*“IPustakaan SKTM

Name . Juhari bin ljam

Matric No : Wek 990341

Supervisor : Prof. Dr. Syed Malek Fakar Duani
Moderator : Puan Norisma Idris

Project Title : Component-based Stemming Engine
for Malay Text

ABSTRACT

Word stemming is an important feature supported by present day indexing
and search system. The idea is to improve recall by automatic handling of word
ending by reducing the words to their word roots, at the time of indexing and
searching. Various algorithms for stemming have been developed for the English and
the other foreign languages, but it is still new for the Malay text. How ever most of
them did not given any meaning of the development or application. This is because it
cannot be reused for the other applications. These projects are studied and a new
algorithm is being proposed to improve the performance of the stemming process.
And the most importance of this project is to propose a new technology, whiéh 18
using component based. With it, a lot of applications may derive from the
component, It is because the main reason of using component base is it can be
reusable. So that for those who like to build a system which is have a relationship to
the IR or word stemming, not need to build it anymore for the stemming engine. The
developer has just to use the component engine and get the output easily, How ever
this project is proposed for a specific domain that will be covered for the generic

Malay words.

ACKNOWLEDGEMENT

A huge bundle of sticks become easy to carry when everyone carries a stick
along with them. Teamwork reduces the amount of task each member has to do.
Therefore the author would like to wish the following people who had directly and

indirectly contributed to make this thesis possible.

First of all the author, would like to thank the almighty God, for everything
that has given and for his guidance and blessing. The author would like to thank his
supervisor, Assc. Prof. Dr. Sye Malek Fakar Duani bin Syed Mustafa whose
guidance, advice and supervision throughout the development of the project guccess.
He provided the author with much needed aid and guidance on every aspect of the
project. His help is deeply greatly appreciated. Also not forgetting the authors
moderator, Cik Norisma Idris who has given critical comments in the pursue of
improving of the system. The author would like to thank her for his invaluable ideas

and comments.

And,ﬁnally the author would like to thank, his fellow friends especially
Salhana, Kamarul, Sahidan, Norid, Azidi, Azman and the rest of them who had
stayed with him throughout all weather and hardship. The support and comments
gained from them made this very project possible. With them the experience the

author gained as an undergraduate will be cherished forever. Thank you.

1i

CONTENTS

ADSUACT N PO /1 vs ot hivi i b 7 TR T b P TR e b v s E 4 i
A KT O | g T L e e e ot F e AT 1
Contents i | B S o AN TN LA INTERIY. o er TR N e et il
) i T Tt Lt Lt h Lt d ettt vi
Chapter 1 : Project Overview
LR DO ECt Oy OOV 8 e 2 s v 1 atesnnn s fentn st iaraa s aa s D
AT ECtIS COP I Iy A MO (.ol o b v it shr cden eosbevhsendts 3
133 TheSls OrRaniZatiOn i i, i a s iounihorinns vreaniasiiibins seansinns ool N 4
Chapter 2 : Literature Review
213 Introduction Ml A MR EIEIRY. s s IR N e s 8
2:2 Information Retrieval i e s AN e ere e 8
2.3 Approaches to component technologycovvvvveiiiiiiin. 11
283 I INtroduct OnSRPRETE ERNEROIE S e Bt b riesss 11
2:3.2:What'1s Component iy Mt vttt baasens 11
21313 Objects and CompOnEnts N . .ocoittsssnssonnnserrssnrsetonsshisesinss 13
2.3.4 Architectural overview of component systems 16
23800 CONBE S VOUSIINIRD < oredivmss Conts 1 P s 5 b v vk i1t 16

Chapter 3 : Methodology
3.1 Methodology OVEIVIEW.oeeeeeisees oo ee e 20
3.2 Development Model

.. 21
B O L L T L e R s S 22
3.3.1 Requirement Analysis Phaseccoooeeeiiiiiiii, 22

BI3 124 ysterm DesI QI R haSe Frites s tvar ¥t cir ettt Fit F L b it s Eaee e id ey rine 23
3.3.3 Programming Design Phasecooooiiiiiiii 23

3.3.4 Coding Phase 24
3.3.5 Unit Testing Phase 24
3.3.6 System Testing Phase 24

1

3.3.7 Operational and Maintenance Phase...
3.4 Fact-finding Techniques

34.1 Observanons

3.4.1.1 Observation Advantages

3.4.1.2 Observation Disadvantages

3.4.2 Review Of Documents

3.4.2.1 Review Of Documents Advantages

3.4.2.2 Review Of Document Disadvantages
Chapter 4 : System Analysis and Design

4.1 System Analysis OVErviewcccccvroiii
4.2 System Requirementscc.....ooooo

4.2.1.5 Storage Functions
4.3 Previous Work

4.3.2 Sembok’s Algorithm
4.4 The New Stemming VT LTI e o
4.4.1 Norisma’s Algorithm

Chapter 5 : System Implementation
5.1 Introduction

..

5.2.2 Software Requirement

5.3 System Development

5.3.1 Module Coding

v

[T 3] o o oo o
3 fo (o)) (@ N N N

)
29
29
30
30
31
31
31
32
32
33
34
35
37

40
40
40
40
41
42

Chapter 6 : System Testing

6.1 Introduction

6.1.1

Testing Strategies

6.2 Unit Testing

6.3 System & Integration ITestNEHe.S oo A, i o

6.4 Conclusion

Chapter 7 : System Discussion
7.1 Introduction

...

...................................
..............................

7.4.1 Reusable of code

7.4.2 Fast Response Time for Document retrieval
7.4.3 Multi Language Approach
7.5 System Constraints

7.5.1 Visual C++

7.5.2 Exceptional Cases
7.6 Future Enhancement

Conclusion ..

Appendix A

Appendix B

Appendix C
Appendix D

Appendix E .

Appendix F .

References

...

..

...

...

..

..

57
W
57
58
58
58
58
59
59
59
59
60
60
60

62
64
65
66
67
68
75
78
81

LIST OF TABLE & FIGURES

List of tables

Table 4.1: The Experiments Results On Infix Words
Table 5.1: Output for each function,

Table 6.1: Tested result......................

List of figures

Figure 2.1: Standard Information Retrieval Interaction Model

Figure 2.2: Various interpretations of where a component could be situated in a
hierarchy

Figure 2. 4(a): COM objects can contain pointers to COM implementation. ...
Figure 2. 4(b): COM objects can contain interface implementation
Figure 3.1: Waterfall Model................................
Figure 3.2: Project Schedule of The Word Stemmer Application

Figure 5.1: Dictionary and morphology replacement module

Figure 6.1: Testing Process Stages

38

45

51

CHAPTER 1

INTRODUCTION

1.1 Project Objective

In developing a certain project, requires the particular project to under go the
development life cycle. This means that the project has to go through several stages
of development before it is ready for implementation. The first stage in the
development life cycle is setting the objectives of the project. Among the objectives
that are to be achieved with this development of the Component Based Stemming
Engine for Malay Text are :-

0 To improve the efficiency of the Information Retrieval of a Malay text.

@ To be used in education field, where writing exam online, especially for the
essay questions possible to be marked automatically by the system. This will
definitely reduce the time taken by lecture or teacher to mark the papers
manually.

O To provide a general stemming engine component and can be used to
anybody to develop their own application and system which is related to
information retrieval.

0 Can be used as a global dictionary. This mean that the user can use this
component engine to check whether the word is correct or not or existing in

the real dictionary. For this reason, all possible root word should be inserted

first into the system.

This proposes project will use a lot of variable for the suffixes and special words.
From that, we can apply this component engine to be used for any languages since it
is a text based, Developer has just to insert any possible morphology — suffixes and a

special word from their language to the component. This is very strength objective

[S¥]

and feature that differ to all word stemmer application in the world.

1.2 Project Scope

Another important cycle in the development life cycle is setting the scope of
the project. Without a proper scope, the project that is being developed is bound for
failure. This is because the scope sets the fundamental rules of the project. As for this
project development it will be divided into four main modules.

@ Word Stemming for Malay Text
o Brief story about Word Stemming
o Algorithm
o Input/output
o Component Based Stemming Engine
o Input from file
o Optional output
o Usability
a User Interface
o Sample Applications
o Uls
0 Multilanguage

0 Data Dictionary

1.3 Thesis Organization

Generally there are six chapters in this project proposal. Each chapter

contains the information of the different phrases of the Stemming Engine

Malay text.

Chapter 1: Project Overview

This chapter contains the overall project overview the description of the
project includes the objectives, the project scope and project methodology that

specifies the development stages of the project.

Chapter 2: Literature Review

In this chapter, the information regarding the approach that will be used in
this project will be presented here. This includes the definition of Information
Retrieval, how an Information retrieval system works, the approaches that used in the

Information Retrieval, and the link of Information Retrieval to the Stemming

Algorithm.

Chapter 3: Methodology

Explain the model that is used to develop this component-based. Chapter 3

also will cover on all the phases that are being followed during the development of

the system.,

Chapterd4: System Analysis and Design

All the fact-finding techniques that have been used to in this project will be
presented here, plus the functional requirement, the non-functional requirement of
the new system will also be included. The analysis of the system-developing tool

includes all the hardware and software will be stated in this chapter.

Also a study of the previous stemming algorithms will be presented here plus the
new proposed stemming algorithm will be described here as well as the results of the

experiments being carried out.

This chapter will also cover the system specifications that have been planned.
Also The flow chart of the new proposed system, the flow chart of the new stemming

algorithm will be presented here also.

Chapter5: System Implementation

This chapter states all the physical design processes that involve a lot of
algorithm and new methods. It concerns on the system architecture, the outcome of

the reports and the screen. This also chapter contains system coding methodologies.

Chapter6: System Testing

This chapter explains and tests whether the system is functioning as the users
requirement and if it is fulfilling the required specification. In also shows the method
of testing that has been used to test this stemming engine component-based. Also

included is the list of bugs that have been detected during the whole project

development and their solutions.

