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ANTI-CANCER EFFECTS OF 1’S-1’-ACETOXYCHAVICOL ACETATE AND 

ITS HEMI-SYNTHETIC ANALOGUES ON CANCER CELL LINES 

ABSTRACT 

1’S-1’-acetoxychavicol acetate (ACA) is a phenylpropanoid isolated from the rhizome of 

the wild ginger plant, Alpinia conchigera (Zingiberaceae). Nine analogues of ACA were 

hemi-synthesised and evaluated for their cytotoxic effects using MTT assay against 

breast, bladder, prostate, oral and liver human cancer cell lines. Only ACA and two 

analogues, 1’-acetoxyeugenol acetate (AEA) and 1’-acetoxy-3,5-dimethoxychavicol 

acetate (AMCA) showed significant cytotoxic effects. The aims of the research were to 

investigate if ACA and its two analogues, first, could exert anti-cancer effects via the 

proteasome and second, to explore the possible underlying mechanism of action as well 

as the structure-activity relationship (SAR) involving anti-proliferation, apoptosis 

induction and anti-migration effects in breast cancer cells. Since the ubiquitin-proteasome 

system (UPS) is seen as an effective system in modulating tumour cell proliferation, the 

proteasome-inhibitory potential of ACA, AEA and AMCA was investigated. Among the 

three different proteasome activities, the best inhibition by these three compounds was 

the chymotrypsin-like activity of 26S proteasome in MDA-MB-231 breast cancer cells. 

The docking analysis showed that 1’-acetoxy group is the key player of proteasome 

inhibition. However, the compounds were significantly less active compared to the 

commercial proteasome inhibitor, epoxomicin. This suggested that ACA and its 

analogues did not exert effective anti-cancer effects via the UPS system. However, ACA 

and its two analogues, AEA and AMCA inhibited the cell growth of MDA-MB-231 breast 

cancer cells significantly. The 1’- and 4-acetoxy, and methoxy group substituted at 3-

position of the benzene ring were found to be important for anti-proliferation, whereas 4-

hydroxy, methoxy group at 4- and 5-positions reduced the activity. Further investigation 

of these three compounds using DNA fragmentation assay showed that they markedly 
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increased apoptosis of MDA-MB-231 cells. The expression levels of cleaved PARP, p53 

and Bax were elevated whereas the expression of Bcl-2 and Bcl-xL were decreased after 

the treatment of ACA, AEA and AMCA. These findings suggested that ACA and the two 

analogues are able to inhibit MDA-MB-231 cell growth by inducing apoptosis via the 

mitochondrial apoptotic pathway. Also, the SAR between ACA and its analogues in anti-

migration effects were analysed since ACA, AEA and AMCA effectively inhibited the 

migration of MDA-MB-231 cells. The structural requirements for anti-migration effects 

are the 1’- and 4-acetoxy, and 3-methoxy groups that were identified as essential for 

inhibition of the cancer cells migration. In contrast, the 4-hydroxy and 5-methoxy weaken 

the activity. The compounds also downregulated the expression level of pFAK/FAK, 

pAkt/Akt via the integrin β1-mediated signalling pathway. Collectively, ACA, AEA and 

AMCA are potentially beneficial anti-cancer agents by their ability to suppress growth, 

induce apoptosis and inhibit the migration of breast cancer cells.  

Keywords: ACA hemi-synthetic analogues, SAR, apoptosis, anti-migration, ubiquitin-

proteasome system 
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KESAN-KESAN ANTI-KANSER 1’S-1’-ASITOKSIKAVIKOL ASETAT       

DAN ANALOG-ANALOG HEMI-SINTETIKNYA PADA TITISAN-TITISAN 

SEL KANSER 

ABSTRAK 

1’S-1’-asitoksikavikol asetat (ACA) ialah suatu fenilpropanoid yang telah diasingkan 

daripada rizom tumbuhan halia hutan, Alpinia conchigera (Zingiberaceae). Sembilan 

analog ACA telah dihemi-sintesiskan dan dikaji bagi kesan sitotoksik mereka terhadap 

titisan-titisan sel kanser payudara, pundi air kencing, prostat, mulut dan hati manusia 

melalui ujian MTT. Hanya ACA dan dua analog, 1’-asitoksieugenol asetat (AEA) and 1’-

asitoksi-3,5-dimetoksikavikol asetat (AMCA) menunjukkan kesan-kesan sitotoksik yang 

signifikan. Tujuan-tujuan penyelidikan ini adalah untuk mengkaji sama ada ACA dan dua 

analognya, pertama, boleh mengenakan kesan-kesan anti-kanser melalui proteasom dan 

yang kedua, untuk memeriksa mekanisme tindakan yang mungkin terbabit dan juga 

hubungan struktur-aktiviti (SAR) bagi kesan-kesan anti-proliferasi, induksi apoptosis, 

dan anti-migrasi pada sel-sel kanser payudara. Disebabkan sistem ubiquitin-proteasom 

(UPS) merupakan suatu sistem yang efektif dalam modulasi proliferasi sel barah, oleh itu 

potensi perencatan proteasom oleh ACA, AEA dan AMCA telah dikaji. Antara tiga 

aktiviti proteasom yang berbeza, perencatan yang terbaik oleh tiga kompaun ini adalah 

pada aktiviti seperti-kimotripsin 26S proteasom dalam sel MDA-MB-231. Analisis 

doking menunjukkan bahawa kumpulan 1’-asitoksi merupakan pemain utama dalam 

perencatan proteasom. Walaubagaimanapun, kompaun-kompaun ini adalah kurang aktif 

secara signifikannya jika berbanding dengan perencat proteasom komersial, epoxomicin. 

Ini menunjukkan ACA dan analog-analognya tidak memberi kesan-kesan anti-kanser 

yang efektif melalui sistem UPS. Walaubagaimanapun ACA dan dua analog, AEA dan 

AMCA merencatkan pertumbuhan sel-sel kanser payudara MDA-MB-231 secara 

signifikannya. Kumpulan 1’- dan 4-asitoksi, dan kumpulan metoksi yang disubstitusikan 
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pada kedudukan 3 dalam gelang benzena, didapati adalah penting untuk anti-proliferasi, 

manakala 4-hidroksi, kumpulan metoksi pada kedudukan 4 dan 5 mengurangkan aktiviti 

tersebut. Penyelidikan selanjutnya terhadap tiga kompaun dengan ujian fragmentasi DNA 

menunjukkan bahawa mereka meningkatkan peratusan apoptosis sel-sel MDA-MB-231 

secara ketaranya. Tahap ungkapan PARP terbelah, p53 dan Bax meningkat manakala Bcl-

2 dan Bcl-xL menurun setelah rawatan ACA, AEA dan AMCA. Penemuan ini 

mencadangkan bahawa ACA dan dua analog boleh merencatkan pertumbuhan sel MDA-

MB-231 dengan menginduksikan apoptosis melalui laluan apoptotik mitokondria. Selain 

itu, SAR antara ACA dan analognya dalam kesan-kesan anti-migrasi juga telah 

dianalisiskan kerana ACA, AEA dan AMCA merencatkan migrasi sel-sel MDA-MB-231 

secara berkesannya. Keperluan struktur bagi kesan-kesan anti-migrasi yang telah dikenal 

pasti sebagai penting adalah kumpulan 1’- dan 4-asitoksi, dan 3-metoksi bagi perencatan 

migrasi sel kanser. Malahan, 4-hidroksi dan 5-metoksi melemahkan aktiviti ini. 

Kompaun-kompaun ini juga telah mengawal turun tahap ungkapan pFAK/FAK, 

pAkt/Akt melalui laluan syarat yang diperantarakan oleh integrin β1. Secara koletif, 

ACA, AEA dan AMCA berpotensi menjadi agen-agen anti-kanser yang bermanfaat dari 

kebolehan mereka untuk menyekat pertumbuhan, menginduksikan apoptosis dan 

merencatkan migrasi sel-sel kanser payudara. 

Kata kunci: Analog-analog hemi-sintetik ACA, SAR, apoptosis, anti-migrasi, sistem 

ubiquitin-proteasom 
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CHAPTER 1: INTRODUCTION 

Over the past 50 years, natural products presented impressive achievements in drug 

discovery (Mishra & Tiwari, 2011). Many plant-derived natural products became the vital 

source for discovery of anti-cancer drugs due to their structural diversity and participation 

in multiple anti-cancer mechanisms. However, major challenges have hindered the 

development of these natural products as pharmaceutical drugs. These include problems 

such as low production yields of natural products during scale-up efforts (Fett-Neto et al., 

1992), inadequate natural resources (Datta & Srivastava, 1997) as well as their complex 

structures which impedes improved structural modifications and synthesis of compounds 

(Morrison & Hergenrother, 2014). Additionally, screening of numerous extracts and 

purified compounds from a variety of natural sources involves substantial expenditure 

and time. Due to these hindrances, it is crucial to perform structural modifications through 

organic hemi-synthesis to counter the problems. 

1’S-1’-acetoxychavicol acetate (ACA) is a phenylpropanoid which can be found in the 

plant Alpinia conchigera (Zingiberaceae) (Awang et al., 2010). It is known to exhibit a 

broad range of biological properties such as anti-ulcer (Mitsui et al., 1976), anti-fungal 

(Janssen & Scheffer, 1985), inhibition of xanthine oxidase (XO) (Noro et al., 1988), 

inhibition of Epstein-Barr virus activation (Kondo et al., 1993) and anti-cancer activity 

(Murakami et al., 1996; Ohnishi et al., 1996; Tanaka et al., 1997b; Kobayashi et al., 1998). 

Moreover, it was reported that ACA and its natural analogue, AEA suppressed 

proliferation, induced apoptosis and reduced migration rate of various cancer cell lines in 

vitro as well as reduced tumour volume and side effects in vivo (Awang et al., 2010; 

Hasima et al., 2010; In et al., 2011; In et al., 2012). Due to the wide range of biological 

functions, hemi-synthesis of different ACA analogues was warranted for enhancement 

purposes (Murakami et al., 2000).  
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Cancer, also known as malignant neoplasm, is a worldwide killer as it is a primary 

cause of death among many populations (Ferlay et al., 2013). Despite substantial 

strategies taken to combat cancer, it remains a fundamental burden to the poor and 

developing countries. In Malaysia it is a major health burden and ranked as the third fatal 

disease (Abdullah, 2016). Thus, development of effective anti-cancer drugs for cancer 

treatment is crucial.   

The ubiquitin-proteasome system (UPS) plays an important role in regulating cellular 

processes such as apoptosis, angiogenesis, signal transduction, cell cycle and selective 

degradation of most intracellular proteins (Orlowski et al., 2003). The 26S proteasome is 

a multi-subunit protease complex made up of the 20S catalytic core and 19S regulatory 

particle. It is found in the nucleus and cytoplasm of eukaryotic cells (Peters et al., 1994). 

The 20S proteasome core is composed of two outer rings with seven α subunits (α1-α7) 

in each ring and two inner rings consisting of seven β subunits each. The 19S regulatory 

complex binds to the α subunits to induce the gate opening in the 20S proteasome. The β 

subunits with a terminal threonine residue play important roles in the proteolytic 

activities, such as chymotrypsin-like (β5), trypsin-like (β2) and peptidylglutamyl peptide 

hydrolysing-like (also known as caspase-like) (β1) activities (Seemuller et al., 1995). 

Proteins destined for degradation by the proteasome undergo polyubiquitination prior to 

their degradation. The proteasomal activity is seen to play a certain role in the progression 

of cancer in which some cancer-related proteins such as, p53, Bax, cyclins A, B, D and 

E, p27, IκB-α are targeted by proteasome (Ciechanover, 1998). Many proteasome 

inhibitors have been reported to exert anti-cancer effects on various cancer cells. For 

example, bortezomib, the first US Food and Drug Administration (FDA) approved 

proteasome inhibitor was found to kill cancer cells by regulating proteins associated with 

cancer survival (Kane et al., 2006). Thus, it is important to determine if the anti-cancer 

effects of a compound are mediated via the UPS. 
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Apoptosis is a highly regulated cell death which is normally characterised by 

membrane blebbing, cell shrinkage, condensation of chromatin and DNA fragmentation 

followed by the rapid engulfment by macrophages (Renehan et al., 2001). In contrast to 

normal cells, cancer cells are able to evade the apoptosis process by their ability to disrupt 

the balance between anti-apoptotic and pro-apoptotic proteins (Juin et al., 2004; Vogler 

et al., 2009). Therefore, many natural and synthetic anti-cancer agents are vital to have 

the capability of inducing apoptosis in cancer cells.  

Cancer metastasis is a complex, multi-step processes that involved tumour cells 

detaching, spreading and to grow at distant sites from the primary tumour site. The 

complex interaction between proteins from transmembrane receptors to transcription 

factors triggers multi-step cellular signalling events that leads to the cancer cell migration 

(Friedl & Brocker, 2000). The signalling events such as integrin-FAK-Src signalling 

pathway regulates the metastatic cells to loosen its extracellular matrix (ECM) adhesion 

(Hood & Cheresh, 2002). The epithelial to mesenchymal transition (EMT), another 

essential step in promoting cancer metastasis, allows the disruption of the cell-cell 

adhesion, matrix remodelling, increasing motility and invasiveness. These processes can 

be regulated by signalling pathways such as the phosphatidylinositol 3-kinase (PI3K)/Akt 

pathway (Jing et al., 2011). Thus, it is also crucial to search for anti-cancer agents that 

can modulate signalling pathways which consequently lead to anti-migration activities.  

In this study, the effects of ACA and its hemi-synthetic analogues on the proliferation 

of various cancer cell lines were assessed. The involvement of UPS in the anti-cancer 

effects was also investigated. In addition, two other major anti-cancer properties, namely, 

apoptosis induction and anti-migration effects and their underlying molecular 

mechanisms were investigated. Therefore, the hemi-synthetic analogues of ACA would 

have improved anti-cancer properties with synthetically modified chemical structures, 
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increased apoptosis induction and inhibition of migration effects. If these anti-cancer 

effects are regulated via the UPS, it would be more effective. 

1.1 Study Objectives 

i) To study the structure-activity relationship (SAR) between synthetically 

modified chemical structures of ACA and its analogues and their anti-cancer 

activity. 

ii) To investigate the potential of ACA and its analogues to trigger apoptosis in 

cancer cells through regulation of proteasomal activity. 

iii) To investigate the inhibitory effects of ACA and its analogues on purified and 

tumour-derived proteasome proteolytic activities.  

iv) To identify molecular modes of binding between the proteasome and structural 

features of ACA and its analogues.  

v) To analyse the levels of ubiquitinated proteins and proteasome target proteins 

after inhibition of the UPS. 

vi) To determine the apoptotic protein regulation expression and metastasis-

related pathways mediated by ACA and its analogues. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Natural Products  

Over the past half-century, natural products have been widely used for the 

development of effective cancer chemotherapeutic agents (Mishra & Tiwari, 2011). The 

importance of natural products in cancer therapy was summarised in a report by (Newman 

& Cragg, 2016), where it was found that 83.0 % of FDA approved anti-cancer drugs from 

1981 to 2014 were either natural products or synthetic products of natural compounds. 

The higher plant-derived compounds, such as paclitaxel, vincristine, vinblastine and 

bortezomib have been accepted as FDA drugs (Kane et al., 2003; Guérritte & Fahy, 2005; 

Cseke et al., 2006). Apart from these, some natural compounds such as the 

epipodophyllotoxin derivatives, maytansine, bruceantin, thalicarpine, camptothecin and 

lapachol have been examined through several epidemiological and experimental studies 

(Sieber et al., 1976). The natural compounds are advantageous with regard to 

appropriateness for oral intake, possession of multiple mechanisms of action and 

regulatory approval (Tsuda et al., 2004).  

Vincristine is one of the vinca alkaloid anti-cancer drugs isolated from the leaves of 

field grown Catharanthus roseus in the Madagascar rain forests (Noble, 1990). 

Vincristine exhibited significant anti-tumour activity in patients with Hodgkin lymphoma 

and some forms of leukaemia (Devita et al., 1970). The compounds from the vinca 

alkaloid family have been discovered as potent inhibitors of cell proliferation and have 

been widely used in cancer therapy. The efficacy of vinca alkaloids against cancer cells 

by occupying the tubulin’s building block structure (Bai et al., 1990), which in turn leads 

to cell arrest in mitosis (Gidding et al., 1999). 
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Resveratrol (trans-3,5,4’-trihydroxystilbene) was first isolated in 1940 from the roots 

of white hellebore, Veratrum grandiflorum O. Loes but has later been found in grapes, 

berries and peanuts (Sarkar & Li, 2006). Several findings showed that resveratrol is 

capable to inhibit the proliferation of cancer cells including breast cancer (Mgbonyebi et 

al., 1998), oral squamous carcinoma (Elattar & Virji, 1999), prostate cancer (Hsieh & 

Wu, 1999), pancreatic cancer (Ding & Adrian, 2002), colon cancer (Delmas et al., 2002), 

ovarian carcinoma (Yang et al., 2003) and cervical carcinoma (Aggarwal et al., 2004). 

Another important natural compound is curcumin (diferuloylmethane), a major 

component of the Indian spice turmeric, Curcuma longa, which has been described as an 

anti-inflammatory agent (Arora et al., 1971). It also has been the subject of intense study 

as anti-cancer molecules (Kawamori et al., 1999; Kim et al., 2009; Lai et al., 2011). The 

anti-cancer potential of curcumin is related to cell growth inhibition of various cancer cell 

types; downregulation of transcription factors NF-κB, AP-1 and Egr-1; reduced 

expression of COX-2, MMP-9, TNF-α and cyclin D1; inhibition of growth factor 

receptors EGFR and HER-2 and deactivation of several protein kinases involved in 

tumourigenesis (Aggarwal et al., 2003). 

Apart from these, many other plant-derived natural products such as phenylpropanoids 

are regarded as fundamental source for discovery of anti-cancer drugs due to their 

structural diversity and broad array of anti-cancer activities. 

2.1.1 Phenylpropanoids 

Phenylpropanoids is the largest and most diverse group of secondary metabolites 

sourced from plants (Korkina, 2007). Phenylpropanoids can be found abundantly in 

human diet, spices, aromas, wines, essential oils and traditional medicine. These 
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compounds are of great interest especially for medical use as anti-oxidant, anti-bacterial, 

anti-microbial and anti-cancer agents.  

Eugenol is an important phenylpropanoid extracted from aromatic flower buds found 

in Syzygium aromaticum, which has been discovered to possess anti-inflammatory (Kim 

et al., 2003), anti-genotoxic (Han et al., 2007), anti-oxidant (Ito et al., 2005b) and anti-

mutagenic (Miyazawa & Hisama, 2001) properties. Besides, it can induce apoptotic cell 

death in several cancer cells such as breast adenocarcinoma (Jaafari et al., 2012), colon 

carcinoma (Slameňová et al., 2009), prostate cancer (Ghosh et al., 2009) and oral 

squamous carcinoma (Carrasco et al., 2008). Eugenol has also significantly reduced the 

expression of Bcl-2, COX-2 and IL-1β in the HeLa cell line (Hussain et al., 2011). 

Moreover, eugenol treatment arrested the melanoma cells in the S phase of cell cycle, 

induced apoptosis and upregulated several enzymes involved in the base excision repair 

pathway, including E2F family members (Ghosh et al., 2005b). Pal and collaborators 

carried out in vivo analysis and showed that eugenol inhibited skin carcinogenesis in mice 

by downregulation of proliferation-associated genes c-myc and H-ras and anti-apoptotic 

gene Bcl-2, along with upregulation of pro-apoptotic genes Bax, p53 and active caspase-

3 (Pal et al., 2010). Hence, eugenol is a phenylpropanoid with notable anti-cancer effects. 

Another kind of phenylpropanoid, myristicin, 1-allyl-3,4-methylenedioxy-5-

methoxybenzene can be isolated from carrot, nutmeg and parsley (Hallstrom & 

Thuvander, 1997). Lee and collaborators reported that myristicin induced cytotoxicity on 

human neuroblastoma SK-N-SH cells by apoptotic mechanism via cleavage of PARP, 

accumulation of cytochrome c and activation of caspase-3 (Lee et al., 2005). In brief, 

myristicin shows great potential as an effective anti-cancer agent.  

One of the natural products that can be extracted from fennel, star anise, dill, basil and 

tarragon is anethole (1-methoxy-4-(1-propenyl)benzene) (Nakagawa & Suzuki, 2003). 
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Anethole induced cytotoxicity effects on various cancer cells such as fibroblastic sarcoma 

(Choo et al., 2011), cervical carcinoma (Stoichev et al., 1967) and hepatocytes (Marshall 

& Caldwell, 1992). Choo and friends showed that anethole inhibited proliferation, 

adhesion and invasion of highly metastatic human HT-1080 fibrosarcoma cells via 

inhibition of MMP-2 and MMP-9 and upregulation of MMP inhibitor TIMP-1 (Choo et 

al., 2011). Anethole also reduced tumour weight, tumour volume and body weight in 

Ehrlich ascites tumour-bearing mice (Al-Harbi et al., 1995). Anethole exhibits significant 

anti-cancer activities both in vitro and in vivo.  

Hydroxychavicol, 1-allyl-3,4-dihydroxybenzene, is a phenolic compound present in 

Piper beetle leaf (Chakraborty et al., 2012). A study by Nakagawa and collaborators 

revealed that hydroxychavicol induced cytotoxic effects on rat hepatocytes (Nakagawa et 

al., 2009).  

Overall, phenylpropanoids are important secondary metabolites that displayed strong 

anti-cancer therapeutic effects. Further studies of these natural compounds are required 

for the development of new drug candidates in cancer treatment. 

2.1.2 Alpinia conchigera (Zingiberaceae) 

Alpinia conchigera Griff. (Figure 2.1) is an herbaceous, perennial plant grown in 

shaded and moist environment of rainforest and valley, with the heights of up to 126 cm 

when fully matured (Burkill et al., 1966). This plant belongs to Alpinia genus, which is 

the largest and most common genus in the Zingiberaceae family with 230 species 

throughout tropical and subtropical Asia, especially in Bengal, Malaysian Peninsular and 

Sumatera (Holttum, 1950; Ibrahim et al., 2000; Kress et al., 2005). The Zingiberaceae, 

also known as the Ginger family is the largest family in the order of Zingiberales, with 

about 53 genera and over 1200 species (Kress et al., 2002). The order and classification 
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of Alpinia conchigera within the taxonomic hierarchy of Alpinia genus has been 

conducted using DNA-based approaches and illustrated in Figure 2.2. 

Alpinia conchigera is also known as lengkuas ranting, lengkuas kecil, lengkuas 

padang, lengkuas geting or chengkenam in Malaysia (Burkill et al., 1966; Janssen & 

Scheffer, 1985; Kress et al., 2005). This species is reported to be useful as traditional 

medicine, spice, food, condiment, dye and flavouring (Ibrahim et al., 2000). In some 

states of Peninsular Malaysia, the rhizome is used as condiment and the young shoots are 

used for vegetable dish. In terms of its medicinal uses, rhizome extract of Alpinia 

conchigera have been used by Malays as medicine to treat skin fungal infections and 

consumed as post-partum medicine (Ibrahim et al., 2009). People in Thailand use the 

rhizomes in traditional medicine to relieve gastrointestinal disorders and in the 

preparation of Thai food dishes (Athamaprasangsa et al., 1994).  

The chemical constituents of Alpinia conchigera have been the subject of previous 

studies. The first, by Yu and friends, reported that the fruits of Alpinia conchigera 

contained compounds including nonacosane, β-sitosterol, 1’-acetoxychavicol acetate and 

1’-acetoxyeugenol acetate, the two latter phenylpropanoid derivatives exhibiting anti-

inflammatory activity (Yu, 1988). Later, Athamaprasangsa and collaborators identified 

chavicol, chavicol acetate, 1’-hydroxychavicol acetate, 4-acetoxycinnamyl alcohol and 

4-acetoxycinnamyl acetate, together with six monoterpenoids, five diarylheptanoids and 

two flavonoids, which were obtained from the rhizomes and fruits of Alpinia conchigera 

in Thailand (Athamaprasangsa et al., 1994). However, no quantitative data were given. 

In 1995, another report about 34 essential oil components from the rhizomes of Alpinia 

conchigera from the southern region of Peninsular Malaysia, among which β-bisabolene, 

β- sesquiphellandrene and 1,8-cineole were found to be the major components (Sirat & 

Nordin, 1995). Besides, Wong and his team reported that the rhizome oil of Alpinia 
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conchigera from the northern region of Peninsular Malaysia yielded 50 compounds with 

the majority being terpenoids (Wong et al., 2005). Another active compound, 

cardamomin (2’,4’-dihydroxy-6’-methoxychalcone) isolated from Alpinia conchigera 

was recognised as an inhibitor of NF-κB activation, which suppressed LPS-induced 

degradation, phosphorylation of IκB-α and the RelA/p65 subunit of NF-κB (Lee et al., 

2006). 

 

Figure 2.1: Alpinia conchigera Griff. 
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Figure 2.2: The order and classification of the Alpinia species up to section and 

subsection levels (Reproduced with permission from Smith, 1990).  
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2.1.3 1’S-1’-Acetoxychavicol Acetate (ACA) 

1’S-1’-acetoxychavicol acetate (ACA) is a naturally occurring compound found in 

many ginger species, which belongs to the phenylpropanoid group. The active chemical 

structure of ACA is illustrated in Figure 2.3. ACA has been reported to possess anti-ulcer 

(Mitsui et al., 1976), anti-fungal (Janssen & Scheffer, 1985), anti-tumourigenic (Itokawa 

et al., 1987), anti-inflammatory (Nakamura et al., 1998), anti-oxidative (Kubota et al., 

2001) and anti-allergic (Matsuda et al., 2003a) properties. 

Until recently, studies on ACA presented its in vitro inhibitory effects on cancers, such 

as Ehrlich ascites tumour cells (Moffatt et al., 2000), myeloid leukaemia (Ito et al., 2004), 

human T cell lymphoma (Ichikawa et al., 2005), breast carcinoma (Campbell et al., 2007) 

and human colorectal cancer (Baradwaj et al., 2017). 

In vivo studies have also depicted that ACA has potent cancer chemopreventive effects 

on chemically induced tumour formation in mouse skin (Murakami et al., 1996), rat oral 

(Ohnishi et al., 1996), rat colon (Tanaka et al., 1997a), rat oesophagus (Kawabata et al., 

2000) and Syrian hamster pancreas (Miyauchi et al., 2000). 

