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POWER PREDICTION USING THE WIND TURBINE POWER CURVE 

AND DATA-DRIVEN APPROACHES 

ABSTRACT 

Wind energy as one of the promising energy sources, has attracted great attention 

because it is pollution-free and abundant. Moreover, it shows considerable potential for 

supplying electricity to meet the demand. The high dependence upon the wind, 

however, results in variation of the wind power due to the intermittent nature of the 

wind. The volatility of wind power over time jeopardizes the reliability of the power 

systems. Therefore, the prediction of the wind power is required. Wind turbine power 

curve representing the relationship between the wind speed and power can serve as a 

tool for prediction. In this thesis, a new parametric model, called modified hyperbolic 

tangent (MHTan), is proposed to approximate the wind turbine power curve. To obtain 

the unknown vector of parameters of the MHTan, three heuristic optimization 

algorithms are employed to minimize the sum of squared residuals. An alternative way 

to estimate the coefficients of MHTan is through maximum likelihood estimation 

(MLE) and the probability density function of wind speed. In this method, firstly, 

Weibull density function is utilized to model the wind speed and then several methods 

are applied to estimate the parameters of the wind speed distribution. To evaluate the 

performance of the Weibull parameters’ estimator methods, two sets of data are 

considered, one based on simulated data with different random variable size and the 

other based on actual data collected from a wind farm in Iran. Secondly, a new formula 

representing frequency distribution of the turbine power is derived. The formula 

comprises of unknown vector parameters of MHTan which can be determined based on 

MLE. Then, the performance of the MHTan is evaluated using actual data collected as 

well as three simulated data representing three different typical shapes of the power 

curve. In order to demonstrate the efficiency of the proposed method, it is compared 
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rigorously with several parametric and nonparametric models. In addition, the capability 

of the MHTan in on-line monitoring of the wind turbine is presented. In this research, a 

comparison is also drawn between two different wind power prediction models, indirect 

and direct approaches. In the former it is necessary to forecast the wind speed at first, 

then the corresponding power is obtained from the wind-power curve. Since in practice 

turbines do not work in ideal conditions, the theoretical power curve provided by 

manufacturers is avoided and a power curve approximated by MHTan is used instead. 

Several statistical methods are used to predict wind speed and the best one is selected 

for prediction over longer horizons. To set up direct wind power prediction, six data-

driven approaches are employed and the same procedure as in indirect approach is 

applied to select the best method for longer horizon predictions, up to 60-min. The 

results confirm the superiority of the direct prediction models. Moreover, a hybrid 

feature selection technique is proposed to choose the necessary subset of inputs so that 

the important information is retained. This technique is a combination of mutual 

information and neural network where its effectiveness is examined with several linear 

and nonlinear feature selection methods. 

Keywords: wind power prediction, wind turbine power curve, wind speed 

prediction, data-driven  
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POWER PREDICTION USING THE WIND TURBINE POWER CURVE 

AND DATA-DRIVEN APPROACHES 

ABSTRAK 

Tenaga yang boleh diperbaharui, terutamanya tenaga angin, telah banyak meningkat 

sejak sedekad yang lalu, disebabkan oleh pencemaran alam sekitar dan pengurangan 

sumber bahan api fosil. Tenaga angin sangat penting kerana potensi yang besar dalam 

membekalkan tenaga elektrik untuk memenuhi permintaan. Walau bagaimanapun, 

pergantungan tinggi pada angin menimbulkan kecenderungan perubahan kuasa angin 

melalui sifat rawak dan stokastik tenaga angin. Tambahan pula, kerapuhan dan 

ketidakstabilan kuasa angin dari masa ke masa mengurangkan kebolehpercayaan sistem 

kuasa. Oleh itu, ramalan kuasa angin adalah suatu keperluan. Keluk kuasa turbin angin 

yang mewakili hubungan antara kelajuan angin dan kuasa boleh berfungsi sebagai alat 

untuk ramalan. Dalam tesis ini, model parametrik baru, yang dikenali sebagai tangen 

hiperbolik diubah suai (MHTan), dicadangkan untuk menghampiri keluk kuasa turbin 

angin. Untuk mendapatkan vektor parameter yang tidak diketahui MHTan, tiga 

algoritma pengoptimuman heuristik digunakan untuk meminimumkan jumlah sisa kuasa 

dua. Cara alternatif untuk menganggarkan koefisien MHTan adalah melalui estimasi 

kemungkinan maksimum (MLE) dan fungsi kepadatan kebarangkalian kelajuan angin. 

Dalam kaedah ini, beberapa kaedah pertama digunakan untuk menganggar parameter 

pengagihan kelajuan angin. Di sini fungsi Weibull digunakan untuk memodelkan 

kelajuan angin, walau bagaimanapun fungsi ketumpatan lain juga diperiksa. Untuk 

menilai prestasi kaedah penganggar parameter Weibull, dua set data dipertimbangkan, 

satu berdasarkan data simulasi dengan saiz variabel rawak yang berbeza dan yang lain 

berdasarkan data sebenar yang dikumpulkan dari ladang angin di Iran. Kedua, formula 

baru yang mewakili pengagihan frekuensi kuasa turbin diperolehi supaya parameter 

yang tidak diketahui dalam formula ini memang merupakan pekali MHTan yang boleh 
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diperolehi dengan terbitan MLE. Prestasi MHTan kemudiannya dinilai menggunakan 

data sebenar yang dikumpulkan serta tiga data simulasi yang mewakili tiga bentuk 

tipikal kurva kuasa. Untuk menunjukkan kecekapan kaedah yang dicadangkan, ia 

dibandingkan dengan beberapa model parametrik dan bukan parametrik. Di samping itu, 

kapasiti MHTan dalam pemantauan dalam talian turbin angin dibentangkan. Dalam 

kajian ini dibuat juga perbandingan antara dua model ramalan kuasa angin yang 

berbeza, pendekatan tidak langsung dan langsung. Di dalam pendekatan tidak langsung, 

ramalan kelajuan angin adalah perlu pada mulanya, di mana kuasa sepadan boleh 

diperoleh melalui lengkung daya angin. Oleh kerana turbin tidak berfungsi dalam 

keadaan yang ideal, lengkung uasa teori yang disediakan oleh pengeluar dihindari dan 

keluk kuasa yang dihitung oleh MHTan digunakan sebaliknya. Terdapat beberapa 

kaedah statistik berfungsi untuk meramalkan kelajuan angin dan yang terbaik dipilih 

untuk ramalan bagi jangka masa yang lebih lama. Untuk menetapkan ramalan kuasa 

angin secara langsung, enam pendekatan didorong data digunakan dan prosedur yang 

sama seperti pendekatan tidak langsung digunakan untuk memilih kaedah terbaik untuk 

ramalan bagi jangka masa yang lebih panjang, sehingga 60-minit. Keputusan 

mengesahkan keunggulan model ramalan langsung. Selain itu, teknik pemilihan ciri 

hibrid dicadangkan supaya memilih subset input yang diperlukan supaya maklumat 

penting masih dikekalkan. Teknik ini adalah gabungan maklumat bersama dan 

rangkaian saraf dan keberkesanannya diperiksa dengan beberapa kaedah pemilihan ciri 

linier dan tak linear. 

Kata kunci: ramalan kuasa angina, lengkung kuasa turbin angina, ramalan kelajuan 

angina, didorong data 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Wind is one of the fastest growing energy sources because it is renewable and 

pollution-free. Other factors such as advances in manufacturing and control technology 

intensify appeal of the wind as a green source of energy. According to Global Wind 

Energy Council (GWEC), the accumulative total of wind energy installed capacity 

reached approximately 486 GW in 2016, representing a growth rate of 12.5% than that 

in the previous year (Council, 2016). European Wind Energy Association expects 392 

GW installed capacity by 2030, equal to 31% of European electricity demand and 

avoidance of 554 Mt of CO2 emission caused by conventional electricity generation. 

High penetration of wind power generation, however, provides great challenges in 

electrical power systems due to stochastic nature of the wind flow. Although in the 

power electricity grid, supply must meet power demand all times, the fluctuation of 

wind power output makes difficulties to maintain this balance. The variation of wind 

energy not only jeopardizes quality and stability of the power systems, but also affects 

the wind energy providers who are imposed penalty because of the failure of generating 

the contracted amount of energy. Moreover, it causes significant uncertainties to 

transmission system operators (TSOs) who need precise information for unit 

commitment. 

The increased wind energy sources call for wind power prediction to alleviate the 

undesirable effects of the wind energy integration into electric power grids. Wind power 

forecasting aims to help TSOs to effectively determine the reserve power in order to 

balance possible errors between programmed and actually generated wind power in a 

certain time period. 

Univ
ers

ity
 of

 M
ala

ya



2 

1.2 Problem Statement 

Quality of forecasts is very important and thus improving prediction systems’ 

performance has been set as one of the priorities in wind energy research. Persistent 

method, known also as ‘Naïve Predictor’, is the simplest model in wind power 

prediction. However, it only illustrates accurate results in very short term forecasting. 

Some researches attempt to predict wind power through wind turbine power curve (El-

Fouly, El-Saadany, & Salama, 2007). In this regard, firstly, wind speed at wind turbines 

locations must be forecasted then it is converted into power through the characteristic 

curve of the wind turbine. Wind power curve either can serve as a tool for predicting 

wind power or aids in performance monitoring of the turbine. Indeed, any anomalies 

can be effectively detected by monitoring wind turbines. Wind turbine manufacturers 

although provide power curve, there is a substantial discrepancy between the theoretical 

and the empirical power curves because the wear and tear of turbine generator such as 

gearbox as well as local turbulence are disregarded. Moreover, wind speed distribution, 

location of the turbine and wind direction may exacerbate this difference. In practice, in 

fact, wind turbines rarely, if ever, operate in ideal conditions.  

Models for predicting the behavior of the turbine include: models based on 

fundamental equations of power available in the wind and models based on the concept 

of the power curve of wind turbine. Different models based on the equation of power 

were presented, but they are highly dependent on various parameters such as wind 

speed, turbine rotational speed, turbine blade parameters (pitch angle and angle of 

attack), efficiency of generator and mechanical transmission (Ashok, 2007; Nelson, 

Nehrir, & Wang, 2006; Hongxing Yang, Wei, & Chengzhi, 2009). Due to the 

unavoidable dependency of these parameters and their variation with change in weather 

condition and type of component used, these models do not yield accurate results and 

are also cumbersome. Models based on the concept of the power curve of turbine 
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comprise of parametric and nonparametric approaches. Polynomial (Chedid, Akiki, & 

Rahman, 1998), logistic four-parameter (Kusiak, Zheng, & Song, 2009b), logistic five-

parameter (Lydia, Selvakumar, Kumar, & Kumar, 2013) are typical examples of 

parametric approaches, which use the mathematical expression to estimate wind power 

curve. Nonparametric approaches such as copula power curve (Gill, Stephen, & 

Galloway, 2012), cubic spline (Shokrzadeh, Jozani, & Bibeau, 2014), data mining 

(Schlechtingen, Santos, & Achiche, 2013), neural network (G. Sideratos & N. D. 

Hatziargyriou, 2007) and fuzzy methods (M. Mohandes, Rehman, & Rahman, 2011) 

attempt to find a relationship between wind power and wind speed. Such methods have 

a major disadvantage over parametric approaches as they suffer from the black box 

problem. Indeed, their output is difficult to backtrack. Moreover, some of them as NNs 

fall into local extremum due to the overfitting problem. Hence, producing a new wind 

turbine power curve model which is as close as possible to the observed data is greatly 

encouraged. 

Several studies were developed to predict wind power without involvement in the 

wind turbine power curve. They employed historical wind speed, wind direction, 

humidity, and also previous power generated as inputs of the forecast engine to predict 

next step wind power. Usually in these researches, selection of important inputs was 

disregarded. Selection of most important inputs improves the results. Furthermore, in 

case of engine forecast is kind of machine learning, it speeds up the learning process 

and avoids overfitting the training data. (Fan, Liao, Yokoyama, Chen, & Lee, 2009) 

applied cross correlation and auto correlation to select exogenous variables having a 

stronger relationship with the wind generation. However, it was not able to evaluate 

correctly the impact of each input variable on wind power. It is due to the fact that cross 

correlation and autocorrelation are linear feature selections whereas wind power is a 

nonlinear mapping function of its input variables. Indeed, using a nonlinear analysis 
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technique for feature selection and the combination of it with the forecast engine is a 

great need to improve prediction accuracy. 

1.3 Objectives 

The main objectives of this study are: 

 To propose a parametric model to approximate the wind turbine power curve in 

order to serve as prediction tool in indirect wind power prediction and wind 

turbine monitoring  

 To optimize the unknown coefficients of the proposed parametric model 

 To estimate the parameters of the proposed parametric model through wind 

speed distribution 

 To validate the proposed parametric wind turbine power curve model for vertical 

and horizontal axis wind turbines with various power-curve shapes  

 To propose a two-stage feature selection technique as a preprocessing tool in 

direct wind power prediction using combination of the mutual information and 

neural network to extract the most informative features with a maximum 

relevancy and minimum redundancy  

1.4 Scope of Work 

The following items are considered in this study: 

 Estimation of the wind turbine power curve using both parametric and 

nonparametric approaches is considered. 

 Performance evaluation of the parametric and nonparametric based on the 

theoretical power curve data supplied by the manufacturer and also data 

observed from a real wind farm. 
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 Direct and indirect techniques are investigated to forecast the wind power 

generation. 

 In indirect prediction approach, three statistical methods are considered to 

forecast the wind speed and to set up the direct prediction approach six data-

driven approaches are applied. 

 In direct approaches, the feature selection technique is employed to filter out 

irrelevant and redundant inputs in the procedure of power estimation. The 

feature selection technique is applied on real meteorological data over a period 

of one year, including wind speed, temperature, wind power generated, and wind 

direction. 

 The simulations and analysis are carried out in MATLAB and WEKA on a 

personal computer with Intel Pentium 2.66 GHz processor and 4GB RAM. 

1.5 Organization of Thesis 

This thesis is divided into five chapters as follows: 

Chapter 1 contains problem statement, research objectives, the scope of work, and an 

overview of the thesis. 

Chapter 2 presents a literature survey of the wind power forecasting methods as well 

as wind turbine power curve modeling. 

Chapter 3 focuses on developing a model for wind turbine power curve. It 

investigates two different approaches to estimate the parameters of the wind turbine 

models. This chapter also derives a statistical model to match the frequency distribution 

of the wind power. Then it describes the comparative results.  
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Chapter 4 compares direct and indirect wind power prediction approaches. An 

intelligent feature selection technique is presented in this chapter in order to select the 

most informative inputs. It also describes the results of wind speed and wind power 

prediction. Then, comparative analysis of the power predicting models and feature 

selection technique is discussed. 

Chapter 5 presents the thesis conclusion and suggests the future work. A 

comprehensive list of reference is provided at the end of the thesis. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 History of Wind Power  

The usage of the wind as a source of power has been dated about 5000 B.C. when the 

first sailing boats were used on the Nile River. The Persian Empire, too, had utilized 

wind energy to pump water and grind grain. In 1887, the first windmill was constructed 

by Prof. James Blyth, in Scotland to produce electricity for his personal cottage. Shortly 

thereafter, Charles F. Brush completed the construction of the first fully automatic 

windmill having the power of 12 kW. The mass production of wind machines, from 5 to 

25 kW in size, began in America by the end of the 1900s. In the early of 20 centuries, 

the term “wind turbine” greatly increased popularity for describing a machine used to 

convert kinetic energy in the wind into electrical power. In this era, an enormous 

amount of wind turbine, 600,000 units approximately, were installed in U.S. Primary 

turbines were explored showing different design alternatives including vertical axis 

turbines (VAWTs). As the industry matured, horizontal axis wind turbines (HAWTs) 

were standardized with one, two, or three blades. In 1941, a modern horizontal axis 

wind turbine was installed in U.S to provide electricity to a remote area where the 

electric power lines could not reach. Despite the development of electricity power lines 

and the technological advancement in megawatt turbines, wind turbines market fell into 

a decline in the 1950s. Due to the oil crisis and its skyrocketed price, wind turbines 

came to the sharp focus again in the 1970s. Since the beginning of the 21st century, 

wind experienced a great leap in usage. According to world wind energy association, by 

the end of 2016, more than 85 countries in the world are using wind power on a 

commercial basis. The global wind installed capacity from 2000 to 2016 is illustrated in 

Figure 2.1 (Association, 2014). It is shown that, at the end of 2016, the global wind 

energy installed capacity dramatically enhanced to 486 GW, a 300% growth over 2008.  
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Figure 2.1: Global cumulative installed wind capacity 2000-2016 

 

2.2 The Importance of Wind Power Forecasting 

Driven by depletion of fossil fuel resources, energy independence, and contamination 

of the environment, renewable energy most notably wind energy is becoming 

increasingly important as one the most promising alternative source of energy. The 

primary motivation behind the widespread usage of wind energy is to reduce green gas 

emission which is not only considered a growing menace to the Earth but also to human 

health. Electricity generation produces the largest share of greenhouse gas emissions, 

about 30 percent of emitted greenhouse gas, due to the burning fossil fuels, mostly oil, 

coal, and natural gas.  

Wind energy is a green and polluted-free resource and it becomes more and more 

cost-effective by virtue of the technologies development. Since this energy resource 

depends on the wind, it has no fuel cost. In other words, the motion of the air rotates the 

wind turbines, converting kinetic energy into mechanical energy and then electricity is 

converted from mechanical energy by the rotating magnetic coils in the gearbox. In this 

procedure, the electricity is produced without emitting any greenhouse gas and the only 
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input needed is the wind which is free and rich in nature. Moreover, wind turbines and 

towers can be recycled without making any pollution. Recent innovation in wind 

industry enables us to capture stronger wind in higher altitude and offshore, and 

consequently greater amount of power can be generated by the turbine. Despite all the 

advantages of wind energy, there are diverse technical and economic issues in the 

integration of wind power that must be addressed. One issue is that unlike conventional 

hydro-thermal generation, wind industry mainly uses the asynchronous machine which 

requires power electronic as an interface between the grid and the generator. The most 

severe issue in the wind industry, however, is deeply rooted in the random character of 

the wind energy which imposes great difficulties to manage electricity power grid. In 

other words, high dependency on the wind gives rise to the mutability of the wind 

power through the stochastic nature of the wind.  

The inherent intermittency and variability of wind generate uncertainty about the real 

production of a wind farm. Wind power, unlike conventional power plant, is not fully 

dispatchable. A fossil-fuel plant, for instance, can adjust its output to the demand or 

even can be turned off and on, while in wind power plants the output cannot be 

controlled in command of power system operators. Moreover, the wind cannot be stored 

as other resources such as coal and natural gas for future power generation. Wind 

energy is considered as a fluctuating source of electrical energy which makes 

difficulties for transmission operators (TSOs) as well as wind power plant (WPP) 

owners who need robust information for dispatching, unit commitment and decision-

making in the electricity market. TSOs have an obligation to ensure that generation and 

consumption levels remain adequate at all times. In fact, they must guarantee a good 

balance between demand and power supply in an unbiased manner at the optimum cost 

under the constraints of the transmission network. Mutability of the wind power on one 

side and the balance between load and supply on the other side obliges TSO to find a 
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solution. Although one alternative to mitigate this issue is to use energy storage, it 

appears not to be feasible for large-scale wind generation. The most common solution is 

to assign reserve capacity (spinning reserve) to balance demand and power generation. 

The spinning reserves (SR) allow power system operators to compensate any 

unpredictable unbalanced between consumption and generation. For instance, if wind 

power turbines fail to produce electricity as much as expected due to the variability of 

the wind speed other fast responding units, which are mostly gas-fired power plant, are 

needed to balance the network. The cost of SR, however, is far from negligible. In 

addition, the higher integration of the wind into the power grid, the more the calls for 

conventional power resources to cover the gap between load and demand. In real-time 

operation, looking seconds to hours ahead, in order to balance this variability traditional 

hydro-thermal generations need to ramp up or down. A frequent ramping action not 

only has adverse economic effects such as mechanical wear and tear but also reduces 

the efficiency in the use of conventional hydro-thermal generation. Another 

controversial point regarding integration of wind power is the location of wind farms. 

Wind parks should be only located in areas with good wind regimes, however, these are 

sometimes remote area and far from existing transmission infrastructure hence, the grid 

improvements turn out to be very expensive. 

2.3 Factors Affecting Wind Power Production 

The theoretical power captured by the rotor of a turbine is given by: 

𝑃 = 0.5𝜌𝜋𝑅2𝐶𝑝(𝜆, 𝛽)𝑉3 (2.1) 

𝐶𝑝(𝜆, 𝛽) = 

0.5176 (
116

1
𝜆 − 0.08𝛽

−
0.035
𝛽3 + 1

− 0.4𝛽 − 5) 𝑒

−21
1

𝜆−0.08𝛽
−

0.035
𝛽3+1

+0.0068𝜆

 (2.2) 
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where 𝜌 is the air density kg/m3, 𝑅 is the radius of the rotor in m determining its swept 

area, 𝐶𝑝 is the power coefficient and 𝑉3 is the wind speed in m/s. Representing the 

percentage of the power captured by the turbine is function of the turbine tip speed ratio 

𝜆 and the blade pitch angle 𝛽. Smaller pitch angles result in higher power coefficients 

and thus higher energy output. According to the Betz’s law, only 59.3% of the kinetic 

energy in wind can be captured by wind turbines. (𝐶𝑝 ≤ 0.593). 

2.3.1 Air Density 

The wind power is directly proportional to air density and any change in the air 

density affects annual energy output. The air density is strongly related to the pressure, 

the humidity and the temperature. The air is denser at lower elevations and cold air is 

denser than warm air. The lower air density is, the weaker strength of wind will be, and 

then the starting and rated wind speed will be increased, and consequently output power 

will be less. On the contrary, the output energy will be increased when the air density is 

higher. 

2.3.2 Wind Speed 

According to Eq. (2.1), the output power of the wind turbine is proportional to the 

cube of the wind speed. Therefore, small changes in wind speed make the significant 

differences in power. Wind speed increases with height hence if the tower of the wind 

turbine is taller, the wind speed and in turn, energy output of the turbine will be higher. 

In general, the most crucial data required to calculate the output energy of the wind 

generator is the wind speed at the particular site. A rapid change in wind speed called 

wind shear which may be horizontal or vertical. Vertical wind shear is the rate of 

change of the wind speed with a change in altitude, while horizontal wind shear is the 

rate of change of the wind speed in the horizontal plane. Both have an adverse effect on 

the output power generated by the turbine. Vertical wind shear, for example, causes 
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different wind speeds passing through the two blades, nearest and farthest to the ground 

level and this in turn strongly affects the wind turbine operation. 

2.3.3 Temperature 

The temperature and pressure are vital factors influencing the wind power since both 

parameters affect the air density. Ice might be accumulated on the wind turbine rotor 

disc, if the temperature is too cold, resulting in a failure in turbine operation. Low 

temperature, moreover, can damage the electrical equipment of the turbine as well as 

affecting the lubricant which in turn reducing power transmission of the gearbox. 

2.3.4 Icing 

Icing denotes a serious threat to the integrity of wind turbines in cold weather. Lift 

reduces and drags increases along the wind turbine blade following the power law. 

Under severe icing condition, accumulated ice on the wind turbine blades reduces the 

torque and aerodynamic efficiency resulting in power loss. In icing weather, torque may 

dramatically drop to almost zero and the wind turbine fails to operate normally and thus 

an utter loss of power production. In general, two types of icing which are likely to form 

on the wind turbine blades: glaze and rime. The former occurs when liquid 

precipitations striking the surface at a temperature lower than freezing point. Glaze ice 

is a common occurrence during ice storms and is relatively transparent, smooth, hard, 

and attaches well to surfaces. Rime ice is formed when a supercooled droplets freeze on 

contact with a surface below freezing point. Since the droplets are small, they instantly 

freeze and create a mixture of trapped air and tiny ice particles. This type of icing is 

rough crystalline structure, and brittle. Rime ice can cover airfoil surface and 

consequently affect the aerodynamic characteristic of the blades. It is of vital 

importance of in high elevation location, e.g., hills or mountain tops. 
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2.3.5 Dust 

Blade surface roughness of the wind turbine has a significant impact on the 

aerodynamic loads and wind power generation. The increase in the drag force of the 

airfoil, as well as the decrease in the lift force as a consequence of growing dust on the 

surface of the turbine blades, diminish the energy output of the wind turbine. In other 

words, gathered dust on the turbine blades degrades the smoothness of its surface and 

hampers the airfoil to extract the useful power from the wind result in a greater loss of 

the wind turbine output power. 

2.3.6 Wake Effect 

Considering wind turbines extract the kinetic energy in wind and convert it into the 

electricity, the wind leaving the turbine contains less energy than the wind upstream of 

the turbine. Consequently, the wind downstream of a wind turbine has lower speed and 

higher turbulence as compared to the wind in the free stream. This downstream wind is 

the wake of the turbine. This turbulent and slow downed wind from an upwind turbine 

reduces energy arriving downwind turbines and, in consequence, the overall output 

energy of the downwind turbine decreases. Although increasing the space between 

turbines decreases the wake effect on downstream wind turbines, it is limited by land 

and excessive cost of cabling. Two significant influences of wake are: (i) diminution of 

wind velocity which reduces, in turn, the energy generation of the wind farm; (ii) a rise 

in the turbulence of the wind which increases mechanical loads on downwind turbines 

and diminishes their operational capacity. In practice, however, the separation between 

turbines of 3 or 4 diameters apart is specified to counteract the wake effect, but blades 

characteristics as well as environmental factors such as humidity, temperature, complex 

terrain, and forestry may affect the magnitude and size of wakes. 
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2.3.7 Direction 

Although the wind direction has been disregarded in many types of research, it has a 

substantial influence on wind farm performance. Since wind farm layout and wind 

direction can modify the location and the orientation of the wake cones, any changes in 

these factors can affect wake interaction (overlapping area) which leads to changes in 

the power output of each individual turbine. (Pinson, 2006) illustrated that variation of 

the wind direction has a more considerable influence on the wake coefficient in wind 

farms with a compact arrangement of the wind turbines than in wind farms with larger 

wind turbines spacing.  

2.4 Wind Power and Wind Speed Forecasting Techniques 

Stochastic nature of wind power generation poses great challenges on wind power 

systems. For instance, in power systems with a high share of wind power, the 

intermittency of the wind could oblige power system operator to allocate greater 

supplemental energy reserve to keep a balance between load and generation and 

minimize the errors between programmed and actual generated energy by wind power 

in a certain period of time. This would, however, impose an additional operation cost 

and consequently increase the final energy price. On one hand, the variation of wind 

energy can jeopardize the quality and stability of power systems and on the other hand, 

it affects the market participants who bear the economic losses because of the failure of 

generating the contracted amount of energy. Hence, an accurate wind forecasting model 

as an efficient tool to save costs and effectively support Distribution and Transmission 

System Operators (DSO/TSO) in improving power network management is required.  

In the recent years, a wide range of studies has been carried out on wind power 

forecasting, each using different techniques with different prediction time horizon. 

There are several ways to categorize the wind power forecasting approaches. Recent 
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researches in the area of wind power prediction mainly are classified into three groups, 

statistical, physical and hybrid approaches. The first methods attempt to tune model 

parameters to minimize the error between the observed and the predicted power based 

on the vast historical data. Physical approaches, however, depend on numerical weather 

prediction and meteorology information i.e., obstacles, temperature, terrain, and 

pressure. The last group incorporates the individual superiority of the diverse prediction 

models so as to improve the accuracy of the forecasting. 

Forecasting models for wind power, however, can be also categorized as direct and 

indirect models. The first approach attempts to forecast wind power generation directly 

from previously recorded data consisting of temperature, humidity, wind speed, wind 

power, and wind direction, . The latter is based on predicting wind speed at turbine 

location then using the wind turbine power curve to forecast wind power.  

Some studies classified forecasting models into two categories namely, point 

forecasting methods and probabilistic forecasting methods. Unlike the first methods 

which predict the amount of wind generation at a future point and generate only a single 

value of the future power, probabilistic forecasting methods attempt to estimate the 

predictive distributions in the forms of intervals. (Sideratos & Hatziargyriou, 2012) 

stated that traditional point wind power predictions are fairly low in average and 

probabilistic wind power models can give much information on uncertainties which are 

highly useful to power system operators. Prediction of the wind power and wind speed 

has the same principle, therefore the following section discusses aforementioned models 

applied in both wind power and wind speed forecasting. 

2.4.1 Statistical Methods 

Statistic methods attempt to establish the relation between input data, i.e., weather 

predictions, wind speed, and the generated wind power by statistical analysis of the 
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historical time series. In fact, the objective of such methods is to formulate the pattern 

of the measurements. In other words, such methods use historical data observed at site 

under investigation to mathematically formulate the problems. Statistical methods have 

better performance in short-term prediction than in long-term prediction and are 

immensely popular due to the simplicity in the structure, and moderate cost (J. Chen, 

Zeng, Zhou, Du, & Lu, 2018; Pearre & Swan, 2018).  

Persistence method (Zhang, 2012), known as the naïve predictor, is the simplest 

model, typically used as a benchmark for other models, which simply assumes the 

future value of the wind power is equal to the previously measured one.  

ARMA models are the most popular in the time-series based methods to forecast the 

future value of wind power or wind speed. This model was applied by (Torres, Garcia, 

De Blas, & De Francisco, 2005) to forecast the hourly average wind speed up to 10-

hour ahead using nine years of historical data and the comparative results show 20 % 

improvement compared to persistence model. 

(Erdem & Shi, 2011) suggested four methods based on autoregressive moving 

average (ARMA) model to forecast the wind speed and direction tuple. In wind speed 

forecasting the model based on the traditional-linked ARMA outperformed than others, 

while, in wind direction forecasting model based on the decomposition of wind speed 

into the lateral and longitudinal components illustrated better accuracy.  

(Liu, Shi, & Erdem, 2010) introduced a novel wind power prediction method, 

namely modified Taylor Kriging (MTK). In this research, the distance formula between 

two points in covariance function was modified and results indicate that the proposed 

model outperformed ARIMA. 
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Times series-based methods include such as Kalman filter (Louka et al., 2008), 

Autoregressive (Huang & Chalabi, 1995), autoregressive integrated moving average 

(ARIMA) (Sfetsos, 2002), fractional-ARIMA (Kavasseri & Seetharaman, 2009), 

seasonal-ARIMA (Meng), and limited-ARIMA (LARIMA) (P. Chen, Pedersen, Bak-

Jensen, & Chen, 2010). Classical times series analysis (traditional statistical technique), 

however, cannot always establish the nonlinear relationship between input and output 

data because they are based on a linear regression model.  

The advent of the matching learning algorithms such as artificial neural networks 

(Flores, Tapia, & Tapia, 2005; Shuhui Li, Wunsch, O'Hair, & Giesselmann, 2001), 

Support Vector Machines (SVMs) (Niu, Wang, & Wu, 2010), fuzzy logic (FL) (G. 

