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EXTENDED HAARWAVELET QUASILINEARIZATION METHOD FOR

SOLVING BOUNDARYVALUE PROBLEMS

ABSTRACT

Several computational methods have been proposed to solve single nonlinear ordinary

differential equations. In spite of the enormous numerical effort, however yet

numerically accurate and robust algorithm is still missing. Moreover, to the best of our

knowledge, only a few works are dedicated to the numerical solution of coupled

nonlinear ordinary differential equations. Hence, a robust algorithm based on Haar

wavelets and the quasilinearization process is provided in this study for solving both

numerical solutions; single nonlinear ordinary differential equations and systems of

coupled nonlinear ordinary differential equations, including two of them are the new

problems with some additional related parameters. In this research, the generation of

Haar wavelets function, its series expansion and one-dimensional matrix for a chosen

interval  B,0 is introduced in detail. We expand the usual defined interval  1,0 to

 B,0 because the actual problem does not necessarily involve only limit B to one,

especially in the case of coupled nonlinear ordinary differential equations. To achieve

the target, quasilinearization technique is used to linearize the nonlinear ordinary

differential equations, and then the Haar wavelet method is applied in the linearized

problems. Quasilinearization technique provides a sequence of function which

monotonic quadratically converges to the solution of the original equations. The highest

derivatives appearing in the differential equations are first expanded into Haar series.

The lower order derivatives and the solutions can then be obtained quite easily by using

multiple integration of Haar wavelet. All the values of Haar wavelet functions are

substituted into the quasilinearized problem. The wavelet coefficient can be calculated

easily by using MATLAB software. The universal subprogram is introduced to calculate

the integrals of Haar wavelets. This will provide small computational time. The initial
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approximation can be determined from mathematical or physical consideration. In the

demonstration problem, the performance of Haar wavelet quasilinearization method

(HWQM) is compared with the existing numerical solutions that showed the same basis

found in the literature. For the beginning, the computation was carried out for lower

resolution. As expected, the more accurate results can be obtained by increasing the

resolution and the convergence are faster at collocation points. For systems of coupled

nonlinear ordinary differential equations, the equations are obtained through the

similarity transformations. The transformed equations are then solved numerically. This

is contrary to Runge-Kutta method, where the boundary value problems of HWQM

need not to be reduced into a system of first order ordinary differential equations.

Besides in terms of accuracy, efficiency and applicability in solving nonlinear ordinary

differential equations for a variety of boundary conditions, this method also allow

simplicity, fast and small computation cost since most elements of the matrices of Haar

wavelet and its integration are zeros, it were contributed to the speeding up of the

computation. This method can therefore serve as very useful tool in many physical

applications.

Keywords: Haar wavelet, quasilinearization, single nonlinear ordinary differential

equations, coupled nonlinear ordinary differential equations, boundary conditions
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PENAMBAHBAIKAN KAEDAH GELOMBANG KECILHAAR

PENGLINEARAN KUASI BAGI MENYELESAIKAN MASALAH NILAI

SEMPADAN

ABSTRAK

Beberapa kaedah pengiraan telah dicadangkan untuk menyelesaikan persamaan

pembezaan biasa tak linear tunggal. Walaupun banyak usaha berangka, namun,

algoritma berangka yang tepat dan mantap masih tiada. Selain itu, sepanjang

pengetahuan kami, hanya beberapa kajian sahaja yang menyelesaikan penyelesaian

berangka persamaan pembezaan biasa tak linear gandingan. Oleh itu, algoritma mantap

berdasarkan gelombang kecil Haar dan proses penglinearan kuasi diselidiki dalam

kajian ini bagi menyelesaikan kedua-dua penyelesaian berangka; persamaan pembezaan

biasa tak linear tunggal dan sistem persamaan pembezaan biasa tak linear gandingan; ini

termasuklah dua daripadanya merupakan masalah baharu dengan beberapa parameter

tambahan yang bersesuaian. Dalam kajian ini, penjanaan gelombang fungsi Haar,

pengembangan siri dan matriks dalam satu dimensi untuk selang  B,0 diperkenalkan

secara terperinci. Selang dikembangkan daripada  1,0 kepada  B,0 kerana masalah

sebenar tidak semestinya melibatkan hanya had B kepada satu, terutama dalam kes

persamaan pembezaan biasa tak linear gandingan. Untuk mencapai sasaran itu, teknik

penglinearan kuasi digunakan bagi melinearkan persamaan pembezaan biasa tak linear,

dan kemudian kaedah gelombang kecil Haar digunakan dalam masalah yang telah

dilinearkan. Teknik penglinearan kuasi menyediakan turutan fungsi yang menumpu

secara kuadratik berekanada kepada penyelesaian persamaan asal. Pembezaan tertinggi

yang terdapat dalam persamaan pembezaan pada mulanya dikembangkan ke bentuk siri

Haar. Pembezaan yang lebih rendah dan penyelesaiannya boleh diperolehi dengan

mudah dengan menggunakan pelbagai kamiran gelombang kecil Haar. Semua nilai

fungsi gelombang kecil Haar digantikan ke dalam masalah yang telah dilinearkan.
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Pekali gelombang kecil boleh dihitung dengan mudah dengan menggunakan perisian

MATLAB. Sub aturcara umum diperkenalkan untuk mengira kamiran gelombang kecil

Haar. Ini akan memberikan masa pengiraan yang singkat. Penghampiran awal boleh

ditentukan daripada pertimbangan matematik atau fizikal. Dalam masalah yang

didemonstrasikan, prestasi kaedah gelombang kecil Haar penglinearan kuasi (HWQM)

dibandingkan dengan penyelesaian berangka sedia ada menunjukkan asas yang sama

seperti terdapat dalam literatur. Sebagai permulaan, pengiraan dijalankan dengan

resolusi yang lebih rendah. Seperti yang dijangkakan, hasil yang lebih tepat diperolehi

dengan meningkatkan resolusi dan penumpuan yang lebih cepat berlaku pada titik

terpilih. Bagi sistem persamaan pembezaan biasa tak linear gandingan pula, persamaan

diperolehi melalui transformasi persamaan. Persamaan yang dijelmakan kemudiannya

diselesaikan secara berangka. Ini adalah bertentangan dengan kaedah Runge-Kutta, iaitu

masalah nilai sempadan HWQM tidak perlu dijelmakan ke dalam sistem persamaan

pembezaan biasa peringkat pertama. Selain dari segi ketepatan, kecekapan dan

kesesuaian dalam menyelesaikan persamaan pembezaan biasa tak linear untuk pelbagai

keadaan sempadan, kaedah ini mudah, kos pengiraan cepat dan kecil kerana kebanyakan

unsur matriks gelombang kecil Haar dan kamirannya adalah sifar, ianya

menyumbangkan kepada pengiraan yang cepat. Oleh itu, kaedah ini boleh menjadi

perlaksanaan yang sangat berguna dalam banyak aplikasi fizikal.

Kata kunci: gelombang kecil Haar, penglinearan kuasi, persamaan pembezaan biasa

tak linear tunggal, persamaan pembezaan biasa tak linear gandingan, keadaan sempadan
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CHAPTER 1: INTRODUCTION

1.1 Overview of Thesis

There are several well-known numerical methods for solving boundary value problems

(BVPs) in ordinary differential equations (ODEs) such as homotopy perturbation

method (HPM), finite difference method (FDM), shooting method and collocation

method. The most popular numerical method for solving BVPs is shooting method. It is

a successive substitution method by guessing the initial condition which satisfies the

desired boundary condition. Unfortunately, shooting method is inefficient as they may

often converge quite slowly and increases the computer time because of the wrong

guess (Al-Bayati et al., 2011). Furthermore, the numerical errors can be enlarged. On

the other hand, shooting method is not always computationally suitable for the whole

range of practical BVPs, particularly those on a very long or infinite intervals. Hence, it

seems to offer less hope for some of the practical engineering problems (Lee & Kim,

2005; Michalik et al., 2009).

Alternatively, BVPs can be solved by using collocation method since it often gives

a better performance than other numerical methods (Boyd, 2000). However, the choice

of the collocation points greatly influence the effectiveness of this method. Ghani et al.

(2014) have tested three different Haar wavelet collocation methods to solve ODEs,

namely repeated application of Haar operational matrix, one-shot operational matrix for

repeated integration (OSOMRI) and collocation method. It turn out that the collocation

method by Lepik (2005) is superior in terms of accuracy. To apply this method, it

consist of reducing the problem to a set of algebraic equations by first expanding the

terms, which have maximum derivatives, given in the equation as Haar function with

unknown coefficients. Subsequent integration give the lower derivatives and

).(xf Substituting the values in the given equation gives the coefficients and hence the

solution.
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Many numerical methods have been used for solving nonlinear system of second

order boundary value problems, such as FDM and adjoint operator methods (Na, 1979),

reproducing Kernal space (Geng & Cui, 2007), variational iteration method (Lu, 2007),

third degree B-spline (Caglar & Caglar, 2009), sinc-collocation method (Dehghan &

Saadatmandi, 2007) and Chebyshev finite difference method (Saadatmandi & Farsangi,

2007). Furthermore, there continuous to be interest in solving higher order as indicated

by the recent appearance (Mandelzweig & Tabakin, 2001; Sharidan et al., 2006; Ahmed

et al., 2010; Rashidi & Pour, 2010; Islam et al., 2011; Kaur et al., 2011; Aminikhah,

2012; Kaur et al., 2013).

In numerical analysis, the discovery of Haar wavelet method has proven to be a

useful tool for solving a variety of ODEs, partial differential equations (PDEs), integral

and fractional order differential equations. But, Haar wavelets or rather piecewise

constant functions in general, are not widely used for solving system of coupled

nonlinear ODEs. In view of successful application of Haar wavelet quasilinearization

method (HWQM) in numerical solution of single nonlinear ODEs (Kaur et al., 2011;

Jiwari, 2012; Kaur et al., 2013), we now extend the method to solve system of coupled

nonlinear ODEs arising in natural convection boundary layer flows problems with high

Prandtl (Pr) number and heat and mass transfer problems related to the

Cattaneo-Christov heat flux model for boundary layer flow of Maxwell fluid. The

quasilinearization procedure replaces the original nonlinear equation by a sequence of

linear equations and Haar wavelets procedure is exploited to solve these linear boundary

value problems.

1.2 Motivation

a. Most of the studies on Haar wavelet collocation method are based on the interval

 1,0 . This give limitations to our ultimate goal as the integration involved in
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differential equation does not necessarily limited to the interval between zero to

one. Therefore, it is convenient to derive the Haar wavelet functions that can

generalized the whole domain of Haar series expansion. On the other hand, the

boundary layer fluid flow problems and heat and mass transfer problems deal with

sufficiently large number of infinite intervals.

b. Haar wavelets are made up of pairs of piecewise constant functions and are

mathematically the simplest among all the wavelet families. One of good feature of

the Haar wavelets is the possibility to integrate them analytically arbitrary times.

This feature is required for solving differential equations.

c. Numerous applications of ODEs and PDEs have appeared in many areas of physics

and engineering. For most nonlinear system of ODEs, the exact solutions are not

known. Therefore, different numerical methods have been applied for providing

approximate solutions. However, most of the existing methods such as homotopy

perturbation method (HPM), the variational iteration method (VIM), the Adomian

decomposition method (ADM), finite difference method (FDM) and shooting

method have their own limitations and weaknesses. Therefore, the capability of

HWQM is introduced in this study, since no literature discussed the analytical

solutions for solving systems of coupled nonlinear ODEs by using HWQM.

d. The beauty of the mathematical construction of Haar wavelets and its utility in

practical applications attract nowadays researchers from both pure and applied

science. Hence, this research may help practitioners in science and engineering for

finding an alternative formulation to solve problem in boundary value problems.

1.3 Scope of the Study

The main focus on this work is to solve single nonlinear ODEs and systems of coupled

nonlinear ODEs arising in natural convection boundary layer flows problems with high
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Pr number and heat and mass transfer problems related to the Cattaneo-Christov heat

flux model for boundary layer flow of Maxwell fluid by using HWQM. These two types

of nonlinear ODEs extensively used in a large variety of applications.

In the process of constructing a new algorithm for this method, we have derived

generalized Haar wavelet functions and their integration for a chosen domain,

numerically and graphically. We also set up a universal subprogram for Haar wavelet

functions and repeated integration of Haar wavelet by using matrix laboratory

(MATLAB) software. According to the HWQM, the nonlinear ODE is converted into

linear discretized equation with the help of quasilinearization technique and apply the

Haar wavelet method at each iteration of quasilinearization technique to get the

solution.

The derivation of generalized Haar wavelet and the multiple integration for solving

the two types of nonlinear ODEs are extended. The numerical stability and error

analysis of this method has been given in the literature. Hence, to justify the accuracy of

these numerical results, a comparison with analytical solution given by others is being

employed. For single nonlinear ODEs, the difference between the proposed method and

the exact solution is shown by absolute error.

1.4 Research Objectives

The objectives of this research are;

a. to study the Haar wavelets collocation method in extended interval  B,0 ,

b. to develop a simple algorithm combining the method of Haar wavelet and

quasilinearization to solve nonlinear two-point boundary value problems,

c. to validate the effectiveness of HWQM in solving single nonlinear ODEs and

coupled nonlinear ODEs,
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d. to compare the efficiency of HWQM with the existing numerical methods found in

the literature,

e. to apply HWQM to solve single nonlinear ODEs and systems of coupled nonlinear

ODEs arising in natural convection boundary value problems

1.5 Thesis Organization

This thesis consists of seven chapters including this chapter and is organized as follows:

Chapter 1 introduced in brief some of well known numerical method for solving

BVPs in ODEs including nonlinear systems of second order BVPs that found in the

literature. An overview of the method that we used throughout the thesis is also given.

Then, we list down what inspired us to study or get involved in this research, and a

rough description of our scope of research are listed. Lastly, the research objectives are

highlighted.

Chapter 2 consists of three parts. The overview of Haar wavelet, quasilinearization

technique and combination of method Haar wavelet and quasilinearization are discussed

in this chapter. A few well known orthogonal function that has been used by some

scholars are listed. Then, a specific orthogonal function namely Haar basis function is

focused. This selection of orthogonal function is justified by listing down a few of its

advantages compared to other orthogonal functions. Some of the successful applications

of Haar wavelets by some researchers also discussed in this part. Further, reviewed on

quasilinearization technique by giving explanation of the previous work lies in the

application of quasilinearization technique. At the end of this chapter, review on

HWQM is provided.

In Chapter 3, the mathematical background of Haar wavelet method,

quasilinearization technique and combination of HWQM are illustrated which are

needed to understand the concept followed in this thesis. Most of the literature defined
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Haar wavelet and its integration within the interval  1,0 . Therefore, the generalized of

Haar wavelet and its integration are derived which could cater the Haar series expansion

domain greater than one. On the other hand, the detail of quasilinearization formula is

also provided. The remainder of the chapter presents an efficient new algorithm and step

by step for easy understanding the concept of HWQM for solving nonlinear ordinary

differential equations.

In Chapter 4, the proposed method that discussed in Chapter 3 is applied to three

problems of single nonlinear ordinary differential equation, namely; Bratu equation,

Falkner-Skan equation and Blasius equation. The usage of generalized Haar basis and

its integration together with new algorithm are very helpful hence enable us in finding

the solution quickly. Their numerical results are shown and compared with the existing

numerical methods and exact solution given numerically and displayed graphically. The

discussion of these findings are also written in this chapter.

Chapter 5 presents a methodology for applying HWQM to three different types of

coupled nonlinear differential equations related to the natural convection boundary layer

fluid flow problems with high Pr number, namely; boundary layer flow and heat transfer

due to a stretching sheet (BLFHTSS), laminar film condensation (LFC) and natural

convection boundary layer flow (NCBLF). The ordinary differential equations are

obtained based on similarity transformations as introduced in the literature. The effects

of variation of Pr on heat transfer are investigated. Simulation results were compared

with those obtained by another researcher’s work.

Numerical solutions for three different types of coupled nonlinear differential

equations with some additional parameters that are related the Cattaneo-Christov heat

flux model for boundary layer flow of Maxwell fluid are shown in Chapter 6. The first

problem is in the presence of velocity slip boundary and while the last two problems are

new problems in the presence of suction, injection and heat generation/absorption. The
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numerical solutions of three different problems are discussed numerically and

graphically.

Finally, Chapter 7 concludes the overall works and contributions of the study in

numerical analysis of fluid flow problems and heat and mass transfer problems. Some

recommendations for future work are proposed at the end of this thesis.
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CHAPTER 2: LITERATURE REVIEW

2.1 Literature Review on HaarWavelet

The approximation of orthogonal functions played an important role in the solution of

problem such as parameter identification analysis or optimal control in the last two

decades. Subsequently, the set of orthogonal functions widely applied in solving

bilinear systems (Cheng & Hsu, 1982), the parameter identification of linear lumped

time invariant systems (Mouroutsos & Paraskevopoulos, 1985) and multi-input and

multi-output systems (Hwang, 1997). The main feature of this technique is it converts

the differential equation into a set of algebraic equations. Among orthogonal basis

functions that have been given special attention are Walsh function (Chen & Hsiao,

1975), cosine-sine and exponential function (Paraskevopoulos, 1987), block pulse

function (Chi-Hsu, 1983), Legendre mother wavelets (Khellat & Yousefi, 2006),

Chebyshev wavelet (Babolian & Fattahzadeh, 2007) and Haar wavelet (Gu & Jiang,

1996; Chen & Hsiao, 1997). However, wavelet basis is the most attractive method due

to good approximation and fast convergence of the wavelet sequence.

Most of the orthogonal wavelet systems are defined recursively and generated with

two operations; translations and dilations of a single function, known as the mother

wavelet. Wavelet systems with fast transform algorithm, such as Daubechies wavelet

(Daubechies, 1988) do not have explicit expression, and as such, analytical

differentiation or integration is not possible. Therefore, any attempt to solve differential

equations with this orthogonal wavelet usually will be complicated and difficult to apply.

Meanwhile Legendre multi-wavelets are the alteration of Haar’s wavelet. They are

piecewise linear and have short support, however they lack of smoothness and are

discontinuous. On the other hand, they also localized in time but not in the frequency

due to their discontinuity. Chebyshev wavelets had been applied by Ghasemi and

Tavassoli Kajani (2011) to obtain the solution of time-varying delay systems. They
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proved that the Chebyshev wavelets provide an exact solution only for the cases when

the exact solutions are polynomials.

However, all these numerical computations share a number of advantages. One of

them is the ability of finding the solution with only matrices manipulation rather than

performing integration or differentiation in a conventional ways. Another advantage is

the capability of transforming the matrices into a sparse matrix and small number of

significant coefficients (Hariharan & Kannan, 2011). This is the main factor that reduces

computational time. This advantage remains even if big matrix size is involved whereby

big matrix size usually requires large computer storage and enormous number of

arithmetic operations (Lepik & Tamme, 2004).

Wavelets became a requisite mathematical tool in many investigations and have

numerous applications. The main field of applications of wavelet analysis is analysis

and processing of different class of non-stationary (in time) or inhomogeneous (in space)

signals. On the other hand, physics applications of wavelets are so numerous. It has

been used in theoretical studies in functional calculus, renormalization in gauge theories,

conformal field theories, nonlinear chaoticity and in practical fields such as

quasicrystals, meteorology, acoustics, seismology, nonlinear dynamics of accelerators,

turbulence, structure of surfaces and many more (Dremin et al., 2001).

Wavelets also proved to be an extremely useful mathematical method for analyzing

complicated physical signals at various scales and definite locations. In medicine and

biology fields, the discovery of wavelets have proven to be a useful tool for decoding

information hidden in one dimensional function especially in analysis of heartbeat

intervals, electrocardiogram (ECG), electroencephalogram (EEG) and deoxyribonucleic

acid (DNA). Recognition of different shapes of biological objects is another problem

which can be solved with the help of wavelet analysis (Dremin et al., 2001).
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Another use of wavelets is in application of data compression (Dremin et al., 2001).

It help to store the data spending as low memory capacity as possible or to transfer it at

a low cost using smaller packages. This is commonly used by Federal Bureau of

Investigation (FBI), United State of America for pattern recognition and saving a lot of

money on computer storage of fingerprints. Related to pattern recognition is the

problem of microscope focusing. This can be solved by resolving well focused image

from that with diffused contours.

In this study, Haar wavelet basis function and its integral will be considered.

