
SCHEDULING OF AUTOMATED GUIDED VEHICLES IN 
A FLEXIBLE MANUFACTURING SYSTEM 

 

 

 

 

MARYAM MOUSAVI 

 

 

 

 

 

FACULTY OF ENGINEERING 
UNIVERSITY OF MALAYA 

KUALA LUMPUR 
 

  
 2018



SCHEDULING OF AUTOMATED GUIDED 

VEHICLES IN A FLEXIBLE MANUFACTURING 

SYSTEM 

 

 

 

 

MARYAM MOUSAVI 

 

 

 

THESIS SUBMITTED IN FULFILMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF THE DOCTOR 

OF PHILOSOPHY 

 

FACULTY OF ENGINEERING 
UNIVERSITY OF MALAYA 

KUALA LUMPUR 
 
 

2018 



iii 

 
UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

 

Name of Candidate:                                         (I.C/Passport No:                                ) 

Matric No:                                   

Name of Degree: 

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): 

 

Field of Study: 

 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work; 
(2) This Work is original; 
(3) Any use of any work in which copyright exists was done by way of fair dealing 

and for permitted purposes and any excerpt or extract from, or reference to or 
reproduction of any copyright work has been disclosed expressly and 
sufficiently and the title of the Work and its authorship have been 
acknowledged in this Work; 

(4) I do not have any actual knowledge nor do I ought reasonably to know that the 
making of this work constitutes an infringement of any copyright work; 

(5) I hereby assign all and every rights in the copyright to this Work to the 
University of Malaya (“UM”), who henceforth shall be owner of the copyright 
in this Work and that any reproduction or use in any form or by any means 
whatsoever is prohibited without the written consent of UM having been first 
had and obtained; 

(6) I am fully aware that if in the course of making this Work I have infringed any 
copyright whether intentionally or otherwise, I may be subject to legal action 
or any other action as may be determined by UM. 

 

           Candidate’s Signature                                               Date: 

 

Subscribed and solemnly declared before, 

 

           Witness’s Signature                                                   Date: 

 

Name: 

Designation: 

 
 
  

hadigalavi@gmail.com

hadigalavi@gmail.com

hadigalavi@gmail.com



iv 

SCHEDULING OF AUTOMATED GUIDED VEHICLES IN A 

FLEXIBLE MANUFACTURING SYSTEM 

ABSTRACT 

Flexible manufacturing systems (FMSs) provide high flexibility and responsiveness to 

manufacturers to meet variable customer demands in the market, where a variety of 

products with short production cycle is favored. Performance of an FMS is highly 

dependent on the superiority of the coordination and scheduling of its components like 

automated guided vehicles (AGVs). AGV scheduling refers to the process of allocating 

AGVs to tasks, taking into account the costs and time required for the operations to be 

accomplished. Multi-objective scheduling, in this regard, is highly complex and 

combinatorial in nature when conflicting objectives are involved. Minimizing makespan 

(the time required to complete all jobs) and the number of AGVs in an FMS would 

consequently minimize the production costs. In addition, AGVs’ battery charge status and 

utilization largely affect task scheduling performance, in which without such 

consideration the scheduling results would be unrealistic. Incorporation of the AGVs 

battery charge consideration into the scheduling practice escalates the model complexity, 

and it has been rarely studied before. However, in practice, the AGV’s battery charge 

status cannot be neglected. AGV scheduling is a non-deterministic polynomial-time hard 

(NP-hard) problem and evolutionary algorithms (EAs) have been proved powerful in 

solving such problems. In this study, a multi-objective optimization model for AGV 

scheduling in an FMS is developed and solved using four evolutionary algorithms. 

Genetic algorithm (GA), particle swarm optimization (PSO), and two different hybrids of 

GA and PSO that are referred to as HGP1 and HGP2 are the four EAs developed. In both 

the hybrid algorithms, to obtain an algorithm capable of finding better results with 

improved convergence properties, some of the GA operators such as selection, crossover, 

and mutation were integrated to the PSO algorithm. In HGP2, elitism integration, 
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application of an innovative way of population selection, and a different approach for 

incorporation of the GA operators into the PSO have been practiced as well. Next, the 

model and algorithms were applied to four testbeds in different sizes to assess the 

developed model and solution approaches. The four algorithms were successful in 

decreasing the makespan and the required number of AGVs in all the testbeds. With 

regard to the battery charge utilization, not only the batteries of omitted AGVs were 

saved, but also the remaining AGVs’ battery charge utilization was improved. After the 

optimization, along with decrease in AGVs’ number, their idle time has also been reduced 

and consequently the AGVs’ operation efficiency was improved. Overall, in all the 

testbeds, HGP2 outperformed the other algorithms and obtained the best result. Moreover, 

HGP2 converged at a faster rate and had a smaller standard deviation and computational 

time. Increasing the problem size did not change the response pattern of the studied EAs, 

however it postponed the algorithms convergence to a higher iteration number with 

prolonged computational time. Finally, in order to validate the proposed model, a model 

simulation was performed by FlexSim software. The simulation outcome confirmed the 

optimization result which proved the feasibility and validity of the model. 

Keywords: Automated guided vehicle, scheduling, optimization, flexsible 

manufacturing system. 
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SCHEDULING OF AUTOMATED GUIDED VEHICLES IN A 

FLEXIBLE MANUFACTURING SYSTEM 

ABSTRAK 

Sistem pembuatan fleksibel (FMS) menyediakan daya keanjalan dan kepekaan yang 

tinggi bagi memenuhi permintaan pelanggan yang mendadak, di mana kepelbagaian 

produk dengan kitaran pengeluaran yang singkat menjadi pilihan. Prestasi sesuatu FMS 

adalah bergantung kepada kejituan dasar penjadualan untuk sistem kawalan.  Prestasi 

FMS boleh ditingkatkan dengan melalui penyelarasan dan penjadualan komponennya 

seperti kenderaan berpandu automatik (AGV). Penjadualan AGV merujuk kepada proses 

penentuan tugasan AGV, dengan mengambil kira kos dan masa operasi. Ini melibatkan 

penjadualan pelbagai objektif yang bersifat kompleks dan kombinatorik di mana ia tidak 

mempunyai satu penyelesaian unik yang boleh dicapai apabila ia melibatkan objektif 

yang bercanggah. Pengurangkan bilangan AGV disamping meminimumkan masa 

penyiapan dalam FMS seterusnya akan mengurangkan kos pengeluaran. Selain itu, status 

pengecajan bateri dan penggunaan AGV memberi kesan penting pada penjadualan tugas, 

sekiranya tanpa pertimbangan status-status tersebut, ia akan menyebabkan keputusan 

penjadualan jauh berbeza daripada realiti. Penglibatan proses pengecajan bateri dalam 

penjadualan akan meningkatkan kerumitan model. Walaupun dalam amalan industri 

status pengecasan bateri AGV ini tidak boleh diabaikan, kajian berkaitan perkara ini tidak 

pernah dilakukan oleh penyelidik-penyelidik sebelum ini. Penjadualan AGV merupakan 

masalah polinomial-masa yang rumit dan algoritma evolusi telah dibuktikan sebagai alat 

yang berkesan untuk mengatasi masalah pengoptimuman tersebut. Dalam kajian ini, 

model pengoptimuman pelbagai objektif untuk penjadualan AGV dalam FMS telah 

dibangunkan dan diselesaikan dengan menggunakan algoritma evolusi. Empat algoritma 

evolusi iaitu Algoritma Genetik (GA), Pengoptimum Kerumunan Zarah (PSO), dan dua 

gabungan berbeza GA dan PSO yang dirujuk sebagai algoritma HGP1 dan HGP2 telah 
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digunakan. Dalam kedua-dua algoritma hibrid yang dibangunkan, beberapa operator GA 

seperti pemilihan, persilangan dan mutasi telahpun diintegrasikan dengan algoritma PSO 

untuk mendapatkan algoritma yang mampu mendapat hasil yang lebih baik dengan sifat 

penumpuan yang lebih baik. Dalam HGP2, penerapan cara pemilihan yang inovatif dan 

pendekatan yang berbeza untuk penubuhan operator GA ke PSO telahpun digunakan. 

Seterusnya, model dan algoritma telah digunakan untuk empat kajian dalam pelbagai saiz 

untuk menilai model yang dibangunkan dan cara-cara penyelesaian. Keempat-empat 

algoritma telah berjaya mengurangkan masa penyiapan dan jumlah AGV yang diperlukan 

dalam semua kajian. Dari segi penggunaan pengecas bateri, bukan sahaja kadar 

pembaziran bateri AGV yang dikurangkan, malah penggunaan pengecas bateri AGV 

yang tinggal juga diperbaiki. Selepas pengoptimuman, selain daripada penurunan 

bilangan AGV, masa terbiar AGV juga dikurangkan dan seterusnya kecekapan operasi 

AGV telah ditingkatkan. Secara keseluruhan, dalam semua kajian yang dijalankan, 

prestasi HGP2 adalah mengatasi algoritma yang lain dan mendapat keputusan yang 

terbaik. Selain itu, kadar penumpuan HGP2 adalah lebih cepat dan mempunyai sisihan 

piawai dan masa pengiraan yang lebih kecil. Peningkatkan saiz masalah tidak mengubah 

corak tindak balas EA yang dikaji, bagaimanapun ia dapat menangguhkan penumpuan 

algoritma kepada nombor lelaran yang lebih tinggi dengan masa pengiraan yang 

berpanjangan. Akhirnya, perisian FlexSim telah digunakan untuk mengesahkan model 

yang dibangunkan. Hasil simulasi perisian ini adalah selari dengan keputusan yang 

diperolehi. Keputusan ini telah mengesahkan keputusan pengoptimuman dan sekaligus 

membuktikan kesahihan dan kesesuian model yang dibangunkan. 

Keywords: Kenderaan berpandu automatic, penjadualan, pengoptimuman, sistem 

perkilangan fleksibel. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

In today’s competitive market, customer satisfaction is an important challenge to 

consider. Therefore, organizations have shifted their concentration from producing large 

quantities of a single product to a variety of products, improving their quality and timely 

delivery to respond to the variable customer demand. Flexible manufacturing system 

(FMS) is an agile system with wide flexibility which is well suited for simultaneous 

production of an extensive variety of parts in low volumes. FMS is a complex system 

consisting of elements like workstations, automated storage/retrieval systems, and 

material handling devices such as robots and automated guided vehicles (AGVs). AGVs 

are widely used in FMS due to their flexibility and compatibility in/to the system 

(Blazewicz et al., 1991; Reddy & Rao, 2011).  

Industry 4.0 or the fourth industrial revolution is the current trend of automation and data 

exchange in manufacturing technologies and it is about to change the way of producing 

and transferring products and parts in warehouses and factory layouts. In industry 4.0, it 

is explained that systems would digitally be connected to machines creating flexibility 

and predictability in companies  to stay competitive in the market (Lasi et al., 2014; S. 

Wang et al., 2016). However, automation is a broad area and there are many ways to 

reduce manual work in factories and warehouses. Introducing AGVs usually gives an 

appealing combination of high flexibility and low installation cost, and it is one quick 

way to start this revolution in companies. These systems have been practiced for decades 

and are today well established in many types of applications (Almada-Lobo, 2016; 

Rüßmann et al., 2015).  
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Due to the AGVs wide range of applicability, a drastic increase in AGVs global market 

value from US$ 838.3 million in 2015 to US$ 2.3 billion at the end of 2024 has been 

predicted (Bioportfolio, 2017).  

FMS performance can be improved by effective utilization of its resources and better 

coordination and scheduling of its components like AGV (Fauadi & Murata, 2010; Kumar 

et al., 2011; Pan et al., 2013; Udhayakumar & Kumanan, 2010; Zheng et al., 2013). The 

term ‘scheduling’ refers to the process of allocating AGVs to tasks, taking into account 

the costs and time required for the operations to be done (Udhayakumar & Kumanan, 

2010). Efficient scheduling therefore would increase the productivity and reduce the cost 

while the entire fleet is optimally utilized (Fauadi & Murata, 2010).  

In view of the vast variety of objectives, limitations and considerations in scheduling 

context, it is still an open area of research to improve it for real-environment results. 

Literature has shown a great tendency toward multi-objective scheduling of AGV systems 

and FMSs, in which the makespan minimization criterion is accompanied with several 

other criteria to entertain an actual-practice scheduling (Fazlollahtabar & Shafieian, 2014; 

Kato & Shin, 2010; Novas & Henning, 2014). The term “Makespan” refers to the 

completion time of all jobs in the schedule. In the majority of earlier studies, makespan 

minimization was the main objective in the scheduling practice as it reduces the time of 

production and warehousing and leads to overall cost reduction (Huang & Zhang, 2013a; 

Saidi-Mehrabad et al., 2015; Zheng et al., 2013). However, those studies have discounted 

the importance of proper utilization of FMS components. Minimizing makespan without 

considering the total number of AGVs employed, may increase the production costs 

through unnecessary utilization of a large number of AGVs in the FMS. Allocating a large 

number of AGVs shortens the makespan, which seems to reduce the costs at the first 

sight, but it will mount the idle time of AGVs and pertinent expenses (Azimi, 2011). 
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AGVs are such expensive devices that determining the type and the appropriate number 

of them in an FMS can positively influence the profitability of the business (Aized, 2009; 

Kato & Shin, 2010; Liang et al., 2012; Wang & Chan, 2014; Wang et al., 2014). 

Another challenge in AGV scheduling studies is the inclusion of AGV battery charge 

considerations into the model. Many studies make the assumption of having an AGV with 

full battery charge at all time in their scheduling, which leaves the model impractical 

(Oliveira et al., 2012; Vivaldini et al., 2013). Battery management is crucial to the AGV 

System (AGVS) efficiency as it can reduce the costs and increase the productivity of the 

FMS (Kawakami & Takata, 2012; Oliveira et al., 2011). Inclusion of the AGV battery 

charge considerations into the scheduling practice would enhance the practicality and 

competency of the scheduled system.  

AGV scheduling is a non-deterministic polynomial-time hard (NP-hard) problem, in 

which it requires application of metaheuristic methods like evolutionary algorithms (EA) 

to solve it. EAs are well received by the research community because of their ability to 

tackle problems that are highly complex. Genetic algorithm (GA) and particle swarm 

optimization (PSO) are two of the well-known EAs in scheduling discourse. In previous 

studies, GA has been more extensively used in AGV scheduling compared with other 

algorithms and hybrids. However, application wise, every algorithm can be a suitable 

choice for problems of a certain type only (Wolpert & Macready, 1997). Performance of 

EAs can be improved by the proper choice of their operators and parameters. In addition, 

hybridization of these algorithms may also further improve their performances.  

To address the above concerns, this research aimed to schedule AGVs in an FMS 

environment by developing a multi-objective model that minimizes the makespan and 

total number of employed AGVs while considering the AGVs’ battery charge status. The 

model will be optimized using four evolutionary algorithms (genetic algorithm (GA), 
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particle swarm optimization (PSO), and 2 different hybrids of GA and PSO (so called 

HGP1 and HGP2)). It will be validated through testbeds run and simulation in FlexSim 

software. 

1.2 Problem Statement 

Efficient scheduling would improve the system productivity and reduce the costs while 

the entire AGV fleet is optimally utilized (Fauadi & Murata, 2010). Previous studies have 

shown that multi-objective models produce a better result than single-objective ones in 

AGV scheduling. Having a wide variety of scheduling criteria, it is difficult to integrate 

all the criteria in one model. Therefore, each study optimizes the scheduling for a few of 

the objectives. The exhaustive literature review in this study revealed that the potential of 

AGV scheduling with objective setting of minimizing the number of AGVs and makespan 

while considering the AGVs’ battery charge has not been studied yet.  

 Makespan minimization reduces the time of production and warehousing and saves cost 

(Saidi-Mehrabad et al., 2015). Next, the number of AGVs employed heavily influences 

the performance of an AGV system and the production cost-effectiveness as they are 

expensive devices (Liang et al., 2012). In addition, it is necessary to take into 

consideration that the appropriate use of AGVs’ battery can affect the overall 

performance of the AGV system (AGVS) through saving cost and avoiding battery-

oriented interruptions and deadlocks (Kawakami & Takata, 2012). Therefore, integrating 

the above criteria in a scheduling model, can result in saving time, energy, and cost. 

To find the efficient solution approach for the scheduling problem, literature introduces 

the evolutionary algorithms as an appropriate choice for solving NP-hard problems such 

as scheduling (Hurink & Knust, 2005). Every EA can be suitable for a certain type of 

problem ; GA and PSO are two of the highly cited algorithms for solving scheduling 

problems (Zhang et al., 2011); however, the hybrid of GA and PSO is commonly believed 
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to be more effective than its constituent algorithms (Mehta, 2012). Although literature 

has practiced hybridization of the GA and PSO, due to the many possibilities in the choice 

of operators and parameters integration strategy in the hybrid form, it is always novel to 

find a better strategy for obtaining the optimum result in a specific problem. Thus, 

hybridization of two well-known algorithms of GA and PSO through a new integration 

approach (called HGP2) is accomplished for model optimization in this study. However, 

GA, PSO, and another hybrid of GA and PSO (HGP1) were also developed and compared 

with HGP2.  

1.3 Objectives 

According to the research opportunities discussed above, the main objective in this study 

is to develop a multi-objective optimization model for scheduling of AGVs in an FMS. 

To achieve this aim, the following objectives are delineated: 

1. To develop an AGV scheduling optimization model with multiple objectives/criteria 

for an FMS environment. 

2. To develop evolutionary algorithms for AGV scheduling optimization model. 

3. To validate optimized result by discrete event simulation.  

1.4 Significance of the Study  

Productivity of an FMS is highly dependent upon its components scheduling and fast 

synchronization to the system interventions and/or interruptions. AGVs with a fast-

growing global market—especially in Asia Pacific—are one expensive and widely used 

component of the FMSs that their scheduling greatly impacts the FMS productivity and 

profitability. The type of criteria/objectives integrated together to develop a scheduling 

model can affect the system responsiveness. This study postulates that a multi-objective 

scheduling model with the following criteria can provide a seamless scheduling model 

with an economical utilization of resources that assures the system profitability. The 



6 

criteria are minimization of the makespan and the number of AGVs utilized in the FMS 

while considering their battery charge at all time. This study for the optimization of the 

developed scheduling model employs four EAs, which two of them are different hybrids 

of the GA and PSO algorithms. A novel configuration for the integration of the GA and 

PSO elements is used to develop the hybrid GA-PSO algorithm. Overall, the knowledge 

acquired from such a comprehensive approach is beneficial to both academia and 

engineers who aim to gain a better perspective of the AGV scheduling context.  

1.5 Scope of the Research   

The scope of this research is developing a general model for an FMS environment. This 

study addresses the general scheduling problem of multiple unit-load AGVs in a plant 

with multiple machines arranged in a distributed layout and set of jobs to be processed 

and various types of products to be produced. The machine-to-machine distance and the 

distance between loading/unloading machines are presumed known.  

1.6 Thesis layout 

The research fundamentals of this work were established in chapter one. Readers would 

find a literature review on FMS, automated guided vehicle, scheduling, and evolutionary 

algorithms in chapter two. Chapter three of the disseretation discusses the research 

framework, model derivation, optimization algorithms development, and programming 

in MATLAB. Results of the model and algorithms’ performance, testbeds 

implementation, model validation, and many more are presented in chapter four. The last 

chapter would represent a research summary and the conclusions drawn from this project, 

while possible future works are also put forward for the respected readers. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

According to the research objectives defined, flexible manufacturing system and its 

components, AGV system and its components, scheduling, AGV scheduling and its 

methods, and evolutionary algorithms are explained in this chapter. The literature on 

above topics is reviewed and the prominent studies on AGV scheduling are summarized. 

Next, evolutionary algorithms have been studied and described with the research focus 

being set on genetic algorithm and particle swarm optimization and their hybrid. The 

literature reviewed here are the basis for constructing the research methodology and 

overall framework of the study.  

2.2 Flexible Manufacturing System (FMS) 

A flexible manufacturing system is a “reprogrammable” manufacturing system capable 

of producing a variety of products automatically. The various machining cells are 

interconnected via loading and unloading stations and through an automated transport 

system. Operational flexibility is enhanced by the ability to execute all manufacturing 

tasks on numerous product designs in small quantities with fast delivery. It has been 

described as an automated job shop and as a miniature-automated factory. Simply stated, 

an automated production system produces one or more families of parts in a flexible 

manner. Today, this prospect of automation and flexibility presents the possibility of 

producing nonstandard parts to create a competitive advantage. The general objectives of 

an FMS are to approach the efficiencies and economies of a scale normally associated 

with mass production, and to maintain the flexibility required for small- and medium-lot-

size production of a variety of parts (Chandraa et al., 2015; Srivastava et al., 2008). 

2.2.1 FMS Components 

A generic FMS consists of the following components: 
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• Numerical control (NC) machine tools. A set of work stations containing machine tools 

that do not require significant set-up time or changeover between successive jobs. 

Typically, these machines perform milling, boring, drilling, tapping, reaming, turning, 

and grooving operations (Kumar et al., 2006). 

• Automated material handling system (AMHS). A material-handling system is 

automated and flexible in which it permits jobs to move between any pair of machines so 

that any job routing can be followed (Chandraa et al., 2015). AMHS can be divided in 

three groups as follows: 

– Automated guided vehicles  

– Conveyors 

– Automated storage and retrieval systems (AS/RS) 

• Industrial robots. Industrial robots minimize the role of human labor, allowing rapid 

changes to assembly lines, avoiding costly equipment replacements, and enabling the 

economical production of customized lots (Sciavicco & Siciliano, 1996). 

• Control software. Control software is a network of supervisory computers and 

microprocessors that performs some or all of the following tasks: (a) directs the routing 

of jobs through the system; (b) tracks the status of all jobs in progress so it is known 

where each job is to go next; (c) passes the instructions for the processing of each 

operation to each station and ensures that the right tools are available for the job; and (d) 

provides essential monitoring of the correct performance of operations and signals 

problems requiring attention (Ficko et al., 2004; Oyetunji, 2012). 

2.2.2 Benefits of FMS 

Numerous researchers have detailed the potential benefits of FMS implementation. These 

benefits include: less waste, fewer workstations, “quicker changes of tools, dies, and 
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stamping machinery”, reduced downtime, better control over quality, reduced labor, more 

efficient use of machinery, work-in-process inventory reduced, increased capacity, 

increased production flexibility (Haq et al., 2003; Karsak & Kuzgunkaya, 2002; Malhotra 

et al., 2010; Pandey et al., 2016; Tseng, 2004). 

2.3 Automated Guided Vehicle System  

AGVs are one of the commonly favored types of vehicles for the transfer of raw material, 

working process, finish parts, tools, and supplies among different points, machines, and 

the components of the manufacturing system in an economic way in FMSs. AGVs were 

introduced in 1955 (Muller, 1983). Since then, AGVs’ applications and types have 

significantly evolved. AGVs need a close monitoring and effective control strategies 

because of their automated system (Albert & Castagna, 1996; Martínez-Barberá & 

Herrero-Pérez, 2010). They are cordless and their program can change based on the path 

designs; thus, they increase the flexibility for flow changes within a facility. As 

automation and flexibility have become crucial factors in material handling, AGVs are 

found perfect for low and medium -volume material handling situations, where the 

routing of materials is more individualized (Albert & Castagna, 1996; Hall et al., 2001; 

Ilić, 1994).  

A number of AGVs working together in a facility constitute an AGV system (AGVS). 

An AGVS is comprised of four main components; (1) the vehicles that are unmanned 

devices for material transportation within the system, (2) the guide path that guides the 

vehicle to move along the path, (3) the control unit which observes the system and guides 

the operations, moves, etc., (4) and the computer interface which connects the AGVS 

with other computers and systems such as mainframe host computer and the FMS (Figure 

2.1). 
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Figure 2.1: AGV components 

2.3.1 Different Types of AGVs 

Various AGVs that accommodate different service requirements are shown in Figure 2.2. 

However, AGVs with trailers (Tow/Tugger) designed for material transport between 

workstations within an FMS are the common vehicle types in manufacturing industry.  

Figure 2.2: Different types of AGVs 

2.3.2 AGV Guidance System 

The modern AGVs are free-ranging vehicles that are available in limited types with higher 

cost. Their preferred tracks are computer-programmed and uploaded to the vehicles’ 

controllers, and they are changeable. These vehicles find their way using odometer, 

gyroscope, laser, magnetic, vision, or radiofrequency techniques (Le-Anh & De Koster, 

2006; Tompkins et al., 2010). Having no operator, AGVs follow a set of guide paths in 

the facility layout synchronized using a computer-based control system. The guidance 

system assures the AGVs movement on the track/predefined path. AGV’s type, 

application, requirements, and imposed environmental limitations define the type of 

guidance systems to be employed. The wire, laser, inertial, optical or painted strip, 

infrared, and teaching-type guidance systems are the well-known systems. 
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2.3.3 Guide Path in AGVS 

The guide paths in AGVS are categorized into tandem, single-loop, and conventional 

ones. By configuration, the tandem AGV (TAGV) system classifies the workstations into 

non-overlapping zones and assigns one AGV exactly to every zone. Scheduling problems 

are quite simple in a tandem system, while they are highly complicated in conventional 

systems. A conventional system corresponds to sophisticated network with crosses, paths, 

junctions, and shortcuts. AGVs may travel through a path in a single direction (i.e., 

unidirectional path) or in both directions (i.e., bidirectional path) (Le-Anh & De Koster, 

2006). With respect to the vehicles use and probable throughput efficiency, it is argued 

that the bidirectional path is more advantageous than the unidirectional path systems (Qiu 

et al., 2002). 

2.4 AGV Scheduling 

Scheduling is the process of generating the schedule. Scheduling problems in industry 

contain a set of tasks to be carried out and a set of resources available to perform those 

tasks. Given tasks and resources, together with some information about uncertainties, the 

general problem is to determine the timing of the tasks while recognizing the capability 

of the resources. In the scheduling process, it is needed to know the type and the amount 

of each resource to determine when the tasks can feasibly be accomplished. In fact, 

information about resources and tasks defines a scheduling problem (Baker, 1995; 

Pinedo, 2016). 

AGV scheduling is one of the major aspects of AGVs application and management. The 

term ‘AGV scheduling’ refers to the process of allocating AGVs to tasks taking into 

account the costs and time of operations and warranting conflict-free paths 

(Udhayakumar & Kumanan, 2010). The goal of AGV scheduling is to release a group of 

AGVs in order to accomplish the objectives for a cluster of pick-up/drop-off (P/D) tasks 
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under specific restrictions like priority and deadlines. The scheduling objectives are 

typically related to the tasks’ processing time or resources utilization (the system 

throughput, the overall travel time of vehicles, and the number of AGVs) under specific 

limitations like priority and time limit. However, non-feasible outcomes can be obtained 

if the functioning transport system does not take into consideration the scheduling 

constraints (Akturk & Yilmaz, 1996; Vis, 2006). Le-Anh (2005) highlighted that the 

principal goal of the majority of the scheduling problems is to move loads (pallets, 

containers, and products) as quickly as possible to fulfill the time window restrictions. 

Other objectives may include minimization of the load waiting time and maximum 

number of items in the critical queues. However, minimization of the mean waiting time 

of load in AGV scheduling is also pronounced as an important objective (Le-Anh & De 

Koster, 2006). The AGVs’ empty travel time is not the main concern of the majority of 

the AGV scheduling problems, as it does not preclude the transport orders (loads) in the 

AGVS. On the other hand, Mallikarjuna (2014) claimed that the scheduling main purpose 

is dependent upon the market demand, the situation, customer’s satisfaction standards, 

and company’s demands. Overall, in this context, there are two major scheduling goals: 

(1) Minimizing makespan 

This broad goal includes the following objectives: (i) minimizing machine’s idle time, 

(ii) minimizing the costs of in-process inventories, (c) finishing each job the soonest 

possible, and (iv) finishing the last job the soonest possible.  

(2) Due date-based cost minimization  

The objectives involved in this goal are: (i) minimizing the costs associated with failure 

in meeting the scheduled date, (ii) minimizing the maximum possible delay of any job, 

(iii) minimizing the overall tardiness, and (iv) minimizing the number of tardy jobs.  
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In other respects, Akturk and Yilmaz (1996) fragmented the scheduling into two key 

mechanisms: (i) predictive mechanisms that specify the prescribed starting and 

completion times of labor operations and (ii) reactive mechanisms that monitor the 

progress of the schedule and handle the unexpected events (e.g., breakdowns, failures, 

date changes, and cancellations). 

2.4.1 On-line vs. Off-line Scheduling 

In off-line scheduling, all the available tasks are scheduled at the same time. Hence, with 

any alteration in the tasks, the previously generated schedule must be reviewed and 

updated all over the production cycle. Off-line scheduling denotes the scheduling of all 

operations of the available jobs for the whole scheduling period. If all the tasks are known 

when planning, then the scheduling problem may be resolved off-line.  

Accordingly, on-line scheduling systems are required in order to control the vehicles. In 

the scheduling problems, the input data domain encircles the load arrival data (time 

windows and dispatched and delivered sites), distance matrix of all sites, some optional 

information (e.g., a parking policy), and vehicle data (e.g., vehicle speed, capacity, and 

type) (Sabuncuoglu & Bayız, 2000). Hence, the scheduling program may automatically 

and efficiently control any unpredicted event in the system.  

If an off-line method is employed the process is re-programmed, while in on-line methods 

the decision on task scheduling is taken when some changes happen in the system. In off-

line scheduling, transportation orders are known beforehand and the routes are 

constructed and optimized before being used by vehicles. However, any slight 

modifications to the time of job arrival or time of driving (jamming), or vehicle failure 

can affect and may damage the entire schedule (Le-Anh & De Koster, 2006). In practice, 

the working environments are often stochastic because the AGVs’ travel time, job arrival, 

and loading/unloading (L/U) time may vary unexpectedly, and vehicles may crash. 
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Therefore, the schedule should be dynamically modified in time. The schedules ought to 

be adjusted when any new information on the transportation orders is received (Le-Anh 

& De Koster, 2006). 

To recap, in off-line scheduling decisions are made based on the compile-time, in which 

the required information is provided. An off-line scheduling algorithm can optimally 

arrange the sequences in advanceas it only follows a predefined plan. However, in on-

line scheduling there is no prior plan to arrange the sequences accordingly and it would 

be a great disadvantage to on-line algorithms by representing uncertainty in sequences 

arrangement (Shabtay et al., 2013). Thus, due to lack of information in on-line scheduling 

only simple scheduling techniques could be used that often poorly perform against their 

off-line counterparts (Gorcitz et al., 2015; Pinedo, 2012). The present study is also 

organized to develop an off-line scheduling with specifications discussed before. 

2.4.2 Methods of AGV Scheduling 

Fazlollahtabar and Saidi-Mehrabad (2013) reviewed the literature with respect to the 

methods employed for optimizing AGVs scheduling at the manufacturing, distribution, 

transshipment, and transportation systems. They classified the existing methods into 

simulation studies, mathematical approaches, artificial intelligent-based methods, and 

metaheuristic methods. Generally, the optimization methods are categorized into three 

approaches of exact, heuristics, and metaheuristic. The exact techniques strive for 

universal optimality and they generally fail to offer good solutions for NP-hard problems 

despite the fact that numerous counter examples exist. On the other hand, heuristics are 

problem-specific methods that exploit the problem properties to draw solution strategies 

while the metaheuristics are generic heuristic plans that may be applied to numerous 

optimization problems. 
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Mallikarjuna (2014) classified the scheduling methods into two categories of traditional 

and non-traditional methods. 

(1) Traditional methods (also referred to as optimization methods) 

These methods are generally slow and they only warrant global convergence when the 

problems under consideration are small. They employ mathematical programming 

approaches such as integer programming, dynamic programming, linear programming, 

and transportation programming (e.g., enumerate procedure decomposition like 

Lagrangian Relaxation). 

(2) Non-traditional techniques (also known as approximation methods) 

These techniques are very quick but they do not warrant optimum solutions. Some of the 

approximation methods are as follows: 

a- Constructive methods (e.g., composite dispatching rules and priority dispatch rules), 

b- Insertion algorithms (e.g., shifting-bottleneck procedures and bottleneck-based 

heuristics), 

c- Evolutionary programs (e.g., particle swarm optimization and genetic algorithms), 

d- Local search techniques (e.g., simulated annealing, ant colony optimization, problem 

space methods, Tabu search, and adaptive search), and 

e- Iterative methods (These include artificial intelligence methods, artificial neural 

networks, beam-search, heuristic procedures, and hybrid techniques).  

Table 2.1 presents some of the scheduling literature published since 2000, and introduces 

their objectives and methodologies. It also shows the tendency toward multi-task 

scheduling of AGV systems and FMSs, in which the makespan minimization criterion is 

accompanied with several other criteria to entertain an actual-practice scheduling e.g. 

(Liang et al., 2012; Novas & Henning, 2014; Zhao et al., 2013). Heuristic techniques and 

EAs are the common optimization methods used to solve a multi-task scheduling problem 

(Table 2.1). In addition, Table 2.1 introduces the prominent researches in scheduling 
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context that can assist new researchers in finding a pertinent literature to their specific 

objective and methodology. 

Table 2.1: AGV scheduling literature (objectives and methods) 

Authors The article objectives Method 
Ventura et al. 
(2015) 

Minimization of the response time (mean response 
time, maximum response time with and without 
considering time restrictions on vehicle availability). 

Mixed integer linear 
programming formulations + 
a generic GA 

Saidi-
Mehrabad et 
al. (2015) 

Minimizing the total completion time, considering the 
Conflict-Free Routing Problem (CFRP) and the basic 
Job Shop Scheduling Problem. 

A two stage Ant Colony 
Algorithm (ACA) 

Rashmi and 
Bansal (2014) 

Optimal scheduling based on workload balance and 
minimum traveling time. 

Ant colony optimization 

Vasava (2014) Multiple-input job AGV scheduling according to FMS 
environment. 

GA 

Wang et al. 
(2014) 

Scheduling for minimization of number of AGVs in 
the plant.  

Simulation 

Cai et al. 
(2014) 

Task scheduling and coordination control in a multi-
AGV system to shorten the overall run time of the 
system, and maximize the efficiency of AGVs and 
overall system.  

Mixed regional control 
model and the neuro-
endocrine coordination  

Nageswararao 
et al. (2014) 

An autonomous conveyance system for AGVs 
following the taxi transportation strategies. 

Applying traffic engineering 
knowledge 

Nageswararao 
et al. (2014) 

Robust factor function and minimization of mean 
tardiness 

Binary particle swarm 
Vehicle Heuristic algorithm 

Kaplanoğlu et 
al. (2014) 

Proposed a multi-agent based scheduling approach, 
AGV breakdowns considered. 

The Prometheus 
Methodology 

Zeng et al. 
(2014) 

Solved an extension of the blocking job shop (BJS) 
problem, where transferring jobs between different 
machines using a limited number of AGVs is 
concerned (BJS–AGV problem).  

A two-stage heuristic 
algorithm (improving 
timetabling + local search)  

Lin et al. 
(2014) 

Optimal AGV configuration to reduce waiting time.  Simulation 

Giglio (2014) Scheduling the transportation of pallet and roll pallet 
loads from the storage area to the gates.  

Mathematical programming, 
heuristic procedure  

Fazlollahtabar 
and Shafieian 
(2014) 

Design of a computer integrated manufacturing system 
Identification of an optimal path in a vehicle routing 
problem (VRP) network, considering time, cost, and 
the AGV capability factors.  

Mathematical programming 
approach 

Novas and 
Henning 
(2014) 

Simultaneous scheduling of AGVs, machine loading, 
manufacturing activities, part routing, machine buffer, 
and tool planning and allocation in FMS. 

Constraint programming 

Zhao et al. 
(2013) 

Multi-task scheduling and controlling of the logistic 
equipment of the AGVS. 

Simulation 

Sawada et al. 
(2013) 

Scheduling with focus on AGVs congestion at 
transport rail junctions, throughput maximization, and 
transit time shortening. 

Visualization algorithm via 
state space realization 

Zheng et al. 
(2013) 

Optimizing the AGV running time, minimizing the 
waiting time, and resolving the conflict and the 
deadlock problem of the multi-AGV systems. 

Mathematical modelling, 
validated in a test bed. 

Ullrich (2013) Total tardiness minimization through integrating 
production and outbound distribution scheduling. 

