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DEVELOPMENT OF A NEW ICTAL EEG SOURCE IMAGING 

TECHNIQUE USING RECURSIVE APPROACH FOR PRESURGICAL 

EVALUATION OF FOCAL EPILEPSY 

ABSTRACT 

Electroencephalography source imaging (ESI) is a promising tool for localizing the 

cortical sources of both ictal and interictal epileptic activities. Although ictal EEG is 

difficult to analyze, it is believed to be more reliable than interictal ESI. Ictal ESI 

techniques can be categorized as Independent Component Analysis (ICA) based 

techniques and less stable non-ICA based classical techniques. Existing ICA-based 

techniques are highly dependent on visual inspection and user’s feedback. This thesis 

presents the development of a new enhanced automatic ICA-based ictal ESI technique 

for epileptic focus localization in patients with refractory focal epilepsy. The proposed 

technique decomposes ictal EEG recursively, eliminates unwanted portion in every 

recursion cycle, and selects a significant ictal Independent Component (IC) at the final 

recursion cycle with the help of a unique quantitative feature of decomposed EEG. Back 

projected EEG is regenerated from that selected IC and epileptogenic focus is estimated 

from that regenerated EEG. Fifty sets of simulated ictal EEG and 8 patients’ real ictal 

EEG were used for validation. Epileptogenic foci were estimated form those datasets by 

using the proposed technique and other two ICA-based techniques. Simulated-EEG-

sources were compared with a known dipole location and real-EEG-sources were 

compared with the sites of successful surgery for the performance evaluation of the 

three techniques. Average distance of the estimated dipole from the original dipole for 

the proposed technique was 12.86 mm which was shorter than the half of the average 

distances for other two techniques. The real-EEG-sources estimated by the proposed 

technique were fully lateralized with the corresponding sites of surgery and the 

concordance rate (87.50%) was also higher than that of other two techniques (37.5% 
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and 12.55%). These findings show that the proposed ictal ESI technique may provide a 

cost-effective substitute for other costly diagnostic modalities. 

Keywords: Epilepsy, Epileptogenic zone, Ictal EEG, Source localization, 

Independent component analysis. 
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PEMBANGUNAN TEKNIK ICTAL EEG SUMBER PENGIMEJAN YANG 

BARU MENGGUNAKAN PENDEKATAN REKURSI UNTUK PENILAIAN 

PRESURGICAL EPILEPSI FOCAL 

ABSTRAK 

Pengimejan sumber electroencephalography (ESI) adalah alat terbukti berkesan 

untuk menyetempatkan sumber kortikal kedua-dua aktiviti epilepsi ictal dan interictal. 

Walaupun EEG ictal adalah sukar untuk dianalisis, ictal ESI dipercayai lebih berkesan 

daripada interictal ESI. Teknik Ictal ESI boleh dikategorikan kepada teknik Analisis 

bebas Component (ICA) dan teknik klasik bukan ICA yang kurang stabil. Teknik 

berasaskan ICA yang sedia-ada amat bergantung pada pemeriksaan visual dan maklum 

balas pengguna. Tesis ini membentangkan pembangunan teknik ESI baru berasaskan 

teknik ICA ictal yang lebih automatik untuk epilepsi penumpuan penyetempatan pada 

pesakit dengan epilepsi tumpuan refraktori. Teknik yang dicadangkan merupakan uraian 

EEG ictal secara rekursif, yang menghapuskan bahagian yang tidak diingini dalam 

setiap kitaran rekursi, dan memilih ictal Komponen bebas (IC) yang ketara pada kitaran 

rekursi akhir dengan bantuan ciri kuantitatif unik daripada uraian EEG. Unjuran 

kebelakang EEG dijana semula daripada IC yang dipilih dan tumpuan epileptogenic 

adalah dianggarkan daripada EEG yang dibentuk semula. Lima puluh set EEG ictal 

simulasi dan ictal sebenar EEG daripada 8 pesakit telah digunakan untuk pengesahan. 

Tumpuan epileptogenic dianggarkan daripada set data tersebut dengan menggunakan 

teknik yang dicadangkan dan dua lagi teknik yang berasaskan ICA. Sumber-EEG 

daripada simulasi dibandingkan dengan satu lokasi dipole yang diketahui dan sumber-

EEG-nyata pula dibandingkan dengan kawasan pembedahan yang berjaya untuk 

penilaian prestasi daripada tiga teknik tersebut. Jarak purata dipole-anggaran dari 

dipole-asal bagi teknik yang dicadangkan adalah 12.86 mm dan merupakan lebih 

pendek daripada separuh daripada jarak purata bagi dua teknik yang lain. Anggaran 
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sumber-EEG-nyata dengan teknik yang dicadangkan adalah lateralized sepenuhnya 

dengan kawasan pembedahan dan kadar konkordans (87.50%) juga lebih tinggi 

daripada dua teknik yang lain (37.50% dan 12.50%). Penemuan ini menunjukkan 

bahawa teknik ESI ictal yang dicadangkan boleh menjadi pengganti yang kos efektif 

untuk kaedah diagnostik mahal yang lain. 

Kata kunci: Epilepsi, Zon epileptogenik, EEG ictal, Penyetempatan sumber, Analisis 

komponen bebas. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Epilepsy is a common chronic neurological disorder that affects people of all ages. 

Around 65 million people worldwide have epilepsy (Moshe, Perucca, Ryvlin, & 

Tomson, 2015; Ngugi, Bottomley, Kleinschmidt, Sander, & Newton, 2010; Thurman et 

al., 2011). It refers to chronic, recurrent, unprovoked seizure that is defined as “a 

transient occurrence of signs and/or symptoms due to abnormally excessive or 

synchronous neuronal activity in the brain” (Fisher et al., 2005). Depending on the 

involved cortical areas, it is commonly divided into two broad divisions: generalized 

epilepsy (involves the whole cortex) and partial or focal epilepsy (provoked by limited 

brain regions, the so-called epileptogenic zone or epileptic foci). Focal epilepsy is the 

most common form of epilepsy (approximately 60% of all epilepsy) and around 15% of 

all focal epilepsy are uncontrolled or of the refractory type (Rosenow & Luders, 2001). 

Around half of the patients with refractory focal epilepsy (Engel, 1993), i.e. 

approximately 4.5% of all patients with epilepsy, are potential candidates for surgical 

resection (Rosenow & Luders, 2001). The goal of epilepsy surgery is to resect or 

disconnect the epileptogenic zone completely (Brodbeck et al., 2011) and the success of 

surgery depends largely on the proper localization of epileptogenic zone. Therefore, 

precise localization of epileptogenic zone is obligatory for seizure freedom. 

Different diagnostic techniques, such as non-invasive scalp electroencephalogram 

(EEG), intracranial EEG (iEEG), magnetoencephalography (MEG), magnetic resonance 

imaging (MRI), functional magnetic resonance imaging (fMRI), positron emission 

tomography (PET), and single photon emission computed tomography (SPECT) are 

used for the presurgical evaluation of focal epilepsy. These techniques are used to 

identify and measure the epileptogenic zone, as defined in (Luders, Najm, Nair, 

Widdess-Walsh, & Bingman, 2006). Among all these techniques, scalp EEG is used 
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most commonly for epilepsy evaluation because of its high temporal resolution, 

suitability for long-term monitoring, non-invasiveness and low cost. 

The widely accepted diagnostic technique, EEG, measures and records the scalp 

potentials resulting from the neuronal ionic current flow within the brain. These scalp 

potentials contain valuable information about the underlying cerebral electromagnetic 

sources of the observed EEG events. In case of any epileptic EEG event, the 

corresponding cerebral source resembles the epileptogenic zone. Proper identification of 

such cortical sources of EEG is crucial for the diagnosis and management of various 

neurological disorders and also for the understanding of the brain functions in 

neuroscience research. Traditionally, EEG recordings are interpreted through visual 

inspection. Such interpretations of scalp EEG often are misleading, because they follow 

the simplistic principle that the electrodes recording the clearest epileptic event overlie 

the seizure focus (Assaf & Ebersole, 1997) and do not consider the volume conduction 

effect that arises due to the series of layers: scalp, skull,  cerebrospinal fluid (CSF), etc. 

(He & Ding, 2013; Nunez & Srinivasan, 2006). Simple visual inspection of EEG is 

therefore not adequate for the precise localization of the epileptogenic zone. 

Electroencephalogram source imaging (ESI) is comparatively a new model-based 

computational technique that can localize and depict the possible cortical sources of 

EEG activities (Kaiboriboon, Lüders, Hamaneh, Turnbull, & Lhatoo, 2012). It is a 

multilayer head model-based EEG source localization solution that considers the 

volume conduction effect and can use different conductivities for different head layers. 

It utilizes both temporal and spatial aspects of scalp EEG to estimate their underlying 

cortical sources. Visual interpretation of EEG provides a coarse approximation of the 

underlying cortical sources, whereas ESI can provide a more refined sublobar prediction 

of the cerebral origin of scalp EEG (Assaf & Ebersole, 1997; Koessler et al., 2010). 
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Furthermore, ESI can provide information on corticocortical propagation during the 

short period of an interictal spike or seizure onset that is not easily obtained from the 

traditional visual inspection of the EEG waveforms. Due to the above-mentioned 

advantages of ESI over conventional visual inspection method, ESI is considered as a 

promising tool for localizing the cortical sources of EEG events. 

This promising diagnostic tool (i.e. ESI) has important applications in both cognitive 

neuroscience and clinical neuroscience. The cognitive neuroscience utilizes ESI 

techniques mostly for investigating the temporal aspects of neural processing by 

analyzing event related potentials (Michel et al., 2004). The state and progression (i.e. 

cognitive decline) of a common cognitive disorder, Alzheimer's disease, can be 

evaluated by ESI analysis of the resting state EEG rhythms (Babiloni et al., 2007; 

Babiloni et al., 2014). The clinical neuroscience includes neurology, psychiatry 

psychopharmacology, etc. It uses ESI for analyzing the sources of sensory or motor 

evoked potentials, for localizing the EEG sources in certain frequency bands, but most 

often for localizing the epileptogenic zones from the epileptic EEG events (Michel et 

al., 2004). 

Two different types of epileptic events can be recorded through two varieties of scalp 

EEGs that are known as ictal EEG and interictal EEG. The scalp EEG recorded during a 

seizure, which is a sudden surge of electrical activity in the brain that lasts for several 

seconds to a few minutes and is characterized by rhythmic activities, is known as ictal 

EEG. Interictal EEG is recorded in between seizures and contains both normal neural 

activities and brief epileptic events (known as interictal spikes) that occur in irregular 

intervals. Both ictal and interictal EEG can be analyzed independently (or jointly) for 

ESI-based epileptogenic cortical source estimation, but both have their corresponding 

pros and cons. 
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Ictal EEG measures cortical seizure discharges superposed with large amount of 

artifacts, external noises and other background brain oscillations (Urrestarazu et al., 

2004). These unwanted portions of ictal EEG decrease its Signal to Noise Ratio (SNR). 

Such low SNR values makes ictal-EEG-based source imaging (i.e. ictal ESI) highly 

challenging (Kaiboriboon et al., 2012), although ictal EEG contains valuable 

information regarding the underlying epileptogenic zone. On the contrary, interictal 

EEG contains less noise, but interictal-spike-origin can be separate from the 

epileptogenic zone (Rosenow & Luders, 2001) and the obtained source may not reflect 

the actual source because of the fast propagation of interictal epileptiform activity 

(Wennberg, Valiante, & Cheyne, 2011). Therefore, ictal EEG is believed to be more 

reliable than interictal EEG for epileptogenic zone localization (Jayakar, Duchowny, 

Resnick, & Alvarez, 1991). 

1.2 Problem Statement 

The major obstacle for ictal ESI is to eliminate the unwanted portions of the ictal 

EEG before using it for source estimation. Various tools and techniques including 

digital filters, averaging of the ictal events, ICA and principal component analysis 

(PCA) have been used to increase the SNR of ictal EEG. Among all those techniques, 

ICA is the most useful tool for separating the unwanted portions of ictal EEG. It uses a 

statistical technique to decompose a mixed dataset into a set of statistically independent 

components (ICs). In the context of EEG signals, ICA can decompose each set of EEG 

into a series of spatially fixed and temporally independent components (Yang, Wilke, 

Brinkmann, Worrell, & He, 2011). Independent components from extracerebral origin 

(e.g. muscle artifacts, eye movements, and power line noise, etc.) are removed for 

denoising (McMenamin et al., 2010), whereas the components that display ictal nature 

(i.e. the ictal components) are extracted for epileptogenic zone localization. Proper 

identification of such ictal component(s) is the major challenge for ICA-based ictal ESI 

Univ
ers

ity
 of

 M
ala

ya



5 

techniques. All the existing ictal ESI techniques are highly dependent on visual 

inspection process for selecting the ictal component(s). In this context, it becomes an 

important and interesting issue to develop an improved ictal ESI technique with less 

dependency on visual inspection. 

1.3 Thesis Objective 

The objective of this thesis is to develop a new ICA-based ictal ESI technique that 

uses recursive approach for automatic identification of ictal component, which leads to 

better estimation of epileptogenic zone and therefore has potential application in the 

presurgical evaluation of refractory focal epilepsy. To accomplish this key objective the 

following sub-objectives are pursued: 

I. To implement a classical ictal ESI technique with open-source or free 

software tools for examining their clinical utility for epileptic zone 

localization in patients with refractory focal epilepsy and for selecting the 

suitable tools for the proposed technique. 

II. To develop and implement a new ICA-based ictal ESI technique by using 

those selected software tools and a unique quantitative feature of decomposed 

ictal EEG, so that the proposed technique reduces the dependability on visual 

inspection for ictal component selection, as well as for better estimation of 

epileptogenic zone. 

III. To evaluate the practicality and clinical usability of the proposed ictal ESI 

technique by using both simulated ictal EEG datasets and real ictal EEG 

datasets that were recorded in a conventional clinical setup. 
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1.4 Scope of Work 

This study focused on the presurgical evaluation of focal epilepsy only. Utilization of 

ESI for other diseases, such as generalized epilepsy (Holmes, Brown, & Tucker, 2004) 

and Alzheimer’s diseases (Babiloni et al., 2007), are out of the scope of this work. 

This thesis utilized ictal EEG and developed an improved ictal EEG based source 

imaging technique. Interictal EEG based source imaging was used for comparative 

analysis only. 

Instead of MEG based source imaging, this study considered EEG based source 

imaging. Although, MEG is an available epilepsy diagnosis technique and the principles 

of ESI apply equally to the MEG-based source imaging (Plummer, Harvey, & Cook, 

2008), MEG-based source imaging is not within the scope of this study. Advantages of 

Ictal ESI over MEG-Based Source Imaging are listed in (Habib et al., 2016). 

The terms source localization and source imaging are often used interchangeably 

(Kaiboriboon et al., 2012; Michel et al., 2004), but some articles  (Mosher, Baillet, & 

Leahy, 1999; Scherg, 1994) distinguish them based on the source model used in the 

analysis. A small set of current dipoles with unknown locations and moments are 

considered as the source model for the source localization techniques, whereas the 

source imaging techniques consider a large number of current dipoles with fixed 

locations and orientations. This thesis mostly focused on the so called source imaging 

techniques. However, similar to the relevant literatures, both the terms (source 

localization and source imaging) were used interchangeably. 

Accuracy of an ESI technique can be improved by using high density EEG (Lantz, 

Grave de Peralta, Spinelli, Seeck, & Michel, 2003), but the standard medical EEG 

systems comprise between 19 and 32 electrodes (Becker, 2014). This study focused on 
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developing an ESI technique that supports both low density and high density EEG and 

performs better with low density EEG. 

1.5 Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter 2 presents a literature review starting from the fundamentals to the pros and 

cons of modern ictal ESI techniques. It describes the physiological origin of scalp EEG 

and presents an outline of the basic ESI technique. It also examines the expanding 

research literature and provides an overview of the recent research findings on the ictal 

ESI. At the end of this chapter, an issue related to the present state of ESI is presented. 

Chapter 3 describes the research methodology and procedures to accomplish the defined 

objectives. It includes the major steps for the development of the proposed improved ESI 

technique for the noninvasive presurgical evaluation of refractory focal epilepsy. 

Chapter 4 presents the research findings that include the discussion on the results that 

obtained in this study. The results are organized according to the sequence of the major 

steps discussed in chapter 3. 

Chapter 5 presents an overall conclusion, along with a summary of the original 

contribution. After that, few limitations of the current project are highlighted. Finally, some 

suggestions for possible future work are proposed. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 

The German psychiatrist Hans Berger invented EEG around 90 years ago (Berger, 

1929; Khanna, Pascual-Leone, Michel, & Farzan, 2015). Since then, the clinical use of 

EEG, especially in the evaluation of epilepsy, has increased exponentially. History of 

ESI is almost as old as that of EEG (Jayakar et al., 1991) because the art of localization 

was initially described in 1934 (Adrian & Matthews, 1934; Compston, 2009). A large 

number of studies have already been carried out but the ESI problem is still open for 

finding more reliable solution with better accuracy. The reason behind this long 

investigation lies in the proof of Helmholtz (Helmholtz, 1853). He proved that an active 

current source of a particular position inside a conductive medium can produce unique 

potential on the outer surface of the medium, but the same surface potential can be 

obtained for an infinite number of internal locations of such current sources. So finding 

a unique source in the brain from a given potential map on the scalp is not a trivial 

problem. Acceptable solutions can be obtained through proper a priori assumptions of 

the source space and the volume conductor. This chapter describes the physiological 

origin of scalp EEG and presents an overview of the basic ESI technique. It also 

examines the expanding research literature and provides an exhaustive review of the 

recent research findings on the ictal ESI with emphasis on the ICA based ictal ESI 

techniques. 

2.2 Physiological Origin of EEG 

The brain serves as the center of the nervous system and processes a large amount of 

information with the help of billions of nerve cells (Pelvig, Pakkenberg, Stark, & 

Pakkenberg, 2008), namely neurons and glial cells. Neurons are the core components of 

the brain. These cells are electrically excitable and can process as well as transmit 

information by using electrochemical signals. A typical neuron consists of three parts: 
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dendrite, soma and axon (see Figure 2.1). The dendrites receive stimuli from thousands 

of other cells. The cell body, known as soma, contains the nucleus. The axon transmits 

the electrochemical nerve impulses through the neuron. The connection points at which 

stimuli are transmitted between the axon of one neuron and the dendrites of neighboring 

neurons are called synapses. 

 

Figure 2.1: Schematic representation of a neuron. 

