may be applied to these individual segments (Carayannis et al., 1986). The 14 

Fourier transform of a function produces a frequency spectrum which contains 15 

all of the information about the original signal. These two pieces of 16 

information can be represented as a two-dimensional vector, as a complex 17 

number, or as magnitude (amplitude) and phase in polar coordinates (Twigg & 18 

Hasler, 2009). 19 

 20 

6.5.4.1 Impulse response function (IRF), Transfer function, and coherence 21 

In signal processing, the impulse response function (IRF) of a dynamic 22 

system is its output when presented with a brief input signal, or impulse. A 23 

transfer function is a mathematical representation of the relation between the 24 

input and output of a linear time-invariant system. The Fast Fourier Transform 25 

(FFT) and the power spectrum are powerful tools that can be used to analyse 26 
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and measure signals from plug-in data acquisition devices (Twigg & Hasler, 1 

2009). The spectral coherence is a statistic that can be used to examine the 2 

relation between two signals or data sets. It is commonly used to estimate the 3 

power transfer between the input and the output of a linear system. The 4 

spectrum coherence programme is given in Appendix A. The decibel unit is 5 

used to signal processing from modal testing. The decibel (dB) is a logarithmic 6 

unit that describes a ratio of two measurements. The use of dB units allows 7 

ratios of various sizes to be described using numbers with which it is easy to 8 

work. The equation used to describe the difference in intensity between two 9 

measurements is as follows:      10 

                Delta X (dB) = 10 Log10(X2/X1)                                                                    6.4 11 

where delta X is the difference in some quantity expressed in decibels, X1 and 12 

X2 are two different measured values of X, and the log is to base 10.  The ratios 13 

of two different values are given in Table 6.2.  14 

 15 

Table ‎6.2: The correlation data based on the conversion of the dB unit and variables. 16 

Ratio between Measurement 1 and 2 Equation dB 

1 dB = 10 log (1) 0 dB     

2 dB = 10 log (2)  3 dB     

10 dB = 10 log (10) 10 dB     

100 dB = 10 log (100) 20 dB     

 17 

 18 

 19 

 20 
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6.5.5 Design and construction of the model 1 

The design and construction of the model is explained in chapter 5. The 2 

visual grid line of the model is given in Figure 6.2, which shows the numbers 3 

of nodes and elements that are applied for the purposes of set up of model.4 

 5 

                 Figure ‎6.2: The visual grid lines of the flat net. 6 

 7 

6.5.6 Instrumentation and equipment 8 

In addition to the equipment used in static testing described in chapter 5, 9 

further equipment was used in dynamic testing to excite the structure and 10 

record the vibrations. This equipment is described in the following subsections 11 

6.5.6 1 to 6.5.6.6. 12 

 13 

 14 
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6.5.6.1 IMC WAVE IMC WAVE acoustic workstation software 1 

The IMC WAVE acoustic workstation software is designed for use in 2 

noise and vibration testing. When IMC WAVE is used in conjunction with 3 

CRONOS-PL hardware it provides a reliable, standards based testing system 4 

that is easy to configure and operate. The hardware setup and software 5 

configuration can be further simplified by using TEDS sensor recognition 6 

combined with ISO standard tests. The system can be expanded with analogue 7 

and field bus channels, enabling the number of applications to be extended far 8 

beyond that of conventional vibration analysers.                                                                            9 

 10 

6.5.6.2 ME’scopeVES software 11 

ME‟scope VES (Visual Engineering Series) software is a family of 12 

software packages and options that make it easier to observe, analyse, and 13 

document noise and vibration problems in machinery and structures. The 14 

ME‟scope VES software is used to display and analyse experimental multi-15 

channel time and frequency domain data that is acquired during the operation 16 

of a machine or through the forced vibration of a structure. 17 

 18 

6.5.6.3 Impact hammer  19 

Impact hammers are used in modal analysis to determine component or 20 

system response to impacts of different amplitude and duration. Impact 21 

hammers are used in the modal and structural behaviour analysis of all types of 22 

components and systems. The pulse duration, a measurement of the time the 23 

hammer is imparting a force on the object being tested, is a very short span of 24 

time that is often measured in milliseconds. In general, harder tips will deform 25 

less during impact and will have shorter pulse duration than softer tips. The 26 
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impact hammer used in this research is shown in Figure 6.3. Typically the 1 

hardest tips are used to measure response at the highest frequencies.  2 

 3 

                      Figure ‎6.3: General view of impact hammer. 4 

 5 

6.5.6.4 Ceramic shear accelerometer (50 g lightweight, voltage mode) 6 

The 50 g ceramic shear accelerometer is suitable for use in the present work in 7 

terms of its measurement range and also because it has a small envelope size 8 

and is light weight. Miniature models, such as this one, are designed for 9 

minimal mass loading are still capable of generating a significant signal. The 10 

ceramic sensing element components are carefully designed to provide the 11 

level of performance most often required for general-purpose vibration 12 

measurements. The specification and features of the 50 g ceramic shear 13 

accelerometer are shown in Table 6.3. The actual accelerometer (Kistler 14 

8776A50) used in this study is shown in Figure 6.4. 15 

 16 
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Table ‎6.3: Specification and features of 50 g ceramic shear accelerometer. 1 

Specification Type 8776A50 

Model (Single axis or triaxial) 
 

Single axis linear 

Range g ±50 

Sensitivity mV/g 100 

Frequency Range Hz 1...7000 

Mass g 4 

Diameter mm 10.16 

Housing/Base 
 

Titanium 

 2 

 3 

                 Figure ‎6.4: Kistler 8776A50 ceramic shear accelerometer. 4 

 5 

6.5.6.5 Data acquisition device (IMC CL 7016-1) 6 

This device is equipped for vibration analysis. The IMC CL 7016-1 is used to 7 

receive and process data from structures. The IMC CL 7016-1 consists of a 8 
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smart network-cable. The IMC WAVE software is a platform of this device. 1 

IMC WAVE‟s individual software modules make order tracking as well as 2 

spectral and sound power analyses possible with the click of a button. The 3 

channel construction of this incremental encoder device is shown in Figure 6.5. 4 

The actual IMC device used in this work is shown in Figure 6.6 and Figure 6.7. 5 

The IMC CL-7016-1 comes as an 8- or 16-channel universal measurement 6 

device with sampling rates of up to 100 kHz per channel. The device is 7 

especially well suited to frequently changing measurement tasks. The input 8 

channels are differential and equipped with per-channel signal conditioning 9 

including filters. The specification and features of this device are: 10 

a) Connection via TCP/IP at data rates of up to 100Mbit. 11 

b) Auto-start capability independent of PC and computational and 12 

control functions via online FAMOS data analysis software.  13 

c) Removable hard drive for data storage and up to 512 channels can 14 

be recorded.  15 

 16 

                       Figure ‎6.5: Block Schematic of incremental encoder. 17 
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 1 

 2 

                      Figure ‎6.6: Front view of IMC device. 3 

 4 

                   Figure ‎6.7: Back view of IMC device. 5 

 6 

                7 
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6.5.6.6  Connectors   1 

Electronic cables are used to connect the sensors in parallel. These 2 

cables are utilized together with cable plugs and sockets. Protective covers are 3 

used to protect the connectors from contamination. The cables used in this 4 

study are shown in Figure 6.8 and Figure 6.9. 5 

 6 

           Figure ‎6.8: Top view of cables and cable connector. 7 

 8 

All the cables used in this study are designed to provide optimum signal 9 

transmission. In the present experimental work, Kistler's premium cables and 10 

connectors are used. Kistler connectors are high-quality stainless steel. Noise 11 

and intermittent operation are eliminated because there is no plating to wear 12 

off. Stainless steel also reduces the weight by 50% compared to conventional 13 

cables. These cables can be used with both low and high impedance sensors.          14 
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 1 

                   Figure ‎6.9: Top view of accelerometer-IMC connector device. 2 

 3 

6.5.7 Test procedure 4 

6.5.7.1 The flat net 5 

As mentioned in chapter 5, the final part of the static testing consisted of 6 

subjecting the net to two different types of concentrated loading. In the first 7 

case, the net was loaded with increasing load at central joint 32 only. In the 8 

second case, the net was subjected to equal and increasing load at all joints. 9 

The results proved the hypothesis that the frame net has a rigid boundary. 10 

 11 

6.5.7.2 Equipment setup 12 

A diagram showing the layout of the equipment is given in Figure 6.10. In 13 

order to record the static and dynamic deformation at different points of the 14 

net, the cores of eight transducers were attached to joints 1, 2, 3, 4, 5, 6, 7, and 15 

8 in order to obtain the signal from the accelerometer and the core of one 16 
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transducer was attached to reference node 3 or 28 in order to excite the 1 

structure. The position of the accelerometer is changed consecutively to reach 2 

node 63 until the procedure has been completed for all joints.  3 

 4 

 5 

 6 

    Figure ‎6.10: The diagrammatic layout of the experimental setup for modal testing. 7 

 8 

The construction setup for the accelerometer sensor to join to nodes and the 9 

acquisition file from IMC device in the different references is shown in Table 10 

6.4. The acquisition frequencies are according to transfer function plot. 11 

 12 

 13 

 14 
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Table ‎6.4: Setup procedure for modal testing with IMC device. 1 

Setup/Channel Nodes Position of hammer File name 

1 1-8 Node 3 15:20:43 (1) 

2 1-8 Node 28 15:28:19 (9) 

3 9-16 Node 3 15:50:26 (1) 

4 9-16 Node 28 15:51:45 (2) 

5 17-24 Node 3 16:05:32 (3) 

6 17-24 Node 28 16:07:22 (6) 

7 25-32 Node 3 16:21:31 (9) 

8 25-32 Node 28 16:22:29 (10) 

9 33-40 Node 3 16:33:58 (12) 

10 33-40 Node 28 16:37:44 (1) 

11 41-48 Node 3 16:50:09 (2) 

12 41-48 Node 28 16:50:55 (3) 

13 49-56 Node 3 17:03:44 (5) 

14 49-56 Node 28 17:04:27 (6) 

15 57-63 Node 3 17:13:29 (7) 

16 57-63 Node 28 17:14:24 (8) 

 2 

Data from all measurements are shown in Figures 6.11– 6.21 and Appendix E. 3 

Briefly, Figure 6.11 shows a typical coherence graph for nodes 1–8 based on 4 

reference node 3. Figure 6.11 also is an enlarged view that shows the 5 

coherence graph for the range of 0–600 Hz. The coherence signal dropped 6 

sharply between 0 and 35 Hz from 1 to 0.557 ratio units. From this point 7 

onwards the coherence shot up to reach 0.774 units. The ratio of 0.378 is 8 

highest percentage in the graph in Figure 6.11. Figure 6.12 shows the visual 9 

comparison of thee coherence graph based on references 3 and 28. The signals 10 
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output from reference 3 are suitable because ratios of the amounts based on 1 

reference 3 are higher than the ratio amounts of reference 28 and are close to 1. 2 