GA 

Ren et al. 
(2013) 

Study of productivity efficiency in a Collaborative 
Manufacture System. 

Improved GA (coding, 
crossover, and mutation)  

Gan et al. 
(2013) 

AGVs scheduling and comparison with dispatching 
rules.  

Annealing GA  
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Table 2.1, Continued 

Huang and 
Zhang (2013b) 

Optimal AGV scheduling, considering system 
response time and efficiency. 

Game theory 

Liang et al. 
(2012) 

Minimization of the make-span considering the AGVs 
dispatch. 

Particle swarm optimization 
(PSO) 

Erol et al. 
(2012) 

Developing an on-line and distributed scheduling 
system based on a Multi agent-based system (MAS) 
framework for both AGVs and machines. 

Multi-agent based systems (a 
distributed artificial 
intelligence technique) 

Ariffin et al. 
(2011) 

Minimization of the make-span. Fuzzy GA 

Salehipour et 
al. (2011) 

Locating workstations in a TAGV system using a new 
solution framework. 
 

Mathematical formulation + 
development in a heuristic 
algorithm 

Kato and Shin 
(2010) 

Optimal scheduling of the dispatching commands, 
minimal number of AGVs, and empty load travelling 
time. 

Multi-step solution 
algorithm  

Fauadi and 
Murata (2010) 

Makespan minimization through simultaneous 
scheduling of machines and AGVs operation. 

Binary PSO 

Morandin et al. 
(2010) 

Minimization of the makespan by considering AGV 
and the input buffer. 

Timed Petri net 

Khanmohamm
adi et al. 
(2010) 

Proposing a path planning method for AGVs to 
navigate in an unknown environment reaching certain 
destinations. 

A hybrid Fuzzy logic-based 
method 

Udhayakumar 
and Kumanan 
(2010) 

Developing a methodology to balance the number of 
tasks given to the AGVs to minimize the total 
transportation time (two AGVs were considered)  

GA and ant colony 

Yahyaei et al. 
(2010) 

Application of a newly developed controller. Fuzzy logic 

Shirazi et al. 
(2010) 

Minimizing the material flow intra- and inter-loops 
considering the limitation of TAGV workload. 

Modified ant colony  

Farahani et al. 
(2008) 

Minimizing the maximum workload of the system. Tabu search and GA 

Tavakkoli-
Moghaddam et 
al. (2008) 

Minimizing both intra- and inter-loop flows 
simultaneously based on balanced-loops strategy and 
inter-machine flows taken from ideas of cellular 
manufacturing systems (CMS). 

Simulated annealing (SA) 

Jerald et al. 
(2006) 

Minimization of the penalty cost of machine and its 
idle time. 

Adaptive GA 

Jerald et al. 
(2005) 

Minimization of the machine’s idle time and total 
penalty cost for not meeting the deadline concurrently. 

PSO 

Gaur et al. 
(2003) 

Developing a 5/3 approximation algorithm to 
minimize the completion time such that each site is 
visited only after its release time and handling times 
being taken into consideration. 

Dynamic programming 
strategy, One End first 
strategy 

Sinriech and 
Kotlarski 
(2002) 

To schedule multiple-load vehicles in a single loop 
while minimizing the transfer time of jobs and the 
number of loops travelled by the vehicle.  

Dynamic Scheduling (Short 
term Scheduling algorithm), 
evaluated through simulation  

Berman and 
Edan (2002) 

Developing a control methodology for decentralized 
autonomous AGVS considering all aspects of AGVS 
functionality.  

Fuzzy control using a 
hierarchical behavior-based 
model 

Veeravalli et 
al. (2002) 

Proposing analytical models for the AGVs scheduling. Mathematical modeling 

2.5 Evolutionary Algorithm 

Evolution as proposed by Charles Darwin is a process in nature, where individuals adopt 

to their environment by preserving the features that makes the individual to compete with 

others in order to survive and by attempting to eliminate the features that makes it weaker. 
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Metaheuristic techniques and evolutionary algorithms (EA) are the common optimization 

methods used to solve a multi-task scheduling problem (Rashmi & Bansal, 2014; Ventura 

et al., 2015; Wang & Chan, 2014). Some of the distinct researches in scheduling context 

that can assist new researchers in finding a pertinent literature to their specific objectives 

and methodologies are (Cai et al., 2014; Kaplanoğlu et al., 2014; Nageswararao et al., 

2014; Suzuki et al., 2014).  

Based on the “no free lunch” (NFL) theory every algorithm can be a suitable choice for a 

specific class of problems while it may not be a good choice for other classes (Wolpert & 

Macready, 1997). Literature has shown the effectiveness of genetic algorithms (Pezzella 

et al., 2008; Zhang et al., 2011) and PSO (Girish & Jawahar, 2009; Zhang et al., 2009) 

for solving the scheduling problem. Performance of EAs can be improved by the proper 

choice of their operators and parameters. In addition, hybridization of these algorithms 

may also further improve their performances.  Therefor, GA and PSO algorithms are used 

in this study. However, the hybrid of GA and PSO is commonly believed to be more 

effective than its constituent algorithms (Mehta, 2012; Wang & Si, 2010; Wu et al., 2010). 

Although literature has practiced hybridization of the GA and PSO, due to the many 

possibilities in the choice of operators and parameters integration strategy in the hybrid 

form, it is always novel to find a better strategy for obtaining the optimum result in a 

specific problem.  

2.5.1 Genetic Algorithm 

GA is a search algorithm based on the mechanics of the natural selection process 

(biological evolution) which were pioneered by John Holland and his students (Holland, 

1975). GA is popular among all the evolutionary algorithms and they are applied 

successfully to a variety of engineering problems of different fields. The most basic 

concept in GA is that the strong tends to adapt and survive while the weak tends to vanish. 
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Genetic algorithms are stochastic heuristic search methods whose mechanisms are based 

upon simplifications of evolutionary processes observed in nature. They are good at both 

the exploration and exploitation of the search space, as they operate on more than one 

solution at any instance of time (Wall, 1996). 

Genetic algorithm works by modeling the parameters of a problem as bit strings. They 

may represent integers, floating-point numbers, or anything else that is applicable to a 

problem. Each of these parameters is referred to as a gene and the bit string as 

chromosome in the context of GA. Initially a population of chromosomes, each of which 

represents a potential solution to the problem at hand, is generated randomly and each of 

them is evaluated based on its fitness value. The next generation of same size is created 

by selecting more fit individuals from this population and by applying genetic operators 

like crossover and mutation to them. Mutation is an operator, which creates a new 

individual by making a random change in the old one, whereas crossover creates new 

individuals by combining parts from multiple individuals. Classic mutation randomly 

alters a single gene, while crossover exchanges genetic material between two or more 

parents. This completes one generation and after repeating this procedure for a number 

of generations, due to the selection operator utilization, the algorithm converges and it 

yields a better solution (Aytug et al., 2003).  

GA has been successfully applied in many of the scheduling studies. Biegel and Davern 

(1990) applied GA to the scheduling problem and discussed the GA process for an 

elementary “n” tasks one-machine problem. Then they extended the work for “n” tasks 

on two processors and finally generalized for “n” tasks and “m” processors in the series. 

Chen et al. (1995) proposed a GA based heuristic for the scheduling problem on the 

makespan objective and compared the efficiency of the proposed GA with the other GA 

heuristics reported in the literature. A thorough review of the GA representation schemes 
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for scheduling and various hybrid approaches of GA and conventional heuristics 

application is prepared by Cheng et al. (1996).  

Some of the studies in this context has been working on improving the GA application in 

the scheduling problems. For instance, Nearchou (2004) investigated the effect of various 

genetic operators on the performance of GAs when applied on permutation scheduling 

problems. The stochastic behavior of the GA was estimated under the influence of a set 

of five crossover and six mutation schemes. To study the GA hybridization possibilities, 

Gonçalves et al. (2005) have developed a hybrid genetic algorithm for the scheduling 

problem that the chromosome representation of the problem was based on random keys. 

Their scheduling model was constructed using a priority rule in which the priorities were 

defined using GA.  

Udhayakumar and Kumanan (2010) studied multi-objective task scheduling of AGVs in 

an FMS using non-traditional optimization algorithms. They tried to find a near optimum 

schedule for two AGVs based on the balanced workload and minimum traveling time for 

maximum utilization. Agrawal et al. (2012) applied GA for a multi-objective scheduling 

problem where alternate machines were available to process the same job to minimize 

makespan as well as total machining time. The application of GA to the multi-objective 

scheduling problem has given optimum solutions for allocation of jobs to the machines 

to achieve nearly equal utilization of machine resources. Vasava (2014) used GA to 

develop an AGV scheduling model for different FMS environments with the objective of 

makespan minimization. 

2.5.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) is an evolutionary algorithm that was inspired by the 

motion of a flock of birds searching for foods and was proposed by Kennedy and Eberhart 

(1995). PSO is one of the successful optimization algorithms in scheduling applications 
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because of its simple and straightforward implementation. PSO has been applied in 

multiple fields such as human tremor analysis for biomedical engineering, electric power 

and voltage management and machine scheduling (Kennedy et al., 2001). The original 

PSO is proposed for optimization of single objective continuous problems. However the 

concept of PSO has been expanded to allow it to handle other optimization problems such 

as; binary, discrete, combinatorial, constrained and multi-objective optimization (Aziz et 

al., 2011).  

At the beginning of the evolutionary process, a set of particles referred to as a swarm must 

be initiated randomly. Each particle can change its position in the search space just like a 

flying bird searching the food in the sky. During the evolutionary process, a particle of a 

swarm adjusts its newer moving velocity according to its best experience, the best 

experience of all particles in the swarm and the previous moving velocity. Then, the 

particle moves to a new position according to newly generated velocity and its previous 

position (Zini & ElBernoussi, 2015).  

Some of the studies that have applied PSO for scheduling problems are reviewed in the 

followings. Tasgetiren et al. (2006) applied PSO to solve the single machine total 

weighted tardiness problem, which is a typical discrete combinatorial optimization 

problem. They developed a heuristic rule borrowed from the random key representation 

in genetic algorithms, called ‘the smallest position value’ (SPV) rule to enable the 

continuous PSO to be applied to all permutation types of discrete combinatorial 

optimization problems. Tasgetiren et al. (2007) applied PSO algorithm to solve the 

permutation-scheduling problem with the objectives of minimizing makespan and the 

total flow time of jobs. Performance of the algorithm was evaluated on widely used 

benchmarks from the operations research library and it showed to be promising in solving 

permutation problems. In the same vein, Chandrasekaran et al. (2007) developed a PSO 
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to solve a multi-objective scheduling problem. They had considered three criteria of 

minimization of makespan, total flow-time, and the completion time variance. 

Performance of the proposed methodology has been tested by solving benchmark 

scheduling problems available in the literature.  

Pongchairerks (2009) introduced three heuristic algorithms based on PSO for solving 

scheduling problems with multi-purpose machines, and open-shop scheduling problems. 

The three developed algorithms were based on the PSO and specific decoding procedures 

generating solutions related to the class of parameterized active schedules. Pongchairerks 

(2009) concluded the superiority of developed algorithms against available ones. Later, 

Sha and Lin (2010) constructed a PSO for an elaborate multi-objective job-shop 

scheduling problem. Due to the discrete solution spaces of scheduling optimization 

problems, they modified the particle position representation and particle movement and 

velocity. They used the modified PSO to solve various benchmark problems. They proved 

that their modified PSO performed better in search quality and efficiency than traditional 

evolutionary heuristics. 

Recently, Al Theeb and Alhwiti (2014) used PSO to minimize the total weighted tardiness 

and the total setup costs for all jobs, where the setup time and cost for a job depend on its 

place in the sequence. They highlighted that there is no relationship between the setup 

time and cost and this is because in some cases the setup requires highly skilled operators 

and special tools, which cause the setup cost to be high even if the setup time is short. 

2.5.3 Hybrid Algorithms 

Hybrid algorithms are constructed by combining two or more other algorithms that 

originally solve the same problem. So that for solving the problem throughout the hybrid 

algorithm run, either one (based on the data properties) algorithm will be used or the 

hybrid algorithm switches between its constituent algorithms. The hybridization approach 
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is to benefit from desired features of each algorithm in a compound that can have a better 

performance than its constituent algorithms. It should be stressed that a hybrid algorithm 

is an algorithm that is built by combining several other algorithms that solve the same 

problem—not just any algorithms that may solve other problems—but each has different 

characteristics like performance. 

 Hybrid GA and PSO 

The PSO algorithm is problem-independent, which means little specific knowledge 

relevant to a given problem is required (Xia & Wu, 2006). All the required prior-

knowledge is the fitness evaluation of each particle. This advantage makes PSO more 

robust than many other search algorithms. On the other hand, GA simultaneously 

evaluates many points in the search space, it is more likely to find the global solution of 

a given problem. With every EA having a specific merit that could be incorporated into 

another EA, hybridization of evolutionary algorithms has been investigated in many 

studies (Chelouah & Siarry, 2003; Fan & Zahara, 2007; Kao & Zahara, 2008). Such a 

hybrid is often referred as a mimetic algorithm.  

As known, PSO performs according to the knowledge of social interaction, and all 

individuals are taken into account in each generation. On the contrary, GA simulates 

evolution and some fitter chromosomes are selected while some others are eliminated 

from generation to generation (Liou et al., 2013). Hence, by integrating the advantages of 

the compensatory properties of PSO and GA, their hybrid form can be used to obtain 

better results (Mehta, 2012; Wang & Si, 2010; Wu et al., 2010).  

For example, Tang et al. (2010) proposed a hybrid of GA and PSO to solve the scheduling 

problem. The PSO algorithm was introduced to get the initial population, while 

evolutionary genetic operations were used. They validated the new method on seven 

benchmark datasets, and the comparison with some existing methods verified its 
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effectiveness. Liu et al. (2015) used a hybrid algorithm using PSO and GA to solve a 

scheduling problem. In their algorithm, named hybrid PSO-GA algorithm (HPGA), the 

PSO algorithm was redefined and modified by introducing genetic operators, i.e. the 

crossover operator and the mutation operator, to update the particles in the population. 

The HPGA was then applied in heavy machinery company with minimizing machines’ 

makespan and minimizing jobs’ tardiness as the two optimal objectives. The comparisons 

with actual application report showed that their proposed HPGA can obtain higher quality 

of schedule solution for machine tool production.  

2.5.4 Multi-objective optimization 

One of the most widely used methods for solving multi-objective optimization problems 

is the classical method. Such methods aggregate the objectives into a single, 

parameterized objective function in order to generate the Pareto-optimal set. Several 

optimizations run with different parameter settings are performed in order to achieve a 

set of solutions which approximates the Pareto-optimal set. Basically, this procedure is 

independent of the underlying optimization algorithm. Some representatives of this class 

of techniques are the weighting method (Cohon 1978), the constraint method (Cohon 

1978), and etc. 

The fact that well-studied algorithms for single-objective problems can be used for multi-

objective problems makes the classical approaches attractive and popular. For large-scale 

problems, hardly any real multi-objective optimization techniques had previously been 

available (Horn 1997). By contrast, in single-objective optimization a wide range of 

heuristic methods have been known that are capable of dealing with this complexity 

(Zitzler, 2000, 1999, Mao-Guo, 2009. Deb, 2015). 

 The weighted-sum method is a traditional and a popular method that parametrically 

changes the weights among objective functions to obtain the Pareto front (Kim, 2005). It 
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is simple and easy to use, for convex problems it guarantees finding solutions on the entire 

Pareto-optimal set, although it has a limitation in mixed optimization problems (min-max) 

and needs to have all the objectives in one type. However, as objectives of this study are 

of minimization type, the weighted sum method can properly be applied in this research 

framework.  

2.6 The current research establishment  

Based on the reviewed literature relevant to the present research, Table 2.2 is prepared to 

demonstrate the methods, model criteria, and validation procedure used in this study and 

compare it with existing literature for establishing its novelty. 

Table 2.2: Studies with similar research components 

 Method Model  Method Model 

 1 2 3 4 5 6 7  1 2 3 4 5 6 7 
Ventura et al. (2015)        Liang et al. (2012)        
Saidi-Mehrabad et al. (2015)        Morandin et al. (2011)       
Samuel and Rajan (2015)        Fauadi and Murata (2010)        
Jain and Foley (2016)        Kato and Shin (2010)        
Liu et al. (2015)       Udhayakumar and Kumanan (2010)        
Li et al. (2014)      Tang et al. (2010)        
Vasava (2014)        Yahyaei et al. (2010)        
Wang et al. (2014)       Song (2010)       
Lin et al. (2014)        Kuo and Lin (2010)       
Giglio (2014)       Premalatha and Natarajan (2010)       
Nageswararao et al. (2014)        Gnanavel Babu et al. (2010)       
Novas and Henning (2014)        Sha and Lin (2010)        
Zheng et al. (2014)        Morandin et al. (2010)        
Ercan and Li (2013)        Naderi et al. (2010)        
Jamrus et al. (2013)        Premalatha and Natarajan (2009)        
Zhao et al. (2013)        Valdez et al. (2008)        
Zheng et al. (2013)        Farahani et al. (2008)        
Ullrich (2013)        Kim et al. (2007)        
Gan et al. (2013)        Jerald et al. (2006)        
Huang and Zhang (2013a)        Reddy and Rao (2006)        
Gelareh et al. (2013)        Jerald et al. (2005)        
Badakhshian et al. (2012)        Abdelmaguid et al. (2004)        
Udhayakumar and Kumanan (2012)        Gaur et al. (2003)        
Liang et al. (2012)        Haq et al. (2003)        
Agrawal et al. (2012)        Sinriech and Kotlarski (2002)       
Badakhshian et al. (2012)        Veeravalli et al. (2002)       

1- GA 
2- PSO 
3- Hybrid GA and PSO         
4- AGV Scheduling (makespan minimization)                                               

5- AGV Scheduling (AGV number minimization) 
6- AGV Scheduling (AGV battery charge 
consideration) 
7- Simulation of model 
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Table 2.2 demonstrates the study components of previous researches in scheduling 

context, where it is the focus of this dissertation as well. The research plan of this study 

was to define a set of criteria for scheduling model development that can significantly 

contributes to the scheduling practices. Previous studies, as summarized in table 2.2, had 

not considered AGV battery charge in their scheduling models (column number 6 in 

gray), in which it can affect the scheduling models’ practicality. In addition, no study had 

also practiced a combination of these seven components stated in Table 2.2 for AGV 

scheduling. Therefore, this study by integrating the above study components can provide 

a significant contribution and a novel approach in the AGV scheduling context. 

2.7 Summary  

A flexible manufacturing system is a “reprogrammable” automated manufacturing 

system capable of producing a variety of products. In an FMS, various machining cells 

are interconnected via loading/unloading stations by an automated transportation system 

such as AGV system. AGV systems are one of the skillful types of material handling 

system in modern automated production environments. AGVs are the ideal equipment for 

warehouse storage, automatic loading/unloading of trailers with pallets and other unit 

loads, and production applications. Some of the main advantages of AGVs are the high 

flexibility, space utilization, and safety along with less overall operating cost. For cost-

effective utilization of AGVs, proper planning on AGVs dispatching, scheduling and 

routing should be considered (Le-Anh & De Koster, 2006). The term ‘scheduling’ refers 

to the process of allocating AGVs to tasks, taking into account the costs and time of 

operations (Udhayakumar & Kumanan, 2010). Selection of the right scheduling policy 

highly influences the FMS performance. AGVs—are expensive devices and highly 

valuable resource in FMSs that their operation should be adequately optimized for the 

system to be profitable (Anwar & Nagi, 1998; Fauadi & Murata, 2010; Nanvala, 2011). 

Literature review revealed that the potential of AGV scheduling with objective setting of 
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minimizing the number of AGVs and makespan while considering the AGVs’ battery 

charge has not been studied yet. Thus, considering the importance of each of the above 

criteria in FMS profitability, this study developed a scheduling model with the above 

three criteria.  In addition, evolutionary algorithms have been proved a powerful tool for 

scheduling optimization problems. Overall performance of an evolutionary algorithm, 

like PSO and GA, can be improved by proper choice of its operators and parameters (Gen 

& Lin, 2014). Hybridization of evolutionary algorithms is also believed that can 

profoundly enhance the overall performance of the EAs. PSO functions according to the 

knowledge of social interaction, and all the individuals are taken into account in each 

generation. On the contrary, GA simulates the evolution and some fitter chromosomes 

are selected while some others are eliminated from generation to generation. Integrating 

advantages of the two EAs of GA and PSO in a single optimization algorithm, results in 

a hybrid algorithm that can be more beneficial than its constituents.  There are many 

possibilities in the choice of operators and parameters integration strategy in the hybrid 

form that makes it novel to find a better strategy for obtaining the optimum result in a 

specific problem. Thus, hybridization of two well-known algorithms of GA and PSO 

through a new integration approach (called HGP2) is accomplished for model 

optimization in this study. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This chapter describes the research framework of the study as graphically summarized 

and shown in Figure 3.1. Having accomplished a thorough literature review, the 

scheduling model derivation, its assumptions and objective criteria are explained first. 

The general and detailed flowchart of the model are illustrated in Figures 3.2 and 3.3, 

respectively. Next, the four evolutionary algorithms (GA, PSO, and 2 different hybrids 

of GA-PSO referred to as HGP1 and HGP2) developed for the model are elaborated 

through. A detailed description on AGVs specification/behaviour exploration is then 

provided to be applied both before and after optimization. Model validation using testbed 

run and simulation technique through FlexSim software are explained at the end of this 

chapter.  

3.2 Research Framework 

The research framework is shown in Figure 3.1. In this figure, the blue rectangular 

represents the first research objective which is multi-objective model development, and 

its details are demonstrated in Figures 3.2 and 3.3. The red rectangular shows the 

processing blocks of the second objective of algorithms development, which further 

details are illustrated in Figures 3.5, 3.11, 3.12, and 3.13. The third objective is the last 

part of the framework which is testbed run and simulation.  
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Figure 3.1: The overall research framework 

3.3 Model Derivation 

This section explains the mathematical model development for AGV scheduling using 

the three criteria selected based on the reviewed literature. The three criteria are 

categorized into two main objectives: (1) minimizing the makespan and (2) minimizing 

the number of AGVs while considering the AGV’s battery charge. First, it is necessary 

to define the conditions and limitations considered in the model development. Thus, the 

following conditions were defined:  
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• All AGVs have unit-load capacity and it is same in whole procedure.  

• AGVs and machines operate continuously without breakdown.  

• Traffic problems, collision, or conflicts are avoided by hardware and are not 

considered in this study. 

• AGV L/U times are fixed and considered in travel times. 

• AGVs are allowed to park at their P/D locations. 

• AGVs have a constant speed and move forward only  

• L/U equipment such as pallets are sufficiently allocated as well as output buffer 

for machines to avoid machine deadlock. 

• The machine-to-machine distance and L/U point-to-machine distances are known. 

• Each machine operates only one product at a time. 

Having defined the conditions for the model development, Figure 3.2 illustrates the six 

general processing blocks/steps of the model development. It starts with inspection of 

AGVs’ status and their current position in the layout; the operations’ order would also be 

reviewed simultaneously. AGV selection based on battery status and travel time of current 

AGVs in the system is then performed and it is compared with the possibility of adding a 

new AGV to the system. The selected AGV is next assigned to the task. Final, machines 

and parts availability would be reviewed for the AGV to perform the loading/unloading 

of the part.  
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Figure 3.2: General flowchart of the multi-objective optimization model 

For further explanations on each step, Figure 3.3 illustrates the detailed flowchart of 

model development. The pseudocode of the model development algorithm is also shown 

in Figure 3.4 for a straightforward pursuant of the flowchart. 
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Figure 3.3: The detailed flowchart of the multi-objective optimization model 

 

 



33 

 

Figure 3.4: Pseudocode of the model 
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Figure 3.4: Continued 
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Figure 3.4: Continued 
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Figure 3.4: Continued 

In following sections, mathematical definitions used to develop the model are explained. 

In the first section, since the model has more than one objective, the objectives combining 

approach for the purpose of model evaluation is described. The later subsections would 

discuss the objectives individually.  

3.3.1 Multi-objective Evaluation 

There are different ways of evaluating multi-objective models. Weighted sum is one of 

the most applied principles for evaluation of multi-objective optimization problems 

(Karthikeyan et al., 2015; Marler & Arora, 2010). In this method, different objective 

values are aggregated into a single quality measure. Objective functions usually have 

different scales from one another and in weighted sum approach, objectives would be 

normalized prior to the aggregation process (Eichfelder, 2008; Giagkiozis & Fleming, 
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2015). Based on the weighted sum method, overall fitness function formulation for   

objectives is described by 

 
     1 1 1+ ... +          + ... + 1        0f x f x f x            (3.1) 

where  is the index of  , and 1, , L   ,   is the
th  weight of the

th objective 

function, and  is a ratio to make balance among objectives with different ranges of value 

(Ghane-Kanafi & Khorram, 2015; Mateo, 2012), which is defined by 
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3.3.1.1 Minimizing the Makespan 

This step involves calculating makespan (MS) which is the time required for all operations 

to be completed. A set of n jobs denoted by Jj,j’ has some operations denoted by Oji 

(operation i of job j), which will be processed on a set of machines (Mji). A general 

schematic for reading data is shown in Table 3.1. Makespan is expressed by 
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where mj,j’ is the total number of operations of job j,j', i,i' is the indexes of operations, 

(i,i'= 1, 2, …, mj,j') , �  is the total number of jobs, 
a
jiLT  is the loaded time of Aa  doing Tji. 

pji is the processing time of Oji, 
s
jip  is the start time of processing time of Oji, 

e
jip  is the end 

time of processing time of Oji, and 
a
jiT  is the assigned Aa to do the task Tji. CTOji is the 
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completion time of operation Oji, µ is a large positive number. a, a’ are indexes of AGVs, 

(a,a’=1,…,z), and Aa,a’  represents AGVs. 
a
jiPT  is the pick-up point of Aa doing Tji, 

a
jitPT  

is the pick-up time of Aa doing Tji,
a
jirPT  is the time that Aa reaches pick-up place of Tji.

a
jiDT  is the drop-off point of Aa doing Tji, 

a
jitDT  is the drop-off time of Aa doing Tji, 

a
jirDT  

is the time that Aa reaches drop-off place of Tji, 
a
jiUT  is the unloaded time of Aa doing Tji, 

and 
a
jiWT  is the waiting time of Aa doing Tji. 

Constraint number 3.8 ensures the feasibility of completion time of the first operation of 

each job. Constraints number 3.9 and 3.10 ensure the feasibility of pick-up time of 

operations. Inequality number 3.11 describes the operations precedency constraint. 

Inequalities number 3.12 and 3.13 represent the operation and the AGV un-overlapping 

constraints, respectively. 

3.3.1.2 Minimizing the Number of AGVs 

This step involves calculating the number of AGVs, which is denoted by NA. Number of 

AGV is expressed by 

 max  aNA a T T   (3.14) 
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     is assigned to  (to create ) 

                           

y y
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y y a
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y a
ji j

a
ji ji ji jiitCP

A T T

if T LT UT tCP LTT UT   
 (3.16) 

where Tji is the related task to Oji (moving from Mji-1/H to Mji), Ta is a collection of 

operations that have done by Aa, CAa is the current position of Aa, tCAa is the time of 

current position of Aa, and H is the loading/unloading (Home) point. ChAa is the current 

battery charge of Aa, 
a
jiChHT  is the charge that Aa needed for doing the task Tji and return 

home. 
a
jitT H  is the time that Aa arrives home after doing Tji, y is the index of new AGVs. 

λ is a coefficient for determining when a new AGV should be added, and 
a
jitCPT  is the 

travel time of Aa from its current point to reach the start point of Tji.  

Equation 3.15 ensures that the assigned AGV has enough battery charge to do the job and 

return home, while it chooses the AGV which takes less time to reach the point. Equation 

3.16 determines the suitable time for adding a new AGV to the system. 

(a) Battery Charge of AGV 

In the model, AGV battery charge has been considered at all time. When an AGV is to be 

assigned to a job, first its battery charge sufficiency (
a
jiChHT ) will be checked. AGV 

should have enough battery to travel and do the job, then return home. 

(  ( -  ))a a a a
ji ji ji

a
j jiiT HChHT UT LT t tDT    (3.17) 
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where ChAa is consumed battery charge of AGV number a, γ is the ratio of energy 

consumption to time, aT u A is the time that AGV is being charged, and aB U shows the 

consumed battery charge utility of AGV number a. Equation 3.17 calculates the battery 

charge required for the AGV to do the job and return home. As battery-run-time of an 

AGV and battery-charging-time can be defined depending on the type of batteries used, 

charging methods, charge rate, application type, manufacturer, and assignments the 

vehicles perform,has been defined to adopt to any kind of battery and charging method, 

etc. The “automatic and opportunity” battery-charging is considered here, which on 

average an AGV charges for 10-12 minutes every hour (AGV Kennis Instituut, 2015; 

Egemin Automation, 2016).  

(b) AGVs’ Specifications/Behavior  

In this step, the methodology for further investigation on AGVs’ behaviour before and 

after the optimization is explained. Such analysis would help in better understanding of 

the optimization model impacts and effectiveness. Specifications of AGV number a are 

its total running time denoted by RtAa (loaded (LtAa) + unloaded time (UtAa)), waiting 

time (WtAa), idle time (ItAa), and its efficiency (EAa) that are calculated by equations 3.21 

to 3.27. 

   ,

 

a a
ji

a
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j
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T
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(3.21) 

Equation 3.21 calculates all the time that AGV number a has been travelling without 

load, which it could be traveling to load the part/product from home/another machine or 

returning home for charging, during the process of all jobs.   

   ,

 

a a
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a
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T
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(3.22) 

Equation 3.22 calculates all the time that AGV number a has been travelling loaded to 

deliver the part/product to the destination machine during the process of all jobs. 
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   ,
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(3.23) 

Equation 3.23 calculates all the time that AGV number a has been waiting (either when 

it is waiting loaded for the machine to be free to deliver the part to the machine or when 

it is waiting unloaded for the machine to finish its operation and pick-up the part for the 

next destination or home) during the process of all jobs. 

a a aM S RItA tA T u A    (3.24) 

Equation 3.24 is all the time which AGV number a is idle (either waiting to be dispatched 

or equation 3.23) excluding the charging time. Waiting time is a part of the idle time in 

this formula. 

   ,
a a
ji

a a
ji

j i
T T

RtA RT



   
(3.25) 

Equation 3.25 is all the time that AGV number a is running either loaded or unloaded 

(combination of loaded and unloaded time of AGV number a). 

a a
j

a
ji i jiR LT T UT  (3.26) 

Equation 3.26 calculates the running time of AGV number a for doing Tji. 

100
a

a RtA
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MS
 

 
(3.27) 

Equation 3.27 calculates the AGVs’ operation efficiency, which determines how much 

work AGV has done during the makespan. 

3.4 Optimization Algorithms Developed for the Model 

Four EAs (GA, PSO, and 2 different hybrids of GA and PSO so called HGP1 and HGP2) 

have been developed to optimize the AGV scheduling model. The algorithms 

performances were later evaluated and compared to one another. 
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3.4.1 Genetic Algorithm 

GA is a search algorithm based on the mechanics of the natural selection process. The 

major steps of GA algorithm development according to the study condition are described. 

However, for a thorough review of the GA, readers are referred to publications of 

Beheshti and Shamsuddin (2013); Elsayed et al. (2014); Holland (1975); Joshi (2014), 

and Thakur et al. (2014). Flowchart of the developed GA for the model is shown in Figure 

3.5, and the entailed steps towards building the GA in relation to the model are described 

next. 

 

Figure 3.5: Flowchart of the GA 
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Step 1. Initializing parameters. It involves setting the parameters of the GA and creating 

the first generation of chromosomes. The general schematic of reading data for the 

problem is presented in Table 3.1. The first column shows a chromosome (Cr) and the 

second one shows the genes (Ge) of the chromosome. The encoding of each gene is 

presented in the third column, which will be discussed later. 

Table 3.1: General schematic for reading data (Mousavi et al., 2017) 
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Step 2. Initializing population. A set of chromosomes is needed to create a population. 

For constructing a chromosome, it is necessary to define a proper genetic representation 

(encoding) due to its significant effects on all the subsequent steps of the GA.   

Chromosome representation and encoding. As it was shown in Table 3.1, each 

chromosome is formed by genes. The order of genes represents the priority of operations, 

which decreases from left to right; and the genes’ code defines the operations related to 

each job. Genes’ codes are the same as their job number so that all the genes related to J1 

operations have the code ‘1’ and subsequently the code ‘2’ is given to all the genes related 

to the operations of J2, and so on. As the operations of each job are expected to be 

performed sequentially, the repetition of genes’ code represents the corresponding 

operation number of the job as clearly described in the following example. 

The number of genes in each chromosome equals the number of total operations in a job-

set, which is expressed by  

 
, '

, '
, ' 1

j j n

j j
j j

m




   (3.29)

Chromosome generating. A chromosome (Cr) is a random construct of operations, 

which is expressed by 
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(3.30) 

where j, j' are indexes of jobs, j, j'=1, 2, …, n and mj,j' = number of operations for each 

job. Oji is the operation i of job j.  

The process of generating and coding chromosomes is explained below via an example 

of 3 jobs (J1, J2, and J3). Each job has 4, 3, and 5 operations, respectively. Overall, there 
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are 4 3 5 12      operations. Therefore, the chromosome is a random construct of 


4 3 5

22233111 3331
 
 
 

. A sample could be  221132313133 . Here, code ‘1’, ‘2’, and ‘3’ 

imply operations of J1, J2, and J3, respectively. From the left, the first ‘2’ represents the 

first operation of J2, the second ‘2’ represents the second operation of J2, the first ‘1’ 

represents the first operation of J1, and so on.  

Step 3. Multi-objective evaluation. After initializing the population size, each 

chromosome is evaluated with respect to the makespan and the number of AGVs utilized, 

while considering the battery charge of AGV, that are defined through equations 3.1 to 

3.18. Then, the total fitness value will be calculated based on equations 3.19 and 3.20. 

Step 4. New population. New population will be produced based on the below sub-steps: 

selection, crossover, elitism, and mutation operation. 

Selection. To constantly enhance the overall fitness of the population, selection helps to 

discard the bad/weak chromosomes and only keep the best ones in the population. It 

increases the likelihood of selection of individuals with better fits for the next 

generation. There are a few different selection methods but their basis is the same. The 

tournament candidate selection, which is a proportionate random selection method 

suitable for multi-objective optimization, is used in this study (Shukla et al., 2015).  

In this method, every individual in the population is paired at random with another. The 

fitness values of each pair are compared. The fitter individual of the pair moves on to the 

next round, while the other is disqualified. This continues until there are a number of 

winners which is equal to the desired number of parents. Then, this last group of winners 

is paired as the parents for new individuals (Chudasama et al., 2011).  
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Crossover. Crossover operator generates two new chromosomes for the next generation 

out of two selected chromosomes by exchanging some of their genes. This study 

employed two crossover operators based on partial strings exchange; a one-point 

crossover and a two-point crossover (Spears & Anand, 1991). The one-point crossover 

randomly divides the two parent chromosomes into two substrings and two new 

chromosomes are obtained by exchanging the second substring and maintaining the first 

one or vice versa. It is illustrated in Figure 3.6 based on the example in step 2.  

 

Figure 3.6: Example of one-point crossover (Mousavi et al., 2017) 

The two-point crossover is similar to the one-point crossover and is illustrated in Figure 

3.7. Two cut points are randomly chosen and three substrings are determined for each 

parent. The first and the third pair of substrings are exchanged and two new chromosomes 

are created.  

Parent 1     2 2 1 1 3 2 3 1 3 1 3 3 

 
Parent 2     3 2 1 1 3 2 1 3 3 2 1 3 

 

Offspring 1    3 2 1 1 3 2 3 3 3 2 1 3 

 
Offspring 2    2 2 1 1 3 2 1 1 3 1 3 3 

Figure 3.7: Example of two-point crossover 

The offspring of crossover between the strings may not produce a legal encoding, for 

example, uncorrected number of operations per job may be seen. Therefore, they should 

be repaired and legalized. For repairing mechanism, counting from the left, the redundant 

genes will be deleted and the missing ones would be replaced; thus, each offspring can 
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comprise all the operations of all the jobs. Repair mechanism is shown in Figures 3.8 and 

3.9. 

