
SCHEDULING OF AUTOMATED GUIDED VEHICLES IN
A FLEXIBLE MANUFACTURING SYSTEM

MARYAM MOUSAVI

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA

KUALA LUMPUR

 2018

SCHEDULING OF AUTOMATED GUIDED

VEHICLES IN A FLEXIBLE MANUFACTURING

SYSTEM

MARYAM MOUSAVI

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF THE DOCTOR

OF PHILOSOPHY

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA

KUALA LUMPUR

2018

iii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: (I.C/Passport No:)

Matric No:

Name of Degree:

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Field of Study:

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

 Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

hadigalavi@gmail.com

hadigalavi@gmail.com

hadigalavi@gmail.com

iv

SCHEDULING OF AUTOMATED GUIDED VEHICLES IN A

FLEXIBLE MANUFACTURING SYSTEM

ABSTRACT

Flexible manufacturing systems (FMSs) provide high flexibility and responsiveness to

manufacturers to meet variable customer demands in the market, where a variety of

products with short production cycle is favored. Performance of an FMS is highly

dependent on the superiority of the coordination and scheduling of its components like

automated guided vehicles (AGVs). AGV scheduling refers to the process of allocating

AGVs to tasks, taking into account the costs and time required for the operations to be

accomplished. Multi-objective scheduling, in this regard, is highly complex and

combinatorial in nature when conflicting objectives are involved. Minimizing makespan

(the time required to complete all jobs) and the number of AGVs in an FMS would

consequently minimize the production costs. In addition, AGVs’ battery charge status and

utilization largely affect task scheduling performance, in which without such

consideration the scheduling results would be unrealistic. Incorporation of the AGVs

battery charge consideration into the scheduling practice escalates the model complexity,

and it has been rarely studied before. However, in practice, the AGV’s battery charge

status cannot be neglected. AGV scheduling is a non-deterministic polynomial-time hard

(NP-hard) problem and evolutionary algorithms (EAs) have been proved powerful in

solving such problems. In this study, a multi-objective optimization model for AGV

scheduling in an FMS is developed and solved using four evolutionary algorithms.

Genetic algorithm (GA), particle swarm optimization (PSO), and two different hybrids of

GA and PSO that are referred to as HGP1 and HGP2 are the four EAs developed. In both

the hybrid algorithms, to obtain an algorithm capable of finding better results with

improved convergence properties, some of the GA operators such as selection, crossover,

and mutation were integrated to the PSO algorithm. In HGP2, elitism integration,

v

application of an innovative way of population selection, and a different approach for

incorporation of the GA operators into the PSO have been practiced as well. Next, the

model and algorithms were applied to four testbeds in different sizes to assess the

developed model and solution approaches. The four algorithms were successful in

decreasing the makespan and the required number of AGVs in all the testbeds. With

regard to the battery charge utilization, not only the batteries of omitted AGVs were

saved, but also the remaining AGVs’ battery charge utilization was improved. After the

optimization, along with decrease in AGVs’ number, their idle time has also been reduced

and consequently the AGVs’ operation efficiency was improved. Overall, in all the

testbeds, HGP2 outperformed the other algorithms and obtained the best result. Moreover,

HGP2 converged at a faster rate and had a smaller standard deviation and computational

time. Increasing the problem size did not change the response pattern of the studied EAs,

however it postponed the algorithms convergence to a higher iteration number with

prolonged computational time. Finally, in order to validate the proposed model, a model

simulation was performed by FlexSim software. The simulation outcome confirmed the

optimization result which proved the feasibility and validity of the model.

Keywords: Automated guided vehicle, scheduling, optimization, flexsible

manufacturing system.

vi

SCHEDULING OF AUTOMATED GUIDED VEHICLES IN A

FLEXIBLE MANUFACTURING SYSTEM

ABSTRAK

Sistem pembuatan fleksibel (FMS) menyediakan daya keanjalan dan kepekaan yang

tinggi bagi memenuhi permintaan pelanggan yang mendadak, di mana kepelbagaian

produk dengan kitaran pengeluaran yang singkat menjadi pilihan. Prestasi sesuatu FMS

adalah bergantung kepada kejituan dasar penjadualan untuk sistem kawalan. Prestasi

FMS boleh ditingkatkan dengan melalui penyelarasan dan penjadualan komponennya

seperti kenderaan berpandu automatik (AGV). Penjadualan AGV merujuk kepada proses

penentuan tugasan AGV, dengan mengambil kira kos dan masa operasi. Ini melibatkan

penjadualan pelbagai objektif yang bersifat kompleks dan kombinatorik di mana ia tidak

mempunyai satu penyelesaian unik yang boleh dicapai apabila ia melibatkan objektif

yang bercanggah. Pengurangkan bilangan AGV disamping meminimumkan masa

penyiapan dalam FMS seterusnya akan mengurangkan kos pengeluaran. Selain itu, status

pengecajan bateri dan penggunaan AGV memberi kesan penting pada penjadualan tugas,

sekiranya tanpa pertimbangan status-status tersebut, ia akan menyebabkan keputusan

penjadualan jauh berbeza daripada realiti. Penglibatan proses pengecajan bateri dalam

penjadualan akan meningkatkan kerumitan model. Walaupun dalam amalan industri

status pengecasan bateri AGV ini tidak boleh diabaikan, kajian berkaitan perkara ini tidak

pernah dilakukan oleh penyelidik-penyelidik sebelum ini. Penjadualan AGV merupakan

masalah polinomial-masa yang rumit dan algoritma evolusi telah dibuktikan sebagai alat

yang berkesan untuk mengatasi masalah pengoptimuman tersebut. Dalam kajian ini,

model pengoptimuman pelbagai objektif untuk penjadualan AGV dalam FMS telah

dibangunkan dan diselesaikan dengan menggunakan algoritma evolusi. Empat algoritma

evolusi iaitu Algoritma Genetik (GA), Pengoptimum Kerumunan Zarah (PSO), dan dua

gabungan berbeza GA dan PSO yang dirujuk sebagai algoritma HGP1 dan HGP2 telah

vii

digunakan. Dalam kedua-dua algoritma hibrid yang dibangunkan, beberapa operator GA

seperti pemilihan, persilangan dan mutasi telahpun diintegrasikan dengan algoritma PSO

untuk mendapatkan algoritma yang mampu mendapat hasil yang lebih baik dengan sifat

penumpuan yang lebih baik. Dalam HGP2, penerapan cara pemilihan yang inovatif dan

pendekatan yang berbeza untuk penubuhan operator GA ke PSO telahpun digunakan.

Seterusnya, model dan algoritma telah digunakan untuk empat kajian dalam pelbagai saiz

untuk menilai model yang dibangunkan dan cara-cara penyelesaian. Keempat-empat

algoritma telah berjaya mengurangkan masa penyiapan dan jumlah AGV yang diperlukan

dalam semua kajian. Dari segi penggunaan pengecas bateri, bukan sahaja kadar

pembaziran bateri AGV yang dikurangkan, malah penggunaan pengecas bateri AGV

yang tinggal juga diperbaiki. Selepas pengoptimuman, selain daripada penurunan

bilangan AGV, masa terbiar AGV juga dikurangkan dan seterusnya kecekapan operasi

AGV telah ditingkatkan. Secara keseluruhan, dalam semua kajian yang dijalankan,

prestasi HGP2 adalah mengatasi algoritma yang lain dan mendapat keputusan yang

terbaik. Selain itu, kadar penumpuan HGP2 adalah lebih cepat dan mempunyai sisihan

piawai dan masa pengiraan yang lebih kecil. Peningkatkan saiz masalah tidak mengubah

corak tindak balas EA yang dikaji, bagaimanapun ia dapat menangguhkan penumpuan

algoritma kepada nombor lelaran yang lebih tinggi dengan masa pengiraan yang

berpanjangan. Akhirnya, perisian FlexSim telah digunakan untuk mengesahkan model

yang dibangunkan. Hasil simulasi perisian ini adalah selari dengan keputusan yang

diperolehi. Keputusan ini telah mengesahkan keputusan pengoptimuman dan sekaligus

membuktikan kesahihan dan kesesuian model yang dibangunkan.

Keywords: Kenderaan berpandu automatic, penjadualan, pengoptimuman, sistem

perkilangan fleksibel.

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my profound gratitude, especially to my

supervisor Assoc. Prof. Dr. Yap Hwa Jen, for continuous support of my Ph.D study and

all of the valuable guidance, suggestions, support, encouragements, understanding, and

patience.

Besides, I would like to thank my co-supervisor, Dr. Siti Nurmaya Musa for her insightful

and valuable comments, suggestion, and encouragement, understanding, and help.

In particular, I am grateful to Dr. Farzad Tahriri for enlightening me the first glance of

this research topic and for his valuable guidance throughout the research.

I am also thankful to Assoc. Prof. Dr. Siti Zawiah for the financial support of this research

project.

I would like to dedicate this thesis to:

My dear husband, Dr. Hadi Galavi for his patiance, devotion, help,

and his endless support throughout writing this thesis.

My beloved father’s memory, my dearest mother, my loving sister,

and my supportive brothers who have always loved me

unconditionally.

ix

TABLE OF CONTENTS

Abstract ... iv

Abstrak .. vi

Acknowledgements .. viii

Table of Contents ... ix

List of Figures .. xiii

List of Tables ... xvi

List of Symbols and Abbreviations .. xviii

CHAPTER 1: INTRODUCTION... 1

1.1 Introduction ... 1

1.2 Problem Statement ... 4

1.3 Objectives .. 5

1.4 Significance of the Study ... 5

1.5 Scope of the Research .. 6

1.6 Thesis layout.. 6

CHAPTER 2: LITERATURE REVIEW ... 7

2.1 Introduction ... 7

2.2 Flexible Manufacturing System (FMS) .. 7

2.2.1 FMS Components ... 7

2.2.2 Benefits of FMS .. 8

2.3 Automated Guided Vehicle System .. 9

2.3.1 Different Types of AGVs .. 10

2.3.2 AGV Guidance System ... 10

2.3.3 Guide Path in AGVS ... 11

x

2.4 AGV Scheduling.. 11

2.4.1 On-line vs. Off-line Scheduling ... 13

2.4.2 Methods of AGV Scheduling .. 14

2.5 Evolutionary Algorithm ... 17

2.5.1 Genetic Algorithm .. 18

2.5.2 Particle Swarm Optimization... 20

2.5.3 Hybrid Algorithms .. 22

2.5.4 Multi-objective optimization ... 24

2.6 The current research establishment .. 25

2.7 Summary ... 26

CHAPTER 3: METHODOLOGY ... 28

3.1 Introduction ... 28

3.2 Research Framework ... 28

3.3 Model Derivation ... 29

3.3.1 Multi-objective Evaluation .. 36

3.3.1.1 Minimizing the Makespan .. 37

3.3.1.2 Minimizing the Number of AGVs... 39

3.4 Optimization Algorithms Developed for the Model .. 42

3.4.1 Genetic Algorithm .. 43

3.4.2 Particle Swarm Optimization... 50

3.4.3 Hybrid GA and PSO ... 56

3.4.3.1 The First Hybrid GA-PSO (HGP1) ... 56

3.4.3.2 The Second Hybrid GA-PSO (HGP2) 57

3.5 Programming in MATLAB .. 60

3.6 Evaluation of Model and Algorithms ... 61

3.7 Validation .. 62

xi

3.7.1 Model Validation .. 62

3.7.2 Validation of Optimization Results ... 63

3.8 Summary ... 64

CHAPTER 4: RESULTS AND DISCUSSION .. 65

4.1 Introduction ... 65

4.2 The Developed Model.. 65

4.3 Evolutionary Algorithms .. 66

4.4 Model and Algorithms’ Performance Evaluation .. 66

4.4.1 Parameter Setting of the Algorithms .. 66

4.4.2 Performance at Testbed 1 .. 67

4.4.2.1 Makespan and Number of AGVs .. 68

4.4.2.2 AGVs’ Battery Charge ... 72

4.4.2.3 AGVs’ Specifications/Behavior .. 73

4.4.3 Performance at Testbed 2 .. 76

4.4.3.1 Makespan and Number of AGVs .. 77

4.4.3.2 AGVs’ Battery Charge ... 81

4.4.3.3 AGVs’ Specifications/Behavior .. 82

4.4.4 Performance at Testbed 3 .. 84

4.4.4.1 Makespan and Number of AGVs .. 86

4.4.4.2 AGVs’ Battery Charge ... 90

4.4.4.3 AGVs’ Specifications/Behavior .. 91

4.4.5 Performance at Testbed 4 .. 94

4.4.5.1 Makespan and Number of AGVs .. 96

4.4.5.2 AGVs’ Battery Charge ... 101

4.4.5.3 AGVs’ Specifications/Behavior .. 102

4.4.6 Testbed-size Effect on Model and EAs .. 106

xii

4.4.7 EAs inter-comparison.. 108

4.5 Validation of the Optimization Model .. 110

4.6 Validation of Optimization Result .. 114

4.6.1 Layout Set up .. 114

4.6.2 Model’s Rules and Information Entry to the FlexSim Database 115

4.6.3 Simulation Result .. 118

4.7 Summary ... 120

CHAPTER 5: CONCLUSIONS ... 122

5.1 Research Summary .. 122

5.2 Conclusions ... 123

5.3 Future Research ... 125

References .. 127

List of Publications and Papers Presented ... 142

Appendix: Model and Algorithms Programming ... 143

xiii

LIST OF FIGURES

Figure 2.1: AGV components.. 10

Figure 2.2: Different types of AGVs ... 10

Figure 3.1: The overall research framework .. 29

Figure 3.2: General flowchart of the multi-objective optimization model 31

Figure 3.3: The detailed flowchart of the multi-objective optimization model 32

Figure 3.4: Pseudocode of the model ... 33

Figure 3.5: Flowchart of the GA ... 43

Figure 3.6: Example of one-point crossover (Mousavi et al., 2017) 47

Figure 3.7: Example of two-point crossover .. 47

Figure 3.8: Repairing offsprings out of one-point crossover (Mousavi et al., 2017) 48

Figure 3.9: An example of repairing offsprings out of two-point crossover 48

Figure 3.10: Example of shift mutation operator (Mousavi et al., 2017) 49

Figure 3.11: Flowchart of PSO .. 51

Figure 3.12: Flowchart of HGP1 ... 57

Figure 3.13: Flowchart of HGP2 ... 58

Figure 4.1: The layout of testbed 1 .. 68

Figure 4.2: Performance of the four algorithms at testbed 1 ... 69

Figure 4.3: Best performance (minimum) of the four algorithms at testbed 1 70

Figure 4.4: Operations’ sequence before optimization – testbed 1 72

Figure 4.5: Operations’ sequence after optimization by HGP2 – testbed 1 72

Figure 4.6: AGVs’ battery charge consumption, before and after optimization 73

Figure 4.7: Battery charge utilization, before and after optimization – testbed 1 73

Figure 4.8: AGVs’ specification before optimization .. 74

xiv

Figure 4.9: AGVs’ specification after optimization ... 74

Figure 4.10: AGVs’ operation efficiency before and after optimization 75

Figure 4.11: The layout of testbed 2 .. 76

Figure 4.12: Performance of four algorithms at testbed 2 .. 77

Figure 4.13: Best performance (minimum) of the four algorithms at testbed 2 78

Figure 4.14: Operations’ sequence before optimization – testbed 2 80

Figure 4.15: Operations’ sequence after optimization by HGP2 – testbed 2 80

Figure 4.16: AGVs’ battery charge consumption, before and after optimization 81

Figure 4.17: Battery charge utilization, before and after optimization – testbed 2 82

Figure 4.18: AGVs’ specification before optimization... 82

Figure 4.19: AGVs’ specification after optimization ... 83

Figure 4.20: AGVs’ operation efficiency before and after optimization 84

Figure 4.21: The layout of testbed 3 .. 85

Figure 4.22: Performance of the four algorithms at testbed 3 86

Figure 4.23: Best performance of the four algorithms at testbed 3 87

Figure 4.24: Operations’ sequence before optimization – testbed 3 89

Figure 4.25: Operations’ sequence after optimization by HGP2 – testbed 3 89

Figure 4.26: AGVs’ battery charge consumption, before and after optimization 90

Figure 4.27: Battery charge utilization, before and after optimization – testbed 3 91

Figure 4.28: AGVs’ specification before optimization... 92

Figure 4.29: AGVs’ specification after optimization ... 93

Figure 4.30: AGVs’ operation efficiency before and after optimization 94

Figure 4.31: The layout of testbed 4 .. 95

Figure 4.32: Performance of four algorithms at testbed 4 .. 97

xv

Figure 4.33: Best performance (minimum) of the four algorithms at testbed 4 97

Figure 4.34: Operations’ sequence before optimization – testbed 4 100

Figure 4.35: Operations’ sequence after optimization by HGP2 – testbed 4 100

Figure 4.36: AGVs’ battery charge consumption before and after optimization 101

Figure 4.37: Battery charge utilization, before and after optimization – testbed 4 102

Figure 4.38: AGVs specification before optimization .. 103

Figure 4.39: AGVs’ specification after optimization ... 104

Figure 4.40: AGVs’ operation efficiency before and after optimization 105

Figure 4.41: Best performance of the four algorithms at four testbeds 106

Figure 4.42: Layout 1 (Bilge & Ulusoy, 1995) .. 110

Figure 4.43: layout 2 (Bilge & Ulusoy, 1995) ... 111

Figure 4.44: Sink, source, AGV, and machines in the simulated model environment . 115

Figure 4.45: Part of the “job table” in FlexSim .. 115

Figure 4.46: Source properties .. 116

Figure 4.47: Table of operation time of the example in FlexSim 117

Figure 4.48: Machine properties .. 117

Figure 4.49: Completion time for each job .. 118

Figure 4.50: Waiting time, processing time and travelling time of the goods 119

Figure 4.51: Buffering queues’ time on collecting, releasing and being empty 119

Figure 4.52: Simulation environment, when the model is running 120

xvi

LIST OF TABLES

Table 2.1: AGV scheduling literature (objectives and methods) 16

Table 2.2: Studies with similar research components ... 25

Table 3.1: General schematic for reading data (Mousavi et al., 2017) 44

Table 3.2: Encoding of a sample particle (Mousavi et al., 2017) 53

Table 4.1: Different settings of parameters experimented .. 67

Table 4.2: AGV travel time (minutes) among L/U point and machines 68

Table 4.3: The processing time (minutes) of every operation on the machines 68

Table 4.4: Test results of optimization algorithms at testbed 1 for hundred runs 71

Table 4.5: AGV travel time (minutes) between L/U points and machines 76

Table 4.6: The processing time (minutes) of every operation on different machines 76

Table 4.7: Test results of optimization algorithms at testbed 2 for hundred runs 79

Table 4.8: AGV travel time (minutes) among L/U point and machines 85

Table 4.9: The processing time (minutes) of every operation on the machines 85

Table 4.10: Results of optimization algorithms at testbed 3 for hundred runs 88

Table 4.11: AGV travel time (minutes) among L/U point and machines 95

Table 4.12: The processing time (minutes) of every operation on the machines 96

Table 4.13: Test results of optimization algorithms at testbed 4 for hundred runs 98

Table 4.14: Test results of optimization algorithms at four testbeds for hundred runs 107

Table 4.15: Travel time (minutes) among L/U and machines – layout 1 (Bilge & Ulusoy,

1995) .. 111

Table 4.16: Travel time (minutes) among L/U and machines – layout 2 (Bilge & Ulusoy,

1995) .. 111

Table 4.17: Processing time (minutes) of operations on the machines (Bilge & Ulusoy,

1995) .. 112

xvii

Table 4.18: Comparison of makespan results .. 113

xviii

LIST OF SYMBOLS AND ABBREVIATIONS

n : Total number of jobs

, 'j j : Indexes of jobs, genes’, and dimensions’ code, , ' 1, 2, , j j n 

jm : Total number of operations for each job j

, 'i i : Indexes of operations, , ', ' 1, 2, , j ji i m 

 : Total number of operations for all of jobs

z : Number of AGVs

, 'a a : Index of AGVs, , ' 1, ,a a z 

y : Index of new AGV

jJ : Job number j

jiO : Operation i of job j , _j iO for 1 0 / 10j i   

jiM : Assigned machine for jiO

jip : Processing time of jiO

s
jip : Start time of processing jiO

e
jip : End time of processing jiO

H : Loading/unloading point (Home)

aA : AGV number a

jiT : Related task to jiO (Moving from 1()j iM  to jiM or H to jiM)

a
jiT : Assigned aA to do task jiT

aT : A collection of operations that have done by aA

T : A collection of aT

MS : Makespan

xix

PS : Population size for GA

r : Index of chromosomes, 1, , r P S 

e : Index of genes, 1, ,e  

rC : Chromosome

eG : Gene

C R : Crossover rate

Pm : Mutation rate

maxG : Maximum gene code

maxIt : The maximum iterations

It : The current iteration number

t : Iteration number

tS : Swarm size at iteration (t)

 : Index of particles, 1, , tS 

PR : Particle

d : Dimension, 1, ,d  

 : Inertia factor

max : Maximum inertia factor

min : Minimum inertia factor

t
dv : The velocity of th particle on thd dimension at iteration (t)

1t
dv


 : The velocity of th particle on thd dimension at iteration (t+1)

tV : The velocity of th particle in the swarm at iteration (t)

t
dq : The position of th particle on thd dimension at iteration (t)

xx

1t
dq


 : The position of th particle on thd dimension at iteration (t+1)

tQ : The position of th particle in the swarm at iteration (t)

d
tB : The best position of th particle on thd dimension found so far

t
dG : The global best position of the swarm on thd dimension found so far

and1 2   : Uniformly distributed random numbers in the interval [0, 1].

1C : Self-confidence

2C : Swarm confidence

N A : Number of AGVs to do all the operations

jiCTO : The time that operation jiO completes

aC ChA : Current battery charge of aA

a
jiChHT : Charge that aA needed for doing the task jiT and return home

a
jiChT : The battery charge that aA consumes for doing jiT

aChA : The total battery charge that aA consumes for all of its operations

aCA : Current position of aA ,(Can be H , jiM , ' 'j iM , and 1()j iM )

atC A : Time of current position of aA

a
jitT H : Time that aA arrives home after doing jiT

a
jiPT :

Pick-up point of aA doing jiT ,(P represents pick-up point and can be H ,

jiM , ' 'j iM , and 1()j iM )

a
jitPT : Pick-up time of aA doing jiT

a
jirPT : The time that aA reaches pick-up place of jiT

xxi

a
jiDT :

Drop-off point of aA doing jiT ,(D represents drop-off point and can be

H , jiM , ' 'j iM , and 1()j iM )

a
jitDT : Drop-off time of aA doing jiT

a
jirDT : The time that aA reaches drop-off place of jiT

µ : A large positive number

a
jitCPT : The travel time of aA from its current point to reach the start point of jiT

 : A coefficient for transforming energy consumption to time

a
jiUT : Unloaded time of aA doing jiT

aU tA : Total unloaded time of aA

aItA : Total idle time of aA

aT u A : The time that aA is being charged

a
jiWT : Waiting time of aA doing jiT

aW tA : Total waiting time of aA

a
jiLT : loaded time of aA doing jiT

aLtA : Total loaded time of aA

a
jiRT : Running time (loaded + unloaded) of aA doing jiT

aR tA : Total running time (loaded + unloaded) of aA

aB U : Consumed battery charge utilization of aA

aEA : Operation efficiency of aA

 : A coefficient for determining when a new AGV should be added

L : Number of objectives

 : Index of  , 1, , L  

xxii

 : The
th weight of the

th objective function

 : A ratio to make balance among objectives with different ranges of value

()f x : Fitness function

FMS : Flexible manufacturing system

AGVS : Automated guided vehicle system

EA : Evolutionary algorithm

GA : Genetic algorithm

PSO : Particle swarm optimization

NP-hard : Non-deterministic polynomial-time hard

NC : Numerical control

AMHS : Automated material handling system

AS/RS : Automated storage/retrieval systems

TAGV : Tandem AGV

P/D : Pick-up/drop-off

L/U : Loading/unloading

CFRP : Conflict-free routing problem

ACA : Ant colony algorithm

VRP : Vehicle routing problem

BJS : Blocking job shop

MAS : Multi agent-based system

SA : Simulated annealing

CMS : Cellular manufacturing systems

NFL : No free lunch

SPV : Smallest position value

HGP1 : First hybrid GA-PSO

HGP2 : Second hybrid GA-PSO

xxiii

LDIW : linearly decreasing inertia weight

OpenGL : Open graphics library

GPU : Graphics processing unit

FSP : FlexSim software products, Inc.

3D : Three-dimensional

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

In today’s competitive market, customer satisfaction is an important challenge to

consider. Therefore, organizations have shifted their concentration from producing large

quantities of a single product to a variety of products, improving their quality and timely

delivery to respond to the variable customer demand. Flexible manufacturing system

(FMS) is an agile system with wide flexibility which is well suited for simultaneous

production of an extensive variety of parts in low volumes. FMS is a complex system

consisting of elements like workstations, automated storage/retrieval systems, and

material handling devices such as robots and automated guided vehicles (AGVs). AGVs

are widely used in FMS due to their flexibility and compatibility in/to the system

(Blazewicz et al., 1991; Reddy & Rao, 2011).

Industry 4.0 or the fourth industrial revolution is the current trend of automation and data

exchange in manufacturing technologies and it is about to change the way of producing

and transferring products and parts in warehouses and factory layouts. In industry 4.0, it

is explained that systems would digitally be connected to machines creating flexibility

and predictability in companies to stay competitive in the market (Lasi et al., 2014; S.

Wang et al., 2016). However, automation is a broad area and there are many ways to

reduce manual work in factories and warehouses. Introducing AGVs usually gives an

appealing combination of high flexibility and low installation cost, and it is one quick

way to start this revolution in companies. These systems have been practiced for decades

and are today well established in many types of applications (Almada-Lobo, 2016;

Rüßmann et al., 2015).

2

Due to the AGVs wide range of applicability, a drastic increase in AGVs global market

value from US$ 838.3 million in 2015 to US$ 2.3 billion at the end of 2024 has been

predicted (Bioportfolio, 2017).

FMS performance can be improved by effective utilization of its resources and better

coordination and scheduling of its components like AGV (Fauadi & Murata, 2010; Kumar

et al., 2011; Pan et al., 2013; Udhayakumar & Kumanan, 2010; Zheng et al., 2013). The

term ‘scheduling’ refers to the process of allocating AGVs to tasks, taking into account

the costs and time required for the operations to be done (Udhayakumar & Kumanan,

2010). Efficient scheduling therefore would increase the productivity and reduce the cost

while the entire fleet is optimally utilized (Fauadi & Murata, 2010).

In view of the vast variety of objectives, limitations and considerations in scheduling

context, it is still an open area of research to improve it for real-environment results.

Literature has shown a great tendency toward multi-objective scheduling of AGV systems

and FMSs, in which the makespan minimization criterion is accompanied with several

other criteria to entertain an actual-practice scheduling (Fazlollahtabar & Shafieian, 2014;

Kato & Shin, 2010; Novas & Henning, 2014). The term “Makespan” refers to the

completion time of all jobs in the schedule. In the majority of earlier studies, makespan

minimization was the main objective in the scheduling practice as it reduces the time of

production and warehousing and leads to overall cost reduction (Huang & Zhang, 2013a;

Saidi-Mehrabad et al., 2015; Zheng et al., 2013). However, those studies have discounted

the importance of proper utilization of FMS components. Minimizing makespan without

considering the total number of AGVs employed, may increase the production costs

through unnecessary utilization of a large number of AGVs in the FMS. Allocating a large

number of AGVs shortens the makespan, which seems to reduce the costs at the first

sight, but it will mount the idle time of AGVs and pertinent expenses (Azimi, 2011).

3

AGVs are such expensive devices that determining the type and the appropriate number

of them in an FMS can positively influence the profitability of the business (Aized, 2009;

Kato & Shin, 2010; Liang et al., 2012; Wang & Chan, 2014; Wang et al., 2014).

Another challenge in AGV scheduling studies is the inclusion of AGV battery charge

considerations into the model. Many studies make the assumption of having an AGV with

full battery charge at all time in their scheduling, which leaves the model impractical

(Oliveira et al., 2012; Vivaldini et al., 2013). Battery management is crucial to the AGV

System (AGVS) efficiency as it can reduce the costs and increase the productivity of the

FMS (Kawakami & Takata, 2012; Oliveira et al., 2011). Inclusion of the AGV battery

charge considerations into the scheduling practice would enhance the practicality and

competency of the scheduled system.

AGV scheduling is a non-deterministic polynomial-time hard (NP-hard) problem, in

which it requires application of metaheuristic methods like evolutionary algorithms (EA)

to solve it. EAs are well received by the research community because of their ability to

tackle problems that are highly complex. Genetic algorithm (GA) and particle swarm

optimization (PSO) are two of the well-known EAs in scheduling discourse. In previous

studies, GA has been more extensively used in AGV scheduling compared with other

algorithms and hybrids. However, application wise, every algorithm can be a suitable

choice for problems of a certain type only (Wolpert & Macready, 1997). Performance of

EAs can be improved by the proper choice of their operators and parameters. In addition,

hybridization of these algorithms may also further improve their performances.

To address the above concerns, this research aimed to schedule AGVs in an FMS

environment by developing a multi-objective model that minimizes the makespan and

total number of employed AGVs while considering the AGVs’ battery charge status. The

model will be optimized using four evolutionary algorithms (genetic algorithm (GA),

4

particle swarm optimization (PSO), and 2 different hybrids of GA and PSO (so called

HGP1 and HGP2)). It will be validated through testbeds run and simulation in FlexSim

software.

1.2 Problem Statement

Efficient scheduling would improve the system productivity and reduce the costs while

the entire AGV fleet is optimally utilized (Fauadi & Murata, 2010). Previous studies have

shown that multi-objective models produce a better result than single-objective ones in

AGV scheduling. Having a wide variety of scheduling criteria, it is difficult to integrate

all the criteria in one model. Therefore, each study optimizes the scheduling for a few of

the objectives. The exhaustive literature review in this study revealed that the potential of

AGV scheduling with objective setting of minimizing the number of AGVs and makespan

while considering the AGVs’ battery charge has not been studied yet.

 Makespan minimization reduces the time of production and warehousing and saves cost

(Saidi-Mehrabad et al., 2015). Next, the number of AGVs employed heavily influences

the performance of an AGV system and the production cost-effectiveness as they are

expensive devices (Liang et al., 2012). In addition, it is necessary to take into

consideration that the appropriate use of AGVs’ battery can affect the overall

performance of the AGV system (AGVS) through saving cost and avoiding battery-

oriented interruptions and deadlocks (Kawakami & Takata, 2012). Therefore, integrating

the above criteria in a scheduling model, can result in saving time, energy, and cost.

To find the efficient solution approach for the scheduling problem, literature introduces

the evolutionary algorithms as an appropriate choice for solving NP-hard problems such

as scheduling (Hurink & Knust, 2005). Every EA can be suitable for a certain type of

problem ; GA and PSO are two of the highly cited algorithms for solving scheduling

problems (Zhang et al., 2011); however, the hybrid of GA and PSO is commonly believed

5

to be more effective than its constituent algorithms (Mehta, 2012). Although literature

has practiced hybridization of the GA and PSO, due to the many possibilities in the choice

of operators and parameters integration strategy in the hybrid form, it is always novel to

find a better strategy for obtaining the optimum result in a specific problem. Thus,

hybridization of two well-known algorithms of GA and PSO through a new integration

approach (called HGP2) is accomplished for model optimization in this study. However,

GA, PSO, and another hybrid of GA and PSO (HGP1) were also developed and compared

with HGP2.

1.3 Objectives

According to the research opportunities discussed above, the main objective in this study

is to develop a multi-objective optimization model for scheduling of AGVs in an FMS.

To achieve this aim, the following objectives are delineated:

1. To develop an AGV scheduling optimization model with multiple objectives/criteria

for an FMS environment.

2. To develop evolutionary algorithms for AGV scheduling optimization model.

3. To validate optimized result by discrete event simulation.

1.4 Significance of the Study

Productivity of an FMS is highly dependent upon its components scheduling and fast

synchronization to the system interventions and/or interruptions. AGVs with a fast-

growing global market—especially in Asia Pacific—are one expensive and widely used

component of the FMSs that their scheduling greatly impacts the FMS productivity and

profitability. The type of criteria/objectives integrated together to develop a scheduling

model can affect the system responsiveness. This study postulates that a multi-objective

scheduling model with the following criteria can provide a seamless scheduling model

with an economical utilization of resources that assures the system profitability. The

6

criteria are minimization of the makespan and the number of AGVs utilized in the FMS

while considering their battery charge at all time. This study for the optimization of the

developed scheduling model employs four EAs, which two of them are different hybrids

of the GA and PSO algorithms. A novel configuration for the integration of the GA and

PSO elements is used to develop the hybrid GA-PSO algorithm. Overall, the knowledge

acquired from such a comprehensive approach is beneficial to both academia and

engineers who aim to gain a better perspective of the AGV scheduling context.

1.5 Scope of the Research

The scope of this research is developing a general model for an FMS environment. This

study addresses the general scheduling problem of multiple unit-load AGVs in a plant

with multiple machines arranged in a distributed layout and set of jobs to be processed

and various types of products to be produced. The machine-to-machine distance and the

distance between loading/unloading machines are presumed known.

1.6 Thesis layout

The research fundamentals of this work were established in chapter one. Readers would

find a literature review on FMS, automated guided vehicle, scheduling, and evolutionary

algorithms in chapter two. Chapter three of the disseretation discusses the research

framework, model derivation, optimization algorithms development, and programming

in MATLAB. Results of the model and algorithms’ performance, testbeds

implementation, model validation, and many more are presented in chapter four. The last

chapter would represent a research summary and the conclusions drawn from this project,

while possible future works are also put forward for the respected readers.

7

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

According to the research objectives defined, flexible manufacturing system and its

components, AGV system and its components, scheduling, AGV scheduling and its

methods, and evolutionary algorithms are explained in this chapter. The literature on

above topics is reviewed and the prominent studies on AGV scheduling are summarized.

Next, evolutionary algorithms have been studied and described with the research focus

being set on genetic algorithm and particle swarm optimization and their hybrid. The

literature reviewed here are the basis for constructing the research methodology and

overall framework of the study.

2.2 Flexible Manufacturing System (FMS)

A flexible manufacturing system is a “reprogrammable” manufacturing system capable

of producing a variety of products automatically. The various machining cells are

interconnected via loading and unloading stations and through an automated transport

system. Operational flexibility is enhanced by the ability to execute all manufacturing

tasks on numerous product designs in small quantities with fast delivery. It has been

described as an automated job shop and as a miniature-automated factory. Simply stated,

an automated production system produces one or more families of parts in a flexible

manner. Today, this prospect of automation and flexibility presents the possibility of

producing nonstandard parts to create a competitive advantage. The general objectives of

an FMS are to approach the efficiencies and economies of a scale normally associated

with mass production, and to maintain the flexibility required for small- and medium-lot-

size production of a variety of parts (Chandraa et al., 2015; Srivastava et al., 2008).

2.2.1 FMS Components

A generic FMS consists of the following components:

8

• Numerical control (NC) machine tools. A set of work stations containing machine tools

that do not require significant set-up time or changeover between successive jobs.

Typically, these machines perform milling, boring, drilling, tapping, reaming, turning,

and grooving operations (Kumar et al., 2006).

• Automated material handling system (AMHS). A material-handling system is

automated and flexible in which it permits jobs to move between any pair of machines so

that any job routing can be followed (Chandraa et al., 2015). AMHS can be divided in

three groups as follows:

– Automated guided vehicles

– Conveyors

– Automated storage and retrieval systems (AS/RS)

• Industrial robots. Industrial robots minimize the role of human labor, allowing rapid

changes to assembly lines, avoiding costly equipment replacements, and enabling the

economical production of customized lots (Sciavicco & Siciliano, 1996).

• Control software. Control software is a network of supervisory computers and

microprocessors that performs some or all of the following tasks: (a) directs the routing

of jobs through the system; (b) tracks the status of all jobs in progress so it is known

where each job is to go next; (c) passes the instructions for the processing of each

operation to each station and ensures that the right tools are available for the job; and (d)

provides essential monitoring of the correct performance of operations and signals

problems requiring attention (Ficko et al., 2004; Oyetunji, 2012).

2.2.2 Benefits of FMS

Numerous researchers have detailed the potential benefits of FMS implementation. These

benefits include: less waste, fewer workstations, “quicker changes of tools, dies, and

9

stamping machinery”, reduced downtime, better control over quality, reduced labor, more

efficient use of machinery, work-in-process inventory reduced, increased capacity,

increased production flexibility (Haq et al., 2003; Karsak & Kuzgunkaya, 2002; Malhotra

et al., 2010; Pandey et al., 2016; Tseng, 2004).

2.3 Automated Guided Vehicle System

AGVs are one of the commonly favored types of vehicles for the transfer of raw material,

working process, finish parts, tools, and supplies among different points, machines, and

the components of the manufacturing system in an economic way in FMSs. AGVs were

introduced in 1955 (Muller, 1983). Since then, AGVs’ applications and types have

significantly evolved. AGVs need a close monitoring and effective control strategies

because of their automated system (Albert & Castagna, 1996; Martínez-Barberá &

Herrero-Pérez, 2010). They are cordless and their program can change based on the path

designs; thus, they increase the flexibility for flow changes within a facility. As

automation and flexibility have become crucial factors in material handling, AGVs are

found perfect for low and medium -volume material handling situations, where the

routing of materials is more individualized (Albert & Castagna, 1996; Hall et al., 2001;

Ilić, 1994).

A number of AGVs working together in a facility constitute an AGV system (AGVS).

An AGVS is comprised of four main components; (1) the vehicles that are unmanned

devices for material transportation within the system, (2) the guide path that guides the

vehicle to move along the path, (3) the control unit which observes the system and guides

the operations, moves, etc., (4) and the computer interface which connects the AGVS

with other computers and systems such as mainframe host computer and the FMS (Figure

2.1).

10

Figure 2.1: AGV components

2.3.1 Different Types of AGVs

Various AGVs that accommodate different service requirements are shown in Figure 2.2.

However, AGVs with trailers (Tow/Tugger) designed for material transport between

workstations within an FMS are the common vehicle types in manufacturing industry.

Figure 2.2: Different types of AGVs

2.3.2 AGV Guidance System

The modern AGVs are free-ranging vehicles that are available in limited types with higher

cost. Their preferred tracks are computer-programmed and uploaded to the vehicles’

controllers, and they are changeable. These vehicles find their way using odometer,

gyroscope, laser, magnetic, vision, or radiofrequency techniques (Le-Anh & De Koster,

2006; Tompkins et al., 2010). Having no operator, AGVs follow a set of guide paths in

the facility layout synchronized using a computer-based control system. The guidance

system assures the AGVs movement on the track/predefined path. AGV’s type,

application, requirements, and imposed environmental limitations define the type of

guidance systems to be employed. The wire, laser, inertial, optical or painted strip,

infrared, and teaching-type guidance systems are the well-known systems.

Assembly line
vehicles

Light load
transporters

Towing
vehicles

Pallet
trucks

Unit load
transporters

Forklift
trucks

Different types of AGVs

AGVS components

The Computer
 Interface

The Control
Unit

The Vehicle
The Guide

Path

11

2.3.3 Guide Path in AGVS

The guide paths in AGVS are categorized into tandem, single-loop, and conventional

ones. By configuration, the tandem AGV (TAGV) system classifies the workstations into

non-overlapping zones and assigns one AGV exactly to every zone. Scheduling problems

are quite simple in a tandem system, while they are highly complicated in conventional

systems. A conventional system corresponds to sophisticated network with crosses, paths,

junctions, and shortcuts. AGVs may travel through a path in a single direction (i.e.,

unidirectional path) or in both directions (i.e., bidirectional path) (Le-Anh & De Koster,

2006). With respect to the vehicles use and probable throughput efficiency, it is argued

that the bidirectional path is more advantageous than the unidirectional path systems (Qiu

et al., 2002).

2.4 AGV Scheduling

Scheduling is the process of generating the schedule. Scheduling problems in industry

contain a set of tasks to be carried out and a set of resources available to perform those

tasks. Given tasks and resources, together with some information about uncertainties, the

general problem is to determine the timing of the tasks while recognizing the capability

of the resources. In the scheduling process, it is needed to know the type and the amount

of each resource to determine when the tasks can feasibly be accomplished. In fact,

information about resources and tasks defines a scheduling problem (Baker, 1995;

Pinedo, 2016).

AGV scheduling is one of the major aspects of AGVs application and management. The

term ‘AGV scheduling’ refers to the process of allocating AGVs to tasks taking into

account the costs and time of operations and warranting conflict-free paths

(Udhayakumar & Kumanan, 2010). The goal of AGV scheduling is to release a group of

AGVs in order to accomplish the objectives for a cluster of pick-up/drop-off (P/D) tasks

12

under specific restrictions like priority and deadlines. The scheduling objectives are

typically related to the tasks’ processing time or resources utilization (the system

throughput, the overall travel time of vehicles, and the number of AGVs) under specific

limitations like priority and time limit. However, non-feasible outcomes can be obtained

if the functioning transport system does not take into consideration the scheduling

constraints (Akturk & Yilmaz, 1996; Vis, 2006). Le-Anh (2005) highlighted that the

principal goal of the majority of the scheduling problems is to move loads (pallets,

containers, and products) as quickly as possible to fulfill the time window restrictions.

Other objectives may include minimization of the load waiting time and maximum

number of items in the critical queues. However, minimization of the mean waiting time

of load in AGV scheduling is also pronounced as an important objective (Le-Anh & De

Koster, 2006). The AGVs’ empty travel time is not the main concern of the majority of

the AGV scheduling problems, as it does not preclude the transport orders (loads) in the

AGVS. On the other hand, Mallikarjuna (2014) claimed that the scheduling main purpose

is dependent upon the market demand, the situation, customer’s satisfaction standards,

and company’s demands. Overall, in this context, there are two major scheduling goals:

(1) Minimizing makespan

This broad goal includes the following objectives: (i) minimizing machine’s idle time,

(ii) minimizing the costs of in-process inventories, (c) finishing each job the soonest

possible, and (iv) finishing the last job the soonest possible.

