
Name : Juhari bin ljam

Matric No : Wek 990341

Supervisor : Prof. Dr. Syed Malek Fakar Duani

Moderator : Puan Norisma Idris

Project Title : Component-based Stemming Engine
for Malay Text

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

Word stemming is an important feature supported by pr eut day indexing

and search system. The idea is to improve recall by automatic handling fw rd

ending by reducing the words to their word roots, it th rim find xing and

searching. Various algorithms for stemmin r hav be n d l pod for the English and

the other foreign languages, but it is still new f r th Mala text. How ever most of

them did not given any meaning of the development or application. This is because it

cannot be reused for the other applications. These projects are studied and a new

algorithm is being proposed to improve the performance of the stemming process.

And the most importance of this project is to propose a new technology, which is

using component based. With it, a lot of applications may derive from the

component. It is because the main reason of using component base is it can be

reusable. So that for those who like to build a system which is have a relationship to

the IR or word stemming, not need to build it anymore for the stemming engine. The

developer has just to use the component engine and get the output easily. How ever

this project is proposed for a specific domain that will be covered for the generic

Malay words.

Univ
ers

ity
 of

 M
ala

ya

ACKNOWLEDGEMENT

A huge bundle of sticks become easy to cany when • , n carries a stick

along with them. Teamwork reduces the amount of ta sk each member ha t do.

Therefore the author would like to wish the followin l p plc v h had directly and

indirectly contributed to make this thesis possibl .

First of all the author, would like to thank the almighty God, for everything

that has given and for his guidance and blessing. The author would like to thank his

supervisor, Assc. Prof. Dr. Sye Malek Fakar Duani bin Syed Mustafa whose

guidance, advice and supervision throughout the development of the project success.

He provided the author with much needed aid and guidance on every aspect of the

project. His help is deeply greatly appreciated. Also not forgetting the authors

moderator, Cik Norisma Idris who has given critical comments in the pursue of

improving of the system. The author would like to thank her for his invaluable ideas

and comments.

And finally the author would like to thank, his fellow friends especially

Salhana, Kamarul, Sahidan, Norid, Azidi, Azman and the rest of them who had

stayed with him throughout all weather and hardship. The support and comments

gained from them made this very project possible. With them the experience the

author gained as an undergraduate will be cherished forever. Thank you.

II

Univ
ers

ity
 of

 M
ala

ya

CONTENTS

Abstract .

Acknowledgement . ii

Contents . 111

List of table and figures.. v1

Chapter l : Project Overview

1.1 Project Objectives . 2

1.2 Project Scope . 3

1.3 Thesis Organization 4

Chapter 2: Literature Review

2.1 Introduction.. 8

2.2 Information Retrieval... 8

2.3 Approaches to component technology.. 11

2.3.1 Introduction 11

2.3.2 What is Component 11

2.3.3 Objects and Components... 13

2.3 .4 Architectural overview of component systems 16

2.3.5 COM.. 16

Chapter 3 : Methodology

3.1 Methodology Overview... 20

3. 2 Development Model . 2 I

3.3 Project Schedule.. 22

3.3.1 Requirement Analysis Phase... 22

3.3.2 System Design Phase.. 23

3.3.3 Programming Design Phase... 23

3.3.4 Coding Phase...... 24

3.3.5 Unit Testing Phase 24

3.3.6 System Testing Phase........ 24

111

Univ
ers

ity
 of

 M
ala

ya

3.3.7 Operational and Maintenance Phase................................. 25

3.4 Fact-finding Techniques 25

3.4.1 Observations .. 25

3.4.1. l Observation Advantages . 26

3.4.1.2 Observation Disadvanraacs 26

3.4.2 Review Of Documents . 26

3.4.2.1 Review Of Document d nt 27

3.4.2.2 Review Of Document Dis d antages.... 27

Chapter 4 : System Analysis and Design

4.1 System Analysis Overview 29

4.2 System Requirements 29

4.2. I Functional Requirement :. 29

4.2.1.1 Functionality 30

4.2.1.2 Input Functions . 30

4.2.1.3 Output Functions 31

4.2.1.4 Processing Functions . 31

4.2.1.5 Storage Functions . 31

4.3 Previous Work . 32

4.3.1 Othman's Algorithm.. 32

4.3.2 Sembok's Algorithm.. 33

4.4 The New Stemming Algorithm 34

4.4.1 Norisma's Algorithm .. . 35

4.6.2 Modification from Somabalan 37

Chapter S : System Implementation

5.1 Introduction . 40

5.2 Development Environment 40

5.2.1 Hardware Requirement.. 40

5.2.2 Software Requirement... 40

5.3 System Development... 41

5.3.1 Module Coding... 42

IV

Univ
ers

ity
 of

 M
ala

ya

Chapter 6 : System Testing

6.1 Introduction 45

6.1. l Testing Strategies 50

6.2 Unit Testing . 51

6.3 System & Integration Testing 55

6.4 Conclusion 55

Chapter 7 : System Discussion

7.1 Introduction 57

7.2 Discussion On The Module Test Result....................................... 57

7.3 Handling Visual C++...... 57

7.4 System Strengths 58

7.4.1 Reusable of code : . 58

7.4.2 Fast Response Time for Document retrieval....................... 58

7.4.3 Multi Language Approach . 58
7.5 System Constraints 59

7.5.1 Visual C++ 59

7.5.2 Exceptional Cases 59

7.6 Future Enhancement.. 59

7.6. l Essay Answer Marking.. 60

7.6.2 Language Based Intelligent System................................... 60

7.6.3 Implementing Database . 60

Conclusion . 62

Appendix A . 64

Appendix, B .. 65

Appendix C .. 66

Appendix D 67

Appendix E . 68

Appendix F... 75

References . 7 8

User Manual.. 81

v

Univ
ers

ity
 of

 M
ala

ya

LIST OF TABLE & FIGURES

List of tables

Table 4.1: The Experiments Results 11 Infix W rds 38

Table 5 .1: Output for each function. 45

Table 6.1: Tested result... 51

List of figures

Figure 2.1: Standard lnfonnation Retrieval Interaction Model 9

Figure 2.2: Various interpretations of where a component could be situated in a

hierarchy .. 12

Figure 2.3: Component diagram .. 14

Figure 2. 4(a): COM objects can contain pointers to COM implementation.... 17

Figure 2. 4(b): COM objects can contain interface implementation.............. 17

Figure 3.1: Waterfall Model... 21

Figure 3.2: Project Schedule of The Word Stemmer Application 22

Figure 5.1: Dictionary and morphology replacement module..................... 46

Figure 6.1: Testing Process Stages 49

29

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1

INTRODUCTION

Univ
ers

ity
 of

 M
ala

ya

1.1 Project Objective

In developing a certain project, requires the parri ular pr [ect t under go the

development life cycle. This means that tho proj 1 has t ~ thr ugh several stages

of development before it is ready for implem nt ti n. The fit t stage in the

development life cycle is set.ting the objective of tJ1 project. Among the objectives

that are to be achieved with this dev lopm nt of the omponent Based Stemming

Engine for Malay Text are '-

o To improve the efficiency of the Information Retrieval of a Malay text.

o To be used in education field, where writing exam online, especially for the

essay questions possible to be marked automatically by the system. This will

definitely reduce the time taken by lecture or teacher to mark the papers

manually.

o To provide a general stemming engine component and can be used to

anybody to develop their own application and system which is related to

information retrieval.

o Can be used as a global dictionary. This mean that the user can use this

component engine to check whether the word is correct or not or existing in

the real dictionary. For this reason, all possible root word should be inserted

first into the system.

This proposes project will use a lot of variable for the suffixes and special words.

From that, we can apply this component engine to be used for any languages since it

is a text based. Developer has just to insert any possible morphology - suffixes and a

special word from their language to the component. This is very strength objective

2

Univ
ers

ity
 of

 M
ala

ya

and feature that differ to all word stemmer application in the v orld.

1.2 Project Scope

Another important cycle in the developm ent life le is setting the scope of

the project. Without a proper scope, the project that is being developed is bound for

failure. This is because the scope sets the fundamental mies of the project. As for this

project development it will be divided into four main modules.

CJ Word Stemming for Malay Text

o Brief story about Word Stemming

o Algorithm

o Input/output

CJ Component Based Stemming Engine

o Input from file

o Optional output

o Usability

o User Interface

o Sample Applications

o Vis

CJ Multilanguage

a Data Dictionary

3

Univ
ers

ity
 of

 M
ala

ya

1.3 Thesis Organization

Generally there are six chapters in this project pr p al. Each chapter

contains the information of the different phrases f th temming Engine

Malay text.

Chapter 1: Project Overview

This chapter contains the overall project overview the description of the

project includes the objectives, the project scope and project methodology that

specifies the development stages of the project.

Chapter 2: Literature Review

In this chapter, the information regarding the approach that will be used in

this project will be presented here. This includes the definition ofinfonnation

Retrieval, how an lnfonnation retrieval system works, the approaches that used in the

Infonnation Retrieval, and the link of Information Retrieval to the Stemming

Algorithm.

Chapter 3: Methodology

Explain the model that is used to develop this component-based. Chapter 3

also will cover on all the phases that are being followed during the development of

the system.

4

Univ
ers

ity
 of

 M
ala

ya

Chapter4: System Analysis and Design

All the fact-finding techniques that have been used t in thi p ~ t will be

presented here, plus the functional requirement, th n n-fun ti nal requirement of

the new system will also be included. The nnnl sis f th st m-d veloping tool

includes all the hardware and software will be stilted in thi chapter.

Also a study of the previous stemming algorithm will be presented here plus the

new proposed stemming algorithm will be described here as well as the results of the

experiments being carried out.

This chapter will also cover the system specifications that have been planned.

Also TI1e flow chart of the new proposed system, the flow chart of the new stemming

algorithm will be presented here also.

Chapter5: System Implementation

This chapter states all the physical design processes that involve a lot of

algorithm and new methods. It concerns on the system architecture, the outcome of

the reports and the screen. This also chapter contains system coding methodologies.

