ABSTRACT

The effects of various pretreatment methods on the enrichment of H₂ evolving bacterial population and their hydrogen production efficiency using palm oil mill effluent (POME) as substrate were studied. Heat shock pretreatment was shown to be the most effective in enhancing the biological H₂ production. Up-flow anaerobic sludge blanket fixed film (UASB-FF) bioreactor is a modern bioreactor and was used to generate of biological hydrogen with the help of granulated microbial aggregates. A lab scale UASB-FF bioreactor (2.55 lit) with an external settling tank was successfully designed and operated for biohydrogen production from POME. The use of packing media in the middle portion reduced loss of biomass due to flotation associated with poorly performing UASB reactors. The bioreactor was developed in order to shorten the start-up period at low hydraulic retention time (HRT). The organic loading was gradually increased from 4.68 to 51.8 g COD/l.d during this period. Granular sludge was found to develop rapidly within 22 days with an increase in size of granules from an initial pinpoint size to about 1 mm. A marked improvement in shortening reactor start-up period (22 days) was achieved with 42.5 % COD removal at an OLR of 51.8 g COD/l.d.

Experiments of fermentation hydrogen production of POME were conducted based on a central composite face-centered design (CCFD) and modeled and analyzed with two variables i.e. feed flow rate (Q_F) and up-flow velocity (V_{up}) using response surface methodology (RSM). The optimum conditions for the fermentation hydrogen production of the pre-settled POME were between Q_F of 3.71 l/d, V_{up} of 1.48 m/h and Q_F of 2.03 l/d, V_{up} of 2.31m/h, respectively. The experimental findings were in close agreement with the model prediction. The proposed kinetic equations and a simplified Monod's model were successfully employed to describe the kinetics of fermentation hydrogen production from POME in the UASB-FF bioreactor. The maximum hydrogen production rate and hydrogen yield were 0.306 1 H₂/g COD_{removed}.d and 0.310 1 H₂/g COD, respectively. The maximum specific growth rate (μ_{max}) of hydrogenesis bacteria grown on POME as substrate, the half-velocity constant (*Ks*), were calculated at 0.371 d⁻¹ (38 °C) and 10.9 g/L, respectively, when POME concentration was 15.0 g/L. In this study, the kinetic parameters *Y*, *K*_d, and *k* were obtained 0.093 g/g, 0.0046 d⁻¹, and 3.99 g COD/g VSS.d, respectively.

In a batch experiment, Effects of three important variables *viz.* initial COD concentration (COD_{in}), biomass concentration and initial bicarbonate alkalinity (BA) on biological hydrogen production from POME using the granulated sludge were also investigated. The maximum specific hydrogen production rate (55.42 mmol H_2/g VSS.d) was at the COD_{in}, MLVSS and initial BA of 6500 mg/l, 2000 mg/l and 1100 mg CaCO₃/L, respectively. The maximum hydrogen yield (124.5 mmol H_2/g COD_{removed}) was also occurred at the COD_{in}, MLVSS and initial BA of 3000 mg/l, 4000 mg/l and 1100 mg CaCO₃/L, respectively. The minimum initial bicarbonate alkalinity required was determined to be 0.17 g CaCO₃ per gram initial COD. The results of mass transfer study demonstrated that substrate mass transfer into granules was not a limiting factor in POME anaerobic fermentation by the microbial granules.

All cumulative hydrogen production was well correlated to the modified Gompertz equation with R^2 more than 0.99. The kinetic parameters for total accumulated hydrogen production (ml) were *P*: 329.8 ml, R_{max} : 83.5 ml H₂/h and λ : 5.45 h.

