
FACULTY 01? COMPUTER SCIENCE
AND INFORMATION TECHNOLOGY,

UNIVERSITY MALAYA.

SESSION 2004/2005

NETWORK SCANNER

ANISYAHA Y ATI ISMAIL (WEK020012)

Under the Supervision of

MR. NOR BADRUL ANUAR BIN JUMA' AT

Moderator

MR. LING TECK CHAW

This project is submitted to the Faculty of Computer Science & Information Technology,

University of Malaya in partial fulfillment of requirement of the Bachelor of Computer

Science.

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

This report is submitted for WXES3182, Latihan Jlmiah Tahap Akhir which is

required for final year students of the Faculty of Computer Science and Information

Technology who will be graduating.

The Network Scanner is a program that is developed to provide information on the

network vulnerabilities especially open service port so that network security actions

can be performed earlier. A lot of researches have been done in order for me to

understand the basics of network scanning and what information it provides.

From the researches, I have gained a lot of information regarding the purpose of the

network scanner, its functions, techniques that have been used in network scanning

and a little insight of the design process of a network scanner. Finally I have

completed developing the Network Scanner project.

Although this project is not much compared to the current Network Scanners in the

market, I still hope that this Network Scanner will bring knowledge to other people

like it did to me.

This course should be maintained for students as it actually encourage students to

implement the knowledge they have acquired during the minimum of six semesters

of studies in the faculty.

1

Univ
ers

ity
 of

 M
ala

ya

ACKNOWLEDGEMENTS

Heaps of gratitude towards Allah for without His blessings I would never be able to

complete the Final Year Project report.

A special thank you is extended to Mr. Nor Badrul Anuar Bin Jumaat and Mr. Ling

Teck Chaw for your encouragement, patience and all your time spent providing me

guides and resource in achieving this report.

And to my loving family, my father, mother and sisters, thank you all very much for

your support, love and care over the years. Without your support, life would have

been miserable.

This special thank you is also extended to the staff of the Faculty for giving support

to students who are doing the thesis project for this semester and all other semesters

that have passed and will be coming.

And last but not least, a heart warming thank you to my supporting partner and

friends for without their encouragement and their share of ideas and thoughts also I

may not come to completing this report.

Anisyahayati Ismail,

Faculty of Computer Science and Information Technology.

11

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENTS

Abstract. ··· ······ .. ························· ········· . .i

Acknowledgements ii

List of Tables viii

L' f ... rst o Figures v111

CHAPTER 1: INTRODUCTION

1.1 Overview 1

1.2 Project Definition 2

1.3 Objective 2

1.4 Project Scope 4

1.5 Project Expectations 5

1.6 Project Timeline 5

CHAPTER 2: LITERATURE REVIEW

2.1 Computer Network 6

2.1.1 Local Area Networks (LANs) 6

2.1.2 Wide Area Networks (W ANs) 7

2.2 Network Security 7

2.2.1 Vulnerability Factors 8

2.2.2 How Hackers Enter a System 9

2.2.3 Types of Attacks 10

2.2.4 Risks Involved · · · · .. · .. · · .. · 11

2.2.5 Preventive Measures · · .12

2.3 Network Scanning 12

111

Univ
ers

ity
 of

 M
ala

ya

2.3.1 Network Scanning Techniques 12

2.3.2 Reviews on Network Scanning Utilities 18

2.3.3 Comparisons between Network Scanning Utilities 21

2.4 Open Source Programming 22

2.4.1 Programming Language 22

2.4.2 Open Source Tool. 24

CHAPTERJ:METHODOLOGY

3.1 System Development Life Cycle (SDLC) 25
I

3.2 Proposed Life Cycle Model. 28

3.2.1 Project Feasibility 28

3.2.2 Iterative and Incremental Life Cycle 29

3.2.3 The Waterfall Life Cycle 29

3.2.4 Combination: Iterative and Incremental and Waterfall Life Cycle 31

3.3 Why Choose Iterative and Incremental and Waterfall? 32

CHAPTER 4: ANALYSIS

4.1 Techniques Used to Define Requirements 33

4.1. l Internet Research .33

4.1.2 Library Research 33

4.1.3 Previous Thesis Research .34

4 2 R . S if . . equirements pec1 icanon 34

4.2.1 Functional Requirements 34

4.2.2 Non-functional Requirements 35

4.3 System Development Technology 36

IV

Univ
ers

ity
 of

 M
ala

ya

4.3. l Hardware 36

4.3.2 Software 37

CHAPTER 5: SYSTEM DESIGN

5.1 Functionality Design 38

5.1. l Structure Chart 38

5 .1. 2 Data Flow Diagram .41

5 2U · . ser Interface Design 45

CHAPTER 6: SYSTEM DEVELOPMENT

6.1 Hardware Requirements .46

6.2 Software Requirements .46

6.2.1 Microsoft Foundation Classes .47

6.3 Program Development and Coding .48

6.3.1 Review of the Program Documentations 48

6.3.2 Designing the Program .48

6.3.3 Coding Approaches 49

6.3.4 Coding Style .49

6.4 Module Implementation 50

6.4.1 Ping Host Module 50

6.4.2 Scan Port Module .52

6.4.3 Host Look-UP Module 53

CHAPTER 7: SYSTEM TESTING

7.1 Types of Faults 55

v

Univ
ers

ity
 of

 M
ala

ya

7.1.1 Algorithmic Faults 55

7.1.2 Syntax Faults 55

7.1.3 Documentation Faults 55

7.2 Testing Planning 56

7.2.1 Establish Test Objective 56

7.2.2 Designing Test Cases 56

7.2.3 Writing Test Cases 57

7.2.4 Testing Test Cases 57

7.2.5 Executing Test Cases 57

7.3 The Testing Process 57

7.3.1 Unit Testing 58

7.3.2 Sub-Module Testing 58

7.3.3 Module Testing 59

7.3.4 System Testing 59

7.3.5 Acceptance Testing 59

7.4 Project Testing 59

7.4.1 Ping Host Module Testing 59

7.4.2 Scan Port Module Testing 61

7.4.3 Look-UP Host Module Testing 61

CHAPTER 8: SYSTEM EVALUATION

8.1 Problems Encountered and Solutions 62

8.2 Project Strengths 63

8.3 System Limitations 64

8.4 Future Enhancements 64

Vl

Univ
ers

ity
 of

 M
ala

ya

CONCLUSION 66

APPENDIX

1. APPENDIX A: USER MANUAL

2. APPENDIX B: PROJECT SOURCE CODE

REFERENCES

BIBLIOGRAPHY

vu

Univ
ers

ity
 of

 M
ala

ya

LIST OF TABLES

Table 2.1: Network Scanning Utilities Summary

Table 2.2: Network Scanning Utility Features Comparison

Table 6.1: System Software Requirements

Table 7.1: Ping Host Module Testing

Table 7.2: Scan Port Module Testing

Table 7.3: Look-UP Host Module Testing

LIST OF FIGURES

Figure 1.1: Gantt Chart: Network Scanner Project Time Line

Figure 2.1: Example of text output from Nmap.

Figure 2.2: Ethereal Screen Shot

Figure 3.1: System Development Process Model

Figure 3.2: SDLC Flow Diagram

Figure 3.3: Waterfall Model Diagram

Figure 5.1: Network Scanner Structure Module

Figure 5.2: Ping Hosts Module Structure Chart

Figure 5.3: Scan Port Module Structure Chart

Figure 5.4: Context Diagram (Level 0 Data Flow Diagram)

Figure 5.5: Level 1 Data Flow Diagram for Ping Host Module

Figure 5.6: Level 1 Data Flow Diagram for Scan Port Module

Figure 5.7: Level 1 Data Flow Diagram for Host Look-UP Module

Figure 5.8: User Interface Design Layout

Figure 7.1: Testing Process Flow Chart

Vlll

Univ
ers

ity
 of

 M
ala

ya

CHAPTERl

INTRODUCTION

Univ
ers

ity
 of

 M
ala

ya

CHAPTER1

INTRODUCTION

The Network Scanner project is the project that I have selected to be conducted for

my final year project, WXES3181/3182. This introduction chapter will describe in

details about the definition of the project nature, its purpose, goals and scope

definitions. This chapter marks the initiation of the development of the project inline

with the objective and scope so that it will not differ from the original purpose.

1.1 OVERVIEW

In the last few years, the face of computing changed dramatically. Computer

networking and the internet gives a whole new meaning to computing. In just a few

years, we are now in a wired and wireless world where information of any type is

accessible from anywhere and by anyone all over the world. Back in those years,

computers were just tools to assists in complex computing and in daily task. Now,

computer is one of the most important sources of information over the internet.

Computer networking has made communications so much easier. Thus, more and

more businesses and organization nowadays began to rely heavily on networked

system in order to conduct their businesses and increase their productivity through

resource sharing. However, when more businesses and organization join the internet,

the amount valuable information increases on the internet. This will actually build up

the potential of information thefts and damage, which is why network security now

plays a more vital role than ever before.

I

Univ
ers

ity
 of

 M
ala

ya

1.2 PROJECT DEFINITION

Since security is the main issue here, there need to be ways to overcome the security

problems and maintains security over the network. One of the solutions includes the

implementation of a security tool or application on the network. These applications

are also called security tools. The Network Scanner itself is actually a security tool

that is developed to scan the computing systems in a network in order to identify

vulnerabilities of the system such as open service ports that could be exploited or

would become a threat to the whole network if no proper action was taken. Network

Scanner is a very useful tool that can be employed as an information provider to

tighten up the security of a network. However, to a potential attacker, the Network

Scanner can be a tool for information gathering to prepare for a likely successful

attack.

1.3 OBJECTIVE

The objectives of the Network Scanner project are:

i) To learn and understand the design purpose of a network scanner.

Before going through the project, I must first introduce myself to the project

which is the network scanner software. Most of the information was obtained

from the internet. I also tried different network scanner products such as GFI

LANguard Network Security Scanner, Softl'erfect Network Scanner and

Advanced LAN Scanner to actually see their functions to give me a picture of

what I should develop. I have also searched for other materials on network

scanner at the library.

2

Univ
ers

ity
 of

 M
ala

ya

ii) To gain knowledge and understanding of the network architecture and the

current existing network scanning techniques.

To achieve this objective, I have taken the steps to do a literature review on the

networks scanner and also the overview on computer networking, network

components and network security which is the main reason why network
..

scanner existed. I have also done a review on current techniques used to scan

networks and made comparisons between those techniques and the tools used

so that I can select the most suitable and applicable technique to be

implemented in the system.

iii) To define the requirements of a network scanner and finding the most suitable

development methodology.

The requirements for the network scanner can be obtained from the library, the

internet and from past theses. This includes the user requirements, what the

system should do and what the system should produce from the tasks and

functions assigned.

iv) To design modules for network scanning techniques that was selected for

implementation.

Different modules are to be discovered in developing the system. I will be

relying highly on the source available on the internet so that I can further

understand the techniques involved in network scanning by slowly

understanding the concepts of data flow and distribution in each of the known

techniques.

v) To promote the use of open source programming tools in the translation of the

network scanning system concept into a software representation that is

understood by the computer.

3

Univ
ers

ity
 of

 M
ala

ya

This is where all the modules that have been discovered previously are

compiled as one software system called the 'Network Scanner' using open

source tools with C++ programming language I have been studying before.

1.4 PROJECT SCOPE

The scope of this project is divided into three different groups: the environment in

which the Network Scanner is intended for use, target users and usage time.

1.4.1 Environment

The Network Scanner is developed to monitor machines in the network. Network

here refers to Local Area Networks (LANs) which normally belong to companies

or organisations.

1.4.2 Target Users

Generally the Network Scanner is intended for network engineers and network

administrators to assist in their daily tasks. But the software is also intended for

users who are interested in computer and network security. This will allow the

achievement of the software aim to help in research and studies in security field.

1.4.3 Usage Time

In real time, the network usage has no limited time. A user can be online for

hours or even days. The Network Scanner is designed to scan the network for

vulnerabilities at one time. However, scheduled scans should be able to provide

the network administrators the condition of the network from time to time and

allow preventive actions to be performed in time.

4

Univ
ers

ity
 of

 M
ala

ya

1.5 PROJECT EXPECTATIONS

It is hoped that the project will fulfil the requirements of network systems and be of

assistance in the development of the information technologies in the near future. This

can be achieved through constant studies on network vulnerabilities identified

through the usage of this software.

1.6 PROJECT TIMELINE

The Gantt chart shown below reflects the Network Scanner Project time line

beginning from 1th July 2004 until 4th March 2005.

. 0 Task Nartie. . , /iJQvember Decembe.r --.;-· ilB-j · Resesrch and i;:;;;~~ion l""""'::::==±:::""'"--t-.......__r-----t-'-"--r==-t=='--p.-:;:=.i.+:.:.~
:2 · rB3 · Literature Review
~ !BB · lv!etho(lology
~ (!!3 System Analy$IS

~ !!3" System Design
' · 6 . [R3 .System Implementation

T !EB. .:>.~:t~.n.i r::t'~
: Q !Rf"'. System Evaluation
T llra- DocumentlltiOl'l$

1·
l .•... , ... i
I ! ••11; ... 'i •: i i

Figure 1.1: Gantt Chart: Network Scanner Project Timeline

5

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2

LITERATURE
REVIEW

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2

LITERATURE REVIEW

A literature review for this project is a comprehensive survey of publications and

other materials in the specific field of study or related to the Network Scanner project

and also other matters and factors that are related to the project development.

Literature reviews can be used to identify the requirements that can be implemented

during the project development.

2.1 COMPUTER NETWORK

A network is a group of two or more computer systems linked together (Webopedia,

2004). A computer network allows communications and resource sharing between

devices. There are several types of computer network, however the most widely used

and popular are LANs and WANs.

2.1.1 Local Area Networks (LANs)

A local area network (LAN) is a computer network that covers a local area such as

a home, office, or a small group of buildings like schools and college (Wikipedia,

2004).

Most LANs connect workstations and personal computers. Usually each node

(individual computer) in a LAN is able to access data and devices anywhere on the

LAN. This means that users can share expensive devices, such as laser printers, as

well as data and information. Users on the LAN can communicate with each other
'

by sending e-mail or engaging in chat sessions.

6

Univ
ers

ity
 of

 M
ala

ya

The most popular LAN technologies are the thernet and Token Ring for PC and

Apple's Apple Talk for Macintosh computers. One of the commonly used

protocols on LANs is the Transfer Control Protocol/Internet Protocol (TCP/P).

