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ABSTRACT 

 

Intensive chemotherapy for acute myeloid leukemia (AML) is used in both induction and 

consolidation treatments. The combination of fludarabine, high dose cytarabine and 

granulocyte colony-stimulating factor (FLAG) has been proven effective and safe as an 

induction treatment for refractory and poor risk AML, but not as a consolidation treatment 

especially in older AML patients. Hence, a retrospective cohort study was conducted to 

investigate the role of the FLAG regimen as consolidation treatment in older AML 

patients. Survival data of 41 eligible older patients were analyzed by using Kaplan-Meier 

method, log-rank test and Cox model. The results showed that patients consolidated with 

the FLAG regimen had a longer overall survival (OS) and disease free survival (DFS) 

when compared to non-FLAG regimens. The primary treatment variable (FLAG) was 

strongly associated with the survival outcomes with statistically different OS (log-rank,  

p = 0.0025) and DFS (log-rank, p = 0.0026). However, the regression analysis was 

performed at low events per independent variable (EPV) condition. The validity of Cox 

coefficient estimate requires at least 10 to 20 EPV, which can be difficult to achieve in a 

small study. Therefore, a simulation study was performed to assess the performance of 

Cox coefficient estimate for the primary treatment variable at low EPV spectrum. Our 

results showed that 3 and 4 EPV were associated with highest level of bias and disparity 

in accuracy, precision and statistical properties. At 5 to 6 EPV, the performance of Cox 

model started to gain stability. Above 6 EPV, increasing the number of events was less 

likely to improve the overall performance of the Cox model. The FLAG regimen should 

be used as part of consolidation for AML as the regimen improved both OS and DFS 

among older AML patients. The EPV rule has exceeded the number of outcome events 

required by a variable of strong association to the survival outcomes.    
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ABSTRAK 

 

Kemoterapi intensif untuk leukemia myeloid akut (AML) telah digunakan dalam kedua-dua 

rawatan induksi dan konsolidasi. Gabungan fludarabine, cytarabine dos tinggi dan faktor 

perangsang koloni granulosit (FLAG) telah dibuktikan sebagai satu rawatan induksi yang 

berkesan dan selamat untuk AML refraktori dan AML berisiko buruk, tetapi bukan sebagai 

rawatan konsolidasi terutamanya bagi pesakit tua AML. Oleh itu, satu kajian kohort 

retrospektif telah dilakukan untuk menyiasat peranan regimen FLAG sebagai rawatan 

konsolidasi di kalangan pesakit tua AML. Data kehayatan daripada 41 pesakit tua yang layak 

telah dianalisis dengan menggunakan kaedah Kaplan-Meier, ujian log-rank dan model Cox. 

Keputusan menunjukkan bahawa pesakit yang dikonsolidasikan oleh regimen FLAG telah 

mencapai kehayatan keseluruhan (OS) dan kehayatan bebas penyakit (DFS) yang lebih 

panjang berbanding dengan regimen bukan FLAG. Pembolehubah rawatan utama (FLAG) 

didapati berkait secara kuat dengan hasil kehayatan dengan lengkung kehayatan yang berbeza 

secara statistik bagi OS (log-rank, p = 0.0025) dan DFS (log-rank, p = 0.0026). Namun, 

analisis regresi telah dilakukan dalam keadaan kejadian per pembolehubah tak bersandar 

(EPV) yang rendah. Kesahihan anggaran pekali koefisien Cox memerlukan sekurang-

kurangnya 10 hingga 20 EPV, yang agar sukar dicapai dalam kajian kecil. Maka, satu kajian 

simulasi telah dijalankan untuk mengesahkan kelakuan anggaran pekali koefisien Cox bagi 

pembolehubah utama pada EPV spektrum rendah. Keputusan kami menunjukkan bahawa 3 

dan 4 EPV telah dikaitkan dengan tahap pincang dan perbezaan yang paling tinggi dalam 

kejituan, kepersisan dan sifat berstatistik. Pada 5 hingga 6 EPV, prestasi model Cox mula 

menjadi stabil. Atas 6 EPV, peningkatan bilangan kejadian adalah kurang berkemungkinan 

untuk menambahbaikan prestasi keseluruhan model Cox tersebut. Regimen FLAG harus 

digunakan sebagai sebahagian rawatan konsolidasi bagi AML kerana regimen tersebut telah 

menambahbaikkan kedua-dua OS dan DFS di golongan pesakit tua AML. Peraturan EPV 

tersebut telah melebihi bilangan kejadian yang diperlukan oleh pembolehubah yang 

bersekutuan secara kuat dengan kesudahan kehayatan.  
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 Background of Research 

Treatment for acute myeloid leukemia (AML) can be divided into induction 

treatment and consolidation treatment. Many cytotoxic regimens have been studied and 

reported as being comparable to the gold standard therapy of cytarabine (Ara-C) plus 

daunorubicin. Among those regimens investigated, fludarabine, high dose cytarabine and 

granulocyte colony-stimulating factor (G-CSF) or FLAG, with or without other agents 

has received much attention due to comparable efficacy and relatively low cardiac toxicity. 

While most patients who receive an induction treatment will enter complete remission 

(CR), the most common cause of death in AML is related to relapse and subsequent 

complications (Krug et al., 2011; Ramos et al., 2015). In another word, the lack of 

superior post remission treatment leads to poor survival outcomes in patients. Despite of 

the fact that an effective consolidation treatment is a prerequisite for long term survival 

in AML, cytotoxic regimens with optimum treatment cycles have yet been optimized for 

consolidation treatment.  