Chapter6: System Testing

This chapter explains and tests whether the system is functioning as the users

requirement and if it is fulfilling the required specification. In also shows the method

of testing that has been used to test this stemming engine component-based. Also

included is the list of bugs that have been detected during the whole project

development and their solutions.

5

Univ
ers

ity
 of

 M
ala

ya

Chapter 7: System Evaluation

In this chapter discusses the problem encountered durin ., the d

this project with their solutions. Also included arc th" s t "111 strength and the

limitations of the system. All the feedback from th u: rs L als being documented

in this chapter. The recommendations for future .st m enhancement will be stated

as well.

6

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 2

LITERATURE REVIEW

7

Univ
ers

ity
 of

 M
ala

ya

2.1 Introduction

The growing amount of information available mainly in the Int met poses

significant problems in storing, managing and especiall retrieving inf rmation. A

central issue is retrieving information, which is rel avant t th u r's need . This is

the reason of intensive search in such areas a data mining, inf rmation extraction,

information retrieval is being done. There arc se ral schemes which includes

standard information retrieval methods, which can be considered as a basis for the

modem advanced information retrieval techniques. On the other hand it includes

techniques, which are based on the Artificial intelligence methodology.

2.2 Information Retrieval

In data retrieval, we are normally looking for the exact match. In other words

we are checking to see whether an item is absent in a file. In the information

retrieval, exact match sometimes be of interest, but more generally we want to find

those items, which partially match the request and then select from those, the best

matching items. If we will compare it with different types of systems we can clearly

see that in a database queries context, one seeks facts that satisfy a query, in question

answering (also know as information extraction) one seek specific answers to

specific questions. In information retrieval, one seek a document that is likely to

contain the information that a user needs. Information Retrieval(IR) system are used

for retrieving document that are concerned with needs. It is a quite vivid that the

interference tends to be inductive, rather than deductive; finding documents likely to

be relevant requires skilful guessing. The problem with information retrieval is that

the process of locating relevant documents is inherently uncertain and is highly

context dependent. Figure I shows standard retrieval interaction model. It is evident,

8

Univ
ers

ity
 of

 M
ala

ya

that the information retrieval is iterative process, which besides input and output

operation includes the iterative reformulating. This activity change query according

to some certain strategy in order to increase relevancy f th receix ed document.

Information Need

Query

Send to system

Receive Results

Reformulate

Evaluate Results

No

Figure 2.1 Standard lnfonnation Retrieval Interaction Model

It must be admitted, that information retrieval can be defined for any type of

information such as text, images, video and sound. However, in this paper we will

look through only text retrieval, because of it simplicity in methodology and

implementation. It can be emphasized that described methods can be applied for

example to multimedia retrieval too. All methods could be divided on two main parts

9

Univ
ers

ity
 of

 M
ala

ya

that are standard method and AI-based method. The first group includes methods

based on traditional mathematical or algorithmic techniques. The second tries to

incorporate knowledge to the retrieval process by usin artificial int llig nee

techniques to achieve better relevancy of the document.

lO

Univ
ers

ity
 of

 M
ala

ya

2.3 Approaches to component technology

2.3.l Introduction

The singe largest challenge facing oftware d ' t da i how they can

undertake the transition of their applications writt n in pr Iural languages) to a

paradigm based on technologies such as obj t ti ntati n and c mponent-based

assembly. Procedural languages were designed in th da when computer

architecture was much simpler with 'green screen' terminals connected to a legacy

application with character-based interfaces. The distributed applications of today

require a different approach. Software reuse can be achieved through component

based development, and indeed the use of this technology today will facilitate

software reuse in the future. Component-based development therefore assumes that

developers will create an application by plugging together components, which have

already been created, possibly by someone else in a different organization.

2.3.2 What is Component

Numerous definition exist for components. The term component has been

used extensively, but rarely have proper design definitions been formulated. Visual

Basic Extensions (VBXs) was one of the first to introduce the idea of components in

1992. Today's descriptions have evolved from this original idea.

There appears to be little general consensus on the exact definition of a

component. It is therefore useful to look at the definitions offered by key researchers

and practitioners in the area :

l. A business component represents the software implementation of an

'autonomous' business concept or business process. It consists of the

11

Univ
ers

ity
 of

 M
ala

ya

software artifacts necessary to express, implement and deploy the concepts as

a reusable element of a larger business system fWojt k Kozaczvnski"].

2. A component is a software module that publi he it' int rfa .es [Paul Hannon,

Cutter Information Corp'].

3. A component is a nontrivial nearly indcp nd nt and replaceable part of a

system that fulfils a clear function in the ontext fa well-defined

architecture. A component conforms to and provide the physical realization

of a set of interfaces [Philippe Krutchen, Rational Software"],

4. A software component is a unit of composition with contractually specified

interfaces and explicit dependency only. A software component can be
deployed independently and is subject to third-party composition [Clemens

Szyperski, Component Software"] .

5. A runtime software component is a dynamic bindable of one or more

programs managed as a unit and accessed through documented interfaces that

can be made known at runtime [Gartner Group"],

The first expression of what a component is, point 1, sits at the top of the pyramid as

business logic : points 2-4 are interested in the interface and point 5 is more low level

as runable code definition (see Figure 2.2) [M.E.C. Hull, Computing & Control"]

Executable modules

Conceptual logic \
Interface - published
Sourcecode prototypes

Figm'C 2.2 Various interpretations of where a component could be situated in a hierarchy

12

Univ
ers

ity
 of

 M
ala

ya

Paul Harmon' defines the overall goal of a component as the following:

" Component systems are clearly designed to facilitate reu e of code.

Component-based development assumes that the devel per will create an application

by 'wiring' together components that have already been created b someone else. It

also assumes that the person who created the mp nents in the first place might not

know how the components would be used. Thus, components are modules of code

that are created with the intention that other developers will plug them into new

applications."

Various attempts have been made at comparing components to objects. Szyperski"

states that, in order to understand the difference between a component and an object,

it is best to think of a component in terms of a class (or template or prototype). A

component therefore is defined as the code that is written and always stays static, i.e.

a component is developed and the code thereafter remains unchanged. An object (in

this definition) can be considered as an instantiation of a component.

Riverton Software" provides a definition that relates more closely to software

reuse and business objects. Objects are data structures that represent 'things' in the

real world. The formal way to define them is that they are software entities that

exhibit encapsulation, inheritance and polymorphism. A more practical way of

thinking about object is that they are made up of a defined set of data and a set of

methods. Business object can be thought of in these terms.

2.3.3 Objects and Components

Objects are the basic units of construction and are based on real-world

entities of the application domain. Class templates are organized into libraries with

13

Univ
ers

ity
 of

 M
ala

ya

common features, which are comprised of attributes and procedures called operations

or methods. Objects communicate by message passing. Mes ag are often

implemented as function calls. An object is used to hide th data within each

instance.

Components on the other hand also hav attribut s a, ciated with them, but

are composed of two types of design constitu nt - the c mponent and the component

interface". This facility allows the same component t be used in different contexts

(see Figure 2.3).

Glue language +
Component interfaces

applications

14

Components

Figure 2.3 Component diagram

For component interact correctly, it is necessary to define the interfaces

between components such that the interacting components understand what each

must provide to the other hand also what s required by another component. For this

reason it is the best that the interface is defined independently of each component,

thus allowing the interface to be used in many different contexts, and hence the

interface itself is de-coupled from each specific component, as shown in the figure.

Univ
ers

ity
 of

 M
ala

ya

This could mean that the data that was hidden within an object might be released to

be accessed by other components.

It is interesting to note that components retain man of the benefit of object

technology and at the same time do not have som f the 'diff ult to use' aspects of

inheritance and polymorphism, particularly when concerned with reuse. While it was

always felt that object technology would deliver on reuse, that has been far from the

case, but component technology has changed that. Where class library have proved

to be effective for reuse, components offer an even better facility in a potential multi

language application environment. Another benefit for reuse is that the source code

of a component is not necessarily required, particularly at a certain level of

granularity of module. Components may simply be available in executable form.

It is important to understand that component reuse is not for the end user to

build application, but for trained software engineers to generate applications with

components supplied by system developers that create the end-user application 12.

In a client/server application there is a major benefit in the client-side

component not being available in source code - this benefit the system software

vendor and there in no real problem for the application developer either. However,

from the server-side the situation is less clear as application developers may wish to

customize components for their own business needs. This may actually be an

advantage as it ensures that programmers using components cannot modify the code,

which means that whatever business rules a component implements are properly

enforced [Chappel 10].

15

Univ
ers

ity
 of

 M
ala

ya

Component then are reusable, small modules. In object-based application,

components will contain objects. Objects are written in an 00 object oriented)

fashion whereas components may contain code written in , but might al o be

procedural or even written in assembly language. urrent distributed architectures

that are object-based use component as an absrracti n r simplification mechanism.

Components, which contain object, can abstract larger pieces of business (or

computing) function so that the user workers at the level of the component- not the

individual object.

2.3.4 Architectural overview of component systems

This section provides a study of component systems. Given that components

are software modules that publish their interface it is important to understand how

these interfaces will be defined and what kind of component systems are available to

facilitate interface communication between different components. One of the leading

component system is COM.

2.3.5 COM (Plassil11]

This is a component system for Microsoft Windows and consists of two key

elements.

• COM interface

• A facility for passing messages between COM interfaces.

COM interfaces are encoded in MILD (Microsoft Interface Definition

Language), but are first written by developers in C++ or VB and then compiled into

an MIDL interface. A COM object is merely a collection of COM interfaces, but

16

Univ
ers

ity
 of

 M
ala

ya

inside the interface it may contain pointers to other implementations of the interface

(Figure 2.4(a)), contain the implementation of the interface (Figure 2.4(b)) or both.

COM object 1 COM obiect 2

(a)

COM object3

(b)

Figure 2. 4(a) COM objects can contain pointen to COM implementation
Figure 2. 4(b) COM objects can contain interface implementation

All COM objects are compiled into a binary object so they are specific to the

architecture on which they were compiled. Interfaces and components are both

identified by globally unique identifiers (GUIDs). COM specifies how, given a

pointer to a method, it can be called using specified parameters and in which order.