Neurons communicate through an electrochemical process as illustrated in Figure 

2.2. The presynaptic neuron releases neurotransmitters due to the excitations from other 

cells. The neurotransmitters then bind to the receptors at the dendrites of the 

neighboring neurons (the postsynaptic neuron) and enables ions to get into the 

postsynaptic neuron through its ion channels. These ions increase the electric potentials 

at the cell membranes of the postsynaptic neuron. Once the electric potential reaches a 

certain threshold value, a so-called action potential is generated and an electric impulse 

is sent along the membrane of the axon. It triggers the release of more 

neurotransmitters. These neurotransmitters then bind to the next postsynaptic neurons 

and lead to a change of the post-synaptic potentials at the postsynaptic cell membranes 

and so on. 

An interior current flows within each postsynaptic cell due to the post-synaptic 

potentials. This current is called the intra-cellular (or primary) current. In order to 

counterbalance this current another current (extra-cellular or secondary) flows outside 

Univ
ers

ity
 of

 M
ala

ya



10 

 

Figure 2.2: Electrochemical process of information transmission between 

neurons. 

the cell membrane and in the opposite direction. Figure 2.3a illustrates the intra-cellular 

and extra-cellular currents of a neuron. Extra-cellular current causes electric potential at 

the surface of the head. More negative extracellular environment occurs at the synapse 

end while the axonal end of the postsynaptic neuron becomes more positive. Therefore, 

the synapse end and the axonal end are considered as the current sink and current source 

respectively. Such a pair of current sink and source can be modeled by a current dipole 

as illustrated in Figure 2.3b, which is oriented along the dendrite of the cell, and 

constitutes the basis for mathematical models of brain activity (Hallez et al., 2007). 
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Figure 2.3: Neuron modelled as a current dipole. (a) The directions of the 

primary current and secondary current in a neuron. (b) A pair of current sink and 

current source and their equivalent current dipole. 

If the point charges +q and –q are accumulated in the source and sink respectively 

and if they are separated by a distance p then the magnitude d of the dipole moment d is 

the product of q and p. If a unit vector e represents the direction of the dipole moment, 

which is directed from the sink to the source, then d can be expressed as: 

                                                      (2.1) 

The amplitude of current in a single neuron is very small and therefore a current 

dipole represents the synchronized activity of a group of neurons localized to a small 

cortical region. For producing detectable potential on the scalp thousands or millions of 

neurons should act synchronously and they should have similar spatial orientation 

(Nunez & Srinivasan, 2006). It is commonly believed that the neurons that are 

responsible for producing scalp potential are located in the gray matter and are oriented 

perpendicular to the cortical surface (Becker, 2014). 
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2.3 Overview of EEG Source Imaging Technique 

The aim of ESI is to identify the cortical regions that are responsible for producing 

electrical potentials on the scalp. It deals with the solutions for two fundamental 

problems: forward problem and inverse problem (Hallez et al., 2007; Jatoi, Kamel, 

Malik, Faye, & Begum, 2014; Plummer et al., 2008). The forward problem involves the 

estimation of scalp potentials from the given current sources in the brain. These 

estimated potentials are necessary to solve the inverse problem that identifies the 

unknown cortical current sources from the recorded scalp potentials (i.e. the EEG). 

Other than finding the solutions for forward and inverse problems, ESI techniques also 

need preprocessing of the functional and structural data. A block diagram of a basic ESI 

technique is illustrated in Figure 2.4. 

 

 

 

 

 

 

 

 

Figure 2.4: Block diagram of basic ESI technique. 
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2.3.1 Anatomical and Spatial Data Preprocessing 

In order to solve the forward problem a structural model of subject’s head, the 

locations of the known sources inside the head volume, and the EEG electrodes 

positions on the head surface are required. These anatomical and spatial data need to be 

preprocessed before use in forward solution. The techniques for preprocessing these 

three sets of data are discussed below. 

2.3.1.1 Head Model 

An appropriate computer generated head model is required for connecting the 

neuronal electrical activities to the scalp potentials. Mainly two types of head models, 

spherical and realistic, are used for EEG source estimations (Kaiboriboon et al., 2012; 

Rosenfeld, Tanami, & Abboud, 1996). 

 Spherical Head Model (a)

The simplified form of head model consists of one or more homogeneous spheres or 

shells (Fiederer et al., 2016; Frank, 1952). The simplest form of such spherical head 

model contains only one shell and it assumes uniform conductive throughout the head 

volume. Since the assumption is unrealistic, the accuracy of single shell head model-

based EEG source estimation is limited (Kaiboriboon et al., 2012). Another form of 

spherical head model, which consists of multiple overlapping concentric shells, is non-

homogeneous type. It considers the non-homogeneities of the layers of human head. 

The overall performance of spherical head model-based ESI solution can be improved 

by considering multiple shell model and local anisotropies (Kaiboriboon et al., 2012). 

Single shell model represents the brain whereas a multiple shell model represent 

different layers of human head, namely brain, CSF, skull, and scalp (Plummer et al., 

2008). These spherical head models are illustrated in Figure 2.5. The volume within the 

inner shell or within two adjacent shells is considered isotropic. The main advantage of  
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Figure 2.5: Single-shell, two-shell, three-shell, and four-shell spherical head 

models. 

the spherical model is its simplicity. Moreover, spherical head models provide an 

opportunity to solve the forward problem analytically (Ary, Klein, & Fender, 1981; 

Koles, 1998). 

 Realistic Head Model (b)

High-resolution MRI scans of individual patients are used for generating the subject 

specific realistic head models. These sophisticated models can offer better ESI solutions 

with respect to the spherical-model-based solutions because real heads are not spherical 

(Kaiboriboon et al., 2012). Several comparative studies claimed that realistic head 

models were inevitable to ensure accurate EEG source estimation (Cuffin, 1996; 

Hämäläinen & Ilmoniemi, 1994; Meijs, Bosch, Peters, & Da Silva, 1987; Menninghaus, 

Lutkenhoner, & Gonzalez, 1994; Roth, Balish, Gorbach, & Sato, 1993; Stok, 1987; 

Thevenet, Bertrand, Perrin, Dumont, & Pernier, 1991; Yvert, Bertrand, Echallier, & 

Pernier, 1995). Three different realistic head models are used with three popular 

numerical techniques, namely boundary element method (BEM), finite element method 

(FEM), and finite difference method (FDM) (Kaiboriboon et al., 2012). All these 

techniques require segmentation of the head volume into various head layers. The first 

technique uses a geometric model that triangulates the surfaces of the segmented layers 

and considers isotropic conductivity for each layer(Hamalainen & Sarvas, 1989; He et 

al., 1987). The second technique allows tessellation of the segmented head layers and 

Single-shell Two-shell Three-shell Four-shell 
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thus can consider individual anisotropic conductivity for each layer (Michel et al., 2004; 

Miller & Henriquez, 1990). The third technique can also consider anisotropic 

conductivity. It divides the head volume into cubic grids so that different cubic element 

can hold different conductivity (Kaiboriboon et al., 2012; Lemieux, McBride, & Hand, 

1996). 

Although FEM and FDM provide more realistic models, these methods consume 

more computation time and memory (Hallez et al., 2007). Therefore the implementation 

of FEM and FDM toolboxes are mostly done in experimental level. In this context BEM 

generated head models were mostly used in the ESI based clinical studies. An MRI scan 

of a subject and the corresponding realistic BEM meshes are illustrated in Figure 2.6. 

2.3.1.2 Source Distribution Model 

Most of the EEG source estimation techniques require an explicit definition of a 

source model that describes the locations and orientations of a set of current dipole 

sources. These source models are taken into consideration during source estimation. 

Various hypotheses on the number, location, orientation, and magnitude of the dipole 

 

Figure 2.6: (a) MRI scan of a subject. (b) BEM meshes of brain, skull and scalp 

of the same subject. 
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sources can be raised (De Munck, 1990; Grech et al., 2008; Rodríguez-Rivera, Van 

Veen, & Wakai, 2003) and, based on the location of dipole sources, the suggested 

source models can be categorized into two types: volumetric (or pointwise) source 

models and surfacic source models. The volumetric (or pointwise) source models define 

the dipole positions on a 3-dimensional grid (sometimes as shown in Figure 2.7), 

whereas the surfacic source models define the source distribution over a 3-dimensional 

mash surface (typically on the cortical surface) (Gramfort, Papadopoulo, Olivi, & Clerc, 

2011). 

 

Figure 2.7: Volumetric Source Distribution. 

2.3.1.3 Channel Positions 

The cortical sources are estimated relative to the scalp electrode positions and precise 

source estimation requires the exact positions of electrodes in the digitized form (Wang 

& Gotman, 2001). Commercial 3D digitizer, such as Polhemus FASTRAK, can acquire 

the digitized locations of EEG electrodes, but due to high cost and rare use in 

conventional EEG data acquisition, very few studies used such commercial digitizer. An 
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alternate solution, that is well accepted, is to use the template sets of digitized electrode-

positions with necessary alterations. 

Moreover, accurate source estimation requires co-registration of all the geometrical 

descriptions (electrode positions, head model and source model) with same coordinate 

system and unit. If the relative anatomical landmarks for both head-model and 

electrode-set are known, then automatic techniques can be applied, otherwise interactive 

or manual techniques are used. Figure 2.8a illustrates a head model and the template set 

of electrodes before being aligned. Relative anatomical landmarks were not known. 

Therefore, the head model and the electrodes were manually aligned as represented in 

Figure 2.8b. 

 

Figure 2.8: (a) Head model and template electrodes without being aligned. (b) 

Electrodes and the head model after manual alignment. 

2.3.2 Forward Solution 

In physical world, predicting the error-free values of the observed parameters by 

using some known parameters and a model is known as forward problem (Tarantola, 

2005), while its solution is considered as forward solution. Mathematical formulation of 

forward problem is given below. 
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In symbolic terms, the EEG forward problem is that of finding, in a reasonable time, 

the scalp potential g(r, rdip, d) at an electrode positioned on the scalp at r due to a 

single dipole with dipole moment d = ded (with magnitude d and orientation ed, see 

Equation 2.1), positioned at rdip. This amounts to solving Poisson's equation to find the 

potentials V(r) on the scalp for different configurations of rdip and d. For multiple dipole 

sources, the electrode potential would be 

 ( )  ∑  (          )   ∑  (           )   . In practice, one calculates a potential 

between an electrode and a reference (which can be another electrode or an average 

reference). 

For N electrodes and p dipoles: 

  [
 (  )
 

 (  )
]  [

 (            )   (            )

   

 (            )   (            )

] [

  
 
  

]

  (            ) [

  
 
  

] 

where i = 1, ..., p and j = 1, ..., N. Here V is a column vector. For N electrodes, p 

dipoles and T discrete time samples: 

  [
 (    )   (    )

   
 (    )   (    )

]   (            ) [

         
   
         

]

  (            )  

where V is now the matrix of data measurements, G is the gain matrix and D is the 

matrix of dipole magnitudes at different time instants. More generally, a noise or 

perturbation matrix n is added, 
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                                                               (2.2) 

Hallez et al. (2007, p. 12) 

2.3.3 Functional Data Preprocessing 

In addition to the cerebral activities, scalp EEG also records electrical activities from 

various surrounding sources other than the brain. Any portion of the EEG whose origin 

is not from the brain is known as the artifact. Due to these artifacts EEG can be 

misinterpreted and any analysis of EEG can produce misleading results. (Benbadis and 

Tatum, 2003; Krauss et al., 2005). Therefore; their recognition, identification, and 

eventual elimination are very important. This subsection is concerned with the 

preprocessing steps that are applied in dealing with these artifacts before the actual 

source localization. 

There are mainly two types of artifacts, namely physiological artifacts and non-

physiological artifacts (Ebersole & Pedley, 2003; Fisch & Spehlmann, 1999). The first 

type of artifacts usually arises from various sources within the body other than the brain 

whereas the other type arises outside the body. Common sources of physiological 

artifacts are: cardiac activity, eye blinks, ocular movements, muscular activity etc. 

(Daly, Nicolaou, Nasuto, & Warwick, 2013; Romero, Mañanas, & Barbanoj, 2008; 

Urigüen & Garcia-Zapirain, 2015). In contrast external sources, such as power line, 

electronic components, electrical equipment, electrodes, environment, etc., causes non-

physiological artifacts. Various methods were proposed for artifact removal from EEG 

records. Each method focused on removing very few types of artifacts because of the 

diverse characteristics (Urigüen & Garcia-Zapirain, 2015) and combination of two or 

more methods are mostly applied for cleaning the EEG records. Some common methods 

are discussed briefly in the following sub-subsections. 
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2.3.3.1 Artifact Rejection 

This is the easiest artifact removal technique, in which poor quality EEG epochs are 

identified and removed. This technique removes easily detectable artifacts that last for a 

short period of time. Simply rejecting contaminated EEG epochs results in a 

considerable loss of collected information. Moreover some artifacts (such as line power 

artifact) are distributed throughout the entire recordings, so such epoch rejection may 

not give clean EEG data for analysis. 

2.3.3.2 Filtering 

One of the common artifact removal techniques is filtering and low pass, band pass, 

and high pass filters are the classical filters used. These filters can remove artifacts 

effectively from EEG records when the frequency band of interference is different from 

brain signals (Sweeney, Ward, & McLoone, 2012). In case of ictal EEG spectral overlap 

is very common. Other specialized filters, such as adaptive filter (Correa, Laciar, Patiño, 

& Valentinuzzi, 2007), Wiener filter, Bayes filter, etc., are useful for such EEG records 

with spectral overlapping. Another advantage is that these filters can be automated 

(Sweeney, Ayaz, et al., 2012; Urigüen & Garcia-Zapirain, 2015). 

2.3.3.3 Regression 

Regression-based techniques require one or more reference signals, such as 

electrooculogram (EOG), electrocardiogram (ECG), etc., along with the EEG signals. 

They use regression analysis for defining the amplitude relation between the reference 

signal(s) and the EEG signal of every channel. An estimated portion of the reference 

signal(s) are subtracted from the EEG signals for artifact correction. These techniques 

are mostly used for correcting ocular artifacts (Croft & Barry, 2000; Wallstrom, Kass, 

Miller, Cohn, & Fox, 2004) and cardiac artifacts (Waser & Garn, 2013). One limitation 

of these techniques is the bidirectional contamination among brain signal and reference 

Univ
ers

ity
 of

 M
ala

ya



21 

signal (Wallstrom et al., 2004). It means both the signals can contaminate each other 

and correction based on one (reference) may not be appropriate. Another limitation is 

their dependency on one or more reference channels. Due to these limitations 

regression-based techniques are replaced by other modern techniques (Urigüen & 

Garcia-Zapirain, 2015).  

2.3.3.4 Blind Source Separation 

Blind Source Separation (BSS) technique separates individual source components 

from their mixtures that are recorded at multiple sensors. It is a widely used model 

(Sarvas, 1987; Urigüen & Garcia-Zapirain, 2015) and it considers the scalp recorded 

potentials as linear mixtures of brain signals and unwanted noise signals as shown in 

Figure 2.9. The mathematical representation of this model is given in Equation 2.2 

where V is the EEG data matrix and D is the source matrix. The gain matrix G can be 

considered as the mixing matrix. It does not need a reference signal for estimating the 

sources D from the recorded dataset V by using Equation 2.2. The success of BSS 

depends on proper estimation of source and correct separation of the brain sources from 

the artifacts (Urigüen & Garcia-Zapirain, 2015). As little information on the underlying 

sources is available a priori, ESI is a typical application for BSS methods (Vigario & 

Oja, 2008). While studying BSS problems, scholars proposed a number of classic met- 

 

Figure 2.9: Scalp potentials as a mixture of the cortical source potentials. 
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-hods: PCA, projection pursuit, factor analysis, and ICA. Since ICA is widely used in 

ESI solutions, more details of ICA are discussed in the next sub-subsection. 

2.3.3.5 Independent Component Analysis 

This method emerged as a useful extension of PCA method. The major problem with 

PCA is it’s assumption of orthogonality between brain activity and physiological 

artifacts which does not generally hold (Urigüen & Garcia-Zapirain, 2015). ICA 

assumes that the source signals are statistically independent and most authors agree with 

this idea (James & Hesse, 2005; T. P. Jung et al., 2000; Vigário, 1997).  

The mathematical formulation for ICA model is given below, as discussed in (Onton, 

Westerfield, Townsend, & Makeig, 2006). The data submitted to ICA are simply the 

recorded EEG channel data arranged in a matrix of n channels (rows) by t time points 

(columns). No channel location information at all is used in the analysis. ICA performs 

a blind separation of the data matrix (X) based only on the criterion that resulting 

source time courses (U) are maximally independent. Specifically, ICA finds a 

component ‘unmixing’ matrix (W) that, when multiplied by the original data (X), yields 

the matrix (U) of independent component (IC) time courses: 

                                                          (2.3) 

where X and U are n×t matrices, and W is n×n matrix. By simple matrix algebra, 

Equation 2.3 implies that: 

       

Here, W
-1

 is the n×n component ‘mixing’ matrix whose columns contain the relative 

weights with which the component projects to each of the scalp channels, i.e., the IC 
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scalp map. The portion of the original data (X) that forms the ith IC (Xi) is the (outer) 

product of two vectors, the ith column of W and the ith row of U, 

     
     

and the whole data (X) are the sum of the (back-projected) ICs (Xi): 

  ∑  ,    where i = 1, 2, … n. 

Each component is projected to the EEG electrodes according the weights of the 

corresponding column in the mixing matrix (W
-1

). These weights can also be used for 

generating the topographic maps that help to visualize the scalp projection of each 

component. “Thus, the IC activations (U), can be regarded as the EEG waveforms of 

single sources, although obtaining their actual amplitudes at the scalp channels 

requires multiplication by the inverse of the unmixing matrix (W
-1

)” (Onton et al., 2006). 

2.3.3.6 Other Denoising Techniques 

Only a few common techniques are discussed above. Other solutions for artifact 

correction are also available but less frequently used. Some examples are: principal 

component analysis (PCA) (Berg & Scherg, 1991; Fitzgibbon, Powers, Pope, & Clark, 

2007), discrete wavelet transform (DWT) (Krishnaveni, Jayaraman, Anitha, & 

Ramadoss, 2006), empirical mode decomposition (EMD) (Safieddine et al., 2012), 

nonlinear mode decomposition (NMD) (Iatsenko, McClintock, & Stefanovska, 2015), 

etc. Another basic technique, that is used very commonly, is the averaging of the similar 

EEG events for improving the SNR. It first detects several similar events and then 

extracts segments of same size around each event and finally averages the segments. 
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2.3.4 Inverse Solution 

In case of a volume conductor, the problem of finding the internal source of a given 

set of surface potentials is known as inverse problem and any technique for solving this 

problem is known as inverse solution. Since, an infinite number of internal sources can 

produce the same surface potential, the inverse problem has no unique solution and it is 

an ill-posed problem (Helmholtz, 1853; Kaiboriboon et al., 2012). Various a priori 

assumptions are used to solve the inverse problem (Van Oosterom, 1991). 

