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LINEAR-REGRESSION CONVOLUTIONAL NEURAL NETWORK FOR 

FULLY AUTOMATED CORONARY LUMEN SEGMENTATION IN 

INTRAVASCULAR OPTICAL COHERENCE TOMOGRAPHY 

ABSTRACT 

Intravascular optical coherence tomography (IVOCT) is an optical imaging 

modality commonly used in the assessment of coronary artery diseases during 

percutaneous coronary intervention (PCI). Manual segmentation to assess luminal 

stenosis from OCT pullback scans is time consuming as each pullback contains 

hundreds of cross-sectional images. This segmentation is also challenging and 

susceptible to inter-observer variability due to various reasons including non-

homogenous image intensity, blood residue, the presence and absence of different types 

of stents, irregular lumen shapes, image artifacts, and bifurcations. In this study, we aim 

to facilitate the quantitative assessment of coronary artery stenosis during PCI by 

developing an automatic segmentation framework to extract lumen from IVOCT images 

using convolutional neural network (CNN). A combination of linear-regression and 

convolutional neural network was proposed to automatically perform vessel lumen 

segmentation, parameterized in terms of radial distances from the catheter centroid in 

polar space. This automated segmentation algorithm has been benchmarked against 

manual segmentation by human experts.  The proposed algorithm achieved an average 

locational accuracy of the vessel wall of 22 microns; 0.985 and 0.970 in Dice coefficient 

and Jaccard similarity index, respectively when compared against the gold standard 

manual segmentations. The average absolute error of luminal area estimation is 1.38 % 

and the processing rate is 40.6 ms per image. In addition, an inter-observer variability 

test was performed and has shown that the proposed algorithm has comparable 

variability against manual luminal area estimations by expert human observers. As a 

conclusion, the proposed image segmentation framework has the potential to be 
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incorporated into a clinical workflow and to facilitate quantitative assessment of vessel 

lumen in an intra-operative timeframe. 

Keywords: convolutional neural network, optical coherence tomography, coronary 

artery disease, image segmentation, coronary lumen 
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REGRESI LINEAR RANGKAIAN NEURAL KONVOLUSI UNTUK 

SEGMENTASI AUTOMATIK LUMEN KORONARI DALAM TOMOGRAPFI 

KOHEREN OPTIK INTRAVASKULAR 

ABSTRAK 

Tomografi koheren optik intravaskular (IVOCT) merupakan modaliti pengimejan 

yang biasa digunakan dalam penilaian penyakit koronari arteri semasa intervensi 

koronari perkutaneus (PCI). Segmentasi manual untuk menilai stenosis luminal daripada 

imbasan tarik balik OCT merupakan satu proses yang mengambil masa yang lama 

kerana setiap tarik balik mengandungi ratusan imej keratan rentas. Segmentasi sebegini 

adalah sukar dan terdedah kepada kebolehubahan antara pemerhati. Perkara ini adalah 

disebabkan oleh intensiti imej yang tidak seragam, residu darah, kepelbagaian stent, 

ketidakseragaman bentuk lumen, artifak imej, dan percabangan arteri. Objektif kajian 

ini adalah untuk mempermudahkan penilaian kuantitatif stenosis koronari arteri semasa 

PCI dengan membangunkan rangka kerja segmentasi automatik untuk mengekstrak 

lumen daripada imej IVOCT dengan menggunaan rangkaian neural konvolusi (CNN). 

Cadangan kami adalah untuk menggabungkan regresi linear dan rangkaian neural 

konvolusi untuk mensegmen lumen melalui jarak radial daripada centroid kateter di 

dalam ruang polar. Segmentasi automatik ini telah ditanda aras dengan segmentasi 

manual oleh pakar. Algorithma segmentasi kami mencapai purata ketepatan lokasi 

dinding lumen sebanyak 22 mikron; 0.985 dan 0.970 dalam koefficien Dice dan index 

persamaan Jaccard masing-masing apabila dibandingkan dengan segmentasi manual 

piawaian emas. Purata ralat mutlak anggaran keluasan luminal adalah 1.38% dan kadar 

pemprosesan adalah 40.6 ms setiap imej. Tambahan pula, kajian kebolehubahan antara 

pemerhati juga dijalankan dan hasilnya menunjukkan bahawa algorithma yang 

dicadangkan adalah hampir serupa dengan anggaran keluasan luminal oleh pakar. 

Kesimpulan kami adalah cadangan rangka kerja segmentasi kami berpotensi untuk 
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diperbadankan dalam aliran kerja klinikal dan mampu mempermudahkan penilaian 

kuantitatif saluran lumen dalam jangka masa intra-operasi. 

Kata kunci: rangkaian neural konvolusi, tomografi koheren optic, penyakit koronari 

arteri, segmentasi imej, saluran koronari. 
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CHAPTER 1: INTRODUCTION 

Cardiovascular disease is the leading cause of death globally (World Health 

Organization, 2014).  Atherosclerosis of the coronary artery disease results in 

remodeling and narrowing of the arteries that supply oxygenated blood to the heart, and 

thus may lead to myocardial infarction. Common interventional approaches include 

percutaneous coronary intervention and coronary artery bypass graft surgery (American 

Heart Association, 2017). The choice of treatment will vary depending on a range of 

clinical factors, including morphology of the vessel wall, and degree of stenosis as 

quantified by cross-sectional luminal area. 

In percutaneous coronary intervention, various imaging modalities can be used to 

assess coronary artery disease. One of these methods is intravascular optical coherence 

tomography (IVOCT). Using this imaging modality, in vivo rotary pullback imaging of 

human coronary arteries are performed whereby the optical fiber core in the catheter, 

which is positioned within the coronary lumen, undergoes rotation and translation to 

generate a sequence of images depicting internal structure of the arteries.  The rotary 

pullback images acquired subsequently undergo image segmentation for analysis. The 

analysis is important to quantify the mechanism and nature of coronary artery diseases 

and identify the most appropriate treatment methods. 

1.1 Problem statements 

One of the features of interest that can be extracted from IVOCT image is the 

coronary lumen. Delineation of the vessel lumen in IVOCT images enables 

quantification of the luminal cross-sectional area. Such delineation has also been used 

as the first step towards plaque segmentation (Bengio, Goodfellow, & Courville, 2015; 

Celi & Berti, 2014) and the assessment of stent apposition (Adriaenssens et al., 2014). 

However, manual delineation is impractical due to the high number of cross-sectional 
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scans acquired in a single IVOCT pullback scan, typically >100 images. Automatic 

delineation of the lumen wall is challenging for various reasons. Non-homogenous 

intensity, blood residue, the presence and absence of different types of stents, irregular 

lumen shapes, image artifacts, and bifurcations are some of these challenges (Guillermo 

J. Tearney et al., 2012). 

1.2 Objectives 

The main objectives of this study are  

• to facilitate quantitative assessment of coronary artery stenosis and stent 

placement by developing a fully automatic segmentation framework to 

extract coronary lumen from optical coherence tomography images.  

• to investigate the feasibility and performance of using the linear-regression 

CNN to segment lumen of the coronary arteries for facilitating stenosis 

grading 

• to provide a more accurate and robust segmentation of lumen for coronary 

artery disease diagnosis in wide spectrum of clinical OCT  

In this study, a novel method of coronary lumen segmentation using a linear-

regression convolutional neural network (CNN) was proposed. The algorithm was 

tested on in vivo clinical images and assessed against gold-standard manual 

segmentation. This is the first use of a linear-regression CNN approach to the automated 

delineation of the vessel lumen in IVOCT images.  