In terms of anti-cancer mechanism, ACA was shown to induce apoptosis in Ehrlich 

ascites tumour cells through modulation of polyamine metabolism and caspase-3 

activation (Moffatt et al., 2000). It also was found to exert anti-proliferative effects on 

myeloma cells in vitro and in vivo through induction of apoptosis via mitochondrial- and 

Fas-mediated dual mechanism (Ito et al., 2004). Further studies showed that ACA 

inhibited the activation of NF-κB (Ito et al., 2005a) by preventing the IκB-α kinase 

activity (Ichikawa et al., 2005) and by blocking the RANKL-induced NF-κB activation 

(Ichikawa et al., 2006). More recently, ACA isolated from rhizomes of the Alpinia 

conchigera Griff. was reported to suppress proliferation, induce apoptosis and reduce 
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migration rate on various cancer cell lines in vitro as well as to reduce tumour volume 

and side effects in vivo (Awang et al., 2010; In et al., 2012). ACA was also shown to 

inhibit the constitutive activation of NF-κB through suppression of its kinase, IKKα/β. 

Despite all these reports revealing ACA mechanisms, the involvement of the ubiquitin-

proteasome system (UPS) in mediating its anti-cancer effects is unknown. 

In 2000, the structure-activity relationships (SAR) of ACA on its anti-cancer activity 

were analysed based on the inhibitory activity of ACA analogues on EBV activation 

(Murakami et al., 2000). According to this study, it was found that 2’-3’ terminal double 

bond of ACA was highly important for its biological activity. Moreover, it was also 

concluded that the acetoxy group in ACA was crucial in cellular permeability properties 

because analogues without 1’-acetoxy group resulted in the reduction of activity. Based 

on the use of esterase inhibitor tests in Raji cells, it was also suggested that acetoxy group 

attached at ACA was subjected to acetate elimination via hydrolysation by intracellular 

esterases in order to maintain its retention within the cells, thus resulting in an 

intracellular modified ACA candidate structure which targets specific downstream 

molecules (Murakami et al., 2000). An overall summary on the structural factors of ACA 

regulating the anti-cancer activity based on Murakami’s study is illustrated in Figure 2.4. 

Another report on SAR of ACA depicted that substitution of acetoxy group with 

acetamide group markedly decreased the inhibitory activities of ACA analogues on HL-

60 leukaemia cells (Misawa et al., 2015). Even though the SAR of ACA on certain anti-

cancer activity has been studied, its structure-activity relationships on anti-proliferation 

and anti-migration effects have yet to be identified.  
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Figure 2.3: Chemical structure of 1’S-1’-acetoxychavicol acetate (ACA). 

 

 

Figure 2.4: Summary of important structural factors of ACA for evaluation as anti-cancer 

inhibitor of EBV activation (Reproduced with permission from Murakami et al., 2000). 

 

2.1.4 1’S-1’-Acetoxyeugenol Acetate (AEA) 

1’S-1’-acetoxyeugenol acetate (AEA) is a closely related analogue of ACA, which can 

be found naturally in various wild gingers of Zingiberaceae family. AEA has an active 

chemical structure similar to ACA, but differing from ACA in respect to the additional 

methoxy group attached at 3’ position of the benzene ring, as illustrated in Figure 2.5. 

Studies by Matsuda and collaborators have reported AEA isolated from Alpinia galanga 

induced inhibition on the ethanol-induced gastric mucosal lesions in rats (Matsuda et al., 

Univ
ers

ity
 of

 M
ala

ya



15 

2003b) and exerted strong anti-allergic effects via inhibition of ear passive cutaneous 

anaphylaxis reactions in mice and the antigen-IgE-mediated TNF-α and IL-4 production, 

both of which involve in the late phase of type I allergic reactions in RBL-2H3 cells 

(Matsuda et al., 2003a).  

The anti-cancer properties of AEA isolated from Alpinia conchigera showed higher 

cytotoxicity potency than ACA, inhibited cell cycle progression and induced apoptotic 

effects via dysregulation of NF-κB pathway on MCF-7 breast cancer cells (Hasima et al., 

2010; In et al., 2011; In et al., 2012).  

Despite numerous reports on AEA activity and structure from different ginger species, 

there have not been any studies conducted on the anti-cancer effects of synthetic AEA 

related to apoptotic induction via modulation of UPS and anti-migration effects.  

 

Figure 2.5: Chemical structure of 1’S-1’-acetoxyeugenol acetate (AEA). 

 

2.1.5 Limitations on The Application of Plant Natural Products 

Humans have been using plant-derived natural products as medicines for about 1000 

years.  Despite the intensive discovery of natural compounds as anti-cancer drugs, it is 

reported that only 5 to 15% of higher plants have been systematically evaluated for the 

presence of biologically active compounds (Kinghorn & Balandrin, 1993). In other 
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words, many challenges have hindered the development of higher plant-derived natural 

products as pharmaceutical drugs. The secondary metabolites isolated from the plants 

typically possess highly complex structures which impedes the synthesis of these 

compounds on an industrial scale (Morrison & Hergenrother, 2014). Additionally, 

screening of numerous extracts and purified compounds from a variety of sources 

involves substantial expenditure and time. For example, although a total synthesis 

procedure was established for the key anti-cancer drug, paclitaxel by Holton and 

Nicolaou, but industrial production of paclitaxel via this method was not commercially 

viable (Holton et al., 1994; Nicolaou et al., 1994).  

A significant outcome of the use of plants for medical purposes is of the sudden 

depletion of wild populations of these plants. For example, wild mountain ginseng (Panax 

ginseng) in Korea is highly appreciated for its medical properties, largely mediated by 

ginsenosides (Leung & Wong, 2010). Consequently, the populations of wild P. ginseng 

reduced massively and thus a single plant might sell for many thousands of dollars. In a 

similar case, paclitaxel extracted from the endangered and slow growing Pacific Yew 

(Taxus brevifolia) was inadequate to meet the projected demands (El & Diallo, 2000). In 

brief, low production yields of natural products during scale-up efforts (Fett-Neto et al., 

1992) and inadequate natural resources (Datta & Srivastava, 1997) become the major 

problems in the development of natural compounds as anti-cancer drugs. Due to these 

limitations, it is imperative to perform structural modifications on potential compounds 

through organic hemi-synthesis, as this would allow discovery of analogues with higher 

efficacy. 

2.2 Cancer  

Cancer is a class of diseases in which abnormal cells multiply autonomously and 

uncontrollably. The occurrence of cancer can be in any tissue or organ of the body, so 
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there are many diverse cancer types, which can vary significantly in their behaviour and 

response to treatment. A mass of tumour cells forms malignant cancers, which are capable 

to invade adjacent and distant body sites, leading to the destruction of the normal tissues. 

These cells can also spread throughout the body via blood and lymphatic system, in a 

process called metastasis. As shown in Figure 2.6, the malignant growth typically is 

governed by the cellular physiological alterations such as autonomous proliferation, 

inattention to growth inhibitory signals, suppression of apoptosis, immortalisation and 

stimulation of angiogenesis, invasion and metastasis (Hanahan & Weinberg, 2011). 

Based on these transformations, malignant cells are functionally different from the 

normal cells. This is due to the dysregulation of signalling pathways that control 

fundamental cellular processes such as, cell growth, apoptosis and migration (Kreeger & 

Lauffenburger, 2010). Once the perturbations of the pathways have occurred, cancer cells 

are able to develop in the absence of normal restrictions. 

Cancer is one of the non-communicable diseases that upset the world, accounting for 

8.8 million deaths in 2015 and is the world’s second biggest killer (WHO, 2017). There 

were 14.1 million cases of cancer diagnosed around the world in 2012 (Ferlay et al., 2013) 

and it is expected to escalate about twofold within the next two decades, with 

approximately 21.6 million new cancer cases in the year 2030 (ACS, 2017). As a result 

of the growth of aging populations, it was estimated that about 13.0 million cancer 

patients will die from different types of cancer in 2030. In Malaysia, cancer is the third 

common cause for death, after cardiovascular and respiratory diseases (Abdullah, 2016). 

As reported by the Malaysia National Cancer Registry (MNCR), there were 103,407 

cancer incidences in the country during the period of 2007 to 2011, of which 45.2% of 

the patients were males and 54.8% were females (Azizah et al., 2016). The top five 

common cancers among Malaysian males were colorectal (16.3%), lung (15.8%), 

nasopharyngeal (8.1%), lymphoma (6.8%) and prostate (6.7%) cancer. Meanwhile, 
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cancers of the breast (32.1%), colorectal (10.7%), cervix uteri (7.7%), ovary (6.1%) and 

lung (5.6%) were the five most common cancers in Malaysian females. 

The formation of cancer can be multifactorial and results from a complex interaction 

between genetic and environment. The contribution of genetic predispositions such as, 

inherited mutation and hormones towards cancer risk is only 5-10% of all cancer, whereas 

the remaining 90-95% are associated with environmental and lifestyle factors (Anand et 

al., 2008). Lifestyle factors are considered to play an important role in cancer etiology 

such as, high body mass index, unhealthy diet with low fruit and vegetable consumption, 

physical inactivity, drinking of alcohol and tobacco use (WHO, 2017). Tobacco is one of 

the documented chemical carcinogen responsible for increased risk of cancer and death 

throughout the world, accounting for 22% of all cancer deaths (Forouzanfar et al., 2016). 

In addition to lifestyle related factors, radiation and environmental pollutants also 

contributed to the transformation of normal cells to cancerous cells (Belpomme et al., 

2007). Some known carcinogenic infections involving human papillomavirus (HPV), 

hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein Barr virus (EBV) are risk 

factors for cancer and mostly affecting people in low and middle-income countries 

(Plummer et al., 2016). 
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Figure 2.6: The hallmarks of cancer (Reproduced with permission from Hanahan & 

Weinberg, 2011). 

 

2.2.1 Breast Cancer 

Breast cancer is a heterogeneous group of diseases originating from the epithelial cells 

lining the lobules and terminal ducts. According to the International Agency for Research 

on Cancer, breast cancer was the second most common cancer in the world with 

approximately 1.7 million new cases diagnosed in 2012 (Ferlay et al., 2013). It also 

ranked as the fifth most frequent type of cancer that increases the mortality rate in women. 

In 2017, the estimated number of new cases and deaths due to breast cancer in the United 

States was 255,180 and 41,070 respectively (ACS, 2017). In Malaysia, the National 

Cancer Registry (NCR) reported that there were 18,343 breast cancer cases amounting to 

17.7% of total cancer cases in 2007-2011, making it the most common malignancy among 

Malaysia (Azizah et al., 2016). The established risk factors related to breast cancer are 

hormone exposure, family genotypes, alcohol consumption, early menarche, late 

menopause, low parity and post-menopausal obesity (Kolonel et al., 2004).  
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In this study, the MDA-MB-231 and MCF-7 cells are well-characterized cell lines and 

therefore are useful as in vitro models of breast cancer. MDA-MB-231 cell line was 

isolated from a pleural effusion of a 51-year-old Caucasian female with a metastatic 

mammary adenocarcinoma (Cailleau et al., 1978). It is highly invasive and known as 

triple-negative breast cancer (TNBC) cell line as it lacks oestrogen receptor (ER) 

expression, progesterone receptor (PR) expression and HER-2 (human epidermal growth 

factor receptor 2) amplification (Liu et al., 2003; Chavez et al., 2010). Similar to other 

invasive cancer cell lines, the invasiveness of the MDA-MB-231 cells is controlled by 

the proteolytic degradation of the extracellular matrix (Tryggvason et al., 1987). The 

presence of unique features such as, downregulated claudin-3 and claudinin-4 and the 

low expression of proliferation marker Ki67, has led MDA-MB-231 to be classified as 

‘claudin-low’ subtype (Prat et al., 2010; Willmann et al., 2015). MDA-MB-231 cells 

exhibit the CD44+/CD24-/low antigenic profile (Sheridan et al., 2006) and display 

epithelial-mesenchymal transition (EMT) features such as, reduced E-cadherin levels 

(Mbalaviele et al., 1996).  

MCF-7 is a human breast adenocarcinoma cell line that was established from the 

pleural effusion of the mammary glands from a 69-year-old Caucasian woman in 1970 

(Soule et al., 1973). Contrary to MDA-MB-231 cell line, epithelial-like MCF-7 cell line 

is oestrogen receptor positive cell line which has been the most popular models for breast 

cancer chemoprevention studies thus far (Kern et al., 1994; Punglia et al., 2005). In 

addition, MCF-7 was found to be non-invasive, expresses relatively high levels of insulin-

like growth factor I receptors (IGF-IR) (Dickson et al., 1986), shows positive expression 

of E-cadherin (Hiraguri et al., 1998), possesses epidermal growth factor receptors 

(Biscardi et al., 1998) and progesterone receptors (Sutherland et al., 1988), and contains 

low amounts of endogenous caveolin (Paterson et al., 2003). Thus, it has been classified 

as ‘luminal A’ subtype (Holliday & Speirs, 2011). Besides, it retains several common 

Univ
ers

ity
 of

 M
ala

ya



21 

properties of differentiated mammary epithelium such as, the ability of the cells to process 

oestradiol via oestrogen receptors in cytoplasm and the capability to form domes.  

In brief, MDA-MB-231 breast cancer cells exhibit enhanced invasive properties 

compared to MCF-7 cells. Thus, MDA-MB-231 cell line is suitable for the study of anti-

migration effects. 

2.2.2 Bladder Cancer 

Bladder cancer generally originates from the inner lining of the bladder, which is 

called the urothelium. The most common type of bladder cancer is urothelial carcinoma. 

There are also different variants of bladder cancer such as squamous cell carcinoma, 

small-cell carcinoma and adenocarcinoma. Globally, bladder cancer is the ninth most 

commonly diagnosed cancer, with an estimated 430,000 new cases in 2012 (Ferlay et al., 

2013). About three-quarters of all bladder cancer patients were men. In Malaysia, bladder 

is the ninth most frequent cancer type among males and the twenty-sixth most common 

cancer among females. In 2007-2011, a total of 1,877 cases of bladder cancer were 

registered with NCR in Malaysia with 1,477 being males and 400 females (Azizah et al., 

2016). Tobacco smoking has been identified as the main risk factor for bladder cancer 

(Burger et al., 2013; Ng et al., 2014). Besides, infection with Schistosoma haematobium 

is the major cause in parts of Northern and sub-Saharan Africa (Parkin, 2006).  

RT-112 and EJ-28 were used to represent bladder cancer in this study. RT-112 is a 

type of human bladder carcinoma cell line that derived from a woman with untreated 

primary urinary bladder carcinoma in 1973 (Steele et al., 1983). It is a well-differentiated 

cell line that reproducibly grows as stratified epithelium (Fujiyama et al., 2001) and are 

found to be tumourigenic in the nude mice model (Marshall et al., 1977). This cell line 

displays positive expression of E-cadherin and hence it loss do not have invasive property 
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(Gaetje et al., 1995; Bindels et al., 2000). This type of cell line has been used as model of 

superficial non-invasive tumours (Fujiyama et al., 2001). On the other hand, EJ-28 cell 

line is isolated from a patient with anaplastic carcinoma (Hastings & Franks, 1983). This 

poorly differentiated cell line lacks of E-cadherin and thus is considered as a metastatic 

cancer cell line (Fujiyama et al., 2001). In addition, EJ-28 cells were not tumourigenic in 

the nude mice (Marshall et al., 1977). 

2.2.3 Prostate Cancer 

Prostate cancer begins when cells in the prostate gland start to proliferate 

uncontrollably. Normal prostatic epithelium contains luminal cells, basal cells and a small 

component of neuroendocrine cells that scattered in prostatic glands (Sun et al., 2009). 

The most common type of prostate cancer is the adenocarcinoma which featured the 

absence of basal-like cells, luminal differentiation including glandular formation, the 

expression of androgen receptor (AR) and prostate-specific antigen (PSA) (Tai et al., 

2011). Notably, minor case of prostatic adenocarcinoma contains small population of 

neuroendocrine tumour cells (Huang et al., 2007).  

Worldwide, prostate cancer is the second most common cancer type in men and fourth 

most common cancer type among populations. It was estimated that 1.1 million men were 

diagnosed with prostate cancer and 307,000 deaths in the year 2012 (Ferlay et al., 2013). 

In Malaysia, prostate cancer is the sixth most common cancer among male where 1,163 

cases of prostate cancer were reported by NCR in year 2007-2011 (Azizah et al., 2016). 

The risk factors for prostate cancer are age, race/ethnicity and family history (Gann, 

2002). Dietary is also an important risk factor for prostate cancer (Yim et al., 2005).  

Despite the availability of multiple approaches to treat prostate cancer, there is no 

effective therapy for the treatment of androgen-independent stage of prostate cancer 
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which often arises after hormonal deprivation or ablation therapy (Feldman & Feldman, 

2001).  Moreover, the high recurrence of apoptosis resistance hormone refractory prostate 

cancer indicated that chemotherapy or radiotherapy were unable to improve the patient’s 

condition (Koivisto et al., 1998).  

 The cancer cell line used to represent prostate cancer in this study was PC-3 cell 

line. It is a commonly used cell line, derived from advanced androgen independent bone 

metastasis prostate cancer in a 62-year-old Caucasian (Kaighn et al., 1979). This cell line 

has a minimised dependence upon serum for growth when compared to normal prostatic 

epithelial cells and does not respond to androgens, glucocorticoids, or epidermal or 

fibroblast growth factors. PC-3 cells have low testerone-5-alpha reductase and acidic 

phosphatase activity, do not express PSA and are PSMA-negative (prostate-specific 

membrane antigen) (Ghosh et al., 2005a).  

2.2.4 Oral Cancer 

Oral cancer is one of the few oral diseases encountered by the dental team that can 

cause significant morbidity and premature mortality despite advances in treatments such 

as chemotherapy, surgery, radiotherapy and combination therapy. The most common site 

for oral cancer is the tongue which occurs on the posterior lateral border and ventral 

surfaces of tongue, followed by the floor of the mouth, gingival, buccal mucosa, labial 

mucosa and hard plate (Tanaka & Ishigamori, 2011). The common risk factor for the 

development of oral cancer in Western countries is the consumption of tobacco 

(Warnakulasuriya et al., 2005) and alcohol (Ogden, 2005), whereas in Asian countries, 

the use of smokeless tobacco products such as betel quid and gutkha is the leading cause 

of oral cancer (Jeng et al., 2001; Boffetta et al., 2008).  
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In the United States alone, oral cancer accounts for about 2% or 32,670 of all reported 

cancer cases, and contributes to approximately 1% or 6,650 of total cancer deaths (ACS, 

2017). In Malaysia, the NCR reported that in 2007-2011, oral cancer cases were generally 

uncommon, and there were 1,299 cases amounting to 2.9% of all cancer cases and 1,191 

cases amounting to 2.1% of all cancer cases among males and females respectively 

(Azizah et al., 2016).  

 In order to maximise the effects of killing the cancer cells while minimise the damage 

of normal tissue, many modern approaches have been adapted for the treatment of oral 

cancer. Currently, there are six common chemotherapeutic drugs including cisplatin, 

paclitaxel, docetaxel, methotrexate and bleomycin used to treat oral cancer. These drugs 

have a considerable level of undesirable side effects. Thus, it is important to search for 

better chemotherapeutic agents that can fight against oral cancer with minimal side 

effects. 

To represent oral cancer in this study, HSC-4 cell line was used. It is a human oral 

cancer cell derived from a 64-year old Japanese male diagnosed with squamous 

carcinoma of the tongue. It was first established in Tokyo Medical and Dental University 

by Momose and collaborators. HSC-4 cells have an epithelial-like morphology and are 

devoid of viral DNA. They were found to express low amounts of COX-2 (Momose et 

al., 1989). COX-2 is an inflammatory enzyme that helps to catalyse the conversion of 

arachidonic acid to the prostaglandin E and is correlated with various cancer phenotypes 

(McAdam et al., 1999).  

2.2.5 Liver Cancer 

The liver is made up mainly of cells called hepatocytes. Hepatocellular carcinoma 

(HCC) is a primary liver cancer that generally starts in hepatocytes. In the year 2012, it 
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was reported that liver cancer is the fifth most common cancer, accounting for 9.1% of 

all cancer cell deaths worldwide (Ferlay et al., 2013). In 2017, the estimated number of 

new cases and deaths from liver and intra-hepatic bile duct cancer in the US are 40,710 

and 28,920 respectively (ACS, 2017). In Malaysia, liver cancer incidence was ranked 

sixth among males making up 6.7% of all cancer cases reported, and twelfth among 

females corresponding to 1.9% of all reported cancer cases (Azizah et al., 2016). The 

important risk factors for the development of HCC are viral hepatitis (HBV and HCV) 

(Tomimatsu et al., 1993), excessive alcohol intake (Batey et al., 1992), dietary aflatoxins 

(Liu & Wu, 2010) and hemochromatosis (Ko et al., 2007).  

HepG2 is a human liver hepatocellular carcinoma cell line isolated from a 15-year old 

Caucasian male.  It has an epithelial-like morphology and has been widely used as cellular 

reference model in pharmaceutical studies. HepG2 cells were reported to produce a 

variety of proteins such as, complement (C4), C3 activator, fibrinogen, alpha-fetoprotein 

and prothrombin (Knowles & Aden, 1983). They also express different kinds of liver-

specific metabolic functions, including those linked to the cholesterol and triglyceride 

metabolism, thus making them an important in vitro model system (Javitt, 1990). At 

present, this cell line is actively used for cytotoxic evaluations (Koschutnig et al., 2009). 

2.3 Ubiquitin-Proteasome System (UPS) 

The ubiquitin-proteasome system (UPS) is the major pathway to mediate intracellular 

protein degradation. Substrate recognition and degradation within the UPS is highly 

controlled and therefore ensures a specific regulation of protein levels in numerous 

cellular processes such as, apoptosis, angiogenesis, signal transduction and cell cycle 

(Orlowski & Dees, 2003). The fundamental protease within the ubiquitin-proteasome 

system is the proteasome, a multicatalytic enzyme complex of about 2.5 MDa (Finley, 

2009; Ciechanover, 2013).  
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2.3.1 Proteasome 

The 26S proteasome is a large multi-subunit protease complex located both in the 

nucleus and cytoplasm of eukaryotic cells (Peters et al., 1994). This complex is composed 

of a 20S catalytic core and 19S regulatory particle (Arrigo et al., 1988; Ganoth et al., 

1988) as shown in Figure 2.7.  

The 20S proteasome is made up of two outer α and two inner β subunits with seven 

distinct subunits per ring (Groll et al., 1997). The proteasome possesses highly unique 

secure arrangement for the specific degradation to prevent occurrence of uncontrolled 

proteolysis of cellular proteins. The active sites are safely situated inside the 20S catalytic 

core particle, normally found in a closed state with only a narrow entry pore. Hereby, the 

outer α-rings block the way to the proteolytic chamber in its closed conformation. 

Therefore, the 19S regulatory complex will bind to the α subunits to induce the gate 

opening and activation of 20S catalytic particles in an ATP-dependent manner (Groll et 

al., 2000; Finley, 2009; Silva et al., 2012). 

The β subunits with a terminal threonine residue play a role in the proteolytic activities 

and cleave proteins into oligomeric peptides of 3-28 amino acids length. There are at least 

three major peptidase activities associated with the catalytic β subunits: chymotrypsin-

like (β5), trypsin-like (β2) and peptidylglutamyl peptide hydrolysing-like (also known as 

caspase-like) (β1) activities (Seemuller et al., 1995). The β5 subunit prefers cleavage after 

hydrophobic residues, β2 cleaves after basic residues and β1 subunit cleaves on the C-

terminal side of acidic residues (Borissenko & Groll, 2007).   
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Figure 2.7: Composition of 26S proteasome (Reproduced with permission from Hasima 

& Aggarwal, 2014).  

 

2.3.2 Protein Degradation by UPS 

The ubiquitin-proteasome system is responsible for the degradation of about 90% of 

all intracellular proteins, thereby serving as the main protein destruction machinery of the 

cell (Meiners et al., 2014). For a given protein to be aimed for degradation, the protein 

undergoes polyubiquitination and degradation by proteasome. Ubiquitination is a 

common degradation signal for the UPS and involves a cascade of E1 ubiquitin-activating, 

E2 ubiquitin-conjugating and E3 ubiquitin ligase enzymes. In this cascade, E1 (plus ATP) 

first adenylates the carboxy-terminal carboxylate of ubiquitin (Ub), forming Ub–AMP, 

and then forms a Ub thioester intermediate (E1–Ub). Ubiquitin is transferred from E1 to 

E2, and then to the protein target with the ligation assistance from E3. E2 enzymes 

promote further linkage of ubiquitin molecules, thereby creating a polyubiquitin chain on 

the protein (Ciechanover, 2015). Protein tagged with ubiquitin chains is recognised by 

the non-ATPase subunits Rpn10 and Rpn13 of the 19S regulatory particle. The 

deubiquitinase Rpn11 then cleaves off the ubiquitin chain in an ATP dependent manner 

and the protein substrate is unfolded and carried into the catalytic core of 20S proteasome 
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to undergo degradation into oligomeric peptides (Matyskiela et al., 2013). The overview 

of polyubiquitination and degradation of protein is depicted in Figure 2.8. 

 

 

Figure 2.8: Degradation of a protein via the ubiquitin/proteasome pathway (Reproduced 

with permission from Maupin-Furlow, 2011).  

 

2.3.3 Role of UPS in Cancer  

The proteasomal activity plays a part in the pathogenesis of many diseases, including 

cancer, in which some regulatory proteins are either lost via acceleration of degradation 

or stabilised via deceleration of degradation (Ciechanover, 1998). Various proteins 

associated with cancer survival have been found to be targeted by the proteasome, 

including tumour suppressor protein p53 (Blagosklonny, 2002), pro-apoptotic protein 

Bax (Li & Dou, 2000), cyclins A, B, D and E (Glotzer et al., 1991; Won & Reed, 1996; 

Diehl et al., 1997; Chen et al., 2004), cyclin-dependent kinase inhibitor (CDKI) p27 

(Pagano et al., 1995; Sun et al., 2001) and the inhibitor of NF-κB, IκB-α (Perkins, 2000). 

Furthermore, proteasome inhibition has been shown to activate several apoptotic 

pathways via accumulation of pro-apoptotic factors and downregulation of anti-apoptotic 

mediators. Indeed, inhibition of the proteolytic function of the 26S proteasome has been 
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shown to enhance apoptosis in a number of cancer cells (Frankland-Searby & Bhaumik, 

2012). Moreover, inhibition of the proteasome in various cancer cells prevents activation 

of NF-κB leading to downregulation of genes related to angiogenesis, survival and growth 

while apoptosis is upregulated (Hideshima et al., 2011). Figure 2.9 shows the effects of 

proteasome inhibition on different cancer pathways, which consequently contribute to 

cancer prevention. 