Among the wavelet families, which are defined by an analytical expression, special

attention deserves the Haar wavelets since they are the simplest possible wavelet

function with a compact support, which means that it vanishes outside of a finite

interval. In numerical analysis, the discovery of compactly supported wavelets have

proven to be a useful tool for the approximation of functions, where a short support

makes approximation analysis local. However, the technical disadvantage of the Haar

wavelet is it contains piecewise constant functions which means that it is not continuous

and hence at the points of discontinuity the derivatives does not exist.

Since Haar wavelets are not continuous, there are two strategies to fix this situation.

One way is proposed by Cattani (2001) where he regularized the Haar wavelets with

interpolating splines. But this step complicates the solution, thus the simplicity of Haar

wavelets are no longer beneficial. Another strategy is introduced by Chen and Hsiao

(1997) where the highest derivatives appearing in the differential equations are first

expanded into Haar series. The lower order derivatives and the solutions can be

obtained quite easily by using Haar operational matrix of integration.

Another advantageous features of Haar wavelet method at the chosen collocation

points that can be summarized in the previous literature. Some of them are;

a. it provide high accuracy solution for a small number of grid points,
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b. less time consuming is needed since the calculation for the integrals of the wavelet

functions can be calculated at once (universal subprograms can be build together)

and are used in the subsequent computations repeatedly. Here the matrix programs

of MATLAB are very effective,

c. this method is very convenient for solving boundary value problems defined on a

very long interval,

d. this method does not require conversion of a boundary value problem into

initial value problem where it is not integrated as an initial value problem with

guesses for the unknown initial values. Hence, this property eliminates the

possibility of unstable solution due to wrong guesses,

e. a variety of boundary conditions can be handled with equal ease,

f. this method is very effective for treating singularities since they can be interpreted

as intermediate boundary conditions, and

g. it is simple and direct applicability with no need other intermediate technique.

The literature devoted to Haar wavelets method is very voluminous. The ideas from

Chen and Hsiao (1997) were later used by Hsiao (1997), Hsiao and Wang (2001),

Razzaghi and Ordokhani (2001), Maleknejad and Mirzaee (2005), Lepik (2005, 2007),

Shi et al. (2007), Hsiao (2008), Babolian and Shahsavaran (2009), Derili et al. (2012)

and Sunmonu (2012) to solve integral and differential equations. Their ideas were also

applied by Hsiao (2004), Dai and Cochran (2009) and Swaidan and Hussin (2013) for

solving variational and optimal control problems. Haar wavelets method also had been

applied successfully for numerical solution of linear ordinary differential equations by

Chang and Piau (2008), nonlinear differential equations by Hariharan et al. (2009),

Lepik (2005, 2007), fractional order differential equations by Geng et al. (2011) and Li

and Zhao (2010) and boundary layer fluid flow problems by Islam et al. (2011).
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Moreover, Haar wavelets method have been applied for solving partial differential

equations (PDEs) from beginning of the early 1990s. In the last two decades, PDEs

problem has attracted great attention and numerous papers in this problem have been

published. The pioneering work for solving PDEs was led by Cattani (2004) is very

important. Wu (2009) had solved for first order fractional PDEs numerically using Haar

wavelet operational method. Rashidi Kouchi et al. (2011) proposed an adaptive wavelet

algorithms for elliptic PDEs on product domains. Ghani (2012) solved the two

dimensions space elliptic PDEs by using Haar wavelet operational matrix method.

Lepik (2011) introduced numerical solution of differential equations with high order,

integral equations and two dimensional PDEs using Haar wavelet method. Islam et al.

(2013) solved parabolic PDE using Haar and Legendre wavelets.

Some of the studies related to boundary value problems which based on Haar

wavelets are found in the literature. Islam et al. (2010) introduced a numerical method

based on uniform Haar wavelets for solving different types of linear and nonlinear

second order boundary value problems. Later, a collocation method based on Haar

wavelet for the numerical solution of eight-order two-point boundary value problems

and initial value problems in ordinary differential equations is proposed by Fazal-i-Haq

et al. (2010). They also performed a new method based on non-uniform Haar wavelets

for the numerical solution of singularly perturbed two-point boundary value problems

(Fazal-i-Haq et al., 2011). Al-Bayati et al. (2011) designed a new algorithm for

boundary value problems with an infinite number of boundary conditions. Fazal-i-Haq

et al. (2011) had solved numerical solution of multi-point fourth-order boundary value

problems related to the two dimensional channel with the porous walls and a special

type of parameterized boundary value problems by using uniform Haar wavelets.
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2.2 Literature Review on Quasilinearization Technique

In this study, Haar wavelet method with quasilinearization technique will be focused

since quasilinearization technique offers sufficient approach to obtain approximate

solutions to nonlinear problems. Nonlinear differential equations are playing crucial role

in both theory and applications. The quasilinearization method (QLM) is designed to

confront the nonlinear aspects of physical processes. The origin of quasilinearization

lies in the theory of dynamic programming (Bellmann & Kalaba, 1965; Lee, 1968).

Their ideas were later used to study many real-world problems such as the motion of a

spinning rocket in a smooth bone launcher (Bellmann & Roth, 1983), the growth of a

pathogenic bacteria (Murty et al., 1990) and solving nonlinear differential systems

including problems of atmospheric flight mechanics (Miele & Wang, 1993). In

numerical analysis, the discovery of quasilinearization method has proven to be a useful

tool for solving a variety of initial and boundary value problems for different types of

differential equations such as the work by Mandelzweig and Tabakin (2001). Their

earlier work have proved that quasilinearization approach can be solved to nonlinear

problems in physics with application to nonlinear ODEs. Some important features of the

QLM can be found in Mandelzweig and Tabakin (2001).

The quasilinearization method is essentially a generalized Newton-Raphson method

for functional equations. Both methods based on the same principle; Newton’s method

for solving nonlinear algebraic equations whilst quasilinearization method for solving

functional equations by constructing the solution of nonlinear problems in an iterative

way. They all possesses the same two important properties of monotone convergence

and quadratic convergence. Hence, for most problems, Newton’s method or

quasilinearization method is equally efficient. The QLM linearized the nonlinear

boundary value problems and provides a sequence of functions which in general

converges quadratically to the solution of the original equation, if there is convergence
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at all and in general has monotone convergence. The solution of original nonlinear

boundary value problem can be obtained through a sequence of successive iterations of

the dependent variable. The quasilinearization approach has been proven applicable to a

general nonlinear ordinary or partial n-th order differential equations in N-dimensional

space (Mandelzweig & Tabakin, 2001). This technique is easily understandable since

there is no useful technique for obtaining the general solution of a nonlinear equations

in terms of a finite set of particular solutions.

2.3 Literature Review on HaarWavelet Quasilinearization Method

In recent years, the Haar wavelet applications in dealing with QLM provide an efficient

tool for solving nonlinear differential equations with two-point boundary conditions

have been discussed by many researchers. One of the study that used this great

combination of techniques is by Kaur et al. (2011). They presented the Haar wavelet

based solutions of BVPs by using Haar wavelet collocation method and utilized the

quasilinearization technique to resolve quadratic nonlinearity of unknown function.

They also have proposed the same technique to solve the Blasius equation by using the

transformation for converting the problem on a fixed computational domain (Kaur et al.,

2013). The same approach used by Jiwari (2012) for the numerical simulation of time

dependent nonlinear Burger’s equation. Since the QLM is suitable to a general nonlinear

ordinary or partial differential equations of any order, Saeed and Rehman (2013) have

proved that this technique also can be solved for nonlinear functional order with initial

and boundary value problems over a uniform grids based on the Haar wavelets.

However, most of the previous work on HWQM only defined in the interval  1,0 .
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CHAPTER 3: HAARWAVELET QUASILINEARIZATION METHOD

In this chapter, the generation of Haar wavelet functions, its series expansion, Haar

wavelet matrix and the integration of Haar wavelet functions are introduced. Many

literature have defined the Haar wavelet and its integration on the interval  1,0 . Here

we expand the usual defined interval to  B,0 as actual problem does not necessarily

hold up to one only. In addition, the detail of quasilinearization formula is provided. At

the end of this chapter, we establish a novelty algorithm and step by step of Haar

wavelet quasilinearization technique for solving nonlinear ODEs. Mathematical

consideration to find the initial approximation is also provided.

3.1 The HaarWavelets

3.1.1 Introduction

The Haar wavelets were first introduced by Alfred Haar in 1909 in the form of a regular

pulse pair. Then, many other wavelet functions were generated and introduced,

including the Shannon, Daubechies, Legendre wavelets and many others (Lepik, 2011).

However, among those forms, which are defined by an analytical expression, special

attention deserves the Haar wavelets since they can be interpreted as intermediate

boundary conditions; this circumstance will led to a great extent simplifies the solution.

Moreover, Haar wavelets are the simplest among all the wavelet families and are made

up of pairs of piecewise constant functions.

The initial theory by Alfred Haar has been expanded recently into a wide variety of

applications, including the representation of various functions with a combination of

step functions and wavelets over a specified interval.
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3.1.2 HaarWavelet Functions

The simplest basis of Haar wavelet family is the Haar scaling function that appears in

the form of a square wave over the interval  B,0 as expressed in Equation (3.1),





 


.elsewhere,0

0,1
)(0

Bx
xh (3.1)

The Equation (3.1) is known as Haar father wavelet, where the zeroth level wavelet has

no displacement and dilation of unit magnitude. Correspondingly, define






















elsewhere.,0

2
,1

2
0,1

)(1 Bx
B

B
x

xh

(3.2)

Equation (3.2) is called a Haar mother wavelet where all the other subsequent functions

are generated from )(1 xh with two operations; translation and dilation. For example,

the third subplot in Figure 3.1 was drawn by the compression )(1 xh to left half of its

original interval and the fourth subplot is the same as the third plot plus translating to

the right side by
2
1
. Generally, we can write out the Haar wavelet family as



























),0[inelsewhere,0

2
)1(

2
)5.0(

,1

2
)5.0(

2
,1

)(

B

Bk
x

Bk

Bk
x

kB

xhi 



(3.3)

where 1,,2,1  mi  is the series index number and the resolution Jm 2 is a

positive integer. An  and k represent the integer decomposition of the index i , i.e.

ki  2 in which 1,,1,0  J and .12,,2,1,0  k
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If the maximal level of resolution J is prescribed then, it follows from Equation (3.3)

that













B

sr
sr

srB
dtxhxh

0 .if,0

if,2
)()(



(3.4)

So that we can see that the Haar wavelet functions are also orthogonal to each other.

Equation (3.4) can be proven as follows. If sr  , then we have

  
B

srsr dtxhxhxhxh
0

)()()(),(


B

n dxxh
0

2 )(

2)(xhn (3.5)

 

 












2
)5.0(

2

2
)1(

2
)5.0(

Bk

kB

Bk

Bk

dxdx

 2
2/

2
2/ BB


 2B (3.6)

and if sr  , then we have

 
B

sr dtxhxh
0

0)()( , (3.7)

as all integrals in Equation (3.4) are zeros. The orthogonal set of the first four Haar

function  4m in the interval 10  x can be shown in Figure 3.1, where the bold

line represent the Haar function.
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Figure 3.1: First four Haar functions
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3.1.3 Expanding Functions Into The HaarWavelet Series

Any function of   BL ,02 can be expanded into the Haar wavelet series with an

infinite number of terms,

)()(
0

xhcxf i
i

i




 . (3.8)

The symbol ic denotes the Haar wavelet coefficients. If the function )(xf is

approximated as piecewise constant, then the sum in Equation (3.8) will be terminated

after m terms, then it can be compactly written in the form,







1

0

)()(
m

i
iim xhcxf . (3.9)

Suppose that  )(xhi is an orthogonal set of functions on an interval  B,0 . It is

possible to determine a set of coefficients ic , for which

  )()()()( 1100 xhcxhcxhcxf nn (3.10)

where the coefficient ic can be determined by utilizing the inner product in Equation

(3.4). Multiplying Equation (3.10) by )(xhr and integrating over the interval  B,0

gives,



  





B

rnn

B B B

rrr

dxxhxhc

dxxhxhcdxxhxhcdxxhxf

0

0 0 0
1100

)()(

)()()()()()(





        rnnrr hhchhchhc ,,, 1100 . (3.11)

By orthogonality, the value of each term on the right side of Equation (3.11) is equal to

zero except when nr  . For this case, we obtain,
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 
B B

nnn dxxhcdxxhxf
0 0

2 )()()( . (3.12)

The required coefficients are




 B

n

B

n

n

dxxh

dxxhxf
c

0

2

0

)(

)()(
, ,2,1,0n . (3.13)

Equation (3.13) can be written as

2
0

)(

)()(

xh

dxxhxf
c

n

B

n

n


 , ,2,1,0n . (3.14)

From Equation (3.6), the norm 2
)( 2 B
xhn  , therefore the Haar wavelet coefficient is


B

nn dxxhxf
B

c
0

)()(
2

, ,2,1,0n . (3.15)

Thus, the Haar wavelet coefficient in Equation (3.9) can be determined as


B

imi dxxhxf
B

c
0

)()(
2

. (3.16)

If )(xf in Equation (3.8) is an exact solution and satisfies a Lipshitz condition and

)(xfm in Equation (3.9) is an approximate solution, then the error of approximation

)(xf with )(xfm is given as

)()()( xfxfxe mm  . (3.17)

According to Saeedi et al. (2011), they have shown that the square of the error norm for

Haar wavelet approximation is written as
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3
2

m
K

e
Lm  , (3.18)

where K is the Lipshitz constant.

From Equation (3.18) it is shown that the error is inversely proportional to the level

of resolution of Haar wavelet function. This implies that Haar wavelet approximation

method is converge when m .

3.1.4 HaarWavelet Matrix

The sum in Equation (3.9) can be compactly written in the form,

)()( xxf m
T
mm Hc , (3.19)

where T
mc is called Haar coefficient vector and )(xmH is the Haar function vector.

They are defined as

 110  m
T
m ccc c , (3.20)

and

  Tmm xhxhxhx )()()()( 110  H . (3.21)

The superscript T is denotes the transpose and the subscript m denotes the dimension of

vectors and matrices. Taking the collocation points as following,

m
Bj

x j
)5.0( 

 , 1,,2,1,0  mj  . (3.22)

The Haar function vectors can be expressed in matrix form as

  )(, jijim xhH . (3.23)
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For illustration, consider the case 10  x , with 4m . By calculating the coordinate

of collocation points from Equation (3.22), we find 125.00 x , 375.01 x ,

625.02 x and 875.03 x . The first four Haar function vectors can be expressed in a

matrix form as the following,

  T0111
8
1

4 






H , (3.24)

  T0111
8
3

4 






H , (3.25)

  T1011
8
5

4 






H , (3.26)

 T1011
8
7

4 






H . (3.27)

Altogether from Equation (3.24)-(3.27), we have,











































8
7

8
5

8
3

8
1

44444 HHHHH

























1100
0011
1111
1111

4H . (3.28)

3.1.5 Integration of HaarWavelet Functions

Multiple integration of )(xhi are required when solving differential equation using

Haar wavelet method. For 4m , the integration of the Haar wavelet function, )(mH

in the interval ),0( x can be expressed as following,

Bxxdh
x

 0)(
0

0  , (3.29)
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













x

BxBxB

Bxx
dh

0
1

2
1

2
1

0
)(  (3.30)























x BxBxB

Bxx

dh
0

2

elsewhere.0

2
1

4
1

2
1

4
1

0

)(  (3.31)























x BxBxB

BxBBx

dh
0

3

elsewhere.0

4
3

4
3

2
1

2
1

)(  (3.32)

In general, the integral of Equation (3.3) for 1,,2,1  mi  can be written as

     



x x x x

i
vv

ivi dtthtx
v

dtthxp
0 0 0 0

1
, )(

)(
1

))(()(  , 0v . (3.33)

Similar as Haar matrix, integration of Haar wavelet also can be expressed into matrix

form as

  )(,, jvijiv xpP  , ,2,1v . (3.34)

For illustration, the integration for 4H from 0 to x can be represented as in Figure 3.2
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Figure 3.2: The integration of Haar wavelet functions for 4m
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In matrix form, first integration of Haar wavelet, at collocation points, 8/10 x ,

8/31 x , 8/52 x and 8/73 x , 1P is given as



















 
1100
0011
1331
7531

8
1

)(
0

41

x

dHP  . (3.35)

The expression in Equation (3.35) is the transformation of the integrals from )(0 h to

)(3 h into matrix form at the collocation points. The averaged values are taken to

represent these triangular functions. The integral of )(0 h is a ramp function and the

integral of )(1 h is a triangular function consisting of a rising ramp and a falling ramp.

It is noted that the absolute value of the slopes of these ramps is the same. The integral

of )(2 h and )(3 h also are triangular functions. However, it spans the first and the

second half intervals.

3.2 Quasilinearization Technique

The quasilinearization method is essentially a generalized Newton-Raphson method for

functional equations. It inherits the two important properties of the method, namely

quadratic convergence and often monotone convergence. This technique linearized the

nonlinear boundary value problem and provides a sequence of functions which in

general converges quadratically to the solution of the original equation, if there is

convergence at all and in general has monotone convergence. The solution of original

nonlinear boundary value problem can be obtained through a sequence of successive

iterations of the dependent variable.

For illustrative purpose, let consider a nonlinear second-order differential equation,

 ,),(~)( xxyfxy  (3.36)
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with the boundary conditions,

BxAβByAy  ,)(and,)(  (3.37)

where f~ may be a function of x or )(xy . Let )(0 xy be an initial approximation of the

function )(xy . The Taylor’s series expansion of f about )(0 xy is

          .)()(),(~)()(),(~),(~ 2
0000 0
xyxyxxyfxyxyxxyfxxyf y  (3.38)

Ignoring second and higher order terms of Equation (3.38) and replacing into Equation

(3.36), we get

     xxyfxyxyxxyfxy y ),(~)()(),(~)( 000 0
 (3.39)

solving Equation (3.39) and called the solution )(1 xy . Using )(1 xy and again

expanding Equation (3.36) about )(1 xy . Ignore the second and higher order of the

expanding, we have

     .),(~)()(),(~)( 111 1
xxyfxyxyxxyfxy y (3.40)

After simplification we get )(2 xy , second approximation to )(xy . Hence, we can

conclude the sequence of functions  )(xyr are continuous and we obtain the desired

accuracy if the problem converges. If the sequence  ry converges, Mandelzweig and

Tabakin (2001) have proved that the sequence converge quadratically to the solution.

In general, the recurrence relation for second order nonlinear differential equation

can be written as

      ,2,1,0,),(~)()(),(~)( 11   rxxyfxyxyxxyfxy ryrrrr r
(3.41)

in which )(xyr is known and it is used to obtain )(1 xyr . Equation (3.41) is always be

a linear differential equation. The boundary condition for Equation (3.41) is given as

.)(and,)( 11    ByAy rr (3.42)

The same procedure can also be applied on other higher order nonlinear problem. The

general quasilinear iteration to solve nth order nonlinear differential equation,
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  ,,,,,~)( )1()( xyyyfxyL nn   (3.43)

subject to the boundary conditions,

,)(,,)(,)(,)( )1(
321 n

n AyAyAyAy    (3.44)

,)(,,)(,)(,)( )1(
221 n

n ByByByBy    (3.45)

is given by Mandelzweig and Tabakin (2001),

 

   ,),(,),(),(~)()(

),(,),(),(~)(

1

0

)1()()(
1

)1(
1

)(

)(














n

s

n
rrry

s
r

s
r

n
rrrr

n

xxyxyxyfxyxy

xxyxyxyfxyL

s 

 (3.46)

where f~ is a continuous function and )()()0( xyxy rr  . Equation (3.46) is always

linear differential equation and can be solved recursive easily by using Haar wavelet

method.

3.3 Numerical Method of HaarWavelet Quasilinearization

Here we suggest an algorithm for easy understanding of HWQM for solving nonlinear

differential equation(s).

Step 1 : Apply the quasilinearization technique to the nonlinear problems.

Step 2 : Apply the Haar wavelet method to the quasilinearized equation by

approximating the higher order derivatives term by Haar wavelet series as





 

1

0

)(
1 )()(

m

i
ii

n
r xhaxy ,

where h is the Haar matrix, ia is the wavelet coefficients and n is

the highest derivative appearing in the differential equation(s).

