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Abstract

Damaged identification scheme is used to monitor and locate the damage on a 

structure. Vibration based damage identification scheme which utilise vibrational modal 

data is popular due to its non-destructive nature. Past researches used natural frequency, 

mode shapes and damping ratio for their damage identification scheme. These modal 

parameters are considered as downstream data which is less sensitive and accurate than 

upstream data. Frequency Response Function (FRF), the upstream data, is directly 

measured from the vibration sensors has lesser error produced and high sensitivity. 

Experimental Modal Analysis (EMA) required the machine or system to be shut down, 

which lead to high downtime cost. Therefore, by applying Impact-Synchronous Modal 

Analysis (ISMA), the system does not have to be completely shut down, and yet could 

obtained EMA comparable vibrational modal data through signal de-noising process. On 

the other hand, by using the recent technology Artificial Neural Network (ANN), it can 

make any complex nonlinear input-output relationship by just learning from datasets 

given to it regardless any discontinuity and without any extra mathematical model. In this 

study, ANN is used to identify damage and its location on an in-service machine by 

feeding the de-noised ISMA FRF dataset to train and test the model. Thus, this study will 

be using the FRF data as the ANN input to identify damage on a running machine. 

Multilayer Perceptron (MLP) with backpropagation learning algorithm ANN is used in 

this study. Moreover, this study needs to minimize the number of samples used by 

reducing number of sensors and frequency range used without affecting the performance 

accuracy. Finding the relationship between sensor location and the performance accuracy 

by selecting the correct vibration mode is also one of the objective of this study. The 

experiment setup is done on a rectangular Perspex plate structure to simulate a structure 

of a vehicle. EMA and ISMA techniques were used to acquire both datasets, whereby 

later EMA datasets will be used as a training dataset as for ISMA datasets as the testing 
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datasets. Python language is used in this study and utilized the Keras library with 

Tensorflow backend. Results shows that this study managed to design a damage 

identification scheme by using FRF’s datasets with ANN. This study also managed to 

minimize the number of sensors from nine (9) sensors to a single sensor with a 

performance accuracy of 100%. Lastly, this study proved that there is a relationship the 

sensor location and the accuracy of the prediction by selecting the correct vibration mode. 
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Abstrak 

 Skim pengenalan kerosakan digunakan untuk memantau dan mencari kerosakan 

pada struktur. Skim pengenalan kerosakan berasaskan getaran yang menggunakan data 

modal getaran popular kerana sifatnya yang tidak merosakkan. Penyelidikan yang lalu 

menggunakan kekerapan semulajadi, bentuk mod dan nisbah redaman untuk skim 

pengenalan kerosakan mereka. Parameter modal ini dianggap sebagai data hiliran yang 

kurang sensitif dan tepat daripada data huluan. “Frequency Response Function”  (FRF), 

data huluan, secara langsung diukur dari sensor getaran mempunyai ralat yang lebih 

rendah yang dihasilkan dan kepekaan yang tinggi. Analisis Modal Eksperimen (EMA) 

memerlukan mesin atau sistem ditutup, yang mengakibatkan kos downtime yang tinggi. 

Oleh itu, dengan menggunakan “Impact-Syncronous” Analisis Modal (ISMA), sistem 

tidak perlu ditutup sepenuhnya, namun dapat memperoleh data modal getaran EMA yang 

setanding melalui proses de-noising isyarat. Sebaliknya, dengan menggunakan teknologi 

terkini “Artificial Neural Network” (ANN), ia boleh membuat sebarang perhubungan 

input-output bukan linear yang kompleks dengan hanya belajar dari dataset yang 

diberikan kepadanya tanpa mengira apa-apa kekurangan dan tanpa sebarang model 

matematik tambahan. Dalam kajian ini, ANN digunakan untuk mengenal pasti kerosakan 

dan lokasinya di dalam mesin dalam perkhidmatan dengan dataset FRF ISMA yang 

dilancarkan untuk melatih dan menguji model. Oleh itu, kajian ini akan menggunakan 

data FRF sebagai input ANN untuk mengenal pasti kerosakan pada mesin yang sedang 

berjalan. “Multilayer Perceptron” (MLP) dengan algoritma pembelajaran 

“backpropagation” ANN digunakan dalam kajian ini. Tambahan pula, kajian ini perlu 

meminimumkan bilangan sampel yang digunakan dengan mengurangkan bilangan sensor 

dan julat frekuensi yang digunakan tanpa menjejaskan ketepatan prestasi. Mencari 

hubungan antara lokasi sensor dan ketepatan prestasi dengan memilih mod getaran yang 

betul juga merupakan salah satu objektif kajian ini. Persediaan eksperimen dilakukan 
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pada struktur plat Perspex persegi panjang untuk mensimulasikan struktur sebuah 

kenderaan. Teknik EMA dan ISMA digunakan untuk memperoleh kedua-dua dataset, di 

mana kemudian dataset EMA akan digunakan sebagai dataset latihan untuk dataset ISMA 

sebagai dataset pengujian. Bahasa Python digunakan dalam kajian ini dan menggunakan 

perpustakaan Keras dengan backend “Tensorflow”. Keputusan menunjukkan bahawa 

kajian ini berjaya merangka skim pengenalan kerosakan dengan menggunakan dataset 

FRF dengan ANN. Kajian ini juga dapat mengurangkan bilangan sensor dari sembilan 

(9) sensor kepada sensor tunggal dengan ketepatan prestasi 100%. Akhir sekali, kajian 

ini membuktikan bahawa terdapat hubungan lokasi sensor dan ketepatan ramalan dengan 

memilih mod getaran yang betul. 
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Chapter 1: Introduction 

1.1: Background 

Modal analysis is a technique used to determine the inherent dynamic characteristics of a 

structure which are comprehensively defined by natural frequencies, mode shapes, and 

damping (Brandt, 2011). It is mainly used in investigating the dynamic behaviour of a 

mechanical system which provides a better tool for identifying the root cause of vibration 

problems experience in various engineering fields. Current practice usage of modal 

parameters from modal analysis have been widely used in structural dynamic 

modification, sensitivity analysis, force determination, active and passive vibration 

control, analytical model updating, substructure coupling, structure damage detection, 

vibration-based structural health monitoring in mechanical, aerospace and civil 

engineering. Currently two modal analysis techniques being widely used are 

Experimental Modal Analysis (EMA) (Brown et al., 1979; Allemang & Brown, 1998; 

Leuridan et al., 1986; Richardson & Formenti, 1982, 1985; Richardson, 1986) and 

Operational Modal Analysis (OMA) (Brincker et. al, 2000, 2001; Zhang et al., 2001; 

Jacobsen, 2006). Although, EMA needs the system to be fully shut down in order to 

acquire the modal parameters so that there is no unaccounted excitation force is induced 

into the system. ‘Artificial’ excitation is done on the system by using a measurable 

impact. As for OMA, it allows analysis to be performed while the system is running but 

the lack of knowledge of the input excitation forces does affect the extracted model 

parameters accuracy. OMA is also being used when the structure is too huge to response 

to the excitation produced in EMA since OMA does not required input excitation of the 

system. In real situation such as petrochemical plant, the downtime cost is high costing 

in the range from USD 6,000 to 90,000 per hour (Cheet & Chao, 2016). It is very crucial 

to find other modal analysis technique that can solve this particular problem. Impact-

Synchronous Modal Analysis (ISMA) is a modal analysis technique that able to solve this 
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 2 

problem. It can be performed during system operation where there is a presence of 

ambient forces. ISMA uses Impact-Synchronous Time Averaging (ISTA) before 

performing the Fast-Fourier Transformation (FFT) to de-noise the unaccounted forces, 

unlike EMA which uses Frequency Averaging (FA) and Spectral Averaging (SA).  

Damage identification scheme is the next step in utilizing the ISMA technique for real-

time damage identification at an operating plant. Damage assessment can be considered 

the most important aspects in evaluating existing structural system at the same time 

ensuring a safe performance during their service life. Damage identification scheme is 

used to locate and monitor the damage done on a structure. The stiffness and mass of the 

structure will change due to the damage, which changes the dynamic response of the 

system. This is where modal analysis is utilized in damage identification scheme. Though, 

there are various modal parameters that can be obtained from modal analysis such as 

Frequency Response Function (FRF), natural frequency, mode shapes and damping ratio 

that can be used in damage identification scheme. Vibration based damage identification 

scheme which utilize vibrational modal data is popular due to its non-destructive nature. 

The vibrational modal data can be divided into two sub-component, upstream data and 

downstream data. FRF is an upstream data whereby it is directly measured by the 

vibration sensors, which later undergoes modal extraction algorithm which extracts the 

downstream data such as natural frequency, mode shapes and damping ratio from the 

FRF. Upstream data consist of all information of a vibrational modal data, with more 

sensitivity and lesser error margin. The modal extraction algorithm which extracted the 

downstream data can further induce errors and less sensitivity (Hakim & Razak, 2014; 

Gordon & et al.,  2017). Therefore in this project, FRF vibration data was used for damage 

identification scheme.  

Utilizing the newly available technology, Artificial Neural Network (ANN), the de-

noised FRF data collected using EMA and ISMA technique can be fed into the ANN and 
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 3 

use it as a damage identification scheme. ANN mimics a human brain resulting in 

powerful computational and pattern recognition ability for detecting damage in a 

structure. The most commonly used ANN in the damage dentification problems are 

Multi-Layer Perceptron (MLP) (Hakim et al., 2011).  

 

1.2: Problem Statement and Significance of the Research  

It is very important to maintain the structure integrity of a machine or system to avoid 

unexpected downtime. Experimental Modal Analysis (EMA) requires the machine or 

system to be shut down, which lead to high downtime cost, as for Impact-Synchronous 

Modal Analysis (ISMA) can be done even when the system is running or during 

operation. Past research papers mostly used EMA technique to acquire the modal 

parameters data from the structure which required the structure to be stationary. There 

are various vibrational modal data that can be used for damage identification scheme and 

most of past research papers used natural frequency and mode shapes as their ANN’s 

training datasets (Hakim et al., 2006, 2011, 2011a, 2011b, 2013, 2013b, 2014). These 

modal parameters are considered as downstream data which is less sensitive and accurate 

than upstream data. FRF, the upstream data, is directly measured from the vibration 

sensors has lesser error produced and high sensitivity. Therefore, study on damage 

identification scheme using de-noised (ISMA) FRF data need to be done to produce a 

robust damage identification scheme of a system during operation. By using state of the 

art Artificial Neural Network (ANN), it can identify damage and its location on a running 

machine by feeding the de-noised FRF data into the ANN.  

 

 
  

Univ
ers

ity
 of

 M
ala

ya



 4 

1.3: Objectives of the Research  

The objectives of the present research project are: - 

• To design a vibration based damage identification scheme using modal Frequency 

Response Function (FRF) data obtained from EMA and ISMA methods with 

Artificial Neural Network (ANN).  

• To study the performance of the damage identification scheme by reduction of 

number of training samples in training neural network. 

