\IFPC

An Intelligent tool for converting
Prolog problems into Prolog codes

Intelligent Prolog Pseudocode Converter
(IPPC)

Perpustakaan SKTM

By

Wang Keng Kuen

Department of Artificial Intelligent
Faculty of Computer Science and Information Technology
University Malaya.

Submitted in partial fulfillment of the
requirements for the Degree of

Bachelor of Computer Science
2002/2003

Abstract

A thesis presented in partial fulfillment of the requirements for the Bachelor of
Computer Science degree. This document is submitted Dr. Rukaini Haji Abdullah
(thesis supervisor) and Ms Norisma Idris (thesis moderator), lecturers of F SKTM as

a report for the Final Year Project Level One, WXES3181.

Intelligent Prolog Pseudocode Converter (IPPC) are designed to allow novice
programmer have an easier tool for them to get Prolog codes converted from the
Pseudocode they had wrote. IPPC included documents to help guide users and

teaching them about how to write program with using IPPC.

The first part of the thesis presents about problems definitions for using Prolog in
writing program and introduction of IPPC. The second part introduces the theoretical
basis of the research and the methodologies employed to apply them. The final part

described about the IPPC’s requirement analysis and IPPC’s design,

For the next advancement stage, WXES3182, the Final Year Project Level One,
WXES3181 is important as references in the actual coding and development in
WXES3182. However, there may have be some changes to the system design in this
proposal for WXES3182. The changes have been reflecting in the product and in this
report.

Acknowledgment

I'would like to acknowledge the help of many people during my preparation of this
thesis. At first, I would like to CXpress my utmost gratitude to Dr. Rukaini Haji
Abdullah (thesis supervisor), for helping to supervise me, providing advices and
subjects, and offering direction and penetrating criticism. In addition, I would like to
thank the subject, WXES3181, provided opportunity to get experiences that I regard

as so important.
Secondly, I would like to thank my project moderator, Ms Norisma Idris for being so
informative during the VIVA session. The advices, questions and feedback were SO

useful for this thesis. Best wishes for her recovery from illness.

I'have also benefited from many discussions with my friends and course mates where

I'had a chance to develop some of my ideas before this thesis commenced.

Finally yet importantly, I would like to give my thanks and loves to my family.

Table of Contents

Abstract

Acknowledgment

Table of contents

List of Figures
List of Tables

Chapter 1: Introduction

1.1

1.2
3
1.4
1.5
1.6

What is an “Intelligent tool Jor convert Pseudocode into
Prolog codes” / IPPC?

Project Objectives.

Scope and limitation.

Timeline.

Thesis structure.

Summary.

Chapter 2: Literature Review

2.1
2.2
2.3
2.4

Some research.

What is Intelligence?

Pseudocode Definition.

Natural language understanding.

2.4.1 Different levels of language analysis
2.4.2 Classes of words

2.4.3 Grammars and sentence structure

=il -

1
i
i
vi & vii

Viil

e = W ¥ TV T

10
10

11
12
13

2.5 Programming Logic.

Zeorl

2.5.2
£33
2.5.4
2.5.5
2.5.6

Fundamentals of Prolog
2.5.1.1 Facts

2.5.1.2 Rules

2.5.1.3 Variables
2.5.1.4 Queries

Prolog's Syntax

Visual Prolog’s program sections
Built-in Predicates in Visual Prolog
Prolog’s data structures

Cut

2.6 System Development Software for IPPC.
2.7 Database.

Chapter 3: Methodology

3.1 Process Model.

3slyl

Discussion of Waterfall model With Prototyping

3.1.2 Activities for development process

3.1.3 Advantages and Disadvantages of Waterfall

3.1.2.1 Identifying problems
3.1.2.2 Requirement analysis
3.1.2.3 System Design
3.1.2.4 Coding

3.1.2.5 Testing

3.1.2.6 Implementation

3.1.2.7 Maintenance

model With Prototyping

3.2 Prototype for this thesis

. e

14
16
16
17
18
20

20
22
25
26
26

27
29

36

37

Chapter 4: System Analysis and Design

4.1

4.2

System Analysis.

4.1.1 System requirements analysis

4.1.1.1 Functional Requirement

4.1.1.2 Nonfunctional Requirement

System Design,

4.2.1 Level | - Architecture

4.2.2 Level 2~ IPPC’s Converting Process
4.2.3 Level 3 IPPC’s Database Structures Design
4.24 Level 4-IPPC’s Graphic User Interface Design

(4)

4.2.5 Level 4-IPPC’s Graphic User Interface Design

(B)

Chapter 5: System Implementation

O

3.2
5.3
5.4
3.5

5.6
17
5.8

Development environment,
3.1.1 Hardware tools

5.1.2 Software tools

Tool Implementation.

Interface and Database implementation.

IPPC implementation.
Rules implementation.

3.5.1 Using rules in IPPC

Bottom-Up Implementation.
ActiveX data object implementation,

Lxception Handling implementation,

39
39
42

43
43
45
47

48

50

51
51
52

53
54
56
57
57

59
60
61

Chapter 6: System Testing

6.1

Unit Testing.

0.1.1 Testing Display and Database Module

6.1.2 Checking Database Data

6.1.3 Testing Natural Language Processing Module
6.1.4 Testing Converting Rules module

6.1.5 Testing Prolog codes Generation Module

6.2 Integration Testing.

6.3
6.4

Tool Testing.

Testing Analysis.

Chapter 7: Tool Evaluation and Conclusion

7.1 Tool Evaluation.
7.2 Problems encountered and Solutions.
7.3 Tool Strengths.
7.4 Tool Limitations.
7.5 Tool Enhancement.
7.6 Conclusion
Bibliography

“vie

63
63
64
64
65
66

66
67
68

69
70
72
74
76
77

78

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 3.1
Figure 3.2

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.6

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figure 5.6

Main component of IPPC,
Gantt chart for Chapter 1 to Chapter 4,

Gantt chart for Chapter 5 to Chapter 7.

Pseudocode example.
Sentence basic structures.
Example of anonymous variable.

[llustrate communications between module (main)

with sub-module (global predicates, global domains,

and global facts).

Waterfall Model With Prototyping.
Prototype Interface for IPPC.

IPPC’s Physical Architecture.
IPPC’s Logical Architecture.
IPPC’s Converting Process.

IPPC’s Input and Output interfaces.
[PPC’s Database Structures,

IPPC’s Graphic User Interface (a).
IPPC’s Graphic User Interface (b).

Software Tools.

The IPPC’s main page.

IPPC’s Database tables.

The IPPC collaboration diagram.

The diagram shows how to implement rules in the
IPPC.

Rules example.

- Vil =

11
14
19

31
37

44
44
45
46
48
49
50

53
54
55
56
57

58

Figure 5.7 Applying Bottom-up strategy in IPPC. 60
Figure 5.8 ADO’s Commands. 61
Figure 5.9 Exception Handling method.

Figure 6.1 Testing data insert into correct table. 63
Figure 6.2 Data checking for corresponding database. 64
Figure 6.3 Testing for word parsing of a sentence. 65
Figure 6.4 Samples of rules. 66
Figure 6.5 Illustration of tool integration. 67

List of Tables
Table 3.1 Advantages and disadvantages for waterfall model and 36
prototyping model.
Table 5.1 Hardware requirement tools. 51

- VIii =

Chapter One

Introduction

There are some controversial views that historically accompanied Prolog. Prolog fast
gained popularity in Europe as a practical programming tool but still not familiar in

Malaysia. In Japan, Prolog was placed at the central of the development of the fifth-

generation computer.

For conventional language are procedural oriented, Prolog introduces the descriptive
or declarative, view. This greatly alters the way of thinking about problems and
makes learning to student of computer science should learn something about Prolog
at some point because Prolog enforces a different problem solving paradigm

complementary to other programming languages [1].

Prolog is known to be a difficult language to master. It does not have the familiar
control primitives used by languages like RATFOR, ALGOR and PASCAL so the
system does not give too much help to the programmer to employ structured
programming concepts. In addition, many programmers have become used to
strongly typed languages. Prolog is very weakly typed indeed. This gives the

programmer great power to experiment but carries the obvious responsibility to be

careful [2].

For preparation in coding phase, programmer will write down paper works like
Pseudocode (in natural language). From the Pseudocode. programmer must translate
it into correct syntax. However, most of the novice programmer will confuse with
what of the predicates and arguments should be (for a fact). Beside that, novice
programmer also will make mistake in define rule (head :- body). They will confuse

with what suppose be the head (conclusion) or body (premises).

Alternatively, there are three main difficulties in writing programs: (1) the difficulty
specifying the problem from its natural language description, (2) the difficulty in
transforming a given specification into an algorithm or procedure, and (3) the

difficulty in writing the algorithm, in a target language [5].