Legal chromosomes for the example in step 2 should include four codes ‘1’, three codes 

‘2’, and five codes ‘3’. In Figure 3.8a, counting from the left, in offspring 1, code ‘2’ is 

repeated four times, but there are three operations for J2, so it should repeat three times. 

There is one code ‘2’ that is redundant and should be replaced by the missing code. Code 

‘1’ is repeated four times, which is correct, but code ‘3’ is repeated only four times, which 

should be five times. So, in Figure 3.8b, the fourth code ‘2’ will be replaced by number 

‘3’. In offspring 2, number ‘2’ is repeated two times and number ‘3’ is repeated six times, 

so the last code ‘3’ will be changed to code ‘2’.  

 

Figure 3.8: Repairing offsprings out of one-point crossover (Mousavi et al., 2017) 

The same procedure would be applied to repair two-point crossover (Figure 3.9). 

Offspring 1    3 2 1 1 3 2 3 3 3 2 1 3 

 
Offspring 2    2 2 1 1 3 2 1 1 3 1 3 3 

a. Before repair 

Offspring 1    3 2 1 1 3 2 3 3 3 2 1 1 

 
Offspring 2    2 2 1 1 3 2 1 1 3 3 3 3 

b. After repair 

Figure 3.9: An example of repairing offsprings out of two-point crossover 

The number of crossovers is calculated based on the crossover rate (CR) and population 

size (PS) using 
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2

CR PS
Number of crossovers


  (3.31) 

Mutation. Mutation is another important operator of GA that initiates extra variability in 

a population to create and maintain the diversity. The number of mutations in each 

generation is calculated using equation 3.32 based on the mutation rate (Pm), population 

size (PS), and maximum gene code (Gmax). 

 
 max  Number of mutations PS G Pm    (3.32) 

Of the several mutation types, shift mutation is used in this study (Nearchou, 2004). In 

shift mutation, a gene is selected randomly as a move-point and inserted in a random 

position (inserting point) as it is shown in Figure 3.10. Based on the coding used in this 

study, chromosomes produced out of shift mutation are legal and no need to be repaired. 

 

Figure 3.10: Example of shift mutation operator (Mousavi et al., 2017) 

Boundary check: In boundary-constrained problems, the parameter values of the trial 

vectors need to be checked whether they lie within the range or not. In case they violate 

the boundary constraint they should be adjusted. 

Elitism. The first three best chromosomes from each generation are transferred directly 

to the next generation in the elitism step to avoid annihilation. It is possible to maintain a 

fixed fitness value in some generations, but elitism makes sure they will never deteriorate.  

Step 5. Termination. The loop of chromosome generations is terminated when certain 

conditions are met. The conditions are; either the number of generations reaches its 

maximum or there are no changes or marginal changes in the elite solution. The elite 

chromosome is returned as the best solution once the termination criteria are met. 
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3.4.2 Particle Swarm Optimization 

PSO is a population based stochastic technique inspired by social behaviour of bird 

flocking or fish schooling. Extensive reviews on PSO algorithm development can be 

found in Du et al. (2015); Gao et al. (2015); Kennedy et al. (2001); Li and Yao (2012), 

and (Song, 2014). The developed PSO for the model is shown in Figure 3.11. The PSO 

configuration for the model is described in details in the following steps: 

Step 1. Initializing parameters. Initialization involves setting the parameters of the PSO 

to create a group of particles to make the initial swarm in the next step. The general 

scheme for reading the data in the problem is presented in Table 3.1. The forth column 

shows a particle (PRα) and the fifth one shows dimensions of the particle (d). The 

dimensions’ codes are presented in the sixth column, which will be discussed later. 
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Figure 3.11: Flowchart of PSO 

Step 2. Initializing population (swarm). A group of particles are needed to create a 

swarm. Each particle has position (Q) and velocity (V) in the search space at iteration (t), 

where they are described briefly in the following sub-steps: 

Particle position. 
tQdenotes the t h  particle in the swarm at iteration ‘t’ and is 

represented by ‘ ’ dimensions as 

 1 2 3 ,  ,  , ,  t t tt tqQ q q q         (3.33) 

where 
t

dq  is the position value of t h  particle with respect to thd  dimension and 

d=1,…,θ. First position of particle is filled by two-digit numbers for ‘d’ dimensions of 
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the particle using equation (3.34). The number of dimensions is equal to the total number 

of operations, which is calculated by equation (3.29). 

 
 min max m

0
in 1  -   dq qq q     (3.34) 

where min 0q   , max 10 q   and 1  is a uniform random number between 0 and 1. 

Particle velocity. Initial velocities for the PSO particles are generated by the below 

formula: 
tVdenotes the velocity of th particle at iteration (t). It can be identified by 

 1 2 3 ,  ,  , ,  t t t t tV v v v v         (3.35) 

where 
t

dv  is the velocity of th  particle with respect to thd  dimension. Velocity should be 

set within the limits so that it will not overshoot the search space. Initial velocities for the 

PSO particles are generated by the formula below:  

  0
min max min 2  -   dv v v v     (3.36) 

where 0 minv  , max 10 v   and 2 is a uniform random number between 0 and 1. 

Step 3. Particle representation and encoding. Every possible sequence of operations is 

considered as a particle, where the dimension of the particle represents each operation. 

Three sub-steps for encoding a particle are as follows: applying smallest position value 

(SPV) rule, assigning the dimensions’ codes to the particles, and identifying sequence of 

operations in each job. 

Applying smallest position value (SPV) rule. SPV is a rule that facilitates 

transformation of the continuous PSO algorithm to discrete cases applicable to all types 

of the scheduling problems (Tasgetiren et al., 2004). As an example, for better 

understanding of SPV rule, the corresponding sequence of a given continuous position 

like [0.3, 1.2, 0.9, 2.4] would be [4, 2, 3, 1]. In a descending order, ‘0.3’ is the smallest 

value and its sequence will be ‘4’; ‘2.4’ is the largest so its order in the group will be ‘1’. 
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Assigning the dimensions’ codes to the particles. In this stage, the dimensions’ codes 

as it is shown in the 6th column of Table 3.1 are assigned to the particles. Dimensions’ 

codes are based on the job number.  

Identifying sequence of operations in each job. From the left side, the first appearance 

of a job number is assumed the first operation of that job (i.e., Oj1). Similarly, the second-

time repetition of the same job number stands for the second operation of the same job 

(i.e., Oj2) and so on. Once the first encountered generated number is assigned to the first 

operation of a job, this technique automatically handles the precedence constraints.  

Table 3.2: Encoding of a sample particle (Mousavi et al., 2017) 

The stages of encoding an example with 3 jobs are shown in Table 3.2. Each job has 4, 3, 

and 5 operations respectively. The total number of operations is 12, which means the 

particle sample will have 12 dimensions, and each dimension being randomly generated 

using equation 3.29 and shown in the first row of Table 3.2. In the second row of the 

table, based on SPV rule, the numbers of 1 to 12 are assigned to the particles in an 

ascending order. In the third row, the dimensions’ code based on the job numbers are 

given to the particles as follows: first four numbers are assigned to the first job, so their 

code is ‘1’, followed by the second three numbers assigned to the second job, so their 

code is ‘2’ and the remaining five numbers are assigned to the third job and their code is 

‘3’. The sequence of operations in each job is shown in the fourth row of the Table 3.2. 

From the left, the first particle has the code ‘1’, so it belongs to job 1 and it is the first 

code ‘1’, which makes it the first operation of job 1 denoted by O11; the next code is ‘2’, 

Particle sample 0.2 0.37 0.17 0.51 0.73 0.42 0.93 0.35 0.69 0.84 0.65 0.05 

Applying SPV rule (giving the numbers 
from one based on ascending order) 

3 5 2 7 10 6 12 4 9 11 8 1 

Assigning the dimensions’ codes to the 
particles 

1 2 1 2 3 2 3 1 3 3 3 1 

Identifying sequence of operations in 
each job 

O11 O21 O12 O22 O31 O23 O32 O13 O33 O34 O35 O14 
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so it belongs to job 2, but as it is the first code ‘2’, it is the first operation of job 2. The 

same structure is followed for the remained 10 operations. 

Step 4. Multi-objective evaluation. Once the swarm is generated, each particle is 

evaluated with respect to the obtained makespan and number of AGVs, while considering 

the AGV battery charge, which are defined through equations 3.1 to 3.18. Then, the total 

fitness value will be calculated based on equation 3.19 and 3.20.  

Personal best.
tB  represents the best position associated with the best permutation and 

fitness value of the particle obtained so far and is called the personal best. For each 

particle, 
tB is determined and updated at each iteration.  

Global best. tG denotes the best position of the globally best particle achieved so far in 

the whole swarm.  

Step 5. New swarm. To produce a new swarm, the position and velocity of the particles 

should be updated. Updated particles will be evaluated again according to the step four 

and their best local and global particle will be determined. This procedure will be repeated 

up to a point where the termination criterion is satisfied. The updating procedure is 

explained as follows:  

Updating the velocity of each particle. The velocity of each particle is updated using 

1
1 1 2 2 ( )  )  (  t t t t t t

d d d d d dv v C q CB G q             (3.37) 

where 
t

dv  
and

 
1t

dv


are the velocity of αth particle on dth dimension at instance (t) and 

(t+1), respectively;
t

dq  and 
1t

dq


 are the positions of αth particle on dth dimension at 

instance (t) and (t+1), respectively. t is the previous iteration, d is the dimension and α is 
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the index for particles, 1, , tS  , tS is swarm size at iteration (t), φ1 and φ2 are 

uniformly distributed random numbers in the interval of [0, 1]. C1 is self-confidence while 

C2 is swarm confidence and their values should be tuned based on the experiment, and ω 

is the inertia weight parameter.  

C1 (self-confidence) and C2 (swarm confidence). Since C1 helps in self-exploration (or 

experience) of a particle, it can be treated as self-confidence coefficient of the particle. 

Similarly, it is appropriate to treat C2 as swarm confidence, since it is the coefficient, 

which contributes in moving the particle toward the global best direction by considering 

the motion of all the other particles in the swarm in the preceding program iterations. C1 

and C2 are sometimes also known as cognitive and social parameters respectively (more 

details in “tuning the parameters” section). 

Inertia weight (ω). Inertia weight is a parameter to control the impact of the previous 

velocity on the current velocity (Kuo et al., 2009; Xia & Wu, 2005). It is an important 

parameter to be optimized for obtaining better results in PSO. A large inertia weight 

facilitates searching new areas while a small weight facilitates fine searching in the 

current search space. To strike a balance between global exploration and local 

exploitation, a suitable selection of inertia weight is necessary (more details in “Tuning 

the parameters” section). 

Updating the position of each particle. The position of particle is updated using the 

updated velocity as below: 

1 1   t t t
d d dq q v  
    (3.38) 

Once the positions and velocities for the next instance are calculated, they will be checked 

whether they are in the prescribed limits or not. These limits for positions and velocities 

are [0, Qmax] and [-Vmax, Vmax] respectively.    
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 Step 6. Termination. The loop of swarm groups is terminated when certain conditions 

are met. The conditions are; either the number of iterations reaches its maximum or there 

are no changes or marginal changes in global best evaluation of particle. The particle with 

global best is returned as the best solution once the termination criteria are met.  

3.4.3 Hybrid GA and PSO 

Taking advantage of compensatory properties of PSO and GA, two hybrids of GA and 

PSO (so called HGP1 and HGP2) were developed for the problem. PSO robustness, 

independency from the problem, and social interaction knowledge along with GA 

advantage of evaluating each individual and choosing the better ones are the 

characteristics incorporated into a hybrid algorithm. The development procedure of both 

hybrids and their flowcharts are described in the following sections. 

3.4.3.1 The First Hybrid GA-PSO (HGP1) 

In the proposed HGP1, the initial swarm was created and evaluated; the positions and 

velocities of the particles were updated by using the concerned equations. Next, in order 

to effectively exploit the search space, the well-known genetic operators (selection, 

crossover, and mutation) were employed. Selection (the tournament as in GA in section 

3.4.3) finds parents from the updated particles for crossover and mutation step. The 

crossover operation has been used in the GA segment to avoid premature convergence; 

and mutation operation was applied to maintain the diversity of the swarms. The 

operators’ concept hired from GA was incorporated into PSO and the resulting hybrid 

PSO was named HGP1. Figure 3.12 illustrates the steps of HGP1. 
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Figure 3.12: Flowchart of HGP1 

3.4.3.2 The Second Hybrid GA-PSO (HGP2) 

Figure 3.13 illustrates the steps followed in HGP2 and it is briefly explained in the 

following paragraphs. In the second hybrid (HGP2), initialization and encoding, and 

evaluation steps were performed the same as in PSO.  
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Figure 3.13: Flowchart of HGP2  

Next, elitism was applied in a different way than the one used in GA. In this step, obtained 

results were mixed with the results from the previous iteration to prevent good results 

from fading away. In the selection step, repetitive solutions of the two generations were 

eliminated and from the remaining particles a swarm inclusive of the best particles was 

extracted. Then again, particles were ordered and the best half was retained and the other 

half was discarded. Next, to create a population with the required size; in two parallel 

segments, once both the GA and PSO operators were applied to the retained best particles 
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of the last step and once only the PSO operators were applied. The output of each segment 

would construct one half of the new population size. Therefore, a swarm conforming to 

the required population size was finally created from the best offsprings and particles. 

In each of the segments, the position and velocity of the half-size population were updated 

and checked if they were within the predefined boundary. So that one half of the new 

population is ready up to this stage. For the next segment, to create the other half of the 

new population, GA operators (crossover and mutation) were also applied and reviewed 

in terms of the boundary condition accordance. In both the segments, if the boundary 

conditions were not met, algorithm would replace the outliers with random numbers 

within the predefined boundaries and proceeds until termination criteria are met, then the 

best answer in step 6 would be the fitness value obtained.  

Tuning the Parameters  

Tuning the metaheuristics’ parameters, due to their impact on the performances obtained, 

is of paramount importance. The parameters are different in each algorithm. The four 

EAs’ performances depend on parameters like population size, inertia factor (ω), self-

confidence (C1), swarm confidence (C2), crossover, and mutation rate. Regarding 

population size, small populations do not provide enough diversity among the individuals. 

Increasing the population size also does not necessarily improve the performance as it 

can be observed from the multimodal functions, but increases the diversity and 

consequently increases the computation time for each generation. The same holds for the 

number of generations to be simulated (Andersson et al., 2016; Eiben & Smit, 2011a; 

Karafotias et al., 2015). Thus, increase in crossover rate increases the opportunity for 

recombination but also disruption of good combinations. Increase in mutation rate 

escalates the random search capability and facilitates introduction of a new gene or re-

introduction of the lost genes (Veček et al., 2016). Guo and Yang (2011), in this regard, 
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have also stated that to avoid local optimal solutions; individual rate of mutation and the 

hereditary generations of population can be increased. Of the available tuning methods 

for evolutionary algorithms, application of the Brute-force technique in cases with less 

than 10 parameters has been advised (Silberholz & Golden, 2010). Brute-force technique 

involves testing of m parameter values for each of the n parameters, a procedure that 

should test nm configurations over a subset of the problem instances (Palonen et al., 2009; 

Sinha et al., 2014; Veček et al., 2016). 

Values of C1 and C2 vary in different studies and the range is between 0.1 and 2. However, 

values of below 1 are more frequently observed in different studies (Karafotias et al., 

2015). The inertia weight can be tuned in two ways. In the first case, its value is changed 

from 0.1 to 0.9 and every time the effect is monitored (Lobo et al., 2007). The other 

approach is the linear decreasing inertia weight (LDIW) which ω would be varied with 

time and calculated by equation 3.39 (Andersson et al., 2016; Eiben & Smit, 2011b). In 

this way, the algorithm could have more global search ability at the beginning of the run 

while having the more local search ability near the end of the run, because the inertia 

factor moves from a large value (ωmax) to a relatively small value (ωmin) during the run. 

 
max min

max

max

It
It

 
 


    (3.39) 

where It is the current iteration number, Itmax is the maximum iterations during the 

evolutionary process, max  and min  are maximum and minimum values of ω, 

respectively.  

3.5 Programming in MATLAB 

There are different software for programming of EAs such as C/C++, Java, MATLAB, 

etc. Yu and Gen (2010b), and (Vasava, 2014) have suggested MATLAB as a 
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programming environment for implementing EAs. It allows to import data in .xls, .csv 

files, etc. It also has powerful plotting tools for easier data visualization. MATLAB 

(matrix laboratory) is a proprietary programming language developed by MathWorks Ltd 

which is a multi-paradigm numerical computing environment and fourth-generation 

programming language. MATLAB allows matrix manipulations, plotting of functions 

and data, implementation of algorithms, and creation of user interfaces. It has the ability 

to interface with programs written in other languages, including C, C++, C#, Java, 

Fortran, and Python (The MathWorks, 2016). To run MATLAB, the computer 

requirements are any Intel or AMD x86-64 processor, Windows Server 2008 R2 and 

higher or Windows 7 and higher, 4 GB RAM with Simulink, and 2 GB without, hardware 

accelerated graphics card supporting “Open graphics library (OpenGL)” 3.3 with 1GB 

“Graphics processing unit (GPU)” memory (The MathWorks, 2016). The model and 

algorithms of this study have been programmed in MATLAB software version 2014a (64 

bit). The programming codes are at the appendix.  

3.6 Evaluation of Model and Algorithms 

With every metaheuristic having a unique functionality, their inter-comparison is in many 

ways more difficult than other algorithmic comparisons. Using testbed should be the first 

consideration when comparing two metaheuristics. Two kinds of testbeds can be used 

(Silberholz & Golden, 2010): (1) using the existing testbeds, and (2) developing new 

testbeds. When comparing a new metaheuristic to existing ones, it is better to test it on 

the problem instances already tested at previous studies. There are many cases where this 

is either insufficient or not possible. For instance, when writing a metaheuristic for a new 

problem or model, there will be no prior-testbed for that problem, thus it is necessary to 

develop a new testbed corresponding to the problem specifications.  

New testbeds should represent real-life cases with various sizes and difficulty levels. One 

of the key points in the testing of metaheuristics is the testbed size that must be a large 
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problem (Silberholz & Golden, 2010). In the same vein, Jans and Degraeve (2007) 

mentioned that algorithms can perform differently regarding either runtime or quality of 

solution on large-sized instances. It is also advised by Gen and Lin (2012) to test the 

performance of algorithms by conducting large-sized problems. Problems with more than 

100 operations are often categorized as large-sized problems (Eren & Güner, 2007; 

Özgüven et al., 2010). In developing new testbeds, providing accessibility to the testbed 

should be considered to let other researchers use them and make comparisons for future 

studies. One effective way to make this happen is to create a simple function for the 

testbed generation. Publishing them is another way to make them accessible (Silberholz 

& Golden, 2010). 

With the above background in mind and having a new criterion (AGVs’ battery charge 

considerations) included in the model that distinguishes it from existing models, it was 

realized that the available testbeds are not suitable to the problem at hand both in terms 

of size and the problem definitions. Therefore, four new testbeds were developed in 

different sizes (small, medium, and large) with different machines, operations and job 

numbers to test the model functionality and assess the model response to the problem 

size.  

3.7 Validation 

This section expresses validation of the model and validation of the optimization result.  

3.7.1 Model Validation 

Validation step determines if the model is a satisfying image of the real system. It 

indicates that the system performance is reliable enough to be applied to the real-world 

cases and satisfy the model objectives (Aydemir & Koruca, 2015; Hillston, 2003). To 

validate the model, it has been tested on benchmark problems which are considered for 

this purpose. The proposed model has been validated through the well-known Bilge and 
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Ulsuy (Bilge & Ulusoy, 1995) problems with data of ten job sets on two layouts. Then, 

the results from previous algorithms which had used the same data for scheduling are 

used for comparison purpose. 

3.7.2 Validation of Optimization Results  

Computer simulation is a common tool applied to comprehend complex systems and 

assess their practicality (Azimi, 2011; Ba et al., 2016; Kelton et al., 2004; Sinha et al., 

2014). In simulation approach, a computerized model is designed to simulate the system’s 

operations and configurations so that different testbeds can be conducted to evaluate the 

model performance and practicality accordingly (Keesman, 2011; Li et al., 2015). 

Therefore, a simulation practice in FlexSim computer simulation software (version 

16.2.2) has been performed.  

FlexSim Software Products Inc. (FSP) creates simulation software and provides 

simulation modeling services. It introduced FlexSim simulation software (FlexSim) 1.0 

in February 2003. It brought a new modern simulation engine, a smooth integration with 

C++, and a three-dimensional (3D) modeling environment. From the beginning, FlexSim 

had standard features of discrete event simulation packages. The least specification of a 

computer running FlexSim is any modern Intel or AMD processor, 4 GB RAM, Windows 

Vista or higher, any GPU that supports OpenGL 3.1 or higher, and “.NET Framework” 

is an essential additional software. Through this software, one representative medium-

sized testbed (testbed 2) was simulated and evaluated in terms of the whole system 

performance. The system analysis was performed based on the statistics and graphical 

outputs of the simulation step for both the AGVs and machines (FlexSim Software 

Products, 2016). 
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3.8 Summary 

The scheduling model derivation fundamentals were explained according to the three 

criteria, which are classified into two main classes of makespan minimization and number 

of AGVs minimization with AGVs’ battery charge consideration. Optimization of the 

scheduling model was performed using the four evolutionary algorithms of GA, PSO, and 

two different hybrids of GA and PSO named HGP1 and HGP2. Configurations of the four 

algorithms were illustrated in this chapter and it was discussed why the hybrid algorithm 

can be an improvement over its constituent algorithms. The weighted sum method was 

used in the model to acquire a single aggregated value from the different objectives 

applied. Next, to investigate the effect of optimization on AGV specification/behavior, 

some of the AGVs’ specifications in the system were computed and compared with results 

of the model before optimization. The model and algorithms of this study have been 

programmed in MATLAB software version 2014a. For validating model, it has been 

tested on some well-known benchmark problems.  Final, simulation by FlexSim software 

was used to validate the optimization result. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Introduction 

Having developed the proposed scheduling model and the four EAs (PSO, GA, HGP1, 

and HGP2) as explained in chapter three, they have been applied to several testbeds to 

evaluate their functionalities. The algorithms’ performances at any of the testbeds are 

shown and discussed in this chapter. The algorithms’ performances were assessed and 

compared with one another in terms of their worst, mean, and best results, computational 

time, standard deviation, and convergence rate. Next, effect of the optimization process 

on AGVs’ specifications/behaviors such as running time (loaded and unloaded), idle time, 

and AGVs’ operation efficiency is discussed. In later sections of this chapter, the 

simulation results obtained using FlexSim software are presented to elaborate upon the 

proposed model validity. 

4.2 The Developed Model  

To fulfill the first objective of the study, development of the optimization model for AGV 

scheduling was pursued by reviewing the literature and defining a set of criteria that can 

potentially result in a practical model conforming to the real environment situation. To 

have a smooth flow of information in the dissertation, the conceptual basis and 

mathematical aspects of the developed model were described in the methodology chapter 

(refer to Figures 3.2 and 3.3). Based on the selected scheduling criteria, model was 

developed and translated into algebraic expressions applicable to the optimization 

algorithms running in MATLAB programming software. The corresponding program 

codes are shown in the appendix. Assessment of the model applicability was examined 

using four testbeds and the results are expanded in this chapter.  



66 

4.3 Evolutionary Algorithms 

To achieve the second objective of the study, four evolutionary algorithms of GA, PSO, 

and two hybrids of GA-PSO (HGP1 and HGP2) were developed for the model. The 

evolutionary algorithms as described in the previous chapter were coded in MATLAB, 

and the experiments were run on a desktop computer with a 2.80 GHz processor and 4 

GB RAM. The program codes of each algorithm are placed in the appendix. The 

algorithms performance at every testbed is discussed in later sections. 

4.4 Model and Algorithms’ Performance Evaluation 

Four new testbeds with different sizes (small, medium, and large) in terms of the number 

of operations, jobs, and machines were defined to provide a comprehensive comparison 

basis for assessment of the model and algorithms’ practicality and performance. 

4.4.1 Parameter Setting of the Algorithms 

In addition to the EAs’ structural development, obtaining the optimal parameter setting 

of each EA was the next step toward accomplishing the second objective and preparing 

the EAs. To obtain the best setting in any of the optimization algorithms, a series of trial 

experiments based on Brute-force method was performed to estimate the optimal 

parameters. Each algorithm has been run with different population sizes and different 

iteration numbers using different settings of crossover and mutation rates, C1, and C2 as 

shown in Table 4.1. Based on the experimental approach followed, all the four algorithms 

obtained their best results at a run with the population size and iteration number of 100. 

For GA, the optimal rates of crossover and mutation were found to be 0.2, and 0.03 

respectively. For PSO, optimal number for C1 and C2 were found to be 2. As LDIW was 

used in the study, it is recommended for the min to be 0.4, and max to be 0.9 for all 

algorithms including  (Kessentini & Barchiesi, 2015; Shi & Eberhart, 1999). For HGP1, 

the parameters were found to be the crossover and mutation rates of 0.3 and 0.05 
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respectively, C1=0.02, and C2=1. For HGP2, crossover and mutation rates of 0.2 and 0.08 

respectively, and C1=0.01, C2=0.9.  

Table 4.1: Different settings of parameters experimented 

  HGP1 and HGP2 GA PSO 

Run number 20 

Population size 20, 50, 100, 150, 200 

Generation 
(iteration) number 

20, 50, 100, 150, 200 

Crossover rate (0.01,…,0.09, 0.1,…0.9, 1) 
NA 

Mutation rate (0.01,…,0.09, 0.1,…0.9, 1) 

C1 
(0.01,…,0.09, 0.1,…0.9, 1, 
1.01,…1.09,…1.1, 1.9, 2) 

NA 

(0.01,…,0.09, 0.1,…0.9, 1, 
1.01,…1.09,…1.1, 1.9, 2) 

C2 
(0.01,…,0.09, 0.1,…0.9, 1, 
1.01,…1.09,…1.1, 1.9, 2) 

(0.01,…,0.09, 0.1,…0.9, 1, 
1.01,…1.09,…1.1, 1.9, 2) 

Any alteration of the above parameters’ value may lead to convergence at higher (worse) 

results than while using the optimal parameters. Therefore, the obtained optimal 

parameters’ settings were used in the developed EAs for the model at any of the testbeds. 

Outcomes are presented in this section categorized into four subsections relating to each 

testbed. 

4.4.2 Performance at Testbed 1 

The first example was a small testbed inclusive of 6 jobs (J1,…, J6) processing on 6 

machines (M1,…, M6), and each job with 2 to 5 operations (total of 19 operations). Figure 

4.1 shows the layout of testbed 1 with the routes being one-way. The AGV travel time 

among L/U point and machines is shown in Table 4.2. Next, Table 4.3 demonstrates the 

processing time of every operation on the machines for this testbed. 
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Figure 4.1: The layout of testbed 1 

 

Table 4.2: AGV travel time (minutes) among L/U point and machines  

 

 

 

 

Table 4.3: The processing time (minutes) of every operation on the machines  

Job 1 1 1 1 2 2 2 3 3 3 3 3 4 4 4 5 5 6 6 
Operation 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 1 2 1 2 
Machine M2 M4 M5 M6 M3 M4 M6 M1 M2 M3 M1 M4 M6 M4 M5 M5 M1 M1 M2 
Operation time 30 21 24 27 15 24 13 16 21 18 14 25 25 19 20 33 21 27 31 

 
 
4.4.2.1 Makespan and Number of AGVs 

Applying the developed algorithms to testbed 1, results (best, mean, and worst fitness 

values) of each algorithm for 100 iterations are shown in Figure 4.2. Fitness values of all 

the algorithms range between 160 and 340. When comparing the algorithms’ 

performance, HGP2 had a wider spread between its minimum and maximum fitness 

values, which it demonstrates the HGP2 capability of exploring a wider area in search of 

best results. PSO had a wide spread of results as well, but since its optimum answer is 

higher (worse) than the other EAs in this testbed, it is not comparable with HGP2. The 

smallest range of variation between minimum and maximum results was obtained using 

GA, which indicates its low exploration capability in this testbed. 

 L/U M1 M2 M3 M4 M5 M6 
L/U 0 5 7 10 12 17 19 
M1 15 0 2 5 7 12 14 
M2 13 18 0 3 5 10 12 
M3 10 15 17 0 2 7 9 
M4 8 13 15 18 0 5 7 
M5 3 8 10 13 15 0 2 
M6 1 6 8 11 13 18 0 
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Figure 4.2: Performance of the four algorithms at testbed 1 

To provide a comparison ground for the developed EAs, their best (minimum fitness 

value) performances are shown in Figure 4.3. The performance of all algorithms was 

satisfactory and all the four algorithms were proved successful in decreasing the 

makespan and the required number of AGVs. Of the four EAs, however, the optimized 

model using HGP2 converged at a faster rate and to a lower value. Solutions were seen 

to converge at about 40 iterations when using the HGP2, but in HGP1 it was about 63 

iterations, GA about 75, and PSO about 95.  
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Figure 4.3: Best performance (minimum) of the four algorithms at testbed 1 

The best, worst, and mean fitness values produced by each EA in this testbed are 

presented in Table 4.4. The makespan and number of AGVs corresponding with each 

fitness value are also reported. According to Table 4.4, the number of AGVs has been 

decreased in all the EAs. The smallest makespan was found in PSO with 4 AGVs, and 

the highest makespan in HGP1 using 2 AGVs. The obtained makespan values in GA and 

HGP2 varied between the highest and lowest makespan with 3 AGVs. Weighting the 

model objectives for attainment of one proper result out of all the fitness values obtained 

is highly pronounced in a situation as in this testbed. The fitness values in Table 4.4 have 

been calculated using equation 3.1. As MS NA , the ratio used for this problem, based 

on equation 3.2 would be
 ( )

 ( )

max MS

max NA
  .  ( )M ax M S  was presumed to be equal to the 

makespan when the sequence of operations under one AGV starts from the first operation 

of the first job to the last operation of the last job, which in testbed 1 it was equal to 844 

minutes.  ( )M ax N A was presumed equal to the whole number of operations which is 19 

here. δ1 is considered 
2

3
 for makespan because a higher weight is assigned to makespan, 

but it can be changed subjectively to set equal weights to each of the objectives. The 
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fitness value for this testbed, based on equation 3.1, would be 

     
2 1 844

3 3 19
+f x MS NA

 
  

 
. As it is shown in Table 4.4, HGP2 obtained the best 

fitness value by 161.75, followed by HGP1 (164.94), GA (167.08), and PSO (172.56). 

Standard deviation in the best results series and computational time of the algorithms are 

also demonstrated in Table 4.4. The smallest standard deviation was obtained from HGP2, 

followed by HGP1, GA, and PSO respectively. The obtained computational time of all 

the algorithms were nearly similar, but HGP1 had a slightly longer computational time 

and HGP2 had a shorter computational time compared with the other EAs applied.  

Table 4.4: Test results of optimization algorithms at testbed 1 for hundred runs 

Algorithm Objectives Best Worst Mean 
Standard 

deviation 

 Computational time 

(second) 

PSO 

Fitness value  172.56 178.42 172.42 3.41 

51.11 Makespan (minute) 170 201 192 8.46 

Number of AGVs  4 3 - - 

GA 

Fitness value 167.08 175.08 173.45 2.38 

49.61 Makespan (minute) 184 196 198 3.57 

Number of AGVs  3 3 - - 

HGP1 

Fitness value 164.94 172.42 170.02 2.24 

54.38 Makespan (minute) 203 192 188.4 3.36 

Number of AGVs 2 3 - - 

HGP2 

Fitness value 161.75 167.08 164.82 1.89 

48.50 Makespan (minute) 176 184 180.6     2.51 

Number of AGVs  3 3 - - 

 

To visualize differences between makespan and number of AGVs before and after the 

optimization by HGP2, a few random sequences have been tried before optimization and 

one of them has been chosen for presentation purpose at every testbed. Results have been 

graphically compared in Figures 4.4 and 4.5. Figure 4.4 shows the random sequence of 

operations before optimization which one AGV is assigned to each of the six jobs (O11, 

O21, O12, O31, O32, O22, O61, O62, O52, O41, O42, O33, O34, O13, O14, O23, O35, O43) obtaining 

the makespan of 365 minutes. Figure 4.5 demonstrates the optimized sequence of Figure 

4.4, using only three AGVs with the makespan of 176 minutes obtained using HGP2, that 
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is changed to (O11, O31, O51, O21, O22, O32, O41, O33, O61, O13, O22, O34, O62, O14, O42, O35, 

O43, O23). In both the figures, every job and AGV is shown with a particular colour 

introduced below each figure. The dashed lines show the time that the part is waiting to 

be collected by the AGV or the time that AGV is waiting to be assigned to a task or being 

charged. Colour of the dashed lines are the same as the AGVs’ colour.  

 

Figure 4.4: Operations’ sequence before optimization – testbed 1 

 

Figure 4.5: Operations’ sequence after optimization by HGP2 – testbed 1 

4.4.2.2 AGVs’ Battery Charge 

After calculating the AGVs’ battery charge consumption based on equations 3.17 to 3.20, 

the level of consumed battery charge of each AGV and corresponding battery charge 

utilization level both before and after optimization by all four algorithms are 

demonstrated in Figures 4.6 and 4.7, respectively. As it is shown in Figure 4.6, the overall 

battery charge consumption decreased dramatically, because the number of AGVs were 

decreased after the optimization—using any of the EAs. On the other hand, battery 

consumption of each AGV had slightly increased because the workload of omitted AGVs 

was undertaken by the remaining ones. However, it is worth mentioning that the 

increment in each AGV’s battery consumption is notably low when compared with 



73 

overall reduction in battery consumption. Figures 4.6 also demonstrates the optimization 

effect in reducing the number of employed AGVs in the system, in which the AGVs 

reduction is compensated by improvements in battery utilization as shown in Figure 4.7. 

 

Figure 4.6: AGVs’ battery charge consumption, before and after optimization 

 

Figure 4.7: Battery charge utilization, before and after optimization – testbed 1 

4.4.2.3 AGVs’ Specifications/Behavior 

To investigate the optimization effect on AGVs’ specifications/behaviour, the following 

specifications were explored. The studied specifications are AGVs’ total running time 

(loaded and unloaded), idle time, and AGVs’ operation efficiency computed using 

equations 3.21 to 3.27. In Figure 4.8, the AGVs’ total running time prior to the 
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optimization is lower than that of after optimization shown in Figure 4.9, though the 

difference is not significant. The insignificant difference can be explained by the 

reduction in the number of AGVs after optimization, in which two or three AGVs 

undertake the workload of six AGVs. The idle time of AGVs after optimization decreased 

and led to a smaller makespan when compared with that of before optimization.  

 

Figure 4.8: AGVs’ specification before optimization  

 

Figure 4.9: AGVs’ specification after optimization 
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As it was shown earlier in Figure 4.6, the total level of consumed battery charge decreased 

after optimization; the fact that AGVs could do their work in a lesser time and with lesser 

battery charge consumption shows that AGVs’ operation efficiency was consequently 

improved after the optimization. Figure 4.10 demonstrates the enhanced efficiency of 

AGVs’ operation after the optimization compared with prior optimization status. AGVs’ 

operation efficiency was considerably enhanced when compared with prior to 

optimization stage that all the efficiency measures were about 30% and below. After 

optimization, using all the EAs, all utilized AGVs’ efficiency was escalated to above 40% 

limit, and many instances showed more than 50% of efficiency level. Before optimization, 

AGVs were deployed with no intention to use their highest potential and the AGV number 

one and number six showed the highest operation efficiency. After optimization, based 

on the scheduling model designed, tasks were sequentially appointed to AGVs based on 

the AGVs numerical order, so that AGV number one would have the highest operation 

efficiency level. This rule is to use the highest potential of the available/working AGVs 

to avoid addition of extra AGVs and expenses involved. Following this strategy, Figures 

4.10 illustrates the highest and lowest efficiencies that were obtained respectively by the 

first and the last AGV under the application of any of the EAs.  

 

Figure 4.10: AGVs’ operation efficiency before and after optimization 
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4.4.3 Performance at Testbed 2 

This testbed was inclusive of 6 jobs (J1,…, J6) processing on 12 machines (M1,…, M12) 

and each job with 3 to 8 operations (overall 36 operations). This testbed had a longer 

distance among the machines compared with testbed 1. The Figure 4.11 explains the 

testbed’s layout.  