Acute myeloid leukemia is a rare and highly malignant form of leukemia. The 

disease has the lowest survival rate among all forms of leukemia (Deschler & Lübbert, 

2006). It is also the most frequent form of leukemia that causes large number of cancer-

related deaths every year in the western world. The Surveillance, Epidemiology and End 

Results (SEER) program of the National Cancer Institute in the United States reported a 

5-year survival rate of 23% for those who are less than 55 years old, whereas the 

corresponding rate for those who are above 55 years was only 11% (Bethesda, 2015). 

Survival rates continue to improve for younger patients, but not for older patients in the 

past few decades. Survival rates differ between younger and older patients because of the 

treated patients are more likely to be younger and less likely to have poor performance 
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indicators and comorbidity score as compared with the untreated patients (Medeiros et al., 

2015).  

Acute myeloid leukemia is also a disease of late adulthood with reported median 

age at diagnosis from 65 to 70 years old (Thein et al., 2013; Bethesda, 2015). However, 

a real-world study has shown that up to 60% of elderly AML patients remain untreated 

following diagnosis (Medeiros et al., 2015). Elderly patients are generally regarded as not 

suitable for intensive chemotherapy due to many reasons; the toxicity of cytotoxic drugs 

is increased in the elderly; older patients are more prone to have particular risk factors for 

poor outcomes, for example, poor risk cytogenetics and the overexpression of genes 

associated with drug resistance; older patients also tend to have poor performance status, 

comorbidities and other medical contraindications to intensive chemotherapy. Therefore, 

nearly half of older AML patients are often given palliative treatment and low dose 

therapy straight. Research has shown that palliative treatment and low dose therapy are 

much more inferior than the intensive chemotherapy (Estey, 2007). For example, a study 

has reported that a low dose Ara-C treatment results in a CR rate of 7% when compared 

with 56% from intensive chemotherapy (Heiblig et al., 2016). The poor survival outcome 

in older AML patients worldwide motivates us to identify a better consolidation treatment 

for them.  

The cohort study is conducted to address the unmet concerns as abovementioned. 

The framework of the cohort study therefore covers the unmet treatment need for older 

AML patients and the potential use of the FLAG regimen as part of consolidation 

treatment for them. The primary treatment variable is binary, consisting of a group of 

older patients who were consolidated with the FLAG regimen and a group of older 

patients who received non-FLAG regimens. In the study, we apply methods of survival 

analysis such as Kaplan-Meier (KM) product limit method, log-rank test and regression 
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analysis with Cox proportional hazards model to describe, quantify and compare the 

survival data from both FLAG and non-FLAG groups.  

In clinical research, covariate effects are adjusted by using a regression model. 

The most common regression model used in survival analysis is the proportional hazards 

model developed by Cox (1972). The model is also called Cox proportional hazards 

model or Cox model. The Cox model can be used to analyze different type of distributions 

as long as the assumption of proportional hazards or constant hazard ratio (HR) is fulfilled. 

Like logistic regression model, the validity of the Cox model relies on the number of 

outcome events in relation to the number of predictor variables incorporated into the 

model. This property has been investigated in many simulation studies with aim to 

establish a definitive standard for trustworthy regression analysis with Cox model.  

In survival analysis, it is generally recognized that 10 to 20 events per independent 

variable (EPV) are needed for a regression analysis with logistic model or Cox model 

(Concato et al., 1995; Peduzzi et al., 1995; Peduzzi et al., 1996). Inadequate EPV can 

cause biased coefficient estimates. But in analysis of causal influences for observational 

studies, control of confounders may require adjustment for more covariates than the rule 

of EPV allows (Greenland, 1989). Moreover, for rare disease like AML, it is very 

challenging to conduct clinical studies in specific patient cohorts that fulfill a particular 

treatment condition. This may explain the lack of investigations involving consolidation 

treatments in older AML patients.  

It is noteworthy that the rule of EPV for logistic regression model and Cox model 

is established based on simulation studies with independent variables of moderate 

associations with the study outcomes. Hence, a low EPV condition may not necessarily 

affect the validity of regression analysis for variables of high association with study 
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outcomes. Besides, there is no single rule based on EPV that would guarantee an accurate 

estimation of logistic regression parameters (Courvoisier et al., 2011).  

In our simulation study, the cohort dataset with 26 events for overall survival (OS) 

and 27 events for disease free survival (DFS) in AML was simulated to investigate the 

performance of Cox regression estimates for the primary treatment variable (FLAG 

versus non-FLAG). The primary treatment variable was found highly associated with the 

survival outcomes at less than 10 EPV condition. Our argument is that high variable 

association would requires less events, therefore would also require less EPV for accurate 

coefficient estimate. 

1.2 Significance of Research 

Our research addresses a few problems in AML and regression analysis with 

proportional hazards model. There is a serious lack of research in using the FLAG 

regimen as part of consolidation treatment in AML. Many physicians would continue the 

post remission treatment with similar cytotoxic agents used in the induction treatment or 

with high dose Ara-C (HiDAC) alone. The lack of EPV is also a very common problem 

in clinical research involving regression analysis with Cox model. Although many 

simulation studies have been conducted to evaluate problems associated with the lack of 

EPV, the outcomes are not consistent. As a rule of thumb, 10 to 20 EPV are usually 

required for regression analysis with logistic model or Cox model. Besides, variable 

association has never been sufficiently investigated in the past simulation studies. 