Thereby, is good to have a tool called “Intelligent Prolog Pseudocode Converter

(IPPC)” for helping programmers solving their problems in writing Prolog programs.

1.1 What is an “Intelligent tool for convert Pseudocode into Prolog

codes” / IPPC?

Most of the programming language has a lot of syntax that the user must obey before
a program is build. Normally a programmer will use some technique to make their
works easier, like they will write down a Pseudocode or flowchart before get into
coding phase. For this reason, why not just build a tool which can translate the
Pseudocode into codes for wasting time on thinking about how to write it in coding
phase. For accomplish this notion, a tool name “Intelligent Prolog Pseudocode

Converter / IPPC” is good to be develop.

IPPC is a tool that can translate Pseudocode (in natural language form) into prolog
codes. This tool is built by using Visual Basic 6 as System Development Software
and connected with a database which contains useable keywords. Refer figure 1.2 for

more detail about IPPC.

IPPC’s Graphic User Interface

Input: Natural Tool’s helper Output: Translate
Language (NL). (Guiding Documents) codes from NL.

Database

English words Prolog Keywords
(e.g. 1s, are, verbs)

Figure 1.1 Main component of [PPC,

1.2 Project Objectives

There are some reasons or objectives for proposed this tool.

a) Helping novice programmer from confusion and learn more about programming
language in Prolog.
IPPC can use as codes checker. Novice programmer can check whether they have
defined codes in correct syntax. Beside that IPPC can popularize usage of Prolog

because it just need user to input Pseudocode (natural language).

b) Convert Pseudocode into an executable Prolog programs.
For avoid time recklessly in coding phase, programmer should write down their
idea within a document or paper work in Pseudocode style. From the paper work,

they just need to key in all the Pseudocode using IPPC. Then it will automatically

convert the Pseudocode into executable Prolog codes.

¢) Applying Natural Language Processing in IPPC.
The main objective is to build an intelligent tool for convert Pseudocode (natural

language) into Prolog codes, and then it must apply some of the natural language

techniques.

To achieve these objectives, existing VPS5 was surveyed, infrastructure was put into

place, and a demonstration project was performed and evaluated.

1.3 Scope and limitation

In this thesis, the main purpose is to build a tool which can convert Prolog
Pseudocode into Prolog codes. Moreover, the tool is only compatible for who are
wanted to build program through Visual Prolog version 5.2 (VPS). IPPC is a

converter and not a compiler, thereby, it need cooperate with VPS5 for run the

converted codes (from IPPC).

By the way the user must have understanding in English because the Pseudocode 18
written in English. In addition, the user must have understanding in grammar, which
is a formal specification of the structures allowable in the language [6]. IPPC is

limited with words set in the database, which converting progress will success if the

words (in Pseudocode) are match with the words in database.

1.4 Timeline

-

Activities

Time (Month)

=

Jun

July

August

Thesis introduction and
topic overview

LI

Literature review

e

Methodology

mn

System analysis

System design

VIVA

\.

Figure 1.2 Gantt chart for Chapter 1 to Chapter 4.

Activities

Noy -Dec J Feb
System Implementation I | ‘ I i
System Testing I

Tool Evaluation and
Conclusion

VIVA
8 L)

Figure 1.3 Gantt chart for Chapter 5 to Chapter 7.

1.5 Thesis structure.

The project research will be encountered in the following chapters.

Chapter 2 is literatures review which about research existed proposed literature same
as this thesis. In addition, brief information related to this topic.

Chapter 3 is about explanation of technique and processes used for this thesis.

Chapter 4 goes into more detail on analysis of thesis topic and kind of software and
hardware used for this thesis. In addition, describes the design of IPPC, type of

design used and why the research design was chosen.

Chapter 5 describe about how to implement and configure IPPC in appropriate

environment.

Chapter 6 will described about whether the tool is tested well as require and some

explanation of how the problems to be solved.

Chapter 7 gave detail about result according the methodology used and some

discussion about the advantage and disadvantage of this thesis.

Final conclusions and describes a number of avenues for the improvement of this

tool, as well as, for the development of new converting tools.

1.6 Summary.

This chapter has described some problems met by user in using Prolog. In this thesis,
it gives a brief statement at the outset of the objectives of this thesis and the main
conclusions. Beside that, scope and limitation were described and schedule of doing

this thesis was illustrate on the timeline.

This chapter is very useful to readers before they plunge into more detailed
descriptions. In the next chapter, more explanations of particular point how to make

this thesis succeed will be presented to readers,

Chapter Two

Literature Review

Research and literature reviews were methods to gain more information from
proposed articles, journals, reference from internet or books and proposed thesis in

FSKTM document room. With that some discussion related will be describes in this

chapter.

This chapter will cover some topics like some research, what is intelligent,

introduction of Natural Language, characteristics of VPS5, appropriate programming

languages and DBMS.

2.1 Some research.

From definitions of a dictionary, convert are means (1) To change or turn from one
state or condition to another; to alter in form, substance, or quality; to transform; to
transmute; as, to convert water into ice. (2) To turn into another language; to
translate and so on. For this thesis, convert is mean change the Pseudocode in

Natural language form to Prolog codes.

There are too many types of converter, which some is already in used and some are
still in research. For examples, C-language sources to HTML converter, MS-WORD

to HTML converter, Convert files to pseudo-natural-language text and back again

[13], and so on. However, most of these converters are not converting natural
language to code, like C-language sources to HTML converter or ¢2html is a syntax
highlighter for C source code that produces a highlighter html file as output. For MS-
WORD to HTML converter or MSWordView is a program that can understand the
Microsoft word 8 binary file format (office97), it currently converts word into html,

which can then be read with a browser, thereby, it also not corresponding to this

thesis.

In addition, a converter called NICETEXT is a package that converts ciphertext or
any input file into pseudo-natural-language text and recovers the ciphertext or file
from the text. The expandable set of tools allows experimentation with custom
dictionaries, automatic simulation of writing style, and the use of Context-Free-
Grammars to control text generation. It is the result of Masters Thesis research at the

University of Wisconsin, Milwaukee under the advisement of Dr. George Davida

[14].

2.2 What is Intelligence?

Intelligence is easier to recognize than to define or measure. While the word
“intelligence” is used in ordinary conversation, and has a dictionary definition, it has
no agreed-upon scientific meaning, and no quantitative natural law relating to |
intelligence have as been discovered. A dictionary definition of intelligence includes
statements such as (1) ability to meet (novel) situation successfully by proper
behavior adjustment; or (2) the ability to perceive the interrelationships of presented

facts in such a way as to guide action toward a desired goal [7].

For this thesis, intelligence in IPPC is mean to make a tool that can analyze the

sentences (object, predicates or relation, and facts) and convert it into the Prolog

codes without Prolog syntax errors occur.

2.3 Pseudocode Definition.

A series of statements that outline what a computer program will do, without putting
in the actual programming code. The Pseudocode, which can be written in natural
language, is a preliminary step in designing a program, and helps the programmer
think through what steps will be necessary. At the Pseudocode stage, it is not

necessary to know what programming language will be used. In a later step, the

Pseudocode will be translated into actual computer [9].

«10 -

IF Total > 10 THEN
SET Carry to 1
SUBTRACT 10 from Total
ELSE
SET Carry to 0O
END IF

Figure 2.1 Pseudocode example

2.4 Natural language understanding.

Prolog is an appropriate programming language for natural language, but not used in
full because programmer still need to understand some syntax for express the
meaning of the sentences. Pseudocode is a paper work written in partial or fully
natural language. In addition, IPPC apply Pseudocode as main inputs from user.
Therefore is good to understand some knowledge about sentences structure and

grammars,

2.4.1 Different levels of language analysis
In IPPC, user must use considerable knowledge about the structure of the language,

including what the words are, how words combine to form sentences, what the words

mean, how words meanings contribute to sentence meanings.

In natural language understanding, it have some of the different forms of knowledge,
e.g. phonetic and phonological knowledge, morphological knowledge, syntactic

knowledge, semantic knowledge, pragmatic knowledge, discourse knowledge and

world knowledge.

“l] =

For understanding in this thesis, syntactic and semantic knowledge were used.
Synthetic knowledge concern how words can be put together to form a correct
sentences and determines what structural role each words play in the sentences and
what phrases are subpart of other phrases. For semantic knowledge, it concern what

words mean and how these meanings combine in sentences to form sentences

meanings [6].

For build an IPPC, the tool must have ability to understanding the meaning of the
sentences given by user. Thereby IPPC must involve with algorithm of natural

language syntax and semantic.