• To study the relationship between the performances of the damage identification 

scheme and sensor location by the selection of the correct vibration mode within 

a reduced frequency range.  
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1.4: Flow of Research  

Figure 1.1 shows the flow chart of the project which is based on the objectives. The 

experiment test impacts were made on a Perspex plate and the accelerometers’ responses 

data which were recorded using the data acquisition system. Multiple time-domain input 

into the virtual instruments to generate the frequency response functions (FRF) by 

performing the Fast Fourier Transformation (FFT) operation. Both EMA and ISMA 

modal analysis methods were done to collect the EMA and ISMA FRF datasets using 

similar experimental setup. The ANN model parameters tuning was done by adjusting the 

number of neurons and hidden layers to find the optimized ANN model. The model 

performance was evaluated using cross-validation method and EMA FRF dataset was 

used. The optimized ANN model was used to record the output showing how well the 

model predict and identify the damage and its location. Later, the ISMA FRF dataset was 

used as the testing datasets on the optimized ANN model (Trained using EMA FRF 

dataset) to validate the ISMA FRF in order to support the claim of ISMA method 

produced similar FRF as the EMA with the same experimental setup. Moreover, reducing 

number of samples used to train the neural network by reducing the number of sensors 

and frequency range without affecting the performance was the next objective. By using 

minimal number of sensor, cost and time can be saved. The project also studies the 

relationship between the sensor location and the performance by selecting the correct 

vibration mode in reducing the frequency range. Lastly, the final number of sensor and 

frequency range used that produced the best performance was chosen. 
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Figure 1.1: Work Flow of the research project 

FRF data collection from both EMA and ISMA 
experimental methods

ANN model parameters tuning: number of 
neurons and hidden layers 

Evaluate the model performance using 
cross-validation method and select the 

optimized ANN model using EMA 
FRF dataset

Record the output (damage 
identification) from the optimized 

ANN model

Validate the ISMA FRF by 
using it as the testing dataset 

on the optimized ANN 
model (Trained using EMA 

FRF dataset)

Minimize the samples training 
data by reducing the number of 

sensors and FRF frequency range 
without affecting the 

performance

Study the sensor location and 
performance by selecting the 

correct vibration mode
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Chapter 2: Literature Review 

2.1: Modal Analysis 

Modal analysis can be defined as the study of dynamic characteristics of a structure. 

Dynamic characteristics can be comprehensively define by three main components:- 

• Natural frequency 

• Mode shapes 

• Damping 

When an impact is given to a structure, the response is a superimposition of a number of 

modes and each mode vibrates at its own natural frequency. There are two approaches to 

undergo modal analysis on a structure, experimental and computational. There are several 

experimental approaches such as the Experimental Modal Analysis (EMA), Operational 

Modal Analysis (OMA) and the most recent one called Impact-Synchronous Modal 

Analysis (ISMA) (Chao, 2013; Rahman et al., 2011, 2013, 2014). Computational modal 

analysis such as Finite Element also used to generate the model parameters of a structure. 

Some of the computational software is called ANSYS software which provides wide 

range of computational not only structural analysis but also fluid flow and heat transfers 

problem. With these parameters gathered through modal analysis, it can be used to find 

the root cause of structural problem based on the vibrational modal data. Past studies were 

done in utilizing both experimental and computational modal analysis data in identifying 

damage, its location and severity based on the dynamic characteristics (Hakim et al., 

2013, 2014). It shows how important the data provided from modal analysis can be 

utilized with current technology in saving cost and avoid any catastrophic failure of a 

structure.  

  

Univ
ers

ity
 of

 M
ala

ya



 8 

2.1.1 Experimental Modal Analysis (EMA) 

 EMA can be considered the very first modal analysis which is used to study on 

the vibration characteristics of structure. It involves experimental methods in 

investigating the oscillation behaviour of component structures. It enables to gather the 

system’s dynamic characteristics, such as natural frequency, mode shape and damping 

ratio. Structure’s mass and stiffness distributions are dependent to the natural frequencies 

as for the mode shapes are used in structural systems for noise and vibration applications 

designing. The model parameters extracted from EMA have been widely used in many 

application, especially in detecting damage on a stationary structure such as beam 

(Rahman & et al., 2011, 2013, 2014). However, the limitations of traditional EMA is 

artificial excitation is required to measure the FRFs of the structure. This can be very 

difficult considering most structures in the field testing are very large in size. Large 

structures make it harder to response to the excitation produced during EMA. EMA 

requires the system to completely shut down to avoid any unaccounted excitation force. 

Measurable impacts are used to produce artificial excitation to excite the system. The 

responses of the system are auto-corelated and cross-correlated with the measured inputs. 

Correlation functions are transformed to frequency domain to obtain the transfer function. 

Moreover, in order to generate the FRFs, Fast Fourier Transformation (FFT) operation 

needs to be performed. Figure 2.2 shows the FFT function operation which is used in 

EMA in order to produce the FRF. For forced vibrations of Multiple Degrees of Freedom 

(MDOF) system with viscous damping, the spatial coordinate equations of motion can be 

written in matrix form as shown in Eq. (2.1). [M], [C], and [S] are matrices of mass, 

damping and stiffness respectively. As for {!̈($)}, {!̇($)}, {!($)}, and {Q(t)] are 

matrices of accelerations, velocities, displacements and force vectors respectively in the 

time function. Expanding Eq (2.1) will produce Eq (2.2). An open loop system 
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representing the relationship between input force, output response and dynamic 

characteristic of a linear system is shown in Figure 2.2. 

    (2.1) 

        (2.2) 

The general solution of the linear forced vibration system as shown in Figure 2.2 can be 

expressed in frequency domain as shown in Equation 2.2, where H(w) is n x n square 

matrix of FRF which represents the dynamic characteristic of a system. Also, it is a 

transfer function and names as accelerance. As for '((w	). +((w	) are n x 1 frequency 

varying vectors of accelerations and forces respectively. Expanding Eq. (2.2) will result 

in Eq. 2.3. Restating Eq. (2.3) in summation form of Eq (2.4). Consider the measurement 

case where I = 1 and j = 1, Eq. (2.5) is expanded and becomes Eq (2.6). Figure 2.1 shows 

the contribution from different modes to the FRF. Contribution of mode r to H11(w) is 

given in Eq. (2.7). 

																																																!(w) = '((w	). +((w	)                    (2.2) 

                                                       (2.3) 

                                (2.4) 

                                           (2.5) 
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 (2.6) 

                                          (2.7) 
 

For the 1st natural mode, r=1, Eq. (2.7) becomes Eq (2.8) where R is the residual, 

contributed by other modes. The H11(w) obtained is a numerical function made up of a 

set of discrete values. By selecting a band of frequency around the region of r=1, and 

curve fitting the FRF using least square method, the mode shape coefficient, the 

undamped natural frequency and the modal damping can be evaluated.  

                                   (2.8) 

 

Figure 2.1: Contribution of Natural Modes (Chao, 2013) 

In condition where EMA is carried out while the machine is in operation, X(w), will be 

the linear superimposition of all the forces induces as shown in Equation (2.9). This 

includes the artificial excitations, Q1, from the measured impact force input along with 

other unaccounted operating forces Q2, Q3, Q4 and so forth. It can be seen transfer 
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function H1(w) is from the measured force input and transfer and transfer function H2, H3 

and so forth are due to other unaccounted operating forces. 

 

 

Figure 2.2: FFT function used in EMA in order to produce the FRF 

												!(w) = '((w	). +((w	) + '-(w	). +-(w	) + '/(w	). +/(w	)+…     (2.9)  

EMA used Frequency Averaging (FA) and Spectral Averaging (SA) prior to performing 

FFT, adopting frequency domain averaging. The noise produced by a rotating machine is 

unpredictable, which can alter the spectrum’s shape and lead to serious distortion towards 

the spectrum. In FA, a series of spectra are averaged together in order for the noise to 

gradually assume a smooth shape. As for SA, it is commonly used in industrial application 

of EMA, whereby block averaging is performed in frequency domain. The real and 

imaginary components of the transfer function are averaged separately.  

2.1.2 Operational Modal Analysis (OMA) 
 

There are several past research on Operational Modal Analysis (also known as 

ambient modal identification) whereby the system can avoid a complete shutdown. It has 

its own advantages over EMA in terms of user-friendly and practicality in carrying out 

the procedure. It does not required input excitation to the system unlike in EMA. 

Therefore, the excitation used is generated by their own operation of the structure. OMA 

is consider using output (O/O) data. OMA with output-only measurements can be utilised 

not only for structural control, but also in-situ vibration based health monitoring and 

damage identification of the structures (Whelan et al., 2011). OMA can be performed 

when the system is running in order to measure the vibrational responds. However, OMA 

procedures are limited to cases where excitation to the system is white stationary noise. 
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The challenges encountered in the OMA are that the noise-to-signal ratio in the measured 

data is much higher than in the controlled experiment in laboratory environment and 

output-only data can only be used for parameter identification. Also, the modal 

parameters that are gathered do get affected with the lack of information on the input 

excitation forces. The mode shapes processed from this technique did not able to 

normalize accurately, leading to affect the mathematical models. Figure 2.3 shows the 

ambient responds system whereby the inputs are assumed to have Gaussian amplitude 

distribution. 

 

Figure 2.3: Combined ambient model 

There are many techniques used to extract the modal parameters from output-only data 

(Dion and et al., 2012; Lardies & Larbi; 2001a). Balanced Realization (BR) and 

Canonical Variate Analysis (CVA) were the two correlation-driven stochastic subspace 

algorithms. BR can do multiple measurements with similar excitation which can be 

globally modelled in one model. As for CVA requires an individual analysis of each 

measurement. CVA might result in discrepancies for the frequency and damping 

estimates of the same mode for the different measurements. Also, BR identifies the modal 

parameters in one step. Therefore, computational load of the BR method is significantly 

better. 

Moreover, past research paper presented a modal parameter identification method which 

takes the harmonic excitations into account while performing OMA (Mohanty & Rixen, 

2004). The technique is based on the Ibrahim Time Domain (ITD) method and explicitly 

includes the harmonic frequencies called Single Input Multiple Output (SIMO) Single 
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Station Time Domain (SSTD) (Zaghlool, 1980). With this, it allows proper identification 

of eigenfrequencies and modal damping even when harmonic excitation frequencies are 

close to the natural frequency of the structures.  

2.1.3 Impact Synchronous Modal Analysis (ISMA) 
 

ISMA is integrated with Impact-Synchronous Time Averaging (ISTA) which 

allows analysis to be performed in the presence of ambient forces (Chao, 2013; Rahman 

et al., 2011, 2013, 2014). ISMA can be considered better than OMA in terms of 

performing modal analysis on a in-service or running machine. As shown in Equation 

(2.9), the non-synchronous component is filtered out in the time domain by ISTA, leaving 

only the responses triggered due to the impact hammer as shown in Equation (2.10). ISTA 

is utilized prior to performing the FFT operation to acquire the FRF. In time domain 

synchronous averaging, signal acquisition from rotating machine is triggered at the same 

rotational position of the shaft using a tachometer for every cycle. The time block of the 

averaged signal eliminates all the non-synchronous and random components, leaving 

behind only components that are integer multiples of the running speed. In ISMA, the 

same and simple averaging concept is used but only to achieve the reverse i.e. to filter out 

all the speed synchronous and random signatures. In this case, data acquisition is triggered 

by the impact signature. The periodic signatures and their harmonics are no more in the 

same phase position for every time block acquired. Averaging process will slowly 

diminish these non-synchronous components hence leaving behind only the structure’s 

response to impulses which are synchronous to the repetitive impact force. Cross 

spectrum of the averaged time block of impulse responses and the averaged time block 

of impact signatures is used to generate the transfer function. It is worthwhile to note that 

responses from unaccounted forces that contain even the same frequency as that contained 

in the impulse response, is diminished if the phase is not consistent with the impact 

signature. 
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																																				!(w) = '((w	). +((w	)         (2.10) 

Past research paper compared between ISTA technique in ISMA with FA and SA 

techniques used in EMA (Chao, 2013). Results showed that FA merely smoothens the 

spectrum, while ISTA and SA produce similar quality of the Transfer Functions. Also, 

further improvement on the ISMA was done in the research paper by conducting a study 

on the effect of the important parameters in ISMA such as number of averages, impact 

frequency, exponential window and amount of impact force applied. The number of 

averages and impact frequency are important parameters when performing ISMA on 

structures which are in operations.  

