
IPPC

An Intelligent tool for converting
Prolog problems into Prolog codes

Intelligent Prolog Pseudocode Converter
(IPPC)

Perpustakaan SKTM

By

Wang Keng Kuen

Department of Artificial Intelligent
Faculty of Computer Science and Information Technology

University Malaya.

ubmitted in partial fulfillment of the
requirements for the Degree of
Bachelor of omputer cience

2002/2003

Univ
ers

ity
 of

 M
ala

ya

Abstract

A thesis presented in partial fulfillm ut of Ill' "quit nn mrs f r th Bachelor of

omputer cience degree. Thi do um nt is submitt d r. Rukaini Haji Abdullah

(thesis supervisor) and Ms Nori ma ldri (th sis rn derator), l cturers of FSKTM as

a report for the Final Year Pr ~ t Le cl ne, WX l 81.

Intelligent Prolog Pseudocode Converter (IPPC) are designed to allow novice

programmer have an easier tool for them to get Prolog codes converted from the

Pseudocode they had wrote. IPPC included documents to help guide users and

teaching them about how to write program with using IPPC.

The first part of the thesis presents about problems definitions for using Prolog in

writing program and introduction of IPPC. The second part introduces the th reti al

basis of the research and the methodologies employed to apply them. The final part

described about the IPPC's requirement analysis and IPP 's design.

For the next advancement stage, WXES3 I 82, the Final Year Project eve] One,

WX S3I81 is important as references in the actual coding and de elopment in

WXES3 I 82. However, there may have be some changes to the y tern de ign in thi

proposal for WX S3 182. TI1e changes have been reflecting in the product and in th i
report.

- I -

Univ
ers

ity
 of

 M
ala

ya

Acknowledgment

T would like to acknowlod c the help of m n 1 P)pl durin 1 m pr ·paration of this

thesis. At first, I would like lo 'Xpt s m 1 utm st rt titud t Dr. Rukaini Haji

Abdullah (thesis supcrvi or), for helping t superv is m , providing advices and

subjects, and offering dirocti n nnd pen trating riti ism. ln addition, I would like to

thank the subject, WXE 3 181, pro ided opportunity to get experiences that I regard

as so important.

Secondly, I would like to thank my project moderator, Ms Norisma Idris for being so

informative during the VIV A session. The advices, questions and feedback were so

useful for this thesis. Best wishes for her recovery from illness.

I have also benefited from many discussions with my friends and course mates wh r

I had a chance to develop some of my ideas before this thesi commenced.

Finally yet importantly, I would like to give my thanks and loves to my family.

- II -

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

Abstract

Acknowledgment

Table of content

List of Figures

List of Tables

u

l1l

vi & vii

vni

Chapter 1: I ntroductioo

1.1 What is an "Intelligent too/for convert Pseudocode into 3
Prolog codes" I IPPC?

1.2 Project Objectives.

1.3 Scope and limitation.

1.4 Timeline.

1.5 Thesis structure.

1.6 Summary.

4

5

5

6

7

Chapter 2: Literature Review

2. 1 Some research.

2.2 What is Intelligence?

2.3 Pseudocode Definition.

2.4 Natural language understanding.

2. 4.1 Different levels of language analysis

2 . ./.2 lasses of words

2../.3 Grammars and sentence structure

8

10

10

11

11

12

13

- 111 -

Univ
ers

ity
 of

 M
ala

ya

2.5 Programming Logic. 14
2.5.1 Fundamentals of Prolog 16

2.5. I. I Facts l6
2.5.1.2 Rules 17
2.5.1.J Variahlcs 18
2.5.1 . ./ Quert '!ii 20

2.5.2 Prolog 's S ntax 20
2.5.3 Visual Prolog's programs ction 22

2.5.4 Built-in Predicates in Visual Prolog 25
2.5.5 Prolog's data true tu res 26

2.5.6 Cut 26

2.6 System Development Software for IPPC.

2.7 Database.
27

29

Chapter 3: Methodology

3.1 Process Model. 30
3.1.1 Discussion of Waterfall model With Prototyping 2

3.1.2 Activitiesfor development process 33

33

33

34

34

34

34

35

3.1.2.1 Identifying problems

3.1.2.2 Requirement analysis

3.1.2.3 System l esign

3.1.2.4 Coding

3.1.2.5 Testing

3.1.2.6 Implementation

3.1.2.7 Maintenance

3.1.3 Advantages and Disadvantages of Waterfall 36

model With Prototyping

3.2 Prototypefor this thesis 37

·IV -

Univ
ers

ity
 of

 M
ala

ya

Chapter 4: System Analysis and Design

4. I System Analysis.

4. I. I System r. iqu! retncnts analysts

./.I. I. I J.'1111·rio111/ Ucq11irc111 -nt

4.1.1.2 N01!fi111 'Tio111/ Re [uircm -nt

4.2 System Destgn .

./.2.1 Level I Architectur

./.2.2

./.2.3
Level 2 IP PC's onverting Process

Level 3 !PP "'s Database Structures Design

Level 4 JPP 's Graphic User lnteiface Design
(A)

4.2.5 Level 4-IPP 's Graphic User Interface Design

4.2 . ./

(B)

Chapter 5: System Implementation

5. I Development environment.

5. I. I Hardware tools

5.1.2 Software tools

5.2 Tool Implementation.

5.3 Interface and Database implementation.

5.4 JPPC implementation.

5.5 Rules implementation.

5.5.J Using rules in /PP

5.6 Bollom-Up Implementation.

5. 7 Actives; data object implementation.

5.8 Exception I landling Implementation.

- v -

8

39

39

42

43

43

45

47

48

50

51

51

2

53

54

56

57

57

59

60

61

Univ
ers

ity
 of

 M
ala

ya

Chapter 6: System Testing

6.1 Unit Testing. 63

6.1. I Testing Dtsplay 011II)110/ 1s, \I> iul« 63

6.1.2 Ch' ·king I atabasc I 11/ 1 64

6.1.3 Testing Natural l.a11,t,JJ11g • Pro · rssing dodule 64

6.1.4 Testing Com erti11c 1?11/t>_ module 65

6.1.5 7\~ting Prnlog -o le. 11.m iration -Iodnle 66

6.2 Integration Testing.

6.3 Tool Testing.

6.4 Testing Analysis,

66

67

68

Chapter 7: Tool Evaluation and Conclusion

7.1 Tool Evaluation. 69
7.2 Problems encountered and Solutions. 70
7.3 Tool Strengths. 72
7.4 Tool Limitations. 74
7.5 Tool Enhancement. 76
7.6 Conclusion 77

Bibliography
78

·VI -

Univ
ers

ity
 of

 M
ala

ya

List of Figures

Figure 1.1 Main component ofJPP . 3

Figure 1.2 Gantt chart fi r hapr r 1 to 5

Figure l.3 Gantt chart for Chapter to h pt r 7. 6

Figure 2.1 Pseudocodc e campl . 11

Figure 2.2 Sentence basic structures. 14

Figure 2.3 xample of anonymous ariable. 19

Figure 2.4 Illustrate communications between module (main) 25

with sub-module (global predicates, global domains,

and global facts).

Figure 3.1 Waterfall Model With Prototyping. 31

Figure 3.2 Prototype Interface for lPPC. 37

Figure 4.1 IPPC's Physical Architecture. 44

Figure 4.2 LPPC's Logical Architecture. 44

Figure 4.3 IPPC's Converting Process. 45

Figure 4.4 LPPC's Input and Output interfaces. 46

Figure 4.5 IPPC's Database Structures. 48

Figure 4.6 LPPC's Graphic User Interface (a). 49

Figure 4.6 IPPC's Graphic User Interface (b). 50

Figure 5.1 Software Tools. 53

Figure 5.2 The lPP 's main page. 54

Figure 5.3 lPPC's Database tables. 55

Figure S.4 The IPP collaboration diagram. 56

Figure S.S The diagram shows how to implement rules in the 57
IPP

Figure 5.6 Rule example.
58

Univ
ers

ity
 of

 M
ala

ya

Figure 5.7 Applying Bottom-up strategy in IPP 60
Figure 5.8 ADO's Commands. 61
Figure 5.9 Exception Handling method.

Figure 6.1 Testing data insert into 011' t tnbl '. 63
Figure 6.2 Data checking for corresp ndiug databa 64
Figure 6.3 Testing for word parsin r fas nt n e. 65
Figure 6.4 Samples of rules. 66
Figure 6.5 Illustration of tool integration. 67

List of Tables

Table 3.1 Advantages and disadvantages for waterfall model and 36
prototyping model.

Table 5.1 Hardware requirement tools. 51

- VIII -

Univ
ers

ity
 of

 M
ala

ya

Chapter One

Introdu tion

There are some controvcr iAI view tha: hi t ti ll • a ompanied Prolog. Prolog fast

gained popularity in Europe as a practical programming tool but still not familiar in

Malaysia. In Japan, Prolog was plac d at the central of the development of the fifth­

generation computer.

For conventional language are procedural oriented, Prolog introduces the descriptive

or declarative, view. This greatly alters the way of thinking about problems and

makes learning to student of computer science should learn something about Prolog

at some point because Prolog enforces a different problem solving paradigm

complementary to other programming languages [I].

Prolog is known to be a difficult language to master. It does not have the familiar

control primitives used by languages like RATFOR, ALGOR and PAS AL so the

system does not give too much help to the programmer to employ tructured

programming concepts. In addition, many programmers have become u d to

strongly typed languages. Prolog is very weakly typed indeed. This gives the

programmer great power to experiment but carries the obvious responsibility to be

careful [2].

- I -

Univ
ers

ity
 of

 M
ala

ya

For preparation in coding phase, programmer will write d wn paper work like

Pseudocode (in natural language). From the P scudoc d , pt granuu r mu t tran late

it into correct syntax. However, most of the no ice programm r will confu e with

what of the predicates and argum ms sh uld b {fi. r fl t). e ide that, novice

programmer also will make mistak in d fin nil (h ad :- b d). They will confuse

with what suppose be the head (con tu i n) r bod' pt mi es).

Alternatively, there are three main difficulties in writing programs: (1) the difficulty

specifying the problem from its natural language description, (2) the difficulty in

transfonning a given specification into an algorithm or procedure, and (3) the

difficulty in writing the algorithm, in a target language [5].

Thereby, is good to have a tool called "Intelligent Prolog Pseudocode Converter

(IPPC)" for helping programmers solving their problems in writing Prolog program .

- 2 -

Univ
ers

ity
 of

 M
ala

ya

1.1 What is an "Intelligent tool for convert Pseudocode into Prolog

codes" I IPPC?