COM was originally developed as a component system for Microsoft

Windows. With the development of Windows NT, Microsoft has extended COM to

support cross-platform communication. DCOM is simply COM plus and ORB

(Object Request Broker).

In this paper, we have investigated the characteristics of components, the

difference between a component and an object, and their potential application in a

17

Univ
ers

ity
 of

 M
ala

ya

distributed environment. Despite early calls for the approaches of component-based

software development going back to the late 1960s, development ba ed on software

components has only recently emerged as one of the m t pr mi ing reu e

technologies. Thus it is likely that component technique t gether with glue types of

languages and distributed architectures will pla an imp rrant r le in reconstructing

or reusing legacy application, leading to across-language, cross-platform, new

paradigm for reuse of legacy code.

18

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3

METHODOLOGY

19

Univ
ers

ity
 of

 M
ala

ya

3.1 Methodology Overview

Methodology is defined as a collection of pr cedur technique tools and

any pattern of documentation. In developing a system, a de lopment model that

consists of system development process phase must b h wn t help users and the

system developer. By doing this also, a system developer can make an early planning

and evaluating on the activities that will be implemented during the development

process.

The advantages in modelling the system development process are :-

1. Generate a simple understanding on implementation of activities, resources

and limit allocation that might occur.

2. Modelling the implementation activities during the system development will

help in achieving the most effective ways to counter any non-conjunction in

any of the development phases.

3. By using a model in developing a system, the sequence of phase is related to

the phases before and after it. This relation will help developer to allocate

cost with the time given in every software development system phases.

4. By using a model in developing a system, the implementation of a particular

process can be tracked.

20

Univ
ers

ity
 of

 M
ala

ya

3.2 Development Model

1

Planning

Anaysls

o sign l
Implementation !-----.

Figure 3.1 Waterfall Model

The project development methodology of Component-based Stemming

Engine for Malay text is the Waterfall approach. The Waterfall model builds

correction pathways into the model that enable a return to a previous phase. It is the

most widely used methodology to implement the system development life cycle. As

shown in the figure 3.1, the methodology consists of five phases including planning

analysis design implementation and support.

In the planning phase, the current problem will be identified, the need of the

project will be recognized and the project objectives will be set. The analysis phase

involves the processes of analysis the existing methods of the stemming algorithm,

the analysis of the approaches used and etc. After system analysis will be the system

design. The design phase concerns on the system architecture, flow charts and

system specifications . The system program design is followed by the system

implementation where the program will be developed and tested for execution. In the

21

Univ
ers

ity
 of

 M
ala

ya

final phase, the new system program will be ensured that it has met its goal which is

the high percentage of stemming of the Malay words correct I '·

3.3 Project Schedule

Phase June July Aug Sept Oct Nov Dec Jan

8. Documentation

1.Problem Definition

2.User Requirement Study

3.System Analysis

4.System Design

5.System Implementation

6.System Testing

7.System Evaluation

Figure 3.2 Project Schedule of The Word Stemmer Application

Above is the project schedule that has been followed as guidance for the

development of this Word Stemmer Application.

3.3.1 Requirement Analysis Phase

Involved initial research activity, literature review, system component

analysis, and problem in developing the system. There are three main activities:-

a) Initial research - Involved the main reason the system is being build, system

definition, scope and objective to be reached in developing the system and

planning on certain activity implementation throughout the development

process.

22

Univ
ers

ity
 of

 M
ala

ya

b) Analysis research - Concentrate on the system requirement. This phase covers

the searching and data and information analysis that are related to detect any

problems and system requirement. Strategy and planning hould be arranged

to collect the necessary data and information. This can be seen from the

component abstraction of the system. The 1 cati n f the ystem should be

noted of to ensure the type of user that is ing to use the system. All users

requirement should be implemented so that a system based on the users

requirement can be developed.

This phase should be implemented carefully because it acquires a deep understanding

on the entire question, which could rise when involved with the implementation

object.

3.3.2 System Design Phase

This phase focuses on the process of developing the system that covers the

activities such as :-

• Illustrating the system model architecture

• Designing the graphical user interface

• Determine the model that will be used to develop the system

• Illustrating the concept design and the system's technical design

3.3.3 Programming Design Phase

This phase focuses on the system technical design that has been grated on the

system design phase to the programming design phase. Technical visualization is

23

Univ
ers

ity
 of

 M
ala

ya

implemented according to the flow chart descriptions that will be the model during

the process of coding the flow to the coding process.

3.3.4 Coding Phase

In this phase, the coding process is implemented. The flow chart, which has

been created earlier, will be transformed into a code form. This phase is important

because it serves as the backbone in a system. Coding must be done accurately to

produce a coding shape with a high quality codes. An exceptional handling strategy

should be applied because it will help in maintaining problem due to programming

codes.

3.3.S Unit Testing Phase

The testing is conducted by using a realistic data. A system's user are also

involved to determine the function that user would want to use. This phase will use

certain technique on certain function model that is built in the system.

3.3.6 System Testing Phase

This phase involved integration between the modules that is builds in the

system. In this phase, all modules will be combined so that it can function as a

complete system and will be tested as the whole system. This testing will confirm

whether the system objective is archived or not by referring to the validation and

24

Univ
ers

ity
 of

 M
ala

ya

verification process. Testing that will be carried out during the system testing process

are such as functional testing, ability testing and installation testing.

3.3.7 Operational and Maintenance Phase

This phase will provide the documentation u how to use the system with the

steps underlined by the developer. This documentation also will include all the

description on handling problems if there is a problem that occurs during the

operation of the system. Developers provide this documentation to ensure that the

user will be able to adapt to a correct usage of the system. This documentation also

can help a user to face a certain situation without need to refer to the system's

developer.

3.4 Fact-finding Techniques

Fact-finding technique is a way to find related items, knowledge or data for

the system that is going to be built. Listed here are some of the techniques used for

developing the component-based for stemming engine.

3.4.1 Observations

In this technique, the system developer observes how the operations/task are

performed. The techniques allows the developer to gather information about the

system, the people who are involved, what, when, where and why. This technique

can be used to verify some of the facts gathered through other techniques.

25

Univ
ers

ity
 of

 M
ala

ya

3.4.1.1 Observation Advantages

• Helps to build relationships with the operating t ff:-

• By actually seeing or participating in the s t m perati n, it helps the

developer to understand the system better nd it might provide additional

perspective about the current system.

• This is one of the most inexpensive technique, compare to others like

interviewing and questionnaire.

3.4.1.2 Observation Disadvantages

Direct observation might distant the staff/users and may result in poorer

performance. This will affect the result of the observation.

Sometimes, the staff might just let the developer see what they want the developer to

see. This may not be an actual performance level. The developer may not be able to

see some of the unusual or unexpected situations that occur only occasionally.

3.4.2 Review Of Documents

The system developer gets through the existing docwnents to understand the

system and its operation. The developer may collect the relevant documents from the

individual who attended the interview or actually use the system.

26

Univ
ers

ity
 of

 M
ala

ya

3.4.2.1 Review Of Documents Advantages

• By understanding the existing system, the developer will be able to. Its

strength and weakness and thus help them to d ign a better ystem.

• It is economical.

3.4.2.2 Review Of Document Disadvantages

• Information on the document might be out f date or not available.

• The document procedure might have change or even eliminated.

• The document may be difficult to read and understand or may be complex.

27

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

SYSTEM ANALYSIS AND DESIGN

28

Univ
ers

ity
 of

 M
ala

ya

4.1 System Analysis Overview

System analysis is an activity that seeks then systematicall analyzes data

input or data flow, processing or transformation of darn, data t rage and information

output within the context of a parricular bu iness.

Thus the objective of this phase is to define a component-based stemming

engine for Malay text that includes those that are needed to fulfill the system's

purposes. This phase will also explain how these functions work with other systems.

4.2 System Requirements

System requirement is the official statement of what is required of the system

developers. It should set out what the system should do without specifying how it

should be done. System requirements will be described in two ways: functional

requirements and non-functional requirements.

4.2.1 Functional Requirement

Functional requirements describe an interaction between the system and its

environment. For example, to determine the functional requirement, it is necessary to

determine what are acceptable states for the system to be in. further, the functional

requirements describe how the system should behave given certain stimuli. In short,

functional requirements describe system services of function.

In principle, the functional requirement definition of a system should be both

complete and consistent. Completeness means that all services required by the users

should be define. Consistency means that requirement should not have contradictory

29

Univ
ers

ity
 of

 M
ala

ya

definitions. The functional requirements also explicitly state what the system should

not do. Below are the functional requirements of the stemming algorithm system.

4.2.1.1 Functionality

1 . OOP Based - Can be used to every de el per.

2. Advance searching - Searching engine for web-based I dictionary.

3. Education field - Essay grading.

a Can be used to many platform application;

1. Web Based (ASP, JSP, PHP).

ii. System (Visual C++, Visual Basic)

b. Operating System (MS Windows, Unix/Linux)

Why? Using Binary code after compiled to specific file (.dll,exe).

4.2.1.2 Input Functions

1. The system must accept the following inputs-

• Object declaration to archive dictionaries, and suffixes file. Malay

files are a default files.

• A single Malay word

• Sentences of the Malay word

2. All the inputs are either key in by using the keyboard.

3. All inputted Malay words are bound to the Malay morphology rules.

4. Affixes such as Prefix, Suffix, Infix and also Prefix-Suffix will be accepted.

5. Document file in text format to be stemmed.

30

Univ
ers

ity
 of

 M
ala

ya

4.2.1.3 Output Functions

1. The system must generate the following statistical analysis outputs:

• Stemmed words/sentence

• Number of word occurrences in th ' te t

• Number of words stemmed

• Number of words stemmed con tl

• Number of words unchanged

2. The input can be viewed ate the screen or be manipulated for specific

purpose.

4.2.1.4 Processing Functions

1. The system must perform the following processes according to the Stemming

algorithm: -

• Remove Prefix's

• Remove Suffix's

• Remove Infix's

• Remove Prefix-Suffix's

• Check the local and general dictionary

• Replacement of certain exceptional.