1.3 Thesis Outline 

This thesis is organized as follows: in Chapter 1, the general overview, problems, 

objectives and study proposal were presented; in Chapter 2, the background and review 

previous works by other researchers related to the field of study, methods and 
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techniques were described; in Chapter 3, methodology employed to develop and 

implement a linear-regression convolutional neural network was described; in Chapter 

4, the results and statistics of our neural network training and predictions, benchmarked 

against interobserver variability of manual segmentation were presented; in Chapter 5, 

the discussions pertaining to the results obtained, potential clinical impact and 

limitations of such approach were elaborated; and lastly, in Chapter 6, the conclusions 

of the study were stated and the potential future work was briefly described. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Cardiovascular disease and Coronary Artery Disease 

Cardiovascular disease, more commonly known as heart disease is attributed as the 

global leading cause of death for both men and women according to the World Health 

Organization (WHO) (World Health Organization, 2014).  

Coronary artery disease, a variant of cardiovascular disease, is defined as the 

narrowing of the blood vessels that supply oxygenated blood to the heart. Such 

narrowing is also known as stenosis. Stenosis is caused by atherosclerosis, resulting 

from the formation of a plaque within the vessel. Plaques are build-ups of various 

biological components which include fatty tissues, cholesterol, calcium, macrophages 

and smooth muscle cells. Atherosclerotic plaques can be histologically classified into 

fibrous, fibro-calcific and lipid-rich (Yabushita et al., 2002). Vulnerable plaques are 

plaques with high tendency to rupture and cause a massive thrombosis leading to a 

myocardial infarct or a heart attack (Castelli, 1998). These vulnerable plaques are 

usually lipid-rich and lack support components to hold its cellular components. The 

determination of plaque vulnerability is based on the core size of the plaque, cap 

thickness, and cap inflammation and repair (Kristensen, Ravn, & Falk, 1997).  

Treatment options vary depending on the necessity and severity of the disease. Some 

treatment options for coronary artery disease are percutaneous coronary intervention 

(PCI) which is more commonly known as angioplasty, and coronary artery bypass graft 

surgery (American Heart Association, 2017). In PCI, a stent is inserted into the 

narrowed region of the artery. Stents are mesh tubes inserted into the blood vessel to 

sustain an opening in a previously obstructed passage, which in this case is the artery. 

Coronary artery bypass grafting is a medical procedure that uses grafts, i.e. vessels from 

other parts of the body, to create an alternative passageway for blood flow around the 

blocked artery. PCI has some advantages over bypass graft surgery. PCI is considered 
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less invasive, has shorter procedure duration and usually requires only an overnight stay 

at the hospital. In contrast, bypass graft surgery is more invasive as it requires arteries or 

veins from other parts of the body and the number of bypass is determined by the 

number of blocked coronary arteries as well as requiring a longer stay in the hospital. 

Nevertheless, these treatments are aimed to improve blood flow through blocked artery, 

to reduce the risk of heart attack and to improve the ability for an individual for physical 

activity.  

The diagnosis and assessment for the treatment of coronary artery disease are 

performed by clinicians or cardiologists using various medical technologies. The 

assessment involves the determination of plaque vulnerability in coronary artery 

disease. To qualitatively and quantitatively assess plaque vulnerability and coronary 

artery disease, different imaging modalities are used. This will be discussed in the 

following section. 

 

2.2 Imaging modalities of coronary artery disease assessment 

Imaging modalities are medical technologies employed by clinicians to aid in 

visualizing the interior of the body for diagnosis and treatment recommendation. There 

are various types of imaging modalities which are used for the visualization of coronary 

artery. These include X-ray angiography, computed tomography coronary angiography 

(CTA), cardiac magnetic angiography imaging (CMR) (Dowsley et al., 2013), 

intravascular ultrasound and intravascular optical coherence tomography. 

2.2.1 X-ray angiography  

The most commonly and widely accepted method for PCI is conventional X-ray 

angiography and it is considered the gold standard for the assessment of coronary artery 

disease (De Franco & Nissen, 2001). X-ray angiography produces a two-dimensional 

projection image of the contrast filled vessel. This modality requires the use of x-ray 
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radiation and contrast agent for vessel visualization. The images generated are in planar 

form with images of different arteries overlapping one another (Figure 2.1).  

Despite being used as the predominant imaging modality, there are inherent 

limitations associated with X-ray angiography. These include the limited resolution and 

quality of imaging leading to the limited accuracy in assessing the volume of plaque 

build-up in the arteries. The limitation is associated with the mechanism of X-ray 

angiography whereby only the shape of the contrast-filled vessel lumen is visualized, 

excluding the imaging of the volume of plaque on vessel wall.  This consequently limits 

detailed understanding of the disease morphology to support decision making process in 

diagnosis and treatment. Other limitations include the qualitative interpretation of X-ray 

angiography images which is subject to inter-observer variability, and the risks with the 

use of ionizing radiation (Budoff, Achenbach, & Duerinckx, 2003).  

 

Figure 2.1: An image of a X-ray angiogram (Auricchio, Conti, Ferrazzano, & 

Sgueglia, 2014). 

 

2.2.2 Computed tomography (CTA)  

Computed tomography (CTA) is generally used to for anatomic assessment. Similar 

to X-ray angiography, CTA is able to show blockage of the arteries when a contrast 

agent is introduced into the arteries. CTA works by taking multiples images and 
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reconstruct them in three dimensions to evaluate the heart and coronary arteries. Due to 

its high sensitivity, it can be subjected to an overestimation in diagnosing stenosis with 

high calcium content. However, the major disadvantage of CTA is patient exposure to 

radiation and the use of iodinated contrast (Dowsley et al., 2013). In addition, this 

imaging modality is limited in terms of its ability to visualize plaque structure, volume 

and composition. 

 

2.2.3 Cardiac Magnetic Resonance Imaging (CMR)  

CMR is excellent to assess structural information of the artery.  CMR also has 3D 

capabilities to allow assessment of coronary artery in various anatomical planes. 

However, CMR cannot be used in patients with recent stent placement in the artery 

(Budoff et al., 2003) or with a cardiac pacemaker implanted. The advantage of CMR is 

it does not use ionizing radiation. However, it is inferior in terms of imaging resolution 

as compared to CTA (Dowsley et al., 2013).  

 

2.2.4 Intravascular Ultrasound (IVUS) 

Another imaging modality used for the assessment of coronary artery disease is 

intravascular ultrasound (IVUS). IVUS is an invasive imaging modality whereby a 

catheter containing an ultrasound transducer is inserted into the artery. IVUS uses high 

frequency ultrasound to image the vessel wall and its internal structures including 

atheroma distribution, the compositions of plaque, and to assess vessel vascular 

response (De Franco & Nissen, 2001). Using IVUS, the three layers of the lumen wall, 

i.e. intima, media and adventitia can be visualized. In a normal coronary artery as shown 

in Figure 2.2(a), each layer is distinguished according to contrast of the bands displayed 

as seen in Figure 2.2(b). (De Franco & Nissen, 2001) also cited the advantages of IVUS 

compared to X-ray angiography, whereby IVUS is able to perform a 360° interior 
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visualization of the vessel wall layers, therefore the ability of IVUS to evaluate the 

severity of diseased atherosclerotic tissues in the coronary vessels. Furthermore, 

(Nissen, 2001) states that IVUS has better potential to identify vulnerable plaques and 

provide an approximate thickness of fibrous caps, as well as having the potential to 

visualize changes in plaque volume. IVUS has been used in complementary with X-ray 

angiography in clinical PCI to enhance the assessment of CAD. 