2.4.2 Classes of words

The basic unit in a sentence is derived from words, which can group to 4 main
classes — nouns (N), adjectives (ADJ), verbs (V), and adverbs (ADV). Each of this
class has their own means. Beside that, some others classes like articles, pronouns,
preposition, particles, quantifiers, conjunctions, and so on also will give different

means of sentence given.

For noun phrases (NPs) was used to refer to things: objects, places, concepts, events,
quality, and so on (most of these NPs define as facts in clause section). The simplest
NP consists of a single pronoun: he, she, they, you, me, it, I and so on. Another form

of noun phase consists of a name or proper noun, such as Wang or Mike. These

nouns will initial in capitalized form.

-1

A sentence consists of an NP, the subject and followed by verb phase (VP), the
predicate. A simple VP consists of some adverbial modifiers followed by the head
verb and its complements. Verbs have different classes: like auxiliary verbs (be, do
and have), modal verbs (will, can and could) and main verbs (eat, ran and believe).

From these three classes, main verbs normally will be treating as predicate in facts or

rules.

Therefore, it is important that an IPPC can recognize the predicate or arguments

should be, by identifying the classes of natural language.

2.4.3 Grammars and sentence structure

For examine syntactic structure of a sentence, two things must be consider the
grammar, which is a formal specification of the structures allowable in the language

and parsing technique, which is the method pf analyzing a sentence determine its

structure according to the grammar [6].

To form a sentence, the sentence must consist of an initial noun phase (NP) and
followed verb phase (VP). From the VP, it composes with a V and an NP (which
consist of article and common noun) [3]. For example, John ate the cat was a

sentence group by NP — V — Art — N. On the other hand, this sentence can

represented using tree representation as below:

-13 -

Sentence

N \Y NP
/ \
Art N
| |

John ate the cat

Figure 2.2 Sentence basic structures.

From the structure, IPPC will recognize which will be the facts, predicates, and

arguments to form the correct codes in Visual Prolog.

2.5 Programming Logic.

Programming Logic or Prolog invented by Alain Colmerauer and Phillipe Roussel at
the University of Aix-Marseille in 1971, and addressed to avoid problems of
combinatorial explosion: it can be viewed as a restricted theorem prover, where the
restrictions are on the input language, on the inference rules used and on the search
strategy. Prolog is a descriptive or declarative language, which means a series of step
specifying how the computer must work to solve a problem, a Prolog program
consists of a description of the problem [4]. Alternatively, Prolog is a computer
programming language that is for solving problems that involve objects and
relationships between objects. Computer programming in Prolog consist of (1)

declaring some facts about objects and their relations, (2) defining some rules about

aldis

objects and their relationships, and (3) asking questions about objects and their

relationships [8].

Prolog is a conversational language, which means the user and the computer carry
out a kind of conversation. Assume that the user are seated at a computer terminal
and have asked to use Prolog The computer terminal user use has a keyboard and a
display. User use the keyboard to type character into the computer, and the computer
uses the display to type back result to user. Prolog will wait for user to type in the
facts and rules that pertain to the problem user want to solve. Then, if user asks the

right kind of question, Prolog will work out the answers and show them on the

display.

Advantages using Prolog: (1) Prolog can make deduction from the existed facts or
rules. (2)Prolog execution is controlled automation, Prolog is a powerful and has a
very short and simple syntax which can reduce human errors and maintenance cost.
(3) Scoping rules are simple and uniform in Prolog and declaration of variable names
is not required. This reduces code size and opportunities for error. (4) Prolog has a
history of use for linguistics research and natural language processing. (5) Prolog is
not a complete implementation of logic; it is much closer to it than other

programming languages like C.

Disadvantages using Prolog: (1) It tempts user to write things that look logically
correct, but that won't run. (2) The obvious way to write a predicate is unlikely to be
efficient. Users must know when a predicate needs to be optimized. (3) Because it

lacks functional notation, predicates can become cumbersome. (4) Input and output is

Sk

not always easy. (5) There are some features which have not been standardized, and
differ between implementations. For examples, formatted input and output, file-
handling, sorting predicates. (6) User can't re-assign to parts of data structures. This
makes it impossible to implement arrays. However, functional programmers have

developed a number of fast-access data structures which do almost as good a job.

Early implementations included C-Prolog, ESLPDPRO, Frolic, LM-Prolog, Open
Prolog, SB-Prolog, UPMAIL Tricia Prolog. In 1998, the most common Prologs in
use are Quintus Prolog, SICSTUS Prolog, LPA Prolog, SWI Prolog, AMZI Prolog,
SNI Prolog and Visual Prolog. Because of VPS5 (personal edition) is a freeware

system available in http://www.visual-prolog.com and have a friendly programming

environment, therefore is good to use it as thesis resource in [PPC development.

2.5.1 Fundamentals of Prolog.

Below will introduce some important element of Prolog, which is facts, rules,

variables and goals or questions.

2.5.1.1 Facts.

Most of the facts are objects. For example, “John likes Mary”, which this sentence
consist of two objects, called “John” and “Mary”.and a relationship, called “likes”. In

Prolog, this facts will be write in standard form like this: likes(john, mary).

There have some important things to be mention about is: (1) the names of all

relationships and objects must begin with a lower-case letter. For examples, likes,

=16 =

john, mary. (2) The relationships is written first, and then objects are written
separated by commas, and the objects are enclosed by a pair of round brackets. (3)

The full stop character ‘. must come at the end of a fact.

Beside that, for defining relationship between objects using facts, user should pay
attention to what order the objects are written between the round brackets. However,
the order is arbitrary and must solve consistently. For current arbitrary convention,
the “liker / John” from the above fact will be put as the first of the two objects in
round brackets and the object that is liked (Mary) in second slot. Therefore, the fact

likes (john, mary). which mean “John likes Mary” is not same thing as likes (mary,

john). with meaning “Mary likes John”.

For some terminology, the names of the objects that are enclosed within the round
brackets in each fact are called arguments (John or Mary). Moreover, name of the

relationship, which comes just before the round brackets, is called predicate (likes).

In prolog, a collection of facts is called a database. Therefore, the word database

shall be use whenever collected facts are used to solve particular problem.

2.5.1.2 Rules.

Sometime in sentence like “John likes Mary” is easy to define as fact in Prolog, then
how about a sentence “John likes all people”? One way to do this would be to write
down separate facts like likes (john, Alfred), likes (john, charles), and so on for every
person in the database. However, this becomes tedious, especially if there are

hundreds of people in the Prolog program.

-7 -

Another way to solve this problem is using rules. In Prolog, rules are used when a
fact depends on a group of other facts. On the other hand, rules are also use to
express definitions. A rule is a general statement about objects (some use variables
for objects) and relationships For example: John likes anyone who likes wine or in

other words John likes X if X likes wine.

In Prolog, a rule is consist of a head (conclusion part: left-hand side of the rule) and a
body (condition part: right-hand side of the rule). The head and body are connected
by the symbol :-, pronounced as if. For examples as above sentence, 1S written in

Prolog as: likes (john, X) :- likes (X, wine). Notice that the rules are ended with a

dot.

For solving a question in the rules, matching (predicate are the same for a fact) to the

database will occur.,

2.5.1.3 Variables.

Sometime the user may want to find out what things that John likes, so the user may
ask “Does John like books?”, “John likes Mary?”, and so forth, with Prolog giving a
Yes-or-No answer each time. It is tiresome. So is more sensible to ask Prolog to tell
the user something that John likes. Then user can phase a question of this form as
“Does John likes X?”. Because the users do not know what the object is that X stand
for, so Prolog will give what the possibilities are. In Prolog, users can use names like

X, which called as variable, to stand for objects to be determined by Prolog. For

example, likes (john, X).

=18

When Prolog uses a variable, the variables can either instantiated or not instantiated.
A variable is instantiated when there is an object that the vanable stands for. A
variable is not instantiated when what the variable stands for is not yet known.
Prolog can distinguish variables from names of particular objects because any name

beginning with a capital letter is taken to be variable.

Beside this, Prolog also has an anonymous variable which used “ ” or underscore as
a symbol. This variable will filter the information not need to be show on screen

(refer figure 2.3).

Variables in Prolog have some distinctions from other programming languages,
which variables are not store information and the value it gets is through pattern-
matching to constants (arguments) in facts or rules. A variable said to be free before
it gets a value; when it get a value, it become bound. Only bound until a solution is

obtained then prolog will unbind it, backup and look for alternatives solutions.

PREDICATES

CLAUSES
male (bill).
male (joe) .

female (sue) .
female (tammy) .

parent (bill, joe) .
parent (sue, joe) .
parent (joe, tammy) .

GOAL
parent (Parent, bl

Parent=bill
Parent=sue
Parent=joe

Figure 2.3 Example of anonymous variable.

-«-19 .