4.2.1.5 Storage Functions

1. The system will not be involved in any storage activities.

2. All data's from the dictionary will be stored in a file.

3. Data's from the file can be created, amend, and deleted.

31

Univ
ers

ity
 of

 M
ala

ya

4. The results of the stemming procedure will not be saved in a database.

5. All prefixes, suffixes and infixes will be stored in the text file with a specific

name oflanguage file name (eg.: prefixes-Blvl.txt, pr ifix ~-EG-txt).

4.3 Previous Work

There have been two previous researches being done in the process of

developing the Malay words stemming algorithm. The first was in 1993 and it has

been improved by Sembok in 1994. This section describes briefly the two algorithms

and explains some problems in both algorithms.

4.3.1 Othman's Algorithm

Otlunan developed the algorithm in 1993. The algorithm used 121 rules,

which defined prefixes, suffixes, infixes and prefix-suffix pairs, and in general, rules

are defined as follows:

1. Prefix rules format: Prefix +

e.g. di+ jajah -> dijajah

2. Suffix rules format : +Suffix

e.g. jajh +an-> jajahan

3. Infix rules format: + Infix+

e.g. tapak (+el+)-> telapak

4. Prefix-Suffix pair rule format: Prefix+ Suffix

e.g. menN + takluk -> menakluki

32

Univ
ers

ity
 of

 M
ala

ya

The basic algorithm of the stemmer has several steps:

Step 1: If there are no more words, then stop otherwise set the next

word

Step 2: If there are no more rues, then a ept th word a root word

and go to Step 1, otherwise g 't then xt rule

Step 3 :Check the given pattern of the rule with the word. If it

matches, then apply the rule to the word to get a stem

Step 4:Check the stem against the dictionary. Perform any necessary

recording and recheck the dictionary

Step 5:Ifthe stem appears in the dictionary, then the stem is the root

oft.he word and go to Stepl otherwise go to Step 2

The algorithm adopted a rule-based approach that slowed down the stemming

process. The stemmer also did not take into consideration that the stemmers would

remove affixes from the root words, because the dictionary is not checked until after

the first rule has been applied to the word. For example, the word "tempatan"(local)

would be stemmed to 'tempat' (place) where 'an' is consider a

suffix. These two words have different meaning and may affect the performance of

the information retrieval system.

4.3.2 Sembok's Algorithm

The algorithm is a modification version of Othman's algorithm where it

adopted Othman's algorithm and a set of morphological rules as the basis for the

development of two new rule sets. The first contained 432 rules of affixes and the

second set contained 56 l rules of affixes

33

Univ
ers

ity
 of

 M
ala

ya

In order to enhance the original sternmer developed by Othman, another

step has been added to the basic algorithm of the stem mer where the input word is

checked first against the dictionary at the initial step. Th main purp se for the

additional step is to avoid stemming on the word, v hi h i already a root word, in

which otherwise, could lead to over stcnuniu "· F r example, the word 'mati' (die)

exists in the dictionary. Therefore, the word is not stemmed to the word 'mat' even

though it contains the suffix 'i'. The other experiment carried by Sembok was to

determine the order of the rules. It is important to know that the algorithm of the

stemmer relies on the order of the rules (which affixes has to be checked and

removed first).

This algorithm has been tested to the Quran and research abstract data

sets. The experiments showed a significant improvement in stemming the Malay text

and have been guidance for building a new stemming algorithm.

4.4 The New Stemming Algorithm

With the main purpose of research requires us to improve the

effectiveness in the retrieval process. The main interest is not only to develop a new

stemming algorithm for a specific application, but also to enhance the performance

of the existing algorithm in order to improve the retrieval process. There has been

another stemming algorithm, which have been developed by Norisma in 2000. It is a

modification of the both previous stemming algorithm module. Thus this algorithm

developed by Norisma is less error prone, and more effective in stemming the Malay

words. The only defect with this algorithm is that the Infix rules is abandoned due to

34

Univ
ers

ity
 of

 M
ala

ya

.
its unpopularity of use in the formation of new Malay words. In this new system

which have been developed by Somabalan, the infix rules will be included. So the

Norisma's algorithm will be used, as it is plus some additional Steps to be included

for the Infix rules. Below is Norisma's algorithm with the modification statements

following after it.

4.4.1 Norisma's Algorithm

In this new algorithm, only the most important rules from the two patterns

of the rules, which are Prefix and Suffix will be implemented. And as for the Prefix-

Suffix pattern because, it is actually the combination of the Prefix and the Suffix, so

there will not be a set of new rules for these pattern. By using only two patterns of

affixes that are prefix and suffix, we can reduce the number of rules sets. (Refer

Appendix A for the flow chart ofNorisma's stemming algorithm).

, Prefixes usually give rise to the spelling variations and exceptions in the
I

root word. In this case, errors may occur during the stemming process where the

stemmed word is not complete. To deal with this kind of problem, we build another

rule, which we refer to as Rule 2 where it can be applied to the prefixes removed

only. The mies of Rule 2 are:

If the stemmed word is not complete, then

Check the first letter of the word

If the stemmed word started with the vowels letters then

1. Add 't' after removing 'men' or 'pen'

2. Add 'k' after removing 'meng' or 'peng'

35

Univ
ers

ity
 of

 M
ala

ya

3. Add 's' after removing 'meny' or 'peny'

4. Add 'f' or 'p ' after removing 'mem ' or 'pem '

For example after removing the prefix 'mem' fr ma word menakluk' (to

conquer), a letter 't' would be attached to the remaining' rd 'akluk'to form the

correct stemmed word, 'takluk'(conquer'. But, for thew rd mentadbir' (to manage),

the stemmed word is 'tabir' (manage), sowed n t have to apply this rule as the

stemmed word started with the consonants letter t'. Basically the algorithm is: -

Stepl: Check the word against a general dictionary. If the word is

found in the dictionary, then accept the word as the root word

and exit, otherwise proceed to the next step.

Step 2:Check the word against a general dictionary. If the word is
found in the dictionary, then accept the word as the root word

and exit, otherwise proceed to the next step.

Step 3:Check the word against the prefix rules. If the word matches

the prefix rules , check the pattern of the prefix and the first

letter of the stem word, otherwise go to Step 8.

Step 4:If the pattern of the prefix matches the prefix patterns in

Rule 2, then apply the Rule 2 to the words, otherwise remove

the prefix and go to Step 7.

Step 5:Check the prefix of the word against the pattern of Rule 2. If it

matches the fourth rule (Rule 2(4)), then check the new stem

word against the dictionary and proceed to the next step,

otherwise remove the prefix and go to Step 7.

Step 6:If the word is not found in the dictionary, then go back to
Step 5, otherwise remove the prefix and proceed to the next

step.

36

Univ
ers

ity
 of

 M
ala

ya

Step ?:Check the word against the dictionary. If the word found in the

dictionary, then accept the word as the root word and exit,

otherwise proceed to the next step.

Step 8: Check the word against the Suffix ml . If it matches with the

Suffix mies, then remove the uffix and go to Step 1,

Otherwise, just go to the Step l.

4.6.2 Modification from Somabalan

There are two main modifications that are suggested. There are: -

Step 8:Check the word against the Suffix rules. If it matches with the

Suffix rules, then remove the suffix and check the dictionary.

If the word is found, then accept the word as the root word and
exit, otherwise, If the Prefix have been removed then add

again the prefix and go to Step 9 else go to Step 9.

Step 9:Check the word against the infix rules. If the word matches the
Prefix rules, then remove the infix and go to Step 1. Otherwise if

Prefix has been removed before and added again, now remove

the prefix again and go to Step l else proceed to Step l.

As you can see there have been some changes in Step 8. Plus another Step has been

added to the algorithm that is Step 9. The reason for the changes in Step 8 is to make

sure that if a word does not have any prefix or suffix attached, then the word should

be checked with the infix mies. And the rule 'if the prefix has been removed before it

arrived to Step 8 then add the prefix again' before proceeding, is to ensure that the

particular word is not wrongly stemmed. For example the word 'telapak', when it

reaches Step 8, the prefix 'te' would have been removed in Step 4.The balance of the

word 'lapak' does not make any sense. So to overcome this problem when the word

37

Univ
ers

ity
 of

 M
ala

ya

reaches Step 8, and it finds out that there is no suffix attached to the word, and before

proceeding to Step 9, the prefix that has been removed is added back to the word. So

by doing this, in Step 9, if the particular word is a' rd' 'ith the infix rules, the

search should come to an end. This is because an Infix ' rd does not have any prefix

or suffix attached to it. Wit11 the Addition of these new ml , the flow ofNorisma's

algorithm will not be interrupted as well for the efficiency of the algorithm.

There were several experiments carried out before we eventually came

out with the modification of the stemming algorithm. The first experiments were to

determine where the checking of the infix rules should be inserted in Norisma' s

algorithm. It is important to know that the algorithm of the stemmer relies on the

order of the mies. By performing some sideshow experiments, it is found that the

place to place the checking of the Infix rules is after Step 8. However, to our

knowledge there are only 4 infix rules currently available in the formation of Malay

words. The results of the experiments are reviewed in Table 4.1.

Word Actual Root Word Infix Modified Stemming Algorithm

Kelelawar Kelawar el Kelawar
Selerak Serak el Serak
rretapak Tapak el Tapak
rretekup Tekup el Telekup
Gemuntur Guntur em Guntur
Gemilang Gilang em Gilang
Semerbak Serbak em Serbak
Gerig is Gig is er Gigis
Sera but Sabut er Sabut
Lelaki Laki el Lelaki
Seinambung Seimbung in Sambunq
Table 4.1: The Experiments Results On Infix Words

38

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS

SYSTEM IMPLEMENTATION

39

Univ
ers

ity
 of

 M
ala

ya

5.1 Introduction

This chapter will cover on the implementation of the system. Since this

project is stressed more on the research, so this chapter will concentrate on

implementing the stemming engine, which inv lved c mp uent-based.

5.2 Development Environment

Using a suitable hardware and software will not only help to speed up the

system development but also determine the success of the project. The hardware and

software tools used to develop the entire system are as follows.