Chapter 7: System Evaluation

In this chapter discusses the problem encountered during the development process of

this project with their solutions. Also included are the system strengths and the
limitations of the system. All the feedback from the users is also being documented

in this chapter. The recommendations for future system enhancement will be stated

as well,

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The growing amount of information available mainly in the Internet poses
significant problems in storing, managing and especially retrieving information. A
central issue is retrieving information, which is relevant to the user’s needs. This is
the reason of intensive search in such areas as data mining, information extraction,
information retrieval is being done. There are several schemes, which includes
standard information retrieval methods, which can be considered as a basis for the
modern advanced information retrieval techniques. On the other hand it includes

techniques, which are based on the Artificial intelligence methodology.

2.2 Information Retrieval

In data retrieval, we are normally looking for the exact match. In other words
we are checking to see whether an item is absent in a file. In the information
retrieval, exact match sometimes be of interest, but more generally we want to find
those items, which partially match the request and then select from those, the best
matching items. If we will compare it with different types of systems we can clearly
see that in a database queries context, one seeks facts that satisfy a query, in question
answering (also know as information extraction) one seek specific answers to
specific questions. In information retrieval, one seek a document that is likely to
contain the information that a user needs. Information Retrieval(IR) system are used
for retrieving document that are concerned with needs. It is a quite vivid that the
interference tends to be inductive, rather than deductive; finding documents likely to
be relevant requires skilful guessing. The problem with information retrieval is that
the process of locating relevant documents is inherently uncertain and is highly

context dependent. Figure 1 shows standard retrieval interaction model. It is evident,

that the information retrieval is iterative process, which besides input and output
operation includes the iterative reformulating, This activity changes query according

to some certain strategy in order to increase relevancy of the received document.

Inform ation Need

o Query

Send to system

Receive Results

Reformulate

Evaluate Results

No

Done

Stop

Figure 2.1 Standard Information Retrieval Interaction Model

It must be admitted, that information retrieval can be defined for any type of
information such as text, images, video and sound. However, in this paper we will
look through only text retrieval, because of it simplicity in methodology and
implementation. It can be emphasized that described methods can be applied for

example to multimedia retrieval too. All methods could be divided on two main parts

that are standard method and Al-based method. The first group includes methods
based on traditional mathematical or algorithmic techniques. The second tries to
incorporate knowledge to the retrieval process by using artificial intelligence

techniques to achieve better relevancy of the document.

2.3 Approaches to component technology

2.3.1 Introduction

The singe largest challenge facing software developers today is how they can
undertake the transition of their applications (written in procedural languages) to a
paradigm based on technologies such as object orientation and component-based
assembly. Procedural languages were designed in the day when computer
architecture was much simpler with ‘green screen’ terminals connected to a legacy
application with character-based interfaces. The distributed applications of today
require a different approach. Software reuse can be achieved through component-
based development, and indeed the use of this technology today will facilitate
software reuse in the future. Component-based development therefore assumes that
developers will create an application by plugging together components, which have

already been created, possibly by someone else in a different organization.

2.3.2 What is Component

Numerous definition exist for components. The term component has been
used extensively, but rarely have proper design definitions been formulated. Visual
Basic Extensions (VBXs) was one of the first to introduce the idea of components in
1992. Today’s descriptions have evolved from this original idea.

There appears to be little general consensus on the exact definition of a
component. It is therefore useful to look at the definitions offered by key researchers
and practitioners in the area :

1. A business component represents the software implementation of an

‘autonomous’ business concept or business process. It consists of the

11

software artifacts necessary to express, implement and deploy the concepts as
a reusable element of a larger business system [Wojtek Kozaczvnski'].

A component is a software module that publishes its interfaces [Paul Harmon,
Cutter Information Corp’].

A component is a nontrivial nearly independent and replaceable part of a
system that fulfils a clear function in the context of a well-defined
architecture. A component conforms to and provide the physical realization
of a set of interfaces [Philippe Krutchen, Rational Software’].

A software component is a unit of composition with contractually specified
interfaces and explicit dependency only. A software component can be
deployed independently and is subject to third-party composition [Clemens
Szyperski, Component Software’] .

A runtime software component is a dynamic bindable of one or more
programs managed as a unit and accessed through documented interfaces that

can be made known at runtime [Gartner Group®].

The first expression of what a component is, point 1, sits at the top of the pyramid as

business logic : points 2-4 are interested in the interface and point 5 is more low level

as runable code definition (see Figure 2.2) [M.E.C. Hull, Computing & Control'?]

Conceptual logic \

Interface — published
Sourcecode prototypes X

Executable modules

Figure 2.2 Various interpretations of where a component could be situated in a hierarchy

Paul Harmon® defines the overall goal of a component as the following:

“ Component systems are clearly designed to facilitate reuse of code.
Component-based development assumes that the developer will create an application
by ‘wiring’ together components that have already been created by someone else. It
also assumes that the person who created the components in the first place might not
know how the components would be used. Thus, components are modules of code
that are created with the intention that other developers will plug them into new
applications.”

Various attempts have been made at comparing components to objects. Szyperski’
states that, in order to understand the difference between a component and an object,
it is best to think of a component in terms of a class (or template or prototype). A
component therefore is defined as the code that is written and always stays static, i.e.
a component is developed and the code thereafter remains unchanged. An object (in

this definition) can be considered as an instantiation of a component.

Riverton Software’ provides a definition that relates more closely to software
reuse and business objects. Objects are data structures that represent ‘things’ in the
real world. The formal way to define them is that they are software entities that
exhibit encapsulation, inheritance and polymorphism. A more practical way of
thinking about object is that they are made up of a defined set of data and a set of

methods. Business object can be thought of in these terms.

2.3.3 Objects and Components
Objects are the basic units of construction and are based on real-world

entities of the application domain. Class templates are organized into libraries with

common features, which are comprised of attributes and procedures called operations
or methods. Objects communicate by message passing. Messages are often
implemented as function calls. An object is used to hide the data within each
instance.

Components on the other hand also have attributes associated with them, but
are composed of two types of design constituent — the component and the component

interface’. This facility allows the same component to be used in different contexts

(see Figure 2.3).

Glue language + applications
Components Component interfaces

Figure 2.3 Component diagram

For component interact correctly, it is necessary to define the interfaces
between components such that the interacting components understand what each
must provide to the other hand also what s required by another component. For this
reason it is the best that the interface is defined independently of each component,
thus allowing the interface to be used in many different contexts, and hence the

interface itself is de-coupled from each specific component, as shown in the figure.

14

This could mean that the data that was hidden within an object might be released to

be accessed by other components.

It is interesting to note that components retain many of the benefit of object
technology and at the same time do not have some of the ‘difficult to use” aspects of
inheritance and polymorphism, particularly when concerned with reuse. While it was
always felt that object technology would deliver on reuse, that has been far from the
case, but component technology has changed that. Where class library have proved
to be effective for reuse, components offer an even better facility in a potential multi-
language application environment. Another benefit for reuse is that the source code
of a component is not necessarily required, particularly at a certain level of

granularity of module. Components may simply be available in executable form.

It is important to understand that component reuse is not for the end user to
build application, but for trained software engineers to generate applications with

components supplied by system developers that create the end-user application'?.

In a client/server application there is a major benefit in the client-side
component not being available in source code — this benefit the system software
vendor and there in no real problem for the application developer either. However,
from the server-side the situation is less clear as application developers may wish to
customize components for their own business needs. This may actually be an
advantage as it ensures that programmers using components cannot modify the code,

which means that whatever business rules a component implements are properly

enforced [Chappel"].

15

Component then are reusable, small modules. In object-based application,
components will contain objects. Objects are written in an OO (object oriented)
fashion whereas components may contain code written in OO, but might also be
procedural or even written in assembly language. Current distributed architectures
that are object-based use component as an abstraction or simplification mechanism.
Components, which contain object, can abstract larger pieces of business (or

computing) function so that the user workers at the level of the component — not the

individual object.

2.3.4 Architectural overview of component systems

This section provides a study of component systems. Given that components
are software modules that publish their interface it is important to understand how
these interfaces will be defined and what kind of component systems are available to

facilitate interface communication between different components. One of the leading

component system is COM.

2.3.5 COM [Plassil'']

This is a component system for Microsoft Windows and consists of two key

elements.
e (COM interface

e A facility for passing messages between COM interfaces.
COM interfaces are encoded in MILD (Microsoft Interface Definition
Language), but are first written by developers in C++ or VB and then compiled into

an MIDL interface. A COM object is merely a collection of COM interfaces, but

16

inside the interface it may contain pointers to other implementations of the interface

(Figure 2.4(a)), contain the implementation of the interface (Figure 2.4(b)) or both.

COM object 1 COM object 2
interface A | = interface A
F : ‘ interface B
interface B | [intartaca o
a)
COM object 3
interface C
(b)

Figure 2. 4(a) COM objects can contain pointers to COM implementation
Figure 2. 4(b) COM objects can contain interface implementation

All COM objects are compiled into a binary object so they are specific to the
architecture on which they were compiled. Interfaces and components are both
identified by globally unique identifiers (GUIDs). COM specifies how, given a

pointer to a method, it can be called using specified parameters and in which order.

COM was originally developed as a component system for Microsoft
Windows. With the development of Windows NT, Microsoft has extended COM to
support cross-platform communication. DCOM is simply COM plus and ORB

(Object Request Broker).

In this paper, we have investigated the characteristics of components, the

difference between a component and an object, and their potential application in a

17

distributed environment. Despite early calls for the approaches of component-based
software development going back to the late 1960s, development based on software
components has only recently emerged as one of the most promising reuse
technologies. Thus it is likely that component technique together with glue types of
languages and distributed architectures will play an important role in reconstructing
or reusing legacy application, leading to across-language, cross-platform, new

paradigm for reuse of legacy code.