This means that the received signals have linear behaviour and are sufficient to 3 

analyse modal. The excitation graph for nodes 1 to 8 based on reference 3 is 4 

shown Figure 6.13. The transfer function plots for nodes 1-8 are given in 5 

Figures 6.14 (based on reference 3) and Figure 6.15 (based on references 3 and 6 

28). Figures 6.13 and 6.14 show that the primary value for node 1 is more than 7 

node 2 and node 3, respectively. In Figure 6.14 it is demonstrated that 8 

amplitude starts from 14 mg/N when using reference node 3 and amplitude 9 

starts from 9 mg/N when using reference node 28. It should be mentioned that 10 

the vibration of the structure at reference 3 is closer in distance to node 1 11 

compared to the vibration at reference node 28.    12 

 13 

 14 

     Figure ‎6.11: Coherence graph and enlarged image of channel 1 based on reference 3. 15 
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 1 

            Figure ‎6.12: Coherence graph of channel 1 and 2 based on references 3 and 28. 2 

 3 

                Figure ‎6.13: Excitation graph of channel 1 based on reference 3. 4 
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 1 

                 Figure ‎6.14: Transfer function plot for nodes 1 to 3 based on references 3. 2 

 3 

            Figure ‎6.15: Transfer function graph for node 1 based on references 3 and 28. 4 
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Figure 6.16 shows the 3D cursor colour map for nodes 1 to 8. The 3D 1 

cursor colour map consists of three curve windows. The left curve window 2 

presents a colour map which shows the relationship of time signal _x and time 3 

signal_y. In this colour map it is demonstrated that the frequency decreases 4 

slightly from 75 million seconds later. The third curve window shows that the 5 

signal climbed rapidly between 0 and 6 from -6 to -3 mg and fell again after 10 6 

seconds.7 

 8 

           Figure ‎6.16: Display of the 3D cursor colour map for nodes 1–8 corresponding to 9 

reference 3. 10 

As mentioned above, magnitudes can be displayed in dB units. The magnitude is 11 

displayed as follows 12 

 Magnitude (dB) =20 Log 10(Magnitude).                                                                 6.5                                                                                                              13 

For power (MS) quantities such as auto-spectra and cross-spectra, the magnitude is 14 

displayed as 15 

Magnitude (dB) = 10 Log 10(Magnitude).                                                                  6.6 16 

The highest changes signals for nodes 1 to 8 in transfer function are 17 

between -80 dB and 5 dB. The time signal graph and excitation force graph for 18 

nodes 9 to 16 based on reference 3 are shown in Figure 6.17 and it can be seen 19 
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that the amplitude of force dropped sharply between 0 and 4 kHz from 270e-3 1 

(N
2
/Hz) to 0 units. The time signal bar plot of nodes 9 to 16 for the period of 2 

150 milliseconds is also shown in Figure 6.18, which shows that the amplitude 3 

of the signal for node 10 is highest between 9 and 16 nodes.4 

 5 

                Figure ‎6.17: Time signal graph of channel 3 based on references 3. 6 
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 1 

             Figure ‎6.18: Time signal between nodes 9 and 16 corresponding references 3. 2 
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The excitation force graph for nodes 17 to 24 based on references 3 is shown in 1 

Figure 6.19. The graph leapt rapidly between 3.5 kHz and 4.1 kHz from 0.95 e-2 

3 (N
2
/Hz) to -0.2e–3(N

2
/Hz). From this point onwards, the graph increased 3 

gradually from -0.2e–3(N
2
/Hz) to 4.2 kHz and is projected to reach  4 

-045e-3(N
2
/Hz) in 4.6 kHz. The water fall plot of the time signal graph is 5 

shown in Figure 6.20. This graph helps to make a visual comparison of the 6 

signal between nodes 25 and 32. The acquired data is presented in more detail 7 

in Appendix F. 8 

      9 
Figure  6.19: Harmonic cursor of excitation force for channel 5 based on reference 3. 10 
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       1 
Figure  6.20: The waterfall plot of time signal for nodes 25- 32 based on reference 3. 2 

 3 

6.5.8 Modal parameter estimation  4 

Modal analysis is the study of the dynamic properties of structures 5 

under vibration excitation. In the ME‟scope the program, the modal parameters 6 

are estimated by curve fitting a set of experimentally derived measurements 7 

using an analytical form of a Frequency Response Function (FRF). Modal 8 

parameters can be estimated from a set of experimental derived FRFs or from 9 

Fourier Spectra (FFTs), auto-power spectra, cross-power spectra, and ODSs 10 

The FRFs that are derived from operating data and are properly windowed. In 11 

this project, single reference methods are used versus multiple reference 12 

methods. A single reference set of FRFs is measured using a single fixed 13 

exciter location, or a single fixed response transducer location. In order to 14 

scrutinize the frequency response function application of a new technique is 15 

needed. In the present work, the newest method for optimization of the modal 16 

parameter is used. Optimization and Scrutinization of modal parameter 17 
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6.5.8.1  Phase plot 1 

Gain is a measure of the ability of a circuit to increase the amplitude of 2 

a signal from the input to the output. It is usually defined as the mean ratio of 3 

the signal output of a system to the signal input of the same system. It may also 4 

be defined on a logarithmic scale (LaMar, Xin, & Qi, 2006). The phase Bode 5 

plot is obtained by plotting the phase angle of the transfer function given by 6 

Φ = - tan 
-1 

(w/wc)                                                                                                6.7 7 

where ω and ωc are the input and cutoff angular frequencies, respectively. For 8 

input frequencies much lower than the corner, the ratio w/w0 is small and the 9 

phase angle is close to zero. As the ratio increases, the absolute value of the 10 

phase increases and becomes -45 degrees when w = wc. As the ratio increases 11 

for input frequencies much greater than the corner frequency, the phase angle 12 

asymptotically approaches -90 degrees. The frequency scale for the phase plot 13 

is logarithmic. It should be mentioned that the phase starts at 0
o
 at low 14 

frequencies and the phase goes to -90
o
 at high frequencies.   15 

 16 

6.5.8.2 Bode plot 17 

A Bode plot is a graph of the transfer function of a linear, time-invariant 18 

system versus frequency. A Bode plot shows the system's frequency response. 19 

It is usually a combination of a Bode magnitude plot, expressing the magnitude 20 

of the frequency response gain, and a Bode phase plot, expressing the 21 

frequency response phase shift. Bode plots are really log-log plots, so they 22 

collapse a wide range of frequencies (on the horizontal axis) and a wide range 23 

of gains (on the vertical axis) into a viewable whole. Bode plot content consists 24 

of magnitude plotted (dbs), phase plotted (degrees), and frequency plotted (on 25 
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a logarithmic scale). The Bode plot program used in this study is mentioned in 1 

Appendix D. 2 

 3 

6.5.8.3 Nichols plot and Nyquist plot 4 

A Nichols plot is a plot used in signal processing in which the logarithm 5 

of the magnitude is plotted against the phase of a frequency response on 6 

orthogonal axes. This plot combines the two types of Bode plot, magnitude and 7 

phase, on a single graph, with frequency as a parameter along the curve. A 8 

Nyquist plot is used to ascertain the stability of a system and is a way of 9 

showing the frequency responses of linear systems. A Nyquist plot describes 10 

the gain and phase of a frequency response in polar coordinates by plotting the 11 

imaginary part of the complex frequency response versus the real part. Using 12 

polar coordinates, a Nyquist plot shows the phase as the angle automatic 13 

control and signal processing in order to assess the stability of a system with 14 

feedback. This plot also combines the two types of Bode plot, magnitude and 15 

phase, on a single graph. The important points to note in relation to a Nyquist 16 

plot are as follows: 17 

 The low frequency portion of the plot is near +1.  18 

 The high frequency portion of the plot is near the origin in the plane.  19 

 The high frequency of the plot approaches the origin at an angle of -90
o
.  20 

The Nyquist plot is made by computing the transfer function. The 21 

transfer function would be a ratio of polynomials and may be expressed in 22 

terms of zero and pole factors in the numerator and denominator. The Nyquist 23 

open loop polar plot indicates the degree of stability, the adjustments required 24 

to achieve stability, and provides stability information for systems containing 25 

time delays. The Nyquist plot is obtained by simply plotting a locus of 26 
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imaginary (G (j ω)) versus Real (G (j ω)) at the full range, as shown in Figure 1 

6.21.   2 

                   Figure ‎6.21: The Nyquist plot fundamentals. 3 

 4 

6.5.8.4 Nyquist stability criterion 5 

The Nyquist stability criterion provides a simple test for stability of a 6 

closed-loop control system by examining the open-loop system's Nyquist plot. 7 

The stability of the closed-loop control system can be determined directly by 8 

computing the poles of the closed-loop transfer function. In contrast, the 9 

Nyquist stability criterion allows stability to be determined without computing 10 

the closed-loop poles. Two relative stability indicators, namely the gain margin 11 

and the phase margin, can be determined from the suitable Nyquist plots. The 12 

phase margin is the angle where the phase is less than 180
0
 when the gain is 13 

unity. The values are generally identified by the use of Bode plots. The Nyquist 14 

stability criterion program used in this study is mentioned in Appendix A. 15 

 16 
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6.5.8.5 CoQuad method 1 

The CoQuad method is implemented by detecting a resonance peak in 2 

the Real (Coincident) part or the Imaginary (Quadrature) part in a set of 3 

frequency. Modal damping is not estimated with this method.  4 

Each of the 63 FRFs in the saved file was measured between a pair of 5 

DOFs (points & directions) on a real plate structure. Each FRF was measured 6 

by impacting the structure with a hammer at a different point, all in the vertical 7 

direction. The vibration response of the plate was measured with an 8 

accelerometer fixed at point 3 in the Z direction. Since the accelerometer was 9 

fixed at DOF 1Z throughout the test, 1Z is called the Reference DOF. The set 10 

of 63 FRF measurements was made by impacting at two points in the vertical 11 

or Z direction. Since each point had a different DOF, these DOFs are called 12 

Roving DOFs. This type of modal test is very common and is called a roving 13 

impact test. In this project, also perform modal and ODS Tests to identify and 14 

correct vibration on structures. An ODS FRF is a complex valued function of 15 

frequency that has magnitude and phase. An ODS FRF is calculated for each 16 

roving response on a structure. Its magnitude is the auto spectrum of the roving 17 

response. Its phase is the difference between the phases of the roving response 18 

and a (fixed) reference response. This phase difference is the same as the phase 19 

of the cross-spectrum between the roving and reference responses.  20 

Amplitude frequency for node 1 based on the Bode diagram for 21 

reference 3 is shown in Figure 6.22. As previously mentioned, the Bode plot is 22 

formed from a magnitude and phase diagram. The transfer function graph of 23 

node 1 is converted to a linear graph related to time by the Bode technique. In 24 

this plot, in the magnitude part, the amplitude of signal appears to level off and 25 

remain constant at about 5.5e-4 at 1.2e3 Hz and between this point and 2.3e-3 26 
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Hz is a sprawling of the signal occurs. In contrast, the magnitude part of Figure 1 