                        
 Figure 4.11: The layout of testbed 2 

Table 4.5 shows the AGV travel time among L/U point and machines in this testbed, and 

Table 4.6 demonstrates the processing time of every operation on the machines. Inside 

routes are two-way and the surroundings are one-way routes. 

Table 4.5: AGV travel time (minutes) between L/U points and machines 
 

 

 

 

 

 

 

 

Table 4.6: The processing time (minutes) of every operation on different machines 
Job 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 
Operation 1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4 
Machine M2 M6 M5 M8 M1 M12 M7 M5 M3 M4 M6 M11 M10 M9 M1 M2 M10 M4 
Operation time 37 33 34 35 23 34 37 26 23 26 27 25 34 23 26 25 31 24 

 L/U M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 
L/U 0 6 18 28 42 36 38 17 50 63 37 24 10 
M1 34 0 12 22 36 50 52 31 64 77 71 58 44 
M2 22 28 0 10 24 38 40 19 52 65 59 46 32 
M3 34 40 52 0 14 28 48 31 42 55 71 58 44 
M4 34 40 52 42 0 14 34 31 28 41 71 58 44 
M5 58 64 76 66 80 0 20 41 14 27 61 48 68 
M6 38 46 58 46 60 54 0 21 12 25 41 28 48 
M7 17 23 35 25 39 33 21 0 33 46 40 27 27 
M8 64 70 82 72 86 80 44 47 0 13 67 54 74 
M9 51 57 69 59 73 67 31 34 43 0 54 41 61 
M10 41 47 59 49 63 57 21 24 33 46 0 31 51 
M11 54 60 72 62 76 70 34 37 46 59 13 0 64 
M12 44 50 62 52 66 60 28 27 40 53 27 14 0 
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Job 3 3 3 3 4 4 4 4 4 4 5 5 5 6 6 6 6 6 
Operation 5 6 7 8 1 2 3 4 5 6 1 2 3 1 2 3 4 5 
Machine M6 M7 M8 M11 M1 M7 M5 M12 M6 M8 M1 M7 M9 M3 M2 M10 M4 M11 
Operation time 25 13 14 23 16 11 23 34 25 13 16 11 31 26 31 23 24 35 

 
 
4.4.3.1 Makespan and Number of AGVs 

Performances of the four algorithms when applied to testbed 2 are shown in Figure 4.12. 

As in Figure 4.12, it was found that GA—in contrast with other EAs—had a steep incline 

in fitness measures of the first few iteration and then a smoother trend toward the best 

fitness value was seen. Other EAs applied to this testbed showed a nearly monotonic slope 

while reaching the best fit. The fitness values range from 1250 to 1850 for all the EAs in 

Figure 4.12. 

 
Figure 4.12: Performance of four algorithms at testbed 2 

To compare the algorithms’ performance, their best results (minimum fitness value) are 

shown in Figure 4.13. All the four algorithms decreased the makespan and the required 

number of AGVs. However, the optimized model using HGP2 converged at a faster rate 
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and to a lower value. Solutions were seen to converge at about 70 generations when using 

HGP2, but in HGP1 it was about 75 generations, GA about 80, and PSO about 83.  

 
Figure 4.13: Best performance (minimum) of the four algorithms at testbed 2 

The obtained results (best, worst, and mean fitness value) in this testbed are summarized 

in Table 4.7. The fitness function, based on equation 3.1, would be 

     
2 1 7829

3 3 36
+f x MS NA

 
  

 
 for this testbed. According to the Table 4.7, the fitness 

value obtained by HGP2 (1253.96) shows the best fit, followed respectively by HGP1 

(1272.22), GA (1282.63), and PSO (1327.29). In terms of the standard deviation in 

generation of the best (min) results series, HGP2 showed the smallest standard deviation 

followed by HGP1, GA, and PSO, respectively. The last column of the Table 4.7 shows 

the computational time of the algorithms. HGP1, in this regard, with approximately 10 

seconds delay compared with the fastest EA had the longest computational time. Overall, 

HGP2 was the fastest EA and GA, PSO, and HGP1 were the next runner ups in line.  
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Table 4.7: Test results of optimization algorithms at testbed 2 for hundred runs 

Algorithm Objectives Best Worst Mean 
Standard 
deviation 

 Computational time 
(second) 

PSO 
Fitness value  1327.29 1411.29 1378.76 18.87 

151.29 Makespan (minute) 1556 1582 1633.20 28.31 

Number of AGVs 4 5 - - 

GA 
Fitness value  1282.63 1407.787 1316.58 18.20 

150.12 Makespan (minute) 1489 1568 1539.93 22.81 
Number of AGVs 4 5 - - 

HGP1 
Fitness value  1272.22 1334.22 1309.55 17.06 

159.63 Makespan (minute) 1474 1567 1530 27.09 
Number of AGVs 4 4 - - 

HGP2 
Fitness value  1253.96 1336.63 1304.54 15.48 

149.74 Makespan (minute) 1446 1570 1521.86 26.22 
Number of AGVs  4 4 - - 

         

To elaborate the differences between before and after optimization by HGP2, Figure 4.14 

shows the random sequence of operations before optimization (O11, O21, O31, O41, O51, 

O61, O12, O22, O32, O42, O52, O62, O13, O23, O33, O43, O53, O63, O14, O24, O34, O44, O64, O15, 

O25, O35, O45, O65, O16, O26, O36, O46, O17, O37, O18, O38) with the makespan of 1818 

minutes using 6 AGVs. Figure 4.15 demonstrates the optimized sequence of Figure 4.14, 

using only 4 AGVs with the makespan of 1446 minutes obtained using HGP2, that is 

changed to (O11, O21, O41, O61, O22, O12, O23, O62, O24, O13, O63, O42, O64, O43, O14, O31, 

O25, O15, O32, O16, O33, O26, O17, O34, O51, O65, O18, O44, O35, O45, O36, O52, O37, O53, O46, 

O38).  
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Figure 4.14: Operations’ sequence before optimization – testbed 2 

 

 

Figure 4.15: Operations’ sequence after optimization by HGP2 – testbed 2 
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4.4.3.2 AGVs’ Battery Charge 

The level of battery charge consumption of each AGV in testbed 2 are shown in Figure 

4.16. Similar to the findings of testbed 1, the overall level of battery charge consumption 

of AGVs in the system was decreased by the reduction in number of utilized AGVs. 

Although there was a slight increase in the individual AGVs battery consumption after 

optimization, which relates to the overtaking of the tasks of omitted AGVs. 

 

Figure 4.16: AGVs’ battery charge consumption, before and after optimization 

Figure 4.17 shows the status of battery charge utilization before and after optimization. 

Figure 4.17 clearly illustrates the improvements in AGVs battery charge utilization after 

the optimization. Every AGV was utilized to its highest potential and battery charge level 

after the optimization, so that the number of employed AGVs for the same volume of 

tasks reduced accordingly.  
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Figure 4.17: Battery charge utilization, before and after optimization – testbed 2 

4.4.3.3 AGVs’ Specifications/Behavior 

Figure 4.18 demonstrates the AGVs total running time prior to the optimization, which is 

lower than that of after optimization shown in Figure 4.19. Although the difference is not 

significant due to the reduction in the number of AGVs employed after optimization 

which the 4 AGVs undertake the workload of 6 previously used AGVs. As in Figure 4.19, 

the idle time of AGVs after optimization was also lessened dramatically and led to a 

smaller makespan when compared with that of before optimization shown in Figure 4.18.  

 

Figure 4.18: AGVs’ specification before optimization  
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It was shown earlier in this testbed that after optimization the makespan and the number 

of AGVs were reduced; it is visualized here in Figure 4.19 that the AGVs’ idle time have 

also been reduced.   

 

Figure 4.19: AGVs’ specification after optimization 

As it was shown earlier in Figure 4.16, the overall level of consumed battery charge 

decreased after optimization, so that AGVs’ operation efficiency was consequently 

improved. Figure 4.20 demonstrates the enhanced efficiency level of AGVs’ operation 

after optimization compared with prior optimization status. AGVs’ operation efficiency 

was about 30% before optimization and it rose comparably after the optimization. After 

optimization, almost half the AGVs at all the EAs showed an operation efficiency level 

of more than 50%. The other half varied about 40% level of efficiency. Following the 

AGV utilization strategy as explained in testbed 1, Figures 4.20 illustrates the after-

optimization efficiency level, in which the highest level was obtained by AGV1 and the 

lowest level by AGV4 in all the EAs. This finding is contrast with the AGV application 

strategy before optimization, where AGVs were added to the system without utilizing 

their highest potential so that many expensive AGVs would be employed. 
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Figure 4.20: AGVs’ operation efficiency before and after optimization 

4.4.4 Performance at Testbed 3 

To create an even larger example for the model to be examined, the third example was 

designed with 15 jobs (J1,…, J15) processing on 14 machines (M1,…, M14), and each job 

with 3 to 5 operations (totally 60 operations). The testbed layout is illustrated in Figure 

4.21 and AGV travel time among L/U point and machines are shown in Table 4.8. Table 

4.9 demonstrates the processing time of every operation on the machines for testbed 3. In 

this testbed, the distances are shorter than the previous testbed. All the routes (either 

inside or surrounding) are two-way, which it shortens the distances among machines by 

equalizing the distances of going and returning to/from a machine. The processing time 

in this testbed is also smaller than the previous testbed. 

0

10

20

30

40

50

60

70

80

90

100

Before
optimization

PSO GA HGP1 HGP2

AGV1 AGV2 AGV3 AGV4 AGV5 AGV 6%



85 

 

Figure 4.21: The layout of testbed 3 

Table 4.8: AGV travel time (minutes) among L/U point and machines 

 

 

 

 

 

 

Table 4.9: The processing time (minutes) of every operation on the machines 
Job 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 
Operation 1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3 
Machine M7 M1 M9 M8 M3 M2 M10 M6 M14 M13 M5 M4 M12 M1 M3 M5 
Operation time 19 21 14 10 11 15 21 22 19 23 30 26 13 6 12 19 
Job 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8 8 
Operation 4 5 1 2 3 1 2 3 1 2 3 4 1 2 3 4 
Machine M7 M11 M10 M14 M12 M8 M6 M3 M2 M7 M12 M11 M9 M3 M4 M5 
Operation time 14 18 29 26 1 12 24 17 29 16 20 18 9 21 24 10 
Job 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 
Operation 5 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 
Machine M8 M10 M9 M5 M14 M5 M1 M8 M2 M7 M9 M8 M1 M6 M13 M11 
Operation time 12 20 10 16 11 17 5 24 20 11 11 14 15 49 14 17 
Job 13 13 13 13 14 14 14 14 14 14 15 15 15 15 
Operation 1 2 3 4 1 2 3 4 5 6 1 2 3 4 
Machine M10 M1 M13 M12 M3 M4 M2 M10 M9 M12 M4 M8 M7 M11 
Operation time 29 30 8 14 12 11 9 10 10 19 15 21 4 14 

Min L/U M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 
L/U 0 3 9 14 17 18 20 9 25 26 19 13 5 19 18 
M1 3 0 6 11 18 21 23 12 28 29 22 16 8 21 21 
M2 9 6 0 5 12 19 21 10 25 27 22 22 14 27 27 
M3 14 11 5 0 7 14 23 13 20 27 25 27 19 30 32 
M4 17 18 12 7 0 7 16 16 13 20 27 32 24 35 39 
M5 18 21 19 14 7 0 9 17 6 13 20 24 23 28 29 
M6 20 23 21 23 16 9 0 11 5 12 11 15 15 19 20 
M7 9 12 10 13 16 17 11 0 16 17 12 14 14 20 19 
M8 25 28 25 20 13 6 5 16 0 7 14 20 20 22 25 
M9 26 29 27 27 20 13 12 17 7 0 7 13 21 15 18 
M10 19 22 22 25 27 20 11 12 14 7 0 6 14 8 11 
M11 13 16 22 27 32 24 15 14 20 13 6 0 8 6 9 
M12 5 8 14 19 24 23 15 14 20 21 14 8 0 14 13 
M13 19 21 27 30 35 28 19 20 22 15 8 6 14 0 3 
M14 18 21 27 32 39 29 20 19 25 18 11 9 13 3 0 
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4.4.4.1 Makespan and Number of AGVs 

Following the same result presentation format, performances of the four algorithms at 

testbed 3 are shown in Figure 4.22. The fitness values obtained from the four algorithms 

vary between 820 and 1270. In this testbed, the range of PSO answers variation was 

shorter than that in testbed 1. HGP1 and HGP2 had nearly the same extent of exploration 

area in this testbed, and GA and PSO had a limited search area. 

 
Figure 4.22: Performance of the four algorithms at testbed 3 

For comparison purpose, series of the best (minimum fitness value) performances of 

developed EAs are shown in Figure 4.23. The performances of all algorithms were 

satisfactory and they were proved successful in decreasing the makespan and the required 

number of AGVs. Overall, the optimized model using HGP2 showed faster convergence 

in comparison with other EAs. Solutions were seen to reach the final solution after about 

77 generations when using the HGP2, but in HGP1 it was about 83 generations, GA about 

87, and PSO about 90. 
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Figure 4.23: Best performance of the four algorithms at testbed 3 

Out of all generations, the best, worst, and mean fitness values for the problem are 

reported in Table 4.10. The fitness function for this testbed, based on equation 3.1, would 

be      
2 1 4663

3 3 62
+f x MS NA

 
  

 
. As it is shown in Table 4.10, HGP2 produced the 

best fitness value by 834.82, followed by HGP1 (840.15), then GA (849.48), and PSO 

(936.82). 

Comparing the developed EAs in terms of the standard deviation in generating the best 

results (minimum fitness value) in 100 iterations, Table 4.10 shows that HGP2 has had 

the smallest standard deviation among the competing EAs. HGP1, GA, and PSO are the 

next runners up. The small standard deviation explains how the generated results scattered 

around the best results’ mean. With this viewpoint in mind, HGP2 has proved to be more 

consistent in maintaining its performance throughout the iterations. With regard to the 

computational time of each EA in this testbed, it was found that HGP2 has been the fastest 

EA (Table 4.10). GA, PSO, and HGP1 were the next EAs with fastest computational time, 

respectively. 
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Table 4.10: Results of optimization algorithms at testbed 3 for hundred runs 

Algorithm Objectives Best Worst Mean 
Standard 

deviation 

Computational time 

(second) 

PSO 

Fitness value 936.82 956.55 945.78 14.50 

190.29 Makespan (minute) 1142 1134 1140.4 21.17 

Number of AGVs 7 8 - - 

GA 

Fitness value 849.48 891.48 871.16 12.07 

189.74 Makespan (minute) 1011 1074 1038.14 18.10 

Number of AGVs  7 7 - - 

HGP1 

Fitness value 840.15 867.48 856.42 10.63 

196.63 Makespan (minute) 997 1038 1021.4 15.94 

Number of AGVs  7 7 - - 

HGP2 

Fitness value 834.82 892.82 863.42 7.38 

187.12 Makespan (minute) 989 1076 1031.9 12.83 

Number of AGVs 7 7 - - 

To visualize differences between makespan and number of AGVs before and after the 

optimization, results have been graphically compared in Figures 4.24 and 4.25. Figure 

4.24 shows the random sequence of operations before the optimization (O11, O21, O31, 

O41, O51, O61, O71, O81, O91, O10_1, O11_1, O12_1, O13_1, O14_1, O15_1, O12, O22, O32, O42, O52, 

O62, O72, O82, O92, O10_2, O11_2, O12_2, O13_2, O14_2, O15_2, O13, O23, O33, O43, O53, O63, O73, 

O83, O93, O10_3, O11_3, O12_3, O13_3, O14_3, O15_3, O14, O24, O44, O74, O84, O94, O10_4, O11_4, 

O13_4, O14_4, O15_4, O15, O25, O45, O85, O14_5, O14_6) with the makespan of 1209 minutes 

and 12 AGVs. Figure 4.25 demonstrates the optimized sequence of Figure 4.24, using 

only 7 AGVs with the makespan of 989 minutes obtained using HGP2, that is changed to 

(O13_1, O41, O14_1, O81, O31, O42, O14_2, O82, O61, O13_2, O10_1, O62, O15_1, O11, O14_3, O10_2, 

O14_4, O43, O63, O15_2, O21, O51, O13-3, O44, O15_3, O22, O52, O12, O71, O32, O15_4, O13, O91, 

O14, O14_5, O23, O11_1, O14_6, O24, O72, O45, O15, O73, O83, O33, O10_3, O84, O12_1, O11_2, O25, 

O12_2, O74, O92, O11_3, O10_4, O93, O85, O11_4, O12_3, O94).  
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Figure 4.24: Operations’ sequence before optimization – testbed 3  

 
Figure 4.25: Operations’ sequence after optimization by HGP2 – testbed 3  
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4.4.4.2 AGVs’ Battery Charge 

The amount of battery charge consumption by each AGV both before and after the 

optimization using different algorithms are shown in Figure 4.26. The decrease in the 

overall battery charge consumption of AGVs in the system is evident from the notable 

reduction of AGVs number by each EA. However, similar to the previous testbeds, the 

amount of battery consumption by each AGV after optimization has slightly increased 

because they undertook the workload of omitted AGVs as well. 

 

Figure 4.26: AGVs’ battery charge consumption, before and after optimization 

Figure 4.27 shows the percentage of AGV’s battery charge utilization after optimization. 

It is found that the number of AGVs has been decreased after the optimization and the 

batteries of omitted AGVs were saved. Therefore, the battery charge utilization of all 

AGVs were heightened. 
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Figure 4.27: Battery charge utilization, before and after optimization – testbed 3 

4.4.4.3 AGVs’ Specifications/Behavior 

In Figure 4.28, the AGVs total running time prior to the optimization is lower than that 

of after optimization shown in Figure 4.29. Figure 4.29 explains the effect of optimization 

in reducing the number of AGVs utilized for performing the same volume of jobs. The 

total number of functioning AGVs has been reduced to 7 AGVs that undertook the 

workload of 12 AGVs performing prior to the optimization. It is again an indication of 

the AGVs utilization strategy of the model where AGV number 1 has the highest 

utilization measure. It also depicts the developed model strategy in assigning the AGVs 

to tasks, where AGVs are prioritized based on their numerical order. Figure 4.29 

demonstrates the significant decrease in idle time of AGVs after the optimization, which 

has led to a smaller makespan when compared with that of before optimization.  
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Figure 4.28: AGVs’ specification before optimization  

Overall, makespan, number of AGVs and their idle time have been reduced after the 

optimization and it is illustrated in Figure 4.29.   
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Figure 4.29: AGVs’ specification after optimization 
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As it was shown earlier in Figure 4.26, the overall level of consumed battery charge 

decreased after the optimization, so that the AGVs’ operation efficiency was 

consequently improved. Figure 4.30 demonstrates the enhanced efficiency of AGVs’ 

operation after the optimization compared with prior optimization status. Analogous to 

other figures, response pattern of all the EAs to the optimization model is evident in 

Figure 4.30. It shows that the AGVs’ operation efficiency before optimization is below 

30% for all the AGVs and it is mounted above 40% for many of the AGVs after 

optimization, and above 30% for many others. AGVs were deployed with no intention to 

use their highest potential and the AGV number two then number one showed the highest 

operation efficiency before the optimization. However, following the optimization model 

strategy in assigning tasks to AGVs, the best potential of the first AGVs is used and 

addition of extra AGVs and expenses is avoided. Figure 4.30 clearly shows this 

systematic and cost-effective application of AGVs. 

 

Figure 4.30: AGVs’ operation efficiency before and after optimization 

4.4.5 Performance at Testbed 4 

This numerical example was inclusive of 23 jobs (J1,…, J23) processing on 17 machines 
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example would represent a larger sized testbed with its layout being shown in Figure 4.31. 

Table 4.11 shows the AGV travel time among L/U point and machines for testbed 4, and 

Table 4.12 demonstrates the processing time of every operation on the machines. Similar 

to testbed 3, all the routes in this testbed are also two-way and the distance of going and 

returning to/from a machine are the same. 

 

Figure 4.31: The layout of testbed 4 

Table 4.11: AGV travel time (minutes) among L/U point and machines  

 

Min L/U M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 
L/U 0 3 9 14 17 18 20 9 25 26 19 13 5 19 18 10 9 9 
M1 3 0 6 11 18 21 23 12 28 29 22 16 8 21 21 13 8 6 
M2 9 6 0 5 12 19 21 10 25 27 22 22 14 27 27 19 10 8 
M3 14 11 5 0 7 14 23 13 20 27 25 27 19 30 32 24 15 13 
M4 17 18 12 7 0 7 16 16 13 20 27 32 24 35 39 27 22 20 
M5 18 21 19 14 7 0 9 17 6 13 20 24 23 28 29 28 27 27 
M6 20 23 21 23 16 9 0 11 5 12 11 15 15 19 20 20 29 29 
M7 9 12 10 13 16 17 11 0 16 17 12 14 14 20 19 19 18 18 
M8 25 28 25 20 13 6 5 16 0 7 14 20 20 22 25 25 34 34 
M9 26 29 27 27 20 13 12 17 7 0 7 13 21 15 18 26 35 35 
M10 19 22 22 25 27 20 11 12 14 7 0 6 14 8 11 19 28 28 
M11 13 16 22 27 32 24 15 14 20 13 6 0 8 6 9 13 22 22 
M12 5 8 14 19 24 23 15 14 20 21 14 8 0 14 13 13 14 14 
M13 19 21 27 30 35 28 19 20 22 15 8 6 14 0 3 11 20 22 
M14 18 21 27 32 39 29 20 19 25 18 11 9 13 3 0 8 17 19 
M15 10 13 19 24 27 28 20 19 25 26 19 13 13 11 8 0 9 11 
M16 9 8 10 15 22 27 29 18 34 35 28 22 14 20 17 9 0 2 
M17 9 6 8 13 20 27 29 18 34 35 28 22 14 22 19 11 2 0 
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Table 4.12: The processing time (minutes) of every operation on the machines 

Job 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 
Operation 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 1 2 3 4 5 
Machine M8 M3 M5 M17 M2 M12 M14 M1 M5 M17 M4 M16 M11 M10 M6 M11 M16 M9 M4 M3 

Operation time 22 33 18 32 13 34 37 25 18 22 26 31 21 14 23 26 25 31 22 25 
Job 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 6 6 6 6 6 
Operation 6 7 8 9 10 11 1 2 3 4 5 6 1 2 3 1 2 3 4 5 
Machine M12 M7 M11 M14 M17 M10 M1 M16 M5 M12 M6 M8 M15 M7 M9 M13 M2 M10 M14 M11 
Operation time 39 14 23 12 23 29 17 19 23 34 25 31 16 11 31 26 28 13 14 35 
Job 7 7 7 7 8 8 8 9 9 9 9 9 10 10 10 11 11 11 11 11 
Operation 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 1 2 3 4 5 
Machine M13 M15 M13 M9 M17 M1 M3 M8 M6 M13 M15 M9 M4 M8 M14 M12 M7 M16 M13 M15 

Operation time 16 29 31 24 25 23 16 23 11 23 34 25 18 31 32 23 34 27 26 27 

Job 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 15  
Operation 1 2 3 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6  
Machine M6 M4 M5 M14 M10 M9 M7 M8 M15 M16 M13 M1 M6 M3 M4 M8 M11 M10 M9  
Operation time 26 14 25 28 23 16 25 31 24 25 23 14 23 16 11 23 34 18 23  
Job 16 16 16 17 17 17 17 18 18 18 18 18 19 19 19 20 20 20 20  
Operation 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 1 2 3 4  
Machine M5 M11 M14 M7 M17 M2 M10 M11 M16 M17 M15 M3 M8 M9 M16 M13 M2 M12 M10  
Operation time 16 12 31 24 30 23 24 15 16 11 23 33 25 13 16 31 23 12 13  
Job 20 20 20 20 20 20 21 21 21 21 21 22 22 22 22 23 23 23   
Operation 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 1 2 3   
Machine M16 M11 M9 M14 M13 M6 M7 M1 M4 M12 M3 M17 M10 M5 M13 M14 M9 M2   
Operation time 26 28 11 18 21 23 17 29 9 18 12 19 33 30 15 27 24 14   

 

4.4.5.1 Makespan and Number of AGVs 

Performance of the four algorithms at testbed 4 is shown in Figure 4.32. The amplitude 

of fitness values variation is from 1630 to 2280. Similar to testbed 2 and 3, PSO and GA 

algorithms had a smaller exploration area compared to the hybrids. 
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Figure 4.32: Performance of four algorithms at testbed 4 

The best/minimum fitness values of the four algorithms at testbed 4 are shown in Figure 

4.33. All the algorithms were successful in decreasing the makespan and the required 

number of AGVs. The optimized model using HGP2 converged at a faster rate and to a 

lower value compared with other EAs. Solutions convergence happened after about 85 

generations in HGP2, 90 generations in HGP1, 95 in GA, and 97 in PSO.  

 
Figure 4.33: Best performance (minimum) of the four algorithms at testbed 4 
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Out of all generations above, the best, worst, and the mean results achieved from the 

overall fitness function for testbed 4 are tabulated in Table 4.13. The makespan, and 

number of AGVs for each result is shown as well. The fitness value for this testbed, based 

on equation 3.1, would be      
2 1 8086

3 3 116
+f x MS NA

 
  

 
. As it is shown in Table 4.13, 

HGP2 has attained the best fitness value by 1542.83, followed by HGP1 (1555.50), then 

GA (1573.50), and PSO (1635.33). With regard to the results given in Table 4.13, it is 

evident that HGP2 has obtained the best (minimum fitness value) result, even in terms of 

the standard deviation. The last column of the Table 4.13 shows the computational time 

of the algorithms that highlights the HGP2 as the fastest EA applied. GA, PSO and HGP1 

were the runners up to the HGP2 computational time in this testbed.  

Table 4.13: Test results of optimization algorithms at testbed 4 for hundred runs 

Algorithm Objectives Best Worst Mean 
Standard 

deviation 

Computational time 

(second) 

PSO 

Fitness value 1635.33 1750.66 1686.02 29.52 

391.29 Makespan (minute) 2000 2173 2105.8 39.93 

Number of AGVs  13 13 - - 

GA 

Fitness value 1573.50 1722.83 1666.82 26.62 

389.32 Makespan (minute) 1942 2166 2082 27.43 

Number of AGVs 12 12 - - 

HGP1 

Fitness value 1555.50 1694.16 1618.83 17.31 

401.42 Makespan (minute) 1915 2123 2010 25.97 

Number of AGVs  12 12 - - 

HGP2 

Fitness value 1542.83 1637.49 1603.49 14.53 

387.65 Makespan (minute) 1896 2038 1987 21.29 

Number of AGVs  12 12 - - 

To demonstrate the effect of optimization on the makespan and number of AGVs applied 

in the testbed, Figures 4.34 and 4.35 respectively show the before and after optimization 

status. Figure 4.34 shows the random sequence of operations before optimization (O11, 

O21, O31, O41, O51, O61, O71, O81, O91, O10_1, O11_1, O12_1, O13_1, O14_1, O15_1, O16_1, O17_1, 

O18_1, O19_1, O20_1, O21_1, O22_1, O23_1, O12, O22, O32, O42, O52, O62, O72, O82, O92, O10_2, 

O11_2, O12_2, O13_2, O14_2, O15_2, O16_2, O17_2, O18_2, O19_2, O20_2, O21_2, O22_2, O23_2, O13, 
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O23, O33, O43, O53, O63, O73, O83, O93, O10_3, O11_3, O12_3, O13_3, O14_3, O15_3, O16_3, O17_3, 

O18_3, O19_3, O20_3, O21_3, O22_3, O23_3, O14, O24, O34, O44, O64, O74, O94, O11_4, O13_4, O14_4, 

O15_4, O17_4, O18_4, O19_4, O20_4, O22_4, O15, O25, O35, O45, O65, O95, O11_5, O13_5, O14_5, 

O15_5, O18_5, O20_5, O21_5, O16, O26, O36, O46, O15_6, O20_6, O17, O37, O20_7, O1_8, O3_8, O20_8, 

O1_9, O3_9, O20_9, O3_10, O20_10, O3_11) with the makespan of 2615 minutes and 23 AGVs.  

Figure 4.35 demonstrates the optimized sequence of Figure 4.34 using HGP2 which has 

been the best performing EA among the applied EAs and used here as an example. HGP2 

has optimized the sequence in Figure 4.34 using only 12 AGVs with the makespan of 

1896 minutes obtained, and the sequence is changed to (O61, O31, O17_1, O14_1, O81, O11, 

O32, O62, O41, O12, O33, O17_1, O42, O18_1, O21, O15_1, O34, O11_1, O21_1, O43, O18_2 , O44, 

O15_2, O35, O20_1, O16_1, O21_2, O13, O16_2, O36, O91, O13_1, O19_1, O14_2, O22, O14, O71, O10_1, 

O15_3, O19_2, O15, O20_2, O14_3, O20_3, O16, O51, O23, O20_4, O52, O15_4, O92, O23_1, O11_2, 

O21_3, O18_3, O15_5, O12_1, O24, O72, O16_3, O63, O11_3, O10_2, O15_6, O45, O19_3, O13_2, O64, 

O93, O14_4, O37, O20_5, O12_2, O23_2, O94, O46, O38, O20_6, O10_3, O53, O21_4, O39, O22_1, O65, 

O20_7, O21_5, O20_8, O22_2, O13_3, O18_4, O13_4, O14_5, O17, O3_10, O18_5, O11_4, O3_11, O22_3, 

O25, O20_9, O82, O13_5, O73, O18, O11_5, O83, O12_3, O74, O23_3, O17_3, O95, O20_10, O19, O17_4, 

O26, O22_4). 
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Figure 4.34: Operations’ sequence before optimization – testbed 4  

 
Figure 4.35: Operations’ sequence after optimization by HGP2 – testbed 4 

10
1 
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4.4.5.2 AGVs’ Battery Charge 

To elaborate the effect of optimization on the AGVs’ battery charge, Figure 4.36 and 4.37 

are drawn to present the before and after optimization status. The level of consumed 

battery charge using each AGV both before and after the optimization and using all the 

EAs is shown in Figure 4.36, and similarly Figure 4.37 demonstrates the utilization of 

AGVs’ battery charge. Similar to the other three testbeds, after the optimization using all 

the EAs, the number of AGVs was decreased and the batteries of omitted AGVs were 

saved, so the overall AGVs’ battery charge utility were optimized to perform more jobs 

with one AGV. Therefore, the scheduling model and the EAs were also successful in this 

large-sized testbed to create a higher battery charge utility level compared with prior-

optimization status (Figure 4.37).  

 

Figure 4.36: AGVs’ battery charge consumption before and after optimization 
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Figure 4.37: Battery charge utilization, before and after optimization – testbed 4 

4.4.5.3 AGVs’ Specifications/Behavior 

In Figure 4.38, the AGVs total running time prior to the optimization is lower than that 

of after optimization shown in Figure 4.39. It was discussed in previous testbeds that after 

the optimization the number of AGVs have been decreased and fewer AGVs would 

undertake the same workload, therefore the total running time of AGVs would increase 

after the optimization. Having fewer AGVs to do the same workload would definitely 

lessen the idle time of AGVs after the optimization. With such changes in the scheduling 

of AGVs, makespan would be shorter than that of before optimization. The above 

statements are realized in Figure 4.38 and 4.39 confirming the applicability and 

effectiveness of the optimization model and EAs in large size testbeds. 
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Figure 4.38: AGVs specification before optimization  

After optimization, the makespan, number of AGVs and their idle time have been reduced 

as it is shown in Figure 4.39.   
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Figure 4.39: AGVs’ specification after optimization 
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As it was shown earlier in Figure 4.36, the level of consumed battery charge decreased 

after the optimization, so that the AGVs’ operation efficiency was consequently 

improved. Figure 4.40 demonstrates the enhanced efficiency of AGVs’ operation after 

the optimization compared with prior optimization status. AGVs were deployed with no 

intention to use their highest potential and the AGV number one, nine, thirteen, and 

number twenty-one showed the highest operation efficiency before the optimization. 

After optimization, based on the scheduling model designed, tasks are sequentially 

appointed to AGVs based on their numbers order, so that AGV number one would have 

the highest operation efficiency level. This rule is to use the best potential of the first 

AGVs to avoid addition of extra AGVs and expenses involved. Following this strategy, 

Figures 4.40 illustrates the highest efficiency obtained by AGV1 and the lowest level by 

AGV12.  

 

Figure 4.40: AGVs’ operation efficiency before and after optimization 
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4.4.6 Testbed-size Effect on Model and EAs 

To provide a comparison basis among testbeds for the developed EAs, their best 

performances at all the testbeds are shown in Figure 4.41.  

 

Figure 4.41: Best performance of the four algorithms at four testbeds 

Figure 4.41 demonstrates the performance of all the algorithms in all the testbeds, in 

which a similar trend in the behaviour of the four EAs is evident. Increasing the problem 

size did not influence the response pattern of the studied EAs, and it only made the 

algorithms to converge at a higher iteration number. Enlargement of the testbed size 

imposed higher degree of complexity and difficulty to the algorithms for finding the 

optimum result. By increasing the problem size, the possible results space was widened 

which required more iteration till finding the optimum result.  

As it is shown in Figure 4.41, in testbed 1, in the first 20 iterations HGP1 had the better 

result, but after 20th iteration HGP2 outperformed the other EAs. In testbed 2, in the 
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beginning, GA showed a fast convergence capability better than the other EAs, but HGP2 

outpaced all EAs eventually. In testbed 3 and 4, because of the increment in problem size 

all the EAs converged at a higher iteration number compared with other testbeds, and 

HGP2 showed to be the best EA from the early iterations. It is noteworthy that, testbed 3 

was inclusive of more machines, jobs, and operations than testbed 2, but its fitness 

function showed a lower makespan than testbed 2, which it is attributed to the shorter 

two-way distances and the shorter processing time of operations in Testbed 3. 

In addition, in testbed 4 which is a large-sized testbed, the difference between HGP2’s 

best result and the other EAs was heightened compared with that in other testbeds.  It 

shows that in the bigger and more complicated problems HGP2 performs even better 

compared with smaller testbeds.  

As it is shown in Table 4.14, the standard deviation of the best results of each EA followed 

the same pattern in all the testbeds, in which HGP2 had the smallest standard deviation 

and PSO had the largest one. 

Table 4.14: Test results of optimization algorithms at four testbeds for hundred runs 

 Testbed PSO GA HGP1 HGP2 

Best (min) fitness 

value 

1 172.56 167.08 164.94 161.75 

2 1327.29 1282.63 1272.22 1253.96 

3 936.82 849.48 840.15 834.82 

4 1635.33 1573.5 1555.5 1542.83 

Standard deviation 

of best (min) 

results  

1 3.41 2.38 2.24 1.89 

2 18.87 18.2 17.06 15.48 

3 14.5 12.07 10.63 7.38 

4 29.52 26.62 17.31 14.53 

Computational 

time (second) 

1 51.11 49.61 54.38 48.5 

2 151.29 150.12 159.63 149.74 

3 170.29 189.74 176.63 187.12 

4 391.29 389.32 401.42 387.65 

Algorithms response pattern to the testbed size in terms of the computational time 

followed the same pattern in all the testbeds (as shown in Table 4.14). Increasing the 

testbed size increased the computational time of all algorithms. It is clear that the bigger 
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problems require more time to process and find the optimum solution. However, in all the 

testbeds, HGP2 was the fastest computing algorithm followed by GA, PSO, and HGP1 

respectively.  

It was reported in the previous sections that in the bigger testbeds, which the role of AGVs 

battery consideration criterion is emboldened, as satisfactory results as in small-sized 

testbeds were obtained confirming the model performance independency of problem size. 

Similar patterns of battery charge consumption and battery charge utilization were 

observed at any of the four testbeds. AGVs specifications—running time (loading + 

unloading), and idle time—also showed the same response pattern when applying the 

model to the four different testbeds. In other words, testbed size did not show any 

significant impact on the model performance. 