2.5.1.4 Queries.

After all of the facts and rules are defined in the program, users can ask the program
for get something or result from that program. For this, Prolog has one part call —

Queries or Goal for user input their questions to get results.

When a question likes: likes (john, mary) is asked of Prolog, it will search through
the database (facts). It looks for facts that match the fact in the question. The fact
match if their predicate is the same and their corresponding arguments each are
same. If Prolog finds a fact that matches the question, Prolog will respond yes. If no

such facts exist in the database, Prolog responds no.

If a variable used in the question like likes (john, X), Prolog will search the database
and instantiate the variable with some value or object. If the predicate and argument

was matched, Prolog will respond by giving the instantiated value on the variable

likes X = mary.

2.5.2 Prolog’s Syntax.

Prolog provides way to structure data as well as to structure the order in which

attempts are made to satisfy goals. Structuring data involves knowing the syntax by

which users can denote data.

Syntax of a language describes how users are allowed to fits words together. In

English, the syntax of the sentence “I see a zebra” is correct but the syntax of “zebra

see I a” is not correct.

«20 -

For Prolog, the programs are built from terms. A term is a constant, variable, or a
structure. Characters are divided into 4 categories which are (1) upper-case letter, (2)

lower-case letter, (3) digits, and (4) sign characters.

Constants are specific objects or specific relationships. Have two kind of constant:
atom and integers. There are two kind of atom: those make up of letters and digits
(must begin with lower-case letter), and those make up from sign (enclosed in single
quotes ‘ * * with any characters in it or insert underline character °_" within the atom).
For examples, void, ‘str3ing’, george smith and so on. The other kind of constant:

Integers, which used to represent numbers for arithmetic operation.

The second kind of term used in Prolog is the variable. Variables look like atom,

except it begins with capital letter or an underline sign.

The third of term with which Prolog programs are written is the structure. A structure
is a single object which consists of a collection of other objects, call components.
The components are group together into a single structure for convenience in
handling them. For example, an index card for a library book contain several
components like the author’s name, the title of the book, the date when it was
published, location to find it and so forth. A structure is written in Prolog by
specifying its functor, and its components. The components is enclosed in round
brackets and separated by commas. The functor is written Just before the opening

round bracket. For example, owns (john, book (wuthering_heights, bronte), which

201%

owns fact have a structure by the name of book and two component, a title and an

author.

2.5.3 Visual Prolog’s program sections.
Generally, a Visual Prolog program includes few basic program sections. These are

the clauses section, the predicates section, the domains section, the goal section and

another few common section likes facts, constant and global.

Clauses section is the heart of a Visual Prolog program which facts and rules are
defined in it. In satisfy a goal, Visual Prolog will proceed at clauses section to search
appropriate match. As Visual Prolog proceeds down through the clauses section, it
places internal pointers next to each clause that matches the current sub-goal. If that
clause is not part of a logical path that leads to a solution, Visual Prolog returns to

the set pointer and looks for another match (Backtracking).

The predicates section is part for declaration of predicates and the domains (types) of
the arguments to the predicates. This is important for telling the Visual Prolog what
things inside the program. For predicate declaration, it must begin with predicate
name followed by its arguments (in a parenthesis). Each argument type separate by

comma and predicate declaration is not followed by a period (same like below).

predicateName(argument typel, argument_type2, ..., argument_typeN)

After define rules and facts in clauses section and declared predicates in predicates

section, user can start to make a query in goal section. The query is same as a rule

ke

but not followed by :- and it simply a list of sub-goals. This section will be
automatically executed by Visual Prolog when the program runs. If all arguments a
query is succeed then program will terminate successful, vice-versa program is said

to have fail.

For a big program write in Visual Prolog with a large number of predicates, some of
the argument types are making the codes more implicit or unclear. Because of this, in
Visual Prolog have a domain section that allow user to declare corresponding
argument types using meaningful words and limit the argument in some domain
only. From example, a sentence like “Frank is a male who is 45 years old” which

will give a declaration predicate as below:

PREDICATES

person (symbol, symbol, integer)_

Can be change to

DOMAINS
name, sex = symbol
age = integer

PREDICATES

person (name, sex, age)¢—-_

Therefore, Visual Prolog will easily detect error occur if the argument in “person”

swap which argument types will not match.

=08 =

Same as others programming languages, Visual Prolog also provide a constant
section for declaring a fix numeral value to a meaningful word (syntax: <Id> =
<Macro definition>). Then user can save time in rewrite the same complex

calculation or numerals and make the program more easily to read. Declaration in

constant section is like below:

CONSTANTS
hundred = (10*(10-1)+10)

pi =3.141592653

Most of the facts are define in clauses section before get in runtime, but how about
adding new facts when runtime occur? For this problem, Visual Prolog has a facts
section (keyword facts is synonymous with database) which is a part of dynamic
database that allow user update (change, remove, or add) some of the program facts.
Standard predicates or keywords like assert, asserta, assertz and consult 1s used to
adding new facts at runtime. Retract and retractall used for delete facts from the

program at runtime.

Most of the section describe above is a local definition and declaration for a project,
then how about to make a project with modules in it? So for this a section calls
global section (rather than local), which is used for enable communication across
different modules. For large project is good to write each section in a separate
module for make easily in enhancements or modifications. In this section, user can
write global domain, global predicates and global facts for use in a module by

include it (refer figure 2.2).

Poae

Global Global
predicates Domain

Main module (with goal

Global section):
an::)tsa o - include global domain
- include global facts

- include global predicates

Figure 2.4 Illustrate communications between module (main) with
sub-module (global predicates, global domains, and global facts).

2.5.4 Built-in Predicates in Visual Prolog.

Within a Visual Prolog, it has a lot of predefined keywords that easily to use by user.
Visual Prolog has categorized the built-in predicates into few parts: Arithmetic
Functions and Predicates, Control Predicates, Conversions, Data Compression, Error
& Break Control, External Database System, File System, Binary Handling,
Input/Output, Internal Facts Sections, Machine Low-level, Miscellaneous, OS

Related, and String Handling. For detail about built-in predicates in Visual Prolog

can visit to http://www.visual-prolog.com.

ADRE

2.5.5 Prolog’s data structures.

List is a very common data structure in non-numeric programming. The list is an
ordered sequence of elements that can have any length. The elements of a list may be
any terms — constants, variables, structures. This property is helpful when users
cannot predict in advance how big a list should be, and what information is should
contain,

Lists can be represented as a special kind of tree. A list is either an empty list, having
no elements or it is a structure that has two components: head and tail. For example,

legal list like [], [the, men, [like, to, fish]], or [X+Y, x+y].

Common operation with list is split a list into its head and tail. For example, the list
with head X and Tail Y will be written as [X]Y], where the symbol |’ separate the
head and tail. List also use for representing strings. For example, a string “system”

will changed by Prolog into a list [115, 121, 115, 116, 101, 109].

From a list, some operation like (1) membership, which is checking whether come
object is an element of a list, which corresponds to checking for the set membership,
(2) concatenation of two list, obtaining a third list, which may correspond to the

union of sets, (3) adding a new object to a list, or deleting some object form it.

2.5.6 Cut.

A ‘cut’ allow users to tell Prolog which previous choices it need not consider again
when it backtrack though the chain of satisfied goals. Syntactically, ‘cut’ is

representing as ‘1" (called predicate and no arguments) in Prolog program.

26 -

There have three main area of using ‘cut’, which is (1) telling the Prolog system that
it has found the right rule for a particular goal, (2) telling the Prolog system to fail a

particular goal immediately without trying for alternative solutions, and (3) to

terminate the generation of alternative solutions through backtracking.

2.6 System Development Software for IPPC.

There are so many of system development software for develop new system for use
in industrial, banking, military or research. Most popular system development
software used by Computer Company is C and C++, COBOL, Java, UML, RPG,

Visual Prolog, and Visual Basic.

For this project, Visual Basic 6 (Visual Basic descendent) was chose for develop the
IPPC tool. Visual Basic provides a complete set of tools to simplify rapid application
development. So what is Visual Basic? The "Visual" part refers to the method used
to create the graphical user interface (GUI). Rather than writing numerous lines of
code to describe the appearance and location of interface elements, users simply add
pre-built objects into place on screen. If users have ever used a drawing program
such as Paint, users already have most of the skills necessary to create an effective

user interface. Addition, Visual Basic is an object-based programming language.

The "Basic" part refers to the BASIC (Beginners All-Purpose Symbolic Instruction
Code) language, a language used by more programmers than any other language in

the history of computing. Visual Basic has evolved from the original BASIC

27

language and now contains several hundred statements, functions, and keywords,
many of which relate directly to the Windows GUI. Beginners can create useful
applications by leaming just a few of the keywords, yet the power of the language
allows professionals to accomplish anything that can be accomplished using any

other Windows programming language [10].