Bortezomib is the first US Food and Drug Administration (FDA) approved proteasome 

inhibitor (Kane et al., 2006). It has been reported to possess anti-cancer effects on various 

cancer cell lines and animal xenografts models (Adams, 2002; Kondagunta et al., 2004; 

Jagannath et al., 2005). The proteasomal inhibition by bortezomib involves multiple 

mechanisms of action such as, stabilisation of cell-cycle regulatory proteins p21 (Adams 

et al., 1999), inhibition of nuclear factor kappa B (NF-κB) activation (Palombella et al., 

1994) and suppression of anti-apoptotic proteins Bcl-2 (Qin et al., 2005). 

Although bortezomib is an effective proteasome inhibitor, toxicity is a major obstacle 

in treatment. Therefore, there is a need to search for other proteasome inhibitors with less 

or minimal toxic side effects. Curcumin is one natural compound shown to mediate its 

cytotoxicity via the proteasome which is being investigated. Curcumin is a natural 

compound derived from the yellow curry spice turmeric. It has been found to module the 

UPS through several pathways including suppression of the protease activities of the 

proteasome, with the CT-like mechanism being the most prominent (Milacic et al., 2008), 

inhibition of COP9 signalosome (CSN), an important regulator of the UPS (Henke et al., 

1999), and suppression of ubiquitin isopeptidases, a family of deubiquitinases that rescue 

ubiquitin for its reuse by the 26S proteasome system (Mullally & Fitzpatrick, 2002).  

Curcumin could either upregulate or downregulate its target proteins through 

inhibition of proteasome or activation of proteasome. Some of the target proteins which 
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are upregulated by curcumin through inhibition of proteasome: inhibition of degradation 

of IκB-α that leads to inhibition of NF-κB activation (Singh & Aggarwal, 1995), 

inhibition of p53 that leads to stabilisation of the protein in tumour cells and induces 

apoptosis (Jana et al., 2004), and induction of cytotoxicity by accumulation of 

ubiquitinated proteins and cyclin B (O'Sullivan-Coyne et al., 2009).  On the other hand, 

proteasome activation by curcumin leads to downregulation of some proteins such cyclin 

D1 in prostate and breast cancer cells (Mukhopadhyay et al., 2002), cyclin D1 and cyclin 

E in prostate cancer cells (Srivastava & Singh, 2004), COX-2 in HeLa cervical cells 

(Neuss et al., 2007), Bcl-2 in lung cancer cells (Chanvorachote et al., 2009).  

From the study with curcumin, it clearly showed that the modulation of proteasome 

activity could lead to upregulation and downregulation of large numbers of proteins that 

have been closely linked with cancer cell survival and proliferation. Thus, it is crucial to 

study on how compounds could induce anti-cancer effects on cancer cells via the UPS. 

 

Figure 2.9: Implications of the proteasome inhibition on different pathways for cancer 

prevention (Reproduced with permission from Frankland-Searby & Bhaumik, 2012). 
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2.4 Apoptosis 

Apoptosis was defined as physiological death with distinctly different pattern of cell 

death from necrosis (Kerr et al., 1972). In ancient Greek, apoptosis means ‘falling off’ of 

petals from flowers or leaves from tree (Sankari et al., 2015). During apoptosis, the 

undesired cells will undergo several biochemical changes that could lead to the cellular 

morphological changes and ultimately to cell death. Apoptosis plays an important role in 

the early development and growth of tissues, and maintenance of cellular homeostasis 

(Norbury & Hickson, 2001). In addition, apoptosis also plays a crucial role as a defence 

mechanism against certain pathological conditions such as cancer (Del Bello et al., 2001; 

Choi, 2006). It has been shown that evasion of apoptosis can be seen in cancer cells and 

thus the induction of apoptosis is a highly desirable therapeutic strategy in cancer. 

From the morphological point of view, cells undergoing apoptosis generally encounter 

cell shrinkage, chromatin condensation, cytoplasmic blebbing as well as formation of 

apoptotic bodies which are finally engulfed by macrophages and parenchymal cells (Kerr 

et al., 1972). Besides, irregularities in cellular shape also occur due to the cleavage of 

several cytoskeleton components by caspases. On the other hand, one of the major 

biochemical hallmark of apoptosis is the formation of DNA degradation by DNases that 

excise the internucleosomal regions into double-stranded DNA of 180-200 base pairs 

(Wyllie et al., 1980).  

Apoptosis is a highly coordinated and often ATP-dependent process that involves 

complex cascade of molecular events. Thus far, there are three apoptotic pathways which 

have been identified: one is the extrinsic or death receptor-mediated pathway, the second 

is the intrinsic or mitochondrial-mediated pathway and lastly the perforin/granzyme 

pathway (Elmore, 2007). As illustrated in Figure 2.10, although these pathways are 

initiated differently, but they are linked and converge on the same execution pathway 
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involving caspase-3 and eventually leads to apoptosis (Igney & Krammer, 2002; Elmore, 

2007). 

In the extrinsic pathway, caspase activation is mediated by death receptors (DR) which 

belong to the tumour necrosis factor (TNF) receptor gene superfamily that bind to TNF-

α-related apoptosis inducing ligand (TRAIL) and are activated through ligation (Locksley 

et al., 2001). These DRs share similar cysteine-rich extracellular domains as well as the 

conserved cytoplasmic domain called the ‘death domain’ (Ashkenazi & Dixit, 1999). This 

death domain is able to transmit the death signal from the cell surface by binding with 

similar regions on cytoplasmic adaptor molecules such as, the Fas-associated death 

domain (FADD) and TNFR-associated death domain (TRADD) through a death domain-

death domain interaction (DD-DD) (Ashkenazi & Dixit, 1999; Hengartner, 2000; Strasser 

et al., 2000). Binding of FADD and TRADD would then form the death-inducing 

signalling complex (DISC) together with procaspase-8, followed by the catalytic 

processing and subsequent release of active caspase-8. The presence of activated caspase-

8 then triggers the execution pathway involving caspase-3 to promote apoptosis (Kischkel 

et al., 1995).     

In the intrinsic pathway, apoptosis induced by intracellular signals that may act 

positively such as, radiation, toxins, hypoxia, viral infections and free radicals or 

negatively in the absence of growth factors, cytokines and hormones (Elmore, 2007). 

These stimuli would lead to changes in mitochondrial permeability transition (MPT), 

causing the loss of mitochondrial membrane potential and provoking the release of 

several polypeptides from the mitochondria. One of this is the important cytochrome c 

which is an electron transport chain protein. Cytochrome c would accumulate in the 

cytoplasm and binds with the apoptotic protease-activating factor-1 (Apaf-1) causing the 

oligomerisation of Apaf-1 in the presence of ATP to form a complex called the 
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apoptosome. Apaf-1 then directly binds to initiator caspases, procaspase-9 through 

homotypic interaction involving its caspase recruitments domain (CARD) (Budihardjo et 

al., 1999; Garrido et al., 2006). The complex activates procaspase-9 into caspase-9, which 

will then lead to activation of the execution pathway (Kaufmann & Hengartner, 2001). 

On the other hand, the perforin/granzyme pathway is utilised by cytotoxic T-cells in 

mediating cytotoxicity. Activation of the pathway is by the release of the transmembrane 

pore-forming molecule perforin, with a subsequent exophytic release of cytoplasmic 

granules containing granzyme A or granzyme B through the pore and into the target cell 

(Trapani & Smyth, 2002). The granzyme A pathway induces apoptosis via activation of 

caspase-independent cell death via single-stranded DNA damage (Martinvalet et al., 2005) 

while granzyme B induces killing by activating the mitochondrial pathway or direct 

activation of caspase-3 (Goping et al., 2003). 

 

 

Figure 2.10: Illustration of extrinsic, intrinsic and perforin/granzyme pathways of 

apoptosis (Reproduced with permission from Elmore, 2007). 
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2.4.1 Role of Apoptosis in Cancer 

In the event of cancer, disruption of balance occurs between cell proliferation and 

apoptosis, and mutations in apoptotic pathways lead the cells with genetic abnormalities 

to continue their life. Over the years, many studies pointed out to the relationship between 

tumourigenesis and the attrition of apoptosis. The defects in apoptotic pathways resulting 

in acquired resistance towards apoptosis have been identified as a major hallmark in most, 

and perhaps all types of cancer (Hanahan & Weinberg, 2011).  

The possibility that apoptosis serves as a barrier to cancer development was first 

proposed in 1972, when it was reported that the removal of hormone leads to substantial 

apoptosis in the fast growing, hormone-dependent tumour cells (Kerr et al., 1972). The 

discovery and recognition of the bcl-2 oncogene as having anti-apoptotic activity 

accelerated in the investigation of apoptosis at the molecular level (Vaux et al., 

1988). Since then, various studies conducted on other oncogenic proteins such as, c-myc 

(McDonnell & Korsmeyer, 1991), IGF-1, Fas, Bcl-xL (Hueber et al., 1997) and many 

others, have further indicated the apoptotic program of cells can be triggered by an over-

expression of oncogenes (Hanahan & Weinberg, 2011). 

The development of cancer cells involves the evasion of apoptosis which allows the 

cells to proliferate infinitely. One of the methods to acquire the resistance to apoptosis by 

cancer cells is the mutation of p53 tumour suppressor gene as reported in 50% of cancers 

in humans (Harris, 1996). Another mechanism is the phenomenon of ‘tumour counter 

attack’ whereby tumour cells expressing Fas, which can counter attack and kill anti-

tumour lymphocytes via apoptosis (O'Connell et al., 1999). It was also reported that Fas-

death signalling is abrogated in a high fraction of lung can colon carcinoma cell lines 

(Pitti et al., 1998). Besides this, extracellular factors such as, IGF-1/2 and IL-3, 

intracellular signals from Ras and loss of pTEN expression can deliberate survival signals 
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that resulted in the activation of PI3K-AKT pathway to transmit anti-apoptotic signals 

and enables cancer cells to evade apoptosis (Downward, 1998; Evan & Littlewood, 1998; 

Cantley & Neel, 1999).  

The illustration of signalling circuit governing apoptosis has shown how apoptosis is 

triggered in response to different types of physiological stress in cells and this apoptotic 

circuit is generally constricted at some point in cancer cells, allowing them to progress to 

high-grade malignancy (Lowe et al., 2004; Adams & Cory, 2007). Thus, the 

understanding of this circuit allows for the development of multiple anti-cancer therapies 

which are intended to restore the abnormal apoptotic programs found in cancer cells or 

by inducing apoptosis through regulation in the expression of genes related to apoptosis. 

2.4.2 Role of Bcl-2 Family Proteins in Apoptosis 

The Bcl-2 family proteins are known as the important gatekeeper to the apoptotic cell 

death. This group of structurally related proteins have either pro- or anti-apoptotic 

properties that interact with one another. Bcl-2 was the first pro-survival protein in the 

family to be discovered (Reed, 2008). The BCL-2 gene was discovered as the translocated 

locus (14:18) in tumour cells of follicular lymphoma patients (Tsujimoto et al., 1984). 

This chromosome translocation governs the deregulation of the normal Bcl-2 expression 

pattern, resulting in the formation of cancer (Tsujimoto et al., 1985; Nunez et al., 1989).  

Following the discovery of Bcl-2, a large number of Bcl-2 related proteins have been 

isolated as depicted in Figure 2.11 (Cory & Adams, 2002). Based on the homology and 

functions of each protein, the Bcl-2 family is classified into the following three 

subfamilies: (i) A subfamily including Bcl-2, Bcl-xL and Bcl-w, all of which exert anti-

apoptotic activity and share sequence homology in four domains, BH (Bcl-2 homology) 

1 through BH4.  (ii) A subfamily represented by Bax and Bak, which share sequence 
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homology at BH1, BH2 and BH3 but not at BH4, although significant homology at BH4 

is also found in some members. All these proteins exert pro-apoptotic activity. (iii) A 

subfamily including Bik and Bid, all of which are pro-apoptotic and share sequence 

homology only within BH3.  

One of the eye-catching properties of Bcl-2 family proteins is their ability to form 

homodimers and heterodimers (Oltvai et al., 1993). Hetero-dimerisation between anti-

apoptotic and pro-apoptotic members of this family is suggested to inhibit the biological 

activity of their partners (Oltvai et al., 1993; Yang et al., 1995), and is mediated through 

the insertion of BH3 domain of a pro-apoptotic protein into a hydrophobic groove formed 

by BH1, BH2 and BH3 domains of an anti-apoptotic protein (Sattler et al., 1997). In 

addition, some of these proteins have been indicated to regulate apoptosis independently 

of each other (Knudson & Korsmeyer, 1997). In either case, the ratio between anti-

apoptotic and pro-apoptotic members of the Bcl-2 family helps determine, in part, the 

susceptibility of cells to a death signal. Thus, the Bcl-2 family of proteins acts as a vital 

life-death decision point within the common pathway of apoptosis.  

 

Figure 2.11: Homology of Bcl-2 family proteins. The Bcl-2 family can be categorised 

into three subfamilies: The Bcl-2 cohort promotes cell survival, whereas the Bax and Bik 

cohort facilitate apoptosis (Reproduced with permission from Tsujimoto, 1998). 
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2.4.2.1 Anti-apoptotic Proteins 

The anti-apoptotic proteins are represented by the members of Bcl-2 subfamily which 

share BH1, BH2, BH3 and BH4 domains. In Bcl-2 and Bcl-xL proteins, the BH1 and 

BH2 domains form a hydrophobic pocket on the surface of the protein. The BH3 domains 

of the pro-apoptotic proteins bind into the pocket formed. A BH4 domain is found only 

in the anti-apoptotic Bcl-2 subfamily and is thought to be crucial for survival. It has been 

implicated in providing protection through the activation of survival signalling 

mechanisms (Adams & Cory, 1998; Cory et al., 2003). 

Localisation of the anti-apoptotic Bcl-2 subfamily proteins varies. Their hydrophobic 

carboxy-terminal domain aids in targeting them to the cytoplasmic face of three 

intracellular membranes: the outer mitochondrial membrane, the endoplasmic reticulum 

(ER) membrane and the nuclear envelope. These anti-apoptotic proteins function mainly 

at the mitochondria to prevent the activation Bax and Bak and eventually block the 

process of apoptosis. More specifically, Bcl-2 has been shown to be localised to both the 

mitochondria and to the ER (Hacki et al., 2000). Mitochondria-localised Bcl-2 is able to 

protect against apoptosis by sequestering BH3-only proteins while ER-localised Bcl-2 by 

regulating Ca2+ fluxes through the ER membrane (Bassik et al., 2004).  

In recent years, proteins in Bcl-2 subfamily have been identified as drug targets in the 

design of new anti-cancer therapies. The anti-cancer agents are able to occupy the 

hydrophobic pocket of the anti-apoptotic proteins and mimic the function of the BH-3 

only subset of pro-apoptotic members. Indeed, several BH3 mimetic compounds have 

been reported to block the function of anti-apoptotic proteins. ABT-737 is a BH3-mimetic 

compound that binds and inhibits Bcl-2, Bcl-xL and Bcl-w to induce apoptosis 

preferentially in cancer cells and not in normal cells (Oltersdorf et al., 2005).  
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Another study suggested that Bcl-2 can be converted from an anti-apoptotic protein to 

a pro-apoptotic protein following the binding of Nur77 (Kolluri et al., 2008). Nur77 is an 

orphan nuclear receptor which belongs to the steroid/thyroid/retinoid nuclear receptor 

superfamily and plays important roles in regulating cell proliferation, differentiation and 

apoptosis (Lin et al., 2004; Han et al., 2006). This protein can move from the nucleus to 

the mitochondria and then interacts with Bcl-2 protein within its N-terminal loop region 

between BH3 and BH4 domains, to result in a conformational change. The 

conformational change eventually modifies the function of Bcl-2 as a pro-apoptotic 

protein (Thompson & Winoto, 2008). Thus, the activation of Nur77 from the nucleus to 

the mitochondria in cells overexpressing Bcl-2 is one of the methods suggested for 

induction of apoptosis.  

2.4.2.2 Pro-apoptotic Proteins 

The pro-apoptotic proteins are represented by two subsets which possess BH1-3 

domains or a BH3 domain only. Bax and Bak proteins have three BH domains. Bax 

normally resides in the cytosol as a monomer while Bak resides on the mitochondrial 

membrane (Wolter et al., 1997; Dewson et al., 2009). In response to chemotherapeutic 

agents, Bax undergoes a conformation change and integrates into the outer mitochondrial 

membrane. Homo-oligomerisation between Bax and Bak forms pores through which 

cytochrome c is released, leading to caspase activation and ultimately apoptosis 

(Mikhailov et al., 2003). The concurrent deletion of both Bak and Bax dramatically 

diminishes apoptosis in many cells and accordingly either Bak or Bax are essential for 

apoptosis (Upreti et al., 2008; Gillissen et al., 2010).  

The second subset of pro-apoptotic proteins is BH3-only proteins and they cannot 

function alone to cause the release of cytochrome c. Many mechanisms involved in the 

activation of these proteins such as, increased transcription, protein stabilisation and post-
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translational modification (Happo et al., 2012). More specifically, Bim and Bmf proteins 

have been shown to be bound to actin or dynein motor complexes within microtubules 

and following microtubule disruption they are activated and released (Pinon et al., 2008); 

PUMA and Noxa are induced in response to p53 (Shibue et al., 2006); Bid is activated by 

proteolysis to tBid upon association of the death receptors with ligand (Yi et al., 2003; 

Kantari & Walczak, 2011) Bad is activated by dephosphorylation in response to removal 

of growth factor (Tsang et al., 2008). The BH3-only proteins act upstream of Bax and 

Bak, and require either Bax or Bak to trigger apoptosis. 

There are two distinct models proposed on how activation of Bax and Bak occur, direct 

and indirect activation, as shown in Figure 2.12. The direct activation model suggests that 

only certain BH3-only proteins such as, Bim and Bid can bind Bax and Bak directly and 

promote their activation (Chipuk et al., 2003; van Delft & Huang, 2006; Dewson & 

Kluck, 2009). Other BH3-only proteins such as, PUMA, Noxa and Bad are called as 

sensitisers as they cannot bind to and directly activate Bax and Bak (Cassidy-Stone et al., 

2008), however, they bind to the anti-apoptotic proteins thus displacing the activators that 

enable them to activate Bax and Bak (Basañez & Hardwick, 2008; Tait & Green, 2010). 

In the indirect activation model, Bax and Bak must be bound by anti-apoptotic proteins 

to prevent their activation (Adams & Cory, 2007; Leslie, 2009). It is proposed that all of 

the BH3-only proteins can target and then neutralise the anti-apoptotic proteins, allowing 

for the activation of Bax and Bak. However, the mechanism by which Bax and Bak 

become activated as stated in this model is still controversial. 
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Figure 2.12： Comparison of direct and indirect activation models for Bax and Bak 

(Reproduced with permission from Adams & Cory, 2007). 

 

2.4.3 Role of p53 in Apoptosis 

p53 is the most extensively studied tumour suppressor protein encoded by the Trp53 

gene which plays an important role in response to diverse forms of cellular stress to 

mediate various anti-proliferative processes. One of the most important p53 functions is 

its ability to induce DNA damage apoptosis. It has been reported that p53 tumour 

suppressor proteins evoke apoptosis by upregulating the expression of pro-apoptotic Bax 

in response to sensing DNA damage. Activated Bax proteins in turn, stimulates 

mitochondria to release cytochrome c and catalyses downstream apoptotic events 

(Hanahan & Weinberg, 2000). Ser15 phosphorylation is required for p53 transcriptional 

activity and interaction with p300, the p53 transcriptional co-activator (Dumaz & Meek, 

1999).  
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The first reference about p53 could control apoptosis came from the study by Oren 

and collaborators who reintroduced p53 into a p53-deficient myeloid leukaemia cell line 

(Yonish-Rouach et al., 1991). Here, the apoptotic induction effect of p53 could be 

counteracted by interleukin-6, the prosurvival cytokine. Later, another study using 

thymocytes from p53 knockout mice showed that p53 was required for radiation-

induced apoptosis, but only when it is induced by stimuli that cause DNA damage 

(Clarke et al., 1993; Lowe et al., 1993b).  

In addition to its role in inhibiting tumourigenesis, p53-dependent apoptosis is 

responsible for the chemotherapy-induced cell death (Johnstone et al., 2002). This was 

first performed in studies using oncogenically transformed cells treated in vitro and in 

vivo (Lowe et al., 1993a) and was later extended to various settings. Coherent with the 

potential role for p53 in modulating chemotherapy in human cancers, loss of p53 

function can promote chemoresistance in certain tumour types (Wallace-Brodeur & 

Lowe, 1999; Johnstone et al., 2002). 

Collectively, p53 serves as a regulator of the apoptotic process that can regulate 

several key control points in both extrinsic and intrinsic pathways as depicted in Figure 

2.13. Thus, a better understanding of the p53 apoptotic program will provide insights 

for improved treatment for cancer.  
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Figure 2.13: A model for p53-induced apoptosis by simultaneous targeting of several 

points in the apoptotic network (Reproduced with permission from Fridman & Lowe, 

2003). 

 

2.4.4 Role of PARP Cleavage in Apoptosis 

Poly(ADP-ribose) polymerase (PARP) has been identified as a nuclear enzyme in the 

1960’s (Chambon et al., 1963; Sugimura et al., 1967). The PARP family consists of 17 

distinct proteins found in eukaryotic cells; however, only PARP-1, PARP-2 and PARP-3 

are known to function in the repair of single stranded DNA (Schreiber et al., 2006; Hassa 

& Hottiger, 2008). A main mechanism by which PARP-1 is activated via breaks in the 

DNA strand induced by metabolic, chemical or radiation. Following the detection of 

single stranded break, PARP-1 recruits and activates enzymes needed to repair the 

damaged strand via the transfer of ADP-ribose molecules from NAD+ to itself and other 

key members of the DNA repair machinery (Haince et al., 2007; Banerjee & Kaye, 2011). 
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Due to its activation by binding with DNA ends or strand breaks, PARP was postulated 

to contribute to cell death by the depletion of NAD and ATP in the cells (Berger & 

Petzold, 1985). PARP was the first cellular protein to be discovered as being specifically 

cleaved in apoptosis (Kaufmann, 1989), and its cleavage subsequently was found to be a 

common phenomenon occurring in apoptosis induced by different types of stimuli 

(Kaufmann et al., 1993). Specific proteolysis of PARP occurs resulting in the formation 

of 89- and 24-kDa fragments that contain the active site and the DNA-binding domain of 

the enzyme, respectively, during drug-induced apoptosis in various cell types (Kaufmann 

et al., 1993; Nicholson et al., 1995). Such cleavage essentially abolishes the PARP’s 

catalytic activity in response to DNA damage (Tewari et al., 1995). Caspases are 

responsible for the PARP cleavage after the apoptotic cascade has been triggered 

(Nicholson & Thornberry, 1997). Although caspase-3 and caspase-7 are the most 

powerful proteases for PARP cleavage, all caspases found to date are able to cleave PARP 

with certain degrees of efficiency (Ghayur et al., 1997).  

2.5 Metastasis 

Cancer metastasis is the process where cancer cells spread from primary tumour to 

other tissues and organs, and finally the formation of new tumours (Chaffer & Weinberg, 

2011). At the time of cancer diagnosis, about 50% of the patients already present 

clinically detectable metastatic disease (DeVita et al., 1975). Metastatic disease remains 

the most common cause for cancer-associated deaths (Siegel et al., 2017). In order for the 

tumour cells to metastasise successfully, they must undergo complex cascade of events 

called metastatic cascade. This cascade can be generally separated into three main 

processes: invasion, intravasation and extravasation (Figure 2.14). The loss of cell-cell 

adhesion ability allows malignant tumour cells to detach from the primary tumour mass 

and changes in cell-matrix interaction facilitate the cells to undergo the process of 
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invasion through the basement membrane. The process of intravasation involves the 

dissociated cells to enter the blood and lymphatic vessels in their vicinity and then 

metastasise to distant sites. Once the tumour cells have arrived at a likely point of 

intravasation, they interact with the endothelial cells by undergoing biochemical 

interactions to form stronger bonds, and through the process of extravasation invade the 

vascular endothelium and the basement membrane. These cells can then proliferate and 

stimulate blood vessel growth stimulation through a process known as angiogenesis to 

allow micrometastases growth into macroscopic tumours at this secondary focus (Ma & 

Weinberg, 2008; Bracken et al., 2009).  

 

Figure 2.14: Steps in the metastatic process (Reproduced with permission from Ma & 

Weinberg, 2008). 

 

2.5.1 Cancer Invasion and Epithelial-Mesenchymal Transition 

The dynamic reorganisation of actin cytoskeleton is a precondition for migration and 

invasion of cancer cells, with the formation of membrane protrusions leading to the 

mesenchymal phenotype (Yilmaz & Christofori, 2009).  
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Cadherins are transmembrane proteins that mediate cell adhesion through extracellular 

domain, while the intracellular domain regulates signalling to the actin cytoskeleton 

(Halbleib & Nelson, 2006). Epithelial E-cadherin is a protein expressed on epithelial cells 

with the function of mediating cell-cell and cell-matrix adhesion. The expression of 

neural N-cadherin on cancer cells plays a role in formation of contact between cancer 

cell-endothelial wall and consequently activates Src-kinases activity to promote 

transendothelial migration (Ramis-Conde et al., 2008).  

Cell invasion involves the remodelling of extracellular matrix (ECM) and 

rearrangement of basement membrane. EMT program has been suggested as the crucial 

mechanism for the acquisition of malignant phenotypes by epithelial cancer cells (Yilmaz 

& Christofori, 2009). EMT is typically characterised by the downregulation of E-cadherin 

and the upregulation of N-cadherin, which also known as “cadherin switch” (Araki et al., 

2011). EMT is orchestrated by many transcription factors such as, Snail1, zinc finger E-

box binding homeobox (ZEB) and TWIST families that regulate actin cytoskeletal 

remodelling and ECM protein degradation by ECM-degrading proteases for examples 

matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA). Actin 

cytoskeleton remodelling and ECM degradation allow invasion of cells into the stroma 

and intravasation into the blood or lymphatic circulation. The cells then travel to the 

regional lymph nodes or distant organs. Later, a reversal event known as mesenchymal-

epithelial transition (MET) with increased expression of epithelial-specific gene and 

suppressed expression of mesenchymal-specific gene, thus leading to the formation of 

macroscopic metastases with epithelial characteristic at secondary site (Bracken et al., 

2009; Baranwal & Alahari, 2010). The role of EMT in cancer metastasis is illustrated in 

Figure 2.15. 
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Figure 2.15: Overview of the role of EMT in tumour metastasis (Reproduced with 

permission from Bracken et al., 2009).  