4.4.7 EAs inter-comparison 

Overall, the four algorithms were proved successful in decreasing the makespan and 

required number of AGVs, and consequently improving the AGVs’ battery charge 

utilization and AGVs’ operation efficiency in all the testbeds. However, both the 

developed hybrids of HGP1 and HGP2 outperformed the GA and PSO. Literature had 

also highlighted the effectiveness of hybrid GA-PSO in solving scheduling problems and 

its superiority against the constituting algorithms (Jamrus et al., 2013; Kaveh & 

Malakouti Rad, 2010; Samuel & Rajan, 2015; Tang et al., 2010). The above conclusion, 

with regard to the present study, can be explained by the nature of the operators employed 

in the algorithms. In HGP1, benefiting from selection, crossover, and mutation operators, 

the population diversity would increase and facilitate finding new solution spaces and 

escaping the possible local optima (Dong et al., 2012; Settles & Soule, 2005). Therefore, 

such qualities empower HGP1 to outperform GA and PSO algorithms.  
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Comparing the two developed hybrids, it was seen that HGP2 surpassed HGP1 and 

converged at a faster rate to a lower value—in all the testbeds. The potential to improve 

upon HGP1 general hybridization style was explored by applying different elitism and 

selection approaches, and a different way of generating new population to the integration 

style. Rudolph (1999), Zitzler et al. (2000), Kumar et al. (2011), and Cao et al. (2016) had 

also utilized the elitism and proved its capabilities in fast convergence and computational 

time in multi-objective evolutionary algorithms. Another highlighting point in HGP2 

structure was related to its population selection criteria that by comparing the generated 

population of two subsequent iterations, the best population was extracted. Choosing the 

best population at every iteration increased the chance of finding a better solution in less 

time (Jiang et al., 2017; Yu et al., 2015). The third distinguished characteristic in HGP2 

was its higher exploitation and exploration capabilities. In HGP2, one half of the new 

population was made only by PSO operators and another half was made by applying both 

the PSO and GA operators. Therefore, in comparison with HGP1, its exploration and 

exploitation capabilities were improved (Cao et al., 2016; Soleimani & Kannan, 2015; J. 

Wang et al., 2016).  

In hybrids, sometimes, adding and mixing options to create variety in the solutions in 

hope of better results, may cause complexity and increase the computational time like the 

HGP1 in this study. However, sometimes in hybrid cases such as HGP2 that characters 

like elitism are applied, as the worst solutions would diminish and less time would be 

spent on unsuitable solutions, the computational time may decrease (Yu & Gen, 2010a). 

Standard deviation is another factor for EAs’ performance comparison that provides 

important information on the existence of genetic redundancy in the population. Low 

standard deviation explains that the individuals have similar performances and probably 

this is due to the uniformity in chromosomes and particles (Mezura-Montes & Coello 
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Coello, 2004). As Kruse et al. (2013) mentioned, high values of standard deviation makes 

the algorithm to focus on exploration and low values of standard deviation makes it to 

focus on exploitation of search space (Črepinšek et al., 2013). HGP2 had the smaller 

standard deviation of the best results which indicates the close spread of the HGP2’s 

results nearby/around the best results’ mean value (Veček et al., 2014).  

The model optimized using HGP2 showed to have higher AGV battery charge utilization 

compared with other EAs. It can be explained by the lower makespan obtained using 

HGP2, in which in such condition AGVs would perform their tasks in a shorter time. 

Thus, when AGVs battery charge utilization is increased, consequently their operation 

efficiency would be increased as it was seen in the four testbeds. Overall, from the 

findings of this research, apart from introducing the HGP2 configuration as a proper 

hybrid algorithm for similar problems, application of the hybrid GA-PSO in scheduling 

studies is affirmed to be more effective than its constituting EAs. 

4.5 Validation of the Optimization Model 

To validate the proposed model, two layouts from Bilge and Ulsuy’s study (Bilge & 

Ulusoy, 1995) were employed here and are shown in Figures 4.42 and 4.43.  

 

Figure 4.42: Layout 1 (Bilge & Ulusoy, 1995) 
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Figure 4.43: layout 2 (Bilge & Ulusoy, 1995) 

Layouts’ travel times are shown in Tables 4.15, 4.16. Data of ten job sets have been used 

which their detailes are represented in Table 4.17.  

Table 4.15: Travel time (minutes) among L/U and machines – layout 1 (Bilge & 

Ulusoy, 1995) 

 

 

 

Table 4.16: Travel time (minutes) among L/U and machines – layout 2 (Bilge & 

Ulusoy, 1995) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 L/U M1 M2 M3 M4 
L/U 0 6 8 10 12 
M1 15 0 2 5 7 
M2 13 18 0 3 5 
M3 10 15 17 0 2 
M4 8 13 15 18 0 

 L/U M1 M2 M3 M4 
L/U 0 4 6 8 6 
M1 6 0 2 4 2 
M2 8 12 0 2 4 
M3 6 10 12 0 2 
M4 4 8 10 12 0 

M1 

M3 

M2 

M4 

H (L/U) 
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Table 4.17: Processing time (minutes) of operations on the machines (Bilge & Ulusoy, 
1995) 

Jo
b 

se
t 

1 

Job number 1 1 1 2 2 2 3 3 3 4 4 5 5 
Operation 1 2 3 1 2 3 1 2 3 1 2 1 2 
Machine M1 M2 M4 M1 M3 M2 M3 M4 M1 M4 M2 M3 M1 
Operation 
time 

8 16 12 20 10 18 12 8 15 14 18 10 15 
Jo

b 
se

t 
2 

Job number 1 1 2 2 3 3 4 4 4 5 5 5 6 6 6 
Operation 1 2 1 2 1 2 1 2 2 1 2 3 1 2 3 
Machine M1 M4 M2 M4 M1 M3 M2 M3 M4 M1 M2 M4 M1 M2 M3 
Operation 
time 

10 18 10 18 10 20 10 15 12 10 15 12 10 15 12 

Jo
b 

se
t 

3 

Job number 1 1 2 2 3 3 4 4 5 5 5 5 6 6 6 6 
Operation 1 2 1 2 1 2 1 2 1 2 3 4 1 2 3 4 
Machine M1 M3 M2 M4 M1 M2 M3 M4 M1 M2 M3 M4 M2 M3 M4 M1 
Operation 
time 

16 15 18 15 20 10 15 10 8 10 15 17 10 15 8 15 

Jo
b 

se
t 

4 

Job number 1 1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 
Operation 1 2 3 1 2 3 1 2 3 4 1 2 3 4 1 2 3 4 5 
Machine M4 M1 M2 M3 M2 M4 M2 M3 M1 M3 M2 M4 M1 M2 M1 M2 M4 M2 M3 
Operation 
time 

11 10 7 12 10 8 7 10 9 8 7 8 12 6 9 7 8 10 8 

Jo
b 

se
t 

5 

Job number 1 1 1 2 2 2 3 3 3 4 4 5 5 
Operation 1 2 3 1 2 3 1 2 3 1 2 1 2 
Machine M1 M2 M4 M1 M3 M2 M3 M4 M1 M4 M2 M3 M1 
Operation 
time 

6 12 9 18 6 15 9 3 12 6 15 3 9 

Jo
b 

se
t 

6 

Job number 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 
Operation 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
Machine M1 M2 M4 M1 M2 M4 M2 M3 M4 M2 M3 M4 M1 M3 M4 M1 M3 M4 
Operation 
time 

9 11 7 19 20 13 14 20 9 14 20 9 11 16 8 10 12 10 

Jo
b 

se
t 

7 

Job number 1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 7 8 8 8 
Operation 1 2 1 2 1 2 1 2 1 2 1 2 3 1 2 3 1 2 3 
Machine M1 M4 M2 M4 M2 M4 M3 M4 M1 M3 M2 M1 M4 M1 M2 M3 M1 M2 M4 
Operation 
time 

6 6 11 9 9 7 16 7 9 18 19 21 6 10 9 13 11 9 8 

Jo
b
 s

et
 8

 Job number 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 6 6 
Operation 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 1 2 3 4 
Machine M2 M3 M4 M2 M3 M4 M2 M3 M4 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 
Operation 
time 

12 21 11 12 21 11 12 21 11 12 21 11 10 14 18 9 10 14 18 9 

Jo
b 

se
t 

9 

Job number 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 5 
Operation 1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 3 4 
Machine M3 M1 M2 M4 M3 M2 M4 M1 M2 M4 M2 M3 M4 M3 M1 M2 M4 
Operation 
time 

9 12 9 6 16 11 9 21 18 7 20 22 11 14 16 13 9 

Jo
b
 s

et
 1

0 

Job number 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 6 6 6 6 
Operation 1 2 3 4 1 2 3 1 2 3 4 1 2 3 1 2 3 1 2 3 4 
Machine M1 M3 M2 M4 M2 M3 M4 M3 M2 M1 M4 M2 M3 M4 M1 M3 M4 M2 M1 M3 M4 
Operation 
time 

11 19 16 13 21 16 14 8 10 14 9 13 20 10 9 16 18 19 21 11 15 

 

Table 4.18 shows the comparison of the makespan of the result of twenty test problems 

using a combination of two different facility layout from HGP2 along with the benchmark 
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results of the algorithm in the literature that used the same data. The problems were solved 

by Bilge and Ulusoy (1995), Ulusoy et al. (1997), Abdelmaguid et al. (2004), Reddy and 

Rao (2006), Deroussi et al. (2008), Gnanavel Babu et al. (2010), and Zheng et al. (2014) 

and the test results are shown in Table 4.18. “L” is abbreviation for layout, first number 

shows the layout number and second number shows the job set. 

Table 4.18: Comparison of makespan results 

Test No. B95 U97 A04  R06 D08  B10  Z14 U15 HGP2 
L1-1 96 96 96 96 96 94 96 80 96 
L1-2 105 104 102 100 102 108 100 88 101 
L1-3 105 105 99 99 99 87 99 119 98 
L1-4 118 116 112 112 112 85 112 94 118 
L1-5 89 87 87 87 87 80 87 66 78 
L1-6 120 121 118 118 118 114 118 130 113 
L1-7 119 118 115 111 111 90 111 86 108 
L1-8 161 152 161 161 161 145 161 146 145 
L1-9 120 117 118 116 116 115 116 121 116 
L1-10 153 150 147 147 147 121 146 152 140 
L2-1 82 82 82 82 82 88 82 79 82 
L2-2 80 76 76 76 76 86 76 84 75 
L2-3 88 85 85 85 85 74 85 116 85 
L2-4 93 88 88 87 87 74 87 92 74 
L2-5 69 69 69 69 69 76 69 65 69 
L2-6 100 98 98 98 98 92 98 128 95 
L2-7 90 85 79 79 79 70 79 83 75 
L2-8 151 142 151 151 151 123 151 145 140 
L2-9 104 102 104 102 102 95 102 127 102 
L2-10 139 137 136 135 135 113 135 149 150 

B95-(Bilge & Ulusoy, 1995), U97-(Ulusoy et al., 1997), A04-(Abdelmaguid et 
al., 2004), R06-(Reddy & Rao, 2006), D08-(Deroussi et al., 2008), B10-

(Gnanavel Babu et al., 2010), Z14-(Zheng et al., 2014), (Umar et al., 2015)  
 

It is observed from the above results that HGP2 performed better than all the other 

previous algorithms in the four test problems (L1-5, L1-6, L2-2, L2-7), it was worse in 

two test problems (L1-4, L2-10) and its results were in the range of others’ result for the 

remaining test problems. 
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4.6 Validation of Optimization Result 

The result of optimization was validated through simulation of one of the medium-sized 

testbeds (testbed 2 as a representative for all the testbed sizes and properties). FlexSim 

software version 2016, update 2 (16.2.2) used as the simulation software. The 

experiments were run on a desktop computer with a 2.80 GHz processor and 4 GB RAM.  

4.6.1 Layout Set up 

The first step in simulation by FlexSim is to set up the layout. The layout was built based 

on the defined distances among machines and home and Figure 4.44 displays a part of the 

testbed layout. In layout design, after defining the machine places and distances, there 

should be a place for parts to enter the system, and also a place to distribute the parts. In 

the simulated model, each part enters the system through ‘Source’ and the sequence 

defined in the source represents the job sequence. ‘Sink’ acts as home (H), the place that 

all the parts are distributed from. “Sink” and “Source” are shown by a red rectangular in 

Figure 4.44. Processors are used as machines (the green rectangular) and a ‘Queue’ object 

which is shown by the blue rectangular (named by Q1, Q2, …) placed after each machine 

acts as a space for the processed parts waiting for the AGV pick-up. The yellow vehicles 

(shown by yellow rectangular in Figure 4.44) are the AGVs that collect the parts/products 

either from the sink resource or machines and deliver as scheduled. The queue and 

machine share the same control point to ensure the accuracy of the calculation. The 

starting point for all the AGVs is at the control point connected to H, and the travelling 

route is calculated by the software algorithm based on the layout data. 
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Figure 4.44: Sink, source, AGV, and machines in the simulated model environment 

4.6.2 Model’s Rules and Information Entry to the FlexSim Database 

After setting up the layout, the information and rules such as number of jobs, operations, 

processing times of each operation, operations sequence, and details of assigned AGVs 

to each operation should be entered to the simulation environment. In FlexSim, assigned 

AGVs to each part are controlled by a table named “job”. Figure 4.45 shows a part of the 

job table, which its sequence is based on Figure 4.11.  

 

Figure 4.45: Part of the “job table” in FlexSim  
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The first column in Table 4.45 is the job number and the repetition of that represents the 

operations, the second column shows the machine number. Third column shows the 

assigned AGV to an operation. For example, if the operation O12 on machin M6 is 

assigned to AGV2, then its presence in the Table 4.43 from the left would be “1” (second 

number 1 in the Job_type’s column from the top), “6”, and “2”. 

Each job will arrive at the system through “Source”. Figure 4.46 shows the properties of 

the "Source". The arrival sequence represents the sequence of jobs arrival. The number of 

arrival is 6 as there are 6 jobs.  

 
Figure 4.46: Source properties 

The processing time (minute) for each job was based on Table 4.6. Information is 

presented in the table “Op_Time” as in Figure 4.47 with rows and columns representing 

the jobs and the operations, respectively. 
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Figure 4.47: Table of operation time of the example in FlexSim 

Figure 4.48 shows the properties of a processor (machine). Setting of the operation times 

of machines is shown by the red arrow in Figure 4.48. In this step, by selecting the table 

“Op_Time” from Figure 4.47 in the dropdown menu and choosing the correct job and 

operation number in the “Row” and “Column” sections, the correct processing time is 

located. 

 

  
Figure 4.48: Machine properties 
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4.6.3 Simulation Result 

After running the simulated model, all the jobs completion time werereported in 

“job_completion_time” table of the software shown in Figure 4.49. Since makespan is 

the completion time of all jobs, the biggest number in the table represents the makespan, 

which is related to job 3 being the last job to be compeleted (Figure 4.49). 

 
Figure 4.49: Completion time for each job 

There are other figures reporting everything about the simulated model, after finishing 

the jobs. Figure 4.50 shows the time that every part has spent for a particular work 

classifying as waiting time, processing time and travelling time of the parts in the model. 

Figure 4.51 is the figure that depicts the time for each buffering queue spent on collecting, 

releasing and being empty. 
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Figure 4.50: Waiting time, processing time and travelling time of the goods 

 
Figure 4.51: Buffering queues’ time on collecting, releasing and being empty  
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Figure 4.52: Simulation environment, when the model is running 

Figure 4.52 shows a scene from the simulation environment, when the model was running 

and AGVs were functioning. Using testbed 2 configuration and applying its optimized 

sequence by HGP2 for the simulation in FlexSim software, it was found that the 

simulation results conform to optimization results and similar makespan magnitude and 

number of AGVs were obtained. Therefore, model simulation in FlexSim software 

proved the validity of the optimization result.  

4.7 Summary 

After accomplishing the model and algorithms development step, the optimal parameters 

set of each EA was found using Brute-force method. Then, algorithms were applied to 

four testbeds with different sizes (1 small, 2 mediums, and 1 large) and their performances 

were studied. The algorithms developed were successful in decreasing the makespan and 

the required number of AGVs in all the testbeds. Through the superior scheduling of 

AGVs, after the optimization, AGVs’ idle time was decreased and their battery utilization 

level was improved.  
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HGP2 outperformed the other three algorithms and obtained a better fitness value at a 

faster convergence rate at all the testbeds. Comparing the computational time of the four 

EAs, HGP1 had the longest computational time, while HGP2 had the smallest one and 

the other two algorithms varied closely. Concerning the best results obtained by each EA, 

HGP2 showed the smallest standard deviation followed by HGP1, GA, and PSO, 

respectively. This study, similar to the previous studies, confirmed the superiority of the 

hybrids of GA and PSO over each of them being individually applied. However, selection 

of the right operators and integration approach in hybridization of the EAs was proved to 

be highly influential on the performance of the constructed hybrid. Adding selection, 

crossover, and mutation operators into the hybrids increased the diversity of the 

population and facilitated finding new solution spaces and escaping the possible local 

optima. In addition, employing elitism, different kind of parents’ selection, and having a 

new population selection strategy (half from GA and half from PSO) improved the 

HGP2’s performance. 

The testbed size effect on the EAs performance was explored next. However, it did not 

show any impact on the response pattern of the studied EAs and only their convergence 

was postponed to higher iterations at large-sized testbeds. Then, for model validation, 

benchmarking was used and the obtained results proved the feasibility and validity of the 

model. Therefore, this model can be used as a reference for similar studies in AGV 

scheduling context. Final, in order to validate the optimization result, a simulation 

practice based on the testbed 2 was performed using the FlexSim software.  
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CHAPTER 5: CONCLUSIONS 

5.1 Research Summary 

The prognostics, concluding from the world trade growth, show the ever-increasing 

application of AGVs in the industry. The process of allocating AGVs to tasks, taking into 

account the costs and time of operations—so called scheduling—is the challenge to 

administer in this context. Efficient scheduling, which is the resultant of application of a 

model with high efficiency and fast throughput that shortens the production time and 

decreases the costs in an FMS, is pursued in this study and many others. Review of the 

literature on FMS, AGV, and scheduling discourses showed that every study analyzes the 

impacts of a different criteria set on FMS performance. The criteria and scheduling 

models were developed mainly based on a specific hypothesis drew by every researcher. 

To broaden the scheduling knowledge, this study developed a multi-objective scheduling 

optimization model with a new set of criteria of makespan minimization and minimization 

of AGVs number with their battery charge consideration involved.  

After determining the criteria set of the multi-objective model, based on the reviewed 

literature, a mathematical model representing the scheduling model was developed and 

presented in section 3.3. With scheduling problems being characterized as NP-hard 

problems, evolutionary algorithms (EAs) were employed to find an optimized solution. 

Following the “no free lunch” theory, many studies had proposed the application of GA 

and PSO for scheduling problems. Therefore, GA and PSO algorithms were used and 

developed for the problem at hand. Literature had also highlighted that a hybrid of GA 

and PSO can be more effective than each of them being applied individually. Thus, taking 

advantage of GA and PSO unique capabilities, two hybrids (HGP1, HGP2) were 

developed. The difference between them relied on the approaches applied for the GA and 

PSO operators’ integration. Overall, four evolutionary algorithms (GA, PSO, HGP1, and 

HGP2) were developed for the problem and presented in section 3.4.  
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Following experts’ suggestions, MATLAB software was used for the coding of the model 

and all the four algorithms. Performance of the model and algorithms were examined 

using numerical application of them at different testbeds. As there was a new criterion 

(AGVs’ battery charge considerations) included in the model that distinguishes it from 

existing models, it was realized that the available testbeds were not suitable to the problem 

at hand both in terms of the size and the problem definition. Therefore, four new testbeds 

with different sizes (1 small, 2 mediums, and 1 large-sized) were defined in sections 4.4.2 

to 4.4.5 to assess the model. Next, the model validity was tested through simulation in 

FlexSim software. 

5.2 Conclusions 

Analysis of the four algorithms’ result at different testbeds showed the optimization 

model functionality and the algorithms success in decreasing the makespan and the 

required number of AGVs. By employing the three defined criteria in the developed 

model, the number of utilized AGVs was decreased after the optimization. Therefore, the 

battery charge of omitted AGVs was preserved. In addition, the model was successful in 

optimizing the battery charge utilization of the remained/working AGVs in that the same 

number of AGVs were able to perform more jobs in less time using nearly the same or a 

bit higher battery charge. It indicates that the battery charge utilization has been enhanced 

using the model developed. Thus, the model appeared capable in reducing the FMS costs 

by decreasing the number of AGVs applied for the same volume of jobs. 

The model was further scrutinized by studying the AGVs characteristics/behavior such 

as the total running time (loaded and unloaded), idle time, and AGVs’ operation 

efficiency—before and after the optimization. It was found that after optimization, despite 

the small rise in AGVs’ total running time (loaded and unloaded), the AGVs’ idle time 

was reduced dramatically. With the reduction of idle time, the AGVs’ operation 
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efficiency has been enhanced. This shows that the use of AGVs was more effective after 

the optimization, in which it is again a source of cost reduction in the FMS while the 

overall efficiency of the system is enhanced.  

All the four algorithms found an optimized result, although HGP2 had a better 

performance compared with PSO, GA, and HGP1. The optimized model using HGP2 

converged at a faster rate and to a lower value. Concerning the variation between worst 

and best results obtained by each EA, HGP2 was able to maintain a wide range of 

candidate solutions and provide more diversity compared with other EAs. Of the four 

EAs, HGP2 obtained the smallest standard deviation with respect to the best results 

generated, and the HGP2’s capability in better convergence. HGP1, GA, and PSO were 

the next algorithm with respectively small standard deviations. Comparing algorithms in 

terms of computational time, it was found that HGP2 was the faster performing EA than 

GA, PSO and HGP1 respectively.  

As discussed above, despite the superiority of HGP2 over HGP1, both the hybrids 

outperformed the GA, and PSO algorithms. In HGP1, selection, crossover, and mutation 

operators were integrated together and that increased the diversity of the population and 

facilitated discovering new solution spaces and escaping the possible local optima. In 

HGP2, incorporation of the elitism operator into the algorithm along with the innovative 

population selection process applied, and novel structure of integrating the operators of 

GA and PSO have escalated its exploration and exploitation capabilities and the 

convergence rate. Overall, apart from introducing the HGP2 as a suitable hybrid for 

similar problems; in line with the literature consensus on the excellence of hybrids over 

their constituents being individually applied, the present research also reaffirms this 

statement.  
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With regard to the testbed size impact on the model applicability and the algorithms 

performance, it was seen that the alteration of testbed size did not affect the algorithms 

performance pattern and their level of optimality when compared with one another. 

Increasing the testbed size postponed the convergence of all EAs to higher iterations, 

because enlargement of the testbed size imposed higher degree of complexity and 

difficulty to the algorithms for finding the optimum result. In the large-sized testbeds, the 

difference between HGP2 and HGP1 best results was increased compared to smaller sized 

testbeds. Following the same fashion, the difference between HGP2 and GA and PSO 

was also mounted in the large-sized testbed, which it indicates that HGP2 has been even 

more powerful in large-sized testbeds than in the small-sized problems. 

To validate the model applicability, the proposed model has been validated through some 

well-known benchmarking problems with data of ten job sets on two layouts. Then, the 

results were compared with previous algorithms which used the same data for scheduling. 

For validating optimization result, the second testbed (medium-sized) was chosen to be 

simulated by FlexSim in section 4.5. The choice of second testbed for simulation was to 

avoid the unnecessary complexity driven by a big model application, and for a proper 

representation of the results, and to have a representative of all problem sizes. The 

obtained results were the same as that in the model runs in MATLAB. Thus, in line with 

the testbeds results, simulation using the FlexSim software has also proved the feasibility 

of the developed model. So that, the model developed in this study can be introduced as 

an efficient and competent model for similar scheduling tasks. 

5.3 Future Research 

Based on the nature of the scheduling studies and similar to many researches in this area, 

some limitations as explained in chapter 3 were applied for the model development in the 
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present study. However, the following research potentials are recommended to stretch out 

the developed multi-objective model in this study: 

 Considering AGVs and machines’ breakdown   

In case of an AGV/machine breakdown, the vehicle will be stranded in the path or the 

machine process will be stopped. It will block all the vehicles carrying out the P/D task. 

Considering such a criterion in the model to observe the breakdowns would improve the 

model in terms of the reality resemblance. 

 Conflict-free routing  

The developed model is assumed to be conflict-free, but in reality, conflicts may happen 

and it can be added to model to extend the study. Real time issues like traffic congestion 

and conflicts can also be considered. 

 Developing different algorithms and hybrids for the model 

Other algorithms and hybrids could be developed for the model and compared with the 

algorithms being used in this study. 
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APPENDIX: MODEL AND ALGORITHMS PROGRAMMING 

GA-function 
function [output] = GA_func(g, problem)  
%function [gaDat, output] = GA_func(g, problem)  
   
output.History.Y.Makespan = [inf]; 
output.History.Y.NAGV = [inf]; 
output.History.Y.Eval = [inf]; 
output.History.X = ones(1, g.D) .* inf; 
output.History.chrom = ones(1, g.D) .* inf; 
  
g.MAXGEN = g.MaxGen-1; 
D = ones(1, g.D); 
g.FieldD = [D.* g.LB; D.*g.UB]; 
g.NIND = g.N; 
   
gaDat=g; 
  
% If the parameter doesn't exist in the data structure it is created 
with the default value 
if ~isfield(gaDat,'NVAR') 
    gaDat.NVAR=size(gaDat.FieldD,2); 
end 
if ~isfield(gaDat,'MAXGEN') 
    gaDat.MAXGEN=gaDat.NVAR*20+10; 
end 
if ~isfield(gaDat,'NIND') 
    gaDat.NIND=gaDat.NVAR*50; 
end   
if ~isfield(gaDat,'alfa') 
    gaDat.alfa=0; 
end 
if ~isfield(gaDat,'Pc') 
    gaDat.Pc=0.9; 
end 
if ~isfield(gaDat,'Pm') 
    gaDat.Pm=0.1; 
end 
if ~isfield(gaDat,'indini') 
    gaDat.indini=[]; 
end 
  
% Internal parameters 
gaDat.Chrom=[]; 
gaDat.ObjV=[]; 
gaDat.xmin=[]; 
gaDat.fxmin=inf; 
gaDat.xmingen=[]; 
gaDat.fxmingen=[]; 
gaDat.rf=(1:gaDat.NIND)'; 
gaDat.gen=0; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Main loop 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Generation counter 
gen=0; 
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% Initial population      --------------------------------------- 
gaDat.Chrom=crtrp(gaDat.NIND,gaDat.FieldD);   % Real codification 
% Individuals of gaDat.indini are randomly added in the initial 
population 
if not(isempty(gaDat.indini)) 
    nind0=size(gaDat.indini,1); 
    posicion0=ceil(rand(1,nind0)*gaDat.NIND); 
    gaDat.Chrom(posicion0,:)=gaDat.indini; 
end 
  
while (gaDat.gen<gaDat.MAXGEN), 
    gaDat.gen=gen; 
    [gaDat, output, problem]=gaevolucion(gaDat, output, problem);   
    % Increase generation counter        ------------------ 
    gaDat.xmingen(gen+1,:)=gaDat.xmin; 
    gaDat.fxmingen(gen+1,:)=gaDat.fxmin; 
    gen=gen+1; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% End main loop 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Present final results 
  
%% Subfunction  ----------------------------------------- 
  
%% ---------------------------------------------------- 
function chrom=crtrp(Nind,FieldDR) 
% A random real value matrix is created coerced by upper and  
% lower bounds 
  
Nvar = size(FieldDR,2); 
aux = rand(Nind,Nvar); 
m=[-1 1]*FieldDR; 
ublb=ones(Nind,1)*m; 
lb=ones(Nind,1)*FieldDR(1,:); 
chrom=ublb.*aux+lb; 
  
%% ---------------------------------------------------- 
function [gaDat, output, problem] = gaevolucion(gaDat, output, 
problem) 
% One generation ------- 
output.chrom=gaDat.Chrom; 
nind=size(output.chrom,1); 
ObjV=inf(nind,1); 
[ output ] = SPV( output.chrom, problem.Job, output ); 
for i=1:nind 
    [output]=Fitness(i, problem, output);  
    ObjV(i) = output.Y.Eval(i); 
end 
output.History.Y.Makespan = [output.History.Y.Makespan ; 
output.Y.Makespan]; 
output.History.Y.NAGV = [output.History.Y.NAGV ; output.Y.NAGV]; 
output.History.Y.Eval = [output.History.Y.Eval ; output.Y.Eval]; 
output.History.X = [output.History.X ; output.X];  
output.History.chrom = [output.History.chrom ; output.chrom]; 
  
gaDat.ObjV=ObjV; 
  
% Best individual of the generation ------------------------- 
[v,p]=min(gaDat.ObjV); 
if v<=gaDat.fxmin 
    gaDat.xmin=output.chrom(p,:); 
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    gaDat.fxmin=v; 
end 
% Next generation 
% RANKING ------------------------------------------------- 
FitnV = ranking(gaDat.ObjV,gaDat.rf); 
% SELECTION ----------------------------------------------- 
% Stochastic Universal Sampling (SUS). 
SelCh = select('sus',output.chrom,FitnV,1); 
% CROSSOVER --------------------------------------------------- 
% Uniform crossover. 
SelCh = lxov(SelCh,gaDat.Pc,gaDat.alfa); 
% MUTATION ------------------------------------------------ 
output.chrom = mutbga(SelCh,gaDat.FieldD,[gaDat.Pm 1]); % Codificación 
Real. 
% Reinsert the best individual  --------------------------- 
output.chrom(round(gaDat.NIND/2),:) = gaDat.xmin; 
gaDat.Chrom=output.chrom; 
% Optional additional task required by user 
  
%% --------------------------------------------------------- 
function FitV=ranking(ObjV,RFun) 
% Ranking function 
if nargin==1 
    error('Ranking function needs two parameters'); 
end 
  
if ~(length(ObjV)==length(RFun)) 
    error('RFun have to be of the same size than ObjV.'); 
end 
  
[~,pos]=sort(ObjV); 
FitV(pos)=flipud(RFun); 
FitV=FitV'; 
  
%% --------------------------------------------------------- 
function [SelCh]=select(SEL_F, chrom, FitnV, GGAP) 
% Selection Function 
if (nargin==3) %  No overlap ------------------- 
    if strcmp(SEL_F,'rws') 
        % Roulette wheel selection method 
        indices=rws(FitnV,length(FitnV)); 
        SelCh=chrom(indices,:); 
    elseif strcmp(SEL_F,'sus') 
        % Stochastic unversal sampling selection 
        indices=sus(FitnV,length(FitnV)); 
        SelCh=chrom(indices,:); 
    else 
        error('Incorrect selection method'); 
    end 
elseif (nargin==4) % With overlap ----------------------------- 
    % Indexes of new individuals 
    if strcmp(SEL_F,'rws') 
        indices=rws(FitnV,round(length(FitnV)*GGAP)); 
    elseif strcmp(SEL_F,'sus') 
        indices=sus2(FitnV,round(length(FitnV)*GGAP)); 
    else 
        error('Incorrect selection method'); 
    end 
  
    if (GGAP<1) % there is overlap 
        % Members of the population to overlap 
        oldpos=(1:length(FitnV))'; 
        for k=1:length(FitnV) 



146 

            pos=round(rand*length(FitnV)+0.5); 
            % exchange indexes 
            oldpos([pos k])=oldpos([k pos]); 
        end 
        oldpos=oldpos(1:round(length(FitnV)*GGAP)); 
        SelCh=chrom; 
        SelCh(oldpos,:)=chrom(indices,:); 
    else % more childs than parents 
        SelCh=chrom(indices,:); 
    end 
else 
    error('Incorrect number of paramenters'); 
end 
  
% Disorder the population. 
[~,indi]=sort(rand(length(FitnV),1)); 
SelCh=SelCh(indi,:); 
  
%% ------------------------------------------------------------------ 
function NewChrom =lxov(OldChrom, XOVR, alpha) 
% Linear crossover 
% Produce a~ new population by linear crossover and XOVR crossover 
probability 
%   NewChroms =lxov(OldChrom, XOVR, alpha, FieldDR) 
% 
% Linear recombination. 
% Parameters 'beta1' and 'beta2' are randomly obtained inside [-alpha, 
1+alpha] 
% interval 
%   Child1 = beta1*Parent1+(1-beta1)*Parent2 
%   Child2 = beta2*Parent1+(1-beta2)*Parent2 
  
if nargin==1 
    XOVR = 0.7; 
    alpha = 0; 
elseif nargin==2 
    alpha = 0; 
end 
  
n = size(OldChrom,1);   % Number of individuals and chromosome length 
npares = floor(n/2);    % Number of pairs 
cruzar = rand(npares,1)<= XOVR;    % Pairs to crossover 
NewChrom=OldChrom; 
  
for i=1:npares 
    pin = (i-1)*2+1; 
    if ~(cruzar(i)==0) 
        betas=rand(2,1)*(1+2*alpha)-(0.5+alpha); 
        A=[betas(1) 1-betas(1); 1-betas(2) betas(2)]; 
        NewChrom(pin:pin+1,:)=A*OldChrom(pin:pin+1,:); 
    end 
end 
  
% Coerce points outside search space 
% aux = ones(n,1); 
% auxf1=aux*FieldDR(1,:); 
% auxf2=aux*FieldDR(2,:); 
% NewChrom = 
(NewChrom>auxf2).*auxf2+(NewChrom<auxf1).*auxf1+(NewChrom<=auxf2 & 
NewChrom>=auxf1).*NewChrom; 
  
%% ------------------------------------------------------------- 
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function NewChrom=mutbga(OldChrom,FieldDR,MutOpt) 
% Mutation function 
% Real coded mutation.  
% Mutation is produced adding a low random value 
% OldChrom: Initial population. 
% FieldChrom: Upper and lower bounds. 
% MutOpt: mutation options, 
%         MutOpt(1)=mutation probability (0 to 1). 
%         MutOpt(2)=compression of the mutation value (0 to 1). 
%         default MutOpt(1)=1/Nvar y MutOpt(2)=1 
  
if (nargin==3) 
    pm=MutOpt(1); 
    shr=MutOpt(2); 
elseif (nargin==2) 
    pm=1/size(FieldDR,2); 
    shr=1; 
else 
    error('Incorrect number of parameters'); 
end 
  
Nind=size(OldChrom,1); 
m1=0.5-(1-pm)*0.5; 
m2=0.5+(1-pm)*0.5; 
aux=rand(size(OldChrom)); 
MutMx=(aux>m2)-(aux<m1); 
range=[-1 1]*FieldDR*0.5*shr; 
range=ones(Nind,1)*range; 
index=find(MutMx); 
m=20; 
alpha=rand(m,length(index))<(1/m); 
xx=2.^(0:-1:(1-m)); 
aux2=xx*alpha; 
delta=zeros(size(MutMx)); 
delta(index)=aux2; 
NewChrom=OldChrom+(MutMx.*range.*delta); 
  
% Coerce points outside bounds 
aux = ones(Nind,1); 
auxf1=aux*FieldDR(1,:); 
auxf2=aux*FieldDR(2,:); 
NewChrom = 
(NewChrom>auxf2).*auxf2+(NewChrom<auxf1).*auxf1+(NewChrom<=auxf2 & 
NewChrom>=auxf1).*NewChrom; 
  
%% ---------------------------------------------------------- 
function NewChrIx=sus2(FitnV, Nsel) 
suma=sum(FitnV);      
% Position of the roulette pointers 
j=0; 
sumfit=0;  
paso=suma/Nsel; % distance between pointers 
flecha=rand*paso; % offset of the first pointer 
NewChrIx(Nsel,1)=0;  
for i=1:Nsel 
    sumfit=sumfit+FitnV(i); 
    while (sumfit>=flecha) 
        j=j+1; 
        NewChrIx(j)=i; 
        flecha=flecha+paso; 
    end 
end 
%% --------------------------------------------------------  
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PSO_function 
function [output]= PSO_func(Parameter, problem) 
%function [gbest,gbestval,fitcount,Fx, output]= PSO_func(Parameter, 
problem) 
 
Dimension = Parameter.D; 
Particle_Number = Parameter.N; 
Max_Gen = Parameter.MaxGen; 
VRmin = Parameter.LB; 
VRmax = Parameter.UB; 
  
%---------------------- output initialization ------------------------ 
output.History.Y.Makespan = [inf]; 
output.History.Y.NAGV = [inf]; 
output.History.Y.Eval = [inf]; 
output.History.X = ones(1, Dimension) .* inf; 
output.History.pos = ones(1, Dimension) .* inf; 
  