 The modal parameters extraction follows similar procedures as the EMA. High 

accuracy modal parameters extracted from the analysis performed during operation with 

the information of input forces in the transfer functions. ISMA has been successfully used 

in both rotor and structural dynamic systems to determine the modal parameters of 

systems without interrupting the operations (Rahman et al., 2011, 2013, 2014). The 

Adaptive Phase Control impact Device (APCID) is the main device which eliminates 

non-synchronous components in order to produce minimal possible impacts applied by 

feeding the phase angle information (Cheet & Chao, 2016). It is proven that APCID can 

improve the effectiveness of ISTA in FRF estimation and reduce time required in 

performing modal analysis. Lastly, previous research study of phase synchronization 

effect is done in the post processing stage showed that the number of averages can be 

greatly reduced, thus fasten the overall analysis procedure if the phase angle of the 

disturbance with respect to the impact is found (Chao et al., 2015, 2016).  

Univ
ers

ity
 of

 M
ala

ya



 15 

2.2: Damage Identification Scheme 

Damage in a machine or structure usually leads to failure. Damage in a structure is defined 

as reduction in mass and stiffness of the structure that can affect the functionality and 

safety, which finally can lead to structural failure. Therefore, it is important to monitor 

the structure integrity if there is any damage occurrence. The modal parameters such as 

the FRF, mode shapes, damping ratio and natural frequencies will change when damage 

happens in a structure. There are four (4) levels of damage identification as shown in 

Figure 2.4 (Rytter, 1993). 

 

Figure 2.4: Levels of damage identification 

The fourth level, remaining service life, usually related with the structure fatigue life and 

fracture mechanics. Damage identification scheme is important in order to reduce the 

maintenance costs, increase serviceability and most importantly increase safety of the 

structures. In this study, the scope will only cover until the second level which is the 

damage location on the structure. There are many methods used for damage identification 

scheme from previous research papers. The two commonly reliable approaches are by 

using the ANN and principal component analysis. Principal component analysis is a 

method used for feature extraction . The idea is to reduce a large number of measured data 

to a much smaller number of uncorrelated variables while retaining as much as possible 

of the variation in the original data. 

 
  

Presence of 
damage in the 

structure
Damage 
Location

Severity of 
damage

Prediction of 
the remaining 

service life
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2.2.1 Modal Parameters used in Damage Identification Scheme 
 
 Vibration based damage identification scheme which utilize vibrational modal 

data is popular due to its non-destructive nature. The vibrational modal data can be 

divided into two sub-component, upstream data and downstream data. FRF is an upstream 

data whereby it is directly measured by the vibration sensors, which later undergoes 

modal extraction algorithm which extracts the downstream data such as natural 

frequency, mode shapes and damping ratio from the FRF. The natural frequency, mode 

shapes and damping ratio are extracted from the FRFs during data processing phase using 

ME’Scope software. Upstream data consist of all information of a vibrational modal data, 

with more sensitivity and lesser error margin. The modal extraction algorithm which 

extracted the downstream data can further induce errors and less sensitivity (Hakim & 

Razak, 2014; Gordon & et al.,  2017). In the field of civil engineering, most past studies 

used the natural frequency and mode shape (downstream data) as their ANN training 

datasets for their damage identification scheme in a structure (Hakim et al., 2006, 2011, 

2011a, 2011b, 2013, 2013b, 2014). Studies that used natural frequency as the inputs for 

their ANN found that a changed in dynamic properties of a structure caused shifts in 

natural frequency. This frequency shifts managed to indicate a damage occurred on the 

structure itself due to change of dynamic properties. Another approach is by using the 

mode shapes, which was found to be more sensitive to damage than natural frequency 

(Park & et al., 2009). Previous studies managed to produce a robust identification scheme 

by using only the natural frequency, mode shape and some even uses the damping ratio. 

They ran an EMA on a non-operating structure such as cantilever beam and bridge girder. 

In order to avoid the error margin produced during data processing phase, FRF vibration 

data was used in this research project for damage identification scheme. 
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2.3: Overview of Artificial Neural Networks (ANN) 

Artificial Neural Network is a main Machine Learning (subset of Artificial Intelligence) 

tool which mimics the biological neuron of animal brains. It is widely used in both 

industrial and academia world, since recently the existence of deep learning (subset of 

Machine Learning) where it adds multiple layers into the neural network (deep-neural 

network) making it more robust and advanced. Nowadays, the abundant amount of data 

are left untouched and this is where neural network comes in to bring beneficial result 

from the data itself. ANNs follow the similar brain process, where they learn from given 

input and output values making it a data-driven modelling technique. Depending on how 

complex the data is, the neural network will be more effective when high amount of data 

is fed into the ANN. Figure 2.5 shows how two different techniques scale with amount 

of data used to train the tool. Most common applications of ANN are stock market 

prediction, pattern recognition, face recognition, audio recognition, and even used in 

translating and reading text language (Natural-Language Processing). The reasons why 

many researchers are interested in applying ANN technique rather than using old 

techniques such as parameters study, optimization and statistical method are because:- 

• Gives higher accuracy 

• Simple methodology 

• Can solve complex problems 

• Universal approximation capability 

• Learn based on the data and trying to find the correlation in both supervised and 

unsupervised approach. 
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Figure 2.5: The performance of the two different techniques scale with amount of data 

used to train the tool 

2.3.1 Artificial Neuron 
 

The word neuron itself represents a nerve cell in a brain where the function is to 

receive, process and transmit information as shown in Figure 2.6. The artificial neuron 

does the same thing as the biological’s except the input and the output is in form of 

numerical values. 

 

Figure 2.6: Identical concept between biological and artificial neuron 

The artificial neuron consists of four (4) main elements:- 

• Input 

• Net function 

• Transfer Function: Activation function used to define the output based on 

the set of inputs. 

• Output 
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The net function and transfer function are the mathematical model of the artificial node 

in producing the output based on the input as shown in Equation (2.11). The input will be 

multiplied by synaptic weights (net function) before proceed to the transfer function. The 

synaptic weights are just a random values which define the strength of individual input 

that connects to a node. Weights are the most critical element in ANN due to the weights 

adjustment is done based on the ANN learning process. Lastly, the resultant value of the 

net function will proceed to the transfer function producing an output value. Figure 2.7 

shows the basic structure of the node7 

 

Figure 2.7: Artificial neuron/Node basic structure 

The net function can be expressed as: 

                                       (2.11) 

u: output 

N: number of inputs 

x: input  

w: weights  

b: bias weights  

 

Univ
ers

ity
 of

 M
ala

ya



 20 

2.3.2 Artificial Neural Network (ANN) 

There are several ways to improve the performance of the ANN model. It can be improve 

with data, algorithms, algorithm tuning and ensembles (How To Improve Deep Learning 

Performance, 2016). One of the ways to improve performance with data is by getting 

more amount of data as stated earlier in the overview. It is important to understand what 

it means by number of data. Data can be defined as the sample input used in the ANN 

relative to the outputs. The more number of inputs feed into the ANN for each output, the 

higher the performance of the ANN. In this study, the amount of data can be improved 

by adding more number of averages for each output, not adding more sensor or frequency 

range. The other approaches to improve performance with data are by inventing, 

rescaling, transforming the data and feature selection. Also the performance of the ANN 

model can be improved with algorithms. The approaches are by spot-checking algorithm, 

citation from previous literature review and resampling methods. The third method to 

improve the performance of the ANN model is with algorithm tuning consists of 

diagnostics, weight initialization, learning rate, activation functions, network topology, 

batches and epochs, regularization, optimization and loss and early stopping. In this 

study, the activation functions, network topology (number of hidden layers and neurons) 

and batches and epochs were done to improve the performance of the ANN model. The 

fourth method to improve the performance will by using ensembles. Ensembles can be 

done through combining different ANN models together whereby each model performs 

well on the problem and combine their prediction by taking the mean. 

Furthermore, there are several types of neural network and learning algorithm that can be 

used when designing a neural networks model. Figure 2.8 shows a complete list of all 

types of neural network that can be found (Veen, 2016). The most basic neural network 

will be the Perceptron (P). Depends on the type and complexity of the problem, different 

neural network is specified in solving different types of problem. For example, 
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Long/Short Term Memory neural network is specialized in solving a time series 

prediction problem. Most past research uses the most basic Feed Forward and Radial 

Basis Network (RBN) for damage identification scheme using modal analysis (LeClerc, 

2007; Worden et al., 2000; Hakim et al., 2013, 2013b, 2014). Multi-Layer Perceptron 

(MLP) is a class of feedforward network which consist of at least 3 layers and uses the 

backpropagation as the learning algorithm. Backpropagation is used to compute the 

gradient of the cost function. The ANN can learn their weight and biases from the well-

known gradient descent algorithm. In this study, the ANN model need to solve a 

classification problem, whereby the model needs to predict whether the structure is 

damaged or undamaged along with the damage location based on the conditions created. 

Therefore, MLP is the most simple and robust methods to solve ANN classification 

problems. 
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Figure 2.8: Complete chart of ANN taken from (Veen, 2016) 
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Chapter 3: Methodology 

3.1: Equipment and Experimental Set-Up 

 A rectangular Perspex plate with a dimension of 48cm x 20cm x 0.9cm (width x 

height x thickness), weighting 1.1kg, was taken as the test specimen as shown in Figure 

3.1. In order to simulate a similar vibration behaviour of a car, a rectangular plate was 

taken as the testing specimen. A car structure can be simplified into a plain structure 

which consist of a few DOF (Weaver et al., 1990). In this experiment, the test rig was 

able to represent the small structural model of a car body since car motion includes 

transitional and rotational modes about the mass centroid of its structure, where it 

commonly appears in low frequency area. 

 

Figure 3.1: Experimental setups for damage identification study 

 The plate was ground supported using nut and bolt at each of the four corners. It 

was connected to the steel plate and aluminium supports at every corners as shown in 

Figure 3.2. The ground supports acted as the suspension/spring components of a typical 

car wheels. Nine (9) accelerometers were mounted in symmetric order on the plate to 

acquire the vibration responses done by the impact hammer. Previous studies used four 

(4) to nine (9) sensors (Worden & Staszewski, 2000; Haywood et al., 2004; LeClerc et 
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al., 2007), as for this experiment a maximum number of sensors; nine (9) sensors for 

EMA were taken since the objective of this project later is to reduce number of sensors 

needed without affecting the ANN performance. 