With respect to Equation 2.2, the inverse solution uses the gain matrix G, the 

electrode positions and the scalp potentials V to estimate  ̂ of the dipole magnitude 

matrix D (Grech et al., 2008). Inverse solution also records the locations of the 

estimated dipoles. More specifically the inverse solution usually estimates six 

parameters that specify a dipole: three spatial coordinates (x, y, z) and three dipole 

moment components (orientation angles (θ, φ) and strength d). Parametric and non-

parametric methods are the two main approaches that are followed in the inverse 

solution. 

2.3.4.1 Parametric Methods 

Parametric Methods require an a priori assumption on the number of dipoles. This 

number ranges from a single dipole in a spherical head model, to a large number of 

dipoles (ten or more) in a realistic head model. Parametric Methods are also known as 

Equivalent Current Dipole Methods or Spatio-Temporal Dipole Fit Models or 

Concentrated Source. These methods search for the best dipole position(s) and 

orientation(s). 

 Single Dipole Model (a)

This model considers every instant of the scalp potential as an activity of a single 

dipole located in an infinitely small cortical region (Pascual-Marqui, Sekihara, 
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Brandeis, & Michel, 2009). This assumption is not very realistic and does not represent 

the biological facts. Therefore single dipole model is useful for a limited number of 

clinical conditions. Appreciable outcomes were recorded for using this model in 

epileptic spikes and auditory evoked potential analysis (Ebersole & Hawes-Ebersole, 

2007; Pascual-Marqui et al., 2009). Despite this limitation single dipole model is the 

most commonly used model (Kaiboriboon et al., 2012). Besides, it has another 

variety—the so-called moving dipole model (Darcey, Ary, & Fender, 1980; Schneider, 

1972). 

 Multiple Dipole Model (b)

This model assumes that any intent of the scalp-recorded potentials represents 

activities from more than one cortical source. One example of such advanced dipole 

models is the spatiotemporal multiple source model (Scherg & Von Cramon, 1985). In 

contrast to the moving single dipole model, multiple dipole model identifies the lowest 

number of dipoles that can explain the measured scalp potential (Ebersole & Hawes-

Ebersole, 2007). Some approaches that use multiple dipole model include multiple 

signal classification (MUSIC) (Mosher, Lewis, & Leahy, 1992), recursively applied and 

projected multiple signal classification (RAP-MUSIC) (Mosher & Leahy, 1998), 

common spatial pattern decomposition (Koles, Lind, & Soong, 1995), a combination of 

ICA and RAP-MUSIC (Kobayashi, Akiyama, Nakahori, Yoshinaga, & Gotman, 2002), 

and the first principle vector (FINES) approach (Xu, Xu, & He, 2004). 

2.3.4.2 Non-parametric Methods 

The inverse solutions that use non-parametric methods are also known as distributed 

source models or distributed inverse solutions. In contrast to the parametric methods 

these methods do not need a priori assumption on the number of dipoles and assume 

that multiple sources of multiple cortical locations can act simultaneously at any given 
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time (Plummer et al., 2008). Dipole sources are assumed to have fixed locations and 

possibly fixed orientations and are distributed throughout the cortical surface. The 

inverse solutions estimate the strength (and orientation) of these dipole sources. 

Since inverse problem is an ill-posed problem various assumptions are needed to 

identify the ‘optimal’ or ‘most likely’ solution (Michel et al., 2004). Different choices 

and implementations of these assumptions were introduced in the literature. The low-

resolution electromagnetic tomography (LORETA) algorithm assumes that the 

neighboring neurons are more likely to discharge synchronously than the non-

neighboring neurons (Pascual-Marqui, Michel, & Lehmann, 1994). This algorithm, 

therefore, tends to estimate a broader source region because the neighboring sources are 

assumed to have similar strength. The idea of normalization was used in the 

standardized low resolution brain electromagnetic tomography (sLORETA) method 

(Pascual-Marqui, 2002). The minimum norm estimate (MNE) approach (Hämäläinen & 

Ilmoniemi, 1994) assumes minimum overall intensity for the 3D current distribution. 

The solution can be considered unique in the sense that only one source combination 

can have the lowest overall intensity as well as fit the data exactly. This MNE approach 

has the tendency to identify the superficial cortical sources. In order to minimize this 

tendency, weighting strategy was introduced in weighted minimum norm estimate 

(wMNE) technique (Lin et al., 2006). The local autoregressive average (LAURA) 

method (de Peralta Menendez, Murray, Michel, Martuzzi, & Andino, 2004) uses 

electromagnetic theory of Maxwell equation and assumes that the activity will fall off 

(or regress) while moving away from the source. Several other inverse solutions was 

proposed and each method has their own sets of a priori assumptions. Some examples 

are: focal underdetermined system solution (FOCUSS) (Gorodnitsky, George, & Rao, 

1995), EPIFOCUS (de Peralta Menendez, Andino, Lantz, Michel, & Landis, 2001), 

dynamical statistical parametric mapping (dSPM) (Dale et al., 2000), variable resolution 
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electric-magnetic tomography (VARETA) (Valdes-Sosa, Marti, Garcia, & Casanova, 

2000), etc. 

2.4 Software Tools for Realistic Head Model Generation 

A computer generated model of human head is inevitable for the automatic 

localization of EEG sources. Anatomically realistic and subject specific head models are 

essential for the accurate localizations of EEG sources. Realistic head model of a 

subject can be generated from the MRI scans of subject’s head. A variety of software 

solutions, both free (Acar & Makeig, 2010; Cointepas, Mangin, Garnero, Poline, & 

Benali, 2001; Dale, Fischl, & Sereno, 1999; Oostenveld, Fries, Maris, & Schoffelen, 

2011; Shattuck & Leahy, 2002) and commercial (e.g. BrainVoyager QX, BESA MRI, 

and CURRY), are available for generating realistic subject specific head models form 

individual subject’s MRI scans. Commercial tools can generate ESI results 

independently, but those tools have limited functionalities and cannot be customized for 

special needs. On the contrary, open-source solutions are neither independent nor 

complete, but multiple tools can produce the ESI solutions jointly. Moreover, the open-

source tools are customizable and can offer customized solutions with broader range of 

functionalities. Therefore open-source tools are useful for the studies that intend to 

develop and implement any new technique. Each software tool has certain advantages 

and limitations. Critical comparisons of these software tools are very important for 

selecting the most suitable one for a particular use. 

A few studies compared the software tools that are used for MRI segmentation and 

surface generation. Tsang et al. (2008) provided a quantitative analysis and comparison 

of the segmentation algorithms of two software tools, namely Statistical Parametric 

Mapping (SPM) (Ashburner & Friston, 2005) and FMRIB Software Library (FSL). 

Another study (Klauschen, Goldman, Barra, Meyer‐Lindenberg, & Lundervold, 2009) 
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compared three widely used brain volumetry methods available in the software 

packages FSL, SPM5, and FreeSurfer (Dale et al., 1999). They evaluated the 

performance using simulated and real brain MRI data sets and their study was focused 

on the accuracy of volume measurements and the robustness against changes of image 

quality. Recently, Kazemi and Noorizadeh (2014) investigated the accuracy of three 

software packages SPM, FSL and BrainSuite (Shattuck & Leahy, 2002) for brain tissue 

segmentation. All of these comparative studies were mostly focused on the underlying 

algorithms and concepts of the software tools and were less concerned about the 

usability issue. 

Head MRI segmentation is an image processing operation that should be performed 

before implementing any numerical head model generation technique. Its goal is to 

separate each MRI scan of a subject into a number of different homogeneous regions 

where each region corresponds to a particular type of tissue of the subject’s head. 

Automatic MRI segmentation tools, used for EEG or MEG source localization, usually 

separate three or more types of tissues. Typically segmented tissue types are scalp, 

skull, CSF, white matter (WM) and grey matter (GM). Mesh generation modules of the 

head modelling tools use the outcomes of the segmentation step and create triangular 

meshes that fit the boundaries of the segmentation. Some software tools are briefly 

introduced below. 

FieldTrip (Oostenveld et al., 2011) is an open-source MATLAB-toolbox for source 

analysis of oscillatory electromagnetic activity (MEG and EEG) of brain and was 

developed by the Donders Institute for Brain, Cognition and Behaviour, University 

Nijmegen, Netherlands. This software package can be downloaded from 

http://fieldtrip.fcdonders.nl/download. 
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Neuroelectromagnetic Forward Head Modeling Toolbox (NFT) (Acar & Makeig, 

2010) is also an open-source MATLAB toolbox. It can generate realistic head models 

from available data (MRI and/or electrode locations) and can compute numerical 

solutions for the forward problem of EEG or MEG source localization. NFT uses some 

third party tools and libraries for segmentation and mesh generation: ASC for 

triangulation of 3D volumes, Qslim for mesh coarsening and Matitk - MATLAB 

interface to the ITK image processing toolkit. Source code of NFT is available at 

http://sccn.ucsd.edu/nft/install.html. 

Another tool called BrainVISA offers several features such as: Workflows and 

pipelines, Graphical user interface, Visualization, Massive computation facilities, 

Toolboxes (Cointepas et al., 2001; Geffroy et al., 2011). Application field of BrainVISA 

is extremely wide, because virtually any software can be integrated with this software 

tool (Riviere et al., 2003). It is developed by a French federative research institute: IFR 

49. It is an open-source software written in Python script language and can be 

downloaded from: http://brainvisa.info/download.html. 

BrainSuite is a collection of image analysis tools designed to process MRI of the 

human head. It is free but not open source. It can extract cortical surface mesh models 

from the MRI. It provides tools for registering these surfaces to a labelled atlas, for 

processing diffusion imaging data, for visualization of these data, and for interactive 

mapping of regional connectivity. BrainSuite is collaboratively developed by 

Ahmanson-Lovelace Brain Mapping Center at University of California, Los Angeles 

and Biomedical Imaging Group at University of Southern California, Los Angeles. The 

latest version of BrainSuite is available for download from 

http://brainsuite.org/download/. 
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FreeSurfer Software Suite is an open source software suite for processing and 

analyzing human brain MRI images. Skull stripping, image registration, subcortical 

segmentation, cortical surface reconstruction, cortical segmentation, cortical thickness 

estimation, longitudinal processing, fMRI analysis, tractography, FreeView 

visualization GUI, etc. are the mentionable features of FreeSurfer. This software tool 

was developed at the Martinos Center for Biomedical Imaging by the Laboratory for 

Computational Neuroimaging. FreeSurfer executables are available for download from 

http://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall. 

2.5 Ictal EEG Source Imaging 

The process of estimating the epileptogenic zone by using an ESI technique and by 

analyzing the ictal EEG is known as ictal ESI. Very few studies (Assaf & Ebersole, 

1997, 1999; Beniczky et al., 2006; Boon et al., 2002; Ding, Worrell, Lagerlund, & He, 

2007; Holmes et al., 2010; Jung et al., 2009; Koessler et al., 2010; Kovac et al., 2014; 

Lantz et al., 1999; Lu, Yang, Worrell, Brinkmann, et al., 2012; Lu, Yang, Worrell, & 

He, 2012; Merlet & Gotman, 2001; Petros et al., 2017; Praveen et al., 2018; Yang et al., 

2011) evaluated the performance of ictal ESI. More than one-third of these reviewed 

techniques (Assaf & Ebersole, 1997, 1999; Jung et al., 2009; Lantz et al., 1999; Merlet 

& Gotman, 2001; Petros et al., 2017) used multilayer spherical head models whereas 

five other studies (Beniczky et al., 2006; Holmes et al., 2010; Kovac et al., 2014; 

Praveen et al., 2018; Yang et al., 2011) used template MRI based realistic head models 

for epileptogenic focus estimation. Such generalized head models have significant 

anatomical differences with their corresponding real heads. Therefore, from the surgical 

point of view, it is obvious that such strategies of ESI do not necessarily provide correct 

solutions. Only six (Boon et al., 2002; Ding et al., 2007; Koessler et al., 2010; Lu, 

Yang, Worrell, Brinkmann, et al., 2012; Lu, Yang, Worrell, & He, 2012; Petros et al., 

2017) out of sixteen articles on ictal ESI used patient specific realistic head models for 
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their studies. Since, sensitivity of ESI can be increased by using patient specific realistic 

head models (Brodbeck et al., 2011), further studies on ictal ESI are expected to use 

such realistic models. 

In comparison with extratemporal lobe epilepsy, ictal events in temporal lobe 

epilepsy are mostly examined in the ictal ESI studies. Thirteen (Assaf & Ebersole, 1997, 

1999; Beniczky et al., 2006; Boon et al., 2002; Ding et al., 2007; Holmes et al., 2010; 

Jung et al., 2009; Koessler et al., 2010; Lantz et al., 1999; Lu, Yang, Worrell, 

Brinkmann, et al., 2012; Lu, Yang, Worrell, & He, 2012; Merlet & Gotman, 2001; Yang 

et al., 2011) out of sixteen reviewed articles on ictal ESI have investigated the ictal 

events in temporal lobe epilepsy while ten (Boon et al., 2002; Ding et al., 2007; Holmes 

et al., 2010; Koessler et al., 2010; Lu, Yang, Worrell, Brinkmann, et al., 2012; Lu, 

Yang, Worrell, & He, 2012; Merlet & Gotman, 2001; Petros et al., 2017; Praveen et al., 

2018; Yang et al., 2011) of those sixteen articles have extended their investigations for 

extratemporal lobe epilepsy patients. One recent article (Kovac et al., 2014) on ictal ESI 

inspected the ictal events in frontal lobe epilepsy only. Since the presurgical evaluation 

in extratemporal lobe epilepsy is more complicated than that in temporal lobe epilepsy, 

more prospective studies on extratemporal epileptic source analysis are required. 

Kovac et al. (Kovac et al., 2014) conducted a recent study on ictal ESI which 

investigated whether ictal ESI, using low density EEG recording of eight patients, can 

provide better lateralization compared to the visual inspection. Use of template MRI 

based finite element head model has been mentioned as one of the major limitations of 

this work. Patient specific realistic head models were used in six ictal ESI studies (Boon 

et al., 2002; Ding et al., 2007; Koessler et al., 2010; Lu, Yang, Worrell, Brinkmann, et 

al., 2012; Lu, Yang, Worrell, & He, 2012; Petros et al., 2017) and most of these studies 

(Boon et al., 2002; Koessler et al., 2010; Lu, Yang, Worrell, Brinkmann, et al., 2012; 
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Lu, Yang, Worrell, & He, 2012; Petros et al., 2017) validated their ictal ESI results 

against stereoelectroencephalography (SEEG) and postsurgical outcomes. Although, 

SEEG can estimate the epileptic focus more precisely than visual analysis of scalp EEG, 

this invasive modality has several surgical constraints as well. Since ESI is a 

noninvasive modality for epileptic source localization, it is logical to compare its results 

with an equivalent modality such as SPECT. Ding et al. (Ding et al., 2007) analyzed 

seizures from five epilepsy patients and their ictal ESI results were consistent with 

either MRI lesions or SPECT scans. They proposed a novel but complicated method 

based upon a combination of the subspace source localization technique and the 

spectrum-based causal interaction estimation technique. Beniczky et al. (Beniczky et al., 

2006) used classical (non-ICA based) method for conducting ictal ESI study and 

validated the results against corresponding SPECT results. They also performed 

interictal ESI in the same group of patients as ictal ESI and presented there 

interrelations. Using template MRI based BEM model is the major limitation of their 

study. 

Although standard medical EEG systems use between 19 and 32 electrodes, high 

resolution EEG systems include up to 256 electrodes. The electrodes are positioned on 

the scalp according to a standardized placement system. For 21 electrodes, the original 

10-20 system (Jasper, 1958; Klem, Lüders, Jasper, & Elger, 1999) is employed whereas 

for higher numbers of electrodes, extensions of this system such as the 10-10 and the 

10-5 electrode systems are used (Chatrian, Lettich, & Nelson, 1985; Oostenveld & 

Praamstra, 2001). A study (Srinivasan, Tucker, & Murias, 1998) showed that, in order 

to sample the electric field properly from the head surface at least 100 electrodes are 

needed. Another study (Lantz, Grave de Peralta, et al., 2003) highlighted the importance 

of high density EEG for improving the source reconstruction accuracy. Despite all these 

advantages, high resolution EEG is less frequently used for the validation of the ESI 
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techniques. Only six (Holmes et al., 2010; Jung et al., 2009; Koessler et al., 2010; Lu, 

Yang, Worrell, & He, 2012; Petros et al., 2017; Yang et al., 2011) out of sixteen 

reviewed studies used high resolution EEG (above 32 channel) for ESI while the other 

studies used standard EEG for the purpose but without any customization of the ESI 

technique. In this context, customization of the ESI technique for standard EEG based 

source localization would be an added advantage, because standard EEG is mostly used 

for clinical evaluation. 

2.6 ICA Based Ictal EEG Source Imaging 

It has been mentioned earlier that only few studies (Assaf & Ebersole, 1997, 1999; 

Beniczky et al., 2006; Boon et al., 2002; Ding et al., 2007; Holmes et al., 2010; Iriarte et 

al., 2006; Jung et al., 2009; Koessler et al., 2010; Kovac et al., 2014; Lantz et al., 1999; 

Lu, Yang, Worrell, Brinkmann, et al., 2012; Lu, Yang, Worrell, & He, 2012; Merlet & 

Gotman, 2001; Nam, Yim, Han, Oh, & Lee, 2002; Petros et al., 2017; Praveen et al., 

2018; Yang et al., 2011) have used ictal EEG for cortical source estimation through ESI. 

Almost all of these studies, except two (Iriarte et al., 2006; Nam et al., 2002), used 

digital bandpass filters to improve the SNR by minimizing high frequency noises, DC 

linear trends, movement and muscle artifacts. Even though the effective uses of filters 

are well-verified, they are inadequate for noise elimination because of their inability to 

discriminate between artifact and brain waves (Iriarte et al., 2003; Nam et al., 2002). 

Averaging of the ictal activities is another commonly used technique for the 

improvement of SNR (Assaf & Ebersole, 1997, 1999; Beniczky et al., 2006; Habib et 

al., 2016; Kovac et al., 2014; Merlet & Gotman, 2001). Although commonly used, 

averaging of selected ictal events can eliminate valuable cortical information and thus 

can lead to inaccuracies in the ESI result (Chitoku et al., 2003). A variety of procedures 

were proposed to correct ocular artifacts but those are not very popular in ictal ESI 

studies due to their failure to deal with other noises. Rather than using these procedures, 
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sometimes visible artifacts are screened through visual inspection (Holmes et al., 2010) 

in addition to bandpass filters. Another well-known technique for signal and noise 

subspaces separation is the principal component analysis (PCA). None of the ictal ESI 

studies applies PCA because of its unrealistic assumption of orthogonality between 

neural activity and artifact (Delorme & Makeig, 2004; Romero et al., 2008). 