Abstrak

Kesan pelbagai pra-rawatan bagi meningkatkan hasilan gas hidrogen yang melibatkan populasi bakteria dan produksi hidrogen yang efisyen menggunakan air sisa kilang kelapa sawit (POME) sebagai substrat telah dikaji. Pra-rawatan kejutan haba merupakan rawatan paling berkesan bagi meningkatkan hasilan gas hidrogen secara biologi. Bioreaktor "Up-flow anaerobic sludge blanket fixed film" (UASB-FF) digunakan untuk menghasilkan hidrogen secara biologi dengan bantuan granul mikrob agregrat. Satu bioreaktor UASB-FF skala makmal (2.55 l) dengan tangki pengenapan luaran telah direka dan dioperasi untuk menghasilkan hidrogen daripada penapaian POME. Bioreaktor gigunakan untuk memendekkan tempoh masa pemulaan masa retensi hidraulik (HRT). Beban organik dipertingkatkan secara beransur-ansur dari 4.68 kepada 51.8 g COD/l.d. hari dalam jangka masa ini. Granul enapcemar didapati membesar dengan cepat dalam tempoh masa 22 hari dengan peningkatan saiz granul bermula daripada saiz titik pin kepada kira-kira 1 mm.

Penghasilan hidrogen daripada penapaian POME telah dijalankan berdasarkan "central composite face-centered design" (CCFD) dan dimodel dan dianalisis menggunakan dua pembolehubah; iaitu kadar aliran (Q_F) dan halajo aliran ke atas (V_{up}) menggunakan Metodologi Respos Permukaan (RSM). Keadaan optimum untuk fermentasi penghasilan hidrogen dari pra-enapan POME adalah di antara Q_F 3.71 l/hari, V_{up} 1.48 m/jam dan Q_F 2.03 l/hari, V_{up} 2.31 m/jam. Keputusan eksperimen menepati baik ramalan model. Persamaan kinetik dan model Monod yang dipermudahkan menerangkan dengan baik kaedaan kinetik fermentasi penghasilan hidrogen daripada POME dalam bioreaktor UASB-FF. kadar penghasilan hidrogen maksimum dan hasilan hidrogen adalah 0.306 1 H₂/g COD dikeluarkan hari dan 0.310 1 H₂/g COD mesing-masing. Kadar pertumbuhan spesifik (μ_{max}) bakteria hidrogenesis menggunakan POME

sebstrat, pemalar halaju separa (Ks), bernilai 0.371 hari⁻¹ (38°C) dan 10.9 g/l masingmasing, apabila kepekatan POME adalah 15.0 g/l. Dalam kajian ini, parameter kinetik Y, K_d, dan k didapati bernilai 0.093 g/g, 0.0046 d⁻¹, dan 3.99 g COD/g VSS.hari, masing-masing.

Dalam eksperimen kelompok, kesan tiga pembolehubah yang penting, iaitu kepekatan masuk COD (COD_{masuk}), kepekatan biojisim dan alkalinity awal bikarbonat (BA) ke atas penghasilan hidrogen spesifik yang maksimum (55.42 mmol H₂/g VSS.hari) kerlaku apabila COD_{masuk}, MLVSS, dan BA awal bernilai 6500 mg/l, 2000 mg/l, dan 1100 mg CaCO₃/ l masing-masing. Penghasilan hidrogen maksimum (124.5 mmol H₂/g COD_{dikeluarkan}) iuga berlaku apabila COD_{masuk}, MLVSS, dan BA awal bernilai 3000 mg/l, 4000 mg/l, dan 1100 mg CaCO₃/ l masing-masing. Semua produksi hidrogen kumulatif dapat dikaitkan dengan baik oleh persamaam Gompertz yang telah dimodifikasikan dengan nilai R² melbili 0.99. Parameter-parameter kinetik untuk jumlam penghasilan hidrogen terkupul (ml) adalah P: 329.8 ml, R_{max}: 83.5 ml H₂/ jam dan λ : 5.45 jam.

ACKNOWLEDGEMENT

Alhamdulillah, a great thank to The Great Almighty ALLAH s.w.t who grants me the knowledge, strength and determination to accomplish my PhD research work. My deepest gratitude to my wife Mrs. Nahid Ghanbari for her love, understanding, encouragement, prayers and patience that supported me through the whole course of this study.