(2) Due date-based cost minimization

The objectives involved in this goal are: (i) minimizing the costs associated with failure

in meeting the scheduled date, (ii) minimizing the maximum possible delay of any job,

(iii) minimizing the overall tardiness, and (iv) minimizing the number of tardy jobs.

13

In other respects, Akturk and Yilmaz (1996) fragmented the scheduling into two key

mechanisms: (i) predictive mechanisms that specify the prescribed starting and

completion times of labor operations and (ii) reactive mechanisms that monitor the

progress of the schedule and handle the unexpected events (e.g., breakdowns, failures,

date changes, and cancellations).

2.4.1 On-line vs. Off-line Scheduling

In off-line scheduling, all the available tasks are scheduled at the same time. Hence, with

any alteration in the tasks, the previously generated schedule must be reviewed and

updated all over the production cycle. Off-line scheduling denotes the scheduling of all

operations of the available jobs for the whole scheduling period. If all the tasks are known

when planning, then the scheduling problem may be resolved off-line.

Accordingly, on-line scheduling systems are required in order to control the vehicles. In

the scheduling problems, the input data domain encircles the load arrival data (time

windows and dispatched and delivered sites), distance matrix of all sites, some optional

information (e.g., a parking policy), and vehicle data (e.g., vehicle speed, capacity, and

type) (Sabuncuoglu & Bayız, 2000). Hence, the scheduling program may automatically

and efficiently control any unpredicted event in the system.

If an off-line method is employed the process is re-programmed, while in on-line methods

the decision on task scheduling is taken when some changes happen in the system. In off-

line scheduling, transportation orders are known beforehand and the routes are

constructed and optimized before being used by vehicles. However, any slight

modifications to the time of job arrival or time of driving (jamming), or vehicle failure

can affect and may damage the entire schedule (Le-Anh & De Koster, 2006). In practice,

the working environments are often stochastic because the AGVs’ travel time, job arrival,

and loading/unloading (L/U) time may vary unexpectedly, and vehicles may crash.

14

Therefore, the schedule should be dynamically modified in time. The schedules ought to

be adjusted when any new information on the transportation orders is received (Le-Anh

& De Koster, 2006).

To recap, in off-line scheduling decisions are made based on the compile-time, in which

the required information is provided. An off-line scheduling algorithm can optimally

arrange the sequences in advanceas it only follows a predefined plan. However, in on-

line scheduling there is no prior plan to arrange the sequences accordingly and it would

be a great disadvantage to on-line algorithms by representing uncertainty in sequences

arrangement (Shabtay et al., 2013). Thus, due to lack of information in on-line scheduling

only simple scheduling techniques could be used that often poorly perform against their

off-line counterparts (Gorcitz et al., 2015; Pinedo, 2012). The present study is also

organized to develop an off-line scheduling with specifications discussed before.

2.4.2 Methods of AGV Scheduling

Fazlollahtabar and Saidi-Mehrabad (2013) reviewed the literature with respect to the

methods employed for optimizing AGVs scheduling at the manufacturing, distribution,

transshipment, and transportation systems. They classified the existing methods into

simulation studies, mathematical approaches, artificial intelligent-based methods, and

metaheuristic methods. Generally, the optimization methods are categorized into three

approaches of exact, heuristics, and metaheuristic. The exact techniques strive for

universal optimality and they generally fail to offer good solutions for NP-hard problems

despite the fact that numerous counter examples exist. On the other hand, heuristics are

problem-specific methods that exploit the problem properties to draw solution strategies

while the metaheuristics are generic heuristic plans that may be applied to numerous

optimization problems.

15

Mallikarjuna (2014) classified the scheduling methods into two categories of traditional

and non-traditional methods.

(1) Traditional methods (also referred to as optimization methods)

These methods are generally slow and they only warrant global convergence when the

problems under consideration are small. They employ mathematical programming

approaches such as integer programming, dynamic programming, linear programming,

and transportation programming (e.g., enumerate procedure decomposition like

Lagrangian Relaxation).

(2) Non-traditional techniques (also known as approximation methods)

These techniques are very quick but they do not warrant optimum solutions. Some of the

approximation methods are as follows:

a- Constructive methods (e.g., composite dispatching rules and priority dispatch rules),

b- Insertion algorithms (e.g., shifting-bottleneck procedures and bottleneck-based

heuristics),

c- Evolutionary programs (e.g., particle swarm optimization and genetic algorithms),

d- Local search techniques (e.g., simulated annealing, ant colony optimization, problem

space methods, Tabu search, and adaptive search), and

e- Iterative methods (These include artificial intelligence methods, artificial neural

networks, beam-search, heuristic procedures, and hybrid techniques).

Table 2.1 presents some of the scheduling literature published since 2000, and introduces

their objectives and methodologies. It also shows the tendency toward multi-task

scheduling of AGV systems and FMSs, in which the makespan minimization criterion is

accompanied with several other criteria to entertain an actual-practice scheduling e.g.

(Liang et al., 2012; Novas & Henning, 2014; Zhao et al., 2013). Heuristic techniques and

EAs are the common optimization methods used to solve a multi-task scheduling problem

(Table 2.1). In addition, Table 2.1 introduces the prominent researches in scheduling

16

context that can assist new researchers in finding a pertinent literature to their specific

objective and methodology.

Table 2.1: AGV scheduling literature (objectives and methods)

Authors The article objectives Method
Ventura et al.
(2015)

Minimization of the response time (mean response
time, maximum response time with and without
considering time restrictions on vehicle availability).

Mixed integer linear
programming formulations +
a generic GA

Saidi-
Mehrabad et
al. (2015)

Minimizing the total completion time, considering the
Conflict-Free Routing Problem (CFRP) and the basic
Job Shop Scheduling Problem.

A two stage Ant Colony
Algorithm (ACA)

Rashmi and
Bansal (2014)

Optimal scheduling based on workload balance and
minimum traveling time.

Ant colony optimization

Vasava (2014) Multiple-input job AGV scheduling according to FMS
environment.

GA

Wang et al.
(2014)

Scheduling for minimization of number of AGVs in
the plant.

Simulation

Cai et al.
(2014)

Task scheduling and coordination control in a multi-
AGV system to shorten the overall run time of the
system, and maximize the efficiency of AGVs and
overall system.

Mixed regional control
model and the neuro-
endocrine coordination

Nageswararao
et al. (2014)

An autonomous conveyance system for AGVs
following the taxi transportation strategies.

Applying traffic engineering
knowledge

Nageswararao
et al. (2014)

Robust factor function and minimization of mean
tardiness

Binary particle swarm
Vehicle Heuristic algorithm

Kaplanoğlu et
al. (2014)

Proposed a multi-agent based scheduling approach,
AGV breakdowns considered.

The Prometheus
Methodology

Zeng et al.
(2014)

Solved an extension of the blocking job shop (BJS)
problem, where transferring jobs between different
machines using a limited number of AGVs is
concerned (BJS–AGV problem).

A two-stage heuristic
algorithm (improving
timetabling + local search)

Lin et al.
(2014)

Optimal AGV configuration to reduce waiting time. Simulation

Giglio (2014) Scheduling the transportation of pallet and roll pallet
loads from the storage area to the gates.

Mathematical programming,
heuristic procedure

Fazlollahtabar
and Shafieian
(2014)

Design of a computer integrated manufacturing system
Identification of an optimal path in a vehicle routing
problem (VRP) network, considering time, cost, and
the AGV capability factors.

Mathematical programming
approach

Novas and
Henning
(2014)

Simultaneous scheduling of AGVs, machine loading,
manufacturing activities, part routing, machine buffer,
and tool planning and allocation in FMS.

Constraint programming

Zhao et al.
(2013)

Multi-task scheduling and controlling of the logistic
equipment of the AGVS.

Simulation

Sawada et al.
(2013)

Scheduling with focus on AGVs congestion at
transport rail junctions, throughput maximization, and
transit time shortening.

Visualization algorithm via
state space realization

Zheng et al.
(2013)

Optimizing the AGV running time, minimizing the
waiting time, and resolving the conflict and the
deadlock problem of the multi-AGV systems.

Mathematical modelling,
validated in a test bed.

Ullrich (2013) Total tardiness minimization through integrating
production and outbound distribution scheduling.

GA

Ren et al.
(2013)

Study of productivity efficiency in a Collaborative
Manufacture System.

Improved GA (coding,
crossover, and mutation)

Gan et al.
(2013)

AGVs scheduling and comparison with dispatching
rules.

Annealing GA

17

Table 2.1, Continued

Huang and
Zhang (2013b)

Optimal AGV scheduling, considering system
response time and efficiency.

Game theory

Liang et al.
(2012)

Minimization of the make-span considering the AGVs
dispatch.

Particle swarm optimization
(PSO)

Erol et al.
(2012)

Developing an on-line and distributed scheduling
system based on a Multi agent-based system (MAS)
framework for both AGVs and machines.

Multi-agent based systems (a
distributed artificial
intelligence technique)

Ariffin et al.
(2011)

Minimization of the make-span. Fuzzy GA

Salehipour et
al. (2011)

Locating workstations in a TAGV system using a new
solution framework.

Mathematical formulation +
development in a heuristic
algorithm

Kato and Shin
(2010)

Optimal scheduling of the dispatching commands,
minimal number of AGVs, and empty load travelling
time.

Multi-step solution
algorithm

Fauadi and
Murata (2010)

Makespan minimization through simultaneous
scheduling of machines and AGVs operation.

Binary PSO

Morandin et al.
(2010)

Minimization of the makespan by considering AGV
and the input buffer.

Timed Petri net

Khanmohamm
adi et al.
(2010)

Proposing a path planning method for AGVs to
navigate in an unknown environment reaching certain
destinations.

A hybrid Fuzzy logic-based
method

Udhayakumar
and Kumanan
(2010)

Developing a methodology to balance the number of
tasks given to the AGVs to minimize the total
transportation time (two AGVs were considered)

GA and ant colony

Yahyaei et al.
(2010)

Application of a newly developed controller. Fuzzy logic

Shirazi et al.
(2010)

Minimizing the material flow intra- and inter-loops
considering the limitation of TAGV workload.

Modified ant colony

Farahani et al.
(2008)

Minimizing the maximum workload of the system. Tabu search and GA

Tavakkoli-
Moghaddam et
al. (2008)

Minimizing both intra- and inter-loop flows
simultaneously based on balanced-loops strategy and
inter-machine flows taken from ideas of cellular
manufacturing systems (CMS).

Simulated annealing (SA)

Jerald et al.
(2006)

Minimization of the penalty cost of machine and its
idle time.

Adaptive GA

Jerald et al.
(2005)

Minimization of the machine’s idle time and total
penalty cost for not meeting the deadline concurrently.

PSO

Gaur et al.
(2003)

Developing a 5/3 approximation algorithm to
minimize the completion time such that each site is
visited only after its release time and handling times
being taken into consideration.

Dynamic programming
strategy, One End first
strategy

Sinriech and
Kotlarski
(2002)

To schedule multiple-load vehicles in a single loop
while minimizing the transfer time of jobs and the
number of loops travelled by the vehicle.

Dynamic Scheduling (Short
term Scheduling algorithm),
evaluated through simulation

Berman and
Edan (2002)

Developing a control methodology for decentralized
autonomous AGVS considering all aspects of AGVS
functionality.

Fuzzy control using a
hierarchical behavior-based
model

Veeravalli et
al. (2002)

Proposing analytical models for the AGVs scheduling. Mathematical modeling

2.5 Evolutionary Algorithm

Evolution as proposed by Charles Darwin is a process in nature, where individuals adopt

to their environment by preserving the features that makes the individual to compete with

others in order to survive and by attempting to eliminate the features that makes it weaker.

18

Metaheuristic techniques and evolutionary algorithms (EA) are the common optimization

methods used to solve a multi-task scheduling problem (Rashmi & Bansal, 2014; Ventura

et al., 2015; Wang & Chan, 2014). Some of the distinct researches in scheduling context

that can assist new researchers in finding a pertinent literature to their specific objectives

and methodologies are (Cai et al., 2014; Kaplanoğlu et al., 2014; Nageswararao et al.,

2014; Suzuki et al., 2014).

Based on the “no free lunch” (NFL) theory every algorithm can be a suitable choice for a

specific class of problems while it may not be a good choice for other classes (Wolpert &

Macready, 1997). Literature has shown the effectiveness of genetic algorithms (Pezzella

et al., 2008; Zhang et al., 2011) and PSO (Girish & Jawahar, 2009; Zhang et al., 2009)

for solving the scheduling problem. Performance of EAs can be improved by the proper

choice of their operators and parameters. In addition, hybridization of these algorithms

may also further improve their performances. Therefor, GA and PSO algorithms are used

in this study. However, the hybrid of GA and PSO is commonly believed to be more

effective than its constituent algorithms (Mehta, 2012; Wang & Si, 2010; Wu et al., 2010).

Although literature has practiced hybridization of the GA and PSO, due to the many

possibilities in the choice of operators and parameters integration strategy in the hybrid

form, it is always novel to find a better strategy for obtaining the optimum result in a

specific problem.

2.5.1 Genetic Algorithm

GA is a search algorithm based on the mechanics of the natural selection process

(biological evolution) which were pioneered by John Holland and his students (Holland,

1975). GA is popular among all the evolutionary algorithms and they are applied

successfully to a variety of engineering problems of different fields. The most basic

concept in GA is that the strong tends to adapt and survive while the weak tends to vanish.

19

Genetic algorithms are stochastic heuristic search methods whose mechanisms are based

upon simplifications of evolutionary processes observed in nature. They are good at both

the exploration and exploitation of the search space, as they operate on more than one

solution at any instance of time (Wall, 1996).

Genetic algorithm works by modeling the parameters of a problem as bit strings. They

may represent integers, floating-point numbers, or anything else that is applicable to a

problem. Each of these parameters is referred to as a gene and the bit string as

chromosome in the context of GA. Initially a population of chromosomes, each of which

represents a potential solution to the problem at hand, is generated randomly and each of

them is evaluated based on its fitness value. The next generation of same size is created

by selecting more fit individuals from this population and by applying genetic operators

like crossover and mutation to them. Mutation is an operator, which creates a new

individual by making a random change in the old one, whereas crossover creates new

individuals by combining parts from multiple individuals. Classic mutation randomly

alters a single gene, while crossover exchanges genetic material between two or more

parents. This completes one generation and after repeating this procedure for a number

of generations, due to the selection operator utilization, the algorithm converges and it

yields a better solution (Aytug et al., 2003).

GA has been successfully applied in many of the scheduling studies. Biegel and Davern

(1990) applied GA to the scheduling problem and discussed the GA process for an

elementary “n” tasks one-machine problem. Then they extended the work for “n” tasks

on two processors and finally generalized for “n” tasks and “m” processors in the series.

Chen et al. (1995) proposed a GA based heuristic for the scheduling problem on the

makespan objective and compared the efficiency of the proposed GA with the other GA

heuristics reported in the literature. A thorough review of the GA representation schemes

20

for scheduling and various hybrid approaches of GA and conventional heuristics

application is prepared by Cheng et al. (1996).

Some of the studies in this context has been working on improving the GA application in

the scheduling problems. For instance, Nearchou (2004) investigated the effect of various

genetic operators on the performance of GAs when applied on permutation scheduling

problems. The stochastic behavior of the GA was estimated under the influence of a set

of five crossover and six mutation schemes. To study the GA hybridization possibilities,

Gonçalves et al. (2005) have developed a hybrid genetic algorithm for the scheduling

problem that the chromosome representation of the problem was based on random keys.

Their scheduling model was constructed using a priority rule in which the priorities were

defined using GA.

Udhayakumar and Kumanan (2010) studied multi-objective task scheduling of AGVs in

an FMS using non-traditional optimization algorithms. They tried to find a near optimum

schedule for two AGVs based on the balanced workload and minimum traveling time for

maximum utilization. Agrawal et al. (2012) applied GA for a multi-objective scheduling

problem where alternate machines were available to process the same job to minimize

makespan as well as total machining time. The application of GA to the multi-objective

scheduling problem has given optimum solutions for allocation of jobs to the machines

to achieve nearly equal utilization of machine resources. Vasava (2014) used GA to

develop an AGV scheduling model for different FMS environments with the objective of

makespan minimization.

2.5.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary algorithm that was inspired by the

motion of a flock of birds searching for foods and was proposed by Kennedy and Eberhart

(1995). PSO is one of the successful optimization algorithms in scheduling applications

21

because of its simple and straightforward implementation. PSO has been applied in

multiple fields such as human tremor analysis for biomedical engineering, electric power

and voltage management and machine scheduling (Kennedy et al., 2001). The original

PSO is proposed for optimization of single objective continuous problems. However the

concept of PSO has been expanded to allow it to handle other optimization problems such

as; binary, discrete, combinatorial, constrained and multi-objective optimization (Aziz et

al., 2011).

At the beginning of the evolutionary process, a set of particles referred to as a swarm must

be initiated randomly. Each particle can change its position in the search space just like a

flying bird searching the food in the sky. During the evolutionary process, a particle of a

swarm adjusts its newer moving velocity according to its best experience, the best

experience of all particles in the swarm and the previous moving velocity. Then, the

particle moves to a new position according to newly generated velocity and its previous

position (Zini & ElBernoussi, 2015).

Some of the studies that have applied PSO for scheduling problems are reviewed in the

followings. Tasgetiren et al. (2006) applied PSO to solve the single machine total

weighted tardiness problem, which is a typical discrete combinatorial optimization

problem. They developed a heuristic rule borrowed from the random key representation

in genetic algorithms, called ‘the smallest position value’ (SPV) rule to enable the

continuous PSO to be applied to all permutation types of discrete combinatorial

optimization problems. Tasgetiren et al. (2007) applied PSO algorithm to solve the

permutation-scheduling problem with the objectives of minimizing makespan and the

total flow time of jobs. Performance of the algorithm was evaluated on widely used

benchmarks from the operations research library and it showed to be promising in solving

permutation problems. In the same vein, Chandrasekaran et al. (2007) developed a PSO

22

to solve a multi-objective scheduling problem. They had considered three criteria of

minimization of makespan, total flow-time, and the completion time variance.

Performance of the proposed methodology has been tested by solving benchmark

scheduling problems available in the literature.

Pongchairerks (2009) introduced three heuristic algorithms based on PSO for solving

scheduling problems with multi-purpose machines, and open-shop scheduling problems.

The three developed algorithms were based on the PSO and specific decoding procedures

generating solutions related to the class of parameterized active schedules. Pongchairerks

(2009) concluded the superiority of developed algorithms against available ones. Later,

Sha and Lin (2010) constructed a PSO for an elaborate multi-objective job-shop

scheduling problem. Due to the discrete solution spaces of scheduling optimization

problems, they modified the particle position representation and particle movement and

velocity. They used the modified PSO to solve various benchmark problems. They proved

that their modified PSO performed better in search quality and efficiency than traditional

evolutionary heuristics.

Recently, Al Theeb and Alhwiti (2014) used PSO to minimize the total weighted tardiness

and the total setup costs for all jobs, where the setup time and cost for a job depend on its

place in the sequence. They highlighted that there is no relationship between the setup

time and cost and this is because in some cases the setup requires highly skilled operators

and special tools, which cause the setup cost to be high even if the setup time is short.

2.5.3 Hybrid Algorithms

Hybrid algorithms are constructed by combining two or more other algorithms that

originally solve the same problem. So that for solving the problem throughout the hybrid

algorithm run, either one (based on the data properties) algorithm will be used or the

hybrid algorithm switches between its constituent algorithms. The hybridization approach

23

is to benefit from desired features of each algorithm in a compound that can have a better

performance than its constituent algorithms. It should be stressed that a hybrid algorithm

is an algorithm that is built by combining several other algorithms that solve the same

problem—not just any algorithms that may solve other problems—but each has different

characteristics like performance.

 Hybrid GA and PSO

The PSO algorithm is problem-independent, which means little specific knowledge

relevant to a given problem is required (Xia & Wu, 2006). All the required prior-

knowledge is the fitness evaluation of each particle. This advantage makes PSO more

robust than many other search algorithms. On the other hand, GA simultaneously

evaluates many points in the search space, it is more likely to find the global solution of

a given problem. With every EA having a specific merit that could be incorporated into

another EA, hybridization of evolutionary algorithms has been investigated in many

studies (Chelouah & Siarry, 2003; Fan & Zahara, 2007; Kao & Zahara, 2008). Such a

hybrid is often referred as a mimetic algorithm.

As known, PSO performs according to the knowledge of social interaction, and all

individuals are taken into account in each generation. On the contrary, GA simulates

evolution and some fitter chromosomes are selected while some others are eliminated

from generation to generation (Liou et al., 2013). Hence, by integrating the advantages of

the compensatory properties of PSO and GA, their hybrid form can be used to obtain

better results (Mehta, 2012; Wang & Si, 2010; Wu et al., 2010).

For example, Tang et al. (2010) proposed a hybrid of GA and PSO to solve the scheduling

problem. The PSO algorithm was introduced to get the initial population, while

evolutionary genetic operations were used. They validated the new method on seven

benchmark datasets, and the comparison with some existing methods verified its

24

effectiveness. Liu et al. (2015) used a hybrid algorithm using PSO and GA to solve a

scheduling problem. In their algorithm, named hybrid PSO-GA algorithm (HPGA), the

PSO algorithm was redefined and modified by introducing genetic operators, i.e. the

crossover operator and the mutation operator, to update the particles in the population.

The HPGA was then applied in heavy machinery company with minimizing machines’

makespan and minimizing jobs’ tardiness as the two optimal objectives. The comparisons

with actual application report showed that their proposed HPGA can obtain higher quality

of schedule solution for machine tool production.

2.5.4 Multi-objective optimization

One of the most widely used methods for solving multi-objective optimization problems

is the classical method. Such methods aggregate the objectives into a single,

parameterized objective function in order to generate the Pareto-optimal set. Several

optimizations run with different parameter settings are performed in order to achieve a

set of solutions which approximates the Pareto-optimal set. Basically, this procedure is

independent of the underlying optimization algorithm. Some representatives of this class

of techniques are the weighting method (Cohon 1978), the constraint method (Cohon

1978), and etc.

The fact that well-studied algorithms for single-objective problems can be used for multi-

objective problems makes the classical approaches attractive and popular. For large-scale

problems, hardly any real multi-objective optimization techniques had previously been

available (Horn 1997). By contrast, in single-objective optimization a wide range of

heuristic methods have been known that are capable of dealing with this complexity

(Zitzler, 2000, 1999, Mao-Guo, 2009. Deb, 2015).

 The weighted-sum method is a traditional and a popular method that parametrically

changes the weights among objective functions to obtain the Pareto front (Kim, 2005). It

25

is simple and easy to use, for convex problems it guarantees finding solutions on the entire

Pareto-optimal set, although it has a limitation in mixed optimization problems (min-max)

and needs to have all the objectives in one type. However, as objectives of this study are

of minimization type, the weighted sum method can properly be applied in this research

framework.

2.6 The current research establishment

Based on the reviewed literature relevant to the present research, Table 2.2 is prepared to

demonstrate the methods, model criteria, and validation procedure used in this study and

compare it with existing literature for establishing its novelty.

Table 2.2: Studies with similar research components

 Method Model Method Model

 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Ventura et al. (2015)   Liang et al. (2012)   
Saidi-Mehrabad et al. (2015)  Morandin et al. (2011)  
Samuel and Rajan (2015)   Fauadi and Murata (2010)  
Jain and Foley (2016)    Kato and Shin (2010) 
Liu et al. (2015)   Udhayakumar and Kumanan (2010) 
Li et al. (2014)  Tang et al. (2010)  
Vasava (2014)   Yahyaei et al. (2010) 
Wang et al. (2014)   Song (2010) 
Lin et al. (2014)  Kuo and Lin (2010) 
Giglio (2014)  Premalatha and Natarajan (2010) 
Nageswararao et al. (2014)   Gnanavel Babu et al. (2010)  
Novas and Henning (2014)  Sha and Lin (2010)  
Zheng et al. (2014)  Morandin et al. (2010) 
Ercan and Li (2013)  Naderi et al. (2010) 
Jamrus et al. (2013)  Premalatha and Natarajan (2009) 
Zhao et al. (2013)  Valdez et al. (2008) 
Zheng et al. (2013)  Farahani et al. (2008) 
Ullrich (2013)  Kim et al. (2007) 
Gan et al. (2013)  Jerald et al. (2006) 
Huang and Zhang (2013a)  Reddy and Rao (2006)  
Gelareh et al. (2013)  Jerald et al. (2005) 
Badakhshian et al. (2012)  Abdelmaguid et al. (2004)  
Udhayakumar and Kumanan (2012)  Gaur et al. (2003) 
Liang et al. (2012)   Haq et al. (2003) 
Agrawal et al. (2012)  Sinriech and Kotlarski (2002) 
Badakhshian et al. (2012)   Veeravalli et al. (2002) 

1- GA
2- PSO
3- Hybrid GA and PSO
4- AGV Scheduling (makespan minimization)

5- AGV Scheduling (AGV number minimization)
6- AGV Scheduling (AGV battery charge
consideration)
7- Simulation of model

26

Table 2.2 demonstrates the study components of previous researches in scheduling

context, where it is the focus of this dissertation as well. The research plan of this study

was to define a set of criteria for scheduling model development that can significantly

contributes to the scheduling practices. Previous studies, as summarized in table 2.2, had

not considered AGV battery charge in their scheduling models (column number 6 in

gray), in which it can affect the scheduling models’ practicality. In addition, no study had

also practiced a combination of these seven components stated in Table 2.2 for AGV

scheduling. Therefore, this study by integrating the above study components can provide

a significant contribution and a novel approach in the AGV scheduling context.

2.7 Summary

A flexible manufacturing system is a “reprogrammable” automated manufacturing

system capable of producing a variety of products. In an FMS, various machining cells

are interconnected via loading/unloading stations by an automated transportation system

such as AGV system. AGV systems are one of the skillful types of material handling

system in modern automated production environments. AGVs are the ideal equipment for

warehouse storage, automatic loading/unloading of trailers with pallets and other unit

loads, and production applications. Some of the main advantages of AGVs are the high

flexibility, space utilization, and safety along with less overall operating cost. For cost-

effective utilization of AGVs, proper planning on AGVs dispatching, scheduling and

routing should be considered (Le-Anh & De Koster, 2006). The term ‘scheduling’ refers

to the process of allocating AGVs to tasks, taking into account the costs and time of

operations (Udhayakumar & Kumanan, 2010). Selection of the right scheduling policy

highly influences the FMS performance. AGVs—are expensive devices and highly

valuable resource in FMSs that their operation should be adequately optimized for the

system to be profitable (Anwar & Nagi, 1998; Fauadi & Murata, 2010; Nanvala, 2011).

Literature review revealed that the potential of AGV scheduling with objective setting of

27

minimizing the number of AGVs and makespan while considering the AGVs’ battery

charge has not been studied yet. Thus, considering the importance of each of the above

criteria in FMS profitability, this study developed a scheduling model with the above

three criteria. In addition, evolutionary algorithms have been proved a powerful tool for

scheduling optimization problems. Overall performance of an evolutionary algorithm,

like PSO and GA, can be improved by proper choice of its operators and parameters (Gen

& Lin, 2014). Hybridization of evolutionary algorithms is also believed that can

profoundly enhance the overall performance of the EAs. PSO functions according to the

knowledge of social interaction, and all the individuals are taken into account in each

generation. On the contrary, GA simulates the evolution and some fitter chromosomes

are selected while some others are eliminated from generation to generation. Integrating

advantages of the two EAs of GA and PSO in a single optimization algorithm, results in

a hybrid algorithm that can be more beneficial than its constituents. There are many

possibilities in the choice of operators and parameters integration strategy in the hybrid

form that makes it novel to find a better strategy for obtaining the optimum result in a

specific problem. Thus, hybridization of two well-known algorithms of GA and PSO

through a new integration approach (called HGP2) is accomplished for model

optimization in this study.

28

CHAPTER 3: METHODOLOGY

3.1 Introduction

This chapter describes the research framework of the study as graphically summarized

and shown in Figure 3.1. Having accomplished a thorough literature review, the

scheduling model derivation, its assumptions and objective criteria are explained first.

The general and detailed flowchart of the model are illustrated in Figures 3.2 and 3.3,

respectively. Next, the four evolutionary algorithms (GA, PSO, and 2 different hybrids

of GA-PSO referred to as HGP1 and HGP2) developed for the model are elaborated

through. A detailed description on AGVs specification/behaviour exploration is then

provided to be applied both before and after optimization. Model validation using testbed

run and simulation technique through FlexSim software are explained at the end of this

chapter.

3.2 Research Framework

The research framework is shown in Figure 3.1. In this figure, the blue rectangular

represents the first research objective which is multi-objective model development, and

its details are demonstrated in Figures 3.2 and 3.3. The red rectangular shows the

processing blocks of the second objective of algorithms development, which further

details are illustrated in Figures 3.5, 3.11, 3.12, and 3.13. The third objective is the last

part of the framework which is testbed run and simulation.

29

Figure 3.1: The overall research framework

3.3 Model Derivation

This section explains the mathematical model development for AGV scheduling using

the three criteria selected based on the reviewed literature. The three criteria are

categorized into two main objectives: (1) minimizing the makespan and (2) minimizing

the number of AGVs while considering the AGV’s battery charge. First, it is necessary

to define the conditions and limitations considered in the model development. Thus, the

following conditions were defined:

Termination
criteria met?

MODEL AND METHOD DEVELOPMENT
(Details in Figure 3.5, 3.11, 3.12, and 3.13)

Start

Literature review

Testbed runs

Model validation via Simulation

End

Developed algorithms for the model

Multi-objective model development and
evaluation (Details in Figure 3.2 and 3.3)

 The objectives:

 Makespan minimization

 AGV number minimization

 AGV battery charge consideration

Initializing parameters and population

First hybrid
GA-PSO
(HGP1)

Genetic
algorithm

(GA)

Particle swarm
optimization

(PSO)

Stop

Generate new population

Start

Second hybrid
GA-PSO
(HGP2)

O
bj

ec
ti

v
e

1 O
bj

ec
ti

ve
 2

O
bj

ec
ti

v
e

3

30

• All AGVs have unit-load capacity and it is same in whole procedure.

• AGVs and machines operate continuously without breakdown.

• Traffic problems, collision, or conflicts are avoided by hardware and are not

considered in this study.

• AGV L/U times are fixed and considered in travel times.

• AGVs are allowed to park at their P/D locations.

• AGVs have a constant speed and move forward only

• L/U equipment such as pallets are sufficiently allocated as well as output buffer

for machines to avoid machine deadlock.

• The machine-to-machine distance and L/U point-to-machine distances are known.

• Each machine operates only one product at a time.

Having defined the conditions for the model development, Figure 3.2 illustrates the six

general processing blocks/steps of the model development. It starts with inspection of

AGVs’ status and their current position in the layout; the operations’ order would also be

reviewed simultaneously. AGV selection based on battery status and travel time of current

AGVs in the system is then performed and it is compared with the possibility of adding a

new AGV to the system. The selected AGV is next assigned to the task. Final, machines

and parts availability would be reviewed for the AGV to perform the loading/unloading

of the part.

31

Figure 3.2: General flowchart of the multi-objective optimization model

For further explanations on each step, Figure 3.3 illustrates the detailed flowchart of

model development. The pseudocode of the model development algorithm is also shown

in Figure 3.4 for a straightforward pursuant of the flowchart.

Inspection of operations
order (The first or the

last operation)

AGV selection based
on battery charge

sufficiency

AGV selection based on
minimum time that AGV
reaches the destination

Availability check of machines and parts

Loading/unloading the part to/from the machine or
L/U (based on operation’s order)

Choosing between new AGV and the selected
existing one to be assigned

Inspection of AGVs’
status/position

MULTI-OBJECTIVE MODEL DEVELOPMENT (General)

Assigning the selected AGV to the task

Step 6

Step 1

Step 2

Step 3

Step 4

Step 5

32

Figure 3.3: The detailed flowchart of the multi-objective optimization model

33

Figure 3.4: Pseudocode of the model

34

Figure 3.4: Continued

35

Figure 3.4: Continued

36

Figure 3.4: Continued

In following sections, mathematical definitions used to develop the model are explained.

In the first section, since the model has more than one objective, the objectives combining

approach for the purpose of model evaluation is described. The later subsections would

discuss the objectives individually.

3.3.1 Multi-objective Evaluation

There are different ways of evaluating multi-objective models. Weighted sum is one of

the most applied principles for evaluation of multi-objective optimization problems

(Karthikeyan et al., 2015; Marler & Arora, 2010). In this method, different objective

values are aggregated into a single quality measure. Objective functions usually have

different scales from one another and in weighted sum approach, objectives would be

normalized prior to the aggregation process (Eichfelder, 2008; Giagkiozis & Fleming,

37

2015). Based on the weighted sum method, overall fitness function formulation for 

objectives is described by

     1 1 1+ ... + + ... + 1 0f x f x f x           (3.1)

where  is the index of  , and 1, , L   ,  is the
th weight of the

th objective

function, and  is a ratio to make balance among objectives with different ranges of value

(Ghane-Kanafi & Khorram, 2015; Mateo, 2012), which is defined by

1
1

 ()
 when () ()

 ()

max f x
f x f x

max f x
 



  
(3.2)

3.3.1.1 Minimizing the Makespan

This step involves calculating makespan (MS) which is the time required for all operations

to be completed. A set of n jobs denoted by Jj,j’ has some operations denoted by Oji

(operation i of job j), which will be processed on a set of machines (Mji). A general

schematic for reading data is shown in Table 3.1. Makespan is expressed by

 ()a
ji jiMS max tDT p  (3.3)

a a a a a
ji ji ji jitDT tCA UT WT LT    (3.4)

   
(1) (1) ' '

(1) ' ' (1) ' '

' '

 1

 1

e a a e a e
j i ji ji j i ji j i

e a e a a e a e
j i ji j i ji ji j i ji j i

a

e a
j

i

j

j

i i

p rPT if rPT p rDT p i

p rPT p rDT if rPT p rDT p i

W
r T

T
p D

 

 

     

       




' '

' ' (1)

' '

' ' (1)

 1

 1

 1

0

 1

a e
ji j i

a e a e
ji j i ji j i

a e
ji j i

a e a e
ji j i ji j i

rDT p i

if

rDT p rPT p i

rDT p i

if

rDT p rPT p i





   



     

  



    

' ' Subject to ji j iM M




















(3.5)

38

(1) (1)

' ' ' '

- 1

 1

 1

0

a a
ji j i j i

a a
ji ji ji

a a
ji j i j i

a a
j ji
a
i

tHT tM if CA M i

tHT tM if

U

CA M i

tHT tM if CA M i

tPTT tCA

   

   

   

  

(1)

(1)

(1)

 1

 1

 1

a

a
j i

a a
j i ji

a a
j i ji ji ji

CA H i

if

CA M i

tM T tH if CA H i

tM T tM if CA M







   



   

   

 

(1) ' ' ' '

 1

 1a a
j i ji j i j i

i

tM T tM if CA M i














  

    

 (3.6)

(1) (1)

 1

 1

a a a
ji ji ji jia a

ji ji a a a
ji ji j i ji ji

a
j

j

i

i

tM T tHT if PT H i
tDT tPT

tM T tM T if PT M
L

i
T

 

    
   

   

 (3.7)

 Subject to:

 1s
ji jiCTO p i   (3.8)

0 a a a
ji jitPT T T   (3.9)

(1) , s a
ji j i jip tP iT p j   (3.10)

 1 , 2,..., s s a
ji ji ji jj i

p p p LT j i m


     (3.11)

   

' ' ' ' ' '

' ' ' '

(0)

 0 , , ', '

s s
ji j i j i ji j i

s s
j i ji ji ji j i

p p p M M

p p p M M j i j i





     

     
 (3.12)

   
' ' ' ' ' '

' ' ' '

(0)

 0 , , ', '

j

j

a a a a a
jm j i j i ji j i

a a a a a
j i jm ji ji j i j

tPT tPT LT T T

tPT tPT LT T T j m j i





     

     
 (3.13)

where mj,j’ is the total number of operations of job j,j', i,i' is the indexes of operations,

(i,i'= 1, 2, …, mj,j') , � is the total number of jobs,
a
jiLT is the loaded time of Aa doing Tji.

pji is the processing time of Oji,
s
jip is the start time of processing time of Oji,

e
jip is the end

time of processing time of Oji, and
a
jiT is the assigned Aa to do the task Tji. CTOji is the

39

completion time of operation Oji, µ is a large positive number. a, a’ are indexes of AGVs,

(a,a’=1,…,z), and Aa,a’ represents AGVs.
a
jiPT is the pick-up point of Aa doing Tji,

a
jitPT

is the pick-up time of Aa doing Tji,
a
jirPT is the time that Aa reaches pick-up place of Tji.

a
jiDT is the drop-off point of Aa doing Tji,

a
jitDT is the drop-off time of Aa doing Tji,

a
jirDT

is the time that Aa reaches drop-off place of Tji,
a
jiUT is the unloaded time of Aa doing Tji,

and
a
jiWT is the waiting time of Aa doing Tji.

Constraint number 3.8 ensures the feasibility of completion time of the first operation of

each job. Constraints number 3.9 and 3.10 ensure the feasibility of pick-up time of

operations. Inequality number 3.11 describes the operations precedency constraint.

Inequalities number 3.12 and 3.13 represent the operation and the AGV un-overlapping

constraints, respectively.

3.3.1.2 Minimizing the Number of AGVs

This step involves calculating the number of AGVs, which is denoted by NA. Number of

AGV is expressed by

 max aNA a T T  (3.14)

Subject to

'

'

 is assigned to (to create)

 '

a a
ji ji

a a
ji

a a
ji ji

a a
ji ji

A T T

ChA ChHT

if
tCPT tCPT

if

tCPT tCPT a a

 







 
     

 (3.15)

40

    
 is assigned to (to create)

y y
y is

y y a

a new AGV ji ji

y a
ji j

a
ji ji ji jiitCP

A T T

if T LT UT tCP LTT UT   
 (3.16)

where Tji is the related task to Oji (moving from Mji-1/H to Mji), Ta is a collection of

operations that have done by Aa, CAa is the current position of Aa, tCAa is the time of

current position of Aa, and H is the loading/unloading (Home) point. ChAa is the current

battery charge of Aa,
a
jiChHT is the charge that Aa needed for doing the task Tji and return

home.
a
jitT H is the time that Aa arrives home after doing Tji, y is the index of new AGVs.

λ is a coefficient for determining when a new AGV should be added, and
a
jitCPT is the

travel time of Aa from its current point to reach the start point of Tji.

Equation 3.15 ensures that the assigned AGV has enough battery charge to do the job and

return home, while it chooses the AGV which takes less time to reach the point. Equation

3.16 determines the suitable time for adding a new AGV to the system.

(a) Battery Charge of AGV

In the model, AGV battery charge has been considered at all time. When an AGV is to be

assigned to a job, first its battery charge sufficiency (
a
jiChHT) will be checked. AGV

should have enough battery to travel and do the job, then return home.

((-))a a a a
ji ji ji

a
j jiiT HChHT UT LT t tDT   (3.17)

 ,
a a
ji

a a
ji

j i
T T

ChA ChT



  (3.18)

()a a
ji ji

a
ji LTC T UTh  

(3.19)

 
100

a
a

a

ChA
BU

MS TuA
 

 (3.20)

41

where ChAa is consumed battery charge of AGV number a, γ is the ratio of energy

consumption to time, aT u A is the time that AGV is being charged, and aB U shows the

consumed battery charge utility of AGV number a. Equation 3.17 calculates the battery

charge required for the AGV to do the job and return home. As battery-run-time of an

AGV and battery-charging-time can be defined depending on the type of batteries used,

charging methods, charge rate, application type, manufacturer, and assignments the

vehicles perform,has been defined to adopt to any kind of battery and charging method,

etc. The “automatic and opportunity” battery-charging is considered here, which on

average an AGV charges for 10-12 minutes every hour (AGV Kennis Instituut, 2015;

Egemin Automation, 2016).

(b) AGVs’ Specifications/Behavior

In this step, the methodology for further investigation on AGVs’ behaviour before and

after the optimization is explained. Such analysis would help in better understanding of

the optimization model impacts and effectiveness. Specifications of AGV number a are

its total running time denoted by RtAa (loaded (LtAa) + unloaded time (UtAa)), waiting

time (WtAa), idle time (ItAa), and its efficiency (EAa) that are calculated by equations 3.21

to 3.27.

 ,

a a
ji

a
ji

j
T

a

i
T

UTUtA



 
(3.21)

Equation 3.21 calculates all the time that AGV number a has been travelling without

load, which it could be traveling to load the part/product from home/another machine or

returning home for charging, during the process of all jobs.

 ,

a a
ji

a
ji

j

T

a

i

T

LTLtA



 
(3.22)

Equation 3.22 calculates all the time that AGV number a has been travelling loaded to

deliver the part/product to the destination machine during the process of all jobs.

42

 ,
a a
ji

a
ji

j
T

a

i
T

Wt WTA



 
(3.23)

Equation 3.23 calculates all the time that AGV number a has been waiting (either when

it is waiting loaded for the machine to be free to deliver the part to the machine or when

it is waiting unloaded for the machine to finish its operation and pick-up the part for the

next destination or home) during the process of all jobs.

a a aM S RItA tA T u A   (3.24)

Equation 3.24 is all the time which AGV number a is idle (either waiting to be dispatched

or equation 3.23) excluding the charging time. Waiting time is a part of the idle time in

this formula.

 ,
a a
ji

a a
ji

j i
T T

RtA RT



 
(3.25)

Equation 3.25 is all the time that AGV number a is running either loaded or unloaded

(combination of loaded and unloaded time of AGV number a).

a a
j

a
ji i jiR LT T UT (3.26)

Equation 3.26 calculates the running time of AGV number a for doing Tji.

100
a

a RtA
EA

MS
 

(3.27)

Equation 3.27 calculates the AGVs’ operation efficiency, which determines how much

work AGV has done during the makespan.

3.4 Optimization Algorithms Developed for the Model

Four EAs (GA, PSO, and 2 different hybrids of GA and PSO so called HGP1 and HGP2)

have been developed to optimize the AGV scheduling model. The algorithms

performances were later evaluated and compared to one another.