(3.47)

Step 3 : Integrate Equation (3.47) from 0 to x, nth times,










 

1

0

)1(
11,

)1(
1 )0()()(

m

i

n
rii

n
r yxpaxy

(3.48)
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



   

 









   v

m

i

vn

vnii
v
r yAxxpaxy 0

1

0

1

0
,

)(
1 !

1
)()( ,

where v is the lowest derivative.

(3.49)

Step 4 : Substitute )()(
1 xy v

r and all the related values into the quasilinearized

problem(s).

Step 5 : Calculate the wavelet coefficient, ia . The initial approximation )(0 xy is

calculated when 0r . It is used for obtaining )(1 xyr .

Step 6 : Obtain the numerical solution for )(1 xyr . For solving 321 and, yyy

iteratively, the iterations described above will continue until

 rr yy 1 ,

for some prescribed error tolerance,  .

(3.50)

All the steps are illustrated in Figure 3.3.
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Figure 3.3: Algorithm for solving nonlinear ODE by using HWQM.

Apply the quasilinearization
technique to the nonlinear problem.

Apply the Haar wavelet method to the
quasilinearized equation,





 

1

0

)(
1 )()(

m

i
ii

n
r xhaxy

Integrate equation above from 0 to x nth times,










 

1

0

)1(
11,

)1(
1 )0()()(

m

i

n
rii

n
r yxpaxy



 









 

1

0

1

0

)(
0,

)(
1 )(

!
1

)()(
m

i

n

niir yAxxpaxy











Find an initial approximation, )(0 xy when 0r . It is

used for obtaining )(1 xyr

Replace )()(
1 xy n

r and all the values of )()(
1 xyr




into the quasilinearized problem.

Calculate the wavelet coefficients, ia .

Obtain the numerical solution for ).(1 xyr

Stop

1 rr

 rr yy 1
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The following is the mathematical consideration to find the initial approximation

function by using HWQM;

Step 1: Find a trivial function that satisfy the boundary condition.

Step 2: If the trivial function cannot be obtained, find a function such that we

can solve for )(0 xy in Equation (3.46).
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CHAPTER 4: SINGLE NONLINEAR ORDINARYDIFFERENTIAL

EQUATION

In this chapter, the solution using HWQM will be tested to single nonlinear ODEs

namely; Bratu equation (Boyd, 2011), Falkner-Skan equation (Falkner & Skan, 1931)

and Blasius equation (Blasius, 1950). Numerical solutions of these problems have

always been of great interest for scientist and engineers. However, there is no study

available on the HWQM for these problems especially on the infinite intervals. Hence,

this is a great opportunity to validate and compare the present method with the previous

methods that available in the literature. This work may be useful in science and

engineering applications for finding an alternative formulation in boundary value

problems.

4.1 The Bratu Equation

4.1.1 Introduction

Bratu’s problem is known as “Liouville-Gelfand-Bratu” problem in honor of Gelfand

and nineteenth century work of great French mathematician Liouville (Buckmire, 2004;

Mounim & de Dormale, 2006; Boyd, 2011). This problem is extensively used in a large

variety of applications such as the model of thermal reaction process, nanotechnology,

chemical reaction theory, radiative heat transfer and Chandrasekhar model of the

expansion of universe (Boyd, 2011).

The boundary value problem of Bratu's equation in one-dimensional planar

coordinates is considered. It can be written as

,0)( )(   fef ,10  (4.1)

with the boundary conditions 0)1()0(  ff . For 0 is a constant, the exact

solution of Equation (4.1) is given by
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  
  ,
25.0cosh

5.05.0cosh
ln2)( 







 





f (4.2)

where  satisfies

 .25.0cosh2   (4.3)

The Bratu’s problem has zero, one or two solutions when c  , c  and c 

respectively, where the critical value c satisfies the equation

 4/sinh2
4
1

1 cc  , (4.4)

and it was evaluated by Aregbesola (2003) and Boyd (2003). They reported that the

critical value is

513830719.3c . (4.5)

Several numerical methods have been done for the study of Bratu’s problem, for

example, Adomian decomposition method (ADM) (Wazwaz, 2005; Rach, 2008;

Ghazanfari & Sephvandzadeh, 2014), modified decomposition method (Wazwaz, 1999),

variational iteration method (VIM) (Batiha, 2010; Saravi et al., 2013; He et al., 2014),

modified variational iteration method (Ghazanfari & Sephvandzadeh, 2015a), the

homotopy perturbation method (HPM) (Feng et al., 2008; Ahmet, 2009; Ghazanfari &

Sephvanzadeh, 2015b), nonstandard finite-difference schemes (Buckmire, 2004),

artificial neural network (ANN) (Raja & Islam, 2012; Kumar & Yadav, 2015),

decomposition method (Deeba et al., 2000), Laplace method (Khuri, 2004), B-Spline

method (Caglar et al., 2010), the Lie-group shooting method (LGSM) (Abbasbandy et

al., 2011), differential transformation method (DTM) (Abel-Helim Hassan & Erturk,

2007), Chebyshev wavelets method (Changqing & Jianhua, 2013), non-polynomial

spline method (Jalilian, 2010), parametric cubic spline method (Zarebnia & Sarvari,

2013) and successive differentiation method (Wazwaz, 2016).

In the next section, we will apply HWQM to Bratu’s equation. All the numerical
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results display graphically and their error will be calculated.

4.1.2 Numerical Solution

Consider the nonlinear Bratu’s ODE from Equation (4.1). The first step is to apply

quasilinearization technique, we have

   ,~
11

r

r

r f
frr

f
r efffef    (4.6)

where the subscript r represents the number of iteration. Solving and rearranging

Equation (4.6), we obtain

 .111 r
f

r
f

r fefef rr    (4.7)

The boundary conditions are

0)1()0( 11   rr ff . (4.8)

Haar wavelet method is applied to Equation (4.7) by approximating the higher order

derivative term by Haar wavelet series as





 

1

0
1 )()(

m

i
iir haf  . (4.9)

The lower order derivatives are obtained by integrating Equation (4.9) and by using the

boundary conditions (4.8). Hence, we get





 

1

0
11,1 )0()()(

m

i
riir fpaf  , (4.10)

and





 

1

0
112,1 )0()0()()(

m

i
rriir ffpaf  . (4.11)

The purpose now is to find the missing boundary condition, )0(1rf . This unknown

value can be obtained from Equation (4.11) by substituting 1 , implies that





 

1

0
112,1 )1()0()1()0(

m

i
rriir ffpaf . (4.12)

Hence, the new equations for (4.10) and (4.11) are
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 



 

1

0
2,1,1 )1()()(

m

i
iiir ppaf  , (4.13)

and

 



 

1

0
2,2,1 )1()()(

m

i
iiir ppaf  . (4.14)

Substitute Equations (4.9), (4.13) and (4.14) into Equation (4.7), we obtain

    )(1)1()()( )(
2,2,

)(
1

0

 
r

f
ii

f
i

m

i
i feppeha rr 





. (4.15)

Haar coefficients, ia can be calculated easily from Equation (4.15). The efficiency and

accuracy of HWQM, was tested for several different values of s for Equation (4.15).

4.1.3 Results and Discussion

The numerical solutions of Equation (4.15) are obtained for the case of  = 1, 2 and

3.51. By following the suggested algorithm as discussed in Section 3.3, we get the

initial approximations for  = 1, 2 and 3.51 as follows,

1sin
2
1

tancos)(0 






 f , (4.16)
















 








2

sin
2
1

sin
2
1

sec2)(0


f , (4.17)

and

    18735.1cos8735.1sin35993.1)(0  f , (4.18)

respectively. All computations of HWQM and exact solutions are performed by

MATLAB software with high resolution, 112m .

The numerical result can be compared with exact result as shown in Table 4.1 for

different values of s . The following tabulated values in Tables 4.2 - 4.4 are set up for

comparison of absolute errors with other methods that available in the literature such as

VIM (Saravi et al., 2013), ANN (Kumar & Yadav, 2015), decomposition method (Deeba
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et al., 2000), Laplace method (Khuri, 2004), B-Spline method (Caglar & Caglar, 2009),

LGSM (Abbasbandy et al., 2011), DTM (Abel-Halim Hassan & Erturk, 2007),

Chebyshev wavelet method (Changqing & Jianhua, 2013) and NPSM (Jalilian, 2010).

In Table 4.1 the exact solutions for the case 51.3and2,1 derived from

Equation (4.2) are compared with the numerical solution obtained by the HWQM. It is

clear that HWQM produces numerical solutions which are closer to the exact solutions.

The results have shown that solving single nonlinear ODEs using this method could

give encouraging results with m = 211. The analytical and graphical representation for

comparison of absolute errors between proposed method and other existing methods are

shown in Tables 4.2 - 4.4 and Figure 4.1 for different values of s . According to

Tables 4.2 and 4.3, it is observed that the Decomposition method give less accuracy

compare to others. Meanwhile HWQM produced better estimation with absolute error

around 9101  .
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Table 4.1: Comparison between HWQM with exact solutions for different values of 


Exact Solutions HWQM

1 2 51.3 1 2 51.3

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.0498467912
0.0891899346
0.1176090958
0.1347902539
0.1405392144
0.1347902539
0.1176090958
0.0891899346
0.0498467912

0

0
0.1144107433
0.2064191165
0.2738793118
0.3150893642
0.3289524213
0.3150893642
0.2738793118
0.2064191165
0.1144107433

0

0
0.3643358036
0.6778697057
0.9222141971
1.0786342408
1.1326179783
1.0786342408
0.9222141971
0.6778697057
0.3643358036

0

0
0.0498467907
0.0891899336
0.1176090944
0.1347902523
0.1405392127
0.1347902523
0.1176090944
0.0891899336
0.0498467907

0

0
0.1144107400
0.2064191103
0.2738793033
0.3150893541
0.3289524107
0.3150893541
0.2738793033
0.2064191103
0.1144107400

0

0
0.3643353858
0.6778688893
0.9222130389
1.0786328469
1.1326164996
1.0786328469
0.9222130389
0.6778688893
0.3643353858

0
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Table 4.2: Comparison of absolute errors between HWQM with other methods for 1


Decomposition
(Deeba et al.,

2000)

ANN
(Kumar &

Yadav, 2015)

VIM
(Saravi et al.,

2013)

Laplace
(Khuri, 2004)

B-Spline
(Caglar &

Caglar, 2009)

LGSM
(Abbasbandy
et al., 2011)

HWQM
(Present)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
2.69 × 10-3

2.02 × 10-3

1.52 × 10-4

2.20 × 10-3

3.02 × 10-3

2.20 × 10-3

1.52 × 10-4

2.02 × 10-3

2.69 × 10-3

0

0
2.75 × 10-4

3.29 × 10-4

2.13 × 10-3

1.32 × 10-3

3.75 × 10-4

8.63 × 10-4

3.20 × 10-3

1.29 × 10-3

4.66 × 10-6

0

0
6.46 × 10-5

1.29 × 10-4

1.94 × 10-4

2.65 × 10-4

3.51 × 10-4

4.76 × 10-4

6.78 × 10-4

1.02 × 10-3

1.59 × 10-3

0

0
1.98 × 10-6

3.94 × 10-6

5.85 × 10-6

7.70 × 10-6

9.47 × 10-6

1.11 × 10-5

1.26 × 10-5

1.35 × 10-5

1.20 × 10-5

0

0
2.98 × 10-6

5.47 × 10-6

7.34 × 10-6

8.50 × 10-6

8.89 × 10-6

8.50 × 10-6

7.34 × 10-6

5.47 × 10-6

2.98 × 10-6

0

0
7.51 × 10-7

1.02 × 10-6

9.05 × 10-7

5.24 × 10-7

5.07 × 10-9

5.14 × 10-7

8.95 × 10-7

1.01 × 10-6

7.42 × 10-7

0

0
5.69 × 10-10

1.04 × 10-9

1.40 × 10-9

1.62 × 10-9

1.70 × 10-9

1.62 × 10-9

1.40 × 10-9

1.04 × 10-9

5.69 × 10-10

0
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Table 4.3: Comparison of absolute errors between HWQM with other methods for 2



Decomposition
(Deeba et al.,

2000)

VIM
(Saravi et al.,

2013)

Laplace
(Khuri,
2004)

ANN
(Kumar &
Yadav,
2015)

B-Spline
(Caglar &
Caglar,
2009)

DTM
(Abel-Halim
Hassan &
Erturk,
2007)

LGSM
(Abbasbandy
et al., 2011)

Chebyshev
(Changqing
& Jianhua,
2013)

HWQM
(Present)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
1.52 × 10-2

1.47 × 10-2

5.89 × 10-3

3.25 × 10-3

5.99 × 10-3

3.25 × 10-3

5.89 × 10-3

1.47 × 10-2

1.52 × 10-2

0

0
3.66 × 10-3

7.23 × 10-3

1.39 × 10-3

1.79 × 10-2

2.11 × 10-2

2.32 × 10-2

2.37 × 10-2

2.19 × 10-2

1.68 × 10-2

0

0
2.13 × 10-3

4.21 × 10-3

6.17 × 10-3

8.00 × 10-3

9.60 × 10-3

1.09 × 10-2

1.19 × 10-2

1.24 × 10-2

1.09 × 10-2

0

0
2.35 × 10-3

1.56 × 10-3

3.52 × 10-3

4.95 × 10-3

4.09 × 10-3

5.13 × 10-3

3.77 × 10-3

1.70 × 10-3

1.28 × 10-3

0

0
1.72 × 10-5

3.26 × 10-5

4.49 × 10-5

5.28 × 10-5

5.56 × 10-5

5.28 × 10-5

4.49 × 10-5

3.26 × 10-5

1.72 × 10-5

0

0
1.30 × 10-6

2.56 × 10-6

3.77 × 10-6

4.87 × 10-6

5.85 × 10-6

6.66 × 10-6

7.29 × 10-6

7.71 × 10-6

7.41 × 10-6

0

0
4.03 × 10-6

5.70 × 10-6

5.22 × 10-6

3.07 × 10-6

1.46 × 10-8

3.05 × 10-6

5.19 × 10-6

5.68 × 10-6

4.01 × 10-6

0

0
5.01 × 10-7

1.17 × 10-6

2.34 × 10-6

5.49 × 10-6

1.34 × 10-6

2.41 × 10-6

3.73 × 10-6

7.19 × 10-6

1.47 × 10-6

0

0
3.28 × 10-9

6.22 × 10-9

8.57 × 10-9

1.01 × 10-8

1.06 × 10-8

1.01 × 10-8

8.57 × 10-9

6.22 × 10-9

3.28 × 10-9

0
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Table 4.4: Comparison of absolute errors between HWQM with other methods for 51.3


B-Spline
(Caglar &

Caglar, 2009)

ANN
(Kumar &
Yadav,
2015)

LGSM
(Abbasbandy
et al., 2011)

NPSM
(Jalilian,
2010)

HWQM
(Present)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
3.84 × 10-2

7.48 × 10-2

1.06 × 10-1

1.27 × 10-1

1.35 × 10-1

1.27 × 10-1

1.06 × 10-1

7.48 × 10-2

3.84 × 10-2

0

0
2.98 × 10-4

6.88 × 10-3

2.72 × 10-3

1.76 × 10-2

1.04 × 10-2

1.37 × 10-2

4.32 × 10-3

6.68 × 10-3

1.66 × 10-3

0

0
4.45 × 10-5

7.12 × 10-5

7.30 × 10-5

4.47 × 10-5

6.76 × 10-7

4.56 × 10-5

7.20 × 10-5

7.05 × 10-5

4.41 × 10-5

0

0
6.61 × 10-6

5.83 × 10-6

6.19 × 10-6

6.89 × 10-6

7.31 × 10-6

6.89 × 10-6

6.19 × 10-6

5.83 × 10-6

6.61 × 10-6

0

0
4.18 × 10-7

8.16 × 10-7

1.16 × 10-6

1.39 × 10-6

1.48 × 10-6

1.39 × 10-6

1.16 × 10-6

8.16 × 10-7

4.17 × 10-7

0
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Figure 4.1: Comparison of absolute errors for (a) 1 , (b) 2 and (c) 51.3
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Figure 4.2: Comparison of exact solution and numerical solution by HWQM for (a)
first, (b) second (c) third iterations at m = 211 when 1

Figure 4.2 and Table 4.5 show the exact solution and approximate solution,

respectively at three iterations. It shows that the absolute error reduces with increasing

iterations, hence the sequence  rf defined by Equation (4.14) converges monotonically

to the solution of Equation (4.1) in an interval 10  .
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Table 4.5: Convergence error at three iterations when 1 and m = 211


0f 1f 2f 01 ff  12 ff 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.04954341
0.08860013
0.11677991
0.13380120
0.13949393
0.13380120
0.11677991
0.08860013
0.04954341

0

0
0.04984677
0.08918990
0.11760905
0.13479020
0.14053915
0.13479020
0.11760905
0.08918990
0.04984677

0

0
0.04984679
0.08918999
0.11760909
0.13479025
0.14053921
0.13479025
0.11760909
0.08918993
0.04984679

0

0
3.0336 × 10-4

5.8977 × 10-4

8.2914 × 10-4

9.8900 × 10-4

1.0452 × 10-3

9.8900 × 10-4

8.2914 × 10-4

5.8977 × 10-4

3.0336 × 10-4

0

0
2.0 × 10-8

9.0 × 10-8

4.0 × 10-8

5.0 × 10-8

6.0 × 10-8

5.0 × 10-8

4.0 × 10-8

9.0 × 10-8

2.0 × 10-8

0

Table 4.6: Comparison of CPU time (sec) between RKHSM and HWQM when
L = 1 and m = 23


1 2 51.3

RKHSM

(Inc et al.,
2015)

HWQM

(Present)

RKHSM

(Inc et al.,
2015)

HWQM

(Present)

RKHSM

(Inc et al.,
2015)

HWQM

(Present)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.593
0.577
0.577
0.593
0.546
0.593
0.577
0.577
0.593

0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023

0.656
0.655
0.624
0.577
0.624
0.577
0.624
0.578
0.562

0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040

0.593
0.718
0.702
0.546
0.624
0.546
0.702
0.718
0.593

0.091
0.091
0.091
0.091
0.091
0.091
0.091
0.091
0.091

Table 4.6 is tabulated for a comparison of CPU time between reproducing kernal

Hilbert space method (RKHSM) (Inc et al., 2015) with present method. The efficiency

analysis of HWQM is performed by using ‘Run and Time’ command in MATLAB

software version R2015a, while the RKHSM is calculated by employing Maple 16
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software. It is observed that HWQM provides smaller CPU time compared to RKHSM,

in which differs in a range -96% to -87%, since universal subprogram is applied to

calculate Haar wavelet functions and their integrals.

4.2 The Falkner-Skan Equation

4.2.1 Introduction

The Falkner-Skan equation was first obtained for the boundary layer flow with

stream-wise pressure gradient (Falkner & Skan, 1931),

  0)(1)()()( 2   ffff , (4.19)

subject to the boundary conditions,

.1:

,0)0()0(:0





f

ff




(4.20)

where  and  are constants. In this present work, we let  in Equation (4.19) as

1 .

Numerical solutions of this problem has always been of interest for scientists and

engineers. Some interesting characteristics of the Falkner-Skan equation were observed

by some early researchers. The first analytical treatment for the Falkner-Skan equation

was given by Hartree (1937), who found that in the region 019884.0   , there

exists a family of unique solutions whose first order derivative )(f  tends to 1

exponentially. Weyl (1942) initiated the mathematically rigorous analysis for this

equation for 0 , namely the Blasius equation. He also proved that for 0 , the

problem has a solution )(f whose first derivative )(f  increases with  and

whose second derivative )(f  tends decreasing to zero as  approaches infinity.

Coppel (1960) pointed out that the restriction on the first derivative can be omitted

when 10   . The extension for 0 was discussed and the properties of

solutions were investigated further (Veldman & Vooren, 1980; Oskam & Veldman,
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1982).

Several numerical techniques have been done for the study of Falkner-Skan

equation. For example, finite difference method (Hartree, 1937; Oskam & Veldman,

1982; Becket, 1983; Asaithambi, 1998, 2004a), finite element method (Asaithambi,

2004b), shooting method (Cebici & Keller, 1971; Asaithambi, 1997, 2005; Sher &

Yakhot, 2001; Chang et al., 2006; Liu & Chang, 2008), Adomian decomposition method

(Elgazery, 2008; Alizadeh et al., 2009), homotopy analysis method (Abbasbandy &

Hayat, 2009a; Yao, 2009; Hendi & Hussain, 2012), Hankel-Pade method (Abbasbandy

& Hayat, 2009b), collocation method (Parand et al., 2011; Allame et al., 2014; Kajani et

al., 2014), group invariance theory (Fazio, 1994, 1996), Chebyshev spectral method

(Nasr et al., 1990; Elbarbary, 2005), differential transformation method (Kuo, 2003),

optimal homotopy asymptotic method (OHAM) (Marinca et al., 2014) and

quasilinearization method (Zhu et al., 2009).