Most of the programming languag has a 1 t f s. 1t , · th t th u er mu t obey before

a program is build. Normally a programmer will us s me technique to make their

works easier, like they will writ d w11 n P. ud d or flowchart before get into

coding phase. For this reason, why not just build a tool which can translate the

Pseudocode into codes for wasting time on thinking about how to write it in coding

phase. For accomplish this notion, a tool name "Intelligent Prolog Pseudocode

Converter I IPPC" is good to be develop.

IPPC is a tool that can translate Pseudocode (in natural language form) into prolog

codes. This tool is built by using Visual Basic 6 as System Development Softwar

and connected with a database which contains useable keywords. Refer figure 1.2 for

more detail about IPPC.

lPPC's Graphic User Interface

Input Natural Tool's helper Output: Translate Language (NL). (Guiding Documents)
codes from NL.

~

~

Database
English words Prolog Keywords

(e.g. is, are, verbs)

Figure 1. I Main comp nent of IPP .

Univ
ers

ity
 of

 M
ala

ya

1.2 Project Objectives

There are some reasons or object iv s for l r pos d this to l.

a) Helping novice progranun srfrom 'onfusion m 11 tarn more about programming

language in Prolog.

IPPC can use as codes checker. Novice programmer can check whether they have

defined codes in correct synta c, Beside that IPPC can popularize usage of Prolog

because it just need user to input Pseudocode (natural language).

b) Convert Pseudocode into an executable Prolog programs.

For a void time recklessly in coding phase, programmer should write down their

idea within a document or paper work in Pseudocode style. From the paper work

they just need to key in all the Pseudocode using lPPC. Then it will automatically

convert the Pseudocode into executable Prolog codes.

c) Applying Natural Language Processing in I PPC.

The main objective is to build an intelligent tool for convert Pseudocode (narur I

language) into Prolog codes, and then it must apply some of the natural language

techniques.

To achieve these objectives, existing VP5 was surveyed, infrastructure was put into

place, and a demonstration project was perfonned and evaluated.

- 4 -

Univ
ers

ity
 of

 M
ala

ya

1.3 Scope and limiuuion

In this thesis, the main purpose to build il 1l l ' hi h an onv rt Prolog

Pseudocode into Prolog codes. Mor 'O r, th' to)l is nl ompatible for who are

wanted to build program through Visual Pt l " ' rsion 5.2 (VP5). IPPC is a

converter and not a compiler, thereb , it ne id perate with VP5 for run the

converted codes (from IPP).

By the way the user must have understanding in English because the Pseudocode is

written in English. In addition, the user must have understanding in grammar, which

is a formal specification of the structures allowable in the language [6]. IPPC is

Jimited with words set in the database, which converting progress will success if the

words (in Pseudocode) are match with the words in database.

1. 4 Timeline

/

' Time (Month)
Activities

Jun July August
Thesis introduction and
topic overview
Literature review

Methodology

System analysis
• ...

System design

VIVA

• \. ,

Figure l.2 Gantt chart for hapter I to Chapter 4.

Univ
ers

ity
 of

 M
ala

ya

/

Activities
~ OV-0"'" Jn Feb

System Implementation

System Testing

Tool Bvaluation und - ... oncluston

VIVA
•

Figure 1.3 Gantt chart for Chapter 5 to Chapter 7.

1. 5 Thesis structure.

The project research will be encountered in the following chapters.

Chapter 2 is literatures review which about research existed proposed literature same

as this thesis. In addition, brief information related to this topic.

Chapter 3 is about explanation of technique and processes used for this thesis.

Chapter 4 goes into more detail on analysis of thesis topic and kind of soft war and

hardware used for this thesis. In addition, describes the design of lPP , type of

design used and why the research design was chosen.

Chapter 5 describe about how to implement and configure JPP m appropriate

environment.

Chapter 6 will described about whether the tool is tested well as require and some

explanation of how the problems to be solved.

-6-

Univ
ers

ity
 of

 M
ala

ya

Chapter 7 gave detail about result according the m th d logy u ed and some

discussion about the advantage and disad m1tng' f this thesis.

Final conclusions and describes n numb r of n nu , fur th improvement of this

tool, as well as, for the dovelopm nt f n '' nv rting t ls.

1. 6 Summary.

This chapter has described some problems met by user in using Prolog. In this thesis,

it gives a brief statement at the outset of the objectives of this thesis and the main

conclusions. Beside that, scope and limitation were described and schedule of doing

this thesis was illustrate on the timeline.

This chapter is very useful to readers before they plunge into more detailed

descriptions. In the next chapter, more explanations of particular point how to make

this thesis succeed will be presented to readers.

- 7 -

Univ
ers

ity
 of

 M
ala

ya

Chapter Two

Literature R vie

Research and literature reviews wer m th ds t gain more information from

proposed articles, journals, reference from intern t or books and proposed thesis in

FSKTM document room. With that some discussion related will be describes in this

chapter.

This chapter will cover some topics like some research, what is intelligent,

introduction of Natural Language, characteristics of VPS, appropriate programming

languages and DBMS.

2.1 Some research.

From definitions of a dictionary, convert are means (I) To change or turn from one

state or condition to another; to alter in form, substance, or quality; to tran form; to

transmute; as, to convert water into ice. (2) To turn into another language; to

translate and so on. For this thesis, convert is mean change the Pseudocode in

Natural language form to Prolog codes.

There are too many types of converter, which some is already in used and some are

still in research. For examples, -language sources to HTM converter MS-WORD

to HTML converter, Convert files to pseudo-natural-language text and back again

- 8 -

Univ
ers

ity
 of

 M
ala

ya

[13], and so on. However, most of these con erters are n t conv rting natural

language to code, like C-language sources to HT tl, mverter r -html i a syntax

highlighter for C source code that produc "S a high ti ihr r html fil a output. For MS­

W ORD to HTML converter or M Word i w is pr rrnm that an understand the

Microsoft word 8 binary fil format (in " 7) it urrentl converts word into html,

which can then be read with a br w er, ther b , it al not corresponding to this

thesis.

In addition, a converter called NICETEXT is a package that converts ciphertext or

any input file into pseudo-natural-language text and recovers the ciphertext or file

from the text. The expandable set of tools allows experimentation with custom

dictionaries, automatic simulation of writing style, and the use of Context-Free­

Grammars to control text generation. It is the result of Masters Thesis research at the

University of Wisconsin, Milwaukee under the advisement of Dr. George Davida

[14].

- 9 -

Univ
ers

ity
 of

 M
ala

ya

2.2 What is Intelligence?

Inte11igence is easter to recognize than to d fin r ru a, ur . While the word

"intelligence" is used in ordinary conv rsation, nd h s n di ti n ry definition, it has

no agreed-upon scientific meaning, and n qu nrit rive natural law relating to

intelligence have as been discovered. A di rionnry definition of intelligence includes

statements such as (l) ability to meet (no el) situation successfully by proper

behavior adjustment; or (2) the ability to perceive the interrelationships of presented

facts in such a way as to guide action toward a desired goal [7].

For this thesis, intelligence in IPPC is mean to make a tool that can analyze the

sentences (object, predicates or relation, and facts) and convert it into the Prolog

codes without Prolog syntax errors occur.

2.3 Pseudocode Definition.

A series of statements that outline what a computer program will do, without putting

in the actual programming code. The Pseudocode, which can be written in natural

language, is a preliminary step in designing a program, and helps the programmer

think through what steps will be necessary. At the Pseudocode stage, it is not

necessary to know what programming language will be used. In a later step the

Pseudocode will be translated into actual computer [9].

- 10 -

Univ
ers

ity
 of

 M
ala

ya

Figure 2.1 P

IF Total> 10 THEN
SET Carry to 1
SUBTRACT 10 rom To l

ELSE
ETC y to 0

END F

2.4 Natural language understanding.

Prolog is an appropriate programming language for natural language, but not used in

full because programmer still need to understand some syntax for express the

meaning of the sentences. Pseudocode is a paper work written in partial or fully

natural language. In addition, IPPC apply Pseudocode as main inputs from user.

Therefore is good to understand some knowledge about sentences structure and

grammars.

2. 4.1 Different levels of language analysis

ln IPPC, user must use considerable knowledge about the structure of the language

including what the words are, how words combine to form sentences, what the words

mean, how words meanings contribute to sentence meanings.

In natural language understanding, it have some of the different forms of knowledge,

e.g. phonetic and phonological knowledge, morphological knowledge, yntactic

knowledge, semantic knowledge, pragmatic knowledge, discourse knowledge and

world knowledge.

- I J -

Univ
ers

ity
 of

 M
ala

ya

For understanding in this thesis, syntactic and semantic knov ledge were used.

Synthetic knowledge concern how word can b put t geth r t form a correct

sentences and determines what structural rol • sa h ' ord pl • in th entences and

what phrases are subpart of other phras s. For s m nti kn wledg , it concern what

words mean and how these meanin ombin in ntence to form sentences

meanings [6].

For build an IPPC, the tool must have ability to understanding the meaning of the

sentences given by user. Thereby IPPC must involve with algorithm of natural

language syntax and semantic.

2. 4. 2 Classes of words

The basic unit in a sentence is derived from words, which can group to 4 main

classes - nouns (N), adjectives (ADJ), verbs (V), and adverbs (ADV). Each of this

class has their own means. Beside that, some others classes like articles, pronouns,

preposition, particles, quantifiers, conjunctions, and so on also will give different

means of sentence given.

For noun phrases (NPs) was used to refer to things: objects, places, concepts, events,

quality, and so on (most of these NPs define as facts in clause section). The simple t

NP consists of a single pronoun: he, she, they, you, me, it, land so on. Another form

of noun phase consists of a name or proper noun, such as Wang or Mike. These

nouns will initial in capitalized form.

- 12 -

Univ
ers

ity
 of

 M
ala

ya

A sentence consists of an NP, the subject and followed b rb pha e (VP), the

predicate. A simple VP consists of some adverbi l m difiers foll wed by the bead

verb and its complements. Verbs have differ nt class s: like uxiliary verbs (be, do

and have), modal verbs (will, can and ould) md main verbs (at, ran and believe).

From these three classes, main verbs normall will b

rules.

ating a predicate in facts or

Therefore, it is important that an IPPC can recognize the predicate or arguments

should be, by identifying the classes of natural language.

2.4.3 Grammars and sentence structure

For examine syntactic structure of a sentence, two things must be consider the

grammar, which is a formal specification of the structures allowable in the language

and parsing technique, which is the method pf analyzing a sentence determine its

structure according to the grammar [6].