Visual Basic has the tools like (1) Data access features allow users to create
databases, front-end applications, and scalable server-side components for most
popular database formats, including Microsoft SQL Server and other enterprise-level
databases. (2) ActiveX™ technologies allow users to use the functionality provided
by other applications, such as Microsoft Word processor, Microsoft Excel
spreadsheet, and other Windows applications. Users can even automate applications
and objects created using the Professional or Enterprise editions of Visual Basic. 3)
Internet capabilities make it easy to provide access to documents and applications
across the Internet or intranet from within your application, or to create Internet
server applications, and (4) finished application is a true .exe file that uses a Visual

Basic Virtual Machine that users can freely distribute.

S98%

2.7 Database.

A database is a collection of information organized as to make it easy to view it,
search it, retrieve the right detail, and collects the necessary facts in an easier, timely,

and effortless manner as possible [15].

Databases fall into two broad categories: (1) desktop and scalable applications such
as Microsoft Access, and (2) true RDBMS (Relational Database Management

Systems) such as Oracle, Informix, and SQL Server.

Microsoft Access is a relational database used on desktop computers to manage
information on different levels for different purposes. Microsoft Access can be used
for personal information management, in a small business to organize and manage all

data, or in an enterprise to communicate with servers.

There have some advantages use of Microsoft Access, which are no extra server cost,
ease of implementation, lower development cost and compatibility with existing
desktop system. Also have few disadvantages like limited amount data storage, not a

long term option for a large site.
For this thesis, database is used for store some keywords correspond to the tool usage

like sign symbols (:- , ¢, and so forth). Thereby, it not need too big of storage and

the tool is use for local PC only.

=29 .

Chapter Three

Methodology

More information, better information, and better management of information are part
of software development request. Because the requests and the need far exceed the
resources limited productivity and limited number of hours in the day. That led to a
discussion of methodology. Methodology means the science of method or
arrangement; a treatise on method. Therefore, this chapter will draw out the suitable

methodology for the proposed tool.

Beside that, this chapter will describe approach, model, tool, problem, and domain

involved in the methodology.

3.1 Process Model.

A well-designed tool will follow one of the proscribed software process models. A
process model is also known as a software-engineering paradigm. It is chosen based

on the nature of the project and application, the methods and tools to be used, and the

controls and deliverables that are required.

There are so many process models for software development. For examples, V-

model, Transformation model, Prototyping model, Waterfall model and so on. For

=30k

this thesis, waterfall model with prototyping had chosen for guiding the development

process.

The model for development process was proceeding from identifying problems to

implementation and maintenance, as shown in figure 3.1,

Identify problems
and Objectives
Requirement !
analysis ——l Validate

System Design _l fy

Y Testing
Prototyping 1
Implementation

3

Maintenance

Figure 3.1 Waterfall Model With Prototyping,

L1k

3.1.1 Discussion of Waterfall model With Prototyping.

The Waterfall model abstracts the essential activities of software development and
lists them in their most primitive sequence of dependency. Real development
projects (software and other) rarely follow such a model literally, mainly because the
model can and is applied to itself recursively, yielding an almost fractal fabric of

actual activity.

For enables the user and developer to examine some aspect of the proposed tool and
decide it is suitable or appropriate for finished tool, thereby, a sub-process called
prototyping was used in this development process. Design prototyping helps
developer assess alternative design strategies and decide which is best for a particular
project. Often, the user interface is built and tested as a prototype, so the users
understand what the new tool will be like and the designer get a better sense of how

the users like to interact with the tool.

=300

3.1.2 Activities for development process.
In the Waterfall model with prototyping, have few activities for development process
which is identifying problems, requirement analysis, system design, coding, testing,

implement, operation and maintenance, and a sub-process, prototyping.

3.1.2.1 Identifying problems.

This thesis begins with scoping the project by first gaining nsight into definitions,
problems, and objectives for IPPC. From this activity, some questions like why the
tool was built, the usage of tool, difficulty of using Visual Prolog, and so on about

problems met by novice programmer had identify in this phase.

Thereby, after identified problems, it come to expand the problems with feasible

solutions and step for develop the tool.

3.1.2.2 Requirement analysis.

Before a tool start build, it begins by establishing requirements for all tool elements
and then allocating some subset of these requirements to tool. The requirements
gathering process is intensified and focused specially on tool. To understand the
nature of the tool to be built, the system engineer ("analyst") must understand the
information domain for the tool, as well as required function, behavior, performance
and interfacing. The essential purpose of this phase is to find the need and to define
the problem that needs to be solved. It also includes the personnel assignments, costs,

project schedule, and target dates.

-33.

3.1.2.3 System Design.

In this phase, the tool’s overall structure and its nuances are defined. The databases
design, the data structure design, and the number of tiers needed for the package
architecture etc are all defined in this phase. Analysis and design are very crucial in
the whole development cycle. Any glitch in the design phase could be very

expensive to solve in the later stage of the tool development. Much care is taken in

this phase.

3.1.2.4 Coding.

The design must translate into a machine readable form. The coding phase performs
this task. If design is performed in detail manner, code generation can be
accomplished with out much complication. Programming tool like compilers,
interpreters, debuggers are used to generate the codes. For this thesis, VB6 was used
as software development system to generate the code for the tool.

3.1.2.5 Testing.

Once the code is generated, the program testing begins. Different testing
methodologies are available to unravel the bugs that were committed during the

previous phases. Different testing tools and methodologies are already available.
3.1.2.6 Implementation.

After the testing is completed, the tool will send to user. User will use the for real

situation and

-4 .

3.1.2.7 Maintenance.

The tool will definitely undergo change once it is delivered to the user. There are
many reasons for the change. Change could happen because of unexpected input
values into the system. In addition, the changes in the system could directly affect the
tool operations. The tool should be developed to accommodate changes that could

happen during the post implementation period.

35 .

3.1.3 Advantages and Disadvantages of Waterfall model With

Prototyping.

Advantages

Waterfall model

Good way to sketch a plan for the
development. It will likely be too
simple, and usually a good, durable
framework for the real plan.

The stages are clear cut.

All R&D done before coding starts
mmplies better quality program
design.

Well suited for developing stable,
well understood computer-based
applications.

Prototyping model

User sees a real system fast
(1 or 2 days).

User directly involved in
specifying requirements.

Made for change therefore

possibly low maintenance
cost.

Serves as a basis for
discussion and helps
identify requirements when
there is no current system
like desired system.

Disadvantages

The waterfall process is possible for
experienced developers if
application domain is very well
understood by the developer,
developer has a detailed knowledge
of and practiced skills in using the
production tools and finally the
developer has experience of the
successful development of similar
products before.

Client must wait until the end to see
any product.

Can be too rigid.

One phase must be completed before
proceeding on to the next.

Requires high upfront costs

(software for database,
modeling, report,
generation, screen

generation.)

Difficult to wuse when
building large systems.

Sometimes difficult to
maintain user enthusiasm.

User never satisfied.

Tendency not to document,

Table 3.1 advantages and disadvantages for waterfall model and prototyping model.

3%

3.2 Prototype for this thesis.

For user understanding, is good to build a user interface which will give some notion
about the tool would be like. Thereby, below was some of the detail about IPPC

(Figure 3.2).

IPPC {Intelligent Prolaps =lot x|

3 Fle Eit Run He =18]x]
D ||| EEHH;N

ADBimaanre SERELE

User’s Guides.

4

12:52
New document, Open Button for converting Prolog
file, and Save file. Pseudocode into Prolog codes.

Pseudocode (in natural language
form) insert by user.

Figure 3.2 Interface for IPPC.

37 -

Chapter Four

System Analysis and Design

This chapter will discuss about some system analysis and the design of the system.
Requirement elicitation, definition, and management process will be disrupting in
this chapter. The next step in development called design which is to translate those

requirements into solutions, will be describe in this chapter.

Details of modularity used in design phase will be described and some useable
diagrams for describe the facets in the proposed tool where corresponding to each of
the level in the tool has been drawn out. The details represented in this chapter will
serve as a reference and important guidance for the tool development phase as well

as the tool implementation and maintenance phase.

4.1 System Analysis.

System analysis is a systematic investigation of a real or planned system to determine

the functions of the system, how they relate to each other and to any other system.

Each proposed model of the software development process includes activities aimed
at capturing requirement which also occurred in waterfall model with prototyping.
Defining the requirement is the first and most critical, step in software system

development. If the requirements are done well, the software flows logically and

"SRG

smoothly. Conversely if the requirements are done poorly, the resulting design is
awkward and the coding is more difficult. Usually, errors identified in the
requirement stage are the fastest and least expensive to correct, while those found in

later stages are increasingly more time-consuming and expensive to correct.