5.2.1 Hardware Requirement

In developing the component-based stemming engine, the configuration of

hardware that has been used is:

• Intel Pentium III Processor (733MHz)

• 15" SVGA Color Monitor (32bits, 800x600)

• 128MB SDRAM

• 15 GB Hard Disk Drive

• 1.44MB Floppy Drive Driver

• 52x CD-Rom

5.2.2 Software Requirement

The required software to run the system and develop the system:

• Microsoft Windows 98

o Stand as operating system that supports all software development

tools.

40

Univ
ers

ity
 of

 M
ala

ya

• Visual C++ I Visual Studio

o For application development, which is all algorithm, are implemented

and is programmed to build the real system.

• Internet Explorer

o To view the debugging messages.

• Microsoft notepad

o Dictionary data storage for

• Global dictionary

• Local dictionary

• Prefixes files

• Suffixes files

• Infixes files

• Mic. Visio Professional

o To draw ER and DFD Diagrams.

5.3 System Development

Visual C++ is the main important tools in developed this system. It will

involve classes, inheritance, constructors, destructors, operator overloading, objects,

encapsulation and etc. This system is build as a Win32 Console Application and plus

inheriting from the Microsoft Foundation Class(MFS). Every application

development project needs its own project workspace in Visual C++. The workspace

includes the directories where the application source code is kept, as well as the

directories where the various build configuration files are located.

41

Univ
ers

ity
 of

 M
ala

ya

5.3.1 Module Coding

The main part in creating the component-based system is the reusable of the

code. These mean that the code should be programmed with a lot of variable instead

of hard-corded (put the data to the programs). , every time the programs calling

the data such as dictionary, suffixes, prefixes and infixe , it will invoke external file.

The file is save in a txt format. This is a good practice of implementing a component

based system where the end user(nonnally developer) not need to know what is the

process in the system. What they need to do is to declare their own object as a

stemmer class and send required information. They also should know how to use

component-based in programming observation. The end user can modifythe external

file to meet the requirements. These mean that they can add any root words in the

dictionary, prefixes, suffixes and infixes in a specific files.

42

Univ
ers

ity
 of

 M
ala

ya

5.3.1.1 Class Definition

Below is the code segment for sternmer class definition with the method

provided.

class stemmer{

private:

CString fileGlobalDiction ry, fileLocalDictionary;

CString filePrefix s, fil Suffixes, fileinfixes;

CString wordin, rootword;

CString sentencein;

CString stemmedSentence;

int totalStemmedWords;

int totalWordsin;

int totalOutput;

public:

stemmer(CString ="globalDic-BM.txt", CString ="localDic-

BM.txt");

void testOutput();

void stem(char *sentence,int caseSensetive=O,int tag=O);

CString stemWord (CString word, int ce se sense t Ive=u, int tag=O);

int globalDictionary(CString word);

CString localDictionary(CString word);

CString Prefix(CString word);

CString Suffix(CString word);

CString Infix(CString word);

} ;

43

Univ
ers

ity
 of

 M
ala

ya

5.3.1.2 Method Usage

In this constructor function, stemmer (CString ="globalDic-BM. txt ",

CString ="localDic-BM. txt ", CString •"pr fix s-BM. tx t; «, CString

="suffixes-BM. txt ", cstring •"infix s-BM. rt ");, u er have to sent the

dictionary tile path for both global and local n the fir t tv attribute and the rest are

the prefix file, suffix file and infix file. Alt the files should in the same language or

morphology. This is important because the system/component will give wrong result

if the file is wrong. For example if the dictionary file is globalDic-BM. txt which is

present for Bahasa Melayu, so all the rest file should also in Bahasa Melayu for the

contents. But, the component still run with the default language as Malay if this

constructor is created without attribute such as stemmer <) ; • This is because to

make it less error while coding and the most important is to fulfill the requirement of

the title Component~Based Stemming Engine for Malay Text.

With this approach users can use this component to stem other language as

far as the language is a text based. It is also easy for user to put in the file if they got

a new words or suffixes. It can be implemented in a better user interface input such

as open a new language in a file menu.

void stem(char *sentence,int caseSensetive=O,int tag=O);

With the function above user can stem their sentence with their own option.

The first attribute is the sentence address, the second attribute for the case sensitivity.

0 for the default (not case sensitive) and 1 for case sensitive. The third attribute is for

tagging option.

0: Default, stem symbol n not stem tagging

1: stem symbol only

44

Univ
ers

ity
 of

 M
ala

ya

2: stem tagging and symbol

int globalDictionary(CString word);

CString localDictionary(CString word);

CString Prefix(CString word);

CString Suffix(CString word);

CString Infix(CString word);

The three functions/components above is used for internal program to find the root

word and make replacement if any.

Function Output Returned

CString sentence In; Original sentences from input.

CString stemmedSentence; Stemmed sentences with a specific

language.

int totalStemmedWords; Total stemmed words, which is involved

in the stripping for prefixes, suffixes and

infixes.

int totalWordsin; Total words from input.

int totalOutput; Total words will appear after stemming

process.

Table 5.1: Output for each function.

The functions/components above can be used to get the output by the end

user. Sample code for using the components is shown in Appendix F.

45

Univ
ers

ity
 of

 M
ala

ya

Dictionary Checking Module Flow

No

Morphology

Sufllxe•

Nr.r. rnnrd'I

Stem the word

Figure 5.1: Dictionary and morphology replacement module

Figure 5 .1 shows a dictionary and morphology module with special

replacement, which implemented as the code in the Appendix F and using new

diagram from Appendix C. The word will be sent to dictionary module as stemmed

or unstem word. It will find a match word in the global dictionary with the input

word. If matches, then it will return as root word, if not it will try to find in the local

dictionary. If the word found, it will use the replacement word as root word else it

will not return as root word. With this approach the problem for special words for

their root words are solved. For example in English; ran 7 run, fought 7 fight. So,

46

Univ
ers

ity
 of

 M
ala

ya

the same thing, is implemented to the prefixes or suffixes which will make

replacement for it. For example men-) t for menakluk-7tLJkluk, mentadbir-)tadbir.

47

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS

SYSTEM TESTING

48

Univ
ers

ity
 of

 M
ala

ya

6.1 Introduction

System testing is a crucial process in developing any software. This is a

process where the system will be verified and validated in term of the system

functional requirement, performance, reliability and specifications. However the

stemming component will only be tested on tho functional requirement.

The objective of unit and integration testing is to ensure that the code

implemented the design properly; that the programmers wrote code to do what the

designers intended. In system testing, the objective is different: to ensure that the

system does what the customer wants it to do. To understand how to meet this

objective, first we must determine where faults in system come from

The most widely used testing process consists of five stages shown in Figure 6.1
below:

Unit testing

Modulate Sting

Subsystem testin

System Testing

Acceptance
Testing

Component Testing Integration Testing User Testing

Figure 6.1 Testing Process Stages

49

Univ
ers

ity
 of

 M
ala

ya

The sequence of testing activities is component testing, integration testing

then user testing. As defects are discovered at any stage, program modification are

required to correct them and this may require other sta re in the te ting process to be

repeated. The process is therefore an interactive one with inf rmation being fed back

from later stages to earlier parts of the process.

In Figure 6.1, the arrows from the top of the boxes indicate the normal

sequence of testing. The arrows returning to the previous box indicate that previous

testing stages may have to be repeated.

6.1.1 Testing Strategies

A testing strategy is a general approach to the testing process rather than a

method of devising particular system or component tests. The testing strategies

include:

Top-down testing: testing starts with the most abstract component and work

downwards.

Bottom-up testing: testing starts with the fundamental components and works

upwards.

Thread testing: is used for systems with multiple processes where the processing of

transaction threads its way through these processes.

Stress testing: relies on stressing the system by going beyond its specified limits and

hence testing how well the system can cope with overloads situations.

Back-to-back testing: is used when versions of a system are available. The systems

are tested together and their outputs are compared.

50

Univ
ers

ity
 of

 M
ala

ya

6.2 Unit Testing

Unit testing verifies that the component functions properly with the types of

input expected from studying the component's design. The first step is to examine

the program code by reading through it, trying to sp t alg rithm, data and syntax

faults.

All algorithms for every module are tested with appropriate input. The

modules are constructor component, dictionary component, morphology component

(prefix, suffix and infix) and the user output component.

Below are the testing results;

Unit Testing Result

Constructor component Worked properly.

The default value was taken if the

constructor created without attribute.

Eg:

stem mer obj 1;

' Or

stemmer obj 1 ("globalDic-BM",

"localDic-BM");

Global dictionary component Worked properly.
-

The global dictionary returned the true

root word.

e.g.:

adik -7 TRUE

adun -7TRUE

51

Univ
ers

ity
 of

 M
ala

ya

Worked properly with some

modification.

Data tested for Malay words;

akhbar 7 TRUE

pita 7 TRUE

polis ?TRUE

longantnot in th di tionary) 7 FALSE

pistoltnot in the dictionary) 7 FALSE

The testing return FALSE because the

words are not existed in the global

dictionary.

Local dictionary component Worked properly.

Test for Malay text;

perkosa 7 rogol

sebuah ?buah

How ever it is too few for Malay

language. This component is very useful

for other language such as English where

there are so many exceptional words.

Test for English text;

ran-rrun

bought-rbuy

men-hnan

broke ?break

drunkrrdrink

Prefixes component

52

Univ
ers

ity
 of

 M
ala

ya

memberi -7berl

dilantik-7/antik

berkata -7kata

bersedia -7s idia

Problem curred when overlapped of

these prefix m ng memper men, menye

and me. And combination ofpe, peng,

penye Eg;

rnencari -mcari (strip the me)

mengguna -7ngguna, gguna

pengguna -7ngguna

penyapu -7nyapu

This problem occurred because of the

improper prefix list (unsorted prefix). To

solve this problem the prefixes list are

listed properly with the highest length of

prefix at the top. Suffixes and infixes

files also made with the same changes.