Sideratos & N. Hatziargyriou, 2007), and genetic programming (GP) (Lee & Tong, 

2011) caught researcher’s attraction in recent years. Since these methods learn the wind 

power behavior from the previous data, they do not need any previous modeling of the 

wind power. Indeed, unlike conventional statistical methods, the learning approaches 

are capable of representing the nonlinear characteristics of the inputs. ANN, for 

example, a model inspired by the structure of the neural processing in the brain, known 

as ‘gray box’ was used in a large number of recent publications due to the self-learning, 

easy implementation, and efficiency in the modeling the nonlinear relationships (Ak, Li, 

Vitelli, & Zio, 2018).  

Short-horizon prediction of wind speed and wind power using data-driven 

approaches was presented by (Kusiak & Zhang, 2010). Exponential smoothing, NN, 

boosting tree, random forest, support vector machine, and the k-nearest neighbor were 

applied to forecast wind speed based on 10-s data collected and the most accurate model 

is selected for up to 60s prediction. Then, three models were investigated to forecast 

wind power as a function of wind speed. 
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(Kusiak, Zheng, & Song, 2009c) employed several data mining algorithms to build 

time series models for forecasting the power of the wind farm at different time horizon. 

According to comparative analysis, SVM outperformed other data mining approaches in 

wind power and wind speed prediction over 10-min to 60-min ahead, while multilayer 

perceptron provided most accurate result in prediction of wind power at 1-hour to 4-

hour ahead. In this study, boosting tree algorithm and the wrapper approach using 

genetic search algorithm were used in order to obtain the best predictors.  

Long-term wind power and wind speed forecasting (hourly prediction up to 72-h) for 

a wind farm on the Greek island of Crete was produced by (Barbounis, Theocharis, 

Alexiadis, & Dokopoulos, 2006). Wind speed and wind direction were used as inputs of 

three types of local recurrent neural network namely, the infinite impulse response 

multilayer perceptron (IIR-MLP), the local activation feedback multilayer network 

(LAF-MLN), and the diagonal recurrent neural network (RNN).   

A detailed comparison between ARMA and NNs was provided by (De Giorgi, 

Ficarella, & Tarantino, 2011) to establish a power forecasting model for a wind farm in 

Southern Italy, a country with unstable meteorological conditions. Prediction models 

were made over 1, 3, 6, 12-hour into the future. Wind speed and wind power over five 

years were employed to define a prediction model, however, wind direction and 

temperate were not taken into consideration. Five types of NNs were considered in this 

research: three networks, MLFF, MLP, ElMAN based on only one input (the hourly 

average wind power) and other two networks, MLP, and ElMAN based on two inputs 

(the hourly average wind power and wind speed data).  

(Palomares-Salas, De la Rosa, Ramiro, Melgar, Agüera, et al., 2009) Compared 

ARIMA model and back-propagation neural network (NNT) in terms of the Pearson's 

correlation coefficient, root mean square error (RMSE), and Index Of Agreement 
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(IOA). Based on the obtained results, ARIMA yielded better accuracy than the NNT in 

short-time horizon forecasting. 

An algorithm based on fuzzy logic was presented by (Damousis, Alexiadis, 

Theocharis, & Dokopoulos, 2004) to forecast wind speed and produced power at a wind 

park. Wind speed and wind direction collected from neighboring meteorological 

stations were averaged within a time range of 15 to 30 minutes. The effectiveness of the 

model was compared to the persistence model. 

A new model based on Resource Allocating Network (RAN) was suggested by (Han, 

Romero, & Yao, 2015) to forecast wind power within prediction length of up to one day 

for different types of wind turbines with different capacities. In the data processing 

stage, a phase space reconstruction (PSR) was utilized to convert the observation into 

space vector, thereby studying and detecting the dynamic structure of the wind. Then, 

principal component analysis (PCA) was applied to eliminate noise and redundancies 

through mapping the original signal to a new higher dimension space. The performance 

of the model was compared to persistence and new reference (NR) models. 

An application of SVM for wind speed prediction based on mean daily wind speed 

data over a 12-year period was presented by (M. A. Mohandes, Halawani, Rehman, & 

Hussain, 2004). The obtained results were better than the one obtained by MLP in terms 

of RMSE and MAE. 

2.4.2 Physical Methods 

Physical models use numerical weather prediction (NWP) and take into 

consideration some factors including the local surface roughness, the effects of 

obstacles and terrain, temperature, and pressure. NWP usually uses complicated 

equations to present the behavior of the atmosphere. Indeed, NWP employs governing 
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equations such as conservation of mass, conservation of energy, conservation of 

momentum, and thermodynamics laws. The forecast accuracy of the NWP method 

depends heavily on initial data. Therefore, the gap in the initial data due to scarcity of 

observations in the remote areas, such as a mountain, reduces the accuracy of the NWP 

models (Hoolohan, Tomlin, & Cockerill, 2018). In addition, the manipulating immense 

amount of data sets and solving complicated equations necessitates utilizing 

supercomputers in these models. Despite these difficulties, the NWP model is 

considered one the best prediction methods in long-term forecasting. Although (N. 

Chen, Qian, Nabney, & Meng, 2014) applied NWP for short-term prediction, mostly 

this model is used in long-term horizon because it generates more accurate prediction in 

long-term than does in short-term. 

(Landberg, 1999) suggested a model to predict the power generated by a wind farm 

connected to the grid. The model was based on wind speed prediction from the high-

resolution limited area model (HIRLAM) of the Danish Meteorological Institute. The 

verification of the model was performed using 10-min average data over one-year 

period collected from 17 wind farms with total capacity of 35.7 MW. The obtained 

results were compared to those of the persistence model. 

(Lazić, Pejanović, & Živković, 2010) examined the application of a regional 

numerical weather prediction Eta model in wind forecasting for the wind power plants. 

The Eta model was evaluated using two different resolutions; one was larger area and 

coarse resolution (22*22 km) and the other was smaller area and finer resolution 

(3.5*3.5). The obtained wind from Eta model at 10 m level was compared to the 

observed wind from the surface station and the wind turbine at 10 m. Further 

investigation was conducted between the obtained wind from Eta and the one from a 

wind turbine at 38, 54, 75, and 96 m. 
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(Jimenez, Durante, Lange, Kreutzer, & Tambke, 2007) drew a comparison between 

two WNPs approaches, mesoscale meteorological model MM5 and the wind resource 

assessment program WAsP (Wind Atlas Analysis and Application Program), to estimate 

the wind resource over the German Bight in the North Sea. 

A short-term wind power forecasting on a real case study in southern Italy was 

investigated using two different ensemble prediction models, the Ensemble Prediction 

System (EPS) in use at the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and the Limited-area Ensemble Prediction System (LEPS) developed within 

Consortium for Small-scale Modelling (COSMO) (Alessandrini, Sperati, & Pinson, 

2013). The results revealed that the higher resolution model (COSMO-LEPS) generated 

slightly better performance notably from 27 to 48-hour ahead. 

A new combination of particle swarm optimization (PSO) algorithm and Type-2 

fuzzy neural network (T2FNN) known as T2FNN-PSO was conducted by (Sharifian, 

Ghadi, Ghavidel, Li, & Zhang, 2018). The performance of the method was verified 

using data from an online supervisory control and data acquisition (SCADA) system 

and the numerical weather prediction (NWP) for a medium-term wind power prediction. 

An application of Kalman filtering in numerical prediction of wind speed was 

presented by (Louka et al., 2008). To forecast wind speed, two limited-area atmospheric 

models with different horizontal resolution were applied. The results demonstrated that 

Kalman filter not only can eliminate the systematic forecast errors in NWP but also 

reduced the CPU time. (Nielsen, Nielsen, Madsen, Pindado, & Marti, 2007) also 

attempted to reduce the error of the forecast model by using several NWP. 

A comparison study was carried out by (Carvalho, Rocha, Gómez-Gesteira, & 

Santos, 2014) to evaluate the performance of the weather research forecast (WRF) 
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mesoscale model in the wind simulation and wind energy estimation by different initial 

and boundary forcing conditions. Six different WRF simulations were applied and their 

obtained results were compared to the observed wind data from thirteen wind measuring 

stations located in Portugal. 

2.4.3 Hybrid Methods 

Combined prediction approaches can improve the accuracy of the forecasting taking 

advantage of individual prediction methods which have, of course, different 

performance depending on the forecast horizon, the data sets, and their capability to 

map nonlinear relationships. Combined techniques have great importance in a wide 

range of application area due to the fact that individual method has a good performance 

only in a certain situation and thus different models have to be evaluated and tested to 

obtain the best performance. Combined techniques not only settle the time-consuming 

drawback of individual approaches but also provide great superiorities over the 

individual models. In general, hybrid methods are a combination of different models 

such as a combination of statistical and physical models (Katinas, Gecevicius, & 

Marciukaitis, 2018), a combination of any evolutionary algorithms with statistical 

(Mahmoud, Dong, & Ma, 2018) or physical approaches or a combination of different 

models with different time horizon either (Leng et al., 2018; Nourani Esfetang & 

Kazemzadeh, 2018).  

A novel statistical method using the artificial neural network and fuzzy logic for 

wind power prediction was developed by (G. Sideratos & N. D. Hatziargyriou, 2007). 

To make the best use of NWP and improve its inaccuracy, firstly a self-organized map 

was applied to divide input data according to the magnitude of the wind speed, into 

three classifications: small, medium, and large. Secondly, a separate radial basis 

function (RBF) network was used to provide an initial prediction for each class. 
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Subsequently, a fuzzy logic model was employed to indicate the quality of the predicted 

wind speed by NWPs. In summary, the main contribution of the proposed model was 

the optimum use of NWPs available based on fuzzy logic rules. 

An integration of kernel principal component analysis (KPCA) and evolutionary 

optimized local general regression neural network (EOLGRNN) was derived by 

(Elattar, 2014). The function of KCPA in the proposed model was to construct the phase 

space and to overcome the drawback of the conventional time series reconstruction 

technique. Since the smoothing parameter had a great impact on the performance of the 

GRNN, an evolutionary algorithm (EA) was applied to obtain the optimum value of the 

smoothing parameter. In terms of accuracy, the proposed model outperformed other 

models, but it sacrificed operation cost and speed nevertheless. EA, indeed, slowed the 

training procedure down.  

Two different models were investigated by (Peng, Liu, & Yang, 2013) for short-term 

wind power forecasting; one was a hybrid strategy based on ANN (a statistical model) 

and the physical models and the other one was individual ANN with nine neurons in the 

hidden layer. The performance of two models was evaluated using real data (wind 

speed, wind direction, and temperature) collected from a wind farm with the total rated 

power of 50 MW. The numerical results revealed that combined model was 

considerably more accurate than individual ANN in terms of MAE and NRMSE, 

however, individual ANN was able to make a faster prediction. 

An effective wind power forecasting model based on Bayesian clustering by 

dynamics (BCD) and support vector regression (VSR) was developed by (Fan et al., 

2009). To reduce the sensitivity of the model to the input variables, all the inputs data 

were divided into two groups: wind speed and wind generation data were used as inputs 

of SVRs, while wind direction and humidity in addition to wind speed and wind 
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generation data were considered inputs of BCD. Temperature and pressure were not 

included in data sets because the author found these inputs do not produce any 

improvements in the results but, conversely, slowing down the learning process. In 

order to select only input variables with significant influence on the output, the 

autocorrelation and cross-correlation between different attributes (inputs) were 

analyzed. However, they are linear and might not catch the nonlinear dependencies 

between input variables.   

A hybrid method, combining ANN and wavelet transform (WT) was introduced by 

(Catalão, Pousinho, & Mendes, 2011) for short-term wind power forecasting in 

Portugal. The WT was applied to decompose the original wind power series into 

different scale components. Due to the filtering effect of WV, each scale component 

illustrated better behaviors than the original series. Then, NN attempted to forecast the 

future value of each scale component. At the end, an inverse WT reconstructed the 

future behavior of the wind power series. In this research, NNWT was compared to NN, 

ARIMA and persistence model. 

(Pousinho, Mendes, & Catalão, 2011) developed a model for short-term wind power 

prediction based on 15 min ahead data. The proposed model was based on ANFIS and 

particle swarm optimization (PSO). The PSO played an essential role in tuning the 

parameters of the membership function resulting in great improvement in the 

performance of the ANFIS. Historical wind power data are used as inputs of ANFIS, 

however, other exogenous variables such as temperature and wind direction were not 

taken into account. The comparative analysis verified the superiority of the proposed 

model over ARIMA, NN, NNWT, wavelet-neuro-fuzzy (WNF) and persistence models. 

A comparative study based on nearest neighbor search (NNS) and ANN was 

conducted by (Jursa & Rohrig, 2008) to predict the generated power in 10 wind farms in 
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Germany. Two population-based optimization algorithms namely, PSO and differential 

evolution (DE) were used to select the most relevant input variables. Input variables 

consisted of numerical weather predicted data (NWP) and the observed power of the 

wind farms over 3.5 years. The NN and NNS using evolutionary algorithms 

demonstrated better forecasting accuracy as compared to when their inputs were 

selected manually. For further evaluation, both models were compared to persistence 

model. 

A hybrid model comprising of WT, RBF neural network, imperialist search 

algorithm (ICA), and MLP was presented by (Aghajani, Kazemzadeh, & Ebrahimi, 

2016) to predict the output power of the wind farm located in the southern part of 

Alberta, Canada. As a primary predictor, RBF neural network forecasts the wind power. 

Then, continuous WT (CWT) was applied to filter the input data consisting of the 

output of RBF neural network and other exogenous variables, i.e. wind direction, wind 

speed, humidity, temperature, and wind direction. In the next step, MLP attempted to 

predict the future value of each decomposed signal by WT. MLP, defined as the main 

predictor in this study, use three different learning algorithms: Levenberg–Marquardt 

(LM), Broyden–Fletcher–Goldfarb–Shanno (BFGS), and Bayesian regularization (BR). 

Subsequently, ICA aimed to optimize the weights of neural networks. Finally, predicted 

signal of wind power was reconstructed through an inverse WT. The proposed model 

(RBF+ HNN + WT + ICA) outperforms RBF + HNN + WT + PSO, RBF + HNN + 

WT, RBF + HNN, and HNN + PSO + WT. 

A short term wind speed and wind power prediction model using a multi-layer feed-

forward neural network (MFNN) and simultaneous perturbation stochastic 

approximation (SPSA) algorithm were developed by (Hong, Chang, & Chiu, 2010). 

Three different structures of MFNN were considered in this research. A cascaded 
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structure where forecasted wind speed served as an input for power prediction; a 

parallel structure where all inputs (wind speed and power) were applied simultaneously 

and a separated MFNNs in which forecast engines were separately operated. The inputs 

of all three models were modeled by fuzzy numbers. SPSA attempted to train the 

MFNN and improved its convergence. In order to illustrate the efficiency of the 

developed model, it was compared to other models such as MFNNs with the back-

propagation algorithm, ARMA, time-interval averaging approach (TIAA), and 

persistence method. 

(Amjady, Keynia, & Zareipour, 2011a) suggested a new strategy for short-term 

prediction of wind power based on ridgelet neural network (RNN). Moreover, a new 

differential evolution algorithm (NDE) with an efficient crossover operator and 

selection mechanism was introduced to train the developed forecast engine. In order to 

remove the unimportant inputs and obtain the candidates with a high share of 

information, a feature selection technique called mutual information (MI) was used. 

Analysis results showed that the proposed model yields better accuracy than the 

persistence model, ARIMA, radial basis function (RBF) neural network and multi-layer 

perceptron (MLP) neural network trained by Levenberg–Marquardt (LM) learning 

algorithm. Further evaluations revealed the efficiency of NDE in comparison with the 

simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO) 

and classical DE. 

2.4.4 Indirect Wind Power Prediction Methods 

This approach comprises two processes: first, the wind speed as most effective 

parameter among exogenous variables is needed. In the real world application, these 

data are typically purchased from some meteorological institutes such as Deutscher 

Wetterdiens or can be provided by some services, for instance, WAsP (Wind Atlas 
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Analysis and Application Program), HIRLAM (high-resolution limited area model) 

(Croonenbroeck & Dahl, 2014). However, these data are quite expensive notably when 

they are required at high resolution. Thus, using the stochastic or/and hybrid technique 

to predict the wind speed at wind farms are cost effective. Subsequently, the forecasted 

wind speed, in particular time horizon, is utilized to obtain wind power prediction 

through the power curve of the operational wind turbine machine.  

Fractional-ARIMA or f-ARIMA as a special case of ARIMA model was proposed to 

forecast wind speed over 24- and 48-hour future time intervals (Kavasseri & 

Seetharaman, 2009). Unlike traditional ARMA and ARIMA, f-ARIMA was well suited 

to capture long range correlation existing in the wind speed. The developed model was 

validated using real data collected from four wind parks in North Dakota. The f-ARIMA 

model provided better forecast accuracy as compared to the persistence model, ARIMA 

and neural network in terms of the daily mean error (DME), the variance, and the square 

root of the forecast mean square error. Lastly, wind power was estimated through 

forecasted wind speed and the power curve of a NEG Micon 750 kW wind turbine 

operating in the site under investigation. 

An application of Grey rolling model (GM) to forecast hourly wind speed and wind 

power was suggested by (El-Fouly et al., 2007). Three versions of GM model were 

applied so as to improve the drawback of the traditional GM. The adaptive GM 

produced better results as compared to the persistence and traditional GM model but 

only for some intervals. The modified GM model managed to reduce the overshoot, 

however, a good agreement was not reached between the observed and actual values. 

The averaged GM model illustrated most satisfactory than others. Lastly, V66-1.65 MW 

wind turbine power curve manufactured by VESTAS Company was employed to 

predict the hourly wind power. 
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A statistical wind power forecasting model based on WT and SVM was applied by 

(Zeng & Qiao, 2012). In order to improve the ability of original SVM, a new kernel 

function was proposed which is able to switch between radial basis function (RBF) 

kernel and a Mexhat kernel. The developed WPP model included three steps. Data 

normalization was performed in the first step. Then, the original wind speed series was 

decomposed using wavelets and subsequently, SVM was used to forecast the future 

behavior of the wind speed. Wind power was obtained from the wind turbine’s wind-

power curve (Vestas V-90 3-MW) according to the forecasted value of the wind speed. 

The WSVM model was compared to the persistence and RBF-SVM. 

(Senjyu, Yona, Urasaki, & Funabashi, 2006) presented the output power prediction 

of wind turbines based on wind speed forecasting using the recurrent neural network 

(RNN). In RNN, unlike FNN, there was a feedback structure transmitting information 

from hidden layer to input layer. The optimum number of hidden neurons was 

determined by trial and error. The efficacy of the proposed model over the FNN was 

verified in terms of MAPE.  

A hybrid of neural network and genetic algorithm were applied for short term wind 

speed forecasting by (Senjyu et al., 2006). Originally, the weights and bias of NN were 

optimized by BP in conjunction with gradient descent search, however, there is no 

guarantee the global minimum can be reached. In the developed model, GA was applied 

to overcome this drawback and to improve the forecast accuracy of NN. In fact, GA 

attempted to obtain the best weight vector of BPNN. The performance of the model was 

compared to BP and momentum BP. In the last step, predicted wind speed was 

converted to wind power through manufacturer power curves.  

(Focken et al., 2002) compared the statistical analysis of the power forecasting error 

of an ensemble wind park at a single site. The accuracy of the power prediction was 
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evaluated within 6-, 12-, 18-, 24-, 36-, and 48-hour ahead. Numerical weather prediction 

model provided by German weather service was used for wind speed prediction. Lastly, 

the wind speed prediction results were translated into wind power forecasts through the 

power curve of the wind turbine. 

2.4.5 Direct Wind Power Prediction Methods 

Unlike indirect prediction techniques, these models use meteorological data such as 

temperature, pressure, wind direction, humidity, wind speed and historical information 

of wind energy output as inputs to predict the future value of the wind power 

generation. In these models, wind speed might be forecasted. Some of the proposed 

forecast engines require the wind speed at the hour of prediction as the most important 

input, thus in this case, similar to indirect prediction models, firstly wind speed should 

be forecasted, however wind power curve is not required. In other words, input 

variables directly predict the wind power generation. 

(Mabel & Fernandez, 2008) applied NN to forecast wind power output of wind parks 

in Muppandal, India with an installed capacity approximately 1000 MW. Three 

variables wind speed, humidity, and recorded wind energy output over a period of three 

years were used in this study.  

A comprehensive review on wind power forecasting using data mining approaches 

was provided by (Colak, Sagiroglu, & Yesilbudak, 2012). This research specified which 

forecasting model produces better accuracy for very short term, short term, medium 

term, and long-term forecasting of wind power. As a result of this survey, ANFIS 

demonstrated better performance in very short, ANN in short-term, and MLP in medium 

and long-term wind energy predictions. Moreover, it was found that in direct prediction 

models wind power and wind speed are mainly used as inputs, however, pressure and 

temperature have a profound impact on wind energy.   

Univ
ers

ity
 of

 M
ala

ya



30 

NWP data including wind speed, wind direction and temperature over more than a 

year was applied by (Xu et al., 2015) for short-term wind forecasting. Since NWP data 

often contains several inaccuracies, a new outlier detection mechanism based on data-

mining technique was introduced to identify the improper NWP data. Indeed, the k-

means algorithm was applied to partition observations into several clusters and then 

detecting the abnormal NWP data. The number of clusters was determined based on 

Bayes information criterion (BIC). Finally, an NN was used to predict wind power 

based on adjusted NWP data.  

To predict the generation of a wind farm an ensemble model including WT, NN, 

feature selection technique, and partial least square regression (PLSR) was developed 

by (Song Li, Wang, & Goel, 2015). Only wind power and wind speed were used as 

input variables to the forecast engine while temperature and humidity were not 

considered. The most informative input variables were selected by a conditional mutual 

information technique. In order to capture more precise information from the wind 

power data, a WT was applied to break up given data into several components. To select 

the best setting of the wavelet, features of 12 different mother wavelets were considered 

in wavelet architecture. Each individual then was connected to a feedforward NNs with 

Levenberg–Marquardt learning algorithm to predict the future value. Each individual 

output was assigned to a different weight and combined using PLSR. 

A hybrid neuro-fuzzy wind power forecasting system for wind power generation was 

presented by (Saleh, Moustafa, Abo-Al-Ez, & Abdullah, 2016). The prediction system 

used historical data as well as measured data by a wireless sensor network (WSN) 

including wind speed, wind power, and temperature. To obtain the optimum number of 

fuzzy rules, the clustering of the dataset was conducted by using fuzzy c-means (FCM). 

The efficacy of the model was evaluated by RMSE and relative error.  
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(Amjady, Keynia, & Zareipour, 2011b) composed an efficient feature selection 

technique and forecast engine based on NWP data including humidity, temperature, 

wind direction, and wind speed provided by Canadian Meteorological Centre and U.S. 

National Centers for Environmental Prediction. To obtain the most relevant input 

variables with minimum redundancy, two-stage feature selection technique based on 

mutual information was employed. Based on the selected inputs, NN attempted to map 

nonlinear relation between inputs and output power. The proposed enhanced PSO 

(EPSO) was added to NN for assisting in escaping from a local minimum. The 

numerical experiments evaluated the effectiveness of the proposed FS technique in a 

comparative manner. Furthermore, the superiority of the developed forecast engine was 

compared to hybrid NN (HNN), modified HNN (MHNN) using GA, MHNN using DE, 

and MHNN using PSO. 

2.5 Prediction Time Horizon 

In addition to methodology, wind power forecasting techniques can also be 

categorised in terms of time horizon. Overall wind power prediction approaches can be 

divided into four groups based on time scales: very short-term, short-term, medium-

term, and long-term wind power forecasting. The first time scale provides forecast from 

few seconds to 30 minutes ahead and is used for load tracking and wind turbine control 

as well as electricity market and real-time grid operations. Short term wind forecasting 

techniques are developed for pre-load sharing and economic load dispatch planning and 

include the forecasting from 30-min to 6-hour. Mainly statistical techniques for example 

ANNs, are employed for short-term wind power prediction due to the fact that models 

based on NWP deal with long-running calculations. Similarly, combined prediction 

techniques are inefficient in short-term prediction due to longer operation time as 

compared to the individual approaches. Medium-term predictions are utilized for energy 

trading and power system management and ranging from 6-hour to one-day ahead. The 

Univ
ers

ity
 of

 M
ala

ya



32 

last time scale refers to one-day to one-week ahead forecasting and used for the 

maintenance planning and repair of the wind turbine machines. It is noted that medium 

and long-term predictions are typically based on NWPs. 

2.6 Wind Speed Distribution 

A comprehensive assessment of wind energy regime is of fundamental importance 

that should be carried out prior to implementing any wind energy project. It is due to the 

fact that the cost of producing energy is heavily dependent on the wind energy at site.  

The wind energy in any site is strongly influenced by the wind speed, which has a 

cubic relationship to the generated wind power. Knowledge of wind characteristic not 

only assists the estimation of the future revenue and income but also facilitates a due 

turbine design selection for the chosen location. The probability distribution of wind 

speed is the important information required for the assessment of wind energy potential. 

For this reason, in order to accurately analyze the characteristics of wind speed 

frequency distribution, a variety of PDFs was proposed. 

(Brano, Orioli, Ciulla, & Culotta, 2011) applied Weibull, Rayleigh, Lognormal, 

Gamma, and inverse Gaussian to estimate the wind speed frequency distributions. 

(Zhou, Erdem, Li, & Shi, 2010) not only compared Weibull and Rayleigh distributions, 

but also Gamma, Lognormal, Inverse Gaussian, and MEP-PDF with six goodness-of-fit 

statistics. (Jamil, Parsa, & Majidi, 1995) used the two-parameter Weibull probability 

distribution function to find out the wind energy density from the statistical data of wind 

speed measurements. The Weibull and lognormal models were proposed for fitting wind 

speed distribution by (Garcia, Torres, Prieto, & De Francisco, 1998). (Lun & Lam, 

2000) employed a two-parameter Weibull function to describe the wind speed 

frequency distribution for a given set of wind data for three different locations. (Celik, 

2004) presented a statistical analysis of wind power density based on the Weibull and 
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Rayleigh models. Monthly wind energy production was calculated using the Weibull-

representative wind data and it was shown that the Weibull function estimates 

accurately the wind energy output. In order to develop a more accurate method for 

estimation of wind speed characteristics, (S. Akdağ, Bagiorgas, & Mihalakakou, 2010) 

analyzed the characteristics of wind speed data using typical two-parameter Weibull 

wind speed distribution and the two-component mixture Weibull distribution, involving 

five parameters. (Fan et al., 2009; Jiang, Wang, Wu, & Geng, 2016) drew a comparison 

between the gamma, Weibull, and Rayleigh probability density functions and it was 

found that all three wind speed distributions give a good agreement to the recorded wind 

speed data, though Weibull distribution was recommended due to its simplicity. Based 

on the literature, Weibull and the Rayleigh functions are the most two common 

distributions in which the Rayleigh distribution is a subset of the Weibull distribution 

and Weibull distribution is a special case of two-parameter Gamma function. The 

reason for their popularity is that the estimation of their parameters is not difficult. The 

Weibull is a two-parameter distribution while the Rayleigh has only one parameter. This 

makes the Weibull more versatile and the Rayleigh simpler to use. In detail, the reasons 

why two-parameter Weibull is widely applied and accepted among other distribution 

functions is that it fits the wind distribution very well; it has a flexible structure, varying 

according to the shape parameter of the distribution; it provides easy determination of 

parameters; the number of parameters is few; and once the parameters for a certain 

height are determined, the wind data for various heights can be calculated using the 

already determined parameters (S. A. Akdağ & Dinler, 2009; Chang, 2011; Dursun & 

Alboyaci, 2011). 

2.7 Wind Turbine Power Curve 

The wind turbine power curve (WTPC) represents the relationship between the 

electrical output power of the wind turbine and hub height wind speed. Wind energy 
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assessment is one of the prime objectives for modeling of the WTPC. Wind energy 

assessment is an important procedure usually performed by wind farm developers to 

estimate the future energy generation of a wind farm. A comprehensive and accurate 

assessment is a requisite for the successful development of the wind farm. A WTPC can 

greatly facilitate estimation of wind power that can be generated over a period of time if 

the wind speed data in site is available. An accurate wind turbine power curve model, as 

a prediction tool plays a key role in electricity market wherein wind power participants 

must pay penalty if they underestimate the future wind energy produced.. WTPC 

models, furthermore, aid wind farm developers to choose the most appropriate wind 

turbines which would deliver optimum efficiency and improved performance. It is of 

great important that a WTPC model can serve as a very effective performance 

monitoring tool (Kusiak et al., 2009b). 

As illustrated in Figure 2.2, past studies on wind turbine power curve modeling are 

broadly divided into two categories: models based on fundamental equations of power 

available in wind and models based on the concept of the power curve of the wind 

turbine. The former depends on various parameters, i.e. wind speed, the rotational speed 

of the turbine, turbine angle of attack and pitch angle, mechanical transmission 

efficiency, generator efficiency and so on. Due to the interdependence of these 

parameters and their variation with change in climatic conditions, and type of 

components used as well, using these models is not only cumbersome but also do not 

give accurate results.  

To approximate wind turbine power curve an expression was developed by (Ashok, 

2007) which is highly dependent on air density, power coefficient of wind generator, 

wind turbine rotor swept area, as well as the wind turbine and generator efficiency. In 

the study, however, some aspects were ignored such as variation in the value of wind 
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turbine and generator efficiency with speed, variation in the value of air density with 

changing weather condition, and variation in the value of electrical output power of the 

turbine for various wind speed ranges. To improve the performance of the previous 

study, another expression with an additional term, the efficiency of AC/DC converter, 

was employed by (Nelson et al., 2006). Although the variation of the turbine output 

power with wind speed was considered, neglition on air value variation with weather 

condition remained. Moreover, the efficiency of the generator and mechanical 

transmissions was not taken into account. (Kolhe, Agbossou, Hamelin, & Bose, 2003) 

provided a formula to analyze the performance of the wind turbine generator combined 

with the photovoltaic array in a stand-alone renewable energy system. In that research, 

neither the efficiency of the generators was considered nor the variation in the value of 

air density and output power with wind speed was discussed. Another expression to 

calculate the power captured by the wind turbine was developed by (Thanaa, Eskander, 

& El-Hagry, 2006). In this model, however, variation in the value of air density with 

changing weather condition was considered, but yet the efficiency of turbine and 

generator was disregarded. 

Several wind power prediction models are critically analyzed by (Thapar, Agnihotri, 

& Sethi, 2011) and it was concluded that the behavior of wind turbines might not 

correctly replicated by the models based on the fundamental equation of wind power, 

whereas the performance of a wind turbine can be conveniently modeled by the concept 

of the power curve. In fact, the power curve represents the amount of generated 

electrical power by a wind turbine at a specific wind speed, without the technical details 

of the components of the wind turbine. In other words, unlike models based on 

fundamental equations of power available in wind, models using the concept of power 

curve do not require details of various parameters of the wind generator. These models 

can be broadly divided into three categories: models based on a presumed shape of the 
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power curve, models based on actual power curve supplied by the manufacturer, and 

models based on the empirical power curve. 

There is a general presumption in models based on a presumed shape of the power 

curve that the power curve of the wind turbine follows a typical shape. Hence, a set of 

expressions and equations were developed to forecast wind turbine output for a various 

range of wind speed. It is well noted that a particular set of characteristic equation may 

not guarantee to replicate the behavior of all types of turbines. This is due to the fact 

that different types of wind turbines are different in shape of power curve depending on 

the control method and strategy, design, and power capacity. Accordingly, models 

based on presumed shape of the power curve, though are simple to use, they do not 

yield promising results. 