LAN s are capable of transmitting data at very fast rates, much faster than data can

be transmitted over a telephone line; but the distances are limited, and there is also

a limit on the number of computers that can be attached to a single LAN.

2.1.2 Wide Area Networks (W ANs)

A Wide Area Network is a computer network that spans a wide geographical area.

Typically, a WAN consists of two or more local-area networks (LANs). Many

W ANs are built for particular organizations. Other W ANs are built by Internet

Service Providers (ISPs) to provide internet access to organizations' LANs.

Computers connected to a wide-area network are often connected through public

networks, such as the telephone system. They can also be connected through

leased lines or satellites. The best example and also the largest WAN in existence

is the Internet (Wikipedia, 2004; Webopedia, 2003).

2.2 NETWORK SECURITY

In computer industry, security is the protection of data from theft, loss or

unauthorized access, use or modification. With the constantly evolving nature of the

internet it is vital that users continuously protect themselves and their information.

7

Univ
ers

ity
 of

 M
ala

ya

2.2.1 Vulnerability Factors

Increased Usage of Networks

More businesses nowadays rely heavily on networked systems and the internet to

conduct business. When more people use the internet, the number of potential

victims grows. The more businesses join the internet; more valuable information

is at stake which increases the potential for theft and damage.

Always-on Connections

In the need of greater speed and to increase the information carrying capacity,

even small or home businesses rely on high bandwidth always-on connection to

the internet such as Digital Subscriber Lines (DSL) or cable modems. There are

two important characteristic that increase vulnerability:

i) Because the connection is always on, the network or system rs always

available for potential hackers to access.

ii) Machines or systems with always on connection usually have static or

unchanging IP address which makes it an easy target.

Insecure Technology

To cope with the astounding rate of technological change, software engineers

nowadays focus more on producing user friendly software but neglects the

security aspect of the software. This situation puts the end-user to risk because

they were unaware of such insecurity.

8

Univ
ers

ity
 of

 M
ala

ya

Lack of Education

Most of businesses and individuals lacked of information about the threats that

existed on the internet which is another reason they are often made as targets.

2.2.2 How Hackers Enter a System

Through Port Scanning

Port scanning is a hacking technique used to check TCP/IP ports to reveal what

services are available in order to plan an exploit involving those services, and to

determine the operating system of a particular computer. In TCP/IP and UDP

networks, a port is an endpoint to a logical connection. The port number

identifies what type of port it is. For example, port 80 is used for HTTP traffic.

Since a port is a place where information goes into and out of a computer, port

scanning identifies open doors to a computer. Port scanning has legitimate uses

in managing networks, but port scanning also can be malicious in nature if

someone is looking for a weakened access point to break into your computer.

Through Vulnerabilities, Exploits and Bugs

Potential hackers uses flaws in operating systems or software applications to

break into a system and do damage. These flaws can be manipulated to be a

backdoor to the system without anyone noticing it. A bug is an error or defect in

software or hardware that causes a program to malfunction. Often a bug is caused

by conflicts in software when applications try to run in tandem.

9

Univ
ers

ity
 of

 M
ala

ya

2.2.3 Types of Attacks

Denial of Service (DoS)

Denial of Service is a type of attack on a network that is designed to bring the

network to its knees by flooding it with useless traffic. Many DoS attacks, such

as the Ping of Death and Teardrop attacks, exploit limitations in the TCP/IP

protocols. For all known DoS attacks, there are software fixes that system

administrators can install to limit the damage caused by the attacks. But, like

viruses, new DoS attacks are constantly being dreamed up by hackers.

Viruses and Malicious Codes

Viruses and malicious codes are programs or pieces of codes that is loaded onto

your computer without your knowledge and runs against your wishes. Viruses

can also replicate themselves. All computer viruses are tnanmade. A simple virus

that can make a copy of itself over and over again is relatively easy to produce.

Even such a simple virus is dangerous because it will quickly use all available

memory and bring the system to a halt. An even more dangerous type of virus is

one capable of transmitting itself across networks and bypassing security

systems.

Since 1987, when a virus infected ARPANET, a large network that is used by the

Defense Department and many universities, many antivirus programs have

become available. These programs periodically check your computer system for

the best-known types of viruses.

10

Univ
ers

ity
 of

 M
ala

ya

Trojan Horses

Trojan horses are destructive programs that masquerades as a harmless

application. Unlike viruses, Trojan horses do not replicate themselves but they

can be just as destructive. One of the most insidious types of Trojan horse is a

program that claims to rid your computer of viruses but instead introduces

viruses onto your computer.

The term comes from a Greek story of the Trojan War, in which the Greeks give

a giant wooden horse to their foes, the Trojans, ostensibly as a peace offering.

But after the Trojans drag the horse inside their city wal1s, Greek soldiers sneak

out of the horse's hollow belly and open the city gates, allowing their compatriots

to pour in and capture Troy.

Worms

Worms are programs or algorithms that replicates itself over a computer network

and usually performs malicious actions, such as using up the computer's

resources and possibly shutting the system down. A worm is a special type of

virus that can replicate itself and use the system's memory, but cannot attach

itself to other programs

2.2.4 Risks Involved

If security is not practiced in computer networks, there are a few risks to be

faced. First is the loss of information should be the system was attacked and data

thefts that might occur under our consciousness. Another risk involved is the risk

of the system becoming a platform to launch attacks on other system once the

system is occupied by hackers.

11

Univ
ers

ity
 of

 M
ala

ya

2.2.5 Preventive Measures

Among the preventive measures that can be taken is to evaluate our own

computer network vulnerabilities so that appropriate actions could be taken

earlier to prevent the vulnerabilities in our system to be manipulated by others.

To achieve this objective is by constantly scanning the network for vulnerability

using computer network security scanners.

2.3 NETWORK SCANNING

Network scanning is the art of detecting which systems are alive and reachable via

the network, and what services they offer, using techniques such as ping sweeps, port

scans and operating system identification (Arkin, 1999). Network scanning builds a

clearer picture of accessible host and their network services through a process of

acquiring the information by connecting to a network and quickly and sequentially

transmitting request packets to the target host on the network. Scanning can be

compared with a thief checking all the doors and windows of a house he wants to

break into. Today the number of automated scanners is constantly increasing, and as

a result, more and more attacks are successfully initiated. In order to be better

prepared, we need to fully understand the scanning tools and the methods that these

tools are using against us.

2.3.1 Network Scanning Techniques

There are several network scanning techniques that are popular and widely used

nowadays. Below is a brief discussion of each technique.

12

Univ
ers

ity
 of

 M
ala

ya

i) PING Sweeps

PING Sweeps is usually used to determine whether a target IP address is alive or

not. There are a few types of scan that gives PING sweep results.

• ICMP sweeps (ICMP ECHO request)

ICMP packets can be used to determine whether a target IP address is alive or

not by simply sending an ICMP ECHO request packet to the target system. If

an ICMP ECHO reply is received, the target is alive. Otherwise the target host

is down.

• Broadcast ICMP

ICMP ECHO request that is sent to network or broadcast addresses will

produce all information that is needed for mapping a target network in a much

simpler way. The request is broadcasted to all hosts on the network, and alive

hosts will send the ICMP ECHO reply to the sender's source IP after only one

or two packets sent.

• Non-ECHO ICMP

Many firewalls are configured to block ICMP ECHO traffic, thus the

alternative is the non-ECHO requests. An example request that is used for this

kind of scanning is the ICMP timestamp request which allows a system to

query another for the current time.

• TCP Sweeps

With this technique, instead of sending ICMP ECHO request packets, TCP

ACK and TCP SYN packets are sent. These packets are used in the TCP

connection establishment process called "the three way handshake". It has

three segments.

13

Univ
ers

ity
 of

 M
ala

ya

1. A client sends a SYN segment specifying the port number of the server the

client wants to connect to, and the client's initial sequence number (ISN).

2. If the server's service port is active, it will respond with its own segment

containing the server's initial sequence number. The server will also

acknowledge the client's SYN by sending ACK with the client's SYN+ 1. If

the port is not active, the server will send a RESET segment which will

reset the connection.

3. The client will acknowledge the server's SYN by sending ACK with the

server's ISN+ 1.

However, RESET packet for an IP address can be spoofed by firewalls, so TCP

sweeps may not be as reliable.

• UDP Sweeps {Also known as UDP Scans)

This method. relies on a message initiated by a closed UDP port, the ICMP

PORT UNREACHABLE message. If no such message is received after

sending the UDP datagram to a UDP port that is to be examined on a targeted

system, we may assume the port is opened. However this method is sometimes

unreliable because

Routers can drop UDP packets.

Many UDP services do not respond when probed.

Firewalls are usually configured to drop UDP packets (except for

DNS).

Port Scanning

Port scanning is a method to determine what services are running or in a listening

state on the targeted system by connecting to the TCP and UDP ports of that

14

Univ
ers

ity
 of

 M
ala

ya

system. Port scanning can also help identify the operating system and application

in use on the targeted system. Types of port scanning are:

• TCP connect() scan

This type of scan uses the basic TCP connection establishment mechanism, the

three-way handshake, where the connection is terminated after the full

connection establishment process has been completed. The disadvantage is,

this kind of scan is easily detected from the target system log.

• TCP SYN Scan (half open scanning)

In this type of scan, a full TCP connection is not opened. A SYN packet is sent

to initiate the three-way handshake. IfRST/ACK is received, it indicates a non

listening port. If SYN/ ACK is received, that indicate the port is listening and

the connection is immediately tear down by sending a RESET. Because the

three-way handshake was not completed, some system may not log these

scanning attempts.

• Stealth Scan

This type of scan is almost similar to half-open scanning. Stealth scanning is

done to pass through filtering rules on the firewall, to avoid from being logged

by the targeted system logging mechanisms and to hide from the usual site or

network traffic.

• Proxy Scanning/FTP Bounce Scanning

This scan can be used to scan TCP ports from a "proxy" FTP server. A control

communication connection to an FTP server is made. If there is a writable

directory, the FTP server can be requested to send data to ports. If the transfer

is successful, the target host is listening on the specified port scanned.

Otherwise, a "452 Can't build data connection: Connection refused" message

15

Univ
ers

ity
 of

 M
ala

ya

will be received. This scan is quite sJow. Some FTP server disable the "Proxy"

feature, but there are still many who do not, making this kind of scanning still

available.

• TCP Reverse Ident Scanning

By communicating with port 113, the ident (identification) protocol is used to

determine the owner username of a particular TCP connection (Johns, 1993). A

full TCP connection to the target machine port is needed. This scanning

method gives information that helps determine which server is vulnerable.

Current techniques used for port scanning are

• 'Random' Port Scan

In this method, the probing of ports is randomized to avoid from detection.

This is because many commercial intrusion detection system and firewall scans

for sequential connection attempts. A port scan is reported when the pattern is

matched.

• Slow Scan

This technique takes a long period where the scan rate can be as low as 2

packets per day per target. It is because intrusion detecting system can

determine if a specific IP tries to port scan the network they are defending. It is

done by analyzing the network traffic for a certain amount of time.

• Fragmentation Scanning

All IP packet that carry data can be fragmented. Some filtering devices and

intrusion detection systems may incorrectly reassemble or completely miss

portions of the scan that may make them assume that this was just another

segment of traffic that passed through their access list.

16

Univ
ers

ity
 of

 M
ala

ya

• Decoy

This type uses spoofed addresses for attacks. It makes it appears to the attacked

network or host that the hosts specified as decoys are scanning them as well.

Finding the real attacker will be nearly impossible when the intrusion detection

system 'think' that the target network is being scanned by all the hosts.

• Coordinated Scans

This technique uses multiple 1Ps to probe a target network, each one probes for

certain services on a certain machine in a different time period. Therefore

detecting these scans is almost impossible.

Operating System Detection

Usually this is done because many security holes are operating system

dependent, so identifying which operating system runs on the target host is

important to a hacker. Techniques used to identify operating system include:

• Banner Grabbing

Some services can be used to identify an operating system. One of the most

notable examples is the TELNET service. Just by telnet-ting to a system that

provides the service, looking at the welcome banner will enable the

identification of the operating system. Other services that have banners are the

mail server.

• DNS HINFO Record

The Host information record is a pair of strings identifying the host's hardware

type and the operating system. This technique is an old technique that is rarely

effective today because administrators avoid using those records.

17

Univ
ers

ity
 of

 M
ala

ya

• TCP/IP Stack Fingerprinting.

This technique uses distinct variations m TCP stack implementation to

determine the type of the remote operating system. A number of 'specific' TCP

packets is sent to the target IP and the response is observed.

Firewalking

Firewalking is a program that uses a traceroute style of packets to scan a firewall

and attempt to deduce the rules in place on that firewall. By sending out packets

with various time-to-lives and seeing where they die or are refused. Firewalls are

tricked into revealing rules.

2.3.2 Reviews on Network Scanning Utilities

There are a lot of network scanning tool available for downloads on the internet.

Here are the few tools that I have looked into for literature review.

Nmap

Nmap, the "Network Mapper" is an open source utility for network exploration or

security auditing. It is a low-level network port scanner. It was designed to rapidly

scan large networks, although it works fine against single hosts. Nmap uses raw IP

packets in novel ways to determine what hosts are available on the network, what

services ports they are offering, what operating system and its version they are

running, what type of packet filters or firewalls are in use, and dozens of other

characteristics. Nmap also supports a number of performance and reliability

features such as dynamic delay time calculations, packet timeout and

18

Univ
ers

ity
 of

 M
ala

ya

retransmission, parallel port scanning, detection of down hosts via parallel pings.

Nmap also offers flexible target and port specification, decoy scanning,

determination of TCP sequence predictability characteristics and output to machine

parseable or human readable log files. Nmap runs on most types of computers, and

both console and graphical versions are available.

Cro<:1·t.ltwrl!ln9 NJ!r m1mp -~s -0 -p 1-.l024 -11 192.t.61L1.20

1Stt!tf't1rig 11map V. 2 .!i<tBiEJM (~"if.1'1socm·o .or11ln•o1>/)
1llost Unklil01m19.cff1ns•1J<nor (192. l61l .l .20J oppao.ru. to be ''l> ... Kood.
[In:tthU11g SYN Stealth Seen asain!ll Unkno1<1ril.ll.eff"h1erumo.r (102.168.1.20)
!llddh~B: l"[I) p<>ri t3!) {stB~e Ol)~m} •
l'lddinr:; TCP port. 1-36 (s:t.ot.c open}.
ilia SYN St.ooh.fl Scan took 3 llacondo to acan 102-1 porto.