Independent component analysis (ICA) is comparatively a more powerful statistical 

technique that can decompose a mixture of signals into a set of statistically independent 

components. In the context of EEG signals, ICA can decompose each set of EEG into a 

series of spatially fixed and temporally independent components (Yang et al., 2011). 

The ICA-based ictal ESI studies (Iriarte et al., 2006; Jung et al., 2009; Leal, Dias, & 

Vieira, 2006; Lu, Yang, Worrell, Brinkmann, et al., 2012; Nam et al., 2002; Praveen et 

al., 2018; Yang et al., 2011) used ICA for EEG denoising and thus extracted the EEG 

signals of interest. Independent components from extracerebral origin (e.g. muscle 

artifacts, eye movements, and power line noise, etc.) were removed for denoising 

(McMenamin et al., 2010), whereas the components that display ictal nature (i.e. the 

ictal components) were extracted for epileptogenic zone localization. Proper 

identification of these ictal components is the major challenge for ICA-based ictal ESI 

techniques. Iriarte et al. (2006) depended only on visual inspection of the component 

time-courses and their corresponding reconstructed EEGs for selecting the ictal 

component(s). In addition to visual inspection, Nam et al. (2002) reviewed 

autocorrelogram for ictal component selection. They also conducted a quantitative 

analysis and used power spectral density (PSD) for ictal component selection. 

Components having higher proportion of power in the theta-band (exactly 2-10 Hz) 

were selected for source estimation. Jung et al. (2009) excluded the ICs of extracerebral 

origin by visually inspecting activation spectra (i.e. PSD) and scalp voltage topography. 

They also excluded the ICs with a residual variance of more than 20% before selecting 

Univ
ers

ity
 of

 M
ala

ya



35 

the ictal components through visual inspection. Three other ICA-based ictal ESI studies 

(Leal et al., 2006; Lu, Yang, Worrell, Brinkmann, et al., 2012; Yang et al., 2011) 

utilized time-frequency representation (TFR) in addition to the above mentioned tools 

and techniques for selecting the ictal components. They also used bootstrap statistical 

method and surrogate data, with further assistance of visual inspection, to evaluate the 

significance of the spectral changes in a TFR or to assess the correlation between two 

different TFRs. 

The above review indicates that the existing ictal component selection techniques are 

highly dependent on the visual inspection and are therefore susceptible to 

experimenter’s judgment or bias. In this context, the aim of this study was to develop a 

quantitative technique to select the best ictal component (BIC) for EEG source imaging 

with potential application in presurgical evaluation of refractory focal epilepsy. A 

recursive approach, using a unique quantitative feature of ictal EEG decomposition, was 

proposed in this study and was named as the recursive ICA-decomposition for ictal 

component selection (RIDICS) technique. The performance of the RIDICS technique 

was compared with that of the other two quantitative techniques, namely PSD-based 

technique and TFR-based technique. All the techniques were implemented on both 

simulated and real ictal EEG data for validation. The results of simulation-study were 

validated using the known location of a dipole source, while the results of real-data-

analysis were validated by using the known cortical sites of successful clinical surgeries 

of focal epilepsy patients. 

2.7 Summary 

Epilepsy is one of the most common neurological disorders and focal epilepsy is the 

most common form of adult epilepsy. EEG is widely used for the presurgical evaluation 

of refractory focal epilepsy through identifying the epileptogenic zone but ESI is 
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comparatively a new computational technique for the precise localization of that cortical 

zone. Researchers started working for finding the relation between the source of neural 

activities and its diagnostic potentials before recording the EEG for the first time 

(Helmholtz, 1853), but the application of those research become practical through ESI 

in the past two decades (Kaiboriboon et al., 2012; Michel & Murray, 2012). 

ESI is a potential tool for localizing the epileptogenic zone by analyzing scalp EEG 

recorded during both ictal and interictal activities. Ictal EEG is believed to be more 

reliable than interictal EEG in localizing the epileptogenic focus, but comparatively 

difficult to analyze by using ESI because of the low Signal to Noise Ratio (SNR), 

undetectable low strength of ictal events before being spread considerably, difficulties 

of recording reliable seizure data, and lack of efficient ESI techniques. Therefore there 

have been very few studies that use ictal EEG for cortical source imaging and the ESI 

techniques employed are not common. Moreover, the accuracy of an ESI technique 

improves with the use of high resolution EEG (i.e. a high total number of electrodes 

over the region of interest), but the standard medical EEG systems comprise between 19 

and 32 electrodes. In this context, developing an improved ictal ESI technique, with 

adequate optimization for low resolution EEG input, for the noninvasive presurgical 

evaluation of refractory focal epilepsy is an interesting and challenging research 

problem. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This chapter describes the materials and methods required for developing a new 

ICA-based ictal ESI technique for the presurgical evaluation of refractory focal epilepsy 

patients and with the use of standard low resolution medical EEG data. The goal of this 

study was achieved in few stages. The overall strategy is outlined here with the help of a 

workflow diagram that highlights the major steps required for designing, implementing 

and validating the proposed RIDICS technique. Each step is discussed in detail later in 

this chapter. It also includes the mathematical formulations required for the 

implementation of the RIDICS technique. 

3.2 Outline of the Strategy 

Microscopic neuronal ionic current is responsible for the generation of scalp EEG 

signals and identifying the site of origin of such current source is the common goal of 

all the ESI techniques. The way of achieving this goal is not straightforward, because it 

requires the implementation of a number of independent mathematical algorithms as 

shown in Figure 2.4. Improvement in any of these algorithms concurrently creates 

positive-effect on the overall performance of the ESI technique. A threefold approach 

was taken to achieve a better overall performance with the RIDICS technique. Firstly, 

the subject-specific realistic head models and an appropriate head model generation tool 

were used in the Head Model generation step (see Figure 2.4). The software tool was 

selected through a comparative evaluation of five open-source software solutions that 

could generate realistic head models from the MRI images. Secondly, high performance 

inverse model was used in the Inverse Solution step (see Figure 2.4) of the RIDICS 

technique. The clinical utility of non-ICA based ESI technique and the advantages of 

ictal ESI over interictal ESI were assessed by the use of open-source software tools, 

patient-specific realistic forward models and three different linear distributed inverse 
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models. The best performing inverse model was used in the RIDICS technique. Finally, 

and most importantly, a new recursive ICA-decomposition technique was introduced in 

the proposed ESI solution for a substantial improvement in the Functional Data 

Preprocessing step (see Figure 2.4). These key steps of the methodology are illustrated 

through a workflow diagram as shown in Figure 3.1 and are described in the following 

sections. 

3.3 Primary Investigation on Various Aspects of Neurological Disorders 

Various aspects of the neurological disorders, which could be diagnosed and 

analyzed with the ESI, were explored at the beginning of this study. Although priority  

 

Figure 3.1: Workflow diagram that shows the major steps in developing the 

improved ESI technique. 

Development of the RIDICS Technique 

Software tool selection for realistic head model generation 

Implementation of non-ICA based ictal ESI technique for 

clinical utility evaluation and inverse model selection 

Design and implementation of a new ictal ESI technique 

with a unique quantitative feature of decomposed ictal EEG 

Validation of the proposed ictal ESI technique by using both 

simulated and real ictal EEG data 

Investigation of the effects of noise on various features used 

to select the ictal component from decomposed ictal EEG 

Objective 1 

Objective 2 

Objective 3 
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was given to Epilepsy, some other neurological disorders (such as Dementia and 

Alzheimer’s disease) were investigated as well. With various disease specific 

physiological aspects some common aspects are also found and fall is one of them. 

Many paroxysmal and acute neurological diseases lead to fall since disturbances of 

stance and gait are frequent symptoms in neurological patients (Stolze et al., 2004). 

Individuals with epilepsy fall during seizure events due to loss of consciousness (Lawn, 

Bamlet, Radhakrishnan, O’Brien, & So, 2004), while those with dementia are two to 

three times more likely to fall than individuals without cognitive impairment (Elliott, 

Painter, & Hudson, 2009). Since the prevalence of falls among neurological in-patients 

is very high, facts of falls have been further investigated and the findings were 

summarized in a review article (Habib, Mohktar, et al., 2014). 

3.4 Software Tool Selection for Realistic Head Model Generation 

Open-source software tools are useful due to their flexibility to modify according to 

the actual needs. The usability and practicality of five widely used software tools for 

head MRI segmentation and surface generation were investigated. Their significant 

characteristics from normal user’s perspective were compared (Habib, Ibrahim, 

Mohktar, Lim, & Kamaruzzaman, 2014) for selecting the appropriate tool for this study. 

The selected software packages investigated were: FieldTrip, NFT, BrainVISA, 

BrainSuite, and FreeSurfer. These software tools were selected because they were open-

source and/or free and ran on Windows operating system or Windows based virtual 

platform (VirtualBox). Surface generation techniques and underlying numerical 

methods were also considered. Common numerical methods for developing realistic 

head models were Boundary Element Method (BEM), Finite Element Method (FEM), 

and Finite Difference Method (FDM) (Schimpf, Haueisen, Ramon, & Nowak, 1998). 

FEM and FDM provide more realistic models but consume more computation time and 

memory. Therefore the implementation of FEM and FDM toolboxes are mostly in 
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experimental level. In this context the software tools that could generate BEM surfaces 

or meshes of the segmented MRI regions were selected for this comparison. 

3.4.1 Dataset 

T1 weighted MRI scans of five different subjects (3 females and 2 males and aged 

between 20 and 40) were used for comparing the performances of the selected software 

tools. These MRI scans were obtained from website of Neuroimaging Informatics Tools 

and Resources Clearinghouse Image Repository (NITRC-IR) (http://www.nitrc.org). All 

datasets were anonymous, de-identified and with no protected health information 

included. Other acquisition parameters were as follows: Field Strength - 3T and Voxel 

Resolution (mm) - 1.0 x 1.0 x 1.0. File format of all the MRI scans was gz compressed 

NIFTI-1 image (*.nii.gz). 

3.4.2 Comparison Based on Stated Features 

Published articles and official webpages of the selected software tools declared 

various features of those tools.Various features of the selected software tools are listed 

in their official webpages and also in the relevant published articles. Some of those 

features that are important for general users are compared. System requirement is an 

important feature that is needed before starting or even before installing a software tool. 

The selected tools are compared based on this feature. The MRI scans can come up with 

various data formats and users should know the supported input and output file formats. 

Therefore, those file formats of the selected tools are also compared. 

3.4.3 Comparison Based on Real Data Analysis 

FieldTrip, NFT and BrainSuite were installed and operated properly under Windows 

8.1 operating system (OS). FreeSurfer needed ORACLE VM VirtualBox support, with 

guest OS Xubuntu 12.04, for running on the same machine. Processor speed and system 

memory of this machine were 2.40GHz (Intel Core i7) and 16GB respectively. Since 

Univ
ers

ity
 of

 M
ala

ya



41 

BrainVISA did not run properly on Windows 8.1, it was installed in a different 

computer having Windows XP platform. That second machine had 1.80GHz Intel Core 

2 Duo processor and 2GB system memory. All of the five selected software tools were 

used for generating BEM meshes/surfaces from each of the five MRI datasets. 

3.5 Evaluation of the Clinical Utility of Ictal ESI Using Open-Source Tools 

This step evaluates the usefulness of ictal ESI as a diagnostic modality for localizing 

the epileptogenic focus in patients with refractory focal epilepsy, especially 

extratemporal lobe epilepsy. It also examines the reliability of using open-source 

software for such sophisticated diagnosis. Both ictal and interictal ESI were performed 

by using low resolution EEG data, commonly used ESI techniques (Assaf & Ebersole, 

1997, 1999; Beniczky et al., 2006; Holmes et al., 2010; Koessler et al., 2010; Kovac et 

al., 2014; Merlet & Gotman, 2001), patient specific realistic BEM head models and 

three different inverse models namely wMNE, dSPM and sLORETA. The results 

obtained are validated against MRI lesions and ictal SPECT. Then the performance of 

ictal ESI is compared with that of interictal ESI. The effects of three different inverse 

modelling algorithms on ictal ESI were also investigated.  

3.5.1 Patients 

This clinical evaluation was conducted with the use of anonymized retrospective 

data, and the protocols were approved by the University of Malaya Research Ethics 

Committee (UMREC), Malaysia. Fifteen patients, who suffered from pharmacoresistant 

focal epilepsy and underwent pre-surgical evaluation by means of clinical semiology, 

MRI, ictal SPECT and long-term video-EEG monitoring (both ictal and interictal), were 

selected primarily from the database of the University of Malaya Medical Centre. Eight 

patients whose ictal SPECTs were found concordant with the clinical semiology were 

included in this evaluation study. The patients’ demographics and clinical characteris- 
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Table 3.1: Demographics and Clinical Characteristics. 

No. Gender 

Age 

at 

Onset 

Age at 

evaluation 

Histopathology 

(based on 

MRI/HPE) 

Surgical 

Resection Type of surgery 

Engel 

Class 

1 F 15 28 FCD Yes Postcentral 

cortectomy 

II 

2 M 13 25 FCD Yes L parieto occipital 

cortectomy 

I 

3 F 12 18 FCD No - N/A 

4 M 14 20 FCD Yes R occipital 

cortectomy 

I 

5 M 13 28 FCD Yes L middle 

temporal 

cortectomy 

I 

6 M 2 26 Undetermined No - N/A 

7 M 12 58 HS Yes R selective 

amygdalo- 

hippocampectomy 

I 

8 M 15 48 HS Yes L selective 

amygdalo-

hippocampectomy 

I 

Engel Class I indicates seizure free after surgery; Engel Class II indicates a decrease 

in seizures of more than 80% after resection. 

MRI, magnetic resonance imaging; HPE, histopathologic examination; F, female; 

FCD, focal cortical dysplasia; M, male, L, left; N/A, not available; R, right; HS, 

hippocampal sclerosis. 

-tics were summarized in Table 3.1. Five of these 8 patients had extratemporal lobe 

epilepsy, whereas the 3 patients, namely patient 5, patient 7 and patient 8, had temporal 

lobe epilepsy. 

3.5.2 Anatomical Data Acquisition 

Anatomical details of every patient’s head were obtained from their corresponding 

MRI scans. Those details were used for presurgical evaluation as well as for generating 

patient-specific head models for ESI analysis. All patients’ structural MRI scans were 

performed with a Signa HDxt 3.0T scanner (General Electric Healthcare, Wauwatosa, 

Wisconsin, USA). Three-dimensional, coronal T1-weighted fast spoiled gradient-

recalled images were acquired with the following imaging parameters: slice thickness, 

1.4 mm; field of view, 350 mm; echo time, 1.8 milliseconds; and repetition time, 6.8 

milliseconds. Axial and sagittal images were reconstructed for review. In six patients, 
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the structural MRI showed a focal abnormality indicating an epileptogenic lesion; the 

other 2 patients (patient 4 and patient 6) had normal MRI findings. 

3.5.3 Functional Data Acquisition 

The functional states of patients’ brains were recorded through long-term video-

EEG. Recording was performed on all patients with standard clinical EEG setups 

according to the international 10–20 system with additional 2 electrodes at T1 and T2. 

All the recordings were captured with NicoletOne EEG/LTM system (Natus Medical 

Inc., Pleasanton, California, USA). Electrode impedances were kept below 10 kΩ, and 

sampling rate was set to 512 Hz (with one exception: 256 Hz for patient 6). The long-

term EEG recordings captured between 2 and 8 seizures across all patients. 

3.5.4 Nuclear Image Acquisition 

Regional cerebral blood flow was measured by SPECT by the use of a brain-

dedicated gamma camera, BrightView XCT (Philips Electronics N.V., Best, The 

Netherlands), equipped with low-energy, high-resolution collimators. Imaging was 

acquired within 60 minutes of the intravenous radiopharmaceutical administration of 25 

mCi of 99mTc-HMPAO (Ceretec; GE Healthcare, Buckinghamshire, UK). An ictal 

scan was performed by injecting the radiotracer within 30 seconds from the onset of 

seizure. Datasets were acquired in a 128 × 128 byte matrix (Q matrix) over 360º, with 

120 views obtained at 3º intervals for 40 seconds per view (energy setting of 140 keV). 

Images were reconstructed with the Astonish advanced reconstruction algorithm with an 

iterative 3D-ordered subset expectation maximization algorithm and built-in corrections 

for resolution recovery, scatter correction, and attenuation correction. Images of SPECT 

were co-registered to MRI fast spoiled gradient-recalled images (when available). 

Reconstructed transversal, sagittal, and coronal images were visually evaluated blinded 

to the results of EEG findings. The regions of ictal scans that showed increased 
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perfusion with respect to other brain regions indicated the lateralization or localization 

of a primary epileptic focus. 

3.5.5 Electroencephalographic Source Analysis 

3.5.5.1 Data Pre-processing 

Automated quantitative analysis techniques, such as ESI, are influenced negatively 

by the signal intensity inhomogeneity or bias field effect in MRI. Such inhomogeneity 

of all the MRI scans was corrected with the Freesurfer image analysis suite. Moreover 

the software was also used for obtaining uniform voxel size (1mm × 1mm × 1mm) and 

Right Anterior Superior (RAS) orientation by revising the raw MRI scans. 

One of the major difficulties of source modeling through surface ictal EEG is the 

inevitable presence of various artifacts. Because most of the ictal rhythmic events are of 

3-29Hz (Gotman, 1982; Jung et al., 2009), a narrow band-pass filter of 1 Hz to 30 Hz 

was used to minimize these obscuring artifacts and thus improve the SNR. No such 

extra band-pass filter was used for preprocessing the interictal EEG records because the 

epochs having significant artifacts were excluded from the interictal analysis. With the 

help of power density spectrum and visual inspection, individual channels (T6 for 

patient 2, Fp1 and Fp2 for patient 3, C4 for patient 4, and P4 for patient 8) having 

excessive artifacts were identified and then eliminated from both ictal and interictal 

source analysis. 

3.5.5.2 Epoching and Averaging 

The time points of interictal spikes and ictal onset rhythms or spikes, as classified by 

Foldvary et al. (2001), were determined by an experienced epileptologist through visual 

inspection of scalp-recorded video-EEGs and their filtered outputs respectively. At least 

10 interictal spikes (<70 milliseconds) or sharp waves (<200 milliseconds) that were 

isolated (i.e. no similar discharge within ±500 milliseconds), were selected and marked 
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for each patient’s interictal analysis. Epochs of ±100 milliseconds (Kaiboriboon et al., 

2012; Koessler et al., 2010) around those marked time points were used for interictal 

analysis. Ictal epochs of each patient were acquired from the EEG segment that was 

recorded during the seizure, had evolution of ictal rhythms, and in which the radioactive 

tracer for SPECT was injected. The channel with ictal rhythms (or spikes) and 

maximum power density around the rhythm frequencies was considered as the 

prominent channel. At least 10 non-overlapping 200-millisecond epochs were included 

in each patient’s ictal analysis so that the center time point of each epoch holds the 

negative maximum peak of an ictal event of the prominent channel. Figure 3.2a 

illustrates the ictal EEG of patient 2. The EEG segment within the green box is the 

region of interest. Ictal events were selected from this region. Power spectrum density 

of each channel, measured throughout the region of interest, is shown in Figure 3.2b. 