Professor Shaliza binti Ibrahim, my main supervisor, provided a motivating, enthusiastic, and critical atmosphere during the many discussions we had. It was a great pleasure to me to conduct this thesis under her supervision. I also acknowledge Dr. Mohamad Suffian Mohamad Annuar who as my co-supervisor provided constructive comments and time in correcting my papers during my study.

My appreciation also goes to Mrs. Kalaiselvi Palani for her kind support to provide laboratory equipments.

I would like to thank the Dean and Deputy Dean of Faculty of Engineering and Head of Department of Civil for their continuous support and help rendered throughout my studies. The financial support provided by University Malaya as a student grant (Project No. PS122-2010A) is gratefully acknowledged. Not forgetting, all friends in UM who have always provided an enjoyable and friendly working environment.

Last but definitely not least, my deepest and most heart-felt gratitude to my parents for their endless love and support. They instilled in me a love for knowledge and a strong work ethic that has enabled me to accomplish anything I set my mind to. Finally, they are my lovely sweet children, Negin and Arian, who have been giving me so much happiness and joy that gave me a duplex spirit to work.

Parviz Mohammadi

December 2012

TABLE OF CONTENTS

		Page
ABST	RACT	i
ABES'	TRAKT	iii
AKNC	DWLEGEMENTS	v
TABL	E OF CONTENTS	vi
LIST	OF TABLES	ix
LIST	OF FIGURES	Х
LIST	OF PLATES	xii
LIST	OF ABBREVIATIONS	xiii
LIST	OF SYMBOLS	xV
СНАР	TER 1 – INTRODUCTION	1
1.1.	General	1
1.2.	Objectives of study	5
1.3.	Propose and scope of study	6
СНАР	TER 2 - LITERATURE REVIEW	7
2.1.	Introduction	7
2.2.	Effect of environmental and operational factors on fermentative hydrogen production	11
	2.2.1. Organic loading rate (OLK)	11
	2.2.2. Hydraulic retention time (HR1)	15
	2.2.3. Temperature	19
• •	2.2.4. pH	23
2.3.	Reactor type	26
	2.3.1. Complete-mix process	26
	2.3.2. Anaerobic sequencing batch reactor	26
	2.3.3. Up-flow anaerobic sludge blanket (UASB) reactor	27
	2.3.4. Up-flow fixed film reactor	29
	2.3.5. Fluidized bed reactor	30
2.4.	Pretreatment processes	30
2.5.	Process modeling and optimization by design of experiments (DoE)	32
2.6.	Kinetic modeling	35

CHA	PTER 3 - MATERIALS AND METHODS	38
3.1.	Chemical substances	38
3.2.	Overall experimental flowchart	39
3.3.	Definitions of process parameters studied	39
3.4.	UASB-FF bioreactor set-up	40
3.5.	Pretreatment on anaerobic mixed microflora	44
	3.5.1. Experimental	44
	3.5.2. Experimental set-up	44
3.6.	Studies of UASB-FF bioreactor performance	45
	3.6.1. Bioreactor start-up	45
	3.6.1(a) Wastewater preparation	45
	3.6.1(b) Seed sludge preparation	45
	3.6.1(c) Bioreactor operation	46
	3.6.2. Optimization, modeling and process analysis of dark fermentative hydrogen production from pre-settled POME	47
	3.6.2(a) Experimental design and mathematical model	47
	3.6.2(b) Bioreactor operation	50
3.7.	Biological hydrogen production using granulated sludge in batch	50
	experiments	
	3.7.1. Influence of process variables on biological hydrogen production of the granulated sludge	50
	3.7.2. Mass transfer evaluation on POME grown microbial granules	52
3.8.	Analytical techniques	53
	3.8.1. Basic water quality parameters measurement	53
	3.8.2. Biogas analysis	53
	3.8.3. Volatile fatty acids measurement	54
3.9.	Hydrodynamic studies of UASB-FF bioreactor	54
3.10.	Scanning Electron Microscopy (SEM)	55
CHAI	PTER 4- RESULTS AND DISCUSSION	56
4.1.	Palm Oil Mill Effluent Characterization	56
4.2.	Effects of different pretreatment methods on anaerobic mixed microflora	57
	4.2.1. Effect of different pretreatments on H ₂ production	57
	4.2.2. Effect of different pretreatments on COD removal efficiency	60