 

Figure 3.2: Ground supports of the plate 

The accelerometer used in this experiment was a model S100C Wilcoxon 

Research: Integrated Circuit Pirzoelectric (ICP) accelerometer which has a built-in charge 

amplifier. This accelerometer is set to acquire vertical oscillation in this study and able to 

respond for 1-DOF vibration only. It has a sensitivity of 100mV/g along with a wide 

range of frequency of 0.5 to 10000Hz. The dimension of each accelerometer was 3.73 cm 

in height and 1.98cm in diameter. The mounting method used on the accelerometer is by 

cyanoacrylate adhesive which able to avoid any phase lag as shown in Figure 3.3 (SKF 

Condition Monitoring, 1999). Univ
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Figure 3.3: Accelerometer mounting methods vs effects on accelerometer’s sensitivity 

(SKF Condition Monitoring, 1999) 

A manual PCB impact hammer was used to create an impact on the plate structure 

for analysing its dynamic behaviour. It was used to measure the impacts which were done 

on vertical direction only. It has the sensitivity of 2.09mV/N and can measure up to 

±2200N. As for the DAQ hardware system, National Instrument-Universal Serial Bus 

(NI-USB 9234) signal acquisition module was used in this setup to acquire ten (10) 

dynamic signals (1 impact hammer as input signal and 9 accelerometers as output 

signals). The DAQ hardware system will send the acquired data to the computer software, 

DASYLab v10.0 for the post-processing to acquire the FRF. The manual impact hammer 

was used in both EMA and ISMA experimental setup. As shown in Figure 3.4, the 

shaker’s main objective was to create an operating/in-service system by producing the 

ambient forces to the structure and was only used in ISMA technique experiment. The 

shaker will not be used in EMA experiment. In this study, the shaker’s motor frequency 

was set to 30Hz. 
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Figure 3.4: Shaker used to create an operating system environment 

3.1.1 Data Acquisition Scheme 

 In order to generate the FRF, a data acquisition system was used called DASYLab. 

The impact done by the impact hammer will create a response from the accelerometer 

through the DAQ module which later recorded via DASYLab v10.0 software. The 

sampling rate and block size were the two main parameters in acquiring a signal during 

data acquisition. In order to select the appropriate sampling rate and block size, the 

frequency resolution or time resolution need to be considered. In this study, the sampling 

rate and block size were 2048 samples/sec (Hz) and 4096 samples respectively. This 

provides a frequency resolution of 0.5Hz and data acquisition time of 2 seconds. Both 

EMA and ISMA experiments used similar sampling rate and block size for the data 

acquisition. 
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3.2: Experiment Procedure 

3.2.1 Experimental Modal Analysis (EMA) 

In this experiment, the data processing to acquire the vibrational modal parameters 

(natural frequency and damping ratio) was not done because the modal parameters was 

not used to train the ANN model for damage identification scheme. Therefore, the 

experiment procedure were done up until acquiring the FRF data. Below are the brief 

procedure of EMA:- 

1. Setting the desired measuring points 

The points which are selected to attach the accelerometer need to be well 

positioned enough to define the geometry of the structure, especially a complex 

structure. 

2. Experimental apparatus set-up 

All the accelerometers along with the impact hammers are connected to the DAQ. 

The DAQ is connected to a PC to proceed with data processing. 

3. Data acquisition through DAQ 

Done by using MDT-Q2 Data Acquisition System. The sensitivity of the 

accelerometer and the impact hammer need to be adjusted before proceed with 

any measurements. An average results are gathered and processed with DASYLab 

v10.0 to generate the FRF. 

4. Data Processing 

To obtain the natural frequencies and mode shapes of the structure extracted from 

the FRF. 
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3.2.2 Impact-Synchronous Modal Analysis (ISMA) 

 The experimental setup and procedure for ISMA were different in terms of 

number of sensors used and signal processing and averaging technique. The number of 

sensors were reduced from nine (9) sensors to five (5) sensors.  Also, ISMA was 

integrated with Impact-Synchronous Time Averaging (ISTA), utilized prior to 

performing the FFT operation to generate the FRF. When setting up the apparatus, the 

shaker was used and set to 30Hz in order to produce the ambient forces exist during 

operation. Besides, as mentioned above, the procedure was identical with EMA’s 

procedure. 
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3.3: Damage Identification Methodology 

3.3.1 Arrangements of sensors and damage location 

 Since the plate simulate a four-wheel car, the location of the damage usually 

happens at the suspension part where it absorbs the impact done by the tire when hitting 

a pothole or rough road. To simulate a damaged condition, the bolt and nut that hold the 

plate and ground supports together were used as the damage point. The nut will be 

unfasten or loosen to simulate the damage point, based on Figures 3.5 and 3.6, for 

example if the nut is loosen at point 1, it shows that damaged is done at point 1 (Front 

right tire suspension, assuming the left area plate is the frontal area of a car). Each point 

1, 3, 7, and 9 consist of two (2) bolt and nuts, and both the nut will be loosen at the same 

amount degree of rotation. This will create four (4) damage locations. The bolt and nut 

for all four (4) damage locations were loosen up in equal amount degree of rotation, to an 

extent of shift in natural peaks were observed.  

As shown in Figures 3.5 and 3.6, the number of sensors used in EMA and ISMA 

experiment varies to each other. In EMA used nine (9) sensors as for in ISMA only used 

five (5) sensors were reduced to only five (5) sensors. These creates two different 

approaches, EMA whereby the automobile during stationary and ISMA during operation. 

Assuming a scenario when the automobile during stationary, EMA technique is used to 

acquire the FRFs and trained on the ANN. The trained ANN with EMA FRFs dataset, it 

is then being used as ISMA FRFs testing dataset gathered when the automobile is moving 

or during operation. Since the plate is treat as an automobile, no sensor can be mounted 

on the wheel (Located at the edges of the plate; point 1, 3, 7 and 9) during operation. By 

mounting it on the body it is still possible to find the damages or loss of stiffness at the 

wheel or suspension. Though, for EMA the sensors were fixed to nine (9) sensors because 

sensor can be mounted on the wheel during stationary and one of the objective of this 

study is to study the reduction in number of sensors without affecting the performance 
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accuracy. Later in this study will show the performance accuracy when the ANN is 

trained using nine (9) sensors (EMA dataset) and tested with (5) sensors (ISMA dataset). 

The impact done by the impact hammer can be done at certain point on the plate, also 

known as reference point. When the impact is done on point 2, 4, 5, 6, and 8, it will 

remove certain frequency vibration mode. This is because when the hammer hit at these 

points, it will not produce the low frequency mode which can relate to the vibration mode. 

Unlike point 1, 3, 7 and 9, when the impact hammer hits at these points it will produce 

the low frequency mode. As for this study, even though the FRF datasets were collected 

for reference point 1, 3, 7 and 9, the FRF dataset used to train the neural network for 

damage identification scheme was limited to FRF at reference point 1 only for both EMA 

and ISMA experiment. Each time an impact is done at point 1, it will produce nine (9) 

FRFs data from each of the nine sensors. Figures 3.5 and 3.6 show the arrangement of 

sensors and the damage locations for EMA and ISMA experiment, respectively. 

 

Figure 3.5: Sensor and damage location for EMA experiment 
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Figure 3.6: Sensor and damage location for ISMA experiment 

During the data gathering phase, five output (5) conditions were created to classify the 

existence of the damage and its location. Table 3.1 shows the list of condition along 

with its description. 

Table 3.1 List of conditions and description 

Conditions Description 

Undamaged All four (4) points of the nuts were tighten 

Damaged1 Nuts at point 1 were loosen, as for point 3, 7, and 9 were 

tighten 

Damaged2 Nuts at point 3 were loosen, as for point 1, 7, and 9 were 

tighten 

Damaged3 Nuts at point 7 were loosen, as for point 1, 3, and 9 were 

tighten 

Damaged4 Nuts at point 9 were loosen, as for point 1, 3, and 7 were 

tighten 
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3.3.2 Frequency domain feature (FRF) data arrangement 

 In this research project, the FRFs data were collected from two different 

experiment techniques, EMA and ISMA. For the EMA technique, five (5) averages were 

gathered during the experiment which later will be used to train the neural network. This 

is because the higher the number of samples used to train the neural network, the better 

the neural network will perform especially when the number of sensors are reduced to a 

single sensor. 

As for the ISMA technique, the FRFs taken from the averaged ISTA to remove the 

ambient sound produce a single average. As for the ISMA technique, only one (1) average 

were used and the samples will be used to test the neural network. This later can provide 

another findings to prove that ISMA has the same effectiveness as the EMA technique. 

Table 3.2 shows the total number of FRFs collected from two different modal analysis 

technique. For EMA, five (5) number of averages will be collected from each of the nine 

(9) sensors for each condition, generating total number of 225 FRFs. As for ISMA, only 

five (5) sensors were being used to collect the FRF for each condition, generating total 

number of 25 FRFs. 

Table 3.2: Total number of FRFs collected from two different modal analysis technique 

Modal Analysis Technique EMA (During 

Stationary) 

ISMA (During 

Operation) 

Sensors Location (Point) 1, 2, 3, 4, 5 ,6, 7, 8 ,9 2, 4, 5, 6, 8 

Number of averages 5 1 

Number of sensors 9 5 

Number of conditions 5 5 

Total number of FRFs 

(Average x Sensor x 

Condition)  

225 FRFs 25 FRFs 

 

Each FRF gathered from the accelerometer and DAQ were set to provide the magnitude 

(g/N) of frequency starting from 0 Hz up until 1023.5 Hz. Though, this study will only 

Univ
ers

ity
 of

 M
ala

ya



 33 

cover the frequency range from 0 Hz up until 199.5 Hz, which consist of 5 mode shapes. 

As stated earlier, the frequency resolution and data acquisition time 0.5 Hz and 2s 

respectively, in DASYLab v10.0. Since the frequency resolution was 0.5 Hz, every 1 Hz 

will produce two (2) FRF outputs magnitude. Thus, with the frequency range from 0 Hz 

to 199.5 Hz, the total number of output produced for each FRF will be 400 outputs. Table 

3.3 shows the number of samples collected from two different modal analysis. 

Table 3.3: Number of samples collected from two different modal analysis technique 

Modal Analysis Technique EMA (During 

Stationary) 

ISMA (During 

Operation) 

Total number of FRFs 

(Average x Sensor x Condition)  
225 FRFs 25 FRFs 

Frequency Range 0 Hz – 199.5Hz 

Total number of outputs/FRF 200 x 2 = 400 

Number of Samples 

(Total number of FRFs x  

Total number of outputs/FRF) 

225 FRFs x 400 =  

90,000 samples 

25 FRFs x 400 =  

10,000 samples 

 
3.3.3 ANN implementation 

 Python language was used to model and train the neural networks in order to 

identify damage. Python language has been well-known for applying machine learning, 

having the most powerful open-source libraries in the world. The top numerical platform 

for neural network are Theano and TensorFlow. Both are the most powerful libraries and 

widely used in deep learning research and development, but it can be difficult to use 

directly for creating a neural network or deep learning models. This is where Keras library 

comes in, Keras Python library able to provide the most user-friendly way to create a 

range of neural network models by using Theano or TensorFlow as the backend library. 

It able to run on both Python 2.7 or 3.5 version and execute on CPUs and GPUs given the 

underlying frameworks. Keras API library was developed and maintained using these 

four (4) guiding principles (Brownlee, 2018): 
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• Minimalism (User-friendly): It provides sufficient enough to achieve an outcome 

with no frills and maximizing readability. 

• Modularity: It can be understood as sequence alone and the model are discrete 

components that can be combined in arbitrary ways. 

• Extensibility: New components can be added fast and easily within the 

framework, in order trial and explore new ideas. 