 

2.5.2 Cancer Migration 

Cell migration is an important event during tumour invasion and metastasis 

progression (Stetler-Stevenson et al., 1993). The major structures of the actin 

cytoskeleton involved in different steps of cell migration are lamellipodia, filopodia, focal 

adhesion and lamella (Le Clainche & Carlier, 2008). The tumour cells use migration 

mechanism that are similar to those occur in the process of normal cells such as, 

embryonic morphogenesis, inflammatory immune responses, wound healing and 

angiogenesis (Friedl & Brocker, 2000).  

To migrate, a cell first extends protrusions in the direction of migration in respond to 

migration-promoting agent. The large and broad lamellipodia or spike-like filopodia 

protrusions at the leading edge are driven by actin polymerisation and stabilised by 

adhesion with extracellular matrix or adjacent cells via transmembrane receptors that are 

linked to the actin cytoskeleton. Next, forward extension of lamellipodium by adhering 

to the surface of leading edge, while de-adhesion at the cell body and retraction of the 

trailing edge resulting in a net translocation of the cell in the direction of the movement. 
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Furthermore, actin filaments must be disassembled at the trailing end, so that actin 

monomers can be replenished for further polymerisation at the leading edge (Pollard & 

Borisy, 2003; Ridley et al., 2003; Ananthakrishnan & Ehrlicher, 2007). The three stages 

of cell migration are shown in Figure 2.16. 

 

Figure 2.16: A schematic of cell migration (Reproduced with permission from 

Ananthakrishnan & Ehrlicher, 2007). 

 

2.5.3 Integrin-FAK-Src Signalling Transduction 

The regulation of cell migration involves a complex interaction between extracellular 

matrix, transmembrane receptors, kinases, adapter proteins and other downstream 
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signalling molecules that triggers cell morphological changes (Friedl & Brocker, 2000). 

Integrin-focal adhesion kinase (FAK)-Src signalling transduction participates in the 

regulation of metastasis by loosening cell-ECM adhesion and thus promoting cell 

invasion and migration (Hood & Cheresh, 2002). Integrins are transmembrane 

heterodimeric proteins consisting of α and β subunits that function in tethering cells to 

the ECM (Hynes, 2002). The activation of integrin induces recruitment and activation 

of FAK and Src protein tyrosine kinase to trigger integrin-FAK-Src intracellular 

transduction cascades. The stimulated FAK and Src target multiple downstream proteins 

including the Rho GTPases superfamily proteins such as, RhoA, Rac1 and Cdc42 

GTPases, thereby contributing to the migratory and invasive phenotype via 

reorganisation of the actin cytoskeleton (Hood & Cheresh, 2002; Schneider et al., 2008). 

During cell movement, Cdc42 mediates assembly of long, thin, actin-containing 

extensions called filopodia; Rac mediates formation of curtain-like extensions called 

lamellipodia and ruffles; whereas RhoA activation regulates formation of stress fibres 

and focal adhesion of cells to induce retraction of the trailing edge (Nobes & Hall, 1995). 

The overview of integrin-FAK-Src signalling pathway is illustrated in Figure 2.17. 

The growing evidence has highlighted the implication of integrin signalling 

transduction cascade in cancers and metastasis progression. Several experimental models 

have shown that targeting integrin β1 could partly reduce the metastatic potential of 

cancer cell in vitro and in vivo (Wang et al., 1998; Park et al., 2006; Park et al., 2008). 

Hence, this suggested that integrin play a role in invasive and metastatic cancer 

properties. Furthermore, overexpression of Fak, the downstream signalling molecule of 

integrin signalling is associated with cancer metastasis where high Fak expression was 

found in metastatic cancer (Cance et al., 2000). Moreover, integrin β1 and FAK signalling 

directly regulate the proliferation and invasion of metastatic cells in the lung (Shibue & 

Weinberg, 2009). 
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Figure 2.17: Schematic overview of the integrin-FAK-Src signalling transduction 

(Reproduced with permission from Schneider et al., 2008). 

 

2.5.4 PI3K/Akt Signalling Pathway  

The integrin-dependent adhesion signalling has an impact on the activation of 

phosphatidylinositol 3-kinase (PI3K)-AKT pathway (Sieg et al., 1999). The PI3K/Akt 

signalling pathway is often dysregulated in cancer (Thorpe et al., 2015). Indeed, this 

signalling pathway plays a vital role in regulating cell proliferation, survival or migration 

of cancer cells. To date, anti-cancer agents that target PI3K or Akt have been widely 

developed and are being tested in clinical trials (Wong et al., 2010; Rodon et al., 2013).  

PI3Ks, constitute a lipid kinase family mostly generate phosphatidylinositol (3,4,5) 

trisphosphates (PIP3) in response to ligand stimulation of growth factor receptor kinases 

Univ
ers

ity
 of

 M
ala

ya



50 

(GFRKs), integrin, G protein-coupled receptors (GPCR) and cytokine receptor (CR). The 

oncogenic serine/threonine kinase Akt, is recruited to the cell membrane by interaction 

with PIP3 via its pleckstrin homology (PH) domain, being phosphorylated at two residues 

(Thr308 and Ser473) by phosphoinositide-dependent kinase 1 (PDK1), PDK2 and mTOR 

complex 2 (mTOR2) (Xue & Hemmings, 2013). Activated Akt controls diverse cellular 

functions including cell survival, growth, cell migration and angiogenesis (Manning & 

Cantley, 2007). The PI3K/Akt signalling pathway is illustrated in Figure 2.18. 

Accumulating evidence is emerging that PI3K/Akt signalling pathway actively 

involves in the migratory process of metastatic cancer cells via phosphorylation of several 

cytoskeleton-regulating proteins and EMT-activating proteins. For instance, it has been 

shown that cells with a constitutively active form of Akt produce a transcription factor, 

Snail, which is known to repress expression of the E-cadherin gene (Grille et al., 2003). 

This transcriptional activity induces cellular changes leading to the conversion of 

epithelial cells into invasive mesenchymal cells. In addition, Akt also induces the 

production of metalloproteinases and leading to cell invasion (Kim et al., 2001; Park 

et al., 2001). 
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Figure 2.18: Model for the regulation of PI3K/Akt signalling pathway (Reproduced 

with permission from Xue & Hemmings, 2013). 

 

2.6 Structure-Activity Relationship (SAR) 

A structure-activity relationship (SAR) relates features of a chemical structure to a 

biological activity associated with that chemical. Biological properties of new 

compounds are often inferred from profiles of similar existing compounds whose 

biological mechanism are already known. In the pharmaceutical and chemical industries, 

SARs have been widely used to design chemicals with commercially desirable properties. 

SAR develops an understanding of what constitutes a class of molecules that are active, 

what determines relative activity, and what distinguishes these from inactive classes 

(McKinney et al., 2000). In the field of cancer research, SAR is analysed in order to find 

new, more effective anti-cancer agents. A number of literature reviews have addressed 
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the SAR of anti-cancer agents in terms of inhibition of cancer cell growth, however SAR 

on targeting the metastatic process has not received as much attention. Therefore, it is 

important to study the SAR of different functional groups in natural product and synthetic 

analogues with not only their anti-proliferative but anti-metastatic properties. 

2.6.1 SAR on Anti-Proliferation Effects 

In particular, a series of compound containing different substituents was synthesised 

as a continuation or ongoing anti-cancer research development. The target compounds 

were evaluated for anti-proliferative activities against several types of cancer. SAR study 

has been made to correlate between the chemical structures and anti-proliferation 

activities. In this study, the functional groups including acetoxy, methoxy and hydroxy 

groups are being emphasised. Various studies showed that they may exert either 

effective or weak anti-proliferative effects on different cell lines. Moreover, the 

position of the functional groups may also affect the effectiveness of the substituent in 

blocking the growth of cancer cells.  

2.6.1.1 Acetoxy (CH3COO) Group 

Acetoxy group is a chemical functional group of the structure CH3-C(=O)-O-. Based 

on the inductive effect, the acetoxy group is electron withdrawing. 

A series of aspirin-based benzyl esters (ABEs) were synthesised and their inhibitory 

activity against human colon (HT-29 and SW480) and pancreatic (BxPC-3 and MIA 

PaCa-2) cancer cell lines was evaluated (Joseph et al., 2011). The acetoxy substituent 

showed appreciable potency in inhibiting cancer cell growth. Surprisingly, the IC50 of the 

para substituted acetoxy compound was 5 to 20-fold lower than that of the p-aspirin 

containing compound.  
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Evaluation for the anti-cancer activity of C7-oxgenated spongiane diterpenes 

derivatives was performed on HeLa and HEp-2 (HeLa derivative) cell lines. In general, 

introduction of acetoxy group at C-7 did not improve the resultant cytotoxicity (Arno et 

al., 2003). Hence, acetoxy group may not be effective in the anti-proliferative effects. 

Another SAR study that has examined the effect of coumarin analogues on three 

human cancer cell lines have shown that substitution of the hydroxy group with an 

acetoxy group reduced the cytotoxic activity. However, some analogues displayed a 

minimal cytotoxic activity with the introduction of acetoxy group (Miri et al., 2016).  

In short, introduction of acetoxy group remains important in the development of anti-

proliferative properties of compounds. 

2.6.1.2 Methoxy (OCH3) Group 

A methoxy group consists of a methyl group bound to oxygen, with the formula O–

CH3. The Hammett equation classifies a methoxy substituent on a benzene ring as an 

electron-donating group (Hammett, 1937).  

Analysis of SAR of a series of (Z)-1-(1,3-diphenyl-1H-pyrazol-4-yl)-3-

(phenylamino)prop-2-en-1-one derivatives revealed that methoxy group as electron 

donating group attached to the aromatic B ring could contribute to significant cytotoxicity 

(Srinivasa et al., 2016). Analogues having methoxy substitution at B ring and analogues 

with 3,4,5,-methoxy substitution, all showed better IC50 values than other analogues with 

electron withdrawing group.  

Sreelatha and collaborators studied a series of novel naphthoquinone amide 

derivatives for the anti-cancer activity against HeLa and SAS cancer cell lines (Sreelatha 

et al., 2014). Among the analogues synthesised, compounds with the presence of methoxy 
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substituent at C-2 of the quinone ring showed active activity. Moreover, the attachment 

of methoxy group at C-5 position reduced the anti-proliferation activity. Not only is the 

methoxy group essential for anti-cancer activity but the position of this group plays an 

important role in the effectiveness of the compound to inhibit growth of cancer cells.  

To obtain data on the SAR in the imidazobenzothiazole series, Trapani and friends 

examined several analogues for their cytotoxic effects (Trapani et al., 2001). Introduction 

of methoxy group at C-7 position could give better activity if compared to their parent 

compound. However, additional substitution of methoxy group at 5- and 8- position 

caused the reduction of cytotoxic activity compared to the mono-methoxy analogue. 

Hence, the more methoxy group substituted to the compound, the less efficient is the 

ability to inhibit the growth of cancer cells. 

Overall, methoxy group is considered as an important functional group in exerting 

anti-proliferation effects, however its positions and the number of substituent influence 

its effectiveness.  

2.6.1.3 Hydroxy (OH) Group  

A hydroxy or hydroxyl group is a substituent with the formula OH. It is classified as 

the electron donating group.  

In 2016, a series of (Z)-1-(1,3-diphenyl-1H-pyrazol-4-yl)-3-(phenylamino)prop-2-en-

1-one derivatives were synthesised and analysed for their anti-cancer effects against HT-

29, PC-3, A549 and U87MG human cancer cell lines (Srinivasa et al., 2016). SAR 

analysis showed that hydroxy group substituted on the aromatic B ring enhanced the 

activity of analogues. 
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Evaluation of the structure-activity relationships of a series of novel fluorinated asiatic 

acid analogues were carried out based on their anti-proliferation activity against HeLa 

and HT-29 cell lines (Goncalves et al., 2016). The compound with three free hydroxy 

groups in A-ring exhibited lower anti-proliferation activity when compared with 

compound which had two free hydroxy groups. However, when the two hydroxy groups 

in compound are acetylated, the activity increased. These combined results indicated that 

free hydroxy groups in A-ring are not important for the anti-proliferation activity. 

Hence, substitution of hydroxy group to the compound may exert anti-proliferation 

effects to certain extent. 

2.6.2 SAR on Anti-Migration Effects 

Various approaches have been performed to study the anti-migration effects of a 

series of synthesised compound. The details of SAR on anti-migration activities 

provide better insights in the design and development of improved anti-cancer drug 

with anti-metastatic property. The anti-migration effects of electron withdrawing 

group which represented by acetoxy group and electron donating group including 

methoxy and hydroxy group were discussed in this study.  

2.6.2.1 Acetoxy (CH3COO) Group 

Mishkinee and friends investigated the anti-metastatic activity of derivatives of 

alkylthiocarboxylic acids. They showed that the absence of the acetoxy group leads to a 

significant drop in this activity (Mishkinene & Valavichene, 1997). In other words, 

attachment of acetoxy substituents improves the anti-migration activity. 

A study of betulin derivatives on the anti-invasive activity on prostate cancer cells 

reported that when acetoxy group substituted at position C28, anti-invasive activity was 
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decreased (Härmä et al., 2015). Succinctly, acetoxy group is unfavourable for anti-

invasive effects. 

Due to the limited references, it is difficult to conclude the effectiveness of acetoxy 

group in modulating the anti-migration activity. 

2.6.2.2 Methoxy (OCH3) Group 

In the study by Tseng and friends, the compound (E)-6-methoxy-3-(4-

methoxyphenyl)-2-[2-(5-nitrofuran-2-yl)vinyl]quinoline was found to be weakly 

cytotoxic in all the cancer and normal cells investigated, but had the ability to inhibit the 

migration and invasion of cells (Tseng et al., 2015).  It can therefore be deduced that the 

methoxy group substituted at C-6 position of the quinoline ring is crucial for anti-

metastatic activity. Methoxy groups have also been found in the structure of 

combretastatin A4 (CA-4), a known anti-angiogenesis agent (Griggs et al., 2002). Thus, 

methoxy groups are potential contributors to the anti-metastatic effects. 

In another study, a series of EF24 analogues were synthesised and analysed for their 

anti-cancer activity against three different cell lines of lung cancer, A549, LLC and 

H1650 (Wu et al., 2017). Most of the compounds showed good anti-proliferation activity. 

Among them, a compound with three methoxy groups attach to its side showed greater 

cytotoxicity than original analogue, EF24. It also exhibited good anti-migration effect 

against A549 cells. Hence, the methoxy group plays a major role in the anti-metastatic 

activity of cancer treatment. 

Cathepsins, the cysteine proteases involved in the progression of various human 

cancers are promising therapeutic target in cancer treatment (Gocheva & Joyce, 2007). 

This is because the inhibition of one of its members, cathepsin L reduced cancer cell 

invasion and migration (Lankelma et al., 2010). In 2013, Parker and friends carried out 
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the synthesis of benzoylbenzophenone thiosemicarbazone derivatives and assessed for 

the inhibitory activity against cathepsins L (Parker et al., 2015). The activity was 

diminished when the compound was substituted with the methoxy group. They suggested 

that the substitution increased the steric hindrance and thus reduced the activity. The para 

substituted methoxy analogue exhibited high IC50 value of 5117 nM and significantly 

weaker than the unsubstituted analogue. Thus, it was concluded that methoxy group does 

not have an important role in this activity. 

Taken together, methoxy substituent may help to inhibit the migration of cancer cells, 

unless its effect is being influenced by steric hindrance. 

2.6.2.3 Hydroxy (OH) Group  

SAR study on brartemicin analogues conducted by Jiang and friends showed that anti-

invasive activity to be moderately active when hydroxy group was substituted at the 2- or 

4-position of the benzoic acid ring (Jiang et al., 2011). The hydroxy substituted analogues 

maintained the anti-invasive activity at an IC50 of not more than 1.0µg/ml, although they 

were slightly less potency compared to the natural compound. 

Benzoylbenzophenone thiosemicarbazone analogues were evaluated for the inhibitory 

activity against cathepsins L (Parker et al., 2015). It was observed that para substitution 

of hydroxy at the analogue resulted in diminished activity with the IC50 value of 340 nM 

which less potent than original analogue. The reduced activity was thought to be due to 

the steric hindrance by para hydroxy group. Hence, it is important to select suitable 

substituent in order to reduce the steric hindrance effects to the anti-cancer activity. 

Andrographolide derivatives were evaluated to identify potent inhibitors against 

cancer cell migration and invasion (Wu et al., 2013). Analogue in which the allylic 

hydroxy at C-14 position was removed had better inhibitory effects on migration in 
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human bladder carcinoma 5637 cells than original compound. In other words, the 

hydroxy group may hinder the anti-migration effect on cancer cells. This has to be further 

validated.  

In summary, hydroxy group is not expected to display strong anti-migration on cancer 

cells.  
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CHAPTER 3: MATERIALS AND METHODS 

3.1 ACA and Its Analogues 

3.1.1 General Chemistry Procedure 

Unless otherwise noted, all materials were obtained from commercial suppliers and 

were used without further purification. Reaction time and purity of products were 

monitored by thin layer chromatography (TLC) on Merck silica gel aluminium cards (0.2 

mm thickness) with fluorescent indicator at 254 nm. Column chromatography was run on 

silica gel (200–300 mesh) obtained from EMD Millipore (USA). Structural elucidation 

was established through following spectroscopic methods: IR on a Perkin Elmer RX1 FT-

IR spectrometer, UV on a Shimadzu UV-160A UV–Visible Recording 

Spectrophotometer, MS on a Shimadzu gas chromatograph-MS spectrometer (HP 6890 

Series Mass Selective Detector and HP 6890 Series GC System), 1D (1H, 13C, DEPT) and 

2D (COSY, NOESY, HSQC, HMBC) NMR spectra using CDCl3 as solvent were 

recorded on Bruker AVN 400 (400 MHz for 1H NMR, 100 MHz for 13C NMR) 

spectrometer. 

3.1.2 Plant Materials 

The rhizomes of Alpinia conchigera Griff. were collected from Jeli province of 

Kelantan, east-coast of Peninsular Malaysia. The sample was identified by Professor Dr. 

Halijah Ibrahim from the Division of Ecology and Biodiversity, Institute of Biological 

Science, Faculty of Science, University of Malaya. A voucher specimen (KL5049) was 

deposited in the Herbarium of Chemistry Department, Faculty of Science, University 

Malaya.  
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3.1.3 Isolation of 1’S-1’-acetoxychavicol acetate (ACA) 

Isolation of the ACA was carried out by Mr. Mohamad Nurul Azmi from the 

Department of Chemistry, Faculty of Science, University Malaya. The air-dried and 

grounded rhizomes of Alpinia conchigera (2.10 kg) were extracted successively with 

hexane (C6H14), dichloromethane (CH2CL2) and methanol (MeOH) at room temperature 

(25°C) for 72 hrs. The solvent suspension was filtered and concentrated to dryness by 

using a rotary evaporator in order to obtain crude extract. Isolation and purification of 

ACA within the crude extract was examined using column chromatography (CC) and 

TLC techniques. The crude was subjected to CC (SiO2, 230-400 mesh; n-hexane/ethyl 

acetate step gradient [100 → 50; % n-hexane]) to obtained 20 sub-fractions base on TLC 

profile (Aluminium supported silica gel 60 F254 plates; n-hexane/ethyl acetate [80:20]): 

AM1.Fr1-AM1.Fr20. From this crude, fraction AM1.Fr6 was confirmed as a target 

compound i.e. 1’S-1’-acetoxychavicol acetate (ACA). The structure of the isolated ACA 

was determined by comparison of the spectral data of mass and nuclear magnetic 

resonance with those reported in the literatures (Janssen & Scheffer, 1985; Yang & 

Eilerman, 1999; Ando et al., 2005). The spectroscopic summary of ACA: A yellowish 

oil, Calculated for C13H14O4, 234.2479; Found 234, 192, 150, 149, 132, 104, 77. IR (neat) 

υmax, cm-1: 1761, 1645, 1234. UV λmax, nm: 304.5. 1H NMR (CDCl3, 400 MHz), δ: 2.08 

(3H, s), 2.27 (3H, s), 5.22 (2H, dd, J = 9.98 Hz), 5.98 (1H, m), 6.23(1H, d, J = 5.84 Hz), 

7.03 (2H, d, J = 8.80 Hz), 7.33 (2H, d, J = 8.76 Hz). 13C NMR (CDCl3, 100 MHz), δ: 

21.2 (CH3), 21.3 (CH3), 75.6 (CH), 117.2 (CH2), 121.7 (2CH), 128.5 (2CH), 136.1 (CH), 

136.5 (C), 150.5 (C), 169.4 (C), 169.7 (C). 
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3.1.4 General Procedure to Obtain Compounds 2-8 

4-allyl-2,6-dimethoxyphenol (2), (S)-α-vinylbenzyl alcohol (3) and 4-allyl anisole (5) 

were purchased from Sigma-Aldrich (USA). Eugenol (4) was purchased from Merck 

(USA). Compounds 6, 7 and 8 were hemi-synthesised from 2, 3 and 4 respectively by 

reacting with acetic anhydride in the presence of 4-dimethylaminopyridine (catalyst) and 

dichloromethane (solvent) (Figure 3.1). 

 

 

 

 

 

Figure 3.1: Schematic preparation of compounds 2-8. 

 

3.1.5 General Procedure to Obtain Compounds 17-20 

Compounds 17-20 were hemi-synthesised by modification of Lee’s procedure (Lee & 

Ando, 2001), as shown in Figure 3.2. 

3.1.5.1 1’-acetoxyeugenol acetate (17, AEA) 

To a solution of vinylmagnesium bromide freshly prepared from magnesium turning 

(0.24 g, 9.87 mmol), 1M vinyl bromide (6.60 ml, 6.57 mmol) and catalytic amount of 

iodine crystal in dry diethyl ether (20.0 ml), a solution of aldehyde 9 (0.50 g, 3.29 mmol) 

in diethyl ether (10.0 ml) under ice bath was added. The ice bath was removed and the 
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mixture was allowed to warm to room temperature. After the reaction mixture was stored 

for 2 hrs at room temperature, saturated aqueous NH4Cl (10.0 ml) solution was added. 

The mixture was extracted with diethyl ether (2 x 20.0 ml). The resulting organic extracts 

were combined, and the solvent was removed under reduced pressure to yield a crude 

product. The oily product (intermediate 13) obtained by usual work-up was acetylated 

with acetic anhydride (0.62 ml, 6.57 mmol) and 4-dimethylaminopyridine (DMAP) (0.81 

g, 6.64 mmol) in dichloromethane (15.0 ml) in an ice bath. After consumption of starting 

material and product formation, the reaction was quenched with saturated aqueous NH4Cl 

(10.0 ml) solution and extracted with dichloromethane (3 x 15.0 ml), dried (NaSO4) and 

filtered. Evaporation of filtrate gave a yellow oil which was purified by column 

chromatography on silica gel, and eluting with hexane/ethyl acetate (9:1) afforded the 

desired product as a yellowish oil 17 (0.53 g, 61%). The synthetic analogue 17 is the same 

as the natural analogue AEA that was previously studied (Hasima et al., 2010; In et al., 

2011). The spectroscopic summary of analogue 17: A yellowish oil, Calculated for 

C14H16O5, 264.0993; Found 40, 45, 61, 77, 91, 107, 121, 264. IR (neat) υmax, cm-1: 1767, 

1742, 1647, 1607, 1233, 1198, 857. UV λmax, nm: 299.0. 1H NMR (CDCl3, 400 MHz), δ: 

2.12 (3H, s), 2.31 (3H, s), 3.84 (3H, s), 5.25 (2H, dd, J=10.5), 5.99 (1H, m), 6.24 (1H, d, 

J=5.80 Hz), 6.95 (1H, s), 7.02 (2H, d, J=7.80 Hz). 13C NMR (CDCl3, 100 MHz), δ: 20.6 

(CH3), 21.25 (CH3), 55.9 (OCH3), 75.7 (CH), 111.5 (CH), 117.0 (CH2), 119.6 (CH), 122.8 

(CH), 135.9 (CH), 137.6 (C), 139.7 (C), 151.2 (C), 168.9 (C), 169.7 (C). 

3.1.5.2 1’-acetoxy-3,5-dimethoxychavicol acetate (18, AMCA) 

To a solution of vinylmagnesium bromide freshly prepared from magnesium turning 

(0.17 g, 7.14 mmol), 1M vinyl bromide (3.6 ml, 3.57 mmol) and catalytic amount of 

iodine crystal in dry diethyl ether (20.0 ml), a solution of aldehyde 10 (0.30 g, 1.65 mmol) 

in diethyl ether (10.0 ml) under ice bath was added. The ice bath was removed and the 
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mixture was allowed to warm to room temperature. After the reaction mixture was stored 

for 1 hr at room temperature, saturated aqueous NH4Cl (10.0 ml) solution was added. The 

mixture was extracted with diethyl ether (2 x 20.0 ml). The resulting organic extracts 

were combined and solvent was removed under reduced pressure to yield the crude 

product. The oily product (intermediate 14) obtained by usual work-up was acetylated 

with acetic anhydride (0.33 ml, 3.30 mmol) and DMAP (0.41 g, 3.36 mmol) in 

dichloromethane (15.0 ml) in an ice bath. After consumption of starting material and 

product formation, the reaction was quenched with saturated aqueous NH4Cl (10.0 ml) 

solution and extracted with dichloromethane (3 x 15.0 ml), dried (NaSO4) and filtered. 

Evaporation of filtrate gave a yellow oil which was purified by column chromatography 

on silica gel, and eluting with hexane/ethyl acetate (9:1) afforded the desired product as 

a yellowish oil 18 (0.30 g, 63%). The spectroscopic summary of analogue 18: A yellowish 

oil, Calculated for C15H18O6, 294.1103. IR (neat) υmax, cm-1: 1761, 1645, 1234. UV λmax, 

nm: 304.5. 1H NMR (CDCl3, 400 MHz), δ: 2.13 (3H, s), 2.33 (3H, s), 3.81 (6H, s), 5.31 

(2H, dd, J = 10.0 Hz), 5.98 (1H, m), 6.21 (1H, d, J = 5.80 Hz), 6.61 (2H, s). 13C NMR 

(CDCl3, 100 MHz), δ: 20.4 (CH3), 21.2 (CH3), 56.1 (2OCH3), 76.0 (CH), 104.0 (2CH), 

117.0 (CH2), 128.4 (C), 135.9 (CH), 137.2 (C), 152.1 (2C), 168.7 (C), 169.9 (C). 

3.1.5.3 1’-acetoxy-3,5-dimethoxychavicol (19) 

To a solution of vinylmagnesium bromide freshly prepared from magnesium turning 

(0.92 g, 38.3 mmol), 1M vinyl bromide (17.0 ml, 17.1 mmol) and catalytic amount of 

iodine crystal in dry diethyl ether (30.0 ml), solution of aldehyde 11 (0.98 g, 5.89 mmol) 

in diethyl ether (10.0 ml) under ice bath was added. The ice bath was removed and the 

mixture was allowed to warm to room temperature. After the reaction mixture was stored 

for 2 hrs at room temperature, saturated aqueous NH4Cl (10.0 ml) solution was added. 