43

3.4.1 Genetic Algorithm

GA is a search algorithm based on the mechanics of the natural selection process. The

major steps of GA algorithm development according to the study condition are described.

However, for a thorough review of the GA, readers are referred to publications of

Beheshti and Shamsuddin (2013); Elsayed et al. (2014); Holland (1975); Joshi (2014),

and Thakur et al. (2014). Flowchart of the developed GA for the model is shown in Figure

3.5, and the entailed steps towards building the GA in relation to the model are described

next.

Figure 3.5: Flowchart of the GA

44

Step 1. Initializing parameters. It involves setting the parameters of the GA and creating

the first generation of chromosomes. The general schematic of reading data for the

problem is presented in Table 3.1. The first column shows a chromosome (Cr) and the

second one shows the genes (Ge) of the chromosome. The encoding of each gene is

presented in the third column, which will be discussed later.

Table 3.1: General schematic for reading data (Mousavi et al., 2017)

GA PSO

Chromosome
(Cr)

Gene
number

(Ge)

Gene
code
(j)

Particle
(PRα)

Dimension
Number

(d)

Dimension
code
(j)

Job
(Jj)

Operation
(Oji)

Machine
(Mji)

Processing
time
(pji)

C1

G1

G2

.

.

.

1mG

1

1

.

.

.

1

PR1

1

2

.

.

.

m1

1

1

.

.

.

1

J1

O11

O12

.

.

.

11mO

M11

M12

.

.

.

11mM

p11

p12

.

.

.

11mp

.

.

.

.

.

2

.

.

.

2

.

.

.

.

.

2

.

.

.

2

J2

O21

.

.

.

22mO

M21

.

.

.

22mM

p21

.

.

.

22mp

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

G

n

.

.

.

n

.

.

.

.



n

.

.

.

n

Jn

On1

.

.

.

nnmO

Mn1

.

.

.

nnmM

pn1

.

.

.

nnmp

45

Step 2. Initializing population. A set of chromosomes is needed to create a population.

For constructing a chromosome, it is necessary to define a proper genetic representation

(encoding) due to its significant effects on all the subsequent steps of the GA.

Chromosome representation and encoding. As it was shown in Table 3.1, each

chromosome is formed by genes. The order of genes represents the priority of operations,

which decreases from left to right; and the genes’ code defines the operations related to

each job. Genes’ codes are the same as their job number so that all the genes related to J1

operations have the code ‘1’ and subsequently the code ‘2’ is given to all the genes related

to the operations of J2, and so on. As the operations of each job are expected to be

performed sequentially, the repetition of genes’ code represents the corresponding

operation number of the job as clearly described in the following example.

The number of genes in each chromosome equals the number of total operations in a job-

set, which is expressed by

, '

, '
, ' 1

j j n

j j
j j

m




  (3.29)

Chromosome generating. A chromosome (Cr) is a random construct of operations,

which is expressed by

  

     
2

, '

11 12 1 21 22 2 1 2

1

, ' 1, 2,...,

 , , ..., , , , ..., , ..., , , ...,

r j j

n n n n nn

j

C j j n

O O O O O O O O O

m

m m m

  

 
 
 
 
 
  

(3.30)

where j, j' are indexes of jobs, j, j'=1, 2, …, n and mj,j' = number of operations for each

job. Oji is the operation i of job j.

The process of generating and coding chromosomes is explained below via an example

of 3 jobs (J1, J2, and J3). Each job has 4, 3, and 5 operations, respectively. Overall, there

46

are 4 3 5 12     operations. Therefore, the chromosome is a random construct of


4 3 5

22233111 3331
 
 
 

. A sample could be  221132313133 . Here, code ‘1’, ‘2’, and ‘3’

imply operations of J1, J2, and J3, respectively. From the left, the first ‘2’ represents the

first operation of J2, the second ‘2’ represents the second operation of J2, the first ‘1’

represents the first operation of J1, and so on.

Step 3. Multi-objective evaluation. After initializing the population size, each

chromosome is evaluated with respect to the makespan and the number of AGVs utilized,

while considering the battery charge of AGV, that are defined through equations 3.1 to

3.18. Then, the total fitness value will be calculated based on equations 3.19 and 3.20.

Step 4. New population. New population will be produced based on the below sub-steps:

selection, crossover, elitism, and mutation operation.

Selection. To constantly enhance the overall fitness of the population, selection helps to

discard the bad/weak chromosomes and only keep the best ones in the population. It

increases the likelihood of selection of individuals with better fits for the next

generation. There are a few different selection methods but their basis is the same. The

tournament candidate selection, which is a proportionate random selection method

suitable for multi-objective optimization, is used in this study (Shukla et al., 2015).

In this method, every individual in the population is paired at random with another. The

fitness values of each pair are compared. The fitter individual of the pair moves on to the

next round, while the other is disqualified. This continues until there are a number of

winners which is equal to the desired number of parents. Then, this last group of winners

is paired as the parents for new individuals (Chudasama et al., 2011).

47

Crossover. Crossover operator generates two new chromosomes for the next generation

out of two selected chromosomes by exchanging some of their genes. This study

employed two crossover operators based on partial strings exchange; a one-point

crossover and a two-point crossover (Spears & Anand, 1991). The one-point crossover

randomly divides the two parent chromosomes into two substrings and two new

chromosomes are obtained by exchanging the second substring and maintaining the first

one or vice versa. It is illustrated in Figure 3.6 based on the example in step 2.

Figure 3.6: Example of one-point crossover (Mousavi et al., 2017)

The two-point crossover is similar to the one-point crossover and is illustrated in Figure

3.7. Two cut points are randomly chosen and three substrings are determined for each

parent. The first and the third pair of substrings are exchanged and two new chromosomes

are created.

Parent 1 2 2 1 1 3 2 3 1 3 1 3 3

Parent 2 3 2 1 1 3 2 1 3 3 2 1 3

Offspring 1 3 2 1 1 3 2 3 3 3 2 1 3

Offspring 2 2 2 1 1 3 2 1 1 3 1 3 3

Figure 3.7: Example of two-point crossover

The offspring of crossover between the strings may not produce a legal encoding, for

example, uncorrected number of operations per job may be seen. Therefore, they should

be repaired and legalized. For repairing mechanism, counting from the left, the redundant

genes will be deleted and the missing ones would be replaced; thus, each offspring can

48

comprise all the operations of all the jobs. Repair mechanism is shown in Figures 3.8 and

3.9.

Legal chromosomes for the example in step 2 should include four codes ‘1’, three codes

‘2’, and five codes ‘3’. In Figure 3.8a, counting from the left, in offspring 1, code ‘2’ is

repeated four times, but there are three operations for J2, so it should repeat three times.

There is one code ‘2’ that is redundant and should be replaced by the missing code. Code

‘1’ is repeated four times, which is correct, but code ‘3’ is repeated only four times, which

should be five times. So, in Figure 3.8b, the fourth code ‘2’ will be replaced by number

‘3’. In offspring 2, number ‘2’ is repeated two times and number ‘3’ is repeated six times,

so the last code ‘3’ will be changed to code ‘2’.

Figure 3.8: Repairing offsprings out of one-point crossover (Mousavi et al., 2017)

The same procedure would be applied to repair two-point crossover (Figure 3.9).

Offspring 1 3 2 1 1 3 2 3 3 3 2 1 3

Offspring 2 2 2 1 1 3 2 1 1 3 1 3 3

a. Before repair

Offspring 1 3 2 1 1 3 2 3 3 3 2 1 1

Offspring 2 2 2 1 1 3 2 1 1 3 3 3 3

b. After repair

Figure 3.9: An example of repairing offsprings out of two-point crossover

The number of crossovers is calculated based on the crossover rate (CR) and population

size (PS) using

49

 

2

CR PS
Number of crossovers


 (3.31)

Mutation. Mutation is another important operator of GA that initiates extra variability in

a population to create and maintain the diversity. The number of mutations in each

generation is calculated using equation 3.32 based on the mutation rate (Pm), population

size (PS), and maximum gene code (Gmax).

 max Number of mutations PS G Pm   (3.32)

Of the several mutation types, shift mutation is used in this study (Nearchou, 2004). In

shift mutation, a gene is selected randomly as a move-point and inserted in a random

position (inserting point) as it is shown in Figure 3.10. Based on the coding used in this

study, chromosomes produced out of shift mutation are legal and no need to be repaired.

Figure 3.10: Example of shift mutation operator (Mousavi et al., 2017)

Boundary check: In boundary-constrained problems, the parameter values of the trial

vectors need to be checked whether they lie within the range or not. In case they violate

the boundary constraint they should be adjusted.

Elitism. The first three best chromosomes from each generation are transferred directly

to the next generation in the elitism step to avoid annihilation. It is possible to maintain a

fixed fitness value in some generations, but elitism makes sure they will never deteriorate.

Step 5. Termination. The loop of chromosome generations is terminated when certain

conditions are met. The conditions are; either the number of generations reaches its

maximum or there are no changes or marginal changes in the elite solution. The elite

chromosome is returned as the best solution once the termination criteria are met.

50

3.4.2 Particle Swarm Optimization

PSO is a population based stochastic technique inspired by social behaviour of bird

flocking or fish schooling. Extensive reviews on PSO algorithm development can be

found in Du et al. (2015); Gao et al. (2015); Kennedy et al. (2001); Li and Yao (2012),

and (Song, 2014). The developed PSO for the model is shown in Figure 3.11. The PSO

configuration for the model is described in details in the following steps:

Step 1. Initializing parameters. Initialization involves setting the parameters of the PSO

to create a group of particles to make the initial swarm in the next step. The general

scheme for reading the data in the problem is presented in Table 3.1. The forth column

shows a particle (PRα) and the fifth one shows dimensions of the particle (d). The

dimensions’ codes are presented in the sixth column, which will be discussed later.

51

Figure 3.11: Flowchart of PSO

Step 2. Initializing population (swarm). A group of particles are needed to create a

swarm. Each particle has position (Q) and velocity (V) in the search space at iteration (t),

where they are described briefly in the following sub-steps:

Particle position.
tQdenotes the t h particle in the swarm at iteration ‘t’ and is

represented by ‘ ’ dimensions as

 1 2 3 , , , , t t tt tqQ q q q        (3.33)

where
t

dq is the position value of t h particle with respect to thd dimension and

d=1,…,θ. First position of particle is filled by two-digit numbers for ‘d’ dimensions of

52

the particle using equation (3.34). The number of dimensions is equal to the total number

of operations, which is calculated by equation (3.29).

 min max m

0
in 1 - dq qq q    (3.34)

where min 0q  , max 10 q  and 1 is a uniform random number between 0 and 1.

Particle velocity. Initial velocities for the PSO particles are generated by the below

formula:
tVdenotes the velocity of th particle at iteration (t). It can be identified by

 1 2 3 , , , , t t t t tV v v v v        (3.35)

where
t

dv is the velocity of th particle with respect to thd dimension. Velocity should be

set within the limits so that it will not overshoot the search space. Initial velocities for the

PSO particles are generated by the formula below:

  0
min max min 2 - dv v v v    (3.36)

where 0 minv  , max 10 v  and 2 is a uniform random number between 0 and 1.

Step 3. Particle representation and encoding. Every possible sequence of operations is

considered as a particle, where the dimension of the particle represents each operation.

Three sub-steps for encoding a particle are as follows: applying smallest position value

(SPV) rule, assigning the dimensions’ codes to the particles, and identifying sequence of

operations in each job.

Applying smallest position value (SPV) rule. SPV is a rule that facilitates

transformation of the continuous PSO algorithm to discrete cases applicable to all types

of the scheduling problems (Tasgetiren et al., 2004). As an example, for better

understanding of SPV rule, the corresponding sequence of a given continuous position

like [0.3, 1.2, 0.9, 2.4] would be [4, 2, 3, 1]. In a descending order, ‘0.3’ is the smallest

value and its sequence will be ‘4’; ‘2.4’ is the largest so its order in the group will be ‘1’.

53

Assigning the dimensions’ codes to the particles. In this stage, the dimensions’ codes

as it is shown in the 6th column of Table 3.1 are assigned to the particles. Dimensions’

codes are based on the job number.

Identifying sequence of operations in each job. From the left side, the first appearance

of a job number is assumed the first operation of that job (i.e., Oj1). Similarly, the second-

time repetition of the same job number stands for the second operation of the same job

(i.e., Oj2) and so on. Once the first encountered generated number is assigned to the first

operation of a job, this technique automatically handles the precedence constraints.

Table 3.2: Encoding of a sample particle (Mousavi et al., 2017)

The stages of encoding an example with 3 jobs are shown in Table 3.2. Each job has 4, 3,

and 5 operations respectively. The total number of operations is 12, which means the

particle sample will have 12 dimensions, and each dimension being randomly generated

using equation 3.29 and shown in the first row of Table 3.2. In the second row of the

table, based on SPV rule, the numbers of 1 to 12 are assigned to the particles in an

ascending order. In the third row, the dimensions’ code based on the job numbers are

given to the particles as follows: first four numbers are assigned to the first job, so their

code is ‘1’, followed by the second three numbers assigned to the second job, so their

code is ‘2’ and the remaining five numbers are assigned to the third job and their code is

‘3’. The sequence of operations in each job is shown in the fourth row of the Table 3.2.

From the left, the first particle has the code ‘1’, so it belongs to job 1 and it is the first

code ‘1’, which makes it the first operation of job 1 denoted by O11; the next code is ‘2’,

Particle sample 0.2 0.37 0.17 0.51 0.73 0.42 0.93 0.35 0.69 0.84 0.65 0.05

Applying SPV rule (giving the numbers
from one based on ascending order)

3 5 2 7 10 6 12 4 9 11 8 1

Assigning the dimensions’ codes to the
particles

1 2 1 2 3 2 3 1 3 3 3 1

Identifying sequence of operations in
each job

O11 O21 O12 O22 O31 O23 O32 O13 O33 O34 O35 O14

54

so it belongs to job 2, but as it is the first code ‘2’, it is the first operation of job 2. The

same structure is followed for the remained 10 operations.

Step 4. Multi-objective evaluation. Once the swarm is generated, each particle is

evaluated with respect to the obtained makespan and number of AGVs, while considering

the AGV battery charge, which are defined through equations 3.1 to 3.18. Then, the total

fitness value will be calculated based on equation 3.19 and 3.20.

Personal best.
tB represents the best position associated with the best permutation and

fitness value of the particle obtained so far and is called the personal best. For each

particle,
tB is determined and updated at each iteration.

Global best. tG denotes the best position of the globally best particle achieved so far in

the whole swarm.

Step 5. New swarm. To produce a new swarm, the position and velocity of the particles

should be updated. Updated particles will be evaluated again according to the step four

and their best local and global particle will be determined. This procedure will be repeated

up to a point where the termination criterion is satisfied. The updating procedure is

explained as follows:

Updating the velocity of each particle. The velocity of each particle is updated using

1
1 1 2 2 ()) (t t t t t t

d d d d d dv v C q CB G q            (3.37)

where
t

dv
and

1t

dv


are the velocity of αth particle on dth dimension at instance (t) and

(t+1), respectively;
t

dq and
1t

dq


 are the positions of αth particle on dth dimension at

instance (t) and (t+1), respectively. t is the previous iteration, d is the dimension and α is

55

the index for particles, 1, , tS  , tS is swarm size at iteration (t), φ1 and φ2 are

uniformly distributed random numbers in the interval of [0, 1]. C1 is self-confidence while

C2 is swarm confidence and their values should be tuned based on the experiment, and ω

is the inertia weight parameter.

C1 (self-confidence) and C2 (swarm confidence). Since C1 helps in self-exploration (or

experience) of a particle, it can be treated as self-confidence coefficient of the particle.

Similarly, it is appropriate to treat C2 as swarm confidence, since it is the coefficient,

which contributes in moving the particle toward the global best direction by considering

the motion of all the other particles in the swarm in the preceding program iterations. C1

and C2 are sometimes also known as cognitive and social parameters respectively (more

details in “tuning the parameters” section).

Inertia weight (ω). Inertia weight is a parameter to control the impact of the previous

velocity on the current velocity (Kuo et al., 2009; Xia & Wu, 2005). It is an important

parameter to be optimized for obtaining better results in PSO. A large inertia weight

facilitates searching new areas while a small weight facilitates fine searching in the

current search space. To strike a balance between global exploration and local

exploitation, a suitable selection of inertia weight is necessary (more details in “Tuning

the parameters” section).

Updating the position of each particle. The position of particle is updated using the

updated velocity as below:

1 1 t t t
d d dq q v  
   (3.38)

Once the positions and velocities for the next instance are calculated, they will be checked

whether they are in the prescribed limits or not. These limits for positions and velocities

are [0, Qmax] and [-Vmax, Vmax] respectively.

56

 Step 6. Termination. The loop of swarm groups is terminated when certain conditions

are met. The conditions are; either the number of iterations reaches its maximum or there

are no changes or marginal changes in global best evaluation of particle. The particle with

global best is returned as the best solution once the termination criteria are met.

3.4.3 Hybrid GA and PSO

Taking advantage of compensatory properties of PSO and GA, two hybrids of GA and

PSO (so called HGP1 and HGP2) were developed for the problem. PSO robustness,

independency from the problem, and social interaction knowledge along with GA

advantage of evaluating each individual and choosing the better ones are the

characteristics incorporated into a hybrid algorithm. The development procedure of both

hybrids and their flowcharts are described in the following sections.

3.4.3.1 The First Hybrid GA-PSO (HGP1)

In the proposed HGP1, the initial swarm was created and evaluated; the positions and

velocities of the particles were updated by using the concerned equations. Next, in order

to effectively exploit the search space, the well-known genetic operators (selection,

crossover, and mutation) were employed. Selection (the tournament as in GA in section

3.4.3) finds parents from the updated particles for crossover and mutation step. The

crossover operation has been used in the GA segment to avoid premature convergence;

and mutation operation was applied to maintain the diversity of the swarms. The

operators’ concept hired from GA was incorporated into PSO and the resulting hybrid

PSO was named HGP1. Figure 3.12 illustrates the steps of HGP1.

57

Figure 3.12: Flowchart of HGP1

3.4.3.2 The Second Hybrid GA-PSO (HGP2)

Figure 3.13 illustrates the steps followed in HGP2 and it is briefly explained in the

following paragraphs. In the second hybrid (HGP2), initialization and encoding, and

evaluation steps were performed the same as in PSO.

58

Figure 3.13: Flowchart of HGP2

Next, elitism was applied in a different way than the one used in GA. In this step, obtained

results were mixed with the results from the previous iteration to prevent good results

from fading away. In the selection step, repetitive solutions of the two generations were

eliminated and from the remaining particles a swarm inclusive of the best particles was

extracted. Then again, particles were ordered and the best half was retained and the other

half was discarded. Next, to create a population with the required size; in two parallel

segments, once both the GA and PSO operators were applied to the retained best particles

59

of the last step and once only the PSO operators were applied. The output of each segment

would construct one half of the new population size. Therefore, a swarm conforming to

the required population size was finally created from the best offsprings and particles.

In each of the segments, the position and velocity of the half-size population were updated

and checked if they were within the predefined boundary. So that one half of the new

population is ready up to this stage. For the next segment, to create the other half of the

new population, GA operators (crossover and mutation) were also applied and reviewed

in terms of the boundary condition accordance. In both the segments, if the boundary

conditions were not met, algorithm would replace the outliers with random numbers

within the predefined boundaries and proceeds until termination criteria are met, then the

best answer in step 6 would be the fitness value obtained.

Tuning the Parameters

Tuning the metaheuristics’ parameters, due to their impact on the performances obtained,

is of paramount importance. The parameters are different in each algorithm. The four

EAs’ performances depend on parameters like population size, inertia factor (ω), self-

confidence (C1), swarm confidence (C2), crossover, and mutation rate. Regarding

population size, small populations do not provide enough diversity among the individuals.

Increasing the population size also does not necessarily improve the performance as it

can be observed from the multimodal functions, but increases the diversity and

consequently increases the computation time for each generation. The same holds for the

number of generations to be simulated (Andersson et al., 2016; Eiben & Smit, 2011a;

Karafotias et al., 2015). Thus, increase in crossover rate increases the opportunity for

recombination but also disruption of good combinations. Increase in mutation rate

escalates the random search capability and facilitates introduction of a new gene or re-

introduction of the lost genes (Veček et al., 2016). Guo and Yang (2011), in this regard,

60

have also stated that to avoid local optimal solutions; individual rate of mutation and the

hereditary generations of population can be increased. Of the available tuning methods

for evolutionary algorithms, application of the Brute-force technique in cases with less

than 10 parameters has been advised (Silberholz & Golden, 2010). Brute-force technique

involves testing of m parameter values for each of the n parameters, a procedure that

should test nm configurations over a subset of the problem instances (Palonen et al., 2009;

Sinha et al., 2014; Veček et al., 2016).

Values of C1 and C2 vary in different studies and the range is between 0.1 and 2. However,

values of below 1 are more frequently observed in different studies (Karafotias et al.,

2015). The inertia weight can be tuned in two ways. In the first case, its value is changed

from 0.1 to 0.9 and every time the effect is monitored (Lobo et al., 2007). The other

approach is the linear decreasing inertia weight (LDIW) which ω would be varied with

time and calculated by equation 3.39 (Andersson et al., 2016; Eiben & Smit, 2011b). In

this way, the algorithm could have more global search ability at the beginning of the run

while having the more local search ability near the end of the run, because the inertia

factor moves from a large value (ωmax) to a relatively small value (ωmin) during the run.

max min

max

max

It
It

 
 


   (3.39)

where It is the current iteration number, Itmax is the maximum iterations during the

evolutionary process, max and min are maximum and minimum values of ω,

respectively.

3.5 Programming in MATLAB

There are different software for programming of EAs such as C/C++, Java, MATLAB,

etc. Yu and Gen (2010b), and (Vasava, 2014) have suggested MATLAB as a

61

programming environment for implementing EAs. It allows to import data in .xls, .csv

files, etc. It also has powerful plotting tools for easier data visualization. MATLAB

(matrix laboratory) is a proprietary programming language developed by MathWorks Ltd

which is a multi-paradigm numerical computing environment and fourth-generation

programming language. MATLAB allows matrix manipulations, plotting of functions

and data, implementation of algorithms, and creation of user interfaces. It has the ability

to interface with programs written in other languages, including C, C++, C#, Java,

Fortran, and Python (The MathWorks, 2016). To run MATLAB, the computer

requirements are any Intel or AMD x86-64 processor, Windows Server 2008 R2 and

higher or Windows 7 and higher, 4 GB RAM with Simulink, and 2 GB without, hardware

accelerated graphics card supporting “Open graphics library (OpenGL)” 3.3 with 1GB

“Graphics processing unit (GPU)” memory (The MathWorks, 2016). The model and

algorithms of this study have been programmed in MATLAB software version 2014a (64

bit). The programming codes are at the appendix.

3.6 Evaluation of Model and Algorithms

With every metaheuristic having a unique functionality, their inter-comparison is in many

ways more difficult than other algorithmic comparisons. Using testbed should be the first

consideration when comparing two metaheuristics. Two kinds of testbeds can be used

(Silberholz & Golden, 2010): (1) using the existing testbeds, and (2) developing new

testbeds. When comparing a new metaheuristic to existing ones, it is better to test it on

the problem instances already tested at previous studies. There are many cases where this

is either insufficient or not possible. For instance, when writing a metaheuristic for a new

problem or model, there will be no prior-testbed for that problem, thus it is necessary to

develop a new testbed corresponding to the problem specifications.

New testbeds should represent real-life cases with various sizes and difficulty levels. One

of the key points in the testing of metaheuristics is the testbed size that must be a large

62

problem (Silberholz & Golden, 2010). In the same vein, Jans and Degraeve (2007)

mentioned that algorithms can perform differently regarding either runtime or quality of

solution on large-sized instances. It is also advised by Gen and Lin (2012) to test the

performance of algorithms by conducting large-sized problems. Problems with more than

100 operations are often categorized as large-sized problems (Eren & Güner, 2007;

Özgüven et al., 2010). In developing new testbeds, providing accessibility to the testbed

should be considered to let other researchers use them and make comparisons for future

studies. One effective way to make this happen is to create a simple function for the

testbed generation. Publishing them is another way to make them accessible (Silberholz

& Golden, 2010).

With the above background in mind and having a new criterion (AGVs’ battery charge

considerations) included in the model that distinguishes it from existing models, it was

realized that the available testbeds are not suitable to the problem at hand both in terms

of size and the problem definitions. Therefore, four new testbeds were developed in

different sizes (small, medium, and large) with different machines, operations and job

numbers to test the model functionality and assess the model response to the problem

size.

3.7 Validation

This section expresses validation of the model and validation of the optimization result.

3.7.1 Model Validation

Validation step determines if the model is a satisfying image of the real system. It

indicates that the system performance is reliable enough to be applied to the real-world

cases and satisfy the model objectives (Aydemir & Koruca, 2015; Hillston, 2003). To

validate the model, it has been tested on benchmark problems which are considered for

this purpose. The proposed model has been validated through the well-known Bilge and

63

Ulsuy (Bilge & Ulusoy, 1995) problems with data of ten job sets on two layouts. Then,

the results from previous algorithms which had used the same data for scheduling are

used for comparison purpose.

3.7.2 Validation of Optimization Results

Computer simulation is a common tool applied to comprehend complex systems and

assess their practicality (Azimi, 2011; Ba et al., 2016; Kelton et al., 2004; Sinha et al.,

2014). In simulation approach, a computerized model is designed to simulate the system’s

operations and configurations so that different testbeds can be conducted to evaluate the

model performance and practicality accordingly (Keesman, 2011; Li et al., 2015).

Therefore, a simulation practice in FlexSim computer simulation software (version

16.2.2) has been performed.

FlexSim Software Products Inc. (FSP) creates simulation software and provides

simulation modeling services. It introduced FlexSim simulation software (FlexSim) 1.0

in February 2003. It brought a new modern simulation engine, a smooth integration with

C++, and a three-dimensional (3D) modeling environment. From the beginning, FlexSim

had standard features of discrete event simulation packages. The least specification of a

computer running FlexSim is any modern Intel or AMD processor, 4 GB RAM, Windows

Vista or higher, any GPU that supports OpenGL 3.1 or higher, and “.NET Framework”

is an essential additional software. Through this software, one representative medium-

sized testbed (testbed 2) was simulated and evaluated in terms of the whole system

performance. The system analysis was performed based on the statistics and graphical

outputs of the simulation step for both the AGVs and machines (FlexSim Software

Products, 2016).

64

3.8 Summary

The scheduling model derivation fundamentals were explained according to the three

criteria, which are classified into two main classes of makespan minimization and number

of AGVs minimization with AGVs’ battery charge consideration. Optimization of the

scheduling model was performed using the four evolutionary algorithms of GA, PSO, and

two different hybrids of GA and PSO named HGP1 and HGP2. Configurations of the four

algorithms were illustrated in this chapter and it was discussed why the hybrid algorithm

can be an improvement over its constituent algorithms. The weighted sum method was

used in the model to acquire a single aggregated value from the different objectives

applied. Next, to investigate the effect of optimization on AGV specification/behavior,

some of the AGVs’ specifications in the system were computed and compared with results

of the model before optimization. The model and algorithms of this study have been

programmed in MATLAB software version 2014a. For validating model, it has been

tested on some well-known benchmark problems. Final, simulation by FlexSim software

was used to validate the optimization result.

65

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Introduction

Having developed the proposed scheduling model and the four EAs (PSO, GA, HGP1,

and HGP2) as explained in chapter three, they have been applied to several testbeds to

evaluate their functionalities. The algorithms’ performances at any of the testbeds are

shown and discussed in this chapter. The algorithms’ performances were assessed and

compared with one another in terms of their worst, mean, and best results, computational

time, standard deviation, and convergence rate. Next, effect of the optimization process

on AGVs’ specifications/behaviors such as running time (loaded and unloaded), idle time,

and AGVs’ operation efficiency is discussed. In later sections of this chapter, the

simulation results obtained using FlexSim software are presented to elaborate upon the

proposed model validity.

4.2 The Developed Model

To fulfill the first objective of the study, development of the optimization model for AGV

scheduling was pursued by reviewing the literature and defining a set of criteria that can

potentially result in a practical model conforming to the real environment situation. To

have a smooth flow of information in the dissertation, the conceptual basis and

mathematical aspects of the developed model were described in the methodology chapter

(refer to Figures 3.2 and 3.3). Based on the selected scheduling criteria, model was

developed and translated into algebraic expressions applicable to the optimization

algorithms running in MATLAB programming software. The corresponding program

codes are shown in the appendix. Assessment of the model applicability was examined

using four testbeds and the results are expanded in this chapter.

66

4.3 Evolutionary Algorithms

To achieve the second objective of the study, four evolutionary algorithms of GA, PSO,

and two hybrids of GA-PSO (HGP1 and HGP2) were developed for the model. The

evolutionary algorithms as described in the previous chapter were coded in MATLAB,

and the experiments were run on a desktop computer with a 2.80 GHz processor and 4

GB RAM. The program codes of each algorithm are placed in the appendix. The

algorithms performance at every testbed is discussed in later sections.

4.4 Model and Algorithms’ Performance Evaluation

Four new testbeds with different sizes (small, medium, and large) in terms of the number

of operations, jobs, and machines were defined to provide a comprehensive comparison

basis for assessment of the model and algorithms’ practicality and performance.

4.4.1 Parameter Setting of the Algorithms

In addition to the EAs’ structural development, obtaining the optimal parameter setting

of each EA was the next step toward accomplishing the second objective and preparing

the EAs. To obtain the best setting in any of the optimization algorithms, a series of trial

experiments based on Brute-force method was performed to estimate the optimal

parameters. Each algorithm has been run with different population sizes and different

iteration numbers using different settings of crossover and mutation rates, C1, and C2 as

shown in Table 4.1. Based on the experimental approach followed, all the four algorithms

obtained their best results at a run with the population size and iteration number of 100.

For GA, the optimal rates of crossover and mutation were found to be 0.2, and 0.03

respectively. For PSO, optimal number for C1 and C2 were found to be 2. As LDIW was

used in the study, it is recommended for the min to be 0.4, and max to be 0.9 for all

algorithms including  (Kessentini & Barchiesi, 2015; Shi & Eberhart, 1999). For HGP1,

the parameters were found to be the crossover and mutation rates of 0.3 and 0.05

67

respectively, C1=0.02, and C2=1. For HGP2, crossover and mutation rates of 0.2 and 0.08

respectively, and C1=0.01, C2=0.9.

Table 4.1: Different settings of parameters experimented

 HGP1 and HGP2 GA PSO

Run number 20

Population size 20, 50, 100, 150, 200

Generation
(iteration) number

20, 50, 100, 150, 200

Crossover rate (0.01,…,0.09, 0.1,…0.9, 1)
NA

Mutation rate (0.01,…,0.09, 0.1,…0.9, 1)

C1
(0.01,…,0.09, 0.1,…0.9, 1,
1.01,…1.09,…1.1, 1.9, 2)

NA

(0.01,…,0.09, 0.1,…0.9, 1,
1.01,…1.09,…1.1, 1.9, 2)

C2
(0.01,…,0.09, 0.1,…0.9, 1,
1.01,…1.09,…1.1, 1.9, 2)

(0.01,…,0.09, 0.1,…0.9, 1,
1.01,…1.09,…1.1, 1.9, 2)

Any alteration of the above parameters’ value may lead to convergence at higher (worse)

results than while using the optimal parameters. Therefore, the obtained optimal

parameters’ settings were used in the developed EAs for the model at any of the testbeds.

Outcomes are presented in this section categorized into four subsections relating to each

testbed.

4.4.2 Performance at Testbed 1

The first example was a small testbed inclusive of 6 jobs (J1,…, J6) processing on 6

machines (M1,…, M6), and each job with 2 to 5 operations (total of 19 operations). Figure

4.1 shows the layout of testbed 1 with the routes being one-way. The AGV travel time

among L/U point and machines is shown in Table 4.2. Next, Table 4.3 demonstrates the

processing time of every operation on the machines for this testbed.

68

Figure 4.1: The layout of testbed 1

Table 4.2: AGV travel time (minutes) among L/U point and machines

Table 4.3: The processing time (minutes) of every operation on the machines

Job 1 1 1 1 2 2 2 3 3 3 3 3 4 4 4 5 5 6 6
Operation 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 1 2 1 2
Machine M2 M4 M5 M6 M3 M4 M6 M1 M2 M3 M1 M4 M6 M4 M5 M5 M1 M1 M2
Operation time 30 21 24 27 15 24 13 16 21 18 14 25 25 19 20 33 21 27 31

4.4.2.1 Makespan and Number of AGVs

Applying the developed algorithms to testbed 1, results (best, mean, and worst fitness

values) of each algorithm for 100 iterations are shown in Figure 4.2. Fitness values of all

the algorithms range between 160 and 340. When comparing the algorithms’

performance, HGP2 had a wider spread between its minimum and maximum fitness

values, which it demonstrates the HGP2 capability of exploring a wider area in search of

best results. PSO had a wide spread of results as well, but since its optimum answer is

higher (worse) than the other EAs in this testbed, it is not comparable with HGP2. The

smallest range of variation between minimum and maximum results was obtained using

GA, which indicates its low exploration capability in this testbed.

 L/U M1 M2 M3 M4 M5 M6
L/U 0 5 7 10 12 17 19
M1 15 0 2 5 7 12 14
M2 13 18 0 3 5 10 12
M3 10 15 17 0 2 7 9
M4 8 13 15 18 0 5 7
M5 3 8 10 13 15 0 2
M6 1 6 8 11 13 18 0

3

2

2

1

2

1

2 1

M2

M3 M4

M5

M6

M1

H (L/U)

4

1

69

Figure 4.2: Performance of the four algorithms at testbed 1

To provide a comparison ground for the developed EAs, their best (minimum fitness

value) performances are shown in Figure 4.3. The performance of all algorithms was

satisfactory and all the four algorithms were proved successful in decreasing the

makespan and the required number of AGVs. Of the four EAs, however, the optimized

model using HGP2 converged at a faster rate and to a lower value. Solutions were seen

to converge at about 40 iterations when using the HGP2, but in HGP1 it was about 63

iterations, GA about 75, and PSO about 95.

70

Figure 4.3: Best performance (minimum) of the four algorithms at testbed 1

The best, worst, and mean fitness values produced by each EA in this testbed are

presented in Table 4.4. The makespan and number of AGVs corresponding with each

fitness value are also reported. According to Table 4.4, the number of AGVs has been

decreased in all the EAs. The smallest makespan was found in PSO with 4 AGVs, and

the highest makespan in HGP1 using 2 AGVs. The obtained makespan values in GA and

HGP2 varied between the highest and lowest makespan with 3 AGVs. Weighting the

model objectives for attainment of one proper result out of all the fitness values obtained

is highly pronounced in a situation as in this testbed. The fitness values in Table 4.4 have

been calculated using equation 3.1. As MS NA , the ratio used for this problem, based

on equation 3.2 would be
 ()

 ()

max MS

max NA
  . ()M ax M S was presumed to be equal to the

makespan when the sequence of operations under one AGV starts from the first operation

of the first job to the last operation of the last job, which in testbed 1 it was equal to 844

minutes. ()M ax N A was presumed equal to the whole number of operations which is 19

here. δ1 is considered
2

3
 for makespan because a higher weight is assigned to makespan,

but it can be changed subjectively to set equal weights to each of the objectives. The

71

fitness value for this testbed, based on equation 3.1, would be

     
2 1 844

3 3 19
+f x MS NA

 
  

 
. As it is shown in Table 4.4, HGP2 obtained the best

fitness value by 161.75, followed by HGP1 (164.94), GA (167.08), and PSO (172.56).

Standard deviation in the best results series and computational time of the algorithms are

also demonstrated in Table 4.4. The smallest standard deviation was obtained from HGP2,

followed by HGP1, GA, and PSO respectively. The obtained computational time of all

the algorithms were nearly similar, but HGP1 had a slightly longer computational time

and HGP2 had a shorter computational time compared with the other EAs applied.

Table 4.4: Test results of optimization algorithms at testbed 1 for hundred runs

Algorithm Objectives Best Worst Mean
Standard

deviation

 Computational time

(second)

PSO

Fitness value 172.56 178.42 172.42 3.41

51.11 Makespan (minute) 170 201 192 8.46

Number of AGVs 4 3 - -

GA

Fitness value 167.08 175.08 173.45 2.38

49.61 Makespan (minute) 184 196 198 3.57

Number of AGVs 3 3 - -

HGP1

Fitness value 164.94 172.42 170.02 2.24

54.38 Makespan (minute) 203 192 188.4 3.36

Number of AGVs 2 3 - -

HGP2

Fitness value 161.75 167.08 164.82 1.89

48.50 Makespan (minute) 176 184 180.6 2.51

Number of AGVs 3 3 - -

To visualize differences between makespan and number of AGVs before and after the

optimization by HGP2, a few random sequences have been tried before optimization and

one of them has been chosen for presentation purpose at every testbed. Results have been

graphically compared in Figures 4.4 and 4.5. Figure 4.4 shows the random sequence of

operations before optimization which one AGV is assigned to each of the six jobs (O11,

O21, O12, O31, O32, O22, O61, O62, O52, O41, O42, O33, O34, O13, O14, O23, O35, O43) obtaining

the makespan of 365 minutes. Figure 4.5 demonstrates the optimized sequence of Figure

4.4, using only three AGVs with the makespan of 176 minutes obtained using HGP2, that

72

is changed to (O11, O31, O51, O21, O22, O32, O41, O33, O61, O13, O22, O34, O62, O14, O42, O35,

O43, O23). In both the figures, every job and AGV is shown with a particular colour

introduced below each figure. The dashed lines show the time that the part is waiting to

be collected by the AGV or the time that AGV is waiting to be assigned to a task or being

charged. Colour of the dashed lines are the same as the AGVs’ colour.

Figure 4.4: Operations’ sequence before optimization – testbed 1

Figure 4.5: Operations’ sequence after optimization by HGP2 – testbed 1

4.4.2.2 AGVs’ Battery Charge

After calculating the AGVs’ battery charge consumption based on equations 3.17 to 3.20,

the level of consumed battery charge of each AGV and corresponding battery charge

utilization level both before and after optimization by all four algorithms are

demonstrated in Figures 4.6 and 4.7, respectively. As it is shown in Figure 4.6, the overall

battery charge consumption decreased dramatically, because the number of AGVs were

decreased after the optimization—using any of the EAs. On the other hand, battery

consumption of each AGV had slightly increased because the workload of omitted AGVs

was undertaken by the remaining ones. However, it is worth mentioning that the

increment in each AGV’s battery consumption is notably low when compared with

73

overall reduction in battery consumption. Figures 4.6 also demonstrates the optimization

effect in reducing the number of employed AGVs in the system, in which the AGVs

reduction is compensated by improvements in battery utilization as shown in Figure 4.7.

Figure 4.6: AGVs’ battery charge consumption, before and after optimization

Figure 4.7: Battery charge utilization, before and after optimization – testbed 1

4.4.2.3 AGVs’ Specifications/Behavior

To investigate the optimization effect on AGVs’ specifications/behaviour, the following

specifications were explored. The studied specifications are AGVs’ total running time

(loaded and unloaded), idle time, and AGVs’ operation efficiency computed using

equations 3.21 to 3.27. In Figure 4.8, the AGVs’ total running time prior to the

0

10

20

30

40

50

60

70

80

90

100

Before optimization PSO GA HGP1 HGP2

AGV1 AGV2 AGV3 AGV4 AGV5 AGV 6%

0

10

20

30

40

50

60

70

80

90

100

Before optimization PSO GA HGP1 HGP2

AGV1 AGV2 AGV3 AGV4 AGV5 AGV 6%

74

optimization is lower than that of after optimization shown in Figure 4.9, though the

difference is not significant. The insignificant difference can be explained by the

reduction in the number of AGVs after optimization, in which two or three AGVs

undertake the workload of six AGVs. The idle time of AGVs after optimization decreased

and led to a smaller makespan when compared with that of before optimization.

Figure 4.8: AGVs’ specification before optimization

Figure 4.9: AGVs’ specification after optimization

0

50

100

150

200

250

300

Loaded running
time

Unloaded running
time

Total runing time Idle time

AGV1 AGV2 AGV3 AGV4 AGV5 AGV 6Time (minute)

0

50

100

150

200

250

300

PSO GA HGP1HGP2 PSO GA HGP1HGP2 PSO GA HGP1HGP2 PSO GA HGP1HGP2

Loaded running time Unloaded running
time

Total running time Idle time

AGV1 AGV2 AGV3Time (minute)

75

As it was shown earlier in Figure 4.6, the total level of consumed battery charge decreased

after optimization; the fact that AGVs could do their work in a lesser time and with lesser

battery charge consumption shows that AGVs’ operation efficiency was consequently

improved after the optimization. Figure 4.10 demonstrates the enhanced efficiency of

AGVs’ operation after the optimization compared with prior optimization status. AGVs’

operation efficiency was considerably enhanced when compared with prior to

optimization stage that all the efficiency measures were about 30% and below. After

optimization, using all the EAs, all utilized AGVs’ efficiency was escalated to above 40%

limit, and many instances showed more than 50% of efficiency level. Before optimization,

AGVs were deployed with no intention to use their highest potential and the AGV number

one and number six showed the highest operation efficiency. After optimization, based

on the scheduling model designed, tasks were sequentially appointed to AGVs based on

the AGVs numerical order, so that AGV number one would have the highest operation

efficiency level. This rule is to use the highest potential of the available/working AGVs

to avoid addition of extra AGVs and expenses involved. Following this strategy, Figures

4.10 illustrates the highest and lowest efficiencies that were obtained respectively by the

first and the last AGV under the application of any of the EAs.

Figure 4.10: AGVs’ operation efficiency before and after optimization

0

10

20

30

40

50

60

70

80

90

100

Before
optimization

PSO GA HGP1 HGP2

AGV1 AGV2 AGV3 AGV4 AGV5 AGV 6%

76

4.4.3 Performance at Testbed 2

This testbed was inclusive of 6 jobs (J1,…, J6) processing on 12 machines (M1,…, M12)

and each job with 3 to 8 operations (overall 36 operations). This testbed had a longer

distance among the machines compared with testbed 1. The Figure 4.11 explains the

testbed’s layout.