To form a sentence, the sentence must consist of an initial noun phase (NP) and

followed verb phase (VP). From the VP, it composes with a V and an NP (which

consist of article and common noun) [3]. For example, John ate the cat was a

sentence group by NP - V - Art - N. On the other hand, this sentence can

represented using tree representation as below:

- 13 -

Univ
ers

ity
 of

 M
ala

ya

Sentence

NP---

N/
---- p ---- ---- I

---- <,
It N

I

From the structure, IPPC will recognize which will be the facts, predicates, and

John the at cat

Figure 2.2 Sentence basic structures.

arguments to form the correct codes in Visual Pro log.

2. 5 Programming Logic.

Programming Logic or Prolog invented by Alain Colmerauer and Phillipe Roussel at

the University of Aix-Marseille in l971, and addressed to avoid problems of

combinatorial explosion: it can be viewed as a restricted theorem prover, where the

restrictions are on the input language, on the inference rules used and on the search

strategy. Prolog is a descriptive or declarative language, which means a series of tep

specifying how the computer must work to solve a problem, a Prolog program

consists of a description of the problem [4]. Alternatively, Prolog is a computer

programming language that is for solving problems that involve objects and

relationships between objects. Computer programming in Prolog consist of (1)

declaring some facts about objects and their relations, (2) defining some rules about

- 14 -

Univ
ers

ity
 of

 M
ala

ya

objects and their relationships, and (3) asking questions ab ut objects and their

relationships [8].

Prolog is a conversational langua e, whi h m ans th us r and the computer carry

out a kind of conversation. Assume that the u r ar eat d at a computer terminal

and have asked Lo use Prolog The computer terminal user use has a keyboard and a

display. User use the keyboard to type character into the computer, and the computer

uses the display to type back result to user. Prolog will wait for user to type in the

facts and rules that pertain to the problem user want to solve. Then, if user asks the

right kind of question, Prolog will work out the answers and show them on the

display.

Advantages using Prolog: (1) Pro log can make deduction from the existed facts or

rules. (2)Prolog execution is controlled automation. Prolog is a powerful and has a

very short and simple syntax which can reduce human errors and maintenance cost.

(3) Scoping rules are simple and uniform in Prolog and declaration of variable name

is not required. This reduces code size and opportunities for error. (4) Prolog has a

history of use for linguistics research and natural language processing. (5) Prolog is

not a complete implementation of logic; it is much closer to it than other

programming languages like C.

Disadvantages using Prolog: (J) It tempts user to write things that look logically

correct, but that won't run. (2) The obvious way to write a predicate is unlikely to be

efficient. Users must know when a predicate needs to be optimized. (3) Because it

lacks functional notation, predicates can become cumbersome. (4) lnput and output i

- 15 -

Univ
ers

ity
 of

 M
ala

ya

not always easy. (5) There are some features which ha e not b en standardized, and

differ between implementations. For example , form tt d input and utput, file­

handling, sorting predicates. (6) User can't re-assign t parts of data structures. This

makes it impossible to implement arm s. 110\ ' r, fun ti nal programmers have

developed a number of fast-acce s data . rm rures ' hi h do almost as good a job.

Early implementations included C-Prolog ESLPDPRO, Frolic, LM-Prolog, Open

Prolog, Sls-Prolog, UPMAIL Tricia Prolog. In 1998, the most common Prologs in

use are Quintus Prolog, SICSTUS Prolog, LP A Prolog, SWI Prolog, AMZI Prolog,

SNI Prolog and Visual Prolog. Because of VP5 (personal edition) is a freeware

system available in http://www.visual-prolog.com and have a friendly programming

environment, therefore is good to use it as thesis resource in IPPC development.

2. 5.1 Fundamentals of Prolog.

Below will introduce some important element of Prolog, which is facts, rules

variables and goals or questions.

2. 5.1.1 Facts.

Most of the facts are objects. For example, "John likes Mary", which this sentence

consist of two objects, called "John" and "Mary".and a relationship, called "like ".In

Prolog, this facts will be write in standard form like this: likes(john, mary).

There have some important things to be mention about is: (1) the names of al]

relationships and objects must begin with a lower-case letter. For examples likes,

- 16 -

Univ
ers

ity
 of

 M
ala

ya

john, mary. (2) The relationships is written first, and then obje t are written

separated by commas, and the objects arc enclosed b_ n p ir f 1 und brackets. (3)

The full stop character '.' must come at tho and of a fu ct.

Beside that, for defining relation hip b tv n obj t using facts, user should pay

attention to what order the objects are written heh een the round brackets. However,

the order is arbitrary and must solve consist ntly. For current arbitrary convention,

the "liker I John" from the above fact will be put as the first of the two objects in

round brackets and the object that is liked (Mary) in second slot. Therefore, the fact

likes (john, mary). which mean "John likes Mary" is not same thing as likes (mary,

john). with meaning "Mary likes John".

For some terminology, the names of the objects that are enclosed within the round

brackets in each fact are called arguments (John or Mary). Moreover, name of the

relationship, which comes just before the round brackets, is called predicate (likes).

In prolog, a collection of facts is called a database. Therefore, the word databa e

shall be use whenever collected facts are used to solve particular problem.

2. 5.1. 2 Rules.

Sometime in sentence like "John likes Mary" is easy to define as fact in Prolog, then

how about a sentence "John likes all people"? One way to do this would be to write

down separate facts like likes (john, Alfred), likes (john, charles), and so on for every

person in the database. However, this becomes tedious, especially if there are

hundreds of people in the Prolog program.

-] 7 -

Univ
ers

ity
 of

 M
ala

ya

Another way to solve this problem is using rules. In Prolog, rule are used when a

fact depends on a group of other facts. On the th er hand, ml are al o use to

express definitions. A rule is a general statement ah ut bje ts (s me use variables

for objects) and relationships For exampl : John lik s nv n who like wine or in

other words John likes X if X likes win .

ln Prolog, a rule is consist of a head (conclusion part: left-hand side of the rule) and a

body (condition part: right-hand side of the rule). The head and body are connected

by the symbol :-, pronounced as if. For examples as above sentence, is written in

Prolog as: likes (john, X) :- likes (X, wine). Notice that the rules are ended with a

dot.

For solving a question in the rules, matching (predicate are the same for a fact) to the

database will occur.

2.5.1.3 Variables.

Sometime the user may want to find out what things that John likes, so the user may

ask "Does John like books?", "John likes Mary?", and so forth, with Prolog giving a

Yes-or-No answer each time. It is tiresome. So is more sensible to ask Prolog to tell

the user something that John likes. Then user can phase a question of this form as

"Does John likes X?". Because the users do not know what the object is that X stand

for, so Prolog will give what the possibilities are. In Prolog, users can use names like

X, which called as variable, to stand for objects to be determined by Prolog. For

example, likes (john, X).

- 18 -

Univ
ers

ity
 of

 M
ala

ya

When Prolog uses a variable, the variables can either instantiated or not instantiated.

A variable is instantiated when there is an obj" t that th v riable stand for. A

variable is not instantiated when what the ariabl st nd for i not yet known.

Prolog can distinguish variable from nam s f parti ul r obj ts becau e any name

beginning with a capital letter is tak n t h ari bl .

Beside this, Prolog also bas an anonymous variable which used "_" or underscore as

a symbol. This variable wil1 filter the information not need to be show on screen

(refer figure 2.3).

Variables in Prolog have some distinctions from other programming languages,

which variables are not store information and the value it gets is through pattern-

matching to constants (arguments) in facts or rules. A variable said to be free before

it gets a value; when it get a value, it become bound. Only bound until a solution is

obtained then prolog will unbind it, backup and look for alternatives solutions.

Parent=bill
Parent=sue
Par ntmjoe

PREDICATES

CLAUSES
male (bill) .
male (joe).

female(sue).
female (tammy).

parent(bill,joe).
parent(sue,joe).
parent(joe,tarruny).

GOAL
parent(Parent,) .

Figure 2.3 Example of anonymous variable.

- 19 -

Univ
ers

ity
 of

 M
ala

ya

2. 5.1. 4 Queries.

After all of the facts and rules are defined in the program, users an ask the program

for get something or result from that pr gram. l• r thi s, Pr l g ha ne part call -

Queries or Goal for user input their qu stions 10 get re ult'.

When a question likes: likes (john, mary) i a k d f Prolog, it will search through

the database (facts). It looks for mets that match the fact in the question. The fact

match if their predicate is the same and their corresponding arguments each are

same. If Prolog finds a fact that matches the question, Prolog will respond yes. If no

such facts exist in the database, Prolog responds no.

If a variable used in the question like likes (john, X), Prolog will search the database

and instantiate the variable with some value or object. If the predicate and argument

was matched, Prolog will respond by giving the instantiated value on the variable

likes X = mary.

2.5.2 Prolog's Syntax.

Pro]og provides way to structure data as well as to structure the order in which

attempts are made to satisfy goals. Structuring data involves knowing the syntax by

which users can denote data.

Syntax of a language describes how users are allowed to fits words together. Jn

English, the syntax of the sentence "I see a zebra" is correct but the syntax of "zebra

see I a" is not correct.

- 20 -

Univ
ers

ity
 of

 M
ala

ya

For Prolog, the programs are built from terms. A term is a n taut. variable, or a

structure. Characters are divided into 4 cat gori s x hi h re (l upper-ca e letter, (2)

lower-case letter, (3) digits, and (4) si 1 chnm t rs.

Constants are specific objects or specifi relari n hip . Have two kind of constant:

atom and integers. There are two kind of atom: those make up of letters and digits

(must begin with lower-case letter), and those make up from sign (enclosed in single

quotes' ' ' with any characters in it or insert underline character'_' within the atom).

For examples, void, 'str3ing', george_smith and so on. The other kind of constant:

Integers, which used to represent numbers for arithmetic operation.

The second kind of term used in Prolog is the variable. Variables look like atom,

except it begins with capital letter or an underline sign.

The third of term with which Pro log programs are written is the structure. A structure

is a single object which consists of a collection of other objects, call components.

The components are group together into a single structure for convenience in

handling them. For example, an index card for a library book contain several

components like the author's name, the title of the book, the date when it was

published, location to find it and so forth. A structure is written in Prolog by

specifying its functor, and its components. The components is enclosed in round

brackets and separated by commas. The functor is written just before the opening

round bracket. For example, owns (john, book (wutl1ering_heights, bronte), '\: hich

- 21 -

Univ
ers

ity
 of

 M
ala

ya

owns fact have a structure by the name of book and two compon nt, a title and an

author.

2.5.3 Visual Prolog's program seaions.

Generally, a Visual Prolog program in lud s fi' b i program sections. These are

the clauses section, the predicates section, the domains section, the goal section and

another few common section likes facts constant and global.

Clauses section is the heart of a Visual Prolog program which facts and rules are

defined in it. In satisfy a goal, Visual Prolog will proceed at clauses section to search

appropriate match. As Visual Prolog proceeds down through the clauses section, it

places internal pointers next to each clause that matches the current sub-goal. If that

clause is not part of a logical path that leads to a solution, Visual Prolog returns to

the set pointer and looks for another match (Backtracking).