 

Figure 2.2: (a) Normal coronary artery visualized using IVUS. (b) A segment of 

showing layers of the coronary artery wall. The intima is the white stripe indicated 

by the black arrows. The media is indicated by the black sonolucent band beyond 

the intima. The adventitia is indicated by the bright white area beyond the media 

(De Franco & Nissen, 2001). 

IVUS permits the measurement of lumen cross-sectional area, media-adventitia area, 

the maximum and minimum intimal thickness, and the percentage of narrowing in the 

vessel (De Franco & Nissen, 2001). However, there are some limitations in IVUS. 

IVUS is insufficient to image and diagnose certain vascular features in CAD such as 

thrombus, lipid pools, calcium, and fibrotic tissues due to its lower resolution (Prati et 

al., 2010). In addition, insertion of the catheter into the blood vessel has the potential to 

cause trauma to the vessel wall. 
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2.3 Optical coherence tomography  

Intravascular OCT is an alternative imaging modality for plaque assessment which, 

like IVUS, is deployed through intravascular insertion of an imaging probe. The 

mechanism of how OCT captures the image is analogous to ultrasound, except that OCT 

uses near-infrared light, at a wavelength of approximately 1μm, instead of sound waves.  

The cross-sectional images are two-dimensional (2D) and they are generated through 

low-coherence interferometry, which allows calculation of the level of optical 

backscatter at different depths in the internal tissues (Huang et al., 1991). In coronary 

artery OCT imaging, these internal tissues are the plaques and vessel wall. 

OCT studies have shown that this modality has some advantages over IVUS. OCT 

has approximately 10 times higher imaging resolution of approximately 15 – 20μm 

compared to IVUS at approximately 100 – 200μm. At this resolution scale, OCT is able 

to image the normal vessel wall as a layered architecture consisting of intima, media 

and adventitia (Figure 2.3), while IVUS could hardly distinguish the boundary of intima 

and media if the thickness of the intima is less than 180 μm. OCT also allows the 

detection of thrombus and differentiation between red and white thrombi (Mauri et al., 

2005), although non-protruding red thrombi may be sometime mistaken for necrotic 

lipid pools at such resolution (Prati et al., 2010). OCT is superior to IVUS in classifying 

lipid plaques but is limited in total lipid pool area measurement due to the limited 

penetration depth of OCT (Kume et al., 2006). OCT has penetration depth of 

approximately 1-2.5mm as compared to IVUS which has penetration depth of 

approximately 10mm (Prati et al., 2010). 
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Figure 2.3: Normal artery wall comprising of the intima, media and adventitia 

visualized using intravascular OCT (Guillermo J. Tearney et al., 2012). 

To carry out scanning, the light emitted from the laser source of the OCT system is 

separated into two optical paths. One is directed to the tissue through the sample arm 

while the other is directed to a predetermined distance and reflected back from a mirror 

in the reference arm. The light beams from both arms are subsequently combined and 

their interference allow for a calculation of the level of optical backscatter at different 

depths in the tissue.  There are two main types of OCT systems: Time-Domain OCT 

(TD-OCT) and Fourier-Domain OCT (FD-OCT) as shown in Figure 2.4. In the TD-

OCT system, a broadband light source is used and the distance travelled by light in the 

reference arm is mechanically scanned by a moving mirror for depth gating. In contrast, 

in swept-source OCT, which is a common implementation of FD-OCT, a fast-tunable 

laser source is used and the length of the reference path remains fixed. The level of 

optical back-scatter at different depths along the sample path for this system is 

calculated through the use of Fourier Transform (Bezerra, Costa, Guagliumi, Rollins, & 

Simon, 2009). Both systems have been used in OCT studies pertaining to coronary 
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artery disease. FD-OCT allows more rapid scanning, as it avoids the limitation of 

needing to physically move a mirror in the reference light beam path. 

 

     

Figure 2.4: Scheme of TD-OCT (top) and FD-OCT (bottom). From (Bezerra et 

al., 2009) 

Entire cross-sectional OCT images are acquired through a full revolution of a 

rotating imaging probe within the coronary artery, yielding multiple axial scans (A-

lines) as seen in Figure 2.5. This image is also called a polar image, which is 
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represented in the polar coordinate system. A B-scan image is the cross-sectional image 

which is a rendering of the sequence of adjacent axial scans with a fixed reference point 

which is usually the center of the imaging probe encased within a catheter shown in 

Figure 2.5. 

 

Figure 2.5: A B-scan (left) and an axial scan of an OCT image (right). From 

(Wang et al., 2013). 

The interpretation of OCT images can be performed based on a standard compiled by 

the International Working Group for Intravascular OCT Standardization and Validation 

(Guillermo J. Tearney et al., 2012). This documentation compiles the standards for all 

characterization of various tissue features related to CAD, defines the qualitative 

properties of tissues, and defines the quantitative measurements for OCT image 

analysis.  

Early studies performed by (Patwari et al., 2000) showed the ability of OCT to 

visualize coronary plaques present in the tissue of artery vessels at microscopic level. 

By analyzing tissue optical properties, OCT can be used to differentiate composition of 

plaques such as fibrous plaque, macro calcification, lipid pools and fibrous cap (Jang et 

al., 2002). The authors of this study compared the findings with histology and IVUS and 

concluded that OCT is capable of identifying most features detected by IVUS. (Kume et 

al., 2006) found that OCT had a higher sensitivity of 85% compared to 59% by IVUS in 
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characterizing lipid rich plaques. These works indicate the feasibility and ability of 

using OCT as an alternative to the methods available to assess CAD. However, the 

article also acknowledges the limitations and some disadvantages of OCT such as the 

limited tissue penetration which does not allow the accurate estimation of large plaque 

sizes. 

OCT is also used in quantifying and visualizing in-stent restenosis post-stent 

implantation. Being able to do so is an important factor in understanding the mechanism 

of in-stent restenosis using drug-eluting stents and (Gonzalo et al., 2009) demonstrated 

the ability of OCT to delineate different patterns of restenotic tissues post-stenting. 

Their quantitative study involved parameters such as the length of stenotic segment, 

minimum lumen diameter and percentage measurement of stenosis while the qualitative 

study involves the classification of the types of restenosis tissues. OCT was shown to be 

able to visualize details of lumen shape and the components of the tissues in restenosis. 

2.3.1 Segmentation of optical coherence tomography  

Image segmentation is the process of extracting structures from an image, typically 

by labeling parts of the image into distinct categories. Features present in OCT images 

of coronary artery include atherosclerotic plaques, thrombus, stents and wall layers 

(Guillermo J. Tearney et al., 2012). Some clinically relevant measurements that are 

indicative of the severity of coronary disease and performed in coronary OCT 

segmentation includes lumen dimensions, area of coronary plaques, area of restenosis, 

and stent apposition measurements (Guillermo J. Tearney et al., 2012). 