(HX Yang, Lu, & Burnett, 2003; Hongxing Yang et al., 2009) presented a simple 

model to predict the performance of the wind turbine in which it was assumed that the 

relationship between wind speed and output power of the wind turbine in the medium 

wind speed is linear. Though the proposed model was simple, it does not yield accurate 

result because considering the power curve, the generated power seldom linearly 

increases with wind speed. The model based on cubic law also showed an inaccurate 

result. This is often rooted in dependency of the term η, turbine efficiency, to weather 

condition and turbine blade parameters (Chedid et al., 1998). The model using 

Weibull’s parameters, too, could not perfectly map the non-linear relationship between 

the wind speed and the wind turbine’s output power (Karaki, Chedid, & Ramadan, 

1999; Lu, Yang, & Burnett, 2002; Powell, 1981). 

Models based on actual power curve supplied by manufacturers attempt to accurately 

predict the output electrical power of the wind turbine through mathematical 

expressions. To do so researchers employed various curve fitting techniques to find the 
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best fit to the actual power curve of the individual wind turbine. The characteristic 

equation of wind turbine was obtained by fitting its actual power curve based on the 

least square method (Ai, Yang, Shen, & Liao, 2003). A model based on three binomial 

expressions was presented and the accuracy of the model on different wind turbines 

with different shapes of power curve was investigated. All turbines considered, 

however, were only medium-sized wind turbines, ranging from 260 to 335 kW. (Diaf, 

Diaf, Belhamel, Haddadi, & Louche, 2007; Hocaoğlu, Gerek, & Kurban, 2009) 

produced a model to optimize the size of the hybrid wind/PV system. In this context, the 

output power of the wind turbine was estimated by cubic spline interpolation based on 

the power curve data provided by manufacturers (theoretical wind power curve). In 

these researches, the accuracy of the developed model was only evaluated on a 

particular type of wind turbine and its performance on different type of wind turbines 

was not disclosed. In general, the main drawback of the models based on the actual 

power curve is that they focus on the power curve supplied by the manufacturers which 

usually consider the wind turbines operate under ideal condition. It is well noted that in 

practice the empirical power curve does not perfectly match theoretical power curve 

which resulting in inaccuracy of the models based on the actual power curve. In fact, 

power curves supplied by manufacturers are tested at specific air density which might 

be different with the air density of the site locations. In addition, disregard of the local 

turbulence as well as the wear and tear of wind generator components result in 

indisputable discrepancy between the theoretical and the empirical power curves.   

The last group, the models based on the empirical power curve, includes parametric 

and nonparametric techniques. The former which is developed in this research, emplyes 

mathematical equations to approximate the wind turbine power curve model. Logistic 

four-parameter (4-PL) (Kusiak et al., 2009b), Polynomial expression (Giorsetto & 

Utsurogi, 1983), and logistic five-parameter (5-PL) (Lydia et al., 2013) are examples of 
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this approach. While the latter attempts to find a relationship between the wind power 

and the wind speed. Neural network (NN) models were employed by (Marvuglia & 

Messineo, 2012) to monitor a wind farm’s power curve with assumption of normal 

operating conditions ,however it is not easy to backtrack the output of NN due to its 

black-box nature. 

 

WTPC modeling methods

Models based on fundamental 
equations of power available in wind 

Models based on the concept of 
power curve of wind turbine

Model based on a presumed 
shape of power curve

Model based on actual 
power curve

Models based on empirical 
power curve 

 

Figure 2.2: Classification of WTPC modeling 
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CHAPTER 3: WIND TURBINE POWER CURVE MODELING 

3.1 Introduction 

In this Chapter, a new wind turbine power curve (WTPC) modeling is introduced. 

The proposed WTPC is applied later in the indirect wind power prediction in Chapter 4. 

Furthermore, in Chapter 4, the detailed performance evaluation of direct power 

predictions are also investigated and then compared with the indirect power prediction. 

Figure 3.1 illustrates the main research works in this study representing WTPC and 

Feature Selection Technique (FS) covered in Chapter 3 and Chapter 4 respectively.  

In the first part of this chapter a new parametric model, called modified hyperbolic 

tangent (MHTan), is introduced to approximate the empirical wind turbine power curve. 

To obtain the coefficients of the proposed wind-power curve modeling two methods 

with different procedures are employed. One attempts to find the best coefficients of the 

developed wind-power modeling by minimizing the squared residuals. To do so, three 

heuristic optimization algorithms are employed. In the other one, wind speed 

distribution and maximum likelihood are used to estimate the coefficients. Therefore, 

firstly several methods are developed to obtain the parameters of the wind speed 

distribution. Then, power density function of the wind turbine based on the power-curve 

model and wind speed distribution is derived. The coefficients of the derived formula 

are indeed the unknown parameters of the proposed power-curve modeling. The 

performance of the methods applied for the estimation of wind speed distribution is 

analyzed based on both actual and simulated data. Data from a real wind farm are used 

to validate the performance of the MHTan in approximating the wind power curve 

model. The result of the MHTan is compared with other methods from the literature. To 

pose a challenge to the MHTan, three different sets of data based on three wind turbines 

with different shape of power curve and size of power are used. In addition, the 

applicability of MHTan in online monitoring is presented in the last part of this chapter. 
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The programming code was written in Matlab and executed on a personal computer 

with Intel Pentium 2.66 GHz processor and 4 GB RAM. 

 

Figure 3.1: The Proposed WTPC and Feature Selection Technique (FS) 

3.2 Development of Wind Turbine Power Curve Model 

 The strong relationship between the wind speed and wind power can be depicted by 

wind turbine power curve. The Turbine performance as a function of wind speed is 

illustrated in Figure 3.2 for three different types of wind turbines. Cut-in speed, 𝑉𝑐, is 

the minimum wind speed needed for a turbine to generate the power. The nonlinear 

relationship between the wind speed and power continues until nominal wind speed, 𝑉𝑟 . 

The third region on the wind power curve depends on the control strategy of the wind 

turbine. Above the nominal wind speed, in pitch-based turbines, the output power is 

maintained, while in yaw-based and stall-based wind turbines the output power 

declines. Cut-out (𝑉𝑓) speed is the maximum speed in which the power extracted from 
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the turbine remains constant. To avoid any damage to the turbine, , it will be shut down 

above the cut-out speed (Jafarian & Ranjbar, 2010). 

 

Figure 3.2: Output power curves based on of three different turbine control strategy 

The power curve shape can be modeled by modified hyperbolic tangent (MHTan). 

(Tuev VI, 2009) employed MHTan to estimate the current–voltage characteristics of 

field-effect transistors. The MHTan as a special S-shaped function based on the 

hyperbolic tangent, is proposed in this study to build an accurate model for wind turbine 

power curve and its accuracy is compared to the prior parametric models. The MHTan 

function is given by: 

𝑦𝑒 =
𝑎1 exp(𝑎2𝑥) − 𝑎3 exp(−𝑎4𝑥)

𝑎5 exp(𝑎6𝑥) + 𝑎7 exp(𝑎8𝑥)
+ 𝑎9 (3.1) 

where 𝜃 = (𝑎1, 𝑎2, … , 𝑎9) is a vector of unknown parameter of MHTan which 

determines its shape. When parameters 𝑎1, … , 𝑎8 are set to 1 and 𝑎9 to 0 the MHTan 

reduces to hyperbolic tangent, whereas for 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 𝑎5 = 𝑎7 and 𝑎6 =

𝑎8 = 𝑎9 = 0, Eq. (3.1) becomes equal to hyperbolic sine. Unlike the parameters of the 

5- PL (𝑎3 and 𝑎5), there is no constraint on the range of the parameters in MHTan. Two 

different methods are applied in this study to obtain the parameters of MHTan as shown 

in Figure 3.3; one based on least square error (LSE) and the other based on maximum 
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likelihood estimation. Both methods are explained in detail in the following sections. 

The developed model can be used as a reference for monitoring the performance of 

wind turbines which is especially useful in offshore wind farms because of accessibility 

and oversight issues. Wind turbine performance monitoring substantially reduces the 

operation and maintenance cost (Leung & Yang, 2012).  

 

Figure 3.3: Applied methods to obtain the coefficient of the parametric WTPC models  

3.3 Parameter Estimation of the WTPC Model Using Least Square Error 

(LSE) 

One of the statistical methods that can be used to determine the coefficients of a wind 

turbine power curve model is the LSE method. LSE technique can be applied to 

compute the unknown parameters of wind turbine power curve modeling method. The 

optimum fitting curve is presumed and obtainable by minimizing the deviations square 

summation from a data set. Given that N pairs of observations defined as 

[𝑥1 𝑦1], . . . , [𝑥𝑁 𝑦𝑁], 𝑥 and 𝑦 represent the independent and dependent variables 

respectively. The coefficients of Eq. (3.1) can be estimated by minimizing the cost 

function Eq. (3.2). 
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𝑆(𝑥,𝑦) = ∑ 𝑟𝑖
2 = ∑[𝑦𝑒(𝑖) − 𝑦𝑎(𝑖)]2

𝑁

𝑖=1

𝑁

𝑖=1

 (3.2) 

where 𝑦𝑎 and 𝑦𝑒 present the actual power and the power estimation from the parametric 

models respectively. The 𝜃 with 𝐿 vector coefficient membership number can be 

calculated as the following (for each individual parametric model): 

𝜃 =
          

argmin 𝑆(𝑥,𝑦) ((𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)|𝑎1, … , 𝑎𝐿)
𝑎1, … , 𝑎𝐿                                                                       

 (3.3) 

By utilizing metaheuristic optimization techniques, the parametric model vector 

coefficient is obtainable. These techniques are widely implemented to achieve optimum 

solutions. In this research, cuckoo search algorithm (CSA) (Ikeda & Ooka, 2015; 

Nguyen, Vo, & Truong, 2014; Piechocki, Ambroziak, Palkowski, & Redlarski, 2014), 

backtracking search algorithm (BSA) (Civicioglu, 2013), and particle swarm 

optimization (PSO) (AlRashidi & El-Naggar, 2010; Fong, Yuen, Chow, & Leung, 

2010) are applied for minimization of Eq. (3.2) which are explained in details in the 

section below. 

3.3.1 Backtracking Search Algorithm (BSA) 

One of the finest methods to overcome optimization problems is developed by 

(Civicioglu, 2013) and technically known as BSA. It has a simple structure with only 

one parameter control, which is suitable to overcome even multimodal optimization 

based problems. Unlike other methods or techniques, the BSA’s performance is not too 

sensitive to its parameter control and moreover it is free from premature convergence 

and huge computational cost. To efficiently discover research domain, BSA uses 

mutation and crossover operators in the algorithm. It is distinguishable from other 

techniques such as genetic algorithm, evolutionary programming, and etc. In addition, 

BSA has an outstanding memory that drives the search direction, depending on the 

previous or earlier generations. The illustration chart of BSA is shown in Figure 3.4. It 
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has five main steps; namely initialization, selection-I, mutation, crossover, and 

selection-II. 

Step 1 (initialization): the parameters, 𝐏𝐨𝐩 = [𝐗𝟏 𝐗𝟐 𝐗𝟑 ⋯ 𝐗𝐧𝐏𝐨𝐩]′ and 𝐗𝐢 =

[xi1 ⋯ xij ⋯ xi D]′, which represent population and individual of each group are 

initialized. The parameter i and j are defined as individual and element numbers. Eq. 

(3.4) generates the initial population, which includes nPop individuals. The D 

optimization variables, is included in each individual. 

𝑃𝑜𝑝𝑖𝑗 = 𝑥𝑖𝑗~𝑈(𝑙𝑜𝑤𝑗, 𝑢𝑝𝑗) (3.4) 

where: 

i: defined as individual, i = (1,2,…, nPop) 

j: defined as optimization variable, j = (1,2,3,…, D) 

lowj and upj: lower and upper limits of variable j 

U: uniform distribution function 

xij: is the jth element of the ith individual as the member of the population 

Step 2 (selection-I): this step generates historical population or histPop. Pop and 

histPop are similar in the size. Furthermore, xij element in histPop is actually a xij 

counterpart in Pop. Eq. (3.5) is initialized at the beginning to produce histPop. After 

that, reclassification of historical population is done via the “if-then” order by matching 

up two numbers (randomly) which is defined as a and b, based on the Eq. (3.6). Lastly, 

for completion, individual numbers of histPop is randomly modified via Eq. (3.7). A 

random shuffling function, acting as a permuting function is applied in the mentioned 

equation. The search direction for each iteration is determined using the histPop. 

ℎ𝑖𝑠𝑡𝑃𝑜𝑝𝑖,𝑗~𝑈(𝑙𝑜𝑤𝑖,𝑗, 𝑢𝑝𝑖,𝑗) (3.5) 

𝑖𝑓 𝑎 < 𝑏 |
. 𝑔 ℎℎ → 𝐡𝐢𝐬𝐭𝐏𝐨𝐩 = 𝐏𝐨𝐩

𝑎, 𝑏~𝑈(0,1) 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
 

(3.6) 
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𝐡𝐢𝐬𝐭𝐏𝐨𝐩 = 𝑝𝑟𝑒𝑚𝑢𝑡𝑖𝑛𝑔(𝐡𝐢𝐬𝐭𝐏𝐨𝐩) (3.7) 

Step 3 (mutation): mutant, which technically defined as trial population initial form, 

is produced from the mutation process via Eq. (3.8). Pop is subtracted from histPop to 

determine the direction of the search, while the search direction amplitude is controlled 

by the function F. For standard normal distribution, the F value is set to 3.rand (rand 

stands for random). 

𝑀𝑢𝑡𝑎𝑛𝑡 = 𝐏𝐨𝐩 + 𝐹. (𝐡𝐢𝐬𝐭𝐏𝐨𝐩 − 𝐏𝐨𝐩) (3.8) 

Step 4 (crossover): this step known as crossover process is used to finalize the 

Mutant (explained in step 3). The process involves changing Mutant to the final 

population trial TR via crossover handler. Firstly, TR value is set according to the 

Mutant. A nPop rows and D columns forming a binary matrix (map) are randomly 

generated. The matrix ‘map’ each row is individually relevant. A BSA parameter called 

‘mixrate’ is a single control parameter that manages the string of elements of any 

individual within the crossover process. This control parameter (ranges from 0-100% of 

D elements) determines the maximum number of elements in each row of the binary 

matrix “map” to be equal to 1. Two techniques can be employed in this crossover 

process; the first one is to engage random individual elements and the second one is to 

choose the maximum mixrate individual elements for manipulation in crossover 

procedure. According to the strategy, firstly the binary matrix (map) is produced and 

then TR elements with the corresponding value of 1 in the matrix (map) will be 

manipulated. For this case, TR elements are placed so that it will be equal to the Pop 

relevant elements, or can be simplified as mapij=1 then TRij=Popij. 

Step 5 (boundary control): it may be seen that certain boundary limits have been 

violated by some individual elements. In this case, Eq. (3.4) can be optionally set to its 

upper or lower limits. It may be seen that certain boundary limits have been violated by 
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some individual elements. In this case, Eq. (3.4) can be optionally set to its upper or 

lower limits Eq. (3.4). 

Step 6 (selection-II): in this step, to get the optimum fitness value, a comparison is 

drawn between each individual of TR and Pop. Upon comparison, individuals of Pop 

will be updated.  

Step 7 (BSA’s control parameter and stopping condition): in the crossover 

procedure, ‘mixrate’ is the only BSA’s control parameter throughout optimization 

process. The optimization of BSa is not excessively sensitive (range between 0-100%), 

but fine-tuning is required to obtain the best optimal performance. In addition, to control 

the optimization procedure, a stopping or halt condition is required. Usually, the process 

will choose the maximum number of iterations to define the stopping/halting condition. 

Stopping criteria met?

Initialization

Selection-I

Selection-II

Start

Solution is global best
Stop

NoNo

YesYes

Mutation

Crossover

Boundary control

 

Figure 3.4: Flowchart of backtracking search algorithm 
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3.3.2 Particle Swarm Optimization (PSO) 

The particle swarm optimization algorithm, a stochastic population-based 

metaheuristic, is first introduced by (Kennedy & Eberhart, 1995; Shi & Eberhart, 1998). 

The idea of this evolutionary algorithm came from the observation of the behavior of 

natural organisms, e.g. birds and fish, to find food. PSO algorithm operates with a 

swarm of the particle, in which, each particle changes its direction due to either leader’s 

command or environmental impacts. In the PSO, population (swarm) consists of a lot of 

particles and each particle as a solution to a particular problem in the search space that 

contains two characteristics: its own position and velocity. The particles would move 

from the current position based on the speed and random direction. 

The position, indeed, represents the current values in the solution. Particles 

accelerate towards the particle having the best fitness value. In other words, the leader 

has a great effect on the speed and direction of each particle. Thus, each particle shifts 

its current position to its new position. In each iteration, particles approach a better 

position and would stop moving as the swarm reaches to the best position. Due to a 

simple principle, high efficiency, and high search speed PSO has been widely used in 

multi-objective optimization, mode identification, signal processing, damage 

identification, etc. 

As presented in Figure 3.5, basically PSO algorithm comprises three main steps: 

generating positions and velocities of particles (solutions), velocity update, and position 

update which are described as follows: 

Step 1 (initialization): the population of particles is randomly generated within the 

minimum and maximum limits of the parameters of the particular function, for example, 

modified hyperbolic tangent. In a D-dimensional search space, the complete swarm 

consists of nPop particles which are represented as a matrix as follows: 
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𝐏𝐨𝐩 = [𝑿1, 𝑿2, … , 𝑿𝑗 , … 𝑿𝑛𝑃𝑜𝑝] (3.9) 

where 𝑿𝑗 = [𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑖𝑗 , … , 𝑥𝐷𝑗] is the position vector of the jth particle and it is 

one of the solutions to parameter estimation. In parallel, the velocity vector is randomly 

initialized and then distributed uniformly in the search space within appropriate limits. 

The speed vector of jth particle is defines as: 

𝑽𝑗 = [𝒗1𝑗 , 𝒗2𝑗 , … , 𝑣𝑖𝑗 … , 𝒗𝐷𝑗] (3.10) 

Step 2 (evaluating the particles): the fitness of each particle 𝑿𝑗 is evaluated based on 

the assigned objective function Eq. (3.2).  

Step 3(initialization of the best position): there are two key factors in PSO strategy 

called, Pbest and Gbest. The former is the most optimist position of each particle which 

is defined as 𝑷𝒃𝒆𝒔𝒕𝑗
𝑡 = [𝑝𝑏𝑒𝑠𝑡1𝑗

𝑡 , 𝑝𝑏𝑒𝑠𝑡2𝑗
𝑡 , … , 𝑝𝑏𝑒𝑠𝑡𝑖𝑗

𝑡 … , 𝑝𝑏𝑒𝑠𝑡𝐷𝑗
𝑡 ], while the Gbest is 

the best position out of all Pbest and defined as 𝑮𝒃𝒆𝒔𝒕𝑡 = [𝑔𝑏𝑒𝑠𝑡1
𝑡 , 𝑔𝑏𝑒𝑠𝑡2

𝑡 , … , 𝑔𝑏𝑒𝑠𝑡𝑖
𝑡, 

… , 𝑔𝑏𝑒𝑠𝑡𝐷
𝑡 ]. In the first iteration, the initial starting point of each individual is taken as 

its Pbest. 

Step 4 (movement of particles): in the iterative search process, position and speed of 

each particle are updated based on global and individual best positions. The change of 

the speed of each individual can be expressed as follows: 

𝑣𝑗
𝑡+1 = 𝑤. 𝑣𝑗

𝑡 + 𝜌1. 𝑐1( 𝑝𝑏𝑒𝑠𝑡𝑖𝑗
𝑡 − 𝑥𝑖𝑗

𝑡 ) + 𝜌2. 𝑐2(𝑔𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖𝑗

𝑡 ) (3.11) 

where, 𝑖 ∈ {1,2, … , 𝐷}, 𝑗 ∈ {1,2, . . , 𝑃}, 𝑐1 and 𝑐2 are the accelerated factors which 

control the speed of individuals, 𝜌1 and 𝜌2 are the random numbers uniformly 

distributed 𝑈(0,1) in each iteration t, and 𝑤 is the inertia weight. After updating the 

speed, the particle moves from current position to the new position which is formulated 

in Eq. (3.12). 
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𝑥𝑖𝑗
𝑡+1 = 𝑥𝑖𝑗

𝑡 + 𝑣𝑗
𝑡+1 (3.12) 

Step 5 (updating the best positions): every particle is able to remember information 

to determine its best position in the search space according to the fitness value and has 

the ability to share information so as to obtain the best position found by the swarm and 

save it. The new position of each individual is evaluated through Eq. (3.12) and then 

Pbest is updated as follows: 

{
𝑷𝒃𝒆𝒔𝒕𝑗 = 𝑿𝑗 + 𝑽𝑗            𝑖𝑓  𝐹′𝑗 < 𝐹𝑗

𝑷𝒃𝒆𝒔𝒕𝑗 = 𝑷𝒃𝒆𝒔𝒕𝑗          𝑖𝑓   𝐹′𝑗 ≥ 𝐹𝑗
 (3.13) 

where 𝐹′ is the evaluated objective value of the 𝑗th particle at the new position. 

Step 6 (stopping condition): steps 2-5 will be repeated until the number of iterations 

exceeds the maximum or the desired value of fitness function is reached. 

Stopping criteria met?

Initialization:
Particles position and velocity

Evaluate the fitness

Update particles velocity

Update particles position

Start

Solution is global best
Stop

NoNo

YesYes

 

Figure 3.5: Flowchart of particle swarm optimization 
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3.3.3 Cuckoo Search Algorithm (CSA) 

Cuckoo search is a metaheuristic algorithm, inspired by nature, and developed by 

(X.-S. Yang & Deb, 2009) for solving optimization problems. In general, it is based on 

cuckoo breeding parasitic behavior and Lévy flights. The former is characterized by a 

process in which cuckoos lay their eggs in the nests of other host birds where the host 

bird just laid its own eggs, so as to increase their egg hatching rate. The host takes care 

of the eggs presuming that the eggs are its own, however, if the host bird identifies the 

alien egg, it certainly either throws them away or abandon the nest and builds a new 

nest at a different location. The more foreign eggs similar to the host bird’s egg, the 

higher chance they have to develop (next generation) and become a mature cuckoo. 

These eggs are usually high-quality eggs that are close to optimum value. The cuckoo 

search algorithm uses this behavior as a model, traversing the search space to find 

optimal solutions. 

The use of Lévy flights is of vital importance to the cuckoo search. Lévy flights are 

the forward steps taken by birds in search of food. These steps are randomly taken and 

depend on the current location and the transition probability to the next location. The 

direction of random forward steps follows a probability density function which is 

modeled mathematically. This random walk is derived from Lévy distribution with an 

infinite variance and mean. 

There are three principal rules for the CSA described as follows: 

1. Each cuckoo among the fixed number of available host nests randomly chooses 

a nest in which it lays its egg. 

2. The most favorable nest with higher quality of egg, representing better solutions 

preserved for the next generation. 
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3. The number of available host nests is fixed, and a host bird can reveal the alien 

eggs with a probability 𝑃𝑎 ∈ [0,1].  

Based on these three basic rules, CSA is applied to estimate the unknown parameters 

of parametric models. As shown in Figure 3.6, the steps involved in CSA are as follow: 

Step 1 (initialization of host nests): the algorithm starts with an initial population of 

nPop hosts which is represented by 𝐏𝐨𝐩 = [𝑿1, 𝑿2, … , 𝑿𝑛𝑃𝑜𝑝]. , 𝑖 = 1,2, … 𝑛𝑃𝑜𝑝. The 

population uses D-dimension vector restricted within minimum and maximum limits as 

given in Eqs. (3.14) and (3.15). 

𝑿𝑖𝑚𝑖𝑛 = [𝑥1𝑚𝑖𝑛, 𝑥2𝑚𝑖𝑛, … , 𝑥𝐷𝑚𝑖𝑛] (3.14) 

 

𝑿𝑖𝑚𝑎𝑥 = [𝑥1𝑚𝑎𝑥 , 𝑥2𝑚𝑎𝑥 , … , 𝑥𝐷𝑚𝑎𝑥] (3.15) 

Therefore, jth component of the ith population is initialized as follows: 

𝑥𝑖𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑1. (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) (3.16) 

where j=1,2,…,D and rand1 is a uniformly distributed random number between 0 and 1. 

Step 2 (generation of new solution via Lévy flights): generating the new nests 

includes two stages, generating new nests including Lévy flights and replacement of a 

fraction of eggs. With the exception of the best nest, all other nests are replaced based 

on the quality of new cuckoo eggs which are generated by Lévy flights from their 

position. In this stage, Mantegna’s algorithm is used to calculate the optimal path for the 

Lévy flights. The new solution by each nest is calculated as follows: 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑏𝑒𝑠𝑡𝑖 + 𝜗 ∗ 𝑟𝑎𝑛𝑑2 ∗ ∆𝑋𝑖

𝑛𝑒𝑤 (3.17) 
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where 𝜗 > 0 is the step size parameter which are used to adjust the convergence rate of 

the algorithm; rand2 is a normally distributed stochastic number; and the increased 

value ∆𝑋𝑖
𝑛𝑒𝑤 is determined by: 

∆𝑋𝑖
𝑛𝑒𝑤 =

𝑟𝑎𝑛𝑑𝑥

|𝑟𝑎𝑛𝑑𝑦|
1
𝜅

∗
𝜎𝑥(𝜅)

𝜎𝑦(𝜅)
∗ (𝑋𝑏𝑒𝑠𝑡𝑖 − 𝐺𝑏𝑒𝑠𝑡𝑖) (3.18) 

where randx and randy are two normally distributed stochastic variables with the 

standard deviation 𝜎𝑥(𝜅) and 𝜎𝑦(𝜅) given by: 

𝜎𝑥(𝜅) = [
Γ(1 + 𝜅) ∗ sin(

𝜅𝜋
2 )

Γ (
1 + 𝜅

2
) ∗ 𝜅 ∗ 2(𝜅−1)/2

]

1/𝜅

 (3.19) 

 

𝜎𝑦(𝜅) = 1 (3.20) 

where 𝜅 is the distribution factor 0.3 ≤ 𝜅 ≪ 1.99 and Γ is the gamma distribution 

function. 

Step 3 (alien egg discovery and randomization): as mentioned earlier, there is the 

possibility that the foreign egg detected by the host bird and it then may be thrown away 

out of the nest. Similar to Lévy flight, the discovery action of alien egg in the nest of 

host bird with the probability of 𝑃𝑎 also creates a new solution for the problem. 

𝑿𝒊
𝑫𝒊𝒔𝒄𝒐𝒗𝒆𝒓𝒚

= 𝑿𝒃𝒆𝒔𝒕𝒊 + 𝑲 ∗ ∆𝑿𝒊
𝑫𝒊𝒔𝒄𝒐𝒗𝒆𝒓𝒚

 (3.21) 

where K is the updated coefficient determined based on the probability of a host bird to 

discover a foreign egg in its nest: 

𝐾 = {
1                   𝑖𝑓 𝑟𝑎𝑛𝑑3 < 𝑃𝑎

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.22) 

the increased value, ∆𝑿𝒊
𝑫𝒊𝒔𝒄𝒐𝒗𝒆𝒓𝒚

 is obtained by: 
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∆𝑿𝒊
𝑫𝒊𝒔𝒄𝒐𝒗𝒆𝒓𝒚

= 𝑟𝑎𝑛𝑑4 ∗ [𝑟𝑎𝑛𝑑𝑝1(𝑋𝑏𝑒𝑠𝑡𝑖) − 𝑟𝑎𝑛𝑑𝑝2(𝑋𝑏𝑒𝑠𝑡𝑝2)] (3.23) 

where rand3 and rand4 are the distributed random numbers in [0,1] and randp1 (Xbesti), 

randp2(Xbesti) are the random perturbation for positions of the nests in Xbesti. 

Step 4 (termination criteria): the algorithm is terminated as the number of iterations 

reaches the predefined value or a desired value of fitness function is reached. 

Stopping criteria met?

Initialization of CS parameters

Initial generation of host nest population

Evaluation of fitness function for the 
generated host nest population

Modification of nest position using Levy 
flight equation 

Start

Print the result
Stop

NoNo

YesYes

Evaluate the new solution 

Move all cuckoos towards 
better enviroenment 

 

Figure 3.6: Flowchart of cuckoo search algorithm 
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3.4 Parameter Estimation of the WTPC Model through Maximum Likelihood 

Estimation 

An alternative approach to estimate the coefficients of the MHTan is by means of 

maximum likelihood estimation. To do so, firstly a proper distribution function 

representing wind speed behavior must be selected and it’s parameters then must be 

obtained.. Here, Weibull distribution density function is chosen as per literature. Then 

several techniques are applied to estimate the parameters of the selected wind speed 

distribution. In the next step, a new formula representing probability density function 

(PDF) of WTPC based on Weibull and MHTan is derived. The unknown parameter of 

the derived PDF is indeed the unknown parameter of MHTan. 

The probability density function of the Weibull distribution is given by (Ucar & 

Balo, 2009): 

𝑓𝑥(𝑥|𝛽 = 𝑐, 𝑘) = (
𝑘

𝑐
) (

𝑥

𝑐
)

𝑘−1

exp (− (
𝑥

𝑐
))

𝑘

 (3.24) 

where x is the wind speed, c is the scale factor, with units equal to the wind speed units, 

and k is the dimensionless shape factor. The higher value of the scale parameter 

represents that wind speed is higher, while the value of shape parameter remarkably 

influences the shape of the distribution curve and indicates the wind stability. In other 

words, parameter c varies according to the average wind speed and parameter k 

indicating the wind frequency. If the shape parameter is exactly 1, then the distribution 

is called Exponential distribution. If k =2, the probability distribution follows Rayleigh 

PDF and would be similar to normal distribution if k=3.5. Generally, manufacturers of 

wind turbines provide the standard performance of their machines using the Rayleigh 

distribution. 
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The Weibull cumulative distribution function (CDF) can be obtained by calculating 

the integral of the PDF presented by Eq. (3.24). The cumulative function relevant to a 

two-parameter Weibull distribution is expressed as follows (Ohunakin, Adaramola, & 

Oyewola, 2011): 

𝐹(𝑥) = 1 − exp [− (
𝑥

𝑐
)

𝑘

] (3.25) 

3.4.1 Estimation of Weibull Parameters 

It is well-known that parameter estimation has significant effects on the success of 

Weibull distribution for wind energy applications. Hence, in this section, in order to 

accurately estimate the parameters of Weibull PDF, six numerical methods, namely, 

graphical method, empirical method, moment method, maximum likelihood estimation, 

energy pattern factor method and a metaheuristic algorithm are employed. 