Therefore, our study is significant as it helps to answer the research problems below. 

a) Is the FLAG regimen an effective consolidation treatment for AML?  

b) Can the FLAG regimen help prolong the OS and DFS of older patients when being 

used as part of consolidation treatment for AML? 
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c) Does a variable showing high association to survival outcome require less EPV in 

regression analysis with Cox model? 

d) What is the required EPV for variable showing high variable association to 

survival outcomes? 

1.3 Objectives of Research 

There are two primary objectives for this dissertation.   

a) The objective of the cohort study is to assess the role and to quantify the effect of 

a treatment variable (FLAG versus non-FLAG) to the survival outcomes of older AML 

patients.  

b) The objective of the simulation study is to investigate the performance of the Cox 

coefficient estimate of the treatment variable (FLAG versus non-FLAG) at low EPV 

condition and to justify the low EPV requirement for variable of high variable association 

with survival outcome.   

The two objectives sound different, but are actually inter-connected. The first 

objective is designed to answer research problems 1.2(a) and 1.2(b), regarding to the use 

of the FLAG regimen as consolidation treatment in older AML patients. Whether the 

FLAG regimen is indeed a better choice of consolidation treatment for older AML 

patients as compared with other regimens is a clinical problem of interest. The first 

objective can only be achieved through either retrospective or prospective cohort study 

with real time data, sound research methodology, and more importantly with a valid 

statistical analysis. A retrospective cohort study is usually necessary before the conduct 

of a large confirmatory study as the later would require huge funding and longer duration. 

With sound methodology, a retrospective cohort study helps answer research questions 

in a fast and effective manner.  
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The conduct of the cohort study gives rise to research problems 1.2(c) and 1.2(d) 

as stated above. The second objective is designed to address those problems, which 

remain unsolved for regression analysis with proportional hazards model. The second 

objective thus supports the first objective, and at the same time helps redefine the 

requirement of EPV for high variable association in small research. This dissertation will 

provide a new perspective for regression analysis with Cox model when it comes to small 

research with high impact variable. 

1.4  Outline of Dissertation 

Chapter 1 discusses the general framework of the dissertation by providing 

background of research, objectives of research, significance of research and outlines of 

the dissertation.  

Chapter 2 provides a comprehensive literature review on the use of FLAG 

regimens in AML, relevant simulation studies, a preliminary review on the concept of 

survival analysis and various methods used in the study. Approaches used to generate 

random survival times using proportional hazards model is also discussed in this 

preliminary review.  

Chapter 3 describes in details the conduct of a retrospective cohort study to 

investigate the survival outcomes of older AML patients who were consolidated by the 

FLAG regimen versus non-FLAG regimens. KM product limit method, log-rank test, and 

regression analysis with Cox proportional hazards model are used to describe the role and 

to quantify the effect of the FLAG regimen to patients’ survival outcomes.  

Chapter 4 describes the design and the conduct of a simulation study to investigate 

the performance of the Cox coefficient estimate for the primary treatment variable (FLAG 
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versus non-FLAG) at low EPV condition. The primary treatment variable was found to 

have high variable association with the survival outcomes. 

Chapter 5 provides concluding remarks to all the significant findings based on the 

cohort study in AML and the simulation study.  
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CHAPTER 2: LITERATURE REVIEW 

 

Acute myeloid leukemia is a diagnosis for a wide range of myeloid malignancies. 

The heterogeneous genetic etiology of AML causes treatment outcome and survival rate 

to vary between young and old patients (Deschler & Lübbert, 2006; Thein et al., 2013; 

Bethesda, 2015). A study has shown that treated AML patients are more likely to be 

younger and less likely to have poor performance indicators and comorbidity score when 

compared with untreated AML patients (Medeiros et al., 2015). AML is also a disease of 

late adulthood with reported median ages ranging from 65 to 70 years (Appelbaum et al., 

2006; Juliusson et al., 2009). The effect of age on both patient and disease related factors 

results in a higher incidence of early death during chemotherapy, lower rate of CR and a 

reduced chance for long-term survival. Majority of older AML patients probably do not 

receive specific treatment, and those who receive standard regimens have a CR rate of 

40% to 60% and median survival time of less than a year, which are lower than younger 

AML patients with a CR rate of above 70% and median survival time of more than 12 

months (Estey, 2007; Cheng et al., 2015).  

Cytotoxic treatments for AML are well established, and are typically used in 

induction and consolidation treatments. The induction treatment aims to achieve a CR by 

reducing the leukemic cells in the bone marrow and blood to normal, while consolidation 

treatment is given after CR to eliminate the remaining small amount of circulating 

leukemic blasts in the body. A non-randomized study has shown that post-remission 

therapy is a prerequisite for long-term survival (Büchner et al., 1985), however the 

optimal post remission therapy remains unclear and is a question of active research.  As 

there are no generally accepted consolidation protocols for older AML patients, regimens 

used in induction treatment such as HiDAC and mitoxantrone plus intermittent dose Ara-

C (MiDAC) are usually adopted. Besides, older AML patients are often treated with low-
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dose Ara-C and palliative therapy as an alternative to the intensive chemotherapy. But 

outcomes with those alternative treatment are generally inferior with a median survival 

time of 4 to 9 months, when compared with 12 to 16 months in patients receiving intensive 

chemotherapy (Tilly et al., 1990; Heiblig et al., 2016).  