18

CHAPTER 3

METHODOLOGY

3.1 Methodology Overview

Methodology is defined as a collection of procedure, techniques, tools and
any pattern of documentation. In developing a system, a development model that
consists of system development process phase must be shown to help users and the
system developer. By doing this also, a system developer can make an early planning

and evaluating on the activities that will be implemented during the development

process.

The advantages in modelling the system development process are :-'

1. Generate a simple understanding on implementation of activities, resources
and limit allocation that might occur.

2. Modelling the implementation activities during the system development will
help in achieving the most effective ways to counter any non-conjunction in
any of the development phases.

3. By using a model in developing a system, the sequence of phase is related to
the phases before and after it. This relation will help developer to allocate
cost with the time given in every software development system phases.

4. By using a model in developing a system, the implementation of a particular

process can be tracked.

3.2 Development Model

Planning

Anaysis

Design ——*l
Implementation ———]

Support

Figure 3.1 Waterfall Model

The project development methodology of Component-based Stemming
Engine for Malay text is the Waterfall approach. The Waterfall model builds
correction pathwavs into the model that enable a return to a previous phase. It is the
most widely used methodology to implement the system development life cycle. As
shown in the figure 3.1, the methodology consists of five phases including planning
analysis design implementation and support.

In the planning phase, the current problem will be identified, the need of the
project will be recognized and the project objectives will be set. The analysis phase
involves the processes of analysis the existing methods of the stemming algorithm,
the analysis of the approaches used and etc. After system analysis will be the system
design. The design phase concerns on the system architecture, flow charts and
system specifications .The system program design is followed by the system

implementation where the program will be developed and tested for execution. In the

21

final phase, the new system program will be ensured that it has met its goal, which is

the high percentage of stemming of the Malay words correctly.

3.3 Project Schedule

Phase June | July | Aug | Sept | Oct | Nov | Dec Jan
1.Problem Definition e o s | Wz | e
2.User Requirement Stucy | [

3.System Analysis e

4.System Design M

5.System Implementation —

6.System Testing
7.System Evaluation -

8.Documentation

Figure 3.2 Project Schedule of The Word Stemmer Application

Above is the project schedule that has been followed as guidance for the

development of this Word Stemmer Application.

3.3.1 Requirement Analysis Phase

Involved initial research activity, literature review, system component
analysis, and problem in developing the system. There are three main activities :-
a) Initial research - Involved the main reason the system is being build, system
definition, scope and objective to be reached in developing the system and
planning on certain activity implementation throughout the development

process.

22

b) Analysis research - Concentrate on the system requirement. This phase covers
the searching and data and information analysis that are related to detect any
problems and system requirement. Strategy and planning should be arranged
to collect the necessary data and information. This can be seen from the
component abstraction of the system. The location of the system should be
noted of to ensure the type of user that is going to use the system. All users
requirement should be implemented so that a system based on the users

requirement can be developed.
This phase should be implemented carefully because it acquires a deep understanding

on the entire question, which could rise when involved with the implementation

object.

3.3.2 System Design Phase

This phase focuses on the process of developing the system that covers the

activities such as :-
e [llustrating the system model architecture
* Designing the graphical user interface
e Determine the model that will be used to develop the system

e Illustrating the concept design and the system's technical design

3.3.3 Programming Design Phase

This phase focuses on the system technical design that has been grated on the

system design phase to the programming design phase. Technical visualization is

23

implemented according to the flow chart descriptions that will be the model during

the process of coding the flow to the coding process.

3.3.4 Coding Phase

In this phase, the coding process is implemented. The flow chart, which has
been created earlier, will be transformed into a code form. This phase is important
because it serves as the backbone in a system. Coding must be done accurately to
produce a coding shape with a high quality codes. An exceptional handling strategy

should be applied because it will help in maintaining problem due to programming

codes.

3.3.5 Unit Testing Phase

The testing is conducted by using a realistic data. A system’s user are also
involved to determine the function that user would want to use. This phase will use

certain technique on certain function model that is built in the system.

3.3.6 System Testing Phase

This phase involved integration between the modules that is builds in the

system. In this phase, all modules will be combined so that it can function as a

complete system and will be tested as the whole system. This testing will confirm

whether the system objective is archived or not by referring to the validation and

24

verification process. Testing that will be carried out during the system testing process

are such as functional testing, ability testing and installation testing.

3.3.7 Operational and Maintenance Phase

This phase will provide the documentation on how to use the system with the
steps underlined by the developer. This documentation also will include all the
description on handling problems if there is a problem that occurs during the
operation of the system. Developers provide this documentation to ensure that the
user will be able to adapt to a correct usage of the system. This documentation also

can help a user to face a certain situation without need to refer to the system’s

developer.

3.4 Fact-finding Techniques

Fact-finding technique is a way to find related items, knowledge or data for
the system that is going to be built. Listed here are some of the techniques used for

developing the component-based for stemming engine.

3.4.1 Observations

In this technique, the system developer observes how the operations/task are
performed. The techniques allows the developer to gather information about the
system, the people who are involved, what, when, where and why. This technique

can be used to verify some of the facts gathered through other techniques.

25

3.4.1.1 Observation Advantages

e Helps to build relationships with the operating staf¥ :-

¢ By actually seeing or participating in the system operation, it helps the
developer to understand the system better and it might provide additional
perspective about the current system.,

e This is one of the most inexpensive technique, compare to others like

interviewing and questionnaire.

3.4.1.2 Observation Disadvantages

Direct observation might distant the staff/users and may result in poorer
performance. This will affect the result of the observation.
Sometimes, the staff might just let the developer see what they want the developer to
see. This may not be an actual performance level. The developer may not be able to

see some of the unusual or unexpected situations that occur only occasionally.

3.4.2 Review Of Documents

The system developer gets through the existing documents to understand the
system and its operation. The developer may collect the relevant documents from the

individual who attended the interview or actually use the system.

26

3.4.2.1 Review Of Documents Advantages
e By understanding the existing system, the developer will be able to. Its

strength and weakness and thus help them to design a better system.

e [t is economical.

3.4.2.2 Review Of Document Disadvantages

e Information on the document might be out of date or not available.
¢ The document procedure might have change or even eliminated.

e The document may be difficult to read and understand or may be complex.

27

CHAPTER 4

SYSTEM ANALYSIS AND DESIGN

28

4.1 System Analysis Overview
System analysis is an activity that seeks then systematically analyzes data

input or data flow, processing or transformation of data, data storage and information

output within the context of a particular business.

Thus the objective of this phase is to define a component-based stemming
engine for Malay text that includes, those that are needed to fulfill the system’s

purposes. This phase will also explain how these functions work with other systems.

4.2 System Requirements

System requirement is the official statement of what is required of the system
developers. It should set out what the system should do without specifying how it
should be done. System requirements will be described in two ways: functional

requirements and non-functional requirements.

4.2.1 Functional Requirement

Functional requirements describe an interaction between the system and its
environment. For example, to determine the functional requirement, it is necessary to
determine what are acceptable states for the system to be in. further, the functional
requirements describe how the system should behave given certain stimuli. In short,

functional requirements describe system services of function.

In principle, the functional requirement definition of a system should be both
complete and consistent. Completeness means that all services required by the users

should be define. Consistency means that requirement should not have contradictory

29

definitions. The functional requirements also explicitly state what the system should

not do. Below are the functional requirements of the stemming algorithm system.

4.2.1.1 Functionality

1. OOP Based — Can be used to every developer.
2. Advance searching — Searching engine for web-based / dictionary.
3. Education field - Essay grading.
a. Can be used to many platform application;
i. Web Based (ASP, JSP, PHP).

ii. System (Visual C++, Visual Basic)

b. Operating System (MS Windows, Unix/Linux)

Why? Using Binary code after compiled to specific file (.dll,exe).

4.2.1.2 Input Functions

1. The system must accept the following inputs:-

e Object declaration to archive dictionaries, and suffixes file. Malay

files are a default files.
e A single Malay word
e Sentences of the Malay word
2. All the inputs are either key in by using the keyboard.
3. All inputted Malay words are bound to the Malay morphology rules.
4. Affixes such as Prefix, Suffix, Infix and also Prefix-Suffix will be accepted.

5. Document file in text format to be stemmed.

30

4.2.1.3 Output Functions

1. The system must generate the following statistical analysis outputs:

e Stemmed words/sentence

Number of word occurrences in the text

Number of words stemmed

Number of words stemmed correctly

Number of words unchanged

2. The input can be viewed ate the screen or be manipulated for specific

purpose.

4.2.1.4 Processing Functions
1. The system must perform the following processes according to the Stemming
algorithm: -
e Remove Prefix’s
e Remove Suffix’s
e Remove Infix’s
e Remove Prefix-Suffix’s
e Check the local and general dictionary

e Replacement of certain exceptional.

4.2.1.5 Storage Functions

1. The system will not be involved in any storage activities.
2. All data’s from the dictionary will be stored in a file.

3. Data’s from the file can be created, amend, and deleted.

31

4. The results of the stemming procedure will not be saved in a database.
5. All prefixes, suffixes and infixes will be stored in the text file with a specific

name of language file name (eg.: prefixes-BM.1x1, prefixes-EG-ixt).

4.3 Previous Work

There have been two previous researches being done in the process of
developing the Malay words stemming algorithm. The first was in 1993 and it has
been improved by Sembok in 1994. This section describes briefly the two algorithms

and explains some problems in both algorithms.