Suffixes component Worked properly after changes

racuni -7racun

perlukan -7perlu

mulai -7mula

ternpatan -7tempat

Combination of prefix-suffix

perlindungan-rlindung

53

Univ
ers

ity
 of

 M
ala

ya

perkataan -7kata

pennulaan -7mula

menyeksakanrsseks 1

memper ayai -71 rcaya

Infixes component Worked pr perly after changes

telapak-rtapak

gemuruh -7guruh

gerigi -7gigi

jejari -7jari

sinambung -7sambung

CString sentencein; Sentence tested:

Suatu proses ialah beberapa langkah

yang melibatkan aktivttt, kekangan dan

sumber yang akan menghasilkan output

yang diingini <lulus>.

CString stenunedSentence;

int totalStenunedWords;

int totalWordsin;

int totalOutput;

Tagging Testing

Case sensitive testing

Suatu proses ialah berapa langkah yang

libat akuviti kekangan dan sumber yang

akan hasil output yang ingin lulus.

4

18

18

Worked properly

Worked properly

Table 6.1 : Tested result

54

Univ
ers

ity
 of

 M
ala

ya

6.3 System & Integration Testing

The system bad been tested for the unit testing. All input will produce the

correct output after modification. Integration testing is m re to the system for this

project. This is because the main purpose is going to be u db 1 the other peoples to

build their own systems. If they got no problem of reusing this component, meaning

that this component can be integrated with other applications. Salhana bt. Darwin

had been build a system "Essay Grading Using Nearest Neighbor Technique" and

implemented this component-based. She got no problem to use this component

integrated with her project.

6.4 Conclusion

Resulting from all the tests that had been carried out, it seem that all modules

can perform well but still have several problems to make it really useable for all

language. These conditions arise due to the several problems, which will be

discussed in the next chapter. However, all those modules are not 100 percent fail. lf

all the problems that caused those modules unable to fulfill their functional

requirement could be overcome, it believed that all modules could perform their

functional requirement very well.

55

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7

SYSTEM DISCUSSION

56

Univ
ers

ity
 of

 M
ala

ya

7.0 System Discussion

7.1 Introduction

In this chapter, it will be a discussion on the u ag of temming component

and the conclusion of the test result. In this chapter also will be discussed a

knowledge that has been found from a research on the ability of this component and

what is the future enhancement that can be implemented.

7.2 Discussion On The Module Test Result

The test result on all modules seems returned a recommended output. But it

still faced with a problem where the external file (data file) have to sort properly and

manually with the longest length of words/prefix/suffix/infix at the top of the file.

7.3 Handling Visual C++

As a new tool for programming, it took quite some time for me to learn the

feature in visual C++ and what it is capable of doing. The main problem that I faced

was to how to use Visual C++. As resources for learning Visual C++ were not

enough, even though I had several books on Visual C++, it is still not enough, this

made the process oflearning even harder. Because of that, some objectives were

failed to develop such as integrate with fancy user interface and integrate with other

programming languages.

To integrate with other programming languages such as Visual Basic, Visual

J++ and ASP, some additional new language have to learn which is known

57

Univ
ers

ity
 of

 M
ala

ya

ATL(Active Template Library). This ATL use C++ as the core language. With ATL

we can compile and register dll(dynamic link library) files to the system and easy to

call the component. It can reduce response time and give a rood performance. How

ever it is not as easy to learn A TL. This is because nonnall advance programmers

used this A TL to combine or integrate their system with difference programming

language. So, the developers should know a lot of language. It is so difficult for me

to learn everything about ATL to build advance system such as this component

based where it can be used for many development platforms,

7.4 System Strengths

7.4.1 Reusable of code

The main objective of component-based is can be used by other application.

It seems like object-oriented approach. This component can be plugged into any

system or attached into other system programs. It will work properly without any

changes to the component.

7 .4.2 Fast Response Time for Document retrieval

When the stem function is invoked, relatively the time taken to process the

word and displaying the results is quite fast. Even be it a word, sentences or text file

with full text, the response time is still fast.

7.4.3 Multi Language Approach

The main purpose of this component is for Malay text usage. But it can be

implemented to any language or new language since it is text format. The end users

58

Univ
ers

ity
 of

 M
ala

ya

only have to declare their own language set of dictionary, prefixes, suffixes, infixes

and the exceptional cases.

7.5 System Constraints

7.5.1 Visual C++

For this purpose, this component only runs in computers that are pre installed

with Visual C++ 6.0. This is because the unavailability of the creating setup files for

Visual C+I-.

7.5.2 Exceptional Cases

There are several exceptional cases in the Malay language words like for

example a word can be stemmed into have root words, which both of them are

correct. This case is very clear for the other language such as English, which there

are so many exceptions in their morphology.

7.6 Future Enhancement

Since the system that being developed is still just a prototype, it is future plan

to make this component-based stemming engine as a real time application with full

friendly user interface. Mean that the users will be the Malay Language Researchers

or other language researchers and the system will be used fully for research

enhancement of the language.

59

Univ
ers

ity
 of

 M
ala

ya

7.6.l Essay Answer Marking

In essay grading system, stemming is very useful to implement. It is

important because the student's answer will have a lot of non-r ot word where the

words should be matched with the teacher's schema.

7.6.2 Language Based Intelligent System

This component can be used into intelligent system such as a document

filtering for file or email transaction. Searching engine also using stemmed word to

retrieve matches keyword currently. This component-based stemming engine

approach also could be upgraded to use for spelling checker agent like Microsoft

Word to check and correct words or sentences in the document file.

7.6.3 Implementing Database

Converting the existing storage format from file storage, to a database storage

for better performance since if the system is further being enhanced the system

should be able to cater larger data of the dictionary, and if we are using file storage, it

will be set back as it will degrade the performance of the system during enhancement

process.

60

Univ
ers

ity
 of

 M
ala

ya

CONCLUSION

61

Univ
ers

ity
 of

 M
ala

ya

Conclusion

This system is developed to serve a new Malay w rd temming system's

application especially for a specific domain. It cater for all type of Malay modem

words only. However the system will be used as a prototyp for the purpose of

experiments for further enhancements of the Malay words stemmer component, in

order to reduce the errors occurred.

The component-based technology that has been applied to this stemming

engine cause many others applications can be build easily, just simply put certain

source code of this component to their own applications. It is also can be used for

manipulating or developing other language since it is a text format.

This system has its advantages and weakness but it still satisfied the

specification of the system. This system is developed to provide help for students

who are doing research in stemming process especially in Malay Language, and

other people who are involved or in need of this stemming process service.

A lot of knowledge was gained throughout the development of the system.

These include knowledge of programming in Visual C++, using Visio Professional,

and AIL.

Finally, all the problems faced and experiences gained during the system

development should be useful for future endeavors.

62

Univ
ers

ity
 of

 M
ala

ya

APPENDIX

63

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A

Start
Words Entered

Step 1 : Check General

Yes
Dictionary

No

Step 2:
Check Local

Yes Dictionary

No

Prefix Rules, First No

Step 3 : Letter of Stem word

Step 4 :

Step 5 :

Step 6

Step 7 :

Step 8 :

No

No

Prefix

No

64

Remove
Prefix

Yes Check Local
Dictionary

Yes

End

Univ
ers

ity
 of

 M
ala

ya

APPENDIX B

Sta rt
Words Entar11d

Step 1
Check General

D lotlo nary
Yn

~Q

Check Local
Step 2: Dictionary Ve~

!lo

Prefix Rules, First
Ila

Step 3 Letter of Stem word

Step 4 :

Step 5 :

Step 6

Step 7 :

Step 8

Step 0

Check Local
Dictionary

YES

Vu

..______..(~_En_d)

Modification from Somabalan[l]

65

Univ
ers

ity
 of

 M
ala

ya

APPENDIXC

~ \,ht1lJ11.:1~~•1,.,.1t1I
_,.....tm::tr ~"

<11' 1:>'1'1;1

Modification of implementation for replacement for exceptional cases

66

Univ
ers

ity
 of

 M
ala

ya

APPENDIX E

Sample output

67

Univ
ers

ity
 of

 M
ala

ya

APPENDIX F

Full source code

File Name : stemmerMain.cpp

#include<iostream.h>
#include<string.h>
#include<fstream.h>
#include<afx.h>
#include<stdio.h>
#include<conio.h>

#include "stemmClass.h"

void main()
{

cout<<"Welcome to Stemming Engine Component "<<endl<<endl;
fflush (0);

const int sentenceLen =300;
char sentencelnput[sentenceLen];
CString sentenceOUt;

//sentences entered
II stemmed

sentences
stemmer objl;

cout<<"Enter sentences :";
cin.get(sentencelnput,sentenceLen, '\n');

char word4[sentenceLen);
int panjang4=strlen(sentencelnput);
strncpy(word4,sentencelnput,panjang4);
word4[panjang4)='\0';

cstring sentenceinput2 = word4;
sentenceOUt ="durranyX" + sentencelnput2;

cout<<"in the class
=============:z:====================:ic=============='' <<endl;

char word3[sentenceLen);
int panjang=strlen{sentenceOut);
strncpy(word3,sentenceout,panjang);
word3[panjang]='\0';

objl.stem(word3,0,0);
I*
Will have a default

3st arg

Sentence input
0/not sensitive

1 case sensitive
0 Default : stem symbol n not stem tagging

1 stem symbol only
2 stem tagging and symbol

1st arg
2st arg

*/
objl.testOutput();
cout<<endl;

cout<<endl;

stemmer::stemmer{CString global, CString local,CString preffile,CString
suffile,CString inffile)
{

fileGlobalDictionary =global;
fileLocalDictionary =local;

68

Univ
ers

ity
 of

 M
ala

ya

filePrefixes = preffile;
fileSuffixes = suffile;
filelnfixes = inffile;
totalStemmedWords•O;
totalWordsin=O;
totalOutput=O;
stemmedSentence = "";
wordin="";
rootword="";

void stemmer::testOUtput()
(cout<<" * ** * ** ** * ** ** * * * * * * * •·** * * * stemmer:: testOutput () "<<endl;

cout<<"globalOictionary "<<fileGlobalDictionary<<endl;
cout<<"localDictionary "<<fileLocalDictionary<<endl;
cout<<"stemmedSentence " <<stenunedsentence<<endl;

cout<<"totalWords words in: "<<totalWordsin<<endl;
cout<<"totalOutput "<<totalOutput<<endl;
cout<<"totalStemmedWords " <<totalStemmedWords<<endl;

cout<<"**** ******* ****' ** * ** ** * ** END stemmer:: testOUtput () "<<endl;

void stemmer::stem(char *sentence,int caseSensetive,int tag)