4.1.1 System requirements analysis.

There have two ways for describe requirements which are functional and

nonfunctional requirements.

4.1.1.1 Functional Requirement.

A functional requirement describes an interaction between the system and its
environment and described how the system should behave given certain stimuli [16].
For this thesis, it consists of 2 groups of functional requirement which are (1) User

requirements and (2) Tool requirements.

(1) User requirements.
The user requirements are used (in connection with the System in question) as a
complete, user-level set of requirements. When the tool is finished, it must be

proven by means of validation that the external specifications and the user

requirements have been met.

-30.

a. User interface.
For allowing user interact with the tool, is good to have a friendly tool’s
interface. The interface must have:
i. Forms for user insert Pseudocode.

Allow user to key in the Pseudocode, and allow user open few forms in
same tool’s working space.

ii. Toolbar and menus.
For making the tool ease to use, it must attach with icon and shortcut for
user to click on it. For examples, save icon, copy, cut and paste icon.

iii. Tool Guides (Help).
Some important description about how to use the tool and some
constraint and knowledge about the tool will be shown in the help
section.

iv. Result displayer.
The result converted from the Pseudocode must appear in the Visual
Prolog 5.2 working space or display on a form which can save in Visual

Prolog’s file type.

(2) Tool requirements.
This part will give some specify requirements of the tool:
a. Description of functionality.
i. The tool will receive a list of Pseudocode from user input.
fi. User must click the ‘Run’ icon for converting Pseudocode into Prolog

codes.

-40 -

1.

The codes generated from the tool will be shown in Visual Prolog 5.2

work space or shown in tool’s output form.,

b. Data Constraint.

.

ii.

A single list of Pseudocode be generate on time.

User can’t easily input unrecognized words which are not inside the
database. On the other hand, the words will be converting into related
predicate, argument, or variables which contribute to execution failure.

The Pseudocode must as short as possible and must end with period *.’.

c¢. Data operations.

i.

it

i,

.

The user can open many forms for writing Pseudocode, but one form (a
list of Pseudocode) will be converting into Prolog codes on time.
The user can save the Pseudocode into specified file type and also the

Prolog codes generated into Prolog file type, by selecting buttons shown

on the tool.
The user can create new list of Pseudocode, view existed Pseudocode,
and edit or delete a Pseudocode from the tool.

The user can find some help from help documents inside the tool.

7\

4.1.1.2 Nonfunctional Requirement.

A non-functional requirement is a description of other features, characteristics and

constraints that define a satisfactory system [16]. Below are the non-functional

requirements of the tool:

I

il.

iil.

Maintainability

Maintainability is the degree to which the tool can be cost-effectively made to
perform its functions in a possibly changing operating environment. The tool
are easy to modify and test in updating process to meet the new request,

correcting errors, or move to a different computer system.

Reliability
The tool operates in a user-acceptable and does not produce dangerous or costly

failure when it is applied in a reasonable manner.

Response Time and Performance

The time to convert Psendocode to Prolog codes must be within a reasonable
time. However, the performance especially the question “how fast will it give
the answer?” is very much depending on the hardware used. It will be very slow
if the power of processor is low and vise versa. Fortunately, recent computer

hardware becomes much more efficiency. Therefore, the response time could

consider acceptable.

User friendliness

The design of the GUI must able to attract users’ focus and easy to use.

A2

4.2 System Design.

Design development involves those processes and methods involved in translating
those identified detailed functional task elements as well as broader organizational
goals and requirements into concrete interface objects and dynamic interaction
techniques. In addition, design is the creative process of transforming the problem
into a solution. To design a tool is to determine a set of components and inter-

component interfaces that satisfy a specified set of requirements [16].

IPPC design solution follows by four levels. These three levels involve (1)
architecture, (2) IPPC converting process, (3) IPPC’s Database structures and (4)
Graphic User Interface design. Design development may involve developing
completely new interface/interaction solutions as well as retro fitting existing

systems by providing a more effective interface and interaction.

4.2.1 Level 1 - Architecture.

This level associates the system capabilities identified in the requirements
specification with the system components that will implement them. Component

usually modules and the architecture also describes the interconnections among them

[16].

IPPC’s components consist of input from user, intermediate converting process

(algorithm, input, and output), and IPPC’s database (refer Figure 4.1),

e

Intermediate converting Process

g

Input

User

Algorithm

Output

IPPC’s
Database

Figure 4.1 IPPC’s Physical Architecture.

From the figure shown above, the user needs to mnput the Pseudocode into IPPC.
After all Pseudocode was input, intermediate converting process (algorithm) will
start (described in level 2). The process will using matching technique which
matches some identified words with words in IPPC’s Database. Result from the

intermediate converting process will be show back to user with IPPC output screen

or Visual Prolog 5.2 workspace (refer Figure 4.2 for more detail),

J Pseudocode

‘ Pseudocode

[

Result /

parser

Generate
codes

Prolog’s Codes

Database

Buffer

Figure 4.2 IPPC’s Logical Architecture,

-44 -

4.2.2 Level 2 — IPPC’s Converting Process.

In the IPPC components, it need user to input the Pseudocode, thereby, IPPC must

have an effective algorithm to convert the Pseudocode into Prolog codes. Below will

give illustrate how the IPPC’s converting process start and finish (refer Figure 4.3).

Result /
Prolog Codes

—p User <
= Classify -
Pseudocode Run icon » Facts, Goals, Correction
\/_4 clicked Rules i
A
Ditibass M.atchmg / Invalid
Parsing process Pseudocode

y

Declaration & arrangement
of Domain, Facts, Rules
and Goal.

Results Page

A

Generation

Figure 4.3 IPPC’s Converting Process.

Descriptions:

After the user input the Pseudocode, user will click ‘Run’ icon, then the converting

process will proceed.

In the process, the first step of the algorithm (wrote in VB6) inside IPPC’s will

classified the type of the Pseudocode, (e.g. Pseudocode like ‘Jim likes May’ will

=48

classify as Facts). After the Pseudocode was identified, it will insert the type into

database.

The second step, matching of the Pseudocode will proceed. Matching process would
succeed is depend on the words inside the database. If unmatched Pseudocode met, it
will identify as invalid Pseudocode and need user to make correction on it (warning

message will prompt).

After all the validation finished in matching process, the next step is the declaration
of the Pseudocode and arrangement (result page generation) of the codes generated

will proceed. All the codes generated will insert into database.

After the entire step 1s finished, the result will show out to user by using IPPC’s

output interface or with Visual Prolog 5.2 workspace (refer Figure 4.4).

Figure 4.4 IPPC’s Input and Output interfaces.

-46 -

4.2.3 Level 3 — IPPC’s Database Structures Design.
In this thesis, usage of database is required for the IPPC’s C onverting Process. There
are a lot of types database, but for the tool, Microsoft Access is use as [IPPC database.

IPPC’s Database consists of two tables — buffer (store result) and words for matching

process.

To enable valid codes generated during the converting process, IPPC need matching
process for identify arguments and predicates for a fact or a rule. Thereby, a table for
store some important words was needed. In this table, words like is, are, were, verbs,
nouns and correspond words will insert in a field called ‘Words’. Beside that, from
the words given, types of Pseudocode will be specified, e.g. “Jim likes May’, from
this sentence ‘likes’ is classify as fact, or ‘if’ appear in the sentence, it will classify as

rule. Therefore, the second field called “Type’ could be part of the table.

Because of the Pseudocode from user is in form of line-by-line and the result must in
full codes converted from the Pseudocode, thereby, IPPC needed a table called
‘Buffer’ for store temporary codes generate from Pseudocode. In this table, it has
three fields which are ‘Queue’, ‘Converted codes’ and ‘Predicates’ (refer Figure 4.5),
The purposes for having "Queue’ field is for store valid Pseudocode in matching
process (and if invalid Pseudocode appear in the input list, IPPC not need to redo all
matched Pseudocode). ‘Converted codes’ field is for storing the codes generated
from Pseudocode and will be using to generate output. ‘Predicates’ is part of the
Prolog codes, which all Clauses need to declare first before use in Prolog program

(e.g. likes(symbol, symbol), then this field will store correspond Predicates

generated from IPPC,

-47 -

= Buifer: Table 1 e g ARG _ =lalx|

Predicates i

Figure 4.5 IPPC’s Database Structures.

4.2.4 Level 4 —IPPC’s Graphic User Interface Design (A).

In this level, tool interface is taking into high measurement, IPPC’s interface must be

user friendly and easier to use. Therefore, IPPC’s interface doas not have command

for performing the converting process but it creates from icons and menus, which
give a more adaptive interface to users, For more detail refer to Figure 4.6 for the

entire IPPC interface.