6.23 shows that in the case of node 1 based on the Bode diagram for reference 2 

28 the graph dropped slowly to reach 5.5e-3 units between 0 Hz and 2.4e3 Hz. 3 

From this point onward, the graph has many peaks until it reaches  4 

1e4 Hz. Figure 6.22 and Figure 6.23 mainly demonstrate the ratio of input 5 

frequency over cutoff angular frequencies in the phase diagrams. The figures 6 

show the ratio of phase in frequency response when using reference 28 is close 7 

to zero in comparison to when reference 3 is used, and this means that the 8 

response is weak and is insufficient to use for mode shape. The comparison of 9 

two Bode diagram shows that the magnitude of frequency at reference 28 is 10 

less than at reference 3 for exciting the structure. Hence, it does seem that the 11 

output signals at reference 28 are too close to local frequency, which is the 12 

opposite of the case for output signals used at reference 3. The signal in Figure 13 

6.23 is made up of parts which are different from each other and are 14 

heterogeneous. 15 

 16 

            Figure ‎6.22: Bode diagram of an FRF for node 1 based on reference 3. 17 
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 1 

Figure ‎6.23: Bode diagram of an FRF for node 1 based on reference 28. 2 

Figure 6.24 and Figure 6.25 show the CoQuad diagrams for node 1 3 

based on references 3 and 28, respectively. The plot implements a resonance 4 

peak in the Coincident part or the Quadrature part in a set of received signals. 5 

The signals in the two plots show that the plot based on reference 3 has the 6 

lowest resonance to reference 28. The imaginary part of the data acquisition 7 

from reference 3 shows that the output signal has a reasonable wave and is 8 

well-suited in relation to reference 28. The Nyquist plots for node 1 based on 9 

references 3 and 28 are given in Figures 6.26 and 6.27, respectively. The 10 

frequency asymptote is at -270o, which suggests that it is for a system with 11 

three more poles than zeroes. The FFT is an algorithm that calculates the 12 

Digital Fourier Spectrum (DFT) of a time-domain signal. The Nyquist 13 

technique is key equations that govern the use of the FFT. A Nyquist plot 14 

displays the Real part on the horizontal axis and the Imaginary part on the 15 

vertical axis. Since, it is clearly evident that the frequency of the Nyquist plot 16 
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in Figure 6.27 shows a scattered signal and that future distance relates to the 1 

frequency of the Nyquist diagram in Figure 6.27. These sprawling frequencies 2 

on reference 28 indicate that the stability of a system is inadequate and that 3 

ratio amplitude frequency between output and input signal is unsuitable. All 4 

plots used for node 1 absolutely confirm that the signal received from reference 5 

3 is more appropriate than that received from reference 28.  6 

 7 

                 Figure ‎6.24: CoQuad plot of an FRF for node 1 based on reference 3. 8 

 9 

The phase diagrams for node 3 corresponding to references 3 and 28 are also 10 

shown in Figure 6.27 and Figure 6.28, respectively. Phase values are usually 11 

plotted in degrees. In Figure 6.27, the phase degree appears to level off from 0 12 

and remains almost constant until 800 Hz and the ratio w/w0 is so small that 13 

the phase angle is close to zero. However, in contrast to reference 3, in the case 14 

of reference 28, the phase degree decreased dramatically from 160 degrees to 15 

105 degrees between 0 Hz at 2e3 Hz. Thus the phase degree shows a low 16 

frequency in input signal. These figures demonstrate that the lag phase when 17 
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using the exciter on reference 3 is lower than when using the exciter on 1 

reference 28. Therefore, the output signal at reference 3 is well-suited for 2 

utilization in the analysis of the structure. 3 

 4 

              Figure ‎6.25: CoQuad plot of an FRF for node 1 based on reference 28. 5 

6 
                   Figure  6.26: Nyquist Plot of an FRF for node 1 based on reference 3. 7 
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 1 

                Figure ‎6.27: Nyquist diagram of an FRF for node 1 based on reference 28. 2 

 3 

                 Figure ‎6.28: Phase diagram of an FRF for node 3 based on reference 3. 4 
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 1 

               Figure ‎6.29: Phase diagram of an FRF for node 3 based on reference 28. 2 

 3 

6.5.9 Mode shape 4 

A mode of vibration is characterized by a modal frequency and a mode 5 

shape, and is numbered according to the number of half waves in the vibration. 6 

A mode shape is a specific pattern of vibration executed by a mechanical 7 

system at a specific frequency. This process involves identifying the 8 

eigenvalues and eigenvectors of the equations of motion.  These parameters 9 

also define the modes of vibration of the structure. The purpose of modal 10 

testing is to artificially excite a structure so that the frequencies, damping and 11 

mode shapes of its predominant modes of vibration can be identified. The 12 

different mode shapes will be associated with different frequencies. The 13 

experimental technique of modal analysis discovers the mode shapes and the 14 

frequencies.                                    15 

Frequency, Hz 

A
cc

el
/F

o
rc

e,
 D

eg
re

e 
  



154 
 

6.5.10 Procedure of modal analysis with ME’scope 1 

Modal damping and mode shape for each mode is identified in the 2 

bandwidth of the frequencies measurements. Experimental modal parameters 3 

are estimated by analytical FRF parametric model data. Each mode has a 4 

modal frequency and damping estimate, and a different residue estimate for 5 

each measurement. Each residue is a different component of the mode shape. 6 

The outcome of curve fitting is a set of modal parameters (frequency, damping, 7 

and residues) for each mode that is identified in the frequency range of the 8 

measurements. Curve fitting is based on the fact that an FRF for any vibrating 9 

structure can be represented in terms of modal parameters. The parametric 10 

model is used to estimate experimental modal parameters by curve fitting a set 11 

of measurements. The denominators all contain the same frequency and 12 

damping. Frequency and damping can be estimated by curve fitting a single 13 

measurement or any number of measurements taken from the same structure. 14 

When each measurement is curve fit for frequency and damping, this is called 15 

local curve fitting. When two or more FRFs are curve fit together, this is called 16 

global curve fitting. Each mode should only have one estimate of frequency 17 

and damping. However, local curve fitting may be necessary when the 18 

experimental data has variations in the resonance peak frequencies due to mass 19 

loading, temperature changes, or other effects that can cause the mode 20 

frequencies to change during the course of a modal test. In general, modal 21 

residues are complex numbers. The modal residues are made up by magnitude 22 

and phase in the modal parameters. Since the denominator of the FRF has units 23 

of Hertz, or (radians/second), residues must have the following units: 24 

               Residue units = (FRF units) x (radians / second)                                                 6.8 25 
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The undamped natural frequency (Ω0) and percent critical damping (δ0 = 1 

cosine (β0)) are polar coordinates of the pole location. The damped natural 2 

frequency (ω0) and damping coefficient (σ0) are rectangular coordinates of the 3 

pole location. The modal frequency and damping plot is shown in Figure 6.30. 4 

 5 

 6 

                          Figure ‎6.30: The modal frequency and damping plot. 7 

 8 

The CoQuad and peak curve fitting methods are used for single mode methods. 9 

The orthogonal polynomial curve fitting method is used for multiple mode 10 

method. The polynomial method is a method that simultaneously estimates the 11 

modal parameters of two or more modes. The polynomial method is a 12 

frequency domain curve fitting method that utilizes the complex (real and 13 

imaginary) units. Local curve fitting should be used when the FRF data has 14 

slight variations in the resonance peak frequencies from one measurement to 15 

another, due to changes in mass loading (moving the sensors) during 16 

acquisition of the FRFs. When global fitting is chosen, all FRFs are curve fit 17 

together and a global modal frequency and damping estimate is saved for each 18 
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mode. Each mode should have only one estimate of frequency and damping. 1 

Global curve fitting yields better estimates if the structure contains local 2 

modes. The residue for each mode is listed as a complex number (magnitude 3 

and phase). The magnitude units are the units of the trace multiplied by radians 4 

per second. Phases are in degrees. The effective mass, damping and stiffness 5 

are calculated with the following respective formulas: 6 

Effective Mass = 1 / (Frequency x Residue real + Damping x Residue Imaginary)     6.9 7 

Effective Damping= 2 x Damping x Effective Mass                                                   6.10 8 

Effective Stiffness= (Frequency2 + Damping2) x Effective Mass                               6.11 9 

Where:                  Residue real = Real part of the residue. 10 

                             Residue Imaginary= Imaginary part of the residue. 11 

 12 

In the present study, a mathematical step is needed to represent the FRF 13 

matrix in terms of mode shapes instead of residues. Notice that a mode shape is 14 

unique in shape, but not in value. Many structures exhibit resonant vibration in 15 

a localized region of the structure. In other words, energy becomes „trapped‟ 16 

between stiff boundaries in a local region, and cannot readily escape, causing a 17 

standing wave of vibration, or local mode shape. Global modes have mode 18 

shapes that are mostly nonzero, except at node points. Local modes have mode 19 

shapes that are nonzero in a local region of the structure, and zero elsewhere. 20 

The first step of modal parameter estimation is to determine how many modes 21 

are represented by resonance peaks in the frequency band of a set of 22 

measurements. 23 

The investigation of mode shape in this experimental work 24 

demonstrates that the mode shapes from reference 28 are similar to the local 25 

mode and are not sufficient for use in the analysis. Mode shapes in the 26 
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experimental work based on node 28 are shown in Figure 6.35 and Figure 6.36. 1 

In contrast, the mode shapes based on reference 3 are global and show the 2 

accurate behaviour of the structure. In this project, for sufficient acquisition of 3 

data, all mode frequency responses are investigated by complex exponential 4 

and Z polynomial methods. The resulting multiple sets of frequency and 5 

damping estimates are referred to as a stability diagram. A stability diagram is 6 

useful when resonance peaks cannot be counted on the modeindicator curves. 7 

When a modal frequency and damping estimate does not change substantially 8 

from one curve fitting mode size to the next, this is an indication that the pole 9 

estimates are stable, and they are therefore the correct modal parameters for 10 

each mode in question. 11 

 12 

6.5.11 Complexes Exponential 13 

This method is a time-domain method that estimates poles from a set of 14 

FRFs by curve fitting their corresponding set of IRFs by using a least squared 15 

error method. Prior to curve fitting, each FRF is transformed to its equivalent 16 