4.2.2 Numerical Solution

Consider the nonlinear Falkner-Skan equation as in Equation (4.19). Apply

quasilinearization technique to Equation (4.19), we have

  .12 2
1111 rrrrrrrrrr ffffffffff    (4.21)

The boundary conditions are

,1:

,0:0 11



 

f

ff rr




(4.22)

where L0 , with L is sufficiently large number. The Haar wavelet method is

applied to Equation (4.21), by approximating the higher order derivative term by Haar

wavelet series as





 

1

0
1 )()(

m

i
iir haf  . (4.23)
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The lower order derivatives are obtained by integrating Equation (4.23) three times and

by using the boundary conditions (4.22), we get





 

1

0
11,1 )0()()(

m

i
riir fpaf  , (4.24)





 

1

0
112,1 )0()0()()(

m

i
rriir ffpaf  , (4.25)





 

1

0
111

2

3,1 )0()0()0(
2

)()(
m

i
rrriir fffpaf 


 . (4.26)

To find the missing boundary condition, )0(1rf ; it can be obtained from Equation

(4.25), by letting L , implies that








  





1

0
112,1 )()0()(

1
)0(

m

i
rriir LffLpa

L
f . (4.27)

Now, Equations (4.24), (4.25) and (4.26) become,

L
Lp

L
paf ii

m

i
ir

1
)(

1
)()( 2,1,

1

0
1 







  



  , (4.28)

L
Lp

L
paf

m

i
iiir


 







  





1

0
2,2,1 )()()( , (4.29)

L
Lp

L
paf

m

i
iiir 2

)(
2

)()(
21

0
2,

2

3,1


 












 . (4.30)

Substitute Equations (4.23) and (4.28) - (4.30) into Equation (4.21), we obtain

  ).(
1

)(
2

)(
2

)()()(1

)()(
1

)()()()(
2

)()(2)()(
2

)()()(

2
2

1

0
2,1,2,

2,2,

2

3,

















rrrrrr

m

i
iririr

iririri

i

f
L

f
L

f
L

fff

Lpf
L

pfLpf
L

pfLpf
L

pfh
a



























 (4.31)

The initial approximation is

2
2

3
0 4

2
6

)( 





 






 


L
L

f . (4.32)
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Haar coefficients, ia can be calculated easily from Equation (4.31). To see the

efficiency and accuracy of this method, this problem is tested for three different values

of  ’s. The efficiency and accuracy of the present method will be discussed in the

following section.

4.2.3 Results and Discussion

In this section, numerous  of the Falkner-Skan equation are solved numerically by

using HWQM with the help MATLAB software. In order to see the accuracy of the

results for  = 0.5, 1 and 1.6, we illustrate the accuracy of the HWQM by comparing

with the previously obtained approximate solutions reported by Marinca et al. (2014),

where the numerical integration results computed by means of the shooting method

combined with fourth-order Runge-Kutta method (RKM4) using Wolfram Mathematica

6.0 software.

The numerical results of HWQM at 82m obtain for different values of 

corresponding to the values of )(f and )(f  are listed in Tables 4.7, 4.9 and 4.11.

From these tables, it is clear that HWQM produces stable results and the results are

more closer to RKM compared to optimal homotopy asymptotic method (OHAM).

Absolute errors are shown in Tables 4.8, 4.10 and 4.12 and Figures 4.4, 4.6 and 4.8 for

each )(f and )(f  along with different values of  . It is observed that HWQM

gives the smallest absolute error compared to OHAM.

Figures 4.3, 4.5 and 4.7 show the variation of iterations for )(f and its derivative.

It can be seen that as we increased the iterations, the result is getting closed to the

desired approximation, hence it is satisfied the boundary conditions given. In order to

verify the accuracy and rapid convergence of our present method, we have listed the

values of )0(f  for different values of  as shown in Table 4.13. It is evident that
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there is excellent agreement between the previous and present results.

Table 4.7: Comparison between HWQM with RKM and OHAM for )(f and
)(f  when 5.0



RKM

(Marinca et al., 2014)

OHAM

(Marinca et al., 2014)

HWQM

(Present)

)(f )(f  )(f )(f  )(f )(f 

4/5
8/5
12/5
16/5
4

24/5
28/5
32/5
36/5
8

0.254348
0.855027
1.604527
2.396313
3.195500
3.995453
4.795451
5.595451
6.395451
7.195451

0.583305
0.876098
0.976069
0.997192
0.999808
0.999993
1.000000
1.000000
1.000000
1.000000

0.254315
0.855062
1.604359
2.396240
3.195378
3.994961
4.794697
5.594653
6.394624
7.194427

0.583315
0.875965
0.975952
0.997377
0.999469
0.999522
0.999833
1.000005
0.999883
0.999617

0.254348
0.855027
1.604528
2.396314
3.195501
3.995453
4.795452
5.595452
6.395452
7.195452

0.583305
0.876098
0.976069
0.997192
0.999808
0.999993
1.000000
1.000000
1.000000
1.000000

Table 4.8: Comparison of absolute errors between OHAM and HWQM for )(f
and )(f  when 5.0



)(f )(f 

RKMOHAM 1  RKMHWQM 2  RKMOHAM1  RKMHWQM 2 

4/5
8/5
12/5
16/5
4

24/5
28/5
32/5
36/5
8

3.313410 × 10-5

3.534730 × 10-5

1.685673 × 10-4

7.294670 × 10-5

1.220981 × 10-4

4.918840 × 10-4

7.541605 × 10-4

7.987450 × 10-4

8.271670 × 10-4

1.023896 × 10-3

7.700000 × 10-9

7.700000 × 10-8

2.100000 × 10-7

3.060000 × 10-7

3.350000 × 10-7

3.390000 × 10-7

3.390000 × 10-7

3.400000 × 10-7

3.400000 × 10-7

3.410000 × 10-7

1.013370 × 10-5

1.324243 × 10-4

1.167979 × 10-4

1.848228 × 10-4

3.388907 × 10-4

4.702794 × 10-4

1.666808 × 10-4

5.028974 × 10-6

1.167343 × 10-4

3.825046 × 10-4

3.550000 × 10-8

1.355000 × 10-7

1.674000 × 10-7

6.830000 × 10-8

1.350000 × 10-8

1.800000 × 10-9

4.000000 × 10-10

3.000000 × 10-10

5.000000 × 10-10

5.000000 × 10-10

1Marinca et al. (2014) 2Present
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Figure 4.3: HWQM solution of (a) )(f and (b) )(f  when 5.0 at different
iterations
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Figure 4.4: Comparison of |log10(absolute errors)| for (a) )(f and (b) )(f 
with 5.0
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Table 4.9: Comparison between HWQM with RKM and OHAM for )(f and )(f 
when 1



RKM

(Marinca et al., 2014)

OHAM

(Marinca et al., 2014)

HWQM

(Present)

)(f )(f  )(f )(f  )(f )(f 

4/5
8/5
12/5
16/5
4

24/5
28/5
32/5
36/5
8

0.312423
0.979780
1.755254
2.552325
3.352109
4.152100
4.952100
5.752100
6.552100
7.352100

0.685937
0.932348
0.990549
0.999186
0.999958
0.999999
1.000000
1.000000
1.000000
1.000000

0.312422
0.979781
1.755257
2.552347
3.352131
4.152144
4.952202
5.752260
6.552299
7.352319

0.685935
0.932347
0.990568
0.999197
0.999962
1.000055
1.000080
1.000062
1.000036
1.000017

0.312423
0.979780
1.755254
2.552326
3.352110
4.152100
4.952100
5.752100
6.552100
7.352100

0.685938
0.932348
0.990550
0.999186
0.999958
0.999999
1.000000
1.000000
1.000000
1.000000

Table 4.10: Comparison of absolute errors between OHAM and HWQM for )(f
and )(f  when 1


)(f )(f 

RKMOHAM 1  RKMHWQM 2  RKMOHAM 1  RKMHWQM 2 

4/5
8/5
12/5
16/5
4

24/5
28/5
32/5
36/5
8

1.133942 × 10-6

1.783054 × 10-6

3.364056 × 10-6

2.117940 × 10-5

2.146329 × 10-5

4.456650 × 10-5

1.022586 × 10-4

1.605945 × 10-4

1.995199 × 10-4

2.198750 × 10-4

3.800000 × 10-9

9.370000 × 10-8

2.120000 × 10-7

2.790000 × 10-7

2.940000 × 10-7

2.940000 × 10-7

2.910000 × 10-7

2.860000 × 10-7

2.800000 × 10-7

2.730000 × 10-7

2.696657 × 10-6

1.371273 × 10-6

1.893000 × 10-5

1.072000 × 10-5

3.683007 × 10-6

5.601120 × 10-5

7.953890 × 10-5

6.218900 × 10-5

3.567310 × 10-5

1.688180 × 10-5

7.330000 × 10-8

1.924000 × 10-7

1.262000 × 10-7

5.260000 × 10-8

2.100000 × 10-9

3.000000 × 10-9

4.000000 × 10-9

6.200000 × 10-9

8.000000 × 10-9

1.000000 × 10-8

1Marinca et al. (2014) 2Present
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Figure 4.5: HWQM solution for (a) )(f and (b) )(f  when 1 at different
iterations
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Figure 4.6: Comparison of |log10(absolute errors)| for (a) )(f and (b) )(f  with 1
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Table 4.11: Comparison between HWQM with RKM and OHAM for )(f and
)(f  when 6.1



RKM

(Marinca et al., 2014)

OHAM

(Marinca et al., 2014)

HWQM

(Present)

)(f )(f  )(f )(f  )(f )(f 

4/5
8/5
12/5
16/5
4

24/5
28/5
32/5
36/5
8

0.359978
1.069615
1.857162
2.656043
3.455980
4.255978
5.055978
5.855978
6.655978
7.455978

0.760923
0.961978
0.996057
0.999744
0.999990
1.000000
1.000000
1.000000
1.000000
1.000000

0.359978
1.069616
1.857163
2.656046
3.455977
4.255978
5.055983
5.855980
6.655972
7.455964

0.760924
0.961971
0.996066
0.999737
0.999987
1.000008
1.000001
0.999992
0.999989
0.999991

0.359979
1.069615
1.857163
2.656044
3.455981
4.255979
5.055979
5.855979
6.655979
7.455979

0.760923
0.961978
0.996057
0.999744
0.999990
1.000000
1.000000
1.000000
1.000000
1.000000

Table 4.12: Comparison of absolute errors between OHAM and HWQM for )(f
and )(f  when 6.1


)(f )(f 

RKMOHAM 1  RKMHWQM 2  RKMOHAM 1 RKMHWQM 2 

4/5
8/5
12/5
16/5
4

24/5
28/5
32/5
36/5
8

2.160525 × 10-7

9.093019 × 10-7

9.977941 × 10-7

2.878145 × 10-6

3.436309 × 10-6

1.038556 × 10-8

4.685640 × 10-6

1.582358 × 10-6

6.516027 × 10-6

1.450440 × 10-5

1.760000 × 10-8

2.140000 × 10-7

3.480000 × 10-7

3.840000 × 10-7

3.830000 × 10-7

3.750000 × 10-7

3.600000 × 10-7

3.360000 × 10-7

3.000000 × 10-7

2.480000 × 10-7

1.486624 × 10-6

7.352687 × 10-6

9.018419 × 10-6

7.413383 × 10-6

2.724280 × 10-6

8.360731 × 10-6

1.338446 × 10-6

8.223935 × 10-6

1.086350 × 10-5

8.665844 × 10-6

1.835000 × 10-7

2.451000 × 10-7

8.830000 × 10-8

7.000000 × 10-9

6.600000 × 10-9

1.420000 × 10-8

2.300000 × 10-8

3.600000 × 10-8

5.400000 × 10-8

7.640000 × 10-8

1Marinca et al. (2014) 2Present

Univ
ers

ity
 of

 M
ala

ya



54

1 2 3 4 5 6 7
0

10

20

30

40



(a
) f

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7



(b
) f

 

 

1st iteration
2nd iteration
3rd iteration
4th iteration
5th iteration
6th iteration
7th iteration

Figure 4.7: HWQM solution for (a) )(f and (b) )(f  when 6.1 at different
iterations
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Figure 4.8: Comparison of |log10(absolute errors)| for (a) )(f and (b) )(f  with
6.1
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Table 4.13: Comparison of )0(f  between HWQM with RKM and OHAM for
different values of 

Table 4.14: Comparison of CPU time (sec) between CCF and HWQM for different
values of  when L = 6 and m = 8


CCF

(Lakestani, 2011)

HWQM

(Present)

2.0
1.0
0.5
0.0
-0.10
-0.12
-0.15
-0.18
-0.1988

31.97
32.09
31.41
24.13
31.56
31.95
31.96
33.06
60.02

0.193
0.196
0.244
0.206
0.195
0.196
0.193
0.198
0.234

From Table 4.14, the Chebyshev cardinal functions (CCF) (Lakestani, 2011)

method was selected to show the computational accuracy for solving Falkner-Skan

equation. It shows that HWQM provides better results with less computing time, in

which differs in a range of -99.6% to -99%. This is because it did not faced with

necessity of large computer memory and time.


RKM

(Marinca et al.,
2014)

OHAM
(Marinca et al.,

2014)

HWQM

(Present)

0.5
1.0
1.6

0.92768
1.23259
1.52151

0.92779
1.23257
1.52151

0.92768
1.23258
1.52151
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4.3 The Blasius Equation

4.3.1 Introduction

The Blasius equation is used to model the boundary layer growth over a surface when

the flow filed is slender in nature. The Blasius equation (Blasius, 1950) is given as

0)()()(   fff , (4.33)

where  is a constant parameter. The boundary conditions are

.:

,)0(,)0(:0

cf

bfaf








(4.34)

The original problem for the Blasius equation is associated with 0 ba and 1c .

This equation has been studied for many different conditions. For 1 and 2 , this

equation is a form of the Blasius relation for the flat plate flow in fluid mechanics.

Several methods have been obtained for 1 that found in the literature. Klemp and

Acrivos (1976) considered )0(f  being negative for a moving plate. Hussaini and

Lakin (1986) showed that the solutions of such boundary layer problems exist only up

to a certain critical value of the velocity ratio parameter. Vajravelu and Mohapatra (1990)

analyzed the problem of boundary layer flow on a flat plate with injection and a

constant velocity opposite in direction to that of the uniform mainstream.

Fang (2003a) extended the previous works to the general situations including mass

injection as well as suction on the wall and the case of the wall moving in the same

direction as the free stream velocity. He also studied the heat transfer problem for a

moving wall boundary layer (Fang, 2003b). Cortell (2007) presented a numerical

analysis of the momentum and heat transfer of an incompressible fluid past a parallel

moving sheet. Gahan et al. (2000) constructed a new finite difference method for

computing numerical solutions to the Blasius equation arising from incompressible

laminar flow past a thin flat plate with mass transfer by both suction and blowing.

Another class of boundary layer problem for a stretching sheet relevant to the Blasius
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equation was studied by Sakiadis (1961), in which the boundary conditions become

1)0( f , 0)( f with 0)0( f for an impermeable plate and 0)0( f for mass

transfer across a permeable plate.

In this study, we considered 2 . Within boundary layer theory, Blasius equation

is given as,

0)()()(2   fff , (4.35)

subject to the boundary conditions

.1:

,0)0()0(:0





f

ff




(4.36)

Several methods also have been obtained for 2 that found in the literature. Ahmad

(2007) solved this problem in the case of constant flow in a boundary layer and replaced

the second condition by negative value. Aminikhah (2009) introduced a new

modification of homotopy perturbation method (HPM) for solving Blasius equation. He

also presented Laplace transform and new homotopy perturbation methods to study

Blasius’ viscous flow equation (Aminikhah, 2012). Esmaeilpour and Ganji (2007)

applied He’s homotopy perturbation method (He, 1999b) to the problem of forced

convection over a horizontal flat plate for finding the approximate solution. Fang et al.

(2006) obtained the solution of the extended Blasius equation from the original Blasius

equation solution with a variable transformation technique and discussed for an

arbitrary real parameter or complex parameter. A comparison between homotopy

perturbation method and homotopy analysis method is made by He (2004). Liao (1997)

proposed the homotopy analysis method by introducing a non-zero parameter into the

classical way of constructing a homotopy for solving laminar viscous flow over an

infinite flat plate. Later, Liao (1998) applied homotopy analysis method to give an

explicit solution of the laminar viscous flow over a semi-infinite flat plate.

He (1999a) solved Blasius equation via VIM and compared the analytical solution
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with Howarth’s numerical solution (Howarth, 1938). The VIM also applied for a

reliable treatment of two forms third order nonlinear Blasius equation which comes

from boundary layer equations as reported by Wazwaz (2007). Abbasbandy (2007)

proposed ADM and compared with HPM and Howarth’s numerical solution. Wang

(2004) introduced a new algorithm based on the ADM to the transformation of the

Blasius equation. Cortell (2005) obtained numerical solutions of the classical Blasius

flat plate problem by using well-known fourth order Runge-Kutta algorithm. The

parameter iteration method was used by Lin (1999) to solve similar problem.

Mohammed et al. (2014) proposed the successive linearization method (SLM) for

solving some boundary layer problems. A modified rational Legendre method for

solving classical Blasius equation was given by Tajvidi et al. (2008).

Although solution for this problem had been obtained by Kaur et al. (2013) by

using Haar wavelet quasilinearization method, but they only considered the problem

defined over the interval [0, 1] and used the transformation for converting the problem

on a fixed computational domain. This will limit the study because the boundary layer

fluid flow problems deal with sufficiently large number of infinite intervals.

4.3.2 Numerical Solution

The quasilinearization equation is

.2 111 rrrrrrr fffffff   (4.37)

The new boundary conditions are

,1:

,0:0

1

11









r

rr

f

ff




(4.38)

where L0 , whereas L is sufficiently large number. After simplification and

substitution, we get
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L
Lp

L
paf ii

m

i
ir

1
)(

1
)()( 2,1,

1

0
1 







  



  , (4.39)

L
Lp

L
paf

m

i
iiir


 







  





1

0
2,2,1 )()()( , (4.40)

L
Lp

L
paf

m

i
iiir 2

)(
2

)()(
21

0
2,

2

3,1


 












 . (4.41)

The coefficient ia can be computed as follows,

).(
2
1

)(
4

)()(
2
1

)()(
2
1

)()(
2
1

)()(
4

)()(
2
1

)(

2
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2
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
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iririm

i
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f
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pfh
a





























(4.42)

Equation (4.42) is solved by using initial approximation as follows,

L
f

2
)(

2

0


  . (4.43)

4.3.3 Results and Discussion

Some of the computed results for the variations of  belong to the functions )(f ,

)(f  and )(f  are tabulated in Tables 4.15 - 4.17.

All the results obtained via HWQM with m = 256 are compared with the numerical

solutions in the literature such as HPM (Esmaeilpour & Ganji, 2007), combination of

Laplace transform and new homotopy perturbation method (LTNHPM) (Aminikhah,

2012) and Howarth method (Howarth, 1938) which confirms the validity of the

proposed methods and shared similar interval  5,0 . It is evident that there is excellent

agreement between the previous and present results.
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Table 4.15: Comparison between HPM, LTNHPM, Howarth and HWQM for )(f


HPM

(Esmaeilpour &
Ganji, 2007)

LTNHPM

(Aminikhah,
2012)

Howarth

(Howarth,
1938)

HWQM

(Present)

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

0
0.00697
0.02788
0.06270
0.11137
0.17380
0.24980
0.33912
0.44140
0.55618
0.68288
0.82082
0.96919
1.12708
1.29350
1.46741
1.64776
1.83352
2.02379
2.21787
2.41534
2.61623
2.82115
3.03145
3.24946
3.47866

0
0.00664
0.02656
0.05973
0.10611
0.16557
0.23795
0.32298
0.42032
0.52952
0.65002
0.78119
0.92228
1.07250
1.23098
1.39681
1.56909
1.74695
1.92952
2.11602
2.30575
2.49805
2.69242
2.88859
3.08718
3.29272

0
0.00664
0.02656
0.05974
0.10611
0.16557
0.23795
0.32298
0.42032
0.52952
0.65003
0.78120
0.92230
1.07252
1.23099
1.39682
1.56911
1.74696
1.92954
2.11605
2.30576
2.49806
2.69238
2.88826
3.08534
3.28329

0
0.0066410686
0.0265601477
0.0597352037
0.1061091794
0.1655731493
0.2379506634
0.3229840873
0.4203238833
0.5295217939
0.6500288006
0.7811984868
0.9222960509
1.0725127485
1.2309850055
1.3968169615
1.5691048197
1.7469611824
1.9295375767
2.1160436149
2.3057616561
2.4980563622
2.6923790941
2.8882675734
3.0853416143
3.2832959341
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Figure 4.9: HWQM solution of )(f for different iterations

The Blasius boundary layer problem of Equation (4.35) is a special case of

Equation (4.33) with 2 . Table 4.18 shows the value of the wall shear stress

)0(f  obtained by the HWQM compared with those obtained in the literature. The

solutions obtained presently are in excellent agreement with those reported previously.