• Python: All the model files is in native Python. 

Deep learning is never been easier with Keras library, making it more widely used for 

those who just started learning about deep learning. Nowadays with abundant amount of 

data, deep learning is the most powerful data-driven machine learning tool that can be 

applied to any industry. 

The vital data structure of Keras is a model; a way to organize layers. The simplest model 

in Keras is the Sequential model, a linear stack of layers: 

from keras.models import Sequential 

model = Sequential() 

In order to stack a layer, it uses .add to the model, Dense type layer as follows: 

from keras.layers import Dense 

model.add(Dense(units=a, activation='relu', input_dim=b)) 

model.add(Dense(units=c, activation='softmax')) 

The second line shows the shape of the input, giving b number of inputs (neurons) and a 

number of neurons of hidden layer.  As for the third line shows the output layer with  c 

number of neurons. Keras supports a wide range of neuron activation function such as 

softmax, rectifier, logistic,  hyperbolic tangent (tanh) and sigmoid. For the hidden layers 

in this study, the model uses rectifier (relu), shown in equation 3.1, activation since it 

speeds up the training process with a very simple gradient computation and 

computational step.  
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                             Rectifier: f(x)=max(0,x)                        (3.1) 

As for the last layer, softmax, shown in equation 3.3, is used when ‘n’ number of classes 

for classification problem. Binary classification whereby n=2, can use both sigmoid and 

softmax activation on the last layer for classification problem. As for multi-class 

classification problem, softmax is the kind where the function, the sum of all softmax 

units are supposed to be 1, unlike in sigmoid. In multi-class classification, the outputs are 

dependent of one another and increasing the output value of one class makes the others 

go down (sigma=1) making the softmax more preferred choice. Sigmoid equation is 

shown in equation 3.2. 

                              Sigmoid: S(t) = 
(

(0123
                        (3.2) 

                         Softmax: h0(x) = 
(

(0145	(6784)
           (3.3) 

3.3.4 ANN Model Validation 

 There are a lot of ways and decisions to make in designing the ANN model 

architecture. Though, it is important to have a robust way of evaluating the performance 

of ANN model. There are several methods to evaluate a model performance using Python. 

Before stating the method, it is important to define the meaning of training dataset, 

validation dataset and also test dataset. Below are the definition for each dataset:- 

• Training Dataset: The sample of data used to fit the model. 

• Validation Dataset: The sample of data used to provide an unbiased evaluation of 

a model fit on the training dataset while tuning model hyperparameters. The 

evaluation becomes more biased as skill on the validation dataset is incorporated 

into the model configuration. 

• Test Dataset: The sample of data used to provide an unbiased evaluation of a final 

model fit on the training dataset. 

Below are the techniques used to evaluate a model performance:- 
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1) Train/Test method 

 
Figure 3.7: Train/Test method 

Train/test method is the simplest technique that can be used to evaluate a model 

as shown in Figure 3.7. This technique is not as robust as cross validation because 

of randomness happened when splitting the dataset into a training dataset and a 

validation or test dataset. Each time when splitting the total number of samples 

dataset, the datasets will not be split the same as the previous ones. For example, 

what if one sub of the data has only FRF from certain conditions; the training 

dataset consist of only undamaged, damaged1 damaged2, damaged4 and testing 

dataset consist of damaged3 only. Keep in mind each time the program is 

rerun/retrain the ANN, it will split the train and test dataset differently as the 

previous ones. Thus, this will produce inconsistency results of the model 

performance. The other way around in applying this technique is by multiple split 

tests and take the average model performance from the overall. The inconsistency 

results of the model performance only happened if the data splitting is done by the 

Python program itself, whereby the user needs to input the train and test datasets 

split percentage size. If the train and test datasets are from two different sources, 

not split by the Python program, it can produce consistent results of the model 

performance (Used in ISMA FRF validation). 

In this study, train/test method was only being used in showing the damage 

identification scheme and ISMA FRF validation. Figure 3.8 shows the train/test 

split method in damage identification scheme. The EMA dataset will be split by 

the Python program to 0.7/0.3, 70% for the training dataset, and 30% for the 

testing dataset. The reason why train/test method was used in damage 
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identification scheme was because it is the only way to show the output results for 

the damage identification scheme. 

As for the ISMA FRF validation shown in Figure 3.9 below, the ANN will be 

trained using EMA FRF datasets, and tested with ISMA FRF datasets. In this case, 

this project can validate the ISMA FRF dataset whether it has similar FRF as the 

EMA with similar experimental setup. 

 
Figure 3.8: Train/Test method in Damage Identification Scheme using EMA dataset 

 
Figure 3.9: Train/Test method in ISMA FRF validation 

2) Cross-validation (CV) 

A solution to the problem of ensuring each instance is used for training and testing 

and equal number of times while reducing the variance of performance score is to 

use cross validation. K-fold cross-validation is common CV technique, where k 

is the number of splits to make in the dataset. Figure 3.10 shows an example of 

how k-fold cross-validation split the training dataset and test dataset. In this case, 

it will split the dataset into 4 parts (4 folds) and the NN model will be running for 

4 times. Each time the model run, it will be trained on 75% of the dataset and 

tested on another 25% , and the next run of the test dataset will not be the same as 

the previous ones. This validation is more robust than the normal train/test 

method. 
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Figure 3.10: 4-fold cross-validation technique 

In this study, 10-fold cross-validation (k=10) was used to evaluate the performance of the 

ANN model. The complete dataset used was the EMA FRF dataset, which will be split 

as much as 10-fold, calculate its percentage error for each fold and generate the averaged 

error. The CV method will be used throughout this study to evaluate the performance of 

ANN model in parameters tuning and reducing number of samples by reducing the 

number of sensors and frequency range, to ensure the damage identification scheme is 

robust enough to predict future FRFs dataset. 
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3.3.5 ANN Architecture 

As stated earlier, the Keras simplest model which being widely used is the Sequential 

model. This study used the Multi-layer Perceptron (MLP), a feedforward network 

consists of at least three (3) layers of nodes. As for the learning algorithm, MLP utilized 

the supervised technique called backpropagation technique. Figure 3.11 shows the 

artificial neural network architecture that was being used in this study. 

 

Figure 3.11: Neural network architecture 

 
The number of neurons, n, of the input layer depends on the number of outputs 

that were produced by each FRF. As stated in Table 3.3 earlier, the number of outputs 

produced were 400 outputs. Therefore, the number of neurons of the input layer was 

n=400 neurons, x400. Though, the number of input layer will vary when the frequency 

range is reduced later in this study for optimization purpose. The training and testing FRF 

datasets need to have equal number of total outputs/FRF since both datasets will use the 

ANN model. Similarly with the output layer which consists of five (5) neurons, which 

depends on the number of output conditions that were being created. It can be observed 

in Figure 3.11 that the outputs are the conditions for the damage identification scheme 

Univ
ers

ity
 of

 M
ala

ya



 40 

that were set earlier. Therefore, the ANN model required one full FRF to produce the 

output result. 

The ANN model parameters tuning was done by adjusting the number of neurons and 

hidden layers to find the optimized ANN model. The model performance was evaluated 

using 10-fold cross-validation method and EMA FRF dataset was used. Table 3.4 shows 

the ANN model parameters tuning on the number of neurons of the 1st hidden layer. It 

shows that as the number of neuron increases, the performance of the ANN model 

increases. Though, the performance reached the maximum percentage of 100% with 

twenty (20) neurons at the 1st hidden layer. The performance of the NN will be similar as 

twenty (20) neurons even after the number of neurons were added more than twenty (20). 

It is proven from 20 up until 25 neurons, it produced the same performance accuracy.  

Since with a single hidden layer the model managed to produce a 100% performance 

accuracy, there will be no reason to add a second (2nd) hidden layer. Therefore, the 

optimized ANN model will have twenty (20) neurons at the 1st hidden layer (single hidden 

layer). The optimized ANN model will be used to record the output results (damage 

identification) showing how well the model predict and identify the damage and its 

location. 
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Table 3.4: ANN model parameters tuning on the number of neurons of the hidden layer 

1st Hidden 

Layer 
10-fold Cross-validation 

Number of 

neurons 

Percentage Error 

(%) 

Performance Accuracy (100% - % Error = 

%) 

1 74.31% 25.69% 

2 60.04% 39.96% 

3 56.15% 43.85% 

4 34.86% 65.14% 

5 34.25% 65.75% 

6 24.15% 75.85% 

7 14.58% 85.42% 

8 6.36% 93.64% 

9 5.83% 94.17% 

10 4.49% 95.51% 

11 7.65% 92.35% 

12 1.80% 98.20% 

13 1.34% 98.66% 

14 1.80% 98.20% 

15 0.43% 99.57% 

16 0.91% 99.09% 

17 0.91% 99.09% 

18 0.89% 99.11% 

19 0.89% 99.11% 

20 0.00% 100.00% 

21 0.00% 100.00% 

22 0.00% 100.00% 

23 0.00% 100.00% 

24 0.00% 100.00% 

25 0.00% 100.00% 
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Figures 3.12 and 3.13 show the output given on the python software, based on different 

number of neurons at the 1st hidden layer. The first line shows the backend that, 

Tensorflow, was being used for the neural network. The user need to input the number of 

neurons for the 1st hidden layer. It will then print the dataset shape of the comma separated 

value (csv) EMA dataset file. Dataset shape is defined as (number of rows, number of 

columns). In the Figures 3.12 and 3.13, it stated that that dataset shape is (225, 401), 

consist of 225 row of FRFs and 401 columns (400: number of outputs/FRF, 1: the last 

column is the condition output for each of the FRF). Lastly, the baseline is the 

performance accuracy percentage for the model along with the program running time. It 

can be observed that the program running time increases as the number of neurons at the 

1st hidden layer increases.  

 

Figure 3.12: With a single neuron at the 1st hidden layer output

 

Figure 3.13: With 20 neurons at the 1st hidden layer output 

 As stated earlier, there are different types of activation functions that can be used 

on the neural network. The activation function that was used for the first two layers are 

the rectifier (relu) activation function since it produced better performance than Logistic 

and  Hyperbolic tangent (tanh). As for the output layer, softmax activation function was 
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used for multi-class classification problem (5 conditions). Next step will be compiling the 

NN model which uses the numerical libraries such as Theano or TensorFlow, and 

TensorFlow backend was chosen. Loss function is needed in order to evaluate a set of 

weights, the optimizer used to search through different weights for the network and any 

optional metrics to collect and report during training. Logarithmic loss was used in 

compiling as defined in Keras as “categorical_crossentropy” for multi-class 

classification problem. There are also binary_crossentropy which is used for binary 

classification problem. A efficient gradient descent algorithm called “adam” was used 

since it is an efficient default in Keras. The number of iterations were set at two hundred 

(200) iterations and the batch size was twenty five (25). 
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Chapter 4: Results and Discussions 

4.1: FRF Analysis 

Figure 4.1 shows the EMA FRFs sample for Undamaged condition during stationary 

dataset. Each peak shows the natural frequency of the plate structure whereby when the 

structure vibrates at that frequency, it will result in resonance. 