4.3.1 Othman’s Algorithm
Othman developed the algorithm in 1993. The algorithm used 121 rules,
which defined prefixes, suffixes, infixes and prefix-suffix pairs, and in general, rules
are defined as follows:
1. Prefix rules format: Prefix +
e.g. di + jajah -> dijajah
2. Suffix rules format : +Suffix
e.g. jajh + an -> jajahan
3. Infix rules format: + Infix+
e.g. tapak (+ el +) -> telapak
4. Prefix-Suffix pair rule format : Prefix + Suffix

e.g. menN + takluk -> menakluki

The basic algorithm of the stemmer has several steps:

Step 1: If there are no more words, then stop, otherwise set the next
word

Step 2: If there are no more rues, then accept the word as root word
and go to Step 1, otherwise get the next rule

Step 3:Check the given pattern of the rule with the word. If it
matches, then apply the rule to the word to get a stem

Step 4:Check the stem against the dictionary. Perform any necessary

recording and recheck the dictionary
Step 5:1f the stem appears in the dictionary, then the stem is the root

of the word and go to Stepl otherwise go to Step 2

The algorithm adopted a rule-based approach that slowed down the stemming

process. The stemmer also did not take into consideration that the stemmers would

remove affixes from the root words, because the dictionary is not checked until after

the first rule has been applied to the word. For example, the word “tempatan”(local)

would be stemmed to ‘tempat’ (place) where ‘an’ is consider a

suffix. These two words have different meaning and may affect the performance of

the information retrieval system.

4.3.2 Sembok’s Algorithm

The algorithm is a modification version of Othman’s algorithm where it

adopted Othman’s algorithm and a set of morphological rules as the basis for the
development of two new rule sets. The first contained 432 rules of affixes and the

second set contained 561 rules of affixes

33

In order to enhance the original stemmer developed by Othman, another
step has been added to the basic algorithm of the stemmer where the input word is
checked first against the dictionary at the initial step. The main purpose for the
additional step is to avoid stemming on the word, which is already a root word, in
which otherwise, could lead to over stemming. For example, the word ‘mati’ (die)
exists in the dictionary. Therefore, the word is not stemmed to the word ‘mat’ even
though it contains the suffix 'i’. The other experiment carried by Sembok was to
determine the order of the rules. It is important to know that the algorithm of the

stemmer relies on the order of the rules (which affixes has to be checked and

removed first).

This algorithm has been tested to the Quran and research abstract data
sets. The experiments showed a significant improvement in stemming the Malay text

and have been guidance for building a new stemming algorithm.

4.4 The New Stemming Algorithm

With the main purpose of research requires us to improve the
effectiveness in the retrieval process. The main interest is not only to develop a new
stemming algorithm for a specific application, but also to enhance the performance
of the existing algorithm in order to improve the retrieval process. There has been
another stemming algorithm, which have been developed by Norisma in 2000. It is a
modification of the both previous stemming algorithm module. Thus this algorithm
developed by Norisma is less error prone, and more effective in stemming the Malay

words. The only defect with this algorithm is that the Infix rules is abandoned due to

34

its unpopularity ot use in the formation of new Malay words. In this new system
which have been developed by Somabalan, the infix rules will be included. So the
Norisma’s algorithm will be used, as it is plus some additional Steps to be included
for the Infix rules. Below is Norisma’s algorithm with the modification statements

following after it.

4.4.1 Norisma’s Algorithm

In this new algorithm, only the most important rules from the two patterns

of the rules, which are Prefix and Suffix will be implemented. And as for the Prefix-
Suffix pattern because, it is actually the combination of the Prefix and the Suffix, so
there will not be a set of new rules for these pattern. By using only two patterns of
affixes that are prefix and suffix, we can reduce the number of rules sets. (Refer

Appendix A for the flow chart of Norisma’s stemming algorithm).

‘ Prefixes usually give rise to the spelling variations and exceptions in the
root word. In this case, errors may occur during the stemming process where the
stemmed word is not complete. To deal with this kind of problem, we build another
rule, which we refer to as Rule 2 where it can be applied to the prefixes removed

only. The rules of Rule 2 are:

If the stemmed word is not complete, then
Check the first letter of the word
If the stemmed word started with the vowels letters then
1. Add ‘t' after removing ‘men’ or ‘pen’

2. Add 'k’ after removing ‘meng’ or ‘peng’

35

3. Add ‘s’ after removing ‘meny’ or ‘peny’
4. Add 'f’ or ‘p’ after removing ‘mem’ or ‘pem’

For example after removing the prefix ‘mem’ from a word ‘menakluk’ (to
conquer), a letter ‘t” would be attached to the remaining word *akluk’to form the
correct stemmed word, ‘takluk’(conquer’. But, for the word ‘mentadbir’ (to manage),
the stemmed word is ‘tabir’ (manage), so we do not have to apply this rule as the
stemmed word started with the consonants letter ‘t’. Basically the algorithm is: -

Stepl: Check the word against a general dictionary. If the word is
found in the dictionary, then accept the word as the root word

and exit, otherwise proceed to the next step.

Step 2:Check the word against a general dictionary. If the word is
found in the dictionary, then accept the word as the root word

and exit, otherwise proceed to the next step.

Step 3:Check the word against the prefix rules. If the word matches
the prefix rules , check the pattern of the prefix and the first

letter of the stem word, otherwise go to Step 8.

Step 4:1If the pattern of the prefix matches the prefix patterns in
Rule 2, then apply the Rule 2 to the words, otherwise remove

the prefix and go to Step 7.

Step 5:Check the prefix of the word against the pattern of Rule 2. If it
matches the fourth rule (Rule 2(4)), then check the new stem
word against the dictionary and proceed to the next step,
otherwise remove the prefix and go to Step 7.

Step 6:If the word is not found in the dictionary, then go back to
Step 5, otherwise remove the prefix and proceed to the next
step.

36

Step 7:Check the word against the dictionary. If the word found in the
dictionary, then accept the word as the root word and exit,

otherwise proceed to the next step.

Step 8: Check the word against the Suffix rules. If it matches with the
Suffix rules, then remove the suffix and go to Step 1,

Otherwise, just go to the Step 1.
4.6.2 Modification from Somabalan

There are two main modifications that are suggested. There are: -

Step 8:Check the word against the Suffix rules. If it matches with the
Suffix rules, then remove the suffix and check the dictibnaxy.
If the word is found, then accept the word as the root word and
exit, otherwise, If the Prefix have been removed then add

again the prefix and go to Step 9 else go to Step 9.

Step 9:Check the word against the infix rules. If the word matches the
Prefix rules, then remove the infix and go to Step 1. Otherwise if
Prefix has been removed before and added again, now remove

the prefix again and go to Step 1 else proceed to Step 1.

As you can see there have been some changes in Step 8. Plus another Step has been
added to the algorithm that is Step 9. The reason for the changes in Step 8 is to make
sure that if a word does not have any prefix or suffix attached, then the word should
be checked with the infix rules. And the rule ‘if the prefix has been removed before it
arrived to Step 8 then add the prefix again’ before proceeding, is to ensure that the
particular word is not wrongly stemmed. For example the word ‘telapak’, when it
reaches Step 8, the prefix ‘te’ would have been removed in Step 4.The balance of the

word ‘lapak’ does not make any sense. So to overcome this problem when the word

37

reaches Step 8, and it finds out that there is no suffix attached to the word, and before
proceeding to Step 9, the prefix that has been removed is added back to the word. So
by doing this, in Step 9, if the particular word is a word with the infix rules, the
search should come to an end. This is because an Infix word does not have any prefix
or suffix attached to it. With the Addition of these new rules, the flow of Norisma’s

algorithm will not be interrupted as well for the efficiency of the algorithm.

There were several experiments carried out before we eventually came
out with the modification of the stemming algorithm. The first experiments were to
determine where the checking of the infix rules should be inserted in Noﬁsma’s
algorithm. It is important to know that the algorithm of the stemmer relies on the
order of the rules. By performing some sideshow experiments, it is found that the
place to place the checking of the Infix rules is after Step 8. However, to our
knowledge there are only 4 infix rules currently available in the formation of Malay

words. The results of the experiments are reviewed in Table 4.1.

Word Actual Root Word Infix Modified Stemming Algorithm
Kelelawar Kelawar el Kelawar
Selerak Serak el Serak
Telapak Tapak el Tapak
Telekup Tekup el Telekup
Gemuntur Guntur em Guntur
Gemilang Gilang em Gilang
Semerbak Serbak em Serbak
Gerigis Gigis er Gigis
Serabut Sabut er Sabut
Lelaki Laki el Lelaki
Seinambu‘nL Seimbung in Sambung

Table 4.1: The Experiments Results On Infix Words

38

CHAPTER 5

SYSTEM IMPLEMENTATION

39

5.1 Introduction
This chapter will cover on the implementation of the system. Since this

project is stressed more on the research, so this chapter will concentrate on

implementing the stemming engine, which involved component-based.

5.2 Development Environment

Using a suitable hardware and software will not only help to speed up the
system development but also determine the success of the project. The hardware and

software tools used to develop the entire system are as follows.

5.2.1 Hardware Requirement

In developing the component-based stemming engine, the configuration of

hardware that has been used is:
e Intel Pentium III Processor (733MHz)
* 15”7 SVGA Color Monitor (32bits, 800x600)
e 128MB SDRAM
¢ 15 GB Hard Disk Drive
* 1.44MB Floppy Drive Driver

e 52x CD-Rom

5.2.2 Software Requirement

The required software to run the system and develop the system:

® Microsoft Windows 98

o Stand as operating system that supports all software development

tools.

40

e Visual C++/ Visual Studio
o For application development, which is all algorithm, are implemented
and is programmed to build the real system,
e Internet Explorer
o To view the debugging messages.
e Microsoft notepad
o Dictionary data storage for
= Global dictionary
* Local dictionary
» Prefixes files
* Suffixes files
* Infixes files
e Mic. Visio Professional

o To draw ER and DFD Diagrams.