The predicates section is part for declaration of predicates and the domains (types) of

the arguments to the predicates. This is important for telling the Visual Pro1og what

things inside the program. For predicate declaration, it must begin with predicate

name followed by its arguments (in a parenthesis). Each argument type separate by

comma and predicate declaration is not followed by a period (same like below).

predicateName(argument_typel, argument_type2, ... , argument_typeN)

After define rules and facts in clauses section and declared predicates in predicates

section, user can start to make a query in goal section. The query is same as a rule

- 22 -

Univ
ers

ity
 of

 M
ala

ya

but not followed by :- and it simply a list of sub-goal . This section will be

automatically executed by Visual Prolog when the program nm . lf all arguments a

query is succeed then program will terminate sue cssful. vi e- ersa program is said

to have fail.

For a big program write in Visual Prolog with a large number of predicates, some of

the argument types are making the codes more implicit or unclear. Because of this, in

Visual Prolog have a domain section that allow user to declare corresponding

argument types using meaningful words and limit the argument in some domain

only. From example, a sentence like "Frank is a male who is 45 years old" which

will give a declaration predicate as below:

Can be change to

PREDICATES

person (symbol, symbol, integer)_

DOMAINS

name, sex= symbol

age =integer

PREDICATES

person (name, sex, age),.__

Therefore, Visual Prolog will easily detect error occur if the argument in 'person'

swap which argument types will not match.

- 23 -

Univ
ers

ity
 of

 M
ala

ya

Same as others programming languages, Visual Prolog also provide a constant

section for declaring a fix numeral value to a m aningful ' ord (yntax: <ld> =

<Macro definition>). Then user can save time in write the same complex

calculation or numerals and make the program mm easily to rend. Declaration in

constant section is like below:

CONSTANTS

hundred= (10*(10-1)+10)

pi = 3.141592653

Most of the facts are define in clauses section before get in runtime, but how about

adding new facts when runtime occur? For this problem, Visual Prolog has a facts

section (keyword facts is synonymous with database) which is a part of dynamic

database that allow user update (change, remove, or add) some of the program facts.

Standard predicates or keywords Jike assert, asserta, assertz and consult is used to

adding new facts at runtime. Retract and retractall used for delete facts from the

program at runtime.

Most of the section describe above is a local definition and declaration for a project,

then how about to make a project with modules in it? So for this a section calls

global section (rather than local), which is used for enable communication across

different modules. For large project is good to write each section in a separate

module for make easily in enhancements or modifications. In this section, user can

write global domain, global predicates and global facts for use in a module by

include it (refer figure 2.2).

- 24 -

Univ
ers

ity
 of

 M
ala

ya

Global
predicates

Global
D main

Main module with goal
se rion):

in lude global domain
include global facts
include global predicates

G1obal
Facts

Figure 2.4 Illustrate communications between module (main) with
sub-module (global predicates, global domains, and global facts).

2. 5. 4 Built-in Predicates in Visual Prolog.

Within a Visual Prolog, it has a lot of predefined keywords that easily to use by user.

Visual Prolog has categorized the built-in predicates into few parts: Arithmetic

Functions and Predicates, Control Predicates, Conversions, Data Compression, Error

& Break Control, External Database System, File System, Binary Handling,

Input/Output, Internal Facts Sections, Machine Low-level, Misce11aneous, OS

Related, and String Handling. For detail about built-in predicates in Visual Prolog

can visit to http://www.visual-prolog.com.

- 25 -

Univ
ers

ity
 of

 M
ala

ya

2.5.5 Prolog's data structures.

List is a very common data structure in non-uum eric pr gt mming, The list is an

ordered sequence of elements that can h vc an l n th. Th 1 m nt of a list may be

any terms - constants, variables, srm mr s, This it p tty i helpful when users

cannot predict in advance how big a list should be and what information is should

contain.

Lists can be represented as a special kind of tree. A list is either an empty list, having

no elements or it is a structure that has two components: head and tail. For example,

legal list like O, [the, men, [like, to, fish]], or [X+Y, x+y].

Common operation with list is split a list into its head and tail. For example, the list

with head X and Tail Y will be written as [XIY], where the symbol 'I' separate the

head and tai1. List also use for representing strings. For example, a string "system"

will changed by Prolog into a list [115, 121, 115, 116, 101, 109].

From a list, some operation like (1) membership, which is checking whether come

object is an element of a list, which corresponds to checking for the set membership,

(2) concatenation of two list, obtaining a third list, which may correspond to the

union of sets, (3) adding a new object to a list, or deleting some object form it.

2.5.6 Cut.

A 'cut' allow users to tell ProJog which previous choices it need not consider again

when it backtrack though the chain of satisfied goals. Syntactically 'cut' is

representing as '!' (called predicate and no arguments) in Pro log program.

~ 26 ~

Univ
ers

ity
 of

 M
ala

ya

There have three main area of using 'cut' which is (l) t elling th Prolog ystem that

it has found the right rule for a particular goa 1, (....) t Hin r the Prolog system to fail a

particular goal immediately without trying for lt rnative olutions, and (3) to

terminate the generation of alternativ solution thr ugh backtracking.

2. 6 System Development Software for IPPC

There are so many of system development software for develop new system for use

in industrial, banking, military or research. Most popular system development

software used by Computer Company is C and C++, COBOL, Java, UML, RPG,

Visual Prolog, and Visual Basic.

For this project, Visual Basic 6 (Visual Basic descendent) was chose for develop the

IPPC tool. Visual Basic provides a complete set of tools to simplify rapid application

development. So what is Visual Basic? The "Visual" part refers to the method used

to create the graphical user interface (GUI). Rather than writing numerous lines of

code to describe the appearance and location of interface elements, users simply add

pre-built objects into place on screen. If users have ever used a drawing program

such as Paint, users already have most of the skills necessary to create an effective

user interface. Addition, Visual Basic js an object-based programming language.

The "Basic" part refers to the BASIC (Beginners All-Purpose Symbolic Instruction

Code) language, a language used by more programmers than any other language in

the history of computing. VisuaJ Basic has evolved from the original BASIC

- 27 -

Univ
ers

ity
 of

 M
ala

ya

language and now contains several hundred statements functions and keywords,

many of which relate directly to the Windows GUT. Beginner can create useful

applications by learning just a few of the keyw rd • t the power of tile language

a11ows professionals to accomplish anything that n b a compli hed using any

other Windows programming language [l O].

Visual Basic has the tools like (1) Data access features allow users to create

databases, front-end applications, and scalable server-side components for most

popular database formats, including Microsoft SQL Server and other enterprise-level

databases. (2) ActiveXrM technologies allow users to use the functionality provided

by other applications, such as Microsoft Word processor, Microsoft Excel

spreadsheet, and other Windows applications. Users can even automate applications

and objects created using the Professional or Enterprise editions of Visual Basic. (3)

Internet capabilities make it easy to provide access to documents and applications

across the Internet or intranet from within your application, or to create Internet

server applications, and (4) finished application is a true .exe file that uses a Visual

Basic Virtual Machine that users can freely distribute.

- 28 -

Univ
ers

ity
 of

 M
ala

ya

2. 7 Database.

A database is a collection of infonnati n rganized s t mak it easy to view it,

search it, retrieve the right detail, and oll els th ne essai • facts in an easier, timely,

and effortless manner as possible [15l

Databases fall into two broad categories: (1) desktop and scalable applications such

as Microsoft Access, and (2) true RDBMS (Relational Database Management

Systems) such as Oracle, Informix, and SQL Server.

Microsoft Access is a relational database used on desktop computers to manage

information on different levels for different purposes. Microsoft Access can be used

for personal information management, in a small business to organize and manage all

data, or in an enterprise to communicate with servers.

There have some advantages use of Microsoft Access, which are no extra server cost

ease of implementation, lower development cost and compatibility with existing

desktop system. Also have few disadvantages like limited amount data storage, not a

long term option for a large site.

For this thesis, database is used for store some keywords correspond to the tool usage

like sign symbols(:-, '. ', and so forth). Thereby, it not need too big of storage and

the tool is use for local PC only.

- 29 -

Univ
ers

ity
 of

 M
ala

ya

Chapter Three

Methodology

More information, better informarion and h rt r nu nagement of information are part

of software development request. Because the requests and the need fur exceed the

resources limited productivity and limited number of hours in the day. That led to a

discussion of methodology. Methodology means the science of method or

arrangement; a treatise on method. Therefore, this chapter will draw out the suitable

methodology for the proposed tool

Beside that, this chapter will describe approach, model, tool, problem, and domain

involved in the methodology.

3.1 Process Mode[.

A well-designed tool will follow one of the proscribed software process models. A

process model is also known as a software-engineering paradigm. It is chosen based

on the nature of the project and application, the methods and tools to be used, and the

controls and deliverables that are required.

There are so many process models for software development. For examples, V­

model, Transformation model, Prototyping model, Waterfall model and so on. For

- 30 -

Univ
ers

ity
 of

 M
ala

ya

this thesis, waterfall model with prototyping had chosen for guiding the development

process.

The model for development process was pro eding fr m identifying problems to

implementation and maintenance as shown in figur).1.

t t Testing

Identify problems
and Objectives

Requirement
analysis

Prototyping

Implementation

Maintenance

Figure 3.1 Waterfall Model With Prototyping.

- 31 -

Univ
ers

ity
 of

 M
ala

ya

3.1.1 Discussion of Waterfall model With Prototyping.

The Waterfall model abstracts the essential activitie of oftwar development and

lists them in their most primitive sequenc f dep nd n y. Real development

projects (software and other) rarely follow su h nm d l lit rally, mainly because the

model can and is applied to itself recursiv ly yi lding an almost fractal fabric of

actual activity.

For enables the user and developer to examine some aspect of the proposed tool and

decide it is suitable or appropriate for finished tool, thereby, a sub-process called

prototyping was used in this development process. Design prototyping helps

developer assess alternative design strategies and decide which is best for a particular

project Often, the user interface is built and tested as a prototype, so the users

understand what the new tool will be like and the designer get a better sense of how

the users like to interact with the tool.

- 32 -

Univ
ers

ity
 of

 M
ala

ya

3.1.2 Activities for development process.

In the Waterfall model with prototyping, have few activities for dev loprnent process

which is identifying problems, requirement anal , is ' t em de ign, coding, testing,

implement, operation and maintenanc , and ft. sub-pr ss, prototyping.

3.1.2.J Identifying problems.

This thesis begins with scoping the project by first gaining insight into definitions,

problems, and objectives for IPPC. From this activity, some questions like why the

tool was built, the usage of tool, difficulty of using Visual Prolog, and so on about

problems met by novice programmer had identify in this phase.