1For OSScan aoou111J.nu that. port l:J.5 is open mid port l. i'!l clo .. ed and neither
•nre ftrewalled
I nteresUno port.a cm U1)known191.eff1ne11111i'or (192.16B.1.20·>:
1<ihc 1022 ports sc1m11cd but not ahown. b:clow arc in otota; closed[)
1Poirt St.at'e Service
135/t~µ Qpen 1<.Jc-~'111'11
139/t-cp 01>eo netbios-ssn

:tCP S·aquence Pr·ed.tcUon: Cl.us·&:triviol U111e dependency
Difficulty::3 <Trivial joke)

Seq,ue:rieu t11.1111l>ers! 69'80 6996 69A5 6980 69B7 69BC
1Remo•t.o operat.iillR sys.tc11 guess; lfindoti~ NT4 I N.11195 I 14in98

N1111:ip· rtm co111pleted -- 1 IP od4r-e:!Js {l ho::;t up) s.co1,ned :lo 4 seccm<b
1Croo0utwono "'J&! I

Figure 2.1: Example of text output from Nmap.

Ethereal

Ethereal is a feature-rich protocol analyzer that currently runs on most UNIX

platforms and various Windows platforms. It requires GTK+, GLib, libpcap and

some other libraries in order to run. It is open source software. Ethereal can read a

huge number of different datafile formats including Sniffer, TCPdump, Snoop,

Cisco's IDS, and several others. Ethereal supports a large number of physical

network media via the host operating system's interface drivers. Ethereal can run

19

Univ
ers

ity
 of

 M
ala

ya

either as a graphic user interface (GUI) or as a text mode interface. Having the text

mode interface as a fallback can be tremendously useful, especially in running

multiple Ethereal probes in different locations, as it can be very easy to connect to

each probe remotely. This is one of the features that sets Ethereal apart from many

protocol analyzers. Ethereal can reconstruct a TCP data stream such that all of the

packets are in logical order, as opposed to the order that they were sent and

received through the network itself. This feature can save the analyst a great deal

of time, particularly when dealing with raw data that can become overwhelming if

not easily ordered in sequence.

Frame 1 (42 bytes on wire, 42 bytes captured)
Ethernet II, src: oo:ob:Sd:2o:cd:o2, Ost: ff:tt:ff:ff:ff:ff

Ill l'.ddre>s Resolution Protocol (reque>t/~ratuitou> AAP)

0000 00 0
0010 08 00 06 04 00 01 00 Ob
0020 oo oo oo oo oo oo co as

5 20 c 02 08 06 00 01
s d 2 o cd 02 co as oo 02
00 02

Figure 2.2: Ethereal Screen Shot

Hping

Hping is software to send raw TCP/IP packets of many different kinds and see the

reply coming back from the host. Version two was a UNIX command with an

20

Univ
ers

ity
 of

 M
ala

ya

interface very similar to the ping program, but just with many more features: more

protocols (not only ICMP), traceroute mode, many options to control different

fields of outgoing packets, support for lP spoofing, and so on.

Since version 3, that's now in alpha stage, Hping is trying to not be just a little tool

but to become a framework for scripting related to TCP![p testing and security.

The latest version ofHping, Hping3, integrates two main new things: the first is an

engine called APD that is able to translate simple packet descriptions in form of

strings into a packet ready to be sent, and generate the representation from a real

packet. The second is the TCL scripting language. So Hping3 can be imagined as a

scriptable TCP/IP stack.

2.3.3 Comparisons Between Network Scanning Utilities

The table below summarizes a few of the network scanning utility features that

were not mentioned in the review and several comparisons that were made

between these network scanning utilities.

Table 2.1: Network Scanning Utilities Summary

Network Platform Supported External Software
Scanning Utility needed to run

Nmap UNIX based, WIN32 none
Ethereal UNIX, Linux, Microsoft none

Windows

Hping Microsoft Windows, Mac OS WinPcap for Windows

21

Univ
ers

ity
 of

 M
ala

ya

Table 2.2: Network Scanning Utility Features Comparison

Network Captures Generates and Examine network
Scanning Utility network packets sends packets protocols

Nmap No Yes Yes
Ethereal Yes No Yes
Hping No Yes No

2.4 OPEN SOURCE PROGRAMMING

More software are developed using open source programming. Users can use the

software, modify and study and redistribute the software freely without worrying to

pay royalty to previous developers. Open source eliminate the boundary of

programming ideas generation since new open source tool is developed every day.

2.4.1 Programming Language

Any programming language can be used for creating open source software

provided that there are tools that allow the types of compilation needed for some

software. In this project literature review, I will focus on C++ programming

language.

WhyC++?

C++ has certain characteristics over other programming languages. Most

remarkable are:

• Object-oriented programming

The possibility to orientate programming to objects allows the programmer to

design applications from a point of view more like a communication between

22

Univ
ers

ity
 of

 M
ala

ya

objects that on a structured sequence o code. In addition it allows the

reusability of code in a more logical and productive way.

• Portability

The same C++ code can be practically compiled in almost any type of

computer and operating system without making changes. C++ is one of the

most used and ported to different platforms programming language

• Brevity

Code written in C++ is very short in comparison with other languages, since

the use of special characters is preferred before key words it is effort saving.

• Modular programming

An application's body in C++ can be made up of several source code files that

are compiled separately and then linked together. Saving time since it is not

needed to recompile the complete application when making a single change but

only the file that contains it. In addition, this characteristic allows to link C++

code with code produced in other languages like Assembler or C.

• C Compatibility

Any code written in C can easily be included in a C++ program without

making changes.

• Speed

The resulting code from a C++ compilation is very efficient, due indeed to its

duality as high-level and low-level language and to the reduced size of the

language itself.

23

Univ
ers

ity
 of

 M
ala

ya

2.4.2 Open Source Tool

There are many open source tool available on the internet. However, for this

project, I choose to explain more on WxWidgets.

WxWidgets

WxWidgets is a set of libraries that allows C++ applications to compile and run

on several different types of computer, with minimal source code changes. It

provides functionality for accessing some commonly-used operating system

facilities, from copying and deleting files to socket and thread support. Its main

target however is to produce a Graphical User Interface.

24

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3

METHODOLOGY

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3

METHODOLOGY

System development methodology describes how the development will be

conducted. It includes the methods, procedures, and techniques that are used to

collect vast information and analyze them. Mainly the system development process

model involves system requirements as the input; system development and

evaluation as the process and a finished software product as the output.

System Requirements ;.
System . Finished Software

Developement Product

~ Evaluation !+-

Figure 3.1: System Development Process Model

This chapter will further explain the proposed life cycle model that will be used in

the system's development.

3.1 SYSTEM DEVELOPMENT LIFE CYCLE (SDLC)

System Development Life Cycle (SDLC) is the process of developing information

systems through investigations, analysis, design, implementation and maintenance.

SDLC are usually made up of six phases:

25

Univ
ers

ity
 of

 M
ala

ya

Preliminary Investigation

Analysis

Design

Development

Testing & Implementation

Maintenance

Phase 1: The Preliminary Investigation

This phase is also known as the feasibility study phase. The objective of this

phase is to verify problems and define the project constraint in terms of time,

technical and budgetary. This phase will decide whether the project will

proceed as planned or be cancelled due to constraints.

Figure 3.2: SDLC Flow Diagram

Phase 2: Analysis

This phase gathers the requirements specification from a detailed studies on

information acquired during the investigation phase. The requirements will

help provide details on what the program or software should do.

26

Univ
ers

ity
 of

 M
ala

ya

Phase 3: Design

This phase focus on high level design such as what programs are needed and

how will they interact, low level design such as construction of project

modules and what each module should do, the interface design and data

design. During this phase, the software overall structure is defined.

Phase 4: Development

Designs from the previous phase are translated into codes. Every requirement

is examined thoroughly for corrective purpose. This is when the

programming language is chosen with respect to the type of application

developed.

Phase 5: Testing and Implementation

Programs that are written in several modules are tested separately and then

combined to be test as a whole system. There are three main tests for the

newly developed software:

i) integration testing-to ensure interfaces between module work

ii) volume testing - to ensure the system works on the intended platform

and with expected volume of data

iii) acceptance testing - to ensure that the system does what the user

required

After all the tests have been done on the software, it is then installed on

specific hardware and delivered. Users of the system will be trained during

this phase.

27

Univ
ers

ity
 of

 M
ala

ya

Phase 6: Maintenance

The system will need maintenance gradually to prevent it from encountering

errors from unexpected inputs and such. During this phase, the software could

be enhanced to meet the changes of requirements ifthere are any.

3.2 PROPOSED LIFE CYCLE MODEL

3.2.1 Project Feasibility

After going through a lot of research and reviews, I found out that the Network

Scanner project needs me to understand the concepts of computer networking,

concepts of network scanning, and the structure of a network scanner and learn

to use an open source tool for its development. The project constraints that I

am facing now are time constraint and technical constraint.

Time is needed for me to learn using the development tool and increase my

understanding in the mentioned subjects before. However, there are a lot of

tutorials on open source tools on the internet and there is also a lot of

information on network scanning. What I need is a systematic method that

allows me to learn and understand phase by phase.

With the knowledge and skills I have in C++ programming and the wxWidget

application, I am facing difficulties to develop the Network Scanner without

following sequential steps that helps me learn with try-and-error method from

the start.

For the Network Scanner development project, I propose the combination of

Iterative and Incremental Life Cycle with the Waterfall Life Cycle.

28

Univ
ers

ity
 of

 M
ala

ya

3.2.2 Iterative and Incremental Life Cycle

Iterative is the basics of software development process. When an artifact is

produced, we tend to revise it and then produce a second version which is

better than the first

Incrementa1 process is the process of handling a large amount of information in

order of current importance, where the most important aspects will be

concentrated on first while postponing other aspects that are less important

until eventually every aspect of the information will be covered.

In Iterative and Incremental Life Cycle model, iteration and incrementation are

used in conjunction with one another. There is no single requirement phase or

design phase. Instead, there are multiple instances of each phase in the life

cycle (Schach, 2002).

Strengths

i) There are multiple opportunities to make sure that the product

software is correct

ii) The robustness of the architecture can be determined early in the life

cycle.

iii) Risks can be resolved early.

iv) A working version of software or its module is available from the

start. In this project case, the source codes for network scanning that

can be downloaded from the internet.

3.2.3 The Waterfall Life Cycle

The Waterfall Life Cyclemodel is a sequential development phase. It requires

every phase to be complete before starting on another phase. However, if there

29

Univ
ers

ity
 of

 M
ala

ya

is a modification on one of the phase, the products of the earJier phase have to

be modified to as a consequence of following a feedback loop. That earlier

phase is only considered complete only when the documentation for the phase

has been modified and checked by the software quality assurance (SQA) group

(Schach, 2004).

Strength

Requirements
r---------·-1
· Changed · ••• ;-····1 Requirements r i
·----·---------1 : : ·---···· Analysis ..

Design

. :

Implementation

.

--......... Development

.............. Maintenance

Postdelivery
maintenance

Retirement

Figure 3.3: Waterfall Model Diagram

i) Enforce a disciplined approach.

30

Univ
ers

ity
 of

 M
ala

ya

ii) Easy to follow and understand the development phases.

iii) Easy to maintain.

3.2.4 Combination: Iterative and Incremental Waterfall Life Cycle

I combined both life cycles because of their similarity. In Iterative and

Incremental, a project can be considered as a set of mini projects or

increments. In each. mini project, all artifacts are extended or incremented. If

necessary, relevant artifact are also changed or iterated. 1 herefore, iteration

can be viewed as a small but complete waterfall model.

When both life cycles are combined, both will complement each other

limitations and form a better life cycle model. It can be considered as

systematic, sequent and have a lot of characteristics that are useful for system

development. This model will provide a clear cascade from one phase to

another.

Strength

i) Each phase is attended to sequentially.

ii) Every phase can be reviewed and revised at any time during the

development.

iii) Combined methods allow every phase to be developed without having

to wait for the previous phase to complete.

31

Univ
ers

ity
 of

 M
ala

ya

3.3 WHY CHOOSE ITERATIVE AND IN 'HEMENTAL WATERFALL?

i) The waterfall model is the most popular model used for system development.

Because it is sequential, it made it easy to understand the workflow in the

system design.

ii) The combination of iterative and incremental model with waterfall model

forms a systematic model where every step in each phase is sequential so that

even the workflow in each phase is easy to understand.

iii) The development process for this modified waterfall model is not just simple

linear but it also involve a sequence of iteration of development activities.

This is one feature that makes it possible to help me cope with the learning

curve of using open source tool in this project.

iv) Achievements of every step in this model can be viewed frequently, therefore

giving more chance to discover errors and mistakes easily.

v) The material that will be used for iteration and incremental process is the

source codes that are available over the internet. I hope that I will be able to

study, understand and revise the code from time to time using the iteration

and incremental process.

32

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

ANALYSIS

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4

ANALYSIS

Analysis is done on the information collected previously in order to extract important

and specific information for the Network Scanner development. In this chapter

analysis is used to gather the requirements of the Network Scanner. This chapter will

describe the techniques that were used to define the requirements of the software

development and describe details of the Network Scanner requirements.

4.1 TECHNIQUES USED TO DEFINE REQUIREMENTS

There are several techniques that I have used to define the requirements of the

Network Scanner project. Although the techniques that I used are common

techniques, but the input from those techniques really help me on defining the

requirements of this project.

4.1.1 · Internet Research

A big amount of the information I acquired is found on the internet. There are

actually a lot of websites that offer information on network scanning. Source

codes for network scanning functions and tutorials for open source tool that I

use in the project development are widely found over the internet. I also read

forum threads on network scanning tool development to gather more

information on Network Scanner requirements.

4.1.2 Library Research

I like browsing the online library services offered by the university library.

There are quite a number of books on network security however it is hard to

find any publication on network scanning. I also went to the faculty library in

33

Univ
ers

ity
 of

 M
ala

ya

search of those books. However J cannot find any books on network scanning

there. But the information I got from the network security also give me the

rough ideas on what network scanner requirements should be.

4.1.3 Previous Thesis Research

The seniors thesis that are kept in our faculty library has been a great help for

me not only in defining my project's requirements from information on other

similar projects but they also give me the idea of doing a guideline for my

thesis .