5.3 System Development

Visual C++ is the main important tools in developed this system. It will
involve classes, inheritance, constructors, destructors, operator overloading, objects,
encapsulation and etc. This system is build as a Win32 Console Application and plus
inheriting from the Microsoft Foundation Class(MFS). Every application
development project needs its own project workspace in Visual C++. The workspace
includes the directories where the application source code is kept, as well as the

directories where the various build configuration files are located.

4]

5.3.1 Module Coding

The main part in creating the component-based system is the reusable of the
code. These mean that the code should be programmed with a lot of variable instead
of hard-corded (put the data to the programs). So, every time the programs calling
the data such as dictionary, suffixes, prefixes and infixes, it will invoke external file.
The file is save in a txt format. This is a good practice of implementing a component-
based system where the end user(normally developer) not need to know what is the
process in the system. What they need to do is to declare their own object as a
stemmer class and send required information. They also should know how to use
component-based in programming observation. The end user can modify the external
file to meet the requirements. These mean that they can add any root words in the

dictionary, prefixes, suffixes and infixes in a specific files.

5.3.1.1 Class Definition

Below is the code segment for stemmer class definition with the method

provided.

class stemmer {
private:
CString fileGlobalDictionary, fileLocalDictionary;
CString filePrefixes, fileSuffixes , fileInfixes;
CString wordIn, rootword;
CString sentenceln;
CString stemmedSentence;
int totalStemmedWords;
int totalWordsIn;
int totalOutput;
public:
stemmer (CString ="globalDic-BM.txt", CString ="localDic-
BM.txt");
void testOutput ();
void stem(char *sentence,int caseSensetive=0,int tag=0);
CString stemWord(CString word, int caseSensetive=0,int tag=0);
int globalDictionary(CString word);
CString localDictionary(CString word);
CString Prefix (CString word);
CString Suffix (CString word);

CString Infix (CString word);

43

5.3.1.2 Method Usage

In this constructor function, stemmer (CString ="globalDic-BM.txt i
CString ="]localDic-BM. txt", CString ="prefixes-BM. txt", CString
=nsuffixes-BM.txt", CString ="infixes-BM.txt");, USCr have to sent the
dictionary file path for both global and local as the first two attribute and the rest are
the prefix file, suffix file and infix file. All the files should in the same language or
morphology. This is important because the system/component will give wrong result
if the file is wrong. For example if the dictionary file is globalDic-BM. txt which is
present for Bahasa Melayu, so all the rest file should also in Bahasa Melayu for the
contents. But, the component still run with the default language as Malay if this
constructor is created without attribute such as stemmer () ;. This is because to
make it less error while coding and the most important is to fulfill the requirement of

the title Component-Based Stemming Engine for Malay Text.

With this approach users can use this.component to stem other language as
far as the language is a text based. It is also easy for user to put in the file if they got
a new words or suffixes. It can be implemented in a better user interface input such

as open a new language in a file menu.

void stem(char *sentence, int caseSensetive=0,int tag=0);

With the function above user can stem their sentence with their own option.
The first attribute is the sentence address, the second attribute for the case sensitivity.
0 for the default (not case sensitive) and 1 for case sensitive. The third attribute is for
tagging option.

0: Default, stem symbol n not stem tagging

1: stem symbol only

2: stem tagging and symbol

int globalDictionary(CString word);
CString localDictionary(CString word);
CString Prefix (CString word);

CString Suffix (CString word);

CString Infix (CString word);

The three functions/components above is used for internal program to find the root

word and make replacement if any.

Function Output Returned

CString sentenceln; Original sentences from input.

CString stemmedSentence; Stemmed sentences with a specific
language.

int totalStemmedWords; Total stemmed words, which is involved

in the stripping for prefixes, suffixes and

infixes.

int totalWordsIn; Total words from input.

int totalOutput; Total words will appear after stemming

process.

Table 5.1: Output for each function, e
The functions/components above can be used to get the output by the end

user. Sample code for using the components is shown in Appendix F.

45

Dictionary Checking Module Flow

Yas

Crack Blobal
D

N

No “ Yes
mr.cl-;’;mmi Replaco +

Roat
whrd

MNexl
Provass

Morphology

Npz march

Stam the word Replace

Figure 5.1: Dictionary and morphology replacement module

Figure 5.1 shows a dictionary and morphology module with special
replacement, which implemented as the code in the Appendix F and using new
diagram from Appendix C. The word will be sent to dictionary module as stemmed
or unstem word. It will find a match word in the global dictionary with the input
word. If matches, then it will return as root word, if not it will try to find in the local
dictionary. If the word found, it will use the replacement word as root word else it
will not return as root word. With this approach the problem for special words for

their root words are solved. For example in English; ran = run, fought 2 fight. So,

46

the same thing, is implemented to the prefixes or suffixes which will make

-

replacement for it. For example men = ¢ for menakluk=> takluk, mentadbir 2tadbir.

47

CHAPTER 6

SYSTEM TESTING

48

6.1 Introduction

System testing is a crucial process in developing any software. This is a
process where the system will be verified and validated in term of the system
functional requirement, performance, reliability and specifications. However the

stemming component will only be tested on the functional requirement.

The objective of unit and integration testing is to ensure that the code
implemented the design properly; that the programmers wrote code to do what the
designers intended. In system testing, the objective is different: to ensure that the
system does what the customer wants it to do. To understand how to meet this

objective, first we must determine where faults in system come from

The most widely used testing process consists of five stages shown in Figure 6.1
below:

Unit testing

Modulate Sting

Subsystem testing

System Testing

Component Testing Integration Testing User Testing

Figure 6.1 Testing Process Stages

49

The sequence of testing activities is component testing, integration testing
then user testing. As defects are discovered at any stage, program modification are
required to correct them and this may require other stages in the testing process to be
repeated. The process is therefore an interactive one with information being fed back
from later stages to earlier parts of the process.

In Figure 6.1, the arrows from the top of the boxes indicate the normal
sequence of testing. The arrows returning to the previous box indicate that previous

testing stages may have to be repeated.

6.1.1 Testing Strategies

A testing strategy is a general approach to the testing process rather than a
method of devising particular system or component tests. The testing strategies
include:
Top-down testing: testing starts with the most abstract component and work
downwards.
Bottom-up testing: testing starts with the fundamental components and works
upwards.
Thread testing: is used for systems with multiple processes where the processing of
transaction threads its way through these processes.
Stress testing: relies on stressing the system by going beyond its specified limits and
hence testing how well the system can cope with overloads situations.
Back-to-back testing: is used when versions of a system are available. The systems

are tested together and their outputs are compared.

50

6.2 Unit Testing

Unit testing verifies that the component functions properly with the types of
input expected from studying the component’s design. The first step is to examine
the program code by reading through it, trying to spot algorithm, data and syntax
faults.

All algorithms for every module are tested with appropriate input. The
modules are constructor component, dictionary component, morphology component
(prefix, suffix and infix) and the user output component.

Below are the testing results;

Unit Testing Result

Constructor component Worked properly.

The default value was taken if the
constructor created without attribute.
Eg:

stemmer obj1;

Or

stemmer obj1(“globalDic-BM”,

“localDic-BM”);

Global dictionary component Worked properly.

The global dictionary returned the true
root word.

e.g.!

adik 2 TRUE

adun = TRUE

51

akhbar - TRUE

pita 2 TRUE

polis =2 TRUE

longan(not in the dictionary) 2 FALSE
pistol(not in the dictionary) = FALSE
The testing return FALSE because the
words are not existed in the global

dictionary.

Local dictionary component

Worked properly.

Test for Malay text;

perkosa = rogol

sebuah 2buah

How ever it is too few for Malay
language. This component is very useful
for other language such as English where
there are so many exceptional words.
Test for English text;

ran=2run

bought >buy

men 2man

broke 2break

drunk=>drink

Prefixes component

Worked properly with some

modification.

Data tested for Malay words;

52

memberi 2beri

dilantik2lantik

berkata 2kata

bersedia-?sedia

Problem occurred when overlapped of
these prefix meng, memper men, menye
and me. And combination of pe, peng,
penye Eg;

mencari=>ncari (strip the me)
mengguna >ngguna, gguna

pengguna >ngguna

penyapu 2nyapu

This problem occurred because of the
improper prefix list (unsorted prefix). To
solve this problem the prefixes list are
listed properly with the highest length of
prefix at the top. Suffixes and infixes

files also made with the same changes.

Suffixes component

Worked properly after changes

racuni=2racun

perlukan 2perlu

mulai ?mula

tempatan 2tempat
Combination of prefix-suffix

perlindungan 2lindung

53

perkataan 2kata
permulaan >mula
menyeksakan 2seksa

mempercayai >percaya

Infixes component

Worked properly after changes
telapak tapak

gemuruh 2guruh

gerigi 2gigi

Jejari-2jari

sinambung 2sambung

CString sentenceln;

Sentence tested:
Suatu proses ialah beberapa langkah
yang melibatkan aktiviti, kekangan dan

sumber yang akan menghasilkan output

yang diingini <lulus>.

CString stemmedSentence;

Suatu proses ialah berapa langkah yang
libat aktiviti kekangan dan sumber yang

akan hasil output yang ingin lulus.

int totalStemmedWords; 4

int totalWordsIn; 18

int totalOutput; 18

Tagging Testing Worked properly
Case sensitive testing Worked properly
Table 6.1 : Tested result

54

6.3 System & Integration Testing

The system had been tested for the unit testing. All input will produce the
correct output after modification. Integration testing is more to the system for this
project. This is because the main purpose is going to be used by the other peoples to
build their own systems. If they got no problem of reusing this component, meaning
that this component can be integrated with other applications. Salhana bt. Darwin
had been build a system “Essay Grading Using Nearest Neighbor Technique” and
implemented this component-based. She got no problem to use this component

integrated with her project.