%--------------------------------------------------------------------- 
rand('state',sum(100*clock)); 
me=Max_Gen; 
ps=Particle_Number; 
D=Dimension; 
iwtmax = Parameter.InertiaWeight(2) - Parameter.InertiaWeight(1); 
cc=Parameter.C;   %acceleration constants 
iwt=rand(me,1).*(Parameter.InertiaWeight(1)) + iwtmax;%0.9-
(1:me).*(0.5./me);%; 
  
if length(VRmin)==1 
    VRmin=repmat(VRmin,1,D); 
    VRmax=repmat(VRmax,1,D); 
end 
mv=0.5*(VRmax-VRmin); 
VRmin=repmat(VRmin,ps,1); 
VRmax=repmat(VRmax,ps,1); 
Vmin=repmat(-mv,ps,1); 
Vmax=-Vmin; 
output.pos=VRmin+(VRmax-VRmin).*rand(ps,D); 
  
[ output ] = SPV( output.pos, problem.Job, output ); 
  
for ieval=1:size(output.pos,1) 
    [output]=Fitness(ieval, problem, output); 
%Sphere(output.pos(ieval,:), size(output.pos,2)); 
    e(ieval) = output.Y.Eval(ieval); 
end 
Fx=e; 
  
output.History.Y.Makespan = [output.History.Y.Makespan ; 
output.Y.Makespan]; 
output.History.Y.NAGV = [output.History.Y.NAGV ; output.Y.NAGV]; 
output.History.Y.Eval = [output.History.Y.Eval ; output.Y.Eval]; 
output.History.X = [output.History.X ; output.X]; 
output.History.pos = [output.History.pos ; output.pos]; 
  
fitcount=ps; 
vel=Vmin+2.*Vmax.*rand(ps,D);%initialize the velocity of the particles 
pbest=output.pos; 
pbestval=e; %initialize the pbest and the pbest's fitness value 
[gbestval,gbestid]=min(pbestval); 
gbest=pbest(gbestid,:);%initialize the gbest and the gbest's fitness 
value 
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gbestrep=repmat(gbest,ps,1); 
  
%------------------------------ Iteration ---------------------------- 
for i=2:me 
  
    Prpbest = cc(1).*rand(ps,D); 
    Prgbest = cc(2).*rand(ps,D); 
  
    aa=Prpbest.*(pbest-output.pos) + Prgbest.*(gbestrep-output.pos); 
  
    vel=iwt(i).*vel+aa;% 
    vel=(vel>Vmax).*Vmax+(vel<=Vmax).*vel; 
    vel=(vel<Vmin).*Vmin+(vel>=Vmin).*vel; 
    output.pos=output.pos+vel; 
    
output.pos=((output.pos>=VRmin)&(output.pos<=VRmax)).*output.pos... 
        +(output.pos<VRmin).*(VRmin + 1.*(VRmax-VRmin).*rand(ps,D))... 
        +(output.pos>VRmax).*(VRmax - 1.*(VRmax-VRmin).*rand(ps,D)); 
  
    [ output ] = SPV( output.pos, problem.Job, output); 
    for ieval=1:size(output.pos,1) 
        [output]=Fitness(ieval, problem, output); 
%Sphere(output.pos(ieval,:), size(output.pos,2)); 
        e(ieval) = output.Y.Eval(ieval); 
    end 
    Fx=[Fx;e]; 
  
    output.History.Y.Makespan = [output.History.Y.Makespan ; 
output.Y.Makespan]; 
    output.History.Y.NAGV = [output.History.Y.NAGV ; output.Y.NAGV]; 
    output.History.Y.Eval = [output.History.Y.Eval ; output.Y.Eval]; 
    output.History.X = [output.History.X ; output.X];   
    output.History.pos = [output.History.pos ; output.pos]; 
     
    fitcount=fitcount+ps; 
    tmp=(pbestval<e); 
    temp=repmat(tmp',1,D); 
    pbest=temp.*pbest+(1-temp).*output.pos; 
    pbestval=tmp.*pbestval+(1-tmp).*e;%update the pbest 
    [gbestval,tmp]=min(pbestval); 
    gbest=pbest(tmp,:); 
    gbestrep=repmat(gbest,ps,1);%update the gbest     
end 
SPV 
function [ output ] = SPV( ContiniousX, Job,output) 
DiscreteX = zeros(size(ContiniousX)); 
GrayX = mat2gray(ContiniousX); 
for i = 1:size(ContiniousX,1) 
    [~,Index] = sort(GrayX(i,:)); 
    A = Job(Index,:); 
    B = A'; 
    B([2:1:4], :) = [] ; 
    DiscreteX(i,:) = B; 
end 
output.X = DiscreteX; 

 
HGP1 
function [ AGVN, CInput ] = AGV( X, problem ) 
% X = [SEQUENCE] 
%[ problem ] = Problem5; 
% 
ieval = 1; 
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output.X(ieval,:) = X; 
Discrete_X = output.X(ieval,:); 
TravTime = problem.TravTime; 
Job = problem.Job; 
Gamma = problem.Gamma; 
Alpha = problem.Alpha; 
ChargingTime = problem.ChargingTime; 
Dimension = problem.Dimension ; 
InitialAGV = problem.InitialAGV; 
ChargeValue = problem.ChargeValue; 
  
   
CInput.JN = Discrete_X; % job number ;  
CInput.ON = Discrete_X; % Operation Number; 
CInput.StartPoint = Discrete_X; % Machine Number ; 
CInput.MN = Discrete_X; % Machine Number ; 
CInput.AGVN = zeros(size(CInput.JN)); % AGV Number which assigned to 
load. 
CInput.OT = Discrete_X; % Operation Time; 
CInput.ExeTime = zeros(size(CInput.JN)); % The time when the operation 
started,  
                                         %this time is the time that 
AGV start  
                                         %to move to pick the part 
from previous position 
                                          
CInput.UnLAGVTime = zeros(size(CInput.JN)); % this the time that take 
to AGV go to  
                                            % the pick up position of 
the part 
                                            % from current position to 
CInput.StartPoint 
                                             
CInput.LAGVTime = zeros(size(CInput.JN));   % This is the time take to 
AGV reach  
                                            % the position of the 
operation and 
                                            % from 
CInput.StartPoint(i) to CInput.MN(i) 
                                             
CInput.SrAGVIdleTime = zeros(size(CInput.JN));% this is the time that 
AGV is idle  
                                            % to unload the part from 
previous machine 
                                            % and move to the new 
machine 
                                            % for new operation. 
                                             
CInput.StAGVIdleTime = zeros(size(CInput.JN));% this is the time that 
AGV is idle  
                                            % to load the part into 
the machine 
                                            % if the machine is stil 
                                            % running for the previous 
                                            % operation.                                            

  
CInput.TotalOpTime = zeros(size(CInput.JN));% This is the total time 
required  
                                            % to finish the operation.                                                                                    
%Calculating the operation number 
for i=1:size(CInput.ON,2) 
    index = 0; 
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    for j=1:i 
        if CInput.JN(j) == CInput.JN(i) 
            index = index +1; 
        end 
    end 
    CInput.ON(i) = index; 
end 
  
% Importing machine number and operation time for each operatiion. 
for i=1:size(CInput.JN,2) 
    for j=1:size(CInput.JN,2) 
       if Job(j,1)== CInput.JN(i) && Job(j,2)== CInput.ON(i) 
           CInput.MN(i) = Job(j,3); 
           CInput.OT(i) = Job(j,4); 
       end 
    end 
end 
  
% producing the starting point of each operation 
CInput.StartPoint(1)= 0; 
for i=2:size(CInput.JN,2) 
    if CInput.ON(i) == 1 
        CInput.StartPoint(i) = 0; 
    else 
        for j=i-1:-1:1 
            if CInput.JN(j)== CInput.JN(i) 
                CInput.StartPoint(i) = CInput.MN(j); 
                break 
            end 
        end 
    end 
end 
  
%producing Load AGV Time of travelling AGV 
for i=1:size(CInput.JN,2) 
    CInput.LAGVTime(i) = 
TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1); 
end 
  
if InitialAGV == 1 
    initAGV = ceil (size(CInput.JN,2)/10); 
    AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the 
current AGV's battery level 
    AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the 
current AGV position 
    AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of 
AGV where is it on operation (1) or in charging state (0) 
    AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the 
AGVData.State = 0 this shows the time that it has been connected to 
charger. 
    AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee 
agv was ready to perform new task 
    AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many 
times the AGV was charged 
elseif InitialAGV == 0 
    AGVData.Charge = [ChargeValue]; %Chrge is the current AGV's 
battery level 
    AGVData.Position = zeros(size(AGVData.Charge,2));% is the current 
AGV position 
    AGVData.State = ones(size(AGVData.Charge,2)); % is the state of 
AGV where is it on operation (1) or in charging state (0) 
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    AGVData.TimeOfCharging = zeros(size(AGVData.Charge,2)); % if the 
AGVData.State = 0 this shows the time that it has been connected to 
charger. 
    AGVData.ReadyTime = zeros(size(AGVData.Charge,2)); % when thee agv 
was ready to perform new task 
    AGVData.TimesCharged = zeros(size(AGVData.Charge,2)); % how many 
times the AGV was charged 
elseif InitialAGV == 2 
    initAGV = max(CInput.JN); 
    AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the 
current AGV's battery level 
    AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the 
current AGV position 
    AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of 
AGV where is it on operation (1) or in charging state (0) 
    AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the 
AGVData.State = 0 this shows the time that it has been connected to 
charger. 
    AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee 
agv was ready to perform new task 
    AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many 
times the AGV was charged     
end 
  
AGVData.Charge(1) = AGVData.Charge(1) - Gamma * 
TravTime(1,CInput.MN(1)+1); 
CInput.AGVN(1) = 1; 
CInput.ExeTime(1) = 0; 
CInput.UnLAGVTime(1) = TravTime(AGVData.Position 
(1)+1,CInput.StartPoint(1)+1); 
CInput.SrAGVIdleTime(1) = 0; 
CInput.StAGVIdleTime(1) = 0; 
CInput.TotalOpTime(1) = CInput.OT(1) + CInput.ExeTime(1) + 
CInput.UnLAGVTime(1) + ... 
    CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) + 
CInput.StAGVIdleTime(1); 
CInput.ExeTime(2) = CInput.ExeTime(1) + CInput.UnLAGVTime(1) + ... 
    CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) + 
CInput.StAGVIdleTime(1); 
AGVData.Position(1) = CInput.MN(1);%AGV position, 0 means at home 
   
for i=2:size(CInput.JN,2) 
    % avval tashkhis bede bebin az koja mikhai beri koja 
CInput.StartPoint(i) va CInput.MN(i) ro adad bede 
    % bebin un AGV agar bekhad bere load kone va unload kone cheghadr 
zaman 
    % migire, hamin karo vase tamame AGV haye mojood dar system anjam 
bede 
    % zemne in ke bebin sharjeshun kafi hast ya na 
  
    % agar zamane ye AGV jadid az nesfe AGV haye mojood kamtar bud AGV 
    % jadid biar to madar 
    % ChA = [ChA , ChargeValue]; 
    
    StPToHomeCharge = TravTime(CInput.MN(i)+1,1); 
    if CInput.ON(i) == 1 
        POp = 0;% previous operation related to this job 
    else 
        for j=i-1:-1:1 
            if CInput.JN(j)== CInput.JN(i) 
                POp = j; % previous operation related to this job 
                break 
            end 
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        end 
    end 
     
    for j=1:size(AGVData.Charge,2) 
        if AGVData.Charge(j) == ChargeValue && AGVData.Position(j) == 
0 && AGVData.State(j) == 2 
            addnew = 0; 
            break 
        else 
            addnew = 1 ; 
        end 
    end 
     
    if InitialAGV == 2 
        addnew = 0; 
    end 
     
    if addnew 
    %selecting proper AGV     
        AGVCalc.Charge = [AGVData.Charge,ChargeValue]; 
        AGVCalc.Position = [AGVData.Position , 0]; 
        AGVCalc.Time = zeros(size(AGVCalc.Charge)); 
        AGVCalc.select = zeros(size(AGVCalc.Charge)); 
        selectedAGV = 1 ; 
    else 
        AGVCalc.Charge = [AGVData.Charge]; 
        AGVCalc.Position = [AGVData.Position]; 
        AGVCalc.Time = zeros(size(AGVCalc.Charge)); 
        AGVCalc.select = zeros(size(AGVCalc.Charge)); 
        selectedAGV = 1 ; 
    end 
%      
% %selecting proper AGV     
%     AGVCalc.Charge = [AGVData.Charge,ChargeValue]; 
%     AGVCalc.Position = [AGVData.Position , 0]; 
%     AGVCalc.Time = zeros(size(AGVCalc.Charge)); 
%     AGVCalc.select = zeros(size(AGVCalc.Charge)); 
%     selectedAGV = 1 ; 
     
% Checking the charge of each AGV and charging state of them     
    for j=1:size(AGVData.Charge,2) 
        if AGVData.State(j) == 0 && AGVData.ReadyTime(j) <= 
(CInput.ExeTime (i)) 
            AGVData.Charge(j) = ChargeValue; 
            AGVData.Position(j) = 0; 
            AGVData.State(j) = 1; 
            AGVData.TimeOfCharging(j) = 0; 
            AGVData.TimesCharged (j) = AGVData.TimesCharged (j) + 1; 
        end 
    end 
    for j=1:size(AGVData.Charge,2) 
        if AGVData.Charge(j)< ... 
                
(TravTime(AGVData.Position(j)+1,CInput.StartPoint(i)+1) + ... 
                TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1))+ ... 
                TravTime(CInput.MN(i)+1,1) * ... 
                Gamma ... 
                && AGVData.State(j) ~= 0 
            AGVData.Charge(j) = AGVData.Charge(j) - 
TravTime(AGVData.Position(j)+1,1)*Gamma; 
            if AGVData.Charge(j) < 0 
               if exist('Error', 'var') 
                    Error.AGVData = [Error.AGVData; AGVData]; 
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                    Error.AGVSelection = [Error.AGVSelection; 
AGVCalc]; 
                    Error.CInput = [Error.CInput; CInput]; 
               else 
                    Error.AGVData = AGVData; 
                    Error.AGVSelection = AGVCalc; 
                    Error.CInput = CInput; 
               end 
            end 
            AGVCalc.select(j) = 2; 
            AGVData.State(j) = 0; 
            AGVData.TimeOfCharging(j) = CInput.ExeTime(i) + 
TravTime(AGVData.Position(j)+1,1); 
            AGVData.ReadyTime (j) = AGVData.TimeOfCharging(j) + 
ChargingTime; 
        end 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         
    for j=1:size(AGVCalc.Charge,2) 
        %testing the remainder of charge after operation 
       AGVCalc.Time(j) = 
TravTime(AGVCalc.Position(j)+1,CInput.StartPoint(i)+1) + ... 
           TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1) * Gamma; 
  
       AGVCalc.Charge (j)  = AGVCalc.Charge (j) - StPToHomeCharge - 
... 
           AGVCalc.Time(j)* Gamma ; 
        
       if j <= size(AGVData.State,2) 
           if AGVData.State(j) == 0 
               AGVCalc.select(j) = 2; 
           end 
       end 
       %Selecting the AGV 
       if (j > 1 && j < size(AGVCalc.Charge,2) && AGVCalc.select(j) ~= 
2 ) && InitialAGV ~= 2 
           if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) || 
AGVCalc.select(selectedAGV) == 2 
               selectedAGV = j; 
           end 
       end 
       if j == size(AGVCalc.Charge,2) && InitialAGV ~= 2 
           if Alpha * AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) || 
AGVCalc.select(selectedAGV) == 2 
               selectedAGV = j; 
               AGVData.Charge = [AGVData.Charge,ChargeValue]; 
               AGVData.Position = [AGVData.Position,0]; 
               AGVData.State = [AGVData.State,1]; 
               AGVData.TimeOfCharging = [AGVData.TimeOfCharging,0]; 
               AGVData.ReadyTime = [AGVData.ReadyTime,0]; 
               AGVData.TimesCharged = [AGVData.TimesCharged,0]; 
           end 
       end 
        
      if (j > 1 && AGVCalc.select(j) ~= 2 ) && InitialAGV == 2 
           if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) || 
AGVCalc.select(selectedAGV) == 2 
               selectedAGV = j; 
           end 
       end 
    end 
    if min(AGVCalc.select)== 2 
        [A,Index] = min(AGVData.ReadyTime); 
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        if CInput.ExeTime(i) < A 
            CInput.ExeTime(i) = A; 
            selectedAGV = Index; 
            AGVData.Charge(selectedAGV) = ChargeValue; 
            AGVData.Position(selectedAGV) = 0; 
            AGVData.State(selectedAGV) = 1; 
            AGVData.TimeOfCharging(selectedAGV) = 0; 
            AGVData.TimesCharged (selectedAGV) = AGVData.TimesCharged 
(selectedAGV) + 1; 
        end 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    MachineDelayToUnload = 0; 
    for j=i-1:-1:1 
       if CInput.MN(i) == CInput.MN(j) 
           MachineDelayToUnload = CInput.TotalOpTime(j); %Previous 
operation of the machine 
           break; 
       end 
    end 
     
    CInput.UnLAGVTime(i) = TravTime(AGVData.Position 
(selectedAGV)+1,CInput.StartPoint(i)+1); 
     
    if CInput.ON(i) == 1 
       CInput.SrAGVIdleTime(i) = 0; 
       CInput.StAGVIdleTime(i) = MachineDelayToUnload - 
(CInput.ExeTime(i) + ... 
           CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) + 
CInput.LAGVTime(i));  
        
        if CInput.StAGVIdleTime(i)<0 
           CInput.StAGVIdleTime(i) = 0; 
        end 
    else 
         
       % calculate the starting Idle time 
       CInput.SrAGVIdleTime(i) = CInput.TotalOpTime(POp) - 
(CInput.ExeTime(i) + CInput.UnLAGVTime(i)); 
       if CInput.SrAGVIdleTime(i)<0 
           CInput.SrAGVIdleTime(i) = 0; 
       end 
       % calculate the Stopp ing Idle time 
       CInput.StAGVIdleTime(i) = MachineDelayToUnload - 
(CInput.ExeTime(i) + ... 
           CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) + 
CInput.LAGVTime(i)); 
       if CInput.StAGVIdleTime(i)<0 
           CInput.StAGVIdleTime(i) = 0; 
       end         
    end 
     
    CInput.TotalOpTime(i) = CInput.OT(i) + CInput.ExeTime(i) + 
CInput.UnLAGVTime(i) + ... 
        CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) + 
CInput.StAGVIdleTime(i); 
     
    AGVData.Charge(selectedAGV) = AGVData.Charge(selectedAGV) - ... 
       Gamma * (CInput.UnLAGVTime(i) + CInput.LAGVTime(i)); 
    AGVData.Position(selectedAGV) = CInput.MN(i); 
    CInput.AGVN(i) = selectedAGV; 
    if i<size(CInput.JN,2) 
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       CInput.ExeTime(i+1) = CInput.ExeTime(i) + CInput.UnLAGVTime(i) 
+ ... 
            CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) + 
CInput.StAGVIdleTime(i); 
    end 
     
    clear AGVCalc; 
    DeadEnd = 0; 
        
end 
output.Y.Makespan(ieval,1) = max(CInput.TotalOpTime); 
output.Y.NAGV(ieval,1) = size(AGVData.Charge,2); 
AGVN = CInput.AGVN; 
End 
 

HGP 2 
clc 
clear variables 
  
[ problem ] = Problem4; 
for w = 1:problem.maxRun 
    tic; 
    problem.Weighted sum = '+';   % '+' --> makespan + AGV, '*'--> 
makespan * AGV, 
                            % 'makespan' --> makespan, 'AGV' --> AGV, 
    %% Parameter tune                         
    HGAPSO.Parameter.MaxGen = 200;                  %Generation, 
programmer default=500 
    HGAPSO.Parameter.UB = 10; 
    HGAPSO.Parameter.LB = 0; 
    HGAPSO.Parameter.D = problem.Dimension; 
    HGAPSO.Parameter.N = 200;                       % population, 
programmer default=20 
    HGAPSO.Parameter.C = [0.01, 0.9];                % [C1 , C2] 
    HGAPSO.Parameter.InertiaWeight = [0.01, 0.5];    % [Minimum 
inertia weight, Maximum inertia weight,] 
    HGAPSO.Parameter.alfa = 0;                      % Parameter for 
linear crossover, 0 by default 
    HGAPSO.Parameter.Pc = 0.9;                      % Crossover 
probability, 0.9 by default 
    HGAPSO.Parameter.Pm = 0.08;                     % Mutation 
probability, 0.1 by default 
    HGAPSO.Parameter.CrP = 0.2;                     % percentage 
iterations with crossover 
    HGAPSO.Parameter.Elitism = [1, 0.0, 1.0];       % Elitism for GA  
starting and ending percent from maximum iteration 
                                                    % FOR 
Hybrid_GA_PSO 
    HGAPSO.Parameter.parallel = 1;                  % 1 = PSO output 
to GA, 0 = GA from old results 
    HGAPSO.Parameter.Reconstructor = 0.2;           % the percentage 
which worst results should be regenerated 
    %% RUN 
    [HGAPSO.output] = Hybrid_GA_PSO_1(HGAPSO.Parameter, problem); 
    HGAPSO.time = toc; 
%% ------------------------Report Hybrid GA - PSO -------------------- 
    HGAPSO.output.History.Y.Makespan(1,:) = []; 
    HGAPSO.output.History.Y.Eval(1,:) = []; 
    HGAPSO.output.History.Y.NAGV(1,:) = [];     
  
    [HGAPSO.output.Best.Y.Eval, I] = 
min(HGAPSO.output.History.Y.Eval); 
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    HGAPSO.output.Best.Y.Makespan = 
HGAPSO.output.History.Y.Makespan(I); 
    HGAPSO.output.Best.Y.NAGV = HGAPSO.output.History.Y.NAGV(I); 
    HGAPSO.output.Best.X = HGAPSO.output.History.X(I,:); 
    fprintf('The Hybrid GA-PSO  results with "%6.0f " function 
evaluation       \n', HGAPSO.Parameter.MaxGen * HGAPSO.Parameter.N ); 
    fprintf('Makespan = %9.0f \nNumber of AGV = %3.0f \n', 
HGAPSO.output.Best.Y.Makespan, HGAPSO.output.Best.Y.NAGV); 
    fprintf('time = %4.4f Sec\n', HGAPSO.time); 
    fprintf('\n----------------------------------------------------
\n\n'); 
    HGAPSO.output.Best.Y.Eval = min(HGAPSO.output.History.Y.Eval); 
    HGAPSO.output.Best.Y.Makespan = 
min(HGAPSO.output.History.Y.Makespan); 
    HGAPSO.output.Best.Y.NAGV = min(HGAPSO.output.History.Y.NAGV);     
  
    HGAPSO.output.Worst.Y.Eval = max(HGAPSO.output.History.Y.Eval); 
    HGAPSO.output.Worst.Y.Makespan = 
max(HGAPSO.output.History.Y.Makespan); 
    HGAPSO.output.Worst.Y.NAGV = max(HGAPSO.output.History.Y.NAGV); 
  
    HGAPSO.output.Mean.Y.Eval = mean(HGAPSO.output.History.Y.Eval); 
    HGAPSO.output.Mean.Y.Makespan = 
mean(HGAPSO.output.History.Y.Makespan); 
    HGAPSO.output.Mean.Y.NAGV = mean(HGAPSO.output.History.Y.NAGV); 
  
    HGAPSO.output.ST.Y.Eval = std(HGAPSO.output.History.Y.Eval); 
    HGAPSO.output.ST.Y.Makespan = 
std(HGAPSO.output.History.Y.Makespan); 
    HGAPSO.output.ST.Y.NAGV = std(HGAPSO.output.History.Y.NAGV); 
  
    finalReport.HGAPSO.Eval(w,:) = [HGAPSO.output.Best.Y.Eval, 
HGAPSO.output.Worst.Y.Eval, HGAPSO.output.Mean.Y.Eval, 
HGAPSO.output.ST.Y.Eval]; 
    finalReport.HGAPSO.Makespan(w,:) = [HGAPSO.output.Best.Y.Makespan, 
HGAPSO.output.Worst.Y.Makespan, HGAPSO.output.Mean.Y.Makespan, 
HGAPSO.output.ST.Y.Makespan]; 
    finalReport.HGAPSO.NAGV(w,:) = [HGAPSO.output.Best.Y.NAGV, 
HGAPSO.output.Worst.Y.NAGV, HGAPSO.output.Mean.Y.NAGV, 
HGAPSO.output.ST.Y.NAGV];     
%% ----------------------------- Save Iterations --------------------- 
  
    Record(w).HGAPSO = HGAPSO; 
    clear HGAPSO 
end 
%% ----------------------------- Summary Hybrid GA PSO ---------------     
  
    [finalReport.excel(7,1),I] = min(finalReport.HGAPSO.Eval(:,1)); 
    finalReport.excel(7,2) = max(finalReport.HGAPSO.Eval(:,2)); 
    finalReport.excel(7,3) = min(finalReport.HGAPSO.Eval(:,3)); 
    finalReport.excel(7,4) = min(finalReport.HGAPSO.Eval(:,4));       
  
    finalReport.excel(8,1) = min(finalReport.HGAPSO.Makespan(:,1)); 
    finalReport.excel(8,2) = max(finalReport.HGAPSO.Makespan(:,2)); 
    finalReport.excel(8,3) = min(finalReport.HGAPSO.Makespan(:,3)); 
    finalReport.excel(8,4) = min(finalReport.HGAPSO.Makespan(:,4)); 
  
    finalReport.excel(9,1) = min(finalReport.HGAPSO.NAGV(:,1)); 
    finalReport.excel(9,2) = max(finalReport.HGAPSO.NAGV(:,2)); 
    finalReport.excel(9,3) = min(finalReport.HGAPSO.NAGV(:,3)); 
    finalReport.excel(9,4) = min(finalReport.HGAPSO.NAGV(:,4)); 
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    HGAPSO = Record(I).HGAPSO; 
  
%% ------------------------ Draw Graph ------------------------------- 
        CountHGAPSO = [1:HGAPSO.Parameter.MaxGen]; 
  
        MAXIMUM = max([max(HGAPSO.output.History.Y.Makespan)]); 
        DIGIT = ceil(log10(abs(MAXIMUM))/2); 
        Max_Axe = ceil(MAXIMUM/(10^DIGIT))*10^DIGIT; 
        MINIMUM = min([min(HGAPSO.output.History.Y.Makespan)]); 
        DIGIT = ceil(log10(abs(MINIMUM))/2); 
        Min_Axe = floor(MINIMUM/(10^DIGIT))*10^DIGIT;     
  
%% -------------------------- Plot Hybrid GA-PSO --------------------- 
        HGAPSOPLOT = zeros(HGAPSO.Parameter.MaxGen,3); 
        for i = 1 : HGAPSO.Parameter.MaxGen-1 
            HGAPSOPLOT(i,1) =   min( 
HGAPSO.output.History.Y.Makespan(((i-1)*HGAPSO.Parameter.N+1) : 
(i*HGAPSO.Parameter.N))); 
            HGAPSOPLOT(i,2) =   max( 
HGAPSO.output.History.Y.Makespan(((i-1)*HGAPSO.Parameter.N+1) : 
(i*HGAPSO.Parameter.N))); 
            HGAPSOPLOT(i,3) =   sum( 
HGAPSO.output.History.Y.Makespan(((i-1)*HGAPSO.Parameter.N+1) : 
(i*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N; 
        end 
  
        HGAPSOPLOT(HGAPSO.Parameter.MaxGen,1) =   min( 
HGAPSO.output.History.Y.Makespan(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) : 
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N))); 
        HGAPSOPLOT(HGAPSO.Parameter.MaxGen,2) =   max( 
HGAPSO.output.History.Y.Makespan(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) : 
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N))); 
        HGAPSOPLOT(HGAPSO.Parameter.MaxGen,3) =   sum( 
HGAPSO.output.History.Y.Makespan(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) : 
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N; 
  
        figure('Name','Hybrid GA-PSO Minimum','NumberTitle','off') 
        plot ( CountHGAPSO, HGAPSOPLOT(:,1)) 
        axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
        figure('Name','Hybrid GA-PSO Maximum','NumberTitle','off') 
        plot ( CountHGAPSO, HGAPSOPLOT(:,2)) 
        axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
        figure('Name','Hybrid GA-PSO Mean','NumberTitle','off') 
        plot ( CountHGAPSO, HGAPSOPLOT(:,3)) 
        axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
  
        filename = strcat('Record_HGAPSO_', num2str(sum(clock)*1000), 
'.mat'); 
        save(filename,'Record'); 
         
MAIN (including four algorithms together) 
clc 
% clear variables 
[ problem ] = Problem4; 
for run = 1:problem.maxRun 
     
    fprintf('---------------- Run #%2.0f --------------------- \n', 
run ); 
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    problem.Weighted sum = '+maxmakespan';   % '+' --> makespan + AGV, 
'*'--> makespan * AGV, 
                            % 'makespan' --> makespan, 'AGV' --> AGV,                  
%% -----------------------------------PSO----------------------------- 
    tic; 
    PSO.Parameter.MaxGen = 100;                    %Generation, 
programmer default=500 
    PSO.Parameter.UB = 10;                          %upper boundary 
    PSO.Parameter.LB = 0;                           %Lower boundary 
    PSO.Parameter.N = 100;                           %population, 
programmer default=20 
    PSO.Parameter.D = problem.Dimension; 
    PSO.Parameter.C = [2, 2];                   %[C1, C2,], programmer 
default=[2, 2] 
    PSO.Parameter.InertiaWeight = [0.2, 0.6];       %[Minimum inertia 
weight, Maximum inertia weight,], default[0.2, 0.6] 
     
    [PSO.output] = PSO_func(PSO.Parameter, problem); 
    PSO.time = toc; 
%% ----------------------------------GA------------------------------- 
    tic; 
    GA.Parameter.MaxGen = 100;              %Generation, programmer 
default=100 
    GA.Parameter.UB = 10;                   %upper boundary 
    GA.Parameter.LB = 0;                    %Lower boundary 
    GA.Parameter.D = problem.Dimension;      
    GA.Parameter.N = 100;                   %population, programmer 
default=100 
    GA.Parameter.alfa = 0;                  % Parameter for linear 
crossover, 0 by default 
    GA.Parameter.Pc = 0.2;                  %Crossover probability, 
0.9 by default 
    GA.Parameter.Pm = 0.03;                 % Mutation probability, 
0.1 by default 
  
    [GA.output] = GA_func(GA.Parameter, problem); 
    GA.time = toc; 
%% ---------------------------- HGP1 -------------------------------- 
    tic; 
    %% Parameter tune                         
    HGAPSO.Parameter.MaxGen = 100;                  %Generation, 
programmer default=500 
    HGAPSO.Parameter.UB = 10; 
    HGAPSO.Parameter.LB = 0; 
    HGAPSO.Parameter.D = problem.Dimension; 
    HGAPSO.Parameter.N = 100;                       % population, 
programmer default=20 
    HGAPSO.Parameter.C = [0.01, 0.9];                % [C1 , C2] 
    HGAPSO.Parameter.InertiaWeight = [0.01, 0.5];    % [Minimum 
inertia weight, Maximum inertia weight,] 
    HGAPSO.Parameter.alfa = 0;                      % Parameter for 
linear crossover, 0 by default 
    HGAPSO.Parameter.Pc = 0.9;                      % Crossover 
probability, 0.9 by default 
    HGAPSO.Parameter.Pm = 0.08;                     % Mutation 
probability, 0.1 by default 
    HGAPSO.Parameter.CrP = 0.2;                     % percentage 
iterations with crossover 
    HGAPSO.Parameter.Elitism = [1, 0.0, 1.0];       % Elitism for GA  
starting and ending percent from maximum iteration 
                                                    % FOR 
Hybrid_GA_PSO 
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    HGAPSO.Parameter.parallel = 1;                  % 1 = PSO output 
to GA, 0 = GA from old results 
    HGAPSO.Parameter.Reconstructor = 0.2;           % the percentage 
which worst results should be regenerated 
  
    [HGAPSO.output] = Hybrid_GA_PSO_1(HGAPSO.Parameter, problem); 
    HGAPSO.time = toc; 
%% ---------------------------- HGP2--------------------------------- 
    tic; 
    %% Parameter tune                         
    HGAPSO.Parameter.MaxGen = 100;                  %Generation, 
programmer default=500 
    HGAPSO.Parameter.UB = 10; 
    HGAPSO.Parameter.LB = 0; 
    HGAPSO.Parameter.D = problem.Dimension; 
    HGAPSO.Parameter.N = 100;                       % population, 
programmer default=20 
    HGAPSO.Parameter.C = [0.01, 0.9];                % [C1 , C2] 
    HGAPSO.Parameter.InertiaWeight = [0.01, 0.5];    % [Minimum 
inertia weight, Maximum inertia weight,] 
    HGAPSO.Parameter.alfa = 0;                      % Parameter for 
linear crossover, 0 by default 
    HGAPSO.Parameter.Pc = 0.9;                      % Crossover 
probability, 0.9 by default 
    HGAPSO.Parameter.Pm = 0.08;                     % Mutation 
probability, 0.1 by default 
    HGAPSO.Parameter.CrP = 0.2;                     % percentage 
iterations with crossover 
    HGAPSO.Parameter.Elitism = [1, 0.0, 1.0];       % Elitism for GA  
starting and ending percent from maximum iteration 
                                                    % FOR 
Hybrid_GA_PSO 
                                                     
    HGAPSO.Parameter.parallel = 1;                  % 1 = PSO output 
to GA, 0 = GA from old results 
    HGAPSO.Parameter.Reconstructor = 0.2;           % the percentage 
which worst results should be regenerated 
  
    [HGAPSO.output] = Hybrid_GA_PSO_1(HGAPSO.Parameter, problem); 
    HGAPSO.time = toc; 
%% ----------------------------Report PSO----------------------------- 
    PSO.output.History.Y.Makespan(1,:) = []; 
    PSO.output.History.Y.Eval(1,:) = []; 
    PSO.output.History.Y.NAGV(1,:) = []; 
%     PSO.output.History.X(1,:) = []; 
  
%% ----------------------------Report GA------------------------------ 
    GA.output.History.Y.Makespan(1,:) = []; 
    GA.output.History.Y.Eval(1,:) = []; 
    GA.output.History.Y.NAGV(1,:) = [];   
%     GA.output.History.X(1,:) = []; 
     
%% ------------------------Report Hybrid GA - PSO -------------------- 
    HGAPSO.output.History.Y.Makespan(1,:) = []; 
    HGAPSO.output.History.Y.Eval(1,:) = []; 
    HGAPSO.output.History.Y.NAGV(1,:) = [];  
%     HGAPSO.output.History.X(1,:) = []; 
  
%% ----------------------------- Save Iterations --------------------- 
    Record(run).GA = GA; 
    Record(run).PSO = PSO; 
    Record(run).HGAPSO = HGAPSO; 
    Record(run).time = GA.time + PSO.time + HGAPSO.time; 
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%% ----------------------------- Clear Variables --------------------- 
    if problem.maxRun > 1 
        clear GA PSO HGAPSO 
    end   
    fprintf('Total Runing time for this Run: %4.4f 
Sec\n\n',Record(run).time); 
    fprintf('GA Runing time for this Run: %4.4f 
Sec\n\n',Record(run).GA.time); 
    fprintf('PSO Runing time for this Run: %4.4f 
Sec\n\n',Record(run).PSO.time ); 
    fprintf('HGAPSO Runing time for this Run: %4.4f 
Sec\n\n',Record(run).HGAPSO.time); 
  
end 
% %% ----------------------------- Save Data ------------------------- 
%  
% filename = strcat('Record_', num2str(sum(clock)*1000), '.mat'); 
% save(filename,'Record'); 
  
%% ----------------------------- Reporting --------------------------- 
Record = ReportRecord( Record ); 
% DrawGraph( Record, finalReport, maxRun); 
% DrawGraohMakespan( Record, finalReport, problem); 
% [Best.GA.Y,I] = min(Record.GA.output.History.Y.Eval); 
% Best.GA.X = Record.GA.output.History.X(I,:); 
% Best.GA.HistoryIndex = I; 
%  
% [Best.PSO.Y,I] = min(Record.PSO.output.History.Y.Eval); 
% Best.PSO.X = Record.PSO.output.History.X(I,:); 
% Best.PSO.HistoryIndex = I; 
%  
% [Best.HGAPSO.Y,I] = min(Record.GA.output.History.Y.Eval); 
% Best.HGAPSO.X = Record.HGAPSO.output.History.X(I,:); 
% Best.HGAPSO.HistoryIndex = I; 
 