The graph in Figure 4.9 shows the approximate solution by HWQM at eight iterations.

In Figure 4.10, we plot the curves of )(f , )(f  and )(f  against  for the

Blasius boundary layer problem at eighth order of the HWQM approximation. We chose

8 because it satisfy with the boundary condition in Equation (4.38).
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Table 4.16: Comparison between Howarth, LTNHPM and HWQM for the velocity
profile )(f  at the selected values of 


LTNHPM

(Aminikhah,
2012)

Howarth

(Howarth,
1938)

HWQM

(Present)

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

0
0.06641
0.13276
0.19894
0.26471
0.32978
0.39378
0.45626
0.51676
0.57476
0.62977
0.68131
0.72898
0.77245
0.81151
0.84604
0.87608
0.90176
0.92333
0.94112
0.95553
0.96704
0.97639
0.98564
1.00322
1.06671

0
0.06641
0.13277
0.19894
0.26471
0.32979
0.39378
0.45627
0.51676
0.57477
0.62977
0.68132
0.72899
0.77246
0.81152
0.84605
0.87609
0.90177
0.92333
0.94112
0.95552
0.96696
0.97587
0.98269
0.98779
0.99155

0
0.0664084675
0.1327654138
0.1989390124
0.2647112907
0.3297825119
0.3937788449
0.4562646838
0.5167599065
0.5747614141
0.6297692120
0.6813141081
0.7289859691
0.7724594598
0.8115145129
0.8460498330
0.8760873517
0.9017676101
0.9233364453
0.9411251010
0.9555255073
0.9669643868
0.9758780736
0.9826905109
0.9877962550
0.9915482668
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Figure 4.10: HWQM solution for )(f , )(f  and )(f 

Table 4.17: Comparison between Howarth (1938) and HWQM for )(f 

Table 4.18: Comparison between the HWQM, Mohammed (2014), Asaithambi (2005)
and Howarth (1938) results for the wall shear stress, )0(f  with m = 128 and L = 8

Howarth
method

(Howarth,
1938)

Recursive
evaluation

(Asaithambi,
2005)

SLM

(Mohammed et
al., 2014)

HWQM

(Present)

0.33206 0.33206 0.33206 0.33206


Howarth

(Howarth, 1938)

HWQM

(Present)

0
1
2
3
4
5

0.33206
0.32301
0.26675
0.16136
0.06424
0.01591

0.33206
0.32301
0.26676
0.16136
0.06423
0.01590Univ
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4.4 Conclusions

In this chapter, the HWQM is employed to solve three types of single nonlinear ODEs.

Some comparison are made between the results of the present method and other

numerical methods. It is found that the present results agree well with those obtained by

other methods and exact solution. The validity of this method is based on the

assumption that it converges by increasing the number of resolution. The choice of the

collocation points and initial approximation are also greatly influence the effectiveness

of this method.

The amount of computational effort used by the present method is significantly less

compared to the other methods. For each fixed value of L, the method required on

average 5 - 8 iterations in order to get the desired accuracy. Even though the exact

solution is available in a first problem, the use of numerical Haar wavelet method is to

test the capability of present method for solving nonlinear ODE in infinite domain,

where the former used the domain within the interval [0, 1] only. As a result, this

method is much simpler and it can be easily coded. This factor gives Haar wavelet a

reason to be ventured further as numerical tools. Additionally, few benefits come from

its great features such as faster computation and attractiveness. This work is going to be

a stepping stone in solving coupled nonlinear ODE in the next chapter.
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CHAPTER 5: COUPLED NONLINEAR ORDINARYDIFFERENTIAL

EQUATIONS

In this chapter, the HWQM is proposed for the numerical solution of system of coupled

nonlinear ODEs related to the natural convection boundary layer fluid flow problems

with high Prandtl number, Pr. The effects of variation Pr on heat transfer are

investigated. The three problems involved in this flows are:

(a) boundary layer flow and heat transfer due to a stretching sheet (BLFHTSS),

(b) laminar film condensation of a saturated stream on an isothermal vertical plate

(LFC),

(c) natural convection boundary layer flow (NCBLF).

5.1 Boundary Layer Flow and Heat Transfer Due to a Stretching Sheet

5.1.1 Introduction

The steady flow and heat transfer of a viscous and incompressible fluid induced by a

continuously moving or stretching surface in an inactive fluid has a significant

importance in engineering applications, especially in manufacturing processes such as

hot rolling, wire drawing, glass fiber, paper production (Ahmed et al., 2010),

geophysical and insulating engineering, modeling of packed sphere beds and solar

power collector (Hayat et al., 2010).

The boundary layer flow due to a stretching surface in an ambient fluid was first

studied by Crane (1970). He obtained similarity solutions for the velocity and

temperature fields of a two dimensional steady state viscous flow over a linearly

stretching sheet. The problem was extended afterwards by different research groups to

include other aspects. Carragher and Crane (1982) investigated the influence of heat

transfer in the flow over a stretching surface when the temperature difference between

the surface and the ambient fluid is proportional to a power of distance from the fixed
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point. Dutta et al. (1985) and Grubka and Bobba (1985) analyzed the temperature

distribution in the flow of a viscous incompressible fluid caused by a stretching surface

subject to a uniform heat flux.

Furthermore, Elbashbeshy (1998) examined heat transfer over a stretching surface

with variable surface heat flux and uniform surface heat flux subject to injection and

suction. From the findings, he concluded that the suction increases the heat transfer

from the surface, whereas injection cause a decrease in the heat transfer. Lin and Chen

(1998) constructed an exact expression of the temperature distribution for the heat

transfer from a stretching surface with prescribed power law heat flux. Gupta and Gupta

(1977) examined the heat and mass transfer for the boundary layer flow over a

stretching sheet in the presence of suction and blowing. An analysis has been carried out

by Chen and Char (1988) to determine the heat transfer occurring in the laminar

boundary layer on a linearly stretching, continuous surface subject to suction or

blowing.

Magyari and Keller (1999) used similarity solutions to examine the steady plane

boundary layers on an exponentially stretching continuous surface with an exponential

temperature distribution. They also obtained analytical solutions for the case when the

sheet is permeable in the presence of suction or injection (Magyari & Keller, 2000).

Liao and Pop (2004) applied the HAM to give two kinds of explicit analytic solutions of

the boundary layer equations, valid for the convective viscous flow past a suddenly

heated vertical plate in a porous medium and viscous flow over a stretching wall.

All the above mentioned studies deal with the case of heat transfer and steady flow

only. In view of the previous work of Elbashbeshy (1998), Elbashbeshy and Bazid

(2004) extended this work to unsteady flow and heat transfer over a stretching sheet in

laminar boundary layer by using similarity solution. Further, Sharidan et al. (2006) were

first to present the similarity solutions to investigate the unsteady boundary layer flow
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and heat transfer due to a stretching sheet by using Keller-box method. Moreover, Ishak

et al. (2009) presented the solution of the unsteady mixed convection boundary layer

flow and heat transfer problem due to a stretching vertical surface, including the

discussion on the effects of unsteadiness parameter, bouyancy parameter and Pr number

on the flow characteristic. Rashidi and Pour (2010) used HAM to find the totally

analytic solutions of the system of nonlinear ordinary differential equations derived

from similarity transform for unsteady boundary layer flow and heat transfer due to a

stretching sheet. The same problem also has been solved by Ibrahim and Shankar (2011)

using quasilinearization technique. They presented the numerical results for the local

skin friction coefficient and local Nusselt number. Islam et al. (2011) developed Haar

wavelet collocation method with Newton method for the numerical solution of

boundary layer fluid flow problems with high Pr number. They investigated the effects

of variation of Pr on heat transfer and the performance of their proposed method is

compared with the FDM, RKM and HAM.

5.1.2 Problem Formulation

From the physical model as shown in Figure 5.1, the origin is kept fixed, while two

equal and opposite forces are suddenly applied along the x-axis. As a result, the sheet is

stretched and the flow is generated. The wall temperature of the sheet wT is suddenly

raised from T to wT as such it is suddenly generated a heat flux wq at the wall. The

mathematical formulation of the boundary layer governing the flow and heat transfer

due to the stretching sheet are given by (Sharidan et al., 2006),

0







y
v

x
u , (5.1)
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 , (5.3)

subject to the initial and boundary conditions
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w (5.4)

where u and v are the velocity components along the x- and y- axes respectively, t is the

time,  is the thermal diffusivity,  is the kinematic viscosity, T is the temperature

and k is the thermal conductivity. The velocity of sheet, ),( xtuw , the temperature of

sheet, ),( xtTw and the heat flux, ),( xtqw are defined as in the following form

(Sharidan et al., 2006)
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


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


 (5.5)

c is subjected to positive constant stretching rate, γ is a positive constant, in which

measures the unsteadiness and
0w

q is a characteristic of heat transfer quantity.

Figure 5.1: Physical model of boundary layer flow and heat transfer due to a stretching
sheet
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The new variables after transformations as proposed by Sharidan et al. (2006) are

),(
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1

,
)1(

2/32 











tx
c

TT

xf
t

c
y

t
c








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

(5.6)

where  is the stream function and it is defined as yu  / and x / .

Using these transformations, with respect to  , Equations (5.1) - (5.3) can be reduced

to the following nonlinear ODEs,

0
2
12 







  ffAffff  (5.7)

and

  .03
2

2
Pr
1

 
A

ff (5.8)

The new boundary conditions are given as

.0,0:
,1,1,0:0







f
ff

(5.9)

where Pr is Prandtl number and
c

A


 is a non-dimensional constant measures the

flow and heat transfer unsteadiness.

5.1.3 Numerical Solution

All the steps remain the same as for single nonlinear ODE as discussed in Chapter 4.

The quasilinearization technique is applied to Equations (5.7) and (5.8) implies
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Solving and rearranging Equation (5.10), we obtain

,

2
1

2

2

111111
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(5.11)

and
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(5.12)

respectively, where L0 , L is a sufficiently large number. The boundary

conditions are

.0,0:
,1,1,0:0

11

111
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f
ff

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(5.13)

Now, we apply the Haar wavelet method to Equations (5.11) and (5.12), then

approximate the higher order derivative term by Haar wavelet series as





 

1

0
1 )()(

m

i
iir haf  (5.14)

and





 

1

0
1 )()(

m

i
iir hb  (5.15)

respectively. The lower order derivatives are obtained by integrating Equations (5.14)

and (5.15) three times and twice, respectively with respect to  , hence we obtain

)0()()( 1

1

0
1,1 


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   r

m

i
iir fpaf  , (5.16)
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i
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)0()0()0(
2

)()( 111

21

0
3,1 




  rrr

m

i
iir fffpaf 


 , (5.18)
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)0()()( 1
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The values for )0(1rf and )0(1r can be obtained from Equations (5.17) and (5.20)

respectively, by substituting L , we obtain
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Hence, the new equations for (5.16) - (5.20) are
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Substitute Equations (5.14), (5.15) and (5.23) - (5.27) into (5.11) and (5.12), we obtain
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The Equations (5.28) and (5.29) can be solved simultaneously to obtain Haar

coefficients, ia and ib . We chose the initial approximation which satisfy the boundary

conditions (5.13) as follows
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and


L
1

1)(0  . (5.31)

where erf is an error function.
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5.1.4 Results and Discussion

The transformed Equations (5.7) and (5.8) with boundary conditions (5.9) were

numerically solved with the help of MATLAB. The results are given for some values of

the unsteady parameter A and the Prandtl number, Pr. The accuracy of this numerical

method was validated for the case of VWT by a comparison with the previous study of

Islam et al. (2011), Grubka and Bobba (1985), Elbashbeshy and Bazid (2004), Sharidan

et al. (2006) and Ibrahim and Shankar (2011).

A comparison of numerical results between HWQM with Haar wavelet collocation

method (HWCM) and RKM corresponding to the two dimensional boundary layer flow

and heat transfer due to a stretching sheet (BLFHTSS) is shown in Table 5.1. This

comparison is made for small values of Pr. It is clear that from this table, the Haar

wavelets based algorithm agrees well with RKM round up to five decimal places.

Table 5.1: Comparison between HWQM with RKM and HWCM for )(f and
)( of BLFHTSS with m = 256, A = 20, Pr = 1 and L = 1



)(f )(

HWCM

(Islam et
al.,
2011)

RKM

(Islam et
al.,
2011)

HWQM

(Present)

HWCM

(Islam et
al.,
2011)

RKM

(Islam et
al.,
2011)

HWQM

(Present)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.0826274
0.1397660
0.1807370
0.2110510
0.2340860
0.2519680
0.2660280
0.2770030
0.2849340
0.2884160

0
0.0826354
0.1397880
0.1807720
0.2110960
0.2341390
0.2520240
0.2660820
0.2770490
0.2849630
0.2884290

0
0.0826353
0.1397880
0.1807714
0.2110955
0.2341379
0.2520227
0.2660815
0.2770480
0.2849623
0.2884287

1.0000000
0.6216970
0.4005150
0.2668020
0.1832610
0.1293600
0.0933950
0.0683056
0.0491161
0.0303333

0

1.0000000
0.6218480
0.4006900
0.2669500
0.1833700
0.1294310
0.0934326
0.0683103
0.0497810
0.0302495

0

1.0000000
0.6218452
0.4006869
0.2669481
0.1833686
0.1294297
0.0934320
0.0683102
0.0490787
0.0302509

0
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Figure 5.2: HWQM for (a) )(f  and (b) )( case of BLFHTSS with different values
of A when m = 512, L = 10 and Pr = 1
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Figures 5.2 and 5.3 show the variation of the velocity, )(f  and temperature,

)( for different values of the parameter A and the Pr. It can be seen from Figure 5.2(a)

that the velocity profiles decreases with an increase in unsteadiness parameter A. It also

shows that the boundary layer thickness decreases monotonically when parameter A

increases. Figure 5.2(b) shows the temperature profiles also decrease monotonically

with the increase of A, except for A = 0. The temperature profiles overshoot its value at

the surface of the sheet in the case when A = 0. This flow of behaviour is in agreement

with the results of Sharidan et al. (2006) and Grubka and Bobba (1985) but it is contrary

with the results of Elbashbeshy and Bazid (2004).

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2





Pr = 0.1, 1, 10, 100

Figure 5.3: HWQM for )( , case of BLFHTSS with different values of Pr when
8.0A , m = 512 and L = 10

The effects of Pr on the non-dimensional temperature profile is illustrated in Figure

5.3 for some values of Pr. It is possible to see that the temperature decreases as the Pr

increases while keeping A fixed at 0.8. This is due to the fact that a higher Pr fluid has a

thinner thermal boundary layer which increases the gradient of the temperature.
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Consequently, the surface of the heat transfer increases as Pr increases.

Table 5.2: The values of the heat transfer rate )0(  for A = 0 at steady-state flow
when L = 10 and Pr = 1

Grubka and Bobba

(1985)

Elbashbeshy and

Bazid (2004)

Sharidan et al.

(2006)

HWQM

(Present)

1.00000 0.99999 0.99999 1.00000

Table 5.3: Comparison of values between HWQM with quasilinearization technique
and Keller-box method for skin friction coefficient )0(f  and heat transfer rate

)0(  of BLFHTSS when L = 10

A Pr

Quasilinearization

(Ibrahim &
Shankar, 2011)

Keller-box method

(Sharidan et al.,
2006)

HWQM

(Present)

)0(f  )0(  )0(f  )0(  )0(f  )0( 

0.8 0.01
0.1
1

1.938800
1.938800
1.938800

0.250200
0.247600
0.047200

1.261042
1.261042
1.261042

0.092274
0.229433
0.471190

1.261034
1.261034
1.261034

0.093761
0.229458
0.471198

1.2 0.01
0.1
1

2.032700
2.032700
2.032700

0.258400
0.317600
0.420900

1.377722
1.377722
1.377722

0.114053
0.311720
0.788173

1.377710
1.377710
1.377710

0.152838
0.313179
0.788181

2 0.01
0.1
1

2.208400
2.208400
2.208400

0.274500
0.439100
0.965100

1.587362
1.587362
1.587362

0.150317
0.438750
1.243741

1.587342
1.587342
1.587342

0.176854
0.438955
1.243744

Table 5.2 represents the results for the heat transfer rate from the sheet, )0(  for

different method of previous studies. It can be seen from this table that a very good

agreement between the results exists. The numerical solution of skin friction coefficient

)0(f  and heat transfer rate )0(  for various values of Pr and unsteadiness

parameter A generated through HWQM is given in Table 5.3 alongside

quasilinearization technique and Keller-box method. From the table, it is noticed that
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the skin friction coefficient and heat transfer rate increase as the Pr and unsteadiness

parameter are increased.

Table 5.4 is represented CPU time (in seconds) needed for HWQM in solving

BLFHTSS for different values of Pr. The CPU time is calculated by employing ‘Run

and Time’ command in MATLAB software.

Table 5.4: CPU time in (sec) for different values of Pr when L = 1, A = 0 and m = 8

Pr HWQM

(Present)

1
10
50
100
200
500
1000

0.236
0.124
0.124
0.124
0.124
0.124
0.124

5.2 Laminar Film Condensation

5.2.1 Introduction

The investigation about laminar film condensation has received considerable attention

over the past several decades after the pioneering work by Nusselt (1916). It is widely

used in engineering and industry such as heat and fluid flows for some industrial drying

and cooling processes, enhanced recovery of petroleum resources, packed-bed heat

exchangers, solidification of castings, geothermal reservoirs and so on (Eckert, 1963).

Nusselt (1916) formulated a theory of laminar film condensation considered in

condensation onto an isothermal flat plate maintained at a constant temperature below

the saturation temperature of the surrounding inactive vapor. According to the basic

Nusselt theory, thermal convection and interfacial shear were neglected due to inertia
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forces. Many investigations have subsequently refined Nusselt’s theory to include some

of the omissions. Bromley (1952) examined the effects of thermal convection and then

Rohsenow (1956) proposed modifications to the latent heat of condensation to be used

in assessing heat transfer at the plate but the inertia effects were ignored.

Later, Sparrow and Gregg (1959) recognized the close parallels between natural

convection boundary layers and laminar film condensation. They introduced a set of

similarity transformation of the governing parabolic equations and reduced the PDEs to

a set of ODEs, including the detailed numerical solutions were obtained for a wide

range of Pr and condensation rates. As a result, it showed that if the Pr is not less than

10, the inertia effects on heat transfer are limited. Chen (1961) used the retarding effect

of vapor shear stress on the condensate film by perturbation method and modified

integral boundary-layer equations. Theoretical heat-transfer coefficients are computed

and it found that the influence of surface shear stress is negligible at high Pr.

Koh et al. (1961) realized that if the condensation rate is sufficiently high, the effect

of the shear stress is significant. Rose (1988) reviewed basic theoretical studies of

laminar film condensation since Nusselt (1916) and gave a more accurate expression for

the Nusselt number. The study of the problems related to laminar film condensation are

discussed by many researchers such as Bromely (1952), Patankar and Sparrow (1979),

Wilkins (1980), Brouwers (1989), Méndez and Treviño (1996), Shang (1997), Pop et al.

(2004), Xu (2004), White (2005), Xu et al. (2008), Ariel (2009), Ahmed et al. (2010),

Dinarvand et al. (2010), Hayat et al. (2010), Shu (2012).