4.2 REQUIREMENTS SPECIFICATION

The process of requirements analysis objective is to produce a software specification

definition- the requirements specification. It is an abstract description of the services

which the system should provide and constraints under which the system must

operate. There are to main requirements that will be discussed here; functional

requirements· and non-functional requirements. To ensure the quality of the system

developed, both requirements are important.

4.2.1 Functional Requirements

A functional requirement is a description of activities and services a system

should provide (Whitten et al, 2003). These requirements are needed in order to

achieve the purpose and objective of the system. The functional requirements that

I have defined for the network scanner project are:

• The software must be able to send request packets to target hosts on the

network.

The software should be able to use network services like ping and trace

routes in order to gain information about the network.

34

Univ
ers

ity
 of

 M
ala

ya

• The software must also be able to receive reply packets from the hosts

and extract the data in the packet for information.

This is important so that the packet can be analyzed and information such

as IP address and physical address can be extracted.

• The software must be able to use and differentiate different kinds of

network protocol.

This is because different kinds of protocol give different data for different

information.

• The system with the software must have physical connection to a network

in order to perform successful scans.

If the software is not online, request packet could not be sent.

4.2.2 Non-functional Requirements

Non-functional requirements are descriptions of other features, characteristics

and constraints that define a satisfactory system (Whitten et al, 2003). They are

the factors that must also be taken into consideration when developing the

system. Sometimes they play important role to ensure system robustness and

success.

• Reliability

To ensure that system performs its functions with require precision and

accuracy.

• Efficiency

Efficiency is understood as the ability of a process procedure to be called

or accessed unlimitedly to produce similar performance outcomes at an

35

Univ
ers

ity
 of

 M
ala

ya

acceptable or credible speed (Sommerwille, 1995). It is measured based

on time performance, report generation speed, etc.

• User friendly

The interface should be easy to use and understand. Information and

instructions should be made clear. Among the criteria of a good user

friendly interface are consistency of the design, able to show error

messages and puts the user in control of the system.

• Manageability

The system should be easy to maintain, adaptive to the surrounding

technology and evolutionary, which is the ability to be enhanced in the

future should there be a requirement to do so.

• Stability

The system should be able to maintain its performance in any situation

and able to cope with a heavy flow of work.

4.3 SYSTEM DEVELOPMENT TECHNOLOGY

This section will discuss about hardware and software that will be used in the system

development.

4.3.1 Hardware

The hardware needed for the development of the Network Scanner project are:

• Personal computer with Pentium processor

• Input and output devices such as mouse, keyboard and monitor.

• A network interface card for physical connection to a network.

36

Univ
ers

ity
 of

 M
ala

ya

4.3.2 Software

The software needed for the development of the Network Scanner project :

• Windows 98 or later operating systems, currently Windows XP

Professional.

• Open source tool, WxWidgets or MS-Windows based application tool.

• Microsoft Visual C++ compiler or Borland C++ any other C++ compiler

that is supported by WxWidgets.

37

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS

SYSTEM DESIGN

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS

SYSTEM DESIGN

iystem design is the specification or construction of a technical, computer based

olution for the requirements identified during the analysis phase (Whitten et al,

~003). System design is the first of the three technical activities - design, coding, and

es ting - that are required to build and verify the software. For the network scanner

iroject, the design process produces functionality design and user interface design.

U FUNCTIONALITY DESIGN

['he functionality design deals with the purpose and collaboration of each module to

ichieve the overall system functionality specification.

5.1.1 Structure Chart

Below is the structure chart of the Network Scanner. Overall, the Network

Scanner has two main modules; the Scan Module and the Report Module.

Figure 5 .1: Network Scanner Structure Module

NETWORK SCANNER

I I
1.0 2.0 3.0

PING HOSTS MODULE SCAN PORT MODULE HOST LOOK-UP MODULE

The Ping Hosts Module can be divided to three sub-modules; Ping Hosts

Configuration module, Ping Engine module and Ping Logging module. While

38

Univ
ers

ity
 of

 M
ala

ya

the Scan Port Module can be divided to three sub-modules, Scan Port

Configuration module, Scan Port Engine module and Scan Port Logging module.

Figure 5 .2: Ping Hosts Module Structure Chart

1.0

PING HOSTS MODULE

I I
1.1

1.2 1.3
PING CONFIGURATION

PING ENGINE MODULE PING LOGGING MODULE MODULE

Figure 5.3: Scan Port Module Structure Chart

2.0

SCAN PORT MODULE

I I
2.1

2.2 2.3

SCAN PORT CONFIGURATION
SCAN PORT ENGINE MODULE SCAN PORT LOGGING

MODULE MODULE

5.1.1.1 Module Explanation

This section will explain the details of the Network Scanner modules and its

sub-modules.

Ping Hosts Module

This is one of the main processes of the Network Scanner system. Every

function in this module revolves around the ping host process.

39

Univ
ers

ity
 of

 M
ala

ya

Ping Configuration Sub-module

Its purpose is to set up the initial or required parameters before the

commencement of the Ping Engine's operation.

Ping Engine Sub-module

This module controls the scanning process. It sends ICMP echo

requests to the hosts configured in the Ping Configuration sub

module. Upon receiving ICMP echo reply, the results will then be

reported to the user. Multi-threading is implemented in this module to

speed up the ping process.

Ping Logging Sub-Module

This module will log all the ping results obtained from the Ping

Engine sub-module and display it to user. It also enables user to save

the log in a text file format.

Scan Port Module

This module is another main process of the Network Scanner. Every function

of this module revolves around port scanning process in the Network

Scanner.

Scan Port Configuration Sub-module

This module initialize all the parameters need by the Scan Port

Engine to run the port scan. The parameters include target IP address

and range of ports.

40

Univ
ers

ity
 of

 M
ala

ya

Scan Port Engine Sub-Module

This module commences the port scanning process with the

parameters configured in the Scan Port Configuration sub-module.

Multi-threading is implemented in this module to speed up the

scanning process.

Scan Port Logging Sub-Module

This module will log all the scan results obtained from the Scan Port

Engine sub-module and display it to user. It also enables user to save

the log in a text file format.

Host Look-Up Module

This module is only an extra function for looking up host names in the

network and in the internet.

5.1.2 Data Flow Diagram (DFD)

DFD is a process model used to depict the flow of data through a system and the

work or processing performed by the system (Whitten et al, 2003).

The figure below presents the context diagram of the Network Scanner.

41

Univ
ers

ity
 of

 M
ala

ya

- - - Scan Port R Ult
USER - - - Ping Result - - Host Look-UP Information

Target Host to Look-UP -
Target IP Addresses for Ping

- NETWORK
Target Ports for Scan Port - SCANNER .

Target IP Address for Scan Port - .

Figure 5.4: Context Diagram (Level 0 Data Flow Diagram)

Figure shows the Level 1 Data Flow Diagram for Ping Host Module, Scan Port

and Host Look-UP Module.

42

Univ
ers

ity
 of

 M
ala

ya

Target IP Address I Hoot R n e
1.1 USER

PING HOST
CONFIGURATION

Ping Results

1.3

PING LOGGING

Target IP Addresses

1.2

PING ENGINE Ping Results

Figure 5.5: Level 1 Data Flow Diagram for Ping Host Module

Target IP Address I Host
2.1 . USER

Target Port Range
;; ·~ SCAN PORT

CONFIGURATION
Scan Result

2.3

SCAN PORT
LOGGING 2.2

~
SCAN PORT Target IP

Scan Result ENGINE '"""
Target Ports

Figure 5.6: Level 1 Data Flow Diagram for Scan Port Module

43

Univ
ers

ity
 of

 M
ala

ya

Target IP Addre&& I Ho t
3.1 USER

HOST LOOK-UP

Host Look-UP Information

Figure 5.7: Level 1 Data Flow Diagram for Host Look-UP Module

5.2 USER INTERFACE DESIGN

Network Scanner interface will be designed in a user-friendly yet affective interface.

The following design areas are taken into consideration: general interaction,

information display and data entry. The guidelines below will also be adopted in

designing the interface for Network Scanner.

Consistency. Use consistent format for menu selection, command input, data

display and other myriad function.

• Ask for verification of any non-trivial destructive action. If a user request

the deletion of a file, indicates that substantial information is to be

•

overwritten, or asks for the termination of the program, an "Are you sure ...

T" message should appear.

Seek efficiency in dialog, motion and thought. Keystrokes should be

minimized; the distance a mouse must travel between picks should be

considered in designing screen layout.

Categorize activities by function and organize screen geography

accordingly. One of the key benefits of the pull-down menu is the ability to

organize commands by type. Proper placement of commands and action is

recommended.

•

•

44

Univ
ers

ity
 of

 M
ala

ya

Ping Clear Save Ping Log l
1

vf J

Figure 5.6: User Interface Design

The figure above is the layout that I have designed for my Network Scanner user

interface.

45

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6

SYSTEM
DEVELOPMENT

Univ
ers

ity
 of

 M
ala

ya

CffAPTEH 6

SYSTEM DEVELOPMENT

The system development phase is where all the design requirements are coded into

computer language. In this phase is where all the development process occurs with

the use of deliverables and automated tools to realize and continuously improve the

system design.

6.1 HARDWARE REQUIREMENTS

During this phase, the Network Scanner program is developed on:

• Windows XP Service Pack 2 platform

• 1. 8Ghz Pentium IV Processor

512MBRAM

Storage space up to 1. 5GB for development and testing

15" monitor with resolution at least 800x600

Input devices - standard mouse and keyboard

D-Link DFE-538TX 10/lOOMBps network adapter

•

•
•
•

•

In this project development, the network adapter is the most important hardware for

the system as it provides the connection to the network and it is a hardware that has

the ability to listen, send and receive packet from other computers on the network.

6.2 SOFTWARE REQUIREMENT

Another most important tool used to implement this system is the software. The

software enables a programmer to code the whole program and compile it to the

46

Univ
ers

ity
 of

 M
ala

ya

language that the machine understands. Most of the tools I used to develop this

program are very familiar in our faculty.

The system software requirements are summarized in the table below.

Software Requirement for Role
Microsoft Windows XP System Requirements Operating system platform
Service Pack 2 System Environment in development.

System Development

Microsoft Visual Studio 6.0 System Development Programming Language
(Microsoft Visual C++ 6.0) Compiler and User

Interface Design.
Windows XP SDK Include System Development Compiler assistant
files and Libraries

Microsoft Foundation Classes System Development User Interface Design

Table 6.1: System Software Requirements

At first, I proposed to build the system with an open source tool which is WxWidget.

However at the last moment I realized I took a very long time to study how to use the

tool, so I converted to Microsoft Foundation Classes in Microsoft Visual C++ 6.0.

6.2.1 Microsoft Foundation Classes

Microsoft Foundation Class (MFC) provides a framework on which

applications can be developed for MS-Windows. It is a class hierarchy a

programmer can use to build Windows application quickly and easily.

Typically MFC is used by programmers to create Windows programs with

Graphical User Interfaces (GUis). Users interact with GUI by clicking the

mouse, pressing the button, pressing a key, etc. when a Gill event occurs, the

windows operating system sends a message to the program. Programming the

functions that respond to these messages is called event-driven programming.

With event-driven programs, the user, not the programmer, dictates the order

47

Univ
ers

ity
 of

 M
ala

ya

of program execution by interacting with the GUI. Instead of the program

"driving" the user, the user "drive " the program. With the user in control,

programs become more user-friendly (Deitcl & Deitel, 2000).

6.3 PROGRAM DEVELOPMENT AND CODING

There are several steps to be taken into account during the early development and

implementation phase to ensure that the phase will run smoothly with little or

reduced difficulties.

6.3.1 Review of the Program Documentations

Documentations that were made along the way during the earlier phases,

system analysis and system design, are all reanalyzed to extract the

information on what and how the program should be developed. From the

documentations, information like system design, its architectural view and

concepts, flow diagrams and sample layout of the program is gathered

together to provide guidance and understanding of the works that needs to be

done in the coding process.

6.3.2 Designing the Program

This step is to determine how the program should work and can accomplish

the features and functions described in the program documentations reviewed

earlier. In this process, a clearer view of the system structure is obtained.

48

Univ
ers

ity
 of

 M
ala

ya

6.3.3 Coding Approaehe«

Generally there are two type of coding approaches, top-down approach and

bottom-up approach. Top-down approach is the method of designing the

interface or the upper level modules and then designing the lower level

modules. While bottom-up approach is the method of designing the lower

level modules wile designing the upper level modules.

In this project development, I used both top-down and bottom-up approaches

at the same time. While designing the interface, I built the lower level

modules for the interface I designed concurrently. Then each module is built

and tested before fully integrating them to the interface designed.

When building each of the modules, I spent much of my time looking for

codes on the internet that have similarities with my project. I studied the

codes thoroughly to understand network programming and tried to develop

my project first using the codes from the internet. After that I tried

experimenting with every code by modifying them so that I can understand

the codes when building the program and integrating it with the user

interface. I have also searched for information for every object class used in

my project and studied them. I have also put my own comments in the code

for future reference and better understanding.

6.3.4 Coding Style

I tried to write easy to understand codes and heavily commented the codes to

provide better understanding and for future reference. I also used standard

naming convention, which is naming the variables according to what the

49

Univ
ers

ity
 of

 M
ala

ya

variables represent to reduce confusion to those who will try to understand

the codes later.

6.4 MODULE IMPLEMENTATION

As described in the system design phase, my program is made up of three main

modules. Here I will explain deeper the module's functionality and how the module

is implemented.

6.4.1 Ping Host Module

The Ping Hosts module function is to ping every host within the IP address

range specified by the user. The module will send ICMP Echo Request and

listen for ICMP Echo Request Reply to determine whether the hosts on the

network are alive or not.

The main functions used in this module are

• void CNetworkScannerDlg::OnBtnPing{)

This function runs when the user clicks on the "Ping" button after

entering the IP address range. The function will validate the IP

address range, build the host loop and call the next function

which is a worker thread, DINT runPing (LPVOID

pParam), to run the ping.

• UINT runPing (LPVOID pParam)

This thread will ping the host it is assigned to in the host loop

using these functions;

• int SendEchoRequest(SOCKET

s,LPSOCKADDR IN lpstToAddr),

50

Univ
ers

ity
 of

 M
ala

ya

• in L Wai ForEchoReply (SOCKET s) ,

• DWO£ D R cvEchoReply (SOCKET s) ,

LPSOCKADDR LN lpsaFrom, u char

*pTTL) and

• u short in_cksum(u_short *addr, int

len).