6.4 Conclusion

Resulting from all the tests that had been carried out, it seem that all modules

can perform well but still have several problems to make it really useable for all

language. These conditions arise due to the several problems, which will be

discussed in the next chapter. However, all those modules are not 100 percent fail. If

all the problems that caused those modules unable to fulfill their functional

requirement could be overcome, it believed that all modules could perform their

functional requirement very well.

55

CHAPTER 7

SYSTEM DISCUSSION

56

7.0 System Discussion

7.1 Introduction

In this chapter, it will be a discussion on the usage of stemming component
and the conclusion of the test result. In this chapter also, will be discussed a
knowledge that has been found from a research on the ability of this component and

what is the future enhancement that can be implemented.

7.2 Discussion On The Module Test Result

The test result on all modules seems returned a recommended output. But it
still faced with a problem where the external file (data file) have to sort properly and

manually with the longest length of words/prefix/suffix/infix at the top of the file.

7.3 Handling Visual C++

As a new tool for programming, it took quite some time for me to learn the
feature in visual C++ and what it is capable of doing. The main problem that I faced
was to how to use Visual C++. As resources for learning Visual C++ were not
enough, even though I had several books on Visual C+, it is still not enough, this
made the process of learning even harder. Because of that, some objectives were
failed to develop such as integrate with fancy user interface and integrate with other

programming languages.

To integrate with other programming languages such as Visual Basic, Visual

J4++ and ASP, some additional new language have to learn which is known

57

ATL(Active Template Library). This ATL use C++ as the core language. With ATL
we can compile and register dli(dynamic link library) files to the system and easy to
call the component. It can reduce response time and give a good performance. How
ever it is not as easy to learn ATL. This is because normally advance programmers
used this ATL to combine or integrate their system with difference programming
language. So, the developers should know a lot of language. It is so difficult for me
to learn everything about ATL to build advance system such as this component-

based where it can be used for many development platforms.

7.4 System Strengths

7.4.1 Reusable of code
The main objective of component-based is can be used by other application.
It seems like object-oriented approach. This component can be plugged into any

system or attached into other system programs. It will work properly without any

changes to the component.

7.4.2 Fast Response Time for Document retrieval
When the stem function is invoked, relatively the time taken to process the

word and displaying the results is quite fast. Even be it a word, sentences or text file

with full text, the response time is still fast.

7.4.3 Multi Language Approach
The main purpose of this component is for Malay text usage. But it can be

implemented to any language or new language since it is text format. The end users

58

only have to declare their own language set of dictionary, prefixes, suffixes, infixes

and the exceptional cases.

7.5 System Constraints
7.5.1 Visual C++
For this purpose, this component only runs in computers that are pre installed

with Visual C++ 6.0. This is because the unavailability of the creating setup files for

Visual C++,

7.5.2 Exceptional Cases
There are several exceptional cases in the Malay language words like for
example a word can be stemmed into have root words, which both of them are

correct. This case is very clear for the other language such as English, which there

are so many exceptions in their morphology.

7.6 Future Enhancement

Since the system that being developed is still just a prototype, it is future plan
to make this component-based stemming engine as a real time application with full
friendly user interface. Mean that the users will be the Malay Language Researchers

or other language researchers and the system will be used fully for research

enhancement of the language.

59

7.6.1 Essay Answer Marking
In essay grading system, stemming is very useful to implement. It s
important because the student’s answer will have a lot of non-root words where the

words should be matched with the teacher’s schema.

7.6.2 Language Based Intelligent System

This component can be used into intelligent system such as a document
filtering for file or email transaction. Searching engine also using stemmed word to
retrieve matches heyword currently. This component-based stemming engine
approach also could be upgraded to use for spelling checker agent like Microsoft

Word to check and correct words or sentences in the document file.

7.6.3 Implementing Database

Converting the existing storage format from file storage, to a database storage
for better performance since if the system is further being enhanced the system
should be able to cater larger data of the dictionary, and if we are using file storage, it

will be set back as it will degrade the performance of the system during enhancement

process.

60

CONCLUSION

61

Conclusion

This system is developed to serve a new Malay words stemming system’s
application especially for a specific domain. It caters for all types of Malay modern
words only. However the system will be used as a prototype for the purpose of
experiments for further enhancements of the Malay words stemmer component, n
order to reduce the errors occurred.

The component-based technology that has been applied to this stemming
engine cause many others applications can be build easily, just simply put certain
source code of this component to their own applications. It is also can be used for
manipulating or developing other language since it is a text format.

This system has its advantages and weakness but it still satisfied the
specification of the system. This system is developed to provide help for students
who are doing research in stemming process especially in Malay Language, and
other people who are involved or in need of this stemming process service.

A lot of knowledge was gained throughout the development of the system.
These include knowledge of programming in Visual C++, using Visio Professional,
and ATL.

Finally, all the problems faced and experiences gained during the system

development should be useful for future endeavors.

62

APPENDIX

63

APPENDIX A

Step 1:

Step 2:

Step 3 :

Step 4 .

Step 5 :

Step 6

Step 7 :

Step 8 .

Flow Chart of the Malay Stemming Alogrithm

Start
Words Entered

Check General

Dictionary
Yes

No

Check Local

Ve Dictionary

No

Prefix Rules, First | _"N°

Letter of Stem word

Remove
Prefix

Remove
Prefix

No Check Local

Dictionary

Remove Prefix

Yes Check Local

Dictionary

No

L8 Suffix

Rules

No

(End)

64

APPENDIX B

Start
Words Entered

Step 1 : Choc.k General
Dictionary
Yey
Na
Step 2: Chfclf Local
Va3 Dictionary
Na
. : Na
s 3. Prefix Rules, First
hddest Letter of Stem word
Step 4 :
: Cheok
SIS Rule 2 (4)
heck Local
Step 0 : Dictionary
Yes| Ramave Pralin
ey Cheok Local
A Dictionary
YES
Step 8 : VT
Yas
Step 0

Infix Rules

luo

L =)

Modification from Somabalan(1]

65

APPENDIX C

Ved

Chsis conhion ol
Tethnd regaey
e gy

(cionnry

NY

Prefin Hubes

i
Reseveany

Feviace
Prefiv

—

No

Suthx rfes

Vag

Remow
Suffe

You

Ly

Dtonary

:

iy Rues

v,

You

/ eny l
PLERY /S

Modification of implementation for replacement for exceptional cases

66

APPENDIX E

'F ,Thesisz‘-.,stemclass2‘1.'Debug\stemtlassZ.exe“
tlelc

to Stemming Engine Component

3 e
)

BEncer sentenc ialah beberapa langkah vany melibatkan aktiviti,

akangan dan
in the class

fconcanate satu
mher uyang akan hagnil

ennedfentence
fan dan sumber vany
fiotalllords words in
totalOutput
Btotals cemme Glords
ERES Y M

PROL

ENCE PROGRAME S8

START &
i ialah berapa langkah yany 1i
ontput vang diinginid

SENTEMCE PROGRANE END

MHd gtunnenst tOutput (>
allic-

ocalDd

satit prose 1
an hasil cutput vang diingini

w END stemmenr::testQutputdd

ini».

{diing

bat aktiviti kehangan dan s

Sample output

67

APPENDIX F

Full source code

File Name : stemmerMain.cpp

#include<iostream.h>
#include<string.h>
finclude<fstream.h>
#include<afx.h>
#include<stdio.h>
#include<conio.h>

#include "stemmClass.h"

void main()

{

cout<<"Welcome to Stemming Engine Component "<<endl<<endl;

fflush(0) 7
const int sentencelLen =300;
char sentencelnput[sentencelen]; //sentences entered
CString sentenceOut; // stemmed
sentences
stemmer objl;
cout<<"Enter sentences :";
cin.get (sentencelnput, sentenceLen, '\n');
char word4 [sentencelen] ;
int panjang4=strlen(sentencelnput);
strncpy (word4, sentencelnput, panjang4) ;
wordd4 [panjang4]='\0";
CString sentencelnput2 = word4;
sentenceOut ="dummyX " + sentencelnput2;
cout<<"in the class
"<<endl;
char word3[sentencelen];
int panjang=strlen(sentenceOut) ;
strncpy (word3, sentenceOut, panjang) ;
word3 [panjang]='\0"';
objl.stem(word3,0,0);
/i
Will have a default
1st arg : Sentence input
2st arg : O/not sensitive
1 case sensitive
3st arg : 0 Default : stem symbol n not stem tagging
1 stem symbol only
2 stem tagging and symbol
K
objl.testOutput();
cout<<endl;
cout<<endl;

stemmer: :stemmer (CString global, CString local,CString preffile,CString
suffile,CString inffile)
{

fileGlobalDictionary = global;

fileLocalDictionary = local;

fileprefixes = preffile;
filesuffixes = suffile;
fileInfixes = inffile;
totalStemmedWords=0;
totalWordsIn=0;
totaloutput=0;
stemmedSentence = ""7
wordIn="";

rootword="";

)

void stemmer::testoutput()

(
R oa s LAl AR AR A A8 SAAAEAAARAA stemmer: : testOutput () "<<endl;
cout<<"globalDictionary . " <<fileGlobalDictionary<<endl;

cout<<"localDictionary : " <<fileLocalDictionary<<endl;
cout<<"stemmedSentence : " <<stemmedSentence<<endl;
cout<<"totalWords words in: " <<totalWordsIn<<endl;
cout<<"totalOutput : " <<totalOutput<<endl;
cout<<"totalStemmedWords : " <<totalStemmedWords<<endl;

c°ut<<"iiﬁiiiiﬁiﬁﬁﬁi*ﬂiiﬁiﬁtiiii* END Stemet: :testmtput()"<<endl;

)

void stemmer::stem(char *sentence, int caseSensetive,int tag)