IRF by applying the inverse FFT to the FRF data.  17 

 18 

6.5.12 Z Polynomial 19 

This method is an extension of the orthogonal polynomial method and 20 

uses the Z transform to obtain poles from larger curve fitting model sizes than 21 

the orthogonal polynomial method. Like the orthogonal polynomial method, 22 

this method works better with small cursor bands of data at a time. The 23 

predicted nonlinear response corresponding to the 5th mode of vibration using 24 

one vibrator is compared with the same mode shapes calculated by an 25 

eigenvalue in the finite element analysis and in the experimental work, as 26 
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shown in Figures 6.31 to 6.36. For more accuracy and efficiency, all mode 1 

shapes are normalized by complexes exponential. The numbers of nodes are 2 

assigned in Figure 6.31. 3 

 4 

 5 

                Figure ‎6.31: The general view of the steel construction under study. 6 

 7 
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 18 
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 1 

 2 

                         Figure  6.32: Mode shape 1 of the structure. 3 

 4 

 

 

 

 

Theoretical Analysis  

Mode shape: 1 

Frequency: 2.97 Hz 

Damping ratio: 0.09% 

 

 

 

 

Finite Element  

Modelling 

Mode shape: 1 

Frequency: 2.96 Hz 

Damping ratio: 0.05% 

 

 

 

 

Experimental Work 

Mode shape: 1 

Frequency: 2.95 Hz 

Damping ratio: 0.1% 

 



160 
 

 1 

           2 

                           Figure  6.33: Mode shape 2 of the structure. 3 
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 1 

 2 

       Figure ‎6.34: Mode shape 3 of the structure. 3 
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 1 

 2 

                 Figure  6.35: Mode shape 4 of the structure. 3 

 4 

 

 

 

 

Theoretical Analysis 

Mode shape: 4 

Frequency: 9.12 Hz 

Damping ratio: 0.01% 

 

 

 

 

Finite Element    

Modelling 

Mode shape: 4 

Frequency: 9.11 Hz 

Damping ratio: 0.05% 

 

 

 

 

Experimental Work 

Mode shape: 4 

Frequency: 9.10 Hz 

Damping ratio: 0.01% 

 



163 
 

 1 

 2 

                 Figure  6.36: Mode shape 5 of the structure. 3 
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The damping ratio for modes decreases with increase mode number and 1 

they are not similar to each others. Because damping ratio is function of 2 

frequency. And damping ratio values come out from different formulation in 3 

either of finite element, theoretical and experimental. Hence, values of 4 

damping ratio could not same to each other‟s when frequencies are not same 5 

values. Frequencies value decrease in period of time. As shown by the above 6 

figures, all the theoretical and experimental mode shapes are close to each 7 

other and verify the proposed theory. For better accuracy, all mode shapes 8 

should be normalized. A complexity plot displays the magnitudes and phases 9 

of all shape components in a single plot. A mode shape is called a „normal‟ 10 

mode shape if all of its shape components have phases of 0 or 180 degrees. In 11 

other words, all of the shape components lie along a straight line defined by 0 12 

or 180 degrees in a complexity plot. If no damping is included in a FEA model, 13 

all of its FEA mode shapes will be normal mode shapes. In the present work, 14 

all mode shapes are normalized according to the above mentioned complexity 15 

plot. For example, the complexity plot for mode shape 1 based on reference 3 16 

is shown in Figure 6.37.  In Figure 6.37, the red shape components denote a 0 17 

degree phase and the blue shape components denote a 180 degree phase.  18 

19 
Figure  6.37: Complexity plot of mode shape 1. 20 
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The right-hand side of Figure 6.37 shows the normalization of mode 1 

shape components. Experimental mode shapes are often complex because real 2 

structures have damping in them. The components of a complex shape do not 3 

necessarily lie along a straight line in a complexity plot. Shape normalization 4 

helps simplify the animated display of complex shapes. The dashed line on a 5 

complexity plot is called the normalization line. When a complex shape is 6 

normalized, the magnitudes of all of its components are retained, but the phases 7 

are changed to either 0 or 180 degrees. For each position of the vibrator, the net 8 

is excited with a frequency corresponding to the mode on pre-tensioned cables. 9 

Each cable was tensioned at 11500 N. The comparisons between the theoretical 10 

and experimental natural frequencies are presented in Table.6.5. 11 

Table ‎6.5: Theoretical and experimental natural frequencies. 12 
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The net had to be excited five times for each setup to reach a suitable 1 

response for each of the nodes. For each frequency, the modal damping was 2 

found by calculating the logarithmic decrement from the decay function. It 3 

should be mentioned that the logarithmic decrement method is utilized to 4 

calculate damping in the time domain. In the present work, the free vibration 5 

displacement amplitude history of a system for an impulse is calculated and 6 

recorded. The logarithmic decrement is the natural logarithmic value of the 7 

ratio of two adjacent peak values of displacement in free decay vibration. The 8 

logarithmic decrement, δ, is utilized to find the damping ratio of an under 9 

damped system in the time domain. Since cable nets are nonlinear structures 10 

because of their stiffness, their natural frequencies vary with the amplitude of 11 

vibration. The reported tests of other researchers indicate that the frequencies 12 

are approximately independent of the amplitudes of response achieved (Kirsch 13 

et al., 2007). Some initial tests were carried out to mention that the natural 14 

frequency is independent of amplitude. From a particular time until now the 15 

maximum response and hence the maximum change of stiffness was achieved 16 

in the first mode. This was deemed sufficient only to study the variations of the 17 

natural frequencies with the amplitude of response in this mode. In general, 18 

specific damping over a range is detected by mode or frequency and damping 19 

value is calculated by direct modal or composite modal methods such as the 20 

Rayleigh method. Table 6.6 gives the finite element results and theoretical 21 

frequencies of the net for the five modes. The effect of damping value is 22 

calculated by a composite modal method between mode 1 and mode 5 and load 23 

variation with time is detected as instantaneous. The result presented shows 24 

that the natural frequencies decrease only slightly with the increase in the 25 
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amplitude. This means that the natural frequency is constant and independent 1 

of the amount of the force‟s value. 2 

Table ‎6.6: Theoretical and finite element result of natural frequencies for the first five 3 

modes. 4 
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The logarithmic decrements   against amplitudes of vibration are shown in 1 

Figure 6.38. The logarithmic decrement is calculated from the natural 2 

logarithm of the ratio of the amplitudes of any two oscillations. Its formulation 3 

is:    4 

              Delta (     
 

  
 Ln (Ai+n / Ai )                                                                                6.9      5 

where         Ai       = amplitude of the ith oscillation. 6 

                  A(i+n) = amplitude of the oscillation n vibrations after the ith oscillation. 7 

By calculating the values of   at various points along the decay curve it was 8 

found that the logarithmic decrements varied with the amplitude and reduced 9 

with increasing amplitude. During the calculation, the logarithmic decrement 10 

appears to approach a constant value as the amplitude increases. 11 

 12 

             Figure ‎6.38: The logarithmic decrements against amplitudes of vibration. 13 

 14 

Amplitude 

L
o
g
ar

it
h
m

ic
 d

ec
re

m
en

t 
  

 %
  
  



169 
 

6.6 Parametric study on dynamic response 1 

6.6.1 Comparison of the response predicted between the Fletcher-Reeves and the 2 

Newton-Raphson methods and linear dynamic response 3 

The proposed method for the nonlinear dynamic response analysis of 4 

pre-tensioned structures is based upon the minimization process carried out by 5 

the Fletcher-Reeves and the Newton-Raphson algorithms. A comparative study 6 

of the two algorithms can help in choosing one of the two algorithms for the 7 

analysis of a given structure. 8 

In order to extend the analysis to a larger problem, the following 9 

numerical modelling is carried out on the 7*5 net. The logarithmic damping 10 

was assumed to be the same in all modes and equal to 10%. In this section, the 11 

calculated nonlinear response is compared with those predicted by the linear 12 

Newton-Raphson and mode superposition method. In each case analysed, the 13 

dynamic load is applied as the excitation force of the structure. The response in 14 

each case is calculated for a period of 15 seconds. Table 6.7 gives the 15 

amplitude of the steady state vibration in the 7th mode for joints 4, 11, 18, 25, 16 

32, 39, 46, 53, and 60 for dynamic analysis while the dynamic load is on node 17 

32. These results show the extent of the differences between the linear and 18 

nonlinear calculated response. In numerical dynamic analysis, the dynamic 19 

load applied as the excitation force of the form is P (t) = P0 sin (wn* t), where 20 

wn is the nth natural angular frequency. The dynamic load plot based on mode 21 

shape 1 is shown in Figure 6.40. The details of dynamic load are written as 22 

Static load = 200 N per joint,                  Pre-tension = 11500 N per link 23 

P=50 sin 2.97*t    at joint 32     w1=2.97   mode shape 1 based on node 32 24 

Figure 6.39 shows a full time history. The full time history is the response of a 25 

structure over time during and after the application of a load.  26 



170 
 

 1 

                          Figure ‎6.39: The dynamic load plot based on mode shape 1. 2 

 3 

 4 

                  Figure ‎6.40: The time history of dynamic load based on mode shape 1. 5 
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The full time history of a structure's response is achieved by solving the 1 

structure's equation of motion. The best time step is detected based on the time 2 

history. The best time step is recognized based on which increment time step 3 

creates the most deflection in the structure. The maximum deflection is used to 4 

compare the theoretical and finite element results. 5 

 From Table 6.7 it can be seen that the differences between the linear 6 

and the nonlinear calculated responses are significant and that the differences 7 

increase with the increase in nonlinearity. 8 

 9 

Table ‎6.7: The amplitude (mm) of joints 4, 11, 18, 25, 32, 39, 46, 53, 60 at steady state 10 

vibration and pre-tension of 11500 N/link 11 

 

Joint 

 

Exciting force  on node 32,   Dynamic load= 50*Sin(2.97*t)     

Superposition 

(Linear) 

Newton-Raphson 

(Nonlinear) 

Fletcher-Reeves 

(Nonlinear) 

4 0 0 .2 

11 12.7 8.25 8.02 

18 27.6 19.8 19.3 

25 45.1 28.6 28.4 

32 51 34.1 32.3 

39 45.1 28.6 28.4 

46 27.6 19.8 19.3 

53 12.7 8.25 8.02 

60 0 0 .2 

 12 

 Table 6.8 show that the differences are very small when only one exciting 13 

force is applied, but when two exciting forces are applied, the differences reach 14 

a large value. The amplitude (mm) of joints 4, 11, 18, 25, 32, 39, 46, 53, and 60 15 

are given in Table 6.8. 16 



172 
 

In this case, when tension load had reduced to 5500 N, the nonlinearity of the 1 

structure increased. The amplitude of response of joint 32 calculated by the 2 

linear method was 1.6 times greater than that calculated by the nonlinear 3 

method. It can also be noted that when the linear method calculated the 4 

upwards and downwards movements of joints 4, 11, 18, 25, 32, 39, 46, 53, and 5 

60 the measures are all equal, whereas the use of the nonlinear method of 6 

analysis shows that the upwards movements are greater than the downwards 7 

movements. The difference is approximately 5.6% of the upward movement. 8 

This is to be expected because the rate of change of stiffness is greatest when 9 

moving downwards from the static equilibrium position. The investigation also 10 

showed that the shapes of modes obtained by exciting the net do not differ 11 

from those obtained by an eigenvalue analysis.  12 

 The comparison between responses of linear and nonlinear modes for 13 

nodes 4, 11, 18, 25, 32, 39, 46, 53, and 60 is shown in Figure 6.41 when 14 

subjected to an exciting force. The amplitudes in Figure 6.41 show that the 15 

linear response is more than the nonlinear predicted response. The nodes 16 

detected are major nodes in the structure in that they have maximum deflection 17 

in the behaviour of structure by a high degree of freedom. Figure 6.42 shows 18 

that when the response is calculated nonlinearly the maximum amplitudes 19 

occur during the transient period of vibration, whereas in the linearly calculated 20 

response the amplitudes reach their maximum value when the net vibrates in 21 

steady state. The sufficiency of the Fletcher-Reeves method to calculate 22 

response and analyse structures according to their high nonlinearity behaviour 23 

is clearly shown in Figure 6.42. 24 

 25 

 26 
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Table ‎6.8: The amplitude (mm) of joints 4, 11, 18, 25, 32, 39, 46, 53, 60 at steady state 1 

vibration and pre-tension of 11500, 5500 N/link 2 

Pre-tension 11500 N/link. 