(
cout<<endl<<"$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$"«endl«endl;

SENTENCE PROGRAME START

static CString concanate;
char *token;

cstring sym;
if (tag==O)

sym =" ,.\t\n;':*$@";
else if (tag==l)

sym = '' ,.\t\n;':*$@";
else if (tag==2)

sym ",.\t\n;':*$@<>";

else
s ym ':ic:" ,.\t\n;':*$@";

/*Establish string and get the first token: */

token= strtok(sentence, sym);

static int totalWords=O;
static int totalOUtputWords=O;

while(token !=NULL)
(

/*While there are tokens in "string"*/
/*Get next token: */
token= strtok(NULL, sym);

CString tokWord=stemWord(token,casesensetive,tag);
if (tokWord != "")
(

concanate = concanate + tokWord +" ";
totalOutputWords = totalOutputWords + 1

}
totalWords = totalWords + 1 ;
totalOutput = totalOUtputWords;

stemmedSentence = concanate;
totalWordsin = totalWords - l;

cout<<"concanate "<<concanate<<endl<<endl;

69

Univ
ers

ity
 of

 M
ala

ya

cout«endl«"$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$"<<endl<<endl;

SENTENCE PROGRAME END

cstring stemmer: :stemWord(CString word,int caseSensetiv ,int tag)
(

int inGlobal;

CString rootWord;
CString rootLocalTemp;
if (caseSensetive =a 0)

word.MakeLower();

CString leftChr • word.Left(l);
CString RightChr = word.Right(l);
if (leftChra="<" && RightChr =•">")
(

word.Remove('<');
word.Remove('>');
rootWord =word;
return rootWord;

inGlobal = globalDictionary(word);
if (inGlobal==TRUE)
{

II will return TRUE if exist

rootWord =word;

else
{ //if not found in the global then try to find in the local

rootLocalTemp = localDictionary(word); //will return replacement of
found otherwise null

rootWord=rootLocalTemp;
rootword if

)
/* if rootWord="" then go to prffix

prefix will return the stemmed word

*/

cstring wordPref="";
CString wordSuffix="";
cstring wordinfix='"';

if(rootWord=="") //GOTO PREFIX
{

//int stemmedPrefindex;

wordPref = Prefix(word);
int inGlobalPref = globalDictionary(wordPref); I I will return

TRUE if exist
if (inGlobalPref==TRUE) (

rootWord = wordPref;
totalStemmedWords = totalStemmedWords + l;

else
{ //if not found in the global then try to find in the local

CString prefLocalTemp = localDictionary(wordPref); //will
rootword if found otherwise null
rootWord"'I)refLocalTemp;

return replacement of

if(rootWord=="") //GOTO SUFFIX
(

if (wordPref=="")
wordSuffix Suffix (word) ;

else
wordSuffix Suffix(wordPref);

if (wordSuffix!="")
{

return TRUE if exist
int inGlobalSuff = globalDictionary{wordSuffix); I I will
if (inGlobalSuff==TRUE) (

70

Univ
ers

ity
 of

 M
ala

ya

rootWord • wordSuffix;
totalStemmedWords • totalStemmed\iords + 1;

else
{ //if not found in th global then try to find in the

local
CString suffLocalTemp • localDictionary(wordSuffix); II

will return replacement of rootword if found otherwis null
rootWord•suffLoc lTemp;

if (rootWord=a"")
(

CString wordOri •word;
CString wordSteml a wordPref;
CString wordStem2 = wordSuffix;

if (wordSteml=="" && wordStem2=="")
wordlnfix z lnfix(word);

else if (wordsteml!="" && wordStem2=="")
wordinfix = Infix(wordSteml);

else if (wordSteml=="" && wordStem2!="")
wordinfix = Infix(wordStem2);

else if (wordSteml ! ="" && wordStem2 ! ="")
wordinfix = Infix(wordStem2);

if (wordinfix!="")
(

int inGlobalinf = globalDictionary(wordinfix); I I will
return TRUE if exist

if (inGlobalinf==TRUE) (
rootWord = wordinfix;
totalStemmedWords = totalStemmedWords + 1;

else
(//if not found in the global then try to find in the

local
cstring suffLocalTemp = localDictionary(wordinfix); //

will return replacement of rootword if found otherwise null
rootWord=suffLocalTemp;

return rootWord;

int stemmer::globalDictionary(CString word)
(

int found= O;
int counter=O;
char globa1Root[30];

CString rootTemp;
CString wordTemp;

ifstream GlobalFile(fileGlobalDictionary,ios::in);
dynamically

if (!GlobalFile)
cout<<"File cannot be opened ... "<<endl;

//will be

else
while (found!=l && GlobalFile.peek() != EOF)
{

GlobalFile >> globalRoot;
counter=strcmp(word,globalRoot);
if(counter == 0)
(

found=l;
rootTemp globalRoot;

else
found=O;

return found;

71

Univ
ers

ity
 of

 M
ala

ya

CString stenuner: :localDictionary(CString word)
{

int found=O;
int countercO;
char localRoot[30],localRootReplac (30];
cstring wordTempsword;
CString rootTemp;

ifstream LocalFile(fil Loca1Dic in ry,io~::in);
if (I Local File)

cout<<"File local not found";

II will be dynamically

else
while (foundl•l && LocalFile.peek() !•EOF
(

LocalFile>>localRoot>>localRootReplace;
counterastrcmp(wordTemp,localRoot);
if(counter==O) II 0 : the string is match
(

rootTemp = localRootReplace; II replace the word
found=l;

else
found=O;

return rootTemp;

CString stenuner: :Prefix(CString wd)
{

CString word= wd;
// cout<<"*** IN the PRefix()"<<endl;

int lenPrefixes;
int found=O;

char prefixesTemp[lO]; II preffix from txt file
char prefixesReplaceTemp[lO); II replacement of preffix from txt file

cstring prefixes,prefWord,rootTemp;

ifstrearn PrefFile{filePrefixes,ios: :in);
if (!PrefFile)

cout<<"File cannot be opened ... "<<endl;
else
{

while (found!=l && PrefFile.peek() !=EOF)
{

PrefFile>>prefixesTemp>>prefixesReplaceTemp;
prefixes=prefixesTemp;

lenPrefixes = prefixes.GetLength();
Prefix 1en from prefix file

prefWord = word.Left(lenPrefixes);

II try to get

Prefix for word
II try to get

if (strcmp(prefixes,prefWord)==O)
found= l;

//prefix found=l
else

found O;

if (found == 1)
(

rootTemp=word.Mid(lenPrefixes);
cstring Vowel= rootTemp.Left(l); II try to get a vowel

if ((Vowel==" a"
(Vowel=="o") 11 (Vowel=="u"))

{

11 (Vowel=="e") 11 (Vowel=="i") 11

if(prefixesReplaceTemp!="**")

72

Univ
ers

ity
 of

 M
ala

ya

rootTcmp-prefixe5ReplaceTemp + rootTemp;

return rootTemp;
// cout<<"****************************•••••..ti••**** .. END of the PRefix() "<<endl;
)

cstring stemmer: :Suffix(CString word)
{
/ / cout<<" * ** * ** ** * * •· * * *** ••· * * "'' "'* "'' * ... * .. * *"' ... * •••• • START SUFl'"IX () "<<endl;

CString wordTemp;
wordTemp •word;

int lenSuffixes;
int found=O;

char SuffixesTemp[lOJ; II preffix from txt file
/I char SuffixesReplaceTemp(lO]; //replacement of preffix from txt file

CString Suffixes,suffWord,rootTemp;

ifstream SuffFile(fileSuffixes,ios: :in);
if (! suffFile)

cout<<"File cannot be opened ... "<<endl;
else
{

while (found!=l && SuffFile.peek() !=EOF)
(

suffFile>>SuffixesTemp;//>>SuffixesReplaceTemp;
Suffixes=SuffixesTemp;

lenSuffixes = Suffixes.GetLength{);
Suffixes len from prefix file

suffWord = wordTemp.Right(lenSuffixes);

II try to get

get Suffixes for word
II try to

l/cout<<"suffix:"<<Suffixes<<endl;
if (strcmp(Suffixes,suftword)==O)

found = l;
//Suffixes found=l

else
found O;

if (found == 1)
(

int lenWordTemp = wordTemp.GetLength();
int lenRootWord= lenWordTemp - lensuffixes;

rootTemp=wordTemp.Left(lenRootWord);

/I cout<<"*** END SUFFIX () "<<endl;

return rootTemp;

cstring stemmer::Infix(CString word)
{
II cout<<"*** START INFIX{)"<<endl;

cstring wordTemp;
wordTemp =word;

int lenlnfix=O;
int foiind=O;

char InfixTemp[lOJ; II preffix from txt file
/I char SuffixesReplaceTemp[lO]; II replacement of preffix from txt file

CString Infixes, rootTemp;

ifstream InfFile(fileinfixes,ios: :in);
if { ! InfFile)

cout<<"File cannot be opened ... "<<endl;
else
{

73

Univ
ers

ity
 of

 M
ala

ya

while (found!=l && InfFile.peek() !•EOF)
{

InfFile>>InfixTcmp;//>>InfixesR placeTemp;
Infixes•InfixTemp;
if (wordTemp.Find(Infixes) >• 0)
{

leninfix•Infix s.GetLength();
found• l;

//Infixes found•l
)
else

found = O;

if (found •• 1)
{

int posinfix=wordTemp.FindOneOf(Infixes);
int lenWord = wordTemp.GetLength();
CString leftWord = wordTemp.Left(posinfix);

int lenLeftWord=leftWord.GetLength();
cstring rightWord = wordTemp.Right{lenWord-leninfix-

lenLeftWord);
rootTemp = leftWord + rightWord;

// cout<<"*** END INFIX() "<<endl;
return rootTemp;

File Name : stemmClass.h
class stemmer
{
private:

cstring fileGlobalDictionary, fileLocalDictionary;
cstring filePrefixes, fileSuffixes , fileinfixes;
cstring wordin, rootword;
CString sentencein;
CString ste:mrnedSentence;
int totalStemmedWords;
int totalWordsin;
int totalOutput;

public:
ste:mrner(CString ="globalDic-BM.txt", CString ="localDic-BM.txt",

cstring="prefixes-BM.txt", CString="suffixes-BM.txt", CString="infixes-BM.txt");
void testoutput();
void stem(char *sentence,int casesensetive=O,int tag=O);
cstring stemWord(CString word,int casesensetive=O,int tag=O);
int globalDictionary(CString word);
CString localDictionary(CString word);
cstring Prefix(CString word);
cstring Suffix(CString word);
cstring Infix(CString word);

);

74

Univ
ers

ity
 of

 M
ala

ya

APPENDIXF

Component Based Stemming Engine for Malay Text

Overview of the I" proposal (WXES318l)

1. Introduction of Stemming Engine
a. Process of extracting each word from text document, reducing it to a

probable root word.
b. Technique of linguistic uormalization, in which the variant forms of a

word are reduced to a common form.
c. Removing affixes from the text document or query produces a

stemmed word.
f. Affix is the verbal elements that attached to the beginning of the

word(prefix), end of the word(suffix) and in the middle of the
word(infix).