-48 -

=10 x|
=18] %]

Dlulul Ral & lgl .&J

Input sdreen
(worksﬂace)

1220aM | NOMm

N

D New File
§.J Open File

& save File

Ba| % @)

Copy, Paste and
Cut icons

R

——

Run icon (start the
converting process)

Icons

Figure 4.6 IPPC’s Graphic User Interface (a).

-49 .

4.2.5 Level 4 -IPPC’s Graphic User Interface Design (B).

Various forms had created in IPPC for user to fill in certain data. The data is need for

ensuring correct predicates and goal can generate in output form (refer below figure).

o i fon B et a0 x|
!
(‘) aer con choose defaulied predicars o select on tha
! Standacd Domain to change the agument's domain
f':f"' Arguments Standard Damains
L i | N
Predicates |

} USI12PM |
Form for user input domain for predicates, e.g. string or symbol

Gial 7 IR en e nawsel iy .)

‘? User can set queris ssarch fox the solions base on exisied Prokog clases ,
The gquery muet have numbsr of arguments Iy
Clats i :
i iy Anyword bvgin with
Argumerds siphabiel (notinteger) |

Goali
| Mot Sacod | f
s19PM |

Form for user input goal for querying,

ormamiec i et L)
0

it b eioosy & b able werd st for Sk word:

.

Wbt o ol

] aite N iy, 4o

Yo d blwge

‘ Adjective

Adverh

| A uitinry
D atot

Form for user input undefined word with corresponding word class

Figure 4.7 IPPC’s Graphic User Interface (b).

-50 -

Chapter Five

System Implementation

This chapter will discuss about the steps and methods taken to implement the tool

that was design earlier in the previous chapter. After the implementation, the tool

will be tested to look for errors.

5.1 Development Environment

The developing environment for the tool is the tools which includes the hardware

tools and the software tools. Both tools are described below for the client side.

5.1.1 Hardware Tools

Client / Personal Computer ol

Description:
The environment where the users can click on the IPPC execution icon to start

their pseudocodes converting process to Prolog codes.

Pentium II Processor, 32 MB RAM, Normal Monitor, Mouse, Keyboard

Table 5.1 Hardware Requirements Tools.

=51

5.1.2 Software Tools

Windows OS -98, 2000, XP
The platform used to run the tool. The tool is platform dependent where it can’t
work in other OS which cannot support “exe” and “dll” files. This platform provided

friendly interface in presentation and during debugging.

Visual Basic 6 and Visual Sourcesafe 6

It provides the easy way to develop IPPC with it’s includes all intrinsic controls,
plus grid, tab, and data-bound controls, and user friendly environment. A lot of time
has been saved during the interface development because VB6 provided variety of
templates for creating common application components. Provided integration with
Microsoft Access in data retrieval or saving data. Visual Sourcesafe 6 has give an

easier way to recover previous source code and provided a way for programmer to

save their code among several computers.

Microsoft Access — 2000, XP

It provide programmer to upgrade words data in PrologData database. It provides

good security in disable unknown person from changing the existed data by setting a

password.
Visual Prolog 5.2 Personal Edition (free trial or full version)

VP5.2 is downloaded from the Prolog Development Center. This will enable the tool

make compilation on the result generated from the tool.

S yie

Figure 5.1 Software Tools.

5.2 Tool Implementation.

Implementation comprises of the system design structure to a computer readable

system. The tool will be evolved from scratch design to a run able application. There

are several implementations for this tool.

Saan

5.3 Interface and Database Implementation.

The tool is created in order to allow user keys in their pseudocodes as shown in
Figure 5-2 and change it into actual prolog codes. The interfaces are developed
using Visual Basic 6 and the database is implemented with Microsoft Access XP
(2002) as the DBMS (as shown in Figure 5-3). The DBMS used to stored
pseudocodes (table named “SentenceBuffer”), words (in different word classes in
tables “ReserveWordsAdj”, “ReserveWords Aux”, “ReserveWordsN”,
“ReserveWordsV”), converted sentences structure (table named “NLPBuffer”) and
converted prolog codes (tables named “Buﬂ‘erCodesClauses”,

“BufferCodesDomain”, “BufferCodesPredicates” and “BufferCodesGoal™).

| I bt Brkeny S-osnlou il Bt ol
B E Bun tep T =18 x|
DUB v~ ybm & [os

l

JO0PM L NUM

Figure 5.2 The IPPC’s main page.

SLEVE

Proteigiatia P ophes Kie s i Tix!

General | Summary | Statistics Contants | Custom |

Tables «f 1
BufferCodesClauses B
BufferCodesDomain
BuffarCodaesGoal
BufferCodesPredicates
ErrorMsg
NLPBUI Fer
Paste Errors
PrologkeyWords
ResarveWordsAdy
ResarveWordsady
ReserveWordsaux
ReserveWordsDet
ReservewordsN
ReserveWordsPP
ReserveWordsPru
ReserveWordsV
SentenceBuffer
TempBuffer
UncodedSentbuffer

Document
contents:

Figure 5.3 IPPC’s Database tables.

Do take note that the implemented table structure has changed from the proposed
table structure at Figure 4.5 in Chapter 4: System Design. After the proper
examination, the single table structure below is more appropriate because the
proposed structure is having redundancy problem. This is a sufficient design to cater

any data matching for this application.

Y

5.4 IPPC Implementation.

The below UML diagram shows how IPPC is initial. This is the skeleton for each of

the tool except with their own unique behaviors to cater different given tasks.

IPPC’s s IPPC’s Prolog codes
Words Data Giingiindes () queue

Ar SR 7 - GetCodes ()

IPPC’s Sentences

IPPC’s object | Structures queue

8 — showOutput

1 — insertStc ()

IPPC’s Pseudocodes
(or sentences) queue

Figure 5.4 The IPPC collaboration diagram.

- 56 -

5.5 Rules Implementation.

3.5.1 Using Rules in IPPC

To represent rules as the knowledge in using object-oriented approach does making
sense. We should treat everything which related to rule as an object. The general
terms in rule are rule name, condition (i.e.: equals, more than...), clause, antecedent,
consequent, variable, right hand side and left hand side. We treat all the terms here
as an object which has their own attributes, methods and behavior. Thus, each of the

objects can behave as we wanted them to be.

In this case, we want to build a set of rules which act as the knowledge to recognize
English sentences and English words. After defining the terms, the next step is to
bind them up as a unit which is a rule and implement it to find the output. The

following shows how it does.

IPPC’s
Database

y

Input

Rules »| Variables

I
y v

Booleans Constants

True False

Output

Figure 5.5 The diagram shows how to implement rules in the IPPC.

—05

If the verb phrase have linking verb and noun then it be represent as sentence structure
for verb phrase, else user must choose the next word class for create a sentence
structure.

If WordTypeV = "ly_n" Then
WordTypeV ="ly n "
VP = WordTypeV

Else
UndefWord = Word
UsrDefWrdList. Show vbModal
WordTypeV = WordTypeV & GetDefClsType & " "
VP = WordTypeV
End If

If the sentence is condition sentence with “If-Then” then do the “then” part again, else
finish for the sentence structure generation.

If RuleEnabled Then
CheckTxt = ThenTxt
RuleEnabled = False
GoTo TraceAgaini{Then

Elself RuleEnabled = False Then

SentStructure = WordTypelf & WordType & WordTypeV
End If

Figure 5.6 Rules example.

-58 -

5.6 Bottom-up Implementation.

After all the needed rules were defined, it is considered that the tool are having a set
of rules about the English sentences matching and Prolog codes constrains. The

rules were coded in bottom-up method for produce sentences structure and prolog

codes.

Bottom-up strategy is start with the words in the sentence and use rewrite rules
backward to reduce the sequence of symbols until it consist solely of S []. For IPPC;
bottom-up strategy is used until a full sentence structure is create and rewrite to

major phrase like NP or VP or S will not proceed in IPPC,

When the IPPC get input from user, the IPPC’s algorithm will goes as follow:
a) Load a sentence from database.
b) Tokenize the sentence.

¢) Use rules to match word with word class in database.

The rules is use to Justify what kind of the sentence structure will be. From the
sentence, each word in the sentence (generated using tokenization technique)

will matching with word class in existed data in database,
From the generation of sentence structure, bottom-up strategy is used. Figure 5.7

will describe more detail about how to apply this technique in [PPC.

d) Insert the result into corresponding database.

e) Repeat a-d for other sentences and prolog codes routine.

-59.

Sentence from database called “SentenceBuffer”: John ate the cake.

From this sentence, the sequence of rewrite will look like this:

John ate the cake.
N ate the cake.

N V the cake.