Ictal rhythm frequency within the region of interest was around 6 Hz and the channel T5 

showed the greatest power at 6 Hz; therefore, T5 was considered as the prominent 

channel for this patient. Figure 3.2c is the magnified view of the region of interest. The 

vertical lines represent the center time points of the selected ictal events. For the 

improvement of the SNR, averaging of every selected group of epochs was performed 

separately (i.e., one average ictal epoch and one average interictal epoch for each 

patient). 

3.5.5.3 Head Modelling 

Estimation and imaging of the sources of brain electrical activities comprises the so-

called forward modeling and inverse modeling. A known model of head is required for 

forward modeling. Patient-specific, realistic head models, namely 3-layer BEM head 

models, were used in this study (Beniczky et al., 2006; Koessler et al., 2010). Necessary 

segmentation from bias field-corrected MRI scans and thus extraction of scalp, outer 

skull, inner skull, gray matter and white matter surfaces were performed with BrainSuite 
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Figure 3.2: Ictal epochs acquisition. (a) Ictal EEG of patient 2, (b) Power spectrum 

density in the region of interest, (c) EEG segment of interest with centre time 

points of selected epochs. The channel highlighted in red is the prominent channel. 

14a (Shattuck & Leahy, 2002). The obtained surfaces of scalp, outer skull, and inner 

skull were further processed by Brainstorm 3.2 (Tadel, Baillet, Mosher, Pantazis, & 

Leahy, 2011) to generate nonintersecting BEM meshes with 1922 vertices per layer. 

Known dipole sources were located in two different source spaces (surface and 

volumetric) separately. The surface source space considered each vertex of the cortex 

surface as a dipole source location. On the contrary the volumetric source space used 

dipole grids that sampled the full brain volume and considered each grid point as a 

dipole source location. Standard geometrical positions of electrodes, available in 
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Brainstorm software, were used after manual inspections and necessary alterations 

according to the surface of each patient’s scalp. On the basis of these geometrical 

descriptions of BEM meshes, source spaces, and the channel positions, two separate 

forward models (with surface source space and volumetric source space) were 

computed for each patient with the help of OpenMEEG software (Gramfort, 

Papadopoulo, Olivi, & Clerc, 2010). 

3.5.5.4 Source Localization 

Estimation of the unknown sources corresponding to the measured scalp EEG is 

referred to as inverse modeling. Different inverse modeling approaches were proposed 

by the scholars, and all of those approaches have some relative merits and drawbacks 

(Kaiboriboon et al., 2012). Three linear distributed inverse models, known as wMNE, 

dSPM, and sLORETA were used in this study. Brainstorm implementations of these 

algorithms were used without any dipole orientation constraint. Source analysis was 

performed on the average maps of both ictal rhythms (Foldvary et al., 2001) and 

interictal spikes or sharp waves. The time point at which the source analysis was 

performed was termed as examination time point (t0). For ictal and interictal analysis, t0 

represented the time point at which the peak and the 50% rising phase (Ray, Tao, 

Hawes-Ebersole, & Ebersole, 2007) of the global field power (GFP) occur, respectively. 

Figure 3.3 illustrates the examination time points on the average maps of selected ictal 

(Figure 3.3a) and interictal (Figure 3.3b) events of patient 1. Ictal events can be 

oscillatory-type and spike-type as well (Foldvary et al., 2001). The ictal event of Figure 

3.3a is a spike-type ictal event that was selected for the better visualization of various 

time points. 
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Figure 3.3: Average maps of selected ictal (a) and interictal (b) EEG events of 

patient 1. Highlighted channel holds the highest amplitude and the time duration 

from t1 to t2 is considered as the event duration. Estimated source at t0 has been 

used for final result analysis while stable results have been obtained for all the time 

points between t'1 and t'2. 

3.5.5.5 Stability of Estimated ESI Results 

The cortical source of EEG can be estimated for every single time point. An obtained 

source on a single time point may not be considered as the true source unless the results 

remain stable for certain duration, because unstable localization can appear in the case 

of inadequate SNR. Therefore, it is expected that the examination time point and its 

adjacent time points would estimate the sources in the same or nearby cortical regions. 

The durations of stable results were measured around the examination time point. 

In the average maps of Figure 3.3 the highlighted signals hold the highest amplitude. 

The time points, t1 and t2, of every average map represent two adjacent local minima of 

the highlighted signal (around t0). The time duration from t1 to t2 was considered as the 

event duration. Sources were estimated for every time points starting from t0 until t1' and 

t2' (where t1' ≥ t1 and t2' ≤ t2) so that all the estimated sources remained in the same lobe. 

In addition, the time points next to t1' and t2' estimated the source in different lobe. The 

time duration from t1' to t2' was considered as the duration of stable results. 
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3.5.5.6 Performance Measure 

All the estimated ESI foci were compared with the corresponding SPECT foci. ESI 

results were considered to be concordant with SPECT results if both ESI focus and 

SPECT focus were located in the same lobe. Concordance rate was measured as the 

percentage of concordant results in the total number of considered results. If an 

estimated ESI focus and the corresponding SPECT focus were found in the same 

hemisphere, then the estimated result was considered as lateralized. 

3.6 Investigation of the Effects of Noise 

Ictal EEG measures cortical seizure discharges along with various artifacts, external 

noises and other background brain oscillations. These signals can be separated from 

each other using ICA that decomposes ictal EEG into a series of spatially fixed and 

temporally independent components. The unwanted components are rejected while the 

ictal components are extracted for EEG source estimation. The ICs for muscle artifacts, 

eye movement artifacts and line noise have visually noticeable characteristics (T.-P. 

Jung et al., 2000; Urrestarazu et al., 2004) and comparatively easy to identify, but the 

identification of other noises and ictal components is not that straightforward. The scalp 

voltage topography, activity power spectra and dipole residual variances are the features 

of the decomposed ICs and these features are usually used to categorize the ICs. The 

aim of this part of the study was to examine the effects of noise on those three features. 

Simulated ictal EEG with eleven different levels of noises were used for the purpose. 

3.6.1 Ictal EEG Generation 

Ictal EEG data were generated using a fixed dipole in a four-shell spherical head 

model (Berg & Scherg, 1994) with radius of 85 mm. A dipole source of 80 nAm was 

placed in the mesial temporal lobe as shown in Figure 3.4a. A sinusoidal waveform of 

5.7 Hz (Figure 3.4b), which typically arise in patients with mesial temporal lobe epilep- 
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Figure 3.4: (a) Three different views of dipole location and orientation. (b) 

Source waveform. (c) 2D topographic map. 

-sy (De Vos et al., 2007), was used as the source waveform. Thirty three electrodes 

were used according to 10-10 system. Topographic map of scalp potential distribution, 

resulting from the dipole source, is illustrated in Figure 3.4c. Scalp potentials on each 

electrode were obtained by multiplying the source wave by an amplification factor 

which was computed by solving the forward problem for the dipole source. BESA 

Simulator and its default values for conductivities and radii of scalp, skull, CSF and 

brain were used for EEG generation. The simulated EEG data (Figure 3.5a) contained 2 

seconds of background EEG followed by 3 seconds of simulated ictal activities. Since 

no other brain activity or noise was added, initial 2 seconds of EEG were flat. Two 

seconds of background activities were included because the existing studies (Jung et al., 

2009; Lu, Yang, Worrell, Brinkmann, et al., 2012; Yang et al., 2011) on ICA based ictal 

ESI analyzed both pre and post ictal onset data. 
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Figure 3.5: (a) Noise free simulated EEG (N0). (b) Simulated EEG (N10) with 

coherent noise. 
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The obtained EEG was considered noise free and denoted by N0. The time courses of 

scalp potentials were stored with sample frequency of 250 Hz. Ten more sets of EEG 

data were generated in a similar fashion with same dipole source but with ten different 

levels of coherent noises. The added noises were coherent in the sense that there was 

quite a high correlation between signal amplitudes from electrodes that were close 

together. Root mean square values of added noises were 0.1 µV, 0.2 µV, 0.3 µV, 0.4 

µV, 0.5 µV, 0.6 µV, 0.7 µV, 0.8 µV, 0.9 µV and 1 µV while the generated EEG signals 

were termed as N1, N2, N3, N4, N5, N6, N7, N8, N9 and N10 respectively. The last 

data-set (N10), that contains the highest level of noise, is shown in Figure 3.5b. 

3.6.2 Decomposition of Ictal EEG 

Each set of simulated ictal EEG was decomposed into 33 temporally independent, 

but spatially fixed, components. Decomposition was performed by using the open 

source soft-ware tool EEGLAB Version 13.4.3b (Delorme & Makeig, 2004) and its 

runica algorithm, which was implemented based on the logistic info-max algorithm of 

Bell and Sejnowski (1995). 

3.6.3 Dipole Source Localization of Independent Components 

A single equivalent current dipole source and the corresponding residual variance 

were estimated for each of the ICs by using the DIPFIT function in EEGLAB. A similar 

head model, as discussed in section 3.6.1, was used for source estimation. The dipoles 

were plotted on an average MRI template after accomplishing the transposition of 

dipole locations from the spherical head model to the MRI template. The estimated 

dipole locations, obtained for the ICs of N0 and N10, are illustrated in Figure 3.6. Since 

N0 was noise free, its corresponding dipoles overlapped with each other and their 

residual variances were negligible. 
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Figure 3.6: (a) Equivalent dipole sources for the ICs of noise free EEG set N0. 

(b) Equivalent dipole sources for the ICs of N10 having 1 µV of noise. 

3.7 Design and Implementation of the RIDICS Technique 

At first a unique quantitative feature of decomposed ictal EEG was derived in this 

section with necessary mathematical formulations. The RIDICS technique used that 

new feature and it helped to better identify the ictal components. Detailed description of 

the RIDICS technique is included in this section. Finally, the proposed technique was 

validated using both simulated and real ictal EEG data. Validation techniques are 

explained in this section. 

3.7.1 A Quantitative Feature of Ictal EEG Decomposition 

The RIDICS technique, aims to find the BIC that has the best correspondence with 

the rhythmic ictal discharges of the epileptogenic cortical zone. In order to do that, the 

RIDICS technique uses a unique quantitative feature of ictal EEG decomposition in a 

number of recursion steps. The background and the mathematical formulations of the 

quantitative feature are presented below. 

An ICA algorithm can decompose the recorded ictal EEG signals (X) into a series of 

IC time courses (U) as follows: 

                                                                                            (   ) 
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where A is the “mixing matrix” whose columns contain the relative weights with which 

the corresponding ICs are projected to the EEG electrodes. If n-electrode EEG records 

(each having T samples) are considered as the mixtures of m independent components, 

then X, A and U are the n×T, n×m and m×T matrices respectively. The portion    of 

the ictal record   is the back-projected EEG for the p
th

 IC and   is the sum of all such 

back-projected EEGs: 

  ∑   
 

   
                                                                            (   ) 

According to Equation 3.1 the matrix    is the product of    (the p
th

 column of A) and 

   (the p
th

 row of U) i.e. 

                                                                                         (   ) 

The above Equation 3.3 implies that the EEG signal of the q
th

 electrode in    can be 

expressed as the product of the q
th

 element of ap and the IC time course up: 

  
                                                                                        (   ) 

The strength of the ictal rhythm frequency f in   
 
 can be estimated, using discrete 

Fourier transform, as follows: 

    (  
 )  ∑   (   )

 
   

   
                                             (   ) 

where     (  
 ) represents the (k+1)

th
 discrete value that holds the strength of f in the 

signal   
 
. The symbols k and t are the indices of the discrete values in frequency 

domain and time domain respectively and both vary from 0 to T-1. If the sampling 

frequency of the signal be   , then k can be obtained as        . Moreover, i 
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represents the imaginary unit (√  ). Substituting Equation 3.4 into 3.5 yields the 

following expression: 

    (  
 )     ∑   (   )

   

   
          

     (  
 )         (  )                                                  (   ) 

If     ( 
 ) be the column matrix that holds the discrete values of     (  

 ) for all the 

electrodes (         ) in   , then according to Equation 3.3 and 3.6: 

    ( 
 )        (  )                                                       (   ) 

Similarly, the strength of f in all the electrodes in   can be represented by     ( ). 

Since the Fourier transform is a linear transform,     ( ) can be expressed, on the 

basis of Equation 3.2, as follows: 

    ( )  ∑     ( 
 )

 

   
                                                  (   ) 

If the p
th

 independent component be the BIC, then    contain the highest amount of f-

frequency activities with respect to the other portions of  . If the strength of f is 

negligible in all the portions of  , other than   , then Equation 3.8 can be rewritten as: 

    ( )      ( 
 )                                                               (   ) 

Substituting Equation 3.7 into 3.9 implies: 

    ( )        (  )                                                       (    ) 

 Equation 3.9 and Equation 3.10 show that the strength of ictal rhythm in the 

BIC-projected EEG has the strongest correlation with that of the recorded ictal EEG. 
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This quantitative feature has been used in each recursion step of the RIDICS technique. 

The column matrices     ( ) and     ( 
 ) have been termed as input rhythm 

magnitude (Y) and back-projected rhythm magnitude (Y
p
) respectively for the ease of 

explanation. Moreover, the term component rhythm magnitude (yp) has been used for 

representing the discrete value     (  ). All the bold-face symbols including Y and Y
p
 

represent arrays while the normal font symbols represent single value. 

3.7.2 Recursive ICA Decomposition for Ictal Component Selection 

Ideally, the number of independent cortical sources of EEG is nearly unlimited, but 

practically a limited number of sources, which are large enough, are separated by the 

ICA decomposition. If the ictal source is not large enough with respect to the noise 

sources (all sources other than ictal sources), then ictal activities can be either summed 

into a single IC or distributed into more than one IC (Onton et al., 2006). The RIDICS 

technique intends to accumulate the majority (or all) of such distributed segments of an 

ictal component into a single IC by recursive decomposition with noise reduction in 

each recursion cycle. The major steps of the RIDICS technique are depicted in the 

simplified flowchart of Figure 3.7. 

The recursion base case starts with the EEG epoch that contains mostly (or totally) 

the post-onset EEG. Pre-onset EEG-inclusion is optional and if included, then the pre-

onset data-length needs to be at best one third of the total epoch-length. If necessary, 

multiple (but as few as possible) segments (with fewer artifacts) of pre-onset and post-

onset EEG data can be concatenated for obtaining the input EEG epoch. Initially the 

input EEG epoch passes through a wideband bandpass (1-45 Hz) filter that removes 

unwanted signals mostly originated from extracerebral origins. Before decomposing this 

filtered EEG epoch into ICs, the input rhythm magnitude Y is computed by using the 

fast Fourier transform. The electrode with the highest corresponding value in Y is identi- 
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Figure 3.7: Simplified flow chart of RIDICS technique. 
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-fied and defined as the most significant electrode (MSE). After that the ICA-

decomposition is performed. This step decomposes the input dataset into n number of 

components where the number of electrodes in the input EEG is also n. The next step 

computes the back-projected rhythm magnitude Y
p
 for all the components (p = 1,2, …, 

n) by using the Equation 3.6. The zero-lag cross-correlation (Z) between Y and each of 

Y
p
 matrices are estimated in the following step. The component with the highest Z value 

is identified as the tentative BIC at the succeeding step. 

This base case is repeated for all other recursion cycles. If there is no improvement in 

the Zmax value with respect to that of the previous recursion cycle, then the 

decomposition results are discarded, otherwise those are stored for further use. Both 

conditions lead to an IC elimination step that eliminates one unwanted IC from the 

stored improved-decomposition results. The MSE of this regenerated back-projected 

EEG is passed through a narrowband bandpass filter and the resultant-EEG is used as 

input for the next recursion cycle while not meeting the stopping criteria. The recursion 

continues until any of the following two conditions (stopping criteria) is met: (1) the 

Zmax value doesn’t increase for (n-1) consecutive recursion cycles, where n is the total 

number of components. (2) the value of Zmax exceeds the 75% of the autocorrelation 

value of Y. Whenever any stopping criterion meets, the last generated EEG dataset is 

discarded and the last stored decomposition results are retrieved. A set of back-

projected EEG, which is used for the epileptogenic zone estimation, is regenerated from 

the BIC. Finally, the cortical sources of the obtained EEG are estimated by using the 

sLORETA inverse model. Since the BIC is a temporally independent specially fixed 

independent component, the inverse solution gives a single cortical source for the whole 

duration of the BIC projected EEG. The RIDICS technique considers this cortical 

source as the epileptogenic zone. 
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In the IC elimination step, an unwanted IC is selected based on the Z values of the 

ICs. The IC with the lowest Z value is the first discardable component, while the IC 

with the next lowest Z value is the next discardable component and so on. The first 

discardable component is eliminated for every improving recursion cycle whereas the 

first to the r
th

 discardable components are eliminated for the r
th

 cycle of r consecutive 

deteriorating recursions (r = 1, 2, …, n-1). In the MSE filtration step, only the signal of 

MSE is filtered instead of conventional all channel filtration for improving the degraded 

rank of the regenerated dataset matrix. The bandwidth of the narrowband bandpass filter 

is chosen to be ~5Hz (f-2 Hz to f+2 Hz) around the ictal rhythm frequency f. The 

RIDICS technique was implemented in MATLAB R2013a (MathWorks, Inc., Natick, 

Massachusetts, USA). Two validations of this technique were carried out: the first for 

simulated ictal EEG datasets and the other for the real patients’ EEG datasets. 

3.7.3 Simulated Ictal-EEG Generation 

Simulated ictal EEG data were generated by using a fixed dipole in a four-shell 

spherical head model consisting of scalp, skull, CSF and brain (Berg & Scherg, 1994). 

Outer radii of these compartments were chosen to be 85, 79, 72, and 71 mm respectively 

while their conductivities were chosen to be 0.33, 0.0042, 1, and 0.33 mho/m 

respectively (MacKinnon, Verrier, & Tatton, 2000; Tenke & Kayser, 2015). A dipole 

source (Figure 3.8a) with 250 nAm moment and rhythmic sinusoidal 6 Hz ictal pattern 

(Figure 3.8b), which is common in medial temporal lobe epilepsy (De Vos et al., 2007; 

Nam et al., 2002), was placed in the right temporal lobe. In Cartesian coordinates, the 

exact location of the dipole was: x = 58.65, y = 16.575 and z = –3.91. Scalp potentials 

were computed at thirty three electrode-locations, arranged according to 10-10 system, 

by multiplying the source wave (of the dipole) with an amplification factor that was 

computed by solving the forward problem for the dipole source. The time courses of the 

scalp potentials were stored with sampling frequency of 500 Hz. 
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Figure 3.8: (a) Three different views of the location and orientation of the 

dipole. (b) Changes of MSE signals with the increase of added noises. (c) The SNRs 

(in decibel) of the MSE signals of the simulated EEG datasets. 