Thereby, after identified problems, it come to expand the problems with feasible

solutions and step for develop the tool.

3.1.2.2 Requirement analysis.

Before a tool start build, it begins by establishing requirements for all tool elements

and then allocating some subset of these requirements to tooJ. The requirements

gathering process is intensified and focused specially on tool. To understand the

nature of the tool to be built, the system engineer ("analyst") must understand the

information domain for the tool, as well as required function, behavior, performance

and interfacing. The essential purpose of this phase is to find the need and to define

the problem that needs to be solved. It also includes the personnel assignments, costs,

project schedule, and target dates.

- 33 -

Univ
ers

ity
 of

 M
ala

ya

3.1.2.3 System Design.

In this phase, the tool's overall structure and its nuances ru defined. The databases

design, the data structure design and th numb r f tier ~ n ed d for the package

architecture etc are all defined in this phas . Anal sis and d sign are very crucial in

the whole development cycle. An glit h in the de ign phase could be very

expensive to solve in the later stage of the tool development. Much care is taken in

this phase.

3.1.2.4 C:oding.

The design must translate into a machine readable form. The coding phase performs

this task. If design is performed in detail manner, code generation can be

accomplished with out much complication. Programming tool like compilers,

interpreters, debuggers are used to generate the codes. For this thesis, VB6 was used

as software development system to generate the code for the tool.

3.1.2.5 Testing.

Once the code is generated, the program testing begins. Different testing

methodologies are available to unravel the bugs that were committed during the

previous phases. Different testing tools and methodologies are already available.

3.1.2.6 Implementation.

After the testing is completed, the tool will send to user. User will use the for real

situation and

-34 -

Univ
ers

ity
 of

 M
ala

ya

3.1.2. 7 Maintenance.

The tool will definitely undergo change once it i deli ered to the user. There are

many reasons for the change. Change onld happen b u e f unexpected input

values into the system. In addition the hanges in the st m could directly affect the

tool operations. The tool should be dev t p d t a ommodate changes that could

happen during the post implementation period.

- 35 -

Univ
ers

ity
 of

 M
ala

ya

3.1.3 Advantages and Disadvantages of Waterfall model With

Prototyping.

Advantages

Waterfall mod I Pr totyping model

• Good way to sket h a plan fl r th
development. 1t wilt lik 1 t b too
simple, and usually a good, durable
framework for the real plan.

• User sees a real system fast
(1 or 2 days).

• The stages are clear cut. • User directly involved m
specifying requirements.

• All R&D done before coding starts
implies better quality program
design.

• Made for change therefore
possibly low maintenance
cost.

• Wei] suited for developing stable,
well understood computer-based
applications.

• Serves as a basis for
discussion and helps
identify requirements when
there is no current system
like desired system.

Disadvantages

• The waterfall process is possible for
experienced developers if
application domain is very well
understood by the developer,
developer has a detailed knowledge
of and practiced skills in using the
production tools and finally the
developer has expenence of the
successful development of similar
products before.

• Requires high upfront costs
(software for database,
modeling, report,
generation, screen
generation.)

• Difficult to use when
building large systems.

• Client must wait until the end to see
any product.

• Sometimes difficult to
maintain user enthusiasm.

• Can be too rigid. • User never satisfied.

• One phase must be completed before
proceeding on to the next.

• Tendency not to document.

Table 3. l advantages and disadvantages for waterfall model and prototyping model.

- 36 -

Univ
ers

ity
 of

 M
ala

ya

3. 2 Prototype for this thesis.

For user understanding, is good to build a user interface which will give ome notion

about the tool would be like. Thereby, b low was ' m of th detail about IPPC

(Figure 3.2).

-,~~·\,,,,1.,,,,,,~.,·"" ,.,,_, .. ,,, * Ble tcfit , B.un fiel 'I

New document, Open
file, and Save file.

.~J.dJil
-h~t~:

User's Guides.

Button for converting Prolog
Pseudocode into Prolog codes.

Pseudocode (in natural language
form) insert by user.

Fizure 3.2 Interface for IPPC.

- 37 -

Univ
ers

ity
 of

 M
ala

ya

Chapter Four

System Analysis and Design

This chapter will discuss about some syst cm anal i and the design of the system.

Requirement elicitation, definition, and management process will be disrupting in

this chapter. The next step in development called design which is to translate those

requirements into solutions, will be describe in this chapter.

Details of modularity used in design phase will be described and some useable

diagrams for describe the facets in the proposed tool where corresponding to each of

the level in the tool has been drawn out. The details represented in this chapter will

serve as a reference and important guidance for the tool development phase as well

as the tool implementation and maintenance phase.

4.1 System Analysis.

System analysis is a systematic investigation of a real or planned system to determine

the :functions of the system, how they relate to each other and to any other system.

Each proposed model of the software development process includes activities aimed

at capturing requirement which also occurred in waterfall model with prototyping.

Defining the requirement is the first and most critical, step in software system

development. If the requirements are done well, the software flows logically and

- 38 -

Univ
ers

ity
 of

 M
ala

ya

smoothly. Conversely if the requirements are done poorly, the resulting design is

awkward and the coding is more difficult. Usuall , errors identified in the

requirement stage are the fastest and least expensive t rre t, while those found in

Jater stages are increasingly more time-con urning and expensix to correct.

4.1.1 System requirements analysis.

There have two ways for describe requirements which are functional and

nonfunctional requirements.

4.1.1.1 Functional Requirement

A functional requirement describes an interaction between the system and its

environment and described how the system should behave given certain stimuli [16].

For this thesis, it consists of 2 groups of functional requirement which are (1) User

requirements and (2) Tool requirements.

(1) User requirements.

The user requirements are used (in connection with the System in question) as a

complete, user-level set of requirements. When the tool is finished, it must be

proven by means of validation that the external specifications and the user

requirements have been met.

- 39 -

Univ
ers

ity
 of

 M
ala

ya

a. User interface.

For allowing user interact with the tool, is o d to have a friendly tool's

interface. The interface must have:

i. Forms for user insert Pseudo od. •.

Allow user to key in the Pseudo od • and allow user open few forms in

same tool's working space.

ii. Too/bar and menus.

For making the tool ease to use, it must attach with icon and shortcut for

user to click on it. For examples, save icon, copy, cut and paste icon.

iii. Tool Guides (Help).

Some important description about how to use the tool and some

constraint and knowledge about the tool will be shown in the help

section.

iv. Result displayer.

The result converted from the Pseudocode must appear in the Visual

Prolog 5.2 working space or display on a form which can save in Visual

Prolog's file type.

(2) Tool requirements.

This part will give some specify requirements of the tool:

a. Description of functionality.

i. The tool will receive a list of Pseudocode from user input.

ii. User must click the 'Run' icon for converting Pseudocode into Prolog

codes.

- 40 -

Univ
ers

ity
 of

 M
ala

ya

iii. The codes generated from the tool will be shown in Visual Prolog 5.2

work space or shown in tool's output fonn.

b. Data Constraint.

t. A single list of Pseudocode be gen mt n tim .

ii. Oser can't easily input unrecognized words which are not inside the

database. On the other hand, the words will be converting into related

predicate, argument, or variables which contribute to execution failure.

iii. The Pseudocode must as short as possible and must end with period '. '.

c. Data operations.

i. The user can open many forms for writing Pseudocode, but one form (a

list of Pseudocode) will be converting into Prolog codes on time.

ii. The user can save the Pseudocode into specified file type and also the

Prolog codes generated into Prolog file type, by selecting buttons shown

on the tool.

iii. The user can create new list of Pseudocode, view existed Pseudocode,

and edit or delete a Pseudocode from the tool.

iv. The user can find some help from help documents inside the tool.

- 41 -

Univ
ers

ity
 of

 M
ala

ya

4.1.1.2 Nonfunctional Requirement.

A non-functional requirement is a description of other features. characteristics and

constraints that define a satisfactory system [16l B l ' are the non-functional

requirements of the tool:

i. Maintainability

Maintainability is the degree to which the tool can be cost-effectively made to

perform its functions in a possibly changing operating environment. The tool

are easy to modify and test in updating process to meet the new request,

correcting errors, or move to a different computer system.

ii. Reliability

The tool operates in a user-acceptable and does not produce dangerous or costly

failure when it is applied in a reasonable manner.

iii. Response Time and Performance

The time to convert Pseudocode to Prolog codes must be within a reasonable

time. However, the performance especially the question "how fast will it give

the answer?" is very much depending on the hardware used. It will be very slow

if the power of processor is low and vise versa. Fortunately, recent computer

hardware becomes much more efficiency. Therefore, the response time could

consider acceptable.

iv. User friendliness

The design of the GUI must able to attract users' focus and easy to use.

-42 -

Univ
ers

ity
 of

 M
ala

ya

4.2 System Design.

Design development involves those pr ces us and m ~th d inv olved in translating

those identified detailed functional task cl m nts ' ell a, broader organizational

goals and requirements into concrete inrerfa e obj ts and dynamic interaction

techniques. In addition, design is the creative process of transforming the problem

into a solution. To design a tool is to determine a set of components and inter­

component interfaces that satisfy a specified set of requirements [16].

IPPC design solution follows by four levels. These three levels involve (1)

architecture, (2) IPPC converting process, (3) IPPC's Database structures and (4)

Graphic User Interface design. Design development may involve developing

completely new interface/interaction solutions as well as retro fitting existing

systems by providing a more effective interface and interaction.

4.2.1Level1-Architecture.

This level associates the system capabilities identified in the requirements

specification with the system components that will implement them. Component

usually modules and the architecture also describes the interconnections among them

[16}.

IPPC's components consist of input from user, intermediate converting process

(algorithm, input, and output), and IPPC's database (refer Figure 4.1).

-43 -

Univ
ers

ity
 of

 M
ala

ya

Intennediate converting Process

G IPPC'
Databas

Algorithm I r .. I ~ LJ B
User

Figure 4.1 IPPC's Physical Architecture.

From the figure shown above, the user needs to input the Pseudocode into IPPC.

After all Pseudocode was input, intermediate converting process (algorithm) will

start (described in level 2). The process will using matching technique which

matches some identified words with words in IPPC's Database. Result from the

intermediate converting process will be show back to user with IPPC output screen

or Visual Prolog 5.2 workspace (refer Figure 4.2 for more detail).

Pseudocode
parser Database

Buffer

lTser Generate
codes

Result I
Prolog's Codes

Figure 4.2 IPPC's Logical Architecture.