The mixture was extracted with diethyl ether (2 x 30.0 ml). The resulting organic extracts 
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were combined and solvent was removed under reduced pressure to yield the crude 

product. The oily product (intermediate 15) obtained by usual work-up was acetylated 

with acetic anhydride (0.60 ml, 6.35 mmol) and DMAP (1.52 g, 12.4 mmol) in 

dichloromethane (20.0 ml) in an ice bath. After consumption of starting material and 

product formation, the reaction was quenched with saturated aqueous NH4Cl (10.0 ml) 

solution and extracted with dichloromethane (3 x 15.0 ml), dried (NaSO4) and filtered. 

Evaporation of filtrate gave a yellow oil which was purified by column chromatography 

on silica gel, and eluting with hexane/ethyl acetate (9:1) afforded the desired product as 

a yellowish oil 19 (0.90 g, 65%).  The spectroscopic summary of analogue 19: A 

yellowish oil, Calculated for C13H16O4, 236.1049. IR (neat) υmax, cm-1: 1739, 1602, 1558, 

1519, 1459, 1232. UV λmax, nm: 304.5. 1H NMR (CDCl3, 400 MHz), δ: 2.11 (3H, s), 3.77 

(6H, s), 5.31 (2H, dd, J = 10.5 Hz), 5.97 (1H, m), 6.16 (1H, d, J = 5.9 Hz), 6.38 (2H, s), 

6.49 (1H, s). 13C NMR (CDCl3, 100 MHz), δ: 21.3 (CH3), 55.4 (2OCH3), 76.8 (CH), 

100.0 (CH), 106.6 (2CH), 141.3 (C), 160.9 (2C), 170.0 (C).  

3.1.5.4 1’-acetoxy-4-methoxychavicol (20) 

To a solution of vinylmagnesium bromide freshly prepared from magnesium turning 

(2.14 g, 89.2 mmol), 1M vinyl bromide (37.0 ml, 37.0 mmol) and catalytic amount of 

iodine crystal in dry diethyl ether (50.0 ml), a solution of aldehyde 12 (1.68 g, 12.3 mmol) 

in diethyl ether (10.0 ml) under ice bath was added. The ice bath was removed and the 

mixture was allowed to warm to room temperature. After the reaction mixture was stored 

for 3 hrs at room temperature, saturated aqueous NH4Cl (10.0 ml) solution was added. 

The mixture was extracted with diethyl ether (2 x 30.0 ml). The resulting organic extracts 

were combined and solvent was removed under reduced pressure to yield the crude 

product. The oily product (intermediate 16) obtained by usual work-up was acetylated 

with acetic anhydride (1.51 ml, 16.0 mmol) and DMAP (3.09 g, 25.3 mmol) in 
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dichloromethane (25.0 ml) in an ice bath. After consumption of starting material and 

product formation, the reaction was quenched with saturated aqueous NH4Cl (10.0 ml) 

solution and extracted with dichloromethane (3 x 15.0 ml), dried (NaSO4) and filtered. 

Evaporation of filtrate gave a yellow oil which was purified by column chromatography 

on silica gel, eluting with hexane/ethyl acetate (95:5) afforded the desired product as a 

yellowish oil 20 (1.57 g, 62%).  The spectroscopic summary of analogue 20: A yellowish 

oil, Calculated for C12H14O3, 206.0948; Found 43, 65, 77, 91, 104, 121, 131,149, 164, 

206. IR (neat) υmax, cm-1: 1737, 1515, 1236. UV λmax, nm: 304.5. 1H NMR (CDCl3, 400 

MHz), δ: 2.07 (3H, s), 3.78 (3H, s), 5.28 (2H, dd, J = 10.4 Hz), 5.99 (1H, m), 6.22 (1H, 

d, J = 5.80 Hz), 6.88 (2H, d, J = 6.80 Hz), 7.28 (2H, d, J = 6.80 Hz).  13C NMR (CDCl3, 

100 MHz), δ: 21.3 (CH3), 55.3 (OCH3), 76.3 (CH), 113.9 (2CH), 116.5 (CH2), 128.8 

(2CH), 136.4 (CH), 159.5 (C), 169.1 (C). 
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Figure 3.2: Schematic preparation of compounds 17-20. 
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3.1.6 Preparation of ACA and Its Analogue Solutions 

Purified ACA and its hemi-synthetic analogue compounds were dissolved in dimethyl 

sulfoxide (DMSO) to prepare both stock and working solutions. For preparation of 20 x 

ACA stock solution, 46.9 mg of pure ACA was dissolved in 10.0 ml of DMSO (Merck, 

Germany) to get a final concentration of 20.0 mM. The solution was then vortexed 

vigorously to allow complete dissolution of ACA in DMSO solvent. By performing a 2 

x dilution of the ACA stock solution with DMSO, 1 x ACA working solutions with final 

concentration of 10.0 mM were prepared. The stock solution was stored at 4°C while 

working solutions were kept at 25°C. To avoid the cytotoxic effects of DMSO, ACA 

working solution was diluted with the growth medium to a final DMSO concentration 

that did not exceed 1.0% (v/v). The stock and working solutions of all ACA analogues 

were prepared based on the similar methods mentioned above. 

3.2 Cell Lines 

3.2.1 Cell Lines and Culture Conditions 

A total of seven cancer cell lines and one normal cell line were used in this study, 

which are summarised in the Table 3.1. All cancer cell lines were maintained in cell 

culture flask containing either RPMI-1640 (Thermo Scientific, USA) or DMEM (Thermo 

Scientific, USA) medium supplemented with 10.0% (v/v) FBS (Sigma-Aldrich, USA), 

100.0 U/ml penicillin (Lonza, USA) and 100.0 µg/ml streptomycin (Lonza, USA). 

HMEC cells acting as normal cell controls were cultured in serum free MEGM medium 

(Lonza, USA). All cells were grown as monolayers in a humidified incubator (Memmert, 

Germany) at 37°C with 5.0% CO2 and 95.0% air. 
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Table 3.1: The sources and culture media used for cultivation of various human cancer 

and normal cell lines used in this study.   

 

3.2.2 Subculturing Monolayer Cell Culture 

All cell lines were sub-cultured every two to three days, or when the confluency of the 

cell in flask reached 80.0-90.0%. The spent cell culture medium was removed discarded 

using a serological pipette. Cells were rinsed with 1 x PBS (Lonza, USA) to remove any 

residual traces from medium that can inactivate the trypsin. The PBS solution was 

removed and 3.0 ml of 0.25% (v/v) trypsin (Lonza, USA)-EDTA (Gibco, USA) solution 

was added to the culture flask. To ensure complete cells detachment, cell culture flask 

was incubated at 37°C for 10 mins. Once the cells were detached, equal number of growth 

medium supplemented with FBS was added to the cell suspension to inactivate the trypsin 

activity. All the suspension was pipetted into a labelled 15.0 ml centrifuge tube and 

centrifuged at 1,500 rpm for 10 mins using Centrifuge 5702 (Eppendorf, Germany). The 

Cell Lines Type Source Culture Media 

MDA-MB-231 Human Breast 

Adenocarcinoma 

Cells 

ATCC RPMI-1640 

MCF-7 ATCC RPMI-1640 

RT-112 
Human Bladder 

Carcinoma Cells 

German Collection 

of Microorganisms 

and Cell Cultures  

RPMI-1640 

EJ-28 ATCC RPMI-1640 

PC-3 

Human Prostate 

Adenocarcinoma 

Cells 

ATCC RPMI-1640 

HSC-4 

Human Oral 

Squamous 

Carcinoma Cells 

CARIF DMEM 

HepG2 

Human Hepatocyte 

Liver Carcinoma 

Cells 

ATCC DMEM 

HMEC 

Human Mammary 

Epithelial Cells 

(Normal Cells) 

Lonza, USA MEGM 
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supernatant was then discarded and the cell pellet was re-suspended in fresh cell culture 

medium. For routine cell maintenance, the cells were split into three or four sterile flasks. 

3.2.3 Cryopreservation of Cell Culture 

Prior to cryopreservation of cell lines, cells were grown to 80.0% confluency and 

checked for its health status. The confluent cells were harvested as described in section 

3.2.2. After centrifugation, the cell pellet was collected and re-suspended with a mixture 

of fresh growth medium with 20.0% (v/v) FBS and 10.0% (v/v) DMSO. DMSO acted as 

a cryoprotectant. Several stocks of 1.0 ml of aliquots were dispensed into 2.0 ml 

cryopreservation vial and frozen at -20°C for 12 hrs before transferred to -196°C liquid 

nitrogen tank. 

3.2.4 Thawing of Cryopreserved Cells 

After removed from nitrogen tank, cryopreserved cells were thawed in 37°C water 

bath for 5 mins. Each 1.0 ml of thawed cell suspension was diluted with 9.0 ml of cell 

culture medium containing 10.0% (v/v) FBS and centrifuged at 1,500 rpm for 5 mins. 

The supernatant containing the cryoprotectant DMSO was discarded and the pellet was 

re-suspended with prepared medium containing 10.0% (v/v) FBS and 100.0 μg/ml 

streptomycin. The cells were then maintained at 37°C in a 95.0% humidified incubator 

circulated with 5.0% of CO2. 

3.2.5 Cell Counting 

The number of viable cells present in a specific population was determined via a dye 

exclusion viability assay using a haemocytometer (Resistance, Germany). Cells were 

harvested and re-suspended in growth medium gently. 20.0 µl of cell suspension was 

aliquoted into a microcentrifuge tube and mixed with 20.0 µl of 0.08% trypan blue 
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(Merck, Germany) dye solution. The tube was allowed to stand for about 3 mins. 10.0 µl 

of the mixture was then pipetted onto a haemocytometer counting chamber, and spread 

evenly by capillary action. The counting of unstained viable cells in each of the four-

square grid corners was performed under the inverted microscope (Nikon, Japan) at 100 

x magnification. Each square grid represents a 0.1 mm3 or 10-4 ml volume and the 

concentration of cell suspension was determined using Equation 3.1 with a dilution factor 

of two. The haemocytometer and cover slip were sprayed and cleaned immediately with 

70.0% (v/v) ethanol (Thermo Scientific, USA) between samples and after use. 

Cell concentration (cells/ml) = 
Average Number of Cells Counted

Volume counted
 x Dilution Factor  

  (Equation 3.1) 

3.3 Cytotoxicity Assay 

3.3.1 Preparation of MTT Reagent 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagents were 

prepared by adding 60.0 mg of MTT (Calbiochem, USA) to 12.0 ml of 1 x PBS (Lonza, 

USA). To ensure the MTT powder was completely dissolved, the reagent was vigorously 

shaken and vortexed. MTT working solutions were stored in the dark at room temperature 

(25°C) and at 4°C in the dark for long storage. The final concentration of the MTT 

working solution used in MTT assay was 5.0 mg/ml. 

3.3.2 MTT Assay 

The anti-proliferative effects of ACA and its analogues were assessed by measuring 

changes in cell viability using the MTT assay in vitro. The MTT assay is a colorimetric 

assay that depends on the reduction of yellow MTT dye into insoluble formazan purple 
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crystal by viable cells. In brief, both cancer and normal cells were washed with 1x PBS 

(Lonza, USA) without calcium and magnesium. The PBS solution was aspirated, and 

cells were detached by covering with 0.25% (v/v) trypsin (Lonza, USA)-EDTA (Gibco, 

USA) solution. After 5-10 mins of incubation in 37°C, the harvested cells were 

transferred to the 15.0 ml centrifuge tube with addition of FBS-containing growth media. 

Cell pellets that formed after centrifugation at 1,500 rpm for 10 mins were re-suspended 

in media to make a single cell suspension. Determination of number of viable cells was 

done using the trypan blue exclusion method according to section 3.2.5, to give the 

desired density of 5.0 x 105 cells/ml. Cells were seeded in triplicates on flat-bottom 96-

well plates at 100.0 µl/well with 1.0 x 104 cells and incubated at 37°C overnight to allow 

for cell attachment to the well surface. After the incubation, cells were treated with 

increasing concentrations (5.0 to 50.0 µM) of ACA and its analogues for 24 hrs. Wells 

containing cell culture media alone were served as negative controls and DMSO as 

solvent controls to ensure that cytotoxicity was not solvent induced. Wells containing 

cells in gradient concentration (10,000 cells, 5,000 cells, 2,500 cells, 1,250 cells and 0 

cells) were used to plot standard curve for quantification purposes. At the end of 

incubation period, 20.0 µl of 5.0 mg/ml MTT reagent (Calbiochem, USA) was added to 

all the wells and incubated in the dark at 37°C for 2 hrs until the presence of purple 

insoluble-formazan precipitate. The contents from the plate were replaced with 200.0 µl 

of DMSO and agitated on a plate shaker in the dark for 15 mins to allow complete changes 

of formazan crystals to coloured solution. The absorbance of the solution was measured 

at 570 nm wavelength with a 650 nm reference wavelength using the Tecan Sunrise® 

microtiter plate reader (Tecan, Switzerland). The results were then quantified using the 

Magellan Version 7.1 (Tecan, Switzerland) software. 
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3.4 Proteasome Inhibition Assay 

3.4.1 Preparation of Epoxomicin 

Epoxomicin, the commercial proteasome inhibitor was used in the proteasome activity 

assay. For preparation of stock solution, 72.0 µl of DMSO was added to 20.0 µg solid in 

the provided vial of epoxomicin (Enzo, USA), to produce a final concentration of 500.0 

µM. The solution was then vortexed well to ensure that epoxomicin had completely 

dissolved in DMSO solvent. The stock solution was stored at -20°C for long term usage 

up to 3 months. Different working concentrations can be prepared by taking 0.04, 0.4, 

4.0, 40.0, 400.0 µl of 500.0 µM stock solution and diluted to a final volume of 1.0 ml 

which resulted in 0.02, 0.2, 2.0, 20.0, 200.0 µM solutions respectively. For further 

proteasome activity analysis, 5.0 µl of different working solutions was diluted in total 

volume of 50.0 µl with HEPES buffer (Gibco, USA) or culture medium, to prepare final 

concentrations of 0.001, 0.01, 0.10, 1.0, 10.0 µM of epoxomicin compound. 

3.4.2 Preparation of Proteasome-Glo™ Reagent 

The enzyme-based and cell-based proteasome inhibition assays were done by using 

Proteasome-GloTM 3-Substrate System (Promega, USA) and Proteasome-GloTM Cell-

Based 3-Substrate System (Promega, USA) respectively. Each assay was carried out as 

indicated in the manufacturer’s protocol. Briefly, thawed Proteasome-Glo™ Buffer, 

lyophilised Luciferin Detection Reagent and three substrates were equilibrated to room 

temperature in the dark. Once at room temperature the Luciferin Detection Reagent was 

reconstituted with 10.0 ml of Proteasome-GloTM Buffer in an amber bottle. Next, the 

Proteasome-Glo™ Substrate was vortexed well and added to the re-suspended Luciferin 

Detection Reagent to prepare the Proteasome-Glo™ Reagent. The substrates with 

appropriate volume used for the chymotrypsin-like, trypsin-like and caspase-like 

activities were Suc-LLVY-Glo™ Substrate (50.0 µl), Z-LRR-Glo™ Substrate (100.0 µl), 
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Z-nLPnLD-Glo™ Substrate (50.0 µl) respectively. For cell-based trypsin-like assay only, 

15.0 µl of Inhibitor 1 and 100.0 µl of Inhibitor Mix 2 were added to the substrate-luciferin 

mixture to reduce non-specific protease activities. To allow removal of any free 

aminoluciferin and reduction of background luminescence, the prepared Proteasome-

Glo™ Reagent was then mixed gently and stored at room temperature in the dark for 60 

mins before use. The reagents were added to assay plates, resulting in proteasome 

cleavage of the luminogenic substrate and generation of aminoluciferin, which is 

transformed by luciferase to produce "glow-type" luminescence (Figure 3.3). The 

luminescent signal is directly proportional to the proteasome activity. 

 

Figure 3.3: The reaction of luminogenic, aminoluciferin substrates succeeding 

proteasome cleavage. Suc-LLVY-, Z-LRR- or Z-nLPnLD-aminoluciferase are specific 

substrates of the chymotrypsin-like, trypsin-like and caspase-like proteasome active sites, 

respectively. Following proteasome cleavage, aminoluciferin is released, allowing the 

luciferase reaction to produce light (Reproduced with permission from Moravec et al., 

2009). 
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3.4.3 Enzyme-Based Proteasome Activity Assay  

A total of 5.0 µl of 1.0 mg/ml purified human 20S proteasome (Enzo, USA) was 

diluted in 1M HEPES buffer (Gibco) to a final volume of 45.0 µl. The diluted 20S 

proteasome was then dispensed into the white-walled 96-well plate (Enzo, USA). Next, 

5.0 µl of ACA and its analogues with different working concentrations were added to the 

buffer, that is, the 20S proteasome was treated with ACA analogues in a final 

concentration range of 5.0 to 200.0 µM. Wells containing the commercial proteasome 

inhibitor epoxomicin (0.001 to 10.0 µM) were tested as inhibitor controls, DMSO was 

used as solvent controls and well without any 20S proteasome were served as blank. 50.0 

µl of Proteasome-GloTM Reagent was added to each well of the 96-well plate. The plate 

was left to stand for 5 mins on plate shaker in the dark and then incubated at room 

temperature for 60 mins. Three proteasome peptidase activities were detected as the 

relative light unit (RLU) generated from the cleaved substrates in the reagent. 

Luminescence generated from each reaction was monitored with Synergy H1 Hybrid 

Multi-Mode Reader (Biotek, USA). The background value was subtracted from each 

sample. 

3.4.4 Cell-Based Proteasome Activity Assay 

A number of 1.0 x 105 cells/ml of MDA-MB-231 cells were plated into white 96-well 

plate (Enzo, USA). Each well was topped up to 50.0 µl with RPMI-1640 growth medium. 

The plate was incubated overnight in the 5% CO2 humidified incubator at 37°C. After the 

incubation, existing medium was replaced with 50.0µl of fresh medium before treatment. 

The cells were treated with increasing concentrations (5.0 to 200.0 µM) of ACA and its 

analogues for 24 hrs. A well-known proteasome inhibitor epoxomicin was used as 

inhibitor control, DMSO as solvent control and medium-only well (without cells) served 

as blank control. 50.0 µl of Proteasome-GloTM Reagent was added to each well of the 96-
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well plate containing blank, control or test sample. The contents of wells were agitated 

on plate shaker in the dark for 5 mins. The plate was then incubated at room temperature 

for 60 mins, after which the luminescence signals were measured in the Synergy H1 

Hybrid Multi-Mode Reader (Biotek, USA).  The luminescence reading of the blank was 

subtracted from all samples.  

3.5 In silico Docking  

3.5.1 Preparation of 20S Proteasome Protein File 

The crystal structures of the β1, β2 and β5 subunits of the 20S proteasome were 

obtained from the yeast 20S proteasome (PDB ID: 1JD2) (Figure 3.4), which is similar 

to the human proteasome. The β1, β2 and β5 subunits were extracted from the H, N and 

K chain of 20S proteasome PDB respectively by using Discovery Studio Visualizer 3.1 

(Accelrys, Inc, USA). The three separate files were then saved as pdb files for further 

usage in docking analysis.  

 

Figure 3.4: 3D structure of 20S Proteasome (1JD2). 
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3.5.2 Preparation of Test Compounds Ligand File  

Three dimensional structural models of ACA, AEA and AMCA were drawn using  

ChemSketch program Version 1.1 (Advanced Chemistry Development, Inc., Canada). 

The 3D structures of these compounds were saved in mol2 format. The final ligand files 

were saved in pdbqt format by using AutoDockTools version 1.54 software (The Scripps 

Research Institute, USA).  

3.5.3 Preparation of Grid Parameter File (gpf) 

The 20S proteasome protein file and the selected test compound ligand file were 

opened together in AutoDockTools version 1.54 software.  A grid box was created by 

adjusting the defaults value to cover the entire protein.  The spacing was set to a default 

value of 0.375, and the file extension was set as “.gpf”. Gpf files were created for other 

ligands as well. The same process was repeated for all 20S proteasome β subunit protein 

structures. 

3.5.4 Preparation of the Docking Parameter File (dpf) 

The protein file and the selected ligand file were opened together in AutoDockTools 

1.5.2 software. The docking parameters were set as number of GA runs = 100, number of 

individuals in population = 150 and maximum number of energy minimisation (medium) 

= 2500000. Cluster tolerance (rmstol) value was set as 2.0 and Lamarckian genetic 

algorithm was used.  The file extension was set as “.dpf”. Dpf files were created for other 

ligands as well. The same process was repeated for all 20S proteasome β subunit protein 

structures. 
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3.5.5 Running Autodock 

Running autodock using the Autodock 4.0 software (The Scripps Research Institute, 

USA) requires a protein file, a ligand file, a gpf and a dpf file. Autogrid was run using 

the command line, autogrid4 –pfilename.gpf –l filename.glg &. Autogrid was followed 

by autodock using the commandline autodock4 –p filename.dpf –l filename.dlg &. The 

process was repeated for each protein and each ligand. 

3.5.6 Docking Analysis 

Ligand - protein interactions were analysed using Ligplot 4.4.2 software. The 

compounds which showed high affinity for the 20S proteasome were identified. 

3.6 Apoptosis Assay 

3.6.1 DNA Fragmentation Assay  

DNA fragmentation assay by using the Suicide TrackTM DNA Ladder Isolation Kit 

(Calbiochem, USA) was applied for detection of apoptosis induced by ACA and its 

analogues. MDA-MB-231 breast cancer cells were cultured until 80.0% confluence, 

followed by treatment with ACA, AEA and AMCA at their IC50 concentrations for 24 

hrs. The treated cells were then trypsinised and centrifuged at 1,500 rpm for 10 mins. The 

cell pellet was gently re-suspended in 55.0 µl of Solution #1 (Calbiochem, USA), to allow 

lysis of cell samples and the inactivation of nucleases. It was then mixed with 20.0 µl of 

Solution #2 (Calbiochem, USA) and incubated at 37°C to degrade RNA in the cell lysate. 

In order to isolate DNA from the cell lysate, 25.0 µl of Solution #3 (Calbiochem, USA) 

was added, followed by overnight incubation at 50°C. Next day, 500.0 µl of resuspension 

buffer (Calbiochem, USA) was added and mixed well by pipetting. Subsequently, 2.0 µl 

of a fluorescent dye, Pellet Paint Co-Precipitant (Calbiochem USA) and 60.0 µl of sodium 

acetate (3M, pH 5.2) (Calbiochem, USA) were added to the mixture, for better 
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visualisation of the DNA pellet. A total of 662.0 µl of isopropanol (Merck, Germany) 

was added to the mixture and centrifuged at 16,000 x g for 5 mins. The supernatant was 

removed with a pipette tip, leaving behind a pink DNA pellet in the bottom of the tube. 

The DNA pellet was rinsed twice with 500.0 μl of 70.0% (v/v) ethanol (Merck, Germany) 

and 100.0% (v/v) ethanol (Merck, Germany) respectively, accompanied with 

centrifugation at 16,000 x g for 5 mins between each rinsing step. All DNA pellets were 

air-dried at room temperature for 15 mins and re-suspended in 50.0 µl of resuspension 

buffer (Calbiochem, USA). The DNA samples were kept at -20°C for further use. 

3.6.2 Determination of DNA Concentration 

The concentration and purification of extracted DNA samples were determined using 

the NanoDrop 2000 (Thermo Scientific, USA). The concentration of each DNA sample 

was diluted 100-fold, by adding 495.0 µl of distilled water to 5.0 µl of DNA sample. 

Before commencing DNA quantification, 1.0 µl of distilled water was pipetted to the 

bottom pedestal and Nanodrop software was initiated. The top and bottom pedestals were 

then wiped with lint-free Kim-wipes (Kimberly-Clark, Canada). An aliquot of 1.0 µl of 

resuspension buffer was then placed onto the bottom pedestal by pipette. A blank reading 

was taken to compare with the extracted DNA samples. 1.0 µl of DNA sample was then 

transferred to the bottom pedestal and the quantity of DNA present was measured at an 

absorbance of 260 nm. Evaluation of DNA purity was performed by studying the 

absorbance ratios for A260/A280 and A 260/A230. Before conducting the agarose gel 

electrophoresis, the DNA samples were normalised with resuspension buffer to ensure 

consistency in sample concentration. 
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3.6.3 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used to analyse DNA fragments from cells treated 

with ACA and its analogues.  Firstly, a 1.0% (w/v) agarose gel was made by dissolving 

0.5 g of agarose powder in 50.0 ml of 1 x TAE buffer (Amresco, USA). The agarose was 

then melted in the microwave oven (Panasonic, Malaysia) for 2 mins. The molten agarose 

was poured into a 5.5 x 12.0 cm gel cassette (BayGen, China), an 8-well comb (BayGen, 

China) with 1.5 mm spacing was inserted in the gel cassette and the agarose solution was 

allowed to set for approximately 45 mins at room temperature. Once the agarose gel had 

set, the casting tray was placed into an electrophoresis chamber containing 1x TAE buffer 

after careful removal of the well comb. DNA was prepared for loading by mixing 10.0 µl 

of extracted DNA with 2.0 µl of 6 x loading dye [10.0 mM Tris-HCl (pH7.6), 0.03% 

(w/v) bromophenol blue, 0.03% (v/v) xylene cyanol, 60.0% (v/v) glycerol, 60.0 mM 

EDTA] (Calbiochem, USA). 5.0 µl of the 100 bp DNA ladder (Ready-to-use) 

(Calbiochem, USA) was loaded into lane 1 of the gel and 12.0 µl of extracted 

DNA/loading buffer was loaded into each subsequent well. The running tank was 

connected to a power pack and electrophoresis was carried out at 120.0 V and 80.0 mA 

for 1 hr. After completion of electrophoresis, the gel was stained with 0.2 µg/l of ethidium 

bromide (Promega, USA) for 20 mins and de-stained in distilled water for 5 mins. The 

DNA was visualised under UV transillumination and images were captured using 

ChemiImagerTM 4400 (Alpha Innotech, USA) at 302 nm wavelength. 