In case of n-electrode data at least k×n
2
 data points are needed to obtain reliable ICA 

decompositions, where k is the multiplication factor and the recommended value of k is 

20 (Groppe, Makeig, & Kutas, 2009; Onton et al., 2006). Therefore, 22,000 data points 

or 44s of EEG data were generated for reliable ICA analysis. Since, ictal ESI studies 

(Jung et al., 2009; Lu, Yang, Worrell, Brinkmann, et al., 2012; Yang et al., 2011) 

usually use both pre and post ictal onset EEG data, 12 seconds of background EEG 
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followed by 32 seconds of ictal activities were generated. This initial EEG-dataset E 

contains no noise therefore the pre-onset background activities were represented by zero 

potential. 

Fifty other sets of EEG were generated in a similar fashion with the same dipole source 

but with fifty different levels of coherent noises. The noise is coherent in the sense that 

there is quite a high correlation between signal amplitudes from electrodes that are close 

to each other. Root mean square (RMS) values of the added noises were varied from 1 

µV to 50 µV with a regular interval of 1 µV for generating the ictal EEG datasets E1, E2 

… and E50 respectively. Three seconds (1 second before onset and 2 seconds after 

onset) of EEG data on the most significant electrode (T8) of E is shown in Figure 3.8b. 

The corresponding ictal EEG from E10, E25 and E50 datasets along with their filtered (1 

to 11 Hz bandpass) waveforms are also included in Figure 3.8b for illustrating the 

effects of the added different levels of noises. All the signals of Figure 3.8b are in the 

same scale. Simulated EEG datasets were generated by using the BESA Simulator 

Version 1.1.0 (BESA GmbH, Germany). Since the simulator cannot produce more than 

2000 samples of ictal events without adding any interval, eight different epochs of ictal 

events were concatenated (Lu, Yang, Worrell, Brinkmann, et al., 2012; Yang et al., 

2011) for producing 32s of ictal activities. The SNR was calculated for the MSE of each 

generated ictal EEG dataset. The MSE of E was considered as the desired signal S for 

SNR calculation. The SNR of j
th

 dataset Ej was computed with the equation adopted 

from (Raz, Turetsky, & Fein, 1988). 

     
∑ ( ( ))  
   

∑ (  ( )   ( )) 
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where Sj is the MSE of Ej and j = 1, 2, …, 50. The data point           and the 

total data points T = 22,000 for all the simulated datasets. The SNR values, obtained for 

all the simulated datasets, are illustrated in Figure 3.8c. 

3.7.4 Validation Using Simulated Data 

Each of the 50 sets of simulated ictal EEG was decomposed into 33 independent 

components. The ICA decompositions were carried out by using an extension of the 

Infomax algorithm of Bell & Sejnowski (Bell & Sejnowski, 1995) as implemented in 

the runica function of the EEGLAB toolbox (Delorme & Makeig, 2004). One BIC for 

each dataset was individually identified by using RIDICS technique as well as by means 

of PSD-based and TFR-based techniques. All the Fourier transform operations of 

RIDICS technique were performed on the ictal activity portion (32s) of each EEG 

dataset. The PSD-based ictal component selection (PSDICS) technique was adopted 

from (Nam et al., 2002), where the IC that holds the highest proportion of power in 2-10 

Hz bandwidth (for 6Hz ictal rhythm) was considered as the BIC. The TFR-based ictal 

component selection (TFRICS) technique compares the TFR of each IC with the mean 

TFR, obtained from the EEG records of three significant electrodes. This technique was 

adopted from (Yang et al., 2011) where EEG data were passed through a 1–70 Hz band 

pass filter, and a surrogate method was used for quantifying the significance of the 

correlation between two TFRs. The ICs that exceed a statistical threshold (p-value) were 

considered as seizure components. This threshold value is not fixed and it also needs 

further assistance of visual inspection (Yang et al., 2011). Therefore, instead of using 

surrogate method, two-dimensional correlation (Rankine, Stevenson, Mesbah, & 

Boashash, 2005; Reyes, Charleston-Villalobos, Gonzalez-Camarena, & Aljama-

Corrales, 2008) has been used in this study to assess the similarity between two TFRs. 
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The performances of the three selected techniques (RIDICS, PSDICS, and TFRICS) 

were quantitatively evaluated against two references, namely the noiseless simulated 

ictal EEG dataset (E) and the original location of the current dipole (D) that produced 

the simulated ictal activities. The back-projected EEG datasets (EBIC1, EBIC2, … EBIC50) 

were regenerated from the BICs of the corresponding simulated datasets (E1, E2 … and 

E50 respectively). Each of those back-projected datasets was compared with E through 

their zero-lag cross-correlations. The BIC that produced higher zero-lag cross-

correlation with E was considered as the more accurate BIC. Moreover each selected 

BIC was modeled as an equivalent current dipole DBIC and the Euclidean distance 

between D and DBIC was computed. The BIC with shorter distance was considered as 

the better selection of BIC. The dipole estimations were conducted by using the 

DIPFIT2 plug-in of EEGLAB. The 4 shell spherical head model that was used for 

simulated-EEG generation was also used for dipole estimation. 

3.7.5 Patients and data acquisition 

This study was conducted with the use of anonymized retrospective data, and the 

study protocols were approved by the University of Malaya Research Ethics Committee 

(UMREC), Malaysia. Thirty-four patients with drug-resistant focal epilepsy who 

underwent presurgical evaluation including MRI brain and long-term video-EEG 

monitoring were selected primarily from the database of the University of Malaya 

Medical Centre. Eight patients who underwent surgical resections with Engel’s class-I 

surgical outcome were included in this study. The demographics and the diagnosis of 

the selected patients were summarized in Table 3.2. 

Long-term video-EEG recordings were performed with standard EEG setup of 21 

electrodes according to the international 10-20 system with additional 2 electrodes at T1 

and T2 using NicoletOne EEG/LTM system (Natus Medical Inc., Pleasanton, California 
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Table 3.2: Demographics and diagnosis results of the patients. 

No. Sex Age at Onset Age at Evaluation Diagnosis 

1 M 13 28 Left temporal cortical dysplasia 

2 M 12 28 Left MTS 

3 M 14 20 Right OLE (lesion negative) 

4 M 13 25 Left TLE (lesion negative) 

5 M 5 38 Right MTS with bilateral IEDs 

6 F 9 42 Left MTS 

7 M 12 43 Right MTS 

8 M 15 48 Left MTS 

 

-USA). Electrode impedances were kept below 10 kΩ, and sampling rate was set to 500 

Hz (250 Hz for patient 6 and patient 8). Seizures range. 1 - 4 were recorded in all 

patients. 

Anatomical details of every patient’s head were obtained from their corresponding 

MRI brain scans. Those details were used for generating patient-specific head models. 

Structural MRI scans were performed with a Signa HDxt 3.0T scanner (General Electric 

Healthcare, Wauwatosa, Wisconsin, USA). 

3.7.6 Validation Using Real Data 

An EEG epoch of at least 20×n
2
 data points was accumulated from each seizure of 

every patient for ICA decomposition. It consists of at most one third pre-onset EEG and 

at least two third post-onset EEG. Multiple segments of EEG, which contain relatively 

less eye-blink and movement artifacts, were concatenated for obtaining the EEG epoch. 

Ictal rhythm frequency f was identified from the post-onset portion of this epoch. Since, 

both frequency and cortical source location of ictal rhythm may change with time, 

careful selection of f is very important for the success of the RIDICS technique. In this 

study, f was selected through PSD analysis of a 2 to 12 second segment of the EEG 

epoch. Such a segment was selected from that portion of the EEG epoch where ictal 

rhythm started to become visible (i.e. close to the ictal onset), f remained almost 
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unchanged and no significant eye blink artifact existed. Three BICs for three selection 

techniques (RIDICS, PSDICS and TFRICS) were identified for each real dataset and by 

following the same procedure as discussed for simulation-based validation. Back-

projected EEG was regenerated for each of the selected BICs and the obtained EEG 

datasets were supposed to represent noise free ictal EEG. Those datasets were 

considered as the preprocessed data while estimating the EEG sources by following the 

steps as shown in Figure 2.4. 

The epileptogenic zone was estimated for each of those regenerated EEG datasets by 

following the procedure explained in (Habib et al., 2016). Subject specific realistic head 

models were generated from the corresponding MRI scans by following the procedure 

explained by Habib, Ibrahim, et al. (2014) and by using the BrainSuite software tool. 

The source model, channel locations and the forward solution techniques were 

accomplished according to the approach proposed by (Habib et al., 2016). The linear 

distributed inverse model sLORETA was used for inverse solution. Epoching and 

averaging were not necessary, because each EEG dataset was obtained from a single IC 

that was temporally independent and specially fixed. Therefore, estimated sources 

remained fixed with respect to time.  

All the estimated ESI foci were compared with their corresponding sites of cortical 

surgery. Each ESI result was considered to be concordant with the surgery site if both 

ESI focus and surgery site were located in the same lobe. Concordance rate was 

measured as the percentage of concordant results in the total number of considered 

results. If an estimated ESI focus and the corresponding surgery site were found in the 

same hemisphere, then the estimated result was considered as lateralized. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter presents the results obtained after accomplishing each of the steps 

discussed in the previous chapter. The results are organized according to the sequences 

of the steps. Firstly the comparison results of open-source software tools for head model 

generation are provided. Next the results obtained from the evaluation of clinical utility 

of an ictal ESI technique with the application of three different inverse solutions are 

discussed. Then the outcomes of investigating the effects of noise on the features of 

decomposed EEG are summarized. After that the validation results of the RIDICA 

technique are presented. Brief discussions on the results are also included accordingly. 

4.2 Comparison of Software Tools for Head Model Generation 

Comparative investigation of five selected software tools, for MRI segmentation and 

surface generation, were carried out (as explained in Section 3.4) based on their 

declared features and real data analysis. Investigation outcomes are presented below. 

4.2.1 Comparison Based on Stated Features 

Various features of the software tools were mentioned in their official website and 

some relevant published articles. Some of those features that are important for general 

users are compared in this subsection. One of the important features that are needed 

before working with a software tool is its system requirement. Table 4.1 lists the system 

requirements of the selected software tools. It shows that all the tools can run on both 

Windows and Linux OS, but MATLAB should be there for running FieldTrip and NFT. 

The BrainVISA tool was not tested on the latest versions of Windows. Practically, it 

was found malfunctioning on Windows 8.1 platform. Moreover NFT and FreeSurfer 

recommended highest amount of system memory for proper operation. 
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Table 4.1: System requirements of the selected tools. 

Software 

Tool 

Minimum System Requirement 

Operating System (OS) System Memory 

FieldTrip Run under MATLAB platform that is 

running under any OS. 

Not specified. Depends 

on size of data. 

NFT Not specified. Depends on size of data. At least 2 GB (4-8 GB 

recommended) 

BrainVISA Tested and found functional on Linux 

(Ubuntu 10.04, Fedora 4-9, RedHat 9, 

Mandriva 2007 & 2007) Mac OS (10.4 & 

10.5), Windows (XP, NT, 2000). 

Not specified. Depends 

on the size of data. 

BrainSuite Windows and Mac OS. BrainSuite Diffusion 

Pipeline (bdp) also run under Linux. 

bdp requires 6 GB 

FreeSurfer Linux, Mac OS, Windows (via VirtualBox 

only). 

8GB (recommended) 

 

The MRI scans are available in various data formats. Therefore, knowing the 

supported input and output file formats were also important for the users. Table 4.2 

presents the MRI file formats that are supported by the selected tools. It shows that 

BrainVISA and FreeSurfer provide huge flexibility in MRI data format. In fact these 

two tools had their own built-in MRI converters. NFT could work on Analyze format 

only and recommended using FreeSurfer’s MRI converter for MRI preparation. This 

table also lists the file formats of the BEM meshes or surfaces generated by the software 

tools. 

4.2.2 Comparison Based on Real Data Analysis 

FieldTrip, NFT and BrainSuite worked properly (with the installation and operation) 

on a machine with Windows 8.1 platform. FreeSurfer needed ORACLE VM VirtualBox 

support, with the guest operating system Xubuntu 12.04, for functioning on the same 

Windows machine. Processor speed and system memory of that machine were 2.40 

GHz (Intel Core i7) and 16 GB respectively. Since BrainVISA did not run properly on 

Windows 8.1, it was installed in a different computer having Windows XP OS. That  
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Table 4.2: Input and output file formats. 

Software 

Tool 
Supported MRI Formats 

Generated 

BEM Surface 

File Format 

FieldTrip CTF - VSM MedTech, NIFTi, Compressed NIFTi, 

Analyze, DICOM, AFNI, FreeSurfer, MINC, 

Neuromag – Elekta, ANT, Yokogawa 

MATLAB 

(*.mat) 

NFT Should be in Analyze format and the voxel size 

should be (mm) 1×1×1. 

*.smf & *.mat 

BrainVISA PNG image, XBM image, XPM image, TIFF image, 

TIFF(.tif) image, PPM image, GIF image, JPEG 

image, BMP image, PBM image, PGM image, MNG 

image, SPM image, GIS image, VIDA image, ECAT 

v image, ECAT i image, DICOM image, MINC 

image, compressed MINC image, NIFTI-1 image, 

compressed NIFTI-1 image 

*.gii & *.minf 

BrainSuite Works best with NIfTI format, but also provides 

limited support for DICOM images 

*.dfs 

FreeSurfer MGH-NMR COR, MGH-NMR MGH-NMR 

(compressed), MNI's Medical Imaging NetCDF, 3D 

analyze, 4D analyze, SPM Analyze, GE Genesis, GE 

LX, GE XIMG variant, Siemens IMA, generic 

DICOM, Siemens DICOM, AFNI, MGH-NMR 

bshort, MGH-NMR bfloat, MGH-NMR Outline, 

GDF volume, NIfTI-1, compressed NIfTI. 

*.curv 

 

machine had 1.80 GHz Intel Core 2 Duo processor and 2 GB system memory. All of the 

five selected software tools were used for generating BEM meshes or surfaces from 

each of the five MRI datasets. 

BrainSuite and FreeSurfer generated head models for all of the five datasets and 

without any error message. During outer skull segmentation, NFT removed the eyeball 

regions from the skull. The eyes were extracted by region growing technique from the 

user-indicated points (Acar & Makeig, 2010). Since some parts of the eyeball regions of 

the selected datasets were removed during de-identification process, NFT gave an error 

message while segmenting the outer skull. Simple modification of NFT code, i.e. by 

omitting that error message generation instruction, made it functional. After that 
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modification, NFT performed the segmentation and surface generation tasks for all of 

the five datasets. FieldTrip crashed while simulating the MRI dataset of the 5th subject 

only, whereas BrainVISA crashed on processing 2nd and 5th subjects’ datasets. The 3rd 

set of MRI data, which was successfully processed by all of the five software tools, is 

shown in Figure 4.1. 

All the default parameters and settings of the software tools, except the number of 

vertices of NFT, were kept unchanged during both segmentation and surface generation 

processes. With default parameters and settings FieldTrip and BrainSuite generated five 

simulated surfaces (scalp, skull, CSF, WM and GM) for each MRI dataset. White matter 

was not segmented by NFT. It produced brain surface that actually resembled the GM. 

BrainVISA and FreeSurfer did not produce surfaces for skull and CSF. Those tools 

were more concern about cortical surface generation. Figure 4.2 illustrates all the 

surfaces generated by all of the five software tools from the same MRI dataset that is 

shown in Figure 4.1. Visual observation provided that the scalp, GM and WM generated 

by BrainVISA were most realistic. Besides, skull and CSF images produced by NFT 

were more accurate. FieldTrip-generated surfaces were sometimes incomplete or 

inaccurate as shown in Figure 4.2. 

 

Figure 4.1: MRI scan of a subject (3rd dataset). 
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Figure 4.2: Surfaces generated from 3rd MRI dataset. 

Among all the software tools, FreeSurfer and BrainSuite performed the MRI 

segmentation and surface generation processes without any user’s feedback. FieldTrip 

needed user’s feedback for finding the orientation of the input MRI. While using NFT 

for brain segmentation, user had to select the lowest point of the cerebellum and a WM 

seed point manually. Moreover, for outer skull segmentation, NFT required user’s input 

for identifying the center of eyeballs. In order to use BrainVISA, user had to provide the 

coordinates of the anterior commissure, posterior commissure, interhemispheric point 

and the left hemisphere point or had to locate those points on the MRI scan. Execution 

times of the selected software tools were not included in the comparison, because the 

tools ran on different hardware and operating systems.  Moreover, the number and types 

of operations were different from one tool to another. 
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4.2.3 Head Modelling Tool Selection 

Five well known free software tools for MRI segmentation and BEM surface 

generation were compared. The results showed that none of the tools could be 

considered as the best. Ranking of the tools was found depended on the user’s needs. If 

less resource (hardware and software) were available, then BrainVISA would be the 

best choice. If higher number of tissue classes was required, then Brainsuite provided 

the best. Sometimes source code customization is required along with higher number of 

tissue class analysis. FieldTrip would be the best option for such cases. BrainSuite was 

not the right choice because it was not an open-source tool. If more accurate skull 

surface was vital, then NFT would be the best option. Latest application areas mostly 

need accurate and reliable cortical surface generation. FreeSurfer could meet that need. 

In order to select the right tool, users should know the strengths and limitations of these 

tools. So this comparative study of the latest tools with practical implementation results 

would be a helpful guide for the users. All of the five tools could produce better outputs 

with adequate adjustments of default parameters and settings, but this study considered 

the outputs that required minimum expertise and involvements of users. 

The RIDICS technique required a software tool that could generate reliable and 

realistic head models with minimum user-involvement. Higher number of head layers 

produces more realistic model. Therefore, preference was given to the tools that could 

provide higher number of surfaces. Another issue that was important for RIDICS 

technique was the compatibility issue. The RIDICS technique used the head model for 

forward and inverse solutions; therefore the file format of the head model needed to be 

compatible for the forward and inverse solution software. Considering all those 

requirements, BrainSuite was selected for the head model generation step of the 

RIDICS technique. 
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4.3 Clinical Utility of Ictal ESI 

Epileptogenic foci were estimated from real patients’ data by using a classical (non-

ICA based) ESI technique and open-source software tools. The results obtained were 

analyzed from various points of view and the best performing inverse solution was 

selected for RIDICS technique. All those results and analysis are presented in this 

section. 