N V Det cake.
NV DetN

$43833838

The sentence structure is creating base on how the rule is coded.

Figure 5.7 Applying Bottom-up strategy in IPPC.

Above algorithm can be identified as a parsing algorithm, which means as a
procedure for searches through various way (but in IPPC Bottom-up) of combining
grammatical rules to find a combination that generates a tree that could be the

structure of the input sentence [].

5.7 ActiveX Data Objects Implementation.

A cross-language technology for data access that exposes an object model
incorporating data connection objects, data command objects, Recordset objects, and
collections within these objects. The ADO object model provides an easy-to-use set
of objects, properties, and methods for creating script that accesses data in databases
[]. IPPC had implemented Microsoft Access as database, thereby; some command
codes are needed to make connection with it. Visual basic 6 have provided ADO for

this solution. Below have shown some ADO’s commands for using in connect the

MS Access database with IPPC.

- 60 -

Private WithEvents connConnection As ADODB.Connection
Private WithEvents rsinfo As ADODB.Recordset

strProvider = "Provider= Microsoft.Jet. OLEDB.4.0;"
strDataSource = App.Path

strDataBaseName = "\PrologData.mdb;"
strDataSource = "Data Source=" & strDataSource &

strDataBaseName
strConnect = strProvider & strDataSource

Set connConnection = New ADODB. Connection
connConnection.CursorLocation = adUseClient
connConnection.Open strConnect

Figure 5.8 ADO’s Commands.

5.8 Exception Handling Implementation.

Ever since the beginning of programming languages, error handling is one of the
most difficult issues. An exception is a n object tat is “thrown” from the site if the
error and can be “caught” by an appropriate exception handler designed to handle
that particular type of error. VB6 had provided exception handling for error

detection and recover from bad situation.

On Error GoTo ErrorHandler

Erll;)'r-l.—landler:
MsgBox "GetSent - part_3SQL (part_3.cls)", vbCritical

Figure 5.9 Exception Handling method.

«Gll=

Chapter Six

System Testing

Software testing is one of the main phases in the Waterfall Life Cycle model. In this
phase, the process of testing and debugging are done to detect defects and bugs of

the tool - IPPC. These processes are usually done incrementally with system

development.

This phase is also often referred to as Verification and Validation (V & V).
Verification refers to the set of activities that ensure the software correctly
implements a specific function. Validation refers to a different set of activities that
ensure the tool has been built is traceable to user requirements. A successful test is

one in which no errors are found.

The objectives to test this tool are:
a) To reveal rules error based on the simple English sentence structure.
b) To compare the expected outcome with the actual outcome. Eventually,
debug it to enhance it functionality and capability.
¢) To ensure the Prolog code created by IPPC and has been shown to users

and according to the user’s Pseudocodes.

Ny

6.1 Unit Testing

Unit testing focuses verification effort on the smallest unit of tool design

corresponding to the tool components or modules.

6.1.1 Testing Display and Database Module

This is referring to the IPPC interface and database testing to ensure that every data
which user insert into the interface is stored accurately and correctly to the
correspondence database. A set of sample raw data is created for the testing purpose
in this module. The process includes iterate the checking on the duplicated data in
database to ensure that every entered data is valid and ease the redundancy and
duplication problem. The control objects such as radio button, shortcut icons, combo

box and text field are tested too to ensure the correct functionality respectively

i SenEenc e iTer s i
Num’ l
1 Jack like Ben

Seiftenice

i NLPBuller @ 1able

1 Jack like Ben nv.n_
Dl 0}

s BulferCodestlpuses § 1able i

o |
| ‘ ‘11 Yack like Ben like(jack ben).

Clwua

Figure 6.1 Testing data insert into correct table.

- A=

6.1.2 Checking Database Data

A set of words for nouns, verbs, auxiliaries, determiners, and adjectives data is
prepared for IPPC during the user need to convert the Pseudocodes. Then, the words
in the pseudocodes are randomly checked to generate the correct sentence structure
based on those data. Manually checking all of the data with correct word class are

done by programmer.

i____q able adj £

i abnormal adj y

| |accessible adj g

‘_-‘ -

. |accused ad

His accustomed adj

|__|acquainted adj W

B actual adf @ 0 i

| |addicted adj Gt

__|adjecent adf & h
Ability is not a “adj” but is “n”. Error detected and must be correct by

programmer, if not error result will provide to user.

Figure 6.2 Data checking for corresponding database.

6.1.3 Testing Natural Language Processing Module
In this module, a study of a certain English sentence structures is necessary. This is
to identify the specific strings on a specific structure that we wanted to parse. A

serial of testing has been done to parse the wanted string from the specific sentence.

-64 -

NLP simple context grammar:

S =>NP VP

NP => ART ADJ N
NP => ART N

NP => ADJ N

VP => AUX VP
VP =>V NP

3338878

Must include in IPPC,

Figure 6.3 Testing for word parsing of a sentence.

r[-he “art / det”, “n”’ “adj”, “V”, and “auxn Strings are the strings that the IPPC Should
parse to the words for a sentence. Therefore, to study the structure of the English for

[PPC is essential in order to get the right results, which are the strings we want.

6.1.4 Testing Converting Rules Module

Testing has been done on the bottom-up strategy to ensure that it could produce the

desired result. This includes preparing a set of data.

To test whether the rules are working or not, we must make sure that each of the
rules have return the correct sentence structure as set in Figure 6.3. When the rule is
fire, say “if wordtype = “det”™” the then part must constrain to find following
sentence structure like: det adj_n or det n. If the rules unable to give the desirable
structure, programmer must make correction on it. Else, there’s a bug. Hereby, we
can say that the level of result gave has been decrease. Therefore, adding accurate

rule will enrich the IPPC reliability and vice versa.

= 851

To get the sentence structure: Det_Adj_N, below rules must satisfy.
= WordType = WordType & tumn2SQL.GetType(Word, Det)
lf WordType = "det" Then

WordType = WordType & " " & turn2S QL. GetType(Word, Adj)

ll‘ Word’l’ype = "det adj" Then

3333338383333

Figure 6.4 Samples of rules.

6.1.5 Testing Prolog Codes Generation Module

Prolog codes were the main purpose of implementing IPPC. Thereby, algorithm for
generate prolog codes must be test. In this module, codes for generate predicate and

clauses will give accurate result and executable in VP5.

6.2 Integration Testing

For this project, a bottom-up approach has been used. Bottom-up integration testing
begins construction and testing with modules at the lowest levels of the system and

then moving upward to the modules at the higher levels of the tool.
Since all the modules have been tested and have been declared bug free, the modules

will combine one by one according to the called modules. The integration is checked

again to ensure there is no €rTor.

-66 -

@a?) Part_1ProRules (Part_L1.cls)

I
(a4 Part_2ZNLP (Part_2.cls) 8 MainModule (MainVer1.vbp)

|
(1'% part_35QL (part_3.cls)

B

PrologData Ren i
X

Figure 6.5 lllustration of tool integration.

6.3 Tool Testing

Tool testing is a series of different tests designed to fully exercise the tool to
uncover its limitations and measure its capabilities. The objective is to test
an

integrated tool and verify that it meets specified requirements.

There are several types of system testing that are worthwhile for the tool - IPPC

a) Rule Testing

It is a test during the run time environment where the complete set of rules is loaded
ed.

If the pseudocodes (or sentence) converted into prolog codes, then it has considered
; re

SUCCESS.

- 7R

b) Performance Testing
The purpose of this testing is to test the run-time performance of the tool within the
context of an integrated tool. This will show the actual outcome which is the

message received and compare to the expected outcome.

¢) Database Testing
This testing will test whether the database is connected to the tool when the tool is
generated. If error detected, ensure that the “PrologData™ is existed in the tool’s

located folder. If not, the tool will not function as desire.

6.4 Testing Analysis

Overall, the tool runs smooth. All of the codes and words transformation work well
in database and execution files. IPPC is able to generate correct result. As a

conclusion, all the objectives have been achieved.

-68 -

Chapter Seven

Tool Evaluation and Conclusion

After the tool — IPPC is successfully built; the next phrase is evaluation and some
conclusion about this tool. The necessary need of evaluation is to make sure the tool

met goals for performance and other desirable attributes.

7.1 Tool Evaluation

During the period of coding and implementation of this system, various problems
were encountered. These problems were solved through research and studies in
fields such as the Natural Language Processing (NLP), Prolog Programming, Visual
Basic 6 programming, journals and reference book. The system’s strengths,

limitations, and future enhancement were identified.

- 069 -

7.2 Problems Encountered And Solutions

Problems are everywhere and so do in every thesis. Several problems encountered

throughout the development of this tool. These include:
a) Difficulty in Choosing Development Technology and Tools

There are many software tools available to