In current clinical application, manual assessments are employed by clinicians to 

assess OCT images of coronary artery disease cases. Assessment based on manual 

tracing by human experts to identify the features previously mentioned from slice to 
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slice is very time consuming and subject to inter-observer variability. Automatic 

segmentation, which uses algorithms designed to automatically extract the features of 

interest, is therefore desirable to aid segmentation of pullback scans consisting of 

hundreds of cross-sectional images during surgical operation.  

Various methods have been developed to automatically delineate features in the 

coronary vessel wall, including the lumen, which is assessed when attempting to 

quantify the extent of stenosis by means of the luminal area (Celi & Berti, 2014; 

Gonzalo et al., 2009). (Kai-Pin, Wen-Zhe, De Silva, Edwards, & Rueckert, 2011) 

performed a study on lumen segmentation from IVOCT images using a combination of 

Expectation-Maximization (EM) and graph-cut based segmentation algorithms. Their 

method initially clustered the image pixels based on K-means, followed by processing 

them through an Expectation-Maximization (EM) algorithm to generate Gaussian 

mixture models used to threshold the intensity values. Once the image was thresholded, 

a graph-cut algorithm was implemented to estimate the boundary of the vessel wall. 

Graph-cut algorithm  performs segmentation based on the minimization of energy 

function and  a foreground or background label is assigned to each pixel (Boykov & 

Jolly, 2001). The guide wire shadow artifacts were subsequently removed using a 

convex hull approach, and the lumen border contour was corrected and smoothed using 

active contours. 

(Celi & Berti, 2014) developed a semi-automated method to perform in-vivo 

quantitative analysis of the plaque components by employing two groups of hierarchical 

flow in searching for the desired region of the vessel tissue shown in Figure 2.6. Each 

hierarchical flow contains a series of systematic steps that the images undergo. Their 

approach provides segmentation of the lumen, fibrous plaques, fibro-calcific plaques, 

and lipid plaques. For their lumen segmentation, a set of radial lines were projected 
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from the center of the catheter outwards on a binary OCT image previously threshold 

using the Otsu’s method (Otsu, 1975). The vessel lumen boundary is determined at the 

intersection points of the radial lines and the boundary of the binary image between the 

lumen and vessel tissue. These points are then smoothed and connected using a 

Savitzky-Golay filter resulting in a lumen vessel contour. The Savitzty-Golay filter 

works by smoothing out noisy signals through polynomial regression. Fibrous plaques, 

by contrast, are determined using a decorrelation stretch and a median filter yielding a 

binary image by delineating signal-rich homogeneous areas. Fibro-calcific plaques are 

segmented semi-automatically, with the user manually inputting the region to search. 

The calcific region is then defined as the subtraction of convex hull of the fibrous region 

of the tissue with the areas of lumen and fibrotic tissue. Lastly, lipid plaques are 

automatically segmented based on homogenous low-signal intensity regions. Tissue 

measurements were performed by calculating the difference between the pair of points 

of the A-lines. 
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Figure 2.6: Image processing framework proposed by (Celi & Berti, 2014). 

Mathematical splines have also been used in the development of automated OCT 

segmentation. Splines are piecewise-defined polynomial functions. (Gurmeric, Isguder, 

Carlier, & Unal, 2009) defined the lumen segmentation by initializing and propagating a 

Catmull-Rom spline algorithm. Catmull-Rom spline is an interpolating spline with four 

polynomial blending functions defined by controls points located on the spline contour. 

The splines were initiated from the center of the image outwards to the lumen boundary 

and terminated using an edge-based active contour framework at the desired boundaries. 

This is part of their methodology to develop a three-dimensional automated 

computational method for in-stent neointimal hyperplasia. 
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Computer-aided segmentation has also been developed to detect stent struts from 

OCT images. Struts are the parts that form the framework of the stents. As described by 

(Guillermo J. Tearney et al., 2012), stents, which are usually metal in nature, have an 

opaque property blocking the OCT light from passing through them yielding a shadow 

behind the strut. Pixel intensities and gradient of intensities of the OCT image have 

been used for detecting and segmenting stent struts by (Giovanni Jacopo Ughi et al., 

2012) and (Wang et al., 2013). Both research groups developed their methods for such 

detection utilizing A-scan intensity profiles of the OCT images. The method by 

(Giovanni Jacopo Ughi et al., 2012) measures the apposition of the metal stents with the 

vessel wall while the study by (Wang et al., 2013) focuses only on metal stent detection. 

These two studies take the advantage of intensity profiles with relation to the bright 

spots and trailing shadow of the A-scans present in the image for the segmentation task.  

Specifically, (Giovanni Jacopo Ughi et al., 2012) developed a semi-automatic 

algorithm to calculate the differences in intensity profiles of the A-lines of the OCT 

image based on a binary or a-priori input by a user to determine the type of struts 

assessed which is either apposed or covered. Their goal was to evaluate the stent strut 

apposition and neointimal coverage post-stenting. This method uses the gradient of the 

intensity profile of the bright pixels of the struts against the trailing dark region of the 

shadow. As such, the authors classified each intensity profile into four different 

properties that would be quantified: 1) intensity of peak from each A-line, 2) the 

presence of shadow, 3) the length of the shadow, and 4) the rate of change of rise and 

fall of energy as a function of depth. Based on these properties, the A-lines are 

classified either to contain a strut candidate or a region with tissue based on the pixel 

intensity gradient computed based on a certain threshold.  
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(Wang et al., 2013) demonstrated a similar approach,  using intensity gradient to 

calculate the intensity profiles.  The authors of that study employed a shadow detection 

method to determine the edges of the trailing shadow of the struts using kernels and 

clustering of candidate pixels. However, the method of clustering the pixels of the 

shadow edge can be prone to false positives such as detecting the shadow of the 

guidewire, although this can be reduced by careful selection of threshold values. 

Clustering algorithms, such as those used in that work, also can have issues as image 

quality varies. Clustering algorithms will typically define clusters so as to minimize the 

squared Euclidean distance between the data points and the cluster centers.  The 

limitation of this method is when there is little to no trailing shadow behind the struts 

making it impossible for the algorithm to detect. In addition, this method is not feasible 

in cases of low quality images with a trailing shadow and the absence of bright spots. 

Methods by both (Wang et al., 2013) and (Giovanni Jacopo Ughi et al., 2012) therefore 

may work well on the task of segmenting metal stent struts. However, the techniques are 

unlikely to work on bioresorbable stent struts which neither appears as bright spots in 

the image nor causes trailing shadow. 

(G. J. Tearney et al., 2003) demonstrated that OCT is capable of quantifying the high 

intensity signal in fibrous cap which could potentially be rich with macrophages. The 

study was performed on cadavers with co-registration to histology. (Phipps et al., 2015) 

developed an algorithm to quantify these areas of high intensity and compare against 

histological examination. Normally, areas of high backscatter in intravascular OCT are 

usually associated to stents struts (Giovanni Jacopo Ughi et al., 2012; Wang et al., 2013) 

or the regions close to lumen vessel boundary. The intensity diminishes deeper into the 

tissue. Therefore, (Phipps et al., 2015) plotted a graph of A-scan intensities against 

tissue depth. Any plot of pixel intensity that is outside of the region of the stents and is 

deeper in the vessel tissue than the blood-tissue boundary has a higher probability to be 
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labeled as macrophage-rich plaque. The results were compared with histology 

examination and four different statistical analyses were performed by expert IVOCT 

readers. Their results indicated macrophages was present in 23% of the high backscatter 

regions. (Phipps et al., 2015) concluded that not all regions of high backscatter are 

caused by macrophages and that a better algorithm development is required. 