5.2.2 Problem Formulation

In this study, a laminar film condensation of a saturated stream is considered on an

isothermal vertical flat plate. Let x and y are the measures of the distances in the

downward direction parallel and perpendicular to the plate, respectively. The leading
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edge of the plate is located at 0 yx . The physical model to be examined is

illustrated in Figure 5.4, under assumptions that the change of pressure across the film is

negligible and the velocity gradient in the cross-film direction (y-direction) is much

greater than the one in the flow direction (x-direction).

x
g-field

�(x)

Thickness of the
condensate film

Tw

Figure 5.4: Physical model and coordinate system of laminar film condensation of
saturated steam

The governing equations expressing conservation of mass, momentum and energy

in the liquid phase are given as follows,

0







y
v

x
u

, (5.32)

2

2

1
*

y
u

g
y
u

v
x
u

u










 













, (5.33)

2

2
1

y
T

c
k

y
T

v
x
T

u
p 











, (5.34)

respectively, where u and v are the velocity components associated with increasing

coordinates  yx, measured along and normal to the plate from the leading edge of the

plate and T is temperature within the condensate film. The physical properties g is the

acceleration due to gravity, * the vapor density, 11,, k and pc are the density,
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the kinematic viscosity, the thermal conductivity and the specific heat at constant

pressure of the liquid.

The Equations (5.32) - (5.34) are subjected to the boundary conditions,

wTTvuy  ,0,0:0 , (5.35)

*,0: TT
y
u

y 



  , (5.36)

where  is the thickness of the condensate film, wT is the plate temperature and *T

is the saturation temperature of the vapor. By using the similarity transformations

(Oosthuizen & Naylor, 1999),

.
*

,
*
*

)(

),(
*

4
1

2
14

1

4
1

32
1
















 






















 


g
x

y

TT
TT

fxg

w














(5.37)

Equations (5.32) - (5.34) can be reduced to the following system of nonlinear ODEs,

01
24

3 2





f

fff , (5.38)

0Pr
4
3

  f , (5.39)

subject to the boundary conditions,

,0,0:
,1,0:0







f
ff

(5.40)

where 1/Pr kcp is the Prandtl number.

5.2.3 Numerical Solution

Quasilinearization technique is applied to Equations (5.38) and (5.39) implies
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,1
4
3

2
1

4
3

4
3 2

1111   rrrrrrrrrr ffffffffff (5.41)

and

,Pr
4
3

Pr
4
3

Pr
4
3

111 rrrrrrr fff    (5.42)

respectively. The boundary conditions are

.0,0:

,1,0,0:0

11

111









rr

rrr

f

ff




(5.43)

The lower order derivatives are obtained similar as previous problem, since both

problems have similar higher order but with different boundary conditions for )0(1rf .

Hence, the new Haar wavelets integration of higher order derivatives in both (5.14) and

(5.15) gives

 



 

1

0
1,1,1 )()()(

m

i
iiir Lppaf  , (5.44)

 



 

1

0
1,2,1 )()()(

m

i
iiir Lppaf  , (5.45)


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iiir Lppaf
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 , (5.46)
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1
)(

1
)()(

m

i
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pb  , (5.47)


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 
1
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i
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
 . (5.48)

where the unknown value for )0(1rf and )0(1r are,





 

1

0
1,1 )()0(

m

i
iir Lpaf , (5.49)

and









 






1

0
2,1 1)(

1
)0(

m

i
iir Lpb

L
 , (5.50)
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respectively. Substitute (5.44)-(5.48) and the highest order derivatives into (5.41) and

(5.42), we obtain

,1
4
3

2
1

)(
4
3

8
3

)(
4
3

)()(
4
3

2

1

0
1,

2

1,2,3,




























 








rrr

m

i
irrr

iririri

i

fff

Lpfff

pfpfpfh
a





(5.51)

and
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(5.52)

The Equations (5.51) and (5.52) can be solved simultaneously to obtain Haar

coefficients, ia and ib . We chose the initial approximation which satisfy the boundary

conditions (5.43) as follows

,
6
1

2
)( 32

0  
L

f (5.53)

and


L
1

1)(0  . (5.54)

5.2.4 Results and Discussion

The numerical results corresponding to this case are shown in Figures 5.5 - 5.8 and

Table 5.5. In Table 5.5, we found that excellent agreement between HWQM with RKM

and HWCM for both, f and  for Pr = 100. Table 5.6 is tabulated for a comparison of

CPU time between HWCM, RKM and present method. The efficiency analysis of

HWQM is performed by using ‘Run and Time’ command in MATLAB software version
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R2015a, while the HWCM and RKM are calculated by employing Timing command in

Mathematica 7.0 software and ODE solver NDSolve, respectively. Besides provides

better results, it is observed that HWQM provides smaller CPU time compared to

HWCM and RKM.

Table 5.5: Comparison between HWQM with RKM and HWCM for )(f and
)( of LFC with m = 128, Pr = 100 and L = 1



)(f )(

HWCM

(Islam et
al.,
2011)

RKM

(Islam et
al.,
2011)

HWQM

(Present)

HWCM

(Islam et
al.,
2011)

RKM

(Islam et
al.,
2011)

HWQM

(Present)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.0046446
0.0179122
0.0388057
0.0663328
0.0995078
0.1373540
0.1789080
0.2232160
0.2693450
0.3163740

0
0.0046444
0.0179114
0.0388040
0.0663297
0.0995028
0.1373470
0.1788970
0.2232020
0.2693260
0.3163510

0
0.0046444
0.0179114
0.0388040
0.0663297
0.0995029
0.1373471
0.1788975
0.2232026
0.2693266
0.3163512

1
0.7548670
0.5194270
0.3143650
0.1606550
0.0664569
0.0212199
0.0050076
0.0007970
0.0000813

0

1
0.7549480
0.5194960
0.3143050
0.1608700
0.0670163
0.0219129
0.0054431
0.0009936
0.0001220

0

1
0.7549459
0.5194953
0.3143049
0.1608672
0.0670075
0.0219024
0.0054359
0.0009906
0.0001214

0

Table 5.6: CPU time in (sec) for HWCM, RKM and HWQM when L = 1 and m = 8

Pr
HWCM

(Islam et al., 2011)

RKM

(Islam et al., 2011)

HWQM

(Present)

1
10
50
100
200
500
1000

0.29
0.11
0.11
0.11
0.11
0.11
0.11

0.2
0.4
0.6
2.4
6.4
26.6

Solution diverges

0.071
0.098
0.099
0.095
0.104
0.104
0.104
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In Figure 5.5, there is no effect of changing the values of Pr on f even though the

high value of Pr involved. It is similar to the derivative of f as shown in Figure 5.7.

From Figure 5.6, the variation of mean temperature field  with respect to Pr is shown.

It is clear that with increase of Pr the thickness of the thermal boundary layer decreases

within the dynamical region [0, 6]. Figure 5.8 depicts the variable   changes rapidly in

the middle as Pr changes values from 1 to 100.
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Figure 5.5: HWQM for )(f , case of LFC when m = 128 and L = 7 at different
values of PrUniv

ers
ity

 of
 M

ala
ya



86

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1





 

 

Pr=1
Pr=10
Pr=30
Pr=50
Pr=100
Pr=1000

Figure 5.6: HWQM for )( , case of LFC when m = 128 and L = 6 at different
values of Pr
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Figure 5.7: HWQM for )(f  , case of LFC when m = 128 and L = 7 at different
values of Pr
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Figure 5.8: HWQM for )(  , case of LFC when m = 128 and L = 7 at different
values of Pr

5.3 Natural Convection Boundary Layer Flow

5.3.1 Introduction

Boundary layer flows of viscous fluids are of the highest industrial importance. Most of

them can be modeled mathematically by systems of nonlinear ordinary differential

equations on an unbounded domain. The theoretical, experimental and numerical

analysis for the natural convection boundary layer flow related to isothermal, vertical

flat plates have been carried out widely by many authors (Eckert & Soehngen, 1948;

Ostrach, 1953; Stewart, 1971; Suwono, 1980; Merkin, 1985). Some of the method

found in the literature that used similar case but with small values of Pr are HAM

(Ghotbi et al., 2009) and FDM (Na, 1979; Mahdy & Hady, 2009).

5.3.2 Problem Formulation

The natural convection flows are caused due to the density differences coming from
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temperature gradients. These flows are generated in the vicinity of external surfaces and

within channels in which the fluid flows.

Velocity
boundary
layer

y

x

Free stream velocity

U(x,y)

Flate plate

Figure 5.9: Physical model of natural convection boundary layer flow

The two dimensional flow over a horizontal flat plate with uniform surface

temperature are governed by the continuity, momentum and energy equations as

follows:

0







y
v

x
u

, (5.55)
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
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y
u
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 2
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, (5.56)

,2

2

y
T

y
T

v
x
T

u











 (5.57)

subject to the boundary conditions

,,0:

),(,0,0:0





TTuy

xTTvuy w
(5.58)

where x, y are the coordinates measured parallel and perpendicular to the plate. The

stream function  is defined as
y

u




 and

x





 . The transformations below

are introduced (Na, 1979).

Univ
ers

ity
 of

 M
ala

ya



89

).(
4

4,)(,
4

4
1

2

4
1

2 







 f
xTT

TT
x

y
w


















 (5.59)

By using the transformations, the Equations (5.55) - (5.57) are reduced to the following

equations,

023 2  ffff , (5.60)

and

.0Pr3   f (5.61)

The boundary conditions are

.0,0:

,1,0,0:0









f

ff
(5.62)

5.3.3 Numerical Solution

Applying the quasilinearization technique to Equations (5.60) and (5.61), we get

,32343 2
11111 rrrrrrrrrrr ffffffffff    (5.63)

and

rrrrrrr fff    Pr3Pr3Pr3 111 (5.64)

respectively. The boundary conditions are

.0,0:

,1,0,0:0

11

111
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rrr

f

ff




(5.65)

After simplification and substitution of boundary conditions given, the unknown value

for )0(1rf and )0(1r can be obtained as follows,





 

1

0
2,1 )(

1
)0(

m

i
iir Lpa

L
f , (5.66)

and
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respectively. The Haar wavelets integration of higher order derivatives gives
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Substitute Equations (5.68) - (5.72) and higher order derivatives into Equations (5.63)

and (5.64), we obtain
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(5.74)

The Equations (5.73) and (5.74) are solved simultaneously to obtain Haar coefficient

ia and ib . The initial approximation which satisfy the boundary conditions (5.65) as

follows
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,0)(0 f (5.75)

and


L
1

1)(0  . (5.76)

5.3.4 Results and Discussion

The numerical results for natural convection boundary layer flow problem (NCBLF) are

discussed in this section.

Table 5.7: Comparison between HWQM with RKM and HWCM for )(f and
)( of NCBLF with m = 256, Pr = 3 and L = 1



)(f )(

HWCM

(Islam et
al.,
2011)

RKM

(Islam et
al.,
2011)

HWQM

(Present)

HWCM

(Islam et
al.,
2011)

RKM

(Islam et
al.,
2011)

HWQM

(Present)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.0014533
0.0051997
0.0103994
0.0163197
0.0223356
0.0279277
0.0326819
0.0362856
0.0385254
0.0392829

0
0.0014766
0.0052909
0.0105972
0.0166537
0.0228227
0.0285706
0.0334676
0.0371863
0.0395007
0.0402840

0
0.0014733
0.0053123
0.0106511
0.0167465
0.0229778
0.0287724
0.0337273
0.0374877
0.0398222
0.0406231

1
0.8940570
0.7882710
0.6829970
0.5787050
0.4759360
0.3752060
0.2769670
0.1815650
0.0892148

0

1
0.8979760
0.7960030
0.6941960
0.5927130
0.4917370
0.3914480
0.2920130
0.1935690
0.0962128

0

1
0.8938646
0.7878979
0.6824494
0.5780227
0.4751769
0.3744298
0.2762398
0.1809780
0.0888726

0

Comparison of the present method with RKM and HWCM for small value of Pr is

shown in Table 5.7. According to that, good agreement is found between HWQM with

RKM and HWCM for both f and θ at the collocation points between [0, 1]. Some of the

method found in the literature that used similar case but with small values of Pr = 0.72
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are FDM (Na, 1979) and Haar wavelet collocation method (HWCM) combined with

Newton method (Islam et al., 2011) as shown in Table 5.8. The result shows that good

agreement between HWQM with FDM and HWCM at two decimal places. Table 5.9 is

constructed for a comparison of CPU time to run a program between HWQM with

previously reported methods. It shows that HWQM offers less computing time

compared to the others.

Table 5.8: Comparison between HWQM with FDM and HWCM for )0(f  of
NCBLF when Pr = 0.72

)0(f 

FDM

(Na, 1979)

HWCM

(Islam et al., 2011)

HWQM

(Present)

0.6742 0.6739 0.6751

Table 5.9: Comparison of CPU time (sec) between HWCM, RKM and HWQM for
different values of Pr when L = 1 and m = 8

Pr HWCM

(Islam et al., 2011)

RKM

(Islam et al., 2011)

HWQM

(Present)

1
10
100
150
170
300
400
600
800
1000
1500

0.321
0.124
0.141
0.141
0.141
0.141
0.141
0.141
0.141
0.141
0.141

0.21
0.37
0.89
1.25
1.36
1.59
2.00
2.30

14.21 (Solution diverges)
21.8 (Solution diverges)
24.6 (Solution diverges)

0.131
0.128
0.133
0.136
0.138
0.138
0.138
0.138
0.138
0.138
0.138
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Figure 5.10: HWQM for )(f and )( , case of NCBLF when m = 256, L = 7
and Pr = 1500

Figures 5.10 and 5.11 show that HWQM produces stable results for larger values of

Pr either for small interval or large interval. According to Figure 5.12(a), with the

increase in Pr, the thickness of the layer is not effected. This similar to the Figure 5.12(b)

in which represents the variations of the velocity distribution in the boundary layer

profiles for various values of Pr. Moreover, from Figure 5.13(a), it is obvious that the

thermal boundary layer decreases as well with the increase of Pr. Figure 5.13(b) shows

that the rate of change of the thermal boundary layer decreases at the beginning, but it

tends to approach zero level in the middle.Univ
ers
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 of
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Figure 5.11: HWQM for (a) )(f and (b) )( case of NCBLF when m = 256 and
L = 1 at Pr = 40,000 and Pr = 100,000
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Figure 5.12: HWQM for (a) )(f and (b) )(f  , case of NCBLF when m = 256
and L = 7 for different values of Pr
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Figure 5.13: HWQM for (a) )( and (b) )(  , case of NCBLF when m = 256
and L = 7 for different values of Pr
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5.4 Conclusions

Detailed examination on variety of systems of boundary value problems arising in

natural convection boundary layer flows without exact solution have been performed by

using Haar wavelet quasilinearization method. The quasilinearization procedure

replaces the original nonlinear equation by a sequence of linear equations and Haar

wavelets procedure is exploited to solve these linear boundary value problems.

Present results are compared with the available experimental results. It has been

found that the results of HWQM provides excellent approximations to the solution and

its derivatives with high accuracy. Based on the findings presented in the previous

sections, HWQM can be handled in the case of flows with low Pr. HWQM based

algorithm also produces stable numerical solution for fluid flows with larger values of

Pr, which is quite challenging for asymptotic methods like homotopy analysis method

(HAM), HPM and differential transformation method (DTM).

This method also suitable for the numerical solution of boundary value problems

defined on small and long intervals. HWQM provides smaller CPU time since universal

subprogram is applied to calculate integrals of Haar wavelets. Similar to HWCM,

HWQM does not require conversion of a boundary value problem into initial value

problem. This is unlike the procedure of RKM where this method require conversion by

using shooting technique. In order for achieving a very accurate solution, HWQM

ensured a very rapid convergence after only one iteration and by increasing the level of

resolution.Univ
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CHAPTER 6: COUPLED NONLINEAR ORDINARYDIFFERENTIAL

EQUATIONSWITH SOMEADDITIONAL PARAMETERS

In this chapter, the Haar wavelet quasilinearization method is proposed for the

numerical solution of system of coupled nonlinear ODEs related to the

Cattaneo-Christov heat flux model for boundary layer flow of Maxwell fluid in the

presence of,

(a) velocity slip boundary,

(b) suction and injection,

(c) heat generation/absorption.

6.1 Heat Transfer and Boundary Layer Flow of a Viscoelastic Fluid Above a

Stretching Plate with Velocity Slip Boundary

6.1.1 Introduction

The phenomenon of heat transfer exist due to difference of temperature between objects

or between different parts of the same object. The well-known heat conduction law or

known as Fourier’s law proposed by Fourier (1822) provides an insight to examine the

heat transfer analysis. However, this law causes a parabolic energy equation, means that

any initial disturbance is instantly felt through the medium under consideration. Due to

this limitation, Cattaneo (1948) revised this law by adding a relaxation time term. Later,

Christov (2009) made some modification on Cattaneo model by replacing the ordinary

derivative with the Oldroyd’s upper-convected derivative. This model is recognized as

Cattaneo-Christov heat flux model in the literature. Straughan (2010) studied the

thermal convection in horizontal layer of incompressible Newtonian fluid by using

Cattaneo-Christov model. Ciarletta and Straughan (2010) proved the uniqueness and

stability of the solutions for the Cattaneo-Christov equations. By using

Cattaneo-Christov model, Tibullo and Zampoli (2011) studied the uniqueness of the
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solutions for an incompressible fluid.

The Maxwell fluid model is one of the simplest viscoelastic models and can address

the influence of the fluid relaxation time. Due to these reasons, this model has received

remarkable attention of the researchers. Han et al. (2014) employed the upper-convected

Maxwell (UCM) model and Cattaneo-Christov heat flux model to investigate heat

transfer and boundary layer flow of a viscoelastic fluid above a stretching plate with

velocity slip boundary by using HAM. Mustafa (2015) also used HAM to investigate

the rotating flow of UCM fluid through Cattaneo-Christov heat flux model. Khan et al.

(2015) studied the boundary layer flow of UCM fluid induced by exponentially

stretching sheet using Cattaneo-Christov model. Hayat et al. (2015) discussed the

impact of Cattaneo-Christov heat flux in the flow over a stretching sheet with variable

thickness.

Abbasi et al. (2016) investigated the Cattaneo-Christov heat flux model for a

two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid

over a linearly stretching sheet, where the dimensionless velocity and temperature

profiles are obtained through optimal homotopy analysis method (OHAM). Mushtaq et

al. (2016) studied the Sakiadis flow of Maxwell fluid along a moving plate in a calm

fluid by considering the Cattaneo-Christov model. Abbasi and Shehzad (2016) proposed

a mathematical model to study the Cattaneo-Christov heat flux model for

three-dimensional flow of Maxwell fluid over a bi-directional stretching surface by

employing the homotopic procedure. Rubab and Mustafa (2016) used HAM to

investigated the magnetohydrodynamic (MHD) three-dimensional flow of UCM fluid

over a bi-directional stretching surface.

The wide range of publications revealed that the no-slip boundary condition is

mostly studied in the literature. However, the fluids that exhibit the boundary slip have

important technological applications such as the polishing of the artificial heart valves
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and internal cavities, inexpensive lubricating, refrigeration equipment, optical coatings

and in many industrial processes.

Ibrahim and Shankar (2013) analyzed the effects of magnetic field and velocity

thermal slips on the boundary layer flow and heat transfer over a permeable stretching

sheet due to a nanofluid. Nandy and Mahapatra (2013) investigated the heat transfer rate

of MHD stagnation point flow of nanofluid over a stretching or shrinking surface along

with the effects of velocity slip and convective boundary conditions. Aman et al. (2013)

studied the problem of slip effects on stagnation point flow past a stretching or

shrinking sheet in the presence of magnetic field. Bhattacharyya et al. (2013) examined

the similarity solution of mixed convective boundary layer flow over a vertical plate

along with the velocity and thermal slip effects. Noghrehabadi et al. (2012) observed the

slip effects on the flow and heat transfer rate of nanofluid over stretching sheet.

In this section, we now apply the Haar wavelet quasilinearization method to solve

coupled flow and heat transfer of boundary layer in viscoelastic fluid with the

upper-convected Maxwell model and Cattaneo-Christov heat flux model with velocity

slip on boundary. The effects involved on parameters of the velocity and temperature

fields are analyzed and discussed.