The gold standard of therapy for AML is known as the ‘3+7’ regimen, with 

daunorubicin from 45 mg/m2 to 60 mg/m2 intravenously daily for 3 days plus Ara-C from 

100 mg/m2 to 200 mg/m2 as a continuous infusion daily for 7 days (Sperr et al., 2003; 

Burnett, Wetzler, & Lowenberg, 2011). The ‘3+7’ regimen results in CR rates of more 

than 40% and long-term survivals of more than 15%. The ‘3+7’ regimen is always used 

as a comparison standard for a newly developed regimen. Understanding the mechanism 

of action of Ara-C in AML leads to studies of HiDAC as consolidation treatment in 

younger patients and those with diploid karyotypes (Kantarjian et al., 2008).  

Studies have shown that daunorubicin can be replaced by other anthracyclines 

such as idarubicin, mitoxantrone, and amsacrine of equivalent dose for improved rates in 

CR, survival and remission duration. Those outcomes are found in younger AML patients, 

not older AML patients. The typical risks of induction treatment include infections due 

to neutropenia, which are more common in older patients; mucositis; skin rash induced 

by Ara-C; and cardiac side effects of anthracyclines such as cardiomyopathy and 

arrhythmia. Therefore, induction treatment for AML should only be performed in 

experienced hematological centers (Krug et al., 2011).   

Combination of fludarabine and Ara-C has yielded comparable outcomes in 

several studies. The regimen has been proven effective for older patients, especially for 

those with cardiovascular events (Kantarjian et al., 2006). Fludarabine and Ara-C are 

sometimes given together with G-CSF for refractory and relapse AML. The regimen is 

known as FLAG, and its widespread use is motivated by an improved accumulation of 
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more Ara-C-5’-triphosphate (Ara-CTP) at the presence of fludarabine in the leukemic 

cells. Fludarabine is a purine analog which acts by inhibiting the ribonucleotide reductase 

that increases the formation of Ara-CTP, an active Ara-C metabolite in the leukemic cells. 

The action accelerates the destruction of more leukemic blasts. Granulocyte colony-

stimulating factor is a glycoprotein which stimulates the bone marrow to produce 

granulocytes and release them into the bloodstream. The ability of G-CSF in recruiting 

quiescent cells to s-phase makes the leukemic blasts more sensitive to Ara-CTP attack 

(Gandhi et al., 1993; Gandhi et al., 1995).  

Therapeutic effect of the FLAG regimen can be further intensified by adding other 

chemotherapeutic agents. The effectiveness and acceptable toxicity profile of FLAG 

regimen and its intensified versions such as FLAG plus mitoxantrone (Mito-FLAG), 

FLAG plus idarubicin (FLAG-Ida), and FLAG plus amsacrine (FLAMSA) have been 

frequently investigated and reported in patients with prior history of myelodysplastic 

syndrome (MDS), poor prognosis, secondary AML and patients with unfavorable risk 

factors such as old age and chromosomal abnormalities (Clavio et al., 1996; Estey et al., 

1999; Carella et al., 2001; de la Rubia et al., 2002; Ossenkoppele et al., 2004; Ferrara et 

al., 2005). However, majority of investigations focus primarily on the role of the FLAG 

regimen as a first line treatment or salvage regimen, rather than as a consolidation 

treatment. 

Cox model is very useful in survival analysis as it allows multiple independent 

variables to be regressed on survival times through hazard function. Like logistic 

regression, the performance of the Cox coefficient estimate is affected by the number of 

outcome events observed rather than the number of subjects followed up. Too few events 

in relation to the number of independent variables included into a regression model can 

causes biased coefficient estimate as a result of overfitting the model (Courvoisier et al., 

2011).  Performance of the Cox model is frequently investigated in simulation studies. In 
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1995, the impact of varying EPV in Cox model was investigated to establish a definitive 

EPV value for trustworthy estimates.  The simulation study was done based on a 

cardiovascular cohort study with 36 EPV (252 deaths and 7 variables). With a constant 

daily hazard rate, the exponential distribution was fitted to generate the survival times to 

simulate the Cox model. The coefficient estimates of 7 independent variables were 

assessed from 2 to 25 EPV, and compared with the ‘true’ coefficient estimates from the 

cardiovascular cohort study. At the end, the authors concluded that at least 10 EPV are 

required for trustworthy estimation in regression analysis with Cox model (Concato et al., 

1995; Peduzzi et al., 1995). However, the conclusion was rather conservative as numerous 

factors that could possibly affect the Cox coefficient estimates were not handled in the 

simulation study (Vittinghoff & McCulloh, 2007). Those factors are strength of 

association between a variable to the survival outcome, prevalence of the positive value 

in a binary variable, interaction between variables and sequential selection of variables in 

regression procedure.  

Nonetheless, the simulation study helped reveal most of the problems encountered 

at very low EPV, like:-  

o Low EPV increases bias and may produce both overestimation and 

underestimation of the true effect,  

o Low EPV may cause the loss of normality in the distribution of regression 

coefficients and increases the chance of falsely extreme values,  

o Large sample properties of proportional hazards model variance may not hold 

at low EPV, 

o The power to detect significant effects also decreases at low EPV, causing 

problem such as “underfitting”, 

o Low EPV also tends to cause problems in significance testing,  
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o At very low EPV, the z-statistics does not have Gaussian distribution, and the 

narrow distribution lead to an overly conservative test in which the null 

hypothesis is rejected less often than the stated significance level, and 

o At low EPV, model non-convergence increases.   