 Figure 4.11: The layout of testbed 2

Table 4.5 shows the AGV travel time among L/U point and machines in this testbed, and

Table 4.6 demonstrates the processing time of every operation on the machines. Inside

routes are two-way and the surroundings are one-way routes.

Table 4.5: AGV travel time (minutes) between L/U points and machines

Table 4.6: The processing time (minutes) of every operation on different machines
Job 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3
Operation 1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4
Machine M2 M6 M5 M8 M1 M12 M7 M5 M3 M4 M6 M11 M10 M9 M1 M2 M10 M4
Operation time 37 33 34 35 23 34 37 26 23 26 27 25 34 23 26 25 31 24

 L/U M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
L/U 0 6 18 28 42 36 38 17 50 63 37 24 10
M1 34 0 12 22 36 50 52 31 64 77 71 58 44
M2 22 28 0 10 24 38 40 19 52 65 59 46 32
M3 34 40 52 0 14 28 48 31 42 55 71 58 44
M4 34 40 52 42 0 14 34 31 28 41 71 58 44
M5 58 64 76 66 80 0 20 41 14 27 61 48 68
M6 38 46 58 46 60 54 0 21 12 25 41 28 48
M7 17 23 35 25 39 33 21 0 33 46 40 27 27
M8 64 70 82 72 86 80 44 47 0 13 67 54 74
M9 51 57 69 59 73 67 31 34 43 0 54 41 61
M10 41 47 59 49 63 57 21 24 33 46 0 31 51
M11 54 60 72 62 76 70 34 37 46 59 13 0 64
M12 44 50 62 52 66 60 28 27 40 53 27 14 0

6

8

8

7

8 11 3

6

12

5

10

7 10

10

9

10

4

4 7

8

M1

M6
M3

M11M12

M4 M8

M7

M5

M9

M10 M2
10

H (L/U)

2

3

6

9

7

7

11

10
2 2

7

77

Job 3 3 3 3 4 4 4 4 4 4 5 5 5 6 6 6 6 6
Operation 5 6 7 8 1 2 3 4 5 6 1 2 3 1 2 3 4 5
Machine M6 M7 M8 M11 M1 M7 M5 M12 M6 M8 M1 M7 M9 M3 M2 M10 M4 M11
Operation time 25 13 14 23 16 11 23 34 25 13 16 11 31 26 31 23 24 35

4.4.3.1 Makespan and Number of AGVs

Performances of the four algorithms when applied to testbed 2 are shown in Figure 4.12.

As in Figure 4.12, it was found that GA—in contrast with other EAs—had a steep incline

in fitness measures of the first few iteration and then a smoother trend toward the best

fitness value was seen. Other EAs applied to this testbed showed a nearly monotonic slope

while reaching the best fit. The fitness values range from 1250 to 1850 for all the EAs in

Figure 4.12.

Figure 4.12: Performance of four algorithms at testbed 2

To compare the algorithms’ performance, their best results (minimum fitness value) are

shown in Figure 4.13. All the four algorithms decreased the makespan and the required

number of AGVs. However, the optimized model using HGP2 converged at a faster rate

78

and to a lower value. Solutions were seen to converge at about 70 generations when using

HGP2, but in HGP1 it was about 75 generations, GA about 80, and PSO about 83.

Figure 4.13: Best performance (minimum) of the four algorithms at testbed 2

The obtained results (best, worst, and mean fitness value) in this testbed are summarized

in Table 4.7. The fitness function, based on equation 3.1, would be

     
2 1 7829

3 3 36
+f x MS NA

 
  

 
 for this testbed. According to the Table 4.7, the fitness

value obtained by HGP2 (1253.96) shows the best fit, followed respectively by HGP1

(1272.22), GA (1282.63), and PSO (1327.29). In terms of the standard deviation in

generation of the best (min) results series, HGP2 showed the smallest standard deviation

followed by HGP1, GA, and PSO, respectively. The last column of the Table 4.7 shows

the computational time of the algorithms. HGP1, in this regard, with approximately 10

seconds delay compared with the fastest EA had the longest computational time. Overall,

HGP2 was the fastest EA and GA, PSO, and HGP1 were the next runner ups in line.

79

Table 4.7: Test results of optimization algorithms at testbed 2 for hundred runs

Algorithm Objectives Best Worst Mean
Standard
deviation

 Computational time
(second)

PSO
Fitness value 1327.29 1411.29 1378.76 18.87

151.29 Makespan (minute) 1556 1582 1633.20 28.31

Number of AGVs 4 5 - -

GA
Fitness value 1282.63 1407.787 1316.58 18.20

150.12 Makespan (minute) 1489 1568 1539.93 22.81
Number of AGVs 4 5 - -

HGP1
Fitness value 1272.22 1334.22 1309.55 17.06

159.63 Makespan (minute) 1474 1567 1530 27.09
Number of AGVs 4 4 - -

HGP2
Fitness value 1253.96 1336.63 1304.54 15.48

149.74 Makespan (minute) 1446 1570 1521.86 26.22
Number of AGVs 4 4 - -

To elaborate the differences between before and after optimization by HGP2, Figure 4.14

shows the random sequence of operations before optimization (O11, O21, O31, O41, O51,

O61, O12, O22, O32, O42, O52, O62, O13, O23, O33, O43, O53, O63, O14, O24, O34, O44, O64, O15,

O25, O35, O45, O65, O16, O26, O36, O46, O17, O37, O18, O38) with the makespan of 1818

minutes using 6 AGVs. Figure 4.15 demonstrates the optimized sequence of Figure 4.14,

using only 4 AGVs with the makespan of 1446 minutes obtained using HGP2, that is

changed to (O11, O21, O41, O61, O22, O12, O23, O62, O24, O13, O63, O42, O64, O43, O14, O31,

O25, O15, O32, O16, O33, O26, O17, O34, O51, O65, O18, O44, O35, O45, O36, O52, O37, O53, O46,

O38).

80

Figure 4.14: Operations’ sequence before optimization – testbed 2

Figure 4.15: Operations’ sequence after optimization by HGP2 – testbed 2

80

81

4.4.3.2 AGVs’ Battery Charge

The level of battery charge consumption of each AGV in testbed 2 are shown in Figure

4.16. Similar to the findings of testbed 1, the overall level of battery charge consumption

of AGVs in the system was decreased by the reduction in number of utilized AGVs.

Although there was a slight increase in the individual AGVs battery consumption after

optimization, which relates to the overtaking of the tasks of omitted AGVs.

Figure 4.16: AGVs’ battery charge consumption, before and after optimization

Figure 4.17 shows the status of battery charge utilization before and after optimization.

Figure 4.17 clearly illustrates the improvements in AGVs battery charge utilization after

the optimization. Every AGV was utilized to its highest potential and battery charge level

after the optimization, so that the number of employed AGVs for the same volume of

tasks reduced accordingly.

0

10

20

30

40

50

60

70

80

90

100

Before
optimization

PSO GA HGP1 HGP2

AGV1 AGV2 AGV3 AGV4 AGV5 AGV 6%

82

Figure 4.17: Battery charge utilization, before and after optimization – testbed 2

4.4.3.3 AGVs’ Specifications/Behavior

Figure 4.18 demonstrates the AGVs total running time prior to the optimization, which is

lower than that of after optimization shown in Figure 4.19. Although the difference is not

significant due to the reduction in the number of AGVs employed after optimization

which the 4 AGVs undertake the workload of 6 previously used AGVs. As in Figure 4.19,

the idle time of AGVs after optimization was also lessened dramatically and led to a

smaller makespan when compared with that of before optimization shown in Figure 4.18.

Figure 4.18: AGVs’ specification before optimization

0

10

20

30

40

50

60

70

80

90

100

Before
optimization

PSO GA HGP1 HGP2

AGV1 AGV2 AGV3 AGV4 AGV5 AGV 6%

0

200

400

600

800

1000

1200

1400

1600

Loaded running
time

Unloaded running
time

Total runing time Idle time

AGV1 AGV2 AGV3 AGV4 AGV5 AGV 6Time (minute)

83

It was shown earlier in this testbed that after optimization the makespan and the number

of AGVs were reduced; it is visualized here in Figure 4.19 that the AGVs’ idle time have

also been reduced.

Figure 4.19: AGVs’ specification after optimization

As it was shown earlier in Figure 4.16, the overall level of consumed battery charge

decreased after optimization, so that AGVs’ operation efficiency was consequently

improved. Figure 4.20 demonstrates the enhanced efficiency level of AGVs’ operation

after optimization compared with prior optimization status. AGVs’ operation efficiency

was about 30% before optimization and it rose comparably after the optimization. After

optimization, almost half the AGVs at all the EAs showed an operation efficiency level

of more than 50%. The other half varied about 40% level of efficiency. Following the

AGV utilization strategy as explained in testbed 1, Figures 4.20 illustrates the after-

optimization efficiency level, in which the highest level was obtained by AGV1 and the

lowest level by AGV4 in all the EAs. This finding is contrast with the AGV application

strategy before optimization, where AGVs were added to the system without utilizing

their highest potential so that many expensive AGVs would be employed.

0

200

400

600

800

1000

1200

1400

1600

PSO GA HGP1HGP2 PSO GA HGP1HGP2 PSO GA HGP1HGP2 PSO GA HGP1HGP2

Loaded running time Unloaded running time Total running time Idle time

AGV1 AGV2 AGV3 AGV4Time (minute)

84

Figure 4.20: AGVs’ operation efficiency before and after optimization

4.4.4 Performance at Testbed 3

To create an even larger example for the model to be examined, the third example was

designed with 15 jobs (J1,…, J15) processing on 14 machines (M1,…, M14), and each job

with 3 to 5 operations (totally 60 operations). The testbed layout is illustrated in Figure

4.21 and AGV travel time among L/U point and machines are shown in Table 4.8. Table

4.9 demonstrates the processing time of every operation on the machines for testbed 3. In

this testbed, the distances are shorter than the previous testbed. All the routes (either

inside or surrounding) are two-way, which it shortens the distances among machines by

equalizing the distances of going and returning to/from a machine. The processing time

in this testbed is also smaller than the previous testbed.

0

10

20

30

40

50

60

70

80

90

100

Before
optimization

PSO GA HGP1 HGP2

AGV1 AGV2 AGV3 AGV4 AGV5 AGV 6%

85

Figure 4.21: The layout of testbed 3

Table 4.8: AGV travel time (minutes) among L/U point and machines

Table 4.9: The processing time (minutes) of every operation on the machines
Job 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4
Operation 1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3
Machine M7 M1 M9 M8 M3 M2 M10 M6 M14 M13 M5 M4 M12 M1 M3 M5
Operation time 19 21 14 10 11 15 21 22 19 23 30 26 13 6 12 19
Job 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8 8
Operation 4 5 1 2 3 1 2 3 1 2 3 4 1 2 3 4
Machine M7 M11 M10 M14 M12 M8 M6 M3 M2 M7 M12 M11 M9 M3 M4 M5
Operation time 14 18 29 26 1 12 24 17 29 16 20 18 9 21 24 10
Job 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12
Operation 5 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
Machine M8 M10 M9 M5 M14 M5 M1 M8 M2 M7 M9 M8 M1 M6 M13 M11
Operation time 12 20 10 16 11 17 5 24 20 11 11 14 15 49 14 17
Job 13 13 13 13 14 14 14 14 14 14 15 15 15 15
Operation 1 2 3 4 1 2 3 4 5 6 1 2 3 4
Machine M10 M1 M13 M12 M3 M4 M2 M10 M9 M12 M4 M8 M7 M11
Operation time 29 30 8 14 12 11 9 10 10 19 15 21 4 14

Min L/U M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14
L/U 0 3 9 14 17 18 20 9 25 26 19 13 5 19 18
M1 3 0 6 11 18 21 23 12 28 29 22 16 8 21 21
M2 9 6 0 5 12 19 21 10 25 27 22 22 14 27 27
M3 14 11 5 0 7 14 23 13 20 27 25 27 19 30 32
M4 17 18 12 7 0 7 16 16 13 20 27 32 24 35 39
M5 18 21 19 14 7 0 9 17 6 13 20 24 23 28 29
M6 20 23 21 23 16 9 0 11 5 12 11 15 15 19 20
M7 9 12 10 13 16 17 11 0 16 17 12 14 14 20 19
M8 25 28 25 20 13 6 5 16 0 7 14 20 20 22 25
M9 26 29 27 27 20 13 12 17 7 0 7 13 21 15 18
M10 19 22 22 25 27 20 11 12 14 7 0 6 14 8 11
M11 13 16 22 27 32 24 15 14 20 13 6 0 8 6 9
M12 5 8 14 19 24 23 15 14 20 21 14 8 0 14 13
M13 19 21 27 30 35 28 19 20 22 15 8 6 14 0 3
M14 18 21 27 32 39 29 20 19 25 18 11 9 13 3 0

3

4

4

4

5 5 1

3

6

2

5

4 5

5

5

5

2

2 4

4

M1

M6

M3

M11 M12

M4 M8

M7

M5

M9

M10 M2
5

H
(L/U)

1

1

3

4

4

4

5

5
1 1

4

M14

M13

2 4

5 4

1

5

86

4.4.4.1 Makespan and Number of AGVs

Following the same result presentation format, performances of the four algorithms at

testbed 3 are shown in Figure 4.22. The fitness values obtained from the four algorithms

vary between 820 and 1270. In this testbed, the range of PSO answers variation was

shorter than that in testbed 1. HGP1 and HGP2 had nearly the same extent of exploration

area in this testbed, and GA and PSO had a limited search area.

Figure 4.22: Performance of the four algorithms at testbed 3

For comparison purpose, series of the best (minimum fitness value) performances of

developed EAs are shown in Figure 4.23. The performances of all algorithms were

satisfactory and they were proved successful in decreasing the makespan and the required

number of AGVs. Overall, the optimized model using HGP2 showed faster convergence

in comparison with other EAs. Solutions were seen to reach the final solution after about

77 generations when using the HGP2, but in HGP1 it was about 83 generations, GA about

87, and PSO about 90.

87

Figure 4.23: Best performance of the four algorithms at testbed 3

Out of all generations, the best, worst, and mean fitness values for the problem are

reported in Table 4.10. The fitness function for this testbed, based on equation 3.1, would

be      
2 1 4663

3 3 62
+f x MS NA

 
  

 
. As it is shown in Table 4.10, HGP2 produced the

best fitness value by 834.82, followed by HGP1 (840.15), then GA (849.48), and PSO

(936.82).

Comparing the developed EAs in terms of the standard deviation in generating the best

results (minimum fitness value) in 100 iterations, Table 4.10 shows that HGP2 has had

the smallest standard deviation among the competing EAs. HGP1, GA, and PSO are the

next runners up. The small standard deviation explains how the generated results scattered

around the best results’ mean. With this viewpoint in mind, HGP2 has proved to be more

consistent in maintaining its performance throughout the iterations. With regard to the

computational time of each EA in this testbed, it was found that HGP2 has been the fastest

EA (Table 4.10). GA, PSO, and HGP1 were the next EAs with fastest computational time,

respectively.

88

Table 4.10: Results of optimization algorithms at testbed 3 for hundred runs

Algorithm Objectives Best Worst Mean
Standard

deviation

Computational time

(second)

PSO

Fitness value 936.82 956.55 945.78 14.50

190.29 Makespan (minute) 1142 1134 1140.4 21.17

Number of AGVs 7 8 - -

GA

Fitness value 849.48 891.48 871.16 12.07

189.74 Makespan (minute) 1011 1074 1038.14 18.10

Number of AGVs 7 7 - -

HGP1

Fitness value 840.15 867.48 856.42 10.63

196.63 Makespan (minute) 997 1038 1021.4 15.94

Number of AGVs 7 7 - -

HGP2

Fitness value 834.82 892.82 863.42 7.38

187.12 Makespan (minute) 989 1076 1031.9 12.83

Number of AGVs 7 7 - -

To visualize differences between makespan and number of AGVs before and after the

optimization, results have been graphically compared in Figures 4.24 and 4.25. Figure

4.24 shows the random sequence of operations before the optimization (O11, O21, O31,

O41, O51, O61, O71, O81, O91, O10_1, O11_1, O12_1, O13_1, O14_1, O15_1, O12, O22, O32, O42, O52,

O62, O72, O82, O92, O10_2, O11_2, O12_2, O13_2, O14_2, O15_2, O13, O23, O33, O43, O53, O63, O73,

O83, O93, O10_3, O11_3, O12_3, O13_3, O14_3, O15_3, O14, O24, O44, O74, O84, O94, O10_4, O11_4,

O13_4, O14_4, O15_4, O15, O25, O45, O85, O14_5, O14_6) with the makespan of 1209 minutes

and 12 AGVs. Figure 4.25 demonstrates the optimized sequence of Figure 4.24, using

only 7 AGVs with the makespan of 989 minutes obtained using HGP2, that is changed to

(O13_1, O41, O14_1, O81, O31, O42, O14_2, O82, O61, O13_2, O10_1, O62, O15_1, O11, O14_3, O10_2,

O14_4, O43, O63, O15_2, O21, O51, O13-3, O44, O15_3, O22, O52, O12, O71, O32, O15_4, O13, O91,

O14, O14_5, O23, O11_1, O14_6, O24, O72, O45, O15, O73, O83, O33, O10_3, O84, O12_1, O11_2, O25,

O12_2, O74, O92, O11_3, O10_4, O93, O85, O11_4, O12_3, O94).

89

8
9

Figure 4.24: Operations’ sequence before optimization – testbed 3

Figure 4.25: Operations’ sequence after optimization by HGP2 – testbed 3

90

4.4.4.2 AGVs’ Battery Charge

The amount of battery charge consumption by each AGV both before and after the

optimization using different algorithms are shown in Figure 4.26. The decrease in the

overall battery charge consumption of AGVs in the system is evident from the notable

reduction of AGVs number by each EA. However, similar to the previous testbeds, the

amount of battery consumption by each AGV after optimization has slightly increased

because they undertook the workload of omitted AGVs as well.

Figure 4.26: AGVs’ battery charge consumption, before and after optimization

Figure 4.27 shows the percentage of AGV’s battery charge utilization after optimization.

It is found that the number of AGVs has been decreased after the optimization and the

batteries of omitted AGVs were saved. Therefore, the battery charge utilization of all

AGVs were heightened.

0

10

20

30

40

50

60

70

80

90

100

Before optimization PSO GA HGP1 HGP2

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6
AGV 7 AGV 8 AGV 9 AGV 10 AGV 11 AGV 12%

91

Figure 4.27: Battery charge utilization, before and after optimization – testbed 3

4.4.4.3 AGVs’ Specifications/Behavior

In Figure 4.28, the AGVs total running time prior to the optimization is lower than that

of after optimization shown in Figure 4.29. Figure 4.29 explains the effect of optimization

in reducing the number of AGVs utilized for performing the same volume of jobs. The

total number of functioning AGVs has been reduced to 7 AGVs that undertook the

workload of 12 AGVs performing prior to the optimization. It is again an indication of

the AGVs utilization strategy of the model where AGV number 1 has the highest

utilization measure. It also depicts the developed model strategy in assigning the AGVs

to tasks, where AGVs are prioritized based on their numerical order. Figure 4.29

demonstrates the significant decrease in idle time of AGVs after the optimization, which

has led to a smaller makespan when compared with that of before optimization.

0

10

20

30

40

50

60

70

80

90

100

Before optimization PSO GA HGP1 HGP2

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6
AGV 7 AGV 8 AGV 9 AGV 10 AGV 11 AGV 12

%

92

Figure 4.28: AGVs’ specification before optimization

Overall, makespan, number of AGVs and their idle time have been reduced after the

optimization and it is illustrated in Figure 4.29.

0

100

200

300

400

500

600

700

800

900

1000

1100

Loaded running time Unloaded running
time

Total runing time Idle time

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6
AGV 7 AGV 8 AGV 9 AGV 10 AGV 11 AGV 12Time (minute)

93

Figure 4.29: AGVs’ specification after optimization

0

100

200

300

400

500

600

700

800

900

1000

1100

PSO GA HGP1 HGP2 PSO GA HGP1 HGP2 PSO GA HGP1 HGP2 PSO GA HGP1 HGP2

Loaded running time Unloaded running time Total running time Idle time

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6 AGV 7Time (minute)

94

94

As it was shown earlier in Figure 4.26, the overall level of consumed battery charge

decreased after the optimization, so that the AGVs’ operation efficiency was

consequently improved. Figure 4.30 demonstrates the enhanced efficiency of AGVs’

operation after the optimization compared with prior optimization status. Analogous to

other figures, response pattern of all the EAs to the optimization model is evident in

Figure 4.30. It shows that the AGVs’ operation efficiency before optimization is below

30% for all the AGVs and it is mounted above 40% for many of the AGVs after

optimization, and above 30% for many others. AGVs were deployed with no intention to

use their highest potential and the AGV number two then number one showed the highest

operation efficiency before the optimization. However, following the optimization model

strategy in assigning tasks to AGVs, the best potential of the first AGVs is used and

addition of extra AGVs and expenses is avoided. Figure 4.30 clearly shows this

systematic and cost-effective application of AGVs.

Figure 4.30: AGVs’ operation efficiency before and after optimization

4.4.5 Performance at Testbed 4

This numerical example was inclusive of 23 jobs (J1,…, J23) processing on 17 machines

(M1,…, M17) and each job with 3 to 11 operations (totally 117 operations). Thus, this

0

10

20

30

40

50

60

70

80

90

100

Before
optimization

PSO GA HGP1 HGP2

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6
AGV 7 AGV 8 AGV 9 AGV 10 AGV 11 AGV 12

%

95

example would represent a larger sized testbed with its layout being shown in Figure 4.31.

Table 4.11 shows the AGV travel time among L/U point and machines for testbed 4, and

Table 4.12 demonstrates the processing time of every operation on the machines. Similar

to testbed 3, all the routes in this testbed are also two-way and the distance of going and

returning to/from a machine are the same.

Figure 4.31: The layout of testbed 4

Table 4.11: AGV travel time (minutes) among L/U point and machines

Min L/U M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17
L/U 0 3 9 14 17 18 20 9 25 26 19 13 5 19 18 10 9 9
M1 3 0 6 11 18 21 23 12 28 29 22 16 8 21 21 13 8 6
M2 9 6 0 5 12 19 21 10 25 27 22 22 14 27 27 19 10 8
M3 14 11 5 0 7 14 23 13 20 27 25 27 19 30 32 24 15 13
M4 17 18 12 7 0 7 16 16 13 20 27 32 24 35 39 27 22 20
M5 18 21 19 14 7 0 9 17 6 13 20 24 23 28 29 28 27 27
M6 20 23 21 23 16 9 0 11 5 12 11 15 15 19 20 20 29 29
M7 9 12 10 13 16 17 11 0 16 17 12 14 14 20 19 19 18 18
M8 25 28 25 20 13 6 5 16 0 7 14 20 20 22 25 25 34 34
M9 26 29 27 27 20 13 12 17 7 0 7 13 21 15 18 26 35 35
M10 19 22 22 25 27 20 11 12 14 7 0 6 14 8 11 19 28 28
M11 13 16 22 27 32 24 15 14 20 13 6 0 8 6 9 13 22 22
M12 5 8 14 19 24 23 15 14 20 21 14 8 0 14 13 13 14 14
M13 19 21 27 30 35 28 19 20 22 15 8 6 14 0 3 11 20 22
M14 18 21 27 32 39 29 20 19 25 18 11 9 13 3 0 8 17 19
M15 10 13 19 24 27 28 20 19 25 26 19 13 13 11 8 0 9 11
M16 9 8 10 15 22 27 29 18 34 35 28 22 14 20 17 9 0 2
M17 9 6 8 13 20 27 29 18 34 35 28 22 14 22 19 11 2 0

4

4

4

5 5 1

3

6

2

5

4 5

5

5

5

2

2 4

4

M1

M6

M3

M11M12

M4 M8

M7

M5

M9

M10 M2
5

H
(L/U)

1

1

3

4

4

4

5

5

1 1

4

M14 M15 M16

M13 M17

2 4 4 5 4 1

4
4

1 1

5 5

96

Table 4.12: The processing time (minutes) of every operation on the machines

Job 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3
Operation 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 1 2 3 4 5
Machine M8 M3 M5 M17 M2 M12 M14 M1 M5 M17 M4 M16 M11 M10 M6 M11 M16 M9 M4 M3

Operation time 22 33 18 32 13 34 37 25 18 22 26 31 21 14 23 26 25 31 22 25
Job 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 6 6 6 6 6
Operation 6 7 8 9 10 11 1 2 3 4 5 6 1 2 3 1 2 3 4 5
Machine M12 M7 M11 M14 M17 M10 M1 M16 M5 M12 M6 M8 M15 M7 M9 M13 M2 M10 M14 M11
Operation time 39 14 23 12 23 29 17 19 23 34 25 31 16 11 31 26 28 13 14 35
Job 7 7 7 7 8 8 8 9 9 9 9 9 10 10 10 11 11 11 11 11
Operation 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 1 2 3 4 5
Machine M13 M15 M13 M9 M17 M1 M3 M8 M6 M13 M15 M9 M4 M8 M14 M12 M7 M16 M13 M15

Operation time 16 29 31 24 25 23 16 23 11 23 34 25 18 31 32 23 34 27 26 27

Job 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 15
Operation 1 2 3 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6
Machine M6 M4 M5 M14 M10 M9 M7 M8 M15 M16 M13 M1 M6 M3 M4 M8 M11 M10 M9
Operation time 26 14 25 28 23 16 25 31 24 25 23 14 23 16 11 23 34 18 23
Job 16 16 16 17 17 17 17 18 18 18 18 18 19 19 19 20 20 20 20
Operation 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 1 2 3 4
Machine M5 M11 M14 M7 M17 M2 M10 M11 M16 M17 M15 M3 M8 M9 M16 M13 M2 M12 M10
Operation time 16 12 31 24 30 23 24 15 16 11 23 33 25 13 16 31 23 12 13
Job 20 20 20 20 20 20 21 21 21 21 21 22 22 22 22 23 23 23
Operation 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 1 2 3
Machine M16 M11 M9 M14 M13 M6 M7 M1 M4 M12 M3 M17 M10 M5 M13 M14 M9 M2
Operation time 26 28 11 18 21 23 17 29 9 18 12 19 33 30 15 27 24 14

4.4.5.1 Makespan and Number of AGVs

Performance of the four algorithms at testbed 4 is shown in Figure 4.32. The amplitude

of fitness values variation is from 1630 to 2280. Similar to testbed 2 and 3, PSO and GA

algorithms had a smaller exploration area compared to the hybrids.

97

Figure 4.32: Performance of four algorithms at testbed 4

The best/minimum fitness values of the four algorithms at testbed 4 are shown in Figure

4.33. All the algorithms were successful in decreasing the makespan and the required

number of AGVs. The optimized model using HGP2 converged at a faster rate and to a

lower value compared with other EAs. Solutions convergence happened after about 85

generations in HGP2, 90 generations in HGP1, 95 in GA, and 97 in PSO.

Figure 4.33: Best performance (minimum) of the four algorithms at testbed 4

98

Out of all generations above, the best, worst, and the mean results achieved from the

overall fitness function for testbed 4 are tabulated in Table 4.13. The makespan, and

number of AGVs for each result is shown as well. The fitness value for this testbed, based

on equation 3.1, would be      
2 1 8086

3 3 116
+f x MS NA

 
  

 
. As it is shown in Table 4.13,

HGP2 has attained the best fitness value by 1542.83, followed by HGP1 (1555.50), then

GA (1573.50), and PSO (1635.33). With regard to the results given in Table 4.13, it is

evident that HGP2 has obtained the best (minimum fitness value) result, even in terms of

the standard deviation. The last column of the Table 4.13 shows the computational time

of the algorithms that highlights the HGP2 as the fastest EA applied. GA, PSO and HGP1

were the runners up to the HGP2 computational time in this testbed.

Table 4.13: Test results of optimization algorithms at testbed 4 for hundred runs

Algorithm Objectives Best Worst Mean
Standard

deviation

Computational time

(second)

PSO

Fitness value 1635.33 1750.66 1686.02 29.52

391.29 Makespan (minute) 2000 2173 2105.8 39.93

Number of AGVs 13 13 - -

GA

Fitness value 1573.50 1722.83 1666.82 26.62

389.32 Makespan (minute) 1942 2166 2082 27.43

Number of AGVs 12 12 - -

HGP1

Fitness value 1555.50 1694.16 1618.83 17.31

401.42 Makespan (minute) 1915 2123 2010 25.97

Number of AGVs 12 12 - -

HGP2

Fitness value 1542.83 1637.49 1603.49 14.53

387.65 Makespan (minute) 1896 2038 1987 21.29

Number of AGVs 12 12 - -

To demonstrate the effect of optimization on the makespan and number of AGVs applied

in the testbed, Figures 4.34 and 4.35 respectively show the before and after optimization

status. Figure 4.34 shows the random sequence of operations before optimization (O11,

O21, O31, O41, O51, O61, O71, O81, O91, O10_1, O11_1, O12_1, O13_1, O14_1, O15_1, O16_1, O17_1,

O18_1, O19_1, O20_1, O21_1, O22_1, O23_1, O12, O22, O32, O42, O52, O62, O72, O82, O92, O10_2,

O11_2, O12_2, O13_2, O14_2, O15_2, O16_2, O17_2, O18_2, O19_2, O20_2, O21_2, O22_2, O23_2, O13,

99

O23, O33, O43, O53, O63, O73, O83, O93, O10_3, O11_3, O12_3, O13_3, O14_3, O15_3, O16_3, O17_3,

O18_3, O19_3, O20_3, O21_3, O22_3, O23_3, O14, O24, O34, O44, O64, O74, O94, O11_4, O13_4, O14_4,

O15_4, O17_4, O18_4, O19_4, O20_4, O22_4, O15, O25, O35, O45, O65, O95, O11_5, O13_5, O14_5,

O15_5, O18_5, O20_5, O21_5, O16, O26, O36, O46, O15_6, O20_6, O17, O37, O20_7, O1_8, O3_8, O20_8,

O1_9, O3_9, O20_9, O3_10, O20_10, O3_11) with the makespan of 2615 minutes and 23 AGVs.

Figure 4.35 demonstrates the optimized sequence of Figure 4.34 using HGP2 which has

been the best performing EA among the applied EAs and used here as an example. HGP2

has optimized the sequence in Figure 4.34 using only 12 AGVs with the makespan of

1896 minutes obtained, and the sequence is changed to (O61, O31, O17_1, O14_1, O81, O11,

O32, O62, O41, O12, O33, O17_1, O42, O18_1, O21, O15_1, O34, O11_1, O21_1, O43, O18_2 , O44,

O15_2, O35, O20_1, O16_1, O21_2, O13, O16_2, O36, O91, O13_1, O19_1, O14_2, O22, O14, O71, O10_1,

O15_3, O19_2, O15, O20_2, O14_3, O20_3, O16, O51, O23, O20_4, O52, O15_4, O92, O23_1, O11_2,

O21_3, O18_3, O15_5, O12_1, O24, O72, O16_3, O63, O11_3, O10_2, O15_6, O45, O19_3, O13_2, O64,

O93, O14_4, O37, O20_5, O12_2, O23_2, O94, O46, O38, O20_6, O10_3, O53, O21_4, O39, O22_1, O65,

O20_7, O21_5, O20_8, O22_2, O13_3, O18_4, O13_4, O14_5, O17, O3_10, O18_5, O11_4, O3_11, O22_3,

O25, O20_9, O82, O13_5, O73, O18, O11_5, O83, O12_3, O74, O23_3, O17_3, O95, O20_10, O19, O17_4,

O26, O22_4).

100

Figure 4.34: Operations’ sequence before optimization – testbed 4

Figure 4.35: Operations’ sequence after optimization by HGP2 – testbed 4

10
1

101

4.4.5.2 AGVs’ Battery Charge

To elaborate the effect of optimization on the AGVs’ battery charge, Figure 4.36 and 4.37

are drawn to present the before and after optimization status. The level of consumed

battery charge using each AGV both before and after the optimization and using all the

EAs is shown in Figure 4.36, and similarly Figure 4.37 demonstrates the utilization of

AGVs’ battery charge. Similar to the other three testbeds, after the optimization using all

the EAs, the number of AGVs was decreased and the batteries of omitted AGVs were

saved, so the overall AGVs’ battery charge utility were optimized to perform more jobs

with one AGV. Therefore, the scheduling model and the EAs were also successful in this

large-sized testbed to create a higher battery charge utility level compared with prior-

optimization status (Figure 4.37).

Figure 4.36: AGVs’ battery charge consumption before and after optimization

0

10

20

30

40

50

60

70

80

90

100

Before
optimization

PSO GA HGP1 HGP2

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6 AGV 7 AGV 8
AGV 9 AGV 10 AGV 11 AGV 12 AGV 13 AGV 14 AGV 15 AGV 16
AGV 17 AGV 18 AGV 19 AGV 20 AGV 21 AGV 22 AGV 23

%

102

Figure 4.37: Battery charge utilization, before and after optimization – testbed 4

4.4.5.3 AGVs’ Specifications/Behavior

In Figure 4.38, the AGVs total running time prior to the optimization is lower than that

of after optimization shown in Figure 4.39. It was discussed in previous testbeds that after

the optimization the number of AGVs have been decreased and fewer AGVs would

undertake the same workload, therefore the total running time of AGVs would increase

after the optimization. Having fewer AGVs to do the same workload would definitely

lessen the idle time of AGVs after the optimization. With such changes in the scheduling

of AGVs, makespan would be shorter than that of before optimization. The above

statements are realized in Figure 4.38 and 4.39 confirming the applicability and

effectiveness of the optimization model and EAs in large size testbeds.

0

10

20

30

40

50

60

70

80

90

100

Before
optimization

PSO GA HGP1 HGP2

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6 AGV 7 AGV 8
AGV 9 AGV 10 AGV 11 AGV 12 AGV 13 AGV 14 AGV 15 AGV 16
AGV 17 AGV 18 AGV 19 AGV 20 AGV 21 AGV 22 AGV 23

%

103

Figure 4.38: AGVs specification before optimization

After optimization, the makespan, number of AGVs and their idle time have been reduced

as it is shown in Figure 4.39.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Loaded running time Unloaded running
time

Total runing time Idle time

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6 AGV 7 AGV 8
AGV 9 AGV 10 AGV 11 AGV 12 AGV 13 AGV 14 AGV 15 AGV 16
AGV 17 AGV 18 AGV 19 AGV 20 AGV 21 AGV 22 AGV 23

Time (minute)

104

Figure 4.39: AGVs’ specification after optimization

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

PSO GA HGP1 HGP2 PSO GA HGP1 HGP2 PSO GA HGP1 HGP2 PSO GA HGP1 HGP2

Loaded running time Unloaded running time Total running time Idle time

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6 AGV 7
AGV 8 AGV 9 AGV 10 AGV 11 AGV 12 AGV 13Time (minute)

10
5

105

As it was shown earlier in Figure 4.36, the level of consumed battery charge decreased

after the optimization, so that the AGVs’ operation efficiency was consequently

improved. Figure 4.40 demonstrates the enhanced efficiency of AGVs’ operation after

the optimization compared with prior optimization status. AGVs were deployed with no

intention to use their highest potential and the AGV number one, nine, thirteen, and

number twenty-one showed the highest operation efficiency before the optimization.

After optimization, based on the scheduling model designed, tasks are sequentially

appointed to AGVs based on their numbers order, so that AGV number one would have

the highest operation efficiency level. This rule is to use the best potential of the first

AGVs to avoid addition of extra AGVs and expenses involved. Following this strategy,

Figures 4.40 illustrates the highest efficiency obtained by AGV1 and the lowest level by

AGV12.

Figure 4.40: AGVs’ operation efficiency before and after optimization

0

10

20

30

40

50

60

70

80

90

100

Before optimization PSO GA HGP1 HGP2

AGV 1 AGV 2 AGV 3 AGV 4 AGV 5 AGV 6 AGV 7 AGV 8
AGV 9 AGV 10 AGV 11 AGV 12 AGV 13 AGV 14 AGV 15 AGV 16
AGV 17 AGV 18 AGV 19 AGV 20 AGV 21 AGV 22 AGV 23

%

106

4.4.6 Testbed-size Effect on Model and EAs

To provide a comparison basis among testbeds for the developed EAs, their best

performances at all the testbeds are shown in Figure 4.41.

Figure 4.41: Best performance of the four algorithms at four testbeds

Figure 4.41 demonstrates the performance of all the algorithms in all the testbeds, in

which a similar trend in the behaviour of the four EAs is evident. Increasing the problem

size did not influence the response pattern of the studied EAs, and it only made the

algorithms to converge at a higher iteration number. Enlargement of the testbed size

imposed higher degree of complexity and difficulty to the algorithms for finding the

optimum result. By increasing the problem size, the possible results space was widened

which required more iteration till finding the optimum result.

As it is shown in Figure 4.41, in testbed 1, in the first 20 iterations HGP1 had the better

result, but after 20th iteration HGP2 outperformed the other EAs. In testbed 2, in the

107

beginning, GA showed a fast convergence capability better than the other EAs, but HGP2

outpaced all EAs eventually. In testbed 3 and 4, because of the increment in problem size

all the EAs converged at a higher iteration number compared with other testbeds, and

HGP2 showed to be the best EA from the early iterations. It is noteworthy that, testbed 3

was inclusive of more machines, jobs, and operations than testbed 2, but its fitness

function showed a lower makespan than testbed 2, which it is attributed to the shorter

two-way distances and the shorter processing time of operations in Testbed 3.

In addition, in testbed 4 which is a large-sized testbed, the difference between HGP2’s

best result and the other EAs was heightened compared with that in other testbeds. It

shows that in the bigger and more complicated problems HGP2 performs even better

compared with smaller testbeds.

As it is shown in Table 4.14, the standard deviation of the best results of each EA followed

the same pattern in all the testbeds, in which HGP2 had the smallest standard deviation

and PSO had the largest one.

Table 4.14: Test results of optimization algorithms at four testbeds for hundred runs

 Testbed PSO GA HGP1 HGP2

Best (min) fitness

value

1 172.56 167.08 164.94 161.75

2 1327.29 1282.63 1272.22 1253.96

3 936.82 849.48 840.15 834.82

4 1635.33 1573.5 1555.5 1542.83

Standard deviation

of best (min)

results

1 3.41 2.38 2.24 1.89

2 18.87 18.2 17.06 15.48

3 14.5 12.07 10.63 7.38

4 29.52 26.62 17.31 14.53

Computational

time (second)

1 51.11 49.61 54.38 48.5

2 151.29 150.12 159.63 149.74

3 170.29 189.74 176.63 187.12

4 391.29 389.32 401.42 387.65

Algorithms response pattern to the testbed size in terms of the computational time

followed the same pattern in all the testbeds (as shown in Table 4.14). Increasing the

testbed size increased the computational time of all algorithms. It is clear that the bigger

108

problems require more time to process and find the optimum solution. However, in all the

testbeds, HGP2 was the fastest computing algorithm followed by GA, PSO, and HGP1

respectively.

It was reported in the previous sections that in the bigger testbeds, which the role of AGVs

battery consideration criterion is emboldened, as satisfactory results as in small-sized

testbeds were obtained confirming the model performance independency of problem size.

Similar patterns of battery charge consumption and battery charge utilization were

observed at any of the four testbeds. AGVs specifications—running time (loading +

unloading), and idle time—also showed the same response pattern when applying the

model to the four different testbeds. In other words, testbed size did not show any

significant impact on the model performance.

4.4.7 EAs inter-comparison

Overall, the four algorithms were proved successful in decreasing the makespan and

required number of AGVs, and consequently improving the AGVs’ battery charge

utilization and AGVs’ operation efficiency in all the testbeds. However, both the

developed hybrids of HGP1 and HGP2 outperformed the GA and PSO. Literature had

also highlighted the effectiveness of hybrid GA-PSO in solving scheduling problems and

its superiority against the constituting algorithms (Jamrus et al., 2013; Kaveh &

Malakouti Rad, 2010; Samuel & Rajan, 2015; Tang et al., 2010). The above conclusion,

with regard to the present study, can be explained by the nature of the operators employed

in the algorithms. In HGP1, benefiting from selection, crossover, and mutation operators,

the population diversity would increase and facilitate finding new solution spaces and

escaping the possible local optima (Dong et al., 2012; Settles & Soule, 2005). Therefore,

such qualities empower HGP1 to outperform GA and PSO algorithms.

109

Comparing the two developed hybrids, it was seen that HGP2 surpassed HGP1 and

converged at a faster rate to a lower value—in all the testbeds. The potential to improve

upon HGP1 general hybridization style was explored by applying different elitism and

selection approaches, and a different way of generating new population to the integration

style. Rudolph (1999), Zitzler et al. (2000), Kumar et al. (2011), and Cao et al. (2016) had

also utilized the elitism and proved its capabilities in fast convergence and computational

time in multi-objective evolutionary algorithms. Another highlighting point in HGP2

structure was related to its population selection criteria that by comparing the generated

population of two subsequent iterations, the best population was extracted. Choosing the

best population at every iteration increased the chance of finding a better solution in less

time (Jiang et al., 2017; Yu et al., 2015). The third distinguished characteristic in HGP2

was its higher exploitation and exploration capabilities. In HGP2, one half of the new

population was made only by PSO operators and another half was made by applying both

the PSO and GA operators. Therefore, in comparison with HGP1, its exploration and

exploitation capabilities were improved (Cao et al., 2016; Soleimani & Kannan, 2015; J.

Wang et al., 2016).

In hybrids, sometimes, adding and mixing options to create variety in the solutions in

hope of better results, may cause complexity and increase the computational time like the

HGP1 in this study. However, sometimes in hybrid cases such as HGP2 that characters

like elitism are applied, as the worst solutions would diminish and less time would be

spent on unsuitable solutions, the computational time may decrease (Yu & Gen, 2010a).

Standard deviation is another factor for EAs’ performance comparison that provides

important information on the existence of genetic redundancy in the population. Low

standard deviation explains that the individuals have similar performances and probably

this is due to the uniformity in chromosomes and particles (Mezura-Montes & Coello

110

Coello, 2004). As Kruse et al. (2013) mentioned, high values of standard deviation makes

the algorithm to focus on exploration and low values of standard deviation makes it to

focus on exploitation of search space (Črepinšek et al., 2013). HGP2 had the smaller

standard deviation of the best results which indicates the close spread of the HGP2’s

results nearby/around the best results’ mean value (Veček et al., 2014).