6.1.2 Problem Formulation

The model in this work is the same as that in (Han et al., 2014). Consider the steady two

dimensional boundary layer flow of UCM fluid over a plate. The detailed of governing

equations expressing conservation of mass and momentum, and the boundary conditions

with velocity slip on boundary can be found in work by Han et al. (2014).
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where u and v denote the velocity components along the x- and y- directions,

respectively,  is the kinematic viscosity and 1 is the fluid relaxation time.

The equations above are subjected to the boundary conditions with velocity slip on

boundary given as

,as0

,0at0,
2

0
0










yu

yv
y
u

axu
y







(6.3)

where a is positive constant, the tangential momentum is denoted as  and 0 is

the molecular mean free path.

In this work, Cattaneo-Christov heat flux model is taken into consideration. This

model can predict the effects of thermal relaxation time on the boundary layer. The heat

flux model is given in the following equation,

  Tk
t






 



 qVVq-qV
q

q 2 , (6.4)

in which q is the heat flux, 2 is the thermal relaxation time, T is the Maxwell fluid

temperature, k is the thermal conductivity of the fluid and V = (u, v) is the velocity

vector of the Maxwell fluid. Equation (6.4) can be written as,

Tk
t






 



 Vq-qV
q

q 2 . (6.5)

The energy balance for the steady boundary layer flow can be written as

qV  Tcp . (6.6)

To obtain the temperature governing equation for the steady flow, q is eliminated

between Equations (6.5) and (6.6),
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where pck  / is the thermal diffusivity,  is the fluid density and pc is the

specific heat. The boundary conditions in the present problem are

.as

,0at





 yTT

yTT w
(6.8)

By using these transformations,

y
v
a

 , )( xfva ,








TT
TT

w

 , (6.9)

in which  is the stream function. Equations (6.2) and (6.7) can be reduced to a

system of two coupled ordinary differential equations as follows

  ,02 22  fffffffff  (6.10)

and

  ,0
Pr
1 2   ffff (6.11)

where the prime denotes the derivative with respect to  . Prandtl number is given as

/Pr v , where v is the velocity component along y-direction and  is thermal

diffusivity. a1  is the Deborah number and a2  is the non-dimensional thermal

relaxation time, where a is a positive constant, 1 is fluid relaxation time and 2 is

thermal relaxation time. The boundary conditions for Equations (6.10) and (6.11) are

,as0,0

,0at1,1,0


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f

fbff
(6.12)
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6.1.3 Numerical Solution

Quasilinearization technique is applied to Equations (6.10) and (6.11). We get,
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and
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respectively. The boundary conditions are

.as0,0

,0at1,1,0

11

1111













rr

rrrr

f

fbff
(6.15)

The Haar wavelet method is applied to Equations (6.13) and (6.14). The higher order

derivatives in this problem is similar to problem in Section 5.1.3, as shown in Equations

(5.14) and (5.15). The lower order derivatives are obtained by integrating them and use

the boundary conditions given.
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where L is sufficiently large number. The values for )0(1rf and )0(1r can be

obtained as
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Substitute Equations (6.16) - (6.20) and higher order derivatives into Equations (6.13)

and (6.14), we obtain
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The Equations (6.23) and (6.24) can be solved simultaneously to obtain Haar

coefficients, ia and ib . We chose the initial approximation which satisfy the boundary

conditions (6.15) as follow

,
1
1

)(0 b
e

f






 (6.25)

and

  e)(0 . (6.26)

6.1.4 Results and Discussion

This similar problem has been solved by Han et al. (2014). However, they only provided
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a graphical results to show the output of their proposed method. All computations of

HWQM are performed by MATLAB. Based on Figures 6.1 - 6.6, it is clear that HWQM

agrees well with HAM as proposed by Han et al. (2014).

Figures 6.1 and 6.2 show the effects of elasticity number,  on the velocity and

temperature distributions. The elastic force disappears when 0 and the fluid

becomes the Newtonian fluid. From Figure 6.1, it is clear that with the increase of  ,

the value of )(f become smaller. The impact of elasticity number,  on the velocity

distribution is also illustrated in this figure. It is noted that velocity distribution shows

decreasing behaviour corresponding to higher values of  . Physically, bigger 

indicates stronger viscous force which restricts the fluid motion and subsequently the

velocity decreases. Characteristics of  on temperature distribution is displayed in

Figure 6.2. Temperature distribution increases for large values of  . The increase in

parameter of  corresponds to larger relaxation time which provides resistance to the

fluid motion, hence as a result more heat is produced. Therefore, temperature

distribution increases.

The influence of velocity slip, b on the velocity and temperature is delineated in

Figures 6.3 and 6.4, respectively. To avoid the crowded plots, both distributions are

separated in two figures. The stretching of the sheet causes a descend in the fluid flow,

so the velocity of the fluid becomes lessen with the rise of velocity slip as the distance

 increase from 0 to 2, but slightly increase from the surface of the sheet in the

boundary layer. Physically, with the enhanced velocity slip, as a consequence of

decrease in the tendency of fluid to remove the heat away from the plate, there is a rise

in temperature profile.

Univ
ers

ity
 of

 M
ala

ya



107

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8



f a
nd

 f

 

 

f()

f()

 = 0, 0.5, 1, 1.5

 = 0, 0.5, 1, 1.5

Figure 6.1: Profiles of )(f and )(f  for different values of  when 1Pr  b ,
m = 256 and L = 6
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Figure 6.2: Profiles of )( for different values of  when 1Pr  b , m = 256,
and L = 7
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Figure 6.3: Profiles of )(f  for different values of b when 1Pr   , m = 256
and L = 8
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Figure 6.4: Profiles of )( for different values of b when 1Pr   , m = 256,
and L = 8
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Figure 6.5: Profiles of )( for different values of  when 1Pr  b , m = 256
and L = 8

The Cattaneo-Christov heat flux model is a modified version of the classical

Fouriers law that takes into account of thermal relaxation time (Christov, 2009). The

impact of non-dimensional heat flux relaxation time γ on temperature can be explained

through Figure 6.5. Temperature distribution is a decreasing function of thermal

relaxation parameter. It is also analyzed that thermal boundary layer thickness decreases.

This due to the fact that as the thermal relaxation parameter increased, particles of the

material require more time to transfer heat to its neighboring particles. In other words, a

non-conducting behaviour showed by the higher values of thermal relaxation parameter

material is responsible in reduction of temperature distribution. Further, it is also

noticed that the thermal boundary layer thickness is larger for the classical Fourier’s law

when the heat transfers instantly throughout the material ( 0 ) as compared to the

Cattaneo-Christov heat flux model.

Univ
ers

ity
 of

 M
ala

ya



110

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1





Pr = 0.5, 1, 2

Figure 6.6: Profiles of )( for different values of Pr when 1  b , m = 256
and L = 12

Figure 6.6 reveals the effects of Pr on energy boundary. It can be seen that

temperature profile as well as thermal boundary layer thickness decrease when Pr is

increased. An increase in Pr corresponds to a decrease in thermal diffusivity and hence

thinner thermal boundary layer exists for larger Prandtl number fluid.

In order to validate the numerical method used in this work, the elasticity number

( 0 ), heat flux relaxation time ( 0 ) and slip coefficient ( 0b ) are considered in

Tables 6.1 and 6.2. The results obtained by HWQM are then compared with some

previous literature and good agreement is found between these results.

Tables 6.3 and 6.4 contain the numerical values of )0(f  and )0(  , respectively for

different values of elasticity number,  and non-dimensional heat flux relaxation time,

 . We found that magnitude of )0(  is directly proportional to the parameter  .

However, it has inverse relationship with the viscoelastic fluid parameter  .
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Table 6.1: Comparison the values of )0(f  between exact solution and HWQM at
0 , 0b , 512m and L = 6

Exact solution

(Magyari & Keller, 2000)

HWQM

(Present)

1.0000000 1.0004761

Table 6.2: Comparison of local Nusselt number )0(  in the case of Newtonian
fluid ( 0 b ) with m = 512 and L = 6 for different values of Pr

Pr
Wang
(1989)

Gorla and
Sidawi
(1994)

Khan and
Pop
(2010)

Malik et al.
(2017)

HWQM
(Present)

0.70
2.00
7.00
20.0

0.4539
0.9114
1.8954
3.3539

0.5349
0.9114
1.8905
3.3539

0.4539
0.9113
1.8954
3.3539

0.45392
0.91135
1.89543
3.35395

0.453930
0.911345
1.895489
3.353905

Table 6.3: The values of HWQM for )0(f  with different values of β when Pr = 1,
b = 1, 1.0 , m = 512 and L = 6

β )0(f 

0.10
0.15
0.20
0.30
0.50

0.43355
0.43498
0.43638
0.43912
0.44436
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Table 6.4: The values of HWQM for )0(  with different values of  and 
when Pr = 1, b = 1, m = 512 and L = 6

6.2 Convective Heat Transfer in Maxwell Fluid with Cattaneo-Christov Heat

Flux Model Past a Stretching Sheet in the Presence of Suction and

Injection

6.2.1 Introduction

This problem is extended from Section 6.1 to the case where the presence of suction and

injection parameters are taken into account. Related to this presence, Vajravelu (1994)

has analyzed the convection flow and heat transfer of a viscous fluid near an infinite,

porous and vertical stretching surface by using variable size finite difference method.

Muthucumaraswamy (2002) studied the effects of suction on heat and mass transfer

along a moving vertical surface in the presence of chemical reaction. El-Arabawy (2009)

investigated the effects of suction/injection and chemical reaction on mass transfer over

a stretching surface. Elbashbeshy and Bazid (2004) have analyzed the effect of internal

heat generation and suction or injection on the heat transfer in a porous medium over a

stretching surface. Sultana et al. (2009) discussed the effects of internal heat generation,

radiation and suction or injection on the heat transfer in a porous medium over a

stretching surface. Rajeswari et al. (2009) studied the effect of chemical reaction, heat

γ
)0( 

β = 0.1 β = 0.15 β = 0.2 β = 0.3 β = 0.5

0.1
0.4
0.5
0.6
0.8
1.0

0.44409
0.45242
0.45558
0.45893
0.46624
0.47434

0.44211
0.45025
0.45332
0.45659
0.46372
0.47164

0.44018
0.44811
0.45111
0.45430
0.46126
0.46899

0.43640
0.44396
0.44681
0.44985
0.45647
0.46385

0.42925
0.43611
0.43869
0.44144
0.44745
0.45416
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and mass transfer on nonlinear MHD boundary layer flow through vertical porous

surface with heat source in the presence of suction. Elbashbeshy et al. (2011) used

Runge-Kutta technique to study the effects of suction/injection and variable chemical

reaction on mass transfer characteristics over unsteady stretching surface embedded in

porous medium.

To the best of our knowledge, no attempt has been made to analyze the effects of

both temperature and velocity on the steady, two dimensional, incompressible, laminar

flow of Maxwell fluid past a stretching sheet in the presence of suction by using

HWQM. The impact of various physical parameters (such as fluid relaxation time,

thermal relaxation time, the suction or injection parameter, Pr) on the velocity and

temperature profiles is displayed in the form of tables and graphs.

6.2.2 Problem Formulation

Consider the steady, two dimensional, incompressible, laminar flow of Maxwell fluid

past a stretching sheet with suction. The heat transfer process is studied through the

Cattaneo-Christov heat flux theory. In the absence of the gradient of pressure, the

governing equations expressing conservation of mass, momentum and energy are given

as,

0
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
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, (6.27)
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(6.29)

where u and v denote the velocity components along the x- and y- directions,
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respectively.  is the kinematic viscosity, 1 is the fluid relaxation time, 2 is the

thermal relaxation time, T is temperature of the Maxwell fluid and pck  / is

thermal diffusivity, where k is the thermal conductivity.

The boundary conditions in the present problem are,

.as,0

,0at,, 0





 yTTu

yTTvvaxu w
(6.30)

The similarity transformations for Equations (6.28) and (6.29) are as follows,

,
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(6.31)

where the stream function  is defined by yu  / and xv  / , and  is

the dimensionless temperature, thus the continuity Equation (6.27) is satisfied

automatically.

In the above and behind equations, the prime denotes the derivative with respect to

 . Substituting Equations (6.31) into (6.28) - (6.30), a set of ordinary differential

equations with variable coefficients is given by

  ,02 22  fffffffff  (6.32)

and

  .0
Pr
1 2   ffff (6.33)

In the above equations, a1  is the Deborah number in terms of relaxation time,

a2  is the non-dimensional thermal relaxation time, where a is a positive constant.

Pr is given as /Pr v , where v is the velocity component along y-direction and 

is thermal diffusivity.

The boundary conditions for Equations (6.32) and (6.33) are given as
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,as0,0
,0at1,1,
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

f
fff w (6.34)

where
c
v

f w
w  is the suction parameter. Note that 0wf corresponds to suction,

0wf corresponds to injection and 0wf is impermeable surface.

6.2.3 Numerical Solution

Quasilinearization technique is applied to (6.32) and (6.33) implies
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(6.36)

respectively. The boundary conditions are

.0as0,0
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f
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(6.37)

Now, we apply the Haar wavelet method to Equations (6.35) and (6.36). The lower

order derivatives are obtained by integrating Equations (5.14) and (5.15) and use the
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boundary conditions (6.37),
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Substitute Equations (6.38) - (6.42) and higher order derivatives into Equations (6.35)

and (6.36), we obtain
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The Equations (6.43) and (6.44) can be solved simultaneously to obtain Haar

coefficients, ia and ib . We chose the initial approximation which satisfy the boundary

conditions (6.37) as follow

  eff w 1)(0 (6.45)

and

Univ
ers

ity
 of

 M
ala

ya



118

  e)(0 . (6.46)

In the next section, by using the above method, the detailed results of numerical

simulation will be given to show the impact of various physical parameters on )0(f  ,

)0(  , )(f  and )( .

6.2.4 Results and Discussion

More detailed results are shown in Tables 6.5 - 6.9, which reflects the effect of each

parameter on both )0(f  and )0(  . And also Figures 6.7 - 6.10 are shown to illustrate

the effects of various physical parameters on the velocity and temperature profiles.

Table 6.5 depicts the validation of the present result by comparing with the

published result by Magyari and Keller (2000) under some special and limited case

where the elasticity number, 0 with different values of wf . We found a favourable

agreement of the present result with the published result.

Table 6.5: Comparison the values of )0(f  between exact solution and HWQM for
different values of wf at 0 , 1Pr  , L = 5, 1.0 and 512m

wf
Exact solution

(Magyari & Keller,
2000)

HWQM

(Present)

-1.5
0.0
1.0
1.5

0.5000000
1.0000000
1.6180340
2.0000000

0.5001199
1.0001623
1.6180203
1.9999694
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Table 6.6: The values of HWQM for )0(f  with different values of  when
Pr = 1, L = 5, 0wf , 1.0 and 512m

 )0(f 

0.10
0.15
0.20
0.50
0.80
1.00

1.02653
1.03939
1.05214
1.12634
1.19676
1.24178

Table 6.7: The values of HWQM for )0(  with different values of  and 
when 1Pr  , L = 5, 0wf and 512m

γ
)0( 

1.0 15.0 2.0 5.0 8.0 0.1

0.1 0.58379 0.57983 0.57593 0.55398 0.53439 0.52253
0.4 0.61014 0.60554 0.60101 0.57555 0.55293 0.53931
0.5 0.61998 0.61516 0.61042 0.58371 0.55996 0.54567
0.6 0.63029 0.62526 0.62031 0.59234 0.56742 0.55244
0.8 0.65215 0.64673 0.64138 0.61098 0.58368 0.56721
1.0 0.67551 0.66972 0.66400 0.63130 0.60165 0.58364

Tables 6.6 and 6.7 show the values of )0(f  and )0(  for various values of heat

flux relaxation parameter,  . From Table 6.6, it is indicated that )0(f  decreases with

the increase in the values of elasticity number,  . The value of  is keep fix at 0.1

since no effect of changing the value of heat flux relaxation because Equation (6.32)

does not has a direct impact on  .

Table 6.7 shows the values of )0(  decreases with the increase of heat flux

relaxation, but it tends to increase with the enhanced of elasticity number, which is

opposite to the effect on )0(f  . Tables 6.8 and 6.9 are for examining )0(f  and
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)0(  for different values of suction/injection parameter, wf and elasticity number, 

when 1Pr  , 5.0 , 5L and m = 512. These tables clearly present that )0(f  and

)0(  are reduced as parameter of wf increases.

Table 6.8: The values of HWQM for )0(f  and )0(  with different values of 
and wf (impermeable surface and suction) when Pr = 1, 5.0 , L = 5 and 512m

wf
1.0 2.0 3.0

)0(f  )0(  )0(f  )0(  )0(f  )0( 

0 1.02653 0.61998 1.05271 0.61061 1.07776 0.60177
0.2 1.15770 0.79129 1.20962 0.77715 1.26184 0.76338
0.3 1.23064 0.89891 1.30056 0.88164 1.37188 0.86469
0.5 1.39442 1.18255 1.51424 1.15696 1.64127 1.13124
0.6 1.48644 1.37604 1.64070 1.34471 1.80853 1.31269

Table 6.9: The values of HWQM for )0(f  and )0(  with different values of 
and wf (injection) when Pr = 1, 5.0 , L = 5 and 512m

wf
1.0 2.0 3.0

)0(f  )0(  )0(f  )0(  )0(f  )0( 

-1.0 0.59764 0.16047 0.57485 0.16186 0.55080 0.16331
-0.6 0.73351 0.29864 0.72106 0.29788 0.70828 0.29715
-0.5 0.77402 0.33953 0.76537 0.33788 0.75644 0.33629
-0.3 0.86440 0.43362 0.86568 0.42964 0.86665 0.42582
-0.2 0.91476 0.48852 0.92258 0.48306 0.93003 0.47783

Figure 6.7 depicts the effects of non-dimensional heat flux relaxation time,  on

velocity filed and temperature filed. As can be seen from this profile, as the distance

 increase from 0, there is no effect of changing the values of  on the velocity.

Meanwhile the temperature monotonically decreasing tends to 0. The temperature and
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the temperature boundary layer thickness decrease with the increase of  , and

simultaneously the temperature gradient increases. So, the heat transfer rate of surface

increases.
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 = 0.2, 0.5, 1.0

Figure 6.7: Velocity and temperature profiles for different values of  when 0wf ,
m = 512, L = 7, Pr = 1 and 1.0

Figure 6.8 exhibits the velocity and the temperature profiles for different values of

elasticity number  . As  increases, the velocity of the fluid decreases to 0. However,

when the parameter  is very small, the temperature decreases to 0 as the distance 

increases from 0. The decrease in the values of  has the tendency to decrease the

temperature and thermal boundary layer thickness but increase the temperature gradient.
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Figure 6.8: Velocity and temperature profiles for different values of  when 0wf ,
m = 512, L = 7, Pr = 1 and 5.0
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Figure 6.9: Velocity and temperature profiles for different values of Pr when 0wf ,
m = 512, 1  and L = 7
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Figure 6.9 represents the variation of both the velocity and temperature profiles in

response to a change in Pr. The graph depicts that there is no effect of changing Pr on

)(f  . But, the temperature decrease monotonically to 0 with the increasing of  . In

general, it can be seen from Figure 6.9 that the impact of Pr on the temperature field is

more noticeable than that on the velocity field. Meanwhile, this phenomenon can be

roughly observed from Equation (6.23). Actually, Pr is the coefficient of the temperature

and has a direct impact on the temperature. However, the impact of Pr on the velocity is

achieved through the coupling various terms, hence the effect may be weakened.
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Figure 6.10: Velocity and temperature profiles for different values of wf when
512m , L = 7, 2.0 , 1.0 and Pr = 1

Figure 6.10 shows the velocity and the temperature profiles with respect to the

suction (or injection) parameter, wf . The fluid velocity and temperature field are found

to decrease with increasing value of wf . Suction ( 0wf ) causes to decrease the

velocity of the fluid in the boundary layer region. This effect acts to decrease the wall
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shear stress. On the other hand, increase in suction causes progressive thinning of the

boundary layer.

6.3 MHD Flow of Cattaneo-Christov Heat Flux Model for Maxwell Fluid Past

a Stretching Sheet with Heat Generation/Absorption

6.3.1 Introduction

The boundary layer flows induced by a stretching sheet has great importance in the

aerodynamic extrusion of plastic sheets, crystal growing, continuous casting, cooling of

metallic plate in a bath, glass fiber and paper production, the boundary layer along a

liquid film in the condensation process and many others (Vajravelu & Rollins, 1991).