 

Figure 4.1: FRFs samples for during stationary - Undamaged 

As stated earlier there were five (5) conditions designed for this damage identification 

scheme. Each condition produced different FRFs data and graph pattern. With the help 

of ANN, it is convenient to study the FRFs graph pattern for each condition and classify 

it into each of its condition. Figure 4.2 shows the FRFs graph for each of the conditions 

for EMA FRFs and Figure 4.3 for ISMA FRFs. 
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Figure 4.2: FRFs graph for system during stationary (EMA) – Sensor Point 2 

 

Figure 4.3: FRFs graph for system during operation (ISMA) – Sensor Point 2 

Based on both Figures 4.2 and 4.3, it can be observed that when the structure is damaged, 

the FRFs graph are shifted to the left side towards lower frequency range. The most right 

side will be the undamaged FRF, showing when a structure is damaged the dynamic 

characteristics will changed. Moreover, both EMA and ISMA datasets produced almost 

identical FRFs pattern.  
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Figures 4.4, 4.5, 4.6, 4.7, and 4.8 show the system during operation (ISMA) FRFs 

for each condition on all sensor points. It can be seen that the magnitude for each vibration 

mode varies for different conditions. For example in Figure 4.5, FRFs for Damaged1 

condition has the highest magnitudes for the 2nd, 4th and 5th vibrations modes and having 

the least magnitude for the 1st and 3rd vibration modes. This can relate to the vibration 

response of each mode shape when there is a change in structure properties. In Figure 4.8, 

FRFs for Damaged4 condition has the optimal magnitude for all of their vibration mode, 

making it the most balanced and easy to identify if damage happened at that point. 

 

Figure 4.4: ISMA FRFs for Undamaged condition on all sensor points 
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Figure 4.5: ISMA FRFs for Damaged1 condition on all sensor points 

 

Figure 4.6: ISMA FRFs for Damaged2 condition on all sensor points 

 

0

0.5

1

1.5

2

2.5

0

6
.5 1
3

1
9

.5 2
6

3
2

.5 3
9

4
5

.5 5
2

5
8

.5 6
5

7
1

.5 7
8

8
4

.5 9
1

9
7

.5

1
0

4

1
1

0
.5

1
1

7

1
2

3
.5

1
3

0

1
3

6
.5

1
4

3

1
4

9
.5

1
5

6

1
6

2
.5

1
6

9

1
7

5
.5

1
8

2

1
8

8
.5

1
9

5

M
a

g
n

it
u

d
e

 (
g

/N
)

Frequency (Hz)

ISMA - Damaged1 - All Sensor Points

Sensor Point 2 Sensor Point 4 Sensor Point 5

Sensor Point 6 Sensor Point 8

0

0.5

1

1.5

2

2.5

0

6
.5 1
3

1
9

.5 2
6

3
2

.5 3
9

4
5

.5 5
2

5
8

.5 6
5

7
1

.5 7
8

8
4

.5 9
1

9
7

.5

1
0

4

1
1

0
.5

1
1

7

1
2

3
.5

1
3

0

1
3

6
.5

1
4

3

1
4

9
.5

1
5

6

1
6

2
.5

1
6

9

1
7

5
.5

1
8

2

1
8

8
.5

1
9

5

M
a

g
n

it
u

d
e

 (
g

/N
)

Frequency (Hz)

ISMA - Damaged2 - All Sensor Points

Sensor Point 2 Sensor Point 4 Sensor Point 5

Sensor Point 6 Sensor Point 8

Univ
ers

ity
 of

 M
ala

ya



 48 

 

Figure 4.7: ISMA FRFs for Damaged3 condition on all sensor points 

 

Figure 4.8: ISMA FRFs for Damaged4 condition on all sensor points 

0

0.5

1

1.5

2

2.5

0

6
.5 1
3

1
9

.5 2
6

3
2

.5 3
9

4
5

.5 5
2

5
8

.5 6
5

7
1

.5 7
8

8
4

.5 9
1

9
7

.5

1
0

4

1
1

0
.5

1
1

7

1
2

3
.5

1
3

0

1
3

6
.5

1
4

3

1
4

9
.5

1
5

6

1
6

2
.5

1
6

9

1
7

5
.5

1
8

2

1
8

8
.5

1
9

5

M
a

g
n

it
u

d
e

 (
g

/N
)

Frequency (Hz)

ISMA - Damaged3 - All Sensor Points

Sensor Point 2 Sensor Point 4 Sensor Point 5

Sensor Point 6 Sensor Point 8

0

0.5

1

1.5

2

2.5

0

6
.5 1
3

1
9

.5 2
6

3
2

.5 3
9

4
5

.5 5
2

5
8

.5 6
5

7
1

.5 7
8

8
4

.5 9
1

9
7

.5

1
0

4

1
1

0
.5

1
1

7

1
2

3
.5

1
3

0

1
3

6
.5

1
4

3

1
4

9
.5

1
5

6

1
6

2
.5

1
6

9

1
7

5
.5

1
8

2

1
8

8
.5

1
9

5

M
a

g
n

it
u

d
e

 (
g

/N
)

Frequency (Hz)

ISMA - Damaged4 - All Sensor Points

Sensor Point 2 Sensor Point 4 Sensor Point 5

Sensor Point 6 Sensor Point 8

Univ
ers

ity
 of

 M
ala

ya



 49 

 

4.2: Damage Identification Scheme 

In this section will show the output results for damage identification scheme using 

ANN. Since the approach that was used in this damage identification problem is 

classification problem, it is suitable to present the output results in form of F1 score. F1 

score is a measure of a test’s accuracy by considering both the precision p and recall r of 

the test to compute the score, F1 as shown in equation 4.1. P is the number of correct 

positive results divided by the number of all positive results returned by the classifier, 

and r is the number of correct positive results divided by the number of all relevant 

samples (all samples that should have been identified as positive). The F1 score is the 

harmonic average of the precision and recall, where an F1 score reaches its best value at 

1 (perfect precision and recall) and worst at 0 (Wikipedia, n.d.) 

   (4.1) 

Also, the approach used to evaluate the performance was by splitting the EMA dataset 

using the Python program and test/train method. Table 4.1 shows the number of samples 

used to train and test the ANN model by splitting the EMA dataset to 70/30.  

Table 4.1: EMA dataset arrangement and number of samples used 

EMA Dataset 
Number of 

FRFs 

Percentage 

(%) 

Number of samples  

(FRF x 400 outputs/FRF) 

Overall FRFs 225 100% 90000 

Training FRF 

Dataset 
157 70% 62800 

Testing FRF 

Dataset 
68 30% 27200 

 
Figure 4.9 shows the output results from the Python program. It shows the dataset shape 

for the overall, training and testing along with the classification report. It can be seen that 

the dataset shape for both training and testing consist of five (5) columns. This is because 

Univ
ers

ity
 of

 M
ala

ya



 50 

the condition output for each FRF (the last column in overall dataset) was convert from a 

categorical (undamaged, damaged1, damaged2, damaged3 & damaged4) to numerical. It 

was done by using the One-Hot Encoding method whereby the outputs are represent in 

form of binary variable “0” means FALSE and “1” means TRUE, as shown in Figure 4.9 

and Table 4.2. The classification report shows the precision, recall, f1-score and the 

support. In this case, the support is the number of FRFs for each condition that were tested 

on the ANN model. The total number of supports are 68, equal with the number of FRFs 

showed in Table 4.1. It can be observed that the F1-score for all the conditions are 1.00, 

resulting with an average F1 score of 1.00. Figure 4.10 shows the F1 score in form of 

visual for each of the tested conditions. The example of calculation for both precision and 

recall are shown below (Undamaged, Damaged1 & Damaged4): - 

9:;<=>=?@ =
13
13

= 1.00 

:;<DEE =
13
13

= 1.00 

 

Figure 4.9: Output results from the Python program 

Once both precision and recall are calculated, the values will be substituted to equation 

4.1 to acquire the F1 score for each condition. 
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                         Damaged2                                                     Damaged3 

Undamaged, Damaged1 and Damaged4 
 

Figure 4.10: F1-score classification results 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 52 

For more in-depth clarification, Figure 4.11 shows the predicted output and actual output 

for all testing dataset acquired from the Python program. It can be seen the outputs are in 

form of one-hot encoded, whereby the “0” column is damaged1, “1” column is damaged2, 

“2” column is damaged3, “3” column is damaged4 and lastly “4” column is undamaged. 

From here the data is extracted into Microsoft Excel and produce a table consist of all the 

68 testing FRFs output results as shown in Table 4.2. It can be observed that the “True” 

outputs are highlighted in green as for the “False” outputs are highlighted in red. 

 

Figure 4.11: One-hot encoding results for predicted output and actual output 

With these findings, it proved that a robust damage identification scheme by using the 

EMA FRF datasets with ANN is designed. The next section will test the ISMA FRF 

dataset on a trained ANN model by EMA dataset for validation.  
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Table 4.2: Testing FRFs output results in form of one-hot encoded 

Damaged1 Damaged2 Damaged3 Damaged4 Undamaged Damaged1 Damaged2 Damaged3 Damaged4 Undamaged
1 0 1 0 0 0 0 1 0 0 0
2 1 0 0 0 0 1 0 0 0 0
3 0 1 0 0 0 0 1 0 0 0
4 0 0 0 0 1 0 0 0 0 1
5 1 0 0 0 0 1 0 0 0 0
6 0 1 0 0 0 0 1 0 0 0
7 0 0 0 1 0 0 0 0 1 0
8 0 0 1 0 0 0 0 1 0 0
9 0 0 0 0 1 0 0 0 0 1

10 0 0 0 1 0 0 0 0 1 0
11 0 0 0 0 1 0 0 0 0 1
12 0 0 0 1 0 0 0 0 1 0
13 1 0 0 0 0 1 0 0 0 0
14 0 0 1 0 0 0 0 1 0 0
15 0 0 0 0 1 0 0 0 0 1
16 0 1 0 0 0 0 1 0 0 0
17 0 0 0 1 0 0 0 0 1 0
18 0 1 0 0 0 0 1 0 0 0
19 0 1 0 0 0 0 1 0 0 0
20 0 0 0 1 0 0 0 0 1 0
21 0 0 1 0 0 0 0 1 0 0
22 0 0 1 0 0 0 0 1 0 0
23 1 0 0 0 0 1 0 0 0 0
24 1 0 0 0 0 1 0 0 0 0
25 0 1 0 0 0 0 1 0 0 0
26 0 0 0 1 0 0 0 0 1 0
27 0 0 1 0 0 0 0 1 0 0
28 0 1 0 0 0 0 1 0 0 0
29 0 1 0 0 0 0 1 0 0 0
30 0 0 0 1 0 0 0 0 1 0
31 1 0 0 0 0 1 0 0 0 0
32 0 0 1 0 0 0 0 1 0 0
33 0 0 1 0 0 0 0 1 0 0
34 0 0 0 1 0 0 0 0 1 0
35 1 0 0 0 0 1 0 0 0 0
36 0 0 0 1 0 0 0 0 1 0
37 0 0 1 0 0 0 0 1 0 0
38 0 0 1 0 0 0 0 1 0 0
39 1 0 0 0 0 1 0 0 0 0
40 1 0 0 0 0 1 0 0 0 0
41 0 1 0 0 0 0 1 0 0 0
42 0 0 0 0 1 0 0 0 0 1
43 0 0 0 0 1 0 0 0 0 1
44 0 1 0 0 0 0 1 0 0 0
45 1 0 0 0 0 1 0 0 0 0
46 0 1 0 0 0 0 1 0 0 0
47 1 0 0 0 0 1 0 0 0 0
48 0 0 0 1 0 0 0 0 1 0
49 0 1 0 0 0 0 1 0 0 0
50 0 1 0 0 0 0 1 0 0 0
51 0 0 0 0 1 0 0 0 0 1
52 0 0 0 0 1 0 0 0 0 1
53 0 0 0 1 0 0 0 0 1 0
54 0 0 0 0 1 0 0 0 0 1
55 1 0 0 0 0 1 0 0 0 0
56 0 0 1 0 0 0 0 1 0 0
57 0 0 0 0 1 0 0 0 0 1
58 0 0 1 0 0 0 0 1 0 0
59 0 1 0 0 0 0 1 0 0 0
60 0 0 0 0 1 0 0 0 0 1
61 0 0 0 0 1 0 0 0 0 1
62 0 1 0 0 0 0 1 0 0 0
63 0 1 0 0 0 0 1 0 0 0
64 0 0 1 0 0 0 0 1 0 0
65 0 0 0 0 1 0 0 0 0 1
66 1 0 0 0 0 1 0 0 0 0
67 0 0 0 1 0 0 0 0 1 0
68 0 0 0 1 0 0 0 0 1 0

Predicted OutputNo of Testing FRFs Actual Output
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4.2.1: ISMA FRF Validation 

This section is to validate the ISMA FRFs to ensure it produce similar FRF pattern as the 

EMA when the system under testing is in operation. If the ISMA FRF testing dataset 

managed to produce a high performance accuracy on a trained ANN model by EMA FRF, 

it proved that the FRF that need to be used for the damage identification scheme are 

interchangeable between EMA and ISMA. Also, it is important to check the FRFs 

produced from ISMA experiment are valid by using the EMA FRF as benchmark dataset. 