{
cout<<endl<<"$$$$$$$$$$$$$$$$$$ SENTENCE PROGRAME START
$$$$$$$$$$$$$$$$$$$"<<endl<<endl;

static CString concanate ;7
char *token;

cString sym;
if (tag==0)

sym = " ,.\t\n;':*$€";
else if (tag==1l)

sym = " ,.\t\n;':*$@";
else if (tag==2)

sym = " LN s kSR>
else

sym = " ,.\t\n;':*$€";

/* Establish string and get the first token: */
token = strtok(sentence, sSym)i

static int totalWords=0;
static int totalOutputWords=0;

while(token != NULL)
(
/* While there are tokens in "string" */
/* Get next token: */
token = strtok(NULL, sym)2
cString tokWord=stenWord (token, caseSensetive, tag) ;
if (tokword != "")
(
concanate = concanate + tokWord + " "/
totalOutputWords = totalOutputWords + 1 ;

totalWords = totalWords + LY
totalOutput = totalOutputWords;

stemmedSentence = concanate;
totalWordsIn = totalWords - 1;

cout<<"concanate : re<concanate<<endl<<endl;

69

cout<<endl<<"$359595959958589399 SENTENCE PROGRAME END
$995999999999999998"<<endl<<endl;
}

CString stemmer::stemWord(CString word,int caseSensetive,int tag)
{
int inGlobal;

CString rootWord;

CString rootLocalTemp;

if (caseSensetive == ()
word.MakeLower () ;

CString leftChr = word.Left(l);
CString RightChr = word.Right(1);
if (leftChr=="<" §& RightChr ==">")
{

word.Remove ('<') 7

word.Remove ('>') ;

rootWord = word;

return rootWord;

)

inGlobal = globalDictionary(word) ; // will return TRUE if exist
if (inGlobal==TRUE)
{
rootWord = word;
)
else
{ //if not found in the global then try to find in the local

rootLocalTemp = localDictionary(word); // will return replacement of
rootword if found otherwise null

rootWord=rootLocalTemp;

)
/X if rootWord="" then go to prffix
prefix will return the stemmed word

i/

CString wordPref="";
CString wordSuffix="";
CString wordInfix="";

if (rootWord=="") // GOTO PREFIX
{

//int stemmedPrefIndex;

wordPref = Prefix(word);
int inGlobalPref = globalDictionary(wordPref); // will return
TRUE if exist
if (inGlobalPref==TRUE) (
rootWord = wordPref;
totalStemmedWords = totalStemmedWords + 1;
)
else
{ //if not found in the global then try to find in the local

Cstring prefLocalTemp = localDictionary(wordPref); // will
return replacement of rootword if found otherwise null

rootWord=prefLocalTemp;
}
}
if (rootWord=="") // GOTO SUFFIX
{
if (wordPref=="")
wordSuffix

Suffix(word) ;
else

wordSuffix = Suffix(wordPref);

if (wordSuffix!="")
{

int inGlobalSuff = globalDictionary(wordSuffix):
return TRUE if exist 1 Sk e

if (inGlobalSuff==TRUE) {

rootWord = wordSuffix;
totalStemmedWords = totalStemmedWords + 1;
)
else
{ //if not found in the global then try to find in the
local
cString sufflocalTemp = localDictionary(wordsuffix); //
will return replacement of rootword if found otherwise null
rootWord=sufflLocalTemp;
)

)

if (rootWord=="")

(
cString wordOri = word;
CcString wordSteml = wordPref;
CString wordStem2 = wordsuffix;

if (wordSteml=="" g&& wordStem2=="")
wordInfix = Infix(word):

else if (wordSteml!="" && wordStem2=="")
wordInfix = Infix(wordSteml)

else if (wordSteml=="" && wordStem2!="")
wordInfix = Infix(wordStem2) ;

else if (wordSteml!="" && wordStem2!="")
wordInfix = Infix(wordStem2):;

if (wordInfix!="")
{
int inGlobalInf = globalDictionary(wordInfix) ; // will
return TRUE if exist
if (inGlobalInf==TRUE) {
rootWord = wordInfix;
totalStemmedWords = totalStemmedWords + 1;

else

{ //if not found in the global then try to find in the
local

CSstring sufflLocalTemp = localDictionary(wordInfix); //
will return replacement of rootword if found otherwise null
rootWord=sufflLocalTemp;
}

}

return rootWord;

)

int stemmer::globalDictionary(CString word)
{

int found = 0;

int counter=0;

char globalRoot [30];

CString rootTemp:
CString wordTemp;

ifstream GlobalFile(fileGlobalDictionary,ios::in);
dynamically
if (!GlobalFile)
cout<<"File cannot be opened..."<<endl;

// will be

else
while (found!=1l && GlobalFile.peek()!= EOF)
{
GlobalFile >> globalRoot;

counter=strcmp (word, globalRoot) ;
if (counter == 0)

{
found=1;
rootTemp = globalRoot;

else
found=0;
)

return found;

71

}

CString stemmer::localDictionary(CString word)
{
int found=0;
int counter=0;
char localRoot[30],localRootReplace(30];
CString wordTemp=word;
CString rootTemp;

ifstream LocalFile(fileLocalDictionary,ios::in); // will be dynamically
if(!LocalFile)

cout<<"File local not found";
else

while (found!=1 && LocalFile.peek() !=EOF)

(

LocalFile>>localRoot>>localRootReplace;

counter=strcmp (wordTemp, localRoot) ;

if (counter==0) // 0 : the string is match

{
rootTemp = localRootReplace; // replace the word
found=1;

)
else
found=0;
)
return rootTemp;

}

CString stemmer::Prefix (CString wd)

{
CString word = wd;
// cout<<"***i*i*i*i**ti**ﬁ*ﬁﬁﬁ***&iﬁﬁ*ﬁ***t*****i* IN the PRefiX()"<<end1,‘

int lenPrefixes;
int found=0;

char prefixesTemp([10]; // preffix from txt file
char prefixesReplaceTemp(10]; // replacement of preffix from txt file

CString prefixes,prefWord, rootTemp;

ifstream PrefFile(filePrefixes,ios::in);
if (!PrefFile)
cout<<"File cannot be opened..."<<endl;
else
(
while (found!=1l && PrefFile.peek() !=EOF)
{
PrefFile>>prefixesTemp>>prefixesReplaceTemp;
prefixes=prefixesTemp;

lenPrefixes = prefixes.GetLength();
Prefix len from prefix file
prefWord = word.Left (lenPrefixes);

// try to get

// try to get
pPrefix for word

if (strcmp(prefixes,prefWord)==0)
found = 1;
//prefix found=1
else
found = 0;

)

if (found == 1)
{

rootTemp=word.Mid (lenPrefixes) ;
CString Vowel = rootTemp.Left(1); // try to get a vowel

if ((Vowel=="a") || (Vowel=="e") || (Vowel=="i") ||
(Vowel=="0") || (Vowel=="u"))
{

if (prefixesReplaceTemp!="**")

72

rootTemp=prefixesReplaceTemp + rootTemp;

)
return rootTemp;
// COULCL A hA Ak A Ak A Ak kd kAR KRR RN R R AR RN AR R d* END of the PRefix()'"<<endl;

}
CString stemmer::Suffix(CString word)

(

// cout<<"ﬁ0iiii.ﬁiﬁﬁ"‘ﬁ'iﬁit.liliiﬁi‘iiiiiit!i'i‘ START SUFFIX()"((endl;
CString wordTemp;
wordTemp = word;

int lensuffixes;
int found=0;

char SuffixesTemp([10]; // preffix from txt file
// char SuffixesReplaceTemp([10]); // replacement of preffix from txt file

CString Suffixes,suffWord, rootTemp;

ifstream SuffFile(fileSuffixes,ios::in);
if (!SuffFile)
cout<<"File cannot be opened..."<<endl;
else
{
while (found!=1 && SuffFile.peek() !=EOF)
(
suffFile>>SuffixesTemp;//>>SuffixesReplaceTemp;
suffixes=SuffixesTemp;

lenSuffixes = Suffixes.GetLength(); // try to get
suffixes len from prefix file

suffWord = wordTemp.Right (lenSuffixes); // try to
get Suffixes for word
//cout<<"suffix:"<<Suffixes<<endl;
if (strcmp (Suffixes, suffWord)==0)
found = 1;
//suffixes found=1
else
found = 0;
]
}
if (found == 1)
{
%nt lenWordTemp = wordTemp.GetLength () ;
int lenRootWord= lenWordTemp - lenSuffixes;
rootTemp=wordTemp.Left (lenRootWord) ;
}

// cout<<"~k*****iﬁi********ii****i**ititi***i*iﬁ*ﬁ* EN’D SUFFIX()"<<endl'
return rootTemp;

)

Cstring stemmer::Infix(CString word)

{

// cout<<"iii**t*¢*wt*ﬁ**iﬁitiit**t*iiiii******ii—** START INFIX()"<<endl'
CString wordTemp; \
wordTemp = word;
int lenInfix=0;
int found=0;
char Infi;Temp[lO]; // preffix from txt file

// char SuffixesReplaceTemp(10]; // replacement of preffix from txt file

CString Infixes, rootTemp;

ifstream InfFile(fileInfixes,ios::in);
if (!InfFile)

cout<<"File cannot be opened..."<<endl;
else

{

73

while (found!=1 && InfFile.peek() !=EOF)
{
InfFile>>InfixTemp;//>>InfixesReplaceTemp;
Infixes=InfixTemp;
if (wordTemp.Find(Infixes) >= 0)
(
lenInfix=Infixes.GetLength():
found = 1;
//Infixes found=1
)
else
found = 0;
)

if (found == 1)

{
int posInfix=wordTemp.FindOneOf (Infixes);
int lenWord = wordTemp.GetLength():
CString leftWord = wordTemp.Left (posInfix);

int lenLeftWord=leftWord.GetLength() ;
CString rightWord = wordTemp.Right (lenWord-lenInfix-
lenLeftWord) ;
rootTemp = leftWord + rightWord;
}