Several studies (De Cock, Tu, Ughi, & Adriaenssens, 2014; Slager et al., 2000; 

Guillermo J. Tearney et al., 2008) have proposed the value of performing segmentation 

on 3D OCT data sets. The validation methods by the studies discussed included manual 

human assessment, which is considered a standard procedure (Celi & Berti, 2014; Kai-

Pin et al., 2011; Phipps et al., 2015; Giovanni Jacopo Ughi et al., 2012; Wang et al., 

2013) and some with histology examination (Phipps et al., 2015; G. J. Tearney et al., 

2003). Phantom validation can be used but there is a limitation in this method as it lacks 

standardized phantoms that can be used as a reference (Celi & Berti, 2014). 

In terms of lumen segmentation involving IVOCT images, there have been very 

limited studies that focus on the segmentation of pre-stented lumens. In addition, there 

is no robust study that has shown the feasibility of a segmentation algorithm to perform 

pre- and post-stented segmentation. The post-stenting assessment is crucial in PCI 

assessment as these images could provide vital information on the quality of stent 

placements and the amount of restenosis during follow-up scans. Therefore, this has 

motivated the current research to explore robust algorithms to segment the extensive 

variations of lumens in IVOCT images acquired in a real clinical setting. 

2.4 Neural networks  

Artificial neural networks (ANN) are a mathematical model inspired by neurons in 

the human brain, in terms of how they organize and relay information to generate a 
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certain output.  A neural network model generates a non-linear function based on a set 

of training examples. Given a training set, an artificial neural network algorithm is able 

to learn to fit a set of derived parameters. The general structure of a neural network is 

composed of multiple layers, including an input layer, hidden layers and an output layer. 

The number of hidden layers is user-defined and dependent on the complexity of the 

system (Amato et al., 2013). The more hidden layers there are, the more features that 

can be learned but usually with the cost of increased processing and computation time. 

A general artificial neural network is shown in Figure 2.7. Neural networks are capable 

of performing either binary or multiclass classifications. 

 

Figure 2.7: General structure of a neural network with two hidden layers. Wij 

indicates the weights of the link between layers (Amato et al., 2013). 

  

The general advantages of neural network are that they are capable of processing 

complex non-linear relationships; and are capable of detecting the relationships between 

all input variables. They can be developed using different training algorithms with the 

most common one being variants on the backpropagation algorithm (Tu, 1996).  
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Limitations of artificial neural network include that it is difficult to determine and 

identify causal relationship; and that inaccuracies may arise due to over fitting (Tu, 

1996). Over fitting is prone to occur if training sample size is too small or prediction is 

performed on data set with characteristics vastly different from the training set. 

2.4.1 Background and intuition of neural networks 

Deep learning is a type of machine learning algorithm utilizing artificial neural 

networks. The general process how an ANN works is by processing input features 

through a multi-layered network. This network is parameterized by a collection of 

weights and biases. Weights and biases are sets of learnable values that dictate the 

mapping from layer to layer. These weights and bias values are optimized by 

minimizing a loss function through a process called training. One common loss function 

used is the standard Mean Squared Error between the desired output and the current 

output for a given training input. Mathematically, the loss function in neural networks 

can be described as follow (Eq(2.1)): 

MSE𝑡𝑟𝑎𝑖𝑛 =  
1

𝑁
Σ𝑖=1

𝑛 (�̂�𝑡𝑟𝑎𝑖𝑛 −  𝑦𝑡𝑟𝑎𝑖𝑛)2 ,   Eq (2.1) 

where  
1

𝑁
Σ𝑖=1

𝑛  is the mean, �̂�  is the desired output, and y is the predicted output.  

The partial derivatives of the loss function with respect to the parameters of the 

network are then determined and accumulated. In each iteration, the parameters are 

changed such that the improvement in the loss function is maximized using gradient 

descent algorithm. Through this process, the training inputs are mapped to known target 

output values. This process is repeated until convergence, i.e. a desired minimal loss 

value is obtained. 
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Convolutional neural networks (CNN) work similarly to a traditional ANN except 

that convolutional filters are applied to the input of each layer instead of a general 

matrix multiplication (Goodfellow, Bengio, & Courville, 2016). Each layer that is 

convolved by the convolutional filters is known as the convolutional layers. The 

convolutional filters, also known as kernels, serve to extract features from input by 

sliding across the input with a pre-determined stride. Stride is the distance the filter is 

being translated over a particular input vector. As it moves over an area, it performs the 

convolution operation of the information within filter’s area. Since a filter has a pre-

determined size, padding of pixels valued at zero can be added to allow the filter to 

include the information located at the boundary of an input.  

Since convolutional filters yield linear outputs, some form of non-linearity has to be 

introduced. This is accomplished in the activation layers step and exponential linear 

units (ELUs) are one type of activation functions that could be applied (Clevert, 

Unterthiner, & Hochreiter, 2015). The use of ELUs is to address the vanishing gradient 

problem that can arise in achieving the desired minimal value in gradient descent. As 

the gradient reaches the minimal point, the slope becomes smaller and can result in very 

slow learning of weights. Vanishing gradient is a problem presented if other activation 

functions such as the tanh or sigmoid activation functions are used. ELUs can speed up 

the learning process during training. 

Pooling can also be introduced into the network to subsample the inputs so that they 

are more manageable and makes the network identify representations that are invariant 

to small translations (Goodfellow et al., 2016). This means that the network is still able 

to identify features that differ slightly at a lower computational cost through learning of 

subsampled inputs. Even with the reduced image information, with pooling, the best 

representation of the input information is retained. One common example would be 
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Max Pooling. This method takes a filter of a determined size, usually 2x2 and 

downsample the particular region by taking the maximum value within the rectangular 

convolved filter to be output. After pooling, the process of passing through a new 

convolutional filter can either be performed again or the inputs are passed to the fully 

connected layers, which have the architecture similar to a generic neural network and 

contain the weights and biases as parameters to be optimized during training.  

With the ability to recognize patterns in a set of data, neural networks have been used 

to predict coronary artery stenosis (Mobley, Schechter, Moore, McKee, & Eichner, 

2000) and to detect blood vessels in angiograms (Nekovei & Ying, 1995). Both studies 

utilized a three-layer conventional generic neural network rather than the more 

advanced, newly emerging convolutional neural network. 

2.5 Optical coherence tomography and convolutional neural networks 

Convolutional neural networks have been utilized in image segmentation tasks in 

both medical and non-medical fields. In the medical field, deep-learning methods have 

been used to automatically segment OCT images of macular edema in human eyes (Lee 

et al., 2017). Their method applies the learning mechanism of CNNs to detect 

intraretinal fluid on 1289 OCT images. In other retinal OCT studies, deep learning has 

also been used to perform segmentation tasks such as segmenting foveal 

microvasculature (Bengio et al., 2015) and retinal layers (Fang et al., 2017). 