3.4.1.1 Graphical method (GM) 

GM based on the concept of least squares is implemented to fit a straight line to wind 

data, where time-series data must be ranked in ascending order. Taking the double 

natural logarithmic transformation of the Weibull CDF, given in Eq. (3.25), the 

following equation can be developed (Justus, Hargraves, Mikhail, & Graber, 1978): 

𝑙𝑛[− 𝑙𝑛(1 − 𝐹(𝑥))] = 𝑘 𝑙𝑛(𝑥) − 𝑘 𝑙𝑛(𝑐) (3.26) 

This equation is considered as the simple linear model: 𝑦 = 𝛽0 + 𝛽1𝑡 where 

𝑦 = 𝑙𝑛[− 𝑙𝑛(1 − 𝐹(𝑥))] , 𝑡 = 𝑙𝑛(𝑥), 𝛽0 = −𝑘 𝑙𝑛(𝑐) and 𝛽1 = 𝑘. Estimation of the 

slope 𝛽1and intercept 𝛽0 can be obtained through the ordinary least square estimation or 

by manual drawing. Finally, the parameters of the Weibull distribution are estimated as 

follows: 

𝑐 = 𝐸𝑥𝑝 (−
𝛽0

𝛽1
)    &   𝑘 = 𝛽1  (3.27) 
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3.4.1.2 Empirical method (EM) 

The empirical method could be considered as a special case of the moment method, 

where the Weibull shape parameter is estimated by (Rocha, de Sousa, de Andrade, & da 

Silva, 2012): 

𝑘 = (
𝜎

�̅�
)

−1.086

 (3.28) 

and then the scale parameter is obtained as: 

𝑐 = (
�̅�

Γ (1 +
1
𝑘

)
)  (3.29) 

 

3.4.1.3 The method of moment estimation (MM) 

One of the techniques to estimate population parameters is MM. It works by 

substituting the theoretical moments (distribution of population) from the mean and 

variance sample (by using sample moments) in place of wind speed theoretical 

moments. Supposing that random variable x is the wind speed observations and 

unknown parameters of the PDF is defined as 𝛽, the wind speed PDF will be 𝑓(𝑥, 𝛽). 

When utilizing MM, the existence of the origin moment (mean sample of wind speed), 

which is used to estimate the whole distribution expectation, 𝜇 is applied. On the other 

hand, the central moment or the second moment (variance sample of wind speed) is 

utilized in estimation of the variance population, 𝜎2. The formula of the above 

discussion can be express as follow s (Usta, 2016): 

�̅� = µ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 (3.30) 

𝜎 = [
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

]

1/2

  (3.31) 
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where n is the number of the wind speed observations. The shape and scale parameters 

can be obtained when 𝜇 and 𝜎 satisfy the following formula: 

(
𝜎

µ
)

2

=
𝛤 (1 +

2
𝑘

)

𝛤2 (1 +
1
𝑘

)
− 1  (3.32) 

The scale parameter 𝑐 can be calculated by the following expression: 

𝑐 =
�̅�

𝛤 (1 +
1
𝑘

)
  (3.33) 

where Γ(. ) is the Gamma function expressed by: 

Γ(a) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
∞

0

 (3.34)  

3.4.1.4 Maximum likelihood Method (MLM) 

To statistically estimate the parameters of wind speed distribution model, MLM 

technique can be employed. Its basic principle lies on the maximizing the sample wind 

speed probability, based on the model distribution interpretation. In MLM, indeed, by 

maximizing the likelihood function, unknown parameters estimation can be achieved. 

This estimation is depending on the underlying population distribution. Note that, 

before MLM is used, advanced population distribution must be known. 

Assume n size random sample 𝑥1, 𝑥2, … , 𝑥𝑛 are drawn from a set 𝑀 with PDF 

𝑓𝑥(𝑥, 𝛽), where the unknown parameter is defined as 𝛽. In this case, 𝑥1, 𝑥2, … 𝑥𝑛 

probability function is given by: 

𝐿 = ∏ 𝑓𝑥𝑖
(𝑥𝑖, 𝛽)

𝑛

𝑖=1

 (3.35) 

and the MLM of vector 𝛽 is the value of 𝛽 that maximizes 𝐿 or similarly the 𝐿 

algorithm can be written as follows: 
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𝑑 log 𝐿

𝑑𝛽
= 0 

     (3.36) 

Based on the Eq. (3.24), the function of likelihood can be written as (Arslan, Bulut, 

& Yavuz, 2014): 

𝐿(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑘, 𝑐) = ∏ (
𝑘

𝑐
) (

𝑥

𝑐
)

𝑘−1

exp (− (
𝑥

𝑐
))

𝑘𝑛

𝑖=1

 (3.37) 

By substituting Eq. (3.37) into Eq. (3.36) and differentiating with respect to k and c, 

the following expression can be obtained. 

𝜕 ln 𝐿

𝜕𝑘
=

𝑛

𝑘
+ ∑ ln 𝑥𝑖

𝑛

𝑖=1

−
1

𝑐
∑ 𝑥𝑖

𝑘 ln 𝑥𝑖

𝑛

𝑖=1

= 0 (3.38) 

𝜕 ln 𝐿

𝜕𝑐
=

−𝑛

𝑐
+

1

𝑐2
∑ 𝑥𝑖

𝑘 = 0

𝑛

𝑖=1

 (3.39) 

The elimination of variable c between Eqs. (3.38) and (3.39) and a number of 

simplifications resulting in the following expression:  

∑ 𝑥𝑖
𝑘 ln 𝑥𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
𝑘𝑛

𝑖=1

−
1

𝑘
−

1

𝑛
∑ ln 𝑥𝑖

𝑛

𝑖=1

= 0 (3.40) 

This can be accomplished by Newton-Raphson method which can be written in the 

following form: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 (3.41) 

where, 

𝑓(𝑘) =
∑ 𝑥𝑖

𝑘 ln 𝑥𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
𝑘𝑛

𝑖=1

−
1

𝑘
−

1

𝑛
∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

 (3.42) 

and, 
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𝑓′(𝑘) = ∑ 𝑥𝑖
𝑘(ln 𝑥𝑖)2

𝑛

𝑖=1

−
1

𝑘2
∑ 𝑥𝑖

𝑘(𝑘 ln 𝑥𝑖 − 1) − (
1

𝑛
∑ ln 𝑥𝑖

𝑛

𝑖=1

)(∑ 𝑥𝑖
𝑘 ln 𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

) 

(3.43) 

 

The iterative equation of k is gained by the following equation: 

𝑘 = [
∑ [𝑥𝑖

𝑘 𝑙𝑛(𝑥𝑖)]𝑛
𝑖=1

∑ 𝑥𝑖
𝑘𝑛

𝑖=1

−
1

𝑛
∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

]

−1

 (3.44) 

once k is determined, c can be estimated as 

𝑐 = [
∑ 𝑥𝑖

𝑘𝑛
𝑖

𝑛
]

1/𝑘

 (3.45) 

 

3.4.1.5 Energy pattern factor method (EPFM) 

In order to estimate the shape k and scale c parameters with this PDM, first, the 

energy pattern factor 𝐸𝑝𝑓 is calculated as (Raichle & Carson, 2009): 

𝐸𝑝𝑓 =
𝑥3̅̅ ̅

(�̅�)3
 

   (3.46) 

where �̅� is the sample mean of wind speed, and 𝑥3̅̅ ̅ is the sample mean of wind speed 

cubes. Then the two parameters are estimated using the following equations: 

𝑘 = 1 +
3.69

(𝐸𝑝𝑓)
2  (3.47) 

Scale parameter is estimated using Eq. (3.33). 

3.4.1.6 Group search optimization (GSO) 

Having been inspired by animal behavior, notably, animal searching (foraging) 

behavior, (He, Wu, & Saunders, 2009) proposed GSO primarily for continuous 

optimization problems. The population of the GSO algorithm is called a group and each 
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individual in the population is called a member. In general, there are two foraging 

strategies within groups: one is to search for food, and the other is to join resources 

(food) discovered by others. The former is called producing and the latter is called 

joining or scrounging. In GSO, however, a group comprises three kinds of members: 

producers, scroungers, and dispersed members. The latter carries out random walk to 

avoid any entrapments in local minima. In GSO, unlike other algorithms, producers and 

scroungers do not perform based on information sharing (IS) model at which it is 

generally assumed that foragers search for their own resources while searching for other 

opportunities to join. Indeed, in GSO forages are assumed to use either producing or 

joining strategies exclusively. The flowchart of GSO is illustrated in Figure 3.7, while 

the detailed procedures are as follows:  

Step1: all of the 𝑀 group of members are randomly generated in a 𝐷 dimensional 

search space so that the 𝑖th (𝑖 = 1,2, … , 𝑀) member at the 𝑡th iteration has a current 

position 𝑿𝒊
𝒕 ∈ ℝ𝐷 , head angle 𝝋𝑖

𝑡 = (𝝋𝑖1

𝑡 , … , 𝝋𝑖(𝐷−1)

𝑡 ) ∈ ℝ𝐷−1with search direction of 

𝐃𝑖
𝑡(𝝋𝑖

𝑡) = (𝑑𝑖1

𝑡 , … , 𝑑𝑖𝐷

𝑡 ) ∈ ℝ𝑛 which can be calculated from 𝝋𝑖
𝑡 through polar to 

Cartesian coordinate transformation as follows: 

𝑑𝑖1

𝑡 = ∏ cos(𝝋𝑖𝑞

𝑡 )

𝐷−1

𝑞=1

 

(3.48) 
𝑑𝑖𝑗

𝑡 = sin (𝝋𝑖(𝑗−1)

𝑡 ) . ∏ cos(𝝋𝑖𝑞

𝑡 )

𝐷−1

𝑞=𝑗

                  (𝑗 = 2, … , 𝐷 − 1) 

𝑑𝑖𝐷

𝑡 = sin(𝝋𝑖(𝐷−1)

𝑡 ) 

Step 2: at each iteration, a group member which is located in the better position is 

selected as the producer. Scanning is of vital importance to the search orientation 

wherein GSO, it is accomplished through the visual mechanism and employed by the 

producer. The scanning field of vision is characterized by the maximum pursuit angle 
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βmax ∈ ℝ1 and maximum pursuit distance lmax ∈ ℝ1 as illustrated in a 3-D space in 

Figure 3.8. 

The producer scans searching space such that covers zero point and its lateral area 

including one point in the left-hand side hypercube and the other in the right-hand side 

hypercube, which expressed as follows respectively: 

𝐗𝑧 = 𝐗𝑝
𝑡 + 𝑟1𝑙𝑚𝑎𝑥𝐃𝑝

𝑡 (𝝋𝑡) 

(3.49) 𝐗𝑙 = 𝐗𝑝
𝑡 + 𝑟1𝑙𝑚𝑎𝑥𝐃𝑝

𝑡 (𝝋𝑡 − 𝐫2𝛽𝑚𝑎𝑥/2) 

𝐗𝑟 = 𝐗𝑝
𝑡 + 𝑟1𝑙𝑚𝑎𝑥𝐃𝑝

𝑡 (𝝋𝑡 + 𝐫2𝛽𝑚𝑎𝑥/2) 

where 𝑟1 ∈ ℝ1and 𝐫2 ∈ ℝ𝐷−1 are randomly generated from normal distribution with 

mean 0 and standard deviation 1 and from uniform distribution in the interval [0,1].  

After that, the producer will find the best point by calculating their fitness values. If 

the best point has a better location as compared to the current position, then the 

producer will fly to that point and turn its head to a randomly generated angle: 

𝝋𝑡+1 = 𝝋𝑡 + 𝐫2𝛾𝑚𝑎𝑥 (3.50) 

where 𝛾𝑚𝑎𝑥 ∈ ℝ1 is the maximum turning angle. 

If the producer cannot find a point which is located in a better area it will return its 

head angle to zero degree after h interactions, 

𝝋𝑡+ℎ = 𝝋𝑘 (3.51) 

where ℎ ∈ ℝ1 is a constant.  

Step 3: a number of group members in each iteration are selected as scroungers that 

search for any opportunity to join the resources uncovered by the producers. Indeed, 

they perform based on area copy strategy at which scroungers keep moving across to 
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search immediately around the producer. This behavior can be modeled as a random 

walk towards the producer as follows: 

𝐗𝑖
𝑡+1 = 𝐗𝑖

𝑡 + 𝐫3 ∘ (𝐗𝑝
𝑡 − 𝐗𝑖

𝑡) (3.52) 

where 𝐫3 ∈ ℝ𝑛is a random sequence in the range between 0 and 1 generated from 

uniform distribution. Operator “∘ " known as Hadmard product, is an element-by-

element product of the two matrices with the same size. 

Step 4: the rest of group members are dispersed from their position to assist the 

group to escape from local minima. In this context, at tth iteration, they generate a 

random head angle through formula a the choose a random distance  

𝑙𝑖 = ℎ. 𝑟1𝑙𝑚𝑎𝑥 (3.53) 

and move to the new position. 

𝐗𝑖
𝑡+1 = 𝐗𝑖

𝑡 + 𝑙𝑖𝐃𝑖
𝑡(𝝋𝑡+1) (3.54) 
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Generate and evaluate the initial members

Choose a member as producer

The producer performs producing

Choose scroungers

Scroungers perform scrounging

Dispersed the rest members to perform 
ranging

Evaluate members

Termination met?

Start

End

Yes

 

Figure 3.7: Flowchart of group search optimizer algorithm 

 

0° 

 

Figure 3.8: Scanning field in 3-D space 
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3.4.2 The Maximum Likelihood Estimation Based on the Power 

Distribution  

From Weibull distribution of wind speed and turbine power 

curve model based on MHTan, the pdf of wind turbine output 

power can be obtained as (Casella & Berger, 2002): 

𝑓𝑌(𝑦) = 𝑓𝑋(ℎ−1(𝑦)) |
𝑑ℎ−1(𝑦)

𝑑𝑦
| (3.55) 

where x is the wind speed following Weibull distribution denoted as 𝑓𝑥(. ), y is the 

actual power, h represents MHTan model and 𝑓𝑦(. ) is an unknown PDF of y. A 

simplification to Eq. (3.55) has been made by assumption that 𝑎2  =  𝑎4 = 𝑎6 = 𝑎8 =

 𝑎 . Thus, 

ℎ−1(𝑦) =
1

2𝑎
log (

𝑎3 + 𝑎7𝑦 − 𝑎7𝑎9

𝑎1 − 𝑎5𝑦 + 𝑎5𝑎9
) (3.56) 

 

𝑑ℎ−1(𝑦)

𝑑𝑦
=

𝑎1𝑎7 + 𝑎3𝑎5

2𝑎(𝑎1 + 𝑎5𝑎9 − 𝑎5𝑦)(𝑎3 − 𝑎7𝑎9 + 𝑎7𝑦)
 (3.57) 

Based on Eq. (3.24) and differentiating ℎ−1 with respect to variable y, Eq. (3.55) 

leads to: 

𝑓𝑌(𝑦|𝜃) = |
𝑘(𝑎1𝑎7 + 𝑎3𝑎5)

2𝑎𝑐(𝑎1 − 𝑎5𝑦 + 𝑎5𝑎9)(𝑎3 + 𝑎7𝑦 − 𝑎7𝑎9)
|

× exp (− (
1

2𝑎𝑐
𝑙𝑜𝑔 (

𝑎3 + 𝑎7𝑦 − 𝑎7𝑎9

𝑎1 − 𝑎5𝑦 + 𝑎5𝑎9
))

𝑘

)

× (
1

2𝑎𝑐
𝑙𝑜𝑔 (

𝑎3 + 𝑎7𝑦 − 𝑎7𝑎9

𝑎1 − 𝑎5𝑦 + 𝑎5𝑎9
))

𝑘−1

 

(3.58) 

where 𝜃 includes the coefficients of MHTan, and k and c are the estimated parameters 

of the Weibull distribution. With regard to Eq. (3.35), the function of likelihood as an 

objective function can be written as: 
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𝐿(𝜃) = ∑ log (𝑓𝑦(𝑦𝑖|𝜃))

𝑁

𝑖=1

 
(3.59) 

The 𝜃 , therefore, can be obtained by Eq. (3.60), which can be solved by the three 

above mentioned optimization techniques in sections 3.3.1 to 3.3.3. 

𝜃 =
argmin 𝐿(𝜃)

𝑎1, … , 𝑎9
 (3.60) 

 

3.5 Evaluation Criteria for Weibull Parameters Estimation 

To determine the performance of the six aforementioned methods in estimating the 

parameters of Weibull distribution, the coefficient of determination (𝑅2), root mean 

square error (RMSE), Kolmogorov– Smirnov test (K–S), and chi-square (𝜒2) are used 

as the evaluation criteria goodness-of-fit. Goodness-of-fit refers to the fitting degree 

between the actual and the estimated values, which in this section is the fitting degree 

between the actual wind speed frequency and the fitted wind speed distribution.  

The coefficient of determination (𝑅2) or squared Pearson correlation coefficient 

represents the degree of correlation between the estimated wind speed PDF and the 

experienced probability density. The determination (𝑅2) is expressed as follows: 

𝑅2 = 1 −
∑ (𝑦𝑎(𝑖) − 𝑦𝑒(𝑖))2𝑁

𝑖=1

∑ (𝑦𝑎(𝑖) − �̅�𝑎(𝑖))2𝑁
𝑖=1

 (3.61) 

where N represents the total number of bins which wind speed are divided into, 𝑦𝑎 the 

frequencies of the wind speed received from the measurement, 𝑦𝑒 the estimated 

frequencies calculated from theoretical distribution, �̅�𝑎 the average of 𝑦𝑎values. 

The root mean squared error (RMSE) is another judgment of accuracy which is 

calculated as follow: 
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𝑅𝑀𝑆𝐸 = [
1

𝑁
∑(𝑦𝑎(𝑖) − 𝑦𝑒(𝑖))2

𝑁

𝑖=1

]

1/2

 (3.62) 

The chi-square as a non-parametric testis employed to discover the degree of 

difference between the observed and the expected value. In other words, chi-square 

goodness-of-fit test determines how well theoretical distribution fits the empirical 

distribution. In the chi-square goodness-of-fit test, sample data is divided into k bins and 

the test statistic is defined as: 

𝜒2 = ∑
(𝑦𝑎(𝑖) − 𝑦𝑒(𝑖))2

𝑦𝑎(𝑖)

𝑁

𝑖=1

 (3.63) 

In the statistical test, the critical region for rejection of the hypothesis at the 

significance level 𝛼 is, 

𝜒2 > 𝜒2
1−𝛼,𝑑𝑓

 (3.64) 

where 𝜒2
1−𝛼,𝑑𝑓

 is the 𝛼-quantile of the chi-squared distribution with df degrees of 

freedom. 

Kolmogorov–Smirnov test (K–S test) is adopted to decide whether a particular 

continuous theoretical PDF is suitable to describe the wind speed sample or not. in this 

context, it compares the cumulative observed frequency distribution with the theoretical 

distributions then determines that which type of distribution the observations come 

from. A narrow gap between the empirical CDF and the theoretical distributions affirms 

that the sample is taken from the theoretical distributions. The K–S test is defined as the 

max error between two cumulative distribution functions: 

𝐾𝑆 = 𝑚𝑎𝑥|𝐹(𝑥) − 𝑂(𝑥)| (3.65) 
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where F(x) and O(x) are the theoretical cumulative distribution function and the 

empirical cumulative of the actual wind speed. The critical value for the K-S test at 95% 

confidence level is given by: 

𝐾𝑆0.95 =
1.36

√𝑛
 (3.66) 

where n is the number of data points in the sampled wind speed data. If KS value 

exceeds the critical value then one can say that there is a significant difference between 

the theoretical and the time-series data under the given confidence level.  

3.6 Evaluation Criteria for Wind Turbine Power Curve Modeling 

To validate the performance of the parametric and nonparametric WTPC modeling 

methods, two goodness-of-fit indicators, namely mean absolute percentage error 

(MAPE) and RMSE, are employed. RMSE is defined in Eq. (3.36) while MAPE is 

defined as follows: 

MAPE = [
1

𝑛
∑

|𝑦𝑎(𝑖) − 𝑦𝑒(𝑖)|

𝑦(𝑖)̅̅ ̅̅ ̅̅

𝑛

𝑖=1

]

1/2

 (3.67) 

where 𝑦𝑎 and 𝑦𝑒 represent the observed the estimated power, 𝑛 is the number of 

samples, and �̅� is the average of observed power for 𝑛 number of samples. 

𝑦(𝑖)̅̅ ̅̅ ̅ =
1

𝑛
∑ 𝑦𝑎(𝑖)

𝑛

𝑖=1

 (3.68) 

 

3.7 Experiment and Results 

3.7.1 Parameters Estimation of Weibull Distribution for Simulated Data 

To evaluate the performance of the six aforementioned methods in parameters 

estimation of Weibull distribution for the wind power application, various sets of data 

with varying scale parameters, shape parameter, and sample size are randomly 
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generated. Tables 3.1 to 3.3 present the average RMSE, chi-square, and K-S test 

between actual and estimated Weibull parameters for the six methods after replicating 

100 times with sample size of 50, 500, and 10,000 each time. The critical values of K-S 

test at the 5% significance level at the given sample size are 0.1923, 0.0608, and 0.0136 

respectively. With respect to the maximum error in CDF, neither of six estimation 

methods exceeds the corresponding critical value. This implies that shape and scale 

parameters estimated by these six methods are very close to the true parameter of the 

Weibull distribution. In other words, if two individual samples of data are randomly 

generated; one by true Weibull parameters and the other by estimated parameters, it can 

be deduced that both samples come from the same distribution. Similarly, according to 

critical value in chi-square error at the 5 % significance level with df degree of freedom, 

it can be concluded that sample data generated by true Weibull parameters and 

estimated parameters follow the same distribution. It should be mentioned that the 

critical value of chi-square error is extracted from the chi-square table presented in 

Appendix A. Tables 3.1 to 3.3 demonstrate that both K-S test and X2 become smaller 

when the number of data increases. The similar trend is identified in RMSE value, 

irrespective of numerical methods. It can be also observed that RMSE values decrease 

while the scale parameter increases, irrespective of estimation methods, sample size, 

and shape parameter. Three other types of error, R-squared, percentage error of shape 

and scale parameters, for the same data number of 50, 500, and 10,000 are given in 

Tables 3.4 to 3.6. The results confirm the increment in R-squared error and a 

corresponding decrease in percentage error of shape and scale parameters with the size 

of samples. Note that all the results in Tables 3.1 to 3.6 are averaged over 100 

replications. 
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Table 3.1: Mean of RMSE in PDF, mean of chi-square error, and mean of max-error in 

CDF between Weibull function and generated data after 100 replications with 50 

random variables each time (Q95 = 0.1923), (𝑋2|𝛼=0.05
𝑑𝑓=4

= 9.48) 

True Weibull 

parameters 
 Graphical method  Moment method  Empirical method 

k c (m/s)  RMSE KS X2  RMSE KS X2  RMSE KS X2 

1.5 2  0.0417 0.080 2.937  0.0353 0.0763 2.647  0.0350 0.0762 2.656 

 5  0.0147 0.091 2.365  0.0150 0.0838 2.827  0.0150 0.0836 2.816 

 10  0.0106 0.088 2.685  0.0089 0.0835 2.013  0.0089 0.0835 2.005 

 15  0.0052 0.092 3.841  0.0062 0.0791 3.614  0.0062 0.0789 3.618 

2 2  0.0350 0.1005 4.006  0.0312 0.0918 3.624  0.0305 0.0918 3.634 

 5  0.0234 0.1033 3.470  0.0162 0.0817 2.715  0.0162 0.0814 2.716 

 10  0.0073 0.0902 2.716  0.0080 0.0783 2.667  0.0079 0.0783 2.664 

 15  0.0041 0.1023 4.061  0.0053 0.0792 3.618  0.0053 0.0793 3.627 

2.5 2  0.0469 0.1091 3.1088  0.0482 0.0862 3.711  0.0479 0.0861 3.710 

 5  0.0218 0.1005 4.5107  0.0200 0.0901 4.149  0.0197 0.0906 4.164 

 10  0.0080 0.0956 4.7265  0.0081 0.0834 4.483  0.0081 0.0834 4.493 

 15  0.0064 0.0949 3.5833  0.0062 0.0778 3.113  0.0062 0.0777 3.106 

3 2  0.0608 0.1064 5.808  0.0400 0.0842 4.707  0.0394 0.0846 4.737 

 5  0.0261 0.1141 5.559  0.0277 0.0875 4.702  0.0275 0.0875 4.724 

 10  0.0086 0.0996 3.065  0.0082 0.0800 2.926  0.0082 0.0796 2.930 

 15  0.0072 0.1136 7.723  0.0050 0.0877 6.014  0.0051 0.0876 6.032 

True Weibull 

parameter 
 Maximum likelihood  Energy pattern factor  GSO algorithm 

1.5 2  0.0348 0.0738 2.687  0.0372 0.0799 2.731  0.0458 0.0778 2.555 

 5  0.0172 0.0832 2.661  0.0144 0.0875 3.317  0.0144 0.0815 2.181 

 10  0.0087 0.0841 1.982  0.0090 0.0872 2.178  0.0096 0.0820 2.225 

 15  0.0064 0.0780 3.417  0.0063 0.0828 3.839  0.0067 0.0862 2.958 

2 2  0.0299 0.0946 3.833  0.0322 0.0931 3.721  0.0527 0.0915 3.295 

 5  0.0170 0.0822 3.539  0.0154 0.0826 2.758  0.0173 0.0788 2.561 

 10  0.0082 0.0798 2.667  0.0079 0.0788 3.140  0.0080 0.0794 2.478 

 15  0.0053 0.0793 3.660  0.0055 0.0793 3.764  0.0049 0.0873 3.785 

2.5 2  0.0531 0.0880 3.905  0.0471 0.0856 3.672  0.0461 0.0885 3.274 

 5  0.0201 0.0903 3.220  0.0181 0.0926 4.425  0.0236 0.0889 4.260 

 10  0.0080 0.0854 4.519  0.0081 0.0831 4.540  0.0098 0.0825 3.835 

 15  0.0064 0.0797 3.153  0.0060 0.0768 3.124  0.0062 0.0867 3.422 

3 2  0.0420 0.0848 4.830  0.0300 0.0872 5.162  0.0536 0.0805 4.182 

 5  0.0286 0.0868 5.111  0.0239 0.0947 5.533  0.0346 0.0929 5.218 

 10  0.0089 0.0809 2.965  0.0079 0.0802 3.136  0.0105 0.0899 2.878 

 15  0.0050 0.0882 6.033  0.0051 0.0891 6.138  0.0060 0.0872 5.535 
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Table 3.2: Mean of RMSE in PDF, mean of chi-square error, and mean of max-error in 

CDF between Weibull function and generated data after 100 replications with 500 

random variables each time (Q95 = 0.0608), (𝑋2|𝛼=0.05
𝑑𝑓=7

= 14.06) 

True Weibull 

parameters 
 Graphical method  Moment method  Empirical method 

k c (m/s)  RMSE KS X2  RMSE KS X2  RMSE KS X2 

1.5 2  0.0117 0.0343 6.916  0.0107 0.0288 6.172  0.0107 0.0287 6.242 

 5  0.0046 0.0321 7.056  0.0054 0.0274 6.950  0.0052 0.0272 6.879 

 10  0.0026 0.0327 6.486  0.0024 0.0309 5.913  0.0023 0.0306 5.889 

 15  0.0016 0.0321 6.877  0.0015 0.0285 6.767  0.0014 0.0283 6.712 

2 2  0.0172 0.0351 5.579  0.0111 0.0284 3.821  0.0107 0.0280 3.732 

 5  0.0054 0.0361 6.343  0.0045 0.0279 5.453  0.0044 0.0276 5.390 

 10  0.0034 0.0433 7.114  0.0025 0.0293 6.356  0.0025 0.0292 6.264 

 15  0.0017 0.0323 6.246  0.0014 0.0269 5.724  0.0014 0.0268 5.626 

2.5 2  0.0212 0.0399 7.692  0.0116 0.0249 6.247  0.0114 0.0249 6.213 

 5  0.0058 0.0381 7.237  0.0054 0.0267 5.648  0.0052 0.0268 5.610 

 10  0.0039 0.0361 8.280  0.0026 0.0286 7.450  0.0026 0.0282 7.327 

 15  0.0023 0.0391 7.992  0.0019 0.0272 6.757  0.0019 0.0272 6.679 

3 2  0.0178 0.0368 8.347  0.0141 0.0239 6.045  0.0138 0.0238 5.993 

 5  0.0090 0.0397 9.612  0.0052 0.0286 6.638  0.0049 0.0285 6.555 

 10  0.0045 0.0435 8.467  0.0024 0.0256 6.117  0.0023 0.0260 6.052 

 15  0.0029 0.0415 9.200  0.0019 0.0249 6.618  0.0019 0.0250 6.879 

True Weibull 

parameter 
 Maximum likelihood  Energy pattern factor  GSO algorithm 

1.5 2  0.0111 0.0273 6.017  0.0112 0.0313 6.456  0.0118 0.0257 6.081 

 5  0.0045 0.0260 6.523  0.0044 0.0274 6.850  0.0053 0.0240 6.641 

 10  0.0018 0.0297 5.978  0.0026 0.0306 6.124  0.0022 0.0276 6.022 

 15  0.0014 0.0266 6.475  0.0014 0.0292 6.765  0.0016 0.0252 6.851 

2 2  0.0104 0.0281 3.764  0.0113 0.0283 3.765  0.0092 0.0249 4.026 

 5  0.0045 0.0274 5.322  0.0046 0.0280 5.5031  0.0049 0.0258 5.557 

 10  0.0023 0.0292 6.108  0.0023 0.0299 6.217  0.0029 0.0254 5.597 

 15  0.0014 0.0274 5.501  0.0014 0.0270 5.601  0.0014 0.0248 5.582 

2.5 2  0.0114 0.0256 6.209  0.0106 0.0258 6.338  0.0130 0.0244 6.500 

 5  0.0051 0.0282 5.623  0.0046 0.0279 5.727  0.0059 0.0274 6.000 

 10  0.0025 0.0284 7.242  0.0024 0.0283 7.384  0.0026 0.0275 7.6014 

 15  0.0019 0.0279 6.717  0.0018 0.0284 6.688  0.0020 0.0254 7.220 

3 2  0.0138 0.0243 6.003  0.0168 0.0304 7.447  0.0147 0.0241 6.165 

 5  0.0050 0.0288 6.552  0.0064 0.0322 8.066  0.0061 0.0259 6.831 

 10  0.0024 0.0263 6.066  0.0034 0.0328 7.509  0.0025 0.0243 6.465 

 15  0.0021 0.0260 6.579  0.0027 0.0310 8.132  0.0018 0.0233 6.521 
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Table 3.3: Mean of RMSE in PDF, mean of chi-square error, and mean of max-error in 

CDF between Weibull function and generated data after 100 replications with 10000 

random variables each time (Q95= 0.0136), (𝑋2|𝛼=0.05
𝑑𝑓=8

= 15.50) 