It will then calculate the TTL and return the ping result to display

to the user .

• int SendEchoRequest(SOCKET s,LPSOCKADDR_IN

lpstToAddr)

This function fills in the Echo Request header packet and sends it

to the destination host.

• int WaitForEchoReply(SOCKET s)

This function uses the select () function from winsock. h

header file to determine when the data is waiting to be read .

• DWORD RecvEchoReply(SOCKET s, LPSOCKADDR IN

lpsaFrom, u_char *pTTL)

This function receives incoming data and parses out the data

fields.

• u short in cksum(u short *addr, int len)

This program is used to compute the checksum for data in the

packet headers.

51

Univ
ers

ity
 of

 M
ala

ya

• void CNetworY.ScnnnerDlg::OnTimer (UINT

nIDEvent)

This is the timer function that is used by the runping thread to

send the results to be displayed to user.

• void CNetworkScannerDlg::OnClearping()

This functions runs when the user clicks on the "Clear" button to

clear the ping log.

• void CNetworkScannerDlg: :OnBtnSaveping()

When the user wants to save the ping log by clicking on the

"Save Ping" button, this function will save the ping log in a text

file.

6.4.2 Scan Port Module

The Scan Port module's function is to scan for open ports and determine port

connection status on a target host specified by user. The module will attempt

to connect to every port in the range specified by user on the target host and

return the connection status results.

The main functions used in this module are

•

void CNetworkScannerDlg::OnBtnScan()

This function runs when the user clicks on the "Scan" button after

entering the target host IP address and the target port range. It calls

the function void CNetworkScannerDlg: : scan () .

void CNetworkScannerDlg::scan()

This function will build the port loop and call the UINT runScan

(LPVOID pParam) thread to execute the port scan.

•

52

Univ
ers

ity
 of

 M
ala

ya

• UINT runScan (LPVOID pParam)

This function will do the port scanning and return the port

connection status.

• void CNetworkScannerDlg::OnTimer(UINT nIDEvent)

This timer function is used by the runscan thread to send scan

result to be displayed to the user.

• void CNetworkScannerDlg::OnBtnPausescan()

When the user clicks on the "Pause" button, this function will stop

the scan momentarily.

• void CNetworkScannerDlg::OnBtnContscan()

When the user clicks on the "Continue Scan" button the function

will resume the scan on the port where it left at.

• void CNetworkScannerDlg::OnBtnClearlog()

This function runs when the user wants to clear the scan log.

• void CNetworkScannerDlg::OnBtnSavescan()

This function will save the scan log in a text file.

6.4.3 Host Look-UP Module

The Host Look-UP module's function is to look up the host name and the

host's IP address of the host name or IP address given by user.

The main functions used in this module are

• void CLookUPHostDlg: :OnBtnLookuph()

This function will run when user clicks on the "Look-UP" button.

This function will return the information of the looked-up host.

53

Univ
ers

ity
 of

 M
ala

ya

• void CLookUPHosLDlg::OnBtnClearlu()

This function will clear all the fields in the Host Look-UP section

dialog.

There are also other supporting modules such as Help and About. However these

modules do not play vital parts in the project. The Help module provides the user the

information on how to use the Network Scanner program. While the About module

provides information about the Network Scanner Program.

54

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7

SYSTEM
TESTING

Univ
ers

ity
 of

 M
ala

ya

llAPTER 7

SYSTEM TE TING

In this project, system testing is done through out the project development, not just at

the end of the project development. Each time the program is tested to demonstrate

the existence of faults. Testing is not done to ensure the program runs correctly, but it

is done to verify whether there are faults in the program or not.

7.1 TYPESOFFAULTS

Generally there are three types of faults.

7.1.1 Algorithmic Faults

Algorithmic faults are more like logical fault where sometimes when the

algorithm is first developed; there are some logical steps and information

missed by the developer that might cause problems when running the

algorithm later.

7.1.2 Syntax Fault

This can happen due to typing errors and mistakenly misplaced or forgetting

important symbols or variables during the coding process.

7.1.3 Documentation Fault

Documentation fault happens when the documentation provided earlier does

not really respond to the project requirements, thus making many

55

Univ
ers

ity
 of

 M
ala

ya

questionable actions arise, for example, whether to apply this technique or

that technique?

During the project development, the most common faults I faced were algorithmic

faults and sometimes, syntax faults. The algorithmic faults occurred because I did not

fully understand about the functions I want to implement in the project especially the

multithreading functions. It works well in the Scan Port module but it has some bugs

when applied to the Ping Host module. While the syntax faults usually occurred

because I forgot to type some characters and symbols in some places, and there are

times when I forgot to declare a variable.

7.2 TESTING PLANNING

There are several steps to be followed when planning a system test.

7.2.1 Establish Test Objective

First we must determine what to test of the system. Always remember that

the purpose of system testing is to demonstrate any existence of faults. This

project test objective is to find any errors that will affect the results that will

be delivered by the system, for example, error when pinging a host that is not

online.

7.2.2 Designing Test Cases

Test cases are designed to demonstrate a situation where a fault could occur.

For this project, example test cases are

What if the user entered an invalid IP address range?

56

Univ
ers

ity
 of

 M
ala

ya

What happens if the target host is not aJive or not onJine?

7.2.3 Writing Test Cases

This step is to put the test cases into documentation to be delivered during the

test phase.

7.2.4 Testing Test Cases

Every test cases is studied and tested logically to assume whether the fault

will exist or not during the test execution.

7.2.5 Executing Text Cases

Every test case will be executed on the program. If any error or fault occurs,

it means that the test have achieved its objectives.

7.3 THE TESTING PROCESS

In the project testing process, there are several step-by-step testing processes that

follow. The test process is dhuhuhone through out the project development starting

from the first unit that was built. The figure below shows the processes involved in

system testing.

57

Univ
ers

ity
 of

 M
ala

ya

UNIT TESTING

SUB-MODULE TESTING

MODULE TESTING

...

SYSTEM TESTING

ACCEPTANCE TESTING

...

Figure 7.1: Testing Process Flow Chart

7.3.1 Unit Testing

Every unit, every function in the program is tested independently for syntax

error and faults.

7.3.2 Sub-Module Testing

A collection of functions that form a sub-module is tested to determine

whether fault exists or not between the functions.

58

Univ
ers

ity
 of

 M
ala

ya

7.3.3 Module Testing

A collection of sub-modules that fo m a module is the tested for faults and

error when integrating with each of the sub-module.

7.3.4 System Testing

When all the modules are completed and tested, they will all be integrated

together to the interface and tested as a whole system. System testing is done

to expose errors between module integration.

7.3.5 Acceptance Testing

User input is used in this test process. This process must be done to the

program before it can be accepted as an operational program.

7.4 PROJECT TESTING

Since the Network Scanner program is a network-based program, in the first testing

process, I used the localhost, the computer I built the Network Scanner on as the

target host. Then for the live data test, I only have the option to test the Network

Scanner thoroughly on a fully functional network. The network that I have chosen to

be the test bed is the network at the 10th Residential College.

7.4.1 Ping Host Module Testing

The table below depicts a sample of the test that has been done to the Ping

Host module after completion of the Network Scanner.

59

Univ
ers

ity
 of

 M
ala

ya

Table 7.1: Ping Host Module Testing

Test Case Expected Result Real Result

User enters IP An error message will Error message appeared and

address range from appear and ask the user to the user is asked to enter a

192.68.2.201 to enter the valid IP address valid IP address range.

192.168.3.230 range.

One or several The offline hosts will return The online host did return the

target host in the 'Request timed out' while ping reply message and the

range is not online the online hosts will return offiine host did return the

or not alive. ping reply message. 'Request timed out'. But if the
first host is not online, the ping
log result will show the ping

reply of the next on.line host in
the target range.
This kind of output does not
happen when using ordinary

for loop. But the thing is, using
for loop takes much more time

..
when the target range is wide.
**This is the multithreading

bug that I cannot resolve during
the project development.

60

Univ
ers

ity
 of

 M
ala

ya

7.4.2 Scan Port Module Testing

The table below depicts a sample of the test that has been done to the Scan

Port module after completion of the Network Scanner.

Table 7.2: Scan Port Module Testing

Test Case Expected Result Real result

If the target address An error message will The error message never came

is not on the appear in the scan Jog teJling out. There is a high possibility

network. the user of some unknown that it scanned the ports of a

error when connecting to the host on the internet, not on the

port. local network.

7.4.3 Look-UP Host Module Testing

The table below depicts a sample of the test that has been done to the Look-

UP Host module after completion of the Network Scanner.

Table 7.3: Look-UP Host Module Testing

Test Case Expected Result Real Result

The target host An error message will pop up An error message popped up

entered is not and tells the user that the host and tells the user that the host

online or not alive. is not valid or not online. is not valid or not online.

After the testing on the whole Network Scanner is done, all the bugs are debugged

even though there are still a few bugs left, they are the bugs that cannot be resolved

until now.

61

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS

SYSTEM
EVALUATION

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS

SYSTEM EVALUATION

System evaluation is done after the project is completed to asses how much the

project has accomplished its goal and features. The results of system evaluation are

used to improve the system design and features in the future. This topic describes the

evaluation that I have done to the Network Scanner project.

8.1 PROBLEMS ENCOUNTERED AND SOLUTIONS

1. No experience with the tools used for the systems development

I experienced an enormous learning curve in understanding how the files and

libraries in the WxWidgets for creating user interface works. I tried very hard

to find documentation to aid me in understanding the tool but it came to no

avail and time was getting shorter and shorter.

In the last moment I changed my development tool from WxWidgets to

Microsoft Foundation Classes (MFC) using Microsoft Visual Studio 6.0.

Although I am new to MFC too, the information on MFC can be found widely

on the internet and MFC is very easy to use and understand. I could master the

usage of MFC injust a few days compared to WxWidgets that took me almost

amonth.

2. No experience in network programming

I have never had the experience in building a networking tool using C++. At

first look, I can hardly understand the network program codes I downloaded

from the internet.

62

Univ
ers

ity
 of

 M
ala

ya

I searched the internet for information of every class that is associated with

network programming and studied the classes to understand its usage in

network programming and how to use network variables in C 1 1 •

3. No experience in building a multithreaded program

I have never build programs that integrates multithreading before and it was

really challenging to understand about multithreading.

I tried using the multithreading code I downloaded from the internet. Although

it did not turn out very well, the module worked.

4. Lack of time to concentrate on the project

Under the pressure of completing my degree in the minimum 6 semester's

time, most of the course I took during this semester has coursework to be

submitted before the examinations, usually around the 1th week. Most of the

coursework involves system development which stole most of my time from

concentrating o.n the thesis project.

8.2 PROJECT STRENGTHS

1. Windows-based application

Microsoft Windows operating systems is the most widely used operating

system. Since the Network Scanner is developed as a Windows-based

application, it should have no problems running in Windows environment.

2. Simple User Interface

The user interface of this application is very simple and very easy to

understand.

63

Univ
ers

ity
 of

 M
ala

ya

3. Easy reference

An easy-to-understand user manual to aid the user when using the program is

always available at the click on the "Help" button.

8.3 SYSTEM LIMITATIONS

1. The system uses multithreading to execute ping and scan ports, however the

thread does not display the ping and scan result directly. Instead, the results

are sent to the timer function and displayed sequentially according to IP

addresses or port numbers.

2. The Scan Port Module can only scan for open ports and port connection

status on a single host at one time.

3. The Scan Po~ module uses the TCP Connect port scanning technique only

and does not provide other port scanning options. It also does not provide

fingerprinting information for each of the port scanned.

4. The Ping Host module uses the ICMP Sweeps technique in Ping Sweeps and

does not provide other ping functions.

5. Simple interface that does not allow result manipulation.

8.4 FUTURE ENHANCEMENTS

I. The results display function will be integrated in the thread and the worker

thread will be integrated in the object class.

64

Univ
ers

ity
 of

 M
ala

ya

2. The Scan Port module will be enhanced to allow port scanning on many

different hosts at the same time using multithreading.

3. Fingerprinting module will be added to the Scan Port module to get

information on the scanned ports. Other port scanning techniques such as

UDP Scan will also be added as an option in port scanning.

4. Other Ping Sweeps techniques such as Broadcast IC.MP will be added to the

Ping Host module as a ping option.

5. The interface will be enhanced to allow the manipulation of the results data

when users click on the results to get information or do another operation.

65

Univ
ers

ity
 of

 M
ala

ya

CONCLUSION

Univ
ers

ity
 of

 M
ala

ya

CONCLUSION

The Network Scanner can be considered as a successful project mmus the

multithreading bugs and project limitations. The Network Scanner can ping every

host in the IP address range given by the user successfully, the fault only arises hen it

comes to the ping result display. It can also execute port scanning without error and

provide a variable of results regarding the port connection status grabbed from the

network programming error handlers. The Network Scanner can look-up most of the

target hosts given especially well known targets on the internet.

From this project, I have learned the basics of network programming. I finally know

which class to use, which header files to include and what functions to call from my

attempts to code the Network Scanner.

I have also learned how to use the WxWidgets library and MFC to design a simple

user interface. I hope} can design much better interface in the future. Apart from that

I have also learned to be patient and that hard work and concentration is the key of

building a successful application.

Lastly, completing this project gives me the mast valuable experience in doing

research and development of computer science subjects that can never be gained

much in any other way, without hard work and knowledge.

66

Univ
ers

ity
 of

 M
ala

ya

APPENDIX

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A:

USER MANUAL

Univ
ers

ity
 of

 M
ala

ya

THE NETWORK SCANNER

USER MANUAL

Table of Contents

1. StartingUp l

2. Ping Hosts on Network. 2

3. Look UP Individual Host. 4

4. Scan for Open Ports on Single Host 6

5 s . . . upportmg Features 9

6 E . . h 1· . . xitmg t e App rcation 13

List of Figures

Figure 1.1: The Network Scanner Main Interface

Figure 2.1: Ping Hosts on Network with empty fields

Figure 2.2: Valid IP Range

Figure 2.3: Invalid IP Range error message

Figure 2.4: Ping Hosts On Network with data

Figure 2.5: Save Ping Log

Figure 3.1: Look UP Individual Host

Figure 3.2: Look UP Interface

Figure 3.3: Host is not valid or not online

Figure 3.4: Look UP Host Interface with data and results

Figure.4.1: Scan for Open Ports on Single Host with empty fields

Figure 4.2: Port Scanning in action

Figure 4.3: Scan paused

1

Univ
ers

ity
 of

 M
ala

ya

Figure 4.4: Show All Status unchecked

Figure 4.5: Show All Status checked

Figure 4.6: Save Scan Log

Figure 5.1: About and Help

Figure 5.2: The About box

Figure 5.3: Help Menu

Figure 5.4: Help: Ping Hosts on Network

Figure 5.5: Help: Look UP Individual Host

Figure 5.6: Help: Scan for Open Ports on Single Host

Figure 6.1: Exiting the Application

11

Univ
ers

ity
 of

 M
ala

ya

STARTING UP

The Network Scanner user interface consists of three parts .