Besides, the 7 independent variables evaluated in the simulation study had only 

moderate associations with the survival outcome. So, whether the strength of association 

modifies the impact of EPV was not ascertained. Lastly, the simulation study was 

conducted at fixed number of variables, therefore the impact of varying variables was also 

not known. As a result, the recommendation of 10 EPV becomes the rule of thumb for 

regression analysis with Cox model (Clark et al., 2003b).  

Vittinghoff and McCulloch (2007) conducted a large factorial simulation study to re-

evaluate the EPV requirement for both logistic and Cox models. The reason was that the 

control of confounding in some observational studies may require adjustment for more 

covariates than the rule of EPV allows. Factors that were not investigated in other 

simulation studies like sample size, types of variable, and predictor prevalence were 

examined. The study focuses primarily on confidence interval (CI) coverage for 

regression coefficient (β), and related type I error rate of the test of null hypothesis (H0: 

β = 0), secondarily on bias in the regression coefficient, and only indirectly on variability 

and power. Finally, the authors suggested that the rule of 10 EPV could be reduced to 5 

to 9 EPV especially for variable with high predictor prevalence.  

 The requirement of EPV has an implication in the calculation of sample size. 

Currently, sample size is estimated based on the rule of 10 EPV. To understand factors 

other than EPV that may affect the estimation of sample size, a simulation study based on 

a large database of over 2 million anonymized patients was conducted (Ogundimu, 

Altman, & Collins, 2016). The objective of the study was to investigate the requirement 

Univ
ers

ity
 of

 M
ala

ya



13 

 

of EPV for prediction models with a range of binary predictors with varying prevalence 

that reflect the clinical practice. The results showed that EPV should be data driven, and 

higher EPV (≥ 20) were required to eliminate bias when many low-prevalence binary 

predictors are added into an otherwise stable model. The authors concluded that it is 

difficult to have a definitive EPV value suitable for every situation. An EPV ≥ 20 should 

be considered when a dataset includes many low-prevalence binary predictors, if this 

cannot be guaranteed then the used of penalized likelihood approach such as Firth’s 

estimator and Bayesian approaches is recommended as it has been shown to reduce bias 

in parameter estimates on data with rare events (Lin et al., 2013). 

2.1 Preliminary 

2.1.1 Survival analysis 

Survival analysis aims to analyze time to event. Methods available in survival 

analysis can be categorized as non-parametric, semi-parametric and parametric methods. 

Non-parametric methods include life table, KM product limit method, cumulative 

incidence function (CIF), log-rank test and Gray’s test. The life table and KM method are 

used to describe distribution of survival probability; the CIF is used to analyze competing 

risk; log-rank test is used to test equality of survival function; and the Gray’s test is used 

to test equality of CIF between two or more groups (Zwiener, Blettner, & Hommel, 2011). 

Non-parametric methods are very useful in describing the survival experience between 

two or more groups. Method like KM estimator can be used to plot survival curve for two 

and more groups and calculate median survival duration with 95% confidence limit. 

Those methods are non-parametric because of taking no specific form for the distribution 

of the survival times during the counting process. The only drawback is that those 

methods do not incorporate the effect of covariates which may affect the survival times 

(Clark et al., 2003a). 
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In survival analysis, the effect of covariates can be controlled or adjusted by using 

a regression model. Covariate adjustment is required to obtain more accurate estimates 

with higher statistical power (Ford & Norrie, 2002). Regression model is available as 

semi-parametric model or parametric model in survival analysis. In this dissertation, we 

focus primarily on the application of non-parametric methods and semi-parametric 

regression model. In survival analysis, regression analysis primarily involves the use of 

Cox model because of its robustness. The Cox model is used to estimate the effect of a 

set of independent variables to patients’ survival times. The regression analysis yields a 

HR that indicates the proportion of the hazard changes between two groups for a binary 

variable. For a continuous variable, the HR indicates the proportion of hazard changes 

from a one-unit increase in the continuous variable (George, Seals, & Aban, 2014). 

According to a simulation study, a regression analysis with Cox model will require at 

least 10 to 20 EPV for trustworthy estimate (Concato et al., 1995; Peduzzi et al., 1995; 

Peduzzi et al., 1996).  

The hazard is defined as the probability that if an event of interest has not already 

occurred, it will occur in the next time interval, divided by the length of that interval 

(Spruance et al., 2004). When the time interval is made very short, the hazard becomes 

an instantaneous rate for an individual who has already survived up to a certain point in 

time. The Cox model is semi-parametric as the model does not require a particular 

probability distribution to represent survival times. However, it does assume that the 

effects of the independent variables upon survival are constant over time and are additive 

in one scale (Allison, 2010). For this reason, the Cox model is more robust than other 

regression models, but only valid for cases that meet the proportional hazards assumption. 

The proportional hazards assumption requires the HR between two variable groups to be 

constant over time. 
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In survival analysis, an event is the change of quality status in a person like death 

or occurrence of disease. When death becomes an event of interest in a cohort study, 

survival times of patients are also called overall survival. Survival time and outcome event 

are important measures in cancer research. Those measures help differentiate the impact 

of two interventions that are having identical proportion of outcome events with different 

time to events (George, Seals, & Aban, 2014). This situation is graphically presented in 

Figure 2.1. When treatment group A had most of the events happened shortly after the 

treatment, and treatment group B had less events observed until just before the end of the 

study, these two groups were considered clinically different. Treatment group A had 

median survival that was shorter than treatment group B. The survival probabilities and 

median survival times of these treatment groups can be plotted using KM product limit 

method. 