4.3.1 Source Estimation 

Figure 4.3 illustrates the SPECT results and corresponding ESI results of two 

patients (patient 2 and patient 3). These two sets of results were selected so that all the 

ESI results of one patient (patient 2) were fully concordant with SPECT results, whereas 

the ESI results of the other patient (patient 3) were not in all cases concordant with 

SPECT result. All the ESI results and the SPECT results of patient 2 showed that the 

epileptic focus was located in the left occipital lobe. Therefore, all the ESI results of 

patient 2 were considered concordant with the SPECT result. According to the SPECT 

results of patient 3, the epileptic focus was located in the right parietal lobe. Obtained 

ESI results showed that only ictal analysis through dSPM estimated the focus in the 

same lobe. 

The sLORETA analysis of ictal events, which estimated the focus in the lateral 

sulcus of Sylvius of the same hemisphere, also was considered concordant. Other ESI 

results of patient 3, although estimated the focus in the adjacent lobe (temporal lobe and 

insular cortex), were not considered concordant with SPECT result. The volume of ESI 

focus was threshold dependent. Different threshold values were chosen for different ESI 

results for better visualization and easier localization of the regions with maximum 

current density. Therefore, the volumes of ESI foci, highlighted in red in Figure 4.3, did 

not provide information on the extent of epileptogenic zone. These highlighted regions 
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Figure 4.3: SPECT results and corresponding ESI results of two patients 

(patient 2 and patient 3). ESI sources, estimated by using volumetric source space 

and surface source space, have been presented on magnetic resonance imaging and 

simulated cortical surfaces respectively. Cortical regions with red color represent 

the estimated epileptic foci. 

represented the brain volumes that contained the maximum current density sources. 

Cortical locations of all the 8 patients’ electroencephalographic sources along with 

the positions of their corresponding SPECT foci and MRI lesions are listed in Table 4.3. 

ESI with surface source space and volumetric source space estimated the sources in the 

same sublobe. The only difference was that the surface source space based analysis 

always estimated the sources on the gray matter whereas the volumetric source space 
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Table 4.3: Cortical locations of MRI lesions, SPECT-foci and the ESI-foci of all the patients. 

# MRI lesion SPECT Ictal ESI Interictal ESI 

wMNE  

(t2' – t1') 

dSPM  

(t2' – t1') 

sLORETA  

(t2' – t1')  

wMNE  

(t2' – t1') 

dSPM  

(t2' – t1') 

sLORETA  

(t2' – t1') 

   EEG ictal pattern: Spikes    

1 L Postcentral 

G 

L superior 

parietal Lo 

L superior parietal 

Lo (23ms) 

L superior parietal 

Lo (23ms) 

L superior 

parietal Lo 

(39ms) 

L superior 

parietal Lo 

(27ms) 

L cingulate 

cortex (31ms) 

L superior 

parietal Lo 

(27ms) 

   EEG ictal pattern: Rhythmic activity    

2 L parieto- 

occipital S 

L parieto- 

occipital S 

L preoccipital 

notch (22ms) 

L parieto- occipital 

S (24ms) 

L lateral 

occipitotemporal 

G (24ms) 

L preoccipital 

notch (47ms) 

L preoccipital 

notch (50ms) 

L lateral 

occipitotemporal 

G (28ms) 

3 R paracentral 

Lo 

R Inferior 

Parietal Lo 

R middle temporal 

G (14ms) 

R Inferior Parietal 

Lo (42ms) 

R lateral S of 

Sylvius (20ms) 

R middle 

temporal G 

(16ms) 

R insular cortex 

(46ms) 

R insular cortex 

(10ms) 

4 No lesion R occipital 

Lo 

R occipital P 

(24ms) 

R cuneus (28ms) R medial 

occipitotemporal 

G (18ms) 

R occipital P 

(40ms) 

R occipital P 

(40ms) 

R lateral 

occipitotemporal 

G (22ms) 

5 L middle 

temporal G 

L superior 

temporal G 

L temporal P 

(60ms) 

L temporal P 

(42ms) 

L temporal P 

(78ms) 

L temporal P 

(64ms) 

L temporal P 

(64ms) 

L temporal P 

(68ms) 

6 No lesion R inferior 

parietal Lo 

R inferior parietal 

Lo (42ms) 

R intraparietal S 

(80ms) 

R intraparietal S 

(36ms) 

R inferior 

parietal Lo 

(20ms) 

R intraparietal 

S (30ms) 

R inferior 

parietal Lo 

(22ms) 

7 R medial 

temporal Lo 

R temporal 

P 

R temporal P 

(138ms) 

R temporal P 

(136ms) 

R temporal P 

(134ms) 

R temporal P 

(70ms) 

R basal ganglia 

(50ms) 

R temporal P 

(122ms) 

8 L medial 

temporal Lo 

L temporal 

P 

L temporal P 

(27ms) 

L temporal P 

(20ms) 

L temporal P 

(51ms) 

L temporal P 

(66ms) 

L temporal P 

(63ms) 

L temporal P 

(70ms) 

#: Patient Number, L: Left, R: Right, G: Gyrus, S: Sulcus, P: Pole, Lo: Lobe/Lobule, t2' – t1': duration of stable results. 
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based ESI often found the sources in the white matter of the corresponding sublobe. 

Therefore, the results obtained for surface source space and volumetric source space 

have not been listed separately in Table 4.3. 

4.3.2 Inverse Solution Selection 

On the basis of the results listed in Table 4.3, concordance and discordance of the 

obtained ESI results with SPECT results are summarized in Table 4.4. Ictal analysis 

results showed that dSPM and sLORETA could locate the ESI focus and the SPECT 

focus in the same lobe for all of the 8 patients (concordance rate 100%), whereas the 

results of wMNE were not concordant for patient 3 (concordance rate 87.50%). On the 

other hand, the results obtained from interictal analysis showed that wMNE and 

sLORETA estimated concordant results for 7 (except patient 3) of 8 patients 

(concordance rate 87.50%), whereas the dSPM failed for patients 1, 3, and 7 

(concordance rate 62.50%). Among the 3 distributed inverse models, sLORETA gave 

the greatest concordance rate for both ictal and interictal analysis, whereas for 

individual inverse model the number of concordant results of ictal ESI was either equal 

to or greater than that of interictal ESI. All the ESI results were lateralized correctly 

because all estimated ESI sources were found in the same hemisphere as their correspo- 

Table 4.4: Concordance or discordance of ESI results with ictal SPECT. 

Patient 

Number 

Ictal ESI Interictal ESI 

wMNE dSPM sLORETA wMNE dSPM sLORETA 

1 √ √ √ √ X √ 

2 √ √ √ √ √ √ 

3 X √ √ X X X 

4 √ √ √ √ √ √ 

5 √ √ √ √ √ √ 

6 √ √ √ √ √ √ 

7 √ √ √ √ X √ 

8 √ √ √ √ √ √ 

√: Concordant, X: Discordant. 
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-nding SPECT sources and MRI lesions (see Table 4.3). 

4.3.3 Stability Analysis 

The durations (in milliseconds) of stable results around the corresponding 

examination time points are listed in Table 4.3 for all the ESI analysis. These durations 

indicated that the ictal analysis through sLORETA produced the results with the longest 

average duration of stability at 50 milliseconds (median, 37.5 milliseconds; range, 18 – 

134 milliseconds). The results obtained for ictal analysis through wMNE remained 

stable for the shortest average duration at 43.75 milliseconds (median, 25.5 

milliseconds; range, 14 – 138 milliseconds). Analysis results through rest of the 

methods of both ictal and interictal analysis remained stable for average duration of 

46.13 milliseconds to 49.38 milliseconds. The overall average duration for ictal analysis 

results (4.71 milliseconds) was slightly longer (1.13 milliseconds) than that of interictal 

analysis results (46.58 milliseconds), which supported the acceptability of ictal analysis 

results. However, longer average duration of stable ictal analysis results was expected, 

because the event duration (t2 – t1) of ictal events were usually longer than that of 

interictal events. 

4.3.4 Analysis of Findings 

The results demonstrated that all the estimated ictal ESI foci and the corresponding 

clinically evaluated seizure foci were lateralized to the same brain hemisphere. 

Furthermore, all the ictal ESI results, except one wMNE analysis result, were 

concordant with the results of at least 2 other diagnostic modalities (MRI and SPECT). 

These ESI analyses were conducted with the use of MRI scans and EEG data that were 

acquired within a standard clinical setup for presurgical evaluation of epilepsy. These 

findings also supported the argument that ictal ESI could be considered as a potential 

noninvasive diagnostic tool for the presurgical evaluation of focal epilepsy. 
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Kovac et al. (2014) reported that ictal ESI, through dipole modeling, produced 

lateralizing results in 8 of 17 seizures (47%). Significantly improved results of ictal ESI 

were obtained in the current study, and such improvements were rationalized through 

the use of patient-specific, realistic head models. The greatest concordance rate 

previously reported (Koessler et al., 2010) is 90%, which is in agreement with the 

obtained results of this study. The only article that compared the performance of ictal 

and interictal ESIs (Beniczky et al., 2006) reported a better concordance rate of ictal ESI 

over interictal ESI, which further supports the greater concordance rate of ictal ESI 

obtained in this study. 

The evidence in support of interictal ESI (Lantz, Spinelli, et al., 2003; Ray et al., 

2007) shows the source estimation time point at the 50% rising phase of GFP. However, 

to the best of our knowledge, there is no study that recommends the best examination 

time point for ictal source estimation. Koessler et al. (2010) analyzed all the time points 

of each selected ictal event and the source with the greatest amplitude across time and 

space was chosen, i.e., the examination time point was not fixed. For ease of analysis, a 

generalized examination time point, which is the time point at the peak of GFP, was 

used in this study for ictal source estimation with reasonable stability (see Table 4.3). 

4.3.5 Advantages of Ictal ESI over Ictal SPECT 

Another noninvasive diagnostic tool used for the presurgical evaluation of refractory 

focal epilepsy is ictal SPECT. When ictal SPECT is acquired, a costly radioactive tracer 

is injected during the onset of seizure. In reality, there is always a latency (3 – 260 

seconds) from commencement of the seizure to injection (O’Brien et al., 1999), and the 

tracer takes around 30 seconds to circulate to the region of interest (Foldvary et al., 

2001). This circulatory delay allows the ictal activity to spread to the other regions, i.e., 

the ipsilateral basal ganglia and the motor cortex. Therefore, the area of hyperperfusion 
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on ictal SPECT doesn’t always represent the seizure focus. In addition, an ictal SPECT 

scan captures one seizure only and has poor temporal resolution (Jung et al., 2009). In 

contrast, ictal ESI can easily cover multiple seizures and has greater temporal 

resolution, which can localize the source for every instant (limited by the sampling rate 

of EEG recordings) of ictal EEG records. Ictal ESI is thought to be able to distinguish 

the primary source from the secondary source because of its high temporal resolution 

(Ding et al., 2007). Moreover, obtaining successful SPECT results demands careful 

monitoring, trained staff for the early injection of radioactive tracer, and specially 

trained nuclear medicine technologists to acquire the SPECT scans. Ictal ESI does not 

need these supportive measures and thus remains less expensive. 

4.4 Effects of Noise on the Features of Decomposed Ictal EEG 

This section examines the effects of coherent noise on three selected features of the 

decomposed ICs of ictal EEG. The reason behind selecting these features is their 

frequent use in the ictal component selection step of ictal ESI techniques. The results of 

this investigation, presented in the following subsections, justify the derivation of a new 

feature for ictal component selection. 

4.4.1 Topographic Maps 

A two dimensional (2D) scalp topographic map is generated for each of the ICs. 

Corresponding equivalent single dipole sources are also included in the maps. 

Topographic maps of all the ICs of N0 and N10 are shown in Figure 4.4. Potential 

distributions for all the components of N0 are found similar to that of the original dipole 

source shown in Figure 3.4c, except the orientation of the dipole. On the other hand 

only few maps for N10 show similarity with the original source. Considering all the 2D 

maps, generated from the ICs of 11 sets of EEGs, it is evident that the number of 

dissimilar maps per set increases with the increase of noise level. 2D maps for other 9 - 
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Figure 4.4: 2D topographic maps for all the ICs of (a) N0 and (b) N10. Locations 

and orientations of corresponding equivalent dipole sources are shown. Color bars 

next to the maps indicate the magnitude and polarity. 
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sets of EEGs cannot be included due to space limitation. 

4.4.2 Activity Power Spectra 

Activity power spectra of ICs exhibit which components contribute most strongly to 

which frequencies in the data. Power spectra are generated for all the ICs while 

considering 100% samples and total epoch time range (5 seconds). Component no. 1 of 

N0 and component no. 2 of N100 has contributed most strongly around the rhythm 

frequency (5.7 Hz). Power spectra of these two ICs are shown in Figure 4.5. Activity 

power spectra are generated for all the ICs. The number of ICs that contribute highly 

around rhythm frequency is found decreasing with the increment of noise. 

4.4.3 Dipole Residual Variance 

Residual variances are calculated for all the estimated dipole sources of all the ICs 

and those are shown in Figure 4.6a as a 3D column chart. Higher order ICs are found 

more likely to have higher residual variances. Average value of the residual variances is 

also calculated for each set of EEG data and illustrated in Figure 4.6b as a line chart. 

Although in most of the cases the average residual variance have in-creased with the 

increment of noise level, opposite relation-ship is also found in few cases. 

 

Figure 4.5: Activity power spectrum for (a) IC1 of N0 and (b) IC2 of N100. 
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Figure 4.6: (a) Dipole residual variances of all the ICs of all the EEG data sets. 

(b) Changes of average residual variances with noise levels. 

4.4.4 Findings of Noise-Effect Analysis 

In parallel with 2D topographic maps, 3D topographic maps can also be used for IC 

selection. Although 3D maps are more realistic than 2D maps, 2D maps were preferred 

for this analysis because of their relevance with the spherical head models that is used 

for EEG generation. This part of this study analyzed the most commonly used features 

of ICs and the results indicated the significant effects of coherent background noise on 

these features and with high level of noise these features could not help to identify the 

ictal components. Therefore, searching for more features or deriving a new effective 

feature of decomposed ICs for better identification of the ictal components from highly 

noisy datasets was essential. 
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4.5 Validation Results of the RIDICS Technique 

The RIDICS technique was validated using both simulated and real ictal EEG data. 

Those validation results are presented in next two subsections respectively. 

4.5.1 Validation of RIDICS Technique Using Simulated Data 

Figure 4.7 illustrates the Euclidean distance between D and every DBIC that was 

modeled from each BIC obtained by three different techniques (RIDICS, PSDICS and 

TFRICS). It indicates that for precise estimation of dipole sources the RIDICS 

technique performs better than the other two techniques. Shorter distance represents 

better identification of BIC and consequently better estimation of dipole source. Figure 

4.7 shows that the dipoles, estimated by using the RIDICS technique, had shorter 

distances for both low noise and high noise datasets. Among 50 datasets (E1 to E50), the 

RIDICS technique estimated the closest dipole source for 28 datasets. Other two 

techniques performed well for low noise datasets but could not perform well  

 

Figure 4.7: Euclidean distance between the original current dipole location D 

and the estimated current dipole location DBIC, modeled from each BIC. 
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with higher levels of noises. The PSDICS and the TFRICS techniques estimated the 

nearest dipole source for 13 and 9 datasets respectively. The estimated average dipole 

distances were 12.86 mm (minimum 0.29 mm, maximum 45.08 mm), 30.26 mm 

(minimum 0.39 mm, maximum 135.69 mm), and 34.21 mm (minimum 0.27 mm, 

maximum 80.41 mm) for the RIDICS, PSDICS and TFRICS techniques respectively. 

The actual dipole distances, used for producing the graph of Figure 4.7, were listed as a 

table in Appendix A. The MATLAB codes that were used for implementing the 

RIDICS, PSDICS, and TFRICS techniques for analyzing simulated ictal EEG data were 

included in Appendix B, Appendix C, and Appendix D respectively. 

Figure 4.8 illustrates the similarities between the original noiseless EEG dataset E 

and each of the BIC projected datasets (EBIC1, EBIC2, … and EBIC50) that were obtained  

 

Figure 4.8: Zero-lag cross-correlation values that were estimated between 

noiseless dataset E and each back-projected dataset EBIC regenerated from the BIC 

of each simulated ictal EEG dataset. 
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from E1, E2 … and E50 respectively. Cross-correlation value was considered as the 

similarity measuring metric. Higher cross-correlation value was considered as higher 

similarity and higher similarity between E and EBICn indicated lower noise content in En 

(where n = 1, 2, … 50). Source estimation from such noise-reduced EEG was expected 

to give better source localization and the estimated dipole distances (Figure 4.7) 

supported that expectation. Higher cross correlation value also represented better 

identification of the corresponding BICs. According to Figure 4.8 the RIDICS technique 

produced highly correlated back projected EEGs for both low noise and high noise 

datasets, whereas the PSDICS and TFRICS techniques fail for the highly noisy datasets. 

In case of the RIDICS technique, 26 datasets produced the highest cross-correlation 

values for the back projected EEGs, whereas the numbers of such datasets were 14 and 

10 for the PSDICS and TFRICS techniques respectively. Moreover the cross-correlation 

values were more stable for the RIDICS technique with respect to the other two 

techniques. The corresponding cross-correlation values, used for producing the graph of 

Figure 4.8, were listed in Appendix A. 

The validation study showed that the RIDICS technique performed better with both 

the performance measuring metrics and with both low-noise and high-noise datasets. 

Although the other two techniques (PSDICS and TFRICS) performed satisfactorily with 

low-noise datasets, they could not identify the right BICs from data with high level of 

noise. 

4.5.2 Validation of RIDICS Technique Using Real Data 

A cortical source was estimated for each of all selected BICs obtained through the 

RIDICS, PSDICS and TFRICS techniques and for all of the eight subjects. Table 4.5 

presents those ESI estimated sources. On the basis of the results listed in Table 4.5, 

concordance and discordance of the obtained ictal ESI results with the corresponding  
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Table 4.5: Surgery sites and corresponding epileptic foci estimated by 3 ESI 

techniques and for 8 patients. Red cortical areas denote ictal EEG source analyzed 

using various techniques. 

No. Surgery RIDICS PSDICS TFRICS 

1 Left middle temporal 

cortectomy 

 
 

 
2 Left antero-medial 

temporal lobectomy 

 
 

 

3 Right occipital  

cortectomy 

   
4 Left parieto-occipital 

cortectomy 

   
5 Right antero-medial 

temporal lobectomy 

 
 

 
6 Left antero-medial 

temporal lobectomy 

 

  
7 Right anterior temporal 

lobectomy 

  

 

8 Left selective amygdalo-

hippocampectomy 
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surgery sites are summarized in Table 4.6. Those results showed that the estimated 

results for the RIDICS technique were concordant for 7 out of 8 patients (concordance 

rate 87.50%). Only for the patient 4 the estimated cortical source was in the temporo-

occipital region instead of the parieto-occipital region. Although this result was partially 

concordant, it was not considered as concordant while calculating the concordance rate. 