The model optimized using HGP2 showed to have higher AGV battery charge utilization

compared with other EAs. It can be explained by the lower makespan obtained using

HGP2, in which in such condition AGVs would perform their tasks in a shorter time.

Thus, when AGVs battery charge utilization is increased, consequently their operation

efficiency would be increased as it was seen in the four testbeds. Overall, from the

findings of this research, apart from introducing the HGP2 configuration as a proper

hybrid algorithm for similar problems, application of the hybrid GA-PSO in scheduling

studies is affirmed to be more effective than its constituting EAs.

4.5 Validation of the Optimization Model

To validate the proposed model, two layouts from Bilge and Ulsuy’s study (Bilge &

Ulusoy, 1995) were employed here and are shown in Figures 4.42 and 4.43.

Figure 4.42: Layout 1 (Bilge & Ulusoy, 1995)

M1 M3 M4 M2

H (L/U)

111

Figure 4.43: layout 2 (Bilge & Ulusoy, 1995)

Layouts’ travel times are shown in Tables 4.15, 4.16. Data of ten job sets have been used

which their detailes are represented in Table 4.17.

Table 4.15: Travel time (minutes) among L/U and machines – layout 1 (Bilge &

Ulusoy, 1995)

Table 4.16: Travel time (minutes) among L/U and machines – layout 2 (Bilge &

Ulusoy, 1995)

 L/U M1 M2 M3 M4
L/U 0 6 8 10 12
M1 15 0 2 5 7
M2 13 18 0 3 5
M3 10 15 17 0 2
M4 8 13 15 18 0

 L/U M1 M2 M3 M4
L/U 0 4 6 8 6
M1 6 0 2 4 2
M2 8 12 0 2 4
M3 6 10 12 0 2
M4 4 8 10 12 0

M1

M3

M2

M4

H (L/U)

112

Table 4.17: Processing time (minutes) of operations on the machines (Bilge & Ulusoy,
1995)

Jo
b

se
t

1

Job number 1 1 1 2 2 2 3 3 3 4 4 5 5
Operation 1 2 3 1 2 3 1 2 3 1 2 1 2
Machine M1 M2 M4 M1 M3 M2 M3 M4 M1 M4 M2 M3 M1
Operation
time

8 16 12 20 10 18 12 8 15 14 18 10 15
Jo

b
se

t
2

Job number 1 1 2 2 3 3 4 4 4 5 5 5 6 6 6
Operation 1 2 1 2 1 2 1 2 2 1 2 3 1 2 3
Machine M1 M4 M2 M4 M1 M3 M2 M3 M4 M1 M2 M4 M1 M2 M3
Operation
time

10 18 10 18 10 20 10 15 12 10 15 12 10 15 12

Jo
b

se
t

3

Job number 1 1 2 2 3 3 4 4 5 5 5 5 6 6 6 6
Operation 1 2 1 2 1 2 1 2 1 2 3 4 1 2 3 4
Machine M1 M3 M2 M4 M1 M2 M3 M4 M1 M2 M3 M4 M2 M3 M4 M1
Operation
time

16 15 18 15 20 10 15 10 8 10 15 17 10 15 8 15

Jo
b

se
t

4

Job number 1 1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5
Operation 1 2 3 1 2 3 1 2 3 4 1 2 3 4 1 2 3 4 5
Machine M4 M1 M2 M3 M2 M4 M2 M3 M1 M3 M2 M4 M1 M2 M1 M2 M4 M2 M3
Operation
time

11 10 7 12 10 8 7 10 9 8 7 8 12 6 9 7 8 10 8

Jo
b

se
t

5

Job number 1 1 1 2 2 2 3 3 3 4 4 5 5
Operation 1 2 3 1 2 3 1 2 3 1 2 1 2
Machine M1 M2 M4 M1 M3 M2 M3 M4 M1 M4 M2 M3 M1
Operation
time

6 12 9 18 6 15 9 3 12 6 15 3 9

Jo
b

se
t

6

Job number 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
Operation 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Machine M1 M2 M4 M1 M2 M4 M2 M3 M4 M2 M3 M4 M1 M3 M4 M1 M3 M4
Operation
time

9 11 7 19 20 13 14 20 9 14 20 9 11 16 8 10 12 10

Jo
b

se
t

7

Job number 1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8
Operation 1 2 1 2 1 2 1 2 1 2 1 2 3 1 2 3 1 2 3
Machine M1 M4 M2 M4 M2 M4 M3 M4 M1 M3 M2 M1 M4 M1 M2 M3 M1 M2 M4
Operation
time

6 6 11 9 9 7 16 7 9 18 19 21 6 10 9 13 11 9 8

Jo
b
 s

et
 8

 Job number 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 6 6
Operation 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 1 2 3 4
Machine M2 M3 M4 M2 M3 M4 M2 M3 M4 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
Operation
time

12 21 11 12 21 11 12 21 11 12 21 11 10 14 18 9 10 14 18 9

Jo
b

se
t

9

Job number 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 5
Operation 1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 3 4
Machine M3 M1 M2 M4 M3 M2 M4 M1 M2 M4 M2 M3 M4 M3 M1 M2 M4
Operation
time

9 12 9 6 16 11 9 21 18 7 20 22 11 14 16 13 9

Jo
b
 s

et
 1

0

Job number 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 6 6 6 6
Operation 1 2 3 4 1 2 3 1 2 3 4 1 2 3 1 2 3 1 2 3 4
Machine M1 M3 M2 M4 M2 M3 M4 M3 M2 M1 M4 M2 M3 M4 M1 M3 M4 M2 M1 M3 M4
Operation
time

11 19 16 13 21 16 14 8 10 14 9 13 20 10 9 16 18 19 21 11 15

Table 4.18 shows the comparison of the makespan of the result of twenty test problems

using a combination of two different facility layout from HGP2 along with the benchmark

113

results of the algorithm in the literature that used the same data. The problems were solved

by Bilge and Ulusoy (1995), Ulusoy et al. (1997), Abdelmaguid et al. (2004), Reddy and

Rao (2006), Deroussi et al. (2008), Gnanavel Babu et al. (2010), and Zheng et al. (2014)

and the test results are shown in Table 4.18. “L” is abbreviation for layout, first number

shows the layout number and second number shows the job set.

Table 4.18: Comparison of makespan results

Test No. B95 U97 A04 R06 D08 B10 Z14 U15 HGP2
L1-1 96 96 96 96 96 94 96 80 96
L1-2 105 104 102 100 102 108 100 88 101
L1-3 105 105 99 99 99 87 99 119 98
L1-4 118 116 112 112 112 85 112 94 118
L1-5 89 87 87 87 87 80 87 66 78
L1-6 120 121 118 118 118 114 118 130 113
L1-7 119 118 115 111 111 90 111 86 108
L1-8 161 152 161 161 161 145 161 146 145
L1-9 120 117 118 116 116 115 116 121 116
L1-10 153 150 147 147 147 121 146 152 140
L2-1 82 82 82 82 82 88 82 79 82
L2-2 80 76 76 76 76 86 76 84 75
L2-3 88 85 85 85 85 74 85 116 85
L2-4 93 88 88 87 87 74 87 92 74
L2-5 69 69 69 69 69 76 69 65 69
L2-6 100 98 98 98 98 92 98 128 95
L2-7 90 85 79 79 79 70 79 83 75
L2-8 151 142 151 151 151 123 151 145 140
L2-9 104 102 104 102 102 95 102 127 102
L2-10 139 137 136 135 135 113 135 149 150

B95-(Bilge & Ulusoy, 1995), U97-(Ulusoy et al., 1997), A04-(Abdelmaguid et
al., 2004), R06-(Reddy & Rao, 2006), D08-(Deroussi et al., 2008), B10-

(Gnanavel Babu et al., 2010), Z14-(Zheng et al., 2014), (Umar et al., 2015)

It is observed from the above results that HGP2 performed better than all the other

previous algorithms in the four test problems (L1-5, L1-6, L2-2, L2-7), it was worse in

two test problems (L1-4, L2-10) and its results were in the range of others’ result for the

remaining test problems.

114

4.6 Validation of Optimization Result

The result of optimization was validated through simulation of one of the medium-sized

testbeds (testbed 2 as a representative for all the testbed sizes and properties). FlexSim

software version 2016, update 2 (16.2.2) used as the simulation software. The

experiments were run on a desktop computer with a 2.80 GHz processor and 4 GB RAM.

4.6.1 Layout Set up

The first step in simulation by FlexSim is to set up the layout. The layout was built based

on the defined distances among machines and home and Figure 4.44 displays a part of the

testbed layout. In layout design, after defining the machine places and distances, there

should be a place for parts to enter the system, and also a place to distribute the parts. In

the simulated model, each part enters the system through ‘Source’ and the sequence

defined in the source represents the job sequence. ‘Sink’ acts as home (H), the place that

all the parts are distributed from. “Sink” and “Source” are shown by a red rectangular in

Figure 4.44. Processors are used as machines (the green rectangular) and a ‘Queue’ object

which is shown by the blue rectangular (named by Q1, Q2, …) placed after each machine

acts as a space for the processed parts waiting for the AGV pick-up. The yellow vehicles

(shown by yellow rectangular in Figure 4.44) are the AGVs that collect the parts/products

either from the sink resource or machines and deliver as scheduled. The queue and

machine share the same control point to ensure the accuracy of the calculation. The

starting point for all the AGVs is at the control point connected to H, and the travelling

route is calculated by the software algorithm based on the layout data.

115

Figure 4.44: Sink, source, AGV, and machines in the simulated model environment

4.6.2 Model’s Rules and Information Entry to the FlexSim Database

After setting up the layout, the information and rules such as number of jobs, operations,

processing times of each operation, operations sequence, and details of assigned AGVs

to each operation should be entered to the simulation environment. In FlexSim, assigned

AGVs to each part are controlled by a table named “job”. Figure 4.45 shows a part of the

job table, which its sequence is based on Figure 4.11.

Figure 4.45: Part of the “job table” in FlexSim

116

The first column in Table 4.45 is the job number and the repetition of that represents the

operations, the second column shows the machine number. Third column shows the

assigned AGV to an operation. For example, if the operation O12 on machin M6 is

assigned to AGV2, then its presence in the Table 4.43 from the left would be “1” (second

number 1 in the Job_type’s column from the top), “6”, and “2”.

Each job will arrive at the system through “Source”. Figure 4.46 shows the properties of

the "Source". The arrival sequence represents the sequence of jobs arrival. The number of

arrival is 6 as there are 6 jobs.

Figure 4.46: Source properties

The processing time (minute) for each job was based on Table 4.6. Information is

presented in the table “Op_Time” as in Figure 4.47 with rows and columns representing

the jobs and the operations, respectively.

117

Figure 4.47: Table of operation time of the example in FlexSim

Figure 4.48 shows the properties of a processor (machine). Setting of the operation times

of machines is shown by the red arrow in Figure 4.48. In this step, by selecting the table

“Op_Time” from Figure 4.47 in the dropdown menu and choosing the correct job and

operation number in the “Row” and “Column” sections, the correct processing time is

located.

Figure 4.48: Machine properties

118

4.6.3 Simulation Result

After running the simulated model, all the jobs completion time werereported in

“job_completion_time” table of the software shown in Figure 4.49. Since makespan is

the completion time of all jobs, the biggest number in the table represents the makespan,

which is related to job 3 being the last job to be compeleted (Figure 4.49).

Figure 4.49: Completion time for each job

There are other figures reporting everything about the simulated model, after finishing

the jobs. Figure 4.50 shows the time that every part has spent for a particular work

classifying as waiting time, processing time and travelling time of the parts in the model.

Figure 4.51 is the figure that depicts the time for each buffering queue spent on collecting,

releasing and being empty.

119

Figure 4.50: Waiting time, processing time and travelling time of the goods

Figure 4.51: Buffering queues’ time on collecting, releasing and being empty

120

120

Figure 4.52: Simulation environment, when the model is running

Figure 4.52 shows a scene from the simulation environment, when the model was running

and AGVs were functioning. Using testbed 2 configuration and applying its optimized

sequence by HGP2 for the simulation in FlexSim software, it was found that the

simulation results conform to optimization results and similar makespan magnitude and

number of AGVs were obtained. Therefore, model simulation in FlexSim software

proved the validity of the optimization result.

4.7 Summary

After accomplishing the model and algorithms development step, the optimal parameters

set of each EA was found using Brute-force method. Then, algorithms were applied to

four testbeds with different sizes (1 small, 2 mediums, and 1 large) and their performances

were studied. The algorithms developed were successful in decreasing the makespan and

the required number of AGVs in all the testbeds. Through the superior scheduling of

AGVs, after the optimization, AGVs’ idle time was decreased and their battery utilization

level was improved.

121

HGP2 outperformed the other three algorithms and obtained a better fitness value at a

faster convergence rate at all the testbeds. Comparing the computational time of the four

EAs, HGP1 had the longest computational time, while HGP2 had the smallest one and

the other two algorithms varied closely. Concerning the best results obtained by each EA,

HGP2 showed the smallest standard deviation followed by HGP1, GA, and PSO,

respectively. This study, similar to the previous studies, confirmed the superiority of the

hybrids of GA and PSO over each of them being individually applied. However, selection

of the right operators and integration approach in hybridization of the EAs was proved to

be highly influential on the performance of the constructed hybrid. Adding selection,

crossover, and mutation operators into the hybrids increased the diversity of the

population and facilitated finding new solution spaces and escaping the possible local

optima. In addition, employing elitism, different kind of parents’ selection, and having a

new population selection strategy (half from GA and half from PSO) improved the

HGP2’s performance.

The testbed size effect on the EAs performance was explored next. However, it did not

show any impact on the response pattern of the studied EAs and only their convergence

was postponed to higher iterations at large-sized testbeds. Then, for model validation,

benchmarking was used and the obtained results proved the feasibility and validity of the

model. Therefore, this model can be used as a reference for similar studies in AGV

scheduling context. Final, in order to validate the optimization result, a simulation

practice based on the testbed 2 was performed using the FlexSim software.

122

CHAPTER 5: CONCLUSIONS

5.1 Research Summary

The prognostics, concluding from the world trade growth, show the ever-increasing

application of AGVs in the industry. The process of allocating AGVs to tasks, taking into

account the costs and time of operations—so called scheduling—is the challenge to

administer in this context. Efficient scheduling, which is the resultant of application of a

model with high efficiency and fast throughput that shortens the production time and

decreases the costs in an FMS, is pursued in this study and many others. Review of the

literature on FMS, AGV, and scheduling discourses showed that every study analyzes the

impacts of a different criteria set on FMS performance. The criteria and scheduling

models were developed mainly based on a specific hypothesis drew by every researcher.

To broaden the scheduling knowledge, this study developed a multi-objective scheduling

optimization model with a new set of criteria of makespan minimization and minimization

of AGVs number with their battery charge consideration involved.

After determining the criteria set of the multi-objective model, based on the reviewed

literature, a mathematical model representing the scheduling model was developed and

presented in section 3.3. With scheduling problems being characterized as NP-hard

problems, evolutionary algorithms (EAs) were employed to find an optimized solution.

Following the “no free lunch” theory, many studies had proposed the application of GA

and PSO for scheduling problems. Therefore, GA and PSO algorithms were used and

developed for the problem at hand. Literature had also highlighted that a hybrid of GA

and PSO can be more effective than each of them being applied individually. Thus, taking

advantage of GA and PSO unique capabilities, two hybrids (HGP1, HGP2) were

developed. The difference between them relied on the approaches applied for the GA and

PSO operators’ integration. Overall, four evolutionary algorithms (GA, PSO, HGP1, and

HGP2) were developed for the problem and presented in section 3.4.

123

Following experts’ suggestions, MATLAB software was used for the coding of the model

and all the four algorithms. Performance of the model and algorithms were examined

using numerical application of them at different testbeds. As there was a new criterion

(AGVs’ battery charge considerations) included in the model that distinguishes it from

existing models, it was realized that the available testbeds were not suitable to the problem

at hand both in terms of the size and the problem definition. Therefore, four new testbeds

with different sizes (1 small, 2 mediums, and 1 large-sized) were defined in sections 4.4.2

to 4.4.5 to assess the model. Next, the model validity was tested through simulation in

FlexSim software.

5.2 Conclusions

Analysis of the four algorithms’ result at different testbeds showed the optimization

model functionality and the algorithms success in decreasing the makespan and the

required number of AGVs. By employing the three defined criteria in the developed

model, the number of utilized AGVs was decreased after the optimization. Therefore, the

battery charge of omitted AGVs was preserved. In addition, the model was successful in

optimizing the battery charge utilization of the remained/working AGVs in that the same

number of AGVs were able to perform more jobs in less time using nearly the same or a

bit higher battery charge. It indicates that the battery charge utilization has been enhanced

using the model developed. Thus, the model appeared capable in reducing the FMS costs

by decreasing the number of AGVs applied for the same volume of jobs.

The model was further scrutinized by studying the AGVs characteristics/behavior such

as the total running time (loaded and unloaded), idle time, and AGVs’ operation

efficiency—before and after the optimization. It was found that after optimization, despite

the small rise in AGVs’ total running time (loaded and unloaded), the AGVs’ idle time

was reduced dramatically. With the reduction of idle time, the AGVs’ operation

124

efficiency has been enhanced. This shows that the use of AGVs was more effective after

the optimization, in which it is again a source of cost reduction in the FMS while the

overall efficiency of the system is enhanced.

All the four algorithms found an optimized result, although HGP2 had a better

performance compared with PSO, GA, and HGP1. The optimized model using HGP2

converged at a faster rate and to a lower value. Concerning the variation between worst

and best results obtained by each EA, HGP2 was able to maintain a wide range of

candidate solutions and provide more diversity compared with other EAs. Of the four

EAs, HGP2 obtained the smallest standard deviation with respect to the best results

generated, and the HGP2’s capability in better convergence. HGP1, GA, and PSO were

the next algorithm with respectively small standard deviations. Comparing algorithms in

terms of computational time, it was found that HGP2 was the faster performing EA than

GA, PSO and HGP1 respectively.

As discussed above, despite the superiority of HGP2 over HGP1, both the hybrids

outperformed the GA, and PSO algorithms. In HGP1, selection, crossover, and mutation

operators were integrated together and that increased the diversity of the population and

facilitated discovering new solution spaces and escaping the possible local optima. In

HGP2, incorporation of the elitism operator into the algorithm along with the innovative

population selection process applied, and novel structure of integrating the operators of

GA and PSO have escalated its exploration and exploitation capabilities and the

convergence rate. Overall, apart from introducing the HGP2 as a suitable hybrid for

similar problems; in line with the literature consensus on the excellence of hybrids over

their constituents being individually applied, the present research also reaffirms this

statement.

125

With regard to the testbed size impact on the model applicability and the algorithms

performance, it was seen that the alteration of testbed size did not affect the algorithms

performance pattern and their level of optimality when compared with one another.

Increasing the testbed size postponed the convergence of all EAs to higher iterations,

because enlargement of the testbed size imposed higher degree of complexity and

difficulty to the algorithms for finding the optimum result. In the large-sized testbeds, the

difference between HGP2 and HGP1 best results was increased compared to smaller sized

testbeds. Following the same fashion, the difference between HGP2 and GA and PSO

was also mounted in the large-sized testbed, which it indicates that HGP2 has been even

more powerful in large-sized testbeds than in the small-sized problems.

To validate the model applicability, the proposed model has been validated through some

well-known benchmarking problems with data of ten job sets on two layouts. Then, the

results were compared with previous algorithms which used the same data for scheduling.

For validating optimization result, the second testbed (medium-sized) was chosen to be

simulated by FlexSim in section 4.5. The choice of second testbed for simulation was to

avoid the unnecessary complexity driven by a big model application, and for a proper

representation of the results, and to have a representative of all problem sizes. The

obtained results were the same as that in the model runs in MATLAB. Thus, in line with

the testbeds results, simulation using the FlexSim software has also proved the feasibility

of the developed model. So that, the model developed in this study can be introduced as

an efficient and competent model for similar scheduling tasks.

5.3 Future Research

Based on the nature of the scheduling studies and similar to many researches in this area,

some limitations as explained in chapter 3 were applied for the model development in the

126

present study. However, the following research potentials are recommended to stretch out

the developed multi-objective model in this study:

 Considering AGVs and machines’ breakdown

In case of an AGV/machine breakdown, the vehicle will be stranded in the path or the

machine process will be stopped. It will block all the vehicles carrying out the P/D task.

Considering such a criterion in the model to observe the breakdowns would improve the

model in terms of the reality resemblance.

 Conflict-free routing

The developed model is assumed to be conflict-free, but in reality, conflicts may happen

and it can be added to model to extend the study. Real time issues like traffic congestion

and conflicts can also be considered.

 Developing different algorithms and hybrids for the model

Other algorithms and hybrids could be developed for the model and compared with the

algorithms being used in this study.

127

REFERENCES

Abdelmaguid, T. F., et al. (2004). A hybrid GA/heuristic approach to the simultaneous
scheduling of machines and automated guided vehicles. International Journal of
Production Research, 42(2), 267-281.

Agrawal, R., et al. (2012). Scheduling of a flexible job-shop using a multi-objective
genetic algorithm. Journal of Advances in Management Research, 9(2), 178-188.

AGV Kennis Instituut. (2015). General technology description of AGV-systems.
Retrieved from http://www.frog.nl/Oplossingen/AGV_Kennis_Instituut.

Aized, T. (2009). Modelling and performance maximization of an integrated automated
guided vehicle system using coloured Petri net and response surface methods.
Computers & industrial engineering, 57(3), 822-831.

Akturk, M., & Yilmaz, H. (1996). Scheduling of automated guided vehicles in a decision
making hierarchy. International Journal of Production Research, 34(2), 577-591.

Al Theeb, N. A., & Alhwiti, T. (2014). Solving single-machine weighted tardiness and
total setup costs scheduling problem with sequence dependant setup times and
sequence dependant setup cost using discrete particle swarm. Paper presented at
the Industrial and Systems Engineering Research Conference, Montreal, Canada.

Albert, P., & Castagna, P. (1996). Piloting of AGV systems with conflict management
method. Paper presented at the CESA'96 IMACS Multiconference on
computational engineering in systems applications, Lille, France.

Almada-Lobo, F. (2016). The Industry 4.0 revolution and the future of manufacturing
execution systems (MES). Journal of Innovation Management, 3(4), 16-21.

Andersson, M., et al. (2016). Tuning of multiple parameter sets in evolutionary
algorithms. Paper presented at the Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference.

Anwar, M. F., & Nagi, R. (1998). Integrated scheduling of material handling and
manufacturing activities for just-in-time production of complex assemblies.
International Journal of Production Research, 36(3), 653-681.

Ariffin, M., et al. (2011). Automated guided vehicles scheduling optimization by fuzzy
genetic algorithm.

Aydemir, E., & Koruca, H. (2015). A new production scheduling module using priority-
rule based genetic algorithm. International Journal of Simulation Modelling
(IJSIMM), 14(3).

Aytug, H., et al. (2003). Use of genetic algorithms to solve production and operations
management problems: a review. International Journal of Production Research,
41(17), 3955-4009.

128

Azimi, P. (2011). Alleviating the collision states and fleet optimization by introducing a
new generation of automated guided vehicle systems. Modelling and Simulation
in Engineering, 2011, 2.

Aziz, N. A. A., et al. (2011). Particle swarm optimization for constrained and
multiobjective problems: A brief review. Paper presented at the International
Proceedings of Economics Development & Research, Bali, Indonesia.

Ba, L., et al. (2016). Modelling and simulation of a multi-resource flexible job-shop
scheduling. International Journal of Simulation Modelling (IJSIMM), 15(1).

Badakhshian, M., et al. (2012). Performance optimization of simultaneous machine and
automated guided vehicle scheduling using fuzzy logic controller based genetic
algorithm. International Journal of Physical Sciences, 7(9), 1461-1471.

Baker, K. R. (1995). Elements of sequencing and scheduling. Amos Tuck School of
Business Administration, Dartmouth College, Hanover, United States.

Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review of population-based meta-
heuristic algorithms. Int. J. Adv. Soft Comput. Appl, 5(1), 1-35.

Berman, S., & Edan, Y. (2002). Decentralized autonomous AGV system for material
handling. International Journal of Production Research, 40(15), 3995-4006.

Biegel, J. E., & Davern, J. J. (1990). Genetic algorithms and job shop scheduling.
Computers & industrial engineering, 19(1), 81-91.

Bilge, Ü., & Ulusoy, G. (1995). A time window approach to simultaneous scheduling of
machines and material handling system in an FMS. Operations Research, 43(6),
1058-1070.

Bioportfolio. (2017). Automated guided vehicle market by type (unit load carrier, tow
vehicle, pallet truck, assembly line vehicle), industry vertical (automotive, &
others), application (transportation, distribution, & others), & geography - global
forecast to 2020. Retrieved from https://www.bioportfolio.co.uk/product/41497.

Blazewicz, J., et al. (1991). Scheduling tasks and vehicles in a flexible manufacturing
system. International Journal of Flexible Manufacturing Systems, 4(1), 5-16.

Cai, Q., et al. (2014). Multi-AGV scheduling optimization based on neuro-endocrine
coordination mechanism. International Journal on Smart Sensing and Intelligent
Systems, 7(4), 1613-1630.

Cao, L., et al. (2016). A guiding evolutionary algorithm with greedy strategy for global
optimization problems. Computational intelligence and neuroscience, 2016.

Chandrasekaran, S., et al. (2007). Multi-objective particle swarm optimization algorithm
for scheduling in flowshops to minimize makespan, total flowtime and completion
time variance. Paper presented at the IEEE Congress on Evolutionary
Computation. CEC 2007.

129

Chelouah, R., & Siarry, P. (2003). Genetic and Nelder–Mead algorithms hybridized for a
more accurate global optimization of continuous multiminima functions.
European Journal of Operational Research, 148(2), 335-348.

Chen, C. L., et al. (1995). An application of genetic algorithms for flow shop problems.
European Journal of Operational Research, 80(2), 389-396.

Cheng, R., et al. (1996). A tutorial survey of job-shop scheduling problems using genetic
algorithms—I. Representation. Computers & industrial engineering, 30(4), 983-
997.

Chudasama, C., et al. (2011). Comparison of parents selection methods of genetic
algorithm for TSP. Paper presented at the International Conference on Computer
Communication and Networks CSI-COMNET-2011, Proceedings.

Črepinšek, M., et al. (2013). Exploration and exploitation in evolutionary algorithms: A
survey. ACM Computing Surveys (CSUR), 45(3), 35.

Deroussi, L., et al. (2008). A simple metaheuristic approach to the simultaneous
scheduling of machines and automated guided vehicles. International Journal of
Production Research, 46(8), 2143-2164.

Du, W.-B., et al. (2015). Adequate is better: particle swarm optimization with limited-
information. Applied Mathematics and Computation, 268, 832-838.

Egemin Automation, I. (2016). Battery charging systems for automated guided vehicles.
Retrieved from
http://www.egeminusa.com/pages/agvs/agvs_battery_charging.html.

Eiben, A. E., & Smit, S. K. (2011a). Evolutionary algorithm parameters and methods to
tune them Autonomous search (pp. 15-36): Springer.

Eiben, A. E., & Smit, S. K. (2011b). Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19-31.

Eichfelder, G. (2008). Adaptive scalarization methods in multiobjective optimization
(illustrated ed.): Springer Science & Business Media.

Elsayed, S. M., et al. (2014). A new genetic algorithm for solving optimization problems.
Engineering Applications of Artificial Intelligence, 27, 57-69.

Ercan, F., & Li, X. (2013). Particle swarm optimization and its hybrids. International
Journal of Computer and Communication Engineering, 2(1), 52-55.

Eren, T., & Güner, E. (2007). Minimizing total tardiness in a scheduling problem with a
learning effect. Applied Mathematical Modelling, 31(7), 1351-1361.

Erol, R., et al. (2012). A multi-agent based approach to dynamic scheduling of machines
and automated guided vehicles in manufacturing systems. Applied Soft
Computing, 12(6), 1720-1732.

130

Fan, S. K. S., & Zahara, E. (2007). A hybrid simplex search and particle swarm
optimization for unconstrained optimization. European Journal of Operational
Research, 181(2), 527-548.

Farahani, R. Z., et al. (2008). Designing efficient methods for the tandem AGV network
design problem using tabu search and genetic algorithm. The International
Journal of Advanced Manufacturing Technology, 36(9-10), 996-1009.

Fauadi, M. H. F. B. M., & Murata, T. (2010). Makespan minimization of machines and
automated guided vehicles schedule using binary particle swarm optimization.
Paper presented at the Proceedings of the International MultiConference of
Engineers and Computer Scientists (IMECS), Hong Kong.

Fazlollahtabar, H., & Saidi-Mehrabad, M. (2013). Methodologies to optimize automated
guided vehicle scheduling and routing problems: a review study. Journal of
Intelligent & Robotic Systems, 1-21.

Fazlollahtabar, H., & Shafieian, S. H. (2014). An optimal path in an AGV-based
manufacturing system with intelligent agents. Journal for Manufacturing Science
and Production, 14(2), 87-102.

Ficko, M., et al. (2004). Designing the layout of single-and multiple-rows flexible
manufacturing system by genetic algorithms. Journal of materials processing
technology, 157, 150-158.

FlexSim Software Products, I. (2016). Retrieved from
https://www.flexsim.com/company/

Gan, Z., et al. (2013). Automated guide vehicles dynamic scheduling based on annealing
genetic algorithm. TELKOMNIKA Indonesian Journal of Electrical Engineering,
11(5), 2508-2515.

Gao, Y., et al. (2015). Selectively-informed particle swarm optimization. Scientific
reports, 5.

Gaur, D. R., et al. (2003). A 5/3-approximation algorithm for scheduling vehicles on a
path with release and handling times. Information Processing Letters, 86(2), 87-
91.

Gelareh, S., et al. (2013). Scheduling of intelligent and autonomous vehicles under
pairing/unpairing collaboration strategy in container terminals. Transportation
Research Part C: Emerging Technologies, 33, 1-21.

Gen, M., & Lin, L. (2012). Multiobjective genetic algorithm for scheduling problems in
manufacturing systems. Industrial Engineering and Management Systems, 11(4),
310-330.

Ghane-Kanafi, A., & Khorram, E. (2015). A new scalarization method for finding the
efficient frontier in non-convex multi-objective problems. Applied Mathematical
Modelling, 39(23), 7483-7498.

131

Giagkiozis, I., & Fleming, P. J. (2015). Methods for multi-objective optimization: An
analysis. Information Sciences, 293, 338-350.

Giglio, D. (2014). Task scheduling for multiple forklift AGVs in distribution warehouses.
Paper presented at the Emerging Technology and Factory Automation (ETFA),
IEEE, Barcelona.

Girish, B., & Jawahar, N. (2009). A particle swarm optimization algorithm for flexible
job shop scheduling problem. Paper presented at the 2009 IEEE International
Conference on Automation Science and Engineering.

Gnanavel Babu, A., et al. (2010). Scheduling of machines and automated guided vehicles
in FMS using differential evolution. International Journal of Production
Research, 48(16), 4683-4699.

Gonçalves, J. F., et al. (2005). A hybrid genetic algorithm for the job shop scheduling
problem. European Journal of Operational Research, 167(1), 77-95.

Gorcitz, R., et al. (2015). On the scalability of constraint solving for static/off-line real-
time scheduling. Paper presented at the International Conference on Formal
Modeling and Analysis of Timed Systems.

Guo, C., & Yang, X. (2011). A programming of genetic algorithm in matlab7. 0. Modern
Applied Science, 5(1), 230.

Hall, N. G., et al. (2001). Operational decisions in AGV-served flowshop loops:
scheduling. Annals of Operations Research, 107(1-4), 161-188.

Haq, A. N., et al. (2003). Scheduling decisions in FMS using a heuristic approach. The
International Journal of Advanced Manufacturing Technology, 22(5-6), 374-379.

Hillston, J. (2003). Model validation and verification. Edinburgh: University of
Edinburgh.

Holland, J. H. (1975). Adaptation in natural and artificial system: an introduction with
application to biology, control and artificial intelligence: The University of
Michigan Press.

Huang, D., & Zhang, G. (2013a). Scheduling control of AGV system based on game
theory. Paper presented at the 6th International Conference on Advanced
Infocomm Technology (ICAIT). Hsinchu, Taiwan.

Huang, D., & Zhang, G. (2013b). Scheduling control of AGV system based on game
theory. Paper presented at the Advanced Infocomm Technology (ICAIT), 2013
6th International Conference on.

Hurink, J., & Knust, S. (2005). Tabu search algorithms for job-shop problems with a
single transport robot. European Journal of Operational Research, 162(1), 99-
111.

132

Ilić, O. R. (1994). Analysis of the number of automated guided vehicles required in
flexible manufacturing systems. The International Journal of Advanced
Manufacturing Technology, 9(6), 382-389.

Jain, S., & Foley, W. (2016). Dispatching strategies for managing uncertainties in
automated manufacturing systems. European Journal of Operational Research.,
248(1), 328-341.

Jamrus, T., et al. (2013). Hybrid particle swarm optimization with genetic operators and
cauchy distribution for flexible job-shop scheduling problem. Paper presented at
the 14th Asia Pacific Industrial Engineering and Management Systems, Cebu,
Philippines.

Jans, R., & Degraeve, Z. (2007). Meta-heuristics for dynamic lot sizing: A review and
comparison of solution approaches. European Journal of Operational Research,
177(3), 1855-1875.

Jerald, J., et al. (2005). Scheduling optimisation of flexible manufacturing systems using
particle swarm optimisation algorithm. The International Journal of Advanced
Manufacturing Technology, 25(9-10), 964-971.

Jerald, J., et al. (2006). Simultaneous scheduling of parts and automated guided vehicles
in an FMS environment using adaptive genetic algorithm. The International
Journal of Advanced Manufacturing Technology, 29(5-6), 584-589.

Jiang, F., et al. (2017). A new binary hybrid particle swarm optimization with wavelet
mutation. Knowledge-Based Systems, 130, 90-101.

Joshi, G. (2014). Review of genetic algorithm: an optimization technique. International
Journal of Advanced Research in Computer Science and Software Engineering,
4(4), 802-805.

Kao, Y. T., & Zahara, E. (2008). A hybrid genetic algorithm and particle swarm
optimization for multimodal functions. Applied Soft Computing, 8(2), 849-857.

Kaplanoğlu, V., et al. (2014). A multi-agent based approach to dynamic scheduling of
machines and automated guided vehicles (AGV) in manufacturing systems by
considering AGV breakdowns. Paper presented at the 4th IAJC/ISAM Joint
International Conference on engineering and related technologies, Orlando,
Florida.

Karafotias, G., et al. (2015). Parameter control in evolutionary algorithms: Trends and
challenges. IEEE Trans. Evolutionary Computation, 19(2), 167-187.

Karsak, E. E., & Kuzgunkaya, O. (2002). A fuzzy multiple objective programming
approach for the selection of a flexible manufacturing system. International
Journal of Production Economics, 79(2), 101-111.

Karthikeyan, S., et al. (2015). A hybrid discrete firefly algorithm for solving multi-
objective flexible job shop scheduling problems. International Journal of Bio-
Inspired Computation, 7(6), 386-401.

133

Kato, F., & Shin, S. (2010). Multistep optimal scheduling of automated guided vehicles
in a semiconductor fabrication. Paper presented at the Proceedings of SICE
Annual Conference 2010.

Kaveh, A., & Malakouti Rad, S. (2010). Hybrid genetic algorithm and particle swarm
optimization for the force method-based simultaneous analysis and design.
Iranian Journal of Science and Technology, Transaction B: Engineering, 34(B1),
15-34.

Kawakami, T., & Takata, S. (2012). Battery life cycle management for automatic guided
vehicle systems. Design for Innovative Value Towards a Sustainable Society (pp.
403-408): Springer.

Keesman, K. J. (2011). Model validation techniques System identification: An
introduction (pp. 225-247). London: Springer London.

Kelton, W. D., et al. (2004). Simulation with Arena, 3rd: New York: McGraw-Hill.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. Paper presented at
the IEEE international conference on neural networks, Piscataway, New Jersey.

Kennedy, J., et al. (2001). Swarm intelligence. US: Morgan Kaufmann.

Kessentini, S., & Barchiesi, D. (2015). Particle swarm optimization with adaptive inertia
weight. International Journal of Machine Learning and Computing, 5(5), 368.

Khanmohammadi, S., et al. (2010). Multi AGV hybrid path planning using fuzzy inference
systems. Paper presented at the The 2nd International Conference on Computer
and Automation Engineering (ICCAE).

Kim, D., et al. (2007). Hybrid genetic: Particle swarm optimization algorithm. In C. G.
Ajith Abraham, Hisao Ishibuchi (Ed.), Hybrid Evolutionary Algorithms (Vol. 75,
pp. 147-170): Springer.

Kruse, R., et al. (2013). Synergies of soft computing and statistics for intelligent data
analysis: Springer.

Kumar, M. S., et al. (2011). Simultaneous scheduling of machines and vehicles in an FMS
environment with alternative routing. The International Journal of Advanced
Manufacturing Technology, 53(1-4), 339-351.

Kuo, H., et al. (2009). An efficient flow-shop scheduling algorithm based on a hybrid
particle swarm optimization model. Expert Systems with Applications, 36(3),
7027-7032.

Kuo, R., & Lin, L. (2010). Application of a hybrid of genetic algorithm and particle
swarm optimization algorithm for order clustering. Decision Support Systems,
49(4), 451-462.

Lasi, H., et al. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4),
239.

134

Le-Anh, T. (2005). Intelligent control of vehicle-based internal transport systems:
Erasmus Research Institute of Management (ERIM).

Le-Anh, T., & De Koster, M. (2006). A review of design and control of automated guided
vehicle systems. European Journal of Operational Research, 171(1), 1-23.

Li, K., et al. (2014). An agent-based intelligent algorithm for uniform machine scheduling
to minimize total completion time. Applied Soft Computing, 25, 277-284.

Li, W., et al. (2015). Planning and scheduling for maritime container yards: supporting
and facilitating the global supply network: Springer.

Li, X., & Yao, X. (2012). Cooperatively coevolving particle swarms for large scale
optimization. Evolutionary Computation, IEEE Transactions on, 16(2), 210-224.

Liang, Y., et al. (2012). A hybrid evolutionary algorithm for FMS optimization with AGV
dispatching. Paper presented at the Computers and Industrial Engineering 42,
Cape Town, South Africa.

Lin, J. J., et al. (2014). Optimal AGV configuration by simulation of flow shop scheduling
in an assembly plant. In H. S. Peilong Xu, Yiqian Wang and Pin Wang (Ed.),
Advanced Materials Research (Vol. 926-930, pp. 3132-3136): Trans Tech Publ.

Liou, C. D., et al. (2013). A new encoding scheme-based hybrid algorithm for minimising
two-machine flow-shop group scheduling problem. International Journal of
Systems Science, 44(1), 77-93.

Liu, L. L., et al. (2015). A hybrid PSO-GA algorithm for job shop scheduling in machine
tool production. International Journal of Production Research, 53(19), 1-27.

Lobo, F., et al. (2007). Parameter setting in evolutionary algorithms (Vol. 54): Springer
Science & Business Media.

Malhotra, V., et al. (2010). Excellent techniques of manufacturing systems: RMS and
FMS. International Journal of Engineering Science and Technology, 2(3), 137-
142.

Mallikarjuna, V., Md.Jaffar, Jadesh ,Hanumantaraya. (2014). A review on parallel
scheduling of machines and AGV'S in an FMS environment. International
Journal of Computational Engineering Research (IJCER), 4(5), 2250-3005.

Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective
optimization: new insights. Structural and multidisciplinary optimization, 41(6),
853-862.

Mateo, J. R. S. C. (2012). Weighted sum method and weighted product method Multi
Criteria Analysis in the Renewable Energy Industry (pp. 19-22): Springer.

Mehta, M. (2012). Hybrid genetic algorithm with PSO effect for combinatorial
optimization problems. International Journal of Advanced Computer Research,
2(4), 300-305.

135

Mezura-Montes, E., & Coello Coello, C. (2004). An improved diversity mechanism for
solving constrained optimization problems using a multimembered evolution
strategy. Paper presented at the Genetic and Evolutionary Computation–GECCO
2004.

Morandin, O., et al. (2011). Adaptive genetic fuzzy, predictive and multiobjective
approach for AGVs dispatching. Paper presented at the IECON 2011-37th Annual
Conference on IEEE Industrial Electronics Society.

Morandin, O., et al. (2010). A strategy of production scheduling with the fitness function
of genetic algorithm using Timed Petri net and considering AGV and the input
buffer. Paper presented at the IECON 2010-36th Annual Conference on IEEE
Industrial Electronics Society.

Mousavi, M., et al. (2017). Multi-objective AGV scheduling in an FMS using a hybrid of
genetic algorithm and particle swarm optimization. Plos one, 12(3), e0169817.

Naderi, B., et al. (2010). Electromagnetism-like mechanism and simulated annealing
algorithms for flowshop scheduling problems minimizing the total weighted
tardiness and makespan. Knowledge-Based Systems, 23(2), 77-85.

Nageswararao, M., et al. (2014). Simultaneous scheduling of machines and AGVs in
flexible manufacturing system with mean tardiness criterion by using HGVHA.
INROADS-An International Journal of Jaipur National University, 3(1s), 62-68.

Nanvala, H. (2011). Use of Genetic algorithm based approaches in scheduling of FMS:
A Review. International Journal of Engineering Science and Technology, 3(3),
1936-1942.

Nearchou, A. C. (2004). The effect of various operators on the genetic search for large
scheduling problems. International Journal of Production Economics, 88(2), 191-
203.

Novas, J. M., & Henning, G. P. (2014). Integrated scheduling of resource-constrained
flexible manufacturing systems using constraint programming. Expert Systems
with Applications, 41(5), 2286-2299.

Oliveira, M. M., et al. (2012). NICD battery discharging estimation system for AGVs
working in intelligent warehouses based on EKF. Paper presented at the ABCM
Symposium Series in Mechatronics.