True Weibull 

parameters 
 Graphical method  Moment method  Empirical method 

k c (m/s)  RMSE KS X2  RMSE KS X2  RMSE KS X2 

1.5 2  0.0041 0.0090 8.812  0.0048 0.0088 8.071  0.0044 0.0084 7.281 

 5  0.0009 0.0081 7.307  0.0021 0.0087 8.941  0.0019 0.0082 8.091 

 10  0.0007 0.0082 10.412  0.0010 0.0096 9.820  0.0009 0.0091 8.978 

 15  0.0004 0.0095 9.057  0.0006 0.0101 10.835  0.0005 0.0096 9.965 

2 2  0.0037 0.0109 12.865  0.0053 0.0082 11.063  0.0045 0.0076 9.681 

 5  0.0017 0.0106 12.151  0.0015 0.0074 9.769  0.0012 0.0068 8.486 

 10  0.0008 0.0098 11.709  0.0009 0.0084 11.477  0.0008 0.0077 9.902 

 15  0.0006 0.0084 7.332  0.0004 0.0080 9.948  0.0004 0.0073 8.427 

2.5 2  0.0054 0.0101 9.509  0.0039 0.0072 7.689  0.0033 0.0064 6.737 

 5  0.0029 0.0116 16.409  0.0018 0.0070 8.971  0.0015 0.0064 7.679 

 10  0.0010 0.0110 12.243  0.0008 0.0065 8.763  0.0006 0.0059 7.446 

 15  0.0006 0.0097 10.506  0.0006 0.0067 7.110  0.0005 0.0059 5.933 

3 2  0.0066 0.102 14.282  0.0034 0.0062 8.253  0.0031 0.0057 7.752 

 5  0.0034 0.0122 18.455  0.0018 0.0060 7.340  0.0016 0.0059 6.994 

 10  0.0023 0.0169 28.319  0.0007 0.0071 8.021  0.0007 0.0069 7.427 

 15  0.0011 0.0118 23.957  0.0003 0.0059 7.889  0.0003 0.0055 7.317 

True Weibull 

parameter 
 Maximum likelihood  Energy pattern factor  GSO algorithm 

1.5 2  0.0026 0.0070 4.971  0.0029 0.0072 5.053  0.0028 0.0064 4.716 

 5  0.0006 0.0062 5.559  0.0007 0.0062 5.393  0.0008 0.0058 5.475 

 10  0.0004 0.0064 5.982  0.0004 0.0064 5.999  0.0004 0.0058 6.206 

 15  0.0003 0.0072 6.939  0.0003 0.0071 6.943  0.0004 0.0063 6.761 

2 2  0.0022 0.0066 7.753  0.0033 0.0070 8.405  0.0026 0.0056 7.905 

 5  0.0008 0.0063 6.927  0.0009 0.0062 7.323  0.0008 0.0055 6.897 

 10  0.0006 0.0069 7.285  0.0006 0.0068 8.367  0.0005 0.0062 7.511 

 15  0.0004 0.0061 5.921  0.0003 0.0063 6.752  0.0004 0.0055 6.116 

2.5 2  0.0032 0.0056 6.407  0.0039 0.0057 7.321  0.0035 0.0051 6.725 

 5  0.0013 0.0065 7.040  0.0014 0.0070 7.712  0.0014 0.0055 7.797 

 10  0.0005 0.0063 6.717  0.0005 0.0069 7.270  0.0006 0.0057 6.918 

 15  0.0004 0.0051 5.439  0.0004 0.0056 6.283  0.0004 0.0050 5.808 

3 2  0.0032 0.0057 7.755  0.0162 0.0133 39.188  0.0035 0.0053 7.987 

 5  0.0015 0.0059 6.968  0.0064 0.0144 38.925  0.0018 0.0056 6.880 

 10  0.0008 0.0069 7.342  0.0034 0.0133 36.003  0.008 0.0059 7.784 

 15  0.0003 0.0056 7.249  0.0021 0.0131 37.890  0.0003 0.0050 7.575 
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Table 3.4: Mean of R-squared and percent errors (p.e) of Weibull parameters after 100 

replications with 50 random variables each time 

True Weibull 

parameters 
 Graphical method  Moment method  Empirical method 

k c (m/s)  R2 p.e k p.e c  R2 p.e k p.e c  R2 p.e k p.e c 

1.5 2  0.7576 15.07 7.17  0.799 12.89 5.83  0.8032 12.73 5.82 

 5  0.7863 9.49 6.40  0.7865 8.25 7.75  0.7853 8.27 7.76 

 10  0.7069 17.68 9.89  0.8003 14.50 9.19  0.8014 14.45 9.19 

 15  0.8021 12.19 8.59  0.6925 14.97 9.17  0.6974 14.76 9.18 

2 2  0.8667 10.56 5.01  0.8745 9.41 3.91  0.8794 9.08 3.91 

 5  0.6990 18.48 8.34  0.8451 10.60 7.02  0.8476 10.51 7.03 

 10  0.8376 8.94 5.57  0.7862 8.51 6.31  0.7893 8.26 6.31 

 15  0.8908 6.65 5.61  0.8339 10.51 6.29  0.8375 10.36 6.29 

2.5 2  0.8313 6.28 7.50  0.8081 9.76 5.67  0.8124 9.55 5.67 

 5  0.7854 12.92 6.27  0.8231 10.68 5.78  0.8289 10.42 5.78 

 10  0.8730 8.63 4.64  0.8879 7.19 5.54  0.8876 7.26 5.57 

 15  0.8504 7.58 6.69  0.8310 6.49 7.06  0.8331 6.27 7.06 

3 2  0.8145 14.32 4.18  0.9925 9.21 2.49  0.9257 9.02 2.50 

 5  0.7647 11.02 5.97  0.7396 12.49 6.38  0.7460 12.71 6.39 

 10  0.9081 7.77 3.34  0.9121 5.92 4.22  0.9137 5.76 4.23 

 15  0.8723 11.07 4.19  0.9329 7.67 3.49  0.9325 7.80 3.48 

True Weibull 

parameter 
 Maximum likelihood  Energy pattern factor  GSO algorithm 

1.5 2  0.8128 12.10 5.76  0.7924 13.87 5.87  0.7076 16.32 7.56 

 5  0.6994 9.49 8.23  0.8189 7.67 7.56  0.7957 8.96 6.95 

 10  0.8132 12.86 9.40  0.7973 15.34 9.04  0.7427 13.89 11.20 

 15  0.6837 15.24 9.24  0.6879 15.57 9.17  0.6574 18.85 6.81 

2 2  0.8862 8.97 3.72  0.8669 10.06 3.92  0.7039 16.04 5.80 

 5  0.8314 11.34 7.10  0.8587 9.62 7.02  0.8626 8.37 6.89 

 10  0.7680 9.10 6.38  0.7983 8.13 6.28  0.7887 9.68 5.39 

 15  0.8355 10.25 6.28  0.8188 11.51 6.29  0.8507 8.81 5.54 

2.5 2  0.7762 11.89 5.64  0.8213 9.00 5.66  0.8288 6.26 6.48 

 5  0.8241 11.09 5.78  0.8637 9.21 5.81  0.7509 13.37 6.40 

 10  0.8915 7.40 5.41  0.8881 7.27 5.25  0.8377 9.09 5.87 

 15  0.8253 6.89 7.07  0.8378 5.61 7.07  0.8274 7.73 6.42 

3 2  0.9127 9.71 2.46  0.9570 5.29 2.64  0.8604 12.51 3.11 

 5  0.7086 13.41 6.42  0.8291 8.92 6.52  0.6251 16.16 6.80 

 10  0.8962 7.14 4.27  0.9253 5.25 4.32  0.8620 9.19 4.24 

 15  0.9284 7.36 3.57  0.9335 7.52 3.48  0.9416 10.18 3.32 
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Table 3.5: Mean of R-squared and percent errors (p.e) of Weibull parameters after 100 

replications with 500 random variables each time 

True Weibull 

parameters 
 Graphical method  Moment method  Empirical method 

k c (m/s)  R2 p.e k p.e c  R2 p.e k p.e c  R2 p.e k p.e c 

1.5 2  0.9853 2.94 2.82  0.9883 2.67 2.48  0.9884 2.61 2.47 

 5  0.9837 2.85 3.23  0.9787 4.39 2.33  0.9796 4.21 2.33 

 10  0.9787 4.38 2.18  0.9813 3.57 2.19  0.9819 3.51 2.19 

 15  0.9805 2.98 3.49  0.9822 2.68 2.69  0.9827 2.56 2.68 

2 2  0.9712 5.21 2.05  0.9872 3.41 1.48  0.9883 3.26 1.47 

 5  0.9805 3.49 1.82  0.9842 2.48 1.79  0.9847 2.40 1.79 

 10  0.9748 3.85 3.39  0.9848 2.47 2.44  0.9855 2.26 2.44 

 15  0.9845 2.75 2.38  0.9906 2.25 1.93  0.9910 2.17 1.93 

2.5 2  0.9658 4.451 2.610  0.9890 2.100 1.506  0.9893 2.082 1.505 

 5  0.9855 2.898 1.843  0.9870 2.514 1.658  0.9880 2.408 1.660 

 10  0.9763 4.882 1.941  0.9894 2.695 1.456  0.9897 2.588 1.457 

 15  0.9749 3.107 2.356  0.9852 1.878 2.105  0.9859 1.692 2.110 

3 2  0.9826 3.855 1.305  0.9909 2.772 1.116  0.9915 2.745 1.108 

 5  0.9721 5.513 1.309  0.9903 2.496 1.028  0.9913 2.171 1.032 

 10  0.9716 4.490 1.785  0.9928 1.599 1.260  0.9934 1.410 1.256 

 15  0.9747 4.596 1.617  0.9891 3.021 1.162  0.9892 3.092 1.154 

True Weibull 

parameter 
 Maximum likelihood  Energy pattern factor  GSO algorithm 

1.5 2  0.9882 3.18 2.42  0.9860 2.76 2.41  0.9868 3.79 2.34 

 5  0.9839 3.15 2.45  0.9853 3.19 2.30  0.9784 4.41 2.14 

 10  0.9980 2.41 2.12  0.9798 4.08 2.17  0.9851 3.06 2.40 

 15  0.9842 2.45 2.78  0.9837 2.90 2.63  0.9802 3.57 2.74 

2 2  0.9892 3.04 1.50  0.9875 3.55 1.47  0.9929 2.60 1.52 

 5  0.9848 2.44 1.79  0.9845 2.49 1.79  0.9820 2.55 2.06 

 10  0.9862 2.20 2.44  0.9864 1.88 2.44  0.9813 3.36 2.39 

 15  0.9906 2.18 1.97  0.9910 2.34 1.92  0.9906 2.53 1.67 

2.5 2  0.9891 2.111 1.516  0.9898 1.795 1.513  0.9903 2.687 1.403 

 5  0.9888 2.494 1.667  0.9908 1.839 1.673  0.9847 3.105 1.622 

 10  0.9898 2.572 1.460  0.9905 2.380 1.468  0.9912 2.409 1.436 

 15  0.9861 1.866 2.104  0.9862 1.734 2.127  0.9849 2.222 2.127 

3 2  0.9915 2.685 1.120  0.9870 3.979 1.051  0.9892 2.865 1.192 

 5  0.9911 2.301 1.040  0.9885 3638 1.076  0.9880 3.248 1.104 

 10  0.9928 1.669 1.272  0.9874 3.714 1.241  0.9932 1.712 1.289 

 15  0.9880 3.451 1.141  0.9820 4.804 1.100  0.9899 2.629 1.156 
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Table 3.6: Mean of R-squared and percent errors (p.e) of Weibull parameters after 100 

replications with 10,000 random variables each time 

True Weibull 

parameters 
 Graphical method  Moment method  Empirical method 

k c (m/s)  R2 p.e k p.e c  R2 p.e k p.e c  R2 p.e k p.e c 

1.5 2  0.9981 1.300 0.961  0.9974 1.8588 0.645  0.9978 1.661 0.649 

 5  0.9993 0.7322 0.574  0.9974 1.861 0.675  0.9978 1.663 0.658 

 10  0.9982 1.274 0.558  0.9972 2.008 0.499  0.9976 1.810 0.490 

 15  0.9987 0.940 0.649  0.9979 1.664 0.641  0.9982 1.505 0.650 

2 2  0.9987 1.102 0.468  0.9977 1.887 0.412  0.9983 1.555 0.411 

 5  0.9981 1.138 0.611  0.9987 1.261 0.345  0.9991 0.954 0.345 

 10  0.9983 1.126 0.574  0.9979 1.505 0.547  0.9984 1.177 0.547 

 15  0.9980 1.070 0.843  0.9987 1.076 0.502  0.9990 0.911 0.523 

2.5 2  0.9980 1.226 0.672  0.9990 0.957 0.401  0.9993 0.701 0.399 

 5  0.9961 1.453 0.974  0.9987 1.186 0.377  0.9990 0.924 0.380 

 10  0.9981 1.272 0.515  0.9987 1.240 0.322  0.9992 0.828 0.325 

 15  0.9983 1.193 0.463  0.9986 1.204 0.442  0.9990 0.942 0.440 

3 2  0.9977 1.669 0.299  0.9994 0.737 0.200  0.9995 0.693 0.204 

 5  0.9968 1.756 0.525  0.9991 0.764 0.404  0.9993 0.601 0.391 

 10  0.9929 2.796 0.722  0.9993 0.766 0.251  0.9992 0.827 0.237 

 15  0.9956 2.286 0.216  0.9996 0.523 0.194  0.9997 0.512 0.181 

True Weibull 

parameter 
 Maximum likelihood  Energy pattern factor  GSO algorithm 

1.5 2  0.9992 0.581 0.717  0.9991 0.750 0.695  0.9992 0.832 0.680 

 5  0.9996 0.255 0.515  0.9996 0.406 0.524  0.9994 0.413 0.557 

 10  0.9995 0.542 0.457  0.9994 0.708 0.461  0.9995 0.780 0.451 

 15  0.9991 0.604 0.695  0.9988 0.626 0.733  0.9988 0.761 0.776 

2 2  0.9995 0.477 0.398  0.9990 0.993 0.413  0.9993 0.539 0.517 

 5  0.9995 0.561 0.344  0.9995 0.606 0.345  0.9995 0.494 0.385 

 10  0.9991 0.713 0.548  0.9988 0.801 0.548  0.9992 0.585 0.543 

 15  0.9990 0.740 0.534  0.9992 0.735 0.526  0.9991 0.702 0.528 

2.5 2  0.9993 0.626 0.398  0.9990 0.886 0.394  0.9993 0.824 0.371 

 5  0.9992 0.673 0.986  0.9991 0.843 0.389  0.9990 0.926 0.369 

 10  0.9995 0.578 0.321  0.9994 0.646 0.331  0.9992 0.804 0.354 

 15  0.9993 0.588 0.435  0.9992 0.567 0.436  0.9993 0.653 0.443 

3 2  0.9995 0.722 0.203  0.9891 4.451 0.256  0.9993 0.771 0.211 

 5  0.9993 0.584 0.388  0.9896 4.305 0.345  0.9993 0.733 0.343 

 10  0.9992 0.852 0.243  0.9880 4.706 0.223  0.9990 0.848 0.254 

 15  0.9997 0.353 0.180  0.9897 4.349 0.193  0.9996 0.415 0.204 
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For the sake of clarity and conciseness, all the results are summarized in Figures 3.9 

to 3.10. The figures present how frequent each numerical method outperforms others in 

statistical tests for a particular sample size, shape and scale parameters. In this regard, 

when the data number is 50, EPFM overall achieves better results than the other 

numerical methods in terms of RMSE and p.e k while EM is the worst. With respect to 

K-S test and chi-square error, unlike GM and EPFM respectively, GSO algorithm 

shows the best performance. GM followed by MLM and EPFM demonstrate the 

satisfactory results in terms of R-squared while in terms of p.e c, GSO followed by 

MLM and GM perform more accurately compared to other numerical methods. Figure 

3.7 also verifies that in the determination of the best numerical method, no firm 

conclusion can be reached.  

 

 

Figure 3.9: The best performance of the parameter estimation methods with 50 random 

samples 
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Figure 3.10: The best performance of the parameter estimation methods with 500 

random samples 

 

As the number of data increases to 500, the obtained results by numerical methods 

show the different pattern with the one at the sample size of 50. Figure 3.10 proves that 

GM and MM overall have the worst performance while EM performs more accurately 

as compared to when data number is 50. The similar pattern is observed in obtained 

results by EPFM except in K-S test. With respect to K-S test, MLM performs less 

accurately, but overall its performance is improved. GSO presents highly satisfactory 

results in terms of chi-square, however, its performance is degraded in terms of K-S test 

and p.e c as compared to Figure 3.9. 
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Figure 3.11: The best performance of the parameter estimation methods with 10,000 

random samples 

 

For a large number of data, all numerical methods yield better results as compared to 

when the sample size is 500. As shown in Figure 3.11, MLM followed by GSO is far 

superior to other estimation methods. MM, EMPF, and EM illustrate the same 

performance, while the GM is the worst. 

Figures 3.12 and 3.13 depict the impact of shape and scale parameters on Weibull 

distribution. The mean of data is described by the scale parameter while the flatness of 

Weibull distribution is represented by the shape parameter. In other words, the scale 

parameter controls the Abscissa of Weibull distribution and the shape parameter affects 

narrowness and the peak value of the Weibull distribution. 
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Figure 3.12: Weibull distribution for the shape factor of 3 and scale factor between 5 

and 15  

 

 

Figure 3.13: Weibull distribution for the scale factor of 10 and shape factor between 1 

and 15  

 

3.7.2 Parameters Estimation of Weibull Distribution for Actual Data 

The wind farm selected in this study, named Khaf, is a wind farm situated in onshore 

of Razavi Khorasan province of Iran, 250 km southwest of Mashhad. It is situated at 

34°.34’ N latitude and 60°.8’ E longitude in height of 966 m above sea level. Khaf has a 
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great potential of wind energy, an average capacity factor of over 45%, while according 

to International Energy Agency (IEA) most wind power plants operate at a capacity 

factor of 25–40%. All wind data of this station are measured with the use of either a 

combination of a wind vane and a cup anemometer or a sonic anemometer. The wind 

turbine considered is the regulated-pitch type 1.5 MW WD77 with the hub height of 60 

m, the cut-in speed rate of 3 m/s, the rated speed of 11 m/s, and the cut-out speed rate of 

25 m/s. Three hundred thirty days of data were acquired with a total of 94,271 5-min 

observations comprising wind speed, actual power, and wind direction. The data set was 

collected for four seasons starting from 09.04.2013 15:05:00 P.M to 04.03.2014 

23:55:00 P.M.  

Generally, the data collected from wind farms contains various noises and anomalies 

owing to reasons such as sensor errors, blade damage, maintenance issues, malfunction 

of the pitch control, low wind speed, inappropriate setting of the pitch angle, 

fluctuations in the turbine performance, and environment issues (dirt, ice, etc.). Thus, to 

build a robust, stable, and accurate model for a wind turbine, data filtering is required. 

As illustrated in Figure 3.14, wind speed data is divided into intervals as small as 0.2 

m/s, e.g., the intervals in [4.8–5 m/s]. In the next step, the standard deviation and 

average (𝜇𝑦, 𝜎𝑦) of the corresponding wind powers are calculated. Those located 

outside the boundary [𝜇𝑦 − 𝜎𝑦, 𝜇𝑦 + 𝜎𝑦] are filtered, shown as white circled data in 

Figure 3.14 (b). To improve the data quality, in the third step, wind powers are equally 

split into bins of ten where each bin represents the number of occurrence of wind power 

in that particular interval. Powers with lower probability than the given threshold are 

discarded. ∑ 𝜌𝑖 >  𝜌𝑇 where 𝜌𝑇 is threshold probability, i is the number of bins, and q is 

the sorted probability. The pink dots and bins in Figure 3.14 (b) and (c) are the selected 

data with high probabilities. The filtered power curve can then be obtained by sliding 

the wind power over all the wind speed intervals, as shown in Figure 3.14 (a). 
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)(d) 

 

Figure 3.14: (a) 5-min average value of collected data in April, wind speed distribution, 

and frequency of the turbine power, (b and c) process of filtering out the outliers, (d) 

frequency of the output power  

 

Table 3.7 lists the statistical characteristic of the collected data including 12 months 

in 2014. In this table, mean value shows the central value of the observed wind speed. 

The standard deviation describes how spread out the wind speeds is. The skewness is 

the extent to which the wind speed data are not symmetrical. If the value of the 

skewness is close to zero it indicates that data is more symmetrical, though the low 

value of skewness alone does not imply that data follows the normal distribution. The 

tail of the distribution points to the right (right-skewed data) if the value of skewness is 

greater than 0. The left skewed data, by contrast, produces the negative skewness value. 

Kurtosis describes how the tail and peak of a sample data (distribution) differ from a 

normal distribution. The more kurtosis value approaches to zero, the more data follow a 

normal distribution. A positive value of kurtosis shows the sample data has a sharper 

(d) 
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peak and heavier tails whereas the kurtosis negative value indicates the flatter peak and 

lighter tails than a normal distribution. 

 

Table 3.7: Descriptive statistics for monthly, seasonal, and yearly wind data observed at 

Khaf 

Period Data no. Mean 

(m/s) 

Standard 

deviation 

(m/s) 

Skewness Kurtosis Q95 

January 8928 5.50 3.87 1.221 4.471 0.0144 

February 8061 6.65 5.64 1.108 3.316 0.0151 

March 1152 6.09 4.48 0.517 1.721 0.0401 

April 5637 10.52 6.44 0.943 3.52 0.0181 

May 8928 12.46 4.95 -0.285 2.560 0.0144 

June 8640 15.43 4.39 -0.889 3.345 0.0146 

July 8908 12.82 4.25 -0.059 2.536 0.0144 

August 8925 13.99 4.17 -0.456 3.092 0.0144 

September 8640 9.19 5.07 0.061 2.021 0.0146 

October 8903 8.99 6.06 0.291 2.008 0.0144 

November 8640 5.72 4.67 1.167 3.774 0.0146 

December 8908 5.85 4.73 1.059 3.285 0.0144 

October-December 26451 6.91 5.4 0.821 2.709 0.0084 

April-June 23205 13.31 5.06 -0.453 2.473 0.0089 

July-September 26473 12.08 4.92 -0.311 2.518 0.0084 

January-March 18141 6.05 4.81 1.261 4.149 0.0101 

Yearly 94270 9.89 5.94 0.12 1.88 0.0044 

 

In this section, to evaluate the wind energy resources in Khaf site four different 

probability distributions, namely, Weibull, gamma, Rayleigh, and log-normal, are 

applied to fit the observed wind speed frequency. To estimate the parameters of 

mentioned probability distributions three of aforementioned numerical methods in 3.4.2 

(i.e MM, MLM, and GSO) are employed. To draw a fair comparison between numerical 

methods and probability distributions, R-squared, RMSE, K-S test, and chi-square are 

used as the goodness-of-fit, as listed in Tables 3.8 and 3.9. Based on the obtained 

results, it can be deduced that GSO and MLM overall outperform MM. In addition, a 

larger value of R-squared and lower value of RMSE for Weibull distribution indicate 
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the superiority of Weibull as compared to other probability distributions. In other words, 

it shows that historical wind speed data in winter follows Weibull distributions more 

than others. According to Table 3.8, both K-S and 𝑋2 statistics obtained by MM-

Rayleigh are greater than the critical values at the 5% significance level, 0.0101 and 

15.50 respectively. Therefore, MM estimation method did not pass the two statistical 

tests suggesting that observed wind data in winter does not follow this probability 

distribution. As given in Table 3.9, relatively similar pattern of results is obtained based 

on fall data. Based on the results, although all the numerical methods pass the statistical 

tests, Weibull distribution exhibits considerably better fit to the observed wind speed 

irrespective of parameter estimation methods. The estimated parameters of probability 

distributions using GSO, MLM, and MM based on spring, summer, and yearly wind 

speed data are presented in Table 3.10. 

Table 3.8: Goodness-of-fit of the distribution models based on MM, MLE, DE in 

winter, (𝐐𝟗𝟓=0.0101), (𝑿𝟐|𝜶=𝟎.𝟎𝟓
𝒅𝒇=𝟖

= 𝟏𝟓. 𝟓𝟎) 

Models  Goodness of fit  Estimator 

  MM MLM GSO 

Weibull  R2  0.9264 0.9422 0.9431 

 RMSE  0.0099 0.0083 0.0086 

 K-S  0.0070 0.0065 0.0073 

 X2  13.06 12.88 12.62 

Gamma  R2  0.9102 0.9112 0.9207 

 RMSE  0.0105 0.0120 0.0109 

 K-S  0.0082 0.0071 0.0079 

 X2  14.03 13.94 13.27 

Rayleigh  R2  0.853 0.875 0.875 

 RMSE  0.0219 0.0201 0.0215 

 K-S  0.0113 0.0099 0.0097 

 X2  17.50 15.33 15.30 

Log-normal  R2  0.8851 0.8915 0.8980 

 RMSE  0.0185 0.0188 0.0196 

 K-S  0.0099 0.0084 0.0091 

 X2  16.01 15.27 14.91 
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Table 3.9: Goodness-of-fit of the distribution models based on MM, MLE, DE in fall 

(𝐐𝟗𝟓=0.0084), (𝑿𝟐|𝜶=𝟎.𝟎𝟓
𝒅𝒇=𝟏𝟎

= 𝟏𝟖. 𝟑𝟎𝟕) 

Models  Goodness of fit  Estimator 

  MM MLM GSO 

Weibull*  R2  0.9285 0.9319 0.9337 

 RMSE  0.0073 0.0073 0.0077 

 K-S  0.0010 0.0013 0.0011 

 X2  11.20 10.98 10.05 

Gamma*  R2  0.9011 0.9084 0.9123 

 RMSE  0.0090 0.0097 0.0096 

 K-S  0.0032 0.0038 0.0041 

 X2  12.90 13.11 12.09 

Rayleigh*  R2  0.8713 0.8817 0.9002 

 RMSE  0.0142 0.0185 0.0189 

 K-S  0.0069 0.0081 0.0059 

 X2  18.10 17.86 17.13 

Log-normal*  R2  0.8906 0.8988 0.9015 

 RMSE  0.0145 0.0156 0.0124 

 K-S  0.0074 0.0062 0.0056 

 X2  16.85 15.69 13.80 

*The formulas are presented in Appendix B. 

 

Table 3.10: Parameter estimation results of distribution models using MM, MLM, and 

DE estimation methods 

Period Estimation method Weibull   Gamma  Rayleigh  Log-normal 

𝑐 𝑘  𝑐1 𝑘1  𝑐2  µ σ 

Spring MM 14.94 2.87  6.91 1.92  10.62  2.52 0.36 

 MLE 14.87 2.91  4.58 2.90  10.07  2.47 0.55 

 GSO 15.04 3.00  8.40 1.83  10.07  2.57 0.36 

Summer MM 13.59 2.65  6.00 2.01  9.64  2.41 0.39 

 MLE 13.52 2.63  6.20 3.08  9.22  2.35 0.60 

 GSO 13.91 2.79  7.80 1.79  9.22  2.47 0.039 

Yearly MM 11.11 1.74  3.56 2.77  7.89  2.13 0.55 

 MLE 10.98 1.61  1.90 5.19  8.16  2.01 0.88 

 GSO 11.55 1.62  1.60 7.85  8.16  2.16 0.68 

 

Figures 3.15 to 3.20 present how four probability distribution functions whose 

parameters are estimated by GSO, MLM, and MM match the historical wind speed data 

observed in July and February. Additionally, the obtained CDF of each individual 

distribution function based on the corresponding estimated parameter are shown in the 

figures. Based on Figures 3.15 to 3.17, observed wind data in July deviates from 
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probability distribution functions, notably, from gamma, log-normal, and Rayleigh. 

According to Figures 3.18 to 3.20 Weibull distribution using GSO indicates better 

fitting to the historical wind data in February. 