In other medical fields, deep learning was used to segment brain tumor using the 

2013 BRATS test data-set (Havaei et al., 2017). The segmentation was performed using 

a CNN architecture that accounts for both local features and global contextual features 

simultaneously. CNN was also used to classify lung image patches in interstitial lung 

disease (Li et al., 2014), head and lung cancer using hyperspectral imaging (LeCun, 

Bottou, Bengio, & Haffner, 1998), and arterial segmentation in patients with Kawasaki 
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disease (Abdolmanafi, Duong, Dahdah, & Cheriet, 2017). However, all these image 

segmentation tasks performed segmentation using CNN through feature classification 

approach, where the network is trained to classify each pixel in the input image into one 

of several classes.  

Alternatively, instead of a feature classification approach, a regression approach can 

be used to train the neural network. A recent study utilizing linear-regression CNN was 

shown to outperform conventional CNN classification approaches in left ventricle 

segmentation (Tan, Liew, Lim, & McLaughlin, 2017). In this study, the radial distances 

between the left ventricle centrepoint and the endo- and epicardial contours in polar 

spaces were inferred using linear regression CNN. 

2.6 Summary 

Currently, CNN has already been used to segment tissue in coronary arteries but via 

feature classification approach (Abdolmanafi et al., 2017). Segmentation of lumen from 

OCT images has neither been demonstrated via CNN approach nor using the linear-

regression CNN model. Therefore, this research aims to investigate the feasibility and 

performance of using the linear-regression CNN to segment lumen of the coronary 

arteries for facilitating stenosis grading. This method could potentially provide more 

accurate and robust segmentation of lumen for coronary artery disease diagnosis in wide 

spectrum of clinical OCT images as compared to published methods. 
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CHAPTER 3: METHODOLOGY 

3.1 IVOCT data acquisition and preparation for training and testing  

The data used for this study comprises IVOCT-acquired images of patients 

diagnosed with coronary artery disease. The IVOCT images were acquired from the 

University of Malaya Medical Center (UMMC) catheterization laboratory using two 

standard clinical systems: Illumien and Illumien Optis IVOCT Systems (St. Jude 

Medical, USA). Both systems have an axial resolution of 15 µm and a scan diameter of 

10 mm. The Ilumien system and the Ilumien Optis system have maximum frame rates 

of 100 fps and 180 fps, respectively. The study was approved by the University of 

Malaya Medical Ethics Committee (Ref: 20158-1554), and all patient data were 

anonymized. 

In total 64 pullbacks were acquired from 28 patients (25%/75% male/female, with 

mean age 59.71 (±9.61) years) using DragonflyTM Duo Imaging Catheter with 2.7 F 

crossing profile when the artery was under contrast flushing (Iopamiro® 370). The 

internal rotating fiber optic imaging core performed rotational motorized pullback scans 

for a length of 54 mm or 75 mm in under 5 sec. These scans include multiple pre- and 

post-stented images of the coronary artery at different locations. These pullbacks were 

randomly assigned to one of two groups with a ratio of 7:3, i.e. 45 pullbacks were 

randomly designated as training sets and the remaining 19 as test sets. Excluding images 

depicting only the guide catheter, each pullback contains between 155 to 375 polar 

images. These images contain a heterogeneous mix of images with the absence or 

presence of stent struts (metal stents or bioresorbable stents or both), fibrous plaques, 

calcified plaques, lipid-rich plaques, ruptured plaques, thrombus, dissections, motion 

artifacts, bifurcations and blood artifacts. The original size of each pullback frame was 

984 × 496 pixels (axial × angular dimension), and was subsampled in both dimensions 

to 488 × 248 pixels to reduce training and processing time. For each image, raw 
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intensity values were converted from linear scale to logarithmic scale before 

normalizing by mean and standard deviation. 

Gold-standard segmentations were generated on both training and test sets by manual 

frame-by-frame delineation using ImageJ (Schindelin, Rueden, Hiner, & Eliceiri) in 

Cartesian coordinates, according to the document of consensus (Guillermo J. Tearney et 

al., 2012), whereby a contour was drawn between the lumen and the leading edge of the 

intima. The contour was also manually drawn across the guidewire shadow and 

bifurcation at locations that best represent the underlying border of the main lumen, 

gauged by the adjacent slices. The manual contour of the lumen border for each image 

was subsequently converted to polar coordinates, smoothed and interpolated to 100 

points using cubic B-spline interpolation method for CNN training and testing. 

3.2 CNN regression architecture & implementation details  

Using linear-regression CNN model, in each polar image the radius parameter of 

the vessel wall was inferred at 100 equidistant radial locations, rather than the more 

conventional approach of classifying each pixel within the image. This has the 

advantage of avoiding the physiologically unrealistic results that may arise from 

segmentation of individual pixels. The lumen segmentation was parameterized in terms 

of radial distances from the center of the catheter in polar space.  

The general flow of the proposed CNN model is illustrated in Figure 3.1. Our 

network consists of a simple structure with 4 convolutional layers and 3 fully-connected 

layers, including the final output layer. All polar images were padded circularly left and 

right before being windowed for input. The window dimension was 488 ×128 pixels 

centered on each individual radial point, therefore yielding 100 inputs and 100 

evaluated radial distances per image. 
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Figure 3.1: Overview of the linear-regression CNN segmentation system (refer 

to text for details). 

The details of the network architecture are described in Table 3.1. In the network 

architecture, a filter kernel of size 5 × 5 × 24 with boundary zero-padding was applied 

for all convolutional layers, yielding 24 feature maps at each layer. In the first layer, a 

stride of 2 was also applied along the angular dimension to reduce computational load. 

The first three layers were also max-pooled by size 2 × 2. Each fully-connected layer 

contains 512 nodes. Exponential linear units (ELU) (Clevert et al., 2015)were used as 

the activation functions for all layers, including both convolutional and fully-connected 

layers, except the final layer. Dropout with keep probability of 0.75 was applied to the 

fully-connected layers FC1 and FC2, to improve the robustness of the network (Rokach 

& Maimon, 2005).  The final layer outputs a single value representative of the radial 

distance between the lumen border and the center of the catheter for the radial position 

being evaluated. 

The objective function used for the network training is the standard mean-squared 

error. Starting from a random initialization, the weight and bias parameters are 

iteratively minimized by calculating the mean squared error between the gold standard 

radial distance and the output of the CNN training. The Adam stochastic gradient 

algorithm was used to perform the optimization, i.e. minimization, of the objective  
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Table 3.1: Linear-regression CNN architecture for lumen segmentation at each 

windowed image. The output is the radial distance at the lumen border from the 

center of the catheter. CN: convolutional layer, FC: fully-connected layer. 

Layer  In  Weights  Pooling  Out 

CN1*  488×128×1  1×5×5×24  2×2  244×32×24 

CN2  244×32×24  24×5×5×24  2×2  122×16×24 

CN3  122×16×24  24×5×5×24  2×2  61×8×24 

CN4  61×8×24  24×5×5×24  -  61×8×24 

FC1  11712  11712×512  -  512 

FC2  512  512×512  -  512 

Out  512  512×1    1 

*A stride of size 2 was applied on the angular dimension to reduce computational load 

 

function (Kingma & Ba, 2014). The network was trained stochastically with a mini-

batch size of 100 at a base-learning rate of 0.005. The base learning rate was determined 

empirically (refer to Appendix A)(Bengio et al., 2015). The learning rate was halved 

every 50,000 runs. The training was stopped at 400,000 runs where convergence was 

observed (i.e. when the observed losses had ceased to improve for at least 100,000 

runs). The trained weights and biases of the network, amounting to approximately 6.3 

million parameters, are subsequently used to predict the lumen contour on the test sets.  