Oliveira, M. M., et al. (2011). Battery state estimation for applications in intelligent
warehouses. Paper presented at the IEEE International Conference on Robotics
and Automation (ICRA), Shanghai.

Oyetunji, E. (2012, 3-6 July). Minimizing the sum of makespan and maximum tardiness
on single machine with release dates. Paper presented at the International
Conference on Industrial Engineering and Operations Management, Istanbul,
Turkey.

136

Özgüven, C., et al. (2010). Mathematical models for job-shop scheduling problems with
routing and process plan flexibility. Applied Mathematical Modelling, 34(6),
1539-1548.

Palonen, M., et al. (2009). A genetic algorithm for optimization of building envelope and
HVAC system parameters. Paper presented at the Proc. Of the 11th IBPSA
Conference, Glasgow, Scotland.

Pan, X. Y., et al. (2013). A case study of AGV scheduling for production material
handling. Applied Mechanics and Materials, 411, 2351-2354.

Pandey, R., et al. (2016). Performance evaluation of flexible manufacturing system
(FMS) in manufacturing industries. Imperial Journal of Interdisciplinary
Research, 2(3), 176-180.

Pezzella, F., et al. (2008). A genetic algorithm for the flexible job-shop scheduling
problem. Computers & operations research, 35(10), 3202-3212.

Pinedo, M. (2012). Scheduling: Springer.

Pinedo, M. L. (2016). Scheduling: theory, algorithms, and systems: Springer.

Pongchairerks, P. (2009). Particle swarm optimization algorithm applied to scheduling
problems. ScienceAsia, 35(1), 89-94.

Premalatha, K., & Natarajan, A. (2009). Hybrid PSO and GA for global maximization.
International Journal of Open Problems in Computational Mathematics, 2(4),
597-608.

Premalatha, K., & Natarajan, A. (2010). Hybrid PSO and GA models for Document
Clustering. International Journal of Advances in Soft Computing and Its
Applications, 2(3), 302-320.

Qiu, L., et al. (2002). Scheduling and routing algorithms for AGVs: a survey.
International Journal of Production Research, 40(3), 745-760.

Rashmi, M., & Bansal, S. (2014). Task scheduling of automated guided vehicle in flexible
manufacturing system using ant colony optimization. International Journal of
Latest Trends in Engineering and Technology (IJLTET), 4(1), 177-181.

Reddy, B., & Rao, C. (2006). A hybrid multi-objective GA for simultaneous scheduling
of machines and AGVs in FMS. The International Journal of Advanced
Manufacturing Technology, 31(5-6), 602-613.

Reddy, B., & Rao, C. (2011). Flexible manufacturing systems modelling and performance
evaluation using AutoMod. International Journal of Simulation Modelling, 10(2),
78-90.

Ren, N. F., et al. (2013). AGV scheduling optimizing research of collaborative
manufacturing system based on improved genetic algorithm. Applied Mechanics
and Materials, 300, 55-61.

137

Rüßmann, M., et al. (2015). Industry 4.0: The future of productivity and growth in
manufacturing industries. Boston Consulting Group, 14.

Sabuncuoglu, I., & Bayız, M. (2000). Analysis of reactive scheduling problems in a job
shop environment. European Journal of Operational Research, 126(3), 567-586.

Saidi-Mehrabad, M., et al. (2015). An ant colony algorithm (ACA) for solving the new
integrated model of job shop scheduling and conflict-free routing of AGVs.
Computers & industrial engineering, 86, 2-13.

Salehipour, A., et al. (2011). Locating workstations in tandem automated guided vehicle
systems. The International Journal of Advanced Manufacturing Technology,
52(1-4), 321-328.

Samuel, G. G., & Rajan, C. C. A. (2015). Hybrid: particle swarm optimization–genetic
algorithm and particle swarm optimization–shuffled frog leaping algorithm for
long-term generator maintenance scheduling. International Journal of Electrical
Power & Energy Systems, 65, 432-442.

Sawada, K., et al. (2013). Optimal scheduling of automatic guided vehicle system via
state space realization. Journal ref: International Journal of Automation
Technology, 7(5), 571-580.

Sha, D., & Lin, H.-H. (2010). A multi-objective PSO for job-shop scheduling problems.
Expert Systems with Applications, 37(2), 1065-1070.

Shabtay, D., et al. (2013). A survey on offline scheduling with rejection. Journal of
Scheduling, 16(1), 3-28.

Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. Paper
presented at the Evolutionary Computation, 1999. CEC 99. Proceedings of the
1999 Congress on.

Shirazi, B., et al. (2010). A six sigma based multi-objective optimization for machine
grouping control in flexible cellular manufacturing systems with guide-path
flexibility. Advances in Engineering Software, 41(6), 865-873.

Shukla, A., et al. (2015). Comparative review of selection techniques in genetic
algorithm. Paper presented at the Futuristic Trends on Computational Analysis
and Knowledge Management (ABLAZE), 2015 International Conference on.

Silberholz, J., & Golden, B. (2010). Comparison of metaheuristics Handbook of
metaheuristics (pp. 625-640): Springer.

Sinha, A., et al. (2014). A bilevel optimization approach to automated parameter tuning.
Paper presented at the Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation.

Sinriech, D., & Kotlarski, J. (2002). A dynamic scheduling algorithm for a multiple-load
multiple-carrier system. International Journal of Production Research, 40(5),
1065-1080.

138

Soleimani, H., & Kannan, G. (2015). A hybrid particle swarm optimization and genetic
algorithm for closed-loop supply chain network design in large-scale networks.
Applied Mathematical Modelling, 39(14), 3990-4012.

Song, M. L. (2014). A study of single-objective particle swarm optimization and multi-
objective particle swarm optimization. Paper presented at the Applied Mechanics
and Materials.

Song, X. (2010). Hybrid particle swarm algorithm for job shop scheduling problems. In
T. Aized (Ed.), Future Manufacturing Systems (pp. 235-267): INTECH Open
Access Publisher.

Spears, W. M., & Anand, V. (1991). A study of crossover operators in genetic
programming: Springer.

Suzuki, T., et al. (2014). Influence of the number of AGVs on products conveyance
efficiency in AGV transportation system based on knowledge of Taxis. Paper
presented at the ASME 2014 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, New
York, USA.

Tang, J., et al. (2010). A hybrid PSO/GA algorithm for job shop scheduling problem
Advances in Swarm Intelligence (pp. 566-573): Springer Berlin Heidelberg.

Tasgetiren, M. F., et al. (2006). Particle swarm optimization and differential evolution for
the single machine total weighted tardiness problem. International Journal of
Production Research, 44(22), 4737-4754.

Tasgetiren, M. F., et al. (2007). A particle swarm optimization algorithm for makespan
and total flowtime minimization in the permutation flowshop sequencing
problem. European Journal of Operational Research, 177(3), 1930-1947.

Tasgetiren, M. F., et al. (2004). Particle swarm optimization algorithm for single machine
total weighted tardiness problem. Paper presented at the Evolutionary
Computation. CEC2004.

Tavakkoli-Moghaddam, R., et al. (2008). Partitioning machines in tandem AGV systems
based on “balanced flow strategy” by simulated annealing. The International
Journal of Advanced Manufacturing Technology, 38(3-4), 355-366.

Thakur, M., et al. (2014). A modified real coded genetic algorithm for constrained
optimization. Applied Mathematics and Computation, 235, 292-317.

The MathWorks, I. (2016). Retrieved from
https://www.mathworks.com/products/matlab/features.html.

Tompkins, J. A., et al. (2010). Facilities planning: John Wiley & Sons.

Tseng, M. C. (2004). Strategic choice of flexible manufacturing technologies.
International Journal of Production Economics, 91(3), 223-227.

139

Udhayakumar, P., & Kumanan, S. (2010). Task scheduling of AGV in FMS using non-
traditional optimization techniques. International Journal of Simulation
Modelling, 9(1), 28-39.

Udhayakumar, P., & Kumanan, S. (2012). Integrated scheduling of flexible
manufacturing system using evolutionary algorithms. The International Journal
of Advanced Manufacturing Technology, 61(5-8), 621-635.

Ullrich, C. A. (2013). Integrated machine scheduling and vehicle routing with time
windows. European Journal of Operational Research, 227(1), 152-165.

Ulusoy, G., et al. (1997). A genetic algorithm approach to the simultaneous scheduling
of machines and automated guided vehicles. Computers & operations research,
24(4), 335-351.

Umar, U. A., et al. (2015). Hybrid multiobjective genetic algorithms for integrated
dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in
flexible manufacturing systems (FMS) environment. The International Journal of
Advanced Manufacturing Technology, 81(9-12), 2123-2141.

Valdez, F., et al. (2008). A new evolutionary method with a hybrid approach combining
particle swarm optimization and genetic algorithms using fuzzy logic for decision
making. Paper presented at the Evolutionary Computation. CEC 2008.(IEEE
World Congress on Computational Intelligence).

Vasava, A. S. (2014). Scheduling of automated guided vehicle in different flexible
manufacturing system environment. International Journal of Innovative Research
in Advanced Engineering (IJIRAE), 1(8), 262-267.

Veček, N., et al. (2014). A chess rating system for evolutionary algorithms: a new method
for the comparison and ranking of evolutionary algorithms. Information Sciences,
277, 656-679.

Veček, N., et al. (2016). Parameter tuning with chess rating system (CRS-Tuning) for
metaheuristic algorithms. Information Sciences, 372, 446-469.

Veeravalli, B., et al. (2002). Design and analysis of optimal material distribution policies
in flexible manufacturing systems using a single AGV. International Journal of
Production Research, 40(12), 2937-2954.

Ventura, J. A., et al. (2015). Finding optimal dwell points for automated guided vehicles
in general guide-path layouts. International Journal of Production Economics.,
170, 850-861.

Vis, I. F. (2006). Survey of research in the design and control of automated guided vehicle
systems. European Journal of Operational Research, 170(3), 677-709.

Vivaldini, K., et al. (2013). Battery charge state estimate for a robotic forklift routing
system. Paper presented at the Industrial Technology (ICIT), 2013 IEEE
International Conference on.

140

Wall, M. B. (1996). A genetic algorithm for resource-constrained scheduling. (Doctoral
dissertation), Massachusetts Institute of Technology.

Wang, H. F., & Chan, C. H. (2014). Multi-objective optimisation of automated guided
dispatching and vehicle routing system. International Journal of Modelling in
Operations Management, 4(1), 35-52.

Wang, J., et al. (2016). Hybrid forecasting model-based data mining and genetic
algorithm-adaptive particle swarm optimisation: a case study of wind speed time
series. IET Renewable Power Generation, 10(3), 287-298.

Wang, J. B., et al. (2014). Simulating an AGV scheduling in job workshop for optimal
configuration. In H. S. Peilong Xu, Yiqian Wang and Pin Wang (Ed.), Advanced
Materials Research (Vol. 926-930, pp. 1562-1565): Trans Tech Publ.

Wang, L., & Si, G. (2010). Optimal location management in mobile computing with
hybrid genetic algorithm and particle swarm optimization (GA-PSO). Paper
presented at the Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE
International Conference on.

Wang, S., et al. (2016). Implementing smart factory of industrie 4.0: an outlook.
International Journal of Distributed Sensor Networks.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1), 67-82.

Wu, C.-H., et al. (2010). Chaotic hybrid algorithm and its application in circle detection
Applications of Evolutionary Computation (pp. 302-311): Springer.

Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-objective
flexible job-shop scheduling problems. Computers & industrial engineering,
48(2), 409-425.

Xia, W., & Wu, Z. (2006). A hybrid particle swarm optimization approach for the job-
shop scheduling problem. The International Journal of Advanced Manufacturing
Technology, 29(3-4), 360-366.

Yahyaei, M., et al. (2010). Controlling the navigation of automatic guided vehicle (AGV)
using integrated fuzzy logic controller with programmable logic controller
(IFLPLC)—stage 1. The International Journal of Advanced Manufacturing
Technology, 47(5-8), 795-807.

Yu, S., et al. (2015). A hybrid self-adaptive particle swarm optimization–genetic
algorithm–radial basis function model for annual electricity demand prediction.
Energy Conversion and Management, 91, 176-185.

Yu, X., & Gen, M. (2010a). Advanced evolutionary algorithms. Introduction to
Evolutionary Algorithms, 39-132.

Yu, X., & Gen, M. (2010b). Simple evolutionary algorithms. Introduction to Evolutionary
Algorithms, 11-38.

141

Zeng, C., et al. (2014). Scheduling of no buffer job shop cells with blocking constraints
and automated guided vehicles. Applied Soft Computing, 24, 1033-1046.

Zhang, G., et al. (2011). An effective genetic algorithm for the flexible job-shop
scheduling problem. Expert Systems with Applications, 38(4), 3563-3573.

Zhang, G., et al. (2009). An effective hybrid particle swarm optimization algorithm for
multi-objective flexible job-shop scheduling problem. Computers & industrial
engineering, 56(4), 1309-1318.

Zhao, W., et al. (2013). The multi-task scheduling and controlling simulation method of
the AGVS. Paper presented at the Proceedings of the World Congress on
Engineering and Computer Science, San Francisco, USA.

Zheng, K., et al. (2013). Distributed control of multi-AGV system based on regional
control model. Production Engineering, 7(4), 433-441.

Zheng, Y., et al. (2014). A tabu search algorithm for simultaneous machine/AGV
scheduling problem. International Journal of Production Research, 52(19), 5748-
5763.

Zini, H., & ElBernoussi, S. (2015). A discrete particle swarm optimization with combined
priority dispatching rules for hybrid flow shop scheduling problem. Applied
Mathematical Sciences, 9(24), 1175-1187.

142

LIST OF PUBLICATIONS AND PAPERS PRESENTED

JOURNALS

1. Maryam Mousavi, Hwa Jen Yap, Siti Nurmaya Musa, Farzad Tahriri, Siti Zawiah Md

Dawal. (2017). Multi-Objective AGV Scheduling in an FMS Using a Hybrid of Genetic

Algorithm and Particle Swarm Optimization. PloS one, 12(3), e0169817. Doi:

https://doi.org/10.1371/journal.pone.0169817.

2. Maryam Mousavi, Hwa Jen Yap, Siti Nurmaya Musa, Siti Zawiah Md Dawal. (2017).

A Fuzzy Hybrid GA-PSO Algorithm for Multi-Objective AGV Scheduling in an FMS.

International Journal of Simulation Modelling (IJSIMM), 16(1), pp 58-71.

3. Maryam Mousavi, Hwa Jen Yap, Siti Nurmaya Musa, Siti Zawiah Md Dawal.

Automated Guided Vehicle Systems: Indoor and Outdoor Dispatching, Scheduling, and

Routing. International Journal of Industrial Engineering: Theory, Applications and

Practice. (Under review from 25/6/2015).

4. Maryam Mousavi, Yap Hwa Jen, Siti Nurmaya, (2013). A Review on Cybersickness

and Usability in Virtual Environments. Advanced Engineering Forum, Vol. 10, pp. 34-

39. doi: 10.4028/www.scientific.net/AEF.10.34.

5. Farzad Tahriri, Maryam Mousavi, Hwa Jen Yap, Siti Zawiah Md Dawal, and Zahari

Taha. (2015). Optimizing the Robot Arm Movement Time Using Virtual Reality Robotic

Teaching System. International Journal of Simulation Modelling, 14(1), pp 28-38.

6. Siti Zawiah Md Dawal, Farzad Tahriri, Yap Hwa Jen, Keith Case, Nguyen Huu Tho,

Aliq Zuhdi and, Maryam Mousavi, Atefeh Amindoust, Novita Sakundarini, (2015),

Empirical Evidence of AMT Practices and Environmental Initiatives in Malaysian

Automotive SMEs, International Journal of Precision Engineering and Manufacturing.

Volume 16, Issue 6, pp 1195-1203.

CONFERENCES

1. Maryam Mousavi, Yap Hwa Jen, Siti Nurmaya, Farzad Tahriri, (2014) Application

of Automated Guided Vehicle system in industry, International Conference on

Engineering and Applied Science, Tokyo, Japan.

143

APPENDIX: MODEL AND ALGORITHMS PROGRAMMING

GA-function
function [output] = GA_func(g, problem)
%function [gaDat, output] = GA_func(g, problem)

output.History.Y.Makespan = [inf];
output.History.Y.NAGV = [inf];
output.History.Y.Eval = [inf];
output.History.X = ones(1, g.D) .* inf;
output.History.chrom = ones(1, g.D) .* inf;

g.MAXGEN = g.MaxGen-1;
D = ones(1, g.D);
g.FieldD = [D.* g.LB; D.*g.UB];
g.NIND = g.N;

gaDat=g;

% If the parameter doesn't exist in the data structure it is created
with the default value
if ~isfield(gaDat,'NVAR')
 gaDat.NVAR=size(gaDat.FieldD,2);
end
if ~isfield(gaDat,'MAXGEN')
 gaDat.MAXGEN=gaDat.NVAR*20+10;
end
if ~isfield(gaDat,'NIND')
 gaDat.NIND=gaDat.NVAR*50;
end
if ~isfield(gaDat,'alfa')
 gaDat.alfa=0;
end
if ~isfield(gaDat,'Pc')
 gaDat.Pc=0.9;
end
if ~isfield(gaDat,'Pm')
 gaDat.Pm=0.1;
end
if ~isfield(gaDat,'indini')
 gaDat.indini=[];
end

% Internal parameters
gaDat.Chrom=[];
gaDat.ObjV=[];
gaDat.xmin=[];
gaDat.fxmin=inf;
gaDat.xmingen=[];
gaDat.fxmingen=[];
gaDat.rf=(1:gaDat.NIND)';
gaDat.gen=0;

%%
% Main loop
%%

% Generation counter
gen=0;

144

% Initial population ---------------------------------------
gaDat.Chrom=crtrp(gaDat.NIND,gaDat.FieldD); % Real codification
% Individuals of gaDat.indini are randomly added in the initial
population
if not(isempty(gaDat.indini))
 nind0=size(gaDat.indini,1);
 posicion0=ceil(rand(1,nind0)*gaDat.NIND);
 gaDat.Chrom(posicion0,:)=gaDat.indini;
end

while (gaDat.gen<gaDat.MAXGEN),
 gaDat.gen=gen;
 [gaDat, output, problem]=gaevolucion(gaDat, output, problem);
 % Increase generation counter ------------------
 gaDat.xmingen(gen+1,:)=gaDat.xmin;
 gaDat.fxmingen(gen+1,:)=gaDat.fxmin;
 gen=gen+1;
end
%%
% End main loop
%%
% Present final results

%% Subfunction ---

%% --
function chrom=crtrp(Nind,FieldDR)
% A random real value matrix is created coerced by upper and
% lower bounds

Nvar = size(FieldDR,2);
aux = rand(Nind,Nvar);
m=[-1 1]*FieldDR;
ublb=ones(Nind,1)*m;
lb=ones(Nind,1)*FieldDR(1,:);
chrom=ublb.*aux+lb;

%% --
function [gaDat, output, problem] = gaevolucion(gaDat, output,
problem)
% One generation -------
output.chrom=gaDat.Chrom;
nind=size(output.chrom,1);
ObjV=inf(nind,1);
[output] = SPV(output.chrom, problem.Job, output);
for i=1:nind
 [output]=Fitness(i, problem, output);
 ObjV(i) = output.Y.Eval(i);
end
output.History.Y.Makespan = [output.History.Y.Makespan ;
output.Y.Makespan];
output.History.Y.NAGV = [output.History.Y.NAGV ; output.Y.NAGV];
output.History.Y.Eval = [output.History.Y.Eval ; output.Y.Eval];
output.History.X = [output.History.X ; output.X];
output.History.chrom = [output.History.chrom ; output.chrom];

gaDat.ObjV=ObjV;

% Best individual of the generation -------------------------
[v,p]=min(gaDat.ObjV);
if v<=gaDat.fxmin
 gaDat.xmin=output.chrom(p,:);

145

 gaDat.fxmin=v;
end
% Next generation
% RANKING ---
FitnV = ranking(gaDat.ObjV,gaDat.rf);
% SELECTION ---
% Stochastic Universal Sampling (SUS).
SelCh = select('sus',output.chrom,FitnV,1);
% CROSSOVER ---
% Uniform crossover.
SelCh = lxov(SelCh,gaDat.Pc,gaDat.alfa);
% MUTATION --
output.chrom = mutbga(SelCh,gaDat.FieldD,[gaDat.Pm 1]); % Codificación
Real.
% Reinsert the best individual ---------------------------
output.chrom(round(gaDat.NIND/2),:) = gaDat.xmin;
gaDat.Chrom=output.chrom;
% Optional additional task required by user

%% ---
function FitV=ranking(ObjV,RFun)
% Ranking function
if nargin==1
 error('Ranking function needs two parameters');
end

if ~(length(ObjV)==length(RFun))
 error('RFun have to be of the same size than ObjV.');
end

[~,pos]=sort(ObjV);
FitV(pos)=flipud(RFun);
FitV=FitV';

%% ---
function [SelCh]=select(SEL_F, chrom, FitnV, GGAP)
% Selection Function
if (nargin==3) % No overlap -------------------
 if strcmp(SEL_F,'rws')
 % Roulette wheel selection method
 indices=rws(FitnV,length(FitnV));
 SelCh=chrom(indices,:);
 elseif strcmp(SEL_F,'sus')
 % Stochastic unversal sampling selection
 indices=sus(FitnV,length(FitnV));
 SelCh=chrom(indices,:);
 else
 error('Incorrect selection method');
 end
elseif (nargin==4) % With overlap -----------------------------
 % Indexes of new individuals
 if strcmp(SEL_F,'rws')
 indices=rws(FitnV,round(length(FitnV)*GGAP));
 elseif strcmp(SEL_F,'sus')
 indices=sus2(FitnV,round(length(FitnV)*GGAP));
 else
 error('Incorrect selection method');
 end

 if (GGAP<1) % there is overlap
 % Members of the population to overlap
 oldpos=(1:length(FitnV))';
 for k=1:length(FitnV)

146

 pos=round(rand*length(FitnV)+0.5);
 % exchange indexes
 oldpos([pos k])=oldpos([k pos]);
 end
 oldpos=oldpos(1:round(length(FitnV)*GGAP));
 SelCh=chrom;
 SelCh(oldpos,:)=chrom(indices,:);
 else % more childs than parents
 SelCh=chrom(indices,:);
 end
else
 error('Incorrect number of paramenters');
end

% Disorder the population.
[~,indi]=sort(rand(length(FitnV),1));
SelCh=SelCh(indi,:);

%% --
function NewChrom =lxov(OldChrom, XOVR, alpha)
% Linear crossover
% Produce a~ new population by linear crossover and XOVR crossover
probability
% NewChroms =lxov(OldChrom, XOVR, alpha, FieldDR)
%
% Linear recombination.
% Parameters 'beta1' and 'beta2' are randomly obtained inside [-alpha,
1+alpha]
% interval
% Child1 = beta1*Parent1+(1-beta1)*Parent2
% Child2 = beta2*Parent1+(1-beta2)*Parent2

if nargin==1
 XOVR = 0.7;
 alpha = 0;
elseif nargin==2
 alpha = 0;
end

n = size(OldChrom,1); % Number of individuals and chromosome length
npares = floor(n/2); % Number of pairs
cruzar = rand(npares,1)<= XOVR; % Pairs to crossover
NewChrom=OldChrom;

for i=1:npares
 pin = (i-1)*2+1;
 if ~(cruzar(i)==0)
 betas=rand(2,1)*(1+2*alpha)-(0.5+alpha);
 A=[betas(1) 1-betas(1); 1-betas(2) betas(2)];
 NewChrom(pin:pin+1,:)=A*OldChrom(pin:pin+1,:);
 end
end

% Coerce points outside search space
% aux = ones(n,1);
% auxf1=aux*FieldDR(1,:);
% auxf2=aux*FieldDR(2,:);
% NewChrom =
(NewChrom>auxf2).*auxf2+(NewChrom<auxf1).*auxf1+(NewChrom<=auxf2 &
NewChrom>=auxf1).*NewChrom;

%% ---

147

function NewChrom=mutbga(OldChrom,FieldDR,MutOpt)
% Mutation function
% Real coded mutation.
% Mutation is produced adding a low random value
% OldChrom: Initial population.
% FieldChrom: Upper and lower bounds.
% MutOpt: mutation options,
% MutOpt(1)=mutation probability (0 to 1).
% MutOpt(2)=compression of the mutation value (0 to 1).
% default MutOpt(1)=1/Nvar y MutOpt(2)=1

if (nargin==3)
 pm=MutOpt(1);
 shr=MutOpt(2);
elseif (nargin==2)
 pm=1/size(FieldDR,2);
 shr=1;
else
 error('Incorrect number of parameters');
end

Nind=size(OldChrom,1);
m1=0.5-(1-pm)*0.5;
m2=0.5+(1-pm)*0.5;
aux=rand(size(OldChrom));
MutMx=(aux>m2)-(aux<m1);
range=[-1 1]*FieldDR*0.5*shr;
range=ones(Nind,1)*range;
index=find(MutMx);
m=20;
alpha=rand(m,length(index))<(1/m);
xx=2.^(0:-1:(1-m));
aux2=xx*alpha;
delta=zeros(size(MutMx));
delta(index)=aux2;
NewChrom=OldChrom+(MutMx.*range.*delta);

% Coerce points outside bounds
aux = ones(Nind,1);
auxf1=aux*FieldDR(1,:);
auxf2=aux*FieldDR(2,:);
NewChrom =
(NewChrom>auxf2).*auxf2+(NewChrom<auxf1).*auxf1+(NewChrom<=auxf2 &
NewChrom>=auxf1).*NewChrom;

%% --
function NewChrIx=sus2(FitnV, Nsel)
suma=sum(FitnV);
% Position of the roulette pointers
j=0;
sumfit=0;
paso=suma/Nsel; % distance between pointers
flecha=rand*paso; % offset of the first pointer
NewChrIx(Nsel,1)=0;
for i=1:Nsel
 sumfit=sumfit+FitnV(i);
 while (sumfit>=flecha)
 j=j+1;
 NewChrIx(j)=i;
 flecha=flecha+paso;
 end
end
%% --

148

PSO_function
function [output]= PSO_func(Parameter, problem)
%function [gbest,gbestval,fitcount,Fx, output]= PSO_func(Parameter,
problem)

Dimension = Parameter.D;
Particle_Number = Parameter.N;
Max_Gen = Parameter.MaxGen;
VRmin = Parameter.LB;
VRmax = Parameter.UB;

%---------------------- output initialization ------------------------
output.History.Y.Makespan = [inf];
output.History.Y.NAGV = [inf];
output.History.Y.Eval = [inf];
output.History.X = ones(1, Dimension) .* inf;
output.History.pos = ones(1, Dimension) .* inf;

%---
rand('state',sum(100*clock));
me=Max_Gen;
ps=Particle_Number;
D=Dimension;
iwtmax = Parameter.InertiaWeight(2) - Parameter.InertiaWeight(1);
cc=Parameter.C; %acceleration constants
iwt=rand(me,1).*(Parameter.InertiaWeight(1)) + iwtmax;%0.9-
(1:me).*(0.5./me);%;

if length(VRmin)==1
 VRmin=repmat(VRmin,1,D);
 VRmax=repmat(VRmax,1,D);
end
mv=0.5*(VRmax-VRmin);
VRmin=repmat(VRmin,ps,1);
VRmax=repmat(VRmax,ps,1);
Vmin=repmat(-mv,ps,1);
Vmax=-Vmin;
output.pos=VRmin+(VRmax-VRmin).*rand(ps,D);

[output] = SPV(output.pos, problem.Job, output);

for ieval=1:size(output.pos,1)
 [output]=Fitness(ieval, problem, output);
%Sphere(output.pos(ieval,:), size(output.pos,2));
 e(ieval) = output.Y.Eval(ieval);
end
Fx=e;

output.History.Y.Makespan = [output.History.Y.Makespan ;
output.Y.Makespan];
output.History.Y.NAGV = [output.History.Y.NAGV ; output.Y.NAGV];
output.History.Y.Eval = [output.History.Y.Eval ; output.Y.Eval];
output.History.X = [output.History.X ; output.X];
output.History.pos = [output.History.pos ; output.pos];

fitcount=ps;
vel=Vmin+2.*Vmax.*rand(ps,D);%initialize the velocity of the particles
pbest=output.pos;
pbestval=e; %initialize the pbest and the pbest's fitness value
[gbestval,gbestid]=min(pbestval);
gbest=pbest(gbestid,:);%initialize the gbest and the gbest's fitness
value

149

gbestrep=repmat(gbest,ps,1);

%------------------------------ Iteration ----------------------------
for i=2:me

 Prpbest = cc(1).*rand(ps,D);
 Prgbest = cc(2).*rand(ps,D);

 aa=Prpbest.*(pbest-output.pos) + Prgbest.*(gbestrep-output.pos);

 vel=iwt(i).*vel+aa;%
 vel=(vel>Vmax).*Vmax+(vel<=Vmax).*vel;
 vel=(vel<Vmin).*Vmin+(vel>=Vmin).*vel;
 output.pos=output.pos+vel;

output.pos=((output.pos>=VRmin)&(output.pos<=VRmax)).*output.pos...
 +(output.pos<VRmin).*(VRmin + 1.*(VRmax-VRmin).*rand(ps,D))...
 +(output.pos>VRmax).*(VRmax - 1.*(VRmax-VRmin).*rand(ps,D));

 [output] = SPV(output.pos, problem.Job, output);
 for ieval=1:size(output.pos,1)
 [output]=Fitness(ieval, problem, output);
%Sphere(output.pos(ieval,:), size(output.pos,2));
 e(ieval) = output.Y.Eval(ieval);
 end
 Fx=[Fx;e];

 output.History.Y.Makespan = [output.History.Y.Makespan ;
output.Y.Makespan];
 output.History.Y.NAGV = [output.History.Y.NAGV ; output.Y.NAGV];
 output.History.Y.Eval = [output.History.Y.Eval ; output.Y.Eval];
 output.History.X = [output.History.X ; output.X];
 output.History.pos = [output.History.pos ; output.pos];

 fitcount=fitcount+ps;
 tmp=(pbestval<e);
 temp=repmat(tmp',1,D);
 pbest=temp.*pbest+(1-temp).*output.pos;
 pbestval=tmp.*pbestval+(1-tmp).*e;%update the pbest
 [gbestval,tmp]=min(pbestval);
 gbest=pbest(tmp,:);
 gbestrep=repmat(gbest,ps,1);%update the gbest
end
SPV
function [output] = SPV(ContiniousX, Job,output)
DiscreteX = zeros(size(ContiniousX));
GrayX = mat2gray(ContiniousX);
for i = 1:size(ContiniousX,1)
 [~,Index] = sort(GrayX(i,:));
 A = Job(Index,:);
 B = A';
 B([2:1:4], :) = [] ;
 DiscreteX(i,:) = B;
end
output.X = DiscreteX;

HGP1
function [AGVN, CInput] = AGV(X, problem)
% X = [SEQUENCE]
%[problem] = Problem5;
%
ieval = 1;

150

output.X(ieval,:) = X;
Discrete_X = output.X(ieval,:);
TravTime = problem.TravTime;
Job = problem.Job;
Gamma = problem.Gamma;
Alpha = problem.Alpha;
ChargingTime = problem.ChargingTime;
Dimension = problem.Dimension ;
InitialAGV = problem.InitialAGV;
ChargeValue = problem.ChargeValue;

CInput.JN = Discrete_X; % job number ;
CInput.ON = Discrete_X; % Operation Number;
CInput.StartPoint = Discrete_X; % Machine Number ;
CInput.MN = Discrete_X; % Machine Number ;
CInput.AGVN = zeros(size(CInput.JN)); % AGV Number which assigned to
load.
CInput.OT = Discrete_X; % Operation Time;
CInput.ExeTime = zeros(size(CInput.JN)); % The time when the operation
started,
 %this time is the time that
AGV start
 %to move to pick the part
from previous position

CInput.UnLAGVTime = zeros(size(CInput.JN)); % this the time that take
to AGV go to
 % the pick up position of
the part
 % from current position to
CInput.StartPoint

CInput.LAGVTime = zeros(size(CInput.JN)); % This is the time take to
AGV reach
 % the position of the
operation and
 % from
CInput.StartPoint(i) to CInput.MN(i)

CInput.SrAGVIdleTime = zeros(size(CInput.JN));% this is the time that
AGV is idle
 % to unload the part from
previous machine
 % and move to the new
machine
 % for new operation.

CInput.StAGVIdleTime = zeros(size(CInput.JN));% this is the time that
AGV is idle
 % to load the part into
the machine
 % if the machine is stil
 % running for the previous
 % operation.

CInput.TotalOpTime = zeros(size(CInput.JN));% This is the total time
required
 % to finish the operation.
%Calculating the operation number
for i=1:size(CInput.ON,2)
 index = 0;

151

 for j=1:i
 if CInput.JN(j) == CInput.JN(i)
 index = index +1;
 end
 end
 CInput.ON(i) = index;
end

% Importing machine number and operation time for each operatiion.
for i=1:size(CInput.JN,2)
 for j=1:size(CInput.JN,2)
 if Job(j,1)== CInput.JN(i) && Job(j,2)== CInput.ON(i)
 CInput.MN(i) = Job(j,3);
 CInput.OT(i) = Job(j,4);
 end
 end
end

% producing the starting point of each operation
CInput.StartPoint(1)= 0;
for i=2:size(CInput.JN,2)
 if CInput.ON(i) == 1
 CInput.StartPoint(i) = 0;
 else
 for j=i-1:-1:1
 if CInput.JN(j)== CInput.JN(i)
 CInput.StartPoint(i) = CInput.MN(j);
 break
 end
 end
 end
end

%producing Load AGV Time of travelling AGV
for i=1:size(CInput.JN,2)
 CInput.LAGVTime(i) =
TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1);
end

if InitialAGV == 1
 initAGV = ceil (size(CInput.JN,2)/10);
 AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the
current AGV's battery level
 AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the
current AGV position
 AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of
AGV where is it on operation (1) or in charging state (0)
 AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the
AGVData.State = 0 this shows the time that it has been connected to
charger.
 AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee
agv was ready to perform new task
 AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many
times the AGV was charged
elseif InitialAGV == 0
 AGVData.Charge = [ChargeValue]; %Chrge is the current AGV's
battery level
 AGVData.Position = zeros(size(AGVData.Charge,2));% is the current
AGV position
 AGVData.State = ones(size(AGVData.Charge,2)); % is the state of
AGV where is it on operation (1) or in charging state (0)

152

 AGVData.TimeOfCharging = zeros(size(AGVData.Charge,2)); % if the
AGVData.State = 0 this shows the time that it has been connected to
charger.
 AGVData.ReadyTime = zeros(size(AGVData.Charge,2)); % when thee agv
was ready to perform new task
 AGVData.TimesCharged = zeros(size(AGVData.Charge,2)); % how many
times the AGV was charged
elseif InitialAGV == 2
 initAGV = max(CInput.JN);
 AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the
current AGV's battery level
 AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the
current AGV position
 AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of
AGV where is it on operation (1) or in charging state (0)
 AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the
AGVData.State = 0 this shows the time that it has been connected to
charger.
 AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee
agv was ready to perform new task
 AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many
times the AGV was charged
end

AGVData.Charge(1) = AGVData.Charge(1) - Gamma *
TravTime(1,CInput.MN(1)+1);
CInput.AGVN(1) = 1;
CInput.ExeTime(1) = 0;
CInput.UnLAGVTime(1) = TravTime(AGVData.Position
(1)+1,CInput.StartPoint(1)+1);
CInput.SrAGVIdleTime(1) = 0;
CInput.StAGVIdleTime(1) = 0;
CInput.TotalOpTime(1) = CInput.OT(1) + CInput.ExeTime(1) +
CInput.UnLAGVTime(1) + ...
 CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) +
CInput.StAGVIdleTime(1);
CInput.ExeTime(2) = CInput.ExeTime(1) + CInput.UnLAGVTime(1) + ...
 CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) +
CInput.StAGVIdleTime(1);
AGVData.Position(1) = CInput.MN(1);%AGV position, 0 means at home

for i=2:size(CInput.JN,2)
 % avval tashkhis bede bebin az koja mikhai beri koja
CInput.StartPoint(i) va CInput.MN(i) ro adad bede
 % bebin un AGV agar bekhad bere load kone va unload kone cheghadr
zaman
 % migire, hamin karo vase tamame AGV haye mojood dar system anjam
bede
 % zemne in ke bebin sharjeshun kafi hast ya na

 % agar zamane ye AGV jadid az nesfe AGV haye mojood kamtar bud AGV
 % jadid biar to madar
 % ChA = [ChA , ChargeValue];

 StPToHomeCharge = TravTime(CInput.MN(i)+1,1);
 if CInput.ON(i) == 1
 POp = 0;% previous operation related to this job
 else
 for j=i-1:-1:1
 if CInput.JN(j)== CInput.JN(i)
 POp = j; % previous operation related to this job
 break
 end

153

 end
 end

 for j=1:size(AGVData.Charge,2)
 if AGVData.Charge(j) == ChargeValue && AGVData.Position(j) ==
0 && AGVData.State(j) == 2
 addnew = 0;
 break
 else
 addnew = 1 ;
 end
 end

 if InitialAGV == 2
 addnew = 0;
 end

 if addnew
 %selecting proper AGV
 AGVCalc.Charge = [AGVData.Charge,ChargeValue];
 AGVCalc.Position = [AGVData.Position , 0];
 AGVCalc.Time = zeros(size(AGVCalc.Charge));
 AGVCalc.select = zeros(size(AGVCalc.Charge));
 selectedAGV = 1 ;
 else
 AGVCalc.Charge = [AGVData.Charge];
 AGVCalc.Position = [AGVData.Position];
 AGVCalc.Time = zeros(size(AGVCalc.Charge));
 AGVCalc.select = zeros(size(AGVCalc.Charge));
 selectedAGV = 1 ;
 end
%
% %selecting proper AGV
% AGVCalc.Charge = [AGVData.Charge,ChargeValue];
% AGVCalc.Position = [AGVData.Position , 0];
% AGVCalc.Time = zeros(size(AGVCalc.Charge));
% AGVCalc.select = zeros(size(AGVCalc.Charge));
% selectedAGV = 1 ;

% Checking the charge of each AGV and charging state of them
 for j=1:size(AGVData.Charge,2)
 if AGVData.State(j) == 0 && AGVData.ReadyTime(j) <=
(CInput.ExeTime (i))
 AGVData.Charge(j) = ChargeValue;
 AGVData.Position(j) = 0;
 AGVData.State(j) = 1;
 AGVData.TimeOfCharging(j) = 0;
 AGVData.TimesCharged (j) = AGVData.TimesCharged (j) + 1;
 end
 end
 for j=1:size(AGVData.Charge,2)
 if AGVData.Charge(j)< ...