3.7 Migration Assay 

3.7.1 Wound Healing Assay 

The anti-migration effects of ACA and its analogues were determined using the 

wound-healing assay. MDA-MB-231 cells were seeded in six-well plates and grown to 

80.0% confluence. After an overnight cultivation, complete medium was then replaced 
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by serum-free medium treated with 1.0 μg/ml Mitomycin-C (Calbiochem, USA), and the 

cells were further incubated at 37°C for 2 hrs to stop cell proliferation. A vertical scratch 

was made using a sterile pipette tip across the well, and cell debris was removed by 

washing with 1 x PBS twice.  Cells were treated with control solvent or ACA and its 

analogues at their 20.0% inhibitory concentrations (IC20) (Appendix E) in serum-free 

medium for 24 hrs at 37°C. IC20 were used instead of IC50, because IC20 were less toxic 

on the cells. Images of wounded cells were captured using an inverted fluorescence 

microscope, Nikon Eclipse TS-100 (Nikon, Japan), at 0 and 24 hrs after wounding. The 

distance between two sides of the wound was analysed using Tscratch software, version 

1.0 (MathWorks, USA). The cell migration rate was calculated using the formulas shown 

in Equation 3.2. 

Wound healing (%) =
(open image area at start - open image area at end)

open image area at start
 x 100  

         (Equation 3.2) 

3.8 Protein Expression Analysis 

3.8.1 Extraction of Cytoplasmic and Nuclear Proteins 

Non-denatured, active nuclear and cytoplasmic proteins were extracted from all 

treated cancer cell lines. Following treatment, the spent media with detached cells were 

aspirated from the 6-well plates and collected in the 15.0 ml centrifuge tubes. The 

remaining cells were then detached using 0.25% (v/v) trypsin (Lonza, USA)-EDTA 

(Gibco, USA) and mixed with the cells from the spent media. Cells were then spun down 

at 1,500 rpm for 10 mins and the supernatant was removed. The nuclear and cytoplasmic 

protein fractionation was performed using the NE-PER® nuclear and cytoplasmic 

extraction kit (Pierce, USA) according to manufacturer’s instructions. The cell pellet was 

re-suspended in ice cold CER I (Pierce, USA) at a volume of 200.0 µl containing 1 x 
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protease/phosphatase inhibitor cocktail (Pierce, USA). The sample was vortexed 

vigorously for 15 secs, and subsequently incubated for 10 mins on ice to allow complete 

lysis of cells. Next, 11.0 µl of CER II (Pierce, USA) was added, and the tube vortexed 

for 10 secs. The sample was incubated on ice for 2 mins, and then vortexed again for 10 

secs. After centrifugation for 5 mins at 4°C and 16,000 x g using the Sorvall Legend 

Micro 17R (Thermo Scientific, USA) refrigerated centrifuge, the supernatant containing 

the cytoplasmic extract was immediately transferred to a clean pre-chilled tube. The 

pellet, which contains intact nuclei, was re-suspended in 100.0 µl of ice cold NER (Pierce, 

USA), and then vortexed for 15 secs. The sample was placed in ice while continuing to 

vortex for 15 secs every 10 mins, for a total duration of 40 mins. Next, the sample was 

centrifuged for 10 mins at 4°C and 16,000 x g and the supernatant containing the nuclear 

extract was immediately transferred to a new pre-chilled tube.  

3.8.2 BCA Protein Quantification 

Prior to use, protein concentration was determined using the PierceTM Bicinchoninic 

Acid (BCA) Protein Assay Kit (Thermo Scientific, USA). This assay is well suited for 

the quantification of total protein content even in samples that contain up to 5.0% 

detergents by using colorimetric detection method (Smith et al., 1985). The BCA working 

reagent, which contains BCA and cupric sulphate was prepared freshly by mixing reagent 

A and reagent B in a 50:1 ratio and mixed until light green in colour. The working reagent 

was added to each sample of unknown concentration in PCR tube with a ratio of 8:1. 

Each sample was mixed by pipetting and then centrifuged briefly. Samples were 

incubated at 37°C for 30 mins and cooled to room temperature for 10 mins. Absorbance 

of each sample was measured at 562 nm wavelength using the NanoDrop 2000 

spectrophotometer (Thermo Scientific, USA). A standard curve was prepared using a 

standard dilution series of Bovine Serum Albumin (BSA) at concentrations of 100 µg/ml 
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to 1,500 µg/ml. Protein concentrations of samples were determined from the graph. Both 

cytoplasmic and nuclear protein concentrations were normalised with distilled water to a 

final concentration of 3.0 mg/ml and 2.0 mg/ml respectively, before conducting protein 

electrophoresis.  

3.8.3 Protein Sample Preparation 

A mixture of the normalised cytoplasmic and nuclear proteins in a 1:2 ratio was 

prepared. Then, 5.0 µl of 4 x non-reducing PierceTM LDS Sample Loading Buffer 

(Thermo Scientific, USA) was added to the 20.0 µl of the protein mixture. All samples 

were boiled in a dry bath incubator (Allsheng, China) at 95°C for 5 mins and allowed to 

cool to room temperature. A total of 20.0 µl of each protein sample was loaded into each 

well for SDS-PAGE. 

3.8.4 SDS-PAGE 

Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) was 

used to fractionate extracted proteins based upon their molecular size. 12.0% (w/v) and 

7.5% (w/v) resolving gels were used to separate proteins ranging in size between 14.0 to 

70.0 kDa and 24.0 to 205.0 kDa, respectively. The appropriate resolving gel and 4.0% 

(w/v) stacking gel were prepared by mixing the reagents listed in Table 3.2, with TEMED 

and freshly prepared APS being added last to initiate gel polymerisation. The resolving 

gel was loaded into the gap between the glass plates (Bio-Rad, USA) in the assembled 

gel sandwich and left to polymerise for 45 mins. 0.1% (v/v) SDS (Promega, USA) was 

immediately laid over the resolving gel to prevent oxidisation and dehydration of the gel. 

When polymerisation was completed, the overlaid 0.1% SDS solution was completely 

removed.  4.0% stacking gel was then added on top of the polymerised resolving gel until 

100.0% of the glass plate was filled. A 10-well comb with a 0.75 mm thickness was then 

Univ
ers

ity
 of

 M
ala

ya



 

83 

inserted into the stacking gel without trapping any bubbles. After the polymerisation of 

the gels was completed, the gel comb was removed. The glass plate sandwich was then 

transferred to a Mini-PROTEN® 3 Cell gel tank (Bio-Rad, USA). 1x TGS running buffer 

(Bio-Rad, USA) was added into the tank and each well was flushed with this buffer to 

remove any traces of unpolymerised gel. 5.0 µl of Biotinylated Protein Ladder (Cell 

Signaling, USA) and 20.0 µl of denatured protein samples were loaded into the wells in 

a pre-determined order (Protein ladder sizes are listed in Appendix B). Gel 

electrophoresis was performed by running the gel at 110.0 V with free-flowing current 

for 15 mins using Power Supply-PowerPac (Bio-Rad, USA) until the samples reached the 

border to the resolving gel. The SDS-PAGE was completed when the bromophenol blue 

band has left the resolving gel which occurred approximately after further 60 mins 

applying a voltage of 150.0 V with free-flowing current to the chamber. 
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Table 3.2: List of reagents used for the preparation of 4.0% stacking gel, 7.5% and 12.5% 

resolving gel for SDS-PAGE. 

Reagents 
Stacking Gel 

(4.0%)  

Resolving Gel  

7.5% (24-205 kDa) 12.0% (14-70 kDa) 

40.0% (w/v) 

Acrylamide/Bis-

acrylamide       

(Bio-Rad, USA) 

 

 

 

 

500.0 µl 2.82 ml 4.50 ml 

0.5M                

Tris-HCl (pH6.8) 

(Promega, USA) 

1.26 ml - - 

1.5M                

Tris-HCl (pH8.8) 

(Promega, USA) 

- 3.75 ml 3.75 ml 

10.0% (w/v)      

SDS        

(Promega, USA) 

50.0 µl 150 µl 150 µl 

dH2O 3.18 ml 8.20 ml 6.52 ml 

TEMED       

(Acros, USA) 
5.0 µl 7.50 µl 7.50 µl 

10.0% (w/v)      

APS             

(Pierce, USA) 

25.0 µl 75.0 µl 75.0 µl 

1.0% (w/v) 

Bromophenol Blue 

(Thermo Fisher, 

USA) 

10.0 µl - - 

Total Volume  5.0 ml 15.0 ml 15.0 ml 

 

3.8.5 Western Blot 

Upon completion of electrophoresis, the gel was carefully removed from the glass 

plate sandwich and cut into the right size. The electrophoresed gel was sandwiched by 

two pieces of Extra Thick Blot Paper (Bio-Rad, USA) and one piece of 0.2 μm pore size 

nitrocellulose transfer membrane (Bio-Rad, USA). Prior to assembly in the transfer 

apparatus, they were immersed in 1 x TGS transfer buffer (Bio-Rad, USA) with either 

10.0% (for large proteins) or 20.0% (for small proteins) (v/v) methanol (Merck, 
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Germany) for 10 mins. A transfer sandwich was then placed in between two carbon plates 

(cathode and anode) in the Trans-Blot® SD Semi-Dry Transfer Cell (Bio-Rad, USA). 

During the assembly any trapped air bubbles were removed using a blotting roller 

(Milipore, USA). The transfer apparatus was connected to the MP-2AP Power Supply 

(Major Science, Taiwan) set at 50.0 mA with free-flowing voltage for 90 mins. Once 

proteins were transferred onto nitrocellulose membrane, it subsequently was visualised 

by staining with Ponceau S Stain which consisting of 0.1% (w/v) Ponceau S (Sigma, 

USA) and 5.0% (v/v) acetic acid (Merck, Germany) for 5 mins. Then, the membrane was 

washed twice with dH2O for 2 mins each. After washing, nitrocellulose membrane was 

kept in 5.0% (w/v) BSA (Amresco, USA), 1 x TBS buffer and 0.1% (v/v) Tween-20 

(Merck, Germany) for 1 hr while shaking on a Mini-Shaker Multi Bio 3D (Biosan, Latvia) 

in order to block non-specific binding sites. Blocked membrane was then hybridised 

overnight with the appropriate amount of primary antibody diluted in 10.0 ml of blocking 

buffer at 4°C. Optimal working dilution of different antibodies was used according to 

manufacturer’s instruction as mentioned in Table 3.3. The blot continued incubated the 

next day with primary antibody at room temperature for 1 hr with agitation. Post 

incubation, the membrane was washed three times with 1 x TBST buffer for 5 mins each 

with agitation. Then the appropriate secondary antibody conjugated to horse radish 

peroxidase (HRP) conjugated diluted 1:1000 in blocking buffer (Table 3.4) was applied 

to the membrane and agitated for 1 hr at room temperature. Following incubation, 

nitrocellulose membrane was washed 3 times with 1 x TBST buffer for 5 mins each, 

followed by a single wash in 1 x TBS buffer for 5 mins. The membrane was then blotted 

dry from excess wash buffer by using Kim-wipes. The detection of the HRP conjugated 

antibody on the membrane was done by subjecting Western Bright ECL HRP substrate 

(Advansta, USA) for 2 mins in the dark. Protein bands were visualised on a Fusion FX7 

imaging system (Vilber Lourmat, Germany). Anti-GAPDH control antibody was used for 
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normalisation of band intensities. The intensities of protein bands were quantitated using 

ImageJ Version 1.48 (National Institutes of Health, USA) densitometry software.  

Table 3.3: Summary of host species, dilution and antigen molecular weight from Cell 

Signaling for primary antibodies used in western blot experiments. 

Antibodies Host Species Dilution 

Antigen 

Molecular 

Weight (kDa) 

Ubiquitin (PD41) Mouse 1:1000 Broad range 

PARP Rabbit 1:1000 116, 89 

Bcl-2 Mouse 1:1000 26 

Bcl-xL Rabbit 1:1000 30 

Bax Rabbit 1:1000 20 

p53 Mouse 1:1000 53 

Integrin β1 Rabbit 1:1000 115,135 

FAK Rabbit 1:1000 125 

Phospho-FAK Rabbit 1:1000 125 

Akt Rabbit 1:1000 60 

Phospho-Akt Rabbit 1:1000 60 

GAPDH Rabbit 1:1000 37 
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Table 3.4: Summary of host species, dilution and targeted primary antibodies from Cell 

Signaling for secondary antibodies used in western blot experiments. 

Antibodies Host Species Dilution 

Targeted 

Primary 

Antibodies 

Anti-mouse IgG-

HRP 
Horse 1:1000 

Ubiquitin (PD41), 

Bcl-2, p53 

Anti-rabbit IgG-

HRP 
Goat 1:1000 

PARP, Bcl-xL, 

Bax, Integrin β1, 

FAK, Phospho-

FAK, Akt, 

Phospho-Akt, 

GAPDH 

 

3.9 Statistical Analysis 

All assays were performed in triplicate independent experiments. The results were 

presented as mean ± standard error mean (SEM). One-way ANOVA was used to analyse 

the statistically significant differences with a confidence level of p≤0.05. 
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CHAPTER 4: RESULTS 

4.1 ACA and Its Hemi-Synthetic Analogues 

4.1.1 Hemi-Synthesis of ACA Analogues 

The main focus of this study was to chemically synthesis ACA analogues, followed 

by evaluation of their degree of cytotoxicity, regulation of UPS, apoptotic effects and 

anti-migratory effects in the treatment of human breast cancer. Isolation and purification 

of compounds from the dichloromethane (CH2Cl2) extract yielded purified 1’S-1’-

acetoxychavicol acetate, whereas the hemi-synthesis of compounds yielded 4-allyl-2,6-

dimethoxyphenol, 2; 4-allyl anisole, 5; 4-allyl-2,6-dimethoxyphenyl acetate, 6; 1-phenyl-

2-propen-1-yl acetate, 7; eugenol acetate, 8; 1’-acetoxyeugenol acetate (AEA), 17; 1’-

acetoxy-3,5-dimethoxychavicol acetate (AMCA), 18; 1’-acetoxy-3,5-

dimethoxychavicol, 19 and 1’-acetoxy-4-methoxychavicol, 20. The chemical structures 

of ACA and its nine analogues are illustrated in Figure 4.1. 
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Figure 4.1:  Chemical structure of ACA and its nine analogues. 
Univ

ers
ity

 of
 M

ala
ya



 

90 

4.1.2 Structural Comparison between ACA and Its Analogues 

Structural elucidation demonstrated that all compounds have 2’-3’ terminal double 

bonds at the benzene ring. Previous literature has shown that 2’-3’ terminal bonds were 

important for the biological activity (Murakami et al., 2000). ACA possesses a 1’-acetoxy 

group at the benzene ring, which is also found in AEA, AMCA, analogues 7, 19 and 20 

(Figure 4.2). Besides, AEA, AMCA, analogues 6 and 8 have similarity with ACA in 

which they have substitution of an acetoxy group at the C4 position (Figure 4.3). In 

addition, AEA, AMCA, analogues 2, 6, 8 and 19 possess methoxy group at the C3 

position, which is not present in ACA (Figure 4.4). Furthermore, methoxy group attached 

at C5 position can be found in AMCA, analogues 2, 6 and 19 (Figure 4.5). To date, little 

has been known about chemical properties of ACA analogues in relation to their 

biological implications in comparison to ACA. Thus, it is crucial to analyse the SAR of 

ACA and its analogues. 

 

Figure 4.2: ACA and its analogues with 1’-acetoxy group. 
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Figure 4.3: ACA and its analogues with 4-acetoxy group. 

 

 

Figure 4.4: ACA analogues with 3-methoxy group. 
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Figure 4.5: ACA analogues with 5-methoxy group. 

 

4.2 MTT Cytotoxicity Assay 

4.2.1 Cytotoxic Effects of Various ACA Analogues on Cancer Cell Lines 

The MTT assay was used to evaluate the cytotoxicity and anti-proliferative effects of 

ACA and its nine analogues on seven human cancer cell lines (MDA-MB-231, MCF-7, 

RT-112, EJ-28, PC-3, HSC-4, HepG2) and one normal human cell line (HMEC). MTT 

data obtained was also used to determine specific IC50 values used in all consecutive 

experiments. All IC50 values were determined based on the concentration of compounds 

required to kill 50.0 % of the cell population, and are summarised in Table 4.1. The 

complete MTT cytotoxicity assay data on each individual analogue are shown in 

Appendix C. All graphs shown are representative of mean values from independent 

triplicate experiments with ±SEM.  
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As shown in Figures 4.6 to 4.12, ACA, AEA and AMCA showed significant biological 

activity and were able to induce cytotoxicity at least in one cancer cell line with the 

potencies ≤ 30.0 µM. All other tested analogues indicated weak cytotoxicity with less 

than 40% killing even after 50.0 µM treatment over 24 hrs. Solvent control with DMSO 

at ≤ 1.0% (v/v) (shown in Appendix D) showed insignificant effects on cancer cell 

viability, indicating that cytotoxicity was induced as a result of treatment with tested 

compounds instead of DMSO, which is known to be cytotoxic at high concentrations. 

Based on IC50 values, the reduction of cellular viability of ACA was found to be greatest 

in MDA-MB-231, HSC-4, EJ-28, RT-112, HepG2, PC-3, MCF-7 cells in descending 

order. This indicated that ACA induced cell death most efficiently in MDA-MB-231 

breast adenocarcinoma with an IC50 value of 4.8 µM. Other IC50 values corresponding to 

different cancer cell lines tested are summarised in Table 4.1. AEA was found to induce 

high levels of cytotoxicity in bladder adenocarcinoma (EJ-28), hepatocarcinoma (HepG2) 

and oral squamous carcinoma (HSC-4), while AMCA only showed cytotoxicity effects 

against breast adenocarcinoma (MDA-MB-231) (Table 4.1). Thus, the MDA-MB-231 

cell line was selected for the consecutive assays in order to evaluate the effects of these 

three cytotoxic analogues. 
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Figure 4.6: Comparison of total viable cells on MDA-MB-231 human breast cancer cells 

after treatment with various ACA analogues at different concentrations (0.0 – 50.0 µM) 

after 24 hrs post-treatment time. ACA and AEA showed the best cytotoxic effect followed 

by AMCA in the MDA-MB-231 cells. 

 

 

Figure 4.7: Comparison of total viable cells on MCF-7 human breast cancer cells after 

treatment with various ACA analogues at different concentrations (0.0 – 50.0 µM) after 

24 hrs post-treatment time. ACA and AEA showed the best cytotoxic effect in MCF-7 

cells. 
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Figure 4.8: Comparison of total viable cells on RT-112 human bladder cancer cells after 

treatment with various ACA analogues at different concentrations (0.0 – 50.0 µM) after 

24 hrs post-treatment time. ACA and AEA showed the best cytotoxic effect in RT-112 

cells. 

 

 

Figure 4.9: Comparison of total viable cells on EJ-28 human bladder cancer cells after 

treatment with various ACA analogues at different concentrations (0.0 – 50.0 µM) after 

24 hrs post-treatment time. ACA and AEA showed the best cytotoxic effect in EJ-28 

cells. 
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Figure 4.10: Comparison of total viable cells on PC-3 human prostate cancer cells after 

treatment with various ACA analogues at different concentrations (0.0 – 50.0 µM) after 

24 hrs post-treatment time. AEA followed by ACA showed the best cytotoxic effect in 

PC-3 cells. 

 

 

Figure 4.11: Comparison of total viable cells on HSC-4 human oral cancer cells after 

treatment with various ACA analogues at different concentrations (0.0 – 50.0 µM) after 

24 hrs post-treatment time. ACA and AEA showed the best cytotoxic effect in HSC-4 

cells. 
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Figure 4.12: Comparison of total viable cells on HepG2 human liver cancer cells after 

treatment with various ACA analogues at different concentrations (0.0 – 50.0 µM) after 

24 hrs post-treatment time. ACA and AEA showed the best cytotoxic effect in HepG2 

cells. 
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Table 4.1: IC50 values of ACA and its analogues on various human cancer cell lines as 

obtained from MTT cytotoxicity assays. 

Cell Lines 
IC50 (µM)* 

ACA 2 5 6 7 8 AEA AMCA 19 20 

Breast 

adenocarcinoma 

(MDA-MB-231) 

4.8± 

0.4 
N/A 

(79.2%) 
N/A 

(70.9%) 
N/A 

(80.0%) 
N/A 

(73.1%) 
N/A 

(80.0%) 
9.5± 

0.3 

29.6± 

5.6 
N/A 

(70.3%) 
N/A 

(77.8%) 

Breast 

adenocarcinoma 

(MCF-7) 

30.0± 

0.3 
N/A 

(84.0%) 
N/A 

(84.0%) 
N/A 

(89.5%) 
N/A 

(85.2%) 
N/A 

(80.1%) 
25.2± 

0.6 
N/A 

(64.9%) 
N/A 

(83.6%) 
N/A 

(86.0%) 

Bladder 

carcinoma     

(RT-112) 

14.1± 

3.8 
N/A 

(71.4%) 
N/A 

(71.0%) 
N/A 

(79.8%) 
N/A 

(81.3%) 
N/A 

(82.8%) 
10.9± 

2.4 
N/A 

(56.4%) 
N/A 

(79.3%) 
N/A 

(66.2%) 

Bladder 

carcinoma      

(EJ-28) 

8.2± 

0.9 
N/A 

(78.7%) 
N/A 

(81.2%) 
N/A 

(79.0%) 
N/A 

(78.9%) 
N/A 

(74.3%) 
4.2± 

2.2 
N/A 

(71.4%) 
N/A 

(84.5%) 
N/A 

(83.9%) 

Prostate 

carcinoma      

(PC-3) 

26.7± 

2.3 
N/A 

(65.3%) 
N/A 

(69.9%) 
N/A 

(66.0%) 
N/A 

(61.6%) 
N/A 

(70.0%) 
13.8± 

0.8 
N/A 

(57.3%) 
N/A 

(62.8%) 
N/A 

(62.3%) 

Oral squamous 

carcinoma 

(HSC-4) 

5.5± 

0.5 
N/A 

(79.2%) 
N/A 

(78.4%) 
N/A 

(72.0%) 
N/A 

(70.2%) 
N/A 

(70.2%) 
5.1± 

0.2 
N/A 

(73.7%) 
N/A 

(70.2%) 
N/A 

(72.5%) 

Hepatocyte 

carcinoma 

(HepG2) 

18.0± 

0.8 
N/A 

(75.8%) 
N/A 

(71.5%) 
N/A 

(80.5%) 
N/A 

(70.1%) 
N/A 

(68.4%) 
4.3± 

0.5 
N/A 

(65.3%) 
N/A 

(68.8%) 
N/A 

(73.4%) 

Human 

Mammary 

Epithelial Cells 

(HMEC) 

N/A 
(79.9%) 

N/A 
(81.1%) 

N/A 
(78.3%) 

N/A 
(78.1%) 

N/A 
(77.7%) 

N/A 
(78.5%) 

N/A 
(79.2%) 

N/A 
(79.7%) 

N/A 
(82.4%) 

N/A 
(79.0%) 

 

* N/A denotes that IC50 values were not attainable within the maximum tested 

concentration of said analogue, percentage in bracket (%) dictates percentage of cell 

viability upon maximum treatment with 50.0 μM of each compound.  

 

4.2.2 Cytotoxic Effects of ACA Analogues on HMEC Normal Cell Controls 

Before conducting further downstream assays, the cytotoxic effects of ACA and its 

analogues were also assessed on human normal mammary epithelial cells (HMEC). This 

was to ensure that ACA and its analogues did not induce cytotoxicity in normal cells 

which is a vital drug screening requirement before their further development as anti-

cancer drugs. Figure 4.13 indicated that all compounds were shown to reveal little 

cytotoxic activity towards HMEC, the normal human breast cells control. Cell viability 

levels were maintained about 80.0% after 24 hrs treatment at 50.0 µM concentration, 

indicating non-toxic effects against normal cells at therapeutic doses. 
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Figure 4.13: Comparison of total viable cells on HMEC human mammary epithelial cells 

after treatment with various ACA analogues at different concentrations (0.0 – 50.0 µM) 

after 24 hrs post-treatment time.  

 

4.2.3 SAR Analysis on Anti-Proliferative Activity 

In order to better understand the SAR of hemi-synthesised ACA, some deductions 

were drawn from the structural modifications that might have direct or indirect 

contribution to the anti-cancer effects. In this study, three compounds (ACA, AEA, 

AMCA possessed 1’-acetoxy group and showed better cytotoxicity than the other 

analogues. This highlighted the importance of 1’-acetoxy group in governing anti-

proliferative activity. Absence of the 1’-acetoxy group (analogues 2, 5, 6, 8) could lead 

to a reduction of inhibitory effects on cancer cell growth. Interestingly, AEA exhibited 

greater potency in MCF-7, HepG2, RT-112, EJ-28, PC-3 cell lines in comparison to 

ACA, indicating that the addition of a methoxy group at the 3-position displayed a crucial 

role in governing its anti-proliferative effects. Since analogue 2 possessed a methoxy 

group at 3-position, a weak cytotoxic effect may have been attributed to the replacement 
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of the acetoxy group by a hydroxy group at the 4-position. This was further supported by 

another analogue, compound 19 that had no acetoxy group at the 4-position, with 

insignificant cytotoxic effects, indicating that the importance of para-substitution of the 

benzene ring with acetoxy group in governing anti-cancer activity. In addition, the 

replacement of 4-acetoxy group with 4-methoxy (analogues 5 and 20) reduced the 

activity. On the other hand, AMCA which possessed an additional methoxy group at the 

5-position compared to AEA, exerted a weaker effect against MDA-MB-231 cells, 

suggesting that the presence of an additional methoxy group at 5-position may reduce the 

cytotoxic activity. However, AMCA performed better than the other inactive analogues 

in terms of cytotoxic activity, which suggested the 5-methoxy group is deemed acceptable 

for the induction of cytotoxicity effects. As shown in Figure 4.14, the recommendations 

on the anti-proliferative activity are summarised as follows: (1) Para-substitution of 

acetoxy group and 1’-acetoxy group at the benzene ring are compulsory for the activity. 

(2) Substitution of methoxy group at 3-position may help in anti-proliferation. (3) 4-

hydroxy and 4-methoxy groups eliminate the activity. (4) Placement of an additional 

methoxy group at 5-position weakens the activity.  
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Figure 4.14: SAR analysis of individual chemical structure groups within ACA and its 

analogues towards anti-proliferative properties on various human cancer cell lines. 

 

4.3 Ubiquitin-Proteasome System (UPS) Analysis 

4.3.1 20S Proteasome Activity 

To provide direct evidence for the inhibition of 20S proteasome activities by ACA and 

its analogues, cell-free proteasome activity assay was performed using a purified human 

20S proteasome in the presence of tested compound up to 200.0 µM. As shown in the 

Figures 4.15 – 4.17, ACA and its analogues selectively inhibited the proteasomal 

peptidase activity, whereby they exerted the best inhibition over the chymotrypsin-like 

activity among three proteolytic activities. Besides, epoxomicin was used as positive 

control as it is a potent inhibitor in proteasome activity (Figure 4.18). The chymotrypsin-

like activity of the purified 20S proteasome was significantly inhibited by epoxomicin 

with an IC50 value of 0.0095 µM, while ACA and AEA displayed moderate inhibition 

with the IC50 values of 137.0 µM and 199.50 µM, respectively (Table 4.2). Notably, 

i) Interferes with cytotoxic properties. 

i) Compulsory for cytotoxic 

properties.  

ii) Substitution of OH and 

OCH3 groups will reduce 

activity.  