4.3.	The s (UAS)	start-up of an up-flow anaerobic sludge blanket fixed film B-FF) reactor	61
	4.3.1.	Hydrogen production	61
	4.3.2.		62
	4.3.3.	Sludge bed growth	63
4.4.	Optim	nization, modeling and process analysis	66
	4.4.1.	Statistical analysis	67
	4.4.2.	Effects of Q_F and V_{up} on biogas composition, hydrogen yield, HPR, and SHPR Effects of Q_F and V_{up} on COD removal	70 72
	4.4.3.	Effects of Q_F and V_{up} on COD femoval	72
	4.4.4.	volatile fatty acids	15
	4.4.5.	Effects of $Q_{\rm F}$ and $V_{\rm up}$ on the operating parameters	76
	4.4.6.	Effects of $Q_{\rm F}$ and $V_{\rm up}$ on food to microorganism ratio	78
	4.4.7.	Process Optimization	78
	4.4.8.	Kinetic evaluation of biohydrogen production from POME in the UASB-FF bioreactor	81
4.5.	Effect granul	s of process variables on biological hydrogen production of the lated sludge	84
	4.5.1.	Hydrogen yield	85
	4.5.2.	Specific hydrogen production rate (SHPR)	87
	4.5.3.	COD removal efficiency	89
	4.5.4.	Kinetic analysis of hydrogen production	91
4.6.	Mass-	transfer evaluation on POME-grown microbial granules	92
4.7.	Exper	imentation and determination of hydraulic regime	94
	4.7.1.	Hydraulic performance analysis	95
	4.7.2.	Statistical analysis	97
		4.7.2 (a) Deviation from ideal retention time ($\Delta \tau$)	97
		4.7.2 (b) Morrill dispersion index (MDI)	98
4.8.	The ef	ffect of the fixed film part on UASB-FF bioreactor performance	100
CHAI	PTER 5	- CONCLUSIONS	103
CHAI	PTER 6	- RECOMMENDATIONS	105
REFE	RENC	ES	106
APPENDICES		126	
LIST OF PUBLICATIONS		130	

LIST OF TABLES

1 1		Page
1.1.	Typical characteristics of POME	3
2.1.	The effect of OLR and substrate on fermentation hydrogen production	13
2.2.	The effect of HRT and substrate on fermentative hydrogen production	18
2.3.	The effect of temperature and substrate on fermentative hydrogen production	21
2.4.	The effect of pH and substrate on fermentation hydrogen production	24
3.1.	List of chemical substances	38
3.2.	Experimental range of the independent variables	48
3.3.	Experimental conditions for fermentative hydrogen production from POME based on CCD design	49
3.4.	Experimental range of the independent variables	51
3.5.	Experimental conditions applying CCD in this study	51
4.1.	Characteristics of raw POME	56
4.2.	Characteristics of pre-settled POME	66
4.3.	Experimental results of central composite design	68
4.4.	ANOVA results for the equations of the Design Expert 6.0.8 for with the studied responses as predictor variables	69
4.5.	The amounts of the effluent VFAs at various trials	75
4.6.	Verification experiments at optimum conditions	80
4.7.	Kinetic parameters for biohydrogen production from POME in different reactors and operating conditions	83
4.8.	Experimental results of central composite design	84
4.9.	ANOVA for response surface models applied	85