The neural network was designed in a Python (Python Software Foundation, 

Delaware, USA) environment using the TensorFlow v1.0.1 machine learning 

framework (Google Inc., California, USA). The execution of the network was 

performed on a Linux-based Intel i5-6500 CPU workstation with NVIDIA GeForce 

GTX1080 8GB GPU. The training time for 45 train sets was 13.8 hours and the 

complete inference time for each test image was 40.6 ms. 

3.3 Validation 

The accuracy of our proposed linear-regression CNN lumen segmentation was 

validated against the gold standard segmentation of the test data pullback acquisitions, 
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which were the aforementioned 19 manually delineated pullbacks. These pullbacks 

contain in total 5685 images. The accuracy was assessed in three ways: (1) on a point-

by-point basis via distance error measure; (2) in the form of binary image overlaps and 

(3) based on luminal area.  

The first assessment involves point-by-point analysis on the 100 equidistant radial 

contour points from all images, whereby the mean absolute Euclidean distance error 

between the gold standard and predicted contours was computed for each image.  

The second assessment was performed to evaluate the regions delineated as lumen. 

The amount of overlap between the binary masks as generated from the predicted 

contours and the corresponding gold standards were computed using the Dice 

coefficient and Jaccard similarity index.   

The third assessment targeted at the luminal area, which is one of the clinical indices 

to locate and grade the extent of coronary stenosis for treatment planning. Luminal area 

was computed from the binary mask produced from the predicted contours and 

compared against the corresponding gold standard. A 1-tailed Wilcoxon signed ranks 

test was also performed on the errors of the estimated luminal areas at significance level 

of 0.001. Three-dimensional surface models of the lumen wall were also generated for 

all pullbacks to facilitate visual comparison of the segmentation by manual contouring 

and by automated contouring using the proposed CNN regression model. 

3.4 Dependency of network performance on training data quantity 

To understand the dependency of the network performance to the amount of training 

data required, the variation in accuracy of the 19 test pullbacks was assessed against 

different numbers of training data sets. Tests were performed with 10, 15, 20, 25, 30, 

35, 40 and 45 pullbacks. The training pullbacks for each group were selected randomly. 
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The number of training runs with different training sets was kept constant at 400,000 

runs, with a similar base learning rate and learning rate decay protocol. 

3.5 Inter-observer variability against CNN accuracy 

To quantify the allowable variation in segmentation, an experiment to assess 

variation in the manual gold standard was performed that would be generated by three 

independent observers.  

One hundred images were selected randomly from five pullbacks of the test sets and 

the lumen manually delineated by three independent observers. The interobserver 

variability was assessed through Bland-Altman analyses, consistent with Celi and Berti 

in their study on the segmentation of coronary lesions (Celi & Berti, 2014). Specifically, 

the signed differences between all possible corresponding pairs of luminal areas from all 

three observers were plotted against their mean area differences. Bland-Altman analyses 

were also performed on luminal areas evaluated by the CNN against the corresponding 

evaluation by all observers. These analyses provide an understanding of the total bias 

and limits of agreement (i.e. 95% confidence interval or 1.96×standard deviation of the 

signed differences from the mean) among all observers themselves as well as between 

the CNN and the observers.  
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CHAPTER 4: RESULTS  

4.1 Dependency of network performance on training data quantity 

The results assessing the impact of training data quantity on CNN accuracy are 

shown in Figure 4.1. The value reported here is the mean positional accuracy of each 

point along the vessel wall. There was notable improvement in CNN accuracy with 

increases in the training data quantity up until 25 training data sets. Beyond that, the 

mean absolute error per image varied little with increased data. However, the optimal 

CNN segmentation was obtained from training with the highest sample size, i.e. 45 

pullbacks consisting of 13,342 training images, as summarized in Table 4.1. At 45 

training pullbacks, the median of the mean absolute error per image as quantified using 

point-by-point analysis was 21.87 microns, whereas Dice coefficient and Jaccard 

similarity index were calculated as 0.985 and 0.970, respectively. 

 

Figure 4.1: Mean absolute error against different numbers of training data sets. 
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Table 4.1: Accuracy of CNN segmentation with 45 training pullbacks (n = 13,342). 

The values are obtained based on the segmentation on 19 test pullbacks (n = 5,685). 

Measure 
 Median  

(Interquartile range) 

Mean absolute error per image (point-by-point 

analysis), µm 

 21.87 (16.28, 31.29) 

Dice coefficient  0.985 (0.979, 0.988) 

Jaccard similarity index  0.970 (0.958, 0.977) 

 

Representative segmentation results are shown in Figure 4.2. Apart from performing 

well on images with clear lumen border contrast Figure 4.2(a), linear-regression CNN 

segmentation has shown robustness in segmenting images with inhomogenous lumen 

intensity (b), severe stenosis (c), blood residue due to suboptimal flushing (d)-(f), 

multiple reflections (g), embedded stent struts (h)-(i), malapposed metallic stent struts 

(j), malapposed bioresorbable stent struts (k), and minor side branches ((c), (i) & (l)). 

Acceptable lumen segmentation was found at the shadow behind the guide wire and 

metallic stent struts across all images. Errors were observed to occur most frequently at 

major bifurcations (angle spanning > approximately 90˚), where the appropriate 

boundary for segmenting the main vessel was ambiguous (Fig. 4.3 (c)-(d)). 72% of the 

100 worst performing segmentation were found to contain major bifurcations and, at 

these locations, overestimation of the area of the main vessels was noted. 

Based on the results obtained with the optimal training quantity (45 pullback data 

sets), the calculated luminal area estimates in all 19 test pullbacks, as tabulated in Table 

4.2. CNN segmentation yields median (interquartile range) luminal area of 5.28 (3.88, 

7.45) mm2 matching well with the results of manual segmentation of 5.26 (3.93, 7.45) 

mm2 (i.e. gold standard). The median (interquartile range) absolute error of luminal area 

was 1.38%, which is statistically significantly below 2% (p<0.001) as tested by the 1-

tailed Wilcoxon signed rank test. Figure 4.4 shows two representative examples of the 

3D reconstructed vessel wall from two different pullbacks for visual comparison of  
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Figure 4.2: Representative results from the test sets, showing good segmentation 

from linear-regression CNN on images with good lumen border contrast (a), 

inhomogenous lumen intensity (b), severe stenosis (c), blood swirl due to 

inadequate flushing (d)-(f), multiple reflections (indicated by yellow arrow) (g), 

embedded metallic and bioresorbable stent struts due to restenosis in (h) & (i) 

respectively, malapposed metallic stent struts (j), malapposed bioresorbable stent 

strut (k), and minor side branch (l). Blue and red contours represent CNN 

segmentation and gold standard, respectively. Scale bar (a) represents 500 

microns. 
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Figure 4.3: Representative cases from the test sets, showing reasonable lumen 

segmentation from linear-regression CNN on images with medium-sized 

bifurcations (a-b). Poorer results were seen at major bifurcations (c-d), where the 

appropriate boundary for segmenting the main vessel was ambiguous. Blue and 

red contours represent CNN segmentation and gold standard, respectively. Scale 

bar (a) represents 500 microns. 