 

 

Figure 3.15: Observed wind speed in July and the estimated PDFs and CDFs of 

different distribution functions using GSO algorithm method 
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Figure 3.16: Observed wind speed in July and the estimated PDFs and CDFs of 

different distribution functions using MLM method 

 

 

Figure 3.17: Observed wind speed in July and the estimated PDFs and CDFs of 

different distribution functions using MM method 
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Figure 3.18: Observed wind speed in February and the estimated PDFs and CDFs of 

different distribution functions using GSO method 

 

 

Figure 3.19: Observed wind speed in February and the estimated PDFs and CDFs of 

different distribution functions using MLM method 
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Figure 3.20: Observed wind speed in February and the estimated PDFs and CDFs of 

different distribution functions using MM method 

 

The performance evaluation of the six numerical methods based on Weibull for 12-

month as well as the corresponding estimated shape and scale parameters are listed in 

Tables 3.11 and 3.12. In the view of obtained criteria, GSO and MLM outperform other 

methods for most of the months except November, whereas the GM shows the worst 

performance. Based on obtained results from the tables, GM and EM for months May-

July, as well as MM for month July could not pass the K-S statistical test. On one hand, 

it shows the poor performance of these methods, on the other hand, it implies that based 

on the estimated shape and scale parameters particularly by GM and EM, Weibull does 

not perfectly fit the historical wind speed in May-July. Similarly, with respect to chi-

square test, the same conclusion can be drawn for GM, MM, and EPFM methods in 

month May, for GM and EM in month June, and for GM, MM, and EM in month July. 
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Table 3.11: Estimates of parameters and performance criteria based on different 

methods for monthly wind speed data at Khaf, 𝑿𝟐|𝜶=𝟎.𝟎𝟓
𝒅𝒇=𝟗

= 𝟏𝟔. 𝟗𝟏𝟗 

Period Methods Parameters  
R2 RMSE K-S X2 

c k  

January GM 6.3212 1.5550  0.967 0.0061 0.0091 9.83 

 MM 6.0845 1.4682  0.979 0.0062 0.0143 8.46 

 EM 6.0831 1.4656  0.979 0.0062 0.0099 10.31 

 MLE 6.1212 1.4932  0.979 0.0062 0.0011 6.09 

 EPFM 6.0662 1.4362  0.977 0.0063 0.0032 6.43 

 GSO 5.9951 1.4356  0.981 0.0063 0.0020 5.17 

February GM 7.1106 1.2353  0.912 0.0166 0.0138 12.93 

 MM 7.0737 1.1964  0.910 0.0164 0.0065 13.00 

 EM 7.0721 1.1954  0.910 0.0164 0.0121 15.007 

 MLE 7.1002 1.2009  0.917 0.0164 0.0039 12.82 

 EPFM 7.1507 1.2508  0.908 0.0167 0.0060 14.27 

 GSO 6.9531 1.0721  0.914 0.0178 0.0013 11.87 

March GM 6.7745 1.2675  0.895 0.0201 0.0320 16.21 

 MM 6.6810 1.3972  0.896 0.0200 0.0390 16.10 

 EM 6.6794 1.3951  0.897 0.0198 0.0393 15.90 

 MLE 6.6544 1.3501  0.910 0.0153 0.0308 15.62 

 EPFM 6.7247 1.4610  0.897 0.0188 0.0390 15.99 

 GSO 6.7951 1.1674  0.912 0.0160 0.0295 15.30 

April GM 12.0541 2.1051  0.895 0.0252 0.0141 15.80 

 MM 12.4723 2.0123  0.909 0.0144 0.0141 12.09 

 EM 12.4732 2.0374  0.908 0.0143 0.0163 15.90 

 MLE 12.4357 1.9820  0.912 0.0144 0.0139 11.58 

 EPFM 12.4732 1.9205  0.906 0.0147 0.0128 12.75 

 GSO 12.8013 1.9007  0.932 0.0105 0.0173 10.63 

May GM 13.4712 2.2574  0.828 0.0259 0.0264 18.05 

 MM 14.0136 2.7324  0.856 0.0223 0.0132 17.82 

 EM 14.0159 2.7215  0.853 0.0223 0.0219 16.66 

 MLE 13.9539 2.7276  0.889 0.0222 0.0135 15.27 

 EPFM 14.0127 2.7391  0.856 0.0225 0.0140 19.01 

 GSO 14.0342 2.8851  0.900 0.0156 0.0138 13.97 

June GM 16.7064 2.8021  0.864 0.0186 0.0161 17.63 

 MM 17.0465 3.9423  0.872 0.0171 0.0124 16.18 

 EM 17.0525 3.9176  0.860 0.0190 0.0153 17.39 

 MLE 16.9567 4.2756  0.889 0.0161 0. 0099 15.95 

 EPFM 17.1661 3.4703  0.869 0.0209 0.0133 16.80 

 GSO 16.00 4.2930  0.891 0.0196 0.0105 16.10 
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Table 3.12: Estimates of parameters and performance criteria based on different 

methods for monthly wind speed data at Khaf, 𝑿𝟐|𝜶=𝟎.𝟎𝟓
𝒅𝒇=𝟗

= 𝟏𝟔. 𝟗𝟏𝟗 

Period Methods Parameters  
R2 RMSE K-S X2 

c k  

July GM 14.1573 2.9830  0.837 0.0230 0.0183 20.03 

 MM 14.2856 3.3317  0.865 0.0241 0.0194 19.80 

 EM 14.2896 3.3133  0.846 0.0227 0.0214 19.65 

 MLE 14.2773 3.3477  0.872 0.0165 0.0101 15.80 

 EPFM 14.3376 3.0919  0.851 0.0200 0.0141 18.74 

 GSO 14.3452 3.2742  0.880 0.0173 0.0108 15.06 

August GM 15.1021 2.901  0.886 0.0260 0.0105 15.84 

 MM 15.4992 3.7394  0.916 0.0098 0.0112 13.95 

 EM 15.5044 3.7168  0.915 0.0098 0.0134 11.28 

 MLE 15.4536 3.8425  0.921 0.0098 0.0118 12.99 

 EPFM 15.5923 3.3422  0.884 0.0200 0.0135 11.54 

 GSO 15.6209 4.0029  0.937 0.0094 0.0126 9.29 

September GM 9.5761 1.7822  0.903 0.0110 0.0123 16.73 

 MM 10.3599 1.9119  0.927 0.0097 0.0069 12.10 

 EM 10.3589 1.9063  0.928 0.0093 0.0034 15.60 

 MLE 10.2923 1.8157  0.935 0.0085 0.0135 13.78 

 EPFM 10.3708 1.9963  0.918 0.0104 0.0137 11.34 

 GSO 10.7350 1.8324  0.948 0.0072 0.0132 10.39 

October GM 9.1680 1.4168  0.896 0.0196 0.0102 15.11 

 MM 9.9926 1.5375  0.901 0.0173 0.0135 15.96 

 EM 9.9904 1.5344  0.885 0.0182 0.0116 15.54 

 MLE 9.8303 1.4017  0.921 0.0090 0.0086 11.07 

 EPFM 10.0404 1.6134  0.906 0.0152 0.0131 16.02 

 GSO 10.3785 1.3879  0.934 0.0081 0.0090 12.21 

November GM 6.2532 1.3359  0.930 0.0098 0.0038 12.91 

 MM 6.1460 1.2481  0.947 0.0091 0.0012 11.92 

 EM 6.1446 1.2469  0.947 0.0091 0.0117 12.05 

 MLE 6.1927 1.2684  0.945 0.0091 0.0136 11.18 

 EPFM 6.1799 1.2796  0.934 0.0092 0.01070 15.52 

 GSO 6.0514 1.1417  0.942 0.0099 0.0054 13.77 

December GM 6.2622 1.3105  0.906 0.0160 0.0121 13.24 

 MM 6.3015 1.2620  0.914 0.0153 0.0112 11.01 

 EM 6.300 1.2606  0.914 0.0153 0.0142 13.81 

 MLE 6.3239 1.2648  0.913 0.0153 0.0127 10.05 

 EPFM 6.3396 1.2984  0.906 0.0157 0.0097 12.29 

 GSO 6.2145 1.1403  0.916 0.0159 0.0104 10.35 

 

Though GSO and MLM perform more accurately and present the lower value of K-S 

test and chi-square compare to other methods in May-July, their larger value of RMSE 

and the smaller value of R-squared in these months compared to other months indicate 

that observed wind speed in May-July, notably in June and July does not perfectly 

follow the Weibull. Noted that K-S test’s critical value of each month are presented in 
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Table 3.7, while the critical value of chi-square is obtained from the table in Appendix 

A. Figure 3.21 demonstrates how Weibull distribution fits the observed wind speed in 

September based on obtained parameters by numerical methods. 

 

 

 

Figure 3.21: Observed frequency and probability density functions in September using 

different parameter estimation methods 
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3.7.3 Parameter Estimation of WTPC Modeling Based on LSE and MLE for 

Actual Data  

To compare the performance of LSE and MLE in the parameters estimation of the 

MHTan, the objective functions Eqs. (3.2) and (3.59) are minimized by BSA. The 2-D 

scatter illustration shown in Fig. 3.2 depicts the performance of LSE and MLE in the 

spring season with 5 minutes interval. From MLE, the estimated vector based on data in 

spring is 𝜃 = (−7.89, −0.22,88.34, −7.34, 0.05, −30.45). One can see that it is 

relatively different from the LSE estimation, which is 𝜃 = (−10.76, −0.26,95.82, -7.96 

-0.06,-33.73). The value of MAPE and RMSE obtained using MLE (10.5%, 169.4) are 

bigger as compared to LSE (1.98%, 31.4). Therefore, for further analysis, an average of 

5 minutes data recorded in fall is analyzed and the similar pattern is observed. It shows 

that LSE has a greater performance than MLE, hence LSE will be used for parametric 

models estimation. In this study, the proposed MHTan is compared with polynomial 

order 6, polynomial order 7, four-parameter logistic function (4-PL), and five-parameter 

logistic function (5-PL). The vector parameters 𝜃 of the mentioned parametric models 

are depicted in Table 3.13, using LSE based on BSA algorithm in a 5-min interval data 

recorded in winter. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



92 

 

 

Figure 3.22: Comparison of MLE and LSE based on MHTan at 5-min averaged data in 

fall 

 

Table 3.13: Estimated parameters value of parametric models using BSA based on 5-

min data in winter  

Model  Vector parameter 𝜃 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 

Order6*  -12e-4 0.08 -2.17 24.05 -98.81 164.13 -80.33 – – 

Order7*  -6.9e-7 -6.0e-4 0.07 -1.89 21.81 -89.72 148.35 -72.29 – 

4-PL*  -21.95 -0.30 -1.48 41e-4 – – – – – 

5-PL*  1560 8.82 53.54 4.09 1560 – – – – 

MHTan  -1.0 -28.07 10.0 28.34 -.047 -28.57 -9e-4 28.09 52.18 

*The formulas are presented in Appendix C. 
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3.7.4 Parameters Estimation of WTPC Modeling Based on Actual and 

Generated Data 

This section used theoretical power curve data from the manufacturer to analyze the 

performance of parametric and nonparametric WTPC models. Firstly, three turbines 

having the different power-curve shape will be measured. Two turbines (Aeolos-50 (T1) 

and Vestas V80 (T3)) manufactured by Aeolos and Vestas, are horizontal-axis type, and 

have a power profile of 50 kW and 2MW, respectively, with hub heights of 24 m 

(Aeolos) and 80 m (Vestas). The third one is a UGE-4k vertical turbine (T2) 

manufactured by Urban Green Energy Company with a power profile of 4kW and hub 

height of 4.6 m. For simulation of wind speed and power data, 720 data points for each 

data set are generated using normal distribution statistical method with mean (𝜇) equal 

to power data (obtained from manufacturers). The constant deviation for each types 

(Aeolos, UGE-4k and V80) are𝜎𝜀 = 3, 𝜎𝜀 = 0.25, and 𝜎𝜀 = 120, respectively.  

The models used in this research are 4-PL and 5-PL, sixth- and seventh- degree 

polynomial. Additionally, two data mining algorithms, namely, bagging tree, and MLP 

(Kusiak, Zheng, & Song, 2009a) are employed. Grid partition (Gd) and subtractive 

clustering (Al-Shammari et al., 2015) are the two partition techniques to set up the 

ANFIS. To obtain the unknown parameters of the parametric WTPC modeling method, 

three optimization methods with a population size of 50 and 30 independent runs are 

executed in MATLAB. For the nonparametric models, a training set of 70%, together 

with the test and validation set of 30% are randomized and partitioned for both 

simulated and real data validation. Table 3.14 shows the details of all algorithms 

parameter. WEKA is used to develop MLP and bagging algorithms. 
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Table 3.14: Setting the parameters 

Algorithm Free parameter 

BSA Dim rate=0.9 

CSA Probability of an alien egg (Pa)= [0, 1] 

Distribution factor (ß)= 1.5 

PSO wmax = 0.9, wmin = 0.4, c1=c2=2 

MLP Set up as default  

Bagging Set up as default  

Gd numMfs=8, inmftype=’trimf’, outmftype=’constant’, 

epoch_n=50, Optim. method=’hybrid’ 

Subtractive Radii=0.5, epoch_n=50 

 

 

Table 3.15: MAPE (%) of parametric & nonparametric models for actual data (winter 

and summer)  

Model Algorithm 5min  Hourly  3-hour 

Summer Winter  Summer Winter  Summer Winter 

Order6 BSA 2.44 6.31  2.05 5.62  2.22 5.59 

 CSA 2.50 6.30  2.05 5.62  2.22 5.60 

 PSO 2.44 6.31  2.10 5.84  2.25 5.59 

Order7 BSA 2.37 6.19  2.06 4.77  2.22 4.99 

 CSA 2.61 6.20  2.04 4.91  2.21 4.97 

 PSO 2.84 5.56  2.17 4.68  2.21 5.01 

4-PL BSA 1.97 5.28  1.88 5.19  2.23 5.55 

 CSA 2.12 5.28  1.88 4.92  2.22 5.54 

 PSO 1.97 5.35  1.87 4.99  2.23 5.56 

5-PL BSA 1.52 4.78  1.85 4.47  2.02 5.14 

 CSA 1.52 4.78  1.85 4.47  2.04 5.13 

 PSO 1.52 4.78  1.85 4.47  2.03 5.13 

MHTan BSA 1.57 3.83  1.62 3.93  2.01 4.90 

 CSA 1.72 4.43  1.65 4.34  2.02 4.92 

 PSO 1.60 4.60  1.60 3.92  1.99 4.95 

Data mining  Bagging 2.18 4.96  2.11 5.32  2.19 5.16 

 MLP 1.94 5.05  1.56 4.90  2.18 5.31 

ANFIS GD 3.18 8.32  2.65 7.23  2.68 6.72 

 subtractive 1.90 4.55  1.53 4.61  2.12 4.99 
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Table 3.16: RMSE of parametric & nonparametric models for actual data (winter and 

summer)  

Model Algorithm 5min  Hourly  3-hour 

Summer Winter  Summer Winter  Summer Winter 

Order6 BSA 38.11 38.77  33.63 33.67  38.32 34.19 

 CSA 38.27 38.77  33.64 33.67  38.33 34.20 

 PSO 38.11 38.77  34.23 36.04  38.36 34.21 

Order7 BSA 36.77 38.73  33.93 32.77  37.31 32.29 

 CSA 40.52 38.73  34.10 32.41  37.31 32.32 

 PSO 43.62 41.02  35.04 32.73  37.50 32.30 

4-PL BSA 31.90 34.04  31.57 31.81  37.38 37.02 

 CSA 33.50 33.83  31.55 31.87  37.38 37.02 

 PSO 31.90 33.67  31.55 31.68  37.41 37.02 

5-PL BSA 28.97 30.16  30.01 28.96  35.73 34.23 

 CSA 28.97 30.16  30.01 28.96  35.73 34.24 

 PSO 28.98 30.16  30.01 28.96  35.74 34.23 

MHTan BSA 29.12 23.26  29.26 24.21  35.05 31.18 

 CSA 29.84 28.03  29.76 27.26  35.60 31.86 

 PSO 29.15 28.99  29.35 24.52  35.09 31.87 

Data mining  Bagging 34.44 31.05  33.81 39.40  37.32 33.10 

 MLP 32.02 33.33  28.90 31.93  37.39 33.56 

ANFIS GD 57.52 51.43  47.60 45.67  38.30 40.06 

 subtractive 31.93 29.47  28.42 31.92  35.89 34.77 

 

 

Table 3.17: Comparison of parametric & nonparametric models for T1, T2, and T3 based 

on generated data 

Model Algorithm Simulated data-MAPE (%)  Simulated data-RMSE 

T1 T2 T3  T1 T2 T3 

Order6 BSA 8.41 6.49 6.53  4.11 0.26 117.23 

 CSA 8.44 6.49 6.53  4.13 0.26 117.23 

 PSO 8.92 7.12 6.54  4.24 031 117.24 

Order7 BSA 7.42 6.46 6.50  3.68 0.26 116.32 

 CSA 7.43 6.70 6.51  3.67 0.26 116.45 

 PSO 7.90 7.30 6.50  3.88 0.28 116.91 

4-PL BSA 8.70 5.74 6.36  4.11 0.24 114.39 

 CSA 8.70 5.80 6.37  4.11 0.24 114.85 

 PSO 8.65 5.75 6.36  4.14 0.24 114.38 

5-PL BSA 8.34 5.37 6.11  3.95 0.22 109.90 

 CSA 8.34 5.37 6.11  3.95 0.22 109.90 

 PSO 8.34 5.37 6.11  3.95 0.22 109.90 

MHTan BSA 6.85 4.96 5.93  3.45 0.21 107.85 

 CSA 7.03 5.40 6.07  3.65 0.22 110.05 

 PSO 8.70 5.06 5.99  4.17 0.21 108.90 

Data mining Bagging 6.79 4.88 6.12  3.35 0.20 117.14 

 MLP 6.83 5.23 6.28  3.42 0.25 114.56 

ANFIS Gd 6.95 5.82 6.50  3.68 0.26 119.50 

 Subtractive 6.82 5.64 6.01  3.44 0.24 108.98 
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The performance of the parametric and nonparametric models in terms of RMSE and 

MAPE for the real data sets representing 5-min, hourly, and 3-hour average values of 

the data measured in the winter and summer as well as for the simulated data is given in 

Tables 3.15 and 3.16. Similarly, the simulated data is shown in Table 3.17. Note that 

there is a difference in error values for data measured in winter and summer. This is 

probably caused by temperature different during the wind turbine operation. From the 

achieved data, it can be concluded that the wind speed is flowing the Weibull 

distribution in winter while normal distribution in summer. The performance of all 

methods along with the overall performance is ranked for both simulated and actual data 

based on statistical errors, as presented in Tables 3.18 to 3.19. From the tables, it can be 

clearly seen that the proposed MHTan model utilizing the BSA-based algorithm has the 

best overall performance. However, its performance is yet promising even by applying 

PSO and CSA to estimate vector control. The reason MHTan achieves satisfactory 

results is attributed to a combination of four exponential functions with different 

exponents in the MHTan structure. In other words, unequal exponential functions in 

MHTan structure make this model highly flexible for fitting the power curve. Although, 

the value of exponents is very close together as will be seen later, this slight difference 

considerably influences the shape of MHTan. Figure 3.23 depicts the changes in shape 

of MHTan versus four exponents 𝑎2, 𝑎4, 𝑎6, and 𝑎8. 
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Figure 3.23: Influence of parameters 𝒂𝟐, 𝒂𝟒, 𝒂𝟔, and 𝒂𝟖 on MHTan behavior  
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Table 3.18: Performance ranking of parametric and nonparametric models for actual and simulated dataset (MAPE) 

Model Algorithm 5min  Hourly  3-hour  Simulated data Average 

rank 

Overall 

performance Summer Winter  Summer Winter  Summer Winter  T1 T2 T3 

Order 5 BSA 11  14   10  14   10  14   11  13  12  12.11 13  

 CSA 12  13   10  14   10  15   12  13  12  12.33 14  

 PSO 11  14   12  15   12  14   15  15  13  13.44 16  

Order 7 BSA 10  11   11  7   10  5   7  12  10  9.22 9  

 CSA 13  12   9  9   9  4   8  14  11  9.88 11  

 PSO 14  10   14  6   9  6   9  16  10  10.44 12  

4-PL BSA 7  8   8  12   11  12   14  8  8  9.77 10  

 CSA 8  8   8  10   10  11   14  10  9  9.77 10  

 PSO 7  9   7  11   11  13   13  9  8  9.77 10  

5-PL BSA 1  5   6  4   3  8   10  5  5  5.22 5  

 CSA 1  5   6  4   5  7   10  5  5  5.33 6  

 PSO 1  5   6  4   4  7   10  5  5  5.22 5  

MHTan BSA 2  1   4  2   2  1   4  2  1  2.11 1  

 CSA 4  2   5  3   3  2   6  6  4  3.88 3  

 PSO 3  4   3  1   1  3   14  3  2  3.77 2  

Data mining  Bagging 9  6   13  13   8  9   1  1  6  7.33 8  

 MLP 6  7   2  8   7  10   3  4  7  6.00 7  

ANFIS GD 15  15   15  16   13  16   5  11  10  12.88 15  

 subtractive 5 3  1  5   6 5  2  7 3 4.11 4 
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Table 3.19: Ranke table based on RMSE for both actual and generated data 

Model Algorithm 5min   Hourly  3-hour  Simulated data Average 

rank 

Overall 

performance Summer Winter  Summer Winter  Summer Winter  T1 T2 T3 

Order 5 BSA 12  12   9  13   14  9   10  6  14  11 15  

 CSA 13  12   10  13   15  10   11  6  14  11.55 16  

 PSO 12  12   14  14   16  11   14  8  15  12.88 17  

Order 7 BSA 11  11   12  12   7  4   7  6  10  8.88 12  

 CSA 14  11   13  10   7  6   6  6  11  9.33 13  

 PSO 15  13   15  11   12  5   8  7  12  10.88 14  

4-PL BSA 6  10   8  6   9  15   10  4  7  8.33 10  

 CSA 9  9   7  7   9  15   10  4  9  8.77 11  

 PSO 6  8   7  5   11  15   12  4  6  8.22 9  

5-PL BSA 1  5   6  4   4  12   9  3  4  5.33 4  

 CSA 1  5   6  4   4  13   9  3  4  5.44 5  

 PSO 2  5   6  4   5  12   9  3  4  5.55 6  

MHTan BSA 3  1   3  1   1  1   4  2  1  1.89 1  

 CSA 5  2   5  3   3  2   5  3  5  3.66 2  

 PSO 4  3   4  2   2  3   13  2  2  3.88 3  

Data mining  Bagging 10  6   11  15   8  7   1  1  13  8.00 8  

 MLP 8  7   2  9   10  8   2  5  8  6.55 7  

ANFIS GD 16  14   16  16   13  16   7  6  16  13.33 18  

 subtractive 7  4  1  8   6  14  3  4  3  5.55 6  

 

Univ
ers

ity
 of

 M
ala

ya



100 

From the results, it can be seen that parametric models obtained better results than 

the nonparametric models, in terms of accuracy, as shown in Tables 3.18 and 3.19. 

However, one drawback is that not many tools exist to filter the outlier’s original data, 

which is crucial in this method. It is worth mentioning that, in artificial neural network 

viewpoint, parameter selection has been always a rigorous task because there is no 

decisive rule to obtain the optimum parameters (Ramirez-Rosado, Fernandez-Jimenez, 

Monteiro, Sousa, & Bessa, 2009). Several experiments have been performed to 

determine which structures produce better results. The value of ‘radii’ and epoch 

number will heavily affect the ANFIS subtractive clustering application. The influence 

range of input and output cluster is indicated by the value of ‘radii’ while the training 

iteration is indicated by the epoch number. The overall performances of ANFIS utilizing 

various values of ‘radii’ and RMSE’s 5 minutes epoch number data in winter are shown 

in Table 3.20. It can be concluded that no obvious improvement can be seen at higher 

epoch number. As a result, the number is limited to 50. During the analysis, no 

statistical metrics like MAPE is used. In addition, different data sets including simulated 

and actual data lead to the same performance for the presented structures in Table 3.20. 

Table 3.20: RMSE results of ANFIS using subtractive clustering based on 5-min data 

in winter 

Epoch Number 
Radii [influence of a cluster in input - influence of a cluster in output] 

[0.8-0.2] [0.7-0.3] [0.5-0.4] [0.4-0.6] [0.4-0.1] [0.8-0.1] [0.5-0.5] 

10 53.10 51.92 36.13 47.84 39.72 48.68 33.49 

20 50.80 49.41 34.98 44.13 38.42 46.93 30.82 

30 49.63 47.88 33.67 43.62 36.30 46.01 30.43 

40 48.10 47.06 32.04 41.19 34.96 44.76 30.10 

50 47.95 45.35 31.71 40.18 36.11 44.01 29.47  

 

Different structures were used during observation of ANFIS performance utilizing a 

grid partition. It was evaluated by different epoch numbers, number of membership, as 

well as different membership functions such as Gaussian, trapezoidal, and triangular-
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shaped. For the sake of conciseness, only performance evaluation of ANFIS using 

subtractive clustering is illustrated in Table 3.20. The reason why this is choosen is due 

to the superior results of ANFIS based on clustering subtraction when compared to grid 

partition. Eventually, ANFIS is developed with selected parameters in Table 3.14. 

For performance observation, ANFIS based subtractive clustering has shown better 

results compared to other nonparametric model. This is due to the capability of 

subtractive clustering as a one-pass algorithm in estimating the number of clusters and 

extracting the fuzzy rules. As compared with other models, data mining by bagging 

algorithm maps the relationship between wind speed and the power output of turbines 

T1 and T2 well. All in all, for both T1 and T2, the main reason for the better performance 

of the nonparametric models over the parametric models is that turbine power curve 

usually drops when the wind is over the rated value. However, nonparametric models 

still suffer the black-box problem. Alternatively, combining both nonparametric and 

parametric models might produce adequate results and enhance the facilitation of wind 

turbines monitoring.  

The parameters of MHTan obtained by BSA, CSA, and PSO for winter and summer 

at 5-min, hourly, and 3-hour interval are listed in Table 3.21. The performance of 

MHTan model on four turbines with different power curve shapes as compared to 

power curves provided by manufacturers are shown in Figures 3.24 to 3.26. Meanwhile, 

the mismatching between the observed data and the data taken from the turbine WD77 

manufacturer as illustrated in Fig.35 has become the motivation for improved wind 

turbine power curve modeling. 
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Table 3.21: Estimated parameters value of MHTan based on real data insummer  

 Period Algorithm  Vector parameter 𝜃 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 

5
-m

in
 

Summer BSA  -11.39 -28.63 1.79 28.33 -0.49 -28.97 -12e-4 28.34 -62.49 

 CSA  -18.90 -27.86 13.56 27.60 -2.09 -28.21 -82e-4 27.60 -49.12 

 PSO  -11.87 -25.12 3.81 25.0 -1.23 -25.62 -49e-4 25.02 -39.35 

Winter BSA  -1.0 -28.07 10.0 28.34 -.047 -28.57 -9e-4 28.09 52.18 

 CSA  -19.0 -26.19 13.89 25.87 -1.98 -26.51 -76e-4 25.86 -37.6 

 PSO  -13.0 -30.14 7.86 29.62 -0.84 -30.24 -40e-4 29.61 -44.30 

1
-H

o
u

r Summer BSA  -9.26 -31.45 2.98 31.28 -0.56 -31.86 -28e-4 31.29 -55.0 

 CSA  0.50 30.03 -0.28 -30.15 -.05 29.53 3e-4 -30.12 -24.98 

 PSO  -2.93 -27.77 1.04 27.53 -7e-4 -27.54 -0.16 28.12 -55.0 

Winter BSA  -3.25 -32.21 16.65 34.99 -0.29 -32.82 -17e-4 32.20 -31.0 

 CSA  -19.99 -28.14 11.80 28.02 -1.81 -28.6 -0.01 28.03 -48.86 

 PSO  -12.0 -30.76 6.72 30.58 -1.14 -31.21 -49e-4 30.58 -39.25 

3
-H

o
u

r Summer BSA  -2.57 -28.27 0.68 28.07 -0.10 -28.63 -6e-4 28.08 -54.90 

 CSA  0.32 30.71 -0.37 -30.61 -0.04 30.15 3e-4 -30.70 -30.0 

 PSO  -19.0 -30.78 6.33 30.58 -0.83 -31.13 -50e-4 30.59 -61.43 

Winter BSA  -10.14 -30.89 2.05 28.55 -0.10 -29.10 -10e-4 28.54 -51.83 

 CSA  -1.87 -32.0 10.0 34.32 -9e-4 -31.98 -0.09 32.54 -52.48 

 PSO  2.50 28.50 -0.30 -31.50 0.01 30.96 1e-4 -31.51 -50.05 

 

 

 

Figure 3.24: Approximated power curve by MHTan for the power data generated from 

turbine Aeolos-50 (stall-based turbine). 
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Figure 3.25: Approximated power curve by MHTan for the power data generated from 

turbine UGE-4 (vertical axis turbine) 

 

 

 

Figure 3.26: Approximated power curve by MHTAn for the power data generated from 

turbine V80 (pitch-based turbine) 
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Figure 3.27: The scatter plot of the theoretical power curve and approximated power 

curve by MHTan based on observed wind speed and power (empirical power curve) 

 

3.7.5 Sensitivity Analysis of Optimization Algorithms 

The performance of parametric methods is affected by the control parameters of the 

optimization algorithms. To produce the better results, it should be finely tuned. For 

sensitivity analysis, three BSA parameters can be considered namely population size, 

mixrate and the maximum iteration. Mixrate values of 0.1-1.0 (step size of 0.10), 

maximum iterations of 1000 – 2000 (step size of 250) and population size of 10 – 50 

(step size of 10) are considered for the purpose of sensitivity analysis. For analysis of 

mixrate effect on the optimal result, population size is set to 50, while maximum 

iteration number is set to 2000. Then, the optimization procedure is run by varying the 

parameter of mixrate. Table 3.22 shows the RMSE of MHTan for different values of 

mixrate. It illustrates that the BSA reaches the better optimal value by selecting 

relatively large value for the mixrate as it is equal to 0.9 in this case.  
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Table 3.22: RMSE statistics of MHTAn using BSA with different mixrate values based 

on 5-min data in winter (population size=50 and maximum iteration=2000) 

mixrate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Minimum  22.80 23.08 22.07 21.95 21.92 21.89 21.83 21.81 21.44 21.82 

Average 26.78 26.43 25.72 26.07 25.41 25.63 26.24 25.30 23.26 24.98 

Maximum 31.15 30.54 30.81 31.13 30.56 29.97 29.89 29.68 27.05 28.90 

Standard deviation 2.26 1.82 2.32 1.80 2.42 2.57 2.49 2.50 2.30 2.39 

 

The analysis of the effect of population size on optimal results is conducted by 

setting the mixrate and the maximum iteration to 0.9 and 2000 respectively, and the 

population size from 10 to 50. The optimization is run 30 times and the statistical 

indices of the results are shown in Table 3.23. Based on the average values of optimal 

results, it is concluded that the increasing population size leads to a better result. 

Table 3.23: RMSE statistics of MHTAn using BSA with different population size 

values based on 5-min data in winter (mixrate=0.90 and maximum iteration=2000) 

Population size 10 20 30 40 50 

Minimum  24.43 23.08 23.56 22.18 21.44 

Average 27.36 25.99 26.08 24.81 23.26 

Maximum 29.97 28.65 28.95 27.87 27.05 

Standard deviation 2.71 2.51 2.64 2.81 2.92 

 

Although it is clear that the increasing maximum iteration will help the optimizer 

produces better optimal, the simulation is done to show the degree of effectiveness of 

this parameter on the optimal results. Based on the results in Table 3.24, the average 

optimal value shows about 2 % decrease within 30 trials when the maximum iteration is 

changed from 1000 to 1250. These decreases are about 5 %, 8 %, and 15 % for 

increasing maximum iteration to 1500, 1750, and 2000, respectively. It’s worth 

mentioning that since the BSA performs better than the PSO and CSA, only the 

sensitivity analysis of BSA is presented in this study. 
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Table 3.24: RMSE statistics of MHTAn using BSA with different number of iteration 

based on 5-min data in winter (mixrate=0.90 and population size=50) 

Max. iteration 1000 1250 1500 1750 2000 

Minimum  24.67 23.46 22.82 22.20 21.44 

Average 27.28 26.68 25.79 25.19 23.26 

Maximum 29.98 29.37 28.05 27.49 27.05 

Standard deviation 2.60 2.86 3.01 2.90 2.92 

 

3.7.6 On-line Monitoring by Residual Approach and Control Charts  

MHTan model characterizes wind turbine power in normal conditions, thus, it can 

serve as an on-line wind farm power generation profile. It can be employed to detect if a 

wind turbine is deviating from the expected performance and then allowing for 

troubleshooting on fault conditions. Indeed, monitoring of the wind turbine has practical 

importance to reduce maintenance costs and improve operational efficiency and 

reliability (Park, Lee, Oh, & Lee, 2014). The residual control chart technique 

(Montgomery, 2009) is applied to assess residual between predicted power value by 

MHTan model and observed power. The purpose of control chart approach is to monitor 

residuals and their variations for detecting abnormal behaviors of the wind turbine. The 

5-min data collected in August including 7816 observations are used to build the control 

chart. Observations are randomly separated into training and testing data with 5862 and 

1954 data points respectively. Residual 𝜀 of each individual observation, standard 

deviation (𝜎𝑇𝑟𝑎𝑖𝑛) and mean (𝜇𝑇𝑟𝑎𝑖𝑛) of 𝜀 for training data are computed and expressed 

as follows: 

𝜀 = 𝑦𝑎 − 𝑦𝑒 

(3.69) 
𝜇𝑇𝑟𝑎𝑖𝑛 =

1

𝑛
∑ (𝑦𝑎(𝑖) − 𝑦𝑒(𝑖))

𝑛𝑇𝑟𝑎𝑖𝑛

𝑖=1

 

𝜎𝑇𝑟𝑎𝑖𝑛 = [
1

𝑛 − 1
∑ (𝑦𝑎(𝑖) − 𝑦𝑒(𝑖))2

𝑛𝑇𝑟𝑎𝑖𝑛

𝑖=1

]

1/2
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where 𝑦𝑎 is actual power, 𝑦𝑒 is predicted power by MHTan and n is the number of point 

in training data set. Once the mean (𝜇𝑇𝑒𝑠𝑡) and standard deviation (𝜎𝑇𝑒𝑠𝑡) of test data 

set are similarly computed, control limits can be derived as follows (Marvuglia & 

Messineo, 2012): 

𝑈𝐶𝐿1 = 𝜇𝑇𝑟𝑎𝑖𝑛 + 𝜚
𝜎𝑇𝑟𝑎𝑖𝑛

√𝑛
 

(3.70) 

𝐿𝐶𝐿1 = 𝜇𝑇𝑟𝑎𝑖𝑛 − 𝜚
𝜎𝑇𝑟𝑎𝑖𝑛

√𝑛
 

where 𝑈𝐶𝐿1 and 𝐿𝐶𝐿1 indicate upper and lower control limits respectively, 𝜚 is an 

integer multiple of the control limits, which regularly fixed as 3 and n is the number of 

samples in test data set which can be adjusted. Noted that the sensitivity of the control 

chart to data variability depends on the value of n and 𝜚. Decreasing value of 𝜚, results 

in strict upper and lower limiter. While the higher value of 𝜚 reduces the sensitivity to 

variability in observations and consequently increases the number of anomalies. 