Table 4.3 shows the number of samples used to train and test the ANN model by using 

EMA and ISMA dataset, respectively.   

Table 4.3: FRF Dataset arrangement and number of samples used 

 

 

 

Figure 4.12 shows the output results from the Python program. It shows the dataset shape 

for the overall, training and testing along with the classification report. It can be observed 

that the F1-score for Undamaged, Damaged1 and Damaged4 are 1.00, Damaged2 is 0.91 

and Damaged3 is 0.89, resulting with an average F1 score of 0.96. Figure 4.13 shows the 

F1 score in form of visual for each of the tested conditions. Figure 4.14 and Table 4.4 

show the result outputs in Python program and extracted into table form, respectively. 

The calculation for precision for Damaged2 and recall for Damaged3 are shown below: - 

9:;<=>=?@(FDGDH;I2) =
5
6
= 0.83 

:;<DEE(FDGDH;I3) =
4
5
= 0.80 

It can be observed that the model wrongly classify the Damaged3’s FRF as Damaged2. 

The possible reason behind the reduction of F1 score in this testing is because of different 

number of sensors being trained and tested on the ANN model. As stated earlier in the 

Datasets 
Number of 

FRFs 
Number of samples (FRF x 400) 

Training EMA FRF Dataset 225 90000 

Testing ISMA FRF Dataset 25 10000 
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methodology, EMA and ISMA used 9 and 5 sensors respectively. Since the ANN model 

was trained using EMA datasets, this can lead to overfitting of the model based on 9 

sensors dataset which consist of additional sensor locations. The additional sensor 

locations FRFs will affect the trained NN model in terms of performance when the testing 

dataset does not contain the additional sensor locations FRFs. 

 

Figure 4.12: Output results from the Python program 

Based on these findings, the main objective of this study is achieved by designing a 

damage identification scheme using both EMA and ISMA FRF data with ANN. Also, the 

ISMA FRF collected from the experiment during operation can be consider valid and 

usable for the damage identification scheme. The FRF dataset that need to be used for the 

damage identification scheme are also interchangeable for testing and training between 

EMA and ISMA. 
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  Undamaged, Damaged1 & Damaged4                            Damaged2 

 
                        Damaged3 

Figure 4.13: F1-score classification results 
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Figure 4.14: One-hot encoding results for predicted output and actual output  

Table 4.4: Testing FRFs output results in form of one-hot encoded 

 
  

  

Damaged1 Damaged2 Damaged3 Damaged4 Undamaged Damaged1 Damaged2 Damaged3 Damaged4 Undamaged
1 0 0 0 0 1 0 0 0 0 1
2 0 0 0 0 1 0 0 0 0 1
3 0 0 0 0 1 0 0 0 0 1
4 0 0 0 0 1 0 0 0 0 1
5 0 0 0 0 1 0 0 0 0 1
6 1 0 0 0 0 1 0 0 0 0
7 1 0 0 0 0 1 0 0 0 0
8 1 0 0 0 0 1 0 0 0 0
9 1 0 0 0 0 1 0 0 0 0

10 1 0 0 0 0 1 0 0 0 0
11 0 1 0 0 0 0 1 0 0 0
12 0 1 0 0 0 0 1 0 0 0
13 0 1 0 0 0 0 1 0 0 0
14 0 1 0 0 0 0 1 0 0 0
15 0 1 0 0 0 0 1 0 0 0
16 0 0 1 0 0 0 0 1 0 0
17 0 0 1 0 0 0 0 1 0 0
18 0 0 1 0 0 0 0 1 0 0
19 0 0 1 0 0 0 0 1 0 0
20 0 0 1 0 0 0 1 0 0 0
21 0 0 0 1 0 0 0 0 1 0
22 0 0 0 1 0 0 0 0 1 0
23 0 0 0 1 0 0 0 0 1 0
24 0 0 0 1 0 0 0 0 1 0
25 0 0 0 1 0 0 0 0 1 0

No of Testing FRFs Actual Output Predicted Output
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4.3: Training Samples Reduction 

There are several approaches in improving the neural network performance and 

one of the ways is improving with data as stated in the literature review earlier. The easiest 

way to improve with data is by adding more data for each condition on each sensor into 

the training dataset and repeating the modal analysis experiment to acquire the data, also 

known as number of averages. Since different sensor location produces different FRF 

pattern output, reducing the number of sensors do not affect the performance as much as 

reducing number of averages. Unlike reducing the frequency range in the training FRF, 

if the correct mode is not selected it will lead to reduce in performance accuracy of the 

model. Both reduction in number of sensors and the frequency range lead to reduction in 

samples used to train the ANN model.  Therefore, this section will discuss on the second 

and third objectives of this research project.  

4.3.1: Reduction number of sensors 

The reduction in number of sensors starts with nine (9) sensors and end with only 

a single sensor. First, the sensors located near the damaged points (Point 1,3,7,9 – Tyres 

location) were removed in order to reduce number of sensor. This is because in real case 

simulation, it is the most least convenient location to place a sensor. The reason sensor at 

point 4 and 5 were chosen because point 4 located near the side of the plate (similarly 

with point 6) as for point 5 it is located at the center of the plate which can relate to the 

vibration response for each vibration mode. 

Table 4.5 shows the findings gathered from different number of sensors with 

different compositions (conditions x sensors x average). The table shows the performance 

accuracy for each composition, by evaluating the performance using cross-validation 

method on EMA dataset. Based on Table 4.5, the performance accuracy on EMA dataset 

group A,B and C  decrease as the number of averages decreases. This supports the claim 

as the number of averages increases, the performance of ANN model will also increases. 
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When the number of sensors are reduced to a single sensor (Group D and E), the 

composition that used the lowest number of samples needed to train the ANN with 100% 

performance accuracy on EMA dataset for both group is  the 5 x 1 x 3 composition. 

Table 4.6 shows the performance accuracy for each composition, by evaluating 

the performance using train/test method on ISMA dataset. Based on Table 4.6, it also can 

be observed that the performance accuracy using ISMA dataset as a testing dataset for 

Group A are not as high as Group B, C, D and E. The reason behind this is the ANN was 

trained based on nine (9) sensors FRFs and tested with only five (5) sensors ISMA FRFs 

as stated earlier in the previous section (ISMA FRF Validation). The training and testing 

FRFs need to have equal number of sensors and sensor location in order to acquire high 

performance accuracy. Moreover, for Group B, C, D and E give 100% performance 

accuracy by using ISMA as the testing dataset. Therefore, it is possible to reduce the 

number of sensors to a single sensor without affecting the performance. 

Lastly, the final choice for the optimized number of sensors and composition is 

the ones highlighted in green, with a composition of 5 x 1 x 3 for the EMA dataset and   

5 x 1 x 1 for the ISMA dataset. These findings proved that it is possible to reduce the 

number of sensors without affecting the performance of the ANN model. The selected 

choice will be used in the next section whereby the number of samples are further reduced 

by reducing the frequency range of the FRF. Univ
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Table 4.5: Performance of the ANN based on reduction in number of sensors during stationary (EMA as testing datasets) 

EMA Dataset (Training & Testing) 10-fold Cross-validation method 

(Group) Number of 
Sensors Sensor Point 

Number 
of 

averages 

Compositions 
Number of 

FRFs 
Number of samples (Number 

of FRFs x 200) 
Performance accuracy on EMA dataset 

(%) 
(Conditions x 

Sensors x 
Averages) 

(A) 9 1,2,3,4,5,6,7,8,9 

5 5 x 9 x 5 225 90000 100.00% 
4 5 x 9 x 4 180 72000 100.00% 
3 5 x 9 x 3 135 54000 91.04% 
2 5 x 9 x 2 90 36000 88.84% 
1 5 x 9 x 1 45 18000 54.50% 

(B) 5 2,4,5,6,8 

5 5 x 5 x 5 125 50000 100.00% 
4 5 x 5 x 4 100 40000 100.00% 
3 5 x 5 x 3 75 30000 94.64% 
2 5 x 5 x 2 50 20000 86.00% 
1 5 x 5 x 1 25 10000 31.67% 

(C) 4 2,4,6,8 

5 5 x 4 x 5 100 40000 100.00% 

4 5 x 4 x 4 80 32000 100.00% 
3 5 x 4 x 3 60 24000 91.67% 
2 5 x 4 x 2 40 16000 100.00% 
1 5 x 4 x 1 20 8000 25.00% 

(D) 1 4 

5 5 x 1 x 5 25 10000 95.00% 
4 5 x 1 x 4 20 8000 100.00% 
3 5 x 1 x 3 15 6000 100.00% 
2 5 x 1 x 2 10 4000 90.00% 
1 5 x 1 x 1 5 2000 0.00% 

(E) 1 5 

5 5 x 1 x 5 25 10000 100.00% 
4 5 x 1 x 4 20 8000 100.00% 
3 5 x 1 x 3 15 6000 100.00% 
2 5 x 1 x 2 10 4000 100.00% 
1 5 x 1 x 1 5 2000 0.00% 
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Table 4.6: Performance of the ANN based on reduction in number of sensors during operation (ISMA as testing datasets) 

EMA Dataset (Training) ISMA Dataset (Testing) Train/Test method 

(Group) 
Number 

of Sensors 

Number of 
samples 

(Group) 
Number of 

Sensors 
Sensor Point 

Number 
of 

averages 

Compositions 

Number 
of FRFs 

Number of samples  
(Number of FRFs x 

200) 

Performance accuracy by using 
ISMA as testing dataset (%) (Conditions x 

Sensors x 
Averages) 

(A) 9 

90000 

(A) 5 

2,4,5,6,8 

1 

5 x 5 x 1 25 10000 

96.00% 
72000 96.00% 
54000 96.00% 
36000 92.00% 
18000 96.00% 

(B) 5 

50000 

(B) 5 

100.00% 
40000 100.00% 
30000 100.00% 
20000 96.00% 
10000 100.00% 

(C) 4 

40000 

(C) 4 2,4,6,8 5 x 4 x 1 20 8000 

100.00% 
32000 100.00% 
24000 100.00% 
16000 100.00% 
8000 100.00% 

(D) 1 

10000 

(D) 1 4 

5 x 1 x 1 5 2000 

100.00% 
8000 100.00% 
6000 100.00% 
4000 100.00% 
2000 100.00% 

(E) 1 

10000 

(E) 1 5 

100.00% 
8000 100.00% 
6000 100.00% 
4000 100.00% 
2000 100.00% Univ
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4.3.2: Sensor location, frequency range and vibration mode  

In this section, the main focus will be in minimizing the frequency range used in 

training and testing the ANN model without affecting the performance and also to study 

the relationship between the sensor location and the performance by selecting the 

correction vibration mode. The training and testing FRFs need to have equal number of 

total outputs/FRF because as stated earlier in the methodology the number of neurons for 

the ANN input layer need to be equal with the number of total outputs/FRF. 