-44 -

Univ
ers

ity
 of

 M
ala

ya

4.2.2 Level 2 - IPPC's Converting Process.

In the IPPC components, it need user to input the P eudocode. ther by, IPPC must

have an effective algorithm to convert the Ps eudo de into Prolog codes. Below will

give i11ustrate how the lPP 's converting pro ss start and fini h (refer Figure 4.3).

User

Classify
Facts, Goals,

Rules

Pseudocode Run icon
clicked

Database

Declaration & arrangement
of Domain, Facts, Rules

andGoaL

Resu1t I
Prolog Codes Results Page

Generation

Figure 4.3 IPPC's Converting Process.

Descriptions:

Correction

After the user input the Pseudocode, user will click 'Run' icon, then the converting

process will proceed.

Invalid
Pseudocode

In the process, the first step of the algorithm (wrote in VB6) inside IPPC's will

classified the type of the Pseudocode, (e.g. Pseudocode like 'Jim likes May' will

- 45 -

Univ
ers

ity
 of

 M
ala

ya

classify as Facts). After the Pseudocode was identified, it will insert the type into

database.

The second step, matching of the Pseudocode will pr eed. Matching process would

succeed is depend on the words insid th databas . lf unmatched Pseudocode met, it

will identify as invalid Pseudocode and need u er to make correction on it (warning

message will prompt).

After all the validation finished in matching process, the next step is the declaration

of the Pseudocode and arrangement (result page generation) of the codes generated

will proceed. All the codes generated will insert into database.

After the entire step is finished, the result will show out to user by using IPPC's

output interface or with Visual Prolog 5.2 workspace (refer Figure 4.4).

_,..,,..__.. .. ,.,,, u .. _, --·~ - ..
--·-.ol•\.lll•.,.._,l1Jlfl. 1.C.l1 =·::::..==t~!~~~-&I

·~f· ~1;..v '·•·-.1
, J,..,J, (....,. ,.,.

Or

:--uv.1.,1,.
...... 1Q :-..q·,,.a),
·.-:Jr;>. •:~ :••tr··xi.
._ ... ,I)

"""" :--<l' 'JO

Figure 4.4 IPPC's Input and Output interfaces.

J

Univ
ers

ity
 of

 M
ala

ya

4.2.3 Level 3 - IP PC's Database Structures Design.

In this thesis, usage of database is required for the lPP ' onverting Process. There

are a lot of types database, but for the tool, Mier s ft A c i u e as IPPC database.

lPPC's Database consists of two tables - buffer (stor 1 sult) and words for matching

process.

To enable valid codes generated during the converting process, IPPC need matching

process for identify arguments and predicates for a fact or a rule. Thereby, a table for

store some important words was needed. In this table, words like is, are, were, verbs,

nouns and correspond words will insert in a field called 'Words'. Beside that, from

the words given, types of Pseudocode will be specified, e.g. 'Jim likes May', from

this sentence 'likes' is classify as fact, or 'if' appear in the sentence, it will classify as

rule. Therefore, the second field called 'Type' could be part of the table.

Because of the Pseudocode from user is in form ofline-by-line and the result must in

full codes converted from the Pseudocode, thereby, IPPC needed a table called

'Buffer' for store temporary codes generate from Pseudocode. In this table, it has

three fields which are 'Queue', 'Converted codes' and 'Predicates' (refer Figure 4.5).

The purposes for having 'Queue' field is for store valid Pseudocode in matching

process (and if invalid Pseudocode appear in the input list, IPPC not need to redo all

matched Pseudocode). 'Converted codes' field is for storing the codes generated

from Pseudocode and will be using to generate output. 'Predicates' is part of the

Prolog codes, which all Clauses need to declare first before use in Prolog program

(e.g. likes(symbol, symbol), then this field will store correspond Predicates

generated from JPPC.

- 47 -

Univ
ers

ity
 of

 M
ala

ya

Predicates

Record: H I j ~ 1

Figure 4.5 IPPC's Database Structures.

4.2.4 Level 4 -IPPC's Graphic User Interface Design (A).

In this level, tool interface is taking into high measurement. IPPC's interface must be

user friendly and easier to use. Therefore, IPPC'e interface does net h~ve ccmmeed

for performing the converting process but it creates from icons and menus, which

give a more adaptive interface to users. For more detail refer to Figure 4.6 for the

entire IPPC interface.

- 48 -

Univ
ers

ity
 of

 M
ala

ya

....----. <lit Ste ~it B.un 'l:lelp

D~~llill ~1 i I

Inputs reen
(works ace)

!:Ml I;:~t Bun tjelp Mew O:rl+N ,____ _

Qpen r.trl+o
~se Clrl+F4

C), NewFile

lif I Open File ~ve Qrl+S

I liil I Save File IPPC (lntellit" ,, ~·.
Elle [dit BJ.111 t!elo

!.l!ldo Ctrl+Z

s;;opy Ctrl+C
Cl.Jt ctrl+X
f.aste Ctrf+V Copy, Paste and

Cut icons

[lie ~t E!.un !:felp

2_tart FS I
Run icon (start the
converting process)

Elle E.tlit B.un tlelp
l.PPC Library help Fl
aPoutIPP(r
Menus Icons

Figure 4.6 JPPC's Graphic User Interface (a).

- 49 -

Univ
ers

ity
 of

 M
ala

ya

4.2.5 Level 4 -IPPC's Graphic User Interface Design (B).

Various forms had created in IPPC for user to fill in certain data. The data is need for

ensuring correct predicates and goal can gencrat in utput form (refer below figure).

xj

!
' Cl•linl
''·B·; , I

'· !il2PM

Form for user input domain for predicates, e.g. string or symbol

U•e1 con •et querm ~oerch /0< .~ ... •olJ!ion• b010 on ••iolod Pull>!! cill"'°';

The ~uity 111ulit have nUttlb or of llfgumolll•
J''Une u cr11u;,1

Art-;iifu1~t>~~-Mlh
Argum..-.m alpbabo\ ("01.Jntogot')

r-~r 1r -.- , ... -.-
~'"l

'"0001: ' '"

' 1, ''""' ''"'""'

f

Form for user input goal for querying.
~·1?. PM ,

i!'.djeaivn
Advei1J
e • .mu.,y

-----------iD&t,-enniMr
l..lnt<inglltt~
Noun

Form for user input undefined word with corresponding word class

Figure 4.7 TPPC's Graphic User Interface (b).

- 50 -

Univ
ers

ity
 of

 M
ala

ya

Chapter Five

System Implementation

This chapter will discuss about the steps and methods taken to implement the tool

that was design earlier in the previous chapter. After the implementation, the tool

will be tested to look for errors.

5.1 Development Environment

The developing environment for the tool is the tools which includes the hardware

tools and the software tools. Both tools are described below for the client side.

5.1.1 Hardware Tools

Client I Personal Computer

Description:

TI1e environment where the users can click on the IPPC execution icon to start

their pseudocodes converting process to Prolog codes.

Pentium II Processor, 32 MB RAM, Normal Monitor, Mouse, Keyboard

Table 5.1 Hardware Requirements Tools.

- 51 -

Univ
ers

ity
 of

 M
ala

ya

5.1.2 Software Tools

Windows OS -98, 2000, XP

The platform used to run the tool. The tool is platform dep ndent where it can't

work in other OS which cannot support' e re" and' dll" files. This platform provided

friendly interface in presentation and during debugging.

Visual Basic 6 and Visual Sourcesafe 6

It provides the easy way to develop IPPC with it's includes all intrinsic controls,

plus grid, tab, and data-bound controls, and user friendly environment. A lot of time

has been saved during the interface development because VB6 provided variety of

templates for creating common application components. Provided integration with

Microsoft Access in data retrieval or saving data. Visual Sourcesafe 6 has give an

easier way to recover previous source code and provided a way for programmer to

save their code among several computers.

Microsoft Access - 2000, XP

It provide programmer to upgrade words data in PrologData database. It provides

good security in disable unknown person from changing the existed data by setting a

password.

Visual Prolog 5.2 Personal Edition (free trial or ju.II version)

VP5.2 is downloaded from the Prolog Development Center. This will enable the tool

make compilation on the result generated from the tool.

- 52 -

Univ
ers

ity
 of

 M
ala

ya

VB6

5.2 Tool Implementation.

Figure 5.1 Software Tools.

Implementation comprises of the system design structure to a computer readable

system. The tool will be evolved from scratch design to a run able application. There

are several implementations for this tool.

- 53 -

Univ
ers

ity
 of

 M
ala

ya

5.3 Interface and Database Implementati011.

The tool is created in order to allow user k ys in th ir p eudocodes as shown in

Figure 5-2 and change it into actual prolog d s. Th interfaces are developed

using Visual Basic 6 and the database is implemented with Microsoft Access XP

(2002) as the DBMS (as shown in Figure 5-3). The DBMS used to stored

pseudocodes (table named "SentenceBuffer"), words (in different word classes in

tables "Reserve WordsAdj", "Reserve WordsAux", "Reserve WordsN",

"ReserveWordsV"), converted sentences structure (table named "NLPBuffer'') and

converted prolog codes (tables named "BufferCodesClauses",

"BufferCodesDomain", "BufferCodesPredicates" and "BufferCodesGoal").

'l•llO PM r l'll.lM

Figure 5.2 The IPPC's main page.

- 54 -

Univ
ers

ity
 of

 M
ala

ya

' .
G'!f\orr,J,i J Su.iwnarv j Stat"'1:h:1" ("MIW'tl,. I Cvrtorn

?)(

BufferCodo.sClausa
Buff rCodosOom I'\
Buff<> Odo<Ga&I
Bufror<:od •l"roJlc«o•
rrC11'Mso

NLPDlf~
Pesto l'l'Ot'S
Prolol)l<oy\••\'11 t
ReservoWord Adj
Re"8rveWotdsAdv
Re ervo>l•'ordsllux
Re.,,.....,WCl<'d!ll)et
neserv WOtdsN
Reserve\.VordsPP
Re.-eitva"'\Jtd=.-f>r\J
Reserve wceesv
SentenceBuffer

Tables

Ji
T empBuffer K ... I ... =:.:._ ~ - ., ~~~-~j ·I·

i ·~ t. Cance~·· ' t 'f
........... -- ·-············· !

Figure 5.3 IPPC's Database tables.

Do take note that the implemented table structure has changed from the proposed

table structure at Figure 4.5 in Chapter 4: System Design. After the proper

examination, the single table structure below is more appropriate because the

proposed structure is having redundancy problem. This is a sufficient design to cater

any data matching for this application.

- 55 -

Univ
ers

ity
 of

 M
ala

ya

5. 4 IPPC Implementation.

The below UML diagram shows how IPP . is initial. This is the skeleton for each of

the too] except with their own unique beha iors to fifer diff rent given tasks.

fPPC's
Words Data

IPPC's Prolog codes
queue

IPPC's Sentences
Structures queue

0-getinpnl 4 - insert.SentStroc () -....