The other two techniques, PSDICS and TFRICS, estimated the concordant results for 3 

patients and 1 patient respectively, and their concordance rates were 37.50% and 

12.50% respectively. Therefore, among the three ESI techniques, the highest 

concordance rate was obtained for the RIDICS technique. 

Although the RIDICS estimated ictal source for the patient 4 was discordant, that 

source was lateralized in the same hemisphere as the surgery site. Thus, all the RIDICS-

estimated sources were lateralized correctly, whereas two estimations (patient 6 & 7) of 

the PSDICS technique and four estimations (patient 2, 3, 5, & 8) of the TFRICS 

technique were not found lateralized. 

All the EEG sources of Table 4.5 were estimated from the back projected EEGs that 

were regenerated from the corresponding BICs. Each BIC was a single IC and each IC 

was temporally independent and specially fixed. Therefore, any source, estimated from  

Table 4.6: Concordance or discordance of ESI results with surgery sites 

Patient RIDICS PSDICS TFRICS 

1 √ √ √ 

2 √ X X 

3 √ X X 

4 X X X 

5 √ √ X 

6 √ X X 

7 √ X X 

8 √ √ X 

      √: Concordant, X: Discordant. 
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the BIC projected EEG was also temporally independent and specially fixed. Thus, each 

estimated source remained stable for the total duration of the corresponding BIC 

projected EEG. 

4.5.3 Analysis of Outcomes 

Simulation-based validation results (Figure 4.7 and Figure 4.8) showed that the 

RIDICS technique performed the best with high levels of noises (E26 to E50), but with 

low levels of noises (E1 to E25) its performance seemed not as good as the other two 

techniques. Therefore, further investigations were carried out through the visual 

inspection of the IC time courses and the topographic maps of the BICs for verifying the 

correctness of the results. Visual inspection results also supported the better source 

estimation capacity of the RIDICS technique with respect to the PSDICS and the 

TFRICS techniques. 

Figure 4.9 and Figure 4.10 illustrate the IC time-courses, two seconds around the 

ictal onset, that were obtained by decomposing the E23 and E41 datasets respectively. 

Those two datasets were selected purposefully. The first dataset (E23) corresponds to the 

worst performance of the RIDICS technique, because under low noise condition the 

RIDICS technique estimated the highest dipole distance while the other two techniques 

performed better with respect to both dipole distance and cross-correlation values. The 

other dataset (E41) was chosen because that dataset contained enough amount of noise 

and the RIDICS technique estimated the shortest dipole-distance and the highest cross-

correlation value for that dataset with respect to the other two techniques. Three parts of 

those figures represented the outcomes of the three techniques. The time-course with 

magenta color represented the BIC and the topographic map of that BIC was presented 

on top of the corresponding time-course. 

Figure 4.9 shows that the RIDICS technique identified the BIC correctly for the E23  
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Figure 4.9: Independent Component time-courses of E23 dataset and the 

topographic maps of the BICs (highlighted with Magenta) obtained from (a) the 

RIDICS technique, (b) the PSDICS technique, and (c) the TFRICS technique. 

dataset, but the dipole estimation was not as accurate as the other two techniques. The 

reason behind the less accurate estimation of the RIDICS technique was that the 

decomposed ICs, used for the dipole estimation, were not very accurate. The ICA-

decompositions were performed by the Infomax ICA algorithm. Figure 4.9 shows that 

the ICA algorithm produced three different sets of ICs for three different techniques 

(RIDICS, PSDICS, and TFRICS) and from the same EEG dataset (E23). Since the  
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Figure 4.10: Independent Component time-courses of E41 dataset and the 

topographic maps of the BICs (highlighted with Magenta) obtained from (a) the 

RIDICS technique, (b) the PSDICS technique, and (c) the TFRICS technique. 

RIDICS technique identifies the correct BIC for less accurate decomposition, it has the 

potential to identify the correct BIC for more accurate decomposition as well. Therefore 

for low noise datasets, proper dipole estimation depends on proper ICA-decomposition. 

Figure 4.10 illustrates that the RIDICS technique identified the BIC correctly for the 

high-noise dataset E41 and the topographic map also supports the correctness of the BIC 

selection. Ictal rhythm is clearly visible in the RIDICS selected BIC, but the rhythm is 
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not clear in the PDSICS and TFRICS selected BICs. Therefore it is difficult to verify 

the correctness of the PDSICS and the TFRICS selected BICs. It was also difficult to 

make any positive decision about the PSDICS and TFRICS results from the topographic 

maps. The time-courses of Figure 4.10a were obtained after four recursion cycles of the 

RIDICS technique and in every cycle the amount of noise was reduced. Therefore after 

four cycles the ictal rhythm became clear in the RIDICS selected BIC. On the contrary, 

the other two techniques selected the BICs from the original decomposed ICs that 

contained large amount of noise and as a result the estimated sources from those BICs 

were less accurate. Therefore, this analysis provided a strong justification for the better 

performance of the RIDICS technique with the high levels of noises in the datasets. 

The time-courses of Figure 4.9 highlighted an important problem, the stochastic 

behavior, of the ICA-decomposition algorithm. It means that multiple runs of the ICA-

decomposition algorithm on the same dataset can produce slightly different results 

(Himberg, Hyvärinen, & Esposito, 2004; Soldati, Calhoun, Bruzzone, & Jovicich, 

2013). The order of the components, their time-courses and their topographic maps may 

vary from run to run. Therefore, better ICA-decomposition results have an important 

role on the better estimation of the EEG source.  

While producing the results of Figure 4.7 and Figure 4.8, different ICA-

decomposition results were used for the three different techniques, because those 

techniques demanded different ranges of bandpass filtering before decomposing the 

EEG datasets. The RIDICS and the TFRICS techniques required 1-45Hz and 1-70Hz 

bandpass filtering respectively, while the PSDICS did not need any filtering before 

ICA-decomposition. In order to compare the performances of the three techniques for 

implementing on the same set of decomposed ICs, filtering before ICA-decomposition 

was avoided. Modified MATLAB code was implemented and similar experimental res- 
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Figure 4.11: Euclidean distance between the locations of D and DBIC for the 

modified implementation of RIDICS, PSDICS and TFRICS techniques. 

Figure 4.12: Zero-lag cross-correlation values that were estimated between E and 

EBIC for the modified implementation of RIDICS, PSDICS and TFRICS 

techniques. 
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-ults as shown in Figure 4.7 and Figure 4.8 were computed. Figure 4.11 and Figure 4.12 

illustrate those simulation results. These figures show that all of the three techniques 

produce same results for most of the low-noise datasets (E1 to E21). Other datasets 

reacted almost similar to the experiment done for Figure 4.7 and Figure 4.8. This 

analysis showed that, despite the stochastic behavior of the ICA-decomposition 

algorithm, the RIDICS technique performed the best with respect to the PSDICS and the 

TFRICS techniques. 

Another important issue for the RIDICS technique was its execution time. ICA-

decomposition itself is a time consuming process, therefore one may assume that the 

recursive ICA-decomposition may consume unacceptable amount of time. In order to 

verify the claim, the CPU execution time was recorded for every ICA-decomposition in 

a single run of the RIDICS technique over 50 sets of simulated ictal EEG data. Those 

recorded times were presented in Figure 4.13 and it shows that the claim is not true. The 

average time required for each decomposition phase was 108.92 seconds while the 

average number of recursion-cycle required for analyzing each dataset was 7.36.  

 

Figure 4.13: Execution time required for every ICA-decomposition. 
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Therefore, the average time required for the RIDICS analysis of each dataset was 

801.65 seconds (i.e. 13.36 minutes), which was quite acceptable with respect to the 

other diagnostic modalities (e.g. SPECT). The worst case executed 33 recursion cycles 

and required 4067.11 seconds (67.79 min) and that was also within the acceptable limit. 

All those time computations as well as all other simulations for this study were 

performed in a laptop computer with Intel Core i7-4700MQ processor, 32GB DDR3L 

RAM, and Windows 8.1 operating system. 

The RIDICS technique can be used for both low density and high density EEG 

datasets. Since standard medical EEG systems usually low density type, ESI technique 

that is customized for low resolution EEG will become more useful and attractive to the 

clinicians. Success of RIDICS depends on reliable ICA decomposition. Minimum 

number of data points, required for reliable ICA decomposition, is linearly proportional 

to the square of the number of electrodes. Therefore, RIDICS requires less data points 

for low density EEG with respect to high density EEG. Since, the duration of seizure is 

usually small, it may become difficult to find enough data points from high density 

EEG. On the contrary, excess data points can be found from low density EEG for better 

ICA decomposition. Thus, RIDICS may perform better for low density EEG. 

4.6 Summary 

In this chapter the results of the major development steps, discussed in Section 3.2, 

of the RIDICS technique were presented. First of all, five free software tools, for 

realistic head model generation from the MRI scans, were compared and an appropriate 

tool was selected for the RIDICS technique. The name of the selected tool was 

BrainSuite. It was selected due to its capacity to generate reliable and realistic head 

models with higher number of head layers and with minimum user-involvements. 

Moreover the compatibility of its output file format with the Brainstorm software tool, 
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used for forward solution and inverse solution, was considered for selecting the 

BrainSuite software. 

Next, a non-ICA based ictal ESI technique was implemented with the help of those 

two software tools (BrainSuite and Brainstorm) and the clinical utility of the ictal ESI 

technique with those software tools was validated by analyzing real patients’ data. 

Moreover, three different inverse models were used for EEG source estimation and their 

results were compared for selecting the best one for the RIDICS technique. The ictal 

ESI results and their corresponding SPECT results were presented in Table 4.3 and 

those results were summarized in Table 4.4. The ictal ESI results were found fully 

lateralized and highly concordant with the corresponding SPECT results. Such good 

findings supported the clinical usefulness of ictal ESI with the use of free software 

tools. Those results also showed that the sLORETA inverse model performed better 

than the other two inverse models. Therefore, sLORETA was chosen for the RIDICS 

technique. 

After that, the effects of noise on three common features of decomposed ICs were 

analyzed, because the RIDICS technique was supposed to use one of those features for 

ictal component selection. The analysis outcomes were presented in section 4.4. Those 

results showed that the topographic map and the activity power spectra needed visual 

inspection for ictal component selection and the residual variance had no direct relation 

with the ictal components. Therefore, a new quantitative feature of decomposed ICs was 

essential for the RIDICS technique. 

Finally, a new quantitative feature of decomposed ICs was derived and the RIDICS 

technique was developed based on that new feature. Validation of the proposed ESI 

technique, i.e. the RIDICS technique, was carried out by using both simulated and real 

ictal EEG data. Validation results, using the simulated EEG datasets, were presented in 
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Figure 4.7 and Figure 4.8. Those results showed the significantly higher performance of 

the RIDICS technique with respect to the PSDICS and TFRICS techniques. Validation 

results, using the real data of eight patients, were tabulated in Table 4.5 and were 

summarized in Table 4.6. The RIDICS results, as well as the PSDICS and TFRICS 

results, were verified against the corresponding site of successful surgery. Those results 

showed that the RIDICS results were fully lateralized and highly concordant 

(concordance rate 87.50%) with the surgery sites. Correctness of those results and the 

practicality of the RIDICS technique were supported with further analysis. Although 

RIDICS is a recursive technique, the time analysis showed that the average time 

required for producing the RIDICS result from a single set of data was not very high 

compared to other diagnostic modalities. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The development of a new ICA-based ictal ESI technique, namely the RIDICS 

technique, has been achieved for epileptogenic focus estimation from ictal EEG. It uses 

recursive ICA decomposition of ictal EEG and eliminates unwanted component(s) in 

every recursion cycle. Such elimination of noise helped in better identification of BIC 

that eventually used to estimate the epileptogenic focus more accurately. Free software 

tools are used to the implementation of the RIDICS technique mainly for subject 

specific realistic head model generation, forward solution and inverse solution. Since 

ictal ESI was comparatively a new computational technique for source estimation, 

implementation tools were not commercial tools, and various inverse models were 

available, clinical validations of the existing tools and techniques were essential before 

implementing the RIDICS technique. 

A non-ICA based ESI technique is therefore implemented with free software tools 

and 3 different linear distributed inverse models and the clinical usefulness of these 

implementations for epileptic focus localization are examined. Both ictal and interictal 

ESI are performed on real ictal EEG data and patient-specific realistic head models of 8 

selected patients. Lateralization and concordance between ESI-estimated foci and 

SPECT foci are assessed for the performance evaluation. The results show that the ictal 

ESI is able to estimate epileptogenic foci more concordantly than the interictal ESI. 

Moreover, ictal ESI results and ictal SPECT results are found fully lateralized and 

highly concordant with all 3 different inverse models, and among those inverse models 

highest number of concordant results are obtained from sLORETA. Therefore, this part 

of the study strongly justifies the clinical usefulness of ictal ESI with such 

implementations and also defends the use of free software tools and sLORETA inverse 

model in the implementation of the RIDICS technique. 
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In addition to those free software tools and sLORETA inverse model, the RIDICS 

technique uses a unique quantitative feature of ictal EEG decomposition for selecting 

the most significant ictal component (i.e. BIC). The epileptogenic focus is estimated 

from the back projected EEG of that BIC. Therefore, the result remains stable for the 

total EEG-duration, which is much better than the 10-138ms stable results (Table 4.3) of 

the non-ICA based ictal ESI technique. The RIDICS technique is implemented on both 

simulated and real ictal EEG data, and the results are compared with the results of two 

other ICA-based ictal ESI techniques (PSDICS and TFRICS). Implementation results 

with simulated EEG are validated with respect to a known dipole location whereas the 

real-data-analysis results are validated with respect to the known locations of the 

successful cortical resections. Results are presented in Figure 4.7, Figure 4.8, Table 4.5 

and Table 4.6 and those results show the better performance of the RIDICS technique 

over others. In case of simulated-EEG analysis the dipole estimation error (average 

distance between the estimated dipole location and the actual dipole location) for the 

RIDICS technique is less than half of that error for the other two techniques. In case 

real-data analysis the RIDICS technique estimates fully lateralized and highly 

concordant results. 

In conclusion, a new ICA-based ictal ESI technique, namely the RIDICS technique 

that is more automatic and less attention-depleting with respect to the existing ESI 

techniques has been developed. The use of this technique as well as a non-ICA based 

ictal ESI technique are shown to be feasible in a conventional clinical setup. Moreover, 

this technique is able to estimate epileptogenic foci more concordantly than two other 

ICA-based techniques (automated version). Therefore, this study could form a basis for 

future studies that evaluate the value of the RIDICS technique as a cost-effective 

substitute for existing costly diagnostic modalities (such as ictal SPECT) for presurgical 

evaluation of focal epilepsy. 
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5.2 Summary of Contributions 

The following are the major contributions of this work: 

i) A unique quantitative feature of decomposed rhythmic ictal EEG has been 

formulated for identifying the most significant ictal component. This feature 

can also be used for other applications where the vital rhythmic component 

needs to be selected from a mixture of rhythmic activities. 

ii) A new ICA-based ictal ESI technique has been developed for its potential 

application to presurgical evaluation of refractory focal epilepsy. The 

originality of this technique consists of using the recursive ICA 

decomposition approach and a unique quantitative feature for ictal component 

selection. 

iii) The clinical usefulness of a non-ICA based ictal ESI technique and the 

RIDICS technique for the epileptogenic focus localization is examined with 

conventional clinical setup. No special clinical arrangement, such as high 

resolution EEG, is used for data acquisition.  

5.3 Limitations 

Although this study developed, implemented and evaluated the RIDICS technique 

successfully, it has the following limitations: 

i) The RIDICS technique is designed for evaluating the rhythmic ictal activities 

in the brain signals of focal epilepsy patients, but focal epilepsy may produce 

irregular ictal spikes as well. Since the RIDICS technique uses the ictal 

rhythm frequencies for selecting the ictal component, this technique may not 

work for evaluating the ictal spikes. 
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ii) Patients with clear ictal SPECTs and seizure free clinical surgery are included 

in real-data based validations. Since, the number of such patients is not high, 

the real-data based validations of this study has small sample size. 

iii) Success of the RIDICS technique is dependent on the success of the ICA 

decomposition algorithm. If the decomposition algorithm fails (i.e. cannot 

converge), then the RIDICS technique will also fail. 

In this study the sample size was limited to 12 (8 in the first experiment + 8 in the 

second experiment – 4 common in both experiments) and such small sample size (≤ 12) 

is very common in ictal ESI studies (Beniczky et al., 2006; Ding et al., 2007; Holmes et 

al., 2010; Jung et al., 2009; Koessler et al., 2010; Kovac et al., 2014; Lantz et al., 1999; 

Lu, Yang, Worrell, Brinkmann, et al., 2012; Lu, Yang, Worrell, & He, 2012; Merlet & 

Gotman, 2001; Yang et al., 2011). The main reasons are discussed below. Ictal ESI 

studies used both EEG and MRI of a subject for EEG-source estimation and also used 

iEEG (Assaf & Ebersole, 1997; Boon et al., 2002; Holmes et al., 2010; Lu, Yang, 

Worrell, Brinkmann, et al., 2012; Yang et al., 2011), site of successful surgery (Assaf & 

Ebersole, 1999; Boon et al., 2002; Holmes et al., 2010; Jung et al., 2009; Lu, Yang, 

Worrell, Brinkmann, et al., 2012; Lu, Yang, Worrell, & He, 2012; Yang et al., 2011), 

ictal SPECT (Beniczky et al., 2006; Ding et al., 2007; Lantz et al., 1999), MRI lesion 

(Ding et al., 2007; Lantz et al., 1999), etc., of the same subject as the gold standard for 

evaluating the correctness of the estimated sources. This study used ictal SPECTs and 

sites of successful surgery as the gold standards for the realizations of objective 1 and 

objective 3 respectively. Since all patients do not go for ictal SPECT and success rate of 

epilepsy surgery is low, small sample size is justified. 
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5.4 Recommendation for Future Work 

In future more in-depth analysis of various aspects of this study can be carried out. 

This paper would lay the foundation of such future work. Some possible future works 

are listed below: 

i) Validation of the RIDICS technique using real-data of larger patient 

population. 

ii) Modification of the RIDICS technique for estimating epileptogenic focus not 

only from the ictal rhythms but also from the ictal spikes.  

iii) Investigate the effects of the discontinuities occur in the RIDICS technique 

due to the concatenation of multiple selected epochs for preparing the input 

data set. 

iv) Optimization of the stopping criteria of the RIDICS algorithm for further 

improvement of its performance. 
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