2. Objectives
a. To provide a global component which is reusable for developers to build

their own application/system.
b. Can be used for all MS Window application.
c. To develop IR for Malay text and the morphology.
d. To be used in education field

i. Writing exam online
ii. Automated essay grading

3. Component Implementation
a. Component system is designed to facilitate reuse of code. Component

based development assumes that the developer will create an application
by writing together components that have already been created by
someone else.

b. Module of code that is created with the intention that other developer will
plug them into new applications.

c. The code always stays static
1. A component is developed and the code there after remain

unchanged.
11. An object can be considered as an instantiation of a component.

4. Functionality
a. OOP Based -Can be used to every developer.
b. Advance searching- Searching engine for web-based I dictionary.
c. Education - Essay grading.
d. Can be used to many platform application;

1. Web Based (ASP, JSP, PHP).
ii. System (Visual Ct+, Visual Basic)

Operating System (MS Windows, Unix/Linux) Why? * Using
Binary code after compiled to specific file (.dll,exe).

75

Univ
ers

ity
 of

 M
ala

ya

Presentation 2

I. Introduction of Component based Stemming Engine for Malay text.
2. System flow diagram.
3. System achievement.

• Generally this system is successful.
o Reusable component.
o Multilanguage processing.

4. Stemming Component
Class Name:
stemmer(CString ="globalDic-BM.txt", CString ="localDic-BM.txt")
stem(char *sentence,int caseSensetive=O,int tag=O)
stemWord(CString word,int caseSensetive=O,int tag=O);
testOutput()
stemmer.totalStemmedWords;
stemmer.totalWordsln;
stemmer.totalOutput;

class stemmer{
private:

CString fileGlobalDictionary, fileLocalDictionary;
CString filePrefixes, fileSuffixes , filelnfixes;
CString wordln, rootword;
CString sentenceln;
CString stemmedSentence;
int totalStemmedWords;
int totalWordsln;
int totalOutput;

public:
stemmer(CString ="globalDic-BM.txt", CString ="IocalDic-BM.txt");
void testOutput();
void stem(char *sentence,int caseSensetive=O,int tag=O);
CString stemWord(CString word,int caseSensetive=O,int tag=O);
int globalDictionary(CString word);
CString localDictionary(CString word);
CString Prefix(CString word);
CString Suffix(CString word);
CString Infix(CString word);

};

5. Constrain
a. Multilanguage processing - Problem with the special word to stem for

their morphology.
eg: BM: menyedari 7 sedar.

BI : too many exception.
broke 7 break, ran 7 run, etc.

b. Multilanguage programming - ATL(Active Template Library) Need a
professional/expert programmer.

6. Future enhancement & opinion

76

Univ
ers

ity
 of

 M
ala

ya

a. Multilanguage programming
b. ATL

77

Univ
ers

ity
 of

 M
ala

ya

References

[1] Somabalan, R,(2001), Word Stemmer Application, Degree Thesis.

University of Malaya.

[2] Norisma Idris, Automated Essay Grading System Using Nearest Neighbor
i

Technique, Degree Thesis. University of Malaya.

[3] Buku Software Engineering

[4] Kozaczynski, W., and Booch, 0.: 'Component-based software engineering',

IEEE Software, October 1988, pp.34-36

[5] Krutchen, P.: Rational Software,

http://www.rational.com/sitewide/support/resources.jtmpl (July 2002)

[6] Szperski, C.: 'Emerging component software technologies - a stratergic

comparison', Softwar<7Concept & tools, 1998, 19, (1), pp. 2-10

[7] Harmon, P. : Cutter Information Corp, http://www.cotter.com (July 2002)

[8] Loureiro, K.,and Blechar, M.: 'Componentware: Categorization cataloguing',

Applications Development and Management Strategies Research Note,

Gartner Group, December 1997

[9] Riverton Software Corp.

http://www.riverton.com/solutions/knowhow/tlassets.htm (July 2002)

[10] Chappel, D.: http://www.chappellassoc.com/article.htm (July 2002)

[11] Plassil, F., and Stal, M.: 'An Architectural view of distributed objects and and

component in COBRA, Java RMI and COM/DCOM', Software - Concepts

and Tools, 1998, 19, (1), pp.14-28

[12] Hull, M.E.~., Nicholl, P.N. , : 'Approaches to component technologies for

software reuse oflegacy system', Computing & Engineering Journal, 2002,

12,(2), pp.281-287

78

Univ
ers

ity
 of

 M
ala

ya

[13] Dewan Bahasa dan Pustaka, Tatabahasa Dewan, Edisi Kedua, Kementerian

Pendidikan Malaysia, Kuala Lumpur, 1999.

[16] M.F. Porter, An Algorithm for Suffix Stripping Program, 1980, Volume 14,

Number 3, Pages 130-137.

[17] Visual C++ example codes

http://www.codegwi.1.com (Dec 2002)
)

[18] Microsoft Visual C++

http://www.support.microsoft.com/visualc/ (Dec 2002)

79

Univ
ers

ity
 of

 M
ala

ya

USER MANUAL

80

Univ
ers

ity
 of

 M
ala

ya

Introduction

This component-based stemming engine is created for default language as

Malay. Its main objective's are to improve the efficiency of the Information Retrieval

of a full texts Malay database. It is hopefully to be used in a lot of application areas

such as essay grading for school usage, advance searching and intelligent filtering

agent. This is just a simple application to view the output of the component.

However, it can be used to upgrade and implement into user interface module.

Application Usage Guideline

This component-based is very useful for developers. It is not really easy to

use for the end user who does not have experience with Visual C-t+. This component

code has to add several functions to make it more user friendly.

Basic Requirements

Hardware requirement

1. Computer 'IBM Compatible' with at least Pentium Processor with 133Mhz.

2. 32 MB RAM or over.

3. 500Mb hard disk space for installing important software not included the

Operatimng System.

4. Mouse.

5. CD-ROM

6. VGA Monitor.

81

Univ
ers

ity
 of

 M
ala

ya

Software requirement

1. Win95 OS or latest Microsoft Windows OS.

2. Microsoft Visual C++ 6.0

Executing component-based stemming engine

1. Copy stemCiass folder from CD to any folder into your hard disk.

2. Open Visual C++ application.

3. Open the workspace

file7open workspace7 stemClass2.dsw (in the stemClass folder from your

hard disk).

4. Compile and running the application.

As you can see the object objl is created in the main function as stemmer and

using default value for the constructor's attributes. It is meaning that Malay

Language_is being used for the application. objl.stem(word3,0,0) is an object to

send a words or sentences to stem function to get the stemmed output.

objl.stemmedSetltence will return stemmed sentences with default option.

82

Univ
ers

ity
 of

 M
ala

ya

cout« '.'llelc011\e to Ste,. .. rng· Engine CQltponent
fflush(O); · · ..

const. int sentencl.I.en· .•300;
char .sentencelnput[sentencelen];;

.CString ~tenoeOu~;

Figure 1 shows workspace with visual c++

iteaClau2 classes
'c: stemmer
\ .. ". • globalDictionary(CStting word)
i·'.. • lnfn({CStTing word}
l:· .. · • .localDictionaly{CSlling word) ! -t • • · Prelix(CS Iring word) l: · • .tem{char •sentence. int caseSensetive • O. int tag " 0) \""" • stemmertCString. "globalDic·BM.bd". CString • "localDic-BM.bd". CString • "prefixes·BM.txt". CString • "suffixes·BM.txt", CString. "mfixes·BM.txt")

L" • stemWord(CStTing word. int caieSensetive • o. Int tag .. OJ ··
l • SuffD<{CString word)
I:'"' . • testOutput{)
i fileGlobaf>ictiona r lilelrfaxes ry

\""'• fielocall)ictionalY
1..,"d» tilePremces
I~ ! ,,_ fileSuffDl6S r-~ roolwold
i"'·'ti» senlenceln
i :~-d5entenc7 I~ :ic::.i:.1
\:'·'llffl' totallutput
\:·'• totalStemmeitW'ord~
i·'.·'- totat.N ixdil n
; woidln

.. til Globals
Figure 2 shows 111\abject can be used as describe previously.

83

Univ
ers

ity
 of

 M
ala

ya

WlDebug
·~stemClass2.opt
~ infixes-BM . ·
(ID ·prefixes~EG:

[fil stemmClass.h
dilstemClass2 .dsp
@ lnfixes-EG .·
(IDptoblem

l!!} stemmerMaln.cpp
li\stemClass2.dsw
@localDic-BM
(ID suffix es-BM

~ stemClass2

I globalDic-BM
localOic-EG
suffiXes-EG ·

~ stemClass2
@ globalDic~EG
@] prefixes-BM
@workFlow ·

Figure 3 : File that required in the workspace.

As we can see the txt file format is an external files where we can add manually

additional data in the dictionary, prefixes, suffixes and infixes.

84

Univ
ers

ity
 of

 M
ala

ya