PROBLEM 
function [ problem ] = Problem4( ) 
  
% input = [4 1 5 3 6 2 4 3 1 3 1 6 4 3 2 3 1 6 2 4 1 3 5 4 3 2 1 2 1 4 
5 3 2 6 1 6]; 
% input = [3 4 1 1 2 2 1 2 1 3 3 3]; 
  
  
% Table 1                    
% Min   L/U M1  M2  M3  M4  M5  M6 
% L/U   0   6   8   10  12  17  19 
% M1    15  0   2   5   7   12  14 
% M2    13  18  0   3   5   10  12 
% M3    10  15  17  0   2   7   9 
% M4    8   13  15  18  0   5   7 
% M5    3   8   10  13  15  0   2 
% M6    1   6   8   11  13  18  0 
%  
%  
%  
% Table 2 
% Code  Operation   Machine Operation-time   
% 1         11         2          30         
% 1         12         1          21         
% 1         13         5          24         
% 1         14         6          27         
% 
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% 2         21         1          15         
% 2         22         4          24         
% 2         23         6          13         
%                    
% 3         31         1          16         
% 3         32         2          21         
% 3         33         3          3      
% 3         34         4          14         
% 3         35         6          25         
  
  
% TravTime = [ 0    6   8   10  12  17  19 
%              15   0   2   5   7   12  14 
%              13   18  0   3   5   10  12 
%              10   15  17  0   2   7   9 
%              8    13  15  18  0   5   7 
%              3    8   10  13  15  0   2 
%              1    6   8   11  13  18  0   ]; 
          
          
problem.TravTime = [ 0  6 18 28 42 36 38 17 50 63 37 24 10 
                     34 0 12 22 36 50 52 31 64 77 71 58 44 
                     22 28 0 10 24 38 40 19 52 65 59 46 32 
                     34 40 52 0 14 28 48 31 42 55 71 58 44 
                     34 40 52 42 0 14 34 31 28 41 71 58 44 
                     58 64 76 66 80 0 20 41 14 27 61 48 68 
                     38 46 58 46 60 54 0 21 12 25 41 28 48 
                     17 23 35 25 39 33 21 0 33 46 40 27 27 
                     64 70 82 72 86 80 44 47 0 13 67 54 74 
                     51 57 69 59 73 67 31 34 43 0 54 41 61 
                     41 47 59 49 63 57 21 24 33 46 0 31 51 
                     54 60 72 62 76 70 34 37 46 59 13 0 64 
                     44 50 62 52 66 60 28 27 40 53 27 14 0 ];          
          
% Job =     [ 1       1         2          30        
%             1       2         1          21        
%             1       3         5          24        
%             1       4         6          27        
%             2       1         1          15        
%             2       2         4          24        
%             2       3         6          13        
%             3       1         1          16        
%             3       2         2          21        
%             3       3         3          3         
%             3       4         4          14        
%             3       5         6          25    ]; 
  
problem.Job =     [ 1       1         2          37      
                    1       2         6          33      
                    1       3         5          34      
                    1       4         8          35      
                    1       5         1          23      
                    1       6         12         34      
                    1       7         7          37 
                    1       8         5          26 
                    2       1         3          23      
                    2       2         4          26      
                    2       3         6          27      
                    2       4         11         25      
                    2       5         10         34      
                    2       6         9          23 
                    3       1         1          26      
                    3       2         2          25      
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                    3       3         10         31      
                    3       4         4          24      
                    3       5         6          25     
                    3       6         7          13      
                    3       7         8          14  
                    3       8         11         23  
                    4       1         1          16 
                    4       2         7          11 
                    4       3         5          23 
                    4       4         12         34 
                    4       5         6          25 
                    4       6         8          13 
                    5       1         1          16 
                    5       2         7          11 
                    5       3         9          31 
                    6       1         3          26 
                    6       2         2          31 
                    6       3         10         23 
                    6       4         4          24 
                    6       5         11         35]; 
  
problem.Dimension = size(problem.Job,1); 
  
problem.Gamma = 1;  %the ratio of energy consumption to the time 
problem.Alpha = 1.5; 
problem.ChargingTime = 40; 
problem.ChargeValue = 200; 
problem.InitialAGV = 1;% 0 = starrt with one AGV, 1 = Start with 
1/10th of genes, 2 = the number of AGVs is equal to Number of Jobs 
problem.maxRun = 30; 
  
FITNESS FUNCTION 
function [ output ] = Fitness(ieval, problem, output) 
  
Discrete_X = output.X(ieval,:); 
TravTime = problem.TravTime; 
Job = problem.Job; 
Gamma = problem.Gamma; 
Alpha = problem.Alpha; 
ChargingTime = problem.ChargingTime; 
Dimension = problem.Dimension ; 
InitialAGV = problem.InitialAGV; 
ChargeValue = problem.ChargeValue; 
  
CInput.JN = Discrete_X; % job number ;  
CInput.ON = Discrete_X; % Operation Number; 
CInput.StartPoint = Discrete_X; % Machine Number ; 
CInput.MN = Discrete_X; % Machine Number ; 
CInput.AGVN = zeros(size(CInput.JN)); % AGV Number which assigned to 
load. 
CInput.OT = Discrete_X; % Operation Time; 
CInput.ExeTime = zeros(size(CInput.JN)); % The time when the operation 
started,  
                                         %this time is the time that 
AGV start  
                                         %to move to pick the part 
from previous position 
                                          
CInput.UnLAGVTime = zeros(size(CInput.JN)); % this the time that take 
to AGV go to  
                                            % the pick up position of 
the part 
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                                            % from current position to 
CInput.StartPoint 
                                             
CInput.LAGVTime = zeros(size(CInput.JN));   % This is the time take to 
AGV reach  
                                            % the position of the 
operation and 
                                            % from 
CInput.StartPoint(i) to CInput.MN(i) 
                                             
CInput.SrAGVIdleTime = zeros(size(CInput.JN));% this is the time that 
AGV is idle  
                                            % to unload the part from 
previous machine 
                                            % and move to the new 
machine 
                                            % for new operation. 
                                             
CInput.StAGVIdleTime = zeros(size(CInput.JN));% this is the time that 
AGV is idle  
                                            % to load the part into 
the machine 
                                            % if the machine is stil 
                                            % running for the previous 
                                            % operation.                                            

  
CInput.TotalOpTime = zeros(size(CInput.JN));% This is the total time 
required  
                                            % to finish the operation. 
                                             
                                             
%Calculating the operation number 
for i=1:size(CInput.ON,2) 
    index = 0; 
    for j=1:i 
        if CInput.JN(j) == CInput.JN(i) 
            index = index +1; 
        end 
    end 
    CInput.ON(i) = index; 
end 
  
% Importing machine number and operation time for each operatiion. 
for i=1:size(CInput.JN,2) 
    for j=1:size(CInput.JN,2) 
       if Job(j,1)== CInput.JN(i) && Job(j,2)== CInput.ON(i) 
           CInput.MN(i) = Job(j,3); 
           CInput.OT(i) = Job(j,4); 
       end 
    end 
end 
  
% producing the starting point of each operation 
CInput.StartPoint(1)= 0; 
for i=2:size(CInput.JN,2) 
    if CInput.ON(i) == 1 
        CInput.StartPoint(i) = 0; 
    else 
        for j=i-1:-1:1 
            if CInput.JN(j)== CInput.JN(i) 
                CInput.StartPoint(i) = CInput.MN(j); 
                break 
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            end 
        end 
    end 
end 
  
%producing Load AGV Time of travelling AGV 
for i=1:size(CInput.JN,2) 
    CInput.LAGVTime(i) = 
TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1); 
end 
  
if InitialAGV == 1 
    initAGV = ceil (size(CInput.JN,2)/10); 
    AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the 
current AGV's battery level 
    AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the 
current AGV position 
    AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of 
AGV where is it on operation (1) or in charging state (0) 
    AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the 
AGVData.State = 0 this shows the time that it has been connected to 
charger. 
    AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee 
agv was ready to perform new task 
    AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many 
times the AGV was charged 
elseif InitialAGV == 0 
    AGVData.Charge = [ChargeValue]; %Chrge is the current AGV's 
battery level 
    AGVData.Position = zeros(size(AGVData.Charge,2));% is the current 
AGV position 
    AGVData.State = ones(size(AGVData.Charge,2)); % is the state of 
AGV where is it on operation (1) or in charging state (0) 
    AGVData.TimeOfCharging = zeros(size(AGVData.Charge,2)); % if the 
AGVData.State = 0 this shows the time that it has been connected to 
charger. 
    AGVData.ReadyTime = zeros(size(AGVData.Charge,2)); % when thee agv 
was ready to perform new task 
    AGVData.TimesCharged = zeros(size(AGVData.Charge,2)); % how many 
times the AGV was charged 
elseif InitialAGV == 2 
    initAGV = max(CInput.JN); 
    AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the 
current AGV's battery level 
    AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the 
current AGV position 
    AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of 
AGV where is it on operation (1) or in charging state (0) 
    AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the 
AGVData.State = 0 this shows the time that it has been connected to 
charger. 
    AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee 
agv was ready to perform new task 
    AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many 
times the AGV was charged     
end 
  
AGVData.Charge(1) = AGVData.Charge(1) - Gamma * 
TravTime(1,CInput.MN(1)+1); 
CInput.AGVN(1) = 1; 
CInput.ExeTime(1) = 0; 
CInput.UnLAGVTime(1) = TravTime(AGVData.Position 
(1)+1,CInput.StartPoint(1)+1); 
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CInput.SrAGVIdleTime(1) = 0; 
CInput.StAGVIdleTime(1) = 0; 
CInput.TotalOpTime(1) = CInput.OT(1) + CInput.ExeTime(1) + 
CInput.UnLAGVTime(1) + ... 
    CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) + 
CInput.StAGVIdleTime(1); 
CInput.ExeTime(2) = CInput.ExeTime(1) + CInput.UnLAGVTime(1) + ... 
    CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) + 
CInput.StAGVIdleTime(1); 
AGVData.Position(1) = CInput.MN(1);%AGV position, 0 means at home 
  
for i=2:size(CInput.JN,2) 
    % avval tashkhis bede bebin az koja mikhai beri koja 
CInput.StartPoint(i) va CInput.MN(i) ro adad bede 
    % bebin un AGV agar bekhad bere load kone va unload kone cheghadr 
zaman 
    % migire, hamin karo vase tamame AGV haye mojood dar system anjam 
bede 
    % zemne in ke bebin sharjeshun kafi hast ya na 
  
    % agar zamane ye AGV jadid az nesfe AGV haye mojood kamtar bud AGV 
    % jadid biar to madar 
    % ChA = [ChA , ChargeValue]; 
     
    StPToHomeCharge = TravTime(CInput.MN(i)+1,1); 
    if CInput.ON(i) == 1 
        POp = 0;% previous operation related to this job 
    else 
        for j=i-1:-1:1 
            if CInput.JN(j)== CInput.JN(i) 
                POp = j; % previous operation related to this job 
                break 
            end 
        end 
    end 
     
    for j=1:size(AGVData.Charge,2) 
        if AGVData.Charge(j) == ChargeValue && AGVData.Position(j) == 
0 && AGVData.State(j) == 2 
            addnew = 0; 
            break 
        else 
            addnew = 1 ; 
        end 
    end 
     
    if InitialAGV == 2 
        addnew = 0; 
    end 
     
    if addnew 
    %selecting proper AGV     
        AGVCalc.Charge = [AGVData.Charge,ChargeValue]; 
        AGVCalc.Position = [AGVData.Position , 0]; 
        AGVCalc.Time = zeros(size(AGVCalc.Charge)); 
        AGVCalc.select = zeros(size(AGVCalc.Charge)); 
        selectedAGV = 1 ; 
    else 
        AGVCalc.Charge = [AGVData.Charge]; 
        AGVCalc.Position = [AGVData.Position]; 
        AGVCalc.Time = zeros(size(AGVCalc.Charge)); 
        AGVCalc.select = zeros(size(AGVCalc.Charge)); 
        selectedAGV = 1 ; 
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    end 
   
% %selecting proper AGV     
%     AGVCalc.Charge = [AGVData.Charge,ChargeValue]; 
%     AGVCalc.Position = [AGVData.Position , 0]; 
%     AGVCalc.Time = zeros(size(AGVCalc.Charge)); 
%     AGVCalc.select = zeros(size(AGVCalc.Charge)); 
%     selectedAGV = 1 ; 
     
% Checking the charge of each AGV and charging state of them     
    for j=1:size(AGVData.Charge,2) 
        if AGVData.State(j) == 0 && AGVData.ReadyTime(j) <= 
(CInput.ExeTime (i)) 
            AGVData.Charge(j) = ChargeValue; 
            AGVData.Position(j) = 0; 
            AGVData.State(j) = 1; 
            AGVData.TimeOfCharging(j) = 0; 
            AGVData.TimesCharged (j) = AGVData.TimesCharged (j) + 1; 
        end 
    end 
    for j=1:size(AGVData.Charge,2) 
        if AGVData.Charge(j)< ... 
                
(TravTime(AGVData.Position(j)+1,CInput.StartPoint(i)+1) + ... 
                TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1))+ ... 
                TravTime(CInput.MN(i)+1,1) * ... 
                Gamma ... 
                && AGVData.State(j) ~= 0 
            AGVData.Charge(j) = AGVData.Charge(j) - 
TravTime(AGVData.Position(j)+1,1)*Gamma; 
            if AGVData.Charge(j) < 0 
               if exist('Error', 'var') 
                    Error.AGVData = [Error.AGVData; AGVData]; 
                    Error.AGVSelection = [Error.AGVSelection; 
AGVCalc]; 
                    Error.CInput = [Error.CInput; CInput]; 
               else 
                    Error.AGVData = AGVData; 
                    Error.AGVSelection = AGVCalc; 
                    Error.CInput = CInput; 
               end 
            end 
            AGVCalc.select(j) = 2; 
            AGVData.State(j) = 0; 
            AGVData.TimeOfCharging(j) = CInput.ExeTime(i) + 
TravTime(AGVData.Position(j)+1,1); 
            AGVData.ReadyTime (j) = AGVData.TimeOfCharging(j) + 
ChargingTime; 
             
        end 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         
    for j=1:size(AGVCalc.Charge,2) 
        %testing the remainder of charge after operation 
       AGVCalc.Time(j) = 
TravTime(AGVCalc.Position(j)+1,CInput.StartPoint(i)+1) + ... 
           TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1) * Gamma; 
  
       AGVCalc.Charge (j)  = AGVCalc.Charge (j) - StPToHomeCharge - 
... 
           AGVCalc.Time(j)* Gamma ; 
        
       if j <= size(AGVData.State,2) 
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           if AGVData.State(j) == 0 
               AGVCalc.select(j) = 2; 
           end 
       end 
       %Selecting the AGV 
       if (j > 1 && j < size(AGVCalc.Charge,2) && AGVCalc.select(j) ~= 
2 ) && InitialAGV ~= 2 
           if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) || 
AGVCalc.select(selectedAGV) == 2 
               selectedAGV = j; 
           end 
       end 
       if j == size(AGVCalc.Charge,2) && InitialAGV ~= 2 
           if Alpha * AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) || 
AGVCalc.select(selectedAGV) == 2 
               selectedAGV = j; 
               AGVData.Charge = [AGVData.Charge,ChargeValue]; 
               AGVData.Position = [AGVData.Position,0]; 
               AGVData.State = [AGVData.State,1]; 
               AGVData.TimeOfCharging = [AGVData.TimeOfCharging,0]; 
               AGVData.ReadyTime = [AGVData.ReadyTime,0]; 
               AGVData.TimesCharged = [AGVData.TimesCharged,0]; 
           end 
       end 
        
      if (j > 1 && AGVCalc.select(j) ~= 2 ) && InitialAGV == 2 
           if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) || 
AGVCalc.select(selectedAGV) == 2 
               selectedAGV = j; 
           end 
       end  
    end 
    if min(AGVCalc.select)== 2 
        [A,Index] = min(AGVData.ReadyTime); 
        if CInput.ExeTime(i) < A 
            CInput.ExeTime(i) = A; 
            selectedAGV = Index; 
            AGVData.Charge(selectedAGV) = ChargeValue; 
            AGVData.Position(selectedAGV) = 0; 
            AGVData.State(selectedAGV) = 1; 
            AGVData.TimeOfCharging(selectedAGV) = 0; 
            AGVData.TimesCharged (selectedAGV) = AGVData.TimesCharged 
(selectedAGV) + 1; 
        end 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    MachineDelayToUnload = 0; 
    for j=i-1:-1:1 
       if CInput.MN(i) == CInput.MN(j) 
           MachineDelayToUnload = CInput.TotalOpTime(j); %Previous 
operation of the machine 
           break; 
       end 
    end 
     
    CInput.UnLAGVTime(i) = TravTime(AGVData.Position 
(selectedAGV)+1,CInput.StartPoint(i)+1); 
     
    if CInput.ON(i) == 1 
       CInput.SrAGVIdleTime(i) = 0; 
       CInput.StAGVIdleTime(i) = MachineDelayToUnload - 
(CInput.ExeTime(i) + ... 
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           CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) + 
CInput.LAGVTime(i));  
        
        if CInput.StAGVIdleTime(i)<0 
           CInput.StAGVIdleTime(i) = 0; 
        end 
    else 
         
       % calculate the starting Idle time 
       CInput.SrAGVIdleTime(i) = CInput.TotalOpTime(POp) - 
(CInput.ExeTime(i) + CInput.UnLAGVTime(i)); 
       if CInput.SrAGVIdleTime(i)<0 
           CInput.SrAGVIdleTime(i) = 0; 
       end 
       % calculate the Stopp ing Idle time 
       CInput.StAGVIdleTime(i) = MachineDelayToUnload - 
(CInput.ExeTime(i) + ... 
           CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) + 
CInput.LAGVTime(i)); 
       if CInput.StAGVIdleTime(i)<0 
           CInput.StAGVIdleTime(i) = 0; 
       end   
    end 
         
    CInput.TotalOpTime(i) = CInput.OT(i) + CInput.ExeTime(i) + 
CInput.UnLAGVTime(i) + ... 
        CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) + 
CInput.StAGVIdleTime(i); 
     
    AGVData.Charge(selectedAGV) = AGVData.Charge(selectedAGV) - ... 
       Gamma * (CInput.UnLAGVTime(i) + CInput.LAGVTime(i)); 
    AGVData.Position(selectedAGV) = CInput.MN(i); 
    CInput.AGVN(i) = selectedAGV; 
    if i<size(CInput.JN,2) 
       CInput.ExeTime(i+1) = CInput.ExeTime(i) + CInput.UnLAGVTime(i) 
+ ... 
            CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) + 
CInput.StAGVIdleTime(i); 
    end 
     
    clear AGVCalc; 
    DeadEnd = 0; 
       
end 
output.Y.Makespan(ieval,1) = max(CInput.TotalOpTime); 
output.Y.NAGV(ieval,1) = size(AGVData.Charge,2); 
output.AssignedAGV(ieval,:) = (CInput.AGVN); 
if strcmp(problem.Weighted sum,'+') 
    output.Y.Eval(ieval,1) = (output.Y.Makespan(ieval) + 
output.Y.NAGV(ieval))/2; 
end 
if strcmp(problem.Weighted sum,'*') 
    output.Y.Eval(ieval,1) = output.Y.Makespan(ieval) * 
output.Y.NAGV(ieval); 
end 
if strcmp(problem.Weighted sum,'makespan') 
    output.Y.Eval(ieval,1) = output.Y.Makespan(ieval); 
end 
if strcmp(problem.Weighted sum,'+maxmakespan') 
    maxtravel = sum(sum(problem.TravTime)); 
    maxoperation = sum(problem.Job(:,4)); 
    maxAGV = size(problem.Job,1); 
    ratio =(maxtravel + maxoperation)/maxAGV;%303/maxAGV;%426/maxAGV; 
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    output.Y.Eval(ieval,1) = ((2/3).*output.Y.Makespan(ieval) + 
(1/3).*(output.Y.NAGV(ieval).*ratio )); 
end 
  
if exist('Error', 'var') 
    output.Error = Error; 
end 
 
AGV 
function [ AGVN, CInput ] = AGV( X, problem ) 
% X = [SEQUENCE] 
%[ problem ] = Problem5; 
% 
ieval = 1; 
output.X(ieval,:) = X; 
Discrete_X = output.X(ieval,:); 
TravTime = problem.TravTime; 
Job = problem.Job; 
Gamma = problem.Gamma; 
Alpha = problem.Alpha; 
ChargingTime = problem.ChargingTime; 
Dimension = problem.Dimension ; 
InitialAGV = problem.InitialAGV; 
ChargeValue = problem.ChargeValue; 
  
CInput.JN = Discrete_X; % job number ;  
CInput.ON = Discrete_X; % Operation Number; 
CInput.StartPoint = Discrete_X; % Machine Number ; 
CInput.MN = Discrete_X; % Machine Number ; 
CInput.AGVN = zeros(size(CInput.JN)); % AGV Number which assigned to 
load. 
CInput.OT = Discrete_X; % Operation Time; 
CInput.ExeTime = zeros(size(CInput.JN)); % The time when the operation 
started,  
                                         %this time is the time that 
AGV start  
                                         %to move to pick the part 
from previous position 
                                          
CInput.UnLAGVTime = zeros(size(CInput.JN)); % this the time that take 
to AGV go to  
                                            % the pick up position of 
the part 
                                            % from current position to 
CInput.StartPoint 
                                             
CInput.LAGVTime = zeros(size(CInput.JN));   % This is the time take to 
AGV reach  
                                            % the position of the 
operation and 
                                            % from 
CInput.StartPoint(i) to CInput.MN(i) 
                                             
CInput.SrAGVIdleTime = zeros(size(CInput.JN));% this is the time that 
AGV is idle  
                                            % to unload the part from 
previous machine 
                                            % and move to the new 
machine 
                                            % for new operation. 
                                             
CInput.StAGVIdleTime = zeros(size(CInput.JN));% this is the time that 
AGV is idle  
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                                            % to load the part into 
the machine 
                                            % if the machine is stil 
                                            % running for the previous 
                                            % operation.                                            

  
CInput.TotalOpTime = zeros(size(CInput.JN));% This is the total time 
required  
                                            % to finish the operation. 
                                                                                       
%Calculating the operation number 
for i=1:size(CInput.ON,2) 
    index = 0; 
    for j=1:i 
        if CInput.JN(j) == CInput.JN(i) 
            index = index +1; 
        end 
    end 
    CInput.ON(i) = index; 
end 
  
% Importing machine number and operation time for each operatiion. 
for i=1:size(CInput.JN,2) 
    for j=1:size(CInput.JN,2) 
       if Job(j,1)== CInput.JN(i) && Job(j,2)== CInput.ON(i) 
           CInput.MN(i) = Job(j,3); 
           CInput.OT(i) = Job(j,4); 
       end 
    end 
end 
  
% producing the starting point of each operation 
CInput.StartPoint(1)= 0; 
for i=2:size(CInput.JN,2) 
    if CInput.ON(i) == 1 
        CInput.StartPoint(i) = 0; 
    else 
        for j=i-1:-1:1 
            if CInput.JN(j)== CInput.JN(i) 
                CInput.StartPoint(i) = CInput.MN(j); 
                break 
            end 
        end 
    end 
end 
  
%producing Load AGV Time of travelling AGV 
for i=1:size(CInput.JN,2) 
    CInput.LAGVTime(i) = 
TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1); 
end 
  
if InitialAGV == 1 
    initAGV = ceil (size(CInput.JN,2)/10); 
    AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the 
current AGV's battery level 
    AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the 
current AGV position 
    AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of 
AGV where is it on operation (1) or in charging state (0) 
    AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the 
AGVData.State = 0 this shows the time that it has been connected to 
charger. 
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    AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee 
agv was ready to perform new task 
    AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many 
times the AGV was charged 
elseif InitialAGV == 0 
    AGVData.Charge = [ChargeValue]; %Chrge is the current AGV's 
battery level 
    AGVData.Position = zeros(size(AGVData.Charge,2));% is the current 
AGV position 
    AGVData.State = ones(size(AGVData.Charge,2)); % is the state of 
AGV where is it on operation (1) or in charging state (0) 
    AGVData.TimeOfCharging = zeros(size(AGVData.Charge,2)); % if the 
AGVData.State = 0 this shows the time that it has been connected to 
charger. 
    AGVData.ReadyTime = zeros(size(AGVData.Charge,2)); % when thee agv 
was ready to perform new task 
    AGVData.TimesCharged = zeros(size(AGVData.Charge,2)); % how many 
times the AGV was charged 
elseif InitialAGV == 2 
    initAGV = max(CInput.JN); 
    AGVData.Charge = ones(1, initAGV) .* ChargeValue; %Chrge is the 
current AGV's battery level 
    AGVData.Position = zeros(1,size(AGVData.Charge,2));% is the 
current AGV position 
    AGVData.State = ones(1,size(AGVData.Charge,2)); % is the state of 
AGV where is it on operation (1) or in charging state (0) 
    AGVData.TimeOfCharging = zeros(1,size(AGVData.Charge,2)); % if the 
AGVData.State = 0 this shows the time that it has been connected to 
charger. 
    AGVData.ReadyTime = zeros(1,size(AGVData.Charge,2)); % when thee 
agv was ready to perform new task 
    AGVData.TimesCharged = zeros(1,size(AGVData.Charge,2)); % how many 
times the AGV was charged     
end 
  
AGVData.Charge(1) = AGVData.Charge(1) - Gamma * 
TravTime(1,CInput.MN(1)+1); 
CInput.AGVN(1) = 1; 
CInput.ExeTime(1) = 0; 
CInput.UnLAGVTime(1) = TravTime(AGVData.Position 
(1)+1,CInput.StartPoint(1)+1); 
CInput.SrAGVIdleTime(1) = 0; 
CInput.StAGVIdleTime(1) = 0; 
CInput.TotalOpTime(1) = CInput.OT(1) + CInput.ExeTime(1) + 
CInput.UnLAGVTime(1) + ... 
    CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) + 
CInput.StAGVIdleTime(1); 
CInput.ExeTime(2) = CInput.ExeTime(1) + CInput.UnLAGVTime(1) + ... 
    CInput.LAGVTime(1) + CInput.SrAGVIdleTime(1) + 
CInput.StAGVIdleTime(1); 
AGVData.Position(1) = CInput.MN(1);%AGV position, 0 means at home 
  
for i=2:size(CInput.JN,2) 
    % avval tashkhis bede bebin az koja mikhai beri koja 
CInput.StartPoint(i) va CInput.MN(i) ro adad bede 
    % bebin un AGV agar bekhad bere load kone va unload kone cheghadr 
zaman 
    % migire, hamin karo vase tamame AGV haye mojood dar system anjam 
bede 
    % zemne in ke bebin sharjeshun kafi hast ya na 
  
    % agar zamane ye AGV jadid az nesfe AGV haye mojood kamtar bud AGV 
    % jadid biar to madar 
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    % ChA = [ChA , ChargeValue]; 
    % 
 
    StPToHomeCharge = TravTime(CInput.MN(i)+1,1); 
    if CInput.ON(i) == 1 
        POp = 0;% previous operation related to this job 
    else 
        for j=i-1:-1:1 
            if CInput.JN(j)== CInput.JN(i) 
                POp = j; % previous operation related to this job 
                break 
            end 
        end 
    end 
     
    for j=1:size(AGVData.Charge,2) 
        if AGVData.Charge(j) == ChargeValue && AGVData.Position(j) == 
0 && AGVData.State(j) == 2 
            addnew = 0; 
            break 
        else 
            addnew = 1 ; 
        end 
    end 
     
    if InitialAGV == 2 
        addnew = 0; 
    end 
     
    if addnew 
    %selecting proper AGV     
        AGVCalc.Charge = [AGVData.Charge,ChargeValue]; 
        AGVCalc.Position = [AGVData.Position , 0]; 
        AGVCalc.Time = zeros(size(AGVCalc.Charge)); 
        AGVCalc.select = zeros(size(AGVCalc.Charge)); 
        selectedAGV = 1 ; 
    else 
        AGVCalc.Charge = [AGVData.Charge]; 
        AGVCalc.Position = [AGVData.Position]; 
        AGVCalc.Time = zeros(size(AGVCalc.Charge)); 
        AGVCalc.select = zeros(size(AGVCalc.Charge)); 
        selectedAGV = 1 ; 
    end 
    
% %selecting proper AGV     
%     AGVCalc.Charge = [AGVData.Charge,ChargeValue]; 
%     AGVCalc.Position = [AGVData.Position , 0]; 
%     AGVCalc.Time = zeros(size(AGVCalc.Charge)); 
%     AGVCalc.select = zeros(size(AGVCalc.Charge)); 
%     selectedAGV = 1 ; 
     
% Checking the charge of each AGV and charging state of them     
    for j=1:size(AGVData.Charge,2) 
        if AGVData.State(j) == 0 && AGVData.ReadyTime(j) <= 
(CInput.ExeTime (i)) 
            AGVData.Charge(j) = ChargeValue; 
            AGVData.Position(j) = 0; 
            AGVData.State(j) = 1; 
            AGVData.TimeOfCharging(j) = 0; 
            AGVData.TimesCharged (j) = AGVData.TimesCharged (j) + 1; 
        end 
    end 
    for j=1:size(AGVData.Charge,2) 
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        if AGVData.Charge(j)< ... 
                
(TravTime(AGVData.Position(j)+1,CInput.StartPoint(i)+1) + ... 
                TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1))+ ... 
                TravTime(CInput.MN(i)+1,1) * ... 
                Gamma ... 
                && AGVData.State(j) ~= 0 
            AGVData.Charge(j) = AGVData.Charge(j) - 
TravTime(AGVData.Position(j)+1,1)*Gamma; 
            if AGVData.Charge(j) < 0 
               if exist('Error', 'var') 
                    Error.AGVData = [Error.AGVData; AGVData]; 
                    Error.AGVSelection = [Error.AGVSelection; 
AGVCalc]; 
                    Error.CInput = [Error.CInput; CInput]; 
               else 
                    Error.AGVData = AGVData; 
                    Error.AGVSelection = AGVCalc; 
                    Error.CInput = CInput; 
               end 
            end 
            AGVCalc.select(j) = 2; 
            AGVData.State(j) = 0; 
            AGVData.TimeOfCharging(j) = CInput.ExeTime(i) + 
TravTime(AGVData.Position(j)+1,1); 
            AGVData.ReadyTime (j) = AGVData.TimeOfCharging(j) + 
ChargingTime;   
        end 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         
    for j=1:size(AGVCalc.Charge,2) 
        %testing the remainder of charge after operation 
       AGVCalc.Time(j) = 
TravTime(AGVCalc.Position(j)+1,CInput.StartPoint(i)+1) + ... 
           TravTime(CInput.StartPoint(i)+1,CInput.MN(i)+1) * Gamma; 
  
       AGVCalc.Charge (j)  = AGVCalc.Charge (j) - StPToHomeCharge - 
... 
           AGVCalc.Time(j)* Gamma ; 
        
       if j <= size(AGVData.State,2) 
           if AGVData.State(j) == 0 
               AGVCalc.select(j) = 2; 
           end 
       end 
       %Selecting the AGV 
       if (j > 1 && j < size(AGVCalc.Charge,2) && AGVCalc.select(j) ~= 
2 ) && InitialAGV ~= 2 
           if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) || 
AGVCalc.select(selectedAGV) == 2 
               selectedAGV = j; 
           end 
       end 
       if j == size(AGVCalc.Charge,2) && InitialAGV ~= 2 
           if Alpha * AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) || 
AGVCalc.select(selectedAGV) == 2 
               selectedAGV = j; 
               AGVData.Charge = [AGVData.Charge,ChargeValue]; 
               AGVData.Position = [AGVData.Position,0]; 
               AGVData.State = [AGVData.State,1]; 
               AGVData.TimeOfCharging = [AGVData.TimeOfCharging,0]; 
               AGVData.ReadyTime = [AGVData.ReadyTime,0]; 
               AGVData.TimesCharged = [AGVData.TimesCharged,0]; 
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           end 
       end   
      if (j > 1 && AGVCalc.select(j) ~= 2 ) && InitialAGV == 2 
           if AGVCalc.Time(j) < AGVCalc.Time(selectedAGV) || 
AGVCalc.select(selectedAGV) == 2 
               selectedAGV = j; 
           end 
       end  
    end 
    if min(AGVCalc.select)== 2 
        [A,Index] = min(AGVData.ReadyTime); 
        if CInput.ExeTime(i) < A 
            CInput.ExeTime(i) = A; 
            selectedAGV = Index; 
            AGVData.Charge(selectedAGV) = ChargeValue; 
            AGVData.Position(selectedAGV) = 0; 
            AGVData.State(selectedAGV) = 1; 
            AGVData.TimeOfCharging(selectedAGV) = 0; 
            AGVData.TimesCharged (selectedAGV) = AGVData.TimesCharged 
(selectedAGV) + 1; 
        end 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    MachineDelayToUnload = 0; 
    for j=i-1:-1:1 
       if CInput.MN(i) == CInput.MN(j) 
           MachineDelayToUnload = CInput.TotalOpTime(j); %Previous 
operation of the machine 
           break; 
       end 
    end 
     
    CInput.UnLAGVTime(i) = TravTime(AGVData.Position 
(selectedAGV)+1,CInput.StartPoint(i)+1); 
     
    if CInput.ON(i) == 1 
       CInput.SrAGVIdleTime(i) = 0; 
       CInput.StAGVIdleTime(i) = MachineDelayToUnload - 
(CInput.ExeTime(i) + ... 
           CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) + 
CInput.LAGVTime(i));  
        
        if CInput.StAGVIdleTime(i)<0 
           CInput.StAGVIdleTime(i) = 0; 
        end 
    else 
         
       % calculate the starting Idle time 
       CInput.SrAGVIdleTime(i) = CInput.TotalOpTime(POp) - 
(CInput.ExeTime(i) + CInput.UnLAGVTime(i)); 
       if CInput.SrAGVIdleTime(i)<0 
           CInput.SrAGVIdleTime(i) = 0; 
       end 
       % calculate the Stopp ing Idle time 
       CInput.StAGVIdleTime(i) = MachineDelayToUnload - 
(CInput.ExeTime(i) + ... 
           CInput.SrAGVIdleTime(i) + CInput.UnLAGVTime(i) + 
CInput.LAGVTime(i)); 
       if CInput.StAGVIdleTime(i)<0 
           CInput.StAGVIdleTime(i) = 0; 
       end   
    end 
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    CInput.TotalOpTime(i) = CInput.OT(i) + CInput.ExeTime(i) + 
CInput.UnLAGVTime(i) + ... 
        CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) + 
CInput.StAGVIdleTime(i); 
     
    AGVData.Charge(selectedAGV) = AGVData.Charge(selectedAGV) - ... 
       Gamma * (CInput.UnLAGVTime(i) + CInput.LAGVTime(i)); 
    AGVData.Position(selectedAGV) = CInput.MN(i); 
    CInput.AGVN(i) = selectedAGV; 
    if i<size(CInput.JN,2) 
       CInput.ExeTime(i+1) = CInput.ExeTime(i) + CInput.UnLAGVTime(i) 
+ ... 
            CInput.LAGVTime(i) + CInput.SrAGVIdleTime(i) + 
CInput.StAGVIdleTime(i); 
    end 
     
    clear AGVCalc; 
    DeadEnd = 0; 
     
end 
output.Y.Makespan(ieval,1) = max(CInput.TotalOpTime); 
output.Y.NAGV(ieval,1) = size(AGVData.Charge,2); 
AGVN = CInput.AGVN; 
end 
 
Drawgraph 
function DrawGraph( Record, finalReport, maxRun) 
  