 

    Joint 

 

Exciting force  on Node 25 Exciting force  on Node 25,39 

Superposition   

( Linear) 

Fletcher – Reeves 

(Nonlinear) 

Superposition   

( Linear) 

Fletcher – Reeves 

(Nonlinear) 

4 0 0 0 0 

11 8.76 7.97 7.35 5.07 

18 19.5 18.7 18.7 12.1 

25 31.7 29.9 27.7 17.9 

32 29.7 28.3 32.1 20.1 

39 29.1 27 25.9 17.9 

46 19.6 18.7 17.5 12.1 

53 7.26 7.21 7.41 5.07 

60 0 0 0 0 

Pre-tension 5500 N/link. 

4 0 0 0 0 

11 10.7 9.35 10 7.42 

18 23.6 22.5 24.4 16.3 

25 40.5 36.9 33 22.0 

32 37.6 33.8 34.2 23.6 

39 33.4 30.8 33 22.0 

46 25.5 22.4 24.4 16.3 

53 9.62 8.3 9.7 7.42 

60 0 0 0 0 

 3 
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 1 

Figure ‎6.41: The linear and nonlinear dynamic response of joints 11, 25, 32, 39, 46, 53, 2 

and 60. 3 

1) The net at static equilibriums     2) Linear responses     3) Nonlinear responses 4 

 5 

    Figure ‎6.42: Build up of the amplitude of joint 32 from t=0 to steady state vibration. 6 
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Figure 6.42 shows that the differences between the Fletcher-Reeves and 1 

Newton-Raphson methods are negligible in linear structures, whereas the 2 

differences between the Fletcher-Reeves and Newton-Raphson methods are 3 

evident in nonlinear structures. The Fletcher-Reeves method shows that this 4 

method is well sufficient in structures which have large degree of freedom such 5 

as 3D space structures. In fact, the response predicted by the nonlinear analysis 6 

showed that the maximum amplitude of joint 32 occurred from one to three 7 

time steps later. From experience of practical testing, this is expected for cases 8 

where dynamic load is used. 9 

 10 

6.6.2 The effect of the magnitude of modal damping on dynamic response 11 

The main aim of this section is to present the results of the study of the 12 

variations in the dynamic response of the 7*5 nets due to changes in the 13 

damping ratios used to construct the damping matrix given by composite 14 

damping. Combined damping is able to give variations in damping in different 15 

modes and enables the study of the effect of those variations on the dynamic 16 

response. The 7*5 flat is analysed for various combinations of damping ratios. 17 

The assumed values of the damping ratios used in the analysis of damping are 18 

given in Table 6.9. 19 

    20 

Table ‎6.9: Assumed values of percentage of logarithmic decrement for damping. 21 

Damping 

case 

Mode 1 

LD % DR 

1 8 0.0127 

2 6 0.0095 

LD: Logarithmic decrement 22 

DR: Damping ratio 23 
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The dynamic response is calculated for two different combinations of damping 1 

ratios by both the Fletcher-Reeves and the Newton-Raphson algorithms. The 2 

maximum amplitude of joint 18, 25, and 32 is calculated with assumed 3 

damping is given in Table 6.10. 4 

  5 

From these results it can be observed that for any type of excitation of 6 

the structure, the effects of damping on the structural response depend on the 7 

level of damping and the time and duration of measurement. The initial 8 

response for reasonably chosen values of damping in the lower modes is only 9 

marginally affected by changes of damping in the higher modes. The values of 10 

the result indicate that the amplitude calculated does not vary by more than 1% 11 

from that of the largest amplitude. Table 6.11 below shows that the amplitudes 12 

of response calculated by the two algorithms vary only marginally in the cases 13 

examined and not by more than 6.64%. The comparison of the computing time 14 

of the two algorithms is more complicated than when comparing the calculated 15 

amplitude of response. There are basically two ways of comparing the 16 

computing time. 17 

 18 

 19 

Table ‎6.10: The maximum amplitude of joint 18, 25, and 32 for composite 

damping calculated by Newton Raphson and Fletcher- Reeves method. 

Case Method Node 18 Node 25 Node 32 

1 

Fletcher-Reeves 

19.3 28.1 32.4 

2 19.5 28.2 33.7 

1 
Newton-Raphson 

21.7 30.3 35.8 

2 21.9 30.8 36.1 
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Table ‎6.11: The maximum amplitude (mm) of the joint subjected by the Fletcher-1 

Reeves and Newton-Raphson algorithms. 2 

Model 7*5 

Joint 32 

Fletcher-Reeves (FR) 33.7 

Newton –Raphson (NR) 36.1 

(NR-FR)/NR % 6.64 

 3 

In the case of this particular structure, it is appropriate to compare the 4 

computing time for the calculation of the response during a given period. 5 

Moreover, in general, when considering a structure with n degrees of freedom, 6 

it is more helpful to compare the time consumed to complete each iteration. 7 

The complexity of comparing the computing time for each algorithm becomes 8 

more evident when it is considered that the number of iterations required per 9 

time step to achieve the same degree of convergency differs for each algorithm. 10 

The number of iterations also varies from structure to structure and with 11 

different types of loading and for different convergency criteria. The size of 12 

time increment will also vary for different structures. 13 

In general, three factors affect the computing time: 14 

a) The length of the response time; 15 

b) The size of the time increment; 16 

c) The number of iterations per time step. 17 

In order to make a comparison between the computing time of Fletcher-18 

Reeves and Newton-Raphson methods, the 7x5 flat net for a period of five 19 

seconds and 350 iterations is selected. The computing time is recorded for each 20 

method. The logarithmic decrement in all modes of the 7x5 net was taken as 21 

10%. Table 6.12 gives the computing times for the 7*5 net during a five-22 
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second response and after 350 iterations as well as the time consumed for the 1 

eigenvalue solutions and calculations of the damping matrices. 2 

Table ‎6.12: The computational time (seconds) for the mathematical models. 3 

Mathematical Model 7*5 

Degree of freedom           105 

Second Response 
     Fletcher-Reeves 967.3 

     Newton- Raphson    2345.50 

350 Iteration 

     Fletcher-Reeves 84.31 

     Newton- Raphson           1057.21 

Eigen solution and damping 104.71 

 4 

In the present work, the same criterion of convergency is given. The 5 

results show that the Fletcher-Reeves are more suitable. The resulting 6 

relationship between degrees of freedom and computing time for 350 iterations 7 

for the Fletcher-Reeves and the Newton-Raphson algorithms are shown in 8 

Figure 6.43. This figure shows that the computing time against the degree of 9 

freedom for the Newton-Raphson method increases sharply, but in Fletcher-10 

Reeves method computing time increases slightly. It does seem that the result 11 

derived from the Fletcher-Reeves method is sufficient and reasonable for high 12 

nonlinearity structures. Hence, the Newton-Raphson method, which is 13 

commonly used for systems with high degree of freedom, cannot achieve an 14 

accurate result. Moreover, it should be noted that the computer storage required 15 

by the Newton-Raphson method is considerably more than that required by the 16 

Fletcher-Reeves method, because in the Newton-Raphson algorithm the 17 

dynamic stiffness matrix *K , as mentioned in chapter 4, has to be stored in 18 

addition to the damping matrix which is required by both algorithms.  19 

 20 
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 1 

Figure ‎6.43: Visual relationship between degrees of freedom and computing time. 2 

 3 

From the comparisons given in previous Figures and Tables it can be 4 

concluded that the Fletcher-Reeves algorithm is the more efficient of the two 5 

algorithms in terms of computing time and storage because both algorithms 6 

give almost identical responses.  7 

 8 

6.6.3 The size of the time step, stability and accuracy  9 

The size of the time step used for the dynamic response analysis of the 10 

flat net is in all cases equal to half the smallest periodic time of the net 11 

concerned. This size of time step proved to be adequate since the dynamic 12 

analyses were simple. For more complicated dynamic analyses, the time step 13 

may have to be smaller to take into account all the frequency components of 14 

the dynamic loading. Experiments conducted with various sizes of time 15 

increments showed that, for the type of dynamic analyses employed, either of 16 

the time increments was small enough to ensure stability and accuracy was not 17 

increased by reducing the time step further. Indeed, a reduction in the time step 18 
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only increased computing time. On the other hand, increasing the period of the 1 

time steps leads to more iteration per time step because the starting point at the 2 

beginning of each time step is further removed from the position where the 3 

total potential dynamic work is a minimum. Hence, increase and reduction in 4 

the time step are not valid reasons for the stability and accuracy of the structure 5 

results. 6 

 7 

6.6.4 The comparison of the natural frequencies on case study for cables 8 

The Comparison of the natural frequency between the proposed method 9 

and the finite element is based upon the minimization process carried out by 10 

the Fletcher-Reeves and the Newton-Raphson algorithms. A comparative study 11 

can help to verify proposed method for the analysis structure. In order to the 12 

structural analysis, the numerical modelling is carried out on the pretention 13 

cables. The cable is modelled as three-dimensional tensioned beam elements. It 14 

includes the nonlinearities due to low strain large deformation and pre-tension. 15 

A hybrid beam element is used to model the cable. It is hybrid because it 16 

employs a mixed formulation involving six displacements and axial tension as 17 

nodal degrees of freedom. The logarithmic damping was assumed to be the 18 

same in all modes and equal to 10%.  The grid line of the beam model with 19 

node numbers is shown in Figure 1. Nodes are assigned at a certain density 20 

throughout the material depending on the anticipated stress levels of a 21 

particular area. The specification of beam is given in Table 6.13. In the present 22 

study, the modelling space is 3D and wire is used for the shape of model. This 23 

type of model is deformable and planar. Mass density according laboratory 24 

testing is 7860 kg/m
3
 and Young‟s Modulus is 2.1e11 N/m

2
.
 