(TravTime(AGVData.Position(j)+1,CInput.StartPoint(i)+1) + ...
 TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1))+ ...
 TravTime(CInput.MN(i)+1,1) * ...
 Gamma ...
 && AGVData.State(j) ~= 0
 AGVData.Charge(j) = AGVData.Charge(j) -
TravTime(AGVData.Position(j)+1,1)*Gamma;
 if AGVData.Charge(j) < 0
 if exist('Error', 'var')
 Error.AGVData = [Error.AGVData; AGVData];

154

 Error.AGVSelection = [Error.AGVSelection;
AGVCalc];
 Error.CInput = [Error.CInput; CInput];
 else
 Error.AGVData = AGVData;
 Error.AGVSelection = AGVCalc;
 Error.CInput = CInput;
 end
 end
 AGVCalc.select(j) = 2;
 AGVData.State(j) = 0;
 AGVData.TimeOfCharging(j) = CInput.ExeTime(i) +
TravTime(AGVData.Position(j)+1,1);
 AGVData.ReadyTime (j) = AGVData.TimeOfCharging(j) +
ChargingTime;
 end
 end
%%%
 for j=1:size(AGVCalc.Charge,2)
 %testing the remainder of charge after operation
 AGVCalc.Time(j) =
TravTime(AGVCalc.Position(j)+1,CInput.StartPoint(i)+1) + ...
 TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1) * Gamma;

 AGVCalc.Charge (j) = AGVCalc.Charge (j) - StPToHomeCharge -
...
 AGVCalc.Time(j)* Gamma ;

 if j <= size(AGVData.State,2)
 if AGVData.State(j) == 0
 AGVCalc.select(j) = 2;
 end
 end
 %Selecting the AGV
 if (j > 1 && j < size(AGVCalc.Charge,2) && AGVCalc.select(j) ~=
2) && InitialAGV ~= 2
 if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) ||
AGVCalc.select(selectedAGV) == 2
 selectedAGV = j;
 end
 end
 if j == size(AGVCalc.Charge,2) && InitialAGV ~= 2
 if Alpha * AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) ||
AGVCalc.select(selectedAGV) == 2
 selectedAGV = j;
 AGVData.Charge = [AGVData.Charge,ChargeValue];
 AGVData.Position = [AGVData.Position,0];
 AGVData.State = [AGVData.State,1];
 AGVData.TimeOfCharging = [AGVData.TimeOfCharging,0];
 AGVData.ReadyTime = [AGVData.ReadyTime,0];
 AGVData.TimesCharged = [AGVData.TimesCharged,0];
 end
 end

 if (j > 1 && AGVCalc.select(j) ~= 2) && InitialAGV == 2
 if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) ||
AGVCalc.select(selectedAGV) == 2
 selectedAGV = j;
 end
 end
 end
 if min(AGVCalc.select)== 2
 [A,Index] = min(AGVData.ReadyTime);

155

 if CInput.ExeTime(i) < A
 CInput.ExeTime(i) = A;
 selectedAGV = Index;
 AGVData.Charge(selectedAGV) = ChargeValue;
 AGVData.Position(selectedAGV) = 0;
 AGVData.State(selectedAGV) = 1;
 AGVData.TimeOfCharging(selectedAGV) = 0;
 AGVData.TimesCharged (selectedAGV) = AGVData.TimesCharged
(selectedAGV) + 1;
 end
 end
%%%
 MachineDelayToUnload = 0;
 for j=i-1:-1:1
 if CInput.MN(i) == CInput.MN(j)
 MachineDelayToUnload = CInput.TotalOpTime(j); %Previous
operation of the machine
 break;
 end
 end

 CInput.UnLAGVTime(i) = TravTime(AGVData.Position
(selectedAGV)+1,CInput.StartPoint(i)+1);

 if CInput.ON(i) == 1
 CInput.SrAGVIdleTime(i) = 0;
 CInput.StAGVIdleTime(i) = MachineDelayToUnload -
(CInput.ExeTime(i) + ...
 CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) +
CInput.LAGVTime(i));

 if CInput.StAGVIdleTime(i)<0
 CInput.StAGVIdleTime(i) = 0;
 end
 else

 % calculate the starting Idle time
 CInput.SrAGVIdleTime(i) = CInput.TotalOpTime(POp) -
(CInput.ExeTime(i) + CInput.UnLAGVTime(i));
 if CInput.SrAGVIdleTime(i)<0
 CInput.SrAGVIdleTime(i) = 0;
 end
 % calculate the Stopp ing Idle time
 CInput.StAGVIdleTime(i) = MachineDelayToUnload -
(CInput.ExeTime(i) + ...
 CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) +
CInput.LAGVTime(i));
 if CInput.StAGVIdleTime(i)<0
 CInput.StAGVIdleTime(i) = 0;
 end
 end

 CInput.TotalOpTime(i) = CInput.OT(i) + CInput.ExeTime(i) +
CInput.UnLAGVTime(i) + ...
 CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) +
CInput.StAGVIdleTime(i);

 AGVData.Charge(selectedAGV) = AGVData.Charge(selectedAGV) - ...
 Gamma * (CInput.UnLAGVTime(i) + CInput.LAGVTime(i));
 AGVData.Position(selectedAGV) = CInput.MN(i);
 CInput.AGVN(i) = selectedAGV;
 if i<size(CInput.JN,2)

156

 CInput.ExeTime(i+1) = CInput.ExeTime(i) + CInput.UnLAGVTime(i)
+ ...
 CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) +
CInput.StAGVIdleTime(i);
 end

 clear AGVCalc;
 DeadEnd = 0;

end
output.Y.Makespan(ieval,1) = max(CInput.TotalOpTime);
output.Y.NAGV(ieval,1) = size(AGVData.Charge,2);
AGVN = CInput.AGVN;
End

HGP 2
clc
clear variables

[problem] = Problem4;
for w = 1:problem.maxRun
 tic;
 problem.Weighted sum = '+'; % '+' --> makespan + AGV, '*'-->
makespan * AGV,
 % 'makespan' --> makespan, 'AGV' --> AGV,
 %% Parameter tune
 HGAPSO.Parameter.MaxGen = 200; %Generation,
programmer default=500
 HGAPSO.Parameter.UB = 10;
 HGAPSO.Parameter.LB = 0;
 HGAPSO.Parameter.D = problem.Dimension;
 HGAPSO.Parameter.N = 200; % population,
programmer default=20
 HGAPSO.Parameter.C = [0.01, 0.9]; % [C1 , C2]
 HGAPSO.Parameter.InertiaWeight = [0.01, 0.5]; % [Minimum
inertia weight, Maximum inertia weight,]
 HGAPSO.Parameter.alfa = 0; % Parameter for
linear crossover, 0 by default
 HGAPSO.Parameter.Pc = 0.9; % Crossover
probability, 0.9 by default
 HGAPSO.Parameter.Pm = 0.08; % Mutation
probability, 0.1 by default
 HGAPSO.Parameter.CrP = 0.2; % percentage
iterations with crossover
 HGAPSO.Parameter.Elitism = [1, 0.0, 1.0]; % Elitism for GA
starting and ending percent from maximum iteration
 % FOR
Hybrid_GA_PSO
 HGAPSO.Parameter.parallel = 1; % 1 = PSO output
to GA, 0 = GA from old results
 HGAPSO.Parameter.Reconstructor = 0.2; % the percentage
which worst results should be regenerated
 %% RUN
 [HGAPSO.output] = Hybrid_GA_PSO_1(HGAPSO.Parameter, problem);
 HGAPSO.time = toc;
%% ------------------------Report Hybrid GA - PSO --------------------
 HGAPSO.output.History.Y.Makespan(1,:) = [];
 HGAPSO.output.History.Y.Eval(1,:) = [];
 HGAPSO.output.History.Y.NAGV(1,:) = [];

 [HGAPSO.output.Best.Y.Eval, I] =
min(HGAPSO.output.History.Y.Eval);

157

 HGAPSO.output.Best.Y.Makespan =
HGAPSO.output.History.Y.Makespan(I);
 HGAPSO.output.Best.Y.NAGV = HGAPSO.output.History.Y.NAGV(I);
 HGAPSO.output.Best.X = HGAPSO.output.History.X(I,:);
 fprintf('The Hybrid GA-PSO results with "%6.0f " function
evaluation \n', HGAPSO.Parameter.MaxGen * HGAPSO.Parameter.N);
 fprintf('Makespan = %9.0f \nNumber of AGV = %3.0f \n',
HGAPSO.output.Best.Y.Makespan, HGAPSO.output.Best.Y.NAGV);
 fprintf('time = %4.4f Sec\n', HGAPSO.time);
 fprintf('\n--
\n\n');
 HGAPSO.output.Best.Y.Eval = min(HGAPSO.output.History.Y.Eval);
 HGAPSO.output.Best.Y.Makespan =
min(HGAPSO.output.History.Y.Makespan);
 HGAPSO.output.Best.Y.NAGV = min(HGAPSO.output.History.Y.NAGV);

 HGAPSO.output.Worst.Y.Eval = max(HGAPSO.output.History.Y.Eval);
 HGAPSO.output.Worst.Y.Makespan =
max(HGAPSO.output.History.Y.Makespan);
 HGAPSO.output.Worst.Y.NAGV = max(HGAPSO.output.History.Y.NAGV);

 HGAPSO.output.Mean.Y.Eval = mean(HGAPSO.output.History.Y.Eval);
 HGAPSO.output.Mean.Y.Makespan =
mean(HGAPSO.output.History.Y.Makespan);
 HGAPSO.output.Mean.Y.NAGV = mean(HGAPSO.output.History.Y.NAGV);

 HGAPSO.output.ST.Y.Eval = std(HGAPSO.output.History.Y.Eval);
 HGAPSO.output.ST.Y.Makespan =
std(HGAPSO.output.History.Y.Makespan);
 HGAPSO.output.ST.Y.NAGV = std(HGAPSO.output.History.Y.NAGV);

 finalReport.HGAPSO.Eval(w,:) = [HGAPSO.output.Best.Y.Eval,
HGAPSO.output.Worst.Y.Eval, HGAPSO.output.Mean.Y.Eval,
HGAPSO.output.ST.Y.Eval];
 finalReport.HGAPSO.Makespan(w,:) = [HGAPSO.output.Best.Y.Makespan,
HGAPSO.output.Worst.Y.Makespan, HGAPSO.output.Mean.Y.Makespan,
HGAPSO.output.ST.Y.Makespan];
 finalReport.HGAPSO.NAGV(w,:) = [HGAPSO.output.Best.Y.NAGV,
HGAPSO.output.Worst.Y.NAGV, HGAPSO.output.Mean.Y.NAGV,
HGAPSO.output.ST.Y.NAGV];
%% ----------------------------- Save Iterations ---------------------

 Record(w).HGAPSO = HGAPSO;
 clear HGAPSO
end
%% ----------------------------- Summary Hybrid GA PSO ---------------

 [finalReport.excel(7,1),I] = min(finalReport.HGAPSO.Eval(:,1));
 finalReport.excel(7,2) = max(finalReport.HGAPSO.Eval(:,2));
 finalReport.excel(7,3) = min(finalReport.HGAPSO.Eval(:,3));
 finalReport.excel(7,4) = min(finalReport.HGAPSO.Eval(:,4));

 finalReport.excel(8,1) = min(finalReport.HGAPSO.Makespan(:,1));
 finalReport.excel(8,2) = max(finalReport.HGAPSO.Makespan(:,2));
 finalReport.excel(8,3) = min(finalReport.HGAPSO.Makespan(:,3));
 finalReport.excel(8,4) = min(finalReport.HGAPSO.Makespan(:,4));

 finalReport.excel(9,1) = min(finalReport.HGAPSO.NAGV(:,1));
 finalReport.excel(9,2) = max(finalReport.HGAPSO.NAGV(:,2));
 finalReport.excel(9,3) = min(finalReport.HGAPSO.NAGV(:,3));
 finalReport.excel(9,4) = min(finalReport.HGAPSO.NAGV(:,4));

158

 HGAPSO = Record(I).HGAPSO;

%% ------------------------ Draw Graph -------------------------------
 CountHGAPSO = [1:HGAPSO.Parameter.MaxGen];

 MAXIMUM = max([max(HGAPSO.output.History.Y.Makespan)]);
 DIGIT = ceil(log10(abs(MAXIMUM))/2);
 Max_Axe = ceil(MAXIMUM/(10^DIGIT))*10^DIGIT;
 MINIMUM = min([min(HGAPSO.output.History.Y.Makespan)]);
 DIGIT = ceil(log10(abs(MINIMUM))/2);
 Min_Axe = floor(MINIMUM/(10^DIGIT))*10^DIGIT;

%% -------------------------- Plot Hybrid GA-PSO ---------------------
 HGAPSOPLOT = zeros(HGAPSO.Parameter.MaxGen,3);
 for i = 1 : HGAPSO.Parameter.MaxGen-1
 HGAPSOPLOT(i,1) = min(
HGAPSO.output.History.Y.Makespan(((i-1)*HGAPSO.Parameter.N+1) :
(i*HGAPSO.Parameter.N)));
 HGAPSOPLOT(i,2) = max(
HGAPSO.output.History.Y.Makespan(((i-1)*HGAPSO.Parameter.N+1) :
(i*HGAPSO.Parameter.N)));
 HGAPSOPLOT(i,3) = sum(
HGAPSO.output.History.Y.Makespan(((i-1)*HGAPSO.Parameter.N+1) :
(i*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N;
 end

 HGAPSOPLOT(HGAPSO.Parameter.MaxGen,1) = min(
HGAPSO.output.History.Y.Makespan(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) :
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)));
 HGAPSOPLOT(HGAPSO.Parameter.MaxGen,2) = max(
HGAPSO.output.History.Y.Makespan(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) :
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)));
 HGAPSOPLOT(HGAPSO.Parameter.MaxGen,3) = sum(
HGAPSO.output.History.Y.Makespan(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) :
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N;

 figure('Name','Hybrid GA-PSO Minimum','NumberTitle','off')
 plot (CountHGAPSO, HGAPSOPLOT(:,1))
 axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
 figure('Name','Hybrid GA-PSO Maximum','NumberTitle','off')
 plot (CountHGAPSO, HGAPSOPLOT(:,2))
 axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
 figure('Name','Hybrid GA-PSO Mean','NumberTitle','off')
 plot (CountHGAPSO, HGAPSOPLOT(:,3))
 axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])

 filename = strcat('Record_HGAPSO_', num2str(sum(clock)*1000),
'.mat');
 save(filename,'Record');

MAIN (including four algorithms together)
clc
% clear variables
[problem] = Problem4;
for run = 1:problem.maxRun

 fprintf('---------------- Run #%2.0f --------------------- \n',
run);

159

 problem.Weighted sum = '+maxmakespan'; % '+' --> makespan + AGV,
'*'--> makespan * AGV,
 % 'makespan' --> makespan, 'AGV' --> AGV,
%% -----------------------------------PSO-----------------------------
 tic;
 PSO.Parameter.MaxGen = 100; %Generation,
programmer default=500
 PSO.Parameter.UB = 10; %upper boundary
 PSO.Parameter.LB = 0; %Lower boundary
 PSO.Parameter.N = 100; %population,
programmer default=20
 PSO.Parameter.D = problem.Dimension;
 PSO.Parameter.C = [2, 2]; %[C1, C2,], programmer
default=[2, 2]
 PSO.Parameter.InertiaWeight = [0.2, 0.6]; %[Minimum inertia
weight, Maximum inertia weight,], default[0.2, 0.6]

 [PSO.output] = PSO_func(PSO.Parameter, problem);
 PSO.time = toc;
%% ----------------------------------GA-------------------------------
 tic;
 GA.Parameter.MaxGen = 100; %Generation, programmer
default=100
 GA.Parameter.UB = 10; %upper boundary
 GA.Parameter.LB = 0; %Lower boundary
 GA.Parameter.D = problem.Dimension;
 GA.Parameter.N = 100; %population, programmer
default=100
 GA.Parameter.alfa = 0; % Parameter for linear
crossover, 0 by default
 GA.Parameter.Pc = 0.2; %Crossover probability,
0.9 by default
 GA.Parameter.Pm = 0.03; % Mutation probability,
0.1 by default

 [GA.output] = GA_func(GA.Parameter, problem);
 GA.time = toc;
%% ---------------------------- HGP1 --------------------------------
 tic;
 %% Parameter tune
 HGAPSO.Parameter.MaxGen = 100; %Generation,
programmer default=500
 HGAPSO.Parameter.UB = 10;
 HGAPSO.Parameter.LB = 0;
 HGAPSO.Parameter.D = problem.Dimension;
 HGAPSO.Parameter.N = 100; % population,
programmer default=20
 HGAPSO.Parameter.C = [0.01, 0.9]; % [C1 , C2]
 HGAPSO.Parameter.InertiaWeight = [0.01, 0.5]; % [Minimum
inertia weight, Maximum inertia weight,]
 HGAPSO.Parameter.alfa = 0; % Parameter for
linear crossover, 0 by default
 HGAPSO.Parameter.Pc = 0.9; % Crossover
probability, 0.9 by default
 HGAPSO.Parameter.Pm = 0.08; % Mutation
probability, 0.1 by default
 HGAPSO.Parameter.CrP = 0.2; % percentage
iterations with crossover
 HGAPSO.Parameter.Elitism = [1, 0.0, 1.0]; % Elitism for GA
starting and ending percent from maximum iteration
 % FOR
Hybrid_GA_PSO

160

 HGAPSO.Parameter.parallel = 1; % 1 = PSO output
to GA, 0 = GA from old results
 HGAPSO.Parameter.Reconstructor = 0.2; % the percentage
which worst results should be regenerated

 [HGAPSO.output] = Hybrid_GA_PSO_1(HGAPSO.Parameter, problem);
 HGAPSO.time = toc;
%% ---------------------------- HGP2---------------------------------
 tic;
 %% Parameter tune
 HGAPSO.Parameter.MaxGen = 100; %Generation,
programmer default=500
 HGAPSO.Parameter.UB = 10;
 HGAPSO.Parameter.LB = 0;
 HGAPSO.Parameter.D = problem.Dimension;
 HGAPSO.Parameter.N = 100; % population,
programmer default=20
 HGAPSO.Parameter.C = [0.01, 0.9]; % [C1 , C2]
 HGAPSO.Parameter.InertiaWeight = [0.01, 0.5]; % [Minimum
inertia weight, Maximum inertia weight,]
 HGAPSO.Parameter.alfa = 0; % Parameter for
linear crossover, 0 by default
 HGAPSO.Parameter.Pc = 0.9; % Crossover
probability, 0.9 by default
 HGAPSO.Parameter.Pm = 0.08; % Mutation
probability, 0.1 by default
 HGAPSO.Parameter.CrP = 0.2; % percentage
iterations with crossover
 HGAPSO.Parameter.Elitism = [1, 0.0, 1.0]; % Elitism for GA
starting and ending percent from maximum iteration
 % FOR
Hybrid_GA_PSO

 HGAPSO.Parameter.parallel = 1; % 1 = PSO output
to GA, 0 = GA from old results
 HGAPSO.Parameter.Reconstructor = 0.2; % the percentage
which worst results should be regenerated

 [HGAPSO.output] = Hybrid_GA_PSO_1(HGAPSO.Parameter, problem);
 HGAPSO.time = toc;
%% ----------------------------Report PSO-----------------------------
 PSO.output.History.Y.Makespan(1,:) = [];
 PSO.output.History.Y.Eval(1,:) = [];
 PSO.output.History.Y.NAGV(1,:) = [];
% PSO.output.History.X(1,:) = [];

%% ----------------------------Report GA------------------------------
 GA.output.History.Y.Makespan(1,:) = [];
 GA.output.History.Y.Eval(1,:) = [];
 GA.output.History.Y.NAGV(1,:) = [];
% GA.output.History.X(1,:) = [];

%% ------------------------Report Hybrid GA - PSO --------------------
 HGAPSO.output.History.Y.Makespan(1,:) = [];
 HGAPSO.output.History.Y.Eval(1,:) = [];
 HGAPSO.output.History.Y.NAGV(1,:) = [];
% HGAPSO.output.History.X(1,:) = [];

%% ----------------------------- Save Iterations ---------------------
 Record(run).GA = GA;
 Record(run).PSO = PSO;
 Record(run).HGAPSO = HGAPSO;
 Record(run).time = GA.time + PSO.time + HGAPSO.time;

161

%% ----------------------------- Clear Variables ---------------------
 if problem.maxRun > 1
 clear GA PSO HGAPSO
 end
 fprintf('Total Runing time for this Run: %4.4f
Sec\n\n',Record(run).time);
 fprintf('GA Runing time for this Run: %4.4f
Sec\n\n',Record(run).GA.time);
 fprintf('PSO Runing time for this Run: %4.4f
Sec\n\n',Record(run).PSO.time);
 fprintf('HGAPSO Runing time for this Run: %4.4f
Sec\n\n',Record(run).HGAPSO.time);

end
% %% ----------------------------- Save Data -------------------------
%
% filename = strcat('Record_', num2str(sum(clock)*1000), '.mat');
% save(filename,'Record');

%% ----------------------------- Reporting ---------------------------
Record = ReportRecord(Record);
% DrawGraph(Record, finalReport, maxRun);
% DrawGraohMakespan(Record, finalReport, problem);
% [Best.GA.Y,I] = min(Record.GA.output.History.Y.Eval);
% Best.GA.X = Record.GA.output.History.X(I,:);
% Best.GA.HistoryIndex = I;
%
% [Best.PSO.Y,I] = min(Record.PSO.output.History.Y.Eval);
% Best.PSO.X = Record.PSO.output.History.X(I,:);
% Best.PSO.HistoryIndex = I;
%
% [Best.HGAPSO.Y,I] = min(Record.GA.output.History.Y.Eval);
% Best.HGAPSO.X = Record.HGAPSO.output.History.X(I,:);
% Best.HGAPSO.HistoryIndex = I;

PROBLEM
function [problem] = Problem4()

% input = [4 1 5 3 6 2 4 3 1 3 1 6 4 3 2 3 1 6 2 4 1 3 5 4 3 2 1 2 1 4
5 3 2 6 1 6];
% input = [3 4 1 1 2 2 1 2 1 3 3 3];

% Table 1
% Min L/U M1 M2 M3 M4 M5 M6
% L/U 0 6 8 10 12 17 19
% M1 15 0 2 5 7 12 14
% M2 13 18 0 3 5 10 12
% M3 10 15 17 0 2 7 9
% M4 8 13 15 18 0 5 7
% M5 3 8 10 13 15 0 2
% M6 1 6 8 11 13 18 0
%
%
%
% Table 2
% Code Operation Machine Operation-time
% 1 11 2 30
% 1 12 1 21
% 1 13 5 24
% 1 14 6 27
%

162

% 2 21 1 15
% 2 22 4 24
% 2 23 6 13
%
% 3 31 1 16
% 3 32 2 21
% 3 33 3 3
% 3 34 4 14
% 3 35 6 25

% TravTime = [0 6 8 10 12 17 19
% 15 0 2 5 7 12 14
% 13 18 0 3 5 10 12
% 10 15 17 0 2 7 9
% 8 13 15 18 0 5 7
% 3 8 10 13 15 0 2
% 1 6 8 11 13 18 0];

problem.TravTime = [0 6 18 28 42 36 38 17 50 63 37 24 10
 34 0 12 22 36 50 52 31 64 77 71 58 44
 22 28 0 10 24 38 40 19 52 65 59 46 32
 34 40 52 0 14 28 48 31 42 55 71 58 44
 34 40 52 42 0 14 34 31 28 41 71 58 44
 58 64 76 66 80 0 20 41 14 27 61 48 68
 38 46 58 46 60 54 0 21 12 25 41 28 48
 17 23 35 25 39 33 21 0 33 46 40 27 27
 64 70 82 72 86 80 44 47 0 13 67 54 74
 51 57 69 59 73 67 31 34 43 0 54 41 61
 41 47 59 49 63 57 21 24 33 46 0 31 51
 54 60 72 62 76 70 34 37 46 59 13 0 64
 44 50 62 52 66 60 28 27 40 53 27 14 0];

% Job = [1 1 2 30
% 1 2 1 21
% 1 3 5 24
% 1 4 6 27
% 2 1 1 15
% 2 2 4 24
% 2 3 6 13
% 3 1 1 16
% 3 2 2 21
% 3 3 3 3
% 3 4 4 14
% 3 5 6 25];

problem.Job = [1 1 2 37
 1 2 6 33
 1 3 5 34
 1 4 8 35
 1 5 1 23
 1 6 12 34
 1 7 7 37
 1 8 5 26
 2 1 3 23
 2 2 4 26
 2 3 6 27
 2 4 11 25
 2 5 10 34
 2 6 9 23
 3 1 1 26
 3 2 2 25

163

 3 3 10 31
 3 4 4 24
 3 5 6 25
 3 6 7 13
 3 7 8 14
 3 8 11 23
 4 1 1 16
 4 2 7 11
 4 3 5 23
 4 4 12 34
 4 5 6 25
 4 6 8 13
 5 1 1 16
 5 2 7 11
 5 3 9 31
 6 1 3 26
 6 2 2 31
 6 3 10 23
 6 4 4 24
 6 5 11 35];

problem.Dimension = size(problem.Job,1);

problem.Gamma = 1; %the ratio of energy consumption to the time
problem.Alpha = 1.5;
problem.ChargingTime = 40;
problem.ChargeValue = 200;
problem.InitialAGV = 1;% 0 = starrt with one AGV, 1 = Start with
1/10th of genes, 2 = the number of AGVs is equal to Number of Jobs
problem.maxRun = 30;

FITNESS FUNCTION
function [output] = Fitness(ieval, problem, output)

Discrete_X = output.X(ieval,:);
TravTime = problem.TravTime;
Job = problem.Job;
Gamma = problem.Gamma;
Alpha = problem.Alpha;
ChargingTime = problem.ChargingTime;
Dimension = problem.Dimension ;
InitialAGV = problem.InitialAGV;
ChargeValue = problem.ChargeValue;

CInput.JN = Discrete_X; % job number ;
CInput.ON = Discrete_X; % Operation Number;
CInput.StartPoint = Discrete_X; % Machine Number ;
CInput.MN = Discrete_X; % Machine Number ;
CInput.AGVN = zeros(size(CInput.JN)); % AGV Number which assigned to
load.
CInput.OT = Discrete_X; % Operation Time;
CInput.ExeTime = zeros(size(CInput.JN)); % The time when the operation
started,
 %this time is the time that
AGV start
 %to move to pick the part
from previous position

CInput.UnLAGVTime = zeros(size(CInput.JN)); % this the time that take
to AGV go to
 % the pick up position of
the part

164

 % from current position to
CInput.StartPoint

CInput.LAGVTime = zeros(size(CInput.JN)); % This is the time take to
AGV reach
 % the position of the
operation and
 % from
CInput.StartPoint(i) to CInput.MN(i)

CInput.SrAGVIdleTime = zeros(size(CInput.JN));% this is the time that
AGV is idle
 % to unload the part from
previous machine
 % and move to the new
machine
 % for new operation.

CInput.StAGVIdleTime = zeros(size(CInput.JN));% this is the time that
AGV is idle
 % to load the part into
the machine
 % if the machine is stil
 % running for the previous
 % operation.

CInput.TotalOpTime = zeros(size(CInput.JN));% This is the total time
required
 % to finish the operation.

%Calculating the operation number
for i=1:size(CInput.ON,2)
 index = 0;
 for j=1:i
 if CInput.JN(j) == CInput.JN(i)
 index = index +1;
 end
 end
 CInput.ON(i) = index;
end

% Importing machine number and operation time for each operatiion.
for i=1:size(CInput.JN,2)
 for j=1:size(CInput.JN,2)
 if Job(j,1)== CInput.JN(i) && Job(j,2)== CInput.ON(i)
 CInput.MN(i) = Job(j,3);
 CInput.OT(i) = Job(j,4);
 end
 end
end

% producing the starting point of each operation
CInput.StartPoint(1)= 0;
for i=2:size(CInput.JN,2)
 if CInput.ON(i) == 1
 CInput.StartPoint(i) = 0;
 else
 for j=i-1:-1:1
 if CInput.JN(j)== CInput.JN(i)
 CInput.StartPoint(i) = CInput.MN(j);
 break

165

 end
 end
 end
end

%producing Load AGV Time of travelling AGV
for i=1:size(CInput.JN,2)
 CInput.LAGVTime(i) =
TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1);
end

if InitialAGV == 1
 initAGV = ceil (size(CInput.JN,2)/10);
 AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the
current AGV's battery level
 AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the
current AGV position
 AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of
AGV where is it on operation (1) or in charging state (0)
 AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the
AGVData.State = 0 this shows the time that it has been connected to
charger.
 AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee
agv was ready to perform new task
 AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many
times the AGV was charged
elseif InitialAGV == 0
 AGVData.Charge = [ChargeValue]; %Chrge is the current AGV's
battery level
 AGVData.Position = zeros(size(AGVData.Charge,2));% is the current
AGV position
 AGVData.State = ones(size(AGVData.Charge,2)); % is the state of
AGV where is it on operation (1) or in charging state (0)
 AGVData.TimeOfCharging = zeros(size(AGVData.Charge,2)); % if the
AGVData.State = 0 this shows the time that it has been connected to
charger.
 AGVData.ReadyTime = zeros(size(AGVData.Charge,2)); % when thee agv
was ready to perform new task
 AGVData.TimesCharged = zeros(size(AGVData.Charge,2)); % how many
times the AGV was charged
elseif InitialAGV == 2
 initAGV = max(CInput.JN);
 AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the
current AGV's battery level
 AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the
current AGV position
 AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of
AGV where is it on operation (1) or in charging state (0)
 AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the
AGVData.State = 0 this shows the time that it has been connected to
charger.
 AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee
agv was ready to perform new task
 AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many
times the AGV was charged
end

AGVData.Charge(1) = AGVData.Charge(1) - Gamma *
TravTime(1,CInput.MN(1)+1);
CInput.AGVN(1) = 1;
CInput.ExeTime(1) = 0;
CInput.UnLAGVTime(1) = TravTime(AGVData.Position
(1)+1,CInput.StartPoint(1)+1);

166

CInput.SrAGVIdleTime(1) = 0;
CInput.StAGVIdleTime(1) = 0;
CInput.TotalOpTime(1) = CInput.OT(1) + CInput.ExeTime(1) +
CInput.UnLAGVTime(1) + ...
 CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) +
CInput.StAGVIdleTime(1);
CInput.ExeTime(2) = CInput.ExeTime(1) + CInput.UnLAGVTime(1) + ...
 CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) +
CInput.StAGVIdleTime(1);
AGVData.Position(1) = CInput.MN(1);%AGV position, 0 means at home

for i=2:size(CInput.JN,2)
 % avval tashkhis bede bebin az koja mikhai beri koja
CInput.StartPoint(i) va CInput.MN(i) ro adad bede
 % bebin un AGV agar bekhad bere load kone va unload kone cheghadr
zaman
 % migire, hamin karo vase tamame AGV haye mojood dar system anjam
bede
 % zemne in ke bebin sharjeshun kafi hast ya na

 % agar zamane ye AGV jadid az nesfe AGV haye mojood kamtar bud AGV
 % jadid biar to madar
 % ChA = [ChA , ChargeValue];

 StPToHomeCharge = TravTime(CInput.MN(i)+1,1);
 if CInput.ON(i) == 1
 POp = 0;% previous operation related to this job
 else
 for j=i-1:-1:1
 if CInput.JN(j)== CInput.JN(i)
 POp = j; % previous operation related to this job
 break
 end
 end
 end

 for j=1:size(AGVData.Charge,2)
 if AGVData.Charge(j) == ChargeValue && AGVData.Position(j) ==
0 && AGVData.State(j) == 2
 addnew = 0;
 break
 else
 addnew = 1 ;
 end
 end

 if InitialAGV == 2
 addnew = 0;
 end

 if addnew
 %selecting proper AGV
 AGVCalc.Charge = [AGVData.Charge,ChargeValue];
 AGVCalc.Position = [AGVData.Position , 0];
 AGVCalc.Time = zeros(size(AGVCalc.Charge));
 AGVCalc.select = zeros(size(AGVCalc.Charge));
 selectedAGV = 1 ;
 else
 AGVCalc.Charge = [AGVData.Charge];
 AGVCalc.Position = [AGVData.Position];
 AGVCalc.Time = zeros(size(AGVCalc.Charge));
 AGVCalc.select = zeros(size(AGVCalc.Charge));
 selectedAGV = 1 ;

167

 end

% %selecting proper AGV
% AGVCalc.Charge = [AGVData.Charge,ChargeValue];
% AGVCalc.Position = [AGVData.Position , 0];
% AGVCalc.Time = zeros(size(AGVCalc.Charge));
% AGVCalc.select = zeros(size(AGVCalc.Charge));
% selectedAGV = 1 ;

% Checking the charge of each AGV and charging state of them
 for j=1:size(AGVData.Charge,2)
 if AGVData.State(j) == 0 && AGVData.ReadyTime(j) <=
(CInput.ExeTime (i))
 AGVData.Charge(j) = ChargeValue;
 AGVData.Position(j) = 0;
 AGVData.State(j) = 1;
 AGVData.TimeOfCharging(j) = 0;
 AGVData.TimesCharged (j) = AGVData.TimesCharged (j) + 1;
 end
 end
 for j=1:size(AGVData.Charge,2)
 if AGVData.Charge(j)< ...

(TravTime(AGVData.Position(j)+1,CInput.StartPoint(i)+1) + ...
 TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1))+ ...
 TravTime(CInput.MN(i)+1,1) * ...
 Gamma ...
 && AGVData.State(j) ~= 0
 AGVData.Charge(j) = AGVData.Charge(j) -
TravTime(AGVData.Position(j)+1,1)*Gamma;
 if AGVData.Charge(j) < 0
 if exist('Error', 'var')
 Error.AGVData = [Error.AGVData; AGVData];
 Error.AGVSelection = [Error.AGVSelection;
AGVCalc];
 Error.CInput = [Error.CInput; CInput];
 else
 Error.AGVData = AGVData;
 Error.AGVSelection = AGVCalc;
 Error.CInput = CInput;
 end
 end
 AGVCalc.select(j) = 2;
 AGVData.State(j) = 0;
 AGVData.TimeOfCharging(j) = CInput.ExeTime(i) +
TravTime(AGVData.Position(j)+1,1);
 AGVData.ReadyTime (j) = AGVData.TimeOfCharging(j) +
ChargingTime;

 end
 end
%%%
 for j=1:size(AGVCalc.Charge,2)
 %testing the remainder of charge after operation
 AGVCalc.Time(j) =
TravTime(AGVCalc.Position(j)+1,CInput.StartPoint(i)+1) + ...
 TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1) * Gamma;

 AGVCalc.Charge (j) = AGVCalc.Charge (j) - StPToHomeCharge -
...
 AGVCalc.Time(j)* Gamma ;

 if j <= size(AGVData.State,2)

168

 if AGVData.State(j) == 0
 AGVCalc.select(j) = 2;
 end
 end
 %Selecting the AGV
 if (j > 1 && j < size(AGVCalc.Charge,2) && AGVCalc.select(j) ~=
2) && InitialAGV ~= 2
 if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) ||
AGVCalc.select(selectedAGV) == 2
 selectedAGV = j;
 end
 end
 if j == size(AGVCalc.Charge,2) && InitialAGV ~= 2
 if Alpha * AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) ||
AGVCalc.select(selectedAGV) == 2
 selectedAGV = j;
 AGVData.Charge = [AGVData.Charge,ChargeValue];
 AGVData.Position = [AGVData.Position,0];
 AGVData.State = [AGVData.State,1];
 AGVData.TimeOfCharging = [AGVData.TimeOfCharging,0];
 AGVData.ReadyTime = [AGVData.ReadyTime,0];
 AGVData.TimesCharged = [AGVData.TimesCharged,0];
 end
 end

 if (j > 1 && AGVCalc.select(j) ~= 2) && InitialAGV == 2
 if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) ||
AGVCalc.select(selectedAGV) == 2
 selectedAGV = j;
 end
 end
 end
 if min(AGVCalc.select)== 2
 [A,Index] = min(AGVData.ReadyTime);
 if CInput.ExeTime(i) < A
 CInput.ExeTime(i) = A;
 selectedAGV = Index;
 AGVData.Charge(selectedAGV) = ChargeValue;
 AGVData.Position(selectedAGV) = 0;
 AGVData.State(selectedAGV) = 1;
 AGVData.TimeOfCharging(selectedAGV) = 0;
 AGVData.TimesCharged (selectedAGV) = AGVData.TimesCharged
(selectedAGV) + 1;
 end
 end
%%%
 MachineDelayToUnload = 0;
 for j=i-1:-1:1
 if CInput.MN(i) == CInput.MN(j)
 MachineDelayToUnload = CInput.TotalOpTime(j); %Previous
operation of the machine
 break;
 end
 end

 CInput.UnLAGVTime(i) = TravTime(AGVData.Position
(selectedAGV)+1,CInput.StartPoint(i)+1);

 if CInput.ON(i) == 1
 CInput.SrAGVIdleTime(i) = 0;
 CInput.StAGVIdleTime(i) = MachineDelayToUnload -
(CInput.ExeTime(i) + ...

169

 CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) +
CInput.LAGVTime(i));

 if CInput.StAGVIdleTime(i)<0
 CInput.StAGVIdleTime(i) = 0;
 end
 else

 % calculate the starting Idle time
 CInput.SrAGVIdleTime(i) = CInput.TotalOpTime(POp) -
(CInput.ExeTime(i) + CInput.UnLAGVTime(i));
 if CInput.SrAGVIdleTime(i)<0
 CInput.SrAGVIdleTime(i) = 0;
 end
 % calculate the Stopp ing Idle time
 CInput.StAGVIdleTime(i) = MachineDelayToUnload -
(CInput.ExeTime(i) + ...
 CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) +
CInput.LAGVTime(i));
 if CInput.StAGVIdleTime(i)<0
 CInput.StAGVIdleTime(i) = 0;
 end
 end

 CInput.TotalOpTime(i) = CInput.OT(i) + CInput.ExeTime(i) +
CInput.UnLAGVTime(i) + ...
 CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) +
CInput.StAGVIdleTime(i);

 AGVData.Charge(selectedAGV) = AGVData.Charge(selectedAGV) - ...
 Gamma * (CInput.UnLAGVTime(i) + CInput.LAGVTime(i));
 AGVData.Position(selectedAGV) = CInput.MN(i);
 CInput.AGVN(i) = selectedAGV;
 if i<size(CInput.JN,2)
 CInput.ExeTime(i+1) = CInput.ExeTime(i) + CInput.UnLAGVTime(i)
+ ...
 CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) +
CInput.StAGVIdleTime(i);
 end

 clear AGVCalc;
 DeadEnd = 0;

end
output.Y.Makespan(ieval,1) = max(CInput.TotalOpTime);
output.Y.NAGV(ieval,1) = size(AGVData.Charge,2);
output.AssignedAGV(ieval,:) = (CInput.AGVN);
if strcmp(problem.Weighted sum,'+')
 output.Y.Eval(ieval,1) = (output.Y.Makespan(ieval) +
output.Y.NAGV(ieval))/2;
end
if strcmp(problem.Weighted sum,'*')
 output.Y.Eval(ieval,1) = output.Y.Makespan(ieval) *
output.Y.NAGV(ieval);
end
if strcmp(problem.Weighted sum,'makespan')
 output.Y.Eval(ieval,1) = output.Y.Makespan(ieval);
end
if strcmp(problem.Weighted sum,'+maxmakespan')
 maxtravel = sum(sum(problem.TravTime));
 maxoperation = sum(problem.Job(:,4));
 maxAGV = size(problem.Job,1);
 ratio =(maxtravel + maxoperation)/maxAGV;%303/maxAGV;%426/maxAGV;

170

 output.Y.Eval(ieval,1) = ((2/3).*output.Y.Makespan(ieval) +
(1/3).*(output.Y.NAGV(ieval).*ratio));
end

if exist('Error', 'var')
 output.Error = Error;
end

AGV
function [AGVN, CInput] = AGV(X, problem)
% X = [SEQUENCE]
%[problem] = Problem5;
%
ieval = 1;
output.X(ieval,:) = X;
Discrete_X = output.X(ieval,:);
TravTime = problem.TravTime;
Job = problem.Job;
Gamma = problem.Gamma;
Alpha = problem.Alpha;
ChargingTime = problem.ChargingTime;
Dimension = problem.Dimension ;
InitialAGV = problem.InitialAGV;
ChargeValue = problem.ChargeValue;

CInput.JN = Discrete_X; % job number ;
CInput.ON = Discrete_X; % Operation Number;
CInput.StartPoint = Discrete_X; % Machine Number ;
CInput.MN = Discrete_X; % Machine Number ;
CInput.AGVN = zeros(size(CInput.JN)); % AGV Number which assigned to
load.
CInput.OT = Discrete_X; % Operation Time;
CInput.ExeTime = zeros(size(CInput.JN)); % The time when the operation
started,
 %this time is the time that
AGV start
 %to move to pick the part
from previous position

CInput.UnLAGVTime = zeros(size(CInput.JN)); % this the time that take
to AGV go to
 % the pick up position of
the part
 % from current position to
CInput.StartPoint

CInput.LAGVTime = zeros(size(CInput.JN)); % This is the time take to
AGV reach
 % the position of the
operation and
 % from
CInput.StartPoint(i) to CInput.MN(i)

CInput.SrAGVIdleTime = zeros(size(CInput.JN));% this is the time that
AGV is idle
 % to unload the part from
previous machine
 % and move to the new
machine
 % for new operation.

CInput.StAGVIdleTime = zeros(size(CInput.JN));% this is the time that
AGV is idle

171

 % to load the part into
the machine
 % if the machine is stil
 % running for the previous
 % operation.

CInput.TotalOpTime = zeros(size(CInput.JN));% This is the total time
required
 % to finish the operation.

%Calculating the operation number
for i=1:size(CInput.ON,2)
 index = 0;
 for j=1:i
 if CInput.JN(j) == CInput.JN(i)
 index = index +1;
 end
 end
 CInput.ON(i) = index;
end

% Importing machine number and operation time for each operatiion.
for i=1:size(CInput.JN,2)
 for j=1:size(CInput.JN,2)
 if Job(j,1)== CInput.JN(i) && Job(j,2)== CInput.ON(i)
 CInput.MN(i) = Job(j,3);
 CInput.OT(i) = Job(j,4);
 end
 end
end

% producing the starting point of each operation
CInput.StartPoint(1)= 0;
for i=2:size(CInput.JN,2)
 if CInput.ON(i) == 1
 CInput.StartPoint(i) = 0;
 else
 for j=i-1:-1:1
 if CInput.JN(j)== CInput.JN(i)
 CInput.StartPoint(i) = CInput.MN(j);
 break
 end
 end
 end
end

%producing Load AGV Time of travelling AGV
for i=1:size(CInput.JN,2)
 CInput.LAGVTime(i) =
TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1);
end

if InitialAGV == 1
 initAGV = ceil (size(CInput.JN,2)/10);
 AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the
current AGV's battery level
 AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the
current AGV position
 AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of
AGV where is it on operation (1) or in charging state (0)
 AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the
AGVData.State = 0 this shows the time that it has been connected to
charger.

172

 AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee
agv was ready to perform new task
 AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many
times the AGV was charged
elseif InitialAGV == 0
 AGVData.Charge = [ChargeValue]; %Chrge is the current AGV's
battery level
 AGVData.Position = zeros(size(AGVData.Charge,2));% is the current
AGV position
 AGVData.State = ones(size(AGVData.Charge,2)); % is the state of
AGV where is it on operation (1) or in charging state (0)
 AGVData.TimeOfCharging = zeros(size(AGVData.Charge,2)); % if the
AGVData.State = 0 this shows the time that it has been connected to
charger.
 AGVData.ReadyTime = zeros(size(AGVData.Charge,2)); % when thee agv
was ready to perform new task
 AGVData.TimesCharged = zeros(size(AGVData.Charge,2)); % how many
times the AGV was charged
elseif InitialAGV == 2
 initAGV = max(CInput.JN);
 AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the
current AGV's battery level
 AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the
current AGV position
 AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of
AGV where is it on operation (1) or in charging state (0)
 AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the
AGVData.State = 0 this shows the time that it has been connected to
charger.
 AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee
agv was ready to perform new task
 AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many
times the AGV was charged
end

AGVData.Charge(1) = AGVData.Charge(1) - Gamma *
TravTime(1,CInput.MN(1)+1);
CInput.AGVN(1) = 1;
CInput.ExeTime(1) = 0;
CInput.UnLAGVTime(1) = TravTime(AGVData.Position
(1)+1,CInput.StartPoint(1)+1);
CInput.SrAGVIdleTime(1) = 0;
CInput.StAGVIdleTime(1) = 0;
CInput.TotalOpTime(1) = CInput.OT(1) + CInput.ExeTime(1) +
CInput.UnLAGVTime(1) + ...
 CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) +
CInput.StAGVIdleTime(1);
CInput.ExeTime(2) = CInput.ExeTime(1) + CInput.UnLAGVTime(1) + ...
 CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) +
CInput.StAGVIdleTime(1);
AGVData.Position(1) = CInput.MN(1);%AGV position, 0 means at home

for i=2:size(CInput.JN,2)
 % avval tashkhis bede bebin az koja mikhai beri koja
CInput.StartPoint(i) va CInput.MN(i) ro adad bede
 % bebin un AGV agar bekhad bere load kone va unload kone cheghadr
zaman
 % migire, hamin karo vase tamame AGV haye mojood dar system anjam
bede
 % zemne in ke bebin sharjeshun kafi hast ya na

 % agar zamane ye AGV jadid az nesfe AGV haye mojood kamtar bud AGV
 % jadid biar to madar

173

 % ChA = [ChA , ChargeValue];
 %

 StPToHomeCharge = TravTime(CInput.MN(i)+1,1);
 if CInput.ON(i) == 1
 POp = 0;% previous operation related to this job
 else
 for j=i-1:-1:1
 if CInput.JN(j)== CInput.JN(i)
 POp = j; % previous operation related to this job
 break
 end
 end
 end

 for j=1:size(AGVData.Charge,2)
 if AGVData.Charge(j) == ChargeValue && AGVData.Position(j) ==
0 && AGVData.State(j) == 2
 addnew = 0;
 break
 else
 addnew = 1 ;
 end
 end

 if InitialAGV == 2
 addnew = 0;
 end

 if addnew
 %selecting proper AGV
 AGVCalc.Charge = [AGVData.Charge,ChargeValue];
 AGVCalc.Position = [AGVData.Position , 0];
 AGVCalc.Time = zeros(size(AGVCalc.Charge));
 AGVCalc.select = zeros(size(AGVCalc.Charge));
 selectedAGV = 1 ;
 else
 AGVCalc.Charge = [AGVData.Charge];
 AGVCalc.Position = [AGVData.Position];
 AGVCalc.Time = zeros(size(AGVCalc.Charge));
 AGVCalc.select = zeros(size(AGVCalc.Charge));
 selectedAGV = 1 ;
 end

% %selecting proper AGV
% AGVCalc.Charge = [AGVData.Charge,ChargeValue];
% AGVCalc.Position = [AGVData.Position , 0];
% AGVCalc.Time = zeros(size(AGVCalc.Charge));
% AGVCalc.select = zeros(size(AGVCalc.Charge));
% selectedAGV = 1 ;

% Checking the charge of each AGV and charging state of them
 for j=1:size(AGVData.Charge,2)
 if AGVData.State(j) == 0 && AGVData.ReadyTime(j) <=
(CInput.ExeTime (i))
 AGVData.Charge(j) = ChargeValue;
 AGVData.Position(j) = 0;
 AGVData.State(j) = 1;
 AGVData.TimeOfCharging(j) = 0;
 AGVData.TimesCharged (j) = AGVData.TimesCharged (j) + 1;
 end
 end
 for j=1:size(AGVData.Charge,2)

174

 if AGVData.Charge(j)< ...