. . - ... ;.

Pi('i~Hosis'oo N~w~rk"-' -'-----,._.;.._-
iP R~ng~ lo:

·.Ping U 11

[

Look UP lni!ivid,lal Host- · · ·~- --- - - ,
. , , LookUP I

.._ - - -~ .. ·· ----- _... - -"~ __ _,__
Scen'lorOpen,Ptxts on.Si'lgle Host~----- ---
Hosl IP: Sc!ln

-- .,-.;,....__......._;,._ ..;.... ·"""---~------~

S¢ariPort: 11 ·. to; f2o48 NOll'.I ~q.:tinlng port: r-

~J

I EM~ I · · Abi:>ut· . f' . Hel?

Figure 1.1: The Network Scanner Main Interface

1. Ping Hosts On Network

2. Look UP Individual Host

3. Scan for Open Ports on Single Host

Next we will look at every section of the Network Scanner user interface.

1

Univ
ers

ity
 of

 M
ala

ya

PING HOSTS ON NETWORK

This is the Ping Hosts on Network section.

Figure 2.1: Ping Hosts On Network with empty fields

1. Enter the range of IP address you want to ping here. The range of the IP

addresses must be in the same network, meaning the first three octets must

have the same-value,
11 l::f. ,l,,IWY°"IV 'W'I I I •W,".'I. ~'°"II"

IP Range .I,.. <fS-2-.·,-68-35-0:--.-2"""'01-· . to: I <m'. . 168 . JS. 2os

Figure 2.2: Valid IP Range

If not, an error message will appear.

Please enter\ialid IP r~~e ···· . ..··.
i.e.t92 . .H>a;2;203to 192,t.Qa.2.210

'-.. - ',·,·.· >

Figure 2.3: Invalid IP Range error message

2. Click on the "Ping" button to run the ping. Perhaps you must wait for a while.

2

Univ
ers

ity
 of

 M
ala

ya

Ping Hosts on Network---

lP Range I 192 . 168 . 2 . 201 to: 192 . 168 . 2 . 206

I.. Ping Clear Sf!ve Ping Log

Figure 2.4: Ping Hosts On Network with data

3. The program will te11 you that it has finished pinging at the end of the ping

log.

4. After the ping result is displayed, you can either click on the "Clear" button

to clear the ping log or click on the "Save Ping Log" button to save the ping

log in a text file. A popup window will appear to allow you to name the file

and choose a storage location.

-···------~~·····,.,.,, .. .,,..--····-··~-.. ·--- . "--- ... -._.---:-------- .. ------ .. -. - ... ---·--~-~-----"".-.-·""· . >,I ,......0::---S~ave.,.._. ."-·· .: J •
.:•n.=;;;· L 1 h >m -

:if ~ncel I .
~:

. Fil~namet .• ,pi~g0303200~ . .

,,Save as type: frE~~ Files (".t~tJ. =··

Figure 2.5: Save Ping Log

3

Univ
ers

ity
 of

 M
ala

ya

LOOK UP INDIVIDUAL HOST

This is the Look UP Individual Host section.

Figure 3.1: Look UP Individual Host

1. Click on the "Look UP" button to open the Look UP Interface.

. . ·:: ... :•

IP Addr~ss : I it+

· HostName or IP:

•:· look UP h __ c1_ea_r A_11_ J m ,, ' : : l1J_.,:--
Ho$t N11me,:·.1

• ~Jose _, I

Figure 3.2: Look UP Interface

2. Enter the target host name or IP address that you want the program to look up

in the Host Name or IP Address field.

3. Click on the "Look UP" button to retrieve information about the target host

you entered. If the target host is not valid or not online, an error message will

appear telling you that the host is not valid or not online.

4

Univ
ers

ity
 of

 M
ala

ya

n Host is not valid or not online,

I.. OK • JI

Figure 3.3: Host is not valid or not online

4. If the host is valid and online, the host name of the host will be displayed in

the Host Name field.

·Host Na~~ or!P: jSHINJI
nM h

L •. : i 1,9,0~ ~' arn I Clear All @
Host Narne: JsHINJI . , @

l192.168.2.2o2 •.· ·[[)

Figure 3.4: LookUP Host Interface with data and results

5. And the IP Address of the host will be displayed in the IP Address field.

6. Click on the "Clear All" button to clear all the fields in the LookUP Host

interface.

7. Click on the "Close" button to exit the LookUP Host interface.

5

Univ
ers

ity
 of

 M
ala

ya

SCAN FOR OPEN PORTS ON SINGLE HOST

This is the Scan for Open Ports on Single Host section.

~------------·---

vi

Scan for Open Ports on SingleHost--
.' Hoo1/p I . • •.. ·. m ~-',_1v_i_sr: __ i_n_ta_·;i

Scan Port: f 1 . lo: ····~ Now scanning port:
.,............._ __ ~ 2 ,_........._~----~~----~----~~~

r' shaw AU Status

Figure 4.1: Scan for Open Ports on Single Host with empty fields

1. Enter the target host IP address you want to run the port scan on in the Host

IP field.

2. Enter the range of ports you want to scan on the target host in the Scan Port

field.

3. Click on the "Scan" button to start the port scanning .

....,..----.·-.-- .. -:;:"'--~--:---. - __ .. - ----~----
' '"S~an forOpen Port~.·ohSing'e Hpst-· ·-~~.---. -........-........
\ ·H~stlP: I 192 . l68 . 2 . 203 ' C9f)tihue~c~n I

... r lo: J200 ; .. ,

Starting scan ...
Port: 25 . Host: 192.168.2.203 > Connection accepted

'Host: 192.168.2.203 Port: 110 > Connection accepted
· Host: 192.168.2.203 Port: 135 > Connection accepted
Host: 192.168.2.203 Port: 139 > Connection accepted

Figure 4.2: Port Scanning in action

4, The Now Scanning Port field will show you the current port being scanned.

6

Univ
ers

ity
 of

 M
ala

ya

5. The port scan result will be displayed in the scan log.

6. While the Network Scanner is still scanning, you can pause the scan by

clicking on the "Pause" button .

. 'to; 1200 Now scanning port; j65

.,. I

Starting scan ...
Host: 192.168.2.203 Port: 25
Scan paused b_y user!

) Connection accepted

r Show All Status I. Clear Log @

Figure 4.3: Scan paused

7. To continue the scan, simply click the "Continue Scan" button.

8. The "Clear Log" button is available when you paused the scan and after the

scan is finished. You can click on the "Clear Log" button to clear the scan log

at either time.

9. The "Show all status" checkbox is available before the scan, during the scan

is paused and when the scan is finished. When it is unchecked, the scan log

will display the accepted port connections, or in other words, found open

ports.

•·· tq: 1200 NoiN}cannin-g port; . I
Starting scan ...
Host: 192.168.2.203 Port: 25
Scan paused b_y user!
Host: 192.168.2.203 Port: 110
Host: 192.168.2.203 Port: 135
Host: 192.168.2.203 Port: 139
Finished scan..

> Connection accepted

Connection accepted
Connection accepted
Connection accepted

>
>
>

® r S~owAll Status . [Clear LQg . I
. ' ' >~· .

Figure 4.4: Show All Status unchecked

7

Univ
ers

ity
 of

 M
ala

ya

If you want the scan log to display all the port connection status, check on

the "Show all status" checkbox before starting the scan, during the scan is

paused or when starting a new scan.

,.___~_..------~~~--~~~~~~--,--
Host: 192.168.2.203 Port: 168 x Connection refused I
Host: 192.168. 2. 203 Port: 169 x Connection refused
Host: 192.168.2.203 Port: 170 x Connection refused
Host: 192.168.2.203 Port: 171 x Connection refused
Host: 192.168.2.203 Port: 172 x Connection refused
Host: 192.168. 2. 203 Port: 173 x Connection refused
Host: 192.168. 2. 203 Port: 17 4 x Connection refused
Host: 192.168. 2. 203 Port: 175 Connection refused

. @ P' ShowAll5t(ltµsC _ _..C"""lea r,,..Lo...,g..__,
.... -.....-~.._ .. ,_, ___..._ ... _ ___.._·----·-."

Figure 4.5: Show All Status checked

10. After the scan is finished, the scan log will inform you that it has finished

scanning. The "Save Scan Log" button will be available and you can click it

to save the scan log in a text file.

,,
J200 r ' .to: Now scanning port :

Port: 195 x Connection refused '11 Port: 196)(Connection refused
Port: 197 x Connection refused
Port: 198 x Connection refused
Port: 199 x Connection refused
Port: 200 x Connection refused

~P- ·. S how:.0:11 S.(atu#
;:.:.··,,

----------~·~..--~~~-:'"-~o:--~-~-:::::--,..-~~~~-w..--_...

Figure 4.6: Save Scan Log

A Save As window will appear to allow you to name the file and choose a

location to store the file like the previous Ping Hosts on Network section. .

8

Univ
ers

ity
 of

 M
ala

ya

SUPPORTING FEATURES

At the bottom left of the main Network Scanner interface, there are another two

buttons.

·~ ~r1Jh°" All Stat--u--i~~-

. About I Help j

Figure 5. 1: About and Help

1. When you click on the "About" button, the about box that display brief

information about the Network Scanner will appear. Click "OK" to close the

window.

. · N etworkS canner Version 1.0
Dev:~loped February 2005

I 9.K ..]

Anisy~hayaii 'IS1J11;1il . WEK020012
.. -. · .•... Final Ye<ltThesis Pioiect

Fa¢ultj; of Coinputer Science Ah9 lriformation Technology
· ·· ·• · University Malaya

Figure 5.2: The About box

2. Clicking on the "Help" button will bring you to a Help Menu. There are three

buttons that will provide information and aid you in using the Network

Scanner program.

9

Univ
ers

ity
 of

 M
ala

ya

Ping Hosts on Network

C~ck on the topic button below for th
section yau need help on.

Look UP Individual Host

. Scan for Open Ports on Single Host

0 r Click the button below to close
H~lp

Figure 5.3: Help Menu

3. When you click on the first button, "Ping Hosts on Network", the section's

help window will appear and briefly describe about the section's interface.

Click "OK" to close the window.

ir;nter the IP Addre$s range of the hosts you want
to ping. Note that ~he IP Address range must be in
the .same netwqrk {meanirig the first three octets
roust.be the same) ai~nding ordes~e('lding .. For . ·
~x.,mple; a valid IP i.angeis 192.168.2.2Q1·to. ·
192.166.2.203.

Ping button~-··· ·-·-· ·-·--"'"·-;: · · · ·· · -.]. -··.
•Cli~k on!hePing buhop io.ping every IP.in the. . · ·. -:
range entered.. . · · · .·····• .' i ... '. :--:_.:._ .;~·;-·-~-~·--.· :

Figure 5.4: Help: Ping Hosts on Network

10

Univ
ers

ity
 of

 M
ala

ya

4. When you click on the second button, "Look P Individual Host", the

section's help window will appear and briefly describe about the section's

interface. Click "OK" to close the window.

·•tH6;tNameorlP- -
.... ··• · :.~.··. n!e .. r th~ Host Name 01 IP of the host you want to

look up in the box
I·- .. , -·- -'"·- ----- .. 0. Lo6kuP button·-···- .
. . Click Qn the LookUP button to retrieve the

lnl,orrnation of the host entered.
' __...._, __ ··--· - - - -- ---
· -Hos~ N.arne- ---- -· ·- ::J

· This box will displ~.the host name of the.looked
up host. · . · ·. ~~--.---.....:...-.--- ._......... \

~

IP Address ----·-·
, This bo~ w1ll display the IP Address of the host

· looked up. · --~-·-,.~--_ '""-'

.. Figure 5.5: Help: Look UP Individual Host

11

Univ
ers

ity
 of

 M
ala

ya

5. When you click on the first button, "Scan for Open Ports on Single Host", the

section's help window will appear and briefly describe about the section's

interface. Click "OK" to close the window.

[. ~:. =.··.:t, IP odd1~~.h~::tyo:-::~·;:::n.] [·~~~~ ~:1range of ports you, wan! to tcan on the
__ . -· ---~--- _ _ ·······- _ host. the d"1ault port rcinge ts port 1 to PQrt 2048.

.[~~:;:~~~; .; b~~~:,'t~:~;::nnin~ for- Scan Log ·

.. open peirts. · . i · ·, · . · [The Scan Log displa,v all lh111 opein ports or J
. ·. -~ .. ------·--:·-·-·~·-. -·---· connection status ol each port.
··~Show All Sta!u;·- -:-··- .. - - · -··· -] - - -·
.··. Ch~Ck if ,You wanqo view all port conhection . · r· a~ar Log . - . . . - I -, i~~:· Uncheck if you' on!Y Wohl to view the open ~ck the Cl1ta~~ ~~~ton to _clea~'.he Scan L~

__ ..__~.......__- -·-:-·-. ----:.......-----· Pause button

[

Continue Scan button--··-..:..,··--~--. -] Click the Peuse bl,ltlon to pause the scan. ForJ•our
:click t.~. e Continue. Scan.bu .. tto .. n. to co. ntinue port · information. the scan cannot be aborted, it can
scannrng after you pause the scan: only be paused, and it w~I continue to scan until
........'.~-·-· _. ,_ .. -.-· ------- ~th_e_la_st_p~-----~-..,......--

OK" I

Figure 5.6: Help: Scan for Open Ports on Single Host

6. Click on the "Close" button to exit the Help Menu.

12

Univ
ers

ity
 of

 M
ala

ya

EXITING THE APPLICATION

Simply click on the "Exit" button at the bottom left comer of the interface or the ''X"

symbol on the top right comer of the applications interface.

l'····~-·-·J ;' ";,';KZ:\. Exit I.