The selected 25 

property type is isotropic elastic. The analysis has different steps. The model is 26 
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considered as symmetric and linear. Total number of nodes and line elements 1 

are 62 and 55, respectively.  2 

 3 

 4 

          Figure 6.44: Visual of elements mesh. 5 

       Table 6.13: The specifications beam steel. 6 

                         Description Details 

Overall dimensions 10000x5000 mm 

Young‟s Modulus 2.1 e11 N/ mm
2
 

Diameter
 

10 mm
2 

Breaking Load (kN) 280 

Proof Load (kN) 240 

 7 

 8 

6.6.5 Linear perturbation on finite element analysis   9 

The finite element analysis method is a numerical technique used to find 10 

approximate solutions of partial differential equations. This mesh is programmed to 11 

contain the material and structural properties which define how the structure will react 12 

to certain loading conditions. In this case, procedure of finite element is given         13 

Table 6.14. In the present study, the modelling space is 3D and wire is used for the 14 

shape of model. This type of model is deformable and planar. Mass density is 7860 15 
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kg/m
3
 and Young‟s modulus is 1.926e11 N/m

2
.
 
The selected property type is isotropic 1 

elastic. The analysis has different steps. The model is considered as symmetric and 2 

linear. A general static test is selected to analyse the model.  3 

 4 

           Table 6.14: Details of procedure of finite element analysis. 5 

Modelling space 3D 

Shape Solid, Deformable 

Type         Deformable 

               Mass Density        7860 kg/m
3
 

              Poisson‟s Ratio       0.3 

     Type of Elasticity  Isotropic 

     Young‟s Modulus  1.926e11 N/m
2
 

               Step 1 Initial Static, Linear 

               Step 2 Perturbation, Method: direct   Matrix 

               Step 3  Symmetric, Static, Linear perturbation 

               Step 4 Direct   Matrix: symmetric, Frequency 

 6 

Some initial tests were carried out to mention that the natural frequency 7 

is independent of amplitude. Table 6.15 gives the finite element results and 8 

theoretical frequencies of the net for the four modes. The result presented 9 

shows that natural frequencies come out from theoretical and finite element are 10 

in good agreement. All mode shapes 1-3 of the structure are shown in Figures 11 

6.45.6.46, and 6.46. 12 

 13 

 14 

 15 
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          Table 6.15: Theoretical and experimental natural frequencies. 1 
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Mode 1 4.18 4.03 3.50 

Mode 2 5.52 5.40 2.23 

Mode 3 12.65 12.29 2.92 

                         Figure 6.45: Mode shape 1 of the structure. 2 

 

Finite Element  

Modelling 

Mode shape: 1 

Frequency: 2.597Hz 

Damping ratio: 0.1% 

 

Theoretical Analysis 

Mode shape: 2 

Frequency: 6.46 Hz 

Damping ratio: 0.1% 
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           Figure 6.46: Mode shape 2 of the structure. 1 

 2 

       Figure 6.47: Mode shape 3 of the structure. 3 

 4 

 

Finite Element  

Modelling 

Mode shape: 2 

Frequency: 3.819Hz 

Damping ratio: 0.1% 

 

Theoretical Analysis 

Mode shape: 2 

Frequency: 6.46 Hz 

Damping ratio: 0.1% 

 

 

Finite Element  

Modelling 

Mode shape: 3 

Frequency: 4.915Hz 

Damping ratio: 0.1% 

 

Theoretical Analysis 

Mode shape: 2 

Frequency: 6.46 Hz 

Damping ratio: 0.1% 
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As shown by the above figures, all the theoretical and finite element 1 

mode shapes are close to each other and verify the proposed theory. 2 

 3 

6.7 Conclusions 4 

The differences between the calculated deflections and measured static 5 

deflections in this field are mainly due to the inherent differences between the 6 

experimental and mathematical models. In this study, the predicted natural 7 

frequencies for different modes are within 2% of the measured frequencies. 8 

The differences are thought primarily to be due to the differences between the 9 

theoretical and experimental static deflections. These differences are reflected 10 

in the degree of stiffness of the experimental and mathematical models at the 11 

starting point of the vibrations, and are also due to the fact that the theoretical 12 

frequencies were calculated for an undamped system by using an eigenvalue 13 

analysis, whereas the experimental model included damping and nonlinearity. 14 

As expected, the use of only one vibrator limited the number of modes which 15 

could be excited at resonance and hence limited the measurement of 16 

logarithmic decrements to the first few modes. Thus, in the calculation of the 17 

damping matrix only the first few logarithmic decrements are used. The 18 

comparison of the experimental and theoretically predicted values of the 19 

dynamic response showed that the response calculated by the proposed 20 

nonlinear method gives reasonably accurate results. 21 

Finally, it be concluded that, the Fletcher-Reeves algorithm is the more 22 

efficient in terms of computing time and storage practically in high nonlinear 23 

structures.  24 

 25 

 26 
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CHAPTER 7: CONCLUSIONS 1 

7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 2 

 3 

7.1 General summary and remarks 4 

The main objective of this work is to develop a solution scheme for the 5 

nonlinear analysis of 3D space structures that are subjected to various types of 6 

dynamic loading and to verify the theory by numerical and experimental work. 7 

From the research conducted and the results obtained, it can generally be 8 

concluded that the proposed theory can successfully be used for the nonlinear 9 

dynamic response analysis of 3D structures with fixed boundaries. The results 10 

of the static test also demonstrate that the boundary by notice to assess the 11 

degree of elastic deformation of the frame is rigid. The comparison of the 12 

experimental and theoretically predicted values of the dynamic response 13 

showed that the proposed nonlinear method gives reasonably accurate results 14 

for dynamic response.  15 

The comparison of the predicted nonlinear responses with those 16 

calculated by a linear method showed that for stiffening structures the linear 17 

analysis gives too large amplitude and results in mode shapes which differ 18 

from those obtained by the nonlinear analysis. This finding emphasizes the 19 

importance conducting the nonlinear analysis. The comparison of the two 20 

minimization techniques showed that the Fletcher-Reeves method is more 21 

efficient in terms of using less computing time and less storage. This is 22 

particularly the case for problems with a large number of degrees of freedom. 23 

The percentage differences between the theoretical and experimental results 24 

did not in any case exceed 10%, and this is considered to be acceptable. 25 
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Experimental mode shapes are often complex because real structures 1 

have damping within them. Shape normalization helps simplify the animated 2 

display of complex shapes. When a complex shape is normalized, the 3 

magnitudes of all of its components are retained but the phases are changed to 4 

either 0 or 180 degrees. In this research, all mode shapes are normalized for 5 

more accurate results. 6 

With more sophisticated equipment, it would have been possible to 7 

measure the variation in the logarithmic decrements with amplitude as well as 8 

the damping in higher modes. However, since the damping in the first few 9 

modes could be measured, a damping matrix based on assumed values for the 10 

damping in the higher modes was used. The result showed that the assumptions 11 

made are reasonable for the first few seconds of response. However, for longer 12 

periods of vibration, the correlation between the experimental and theoretical 13 

results is not as good as those for shorter periods. 14 

Finally, it should be noted that the damping matrix for the proposed 15 

theory is calculated separately and its calculation does not affect the 16 

formulation of the theory. In general, the damping matrix used gives 17 

reasonable results as long as the damping ratios in the dominant modes are 18 

assigned realistic values. The proposed method was found to be stable for time 19 

steps equal to or less than half the smallest time period of the system.   20 

 21 

7.2 Conclusion 22 

The main points arising from this research are summarized below:  23 

1. The values of the calculated and measured static deflections were 24 

similar to each other. Result of this test showed that the degree of error 25 
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for any elastic deformation of the frame is almost zero. The result 1 

verifies that the frame is symmetric. 2 

 3 

2. The result of static test with different patterns and intensities of 4 

static loading were showed that the deflection calculated by the 5 

proposed nonlinear method gives reasonably accurate results and 6 

differences with experimental result is less than 4.7 %. The results of 7 

static tests also indicate that the boundary of the frame is rigid and 8 

symmetric.  9 

 10 

3. The predicted natural frequencies for different modes are within 11 

2% of the measured frequencies. The differences are thought primarily 12 

to be due to the differences between the theoretical and experimental 13 

static deflections. This is a reflection of the difference in the stiffness of 14 

the experimental and mathematical models at the starting point of the 15 

vibrations. These differences may also be due to the fact that the 16 

theoretical frequencies were calculated for an undamped system using 17 

an eigenvalue analysis, whereas the experimental model included 18 

damping and nonlinearity.  19 

 20 

4. For highly nonlinear structures such as cable structures in space 21 

structures, the effect of assuming that stiffness remains constant during 22 

each time step can lead to a considerable degree of inaccuracy even 23 

when the time steps are small. The proposed method, which is based 24 

upon the minimization of the total dynamic work in order to achieve 25 
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dynamic equilibrium at the end of each time step, considers the effect of 1 

variations in stiffness in each time step. 2 

 3 

5. By calculating the values of   at various time steps along the 4 

decay curve it was found that the logarithmic decrements varied with 5 

amplitude and that they decreased with increasing amplitude. During the 6 

calculation, it appeared that the logarithmic decrement approached a 7 

constant value as the amplitude increased.  8 

 9 

6. The comparison of the experimental and theoretically predicted 10 

values of the dynamic response showed that the proposed nonlinear 11 

method gives reasonably accurate results for dynamic response, 12 

especially when one takes into account the differences between the 13 

theoretical and experimental static deflections and frequencies, and also 14 

that the logarithmic decrements in the higher modes were given assumed 15 

values. 16 

 17 

7. The differences the between linear and nonlinear calculated 18 

responses are significant and these differences increase with the increase 19 

in nonlinearity. In the case of the nonlinearly calculated response, the 20 

maximum amplitudes occur during the transient period of vibration and 21 

not in the steady state condition. In contrast, in the linearly calculated 22 

response, the amplitudes reach their maximum value when the net 23 

vibrates in the steady state condition.  24 

 25 
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8. The amplitude of response calculated by the linear method is 1 

greater than that calculated by the nonlinear method. It should also be 2 

noted that when the upwards and downwards movements of a joint are 3 

calculated, the values resulting from the linear analysis are all equal, 4 

whereas the use of the nonlinear method of analysis showed that the 5 

values of the upwards movements are greater than the downwards 6 

movements. This is to be expected since the rate of change of stiffness is 7 

greatest when moving downward from the static equilibrium position. 8 

 9 

9. The variations in the dynamic response due to changes in the 10 

damping ratios as a result of different combinations of damping ratios 11 

showed that, regardless of the type of method used to excite the 12 

structure, the responses of the structure are very similar and independent 13 

of the amount of damping across all modes. The results indicated that 14 

for any given combination of damping values, the amplitude calculated 15 

does not exceed the largest amplitude by more than 3%. 16 

 17 

10. The comparison of the computing showed that, in the case of the 18 

Newton-Raphson algorithm, the computing time against the degree of 19 

freedom increases sharply, but in the case of the Fletcher-Reeves 20 

algorithm, computing time increases slightly, thus it would appear that 21 

result of the Fletcher-Reeves method is sufficient and reasonable.  22 

 23 

11. The computer storage required by the Newton-Raphson method 24 

is considerably greater than that required by the Fletcher-Reeves method 25 

because, as mentioned chapter 4, in the Newton-Raphson algorithm the 26 
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dynamic stiffness matrix, *K , has to be stored in addition to the 1 

damping matrix which is required by both algorithms.   2 

 3 

12. The sizes of the time step used for the dynamic response analysis 4 

are in all cases equal to half the smallest periodic time of the net 5 

concerned. The experiment was conducted with various sizes of time 6 

increments. The result showed that for the type of dynamic analysis, 7 

when the time increment is small enough to ensure stability, the increase 8 

in accuracy is independent of the reduction the time step and it only 9 

leads to an increase in the computing time.  10 

 11 

Finally, all statements above conclude that proposed method is more 12 

sufficient to use in account of high nonlinear structure such as space structure. 13 