 

i) Optional, and may increase anti-

proliferative activity. 

i) Compulsory for anti-

proliferative activity. 
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AMCA did not show any significant proteasomal inhibition in three proteolytic activities. 

All ACA analogues showed weak inhibition over trypsin-like and caspase-like activities 

with less than 40% inhibition even after 200.0 µM treatment. On the other hand, 

epoxomicin significantly reduced these two catalytic activities with IC50 values of 1.00 

µM and 3.50 µM, respectively. In short, ACA and AEA were revealed to inhibit 

chymotrypsin-like activity of 20S proteasome, but they were less active than the 

commercial proteasome inhibitor, epoxomicin. 

 

 

Figure 4.15: Comparison of three proteolytic activities of purified 20S proteasome after 

treatment with ACA at different concentrations (1.0 – 200.0 µM). 

 

 

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5

2
0
S

 P
ro

te
a
so

m
e 

A
ct

iv
it

y
  

(%
)

log10 concentration

Chymotrypsin-like

activity

Caspase-like activity

Trypsin-like activity

Univ
ers

ity
 of

 M
ala

ya



 

103 

 

Figure 4.16: Comparison of three proteolytic activities of purified 20S proteasome after 

treatment with AEA at different concentrations (1.0 – 200.0 µM). 

 

 

Figure 4.17: Comparison of three proteolytic activities of purified 20S proteasome after 

treatment with AMCA at different concentrations (1.0 – 200.0 µM). 
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Figure 4.18: Comparison of three proteolytic activities of purified 20S proteasome after 

treatment with epoxomicin at different concentrations (0.001 – 10.0 µM). 

 

Table 4.2: IC50 values of ACA and its analogues for 20S proteasomal activities. 

Proteolytic Activities 

IC50 (µM)* 

ACA AEA AMCA Epoxomicin 

Chymotrypsin-like 

activity 
137.0± 1.3 199.5± 5.7 

N/A  

(98.2%) 

0.0095± 

0.037 

Trypsin-like activity 

N/A  

(71.0%) 

N/A  

(67.3%) 

N/A  

(86.9%) 

1.00± 0.67 

Caspase-like activity 

N/A  

(66.9%) 

N/A  

(64.2%) 

N/A  

(103.4%) 

3.50± 1.23 

 

* N/A denotes that IC50 values were not attainable within the maximum tested 

concentration of said analogue, percentage in bracket (%) dictates percentage of 

proteasome activity upon maximum treatment with 200.0 μM of each compound.  
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4.3.2 Cellular Proteasome Activity 

The effects of ACA and its analogues on inhibition of 26S proteasome in MDA-MB-

231 cells were determined by using cellular proteasomal activity assay. The results 

showed that ACA and its analogues significantly inhibited proteasomal activities in 

MDA-MB-231 cells except for caspase-like activity (Figures 4.19 - 4.21). As a positive 

control, epoxomicin was shown to inhibit all three catalytic activities in the cellular 

proteasome (Figure 4.22). ACA, AEA and AMCA exerted 50.0% inhibition on the 

cellular proteasomal chymotrypsin-like activity at about 32.5 – 36.2 µM, while on the 

trypsin-like activity at about 86.8 -111.3 µM (Table 4.3).  

Compared with the inhibition on 20S proteasome, it was found that less concentration 

of the ACA analogues is needed to reach 50% proteasomal inhibition in MDA-MB-231 

breast cancer cells. This difference could be due to the stability of ACA analogues in cells 

and/ or existence of other ACA-binding proteins.  

However, there is still a huge difference of the IC50 values between ACA, its analogues 

and epoxomicin, in which the latter was much more effective in the inhibition of the three 

catalytic activities. In addition, ACA and its analogues did not significantly inhibit the 

caspase-like activity of cellular proteasome, as only 46% inhibition was achieved even 

after 200.0 µM treatment. 

Taken all together, ACA, AEA and AMCA were shown to inhibit chymotrypsin-like 

and trypsin-like activities of cellular proteasome in MDA-MB-231 cells, but they were 

not significantly potent as epoxomicin.  
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Figure 4.19: Comparison of three proteolytic activities of cellular proteasome in MDA-

MB-231 cells after treatment with ACA at different concentrations (1.0 – 200.0 µM). 

 

 

 

Figure 4.20: Comparison of three proteolytic activities of cellular proteasome in MDA-

MB-231 cells after treatment with AEA at different concentrations (1.0 – 200.0 µM).  
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Figure 4.21: Comparison of three proteolytic activities of cellular proteasome in MDA-

MB-231 cells after treatment with AMCA at different concentrations (1.0 – 200.0 µM). 

 

 

 

Figure 4.22: Comparison of three proteolytic activities of cellular proteasome in MDA-

MB-231 cells after treatment with epoxomicin at different concentrations (0.001 – 10.0 

µM). 
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Table 4.3: IC50 values of ACA and its analogues for cellular proteasomal activities. 

Proteolytic Activities 

IC50 (µM)* 

ACA AEA AMCA Epoxomicin 

Chymotrypsin-like 

activity 
36.2± 5.3 32.8± 4.5 32.5± 4.9 0.002± 0.01 

Trypsin-like activity 95.9± 6.4 111.3± 5.7 86.8± 3.9 
0.0096± 

0.008 

Caspase-like activity 

N/A 

(64.4%) 

N/A 

(53.6%) 

N/A 

(68.4%) 

0.083± 0.02 

 

* N/A denotes that IC50 values were not attainable within the maximum tested 

concentration of said analogue, percentage in bracket (%) dictates percentage of 

proteasome activity upon maximum treatment with 200.0 μM of each compound.  

 

4.3.3 Expression of Ubiquitinated Proteins 

The major pathway of protein degradation in UPS uses ubiquitin as a marker that 

targets intracellular proteins for rapid proteolysis. Ubiquitin is a 76-amino-acid 

polypeptide that is highly conserved in all eukaryotes. Proteins are marked for 

degradation by the attachment of ubiquitin and the occurrence of the polyubiquitination 

process. The polyubiquitinated proteins are recognised and degraded by proteasome. 

Ubiquitin is released in the process to be reused in another cycle. If proteasome inhibition 

occurs, the ubiquitinated proteins cannot be degraded by proteasome and thus leads to 

accumulation of ubiquitinated proteins.  

To explore the ubiquitination level of proteins, western blotting was conducted using 

specific antibody (PD41) against the ubiquitinated protein. Based on Figure 4.23, it was 
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observed that the ubiquitination level of epoxomicin was highest, followed by AMCA 

and AEA. The expression of polyubiquitinated proteins was not so obvious upon 

treatment with ACA. This finding was consistent with the proteasomal inhibition potency 

as discussed in section 4.3.2. By referring to the inhibitory effects on proteasomal 

chymotrypsin-like activity in MDA-MB-231 cells, AMCA and AEA had lower IC50 value 

than ACA, thus the ubiquitination level was increased with treatment of these two 

analogues. Collectively, AMCA and AEA were suggested to be involved in the 

proteasome inhibition and thus further block the protein degradation as evidenced by 

accumulation of ubiquitinated proteins.   

 

Figure 4.23: Western blotting analysis of ubiquitinated proteins in MDA-MB-231 cells 

upon treatment with ACA and its analogues. In first lane was untreated (Unt) protein, 

second lane was solvent control (DMSO) and last lane was positive control (Epo). 
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4.4 In silico Docking  

4.4.1 Docking of ACA Analogues to The Proteasomal β1 Subunit 

To better understand the interaction between the structures of ACA and its analogues 

with the proteasome, in silico docking was performed to explore the computational 

interaction between ACA and its analogues with the three distinct β subunits of the 

proteasome. After docking ACA and its analogues to the β1, β2 and β5 active site using 

100 genetic algorithms runs, AutoDock reports the best docking outputs (lowest docked 

free energy) for each GA run and also performs a cluster analysis in which the total 

number of clusters represents the reliability of docking results based on similarity of final 

docked conformation. The final docked energy was the sum of the internal energy of the 

ligand and the intermolecular energy. Different multiple clusters were analysed and a 

specific cluster rank was assigned. The criteria of choosing these ranks were based upon 

i) the distance from the carbonyl carbon to N terminal Thr must be within 4 Å; ii) the 

calculated docked free energy values that are favourable for binding of ACA and its 

analogues to the proteasome. A lower docking energy and a larger cluster would give a 

greater possibility prediction (Smith et al., 2004).  

In docking studies of ACA to the proteasomal β1 subunit, 6 different multiple 

conformation clusters were analysed. Preference was given to multiple conformation 

clusters, whereby cluster rank 2 with 49 conformations was chosen. This was found 

consistent with the criteria of selection. As obtained from the AutoDock report, the final 

docked energy was found to be minimal in the selected cluster (−7.29 kcal/mol, Table 

4.4).  This places the carbon at 1’-acetoxy group of ACA to interact with the N terminal 

Thr1 at distance of 2.57 Å (Figure 4.24). For AEA, 6 multiple conformation clusters were 

analysed and the cluster rank 3 was selected with the lowest docked energy of −7.42 

kcal/mol (Table 4.4). The carbonyl carbon attached to the 1’-acetoxy group of ACA was 
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at the closest proximity of 2.23 Å to the N terminal Thr1, favouring the interaction with 

proteasome (Figure 4.25). In addition, AMCA was docked to β1 subunit and displayed 8 

multiple conformation clusters. Out of the multiple conformation clusters, cluster rank 3 

was selected for further analysis. The final docked energy to be minimal in this selected 

cluster was reported with the value of −7.51 kcal/mol (Table 4.4). Hence, this also places 

the carbon at 1’-acetoxy group at the shortest distance of 2.92 Å to N terminal of Thr1 

(Figure 4.26). 

Collectively, it was found that the 1’-aectoxy group of three analogues is very close 

the N-terminal of active site of the proteasome, and was believed to play an important 

role in the proteasomal inhibition. 
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Table 4.4: In silico docking analysis of ACA analogues to the proteasomal β1 subunit. 

 

a  Number in bracket indicates the rank of cluster chosen. 
b  Final docking energy = Final intermolecular energy of the ligand + Final internal energy of the ligand. 

  

Compounds 

No. of multiple-

conformation 

clustersa 

No. of 

conformations 

Final energy 

intermolecular 

(kcal/mol) 

Final 

internal 

energy 

(kcal/mol) 

Torsional 

free energy 

(kcal/mol) 

Free energy 

of binding 

(kcal/mol) 

Final 

docked 

energy 

(kcal/mol)b 

Distance 

between 

carbon and 

N terminal 

Thr1 (Å) 

ACA 6(2) 49 -6.67 -0.62 +1.79 -4.88 -7.29 C13 (2.57) 

AEA 6(3) 33 -6.43 -0.99 +2.09 -4.34 -7.42 C10 (2.23) 

AMCA 8(3) 37 -6.65 -0.86 +2.39 -4.26 -7.51 C10 (2.92) 
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Figure 4.24: Ligplot analysis of proteasomal β1 subunit-ACA interaction.  
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Figure 4.25: Ligplot analysis of proteasomal β1 subunit-AEA interaction.  
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Figure 4.26: Ligplot analysis of proteasomal β1 subunit-AMCA interaction. 
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4.4.2 Docking of ACA Analogues to The Proteasomal β2 Subunit 

In order to understand the possible interaction between ACA, its analogues and the 

proteasome β2 subunit which is responsible for the trypsin-like activity, in silico docking 

analysis was carried out. The study revealed that ACA docked to β2 subunit with 3 

multiple conformation clusters. Cluster rank 1 with 72 conformations was selected which 

had the lowest final docked energy in this cluster, that is, −8.08 kcal/mol (Table 4.5). The 

shortest distance between carbon in ACA and N terminal Thr1 of β2 subunit was 3.23 Å, 

which was found in the 4-acetoxy group (Figure 4.27). In the docking analysis of AEA 

to β2 subunit, 4 multiple conformation clusters were analysed and the cluster rank 2 was 

chosen. The data showed that the lowest docked energy was −8.75 kcal/mol (Table 4.5). 

The carbon at benzene ring which is attached with 4-acetoxy group was at the shortest 

distance with the N terminal Thr1 and has a value of 3.35 Å (Figure 4.28). Furthermore, 

5 multiple conformation clusters were found in the docking analysis of AMCA with 

proteasomal β2 subunit. Cluster rank 1 was best suited and the minimum final docked 

energy was −9.18 kcal/mol (Table 4.5). The carbon bound to the 4-acetoxy group 

displayed the shortest proximity of 3.36 Å to N terminal of Thr1 (Figure 4.29). 

In summary, the 4-acetoxy group is the key player that interacts with the β2 subunit of 

proteasome to inhibit the trypsin-like proteasomal activity. 
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Table 4.5: In silico docking analysis of ACA analogues to the proteasomal β2 subunit. 

 
a  Number in bracket indicates the rank of cluster chosen. 
b  Final docking energy = Final intermolecular energy of the ligand + Final internal energy of the ligand. 

Compounds 

No. of multiple-

conformation 

clustersa 

No. of 

conformations 

Final energy 

intermolecular 

(kcal/mol) 

Final 

internal 

energy 

(kcal/mol) 

Torsional 

free energy 

(kcal/mol) 

Free energy 

of binding 

(kcal/mol) 

Final 

docked 

energy 

(kcal/mol)b 

Distance 

between 

carbon and 

N terminal 

Thr1 (Å) 

ACA 3(1) 72 -7.37 -0.71 +1.79 -5.58 -8.08 C16 (3.23) 

AEA 4(2) 77 -7.62 -1.13 +2.09 -5.53 -8.75 C2 (3.35) 

AMCA 5(1) 88 -7.77 -1.41 +2.39 -5.39 -9.18 C2 (3.36) 
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Figure 4.27: Ligplot analysis of proteasomal β2 subunit-ACA interaction. 
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Figure 4.28: Ligplot analysis of proteasomal β2 subunit-AEA interaction. 
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Figure 4.29: Ligplot analysis of proteasomal β2 subunit-AMCA interaction. 
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4.4.3 Docking of ACA Analogues to The Proteasomal β5 Subunit 

ACA and its analogues were able to inhibit the activity of purified 20S proteasome 

and cellular 26S proteasome. However, the involved molecular mechanism is unknown. 

For better understanding of the possible chemical nature of ACA and analogues to inhibit 

the chymotrypsin-like activity of the proteasome, each compound was docked to the 

active site of the proteasome β5 subunit, which is responsible for the chymotrypsin-like 

activity. In the docking analysis of ACA with proteasome β5 subunit, 5 multiple 

conformation clusters were analysed and cluster rank 4 was selected. The final docked 

energy was revealed to be minimal in this cluster (−6.97 kcal/mol, Table 4.6). This allows 

the carbon at 1’-acetoxy group of ACA dock with the N terminal Thr1 at distance of 2.48 

Å (Figure 4.30). For AEA, 8 multiple conformation clusters were found and cluster rank 

2 was selected for determination of lowest final docked energy. The energy used to dock 

AEA with β5 subunit was −7.95 kcal/mol (Table 4.6). The carbon at 1’-acetoxy group 

also showed the closest proximity of 2.82 Å to the N terminal Thr1 (Figure 4.31). Lastly, 

AMCA was docked to the β5 subunit with the outcome of 7 multiple conformation 

clusters. The cluster rank 1 was chosen and it showed the final docked energy to be the 

lowest in this cluster with the value of −8.85 kcal/mol (Table 4.6). The distance between 

carbon at 1’-acetoxy group with N terminal Thr1 was the shortest one, with the value of 

2.70 Å (Figure 4.32). 

In short, ACA, AEA and AMCA bind with the proteasomal β5 subunit, whereby the 

1’-acetoxy group interact closely with the N terminal Thr1 of proteasomal β5 subunit. 
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Table 4.6: In silico docking analysis of ACA analogues to the proteasomal β5 subunit. 

 

a  Number in bracket indicates the rank of cluster chosen. 
b  Final docking energy = Final intermolecular energy of the ligand + Final internal energy of the ligand. 

 

 

Compounds 

No. of multiple-

conformation 

clustersa 

No. of 

conformations 

Final energy 

intermolecular 

(kcal/mol) 

Final 

internal 

energy 

(kcal/mol) 

Torsional 

free energy 

(kcal/mol) 

Free energy 

of binding 

(kcal/mol) 

Final 

docked 

energy 

(kcal/mol)b 

Distance 

between 

carbon and 

N terminal 

Thr1 (Å) 

ACA 5(4) 34 -6.23 -0.74 +1.79 -4.45 -6.97 C13 (2.48) 

AEA 8(2) 37 -7.04 -0.91 +2.09 -4.95 -7.95 C10 (2.82) 

AMCA 7(1) 39 -7.52 -1.33 +2.39 -5.14 -8.85 C10 (2.70) 
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Figure 4.30: Ligplot analysis of proteasomal β5 subunit-ACA interaction. 
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Figure 4.31: Ligplot analysis of proteasomal β5 subunit-AEA interaction. 
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Figure 4.32: Ligplot analysis of proteasomal β5 subunit-AMCA interaction. 
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4.5 Determination of Apoptosis 

4.5.1 DNA Fragmentation Assay 

To determine whether ACA and its analogues could potentiate apoptosis-mediated cell 

death in MDA-MB-231 cells, the DNA fragmentation assay performed.  

Figure 4.33 demonstrated DNA from the untreated group showed no degradation, 

whereas DNA laddering was observed in MDA-MB-231 cells that were treated with 

ACA, AEA and AMCA at their IC50 concentrations. This typical oligonucleosomal DNA 

degradation is one of the hallmarks of apoptotic cell death, thus it was suggested that 

ACA, AEA and AMCA induce cell death through apoptosis. 

 

Figure 4.33: Confirmation of apoptosis-mediated cell death using the DNA 

fragmentation assay. MDA-MB-231 cancer cell line was treated with ACA and its 

analogues for 24 hrs and isolated DNA was observed on 1.0% (w/v) agarose gel 

electrophoresis. M: DNA marker; UT: untreated lane; DMSO: solvent control. 
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4.5.2 PARP Cleavage Assay 

Further confirmation on the apoptosis-inducing effects of ACA, AEA and AMCA on 

cancer cells was conducted using the PARP assay, which measures the enzymatic 

cleavage of PARP following caspase activation. PARP can be cleaved by many caspases 

and is one of the main cleavage targets of caspase-3 (Cohen, 1997). Evaluation of PARP 

cleavage levels illustrates cellular disassembly and generally serves as a marker of cancer 

cells undergoing apoptosis (Oliver et al., 1998). 

As shown in Figure 4.34, the cleavage of full length PARP enzymes (116-kDa) into a 

large (89-kDa) subunit protein was observed in the MDA-MB-231 cells that had been 

treated with ACA, AEA and AMCA at their IC50 concentrations. Based on densitometry 

analysis, these three compounds increased the expression level of cleaved PARP by 7.8-

, 4.8- and 1.8-fold compared to untreated cells, respectively (Figure 4.35).  

These western blotting results confirmed that occurrence of apoptosis-mediated cell 

death via caspase-3 dependent activation induced by ACA, AEA and AMCA on human 

breast cancer cells in vitro. This was found to be consistent with previous DNA 

fragmentation apoptosis-confirmation assay.  

 

Figure 4.34: Indication of apoptosis-mediated cell death through the activation of 

caspase-3 leading to cleavage of full length PARP enzymes (116-kDa) into a large (89-

kDa) subunit protein. GAPDH (37-kDa) was used as a normalisation control to ensure 

equal protein concentrations across samples. DMSO: solvent control. 
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Figure 4.35: Densitometry analysis of the western blots for cleaved PARP/PARP 

proteins expression in MDA-MB-231 cells treated with ACA and its analogues for 24 

hrs. Statistically significant differences were compared between untreated conditions 

versus treatment groups with (*) denoting p-values ≤ 0.05. 

 

4.5.3 Expression of Apoptosis-Related Proteins 

Western blot analysis of MDA-MB-231 cells treated with ACA analogues was carried 

out to observe the effects on apoptosis-related proteins. ACA, AEA and AMCA were 

found to decrease Bcl-2 and Bcl-xL anti-apoptotic protein levels, and increase the 

expression level of p53 and pro-apoptotic Bax (Figure 4.36). As shown in Figures 4.37 

and 4.38, treatment of ACA, AEA and AMCA at their IC50 concentrations for 24 hrs 

significantly decreased the expression level of Bcl-2 by approximately 40-50% and Bcl-

xL by around 30-50% when compared to untreated cells. The p53 levels in MDA-MB-

231 cells increased by 3.3-, 3.4- and 2.3-fold after treatment with ACA, AEA and AMCA, 

respectively (Figure 4.39). The three compounds upregulated the expressions of pro-

apoptotic Bax by 6.2-, 9.4-, 2.9-fold, respectively (Figure 4.40). Collectively, this 

suggested that PARP, p53, Bcl-2, Bcl-xL and Bax were involved in inducing apoptosis 

via the intrinsic pathway when treated with ACA, AEA and AMCA. 
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Figure 4.36: Western blotting analysis of apoptosis-related proteins in MDA-MB-231 

cells treated with ACA and its analogues for 24 hrs. DMSO: solvent control; GAPDH 

housekeeping protein used for normalisation of protein levels. 

 

 

Figure 4.37: Densitometry analysis of the western blots for Bcl-2 proteins expression in 

MDA-MB-231 cells treated with ACA and its analogues for 24 hrs. Statistically 

significant differences were compared between untreated conditions versus treatment 

groups with (*) denoting p-values ≤ 0.05. 
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Figure 4.38: Densitometry analysis of the western blots for Bcl-xL proteins expression 

in MDA-MB-231 cells treated with ACA and its analogues for 24 hrs. Statistically 

significant differences were compared between untreated conditions versus treatment 

groups with (*) denoting p-values ≤ 0.05. 

 

 

Figure 4.39: Densitometry analysis of the western blots for p53 proteins expression in 

MDA-MB-231 cells treated with ACA and its analogues for 24 hrs. Statistically 

significant differences were compared between untreated conditions versus treatment 

groups with (*) denoting p-values ≤ 0.05. 
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Figure 4.40: Densitometry analysis of the western blots for Bax proteins expression in 

MDA-MB-231 cells treated with ACA and its analogues for 24 hrs. Statistically 

significant differences were compared between untreated conditions versus treatment 

groups with (*) denoting p-values ≤ 0.05. 

 

4.6 Migration  

4.6.1 Wound healing  

Cell migration is an important step in the metastatic process (Harlozinska, 2005). 

Therefore, the effects of ACA and its analogues on cell migration were also examined on 

breast cancer MDA-MB-231 cells. This cell line was chosen for anti-migration study due 

to its highly aggressive and strongly metastatic properties among the selected panel of 

cell lines (Price et al., 1990; Nair et al., 2004).  

According to quantification on open wound areas after 24 hrs of incubation using the 

TScratch software in Figure 4.41, compound 7 was found to reduce MDA-MB-231 cell 

migration rates the most whereby the area of scratch wounds healed by 13.0 ± 1.0% 

compared to 29.0 ± 3.0% in untreated controls. Meanwhile, ACA and its cytotoxic 

analogues, AEA and AMCA were found to reduce MDA-MB-231 cell migration rates at 

18.0 ± 4.0%, 20.0 ± 3.0% and 17.0 ± 2.0%, respectively. The data showed that ACA, 
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AEA, AMCA, compounds 5-8 and 20-21 significantly inhibited the migration rate of 

MDA-MB-231 cells compared with untreated cells (Figure 4.42). 

Furthermore, the result revealed that the difference in inhibition of cell migration 

between untreated cells and cells treated with DMSO was insignificant (p-value > 0.05) 

(Appendix F), suggesting that anti-migratory effects of tested compounds were not due 

to the solvent.  

 

 

Figure 4.41: Representative photos of wound-healing assay of MDA-MB-231 cells after 

various treatments of ACA and its analogues at IC20. The open wound area at 24 hrs was 

quantified using TScratch software relative to wound area at 0 hrs. All data are presented 

as mean ± SEM from three independent replicates, with representative images at 40× 

magnification shown from each treatment group. Scale bar apply for all pictures. DMSO: 

solvent control. 

       0 hrs             24hrs                        0 hrs            24 hrs 
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Figure 4.42: Effects of ACA and its analogues on the cell migration of MDA-MB-231 

cells. The open wound area at 24 hrs was quantified using TScratch software relative to 

wound area at 0 hrs. The mean percentage of area migrated ± SEM from three separate 

experiments are illustrated. Statistically significant differences were compared between 

untreated conditions versus treatment groups with (*) denoting p-values ≤ 0.05. DMSO: 

solvent control. 

 

4.6.2 SAR Analysis on Anti-Migration Activity 

Comparison of the association between the biological activity of ACA and its 

analogues via SAR studies towards their anti-migration potency was also conducted. The 

SAR study showed that the contribution of acetoxy group at 1’-position is important but 

not compulsory for anti-migration activity. Apparently, analogue 2 which was devoid of 

1’-acetoxy group did not show significant results in the inhibition of cell migration. 

However, significant anti-migrations were also displayed upon treatment of some 

analogues (5, 6 and 8) which lacked the acetoxy group at 1’-position. The next structural 

feature considered was the substituents at 3-position. Five analogues (6, 8, AEA, AMCA 

and 19) with 3-methoxy group inhibited migration of cancer cells significantly. 

Nevertheless, analogue 2 with 3-methoxy group did not inhibit cell migration. This 
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depicted the existence of 3-methoxy group as an optional feature for cell migration. SAR 

studies also suggested that the presence of a hydroxy group at 4-position distinctively 

reduced or abolished the anti-migration activity. This discovery was in accordance with 

data shown in Figure 4.42, where analogue 2 with 4-hydroxy group eliminated anti-

migration effects on all cancer cells tested. All of the compounds (ACA, AEA, AMCA, 

6 and 8) with 4-acetoxy group showed significant anti-migration effects on the cancer 

cells. Thus, acetoxy group at 4-position is deemed compulsory for anti-migration activity. 

Analogue 2 with a 5-methoxy group were found to be lacking in anti-migration activity. 

Based on Figure 4.43, the structural factors of ACA and its analogues governing cancer 

cell migration properties are concluded as follows: (1) The 1’- and 4-acetoxy groups are 

essential structural components. (2) The presence of the 3-methoxy group increases the 

activity. (3) The substitution of 4-acetoxy group with 4-hydroxy group and presence of 

5-methoxy group reduces the activity. 