LIST OF FIGURES

		Page
1.1.	typical palm oil extraction process and sources of wastewater production	2
1.2.	Characteristics fruit and generation composition chart of a palm oil	2
2.1.	Anaerobic digestion and fermentative hydrogen production pathway	10
2.2.	Effect of organic loading rate on biohydrogen production	15
2.3.	Effect of hydraulic retention time (HRT) on biohydrogen production in continuous reactors	17
2.4.	Effect of temperature on biohydrogen production in batch reactors	22
2.5.	Effect of pH on biohydrogen production in batch reactor	25
2.6.	Design of a UASB reactor	28
2.7.	The main types of central composite designs for two variables; (a) Rotatable, (b) Face-centered, (c) Inscribed	33
2.8.	Central composite faced-centered design with three variables	34
3.1.	Flowchart of overall experimental activities involved in this study	39
3.2.	Schematic diagram of the experimental set-up	41
3.3	The Pall rings applied into the middle part of the UASB-FF bioreactor	42
4.1.	Hydrogen yield as a function of pretreatment methods and time	58
4.2.	Cumulative H_2 production as a function of pretreatment methods and time	59
4.3.	COD removal efficiency as a function of pretreatment methods and time	60
4.4.	Hydrogen fraction in biogas during start-up period	61
4.5.	COD removal efficiency during start-up period	62
4.6.	Growth of sludge blanket height in UASB-FF bioreactor during the start-up period	64
4.7.	Three-dimensional contour plots for (a) hydrogen percentage, (b) hydrogen yield, (c) HPR, and (d) SHPR	71

4.8.	Three-dimensional contour plot of the model for COD removal	73
4.9.	Three-dimensional contour plots of the two-factor interaction models for (a) TVFA, (b) bicarbonate alkalinity, (c) pH in the effluent	76
4.10.	Three-dimensional contour plots of the two-factor interaction model for (a) sludge height and (b) effluent TSS	77
4.11.	Response surface plot for F/M ratio	78
4.12.	Overlay plot for optimal region	79
4.13.	Line weaver-Burk plot for reciprocals of specific growth rate versus COD concentration	82
4.14.	The reciprocal of SRT versus specific substrate utilization rate	83
4.15.	Three-dimensional contour plots of the model for hydrogen yield (mmol H_2/g COD _{removed}) as a function of variables of initial BA and MLVSS at COD concentration of 3000 mg/l (a), 6500 mg/l (b) and 10000 mg/l (c)	86
4.16.	Three-dimensional contour plots of the model for SHPR (mmol H_2 /g VSS.d) as a function of initial BA and MLVSS at COD concentration of 3000 mg/l (a), 6500 mg/l (b) and 10000 mg/l (c)	88
4.17.	Three-dimensional contour plots of the model for COD removal as a function of COD_{in} and MLVSS at initial BA of 200 mg CaCO ₃ /l (a), 1100 mg CaCO ₃ /l (b), 2000 mg CaCO ₃ /l (c)	90
4.18.	Cumulative hydrogen production from POME at the COD_{in} , MLVSS and initial BA of 6500 mg/l, 4000 mg/l and 1100 mg CaCO ₃ /L, respectively (Run #14) in a batch experiment; (a) Profile of hydrogen production (ml), (b) Profile of COD concentration	92
4.19.	Cumulative H ₂ production versus time	93
4.20.	Absorption spectra of 2×10^{-4} M Rhodamine B	94
4.21.	Calibration graph for determination of Rhodamine B	95
4.22.	Mathematical and empirical curves of tracer concentration time distribution for (a) V_{up} =0.5 m/h and Q_g =14.87l/d, (b) V_{up} =3.0 m/h and Q_g =7.96 l/d	96
4.23.	<i>E</i> (t) and <i>F</i> (t) plots with respect to (a) $V_{\rm up}$ 0.5 m/h and $Q_{\rm g}$ 14.87l/d, (b) $V_{\rm up}$ 3.0 m/h and $Q_{\rm g}$ 7.96 l/d	100
4.24.	Effluent COD concentration at S4 and S5	101
4.25.	Effluent TSS concentration at S4 and S5	102

LIST OF PLATES

		Page
3.1.	Laboratory-scale experimental set-up used in this study	43
3.2.	Serum bottles used for batch experiments	52
4.1.	Sequence of bio-granule formation in the UASB-FF reactor (a) after 10 days, (b) after 20 days, (c) after 30 days	65
4.2.	SEM images of (a, b) the fine structure of the hydrogen-producing mesophilic granules and (c, d) a full-grown compact granule	65