(TravTime(AGVData.Position(j)+1,CInput.StartPoint(i)+1) + ...
 TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1))+ ...
 TravTime(CInput.MN(i)+1,1) * ...
 Gamma ...
 && AGVData.State(j) ~= 0
 AGVData.Charge(j) = AGVData.Charge(j) -
TravTime(AGVData.Position(j)+1,1)*Gamma;
 if AGVData.Charge(j) < 0
 if exist('Error', 'var')
 Error.AGVData = [Error.AGVData; AGVData];
 Error.AGVSelection = [Error.AGVSelection;
AGVCalc];
 Error.CInput = [Error.CInput; CInput];
 else
 Error.AGVData = AGVData;
 Error.AGVSelection = AGVCalc;
 Error.CInput = CInput;
 end
 end
 AGVCalc.select(j) = 2;
 AGVData.State(j) = 0;
 AGVData.TimeOfCharging(j) = CInput.ExeTime(i) +
TravTime(AGVData.Position(j)+1,1);
 AGVData.ReadyTime (j) = AGVData.TimeOfCharging(j) +
ChargingTime;
 end
 end
%%%
 for j=1:size(AGVCalc.Charge,2)
 %testing the remainder of charge after operation
 AGVCalc.Time(j) =
TravTime(AGVCalc.Position(j)+1,CInput.StartPoint(i)+1) + ...
 TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1) * Gamma;

 AGVCalc.Charge (j) = AGVCalc.Charge (j) - StPToHomeCharge -
...
 AGVCalc.Time(j)* Gamma ;

 if j <= size(AGVData.State,2)
 if AGVData.State(j) == 0
 AGVCalc.select(j) = 2;
 end
 end
 %Selecting the AGV
 if (j > 1 && j < size(AGVCalc.Charge,2) && AGVCalc.select(j) ~=
2) && InitialAGV ~= 2
 if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) ||
AGVCalc.select(selectedAGV) == 2
 selectedAGV = j;
 end
 end
 if j == size(AGVCalc.Charge,2) && InitialAGV ~= 2
 if Alpha * AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) ||
AGVCalc.select(selectedAGV) == 2
 selectedAGV = j;
 AGVData.Charge = [AGVData.Charge,ChargeValue];
 AGVData.Position = [AGVData.Position,0];
 AGVData.State = [AGVData.State,1];
 AGVData.TimeOfCharging = [AGVData.TimeOfCharging,0];
 AGVData.ReadyTime = [AGVData.ReadyTime,0];
 AGVData.TimesCharged = [AGVData.TimesCharged,0];

175

 end
 end
 if (j > 1 && AGVCalc.select(j) ~= 2) && InitialAGV == 2
 if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) ||
AGVCalc.select(selectedAGV) == 2
 selectedAGV = j;
 end
 end
 end
 if min(AGVCalc.select)== 2
 [A,Index] = min(AGVData.ReadyTime);
 if CInput.ExeTime(i) < A
 CInput.ExeTime(i) = A;
 selectedAGV = Index;
 AGVData.Charge(selectedAGV) = ChargeValue;
 AGVData.Position(selectedAGV) = 0;
 AGVData.State(selectedAGV) = 1;
 AGVData.TimeOfCharging(selectedAGV) = 0;
 AGVData.TimesCharged (selectedAGV) = AGVData.TimesCharged
(selectedAGV) + 1;
 end
 end
%%%
 MachineDelayToUnload = 0;
 for j=i-1:-1:1
 if CInput.MN(i) == CInput.MN(j)
 MachineDelayToUnload = CInput.TotalOpTime(j); %Previous
operation of the machine
 break;
 end
 end

 CInput.UnLAGVTime(i) = TravTime(AGVData.Position
(selectedAGV)+1,CInput.StartPoint(i)+1);

 if CInput.ON(i) == 1
 CInput.SrAGVIdleTime(i) = 0;
 CInput.StAGVIdleTime(i) = MachineDelayToUnload -
(CInput.ExeTime(i) + ...
 CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) +
CInput.LAGVTime(i));

 if CInput.StAGVIdleTime(i)<0
 CInput.StAGVIdleTime(i) = 0;
 end
 else

 % calculate the starting Idle time
 CInput.SrAGVIdleTime(i) = CInput.TotalOpTime(POp) -
(CInput.ExeTime(i) + CInput.UnLAGVTime(i));
 if CInput.SrAGVIdleTime(i)<0
 CInput.SrAGVIdleTime(i) = 0;
 end
 % calculate the Stopp ing Idle time
 CInput.StAGVIdleTime(i) = MachineDelayToUnload -
(CInput.ExeTime(i) + ...
 CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) +
CInput.LAGVTime(i));
 if CInput.StAGVIdleTime(i)<0
 CInput.StAGVIdleTime(i) = 0;
 end
 end

176

 CInput.TotalOpTime(i) = CInput.OT(i) + CInput.ExeTime(i) +
CInput.UnLAGVTime(i) + ...
 CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) +
CInput.StAGVIdleTime(i);

 AGVData.Charge(selectedAGV) = AGVData.Charge(selectedAGV) - ...
 Gamma * (CInput.UnLAGVTime(i) + CInput.LAGVTime(i));
 AGVData.Position(selectedAGV) = CInput.MN(i);
 CInput.AGVN(i) = selectedAGV;
 if i<size(CInput.JN,2)
 CInput.ExeTime(i+1) = CInput.ExeTime(i) + CInput.UnLAGVTime(i)
+ ...
 CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) +
CInput.StAGVIdleTime(i);
 end

 clear AGVCalc;
 DeadEnd = 0;

end
output.Y.Makespan(ieval,1) = max(CInput.TotalOpTime);
output.Y.NAGV(ieval,1) = size(AGVData.Charge,2);
AGVN = CInput.AGVN;
end

Drawgraph
function DrawGraph(Record, finalReport, maxRun)

%% ----------------------------- Summary PSO -------------------------
 [finalReport.excel(1,1), IPSO] = min(finalReport.PSO.Eval(:,1));
 [finalReport.excel(1,2), J] = max(finalReport.PSO.Eval(:,1));
 finalReport.excel(1,3) = mean(finalReport.PSO.Eval(:,1));
 finalReport.excel(1,4) = std(finalReport.PSO.Eval(:,1));
 finalReport.excel(1,5) = IPSO;
 finalReport.excel(1,6) = J;

 finalReport.excel(2,1) = finalReport.PSO.Makespan(IPSO,1);
 finalReport.excel(2,2) = finalReport.PSO.Makespan(J,1);
 finalReport.excel(2,3) = mean(finalReport.PSO.Makespan(:,1));
 finalReport.excel(2,4) = std(finalReport.PSO.Makespan(:,1));

 finalReport.excel(3,1) = finalReport.PSO.NAGV(IPSO,1);
 finalReport.excel(3,2) = finalReport.PSO.NAGV(J,1);
 finalReport.excel(3,3) = mean(finalReport.PSO.NAGV(:,1));
 finalReport.excel(3,4) = std(finalReport.PSO.NAGV(:,1));

%% ----------------------------- Summary GA --------------------------
 [finalReport.excel(4,1), IGA] = min(finalReport.GA.Eval(:,1));
 [finalReport.excel(4,2), J] = max(finalReport.GA.Eval(:,1));
 finalReport.excel(4,3) = mean(finalReport.GA.Eval(:,1));
 finalReport.excel(4,4) = std(finalReport.GA.Eval(:,1));
 finalReport.excel(4,5) = IGA;
 finalReport.excel(4,6) = J;

 finalReport.excel(5,1) = finalReport.GA.Makespan(IGA,1);
 finalReport.excel(5,2) = finalReport.GA.Makespan(J,1);
 finalReport.excel(5,3) = mean(finalReport.GA.Makespan(:,1));
 finalReport.excel(5,4) = std(finalReport.GA.Makespan(:,1));

 finalReport.excel(6,1) = finalReport.GA.NAGV(IGA,1);
 finalReport.excel(6,2) = finalReport.GA.NAGV(J,1);
 finalReport.excel(6,3) = mean(finalReport.GA.NAGV(:,1));

177

 finalReport.excel(6,4) = std(finalReport.GA.NAGV(:,1));

%% ----------------------------- Summary Hybrid GA PSO ---------------

[finalReport.excel(7,1), IHGAPSO] =
min(finalReport.HGAPSO.Eval(:,1));

 [finalReport.excel(7,2), J] = max(finalReport.HGAPSO.Eval(:,1));
 finalReport.excel(7,3) = mean(finalReport.HGAPSO.Eval(:,1));
 finalReport.excel(7,4) = std(finalReport.HGAPSO.Eval(:,1));
 finalReport.excel(7,5) = IHGAPSO;
 finalReport.excel(7,6) = J;

 finalReport.excel(8,1) = finalReport.HGAPSO.Makespan(IHGAPSO,1);
 finalReport.excel(8,2) = max(finalReport.HGAPSO.Makespan(J,1));
 finalReport.excel(8,3) = mean(finalReport.HGAPSO.Makespan(:,1));
 finalReport.excel(8,4) = std(finalReport.HGAPSO.Makespan(:,1));

 finalReport.excel(9,1) = finalReport.HGAPSO.NAGV(IHGAPSO,1);
 finalReport.excel(9,2) = finalReport.HGAPSO.NAGV(J,1);
 finalReport.excel(9,3) = mean(finalReport.HGAPSO.NAGV(:,1));
 finalReport.excel(9,4) = std(finalReport.HGAPSO.NAGV(:,1));

%% --------------------------- Excel Report --------------------------
 xlswrite('FinalReport.xlsx',finalReport.excel,1,'C2');

if maxRun > 1
 PSO = Record(IPSO).PSO;
 GA = Record(IGA).GA;
 HGAPSO = Record(IHGAPSO).HGAPSO;
else
 PSO = Record(1).PSO;
 GA = Record(1).GA;
 HGAPSO = Record(1).HGAPSO;
end

%% ------------------------ Draw Graph -------------------------------
 CountPSO = [1:PSO.Parameter.MaxGen];
 CountGA = [1:GA.Parameter.MaxGen];
 CountHGAPSO = [1:HGAPSO.Parameter.MaxGen];

 MAXIMUM = max([max(PSO.output.History.Y.Eval),
max(GA.output.History.Y.Eval), max(HGAPSO.output.History.Y.Eval)]);
 DIGIT = ceil(log10(abs(MAXIMUM))/2);
 Max_Axe = ceil(MAXIMUM/(10^DIGIT))*10^DIGIT;
 MINIMUM = min([min(PSO.output.History.Y.Eval),
min(GA.output.History.Y.Eval), min(HGAPSO.output.History.Y.Eval)]);
 DIGIT = ceil(log10(abs(MINIMUM))/2);
 Min_Axe = -20+floor(MINIMUM/(10^DIGIT))*10^DIGIT;

%% ---------------------------- Plot GA ------------------------------
 GAPLOT = zeros(GA.Parameter.MaxGen,3);
 for i = 1 : GA.Parameter.MaxGen-1
 GAPLOT(i,1) = min(GA.output.History.Y.Eval(((i-
1)*GA.Parameter.N+1) : (i*GA.Parameter.N)));
 GAPLOT(i,2) = max(GA.output.History.Y.Eval(((i-
1)*GA.Parameter.N+1) : (i*GA.Parameter.N)));
 GAPLOT(i,3) = sum(GA.output.History.Y.Eval(((i-
1)*GA.Parameter.N+1) : (i*GA.Parameter.N)))/GA.Parameter.N;
 end
 GAPLOT(GA.Parameter.MaxGen,1) = min(
GA.output.History.Y.Eval(((GA.Parameter.MaxGen-1)*GA.Parameter.N+1) :
(GA.Parameter.MaxGen*GA.Parameter.N)));

178

 GAPLOT(GA.Parameter.MaxGen,2) = max(
GA.output.History.Y.Eval(((GA.Parameter.MaxGen-1)*GA.Parameter.N+1) :
(GA.Parameter.MaxGen*GA.Parameter.N)));
 GAPLOT(GA.Parameter.MaxGen,3) = sum(
GA.output.History.Y.Eval(((GA.Parameter.MaxGen-1)*GA.Parameter.N+1) :
(GA.Parameter.MaxGen*GA.Parameter.N)))/GA.Parameter.N;

 figure('Name','GA','NumberTitle','off')
 plot (CountGA, GAPLOT(:,1),'b',CountGA, GAPLOT(:,2),'r',CountGA,
GAPLOT(:,3),'c')
 axis([0,GA.Parameter.MaxGen-1,Min_Axe,Max_Axe])
 legend('Minimum','Maximum','Mean');

% figure('Name','GA Minimum','NumberTitle','off')
% plot (CountGA, GAPLOT(:,1))
% axis([0,GA.Parameter.MaxGen-1,Min_Axe,Max_Axe])
% figure('Name','GA Maximum','NumberTitle','off')
% plot (CountGA, GAPLOT(:,2))
% axis([0,GA.Parameter.MaxGen-1,Min_Axe,Max_Axe])
% figure('Name','GA Mean','NumberTitle','off')
% plot (CountGA, GAPLOT(:,3))
% axis([0,GA.Parameter.MaxGen-1,Min_Axe,Max_Axe])

%% ---------------------------- Plot PSO -----------------------------
 PSOPLOT = zeros(PSO.Parameter.MaxGen,3);
 for i = 1 : PSO.Parameter.MaxGen-1
 PSOPLOT(i,1) = min(PSO.output.History.Y.Eval(((i-
1)*PSO.Parameter.N+1) : (i*PSO.Parameter.N)));
 PSOPLOT(i,2) = max(PSO.output.History.Y.Eval(((i-
1)*PSO.Parameter.N+1) : (i*PSO.Parameter.N)));
 PSOPLOT(i,3) = sum(PSO.output.History.Y.Eval(((i-
1)*PSO.Parameter.N+1) : (i*PSO.Parameter.N)))/PSO.Parameter.N;
 end
 PSOPLOT(PSO.Parameter.MaxGen,1) = min(
PSO.output.History.Y.Eval(((PSO.Parameter.MaxGen-1)*PSO.Parameter.N+1)
: (PSO.Parameter.MaxGen*PSO.Parameter.N)));
 PSOPLOT(PSO.Parameter.MaxGen,2) = max(
PSO.output.History.Y.Eval(((PSO.Parameter.MaxGen-1)*PSO.Parameter.N+1)
: (PSO.Parameter.MaxGen*PSO.Parameter.N)));
 PSOPLOT(PSO.Parameter.MaxGen,3) = sum(
PSO.output.History.Y.Eval(((PSO.Parameter.MaxGen-1)*PSO.Parameter.N+1)
: (PSO.Parameter.MaxGen*PSO.Parameter.N)))/PSO.Parameter.N;

 figure('Name','PSO','NumberTitle','off')
 plot (CountPSO, PSOPLOT(:,1),'b',CountPSO,
PSOPLOT(:,2),'r',CountPSO, PSOPLOT(:,3),'c')
 axis([0,PSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
 legend('Minimum','Maximum','Mean');

% figure('Name','PSO Minimum','NumberTitle','off')
% plot (CountPSO, PSOPLOT(:,1))
% axis([0,PSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
% figure('Name','PSO Maximum','NumberTitle','off')
% plot (CountPSO, PSOPLOT(:,2))
% axis([0,PSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
% figure('Name','PSO Mean','NumberTitle','off')
% plot (CountPSO, PSOPLOT(:,3))
% axis([0,PSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])

%% -------------------------- Plot Hybrid GA-PSO1 --------------------
 HGP2PLOT = zeros(HGP2.Parameter.MaxGen,3);
 for i = 1 : HGAPSO.Parameter.MaxGen-1

179

 HGAPSOPLOT(i,1) = min(HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : (i*HGAPSO.Parameter.N)));
 HGAPSOPLOT(i,2) = max(HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : (i*HGAPSO.Parameter.N)));
 HGAPSOPLOT(i,3) = sum(HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) :
(i*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N;
 end

 HGAPSOPLOT(HGAPSO.Parameter.MaxGen,1) = min(
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) :
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)));
 HGAPSOPLOT(HGAPSO.Parameter.MaxGen,2) = max(
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) :
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)));
 HGAPSOPLOT(HGAPSO.Parameter.MaxGen,3) = sum(
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) :
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N;

 figure('Name','Hybrid GA-PSO','NumberTitle','off')
 plot (CountHGAPSO, HGAPSOPLOT(:,1),'b',CountHGAPSO,
HGAPSOPLOT(:,2),'r',CountHGAPSO, HGAPSOPLOT(:,3),'c')
 axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
 legend('Minimum','Maximum','Mean');

% figure('Name','Hybrid GA-PSO Minimum','NumberTitle','off')
% plot (CountHGAPSO, HGAPSOPLOT(:,1))
% axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
% figure('Name','Hybrid GA-PSO Maximum','NumberTitle','off')
% plot (CountHGAPSO, HGAPSOPLOT(:,2))
% axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
% figure('Name','Hybrid GA-PSO Mean','NumberTitle','off')
% plot (CountHGAPSO, HGAPSOPLOT(:,3))
% axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])

%% -------------------------- Plot Hybrid GA-PSO2 --------------------
 HGP2PLOT = zeros(HGP2.Parameter.MaxGen,3);
 for i = 1 : HGAPSO.Parameter.MaxGen-1
 HGP2PLOT(i,1) = min(HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : (i*HGAPSO.Parameter.N)));
 HGAPSOPLOT(i,2) = max(HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : (i*HGAPSO.Parameter.N)));
 HGAPSOPLOT(i,3) = sum(HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) :
(i*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N;
 end

 HGAPSOPLOT(HGAPSO.Parameter.MaxGen,1) = min(
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) :
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)));
 HGAPSOPLOT(HGAPSO.Parameter.MaxGen,2) = max(
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) :
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)));
 HGAPSOPLOT(HGAPSO.Parameter.MaxGen,3) = sum(
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) :
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N;

180

 figure('Name','Hybrid GA-PSO','NumberTitle','off')
 plot (CountHGAPSO, HGAPSOPLOT(:,1),'b',CountHGAPSO,
HGAPSOPLOT(:,2),'r',CountHGAPSO, HGAPSOPLOT(:,3),'c')
 axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
 legend('Minimum','Maximum','Mean');

% figure('Name','Hybrid GA-PSO Minimum','NumberTitle','off')
% plot (CountHGAPSO, HGAPSOPLOT(:,1))
% axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
% figure('Name','Hybrid GA-PSO Maximum','NumberTitle','off')
% plot (CountHGAPSO, HGAPSOPLOT(:,2))
% axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])
% figure('Name','Hybrid GA-PSO Mean','NumberTitle','off')
% plot (CountHGAPSO, HGAPSOPLOT(:,3))
% axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe])

%% ----------------------------- Plot All ----------------------------
 figure('Name','Minimum','NumberTitle','off')
 plot (CountHGP2, HGP2PLOT(:,1),'b')
 hold on;
 plot (CountHGP1, HGP1PLOT(:,1),'d')
 hold on;
 plot (CountPSO, PSOPLOT(:,1),'r')
 hold on;
 plot (CountGA, GAPLOT(:,1), 'c')
 legend('HGAPSO','PSO','GA');
end

Mat2gray
function I = mat2gray(A,limits)
%MAT2GRAY Convert matrix to intensity image.
% I = MAT2GRAY(A,[AMIN AMAX]) converts the matrix A to the intensity
image I.
% The returned matrix I contains values in the range 0.0 (black) to
1.0 (full
% intensity or white). AMIN and AMAX are the values in A that
correspond to
% 0.0 and 1.0 in I. Values less than AMIN become 0.0, and values
greater than
% AMAX become 1.0.
%
% I = MAT2GRAY(A) sets the values of AMIN and AMAX to the minimum
and maximum
% values in A.
%
% Class Support
% -------------
% The input array A can be logical or numeric. The output image I is
double.
%
% Example
% -------
% I = imread('rice.png');
% J = filter2(fspecial('sobel'), I);
% K = mat2gray(J);
% figure, imshow(I), figure, imshow(K)

% Copyright 1992-2014 The MathWorks, Inc.

validateattributes(A,{'logical','uint8', 'uint16', 'uint32',...
 'int8', 'int16', 'int32','single', 'double'},...
 {},mfilename,'A',1);

181

if nargin == 1
 limits = double([min(A(:)) max(A(:))]);
else

validateattributes(limits,{'double'},{'numel',2},mfilename,'LIMITS',2)
;
end

if limits(2)==limits(1) % Constant Image
 I = double(A);
else
 delta = 1 / (limits(2) - limits(1));
 I = imlincomb(delta, A, -limits(1)*delta, 'double');
end

% Make sure all values in I are between 0 and 1.
I = max(0,min(I,1));

Imlincomb
function Z = imlincomb(varargin)
%IMLINCOMB Linear combination of images.
% Z = IMLINCOMB(K1,A1,K2,A2, ..., Kn,An) computes K1*A1 + K2*A2 +
... +
% Kn*An. A1, A2, ..., An are real, non-sparse, numeric arrays with
the
% same class and size, and K1, K2, ..., Kn are real double scalars.
Z
% has the same size and class as A1 unless A1 is logical, in which
case
% Z is double.
%
% Z = IMLINCOMB(K1,A1,K2,A2, ..., Kn,An,K) computes K1*A1 + K2*A2 +
% ... + Kn*An + K.
%
% Z = IMLINCOMB(..., OUTPUT_CLASS) lets you specify the class of Z.
% OUTPUT_CLASS is a string containing the name of a numeric class.
%
% Each element of the output, Z, is computed individually in
% double-precision floating point. When Z is an integer array,
elements
% of Z that exceed the range of the integer type are truncated, and
% fractional values are rounded.
%
% Example 1
% ---------
% Scale an image by a factor of two.
%
% I = imread('cameraman.tif');
% J = imlincomb(2,I);
% figure, imshow(J)
%
% Example 2
% ---------
% Form a difference image with the zero value shifted to 128.
%
% I = imread('cameraman.tif');
% J = uint8(filter2(fspecial('gaussian'), I));
% K = imlincomb(1,I,-1,J,128); % K(r,c) = I(r,c) - J(r,c) + 128
% figure, imshow(K)
%
% Example 3
% ---------
% Add two images with a specified output class.

182

%
% I = imread('rice.png');
% J = imread('cameraman.tif');
% K = imlincomb(1,I,1,J,'uint16');
% figure, imshow(K,[])
%
% See also IMCOMPLEMENT.

% Copyright 1993-2014 The MathWorks, Inc.

% I/O spec
% ========
% A1, ... Real, numeric, full arrays
% Logical arrays also allowed, and are converted to
uint8.
%
% K1, ... Real, double scalars
%
% OUTPUT_CLASS Case-insensitive nonambiguous abbreviation of one of
% these strings: uint8, uint16, uint32, int8, int16,
int32,
% single, double

[ims, scalars, outputClass] = ParseInputs(varargin{:});

sameInputOutputClass = strcmp(class(ims{1}), outputClass);
if sameInputOutputClass
 if imagePlusImage(ims,scalars)
 Z = ims{1} + ims{2};
 elseif image1MinusImage2(ims,scalars)
 Z = ims{1} - ims{2};
 elseif image2MinusImage1(ims,scalars)
 Z = ims{2} - ims{1};
 elseif imagePlusScalar(ims,scalars)
 Z = ims{1} + scalars(2);
 else
 Z = images.internal.imlincombc(ims, scalars, outputClass);
 end
else
 Z = images.internal.imlincombc(ims, scalars, outputClass);
end

%%
function valid = imagePlusImage(images,scalars)

 valid = numel(images) == 2 && numel(scalars) == 2 && ...
 all(scalars == 1);

%%
function valid = image1MinusImage2(images,scalars)

 valid = numel(images) == 2 && numel(scalars) == 2 && ...
 scalars(1) == 1 && scalars(2) == -1;

%%
function valid = image2MinusImage1(images,scalars)

 valid = numel(images) == 2 && numel(scalars) == 2 && ...
 scalars(1) == -1 && scalars(2) == 1;

%%
function valid = imagePlusScalar(images,scalars)

183

 valid = numel(images) == 1 && numel(scalars) == 2 && ...
 scalars(1) == 1;

%%
function [images, scalars, output_class] = ParseInputs(varargin)

narginchk(2, Inf);

if ischar(varargin{end})
 valid_strings = {'uint8' 'uint16' 'uint32' 'int8' 'int16' 'int32'
...
 'single' 'double'};
 output_class = validatestring(varargin{end}, valid_strings,
mfilename, ...
 'OUTPUT_CLASS', 3);
 varargin(end) = [];
else
 if islogical(varargin{2})
 output_class = 'double';
 else
 output_class = class(varargin{2});
 end
end

%check images
images = varargin(2:2:end);
if ~iscell(images) || isempty(images)
 displayInternalError('images');
end

% assign and check scalars
for p = 1:2:length(varargin)
 validateattributes(varargin{p}, {'double'}, {'real' 'nonsparse'
'scalar'}, ...
 mfilename, sprintf('K%d', (p+1)/2), p);
end
scalars = [varargin{1:2:end}];

%make sure it is a vector
if (~ismatrix(scalars) || (all(size(scalars)~=1) &&
any(size(scalars)~=0)))
 displayInternalError('scalars');
end

%%
function displayInternalError(string)

error(message('images:imlincomb:internalError', upper(string)))

Reportrecord
function Record = ReportRecord(Record)
MaxRun = length(Record);
savedata = isfield(Record,'finalReport');

for run = 1:MaxRun
 PSO = Record(run).PSO;
 GA = Record(run).GA;
 HGAPSO = Record(run).HGAPSO;
 [PSO.output.Best.Y.Eval, I] = min(PSO.output.History.Y.Eval);

184

 PSO.output.Best.Y.Makespan = PSO.output.History.Y.Makespan(I);
 PSO.output.Best.Y.NAGV = PSO.output.History.Y.NAGV(I);
 PSO.output.Best.X = PSO.output.History.X(I+1,:);
 fprintf('The PSO results with "%6.0f " function evaluation
\n', PSO.Parameter.MaxGen * PSO.Parameter.N);
 fprintf('Makespan = %9.0f \nNumber of AGV = %3.0f \n',
PSO.output.Best.Y.Makespan, PSO.output.Best.Y.NAGV);
 fprintf('time = %4.4f Sec\nBest Generation in %5.0f
\n', PSO.time, I);
 fprintf('\n--
\n\n');

 PSO.output.Worst.Y.Eval = max(PSO.output.History.Y.Eval);
 PSO.output.Worst.Y.Makespan = max(PSO.output.History.Y.Makespan);
 PSO.output.Worst.Y.NAGV = max(PSO.output.History.Y.NAGV);

 PSO.output.Mean.Y.Eval = mean(PSO.output.History.Y.Eval);
 PSO.output.Mean.Y.Makespan = mean(PSO.output.History.Y.Makespan);
 PSO.output.Mean.Y.NAGV = mean(PSO.output.History.Y.NAGV);

 PSO.output.ST.Y.Eval = std(PSO.output.History.Y.Eval);
 PSO.output.ST.Y.Makespan = std(PSO.output.History.Y.Makespan);
 PSO.output.ST.Y.NAGV = std(PSO.output.History.Y.NAGV);

 finalReport.PSO.Eval(run,:) = [PSO.output.Best.Y.Eval,
PSO.output.Worst.Y.Eval, PSO.output.Mean.Y.Eval,
PSO.output.ST.Y.Eval];
 finalReport.PSO.Makespan(run,:) = [PSO.output.Best.Y.Makespan,
PSO.output.Worst.Y.Makespan, PSO.output.Mean.Y.Makespan,
PSO.output.ST.Y.Makespan];
 finalReport.PSO.NAGV(run,:) = [PSO.output.Best.Y.NAGV,
PSO.output.Worst.Y.NAGV, PSO.output.Mean.Y.NAGV,
PSO.output.ST.Y.NAGV];

 Best.PSO.X(run,:) = PSO.output.Best.X;
 Best.PSO.Eval(run,:) = PSO.output.Best.Y.Eval;
 Best.PSO.Makespan(run,:) = PSO.output.Best.Y.Makespan;
 Best.PSO.NAGV(run,:) = PSO.output.Best.Y.NAGV;

 Record(run).PSO = PSO;

%% ----------------------------Report GA------------------------------
 [GA.output.Best.Y.Eval, I] = min(GA.output.History.Y.Eval);
 GA.output.Best.Y.Makespan = GA.output.History.Y.Makespan(I);
 GA.output.Best.Y.NAGV = GA.output.History.Y.NAGV(I);
 GA.output.Best.X = GA.output.History.X(I+1,:);
 fprintf('The GA results with "%6.0f " function evaluation
\n', GA.Parameter.MaxGen * GA.Parameter.N);
 fprintf('Makespan = %9.0f \nNumber of AGV = %3.0f \n',
GA.output.Best.Y.Makespan, GA.output.Best.Y.NAGV);
 fprintf('time = %4.4f Sec\nBest Generation in %5.0f
\n', GA.time,I);
 fprintf('\n--
\n\n');

 GA.output.Worst.Y.Eval = max(GA.output.History.Y.Eval);
 GA.output.Worst.Y.Makespan = max(GA.output.History.Y.Makespan);
 GA.output.Worst.Y.NAGV = max(GA.output.History.Y.NAGV);

 GA.output.Mean.Y.Eval = mean(GA.output.History.Y.Eval);
 GA.output.Mean.Y.Makespan = mean(GA.output.History.Y.Makespan);
 GA.output.Mean.Y.NAGV = mean(GA.output.History.Y.NAGV);

185

 GA.output.ST.Y.Eval = std(GA.output.History.Y.Eval);
 GA.output.ST.Y.Makespan = std(GA.output.History.Y.Makespan);
 GA.output.ST.Y.NAGV = std(GA.output.History.Y.NAGV);

 finalReport.GA.Eval(run,:) = [GA.output.Best.Y.Eval,
GA.output.Worst.Y.Eval, GA.output.Mean.Y.Eval, GA.output.ST.Y.Eval];
 finalReport.GA.Makespan(run,:) = [GA.output.Best.Y.Makespan,
GA.output.Worst.Y.Makespan, GA.output.Mean.Y.Makespan,
GA.output.ST.Y.Makespan];
 finalReport.GA.NAGV(run,:) = [GA.output.Best.Y.NAGV,
GA.output.Worst.Y.NAGV, GA.output.Mean.Y.NAGV, GA.output.ST.Y.NAGV];

 Best.GA.X(run,:) = GA.output.Best.X;
 Best.GA.Eval(run,:) = GA.output.Best.Y.Eval;
 Best.GA.Makespan(run,:) = GA.output.Best.Y.Makespan;
 Best.GA.NAGV(run,:) = GA.output.Best.Y.NAGV;

 Record(run).GA = GA;
%% ------------------------Report Hybrid GA - PSO --------------------

 [HGAPSO.output.Best.Y.Eval, I] =
min(HGAPSO.output.History.Y.Eval);
 HGAPSO.output.Best.Y.Makespan =
HGAPSO.output.History.Y.Makespan(I);
 HGAPSO.output.Best.Y.NAGV = HGAPSO.output.History.Y.NAGV(I);
 HGAPSO.output.Best.X = HGAPSO.output.History.X(I+1,:);
 fprintf('The Hybrid GA-PSO results with "%6.0f " function
evaluation \n', HGAPSO.Parameter.MaxGen * HGAPSO.Parameter.N);
 fprintf('Makespan = %9.0f \nNumber of AGV = %3.0f \n',
HGAPSO.output.Best.Y.Makespan, HGAPSO.output.Best.Y.NAGV);
 fprintf('time = %4.4f Sec\nBest Generation in %5.0f
\n', HGAPSO.time,I);
 fprintf('\n--
\n\n');

 HGAPSO.output.Worst.Y.Eval = max(HGAPSO.output.History.Y.Eval);
 HGAPSO.output.Worst.Y.Makespan =
max(HGAPSO.output.History.Y.Makespan);
 HGAPSO.output.Worst.Y.NAGV = max(HGAPSO.output.History.Y.NAGV);

 HGAPSO.output.Mean.Y.Eval = mean(HGAPSO.output.History.Y.Eval);
 HGAPSO.output.Mean.Y.Makespan =
mean(HGAPSO.output.History.Y.Makespan);
 HGAPSO.output.Mean.Y.NAGV = mean(HGAPSO.output.History.Y.NAGV);

 HGAPSO.output.ST.Y.Eval = std(HGAPSO.output.History.Y.Eval);
 HGAPSO.output.ST.Y.Makespan =
std(HGAPSO.output.History.Y.Makespan);
 HGAPSO.output.ST.Y.NAGV = std(HGAPSO.output.History.Y.NAGV);

 finalReport.HGAPSO.Eval(run,:) = [HGAPSO.output.Best.Y.Eval,
HGAPSO.output.Worst.Y.Eval, HGAPSO.output.Mean.Y.Eval,
HGAPSO.output.ST.Y.Eval];
 finalReport.HGAPSO.Makespan(run,:) =
[HGAPSO.output.Best.Y.Makespan, HGAPSO.output.Worst.Y.Makespan,
HGAPSO.output.Mean.Y.Makespan, HGAPSO.output.ST.Y.Makespan];
 finalReport.HGAPSO.NAGV(run,:) = [HGAPSO.output.Best.Y.NAGV,
HGAPSO.output.Worst.Y.NAGV, HGAPSO.output.Mean.Y.NAGV,
HGAPSO.output.ST.Y.NAGV];

 Best.HGAPSO.X(run,:) = HGAPSO.output.Best.X;

186

 Best.HGAPSO.Eval(run,:) = HGAPSO.output.Best.Y.Eval;
 Best.HGAPSO.Makespan(run,:) = HGAPSO.output.Best.Y.Makespan;
 Best.HGAPSO.NAGV(run,:) = HGAPSO.output.Best.Y.NAGV;

 Record(run).HGAPSO = HGAPSO;

 Record(run).finalReport = finalReport;
 Record(run).Best = Best;
end

[B, I] = min(Record(end).Best.PSO.Eval);
Record(end).BestOfBest.PSO.Eval = B;
Record(end).BestOfBest.PSO.X = Record(end).Best.PSO.X(I,:);
Record(end).BestOfBest.PSO.Makespan =
Record(end).Best.PSO.Makespan(I);
Record(end).BestOfBest.PSO.NAGV = Record(end).Best.PSO.NAGV(I);

[B, I] = min(Record(end).Best.GA.Eval);
Record(end).BestOfBest.GA.Eval = B;
Record(end).BestOfBest.GA.X = Record(end).Best.GA.X(I,:);
Record(end).BestOfBest.GA.Makespan = Record(end).Best.GA.Makespan(I);
Record(end).BestOfBest.GA.NAGV = Record(end).Best.GA.NAGV(I);

[B, I] = min(Record(end).Best.HGAPSO.Eval);
Record(end).BestOfBest.HGAPSO.Eval = B;
Record(end).BestOfBest.HGAPSO.X = Record(end).Best.HGAPSO.X(I,:);
Record(end).BestOfBest.HGAPSO.Makespan =
Record(end).Best.HGAPSO.Makespan(I);
Record(end).BestOfBest.HGAPSO.NAGV = Record(end).Best.HGAPSO.NAGV(I);

DrawGraph(Record, finalReport, MaxRun);

%% ----------------------------- Save Data ---------------------------
if savedata == false
 filename = strcat('Record_', num2str(sum(clock)*1000), '.mat');
 save(filename,'Record');
end

Reportit
function [out]= Reportit(this)

 if this.output.History.Y.Makespan(1,1) == inf
 this.output.History.Y.Makespan(1,:) = [];
 end
 if this.output.History.Y.Eval(1,1) == inf
 this.output.History.Y.Eval(1,:) = [];
 end
 if this.output.History.Y.NAGV(1,1) == inf
 this.output.History.Y.NAGV(1,:) = [];
 end

 [this.output.Best.Y.Eval, I] = min(this.output.History.Y.Eval);
 this.output.Best.Y.Makespan = this.output.History.Y.Makespan(I);
 this.output.Best.Y.NAGV = this.output.History.Y.NAGV(I);
 this.output.Best.X = this.output.History.X(I,:);
 fprintf('The results with "%6.0f " function evaluation \n',
this.Parameter.MaxGen * this.Parameter.N);
 fprintf('Makespan = %9.0f \nNumber of AGV = %3.0f \n',
this.output.Best.Y.Makespan, this.output.Best.Y.NAGV);
 fprintf('\n--
\n\n');

187

% this.output.Best.Y.Eval = min(this.output.History.Y.Eval);
% this.output.Best.Y.Makespan =
min(this.output.History.Y.Makespan);
% this.output.Best.Y.NAGV = min(this.output.History.Y.NAGV);

 this.output.Worst.Y.Eval = max(this.output.History.Y.Eval);
 this.output.Worst.Y.Makespan =
max(this.output.History.Y.Makespan);
 this.output.Worst.Y.NAGV = max(this.output.History.Y.NAGV);

 this.output.Mean.Y.Eval = mean(this.output.History.Y.Eval);
 this.output.Mean.Y.Makespan =
mean(this.output.History.Y.Makespan);
 this.output.Mean.Y.NAGV = mean(this.output.History.Y.NAGV);

 this.output.ST.Y.Eval = std(this.output.History.Y.Eval);
 this.output.ST.Y.Makespan = std(this.output.History.Y.Makespan);
 this.output.ST.Y.NAGV = std(this.output.History.Y.NAGV);

 Countthis = [1:this.Parameter.MaxGen];

 MAXIMUM = max(this.output.History.Y.Makespan);
 DIGIT = ceil(log10(abs(MAXIMUM))/2);
 Max_Axe = ceil(MAXIMUM/(10^DIGIT))*10^DIGIT;
 MINIMUM = min(this.output.History.Y.Makespan);
 DIGIT = ceil(log10(abs(MINIMUM))/2);
 Min_Axe = floor(MINIMUM/(10^DIGIT))*10^DIGIT;

%% ---------------------------- Plot this ----------------------------
 thisPLOT = zeros(this.Parameter.MaxGen,3);
 for i = 1 : this.Parameter.MaxGen-1
 thisPLOT(i,1) = min(this.output.History.Y.Makespan(((i-
1)*this.Parameter.N+1) : (i*this.Parameter.N)));
 thisPLOT(i,2) = max(this.output.History.Y.Makespan(((i-
1)*this.Parameter.N+1) : (i*this.Parameter.N)));
 thisPLOT(i,3) = sum(this.output.History.Y.Makespan(((i-
1)*this.Parameter.N+1) : (i*this.Parameter.N)))/this.Parameter.N;
 end
 thisPLOT(this.Parameter.MaxGen,1) = min(
this.output.History.Y.Makespan(((this.Parameter.MaxGen-
1)*this.Parameter.N+1) : (this.Parameter.MaxGen*this.Parameter.N)));
 thisPLOT(this.Parameter.MaxGen,2) = max(
this.output.History.Y.Makespan(((this.Parameter.MaxGen-
1)*this.Parameter.N+1) : (this.Parameter.MaxGen*this.Parameter.N)));
 thisPLOT(this.Parameter.MaxGen,3) = sum(
this.output.History.Y.Makespan(((this.Parameter.MaxGen-
1)*this.Parameter.N+1) :
(this.Parameter.MaxGen*this.Parameter.N)))/this.Parameter.N;

 figure('Name','this Minimum','NumberTitle','off')
 plot (Countthis, thisPLOT(:,1))
 axis([0,this.Parameter.MaxGen-1,Min_Axe,Max_Axe])
 figure('Name','this Maximum','NumberTitle','off')
 plot (Countthis, thisPLOT(:,2))
 axis([0,this.Parameter.MaxGen-1,Min_Axe,Max_Axe])
 figure('Name','this Mean','NumberTitle','off')
 plot (Countthis, thisPLOT(:,3))
 axis([0,this.Parameter.MaxGen-1,Min_Axe,Max_Axe])

 figure('Name','All','NumberTitle','off')
 plot (Countthis, thisPLOT(:,1))
 hold on;

188

 plot (Countthis, thisPLOT(:,2))
 hold on;
 plot (Countthis, thisPLOT(:,3))
 out = 1;
 legend('min','max', 'mean');