8 - showOutput

2 - GctSent ()

I - insertStc ()

IPPC's Pseudocodes
(or sentences) queue

Figure 5.4 The IPPC collaboration diagram.

- 56 -

Univ
ers

ity
 of

 M
ala

ya

5.5 Rules Implementation.

5.5.1 Using Rules in IPPC

To represent rules as the knowledge in using object-orient d approach does making

sense. We should treat everything which r lated to rule as an object. The general

terms in rule are rule name, condition (i.e.: equals, more than ...), clause, antecedent,

consequent, variable, right hand side and left hand side. We treat all the terms here

as an object which has their own attributes, methods and behavior. Thus, each of the

objects can behave as we wanted them to be.

In this case, we want to build a set of rules which act as the knowledge to recognize

English sentences and English words. After defining the terms, the next step is to

bind them up as a unit which is a rule and implement it to find the output. The

following shows how it does.

IP PC's
Database Input Rules Variables

Booleans Constants

True False

Output

Figure 5.5 The diagram shows how to implement rules in the IPPC.

- 57 -

Univ
ers

ity
 of

 M
ala

ya

If the verb phrase have linking verb and noun then it be represent as sentence structure
for verb phrase, else user must choose the ne. t w rd class for create a sentence
structure.

lf WordTypeV = "lv_n" Then
WordTypeV = "lv_n_"
VP= WordTypoV

Else
UndelWord =Word
UsrDelWrdList.Show vbModal

End If

WordTypeV = WordTypeV & GetDeOClsType & "_"
VP= WordTypeV

If the sentence is condition sentence with "If-Then" then do the "then" part again, else
finish for the sentence structure generation.

If RuleEnabled Then
CheckTxt = ThenTxt
RuleEnabled = False
Go To TraceAgainI:ITben

ElselfRuleEnabled =False Then
SentStructure = WordTypelf & WordType & WordTypeV

End If

Figure 5.6 Rules example.

- 58 -

Univ
ers

ity
 of

 M
ala

ya

5.6 Bottom-up Implementation.

After all the needed rules were defined, it is cousid r d dint the tool are having a set

of rules about the English sentences matching and Prolog odes constrains. The

rules were coded in bottom-up method for produce sentences structure and prolog

codes.

Bottom-up strategy is start with the words in the sentence and use rewrite rules

backward to reduce the sequence of symbols until it consist solely of S O. For IPPC,

bottom-up strategy is used until a full sentence structure is create and rewrite to

major phrase like NP or VP or S will not proceed in IPPC.

When the IPPC get input from user, the IPPC's algorithm will goes as follow:

a) Load a sentence from database.

b) Tokenize the sentence.

c) Use rules to match word with word class in database.

The rules is use to justify what kind of the sentence structure will be. From the

sentence, each word in the sentence (generated using tokenization teclmique)

will matching with word class in existed data in database.

From the generation of sentence structure, bottom-up strategy is used. Figure 5.7

will describe more detail about how to apply this technique in IPPC.

d) Insert the result into corresponding database.

e) Repeat a-d for other sentences and prolog codes routine.

- 59 -

Univ
ers

ity
 of

 M
ala

ya

c:> John ate the cake.
c:> N ate the cake.
c:> N V the cake.
c:> N V Det cake.
c:> NV DetN

Sentence from database called "SentenceBulTer": John ate the cake.

From this sentence, the sequence of rewrite will look like thi :

The sentence structure is creating base on how the rule is od d.

Figure 5.7 Applying Bottom-up strategy in IPPC.

Above algorithm can be identified as a parsing algorithm, which means as a

procedure for searches through various way (but in IPPC Bottom-up) of combining

grammatical rules to find a combination that generates a tree that could be the

structure of the input sentence [].

5. 7 ActiveX Data Objects Implementation.

A cross-language technology for data access that exposes an object model

incorporating data connection objects, data command objects, Recordset objects, and

colJections within these objects. The ADO object model provides an easy-to-use set

of objects, properties, and methods for creating script that accesses data in databases

[]. IPPC had implemented Microsoft Access as database, thereby; some command

codes are needed to make connection with it. Visual basic 6 have provided ADO for

this solution. Below have shown some ADO's commands for using in connect the

MS Access database with JPPC.

- 60 -

Univ
ers

ity
 of

 M
ala

ya

Private WitbEvent:s connConnection As ADODB.Connection
Private WithEvents rslnfo As ADODB.Recordset

strProvider ="Provider= Microso{l.Jet.OLEDB.4.0;"
slrDataSource = App.Path
strDataBaseName = "\PrologDala.mdb;"
strDataSource ="Data Source=" & strDataSource &
strDataBaseName
strConnect = strProvider & strOaJ:aSource

Set connConnection =New ADODB.Conneclion
connConnection.CursorLocation = ad(JscClient
connConnection. Open strConnect

Figure 5.8 ADO's Commands.

5.8 Exception Handling Implementation.

Ever since the beginning of programming languages, error handling is one of the

most difficult issues. An exception is a n object tat is "thrown" from the site if the

error and can be "caught" by an appropriate exception handler designed to handle

that particular type of error. VB6 had provided exception handling for error

detection and recover from bad situation.

On Error GoTo ErrorHandler

ErrorHandler:
MsgBox "GetSent - part_3SQL (part_3.cls)", vbCritical

Figure 5.9 Exception Handling method.

- 61 -

Univ
ers

ity
 of

 M
ala

ya

Chapter Six

System Testing

Software testing is one of the main phases in the Waterfall Life

phase, the process of testing and debugging are done to detect defect and bugs of

the tool - IPPC. These processes are usually done incrementally with s stem

development.

This phase is also often referred to as Verification and Validation (V & V).

Verification refers to the set of activities that ensure the software correctly

implements a specific function. Validation refers to a different set of activities that

ensure the tool bas been built is traceable to user requirements. A successful test is

one in which .no errors are found.

The objectives to test this tool are:

a) To reveal rules error based on the simple English sentence structure.

b) To compare the expected outcome with the actual outcome. EventualJy,

debug it to enhance it functionality and capability.

c) To ensure the Prolog code created by lPPC and has been shown to users

and according to the user's Pseudocodes.

- 62 -

Univ
ers

ity
 of

 M
ala

ya

6.1 Unit Testing

Unit testing focuses verification effort on the smallest unit f tool d si an

corresponding to the tool components or modules.

6.1.1 Testing Display and Database Module

This is referring to the IPPC interface and database testing to ensure that every data

which user insert into the interface is stored accurately and correctly to the

correspondence database. A set of sample raw data is created for the testing purpose

in this module. The process inc1udes iterate the checking on the duplicated data in

database to ensure that every entered data is valid and ease the redundancy and

duplication problem. The control objects such as radio button, shortcut icons, combo

box and text :field are tested too to ensure the correct functionality respectively.

MjoJ x ... , ~ 1....... .,
I

1 'Jack like Sen
n

likeQ~ck ,b•n).

Figure 6. J Testing data insert into correct table.

- 63 -

Univ
ers

ity
 of

 M
ala

ya

6.1.2 Checking Database Data

A set of words for nouns, verbs, auxiliaries, determiners, and adjectives data is

prepared for IPPC during the user need to convert the Pseudocodes. Then, the , rd ,

in the pseudocodes arc randomly checked to generate the correct semen srru tnre

based on those data. Manua1Jy checking all of the data with correct word lass are

done by programmer.

ability adj J
able adj
abnormal adj
accessible adj
accused adj
accustomed adj
acquainted adj
actual adj
addicted adj
adjacent adj

Ability is not a "adj" but is "n", Error detected and must be correct by
programmer, if not error result will provide lo user.

Figure 6.2 Data checking for corresponding database.

6.1.3 Testing Natural Language Processing Module

In this module, a study of a certain English sentence structures is necessary. This is

to identify the specific strings on a specific structure that we wanted to parse. A

serial of testing bas been done to parse the wanted string from the specific sentence.

- 64 -

Univ
ers

ity
 of

 M
ala

ya

¢ S=>NPVP
¢ NP =>ART ADJN
¢ NP=>ARTN
¢ NP=> ADJN
¢ VP=>AOXVP
¢ VP=>VNP

NLP simple context grammar:

Must include in IPPC.

Figure 6.3 Testing for word parsing of a sent en e.

The "art I det'', "n", "adj", "v", and "aux" strings are the strings that the IPPC should

parse to the words for a sentence. Therefore, to study the structure of the English for

IPPC is essential in order to get the right results, which are the strings we want.

6.1.4 Testing Converting Rules Module

Testing has been done on the bottom-up strategy to ensure that it could produce the

desired result. This includes preparing a set of data.

To test whether the rules are working or not, we must make sure that each of the

rules have return the correct sentence structure as set in Figure 6.3. When the rule is

fire, say "if wordtype = "det"" the then part must constrain to find following

sentence structure like: det_adj_n or det_n. lf the rules unable to give the desirable

structure, programmer must make correction on it Else, there's a bug. Hereby, we

can say that the level of result gave has been decrease. Therefore, adding accurate

rule will enrich the IPPC reliability and vice versa.

Univ
ers

ity
 of

 M
ala

ya

c::> WordType = WordType & "-" & tum2SQL.Oet1'ype(Word, N)
c::>
c::> IfWordType <> "det_adj_n" Then
c::>

To get the sentence structure: Det_Adj_N, below rules must satisfy.

c::> WordType = WordType & tum2SQL.GetType(Word, Det)

c::> [fWordType = "det" Then
c::>
c::> WordType = WordType & "_" & turn2SQL.Get'Typc(Word, Adj)
c::>
c::> If WordType = "det_adj" Then

Figure 6.4 Samples of rules.

6.1. 5 Testing Prolog Codes Generation Module

Prolog codes were the main purpose of implementing IPPC. Thereby, algorithm for

generate prolog codes must be test. In this module, codes for generate predicate and

clauses will give accurate result and executable in VP5.

6.2 Integration Testing

For this project, a bottom-up approach bas been used. Bottom-up integration testing

begins construction and testing with modules at the lowest levels of the system and

then moving upward to the modules at the higher levels of the tool.

Since all the modules have been tested and have been declared bug free, the modules

will combine one by one according to the called modules. The integration is checked

again to ensure there is no error.

- 66 -

Univ
ers

ity
 of

 M
ala

ya

I ~~ Part_lProRules (Part_l .ds) I
I

I ~ Part_ZNLP (Part_2.cls:)
I ~ ~alnModule (M lnVerl.vbp) t- r

I .. cj(J part_3SQL (part_3.cls)
l
I

~ ~

PrologData
mciconmenu.o

oc

Figure 6.5 l11ustration of tool integration.