First, it is important to choose the correct frequency range based on the vibration 

mode. Figures 4.15 and 4.16 show two different EMA FRFs at two different sensor point 

(Point 4 and Point 5), focused on the 1st, 2nd and 3rd vibration modes. It can be observed 

that the 3rd vibration mode (Circled), sensor point 4 produced higher magnitude than 

sensor point 5. Thus, it is difficult to differentiate between each condition for sensor point 

5. FRFs at sensor point 5 shows that the FRFs look almost identical between each 

condition unlike at sensor point 4. This lack of differentiation between each condition can 

affect the performance accuracy of the ANN model. 

As for the FRF 1st vibration mode shows the vibration mode at sensor point 5 is 

slightly higher in magnitude than at sensor point 4. This might affect the performance 

accuracy when the ANN model include the 1st vibration mode later in reducing the 

frequency range. Therefore, choosing the correct vibration mode in reducing the 

frequency range is important to ensure that the performance accuracy of the ANN model 

would not get affected. 
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Figure 4.15: EMA FRFs at sensor point 4, circled 3rd vibration mode 

 

Figure 4.16: EMA FRFs at sensor point 5, circled 3rd vibration mode 

Tables 4.7 and 4.8 shows the performance of the ANN based on reduction in 

frequency range by using 10-fold CV method on EMA dataset and Train/Test method 

with ISMA as testing dataset, respectively. Based on Table 4.7, it can be observed that 

there is a reduction in performance accuracy when the vibration mode is decreased from 

5 vibration modes to only a single vibration mode. Moreover, the performance accuracy 

for the vibration mode 2, 3 and 3 which are highlighted in yellow, sensor point 5 has the 

lower performance than sensor point 4 with 70%/45% and 85%/70%, respectively. This 
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supports the previous findings regarding the FRFs graphs in Figures 4.15 and 4.16. For 

the FRFs consist of 1st, 2nd and 3rd vibration modes, it can be observed that the 

performance sensor point 5 is higher than sensor point 4 with 100%/80%, respectively. 

1st vibration mode has more dominance in differentiating the conditions which lead to 

increase in performance. These leave with two choices, having lesser frequency range 

with 85% ANN performance or more frequency range by including the 1st vibration mode 

with 100% ANN performance. If the 1st vibration mode is included in the training dataset, 

point 5 is preferably the best choice with higher performance percentage. If the 1st 

vibration mode is excluded from the training dataset, point 4 is preferably the best choice 

with lesser frequency range and training samples. Figures 4.17, 4.18, 4.19 and 4.20 show 

the 1st, 2nd, 3rd and 4th mode shapes using EMA, when the system was stationary. First 

mode shape showed all points in the simulation rig moves up and down together. This 

implies that first mode for the automobile simulation rig is heaving. In heaving, all the 

nodal points are affected therefore producing significant differentiation in magnitude for 

the 1st vibration mode graph as can be seen in Figures 4.15 and 4.16 for point 4 and 5 

respectively. For second mode, point 1, 4 and 7 of simulation rig move up and down 

together while 180 degree out of phase with point 3, 6 and 9. Point 2, 5 and 8 are nodal 

point and shows stationary at second mode. This implies that second mode is rolling. In 

rolling, point 4 produced significant differentiation in magnitude than point 5 for the 2nd 

vibration mode in the FRF graph. For third mode, point 1, 2, 3 and 4 of simulation rig 

move up and down together while 180 degree out of phase with point 7, 8 and 9. Point 5 

and 6 are nodal points show stationary at third mode. This implies that third mode is 

pitching. In pitching, it can be observed that point 5 did not produce significant 

differentiation in magnitude as can be seen in Figure 4.16 due to its stationary position. 

For forth mode, point 1 and 9 oscillate in phase with each other while point 3 and 7 
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oscillate in phase with each other. However, point 1 and 9 are 180 degree out of phase as 

compared to point 3 and 7. 

 

Figure 4.17: First mode shape using EMA with impact hammer 

 

Figure 4.18: Second mode shape using EMA with impact hammer 

 

Figure 4.19: Third mode shape using EMA with impact hammer 
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Figure 4.20:Forth mode shape using EMA with impact hammer 

Based on Table 4.8, the performance accuracy for different vibration modes show 

consistent results between sensor point 4 and sensor point 5. The performance accuracy 

produced are all 100% except for the FRFs that only include a single, 3rd vibration mode.  

With the overall findings, the final choice for the optimized number of sensors 

and frequency range used is the one highlighted in green, with a frequency range of 0Hz 

to 54Hz consist of 1st, 2nd and 3rd vibration modes. These findings proved that it is possible 

to reduce the number of sensors and frequency range by selecting the correct vibration 

modes without affecting the performance of the ANN model. Below is the final selection 

details: - 

• Sensor Point 5 

• Composition: 5 x 1 x 3 for EMA and 5 x 1 x 1 for ISMA 

• Frequency Range: 0 Hz – 54 Hz 

• Vibration modes: 1st, 2nd and 3rd 

• Number of FRFs: 15 EMA FRFs and 5 ISMA FRFs 

• Total number of samples: 1635 EMA samples and 545 ISMA samples 

• Performance accuracy for 10-fold CV method on EMA dataset: 100% 

• Performance accuracy for Train/Test method by using ISMA as testing dataset: 

100% 
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Table 4.7: Performance of the ANN based on reduction in frequency range during stationary (EMA as testing dataset) 

 

 

 
 

 

 
  

EMA Dataset (Training & Testing) 10-fold Cross-validation method 

Sensor Point 

Composition 

Frequency 
Range (Hz) 

Vibration 
Mode 

Number of 
FRFs 

Total number 
of 

outputs/FRF 

Number of 
samples   

(Number of 
FRFs x Total 

number of 
outputs/FRF) 

Performance accuracy on EMA 
dataset (%) 

(Conditions x 
Sensors x 
Averages) 

4 

5 x 1 x 3 

0 - 199.5 1,2,3,4,5 

15 

400 6000 100% 
0 - 54 1,2,3 109 1635 80% 

20 - 54 2,3 69 1035 85% 
32 - 54 3 45 675 50% 

5 

0 - 199.5 1,2,3,4,5 400 6000 100% 
0 - 54 1,2,3 109 1635 100% 

20 - 54 2,3 69 1035 70% 
32 - 54 3 45 675 45% 
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Table 4.8: Performance of the ANN based on reduction in frequency range during operation (ISMA as testing dataset) 

 
EMA Dataset 

(Training) ISMA Dataset (Testing) Train/Test method 

Number of 
samples   

(Number of FRFs 
x Total number of 

outputs/FRF) 

Sensor 
Point 

Composition 
Frequency 

Range 
(Hz) 

Vibration 
Mode 

Number 
of FRFs 

Total 
number of 

outputs/FRF 

Number of 
samples   

(Number of 
FRFs x Total 

number of 
outputs/FRF) 

Performance accuracy by 
using ISMA as testing 

dataset (%) 
(Conditions x 

Sensors x  
Averages) 

6000 

4 

5 x 1 x 1 

0 - 199.5 1,2,3,4,5 

5 

400 2000 100% 
1635 0 - 54 1,2,3 109 545 100% 
1035 20 - 54 2,3 69 345 100% 
675 32 - 54 3 45 225 80% 
6000 

5 

0 - 199.5 1,2,3,4,5 400 2000 100% 
1635 0 - 54 1,2,3 109 545 100% 
1035 20 - 54 2,3 69 345 100% 
675 32 - 54 3 45 225 80% 
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Chapter 5: Conclusion 

5.1: Conclusions 

This study managed to design a damage identification scheme using the FRF data 

gathered from experiment done with EMA and ISMA method with ANN. The ANN 

architecture used for the damage identification scheme was with only a single hidden 

layer consist of twenty (20) neurons. The damage identification scheme produced a 100% 

performance accuracy for both the CV method using EMA dataset and Train/Test method 

by using ISMA as the testing dataset. The ISMA FRF collected from the experiment can 

be consider valid and usable for the damage identification scheme. The FRF dataset that 

need to be used for the damage identification scheme are also interchangeable for testing 

and training between EMA and ISMA datasets. From the FRF graph analysis, it was 

found that when the structure is damaged, the FRFs graph are shifted to the left side 

towards lower frequency range. 

Also, the number of samples used to train the ANN model managed to be reduced 

by reducing the number of sensors to only a single sensor from nine sensor and a 

frequency range consist of only three (3) vibration modes from five (5) vibration modes. 

The sensor point that was selected is  at point 5, with a frequency range of 0 Hz – 54 Hz 

consist of 1st, 2nd and 3rd vibration modes. The number of FRFs used were 15 EMA FRFs 

and 5 ISMA FRFs with a total number of samples of 1635 and 545 for EMA and ISMA 

respectively. Both the CV method using EMA dataset and Train/Test method using ISMA 

as the testing dataset produced 100% in performance accuracy for the selected choice. 

This proved that is it possible to reduce the number of samples used without affecting the 

performance of the ANN model.   

It was also found that the sensor located at point 5 consist of 2nd and 3rd vibration 

modes produced lower performance than the sensor located at point 4 with similar 

vibration modes. The FRF magnitude for sensor located at point 4, 3rd vibration mode, 
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was higher and easy to differentiate between conditions than the sensor located at point 

5, 3rd vibration mode. Thus, choosing the correct vibration mode in reducing the 

frequency range is important to ensure that the performance accuracy of the ANN model 

would not get affected. It is found that there is a correlation between the sensor location 

and the vibration mode. 

 

5.2: Recommendations 

Based on the methodology and findings of this study, future recommendations can be 

made as follow:- 

• This study final selection for number of sensors and frequency range that were 

used to train the ANN model was tested only with five (5) ISMA samples, which 

provide 100% performance accuracy. Future study need to increase the number 

of testing samples and study the performance of the final selection. 

• In this study the author only limit the number of conditions to only five (5) 

conditions, one (1) undamaged and four (4) damaged locations. Future 

recommendation would be to increase the number of conditions which simulate a  

real machine. 

• In this study the author limits the input datasets to only a single location of impact 

or reference point, which is located at point 1. Future study can increase the 

number of reference points by creating more complex scenario and conditions. 

• This study limit scope only covers up until the location of damage. Future study 

need to look into the damage severity and the life span of the structure. 
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