Apparently, the influence of 𝑛 is inverse of the parameter 𝜚. If 𝜇𝑇𝑒𝑠𝑡 is above 𝑈𝐶𝐿1 or 

below𝐿𝐶𝐿1, the power generation process at the sampling time 𝑦𝑇𝑒𝑠𝑡𝑆𝑒𝑡 = [𝑦𝑎(𝑖), 𝑦𝑒(𝑖)] 

is considered abnormal, otherwise it is considered efficient. Similarly, the control chart 

for  𝜎𝑇𝑒𝑠𝑡
2  can also be calculated as Eq. (3.71) to detect anomalies (Montgomery, 2009): 

𝑈𝐶𝐿2 =
 𝜎𝑇𝑟𝑎𝑖𝑛

2

𝑛 − 1
+ 𝜒𝛼 2⁄ ,𝑛−1

2  
(3.71) 

𝐿𝐶𝐿2=0 

where 𝑛 − 1 is the degrees of freedom of the chi-square distribution. 

Parameter 𝛼 can be set to adjust the sensitivity of the control chart to variability of the 

data. Here, the value of parameter 𝛼 was set to 2. If  𝜎𝑇𝑒𝑠𝑡
2  is above 𝑈𝐶𝐿2, the observed 

power at the sampling time 𝑦𝑇𝑒𝑠𝑡𝑆𝑒𝑡 = [𝑦𝑎(𝑖), 𝑦𝑒(𝑖)] is considered anomaly and will be 

removed. For the purpose of indicating the variation of residuals in data set is 0, 𝑈𝐶𝐿2 is 

set to 0. In this case, the current power matches the reference power in the normal 
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status. Figure 3.28 illustrates power curve derived from the test data set and also 

anomalies detected by MHTan when in Eq. (3.71) 𝑛 is set to 2. In this case, 258 

observations out of 1954 are detected by MHTan. While the number of detected 

anomalies decreased to 188 when 𝑛 is set to 1. 

 

 

Figure 3.28: Anomalies detected by MHTan 

 

3.8 Summary 

An enhanced parametric model, called MHTan including nine unknown parameters, 

was presented in this chapter to model the empirical wind turbine power curve. Two 

approaches were employed to determine the unknown parameters of MHTan, one based 

on the optimization algorithms and the other one based on maximum likelihood method. 

Based on the simulation results, among three optimization algorithms, BSA was the best 

though the obtained results by the other optimizers were promising too. Despite the 

good performance of GSO in the estimation of wind speed parameters, model based on 

optimization algorithms performed better than the model based on MLE and wind speed 

distribution. To validate the performance of the MHTan, the actual data along with three 
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simulated data sets representing yaw-, stall-, and pitch-controlled wind turbine are 

employed in this chapter and the results were compared with several parametric and 

nonparametric models. The analytical results not only affirmed the outperforming of 

MHTan but also its applicability in on-line monitoring of the wind turbine. 
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CHAPTER 4: DIRECT AND INDIRECT WIND POWER PREDICTION 

4.1 Introduction 

Prediction of the future wind power generated based on two methods, the direct and 

indirect prediction is investigated in this chapter. Forecasted wind speed is an important 

prerequisite to indirect prediction methods. To do so, three statistical methods are 

employed and the best one is chosen for prediction from few minutes to an hour. Then, 

the proposed MHTan in Chapter 3 is used to convert the forecasted wind speed to wind 

power. Moreover, six nonparametric methods are employed to present direct prediction. 

Similarly, the best method is determined to forecast wind power for longer horizons. In 

this chapter, in addition, a new feature selection (FS) technique is developed to reduce 

the number of initial input features without losing information. To validate the proposed 

FS technique, it is compared with several linear and nonlinear FS models. The 

programming code is written in MATLAB and executed on a personal computer with 

Intel Pentium 2.66 GHz processor and 4 GB RAM. Two out of six data-driven 

approaches which are M5rule and random forest are conducted by WEKA. 

4.2 Wind Speed Forecasting 

 Wind speed prediction models are mainly categorized into two groups, time-series 

based and the weather based. In the latter physical data, i.e. topography information and 

temperature are applied to predict the wind speed. These models do not achieve reliable 

results in the short-term prediction thus this research mainly focuses on statistical 

approaches to forecast the wind speed. Time-series based models use recursive 

algorithms to forecast wind speed (Palomares-Salas, De La Rosa, Ramiro, Melgar, 

Aguera, et al., 2009; Sterba & Hilovska, 2010).  
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4.2.1 Double Exponential Smoothing (DES) 

This technique does not assign the equal weights to the past observations but as the 

observations get older their weights exponentially decrease. In other words the basic 

concept of this method is that relatively more weight is given to the recent observation 

than the one given to older observations. (Taylor & McSharry, 2007). DES includes two 

constant parameters, η and 𝜆, and attempts to calculate the estimated trend and level at 

time 𝑡 which is expressed as follows: 

𝑆𝑡
′ = 𝜂𝑦𝑡 + (1 − η)(𝑆𝑡−1

′ + 𝑏𝑡−1) 

𝑏𝑡 = 𝜆(𝑆𝑡
′ − 𝑆𝑡−1

′ ) + (1 − 𝜆)𝑏𝑡−1 

�̂�𝑡+1 = 𝑆𝑡
′ + 𝑏𝑡 

𝑆1
′ = 𝑦1 

𝑏1 = [(𝑦2 − 𝑦1) + (𝑦3 − 𝑦2) + (𝑦4 − 𝑦3)]/3 

(4.1) 

where 𝑆𝑡
′ represents the smoothed value at time 𝑡, �̂�𝑡+1 is the predicted value, 𝑏𝑡 is the 

best estimation of the trend for the time 𝑡, , 𝜂 and 𝜆 are smoothing factors which vary 

from 0 to 1. It is noted that the unknown parameters of DES are obtained by BSA. The 

detail of BSA is provided in section 3.3.1.  

4.2.2 Auto-Regressive Moving Average (ARMA) 

In this technique, in order to estimate the future value, the past observations as well 

as the residual value from the past prediction are incorporated. This model, known as 

ARMA (p, q), combines the auto-regressive and moving average model by simply 

adding them together which is defined as follows: 

(1 − ∑ 𝜑𝑖𝐿
𝑖

𝑝

𝑖=1
) 𝑋𝑡 = (1 + ∑ 𝜃𝑖𝐿𝑖

𝑞

𝑖=1
) 𝜀𝑡 (4.2) 

where 𝑝 and 𝑞 are the order of the auto-regression (AR), and the order of the moving 

average (MA) respectively, 𝜑𝑖 represents the AR coefficient, while 𝜃𝑖 is the MA 
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coefficient, 𝐿 is the lag operator and 𝜀𝑡 is the uncorrelated innovation process with zero 

mean and variance 𝜎2.  

4.2.3 Persistence Method 

Persistence algorithm is the simplest way of producing a prediction. Indeed, this 

method employs the value in prior step (𝑡 − 1) to forecast the value at the next step 𝑡. 

There is no required any parameter setting or exogenous variables in this model. 

Nevertheless, it yields better result than NWP in short-term prediction (Bludszuweit, 

Domínguez-Navarro, & Llombart, 2008).  

4.3 Wind Power Prediction through Power Curve 

One of the ways to predict the future output power is using WTPC which is called 

indirect power forecasting. In this technique, firstly, the wind speed is forecasted, then it 

is converted to power through wind power curve. Although many researchers have used 

theoretical power curve given by manufacturers, it produces some inaccuracies because 

it is an ideal power curve. To alleviate this problem, the developed parametric wind 

power curve modeling (MHTan) is applied to obtain the future power. MHTan is 

explained in detail in chapter 3 and its effectiveness is compared with other parametric 

and nonparametric models. 

4.4 An Intelligent Feature Selection Technique 

Feature selection technique is of vital importance in machine learning and data 

mining wherein a huge amount of data might be involved. Most of these data are usually 

noisy and carry the redundant information. The principle objective of the feature 

selection is to discover and remove the irrelevant and redundant input data and then 

select the best subset of attributes. The selected subset of inputs certainly represents the 

important information of the initial data. Feature selection techniques are broadly 

classified into three categories: filter methods, embedded methods and wrapper 
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methods. Filter methods attempt to evaluate the redundancy of the initial data but not 

the interactions between data themselves. Embedded methods conduct the selection of 

features as a part of learning procedure. Indeed, variable selection and training process 

cannot be separated. Wrapper approaches, unlike the filter methods, evaluate a subset of 

variable which results in detecting the possible relationship between variables 

(Maldonado, Carrizosa, & Weber, 2015). A big majority of the feature selection 

methods have difficulty in choosing the redundant and irrelevant data. To address this 

issue, a nonlinear feature selection technique based on the mutual information (MI) is 

introduced in this study. Mutual information is closely tied with the entropy and can 

mitigate the problem of overestimation of the feature significance. The proposed feature 

selection technique includes two stages. In the first stage, irrelevant data are captured 

and removed based on mutual information and then in the next stage, the neural network 

is applied to filter out the redundant data. The following expounds the concept of 

information theory. 

The entropy of random variable regardless of discrete or continuous presents the 

average amount of information that can be learned from the random variable 𝑋 and this 

is a measure of its uncertainty. The entropy of discrete random variable 𝑋 =

(𝑋1, 𝑋2, … , 𝑋𝑛) denoted by (𝑋), is defined as: 

𝐻(𝑋) = − ∑ 𝑃(𝑋𝑖) log(𝑃(𝑋𝑖)) = −𝔼[log(𝑃(𝑋))]

𝑛

𝑖=1

 (4.3) 

where 𝑃(𝑋) is the probability function which is obtained by division of the number of 

samples with value of 𝑋𝑖 to the total number of samples (𝑛). Although the base of 

logarithm function is two which results in 𝐻(𝑋) varying between 0 and 1, choosing the 

base is arbitrary since it only changes the unit of entropy. If 𝑋 is continuous random 

variable with probability function of 𝑃(𝑋) then 𝐻(𝑋) is expressed as follows: 
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𝐻(𝑋) = − ∫ 𝑃(𝑋) log(𝑃(𝑋)) 𝑑𝑋 (4.4) 

If 𝑋 and 𝑌 are two continuous random variables, then the joint entropy of 𝑋 and 𝑌 is 

defined as: 

𝐻(𝑋, 𝑌) = − ∬ 𝑃(𝑋, 𝑌) log(𝑃(𝑋, 𝑌))𝑑𝑋𝑑𝑌 (4.5) 

where 𝑃(𝑋, 𝑌) is the joint probability distribution of variables and 𝐻(𝑋, 𝑌) presents the 

total amount of uncertainty of two random variables 𝑋 and 𝑌. Conditional entropy 

measures the remaining uncertainty of variable 𝑋 when the value of 𝑌 is known. 

Conditional entropy is typically equal to or greater than zero, but it is equal to entropy 

of variable 𝑋 and 𝑌 when both variables are absolutely independent. Conditional 

entropy denoted by (𝑋, 𝑌) is expressed as:  

𝐻(𝑋|𝑌) = − ∬ 𝑃(𝑋, 𝑌) log(𝑃(𝑋|𝑌))𝑑𝑋𝑑𝑌 (4.6) 

The relationship between conditional entropy and joint entropy is known as chain-

rule and defined as: 

𝐻(𝑋, 𝑌) = 𝐻(𝑌) + 𝐻(𝑋|𝑌) = 𝐻(𝑋) + 𝐻(𝑌|𝑋) (4.7) 

This states that the total uncertainty of variable 𝑋 and 𝑌 is equal to the uncertainty of 

𝑋 plus the remaining entropy of 𝑌 when 𝑋 is known. 

Mutual information is a measure of the amount of information that one variable 

contains about another variable and it is expressed as follows:  

𝐼(𝑋; 𝑌) = ∬ 𝑃(𝑋, 𝑌) log (
𝑃(𝑋, 𝑌)

𝑃(𝑋)𝑃(𝑌)
) 𝑑𝑋𝑑𝑌 = 𝐻(𝑋) − 𝐻(𝑋|𝑌)

= 𝐻(𝑌) − 𝐻(𝑌|𝑋) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) = 𝐼(𝑌; 𝑋) 

  

(4.8) 
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Mutual information has two important properties. First, it is capable of measuring 

any kind of relationship between variables. Second, it is invariant to space 

transformation due to the fact that logarithm function used in Eq. (4.8) is non-

dimensional. Venn diagram in Figure 4.1 illustrates mutual information of two variable 

𝑋 and 𝑌. 

I(X;Y)

H(X) H(Y)

H(X,Y)

H(X|Y) H(Y|X)

 

Figure 4.1: Graphical representation of the conditional entropy and the mutual 

information 

 

In the process of wind power forecasting, wind power is largely a function of wind 

speed, temperature, wind direction, and humidity. It is well known that the power 

produced in time 𝑡 depends not only on the metrological variables at time 𝑡 but also on 

their past values and even the past values of the power generated which is expressed as 

follows: 

𝑊𝑃(𝑡) = 𝑓(𝑊𝑆(𝑡), 𝑊𝑆(𝑡 − 1), … , 𝑊𝑆(𝑡 − 𝑁𝐿𝑊𝑆), 𝑇(𝑡), 𝑇(𝑡 − 1), … ,

𝑇(𝑡 − 𝑁𝐿𝑇), 𝑊𝐷(𝑡), 𝑊𝐷(𝑡 − 1), … , 𝑊𝐷(𝑡 − 𝑁𝐿𝑊𝐷), 𝐻(𝑡), … ,

𝐻(𝑡 − 1), … , 𝐻(𝑡 − 𝑁𝐿𝐻), 𝑊𝑃(𝑡 − 1), … , 𝑊𝑃(𝑡 − 𝑁𝐿𝑊𝑃))  

(4.9) 

where 𝑊𝑆(𝑡), 𝑇(𝑡), 𝑊𝐷(𝑡), and 𝐻(𝑡) are the present wind speed, temperature, wind 

direction and humidity respectively, 𝑊𝑃(𝑡) presents the forecasted power at time 𝑡, 

𝑁𝐿𝑊𝑆 denotes the lag length for the wind speed and similarly 𝑁𝐿𝑇, 𝑁𝐿𝑊𝐷, 𝑁𝐿𝐻, and 
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𝑁𝐿𝑊𝑃 presents the lag order of other variables. The above-mentioned variables, 

however, have a strong relationship with wind power but it is not feasible nor efficient 

to apply all of them into the prediction machine as inputs. Assuming that 25 lagged 

values of the variables (𝑁𝐿𝑊𝑆 = 𝑁𝐿𝑇 = 𝑁𝐿𝑊𝐷 = 𝑁𝐿𝐻 = 𝑁𝐿𝑊𝑃 =25) are employed to 

predict the wind power, this constitutes 128 inputs inclusive of 100 past values of 

power, humidity, wind direction, temperature, and wind speed along with the present 

values of humidity, temperature, and wind speed as inputs to prediction machine. Such a 

massive amount of data will slow down the forecasting process. Moreover, it leads to a 

poor performance and in turn overfitting the training data when the engine forecast is a 

machine-learning algorithm. In fact, these variables, however, are greatly important for 

the prediction of wind power, but only those inputs representing considerable influence 

on the output power should be selected.  

Let X = {WS(t), … , WS(t − NLWS), T(t), … , T(t − NLT), WD(t), … , WD(t − NLWD), 

H(t), … , H(t − NLH), WP(t − 1), … , WP(t − NLWP)} denote a vector including all input 

data and let 𝑌 = 𝑊𝑃(𝑡) present a output feature. According to Eq. (4.8), the developed 

feature selection technique in the first step attempts to compute the mutual information 

between the each individual input and the target feature. According to Eq. (4.8), the 

developed feature selection technique in the first step attempts to compute the mutual 

information between each individual input ∀ 𝑋𝑖(1 < 𝑖 < NLWS + NLT + NLWD +

NLH + NLWP) and the target feature. For example, 𝑀𝐼(𝑋2; 𝑌) illustrates the mutual 

information between the present output power and one past value of wind speed. Input 

data are sorted in descending order of mutual information value in which the greater 

value of mutual information presents the stronger relationship between each individual 

input X and Y. 

The variables having a higher value of mutual information than the given TH 

exhibiting the significant influence on the target feature remains for the second stage 
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and form the subset 𝑋𝑆 ⊂ 𝑋. Input features with the mutual information lower the 

chosen TH are considered as irrelevant inputs and will be removed. Since the threshold 

TH is set by user, it must be noted that the lower TH value may include many irrelevant 

and redundant features resulting in huge computational cost, while lots of important 

information might be missed due to the high value of TH. In this study several threshold 

value are investigated and the best one is chosen. It is nice mentioning that different 

input data with different characteristics may require different TH value. In other words, 

observed data from other wind parks may require different value of threshold as these 

data sets significantly vary in the number of trivial and redundant feature. 

 Note that the most relevant attributes to output feature might not lead to the results 

because it may still contain redundant data. The redundancy of data in the model 

building phase, in fact, can have an adverse impact on the prediction performance as 

well as computational cost. Indeed, the selected m best attributes may not lead to highest 

accuracy which can be obtained with the best m features. Therefore, the main focus of 

the second stage of the proposed algorithm is to detect the attributes which are strongly 

correlated to other attributes and then remove them. 

To do so, in this step, a three-layer feedforward neural network is employed as 

illustrated in Figure 4.2. The network is trained in such a way that redundant features 

have the associated weights with the lower value. On the other hand, the prominence of 

features is recognized by the magnitude of their connections from the input layer to 

hidden layer and the hidden layer to output layer. The weights with the lower value can 

be eliminated due to the insignificant impact on the accuracy of the network. After 

deletion of the weights with small magnitude, the accuracy of the network remains 

markedly preserved and if it reduced, it can be recovered by retraining the network. 
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Generally, the error function measured during the training process is defined as 

follows: 

𝑆𝑝 =
1

𝑛
∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))

2𝑛

𝑖=1
 (4.10) 

where 𝑛 is the number of samples, p in the number of output 𝑦 is the actual value and 𝑡 

is the network output which is expressed as follows: 

𝑦𝑝(𝑖) = 𝜁 ( ∑ (𝜓 (∑ 𝑤𝑙
𝑚𝑋𝑙(𝑖)

𝑉

𝑙=1

) ∗ 𝑉𝑝
𝑚)

ℎ

𝑚=1

) (4.11) 

where 𝑋 is a 𝑉 ∗ 𝑛 matrix, ℎ is the number of hidden units, 𝑉 is the number of attributes 

selected in the first stage, 𝑤𝑙
𝑚 is the weight connecting from 𝑙-th attribute to 𝑚-th 

hidden unit, and 𝑣𝑜
𝑚 is the weight connecting from 𝑚-th hidden unit to network output. 

𝜓 is the sigmoid activation function for the hidden layer and 𝜁 is tangent hyperbolic 

transfer function for the output layer which are defined respectively as follows: 

𝜓(𝑦) =
1

1 + exp (−𝑦)
 (4.12) 

𝜁(𝑦) =
exp(𝑦) − exp (−𝑦)

exp(𝑦) + exp (−𝑦)
 (4.13) 

In order to detect unnecessary attributes, a penalty function is added to Eq. (4.10) 

which is expressed as:  

𝑃(𝑤) = 𝛼1 ∑ (∑
𝜍(𝑤𝑙

𝑚)2

1 + 𝜍(𝑤𝑙
𝑚)2

𝑉

𝑙=1

+ ∑
𝜍(𝑣𝑜

𝑚)2

1 + 𝜍(𝑣𝑜
𝑚)2

𝑝

𝑜=1

)

ℎ

𝑚=1

+ 𝛼2 ∑ (∑(𝑤𝑙
𝑚)2 + ∑(𝑣𝑜

𝑚)2

𝑝

𝑜=1

𝑉

𝑙=1

)

ℎ

𝑚=1

 

(4.14) 

where 𝛼1, 𝛼2 and 𝜍 are coefficients that control the influence of the penalty term.  
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As the key concept of this algorithm, the performance of the trained network ℕ is 

observed based on the received input features from the first stage, 𝑋𝑆 =

{𝑋1, … , 𝑋𝑉}, 𝑋𝑆 ⊂ 𝑋, 𝑉 < (NLWS + NLT + NLWD + NLH + NLWP). In order to build 

new models the number of features sequentially decreased. Supposing that 𝑘 =

{1,2, … , 𝑉}, the performance of the network ℕ𝑘 is observed receiving k less feature 

compared to the 𝑋𝑆 and then the algorithm, at the end makes decision if more features 

can be eliminated. The prime steps of this method are shown in Figure 4.3 and is 

expounded in the following. 

1. Given input vector 𝑋𝑆 = {𝑋1, … , 𝑋𝑉}, 𝑋𝑆 ⊂ 𝑋 with the size of 𝑉 ∗ 𝑛 is separated 

into two data set: training set, 𝑆𝑇 and testing set 𝑆𝐶. The network ℕ is trained to 

minimize Eqs. (4.10) and (4.14). It also computes the accuracy of the training set 

𝑅𝑇, the testing set 𝑅𝐶 and also the maximum acceptable decrease (∆𝑅) in network 

accuracy using set 𝑆𝐶. It should be noted that in the first procedure of training, equal 

value of 𝛼1 and 𝛼2 are set for the weights from input layer to hidden layer.  

2. Suppose features 𝑋𝑆 − 𝑋𝑆{1, … , 𝑘} = 𝑋𝑆{𝑘 + 1, … , 𝑉} are input features of the 

network ℕ𝑘 , i.e, ℕ𝑘 does not include the first k attributes. For instance, 

𝑋𝑆{4,5, … , 𝑉} are input features of network ℕ3. The network ℕ𝑘 is trained while the 

connection from attribute 𝑋𝑆(𝑘) to hidden layer is set to zero and all weights from 

other attributes are set equal to the weights of network ℕ. The accuracy of training 

and testing set for all 𝑘 is measured and called 𝑅𝑇
𝑘 and 𝑅𝐶

𝑘 respectively. Based on the 

research conducted in (Setiono & Liu, 1997) the maximum acceptable decrease 

(∆𝑅) is set to 3%. 

3. Rank networks ℕ𝑘 based on testing set as 𝑅𝐶
1 ≥ 𝑅𝐶

2 ≥ ⋯ ≥ 𝑅𝐶
𝑉. Then, compute the 

average of this rate 𝑅𝐶
𝑎𝑣𝑔

. 
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4. Algorithm updates the penalty parameter of attributes. If the accuracy of the 

network ℕ𝑘 denoted by 𝑅𝐶
𝑘 is smaller than 𝑅𝐶

𝑎𝑣𝑔
, only the weights from attribute 

𝑋𝑆(𝑘) are multiplied by 1.1. In fact, the expectation is that with the larger penalty 

parameters, network ℕ𝑘will produce a smaller magnitude for the weights connected 

to 𝑋𝑆(𝑘). On the contrary, if 𝑅𝐶
𝑘 is higher than 𝑅𝐶

𝑎𝑣𝑔
 all network connections from 

input 𝑋𝑆(𝑘) are divided by 1.1. This allows salient inputs having connections with 

higher value in magnitude after network are retrained. On the other hand, algorithm 

removes network connections having a small magnitude representing unimportant 

attributes.  
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Figure 4.2: The second stage of developed FS algorithm based on NN 
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Start

Initialization of the connection weights randomly

Find & save the weights which make equation 
number minimize and minimum accuracy 

acceptable (∆R) 

k=1 

Set XS-Xk as attributes (input) 

Update the weights & retrain the network Nk

Termination met?

k<V

End

k=k+1

Yes

Yes

No

No

 

Figure 4.3: Flowchart for the second stage of the developed FS method 

It must be noted that the initial setting for the 𝛼1and 𝛼2 may not be generalised to all 

problems. According to this research and the carried out survey by (Setiono & Liu, 

1997), the recommended initial settings for the 𝛼1, 𝛼2, and 𝜍 are 10-1, 10-4, and 10 

respectively.  

4.5 Direct Wind Power Forecasting 

Unlike parametric and statistical models, the data-driven approaches do not involve 

equations. Indeed, the primary focus of these approaches is to discover a pattern 
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between wind direction, wind speed, and temperature. In the current section, adaptive 

neuro-fuzzy inference system (Schlechtingen et al., 2013) and five other data mining 

algorithms namely, k-nearest neighbor (Yesilbudak, Sagiroglu, & Colak, 2013), 

M5Rules (Lydia et al., 2013), random forest (Lahouar & Slama, 2015), support vector 

machine (L. Yang, He, Zhang, & Vittal, 2015) and multilayer perceptron (Velo, López, 

& Maseda, 2014) are used to forecast the produced wind power. Data-driven methods 

are explained in detail in the sections below. 

4.5.1 k-Nearest Neighbors Algorithm (k-NN) 

The main idea of k-NN is that the k nearest neighbors of the new sample are chosen 

from the training dataset to forecast the output of the sample. In other words, the 

prediction of the new point can be obtained by the average of the k nearest neighbors’ 

values. K-NN algorithm is based on only memory and does not use any model to fit. 

The process of the wind power prediction using k-NN algorithm can be divided into 

three steps: calculation of the pre-defined distances between the training and testing 

example including wind speed, wind direction, temperature; choosing k nearest 

neighbors from the training dataset as per calculated distance; and prediction of the 

wind power using a weighted average technique. 

Firstly, a distance metric is required to measure the closeness of any two 

observations. Euclidean distance though is often used to characterize the similarity of 

the data points, for further evaluation, the Manhattan distance and the Mahalanobis 

distance are also applied in this research which can be expressed as follows: 

        Euclidean distance metric 𝐷[𝑋, 𝑌] = [∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

]

1/2

 (4.15) 

Manhattan distance metric 𝐷[𝑋, 𝑌] = ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (4.16) 
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Minkowski distance metric 𝐷[𝑋, 𝑌] = [∑(𝑥𝑖 − 𝑦𝑖)𝑚

𝑛

𝑖=1

]

1/𝑚

 (4.17) 

where 𝑋 and 𝑌 are two observations instances from the training and testing datasets, 

respectively; 𝑥𝑖and 𝑦𝑖 are the input variables selected by the developed feature selection 

and 𝑛 is the number of input variables. According to Eq. (4.17), it can be clearly seen 

that Euclidean and Manhattan distance metrics are special cases of Minkowski where 

the parameter 𝑚 is set to 2 and 1 respectively. Additionally, parameter 𝑚 is usually set 

to 3 in Minkowski distance metric. 

Secondly, the observations with the 𝑘 smallest distance, representing the greater 

similarity, are selected as the k nearest neighbor. Assuming, 𝑋1, 𝑋2, … , 𝑋𝑘 are the 𝑘 

nearest neighbors, 𝑝1, 𝑝2, … , 𝑝𝑘 are the corresponding wind power, and 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤

𝑑𝑘 are the distance from the training sample 𝑋𝑘 to the test sample 𝑌 which is sorted 

ascendingly, then the predicted wind power is derived as follows: 

𝑝𝑒 = ∑ 𝑤𝑘𝑝𝑘 =
∑ exp (−𝑑𝑘)𝑝𝑘

𝑘
𝑖=1

∑ exp (−𝑑𝑘)𝑘
𝑖=1

𝑘

𝑖=1

 (4.18) 

The parameter 𝑤 shows that the importance of each observation is not considered 

equally. In fact, the closer the neighbor is the greater weight it obtains. Consequently, 

the higher influence its corresponding wind power has on forecasted wind power, 𝑝𝑒. 

4.5.2 M5-Rules 

The idea behind this algorithm is to recursively partition the data space and fitting a 

simple prediction model within each partition. This algorithm technically generates a set 

of rules from M5 model tree. In this algorithm, firstly a tree learner is employed to 

training dataset and after learning the pruning technique is used. Usually pruning is 

required to reduce the size of decision tree results in improvement in the predictive 

accuracy and the reduction of overfitting. In the next step, the best node is chosen and 
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converted to a rule. The observations covered by the rule are removed from the dataset. 

The process is applied recursively to the remaining observations and terminates when 

all samples are covered by one or more rules. In this research, picking up the most 

informative node is based on the percentage of root mean square (RMS) error. In this 

case, small values of % RMS represents that the model at a leaf is performing better 

than simply predicting the mean of the class values. RMS value is given by: 

%RMS =

[∑
(𝑝𝑎(𝑖) − 𝑝𝑒(𝑖))

2

𝑛𝑟

𝑛𝑟
𝑖=1 ]

1/2

[∑
(𝑝𝑎(𝑖) − 𝑝𝑎̅̅ ̅)2

𝑛
𝑛𝑟
𝑖=1 ]

1/2
 

(4.19) 

where 𝑝𝑎is the actual value, 𝑝𝑒 is the predicted value by linear model, 𝑛𝑟 is the number 

of observations covered by the leaf, 𝑝𝑎̅̅ ̅ is the average of actual values , and 𝑛 is the total 

number of samples. Figure 4.4 illustrates a simple decision tree with two inputs 𝑥1 and 

𝑥2 and based on 5 nodes. 

X1>=150 X1<=150

X2<=124X2>=124

12051136

X2<=89X2>=89

X3>=34 X3<=34

951

105
314

 

Figure 4.4: M5-rules regression tree 

4.5.3 Random Forest (RF) 

Random forest is a kind of nonparametric machine learning that includes a multitude 

of decision trees and outputs the result, which is the mean prediction of the individual 

trees. Generally, a tree is a set of nodes and branches organized in a hierarchy with no 

loops. RF is broadly similar to bootstrap aggregation (bagging), but additionally, a 
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randomized subset of predictors is selected for each split of each tree. In fact, random 

selection of features reduces the correlation between trees, which results in further 

improvement in prediction accuracy. In general, the robustness and the immunity to 

outliers are two advantages of RF. The procedures of RF approach are explained as 

follows: 

 Let the number of instances be 𝑁 and the number of features be 𝑛. 

 The number of features at a node of the decision tree is determined to be 𝑚 

(𝑚 < 𝑛 ). 

 The following steps are repeated for each decision tree: 

 A subset of training data is set with a replacement that represents the 𝑁 instances 

and the rest of the data is used to measure the error of the tree. 

 The following step is repeated for each of node of this tree 

In order to determine the decision at this node and calculate the best split 

accordingly, 𝑚 number of features are selected randomly. Tree pruning is prohibited. 

4.5.4 Support Vector Machine (SVM) 

SVM is a kind of machine learning algorithm which attempts to discover a nonlinear 

map from input space to output space and map the data in high-dimensional feature 

space through the map. Then, the following equation is applied to the given training set 

{(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} to perform a linear regression in this feature space. 