Such consideration in the presence of heat transfer has central role in the polymer

industry. An exact analytic solution for the two dimensional boundary layer flow of

viscous fluid over a linearly stretching surface was firstly presented by Crane (1970).

Later, this problem has been extensively examined through various aspects such as

suction/blowing, stretching velocities, magnetohydrodynamics, heat/ mass transfer and

so on. Further, the addition of heat generation/absorption term in energy expression is

very important in the cases involving underground disposal of radioactive waste

material, storage of food stuffs, heat removal from nuclear fuel fragments and packed

bed reactors. Some of the studies on such effects can be seen in the work by Vajravelu

and Rollins (1991), Zheng et al. (2011), Gireesha et al. (2011), Ramesh et al. (2012),

Shehzad et al. (2014) and Cao et al. (2015).

The aim for this section is to propose a mathematical model to study the

Cattaneo-Christov heat flux model for Maxwell fluid past a stretching sheet with heat

generation/absorption. The impact of heat generation/absorption is incorporated in the

energy expression. Another features of this investigation to examine through the aspects
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of suction or injection parameter and magnetic field parameter in momentum equation

which has not yet been addressed for the Cattaneo-Christov heat flux model.

6.3.2 Problem Formulation

Consider the steady, two dimensional, incompressible, laminar flow of Maxwell fluid

past a stretching sheet with suction, magnetic and heat generation/absorption. The heat

transfer process is studied through the Cattaneo-Christov heat flux theory. In the

absence of the gradient of pressure, the governing equations expressing conservation of

mass, momentum energy are given as
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where u and v denote the velocity components along the x- and y- directions,

respectively.  is the kinematic viscosity, 1 is the fluid relaxation time, 2 is the

thermal relaxation time, T is temperature of the Maxwell fluid, pck  / is thermal

diffusivity, where k is the thermal conductivity, 0B is the transverse magnetic field and

0Q is the heat generation/absorption coefficient.

The boundary conditions in the present problem are,

.as,0

,0at,,





 yTTu

yTTvvaxu ww
(6.50)

Adopting the suitable transformations as Equation (6.31), the law of conservation of

mass is identically satisfied and Equations (6.48) and (6.49) along with the boundary

Univ
ers

ity
 of

 M
ala

ya



126

conditions (6.50) are readily read as ,

  ,02 22  fMfffffffff  (6.51)

and

  0
Pr
1 2   Qffff . (6.52)

Here, a1  , a2  ,
a
B

M

 2

0 ,
ac

Q
Q

p
0 and




Pr , where M is the magnetic

field parameter and Q is the heat generation/absorption parameter. The boundary

conditions are given as

,as0,0

,0at1,1,









f

fff w
(6.53)

where
c
v

f w
w  is a suction parameter. In the above equations, the differentiation

with respect to  is represented by primes.

6.3.3 Numerical Solution

Quasilinearization technique is applied to Equations (6.51) and (6.52) implies
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(6.54)

and
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(6.55)

respectively. The boundary conditions are

.as0,0

,0at1,1,

11

111
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rr

rrwr

f

fff
(6.56)

Now, we apply the Haar wavelet method to Equations (6.54) and (6.55). The highest

order and the boundary conditions for this problem is similar with previous problem.

Hence, the Haar coefficients, ia and ib are obtained as follow.


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11
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i LKa , (6.57)

and
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The Equations (6.57) and (6.58) can be solved simultaneously to obtain Haar

coefficients, ia and ib . The initial approximations are similar as in Equations (6.45)

and (6.46).

6.3.4 Results and Discussion

In order to validate the Haar wavelet method, ignoring the effects of magnetic field

parameter, (M = 0) and with 0wf for different values of elasticity number,  , the

model in this section for Equations (6.51) and (6.52) are similar as proposed by

Sadeghy et al. (2006), Abel et al. (2012), Mukhopadhyay (2012), Megahed (2013) and

Abbasi et al. (2016). The comparison of numerical results among them as shown in

Tables 6.10 and 6.11 for )0(f  and )0(  , respectively. The comparison between

HWQM and previously reported are found to be in good agreement.

Table 6.10: Comparison the values of )0(f  with previous studies for different
values of  when 0wf , M = 0, L = 7, Pr = 1, Q = 0, 2.0 and m = 512


Sadeghy
et al.
(2006)

Abel et al.
(2012)

Mukhopadhyay
(2012)

Megahed
(2013)

Abbasi et
al. (2016)

HWQM
(Present)

0
0.2
0.4
0.6
0.8

1.00000
1.05490
1.10084
1.15016
1.19872

0.999962
1.051948
1.101850
1.150163
1.196692

0.999996
1.051949
1.101851
1.150162
1.196693

0.999978
1.051945
1.101848
1.150160
1.196690

1.00000
1.05189
1.10190
1.15014
1.19671

1.000162
1.051966
1.101942
1.150160
1.196728

Table 6.11: Comparison the values of )0(  with previous study when 0wf ,
0M , Q = 0, Pr = 1, 5.0 , 3.0 , L = 7 and m = 512

Abbasi et al. (2016) HWQM (Present)

0.56621 0.56678
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Table 6.12: Comparison the values of )0(f  with previous study for different
values of M when 0wf , 0 , 2.0 , Pr = 1, L = 8 and m = 512

M Mahmoud
(2010)

HWQM
(Present)

0.1
0.3
0.5
0.7
1.0

1.04881
1.14018
1.22474
1.30384
1.41421

1.04882
1.14016
1.22472
1.30381
1.41417

Meanwhile Table 6.12 shows the comparative values of )0(f  for various values of

magnetic field parameter, M given by present method and previous study as reported by

Mahmoud (2010). This table clearly indicates that our present analytical solutions are in

good agreement with the solutions of Mahmoud (2010).

Table 6.13: The values of HWQM for )0(f  and )0(  when Pr = 2, 1.0 ,
2.0 , m = 512 and L = 5

wf Q M )0(f  )0( 

0.2 0.1

0 1.15769 1.14909

0.1 1.20459 1.13787

0.2 1.24965 1.12709

0.3 1.29305 1.11672

0.2

0

0.1

1.20459 1.23648

0.1 1.20459 1.13787

0.2 1.20459 1.02951

0.3 1.20459 0.90822

0.1
0.2 0.1

1.13708 0.84680

0.2 1.20459 1.02951

0.3 1.27729 1.23239
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Table 6.13 is tabulated to examine )0(f  and )0(  for different values of wf , Q

and M when Pr = 2, 1.0 and 2.0 . Here we can see that the values of

)0(f  and )0(  decrease with the increase of suction/injection parameter, wf . The

value of )0(  increases for larger heat generation/absorption parameter, Q and

magnetic field parameter, M. It is observed that rising the values of magnetic field

declines the value of )0(f  but an increase of heat generation/absorption gives a

constant result.
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 = 0, 0.3, 0.5, 0.7, 1.0

Figure 6.11: Velocity and temperature profiles for different values of  when
512m , L = 7, M = 0.2, 0wf , Q = 0.2, 3.0 and Pr = 1.4

Figure 6.11 is drawn to examine the influences of Deborah number,  with respect

to the relaxation time on the dimensionless velocity field and temperature profile. From

Figure 6.11, we find that the velocity field and the momentum boundary layer thickness

are decreasing functions of  . The Deborah number,  appears due to the relaxation

time. The larger  corresponds to longer relaxation time and such longer relaxation time
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resists the fluid flow due to lower velocity and thinner momentum boundary layer. On

the other hand, an increase in  gives reverse effects on the temperature profile and the

thermal boundary layer thickness. The temperature profile is enhanced with the increase

of the Deborah number. The involvement with the relaxation time is responsible for the

reduction and enhancement of the temperature profile and the thermal boundary layer

thickness.
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Figure 6.12: Velocity and temperature profiles for different values of M when
512m , L = 7, 4.0 , 0wf , Q = 0.2, 3.0 and Pr = 1.4

Figure 6.12 portrays the effect of magnetic field parameter, M on velocity and

temperature fields. It is evident that the influence of increase in the strength of magnetic

field is to diminish the velocity. This reduction can be attributed to the fact that the

magnetic field provides a resisting type of force, where this force tends to lessen the

motion of the fluid and as a consequence the velocity depreciates. It is observed that the

velocity along the sheet decreases with M accompanied by a reduction in the thickness

of the boundary layer. Meanwhile, the temperature is found to enhance with magnetic
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field, the frictional resistance on account of the magnetic field resulting in the reduction

of velocity and thereby enhances the temperature in the thermal boundary layer. Hence,

there is an increase in the thickness of thermal boundary layer.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



f  
an

d 


 

 

f()
()

Q = 0, 0.2, 0.4, 0.6, 0.8

Figure 6.13: Velocity and temperature profiles for different values of Q when
512m , L = 7, 2.0 , 1wf , M = 0.2, 2.0 and Pr = 1

The effects of heat generation parameter, Q on the velocity and the temperature

profiles are revealed in Figure 6.13. The graph depicts that there is no effect of changing

Q on )(f  . However, the heat generation parameter gives rise to the temperature and

thermal boundary layer thickness. For 0Q , the heat generation phenomenon occurs.

As the values of heat generation increase, more heat is absorbed by the fluid due to

temperature of fluid is enhanced.
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Figure 6.14: Velocity and temperature profiles for different values of  when
512m , L = 7, 4.0 , 0wf , M = 0.2, Q = 0.2 and Pr = 1

Figure 6.14 depicts the effects of non-dimensional heat flux relaxation time,  on

velocity and temperature fields. It shows that there is no effect of changing the values of

 on the velocity. However, the temperature profile and the thermal boundary layer

thickness are lower for larger  . The Deborah number γ arises due to the heat flux

relaxation time. The fluid with longer heat flux relaxation time has lower temperature

and the fluid with shorter heat flux relaxation time corresponds to higher temperature.

The effects of Pr on the velocity and temperature profiles are explored in Figure

6.15. The suitable Prandtl numbers are quite essential in the industrial processes since

they are used to control the heat transfer rate during the final product (Abbasi et al.,

2016). It is observed that an increase in the Pr leads to a reduction in the temperature

and thermal boundary layer thickness. The Pr is the ratio of momentum to the thermal

diffusivity. The thermal diffusivity is weaker for larger Pr due to the fact that the rate of
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diffusion decreases. Such a reduction in the diffusion rate acts as an agent showing a

reduction in temperature and thermal boundary layer thickness. The graph also depicts

that there is no effect of changing Pr on )(f  . This is similar to previous problem

where Pr is the coefficient of the temperature and has a direct impact on the temperature.

But, the impact of Pr on the velocity is attained through the combination various terms,

hence the effect may be debilitated.
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Figure 6.15: Velocity and temperature profiles for different values of Pr when
512m , L = 7, 4.0 , 0wf , M = 0.2, Q = 0.2 and 3.0

Figure 6.16 illustrates the behaviour of suction (or injection) parameter, wf on the

velocity and temperature fields. As shown in this graph, both of the profiles decrease

with the increase of suction/injection parameter. Since suction leads to draw the amount

of fluid particles therefore the velocity field and temperature field are decreased.
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Figure 6.16: Velocity and temperature profiles for different values of wf when
512m , L = 7, 4.0 , M = 0.2, Q = 0.2, Pr =1 and 3.0

6.4 Conclusions

In Section 6.1, the UCM model is examined with the consideration of

Cattaneo-Christov heat flux model to investigate heat transfer and boundary layer flow

of a viscoelastic fluid above a stretching plate with velocity slip boundary. Highly

accurate solutions of the coupled nonlinear ODEs (6.10) and (6.11) with boundary

conditions (6.12) are computed by employing HWQM. The main observations are

summarized as follows:

(a) the velocity field decreases while the temperature profile increases as the elasticity

number, increases,

(b) the velocity profile was decreased as the distance,  increase from 0 to 2, but

increases far away from the surface of the sheet in the boundary layer, whereas the

temperature profile was increased with the velocity slip parameter,
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(c) the temperature profile decreases smoothly descend to zero at a distance 8

from the sheet when thermal relaxation parameter,  is incremented. This

indicates that there will be thinner thermal boundary layer when relaxation time for

heat flux is larger,

(d) Pr has inverse relationship with thermal diffusivity, therefore an increase in Pr

reduces conduction and hence causes a reduction in the penetration depth of

temperature,

(e) temperature distribution is higher in the case of Fourier’s law compared to

Cattaneo-Christov heat flux model,

(f) with the increase of Pr, the value of )0(  increase, where the increase is very slow,

(g) an increment in the thermal relaxation parameter, leads to the constantly result in

the surface friction coefficient, )0(f  whereas the value of )0(  was decreased.

In Section 6.2, numerical solution has been obtained for the effects of

suction/injection, non-dimensional heat flux relaxation time,  , elasticity number, 

and Pr on heat transfer characteristics over the steady, two dimensional, incompressible,

laminar flow of Maxwell fluid past a stretching sheet. The obtained key features are

listed below:

(a) the impact of the heat flux relaxation time,  on the temperature field is more

noticeable than that on the velocity field, where the result of temperature field

decreases as  increases,

(b) the elasticity number,  has quite opposite effects on the velocity field and the

temperature profile,

(c) no effect of changing Pr on velocity field, while the temperature profile decreases

with an increase in Pr and the temperature boundary layer becomes thinner. The

influence of Pr on the temperature field is more prominent than that on the velocity
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field,

(d) the varies of suction/injection parameter, wf affected both velocity and temperature

fields. The larger number of wf leads to a reduction in the velocity and temperature

distributions,

(e) )0(f  is found to decrease upon increasing the suction/injection parameter, wf ,

(f) no effect of changing the value of heat flux relaxation,  on the surface friction

coefficient, )0(f  ,

(g) )0(  decreases with the increase of heat flux relaxation,  , but it tends to

increase with the enhanced of elasticity number,  .

Section 6.3 investigates the impact of heat generation/absorption parameter, Q,

suction/injection parameter, wf , magnetic field parameter, M, elasticity number,  ,

non-dimensional heat flux relaxation time,  and Prandtl number, Pr. Some novel

numerical results are obtained as follows:

(a) the velocity field decreases while the temperature profile increase as the elasticity

number, increases,

(b) velocity distribution shows decreasing behaviour whereas the increase of

temperature profile as the magnetic field parameter increases,

(c) an increment in the heat generation/absorption leads to the increase of temperature

field whereas no effect of velocity profile,

(d) the larger thermal relaxation time,  leads to a reduction in the temperature

profile, but the velocity distribution remains constant,

(e) the temperature profile is highly influenced by the Prandtl number compared to the

velocity distribution,

(f) the velocity and temperature profiles decrease as the values of suction/injection,
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wf increases,

(g) )0(f  was decreased with the magnetic parameter whereas )0(  was decreased,

(h) )0(f  remains constant, while )0(  increases as the heat generation/absorption

parameter increases,

(i) )0(f  and )0(  decrease as the values of suction/injection increases.

Univ
ers

ity
 of

 M
ala

ya



140

CHAPTER 7: CONCLUSIONSAND FUTUREWORK

7.1 Conclusions

Broadly speaking, efficient numerical methods are needed for numerical solution of

highly nonlinear system of ODEs, where the analytical solutions appear infeasible. Thus,

many researchers aim to solve these types of ODEs mostly by using the perturbation

techniques. However, these techniques have their own limitations such as (He, 1999b)

(a) all the perturbation techniques are based on small or large parameters, so that at

least one unknown must be expressed in a series of small parameter, based on an

assumption that a small parameter must exist in the equation. This will restrict the

applications of perturbation techniques,

(b) an appropriate choice of small parameter contributes to ideal results, but

inappropriate choice of small parameter leads to bad effects.

In this thesis, an extended HWQM is proposed for solving boundary value

problems; single nonlinear ODEs and systems of coupled nonlinear ODEs. In the

beginning of the study, the understanding mathematical background of Haar wavelet is

needed, as shown in Chapter 3. Many scholars whom proposed numerical method based

on Haar wavelet basis usually defined it in the interval from zero to one. This gives

limitations to our ultimate goal as the integration involved in Haar wavelet series does

not necessarily lie only in the interval between zero to one. Moreover, the boundary

layer fluid flow problems and heat and mass transfer problems deal with sufficiently

large number of infinite intervals. Therefore, it is convenient to derive the Haar wavelet

functions and their integration that can cover the whole domain of Haar series

expansion.

We also set up a MATLAB program for combination of Haar wavelet functions and

its integration. This will lead to smaller computational time. In this study, we also used
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the quasilinearization procedure in which replaces the original nonlinear equation by a

sequence of linear equations. This technique treats the nonlinear terms by a series of a

nonperturbative iterations and it is not based on the existence of some kind of small

parameter. The major way that the quasilinearization differs from other approximate

techniques is at every iterative stage, the differential operator changes significantly to

account for nonlinearity. Thus, this technique provides extremely accurate and

numerically stable answers for a wide range of nonlinear physics problems. The

remainder of the chapter we proposed an efficient new algorithm and step by step for

easy understanding the numerical technique of HWQM.

In Chapter 4, the solutions of three problems of single nonlinear ODEs, namely

Bratu equation, Falkner-Skan equation and Blasius equation are presented. To justify the

proposed method, the result in the present study are compared with existing solutions or

exact results. The results show that suggested method provides excellent

approximations to the solution and its derivatives of the nonlinear system with high

accuracy. Based on the findings presented in Chapter 4, HWQM ensured a very rapid

convergence after only one iteration. This procedure is a powerful approach for solving

single nonlinear problems without depending on small parameter only.

Chapter 5 presented a methodology for three different types of coupled nonlinear

ODEs that related to the natural convection boundary layer fluid flow problems, namely;

BLFHTSS, LFC and NCBLF. The effects of variation of Pr on heat transfer are

investigated. We obtained the promising results and compared with those obtained by

another researcher’s work. To the best of our knowledge, this is the first effort to solve

coupled nonlinear ODEs through this method. It is worth mentioning that the proposed

method is straightforward and concise, and can be applied to another nonlinear

problems.

In Chapter 6, numerical tested for three different types of coupled nonlinear
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differential equations with some additional parameters that are related to heat and mass

transfer problems are discussed. The last two problems are the new problems in the

presence of suction/injection and heat generation/absorption, respectively. In this

chapter, convective heat transfer in Maxwell fluid with Cattaneo-Christov heat flux

model are employed. The numerical solutions are compared with published results that

shared similar limited case.

Through this method, we found that;

(a) the HWQM provides excellent approximation to the solution,

(b) HWQM suitable for the numerical solution of boundary value problems defined on

small and long intervals,

(c) it provides smaller computational time since universal subprogram is applied to

calculate Haar wavelet and its integration,

(d) unlike RKM, HWQM does not require conversion of boundary value problems into

initial value problem,

(e) the boundary value problem of HWQM need not to be reduced into a system of

first order ODE,

(f) variety of boundary conditions can be handle with equal ease,

(g) in order for achieving a very accurate solution, HWQM ensured a very rapid

convergence after only one iteration and by increasing level of resolution,

(h) to recuperate the approximation of original function, the highest order derivative of

Haar wavelet is approximated by Haar functions using integral approach,

(i) HWQM allow simplicity, fast and small computation cost.

7.2 FutureWork

Suggestions for future research are summarized as following:

(a) In this thesis, to justify the accuracy of the numerical results, a comparison with
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analytical solutions given by others is being employed. We did not go in depth into

mathematically proving the numerical stability and convergence of the method. So

that in the future work, we are interested in calculating the error bound in order to

analyze the convergence of our results, since we can not claim that this

approximation solution is good or bad unless we are able to determine the error

bound. Therefore, it is necessary for us to introduce the process of estimating the

error function when the exact solution is unknown.

(b) To find the convergence criteria for HWQM, hence to establish a new theorem for

convergence criteria.

(c) Most of the previous studies are solved only quadratic nonlinearity terms.

Therefore, we suggest extending this work to the case of nonlinear ODEs contain

not only quadratic nonlinear terms, but various other forms of nonlinearity, and not

only first, but also higher order derivatives, and not only deal with linear boundary

conditions, but also the nonlinear boundary conditions, and not only coupled

nonlinear ODEs, but also more than two nonlinear ODEs.

(d) Given that Haar wavelet method is relatively easy to implement and

computationally inexpensive, we would like to extend the use of this method to

solve directly partial differential equations or governing equations expressing

conservation of mass, momentum and energy.

(e) Apart from applications in physics and engineering fields, HWQM can also be

applied in other field such as medicine.Univ
ers
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 of
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