 

Table 4.2: Luminal area in 19 test pullbacks with optimal training 

Method 
Median 

(Interquartile range) 

Luminal Area (mm2) 

         Manual segmentation area 

 

5.28 (3.88, 7.45) 

         CNN segmentation area 5.26 (3.93, 7.45) 

Percentage Errora (%) 

         Signed percentage error  

         Absolute percentage errorb 

 

0.06 (-1.24, 1.53) 

1.38 (0.63, 2.62) 
aNormalized by manual segmentation area 
bSignificantly below 2%, p<0.001 
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Figure 4.4: Reconstruction of vessel wall from two different pullbacks for visual 

comparison of CNN regression segmentation against the gold standard manual 

segmentation. Vessel walls (left and middle columns) are color-coded with cross-

sectional luminal area. Difference in luminal area is displayed on the right. All the 

axis is in mm and colorbar indicates luminal area in mm2. 

CNN regression (middle column) against gold standard manual (left column) 

segmentation.  The vessel wall was color-coded with the cross-sectional luminal area. 
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Difference in luminal area between CNN regression and gold standard segmentation are 

color-coded on the vessel wall on the right column. 

4.2 Inter-observer variability against CNN accuracy 

The Bland-Altman analysis between all three observers showed a bias (mean signed 

difference) of 0.0 mm2 and limits of agreement of ±0.599 mm2 in terms of luminal area 

estimation (Figure 4.5(a)). Comparing the CNN to all observers, the bias was 0.057 

mm2 and the variability in terms of limits of agreement was comparable at ±0.665 mm 

(Figure 4.5(b)). These results suggest that automated segmentation had sub-100 micron 

bias to over-estimate luminal area, and that the variation between automated and manual 

estimates of luminal area was only slightly greater than the inter-observer variability 

between human observers. 

 

Figure 4.5: Bland-Altman plot analysis of luminal area for all possible pair-

comparisons between different observers (a) and between CNN and observers (b) 

for the 100 randomly selected images from the test set. 

 

 

Univ
ers

ity
 of

 M
ala

ya



37 

CHAPTER 5: DISCUSSION  

Lumen dimension is an important factor in the optimization of percutaneous 

coronary intervention. This measure allows the clinician to localize and measure the 

length of lesions along the vessel wall before making an optimum selection of stent for 

deployment. It also allows one to indirectly assess the quality of stenting (i.e. based on 

total expansion of the narrowed artery) and is the first step towards quantifying the 

amount of stent malapposition. Misinterpretation of lesion location and length results in 

both clinical and financial consequences as additional stents are required for 

redeployment, and overlapping of multiple stents are often associated with increase 

incidences of restenosis, thrombosis and adverse clinical outcomes (Suzuki, 2014). 

Manually quantifying coronary lumen dimension from IVOCT images over the 

entire extent of the imaged segment is currently not clinically feasible in view of the 

number of sample images available per pullback (i.e. >100 images). Automatic 

segmentation is desirable but challenging due to the significant variety of image features 

and artifacts obtained in routine scanning, restricting the operation of most image 

processing algorithms to a specific subset of good quality images. Deep learning 

techniques have been shown to be more robust in a pool of heterogeneous input images, 

and this has also been demonstrated in our results (Tan et al., 2017). Our study 

represents the first study employing such a technique, combined with a linear regression 

approach, to the automatic segmentation of lumen from IVOCT images.  

The results showed a notable increase in CNN accuracy up to 25 training pullbacks, 

and incremental improvements thereafter. The median accuracy in luminal radius at 

each radial location, against a manual gold standard, was 21.87μm at optimal training 

with 45 training pullbacks, which is comparable to the OCT system's axial resolution 

(15μm). The median luminal area was marginally greater by manual segmentation in 
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comparison to CNN segmentation (i.e. 5.28 mm2 vs 5.26 mm2), yielding a median error 

of 1.38% (i.e. significantly <2% at p = 0.001). The CNN also has good limits of 

agreement against all observers (±0.665 mm2), which is comparable with the limit of 

agreement among all observers (±0.599 mm2). 

Published algorithms have required the prior removal of guide-wires or blood 

artifacts in the images as well as interpolation of output contours across bifurcation and 

guidewire shadow (Abdolmanafi et al., 2017; Celi & Berti, 2014; Prentašić et al., 2016; 

Ughi, Adriaenssens, Desmet, & D'hooge, 2012) in order to complete an accurate 

segmentation. Our linear-regression CNN algorithm did not require such pre- and post-

processing of the data, with the behavior across these features arising implicitly from 

the training data. In addition, the proposed method works on a wide spectrum of IVOCT 

images whether in presence or absence of stent struts. This approach was determined to 

be of utility in assessing patient both pre- and post-stenting. Furthermore, the CNN 

segmentation was able to segment images regardless of stent types and no prior 

information on implanted type is needed, as can be required by some other segmentation 

techniques (Giovanni Jacopo Ughi et al., 2012), making it applicable in a wider range of 

clinical settings.  

While training time was significant (13.8 hours for 45 training pullbacks), this is all 

pre-computed prior to clinical usage. The subsequent time to process a test image was 

extremely small (40.6 ms). This is an advantage of the proposed method. Thus, the use 

of linear-regression CNNs offers the potential of intra-operative assessment of the 

vessel lumen during an intervention.  

Limitations of the algorithm occur at areas with highly irregular lumen shapes, and at 

major bifurcations, where vessel lumen of the main branch is ambiguous even for 

manual segmentation. This is the main disadvantage of the current method. The 
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implementation of the algorithm has adopted a 2D processing approach where each 

image is processed independently. Extending this to a volumetric approach, where 

adjacent slices influence the segmentation of each image, may result in more stable 

results in these situations. Alternatively, some form of energy minimization approach 

may be incorporated into the CNN cost function to enforce additional regularization of 

the lumen shape. 
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CHAPTER 6: CONCLUSION 

This study has demonstrated a novel linear-regression CNN for the segmentation of 

vessel lumen in IVOCT images. The algorithm was tested on clinical data and compared 

against a manual gold-standard. Results suggested that the CNN provided accurate 

estimates of the lumen boundary, with errors comparable to the inter-observer 

variability between multiple human observers. In addition, the algorithm was fast, 

processing test images at a rate of 40.6 ms per image. Our results suggest that linear-

regression CNN-based approach has the potential to be incorporated into a clinical 

workflow and provide quantitative assessment of vessel lumen in an intra-operative 

timeframe. 

Therefore, it is concluded that the proposed method was able to facilitate quantitative 

assessment of coronary artery stenosis and stent placement by extracting coronary 

lumen from optical coherence tomography images using a fully automated segmentation 

framework. It was also demonstrated that the proposed method was feasible for clinical 

adoption, facilitating an accurate and robust coronary artery disease diagnosis in a wide 

spectrum of clinical OCT images.  

6.1 Future works 

Future work will include enhancing the CNN segmentation to include segmentation 

of other features pertaining to coronary artery diseases such as lipid pools, plaque and 

thrombus. In addition, the incorporation of other modalities in the framework such X-

ray angiography or 3D segmentation could generate a more accurate models of the 

artery for assessment. Studies to improve and develop new coronary artery 

segmentation methods will no doubt enhance the current assessment methods as well as 

improving the quality of intervention to treat coronary artery disease. 
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