𝑓(𝑥) = 𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏 = 𝐖𝑇𝐗 (4.20) 

where 𝐖 and b are the weight vector and the bias respectively which can be estimated 

by minimizing by the following constrained optimization problem: 
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Minimize        
1

2
‖𝐖‖ + 𝐶 ∑ 𝜉𝑖 + 𝜉𝑖

∗

𝑛

𝑖=1

 

(4.21) 

{

(𝐖𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖

𝑦𝑖 − (𝐖𝑇𝑥𝑖 + 𝑏) ≤ 𝜖 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

 

where 𝜉 and 𝜉𝑖
∗ represent the slack variables, C and 𝜖 are the regularization parameter 

and tolerance threshold respectively. By using Lagrange multipliers, Eq. (4.21) can be 

reformulated as: 

Maximize  ∑ 𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖) − 𝜖 ∑(𝛼𝑖

∗ + 𝛼𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

−
1

2
∑ (𝛼𝑖

∗ − 𝛼𝑖)(𝛼𝑗
∗ − 𝛼𝑗)

𝑛

𝑖,𝑗=1

〈𝑥𝑖, 𝑥𝑗〉 

(4.22) 

Subject to {
∑(𝛼𝑖

∗ − 𝛼𝑖) = 0

𝑛

𝑖=1

𝛼𝑖
∗, 𝛼𝑖 ≥ 0

 (4.23) 

where 𝛼𝑖
∗and 𝛼𝑗 are the Lagrange multipliers and 〈. , . 〉 denotes the inner product which 

can be substituted with Kernel function as follows to avoid any curse of dimensionality.  

𝑓(𝑥) = ∑(𝛼𝑖
∗ − 𝛼𝑖)𝐾(𝑥, 𝑥𝑖)

𝑛

𝑖=1

+ 𝑏 (4.24) 

Finally, the coefficient parameters of the equation number are computed as: 

〈𝑤, 𝑥〉 = ∑(𝛼𝑖
∗ − 𝛼𝑖)𝐾(𝑥, 𝑥𝑖)

𝑛

𝑖=1

 (4.25) 

𝑏 = −
1

2
∑(𝛼𝑖

∗ − 𝛼𝑖)(𝐾(𝑥𝑖, 𝑥𝑟) + 𝐾(𝑥𝑖, 𝑥𝑠))

𝑛

𝑖=1

 (4.26) 

where 𝑥𝑟 and 𝑥𝑠 represents the identified support vectors. Noted that a commonly 

applied kernel function is a radial basis function (RBF) which is defined as: 
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𝐾(𝑥, 𝑥𝑖) = exp (−
‖𝑥 − 𝑥𝑖‖2

2𝜎2
) (4.27) 

where x is the testing dataset, 𝑥𝑖 is a vector parameter, and 𝜎 is the kernel adjustable 

parameter.  

ξ 

ξ 

ϵ 

ϵ 

ϵ 
ϵ 

x

y

K(x)

y

Kernel mapping

Input space Feature space

Figure 4.5: Graphic illustration of kernel mapping 

4.5.5 Multilayer Perceptron (MLP)  

MLP is a supervised algorithm, with one or more layers between input and output 

layer, mapping input dataset onto a set of appropriate outputs. MLP is a kind of 

feedforward neural network as data flows in one direction from input to output. The 

perceptron computes a single output from multiple real-valued inputs by forming a 

linear combination according to its input weights and then sending the output through 

some nonlinear transfer functions which can be mathematically expressed as: 

𝑦 = 𝜑 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) = 𝜑(𝑾𝑇𝑿 + 𝑏) (4.28) 

where 𝑾 is the vector of weights, b is the bias, 𝜑 is transfer function, 𝑿 is vector of 

inputs, and 𝑦 is the output.  
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4.5.6 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS is a class of adaptive multilayer feedforward networks, applied to nonlinear 

forecasting where past samples are employed to predict the future sample. ANFIS 

combines the self-learning ability of NN and the linguistic expression function of fuzzy 

inference. As shown in Figure 4.6, ANFIS comprises five layers. 

The first layer consists of input variables membership functions (MFs), input 1 and 

input 2. In layer 1, every node 𝑖 is an adaptive node with node function: 

𝑂𝑖
1 = 𝛾𝐴𝑖(𝑥)            𝑖 = 1,2 (4.29) 

or  

𝑂𝑖
1 = 𝛾𝐵𝑖−2(𝑦)            𝑖 = 1,2 (4.30) 

where 𝑂𝑖
1is the output of the 𝑖th node in layer 1, x and y are inputs, 𝐴𝑖 and 𝐵𝑖−2 are the 

linguistic labels such as ‘large’ or ‘small’. 𝛾 is the membership function for A and B 

which is usually the generalized bell-shaped function expressed as follows: 

𝛾𝐴𝑖(𝑥) =
1

1 + |
𝑥 − 𝑟𝑖

𝑝𝑖
|

2𝑞𝑖
 

(4.31) 

where {𝑟𝑖, 𝑝𝑖, 𝑞𝑖} is the variable set. The bell-shaped function varies as the values of the 

variables change, hence manifesting various types of membership functions for fuzzy 

set A. Variables in the first layer are called premise variables.  

In the second layer, each node performs connective operation ‘‘AND’’ within the 

rule antecedent to determine the corresponding firing strength, 𝑤𝑖. The product of this 

layer is written as follows: 

𝑂𝑖
2 = 𝑤𝑖 = 𝛾𝐴𝑖(𝑥)𝛾𝐵𝑖(𝑦),      𝑖 = 1,2 (4.32) 

Layer 3 generates the normalized firing strength expressed as follows: 
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𝑂𝑖
3 = �̅�𝑖 =

𝑤𝑖

𝑤1 + 𝑤2
,         𝑖 = 1,2 (4.33) 

Layer 4 is a defuzzification layer wherein for each node the contribution of the ith 

rule to the overall output is computed as follows: 

𝑂𝑖
4 = �̅�𝑖𝑧𝑖 = �̅�𝑖(𝑎𝑖(𝑥) + 𝑏𝑖(𝑦)+𝑐𝑖),      𝑖 = 1,2 (4.34) 

where {𝑎𝑖, 𝑏𝑖, 𝑐𝑖} are the constant parameters. 

The final output as a summation of all inputs is computed as equation number by 

single node ∑ in the last layer. The fifth layer is not adaptive and transforms the fuzzy 

classification results into a crisp output. The output represents the generated output 

power. 

𝑂𝑖
5 = ∑ �̅�𝑖𝑧𝑖

𝑖

=
∑ 𝑤𝑖𝑧𝑖𝑖

𝑤𝑖
 (4.35) 
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Figure 4.6: ANFIS structure with two inputs, two rules, and one output 

4.6 Real Data 

The same real data in chapter 3, 5-min wind direction, wind speed, temperature, and 

output power, covering the period of 12 months are employed in this chapter. The 

observations are divided into two sets, data set 1 and data set 2. The former comprises 
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of 86206 instances which are employed to develop a model for wind power and wind 

speed prediction. Data set 2 includes 8061 observations and covers four weeks test data 

which are randomly selected, corresponding to the four seasons in a year: the first week 

of November (fall), the third week of May (spring), the third week of August (summer), 

and the fourth week of February (winter). 

4.7 Prediction Evaluation Indicators 

To examine the performance of applied models several assessment criteria are 

required. In this chapter three forecasting evaluation indicators are employed: mean 

absolute percentage error (MAPE) which was expressed in chapter 3 as Eq. (3.68); 

mean absolute error (MAE) and standard deviation error (SDE) as given by: 

MAE =
1

𝑛
∑|𝑦𝑒 − 𝑦𝑎|

𝑛

𝑖=1

 (4.36) 

SDE of MAE = [
1

𝑛
∑ (|𝑦𝑒 − 𝑦𝑎| −

1

𝑛
∑|𝑦𝑒 − 𝑦𝑎|

𝑛

𝑖=1

)

2𝑛

𝑖=1

]

1/2

 (4.37) 

where 𝑦𝑒 is the estimated power, 𝑦𝑎 is the actual power and 𝑛 is the number of samples 

forecasted.  

4.8 Simulation Results 

This section includes the simulated results obtained by indirect and direct wind 

power prediction methods. 

4.8.1 Indirect Wind Power Prediction Results 

In this research, the auto-correlation function (ACF) is conducted as a visual 

inspection to reaffirm the stationary of the data applied in ARMA. A fast upward trend 

in ACF plot presents the stationary of the data, whereas the gradual downtrend shows 

the data is non-stationary. After the determination of ARMA (p,q) structure, the 
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parameters of the model is estimated through maximum likelihood estimation using the 

Kalman filter in conjunction with Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm. After close observation, ARMA (2,1) is selected for wind speed forecasting. 

To calculate the coefficient of DES model, Eq. (4.38) is minimized by BSA. In this 

paper for BSA, the maximum number of iterations is 2000, population size is 30, 

mixrate=0.95, F=3.rndn, whereby stopping criteria is based on the maximum number of 

iteration. Noted that rndn is the normal distribution with mean equal to 0 and standard 

deviation equal to 1. 

Objective function: min ∑ (𝑦𝑡+1 − �̂�𝑡+1)2
𝑛

𝑡=1
 

�̂�𝑡+1 = (1 − 𝜂 − 𝜆)(𝑆𝑡−1
′ + 𝑏𝑡−1) + 𝜂𝑦𝑡 + 𝜆𝑆𝑡

′ + 𝑏𝑡−1 

0 < 𝜂, 𝜆 < 1 

(4.38) 

Table 4.1 presents the performance of DES and ARMA, and persistence5-min data in 

winter, spring, summer, and fall. According to comparative results, it can be observed 

that the MAPE, MAE and the SDE values obtained with the DES model are 

considerably lower than those obtained with the other two models. The value of 

unknown parameters of DES (𝜂, 𝜆) using BSA is illustrated in Table 4.2. For the further 

evaluation, the prediction of wind speed over 15-, 30-, and 60-min ahead the same 

procedure is performed. In this context, to make 15-, 30-, and 60-min ahead forecasting, 

three, six, and twelve consecutive data in section 2.1 should be averaged. Table 4.3 

denotes the performance of DES model over 5-, 15-, 30-, and 60-min ahead prediction 

based on four test week data. It can be deduced from Table 4.3 that statistical error 

measures increase by prediction interval, with the exception of summer and spring over 

15- and 30-min time interval. Note that, the ARMA and persistence models also were 

evaluated for different prediction horizon, however, the results are not shown here 

because the models displayed similar trends to those of the real data. Figure 4.7 shows 
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the actual and the forecasted wind speed using time series model over 5-min averaged 

data. 

Table 4.1: Comparison of wind speed forecasting methods based on data set 2 (5-min) 

Model Error  
Test week 

Average 
Winter Spring Summer Fall 

DES MAPE 0.34 0.27 0.68 0.45 0.43 

 MAE 0.03 0.03 0.09 0.02 0.04 

 SDE 0.06 0.06 0.10 0.02 0.06 

ARMA MAPE 4.7 6.12 7.02 8.25 6.52 

 MAE 0.50 0.78 0.93 0.33 0.63 

 SDE 0.88 1.32 1.56 0.57 1.08 

Persistence MAPE 6.93 6.85 7.17 8.34 7.32 

 MAE 0.46 0.85 1.00 0.48 0.69 

 SDE 0.87 1.46 1.68 0.92 1.23 

 

Table 4.2: Estimated parameters value of DES model based on dataset 2 (5- to 60-min) 

Time Horizon Parameter 
Test week 

Winter Spring Summer Fall 

5-min 𝜂 0.998 0.996 0.999 0.998 

 𝜆 0.014 0.011 0.002 0.003 

15-min 𝜂 0.998 0.998 0.995 0.997 

 𝜆 0.030 0.003 0.016 0.015 

30-min 𝜂 0.996 0.998 0.994 0.997 

 𝜆 0.025 0.005 0.020 0.024 

60-min 𝜂 0.992 0.996 0.993 1.00 

 𝜆 0.032 0.015 0.078 0.067 

 

Table 4.3: Statistical error measures of DES over 5- to 60-min ahead prediction 

Error  
Test week 

Average 
Winter Spring Summer Fall 

MAPE (%) 0.34 0.27 0.68 0.45 0.4350 

MAE 0.03 0.03 0.09 0.02 0.0425 

SDE 0.06 0.06 0.10 0.02 0.0600 

MAPE (%) 0.78 0.20 0.34 0.59 0.4775 

MAE 0.08 0.02 0.04 0.02 0.0400 

SDE 0.13 0.02 0.08 0.04 0.0675 

MAPE (%) 1.37 0.26 0.51 2.16 1.0750 

MAE 0.14 0.33 0.07 0.09 0.1575 

SDE 0.33 0.02 0.10 0.10 0.1375 

MAPE (%) 2.17 0.46 1.59 3.00 1.5112 

MAE 0.23 0.06 0.21 0.12 0.1330 

SDE 0.51 0.06 0.38 0.15 0.2317 
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Figure 4.7: The performance of wind speed prediction methods over the first 100 

samples of the test data in August 

 

After prediction of wind speed, MHTan wind turbine power curve modeling (Eq. 

(3.1), which was described in details in chapter 3, can be used to estimate the future 

wind power. Table 4.4 summarizes the forecasted power by MHTan based on four 

seasons over four time interval. Figure 4.8 shows the performance of MHTan based on 

the last 100 samples in the test week in May. 
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Table 4.4: 5- to 60-min ahead prediction results of indirect prediction using MHTAn  

Error Time 
Test week 

Average 
Winter Spring Summer Fall 

MAPE  (%) 5-min 1.83 1.60 1.11 9.09 3.41 

 15-min 2.14 1.40 1.05 8.11 3.17 

 30-min 2.31 1.32 1.00 8.25 3.22 

 60-min 2.64 1.39 1.68 8.78 3.62 

MAE 5-min 18.23 18.83 14.33 20.44 17.96 

 15-min 21.33 16.42 13.53 18.40 17.42 

 30-min 21.95 15.49 12.87 18.49 17.20 

 60-min 26.32 16.30 21.67 19.66 20.98 

SDE 5-min 37.40 35.36 24.81 33.69 32.81 

 15-min 38.34 30.53 32.86 29.38 32.78 

 30-min 42.31 29.83 30.75 26.89 32.44 

 60-min 53.05 30.37 49.17 28.25 40.21 

 

 

 

Figure 4.8: Comparison of the actual and forecasted wind power using MHTan based on 

the last 100 samples in the test week in May  

 

4.8.2 Direct Wind Power Forecasting Results  

The most important inputs selected by the developed FS technique in section 4.4 are 

employed to assess the performance of the mentioned algorithms in section 4.4. In this 

research, 82 attributes, including 20 lagged wind direction, temperature, wind speed, 

output power and the current temperature and wind speed are considered which cover 
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almost all the necessary and informative data. It is nice mentioning that due to 

unavailability of the humidity data, it is not considered in this study. Considering 

𝑇𝐻=0.64, 33 out of 82 inputs as the relevant features are selected in the first stage. In 

the next stage, 16 attributes of the data selected in the first stage, are detected as 

redundant feature and then are removed. Eventually, only 17 data with the maximum 

relevancy and the minimum redundancy are used as inputs for the six before-mentioned 

algorithms. Table 4.5 denotes the selected features.  

To validate the performance of the developed FS technique, it is compared with other 

methods such as correlation analysis (CA) (Hong et al., 2010), principal component 

analysis (PCA) (Kong, Liu, Shi, & Lee, 2015) and relief feature selection techniques 

(Koutanaei, Sajedi, & Khanbabaei, 2015). CA only discover linear relationship between 

two variables. PCA linearly transforms the original inputs into new uncorrelated 

features and relief is a feature weight-based algorithm inspired by the instance-based 

learning algorithm. The main drawback of the above-mentioned FS methods is that, 

they are not able to detect the redundancy of the data. This issue, however, is improved 

by the second stage of the developed FS technique. The performance of the FS 

techniques based on different test weeks are shown Table 4.6. In order to draw a better 

comparison, the average value of the error for each individual technique is presented as 

well. The comparative results clearly prove the superiority of the developed FS method 

compared to the other methods. Wind speed is vitally important data, considering that 

the better rank represents the more significant influence of the corresponding feature on 

wind power. 
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Table 4.5: Selected features by developed FS method based on the test week in August 

Selected Attributes Rank Selected Attributes Rank Selected Attributes Rank 

𝑊𝑃(𝑡 − 1) 1 𝑇(𝑡 − 1) 7 𝑊𝑆(𝑡 − 12) 13 

𝑊𝑆(𝑡) 2 𝑊𝑆(𝑡 − 4) 8 𝑊𝐷(𝑡 − 8) 14 

𝑊𝑆(𝑡 − 1) 3 𝑊𝑃(𝑡 − 5) 9 𝑊𝑃(𝑡 − 17) 15 

𝑊𝑃(𝑡 − 3) 4 𝑊𝐷(𝑡 − 2) 10 𝑊𝑆(𝑡 − 18) 16 

𝑊𝑃(𝑡 − 8) 5 𝑊𝑆(𝑡 − 9) 11 𝑇(𝑡 − 10) 17 

𝑊𝑆(𝑡 − 2) 6 𝑇(𝑡 − 5) 12   

 

Table 4.6: Comparison of different FS technique based on data set 2 

Season 
PCA  CA  Relief  MI+NN 

MAPE MAE SDE  MAPE MAE SDE  MAPE MAE SDE  MAPE MAE SDE 

Winter 0.88 8.83 17.28  0.96 8.81 18.05  0.86 8.61 17.04  0.76 7.59 16.09 

Spring 1.52 17.80 31.39  1.38 16.14 29.02  1.36 15.96 29.77  1.34 15.76 29.04 

Summer 1.06 13.67 24.82  0.91 11.74 23.50  0.94 12.18 24.07  0.83 10.79 22.09 

Fall 3.47 7.86 13.91  3.49 7.90 14.46  3.04 6.88 13.28  2.96 6.66 12.76 

Average 1.73 12.04 21.85  1.69 11.15 21.26  1.55 10.90 21.04  1.47 10.20 19.99 

 

The performance of the ANFIS and data mining algorithms is evaluated based on 

MAPE, DAE, and SDE as indicated in Table 4.7. To make a fair comparison between 

direct and indirect wind power forecasting, the data used in section 4.8.1 is employed in 

this section too. The table indicates that k-NN and MLP models yield satisfactory and 

quiet similar accuracy. It also discloses that ANFIS achieves the best results while the 

performance of random forest is disappointing. ANFIS, therefore, is selected to forecast 

wind power over longer horizon up to 60-min. 
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Table 4.7: MAPE, MAE, and SDE results of different direct methods in wind power 

forecasting based on data set 2 

Error Algorithm 

Test week 

Average 
Winter Spring Summer Fall 

MAPE (%) k-NN (k=50) 0.81 1.43 0.86 3.12 1.55 

 M5Rules 1.11 1.55 0.84 3.32 1.70 

 Random forest 1.00 1.69 1.06 4.88 2.15 

 SVM 0.87 1.41 1.13 3.19 1.65 

 MLP 0.82 1.43 0.87 3.13 1.56 

 ANFIS 0.76 1.34 0.83 2.96 1.47 

MAE k-NN (k=50) 8.07 16.87 11.12 7.03 10.77 

 M5Rules 11.15 18.28 10.91 7.48 11.95 

 Random forest 10.02 19.93 13.68 10.97 13.65 

 SVM 8.70 16.58 14.61 7.18 11.76 

 MLP 8.19 16.78 11.27 7.03 10.81 

 ANFIS 7.59 15.76 10.79 6.66 10.20 

SDE k-NN (k=50) 17.99 32.77 20.98 13.00 21.18 

 M5Rules 21.89 34.40 21.12 13.66 22.76 

 Random forest 20.93 37.47 26.26 18.49 25.78 

 SVM 24.86 31.81 23.05 13.16 23.22 

 MLP 17.97 32.61 21.79 13.00 21.34 

 ANFIS 16.09 29.04 22.09 12.76 19.99 

 

In machine learning viewpoint, selecting the best parameters of NN has been a 

chronic problem. In other words, there is no definite technique to determine the best 

structure of NN. Moreover, a particular structure which is performing well in a 

particular problem may not guarantee the same performance in other problems. Hence, 

in this research, to determine the best parameters of NN, fifteen structures are tested. 

For example, the performance of MLP is observed over a different type of transfer 

functions, the number of nodes, number of hidden layers, etc. Finally, MLP was 

developed with the following structure: two hidden layers, back propagation learning 

algorithm, hyperbolic tangent sigmoid transfer function, six nodes in the first hidden 

layer and three nodes in the second hidden layer, and the number of iterations of 1000. 

Similarly for SVM, a set of value on regularization parameter, 𝐶, at {20, 23, 27, 210} and 

RBF kernel width, 𝜎, at { 0.5,1.0,1.5,2.0} were evaluated and then the optimal value of 

𝐶 = 23 and 𝜎 = 1.0 was determined by consideration of all possible combinations of 

parameter values. The number of trees in RF and the minimum number of samples per 
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leaf in M5rules were set to 500 and 10 respectively, whereas ANFIS Sugeno type was 

set up with 8 cluster centers. The k-NN also disclosed different results over different 

numbers of 𝑘 as well as distance metric. Several examinations, therefore, were 

conducted to select the optimum number of 𝑘 and the best metric function . Although 

the same procedure applied to all direct wind power prediction models to obtain their 

best parameter, for the sake of conciseness, only the examination results of k-NN are 

tabulated here. It can be noticed from Table 4.8, although k-NN using Euclidean 

distance shows better accuracy for 𝑘 = 100 and Minkowski for 𝑘 = 200, overall k-NN 

achieves more accurate results with Manhattan distance compared to Euclidean and 

Minkowski. Since k-NN model using Manhattan for 𝑘 =50 outperforms others, its 

performance is evaluated in other test weeks as given in Table 4.9. 

Table 4.8: k-NN performance in wind power forecasting using three different distance 

metrics based on test week in summer 

Nearest neighbor Euclidean distance  Manhattan distance  Minkowski distance 

MAPE MAE SDE  MAPE MAE SDE  MAPE MAE SDE 

k=50 0.93 11.23 21.24  0.86 11.12 20.98  0.91 11.30 21.31 

k=100 0.90 12.45 21.73  0.95 12.31 21.85  1.04 12.67 22.06 

k=150 1.18 14.29 25.17  1.10 14.15 25.31  1.24 14.48 26.10 

k=200 1.42 16.98 31.25  1.29 16.71 31.14  1.18 16.90 31.09 

k=250 1.55 19.28 37.80  1.47 19.05 37.65  1.59 19.10 37.74 
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Table 4.9: Performance of k-NN using Manhattan distance for different numbers of k 

Error k-NN algorithm 

Test week 

Average 
Winter Spring Summer Fall 

MAPE (%) k=50 0.81 1.43 0.86 3.12 1.55 

 k=100 0.84 1.42 0.95 3.14 1.58 

 k=150 0.88 1.41 1.10 3.15 1.63 

 k=200 0.94 1.41 1.29 3.15 1.69 

 k=250 1.05 1.41 1.47 3.22 1.78 

MAE k=50 8.07 16.87 11.12 7.03 10.77 

 k=100 8.44 16.73 12.31 7.07 11.13 

 k=150 8.83 16.63 14.29 7.90 11.91 

 k=200 9.39 16.60 16.71 7.10 12.45 

 k=250 10.46 16.59 19.05 7.26 13.34 

SDE k=50 17.99 32.77 20.98 13.00 21.18 

 k=100 18.76 32.46 21.85 13.16 21.55 

 k=150 19.60 32.28 25.31 13.16 22.58 

 k=200 20.79 32.18 31.14 13.23 24.33 

 k=250 23.21 23.05 37.65 13.64 24.38 

 

Table 4.10 indicates the performance of ANFIS model over 5-, 15-, 30-, and 60-min 

ahead interval. The table reveals that ANFIS algorithm achieves better results in a 

shorter horizon than a longer horizon of prediction. Additionally, a difference in 

obtained errors over different test weeks can be clearly noticed. The main reason for 

that might be because of the dissimilarity of the wind speed distribution and also the 

adverse effects of weather conditions on the mechanical efficiency of the turbine. The 

former can be reaffirmed by obtaining the scale parameter (c) and shape parameter (𝑘) 

value of the actual data. In this context, the probability distribution of wind speed in the 

winter and fall is Weibull because 𝑘 is between 0 and 1, while observed 𝑘 > 3 shows 

that wind speed follows the normal distribution in the spring and summer. Low 

temperatures have adverse impact on different materials utilised in the fabrication of 

wind turbies such as composite and steel materials. Steels become more brittle and 

composite materials will be subjected to a residual stress. Sufficiently high stresses can 

cause microcracks in the material which result in stiffness and impermeability reduction 

of the materials. Low temperature can also damage electrical equipment such as yaw 
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drive motors and transformers as well as the winding can suffer from a thermal shock. 

Moreover, long exposure to cold can damage gearboxes and hydraulic couplers. The 

colder temperature becomes, the more viscosity of the lubricant increases and will 

damage gears because oil cannot freely circulate. Furthermore, seals and rubber parts 

loose at low temperature. All these may not necessarily cause part’s failure but can 

result in decreased in performance. The ANFIS performance over 5-, 15-, 30- and 60-

minute averaged data are shown in Figures 4.9 to 4.12. 

Table 4.10: Prediction errors using ANFIS model over 5- to 60- min ahead prediction 

Error Time 
Test week 

Average 
Winter Spring Summer Fall 

MAPE (%) 5-min 0.76 1.34 0.83 2.96 1.47 

 15-min 0.71 1.27 0.92 2.59 1.37 

 30-min 0.77 1.23 0.89 2.33 1.30 

 60-min 1.03 1.26 0.91 2.72 1.48 

MAE 5-min 7.59 15.76 10.79 6.66 10.20 

 15-min 7.13 14.96 11.94 5.88 9.97 

 30-min 7.72 14.51 11.59 5.23 9.76 

 60-min 10.29 14.78 11.81 6.10 10.74 

SDE 5-min 16.09 29.04 22.09 12.76 19.99 

 15-min 14.78 28.82 29.63 11.01 21.06 

 30-min 16.32 27.77 27.34 9.79 20.30 

 60-min 25.89 26.78 25.93 12.38 22.74 
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Figure 4.9: Comparison of the actual and forecasted wind power by ANFIS based on 5-min average data of the last 100 samples of the test week in 

November  
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Figure 4.10: Comparison of the actual and forecasted wind power by ANFIS based on 15-min average data of the last 100 samples of the test week 

in November  
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Figure 4.11: Comparison of the actual and forecasted wind power by ANFIS based on 30-min average data of the last 100 samples of the test week in 

May 
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Figure 4.12: Comparison of the actual and forecasted wind power by ANFIS based on 60-min average data of the last 100 samples of the test week in 

May 
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4.9 Summary 

Two wind power prediction models, direct and indirect, are compared in this chapter. 

Since the predicted wind speed is required to forecast wind power indirectly, several 

time series methods based on 5-min interval were applied. DES predicted the wind 

speed more accurately than other statistical methods. In the next step, the proposed 

power curve in Chapter 3 (MHTan) aimed to determine the corresponding wind power. 

To set up a direct prediction of power, ANFIS and five data mining models were 

applied to constitute the direct wind power forecasting. In this research, a new FS 

method is developed by combining the mutual information and neural network to obtain 

only the most informative input data. Case studies on real wind park confirmed that 

ANFIS outperformed others. The simulation results also confirmed that direct 

prediction methods overall give greater performance than indirect prediction methods. 

 

 

 

 

 

 

. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS FOR THE 

FURTHER WORK 

5.1 Conclusions 

High penetration of wind power into the electricity grid has called a demand for 

more accurate wind power prediction for the operation of wind farms. Wind turbine 

power curve depicting the relationship between wind speed and power can serve as a 

tool for wind power forecasting. Wind-power curve modeling, therefore, was set as the 

first objective of this thesis. To accomplish this objective, an enhanced parametric 

model, called modified hyperbolic tangent (MHTan) was proposed which not only 

forecasts the wind power but it also aids in monitoring the wind turbine to disclose any 

deviation from the normal performance. The monitoring feature of MHTan can 

significantly reduce the maintenance cost of wind turbines particularly in offshore wind 

farms, in which the accessibility issue is always posed. To attain the second objective of 

this thesis, two different methods were applied to obtain the free parameters of the 

MHTan. In the first method, three optimization algorithms, namely, backtracking search 

algorithm, cuckoo search, and particle swarm optimization were employed to obtain the 

best coefficients of MHTan in nine-dimensional search space through minimizing the 

sum of squared residuals. The other method covering the second and the third objectives 

was based on the distribution of the wind speed and the maximum likelihood estimation 

(MLE). In this context, to fulfill the third objective, five parametric and one 

nonparametric models were used to estimate the parameters of wind speed distribution. 

After close observations, it was proved that the collected wind speed followed Weibull 

distribution than other distributions. To test the presented models two data set were 

considered, one based on the actual data collected and the other based on the simulated 

data varied in size of samples. According to the obtained results, the nonparametric 

model, group search optimization, illustrated better accuracy in estimation of Weibull 
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parameters. In the next step, a new formula was derived in which matching the 

frequency distribution of the turbine power. The formula comprises the known 

parameters of Weibull distribution and the unknown parameters of MHTan. MLE then 

was developed to estimate the coefficients of the MHTan. The comparative results 

clearly indicated that the power curve based on LSE fits the observed wind-power curve 

better than the one based on MLE, however, they both have the S-curve shape. The 

performance of the MHTan was validated by two data sets, one based on the real data 

collected from a pitch-control wind turbine and the other based on generated data 

representing horizontal-axis wind turbine with the yaw-control, and vertical-axis wind 

turbines with the stall- and pitch-control. The MHTan also was compared with several 

parametric and nonparametric models of wind turbine power curves. The numerical 

results affirmed the superiority of the proposed model in a pitch-control wind turbine as 

compared to both parametric and nonparametric models. As it was reasonably expected 

in the yaw- and the stall-control wind turbine as the shape of the power curve is not 

purely S-curve, data mining algorithms performed better than others, however, the 

obtained results by MHTan using BSA and CSA were absolutely satisfactory in these 

turbines. 

This thesis also examined the performance of two wind power forecasting 

approaches with two different strategies. In the first one, which is called indirect 

prediction method, the wind speed was forecasted at first and then MHTan performed 

the conversion of forecasted wind speed to wind power. Double exponential smoothing 

method was the best as compared to other statistical methods. To set up the second 

model, which is called direct prediction method, six data-driven approaches were 

employed. The results verified that in the second method ANFIS was the best. In the 

second model, before applying input data such as wind speed, wind direction, 

temperature, a data preprocessing was required. Thus, a new feature selection technique 
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(FS) was introduced to select the most informative inputs. The developed FS was 

composed of two stages. The first stage aimed to remove the irrelevant data by mutual 

information, while the second stage focused on filtering out the redundant data by the 

neural network. The two-stage FS technique was compared to several linear and 

nonlinear FS methods and the comparative results proved that the developed FS 

technique has a greater efficiency than the others.  

5.2 Recommendations for the Further Work 

The following tasks are recommended for the future works. 

1. In indirect prediction approaches transmission of the time series data, e,g by 

wavelets or Kalman filter can be considered to enhance the prediction 

accuracy. 

2. Heuristic algorithms such as BSA or CSA can be applied in the second stage 

of the developed FS technique to optimize neural networks’ weightings in 

order to avoid trapping in local minima as well as to improve its performance. 

3. The MHTan or data-driven approaches can be employed in real economic 

dispatch problems for wind power-integrated power systems.  

4. The proposed control chart by MHTan which is able to detect anomalies and 

outliers can be used to identify the factors and prediction of faults wherein the 

faults can be categorized in different groups labeled with different codes 

representing the severity of the problem. 
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