%% ----------------------------- Summary PSO ------------------------- 
    [finalReport.excel(1,1), IPSO] = min(finalReport.PSO.Eval(:,1)); 
    [finalReport.excel(1,2), J] = max(finalReport.PSO.Eval(:,1)); 
    finalReport.excel(1,3) = mean(finalReport.PSO.Eval(:,1)); 
    finalReport.excel(1,4) = std(finalReport.PSO.Eval(:,1)); 
    finalReport.excel(1,5) = IPSO; 
    finalReport.excel(1,6) = J; 
     
    finalReport.excel(2,1) = finalReport.PSO.Makespan(IPSO,1); 
    finalReport.excel(2,2) = finalReport.PSO.Makespan(J,1); 
    finalReport.excel(2,3) = mean(finalReport.PSO.Makespan(:,1)); 
    finalReport.excel(2,4) = std(finalReport.PSO.Makespan(:,1)); 
     
    finalReport.excel(3,1) = finalReport.PSO.NAGV(IPSO,1); 
    finalReport.excel(3,2) = finalReport.PSO.NAGV(J,1); 
    finalReport.excel(3,3) = mean(finalReport.PSO.NAGV(:,1)); 
    finalReport.excel(3,4) = std(finalReport.PSO.NAGV(:,1)); 
     
%% ----------------------------- Summary GA --------------------------    
    [finalReport.excel(4,1), IGA] = min(finalReport.GA.Eval(:,1)); 
    [finalReport.excel(4,2), J] = max(finalReport.GA.Eval(:,1)); 
    finalReport.excel(4,3) = mean(finalReport.GA.Eval(:,1)); 
    finalReport.excel(4,4) = std(finalReport.GA.Eval(:,1)); 
    finalReport.excel(4,5) = IGA; 
    finalReport.excel(4,6) = J; 
     
    finalReport.excel(5,1) = finalReport.GA.Makespan(IGA,1); 
    finalReport.excel(5,2) = finalReport.GA.Makespan(J,1); 
    finalReport.excel(5,3) = mean(finalReport.GA.Makespan(:,1)); 
    finalReport.excel(5,4) = std(finalReport.GA.Makespan(:,1));   
     
    finalReport.excel(6,1) = finalReport.GA.NAGV(IGA,1); 
    finalReport.excel(6,2) = finalReport.GA.NAGV(J,1); 
    finalReport.excel(6,3) = mean(finalReport.GA.NAGV(:,1)); 
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    finalReport.excel(6,4) = std(finalReport.GA.NAGV(:,1));   
     
%% ----------------------------- Summary Hybrid GA PSO ---------------     

[finalReport.excel(7,1), IHGAPSO] =      
min(finalReport.HGAPSO.Eval(:,1)); 

    [finalReport.excel(7,2), J] = max(finalReport.HGAPSO.Eval(:,1)); 
    finalReport.excel(7,3) = mean(finalReport.HGAPSO.Eval(:,1)); 
    finalReport.excel(7,4) = std(finalReport.HGAPSO.Eval(:,1)); 
    finalReport.excel(7,5) = IHGAPSO; 
    finalReport.excel(7,6) = J;     
     
    finalReport.excel(8,1) = finalReport.HGAPSO.Makespan(IHGAPSO,1); 
    finalReport.excel(8,2) = max(finalReport.HGAPSO.Makespan(J,1)); 
    finalReport.excel(8,3) = mean(finalReport.HGAPSO.Makespan(:,1)); 
    finalReport.excel(8,4) = std(finalReport.HGAPSO.Makespan(:,1)); 
     
    finalReport.excel(9,1) = finalReport.HGAPSO.NAGV(IHGAPSO,1); 
    finalReport.excel(9,2) = finalReport.HGAPSO.NAGV(J,1); 
    finalReport.excel(9,3) = mean(finalReport.HGAPSO.NAGV(:,1)); 
    finalReport.excel(9,4) = std(finalReport.HGAPSO.NAGV(:,1)); 
     
%% --------------------------- Excel Report -------------------------- 
    xlswrite('FinalReport.xlsx',finalReport.excel,1,'C2');  
     
if maxRun > 1 
    PSO = Record(IPSO).PSO; 
    GA = Record(IGA).GA;     
    HGAPSO = Record(IHGAPSO).HGAPSO; 
else 
    PSO = Record(1).PSO; 
    GA = Record(1).GA;     
    HGAPSO = Record(1).HGAPSO; 
end 
     
%% ------------------------ Draw Graph ------------------------------- 
    CountPSO = [1:PSO.Parameter.MaxGen]; 
    CountGA = [1:GA.Parameter.MaxGen]; 
    CountHGAPSO = [1:HGAPSO.Parameter.MaxGen]; 
  
    MAXIMUM = max([max(PSO.output.History.Y.Eval), 
max(GA.output.History.Y.Eval), max(HGAPSO.output.History.Y.Eval)]); 
    DIGIT = ceil(log10(abs(MAXIMUM))/2); 
    Max_Axe = ceil(MAXIMUM/(10^DIGIT))*10^DIGIT; 
    MINIMUM = min([min(PSO.output.History.Y.Eval), 
min(GA.output.History.Y.Eval), min(HGAPSO.output.History.Y.Eval)]); 
    DIGIT = ceil(log10(abs(MINIMUM))/2); 
    Min_Axe = -20+floor(MINIMUM/(10^DIGIT))*10^DIGIT; 
  
%% ---------------------------- Plot GA ------------------------------ 
    GAPLOT = zeros(GA.Parameter.MaxGen,3); 
    for i = 1 : GA.Parameter.MaxGen-1 
        GAPLOT(i,1) =   min( GA.output.History.Y.Eval(((i-
1)*GA.Parameter.N+1) : (i*GA.Parameter.N))); 
        GAPLOT(i,2) =   max( GA.output.History.Y.Eval(((i-
1)*GA.Parameter.N+1) : (i*GA.Parameter.N))); 
        GAPLOT(i,3) =   sum( GA.output.History.Y.Eval(((i-
1)*GA.Parameter.N+1) : (i*GA.Parameter.N)))/GA.Parameter.N; 
    end 
    GAPLOT(GA.Parameter.MaxGen,1) =   min( 
GA.output.History.Y.Eval(((GA.Parameter.MaxGen-1)*GA.Parameter.N+1) : 
(GA.Parameter.MaxGen*GA.Parameter.N))); 
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    GAPLOT(GA.Parameter.MaxGen,2) =   max( 
GA.output.History.Y.Eval(((GA.Parameter.MaxGen-1)*GA.Parameter.N+1) : 
(GA.Parameter.MaxGen*GA.Parameter.N))); 
    GAPLOT(GA.Parameter.MaxGen,3) =   sum( 
GA.output.History.Y.Eval(((GA.Parameter.MaxGen-1)*GA.Parameter.N+1) : 
(GA.Parameter.MaxGen*GA.Parameter.N)))/GA.Parameter.N; 
  
    figure('Name','GA','NumberTitle','off') 
    plot ( CountGA, GAPLOT(:,1),'b',CountGA, GAPLOT(:,2),'r',CountGA, 
GAPLOT(:,3),'c') 
    axis([0,GA.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
    legend('Minimum','Maximum','Mean'); 
     
%     figure('Name','GA Minimum','NumberTitle','off') 
%     plot ( CountGA, GAPLOT(:,1)) 
%     axis([0,GA.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
%     figure('Name','GA Maximum','NumberTitle','off') 
%     plot ( CountGA, GAPLOT(:,2)) 
%     axis([0,GA.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
%     figure('Name','GA Mean','NumberTitle','off') 
%     plot ( CountGA, GAPLOT(:,3)) 
%     axis([0,GA.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
  
%% ---------------------------- Plot PSO ----------------------------- 
    PSOPLOT = zeros(PSO.Parameter.MaxGen,3); 
    for i = 1 : PSO.Parameter.MaxGen-1 
        PSOPLOT(i,1) =   min( PSO.output.History.Y.Eval(((i-
1)*PSO.Parameter.N+1) : (i*PSO.Parameter.N))); 
        PSOPLOT(i,2) =   max( PSO.output.History.Y.Eval(((i-
1)*PSO.Parameter.N+1) : (i*PSO.Parameter.N))); 
        PSOPLOT(i,3) =   sum( PSO.output.History.Y.Eval(((i-
1)*PSO.Parameter.N+1) : (i*PSO.Parameter.N)))/PSO.Parameter.N; 
    end 
    PSOPLOT(PSO.Parameter.MaxGen,1) =   min( 
PSO.output.History.Y.Eval(((PSO.Parameter.MaxGen-1)*PSO.Parameter.N+1) 
: (PSO.Parameter.MaxGen*PSO.Parameter.N))); 
    PSOPLOT(PSO.Parameter.MaxGen,2) =   max( 
PSO.output.History.Y.Eval(((PSO.Parameter.MaxGen-1)*PSO.Parameter.N+1) 
: (PSO.Parameter.MaxGen*PSO.Parameter.N))); 
    PSOPLOT(PSO.Parameter.MaxGen,3) =   sum( 
PSO.output.History.Y.Eval(((PSO.Parameter.MaxGen-1)*PSO.Parameter.N+1) 
: (PSO.Parameter.MaxGen*PSO.Parameter.N)))/PSO.Parameter.N; 
     
    figure('Name','PSO','NumberTitle','off') 
    plot ( CountPSO, PSOPLOT(:,1),'b',CountPSO, 
PSOPLOT(:,2),'r',CountPSO, PSOPLOT(:,3),'c') 
    axis([0,PSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
    legend('Minimum','Maximum','Mean'); 
     
%     figure('Name','PSO Minimum','NumberTitle','off') 
%     plot ( CountPSO, PSOPLOT(:,1)) 
%     axis([0,PSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
%     figure('Name','PSO Maximum','NumberTitle','off') 
%     plot ( CountPSO, PSOPLOT(:,2)) 
%     axis([0,PSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
%     figure('Name','PSO Mean','NumberTitle','off') 
%     plot ( CountPSO, PSOPLOT(:,3)) 
%     axis([0,PSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
  
%% -------------------------- Plot Hybrid GA-PSO1 -------------------- 
    HGP2PLOT = zeros(HGP2.Parameter.MaxGen,3); 
    for i = 1 : HGAPSO.Parameter.MaxGen-1 
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        HGAPSOPLOT(i,1) =   min( HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : (i*HGAPSO.Parameter.N))); 
        HGAPSOPLOT(i,2) =   max( HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : (i*HGAPSO.Parameter.N))); 
        HGAPSOPLOT(i,3) =   sum( HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : 
(i*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N; 
    end 
     
    HGAPSOPLOT(HGAPSO.Parameter.MaxGen,1) =   min( 
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) : 
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N))); 
    HGAPSOPLOT(HGAPSO.Parameter.MaxGen,2) =   max( 
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) : 
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N))); 
    HGAPSOPLOT(HGAPSO.Parameter.MaxGen,3) =   sum( 
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) : 
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N; 
  
    figure('Name','Hybrid GA-PSO','NumberTitle','off') 
    plot ( CountHGAPSO, HGAPSOPLOT(:,1),'b',CountHGAPSO, 
HGAPSOPLOT(:,2),'r',CountHGAPSO, HGAPSOPLOT(:,3),'c') 
    axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
    legend('Minimum','Maximum','Mean'); 
        
%     figure('Name','Hybrid GA-PSO Minimum','NumberTitle','off') 
%     plot ( CountHGAPSO, HGAPSOPLOT(:,1)) 
%     axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
%     figure('Name','Hybrid GA-PSO Maximum','NumberTitle','off') 
%     plot ( CountHGAPSO, HGAPSOPLOT(:,2)) 
%     axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
%     figure('Name','Hybrid GA-PSO Mean','NumberTitle','off') 
%     plot ( CountHGAPSO, HGAPSOPLOT(:,3)) 
%     axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
    
%% -------------------------- Plot Hybrid GA-PSO2 -------------------- 
    HGP2PLOT = zeros(HGP2.Parameter.MaxGen,3); 
    for i = 1 : HGAPSO.Parameter.MaxGen-1 
        HGP2PLOT(i,1) =   min( HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : (i*HGAPSO.Parameter.N))); 
        HGAPSOPLOT(i,2) =   max( HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : (i*HGAPSO.Parameter.N))); 
        HGAPSOPLOT(i,3) =   sum( HGAPSO.output.History.Y.Eval(((i-
1)*HGAPSO.Parameter.N+1) : 
(i*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N; 
    end 
     
    HGAPSOPLOT(HGAPSO.Parameter.MaxGen,1) =   min( 
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) : 
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N))); 
    HGAPSOPLOT(HGAPSO.Parameter.MaxGen,2) =   max( 
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) : 
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N))); 
    HGAPSOPLOT(HGAPSO.Parameter.MaxGen,3) =   sum( 
HGAPSO.output.History.Y.Eval(((HGAPSO.Parameter.MaxGen-
1)*HGAPSO.Parameter.N+1) : 
(HGAPSO.Parameter.MaxGen*HGAPSO.Parameter.N)))/HGAPSO.Parameter.N; 
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    figure('Name','Hybrid GA-PSO','NumberTitle','off') 
    plot ( CountHGAPSO, HGAPSOPLOT(:,1),'b',CountHGAPSO, 
HGAPSOPLOT(:,2),'r',CountHGAPSO, HGAPSOPLOT(:,3),'c') 
    axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
    legend('Minimum','Maximum','Mean'); 
     
%     figure('Name','Hybrid GA-PSO Minimum','NumberTitle','off') 
%     plot ( CountHGAPSO, HGAPSOPLOT(:,1)) 
%     axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
%     figure('Name','Hybrid GA-PSO Maximum','NumberTitle','off') 
%     plot ( CountHGAPSO, HGAPSOPLOT(:,2)) 
%     axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
%     figure('Name','Hybrid GA-PSO Mean','NumberTitle','off') 
%     plot ( CountHGAPSO, HGAPSOPLOT(:,3)) 
%     axis([0,HGAPSO.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
  
%% ----------------------------- Plot All ---------------------------- 
    figure('Name','Minimum','NumberTitle','off') 
    plot ( CountHGP2, HGP2PLOT(:,1),'b') 
    hold on; 
    plot ( CountHGP1, HGP1PLOT(:,1),'d') 
    hold on; 
    plot ( CountPSO, PSOPLOT(:,1),'r') 
    hold on; 
    plot ( CountGA, GAPLOT(:,1), 'c') 
    legend('HGAPSO','PSO','GA'); 
end 

 
Mat2gray 
function I = mat2gray(A,limits) 
%MAT2GRAY Convert matrix to intensity image. 
%   I = MAT2GRAY(A,[AMIN AMAX]) converts the matrix A to the intensity 
image I. 
%   The returned matrix I contains values in the range 0.0 (black) to 
1.0 (full 
%   intensity or white).  AMIN and AMAX are the values in A that 
correspond to 
%   0.0 and 1.0 in I.  Values less than AMIN become 0.0, and values 
greater than 
%   AMAX become 1.0. 
% 
%   I = MAT2GRAY(A) sets the values of AMIN and AMAX to the minimum 
and maximum 
%   values in A. 
% 
%   Class Support 
%   -------------   
%   The input array A can be logical or numeric. The output image I is 
double. 
% 
%   Example 
%   ------- 
%       I = imread('rice.png'); 
%       J = filter2(fspecial('sobel'), I); 
%       K = mat2gray(J); 
%       figure, imshow(I), figure, imshow(K) 
  
%   Copyright 1992-2014 The MathWorks, Inc. 
   
validateattributes(A,{'logical','uint8', 'uint16', 'uint32',... 
                    'int8', 'int16', 'int32','single', 'double'},... 
                    {},mfilename,'A',1); 
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if nargin == 1 
  limits = double([min(A(:)) max(A(:))]); 
else 
  
validateattributes(limits,{'double'},{'numel',2},mfilename,'LIMITS',2)
; 
end 
  
if limits(2)==limits(1)   % Constant Image 
   I = double(A); 
else 
  delta = 1 / (limits(2) -  limits(1)); 
  I = imlincomb(delta, A, -limits(1)*delta, 'double'); 
end 
  
% Make sure all values in I are between 0 and 1. 
I = max(0,min(I,1));    

 
Imlincomb 
function Z = imlincomb(varargin) 
%IMLINCOMB Linear combination of images. 
%   Z = IMLINCOMB(K1,A1,K2,A2, ..., Kn,An) computes K1*A1 + K2*A2 + 
... + 
%   Kn*An.  A1, A2, ..., An are real, non-sparse, numeric arrays with 
the 
%   same class and size, and K1, K2, ..., Kn are real double scalars.  
Z 
%   has the same size and class as A1 unless A1 is logical, in which 
case 
%   Z is double. 
% 
%   Z = IMLINCOMB(K1,A1,K2,A2, ..., Kn,An,K) computes K1*A1 + K2*A2 + 
%   ... + Kn*An + K. 
% 
%   Z = IMLINCOMB(..., OUTPUT_CLASS) lets you specify the class of Z. 
%   OUTPUT_CLASS is a string containing the name of a numeric class. 
% 
%   Each element of the output, Z, is computed individually in 
%   double-precision floating point.  When Z is an integer array, 
elements 
%   of Z that exceed the range of the integer type are truncated, and 
%   fractional values are rounded. 
% 
%   Example 1 
%   --------- 
%   Scale an image by a factor of two. 
% 
%       I = imread('cameraman.tif'); 
%       J = imlincomb(2,I); 
%       figure, imshow(J) 
% 
%   Example 2 
%   --------- 
%   Form a difference image with the zero value shifted to 128. 
% 
%       I = imread('cameraman.tif'); 
%       J = uint8(filter2(fspecial('gaussian'), I)); 
%       K = imlincomb(1,I,-1,J,128); % K(r,c) = I(r,c) - J(r,c) + 128 
%       figure, imshow(K) 
% 
%   Example 3 
%   --------- 
%   Add two images with a specified output class. 
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% 
%       I = imread('rice.png'); 
%       J = imread('cameraman.tif'); 
%       K = imlincomb(1,I,1,J,'uint16'); 
%       figure, imshow(K,[]) 
% 
%   See also IMCOMPLEMENT. 
  
%   Copyright 1993-2014 The MathWorks, Inc. 
  
% I/O spec 
% ======== 
% A1, ...       Real, numeric, full arrays 
%               Logical arrays also allowed, and are converted to 
uint8. 
% 
% K1, ...       Real, double scalars 
% 
% OUTPUT_CLASS  Case-insensitive nonambiguous abbreviation of one of 
%               these strings: uint8, uint16, uint32, int8, int16, 
int32, 
%               single, double 
  
[ims, scalars, outputClass] = ParseInputs(varargin{:}); 
  
sameInputOutputClass = strcmp(class(ims{1}), outputClass); 
if sameInputOutputClass 
    if imagePlusImage(ims,scalars) 
        Z = ims{1} + ims{2}; 
    elseif image1MinusImage2(ims,scalars) 
        Z  = ims{1} - ims{2}; 
    elseif image2MinusImage1(ims,scalars) 
        Z = ims{2} - ims{1}; 
    elseif imagePlusScalar(ims,scalars) 
        Z = ims{1} + scalars(2); 
    else 
        Z = images.internal.imlincombc(ims, scalars, outputClass); 
    end 
else 
    Z = images.internal.imlincombc(ims, scalars, outputClass); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function valid = imagePlusImage(images,scalars) 
  
    valid = numel(images) == 2 && numel(scalars) == 2 && ... 
        all(scalars == 1);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function valid = image1MinusImage2(images,scalars) 
  
    valid = numel(images) == 2 && numel(scalars) == 2 && ... 
        scalars(1) == 1 && scalars(2) == -1; 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function valid = image2MinusImage1(images,scalars) 
  
    valid = numel(images) == 2 && numel(scalars) == 2 && ... 
        scalars(1) == -1 && scalars(2) == 1;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function valid = imagePlusScalar(images,scalars) 
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    valid = numel(images) == 1 && numel(scalars) == 2 && ... 
        scalars(1) == 1; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [images, scalars, output_class] = ParseInputs(varargin) 
   
narginchk(2, Inf); 
  
if ischar(varargin{end}) 
  valid_strings = {'uint8' 'uint16' 'uint32' 'int8' 'int16' 'int32' 
... 
                   'single' 'double'}; 
  output_class = validatestring(varargin{end}, valid_strings, 
mfilename, ... 
                              'OUTPUT_CLASS', 3); 
  varargin(end) = []; 
else 
  if islogical(varargin{2}) 
    output_class = 'double'; 
  else 
    output_class = class(varargin{2}); 
  end 
end 
  
%check images 
images = varargin(2:2:end); 
if ~iscell(images) || isempty(images) 
  displayInternalError('images'); 
end 
  
% assign and check scalars 
for p = 1:2:length(varargin) 
  validateattributes(varargin{p}, {'double'}, {'real' 'nonsparse' 
'scalar'}, ... 
                mfilename, sprintf('K%d', (p+1)/2), p); 
end 
scalars = [varargin{1:2:end}]; 
  
%make sure it is a vector 
if ( ~ismatrix(scalars) || (all(size(scalars)~=1) && 
any(size(scalars)~=0)) ) 
  displayInternalError('scalars'); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function displayInternalError(string) 
  
error(message('images:imlincomb:internalError', upper( string ))) 
               
 
Reportrecord 
function Record = ReportRecord( Record ) 
MaxRun = length(Record); 
savedata = isfield(Record,'finalReport'); 
  
for run = 1:MaxRun 
    PSO = Record(run).PSO; 
    GA = Record(run).GA;     
    HGAPSO = Record(run).HGAPSO; 
     [PSO.output.Best.Y.Eval, I] = min(PSO.output.History.Y.Eval); 
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    PSO.output.Best.Y.Makespan = PSO.output.History.Y.Makespan(I); 
    PSO.output.Best.Y.NAGV = PSO.output.History.Y.NAGV(I); 
    PSO.output.Best.X = PSO.output.History.X(I+1,:); 
    fprintf('The PSO  results with "%6.0f " function evaluation       
\n', PSO.Parameter.MaxGen * PSO.Parameter.N ); 
    fprintf('Makespan =      %9.0f \nNumber of AGV =    %3.0f \n', 
PSO.output.Best.Y.Makespan, PSO.output.Best.Y.NAGV); 
    fprintf('time =               %4.4f Sec\nBest Generation in %5.0f 
\n', PSO.time, I); 
    fprintf('\n----------------------------------------------------
\n\n'); 
  
    PSO.output.Worst.Y.Eval = max(PSO.output.History.Y.Eval); 
    PSO.output.Worst.Y.Makespan = max(PSO.output.History.Y.Makespan); 
    PSO.output.Worst.Y.NAGV = max(PSO.output.History.Y.NAGV); 
     
    PSO.output.Mean.Y.Eval = mean(PSO.output.History.Y.Eval); 
    PSO.output.Mean.Y.Makespan = mean(PSO.output.History.Y.Makespan); 
    PSO.output.Mean.Y.NAGV = mean(PSO.output.History.Y.NAGV); 
  
    PSO.output.ST.Y.Eval = std(PSO.output.History.Y.Eval); 
    PSO.output.ST.Y.Makespan = std(PSO.output.History.Y.Makespan); 
    PSO.output.ST.Y.NAGV = std(PSO.output.History.Y.NAGV); 
     
    finalReport.PSO.Eval(run,:) = [PSO.output.Best.Y.Eval, 
PSO.output.Worst.Y.Eval, PSO.output.Mean.Y.Eval, 
PSO.output.ST.Y.Eval]; 
    finalReport.PSO.Makespan(run,:) = [PSO.output.Best.Y.Makespan, 
PSO.output.Worst.Y.Makespan, PSO.output.Mean.Y.Makespan, 
PSO.output.ST.Y.Makespan]; 
    finalReport.PSO.NAGV(run,:) = [PSO.output.Best.Y.NAGV, 
PSO.output.Worst.Y.NAGV, PSO.output.Mean.Y.NAGV, 
PSO.output.ST.Y.NAGV]; 
  
    Best.PSO.X(run,:) = PSO.output.Best.X; 
    Best.PSO.Eval(run,:) = PSO.output.Best.Y.Eval; 
    Best.PSO.Makespan(run,:) = PSO.output.Best.Y.Makespan; 
    Best.PSO.NAGV(run,:) = PSO.output.Best.Y.NAGV; 
     
    Record(run).PSO = PSO; 
     
%% ----------------------------Report GA------------------------------ 
     [GA.output.Best.Y.Eval, I] = min(GA.output.History.Y.Eval); 
    GA.output.Best.Y.Makespan = GA.output.History.Y.Makespan(I); 
    GA.output.Best.Y.NAGV = GA.output.History.Y.NAGV(I); 
    GA.output.Best.X = GA.output.History.X(I+1,:); 
    fprintf('The GA  results with "%6.0f " function evaluation       
\n', GA.Parameter.MaxGen * GA.Parameter.N ); 
    fprintf('Makespan =      %9.0f \nNumber of AGV =    %3.0f \n', 
GA.output.Best.Y.Makespan, GA.output.Best.Y.NAGV); 
    fprintf('time =               %4.4f Sec\nBest Generation in %5.0f 
\n', GA.time,I); 
    fprintf('\n----------------------------------------------------
\n\n'); 
  
    GA.output.Worst.Y.Eval = max(GA.output.History.Y.Eval); 
    GA.output.Worst.Y.Makespan = max(GA.output.History.Y.Makespan); 
    GA.output.Worst.Y.NAGV = max(GA.output.History.Y.NAGV); 
     
    GA.output.Mean.Y.Eval = mean(GA.output.History.Y.Eval); 
    GA.output.Mean.Y.Makespan = mean(GA.output.History.Y.Makespan); 
    GA.output.Mean.Y.NAGV = mean(GA.output.History.Y.NAGV); 
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    GA.output.ST.Y.Eval = std(GA.output.History.Y.Eval); 
    GA.output.ST.Y.Makespan = std(GA.output.History.Y.Makespan); 
    GA.output.ST.Y.NAGV = std(GA.output.History.Y.NAGV); 
     
    finalReport.GA.Eval(run,:) = [GA.output.Best.Y.Eval, 
GA.output.Worst.Y.Eval, GA.output.Mean.Y.Eval, GA.output.ST.Y.Eval]; 
    finalReport.GA.Makespan(run,:) = [GA.output.Best.Y.Makespan, 
GA.output.Worst.Y.Makespan, GA.output.Mean.Y.Makespan, 
GA.output.ST.Y.Makespan]; 
    finalReport.GA.NAGV(run,:) = [GA.output.Best.Y.NAGV, 
GA.output.Worst.Y.NAGV, GA.output.Mean.Y.NAGV, GA.output.ST.Y.NAGV];     
     
    Best.GA.X(run,:) = GA.output.Best.X; 
    Best.GA.Eval(run,:) = GA.output.Best.Y.Eval; 
    Best.GA.Makespan(run,:) = GA.output.Best.Y.Makespan; 
    Best.GA.NAGV(run,:) = GA.output.Best.Y.NAGV;     
     
    Record(run).GA = GA; 
%% ------------------------Report Hybrid GA - PSO -------------------- 
  
    [HGAPSO.output.Best.Y.Eval, I] = 
min(HGAPSO.output.History.Y.Eval); 
    HGAPSO.output.Best.Y.Makespan = 
HGAPSO.output.History.Y.Makespan(I); 
    HGAPSO.output.Best.Y.NAGV = HGAPSO.output.History.Y.NAGV(I); 
    HGAPSO.output.Best.X = HGAPSO.output.History.X(I+1,:); 
    fprintf('The Hybrid GA-PSO  results with "%6.0f " function 
evaluation       \n', HGAPSO.Parameter.MaxGen * HGAPSO.Parameter.N ); 
    fprintf('Makespan =      %9.0f \nNumber of AGV =    %3.0f \n', 
HGAPSO.output.Best.Y.Makespan, HGAPSO.output.Best.Y.NAGV); 
    fprintf('time =               %4.4f Sec\nBest Generation in %5.0f 
\n', HGAPSO.time,I); 
    fprintf('\n----------------------------------------------------
\n\n'); 
  
    HGAPSO.output.Worst.Y.Eval = max(HGAPSO.output.History.Y.Eval); 
    HGAPSO.output.Worst.Y.Makespan = 
max(HGAPSO.output.History.Y.Makespan); 
    HGAPSO.output.Worst.Y.NAGV = max(HGAPSO.output.History.Y.NAGV); 
     
    HGAPSO.output.Mean.Y.Eval = mean(HGAPSO.output.History.Y.Eval); 
    HGAPSO.output.Mean.Y.Makespan = 
mean(HGAPSO.output.History.Y.Makespan); 
    HGAPSO.output.Mean.Y.NAGV = mean(HGAPSO.output.History.Y.NAGV); 
  
    HGAPSO.output.ST.Y.Eval = std(HGAPSO.output.History.Y.Eval); 
    HGAPSO.output.ST.Y.Makespan = 
std(HGAPSO.output.History.Y.Makespan); 
    HGAPSO.output.ST.Y.NAGV = std(HGAPSO.output.History.Y.NAGV); 
     
    finalReport.HGAPSO.Eval(run,:) = [HGAPSO.output.Best.Y.Eval, 
HGAPSO.output.Worst.Y.Eval, HGAPSO.output.Mean.Y.Eval, 
HGAPSO.output.ST.Y.Eval]; 
    finalReport.HGAPSO.Makespan(run,:) = 
[HGAPSO.output.Best.Y.Makespan, HGAPSO.output.Worst.Y.Makespan, 
HGAPSO.output.Mean.Y.Makespan, HGAPSO.output.ST.Y.Makespan]; 
    finalReport.HGAPSO.NAGV(run,:) = [HGAPSO.output.Best.Y.NAGV, 
HGAPSO.output.Worst.Y.NAGV, HGAPSO.output.Mean.Y.NAGV, 
HGAPSO.output.ST.Y.NAGV];     
     
    Best.HGAPSO.X(run,:) = HGAPSO.output.Best.X; 
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    Best.HGAPSO.Eval(run,:) = HGAPSO.output.Best.Y.Eval; 
    Best.HGAPSO.Makespan(run,:) = HGAPSO.output.Best.Y.Makespan; 
    Best.HGAPSO.NAGV(run,:) = HGAPSO.output.Best.Y.NAGV; 
     
    Record(run).HGAPSO = HGAPSO; 
     
    Record(run).finalReport = finalReport; 
    Record(run).Best = Best;    
end 
  
[B, I] = min(Record(end).Best.PSO.Eval); 
Record(end).BestOfBest.PSO.Eval = B; 
Record(end).BestOfBest.PSO.X = Record(end).Best.PSO.X(I,:); 
Record(end).BestOfBest.PSO.Makespan = 
Record(end).Best.PSO.Makespan(I); 
Record(end).BestOfBest.PSO.NAGV = Record(end).Best.PSO.NAGV(I); 
  
[B, I] = min(Record(end).Best.GA.Eval); 
Record(end).BestOfBest.GA.Eval = B; 
Record(end).BestOfBest.GA.X = Record(end).Best.GA.X(I,:); 
Record(end).BestOfBest.GA.Makespan = Record(end).Best.GA.Makespan(I); 
Record(end).BestOfBest.GA.NAGV = Record(end).Best.GA.NAGV(I); 
  
[B, I] = min(Record(end).Best.HGAPSO.Eval); 
Record(end).BestOfBest.HGAPSO.Eval = B; 
Record(end).BestOfBest.HGAPSO.X = Record(end).Best.HGAPSO.X(I,:); 
Record(end).BestOfBest.HGAPSO.Makespan = 
Record(end).Best.HGAPSO.Makespan(I); 
Record(end).BestOfBest.HGAPSO.NAGV = Record(end).Best.HGAPSO.NAGV(I); 
  
DrawGraph( Record, finalReport, MaxRun); 
  
%% ----------------------------- Save Data --------------------------- 
if savedata == false 
    filename = strcat('Record_', num2str(sum(clock)*1000), '.mat'); 
    save(filename,'Record'); 
end 
 
Reportit 
function [out]= Reportit(this) 
  
    if this.output.History.Y.Makespan(1,1) == inf 
        this.output.History.Y.Makespan(1,:) = []; 
    end 
    if this.output.History.Y.Eval(1,1) == inf 
        this.output.History.Y.Eval(1,:) = []; 
    end 
    if this.output.History.Y.NAGV(1,1) == inf     
        this.output.History.Y.NAGV(1,:) = []; 
    end 
  
    [this.output.Best.Y.Eval, I] = min(this.output.History.Y.Eval); 
    this.output.Best.Y.Makespan = this.output.History.Y.Makespan(I); 
    this.output.Best.Y.NAGV = this.output.History.Y.NAGV(I); 
    this.output.Best.X = this.output.History.X(I,:); 
    fprintf('The results with "%6.0f " function evaluation       \n', 
this.Parameter.MaxGen * this.Parameter.N ); 
    fprintf('Makespan = %9.0f \nNumber of AGV = %3.0f \n', 
this.output.Best.Y.Makespan, this.output.Best.Y.NAGV); 
    fprintf('\n----------------------------------------------------
\n\n'); 
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%     this.output.Best.Y.Eval = min(this.output.History.Y.Eval); 
%     this.output.Best.Y.Makespan = 
min(this.output.History.Y.Makespan); 
%     this.output.Best.Y.NAGV = min(this.output.History.Y.NAGV); 
     
    this.output.Worst.Y.Eval = max(this.output.History.Y.Eval); 
    this.output.Worst.Y.Makespan = 
max(this.output.History.Y.Makespan); 
    this.output.Worst.Y.NAGV = max(this.output.History.Y.NAGV); 
     
    this.output.Mean.Y.Eval = mean(this.output.History.Y.Eval); 
    this.output.Mean.Y.Makespan = 
mean(this.output.History.Y.Makespan); 
    this.output.Mean.Y.NAGV = mean(this.output.History.Y.NAGV); 
  
    this.output.ST.Y.Eval = std(this.output.History.Y.Eval); 
    this.output.ST.Y.Makespan = std(this.output.History.Y.Makespan); 
    this.output.ST.Y.NAGV = std(this.output.History.Y.NAGV); 
     
    Countthis = [1:this.Parameter.MaxGen]; 
  
    MAXIMUM = max(this.output.History.Y.Makespan); 
    DIGIT = ceil(log10(abs(MAXIMUM))/2); 
    Max_Axe = ceil(MAXIMUM/(10^DIGIT))*10^DIGIT; 
    MINIMUM = min(this.output.History.Y.Makespan); 
    DIGIT = ceil(log10(abs(MINIMUM))/2); 
    Min_Axe = floor(MINIMUM/(10^DIGIT))*10^DIGIT; 
     
%% ---------------------------- Plot this ---------------------------- 
    thisPLOT = zeros(this.Parameter.MaxGen,3); 
    for i = 1 : this.Parameter.MaxGen-1 
        thisPLOT(i,1) =   min( this.output.History.Y.Makespan(((i-
1)*this.Parameter.N+1) : (i*this.Parameter.N))); 
        thisPLOT(i,2) =   max( this.output.History.Y.Makespan(((i-
1)*this.Parameter.N+1) : (i*this.Parameter.N))); 
        thisPLOT(i,3) =   sum( this.output.History.Y.Makespan(((i-
1)*this.Parameter.N+1) : (i*this.Parameter.N)))/this.Parameter.N; 
    end 
    thisPLOT(this.Parameter.MaxGen,1) =   min( 
this.output.History.Y.Makespan(((this.Parameter.MaxGen-
1)*this.Parameter.N+1) : (this.Parameter.MaxGen*this.Parameter.N))); 
    thisPLOT(this.Parameter.MaxGen,2) =   max( 
this.output.History.Y.Makespan(((this.Parameter.MaxGen-
1)*this.Parameter.N+1) : (this.Parameter.MaxGen*this.Parameter.N))); 
    thisPLOT(this.Parameter.MaxGen,3) =   sum( 
this.output.History.Y.Makespan(((this.Parameter.MaxGen-
1)*this.Parameter.N+1) : 
(this.Parameter.MaxGen*this.Parameter.N)))/this.Parameter.N; 
     
    figure('Name','this Minimum','NumberTitle','off') 
    plot ( Countthis, thisPLOT(:,1)) 
    axis([0,this.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
    figure('Name','this Maximum','NumberTitle','off') 
    plot ( Countthis, thisPLOT(:,2)) 
    axis([0,this.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
    figure('Name','this Mean','NumberTitle','off') 
    plot ( Countthis, thisPLOT(:,3)) 
    axis([0,this.Parameter.MaxGen-1,Min_Axe,Max_Axe]) 
     
    figure('Name','All','NumberTitle','off') 
    plot ( Countthis, thisPLOT(:,1)) 
    hold on; 
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    plot ( Countthis, thisPLOT(:,2)) 
    hold on; 
    plot ( Countthis, thisPLOT(:,3)) 
    out = 1; 
    legend('min','max', 'mean'); 
  