 14 

7.3 Recommendations for future work 15 

7.3.1 Convergency and scaling  16 

There was no specific problem with regard to convergence of the 17 

analysis. The number of iterations per time step was acceptable. It is possible 18 

that for structures with large degrees of freedom the rate of convergence might 19 

decrease and the number of iterations might increase to an unacceptable level. 20 

This may be overcome by the introduction of scaling and, if necessary, 21 

extrapolation.The scaling technique was applied to the static deformation 22 

theory. This technique introduces scaling mainly to increase the rate of 23 

convergency of convergency of ill-conditioned problems. The same technique 24 

could be used in the proposed nonlinear dynamic response theory to extend the 25 

theory‟s application in respect of flexible boundaries. 26 
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In general, the position of the minimum of the step-by-step time 1 

integration method appears to not be far from the starting point. Thus 2 

convergency with the required accuracy can be achieved after only a few 3 

iterations. In cases when either the load increment is too large or the time step 4 

is too long, the starting point for the next time step might be improved by 5 

extrapolating the displacements and internal forces in order to reduce the 6 

number of iterations. 7 

Since the proposed theory basically seeks the equilibrium of dynamic 8 

forces at time (t+∆t) by minimization of the total potential dynamic work, any 9 

appropriate minimization technique could be employed to perform this task. 10 

The Fletcher-Reeves method of minimization that was chosen in this research 11 

was determined to be the most suitable among the available methods. The 12 

development of new techniques for the minimization of the function of several 13 

variables may improve the proposed theory in terms of reducing computing 14 

time and storage requirements. Apart from the calculation of the damping 15 

matrix, the theory does not require the solution of eignvalues if other ways can 16 

be found to select the time step.  17 

 18 

7.3.2 Extension of the dynamic theory to include flexible members 19 

Fleury (2006) and Buchholdt (1982) extended the theory for the analysis 20 

of cable structures based upon the minimization of the total potential energy to 21 

include cable roofs with flexible boundaries. These researchers have identified 22 

the contributions of the flexible elements to the energy and gradient vector in 23 

terms of the individual member stiffness matrices. In doing so, it was found 24 

that the problems become numerically ill-conditioned when using the Fletcher-25 



193 
 

Reeves method. In this research study, this was overcome by the introduction 1 

of a diagonal scaling matrix. 2 

 3 

The theory for the nonlinear dynamic response analysis of 3D space 4 

structures with flexible boundary members has yet to be programmed and 5 

tested for stability and convergency. However, if the performance of the 6 

aforesaid static theory can be taken as a guide for speculation about the 7 

performance of its dynamic counterpart, it is likely that a scaling technique will 8 

be needed to reduce the number of iterations per time step even if the starting 9 

point for each time step in a dynamic analysis is usually closer to the minimum 10 

position than in a static analysis. 11 

The energy formulation of the flexible members requires investigation, 12 

particularly in relation to the way in which the mass of those members are 13 

taken into account. The use of lumped mass matrices requires the use of 14 

condensed member stiffness matrices. This could lead to considerable errors in 15 

the calculation of the strain energy of flexible members; in which case, 16 

consistent mass matrices which can take into account the mass distribution of 17 

the members need to be used. 18 

 19 

7.3.3 Damping 20 

The use of the two orthogonal damping matrices discussed in previous 21 

chapters has some limitations. Firstly, they are costly to construct of them 22 

because the functions of the natural frequencies and combination damping 23 

require calculation of the eigenvectors. 24 

 Secondly, both matrices require knowledge of damping ratios in 25 

different modes. However, for most structures, only the damping ratios in the 26 
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first few modes are known with any level of accuracy, thus the damping ratios 1 

in the higher modes need to be assumed. For Rayleigh damping, knowledge of 2 

the damping model for at least two modes is required, thus this form of 3 

damping cannot assign damping ratio values to the higher modes with any 4 

accuracy. Moreover, the use of the above type of damping matrices adds 5 

considerably to storage as well as to the computational effort of the nonlinear 6 

dynamic analysis. The above formulations of the damping become even 7 

more questionable when the dynamic forces due to wind and ground 8 

movements are considered. The damping can be estimated approximately; 9 

however, the formulation of damping matrices as functions of damping ratios 10 

cannot take into account aerodynamic damping due to lift and drag forces. 11 

Such forces are functions of the wind velocity on structure. Buchhold (1982) 12 

has suggested the use of equivalent damping forces which are proportional to 13 

the forces in the members but in phase with the rate of change of strains with 14 

respect to time. This method, if it can be experimentally verified, would result 15 

in a considerable reduction in the computational load. 16 

 17 

7.3.4 Inclusion of various types of dynamic loading 18 

The formulation of the theory in its present form can be used to 19 

calculate the response of cable structures subjected to dynamic forces which 20 

are independent of the movement of the structure and can be described by a 21 

function of time, f (t), or as a series of load increments related to each time 22 

interval. Examples of such dynamic loads are simple harmonic loading, blast 23 

loading and suddenly applied or released loads. 24 

In the case of dynamic response due to the movements of the supports 25 

as a result of an earthquake, the strain energy and the energy dissipation due to 26 
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damping are functions of the relative displacements and velocities of the 1 

ground, whilst the inertia forces are functions of the absolute acceleration at 2 

any point. The theory in its present form cannot be used to predict the response 3 

of the structures caused by wind since the aerodynamic forces due to drag and 4 

vortex shedding are functions of the relative velocity of wind to that of the 5 

structure.  6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 
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APENDIX A 1 

Nyquist plot of frequency response 2 

nyquist 3 

nyquist(sys) 4 

nyquist(sys,w) 5 

nyquist(sys1,sys2,...,sysN) 6 

nyquist(sys1,sys2,...,sysN,w) 7 

Description 8 

Nyquist creates a Nyquist plot of the frequency response of a dynamic system. 9 

Nyquist plots are used to analyse system properties including gain margin, 10 

phase margin, and stability. Nyquist (explicitly specifies the frequency range or 11 

frequency points to be used for the plot. To focus on a particular frequency 12 

interval, set w = {Wmin,Wmax}.  13 

                            Nyquist ( sys1, sys2,..., sysn, w)  14 

 15 

              Figure 1: Interface of output plot from programme. 16 

 17 

http://www.mathworks.com/help/toolbox/control/ug/bsst03a-1.html#bsxm4d_
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APPENDIX B 1 

Visual Basic language 2 

The present programme is a complete graphical development 3 

environment. This programme develops useful Microsoft Windows 4 

applications which have the ability to use OLE (Object Linking and 5 

Embedding) objects such as an Access data sheet. The current programme also 6 

has the ability to develop programs that can be used as linear analysis software. 7 

The user interface which collects user input and displays formatted output in a 8 

more appealing and useful form input data on each of interface sheets. 9 

 10 

 11 

          Figure.1: Main interface sheet of nonlinear response programme. 12 



204 
 

 1 

             Figure.2: Help interface sheet of nonlinear response programme. 2 

 3 

 4 

              Figure.3: Data interface sheet of nonlinear response programme. 5 
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 1 

           Figure.4: Data interface analysis sheet of nonlinear response programme. 2 

 3 

 4 

           Figure.5: Data analysis interface sheet of nonlinear response programme. 5 
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 1 

           Figure.6: Data analysis interface sheet of nonlinear response programme. 2 

 3 

 4 

           Figure.7: Data analysis interface sheet of nonlinear response programme. 5 
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 1 

          Figure.8: Data analysis interface sheet of nonlinear response programme. 2 

 3 

 4 

          Figure.9: Data analysis interface sheet of nonlinear response programme. 5 

 6 
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 1 

           Figure.10: Data analysis interface sheet of nonlinear response programme. 2 

 3 

 4 

            Figure.11: Data analysis interface sheet of nonlinear response programme. 5 

 6 
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 1 

            Figure.12: Data analysis interface sheet of nonlinear response programme. 2 

 3 

The last interface sheet shows final result, and the codec programme 4 

follows the developed algorithm in chapter 4. The programme show all result 5 

in process of analysis data sequent. The user can monitoring acquisition data 6 

and debug a programme.  The programme has a capacity to receive data from 7 

Microsoft Excel and Microsoft access as data link directly. The stability and 8 

accurate calculated data is investigated based on increment time step and 9 

condition of them is given in Figure.9.  Definition of variable in programme is 10 