 

 

 

 

 

 

 

 

Figure 4.43:   SAR analysis of individual chemical structure groups within ACA and its 

analogues towards anti-migration properties on MDA-MB-231 cell line.

i) Reduce anti-migration activity. 

i) Compulsory for anti-

migration properties.  
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will reduce activity.  
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inhibition of cell migration. 
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4.6.3 Expression of Metastasis-Related Proteins 

In addition to anti-proliferative effects and induction of apoptosis, ACA, AEA and 

AMCA also showed significant anti-migratory effects on MDA-MB-231 breast cancer 

cells. Thus, the molecular mechanisms related to the anti-migratory effects of these 

compounds were also investigated. The effect of these compounds on the expression of 

integrin β1, which is a major player in tumour metastasis that mediate the adhesion of 

cells on extracellular matrix (ECM) (Jin & Varner, 2004) and some of its downstream 

molecules were determined. The integrin-mediated pathway on MDA-MB-231 breast 

cancer cells was determined by western blot analysis and it was found that the level of 

integrin β1 decreased following ACA, AEA and AMCA treatment (Figure 4.44). Upon 

integrin β1 binding to ECM, the downstream signalling molecules such as, FAK and Akt 

are phosphorylated (Vachon, 2011) and participated in the regulation of cell migration. 

In analysing the integrin-induced signalling pathway, phosphorylation of FAK and Akt 

was significantly reduced by ACA, AEA and AMCA after 24 hrs (Figure 4.44). As shown 

in Figure 4.45, the integrin β1 level of MDA-MB-231 cells decreased by 15.5, 37.1 and 

93.3% after treatment with ACA, AEA and AMCA, respectively. The reduction level of 

phosphorylated FAK and Akt by ACA, AEA and AMCA was about 70-94% (Figures 

4.46 and 4.47).  
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Figure 4.44: Western blotting analysis of metastasis-related proteins in MDA-MB-231 

cells treated with ACA and its analogues for 24 hrs. DMSO: solvent control; GAPDH 

housekeeping protein used for normalisation of protein levels. 

 

 

Figure 4.45: Densitometry analysis of the western blots for integrin β1 proteins 

expression in MDA-MB-231 cells treated with ACA and its analogues for 24 hrs. 

Statistically significant differences were compared between untreated conditions versus 

treatment groups with (*) denoting p-values ≤ 0.05. 

kDa 
 

 

 

135 
 

 

 

 
 

 

125 

 
 

 

125 

 
 

2 

 

 

60 

 
 

 

60 

 
 

 

37 

Univ
ers

ity
 of

 M
ala

ya



 

137 

 

Figure 4.46: Densitometry analysis of the western blots for pFAK/FAK proteins 

expression in MDA-MB-231 cells treated with ACA and its analogues for 24 hrs. 

Statistically significant differences were compared between untreated conditions versus 

treatment groups with (*) denoting p-values ≤ 0.05. 

 

 

 

Figure 4.47: Densitometry analysis of the western blots for pAkt/Akt proteins expression 

in MDA-MB-231 cells treated with ACA and its analogues for 24 hrs. Statistically 

significant differences were compared between untreated conditions versus treatment 

groups with (*) denoting p-values ≤ 0.05. 
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CHAPTER 5: DISCUSSION 

Cancer is rapidly becoming a global pandemic, with more than 14 million people 

affected worldwide. Despite the advances in the field of cancer research, many countries 

are experiencing the unpleasant conditions of this deadly disease, and still there is a 

continuous need to discover and develop more efficient and cost effective anti-cancer 

agents. The plant based natural products have been recognised to possess the richest 

source of high chemical diversity to initiate the drug design regime for identification of 

novel structures. Thus, researchers concentrated efforts to discover and develop natural 

products as the promising cancer therapeutic agents. However, some obstructions 

including low quantity of extracted natural products, insufficient natural resources and 

high complexity of the compound structure restrain the production of natural products for 

the usage in cancer therapy. Thus, from this point of view, hemi-synthesis of new anti-

cancer agents that are highly effective, low cost and have minor environmental impact 

would be the best strategy in cancer management and treatment. In addition, the modified 

compounds with distinct molecular mechanisms are considered more favourable for 

higher efficacy and better survival. The rationale for hemi-synthesis of compounds is to 

relate the effects of various substituents on different biological activities of the compound. 

As a consequent, there is an increase in the number of studies involving SAR analysis on 

anti-cancer effects with chemically modified compounds. The SAR data could serve as 

the basis for development of better anti-cancer agents to improve cancer treatment 

outcome.  

Previously, the use of the natural product, ACA, was shown to exert anti-cancer effects 

by inducing apoptosis (Ito et al., 2004) and cell cycle arrest (Awang et al., 2010) or 

inhibiting angiogenesis (Pang et al., 2011) and metastasis (Wang et al., 2014). Moreover, 

previous studies also showed that ACA and its natural analogue, AEA induce the extrinsic 
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apoptosis-mediated cell death pathway in cancer cells via dysregulation of NF-κB 

(Awang et al., 2010; Hasima et al., 2010; In et al., 2011). The blockade of NF-κB has 

been revealed to induce apoptosis of cancer cells and was suggested as a potential target 

in cancer treatment (Hoffmann et al., 2002). Under certain conditions during 

tumourigenesis, the inhibitor IκB proteins are degraded, which then allow the activation 

of NF-κB (Karin & Ben-Neriah, 2000). This degradation is mediated by the ubiquitin-

proteasome system, which can be blocked by a proteasome inhibitor (Kisselev & 

Goldberg, 2001). Taken from the ability of proteasome inhibitor to block NF-κB 

activation, it has been suggested to induce apoptosis on cancer cells (Mayo & Baldwin, 

2000). Although previous studies discovered that ACA induces apoptosis and inhibits 

migration on some cancer cells, the apoptotic induction via UPS and anti-migration 

mechanisms of hemi-synthetic ACA analogues on cancer cells have never been reported.   

In the present study, it was found that not only ACA, but two of its analogues, AEA 

and AMCA were able to induce apoptosis and suppress the migration of MDA-MB-231 

breast cancer cells. However, these compounds did not exert effective anti-cancer effects 

via regulation of UPS. Nevertheless, deduction of important functional groups governing 

the anti-proliferation, proteasome inhibition and anti-migration effects provides an insight 

into the potential interactions involved between a compound and cancer targets. In 

conclusion, acetoxy group either attached at 1’- or 4- position of the benzene ring play an 

important role in anti-proliferation, proteasome inhibition and anti-migration effects. 

Another substituent, methoxy group attached at 3- position of benzene ring also 

contributes to the anti-proliferative and anti-migration activities.  

The molecular mechanisms of the effects of ACA analogues on apoptotic induction 

and anti-migration activities were elucidated. The western blot analysis showed that 

expression levels of cleaved PARP, p53 and Bax increased, while the expression levels 
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of Bcl-2 and Bcl-xL reduced after treatment, suggesting that ACA and its analogues-

induced apoptosis was regulated via the mitochondrial pathway. In addition, ACA, AEA 

and AMCA decreased the expression levels of pFAK/FAK and pAkt/Akt using the 

integrin ß1-mediated signalling pathway, ultimately leading to inhibition of cell 

migration.  

In brief, the natural compound ACA and its hemi-synthetic analogues, AEA and 

AMCA are promising agents for cancer therapy applications, especially for inhibition of 

cancer cell growth, apoptotic induction and suppression of migration. 

5.1 ACA and Its Analogues in Relation to Anti-Proliferative Activities 

In this study, MTT assays were conducted with two objectives, firstly, in determining 

which of the ACA analogues were able to demonstrate significant cytotoxic activity, and 

secondly, to determine the IC50 values of each active compounds, which is crucial in 

subsequent downstream assays. 

The MTT assays showed that only ACA, AEA and AMCA induced anti-proliferative 

effects on MDA-MB-231 breast cancer cells, whereas ACA and AEA also inhibited the 

growth of MCF-7, RT-112, EJ-28, PC-3, HSC-4 and HepG2 cancer cell lines with no 

cytotoxic effects on HMEC normal human breast cells. Due to the differential activity of 

ACA and AEA, the selectivity index (SI) was calculated to indicate their degree of 

selectivity (SI = IC50 normal cell / IC50 cancer cell). The greater the SI value is, the more 

selective it is. Since IC50 of the compounds on HMEC normal human breast cells was 

more than 50.0 µM, thus the SI values of ACA and AEA were higher than 2. This 

suggested that these compounds could kill the cancer cells with lower drug doses and 

exert fewer side effects on non-cancerous tissue.  
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Although data from MTT assays clearly showed that cancer cells were dying following 

exposure to these compounds, it was also noted that the rate of killing between cell lines 

varied, as observed with the different IC50 values obtained. It is proposed that these 

variations are brought upon by differences in the alternative genetic paths these cancer 

cell lines take to turn malignant. For example, the expression level of certain genes 

involved in drug retention (i.e. drug efflux and influx) within the cell would modulate the 

exposure time for each cancer cell line to react towards the drug in question. The 

intracellular balance between tumour suppressor genes pushing towards apoptosis against 

oncogenes leaning towards anti-apoptosis and proliferation was also likely to play a role 

in creating a diversified microenvironment influencing the outcome on how each cancer 

cell line reacts towards an anti-cancer agent. Moreover, the aggressiveness of each cancer 

genotype would also without doubt, regulate the minimal dosage of ACA and its 

analogues required to achieve IC50 levels in respective cancer types.  

MDA-MB-231 was reported as the most sensitive cell line towards the compounds 

tested in terms of cytotoxicity, and was thus selected as a model for further investigation. 

Another type of breast cancer cell, MCF-7 cell line was only sensitive to ACA and AEA. 

Despite both cell lines being breast cancer cell lines, they are different in genotypes, 

MDA-MB-231 is a triple negative, lack of oestrogen receptor (ER), progesterone receptor 

(PR) and human epidermal growth factor receptor 2 (HER-2) expression breast cancer 

cell line, while MCF-7 is an ER and PR positive breast cancer cell line. Thus, these 

differences could be the underlying cause towards response variations and drug 

sensitivity (Rouzier et al., 2005).  

5.2 ACA and Its Analogues in Relation to Ubiquitin-Proteasome System 

Over a decade, proteasome inhibition has emerged as an effective strategy in the 

treatment of cancer. It has been revealed that proteasome inhibition is related with 
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induction of apoptosis in cancer cells, but not in normal cells (Dou & Li, 1999). 

Proteasomes are important for cell protection from apoptosis by maintaining the balance 

of anti-apoptotic and pro-apoptotic proteins (Kloetzel, 2001; Ling et al., 2002). Therefore, 

the interest in potent and specific proteasome inhibitors that may be used as potential anti-

cancer drug is very high.  

ACA and its analogues, AEA and AMCA were tested for their inhibitory capacity in 

purified 20S proteasome and cellular proteasome of MDA-MB-231 cells. The specific 

inhibition of a single catalytic site is of special interest for drug development, therefore, 

the inhibition of the three different proteasomal activities were analysed. The specific 

substrates used for the different catalytic activities are Suc-LLVY-Glo™ Substrate for 

chymotrypsin-like activity, Z-LRR-Glo™ Substrate for trypsin-like activity and Z-

nLPnLD-Glo™ Substrate for caspase-like activity.  

ACA and AEA inhibited 20S proteasomal chymotrypsin-like activities with IC50 

values less than 200.0 µM. This indicated that proteasomal inhibition by ACA and AEA 

only can be achieved with higher doses of compound. Notably, epoxomicin inhibited all 

three proteasomal activities with IC50 values below 3.5 µM. The huge difference in the 

proteasomal inhibition between ACA, its analogues and the commercial proteasome 

inhibitor could be due to the binding ability and the impact on 20S proteasome. On the 

other hand, compared to 20S proteasome, ACA and its analogues exerted more effective 

inhibition on cellular proteasome in MDA-MB-231 cells. It was suggested that it may be 

due the stability of ACA analogues in cells and/ or existence of other ACA-binding 

proteins. Unfortunately, the proteasomal inhibition effects of ACA and its analogues are 

significantly weaker than epoxomicin. 

Cancer cells are often more sensitive to proteasomal inhibitors than normal cells. The 

clinically approved proteasomal inhibitor bortezomib suppressed growth and induced 
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apoptosis in the sensitive cancer cells, whereas the normal cells tolerate higher inhibitor 

concentrations (Hideshima et al., 2001). However, the differences in cellular properties 

and resistance mechanisms with bortezomib require further development of new 

proteasomal inhibitors. Despite the modification of structures made on ACA, the 

proteasomal inhibition was not as effective as the commercial proteasome inhibitor, 

epoxomicin and this could be contributed by the permeation ability of the compounds.  

Molecular docking was widely used in the discovery and development of proteasome 

inhibitors. This methodology provides better understanding for the proteasome-ligand 

interactions. Protein-ligand molecular docking is a computational method for predicting 

the best position of how a ligand binds in a protein binding pocket (Liao et al., 2011). 

Protein-ligand docking mimics the recognition process in which a small molecule (ligand) 

translates, rotates and twists thoroughly in the active site of a macromolecule (protein) 

with the aim of finding the energetically most suitable conformation binding mode 

(search algorithm), being the protein-ligand affinity (binding energy) estimated by a 

scoring function (scoring algorithm) (Gallastegui et al., 2012; Zhu & Li, 2012). 

In 2003, Kazi and friends performed computational docking studies using Autodock 

software and the crystallographic structure of the eukaryotic yeast 20S proteasome (PDB 

ID: 1JD2) (Kazi et al., 2003). This type of proteasome structure was also used in this 

study as it is structurally similar to the mammalian 20S proteasome. Kazi’s team reported 

that the interaction of compound genistein with the proteasomal β5 subunit is responsible 

for inhibition of the chymotrypsin-like activity. From this study, it was possible to 

summarise that genistein places the hydroxy group of the B-ring to Thr1 with distance of 

1.85 Å, which may sterically block Thr1. Through an analogous protocol in 2004, Smith 

and friends observed that (−)-EGCG binds to the hydroxy group of the N terminal Thr1 

of the proteasome’s chymotrypsin-like active site in an orientation and conformation that 

Univ
ers

ity
 of

 M
ala

ya



 

144 

is favourable for inhibition of the proteasomal activity (Smith et al., 2004). Their study 

also suggested that the lower the docking energy and the larger the cluster, the greater 

will be the inhibitory potency predicted. Thus, this suggestion has been taken into 

consideration during the docking analysis of ACA and its analogues with the three distinct 

proteasomal subunits. The order of the potencies of ACA and its analogues to inhibit the 

chymotrypsin-like activity of cellular proteasome (Table 4.3) and to increase the 

expression levels of ubiquitinated proteins (Figure 4.23) in descending manner is AMCA 

> AEA > ACA. When compared with the experimental data, the order of docking energy 

of ACA and its analogues to β5 subunit are consistent with the results of the in vitro UPS 

analysis. 

Acetoxy group is a common substituent that can be found in ACA, AEA and AMCA. 

Based on the docking analysis, this substituent helps to bind to the active site of the 

proteasomal catalytic subunit. Since other functional groups did not exert significant 

binding to the active site of β subunits, thus there is not much difference between ACA 

and its analogues in the final docked energy.  

The in silico docking estimated the internal energy of ligand, docked intermolecular 

energy and the torsional energy. Among them the intermolecular energy plays a 

significant role for the final free energy of binding and docked free energy. The 

intermolecular interactions may be due to the hydrophobic interaction and hydrogen 

bonding (Kanwar et al., 2010). Thus, acetoxy group is suggested to have more 

hydrophobic interactions when compared to other structures, with the hydrophobic amino 

acid residues in the β subunit of proteasome. 

Collectively, only the chymotrypsin-like activity and ubiquitination results are 

consistent with the prediction from the β5 subunit docking analysis.  
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5.3 ACA and Its Analogues in Relation to the Apoptotic Pathway 

Cells undergoing apoptosis can be observed via multiple hallmarks such as the 

consistent laddering of genomic DNA. In this study, ACA, AEA and AMCA showed 

active anti-proliferative effects and induced internucleosomal DNA fragmentation on 

MDA-MB-231 cells, confirming induction of apoptosis. Unlike necrotic cells where 

DNA is randomly degraded by a range of nucleases, apoptotic cells go through a 

systematic breakdown of DNA by endonucleases at specific exposed points on the DNA 

that are not protected by histone protein complexes (Wyllie, 1980). This study showed 

that DNA fragmentation of cancer cell line following ACA, AEA and AMCA treatment 

was consistent with MTT assays, where the killing of cells observed were within 24 hrs. 

During the apoptotic process, proteolytic cleavage of PARP due to activation of caspase-

3 (Los et al., 2002), was seen in this study. Previous study showed that ACA induces 

apoptosis via activation of caspase-3 like activity (Moffatt et al., 2000). Thus, the 

alteration of PARP by ACA, AEA and AMCA were in agreement with the tendency of 

apoptotic induction via activation of caspase-3. The activation of p53 protein is also 

related to apoptosis induction (Geng et al., 2013) and regulation of Bcl-2 family members 

expression (Sax & El-Deiry, 2003). Anti-apoptotic proteins such as Bcl-2 and Bcl-xL act 

as the inhibitor of mitochondrial apoptotic pathway, which block the release of 

cytochromes and counteract the effects of pro-apoptotic proteins such as Bax (Kang & 

Reynolds, 2009). The pro-apoptotic protein Bax redistributes from the cytosol to 

mitochondria during apoptotic events (Murphy et al., 2000) to cause dysfunction of the 

mitochondrial membrane (Wei et al., 2001). It was found in the present study, that the 

expression of Bax was increased by ACA, AEA and AMCA treatment, while the 

expression of Bcl-2 and Bcl-xL was decreased. These observations suggest that the 

induction of apoptosis by ACA, AEA and AMCA was triggered by the upregulation of 

pro-apoptotic proteins and downregulation of anti-apoptotic proteins which are related to 
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the mitochondrial apoptotic pathway. Furthermore, previous study showed that ACA and 

AEA suppress the growth of cancer cells by inhibiting NF-κB pathway (Ito et al., 2005a; 

In et al., 2011; Misawa et al., 2015). The expression of the anti-apoptotic proteins such 

as Bcl-2 (Catz & Johnson, 2001) and Bcl-xL (Tamatani et al., 1999) is regulated by NF-

κB. Hence, the induction of apoptosis by ACA, AEA and AMCA may also be linked to 

the inactivation of the NF-κB. 

5.4 ACA and Its Analogues in Relation to the Migration Pathway 

ACA has also been reported to inhibit metastasis and invasion on different cancer cell 

types, such as breast cancers (Wang et al., 2014), oral cancers (In et al., 2012), prostate 

cancers (Pang et al., 2011) and lung cancers (Ichikawa et al., 2005). These discoveries 

point out that ACA may generally suppress the cell migration and invasion in various 

cancer cells. In the present study, ACA and its analogues were revealed to exhibit anti-

migration effects on MDA-MB-231 cells. Although some of the ACA analogues showed 

poor potency against cancer cell proliferation, they exhibited strong effects against 

migration and thus reignites interest for further studies on the molecular mechanisms 

governing anti-migration activity of ACA and its analogues. Herein, most of the hemi-

synthetic ACA analogues were not cytotoxic within the 5.0-50.0μM dose range, but many 

of them were able to inhibit cancer cell migration with non-toxic concentrations. Hence, 

the anti-migration activity of ACA and its analogues is not linked to their direct cytotoxic 

effects on cancer cells. The inhibition of cell migration by the compounds occurred at 

concentrations that were lower than those that inhibited cell proliferation. The difference 

in effective concentrations suggested that different mechanisms may be involved to 

promote ACA and its analogues anti-migratory ability versus cytotoxic effects. 

 Cancer cell motility by metastasis is a main step for progression of malignancy 

(Ridley et al., 2003). Tumour cells take multi-step to metastasise from their initial site to 
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secondary organs by migrating through basement membranes and extracellular matrices 

(van Zijl et al., 2011). The migration process is stimulated extracellularly and initiated by 

integrins and intracellular signalling proteins located where the assembly and disassembly 

of focal adhesions occurs (Golubovskaya et al., 2009). Regulating integrin β1 signalling 

of focal adhesion kinase (FAK) through modulation of Akt activity could lead to 

inhibition of cell migration (Choi et al., 2009). Many human malignant cancers show 

increased FAK expression promoted by integrin β1, resulting in increased metastasis 

(Zhao & Guan, 2009). Herein, breast cancer cells treated with ACA, AEA and AMCA 

suppressed integrin β1 after 24 hrs, indicating their ability to interrupt the integrin 

signalling pathway. Since integrin acts as the activator of FAK, the effect of these 

compounds on the activation of pFAK was examined. Upon treatment, FAK 

phosphorylation was significantly reduced in MDA-MB-231 cells. ACA, AEA and 

AMCA also decreased Akt phosphorylation, showing that activity of pAkt was correlated 

with FAK phosphorylation. Thus, relative intensities of integrin β1, pFAK/FAK, 

pAkt/Akt showed that ACA, AEA and AMCA displays anti-migration potency, and is 

dependent, at least in part, through the integrin β1-mediated signalling pathway. 

5.5 ACA and Its Analogues in Relation to SAR on Anti-Cancer Effects 

To date, little has been known about the SAR of ACA analogues in relation to its anti-

cancer effects. Based on experiments involving the use of various chemically modified 

ACA synthetic analogues, Murakami and friends concluded that a replacement of the 1’-

H in ACA by a methyl group resulted in a drastic decrease in cytotoxic activity, and the 

addition or movement of the phenolic acetoxy group from the ortho- to the para- and 

meta- positions did not result in an increase in cytotoxicity. It was also suggested that 

both acetoxy groups in ACA were necessary in cellular permeability properties because 

ACA analogues with its acetoxy groups replaced with hydroxy groups resulted in the 
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reduction of its cytotoxicity (Murakami et al., 2000). It was also reported that the acetoxy 

groups in ACA were subjected to acetate elimination through hydrolysation by 

intracellular esterase activity in order to maintain its retention within the cell. As AEA 

and AMCA possessed similar acetoxy group as ACA, it was also suggested that these two 

analogues would have undergone similar acetate elimination through hydrolysation 

esterase activity, resulting in the modified ACA analogues with active biological 

properties. Xu and friends also reported the structural factors of ACA that regulating 

tumour cell viability, intracellular GSH level and glutathione reductase activity in Ehrlich 

ascites tumour cells (Xu et al., 2010). They suggested that the acetoxy group substituted 

at para position at the benzene ring was essential. 

In this study, the results showed that the acetoxy group substitute at 4-position and 1’-

position are crucial for the anti-proliferative and anti-migration effects. The analogues 

without the acetoxy group at 4-position (such as analogues 2 and 20) showed insignificant 

cytotoxic effects. These findings are consistent with previous studies (Murakami et al., 

2000; Xu et al., 2010). Acetoxy groups are electron-withdrawing groups, they would 

decrease the cationic character of the compounds and increase the rate of hydrolysis and 

therefore, are able to improve membrane permeability of the compounds (El-Taher, 1996; 

Xue et al., 2010). This improved membrane permeability property allows ACA and its 

analogues to diffuse into cells and target specific downstream molecules. 

Furthermore, the methoxy group attached at 3-position of the benzene ring is important 

for both cytotoxic and anti-migration effects. This effect may be due to the fact that 

methoxy groups are electron-donating groups which facilitate to stabilise the phenoxy 

radical (Ali et al., 2013). Due to the phenoxy radical stability, methoxy group could help 

to increase solubility and intracellular retention within the cell, while preventing 

premature efflux of drugs. However, additional methoxy group at 5-position weakens the 
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anti-cancer activities, and this occurrence may be due to the steric hindrance by the extra 

methoxy group.  

On the other hand, hydroxy group bound to the 4-position of benzene eliminate both 

anti-proliferative and anti-migration activities. The hydroxy group is an electron-donating 

group and is unable to improve cellular permeability of ACA and its analogues. Hence, 

reduction of activities was seen in the compound substituted with the hydroxy group.  

5.6 Future Anti-Cancer Prospects of ACA and Its Analogues 

The current study describes the drug development process chain starting from anti-

proliferative assays to apoptotic assays, and also elucidates the role of UPS in apoptosis, 

SAR analysis on anti-cancer effects as well as the regulation of signalling pathways in 

apoptosis induction and anti-migration activities. As shown in Figure 5.1, it is therefore 

suggested that ACA, AEA and AMCA possess potential anti-proliferative, pro-apoptotic 

and anti-metastatic effects, in which apoptosis was mediated via mitochondrial apoptotic 

pathway and anti-migration via integrin β1-mediated signalling pathway. The knowledge 

and understanding on how ACA, AEA and AMCA potentiate apoptosis and inhibit 

migration as shown in this study is of great importance in further understanding the 

mechanisms underlying tumourigenesis. Moreover, the SAR analysis generated from 

ACA and its analogues, may then serve as a platform to establish structural requirements 

for the optimisation of various biologically active compounds. This knowledge will 

provide the basis for newly targeted therapies, hence giving cancer researchers a better 

insight for future chemotherapeutic approaches.  

The future of ACA, AEA and AMCA is very promising and can be applied greatly in 

many ways. For example, structural properties of ACA, AEA and AMCA as being a small 

cell permeable compound, is preferable if comparison to gene transfer strategies in the 
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treatment of cancer patients due to its ease in administration. In addition, the ability of 

ACA, AEA and AMCA to inhibit the expression of cell adhesion proteins in metastatic 

triple negative breast cancers could therefore interrupt the progression of malignancy, 

resulting in its reversion to benign tumours.  

In brief, the knowledge of mechanism of action of ACA, AEA and AMCA enables 

development of more efficacious anti-cancer drugs. 
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CHAPTER 6: CONCLUSION 

In this study, it has been identified that ACA, AEA and AMCA significantly inhibited 

growth, induced apoptosis and suppressed migration of human breast cancer cells. 

Overall, these preliminary results revealed that the anti-proliferative activities are not 

absolutely required for the suppression of migration in cancer cells by ACA and its 

analogues. In addition, analogues active in anti-proliferation against selected cancer cells 

were seen to possess better anti-migration ability against breast cancer cells compared to 

the natural product itself. Moreover, ACA and its analogues did not regulate the apoptotic 

induction through ubiquitin-proteasome system. Thus, this study demonstrates that there 

is still room for improvement in designing new analogues with increased anti-cancer 

activities. However, more investigations are required to identify the different targets of 

such ACA analogues at the molecular level and validate the molecular mechanisms in 

animal models for effective treatment of breast cancer. Overall, this study suggested that 

ACA, along with its hemi-synthetic analogues, AEA and AMCA, are potential 

combinatory therapeutic agents for the treatment of triple-negative breast cancers 

(TNBCs). 
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