Figure 2.1: The survival curves for two treatment groups with different survival 

probabilities and similar proportions of outcome events. Treatment group A had 

a shorter median survival duration as compared with treatment group B. 
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2.1.2 Censoring in survival analysis 

Besides, survival times present few distinct features that cannot be handled by 

conventional methods. For example, the distribution of survival times is rarely a normal 

distribution, which causes the ordinary least squares regression method to be inaccurate 

(Bewick, Cheek, & Ball, 2004). The skewness of the distribution of survival times is 

mainly caused by the occurrence of many early events and few late ones. This situation 

is often observed in cancer research. For example, when a disease free duration of cancer 

patients is measured, most of the recurrences for cancer can happen quite early within few 

months, but few patients may present prolonged remission (Figure 2.2). 

 

 

 

On the other hand, survival time may consist of few observations with incomplete 

time to event. This phenomenon is called censoring in survival analysis. Censoring is 

caused by situation that a subject has not yet experienced an event at the end of study or 

Figure 2.2: The distribution of survival times is often positively skewed 

due to the occurrence of many early events and relatively few late events. 
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loss to follow-up during the study. There are three types of censoring: right censoring, 

left censoring and interval censoring. Survival analysis successfully deal with the 

censoring by incorporating the time to event for censored observations into the counting 

process, and allows comparison between the numbers of survivors in each group at 

multiple points in time (Spruance et al., 2004). This technique helps reduce considerable 

bias as a result of covering both complete and incomplete event times. When all event 

times are analyzed, survival analysis generates more powerful result then other analytical 

methods (George, Seals, & Aban, 2014). 

 

 

 

 

 

Right censoring refers to observations that are terminated before the occurrence 

of events (Allison, 2010). Right censoring is far more common than left censoring and 

interval censoring in clinical research. Figure 2.3 illustrates some examples of right 

censoring. For example, subject B was right censored because of not experiencing a 

disease before the end of study follow-up. Subject D was right censored due to drop-out 

from the study. As the drop-out happened before the occurrence of the disease, the true 

event time was basically unknown. Therefore, both subjects B and D had follow-up times 

that were less than the ‘true but unknown’ event times. Although the true event times are 

Figure 2.3: Examples of right censoring: The time to event was incomplete for 

subject B due to the end of study before occurrence of an event. For subject D, 

the time to event was incomplete due to early drop out.  
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uncertain and longer than the observed times, the observed times are still valuable and 

informative as the fact that the patients went through a certain amount of times without 

experiencing diseases is itself informative (George, Seals, & Aban, 2014).   

Conversely, an observation is left censored when a subject has a follow-up time 

that is longer than the true event time. Interval censoring happens when the true event 

time is somehow between a time interval. Although survival times of censored 

observations can be analyzed in survival analysis, censoring must be prevented as 

incomplete survival time may still cause either underestimation or overestimation of the 

‘true’ effect. Besides, censoring should be non-informative and not related to the event of 

interest. Violation of this assumption can invalidate just about any sort of methods used 

in survival analysis (Clark et al., 2003a). 

2.1.3 Kaplan-Meier product limit method 

Many methods are available to analyze survival times. For example, the KM 

method is used to compute survival probability for both censored and uncensored events. 

The KM method is univariate and non-parametric as it assumes no specific form for the 

distribution of the survival times and necessarily ignores the effect of covariates (Kaplan 

& Meier, 1958). The KM survival curve can be generated when the probability of being 

alive at a particular time is plotted against time by using the equation below, 

                                           S(𝑡) = S(𝑡 − 1) (1 −
d

f
),                                          (2.1) 

where S(𝑡) is the probability of being alive at time t, 𝑆(𝑡 − 1) is the probability of 

being alive at time 𝑡 − 1, f is the number of patients alive just before time t, and d is the 

number of events at time t. The occurrence of an event every time changes the value of 

the S(𝑡) and turns the KM estimator into a step function, in which the estimated survival 

probabilities are constant between adjacent event times and only decrease at each 
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occurrence of an event (Clark et al., 2003a). A KM survival curve describes the survival 

experience in an intuitive way. The KM method also allows the estimation of median 

survival time. Median survival time is preferred than mean survival time in survival 

analysis as the distribution of survival times is rarely normal. 

2.1.4 The log-rank test 

The comparison of survival functions for two or more groups can be performed 

with the log-rank test (Peto & Peto, 1972). The log-rank test computes the test statistics, 

𝑋2 by comparing the number of observed events, Oi for a particular variable group, i=1, 

2, …, g groups to the number of expected events, Ei via the equation,  

𝑋2 = ∑
(Oi − Ei)

2

Ei
 .

g

i=1

 

The 𝑋2 is then compared to the Chi-square distribution with (g-1) degrees of freedom. 

This method allows a p-value to be generated to assess the statistical significance of the 

difference between two survival curves.  

2.1.5  The Cox model 

Both KM method and log-rank test do not allow the adjustment for the effect of 

covariates. Adjustment for the effect of co-variates effect helps improve the estimation 

and can only be achieved with regression modelling. The most popular regression model 

used in survival analysis is the Cox model. In the Cox model, survival times are modelled 

through hazard function, which indicates the probability of having an event given that the 

subjects have survived up to a given point of time (Bewick, Cheek, & Ball, 2004). The 

Cox model is expressed as   

h(𝑡|𝐗) = h0(𝑡)exp(𝐗𝛃),                                                                     (2.3) 

(2.2) 
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where h(𝑡|𝐗) is the hazard rate at time 𝑡 given X, 𝑡 is the time to event for each individual, 

X is a vector of one or more independent variables X1, …, Xp. For the j-th individual let 

the values of X be Xj = (X1j, …, Xpj) for j = 1, 2,…, n, β is a p × 1 vector of unknown 

parameters and h0(𝑡) is the baseline hazard function for a standard set of conditions            

X = 0.  