.·· ····~

Figure 6.1: Exiting the Application

13

Univ
ers

ity
 of

 M
ala

ya

APPENDIXB:

PROJECT SOURCE
CODE

Univ
ers

ity
 of

 M
ala

ya

THE NETWORK SCANNEa

SOURCE CODES

Table of Contents

l. Ping Header File 1

2. Connection Check Header File used by Ping and Port Scan 2

3. Timer Function shared by Ping and Scan Port 3

4. Ping Hosts on Network Main Functions 6

5. Look UP Individual Host Main Function .14

6. Scan for Open Ports on Single Host Main Functions 15

Univ
ers

ity
 of

 M
ala

ya

PING HEADER FILE

II
II Ping.h
II
#pragma pack(l)

#define ICMP ECHOREPLY 0
#define ICMP_ECHOREQ 8

II IP Header -- RFC 791
typedef struct tagIPHDR
{

u char
u char

u char
u short
struct
struct

}IPHDR, *PIPHDR;

Protocol;

II Version nd IHL
II Type Of Service
II ToLal Length
II Identification

II Flags and Fragment Offset
II Time To Live
II Protocol
II Checksum
II Internet Address - Source
II Internet Address - Dest

VIHL;
TOS;

short TotLen;
short ID;
short FlagOff;
u char TTL;

Checksum;
in addr iaSrc;
in addr iaDst;

II ICMP Header - RFC 792
typedef struct tagICMPHDR
{

u char Type; II Type
u char Code; II Code
u short Checksum; II Checksum
u short ID; II Identification
u short Seq; II Sequence -
char Data; II Data

} ICMPHDR, *PICMPHDR;

#define REQ_DATASIZE 32 II Echo Request Data size

II ICMP Echo Request
typedef struct tagECHOREQUEST
{

ICMPHDR icmpHdr;
DWORD dwTime;
char cData [REQ_DATASIZE];

}ECHOREQUEST, *PECHOREQUEST;

II ICMP Echo Reply
typedef struct tagECHOREPLY
{

IPHDR ipHdr;
ECHOREQUEST echoRequest;
char cFiller[256];

}ECHOREPLY, *PECHOREPLY;

#pragma pack ()

I

Univ
ers

ity
 of

 M
ala

ya

CONNECTIONCHECK HEADER FILE USED BY PING AND SCAN PORT

II CConnectionChk.h: header file
II
II Class used to check and determine the connection status
II before Network Scanner start to scan for open ports.

class CConnectionChk
{

public:

CConnectionChk();
CConnectionChk(CString _ip, UINT _port)
{

ip _ip;
port _port;
scanlog = "";
found= false;
finished= false;

CConnectionChk(CString CurHost)
{

curhost = CurHost;
pinglog = "";
pinged= false;

est ring scanlog, pinglog;
CString ip;
est ring curhost;
UINT port;
bool found;
bool finished;
bool alive;
bool off line;
bool pinged;

} ;

2

Univ
ers

ity
 of

 M
ala

ya

TIMER FUNCTION SHARED BY PING AND PORT SCAN

//this function is used by the worker thread to send scan and
II ping results to the scan log and ping log box
void CNetworkScannerDlg::OnTimer(UINT nIDEvent)
{
if (nIDEvent ==status timer_id) //initialize timer
{
if(PingClicked)
{
if(cPingChks.GetSize() > 0)
{

CConnectionChk* cp = (CConnectionChk*) cPingChks.ElementAt(O);
//check current

if (cp->pinged)
{
cPingChks.RemoveAt(O, 1); //remove pinged host from the array

//if host is alive or not
if (cp->alive I I cp->offline)
{
pinglog += cp->pinglog;
SetDlgitemText(IDC_PINGRESULT, pinglog);

((CEdit*)GetDlgitem(IDC_PINGRESULT))->
LineScroll(((CEdit*)GetDlgitem(IDC_PINGRESULT))->
GetLineCount(), O);

delete cp; //empty the array.
}
}
}
else
{
//if timer still running and ping finished
if (status timer_id !=0)

KillTimer(status_timer_id); //stop timer
status timer id= 0;
}

//inform user ping is finished
pinglog +="Finished ping .. \r\n";
SetDlgitemText(IDC_PINGRESULT, pinglog);

//enable Scan button
CButton *pBtnScan = (CButton *)GetDlgitem(IDC BTN SCAN);
pBtnScan->EnableWindow(true);

//enable "LookUP" button
CButton *pBtnLookUP = (CButton *)GetDlgitem(IDC BTN LOOKUP
) ;
pBtnLookUP->EnableWindow(true);

3

Univ
ers

ity
 of

 M
ala

ya

//enable "Save Ping Log" button
CButton *pBtnPingL = (CButton *)GetDlgitem(IDC_BTN_SAVEPING
) ;
pBtnPingL->EnableWindow(true);
}
return;
}
else
{
if(cConnectionChks.GetSize() > 0)
{

CConnectionChk* cc (CConnectionChk*)
cConnectionChks.ElementAt(O); //check current l ment/port

if (cc->finished)
{
//output at "Now scanning port :"
SetDlgitemint(IDC_CURPORT_SCANNED, cc->port);
cConnectionChks.RemoveAt(O, 1); //remove scanned port

//if port is found and the "Show All Status" is checked
if (cc->found I I IsDlgButtonChecked(IDC_CHECK_SHOWSTATALL))
{
//display open port scan result/all status scan result
log+= cc->scanlog;
SetDlgitemText(IDC_SCANLOG, log);

((CEdit*)GetDlgitem(IDC_SCANLOG))->
LineScroll(((CEdit*)GetDlgitem(IDC_SCANLOG))->GetLineCount(),
0) ;

delete cc; //empty the array.
}
}
}
else
{
//if timer still running and scan finished
if (status timer_id !=0)
{
KillTimer(status_timer_id); //stop timer
status timer id= O;
}

//enable Clear Log button
CButton *pClearLog = (CButton *)GetDlgitem(IDC_BTN CLEARLOG
) ;
pClearLog->EnableWindow(true);

II show "Scah" button
CButton *pBtnScan = (CButton *)GetDlgitem(IDC BTN SCAN);

pBtnScan->ShowWindow(SW_SHOW);-

II show and enable "Save Scan" button

4

Univ
ers

ity
 of

 M
ala

ya

CButton *pBtnSaveScan CButton
IDC BTN SAVESCAN);
pBtnSaveScan->ShowWindow(SW SHOW);
pBtnSaveScan->EnableWindow(true);

)GetDlgitem(

II hide "Pause" and "Continue Scan" buttons
CButton *pBtnPause CButton *
IDC BTN PAUSESCAN);
pBtnPause->ShowWindow(SW_HIDE);

)GetDlgitem(

CButton *pBtnContScan CButton
IDC BTN CONTSCAN);
pBtncontscan->ShowWindow(SW_HIDE);

*)GetDlgitem(

II empty the "Now scanning port: "
SetDlgitemText(IDC_CURPORT_SCANNED, "");

//inform user scan is finished
log+= "Finished scan .. \r\n";
SetDlgitemText(IDC_SCANLOG, log);

((CEdit*)GetDlgitem(IDC_SCANLOG))->
LineScroll(((CEdit*)GetDlgitem(IDC_SCANLOG))->GetLineCount(),
0) ;

//enable "Ping" button
CButton *pBtnPing = (CButton *)GetDlgitem(IDC BTN PING);

pBtnPing->EnableWindow(true);

//enable "LookUP" .. button
CButton *pBtnLookUP = (CButton *)GetDlgitem(IDC_BTN LOOKUP
) ;
pBtnLookUP->EnableWindow(true);

}
}
}

PingClicked =false;
CDialog::OnTimer(nIDEvent);
}

5

Univ
ers

ity
 of

 M
ala

ya

PING HOST ON NETWORK MAIN FUNCTIONS

Function: On click of the "Ping" button

--

void CNetworkScannerDlg::OnBtnPing()
{
PingClicked =true;
BtnPingClicked =true;

//disable Scan button
CButton *pBtnScan = (CButton *)GetDlgitem(IDC BTN SCAN);
pBtnScan->EnableWindow(false);

//disable "LookUP" button
CButton *pBtnLookUP = (CButton *)GetDlgitem(IDC_BTN_LOOKUP
) ;
pBtnLookUP->EnableWindow(false);

//disable "Ping" button
CButton *pBtnPing = (CButton *)GetDlgitem(IDC BTN PING);
pBtnPing->EnableWindow(false);

LPHOSTENT lpHostEnd;
LPHOSTENT lpHostStart;
CString
CString
CString
CString
CString
CString
CString
struct
struct

cstrHost;
cstrHostStart;
cstrHostEnd;
pingresultsuccessl;
pingresultsuccess2;

pingresult;
PingStatus;
in addr *startptr;
in addr *endptr;

pingresult = "";
SetDlgitemText(IDC_PINGRESULT, pingresult);

GetDlgitemText(IDC_PINGDESTSTART, cstrHostStart);
GetDlgitemText(IDC_PINGDESTEND, cstrHostEnd);

//////Lookup start host
lpHostStart = gethostbyname(cstrHostStart);

if(lpHostStart ==NULL)
{

AfxMessageBox("Please enter a valid host!");
return;

}

startptr (struct in addr *)lpHostStart->h_addr_list[O];

6

Univ
ers

ity
 of

 M
ala

ya

//get ip
int as
int bS
int cs
int dS

address by octet (break it to
startptr->S_un.S_un_b.s_bl;
startptr->S_un.S_un_b.s_b2;
startptr->S_un.S_un_b.s_b3;
startptr->S_un.S_un_b.s_b4;

octets)

CString StartH, EndH;
StartH.Format("%d.%d.%d.%d", aS, bS, cs, dS);

II/II/Lookup end host
lpHostEnd = gethostbyname(cstrHostEnd);

if(lpHostStart ==NULL && lpHostEnd ==NULL)
{

AfxMessageBox("Please enter a valid host!");
return;

endptr = (struct in_addr *)lpHostEnd->h_addr_list[O];

//get ip
int aE
int bE
int CE =
int dE

address by octet (break it to octets)
endptr->S_un.S_un_b.s_bl;
endptr->S_un.S_un_b.s_b2;
endptr->S_un.S_un_b.s_b3;
endptr->S_un.S_un_b.s_b4;

EndH.Format("%d.%d.%d.%d", aE, bE, cE, dE);

//start of first three octet comparison
//first octet
if(aS != aE)
{

AfxMessageBox("Please enter valid IP range\ni.e
192.168.2.203 to 192.168.2.210");

//enable "Ping" button
CButton *pBtnPing = (CButton *)GetDlgitem(
IDC_BTN_PING) ;
pBtnPing->EnableWindow(true);

//reset status text
PingStatus ="Waiting for input .. ";
SetDlgitemText(IDC_STATUSl, Pingstatus);

}
//second octet
else if(bS != bE)
{

AfxMessageBox("Please enter valid IP range\ni.e
192.168.2.203 to 192.168.2.210");

//enable "Ping" button
CButton *pBtnPing = (CButton *)GetDlgitem(
IDC_BTN_PING);
pBtnPing->EnableWindow(true);

.//reset status text

7

Univ
ers

ity
 of

 M
ala

ya

PingStatus ="Waiting for input .. ";
SetDlgitemText(IDC_STATUSl, PingStatus);

//third octet
else if(cS != cE)
{

AfxMessageBox("Please enter valid IP range\ni.e
192.168.2.203 to 192.168.2.210");

//enable "Ping" button
CButton *pBtnPing = (CButton *)GetDlgitcm(
IDC BTN PING);
pBtnPing->EnableWindow(true);

//reset status text
PingStatus ="Waiting for input .. ";
SetDlgitemText(IDC_STATUSl, PingStatus);
}
else
{

if(dS > dE)
{

int tmp;

tmp = dS;
dS dE;
dE = tmp;

//Change the status line
Pingstatus ="Ping results :";
SetDlgitemText(IDC_STATUSl, PingStatus);

I /Ping Here! !
CString Hosts="";
CString CurHost;

if (status timer_id == 0)
{

//set the timer for worker thread
status timer id= SetTimer(l, 25, O);

//start of host loop
for(int i = dS; i <= dE; i++)
{

CurHost.Format("%d.%d.%d.%d", aS, bS, cS, i);

//initialize
CConnectionChk* cp =new CConnectionChk(CurHost);
cPingChks.Add(cp); //increment cp for next host??
//run the ping using the worker thread
AfxBeginThread(runPing, (void*) cp,
THREAD_PRIORITY_NORMAL); //run the scan using the
worker thread

8

Univ
ers

ity
 of

 M
ala

ya

}//end of first three octet comparison

//enable "Clear" button
CButton *pBtnClear = (CButton * }GetDlgitern(
IDC BTN CLEARPING }; - -
pBtnClear->EnableWindow(true };

--

Function: Run Ping Thread

--

UINT run Ping (LPVOID pParam}
{

LPHOSTENT lpCurHost;
struct sockaddr in saDest;
struct sockaddr in sasrc;
DWORD dwTimeSent;
DWORD dwElapsed;
u char cTTL;
int nLoop;
int nRet;

//receive CConnectionChk parameter from the
//CNetworkScannerDlg::OnBtnPing(} function
CConnectionChk* cp = (CConnectionChk*} pParam;

CString tmp = cp->curhost;

cp->alive =false;
cp->offline =false;

SOCKET rawsocket;

//Create raw socket
rawSocket = socket(AF_INET, SOCK RAW, IPPROTO_ICMP);
if(rawSocket == SOCKET_ERROR}
{

AfxMessageBox("Could not open socket."};
return 0;

//Lookup CurHost
lpCurHost = gethostbyname(tmp};

if(lpCurHost ==NULL)
{

AfxMessageBox("Please enter a valid host!");
return 0;

}

9

Univ
ers

ity
 of

 M
ala

ya

//Setup destination socket address
saDest.sin_addr.s_addr = *((u_long FAR*) (lpCurHost
->h addr));
saDest.sin_family =AF INET;
saDest.sin_port 0;

//start of ping loop
//Ping once but use for loop to enable break
for(nLoop = 0; nLoop < 1; nLoop++)
{

//Send ICMP echo request
SendEchoRequest(rawSocket, &saDest);