6.3 Tool Testing

Tool testing is a series of different tests designed to fully exercise the tool to

uncover its limitations and measure its capabilities. The objective is to test an

integrated tool and verify that it meets specified requirements.

There are several types of system testing that are worthwhile for the tool - IPPC.

a) Rule Testing

It is a test during the run time environment where the complete set of rules is loaded.

If the pseudocodes (or sentence) converted into pro log codes, then it has considered

success.

- 67 -

Univ
ers

ity
 of

 M
ala

ya

b) Performance Testing

The purpose of this testing is to test the run-time performance of the tool within the

context of an integrated tool. This will show the actual outcome whi h is th

message received and compare to the expected outcome.

c) Database Testing

This testing will test whether the database is connected to the tool wh n th t l i

generated. If error detected, ensure that the "PrologData" is existed in the tool s

located folder. If not, the tool will not function as desire.

6. 4 Testing Analysis

Overall, the tool runs smooth. All of the codes and words transformation work well

in database and execution files. IPPC is able to generate correct result. As a

conclusion, all the objectives have been achieved.

- 68 -

Univ
ers

ity
 of

 M
ala

ya

Chapter Seven

Tool Evaluation and Conclusion

After the tool - IPPC is successfully built; the next phrase is valuation n s m

conclusion about this tool. The necessary need of evaluation i to mak ur the t ol

met goals for performance and other desirable attributes.

7.1 Tool Evaluation

During the period of coding and implementation of this system, various problems

were encountered. These problems were solved through research and studies in

fields such as the Natural Language Processing (NLP), Prolog Programming, Visual

Basic 6 program.ming, journals and reference book. The system's strengths,

I.imitations, and future enhancement were identified.

- 69 -

Univ
ers

ity
 of

 M
ala

ya

7.2 Problems Encountered And Solutions

Problems are everywhere and so do in every thesis. Several problem en unr rod

throughout the development of this too). These include:

a) Difficulty in Choosing Development Technology and Tools

There are many so.ftware tools available to develop an lPP . h os ing suit bl

technology and tools was a critical process as all tools possesses their own

strengths and weaknesses. In addition, the availability of the required tools for

development was also a major consideration. Eventually, VB6 has been chosen

of its strength in ADO and ease interface creation. We only have to learn about

the methods to program rather than create all the codes by ourselves especially

hard interface coding. It saves us a Jot of time.

b) Lack of Knowledge applying Natural language into JPPC

Theoretical has never been hard. All the problems and doubts will emerge once

the development and design starts. lt's hard to find a good linguistic book which

provides full knowledge about Natural Language processing. Without good

explanations of NLP, the sentence structure for the IPPC and the rest of the

process are hard to proceed. For this problem, some simple grammar was taken

for the tool and for complex grammar will not include in this thesis.

c) Lack of Knowledge in Visual Prolog

- 70 -

Univ
ers

ity
 of

 M
ala

ya

Previous knowledge in traditional, such as C, Java or VB6 is more to object

oriented programming, but Visual Prolog is a new or non-popular development

programming which have brought uncomfortable to programmer. Since th'

was no prior knowledge of programming in Visual Prolo . , th r ,v s an

uncertainty on how to organize the codes into the tool. These new pr grnnunin

languages and concepts were never taught before and to irnpl mcnt u h a

application requires a fair grasp of the languages. The. pro amming

approaches seem to be totally different from the traditional programming

languages.

d) Sentence structure (Grammar) Parsing Problems

There are varieties of grammar. There have simple to complex grammar

representation. Arrangement between words in a sentence can give different

meanings. This makes the parsing from the sentence into sentence structure

becomes more predictable.

e) Tool Testing Problem

As we know, the sentences matching are not familiar to student especially for

student not from linguistic domain. But I need to test my tool very frequently for

make sure all the desired goal met in IPPC. Therefore, I had to create prototype

lPPC executable program to run the test locally on the PC before I can

completely proving it safe from bugs.

- 7 J -

Univ
ers

ity
 of

 M
ala

ya

7.3 Tool Strengths

During the development of this project, several too] strength w re id ntifi d an

described as follow:

a) User Friendliness and Easy to Use Interface

Some useful Graphical User Interface (GU1) such as shortcut butt ns, he k

boxes and drop-down list boxes are created on the IPPC which could attract the

users to navigate through the tool and give faster access. This user-friendly

interface can minimize learning time for the user.

b) Database Access Authority

All the data are organized and stored in the form of database using Microsoft

Access 2000. It is a data stored database and any changes can make to the error.

So for security, it was needed password to open it for modification.

c) Semi-Au.Jonomous

After the user activated the tool to generate Prolog codes, the user can leave the

rest of the task to the too]. The tool will do parsing algorithm consider to the

rules. [f there have problems like undefined word, or error detected IPP will

pop out a message to user about the problem. User need to make choice depend

on the pop :from. The last result will give to user if problem in the converting

process.

- 72 -

Univ
ers

ity
 of

 M
ala

ya

d) Bottom-up strategy and rules

The selected strategy enables the searching for the words in the sentence and

changing it into corresponding word class. Every piece of con truct d rul e a ts as

the part of the knowledge and the rules can lead to the c ff t en rnri n f

prolog codes.

e) Ease to upgrade for new version

IPPC is built with VB6 which provide programmer to separate the functionality

and execute module in different projects. Most of the NLP and Prolog code

generation codes are placed in '.dll' file. The programmer needs to change the

'.dJJ' file part without affect the main module (interface).

- 73 -

Univ
ers

ity
 of

 M
ala

ya

7. 4 Tool Limitations

Owing to tbe time constraint and tbe programming language itself, th r " er, , m

limitations in this tool. These include:

a) !PPC is limited in English

IPPC mainly built for convert Pseudocodes composed with English word (but

can upgrade to Ma]ay).

b) Unable to detect words other than Noun, Verb, Adjective and Possession Noun.

JPPC is built with simple grammar (sentence structure). A sentence is construct

with Noun Phrase and Verb Phrase (S = NP +VP). Preposition words is not

included in IPPC (can upgrade in new version).

S=NP+VP

NP = N or Adj + N or Det + Adj + N or N's N

VP = V or V + NP or Aux+ V or Aux+ V + NP or Aux+NP

c) The sentence must be in correct grammar form.

The user must key in correct sentence structure as defined in IPPC. If user do not

follow that constraints, IPPC will be prompt out message "invalid sentence" or

give incorrect result.

- 74 -

Univ
ers

ity
 of

 M
ala

ya

d) Simple prolog codes generate by IPPC.

In Prolog, there are few major part needed to generate a executable program. Part

of them is Clauses, Predicates and Goal (Domains not included in lPP).

Because of recently lPPC can convert simple sentence srru tut (ns show 1

above), so the pro log codes generate by IPPC also is simple d s. s er n 't g t

complex rules or clauses from IPP , e.g. list (its need conjun ti n nd m r

parsing algorithms).

e) JPPC input cannot more than 7 words for fact's sentence and cannot more than

J 6 words for rule 's sentence.

- 75 -

Univ
ers

ity
 of

 M
ala

ya

7.5 Tool Enhancement

Further development and many new ideas have come about while th t 1 wn b in 1

implemented. Owing to time constraint and other factors, n t all of th uld

be incorporated into TPPC. It is hoped that the following a poets uld b

in future:

a) Adding more sentence structure with preposition and adverb.

Since the IPPC parses only noun, verb and adjective of the pseudocodes but

IPPC still can extend to more useable tool with preposition, it is possible to

implement preposition into IPPC. Thus, it is able to parse for the meaning of the

sentence into more complex prolog codes, e.g. time, person or data in list format.

b) Matching technique must be change into more comfortable technique

In order to make the IPPC more intelligent, it may check on the matching

algorithm. Because of recently technology can't well understand the meaning of

human act or human languages. Thereby, if have more efficient technique has

create for this purpose, it can apply into this tool for improve it performance,

- 76 -

Univ
ers

ity
 of

 M
ala

ya

7. 6 Conclusion

In this paper, several chapters have clearly described about the tool IP'P . In l ro 'S

to starting, doing and finishing this paper, much kind of problems, kno

experiences had gained from this paper.

IPPC still not complete can as intelligent tool but it still can generate few types of

prolog codes from user's pseudocodes. Thereby, it must be improve to accomplish

the goal.

Finally, the results show that recently technology is needed to improve to more

intelligent behavior for ease human to apply human act or human language straightly

into high technology without need of this converter. While this study investigate

differential view of computer software and human behavior, it give another idea for

students to learn more on how to managing and researching a project.

- 77 -

Univ
ers

ity
 of

 M
ala

ya

Bibliography

[1] Ivan Bratko, PROLOG - Programming for artificial intolli
Addison Wesley, 2001.

[2] Paul Brna, Prolog Programming, March 5, 2001.
http://www.cbl.lecds.ac.uk/ aul/prolo book/brna.pdf. z

[3] Visual Prolog Version 5.0, Language Tutorial, B rland Int rnati nal, 1 88.

[4] Krassimir Yalumov, Artificial intelligent 11: Methodolog s stem applications,
1987. The Nesy Prolog, Pg. 63-68.

[5] PERDRIX Herve, Artificial intelligent 11: Methodology, s st ms, applications,
1987. Program synthesis from specifications, Pg. 13-20.

[6] James Allen, Natural Language Understanding, Benjemin I Cummings, 1987.

[7] Fischler, Martin A., Intelligent: The eye, the Brain, and the Computer, Addison­
Wesley, 1987.

[8] Clicksin, W.F & Mellish C.S, Programming in Prolog, 2nd edition, Springer­
Verlag Berlin Heidelberg 198 l, 1984

[9] Computer User, High-tech Dictionary,
http://www.computeruser.com/resources/dictionary/index.html

[10] MSDN Library Visual Studio 6.0 release, 1991-1998 Microsoft orporation.

[l l] Nexus Internet Solutions Ltd. , 2000
http://www.nexusdesign.com/default.asp

[12] File Extensions Windows/OS2/ Apple/UNIX,
http://www.icdatamaster.com/index.ht:ml

[13] Textproc,
http://centaurs.mtk.nao.ac.jp/-shiki/Comp/Usage/PortslndcxMakor/textproc.html
http://www.ctgi.net/nicetext/index.html

[14] International Conference on Information and Computer Security 1997 (1ClCS97)
in Beijing, China back in November, 1997.

- 78-

Univ
ers

ity
 of

 M
ala

ya

[15] Introduction of Microsoft Access, copyright 200 I..
http://www.functionx.com/access/

[16] Shary Lawrence Pfleeger, Software Engineering: Theory And Pracric \ "J
Ed, Practice Hall, 2000.

- 78-

Univ
ers

ity
 of

 M
ala

ya