Through the Cox model, we can easily quantify the relationship of a variable of 

interest (e.g. new treatment) to the survival time in control of several explanatory 

covariates such as age, gender and race. The baseline hazard, h0(𝑡) is an unspecific 

function. For this reason, the Cox model becomes a semi-parametric model and robust. 

The Cox model assumes that the variables act multiplicatively on the hazard at any point 

in time and the effect is constant over time (George, Seals, & Aban, 2014). The 

assumption is called proportional hazards assumption and is one of the most important 

assumptions for regression analysis with Cox model. 

2.1.6 Generating survival times to simulate the Cox model 

The performance of Cox coefficient estimate under certain pre-specified 

conditions can be evaluated through a simulation study. However, the simulation study is 

not straight forward as the Cox model is formulated through a hazard function. The 

simulation study requires random survival times to be generated based on a parametric 

distribution. Exponential and Weibull distributions are commonly used in simulation 

study of Cox model because of sharing the assumption of proportional hazards (Bender, 

Augustin, & Blettner, 2005). The steps required in generating random survival times to 

simulate Cox model using the Exponential or Weibull distribution have been outlined by 

Bender, Augustin, & Blettner (2005). 

The survival function, S(𝑡|𝐗𝑗) of the Cox model (Equation (2.3)) is given by 
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S(𝑡|𝐗𝑗) = exp[−h0(𝑡) × exp(𝐗𝑗𝛃)],                                                  (2.4) 

where h0(𝑡) = ∫ h0(v) dv
𝑡

0
 is the cumulative baseline hazard function.  

The distribution function of the Cox model is given by 

F(𝑡|𝐗𝑗) = 1 − exp[−h0(𝑡) × exp(𝐗𝑗𝛃)].                                           (2.5) 

Let Y be a random variable with distribution function F, then U=F(Y) follows a uniform 

distribution on the interval from 0 to 1, abbreviated as Uni [0,1]. Moreover, if U~Uni[0,1], 

then (1‒U)~Uni[0,1] too. Let T be the survival time of Cox model, then it follows from 

Equation (2.5) that 

U = exp[−h0(T) × exp(𝐗𝑗𝛃)] ~ Uni[0,1].                                        (2.6) 

If  h0(𝑡)  > 0 for all 𝑡, then h0 can be inverted and the survival time T of the Cox model 

can be expressed as 

T = h0
−1[− log(U) × exp(−𝐗𝑗𝛃)].                                                     (2.7) 

The inverse of the cumulative hazard function for the exponential distribution with 

constant hazard rate, γ is given by 

h0
−1(𝑡) = γ−1𝑡 .                                                                                   (2.8) 

By inserting Equation (2.8) into Equation (2.7), survival times of a Cox model with 

constant baseline hazard can be expressed by 

T = γ−1[− log(U) × exp(−𝐗𝑗𝛃)].                                                      (2.9) 

The inverse of the cumulative hazard function for the Weibull distribution with scale 

parameter, λ and shape parameter, α is given by 
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h0
−1(𝑡) = (λ−1𝑡)

1

α .                                                                             (2.10) 

By inserting Equation (2.10) into Equation (2.7), survival time of a Cox model with 

baseline hazard of the Weibull distribution can be generated by 

T = (λ−1[−log (U) × exp (−𝐗𝑗𝛃)])
1

α .                                             (2.11) 

In practice, the assumption of a constant hazard rate is rarely practical, therefore 

the exponential distribution is of limited use. With a shape parameter, the Weibull 

distribution becomes more flexible and can fit more types of data. This attributes to the 

popularity of Weibull distribution in many applications (Nelson, 1982). 
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CHAPTER 3: FLUDARABINE, HIGH DOSE CYTARABINE AND 

GRANULOCYTE COLONY-STIMULATING FACTOR (FLAG) AS 

CONSOLIDATION CHEMOTHERAPY IN OLDER PATIENTS WITH ACUTE 

MYELOID LEUKEMIA: A RETROSPECTIVE COHORT STUDY 

 

3.1 Introduction 

Chemotherapy based on high dose infusional Ara-C and anthracyclines is the 

primary treatment option for AML. This combination is therapeutically intensive and can 

only be given to a clinically fit patient. Most of the AML patients need to undergo 

multiple cycles of chemotherapy from induction to consolidation. The induction 

chemotherapy aims to achieve CR by reducing the total leukemic cell population in the 

body from around 1012 cells to below the cytologically detectable level of about 109 cells. 

The consolidation chemotherapy is given to sustain the disease remission by eliminating 

the remained leukemic blasts that are undetected by the current diagnostic tests. 

Consolidation chemotherapy is the pre-requisite for long term survival in patients. 

However, the optimal regimen for consolidation especially in older AML patients remains 

unclear (Krug et al., 2011).  