//Use function select() (from winsock) to wait for
//data to be received
nRet = WaitForEchoReply(rawSocket);

if(nRet == SOCKET_ERROR)
{

CString pingerror;
pingerror.Format("Error waiting for
packet!");
cp->pinglog += pingerror + "\r\n";
break;

}

else if(!nRet)
{

CString pingfail;
pingfail.Format("Host %s : Request timed
out . " , tmp) ;
cp->pinglog += pingfail + "\r\n";
cp->offline =true;
break;

}

else
{

//Receive reply
dwTimeSent = RecvEchoReply(rawSocket, &saSrc,
&cTTL) ;

//Calculate elapsed time
dwElapsed GetTickCount() - dwTimeSent;

//display ping result in the Ping Result box
CString pingsuccess;
pingsuccess.Format("Reply from: %s: bytes=%d
time=%ldms TTL=%d",
inet_ntoa(saSrc.sin_addr),
REQ_DATASIZE, dwElapsed, cTTL);
cp->pinglog += pingsuccess +" \r\n";
cp->alive =true;

}

10

Univ
ers

ity
 of

 M
ala

ya

nRet = closesocket(rawSocket);

if(nRet == SOCKET_ERROR)
AfxMessageBox("Cannot close socket");

cp->pinged =true;
return 0;

--

Function: Send Echo Request

--·---

//This function fills in the echo request header and send to
//destination
int SendEchoRequest(SOCKET s,LPSOCKADDR_IN lpstToAddr)
{

static ECHOREQUEST echoReq;
static nid = 1;
static nSeq = 1;
int nRet;

II Fill in echo request
echoReq.icmp~dr.Type
echoReq.icrnpHdr.Code
echoReq.icmpHdr.Checksum
echoReq.icmpHdr.ID
echoReq.icmpHdr.Seq

ICMP_ECHOREQ;
O;
0;
nid++;
nSeq++;

II Fill in some data to send
for (nRet = O; nRet < REQ_DATASIZE; nRet++)

echoReq.cData[nRet] =' '+nRet;

II Save tick count when request sent
echoReq.dwTirne = GetTickCount();

II Put data in packet and compute checksum
echoReq.icmpHdr.Checksum in_cksum((u_short *)&echoReq,
sizeof(ECHOREQUEST));

II Send the echo request

nRet = sendto(s,
(LPSTR)&echoReq,
sizeof(ECHOREQUEST),
0,
(LPSOCKADDR)lpstToAddr,
sizeof(SOCKADDR_IN));

II socket
II buffer

II flags
II destination
II address length

if (nRet -- SOCKET_ERROR)

11

Univ
ers

ity
 of

 M
ala

ya

AfxMessageBox("SendTo() error");

return (nRet);

--

Function: Wait for Echo Reply

--

//This function uses the function select () (from win ock} to
//determine when data is waiting to be read
int WaitForEchoReply(SOCKET S)
{

struct timeval Timeout;
fd set readfds;

readfds.fd count= l;
readfds.fd_array[O] = s;
Timeout.tv sec= 5;
Timeout.tv usec = O;

return(select(l, &readfds, NULL, NULL, &Timeout));

--

Function: Receive Echo Reply

--

//This function receives incoming data and parse out fields
DWORD RecvEchoReply(SOCKET s, LPSOCKADDR IN lpsaFrom, u char
*pTTL)
{

ECHOREPLY echoReply;
int nRet;
int nAddrLen = sizeof(struct sockaddr_in);

II Receive the echo reply
nRet = recvfrom(s,

(LPSTR)&echoReply,
sizeof(ECHOREPLY),
0,
(LPSOCKADDR)lpsaFrom,
&nAddrLen);

II socket
II buffer
II size of buffer
II flags
II From address
II pointer to address len

II Check return value
if (nRet == SOCKET_ERROR)

AfxMessageBox("Error receiving");

12

Univ
ers

ity
 of

 M
ala

ya

II return time sent and IP TTL
*pTTL = echoReply.ipHdr.TTL;
return(echoReply.echoRequest.dwTime);

---------------------·--

Function: Checksum Routine

--

l//l///////l//ll//ll////ll/ll//l//ll//ll//ll//l//l/ll//ll/////
II Mike Muuss' in_cksum() function and his comments from th
II original ping program
II
II Author - Mike Muuss
II U. S. Army Ballistic Research Laboratory
II December, 1983
/l//l//l//l///ll//////ll/ll/l//ll///ll//l!/ll//ll/l!/l//l//ll/
/*
* I N C K S U M
*Checksum routine for Internet Protocol family headers (C
*Version)
*/
u short in_cksum(u_short *addr, int len)
{

register int nleft = len;
register u_snort *w = addr;
register u short answer;
register int sum= 0;

//Our algorithm is simple, using a 32 bit accumulator (sum),
//we add sequential 16 bit words to it, and at the end, fold
//back all the carry bits from the top 16 bits into the
//lower 16 bits.

while(nleft > 1)
sum+= *w++;
nleft -= 2;

/*mop up an odd byte, if necessary*/
if (n 1 e ft == 1) {

u short u = 0;

* (u _char *) (& u)
sum+= u;

*(u_char *)w;

II add back carry outs from top 16 bits to low 16 bits
sum= (sum>> 16) + (sum & Oxffff);//add hi 16 to low 16
sum+= (sum>> 16); //add carry
answer = +s umr // truncate to 16 bits
return (answer);

}

13

Univ
ers

ity
 of

 M
ala

ya

LOOK UP INDIVIDUAL HOST MAIN FUNCTION

Function: When user clicks on the "Look UP" button

--

void CLookUPHostDlg::OnBtnLookuph{)
{

CString cstrHost;
LPHOSTENT lpHostName;
LPHOSTENT lpHostAddr;
char* hostName;
struct sockaddr_in hostAdd;
CString hostAddress;

unsigned long addr;

GetDlgitemText(IDC_HOSTTOLOOK, cstrHost);
addr = inet addr(cstrHost);

//Lookup host
//get host address
lpHostAddr = gethostbyname(cstrHost);

if(lpHostAddr ==NULL)
{

AfxMessageBox("Host is not valid or not online.");
return;

hostAdd.sin addr.s addr
->h addr));

((u_long FAR) (lpHostAddr

//display host address
hostAddress.Format("%s", inet ntoa(hostAdd.sin addr));
SetDlgitemText(IDC_IPADDLU, hostAddress);

//get host name
lpHostName = gethostbyaddr{(char *) &addr, 4, AF_INET);

if(lpHostAddr 1= NULL)
{

hostName (lpHostAddr->h_name);
//display host name
SetDlgitemText(IDC_HOSTNAMELU, hostName);
return;

14

Univ
ers

ity
 of

 M
ala

ya

SCAN FOR OPEN PORTS ON SINGLE HOST MAIN FUNCTIONS

Function: The scan() function

--

void CNetworkScannerDlg::scan()
{

//display "Starting scan .. " in the scan log box
log= "Starting scan ... \r\n";
SetDlgitemText(IDC_SCANLOG, log);

//get the IP number entered by user.
GetDlgltemText(IDC_SCAN_IP, IP);

if (status_timer_id == 0)
{

//set the timer for worker thread
status timer id= SetTimer(l, 25, 0);

}

UINT startPort, endPort, port;

//get the port values entered by user
startPort GetDlgitemint(IDC_START_PORT);
endPort = GetDlgitemint(IDC_END_PORT);

for (port= startPort; port<= endPort; port++)
{ ..

//initialize connection to individual port
CConnectionChk* cc= new CConnectionChk(IP,
cConnectionChks.Add(cc); II increment cc
//run the scan using the worker thread
AfxBeginThread(runScan, (void*) cc,
THREAD_PRIORITY_NORMAL);

port);

//enable "Pause" button
CButton *pBtnPause CButton
IDC_BTN_PAUSESCAN);
pBtnPause->EnableWindow(true);

*)GetDlgitem(

//disable Clear Log button
CButton *pClearLog CButton
IDC_BTN_CLEARLOG);
pClearLog->EnableWindow(false);

*)GetDlgitem(

}

--~-------------------------------------

15

Univ
ers

ity
 of

 M
ala

ya

Function: The Run Scan thread

--

UINT runscan (LPVOID pParam)
{

//receive CConnectionChk parameter from the
//CNetworkScannerDlg::scan() function
CConnectionChk* cc= (CConnectionChk*) pParam;

cc->finished =false;
CString tmp "";
csocket s;

//create Windows socket(STREAM SOCKET) and attach it to
//the specified IP address
s.Create(O, SOCK_STREAM, "");

tmp.Format("%d", cc->port);

//if the connection is successful
if (s.Connect((LPCTSTR) cc->ip, cc->port))
{
cc->scanlog +="Host: "+ cc->ip +"
"\t\t>\tConnection accepted\r\n";
cc->found =true;
}
else
{

Port: " + tmp +

switch(GetLastError())
{

case WSAECONNREFUSED://if connection refused
cc->scanlog +="Host: "+ cc->ip +" Port:
"+ tmp + "\t\tx\tConnection refused\r\n";
break;

case WSAETIMEDOUT://if connection timed out
cc->scanlog += "Host: " + cc->ip + " Port:
"+ trnp + "\t\to\tConnection timed out\r\n";
break;

default://if connection status unknown
cc->scanlog +="Host: "+ cc->ip +"
" + trnp + "\ t \ t ! \ tUnknown error when
to connect\r\n";
break;

Port:
trying

}

s.Close();
cc->finished true; //the port have been scanned

return 0;

16

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

Univ
ers

ity
 of

 M
ala

ya

Software Development and SDLC [online]. StartVBdotNet.com

Available from http://www.startvbdotnet.com/sdlc/sdlc.htm

The System Development Life Cycle [online]

Available from http://www.muskalipman.com/VBObjects/SDLC.pdf

Terms and Definitions [online]

Available from http://www.webopedia.com/TERM/

Terms and Definitions [online]

Available from http://www.wikipedia.com/

McNab, C. Network Scanner Types [online] O'Reilly. Available

http://www.oreilly.com/catalog/networksa/chapter/ch04.pdf

Forno, R,. and Kenneth R. van Wyk. Ethereal and Nmap [online] O'Reilly

OnLamp.com. Available from

http:/ /www.onlamp.com/pub/a/ onlamp/excerpt/incidentres _ 07 /index.html

Johns, St. M. 1993. Identification Protocol RFC 1413 [online]. US Department of

Defense. Available from http://www.ietforg/rfc/rfcl413.txt

Sanfilippo, S. 2004. What's Hping [online].

Available from http://wiki.hping.org/

1

Univ
ers

ity
 of

 M
ala

ya

Sharpe, R. Ethereal User Guide [online]. Ethereal.com

Available from http://ethereal.OniOn.org/docs/user-guide/

2000. Description o/C++. [online]. The C++ Resource Network

Available from http://www.cplusplus.com/info/description. html

Smart, J. What is WxWidgets? [online]. Anthemion Sofware.

http://www.wxwindows.org/

Examples of Network Monitoring Tools [online J

Available from http://www.ciac.org/ciac/ToolsDOSNetwork.html

February 2005. Winsock Functions [online]

Available from http://msdn.microsoft.com/library/default.asp?url=/library/en

us/winsock/winsock/winsock_functions.asp

Chand, Mahesh. September 2000.Multithreading using MFC in Plain English: Part I

[online]. Available from

http://www.mindcracker.com/mindcracker/c _ cafe/mt/mtt I .asp

Cumming, M. Multithreading Applications Using MFC [online]. Available from

http://www.murrayc.com/leaming/windows/multithreading.shtml#ProcessesAndThei

rThreads

Microsoft: Visual C++ FAQS [online]. Available from http://www.tek

tips.com/faqs.cfm?fid=5162

2

Univ
ers

ity
 of

 M
ala

ya

Microsoft Corporation. 2005. Windows Sockets in MF C [online]. Available from

http://msdn.microsoft.com/library/default.asp?url=/Iibrary/en-

us/vccore/html/ _core_ windows_ sockets_ in_ mfc.asp

Microsoft Corporation. 2005. CSocket [online]. Available from

http://msdn.microsoft.com/library I default.asp?url=/library/ en

us/ dv _ wcemfc4/htm1/aflr:fCSocket.asp

Wheeler, J. August 1998. An ICMP Class for MFC [online]. Available from

http://www.codeguru.com/Cpp/I-N/intemet/network/artic1e.php/c3395/#Demo

Ellis, J.J.. 2002. Creating Threads in MFC [online]. Available from

http://www.apostate.com/programming/mfc-threads.html

FunctionX. Visual C++ Tutorial [online]. Available from

http://www.functionx.com/visualc/howto/menu.htm

Microsoft Corporation. 2005. CDC Class [online]. Available from

http://msdn.microsoft.com/library/default.asp?url=/library/en

us/vclib/html/ _ mfc _ cdc.asp

3

Univ
ers

ity
 of

 M
ala

ya

Lee Chin Han (2003/2004) Network Traffic Monitoring System with Graphical

Approach. Degree of Computer Science, University of Malaya.

Tan Yu Jin (2002) Internet Information Server Scanner: Scanning on URL

Vulnerabilities. Master Degree of Computer Science, University of Malaya.

Suhaila Shawal (1998/1999) LAN Snanner. Degree of Computer Science, University

of Malaya.

Deitel H. M., Deitel P. J., Nieto T. R. & Strassberger E.T .. (2000). Getting Started

with Microsoft Visual C + + 6 with an Introduction to MFC. New Jersey, A Pearson

Education Company.

4

Univ
ers

ity
 of

 M
ala

ya

BIBLIOGRAPHY

Univ
ers

ity
 of

 M
ala

ya

Forouzan, B. A (2002) Data Communictaions and Networking. New York, McGraw

Hill.

Stallings, W. (2003) Network Security Essentials: Applications and Standards. New

Jersey, Prentice Hall.

Maiwald, E. (2002) Network Security: A Beginners Guide. Osborne, Brandon A.

Nordin.

Schach, S. R. (2004) Object Oriented and Classical Software Engineering. New

York, Elizabeth A Jones.

Whitten, J. L. et al. (2003) System Analysis and Design Methods. New York, Brent

Gordon.

Sommerwille, J. (1995) Software Engineering 5th Edition, Addison Wesley.

Deitel H. M., Deitel P. J., Nieto T. R. & Strassberger E.T .. (2000). Getting Started

with Microsoft Visual C + + 6 with an Introduction to MFC. New Jersey, A Pearson

Education Company.

1

Univ
ers

ity
 of

 M
ala

ya