specified by dynamic variable for increasing execute of programme. The 11 

programme can be used such as macro in Excel developer tab in ribbon check 12 

box. 13 

 14 

 15 

 16 
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APPENDIX C 1 

A Coherence and Cross Spectral Estimation Program 2 

 3 
 MAIN PROGRAM:  A COHERENCE AND CROSS SPECTRAL ESTIMATION  4 
            AUTHORS:       HAMIDREZA HASHAMDAR 5 
 6 
 INPUT:         NNN IS THE NUMBER OF DATA POINTS PER                        7 
SEGMENT 8 
                  4 < NNN < 1025 9 
                ISR IS THE SAMPLING RATE 10 
                NDSJP IS THE NUMBER OF DISJOINT SEGMENTS 11 
                SFX IS THE SCALE FACTOR FOR THE INPUT DATA    12 
STORED IN 13 
                   THE XX ARRAY 14 
                SFY IS THE SCALE FACTOR FOR THE INPUT DATA 15 
STORED IN 16 
                   THE YY ARRAY 17 
 SPECIFICATION AND TYPE STATEMENTS 18 
      DIMENSION XX(1024), YY(1024) 19 
       DIMENSION GXX(513), GYY(513), GXYRE(513), GXYIM(513) 20 
        DIMENSION WEGHT(513), PHI(513) 21 
         DIMENSION LINE(50) 22 
          EQUIVALENCE (WEGHT(1),PHI(1)) 23 
 24 
SET UP MACHINE CONSTANTS 25 
      IOIN1 = I1MACH(1) 26 
       IPRTR = I1MACH(2) 27 
        SMALL = R1MACH(1) 28 
 29 
READ INPUT CONTROL PARAMETERS FROM COMPUTER DATA CARD 30 
      READ (IOIN1,9999) NNN, ISR, NDSJP, SFX, SFY 31 
 NNN IS THE NUMBER OF DATA POINTS PER SEGMENT 32 
  ISR IS THE SAMPLING RATE 33 
   NDSJP IS THE NUMBER OF DISJOINT SEGMENTS 34 
    SFX AND SFY ARE SCALE FACTORS FOR THE INPUT DATA 35 
     9999  FORMAT (3I5, 2F10.5) 36 
       NFFTS = NDSJP 37 
 38 
PRINT INPUT CONTROL PARAMETERS 39 
      WRITE (IPRTR,9998) NNN, ISR, NDSJP, SFX, SFY 40 
       9998  FORMAT (/1X, 5HNNN =, I6, 5X, 5HISR =, I7, 5X,   41 
7HNDSJP =, I7, 42 
     *    5X//1X, 5HSFX =, E15.8, 8X, 5HSFY =, E15.8/) 43 
 44 
 CALCULATE CONSTANTS 45 
      TPI = 8.0*ATAN(1.0) 46 
       DEG = 360.0/TPI 47 
        IF (NNN.GT.0 .AND. NNN.LE.1024) GO TO 10 48 
         WRITE (IPRTR,9997) 49 
          9997  FORMAT (10X, 9HNNN ERROR) 50 
           STOP 51 
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  10  CONTINUE 1 
      VARX = 0.0 2 
       VARY = 0.0 3 
        DT = 1.0/FLOAT(ISR) 4 
         SF = SQRT(ABS(SFX*SFY)) 5 
 6 
 PRINT OUT USER INFORMATION 7 
 8 
      TIME = FLOAT(NDSJP*NNN)*DT 9 
        WRITE (IPRTR,9996) NDSJP, TIME 10 
         9996  FORMAT (10X, 3HTHE, I4, 25H DISJOINT PIECES 11 
COMPRISE, F8.2, 12 
     *    16H SECONDS OF DATA) 13 
 14 
 COMPUTE NEW COMPOSITE NUMBER NNN 15 
 16 
      CALL HICMP(NNN, NPFFT) 17 
       IF (NPFFT.GT.1024) STOP 18 
        WRITE (IPRTR,9995) NPFFT 19 
         9995  FORMAT (10X, 21HNUMBER OF POINT FFT =, I5/) 20 
 21 
 CALCULATE CONSTANTS 22 
 23 
      NNNP1 = NNN + 1 24 
       NNND2 = NNN/2 25 
        NND21 = NNND2 + 1 26 
         NP2 = NPFFT + 2 27 
          ND2 = NPFFT/2 28 
           ND2P1 = ND2 + 1 29 
            DF = 1.0/(DT*FLOAT(NPFFT)) 30 
             FNYQ = FLOAT(ISR)/2.0 31 
      CONST = 0.25*DT/FLOAT(NNN) 32 
           FLOW = 0.0 33 
             FHIGH = FNYQ 34 
               ISTRT = IFIX(FLOW/DF) + 1 35 
                 ISTOP = IFIX(FHIGH/DF) + 1 36 
 37 
 COMPUTE AND SAVE WEIGHTING FUNCTION 38 
 39 
      TEMP = TPI/FLOAT(NNN+1) 40 
       SCL = SQRT(2.0/3.0) 41 
        DO 20 I=1,NNND2 42 
         WEGHT(I) = SCL*(1.0-COS(TEMP*FLOAT(I))) 43 
  20  CONTINUE 44 
 45 
 STORE ZEROS IN THE SUMMING ARRAYS 46 
 47 
      CALL ZERO(GXX, ND2P1) 48 
       CALL ZERO(GYY, ND2P1) 49 
        CALL ZERO(GXYRE, ND2P1) 50 
         CALL ZERO(GXYIM, ND2P1) 51 
 52 
 53 
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 COMPUTE AND SUM NPFFT ESTIMATES 1 
      DO 80 KOUNT=1,NFFTS 2 
        CALL ZERO(XX, NPFFT) 3 
         CALL ZERO(YY, NPFFT) 4 
 5 
 LOAD XX AND YY ARRAYS WITH NNN DATA POINTS 6 
 7 
        CALL LOAD(XX, YY, NNN, KOUNT, ISR) 8 
 9 
         PRINT OF FIRST 50 INPUT VALUES 10 
 11 
        IF (KOUNT.NE.1) GO TO 40 12 
         WRITE (IPRTR,9994) 13 
9994      FORMAT (1H1, 9X, 41HPRINTOUT OF FIRST 50 VALUES 14 
OF INPUT DATA/// 15 
     *      ) 16 
        LPMAX = MIN0(NPFFT,50) 17 
         DO 30 I=1,LPMAX 18 
          WRITE (IPRTR,9993) I, XX(I), YY(I) 19 
9993       FORMAT (1X, I5, 1X, 2F15.8, 6X) 20 
  30     CONTINUE 21 
          WRITE (IPRTR,9992) 22 
9992       FORMAT (/1H1) 23 
  40        CONTINUE 24 
 25 
 REMOVE THE LINEAR TREND AND COMPUTE THE VARIANCE 26 
 IF IS3 = 0 DO NOT REMOVE DC COMPONENT OR SLOPE 27 
C = 1 REMOVE THE DC COMPONENT 28 
C > 1 REMOVE THE DC COMPONENT AND SLOPE 29 
 30 
        IS3 = 0 31 
        CALL LREMV(XX, NNN, IS3, DX, SX) 32 
         CALL LREMV(YY, NNN, IS3, DY, SY) 33 
          VARXI = 0.0 34 
           VARYI = 0.0 35 
        DO 50 I=1,NNN 36 
          VARXI = VARXI + XX(I)*XX(I) 37 
           VARYI = VARYI + YY(I)*YY(I) 38 
  50    CONTINUE 39 
        VARXI = VARXI/FLOAT(NNN-1) 40 
         VARYI = VARYI/FLOAT(NNN-1) 41 
          WRITE (IPRTR,9991) KOUNT, DX, DY, SX, SY, VARXI, 42 
VARYI, IS3 43 
9991    FORMAT (1X, I3, 4H DX=, E12.5, 4H DY=, E12.5, 4H 44 
SX=, E12.5, 45 
     *      4H SY=, E12.5/4H VX=, E12.5, 4H VY=, E12.5, I5) 46 
        VARX = VARX + VARXI 47 
         VARY = VARY + VARYI 48 
 49 
 WEIGHT THE INPUT DATA WITH COSINE WINDOW 50 
 51 
        DO 60 I=1,NNND2 52 
          ITMP = NNNP1 - I 53 



213 
 

Gjhjhdfk;gu 1 

Dfghdf 2 

      DIMENSION POWER(1), LINE(1) 3 
      DATA ISTAR /1H*/ 4 
 5 
 FIND PEAK AND MINIMUM DB VALUES OF ARRAY POWER BETWEEN 6 
FLOW AND FHIGH 7 
 8 
      ISTRT = IFIX(FLOW/DF) + 1 9 
       ISTOP = IFIX(FHIGH/DF) + 1 10 
      FMIN = 10000.0 11 
       PEAK = -10000.0 12 
      DO 10 K=ISTRT,ISTOP 13 
        PEAK = AMAX1(PEAK,POWER(K)) 14 
         FMIN = AMIN1(FMIN,POWER(K)) 15 
  10  CONTINUE 16 
      WRITE (IPRTR,9999) FMIN, PEAK 17 
9999  FORMAT (///5X, 6HFMIN =, F7.2, 3H DB, 4X, 6HPEAK =, 18 
F7.2, 3H DB// 19 
     *    1X, 5HINDEX, 4X, 4HFREQ, 5X, 2HDB/) 20 
 21 
 PLOT SPECTRUM ON PRINTER 22 
 23 
      DO 20 K=1,50 24 
        LINE(K) = ISTAR 25 
  20  CONTINUE 26 
 27 
      FBEG = FLOAT(IFIX(FLOW/DF))*DF 28 
      DO 30 K=ISTRT,ISTOP 29 
        FREQ = FBEG + DF*FLOAT(K-ISTRT) 30 
         INDEX = IFIX(POWER(K)-FMIN)/2 31 
        IF (INDEX.LT.1) INDEX = 1 32 
         IF (INDEX.GT.50) INDEX = 50 33 
        WRITE (IPRTR,9998) K, FREQ, POWER(K), 34 
(LINE(I),I=1,INDEX) 35 
9998    FORMAT (I6, F8.3, F7.2, 1X, 50A1) 36 
  30  CONTINUE 37 
 38 
      RETURN 39 
      END 40 
SUBROUTINE:  ZERO 41 
 THIS SUBROUTINE STORES ZEROES IN A FLOATING POINT ARRAY 42 
      SUBROUTINE ZERO(ARRAY, NUMBR) 43 
 INPUT:  ARRAY = AN ARRAY OF FLOATING POINT VALUES TO BE 44 
                 ZERO FILLED 45 
         NUMBR = NUMBER OF ARRAY VALUES 46 
 47 
      DIMENSION ARRAY(1) 48 
 49 
      DO 10 K=1,NUMBR 50 
        ARRAY(K) = 0.0 51 
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  10  CONTINUE 1 
 2 
      RETURN 3 
      END 4 

 5 

 6 

 7 

 8 

 9 

 10 
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APPENDIX D 1 

Bode plot of frequency response (Magnitude, Phase) 2 

bode(sys) 3 
bode(sys1,...,sysN) 4 
bode(sys1,PlotStyle1,...,sysN,PlotStyleN) 5 
bode(...,w) 6 
[mag,phase] = bode(sys,w) 7 
[mag,phase,wout] = bode(sys) 8 

Description 9 

Bode (sys) creates a Bode plot of the response of the dynamic system sys. The plot 10 

displays the magnitude (in dB) and phase (in degrees) of the system response as a 11 

function of frequency. bode (...,W) plots system responses at frequencies determined by 12 

w.  13 

 If w is a cell array {wmin,wmax}, bode(sys,w) plots the system response at 14 

frequency values in the range {wmin,wmax}. 15 

 If w is a vector of frequencies, bode(sys,w) plots the system response at each of 16 

the frequencies specified in w. 17 

 18 

             Figure 1: Interface plot of output programme. 19 