// cout<<"i**i*t*iiiii***iﬁiiﬁii**th**ii*ii******ﬁ* END INFIX()"((endl,’
return rootTemp;

File Name : stemmClass.h

class stemmer
{
private:
cString fileGlobalDictionary, fileLocalDictionary;
cstring filePrefixes, fileSuffixes , fileInfixes;
CString wordIn, rootword;
CString sentenceln;
CString stemmedSentence;
int totalStemmedWords;
int totalWordsIn;
int totalOutput;

public:
stemmer (CString ="globalDic-BM.txt", CString ="localDic-BM.txt",
CString="prefixes-BM.txt", CString="suffixes-BM.txt", CString="infixes-BM.txt");
void testOutput();
void stem(char *sentence,int caseSensetive=0,int tag=0) ;
CString stemWord (CString word, int caseSensetive=0,int tag=0);
int globalDictionary(CString word) ;
CString localDictionary(CString word) ;
CString Prefix(CString word);
cString Suffix(CString word);
CcString Infix (CString word);

74

APPENDIX F

Component Based Stemming Engine for Malay Text

Overview of the 1* proposal (WXES3181)

1. Introduction of Stemming Engine
a. Process of extracting each word from text document, reducing it to a
probable root word.
b. Technique of linguistic normalization, in which the variant forms of a
word are reduced to a common form.
¢. Removing affixes from the text document or query produces a
stemmed word.
£ Affix is the verbal elements that attached to the beginning of the
word(prefix), end of the word(suffix) and in the middle of the
word(infix).
2. Objectives
a. To provide a global component which is reusable for developers to build
their own application/system.
b. Can be used for all MS Window application.
¢. To develop IR for Malay text and the morphology.
d. To be used in education field
i. Writing exam online
ii. Automated essay grading
3. Component Implementation
a. Component system is designed to facilitate reuse of code. Component-
based development assumes that the developer will create an application
by writing together components that have already been created by
someone else.
b. Module of code that is created with the intention that other developer will
plug them into new applications.
¢. The code always stays static
i. A component is developed and the code there after remain
unchanged.
ii. An object can be considered as an instantiation of a component.
4, Functionality
a. OOP Based — Can be used to every developer.
b. Advance searching — Searching engine for web-based / dictionary.
¢. Education — Essay grading.
d. Can be used to many platform application;
i. Web Based (ASP, JSP, PHP).
ii. System (Visual C++, Visual Basic)
Operating System (MS Windows, Unix/Linux) Why ? * Using
Binary code after compiled to specific file (.dll,exe).

75

Presentation 2

1. Introduction of Component based Stemming Engine for Malay text.
2. System flow diagram.
3. System achievement.
e Generally this system is successful.
o Reusable component.
o Multilanguage processing.

4, Stemming Component
Class Name :
stemmer(CString ="globalDic-BM.txt", CString ="localDic-BM.txt")
stem(char *sentence,int caseSensetive=0,int tag=0)
stemWord(CString word,int caseSensetive=0,int tag=0);
testOutput()
stemmer.totalStemmedWords;
stemmer.total WordsIn;
stemmer.totalOutput;

class stemmer{
private:
CString fileGlobalDictionary, fileLocalDictionary;
CString filePrefixes, fileSuffixes , fileInfixes;
CString wordIn, rootword;
CString sentenceln;
CString stemmedSentence;
int totalStemmedWords;
int totalWordsIn;
int totalQutput;
public:
stemmer(CString ="globalDic-BM.txt", CString ="localDic-BM.txt");
void testOutput();
void stem(char *sentence,int caseSensetive=0,int tag=0);
CString stemWord(CString word,int caseSensetive=0,int tag=0);
int globalDictionary(CString word);
CString localDictionary(CString word);
CString Prefix(CString word);
CString Suffix(CString word);
CString Infix(CString word);
I

5. Constrain
a. Multilanguage processing — Problem with the special word to stem for
their morphology.
eg: BM : menyedari => sedar.
BI : too many exception.
broke => break, ran = run, etc.
b. Multilanguage programming — ATL(Active Template Library) Need a
professional/expert programmer.
6. Future enhancement & opinion

76

a. Multilanguage programming
b. ATL

77

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

Somabalari, R.,(2001), Word Stemmer Application, Degree Thesis.
University of Malaya.

Norisma IQn's, Automated Essay Grading System Using Nearest Neighbor
Technique, Degree Thesis. University of Malaya.

Buku Software Engineering

Kozaczynski, W., and Booch, G.: ‘Component-based software engineering’,
IEEE Software, October 1988, pp.34-36

Krutchen, P.: Rational Software,
http://www.rational.com/sitewide/support/resources.jtmpl (July 2002)
Szperski, C.. ‘Emerging component software technologies — a stratergic
comparison’, Software-Concept & tools, 1998, 19, (1), pp. 2-10

Harmon, P. : Cutter Information Corp, http://www.cotter.com (July 2002)
Loureiro, K.,and Blechar, M.: ‘Componentware: Categorization cataloguing’,

Applications Development and Management Strategies Research Note,

Gartner Group, December 1997

Riverton Software Corp.
http://www.tiverton.com/solutions/knowhow/tlassets.htm (July 2002)
Chappel, D.: http://www.chappellassoc.com/article.htm (July 2002)

Plassil, F., and Stal, M.: ‘An Architectural view of distributed objects and and
component in COBRA, Java RMI and COM/DCOM’, Software — Concepts
and Tools, 1998, 19, (1), pp.14-28

Hull, M.E.C., Nicholl, P.N. , : ‘Approaches to component technologies for

software reuse of legacy system’, Computing & Engineering Journal, 2002,
12,(2), pp.281-287

78

[13]

(16]

[17]

(18]

Dewan Bahasa dan Pustaka, Tatabahasa Dewan, Edisi Kedua, Kementerian
Pendidikan Malaysia, Kuala Lumpur, 1999.

M.F. Porter, An Algorithm for Suffix Stripping Program, 1980, Volume 14,
Number 3, Pages 130-137.

Visual C++ example codes

http://www.codeguru.com (Dec 2002)

Microsoft Visual C++

htt://www.support.microsoft.com/visuale/ (Dec 2002)

79

USER MANUAL

80

Introduction

This component-based stemming engine is created for default language as
Malay. Its main objective’s are to improve the efficiency of the Information Retrieval
of a full texts Malay database. It is hopefully to be used in a lot of application areas
such as essay grading for school usage, advance searching and intelligent filtering
agent, This is just a simple application to view the output of the component.

However, it can be used to upgrade and implement into user interface module.

Application Usage Guideline

This component-based is very useful for developers. It is not really easy to
use for the end user who does not have experience with Visual C++, This component

code has to add several functions to make it more user friendly.

Basic Requirements

Hardware requirement;

1. Computer ‘IBM Compatible’ with at least Pentium Processor with 133Mhz.

2. 32 MB RAM or over.

3. 500Mb hard disk space for installing important software not included the
Operatimng System.

4, Mouse.

5. CD-ROM

6. VGA Monitor.

81

1. Win95 OS or latest Microsoft Windows OS.

9. Microsoft Visual C++ 6.0

Executing component-based stemming engine

1. Copy stemClass folder from CD to any folder into your hard disk.

2. Open Visual Ct++ application.

3. Open the workspace
file>open workspace=> stemClass2.dsw (in the stemClass folder from your
hard disk).

4. Compile and running the application.

As you can see the object objl is created in the main function as stemmer and
using default value for the constructor’s attributes, It is meaning that Malay
Language is being used for the application. objl.stem(word3,0,0) is an object to
send a words or sentences to stem function to get the stemmed output.

objl.stemmedSertence will return stemmed sentences with default option.

82

Profix

/ t

(- ¢ globaDictionar{CSting woud)

. @ Infi(CString word)

e @ locaDictionary! CSing word)

.. @] ProfiCStin ‘
(- @ stomichat *sontence, int casoS ansotas
i@ stemmer(CSting = “globalDicBM.b

.- ¢ stomWord(CString vord. int caseSen
. dy SulfiCSting word)

- ¢ tostOutputl)

i fleGlobalDictionary
Ll fiboln b

i

" #includec ios;troén b

includedstring hd
include<fstrean hy
include<aix h>
: im:ludmt.tdm.h.\
fincludedoonio. h>

#include "stexnClass. h"

void main()

; cout<< " alcone to Gtenning Engine Cow . :
e ush(0): ponent “<d<(en

const. int sentencelan =300;
char sentencelnput [sentencelen].:
CString ten .

Figure 1 shows workspace with visual C++

temClass2 classes

1% stemmer

@ _. globalDictionary(CString word)

"""" @ Infad{CString word)

- @ locabictiona{CSting word)

- @ Prefir(CSting word)

- @ stem{char *sentence, int caseSensetive = 0, inttag = 0)

- @' stemwWord({CStiing word, int caseSensetive = 0, inttag = 0)

@' stemmer(CString = "globalDic-BM.te", CString = "localDic-BM

", CString = "pref'uez-BM.bd", CString = “suffixesBM.tat", CStiing = "infixes-BM.tt'")

Figure 2 shows an abject can be

used as describe previously.

83

Debug
[s8] stemClass2.0pt

(] infixes-BM-.
] prefixes-EG.

] stemClass2

(] globalDic-EG
(=] prefixes-BM .
(=] workFlow .

] stemmClass.h stemmerMain.cpp &) stemClass2
4 stemClass2.dsp %stemclassz.dsw (&) globalDic-BM
&] infixes-EG &) localDic-BM

‘problem suffixes-BM

(&) localDic-EG
(8] suffixes-EG

Figure 3 : File that required in the workspace.

As we can see the txt file format is an external files where we can add manually

additional data in the dictionary, prefixes, suffixes and infixes.

84