LIST OF ABBREVIATION

2FI	Two factor interaction
AF	Anaerobic filter
Alk	Alkalinity
AnFBR	Anaerobic fluidized-bed reactor
ANOVA	Analysis of variance
ASBR	Anaerobic sequencing batch reactor
BA	Bicarbonate alkalinity
BOD	Biochemical oxygen demand
CCD	Central composite design
CCFD	Central composite face-centered design
COD	Chemical oxygen demand
COD _{eff}	Effluent chemical oxygen demand
COD _{in}	Influent chemical oxygen demand
СРО	Crude palm oil
CV	Coefficient of variance
DoE	Design of experiment
E(t)	Distribution of the exit times
F(t)	Cumulative residence time distribution function
FFB	Fresh fruit bunch
F/M	Food to microorganism
GSS	Gas solids separator
HRT	Hydraulic retention time
HPR	Hydrogen production rate
MDI	Morrill Dispersion Index
MLVSS	Mixed liquor volatile suspended solids

OLR	Organic loading rate
Р	Probability of error
POME	Palm oil mill effluent
R^2	Coefficient of determination
RSM	Response surface methodology
SCOD	Soluble chemical oxygen demand
SD	Standard deviation
SEM	Scanning electron microscopy
SHPR	Specific hydrogen production rate
SRT	Solid retention time
SVI	Sludge volume index
ТА	Total alkalinity
TCOD	Total chemical oxygen demand
TKN	Total Kjeldahl nitrogen
TSS	Total suspended solids
TVFA	Total volatile fatty acids
UASB	Up-flow anaerobic sludge blanket
UASB-FF	Up-flow anaerobic sludge blanket fixed film
UFF	Up-flow fixed film
VFA	Volatile fatty acids
VSS	Volatile suspended solids

LIST OF SYMBOLS

		Unit
С	Ideal flow concentration	(mM)
C_0	Initial flow concentration of the tracer	(mM)
$C_{\rm i}$	Concentration at <i>i</i> th measurement	(mmol/l)
H(t)	Cumulative hydrogen production	(ml)
k	Transportation rate constant into the granule	(d^{-1})
K_s	Half-velocity constant	(g COD/l)
Р	Hydrogen production potential	(ml)
Q_e	Effluent flow rate	(l/d)
Q_F	Feed flow rate	(l/d)
$Q_{ m g}$	Biogas production rate	(l/d)
Q_H	Volume of gas produced per day	(1 H ₂ /d)
R	Maximum hydrogen production rate	(ml/h)
S_0	Influent substrate concentration	(g COD/l)
S	Effluent substrate concentration	(g COD/l)
t	Hydraulic retention time	(d)
ti	Time at <i>i</i> th measurement	(min)
V	Volume of the reactor	(lit)
V_{up}	Up-flow velocity	m/h
X	Biomass concentration	(mg/l)
X_e	Effluent VSS concentration	(mg/l)
X_i	Independent variables / factors	(-)
Y_i	Response	(-)
Y_H	Hydrogen yield constant	$(1 H_2/g$ COD _{removed} .d)
Y_x	Growth yield constant	(g VSS/g COD _{removed} .d)

Greek symbols

α	Distance from the centre of the design space to axial point	(-)
eta_0	Constant coefficient	(-)
β_i	Coefficients for the linear effect	(-)
β_{ii}	Coefficients for the quadratic effect	(-)
eta_{ij}	Coefficients for the cross-product effect	(-)
η	Effectiveness factor	(-)
μ	Specific microbial growth rate	(d^{-1})
μ_m	Maximum specific microbial growth rate	(d^{-1})
λ	Lag phase time	(h)
λ_{max}	Maximum absorption	(nm)
τ	Theoretical retention time	(min)
$\overline{t}_{\Delta c}$	Mean detention time	(min)
$\Delta t_{\rm i}$	time increment about C_i	(min)
$\Delta \tau$	Deviations from the ideal retention time	(min)