The combination of fludarabine and Ara-C has been advocated as effective and 

safe for most refractory and relapsed AML because of higher remission rate and low 

toxicity profile (Pastore et al., 2003; Lee et al., 2009; Luo et al., 2013). The regimen is 

sometimes given simultaneously with G-CSF for better efficacy. The combination is 

called FLAG. Therapeutic effect of the FLAG regimen can be further intensified by 

adding other agents into the regimen, for example Mito-FLAG, FLAG-Ida, FLAMSA and 

all-trans retinoic acid. The potential benefits of the FLAG regimen and its intensified 

versions have been evaluated in patients with refractory AML and patients with poor 

prognosis or unfavorable risk factors such as old age, chromosomal abnormalities and 

history of myelodysplastic syndrome (MDS). The study outcomes were highly 
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appreciated (Clavio et al., 1996; Estey et al., 1999; Carella et al., 2001; de la Rubia et al., 

2002; Alwan et al., 2014).  

A synergistic anti-leukemic mechanism is believed to exist among the member 

agents in FLAG regimen. The presence of fludarabine increases the formation of Ara-

CTP, an active metabolite in the circulating leukemic blasts and this accelerates the 

destruction of more leukemic blasts. The presence of G-CSF stimulates the bone marrow 

to produce more granulocytes and stem cells. This ability in recruiting quiescent cells to 

s-phase could make the leukemic blasts more sensitive to Ara-CTP attack (Gandhi et al., 

1993; Gandhi et al., 1995). 

Most patients who undergo induction chemotherapy will enter CR. However, the 

most common cause of AML death is subsequent relapse, or in another context the lack 

of superior chemotherapy regimens for post remission treatment (Ramos et al., 2015). 

Most guidelines including European Society for Medical Oncology (ESMO) and National 

Comprehensive Cancer Network (NCCN) recommend standard induction chemotherapy 

with 3 days anthracycline and 7 days Ara-C, with or without additional agent (Fey & 

Buske, 2013; “NCCN Clinical Guidelines in Oncology, Acute Myeloid Leukemia," 

version 2.2014), but there are no recommendations about the use of the FLAG regimen 

as consolidation chemotherapy. This may be caused by the lack of prospective trials with 

the use of the FLAG regimen, as well as the number of cycles in post remission treatment. 

Therefore, a cohort study is urgently needed to assess and compare the survival outcomes 

with regards to the use of FLAG as the consolidation chemotherapy in older AML patients. 
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3.2  Materials and Methods 

 

 

 

 

The retrospective cohort study was conducted at Ampang Hospital, the national 

referral center for hemato-malignancies and treatments in Malaysia. Figure 3.1 

summarizes the selection of eligible patients from a total of 183 patients diagnosed with 

AML (excluding acute promyelocytic leukemia, APML) from 2008 to 2013. The 

percentage of older AML patients (≥ 54 years old) who were treated with intensive 

chemotherapy was only 50.8%. From the 52 patients who achieved CR, 48 patients were 

further consolidated by chemotherapy.  Finally, a total of 41 patients who had not 

undergone hematopoietic cell transplantation (HCT) were enrolled for the cohort study. 

Data of interest were retrieved and analyzed after the study protocol had been approved 

by the Medical Research and Ethics Committee and the Hospital. Characteristics of 

patients such as age, race, comorbidities found at diagnosis, types of induction 

chemotherapy, French-American-British (FAB) sub-types and survival outcomes were 

summarized according to the types of consolidation regimens (FLAG and non-FLAG). 

Figure 3.1: The CONSORT diagram for the retrospective cohort 

study. A total of 183 patients were evaluated. At the end, only 41 

patients were eligible and included in the survival analysis.  
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The characteristics of patients are presented in Table 3.1. The cut-off age in AML is 

arbitrary. In this study, age of 54 years was used based on the suitability of patients to 

receive intensive chemotherapy according to institutional practice.  

Table 3.1: The characteristics of the older AML patients consolidated by the FLAG 

and non-FLAG regimens. 

 Characteristics Total 

(41 patients) 

FLAG  

(34 patients) 

non-FLAG 

(7 patients) 

 n       (%) n       (%) n       (%) 

1. Age at diagnosis, years 

• Median (Min, Max) 

 

61.2 (54.1, 75.3) 

 

61.7 (54.3, 75.3) 

 

58.7 (54.1, 64.3) 

2. Gender        

 •   Male 17  ( 41.5) 11  ( 32.4 ) 6  ( 85.7) 

 •   Female 24  ( 58.5) 23  ( 67.6 ) 1  ( 14.3 ) 

3. Race       

 •   Malay  20  ( 48.8 ) 17  ( 50.0 ) 3  ( 42.8 ) 

 •   Chinese 15  ( 36.6 ) 13  ( 38.2 ) 2  ( 28.6 ) 

 •   Indian 6  ( 14.6 ) 4  ( 11.8 ) 2  ( 28.6 ) 

4. FAB subtypes       

 •   M2 6  ( 14.6 ) 5  ( 14.7 ) 1  ( 14.3 ) 

 •   M4 9  ( 22.0 ) 8  ( 23.5 ) 1  ( 14.3 ) 

 •   M5 6  ( 14.6 ) 5  ( 14.7 ) 1  ( 14.3 ) 

 •   M6 1  ( 2.4 ) 1  ( 2.9 ) 0  ( 0 ) 

 •   Not specified 19  ( 46.3 ) 15  ( 44.1 ) 4  ( 57.1 ) 

5. Number of comorbidities 

at diagnosis 

      

 •   4 2 ( 4.9 ) 2 ( 5.9 ) 0 ( 0 ) 

 •   3 8 ( 19.5 ) 7 ( 20.6 ) 1 ( 14.3 ) 

 •   2 12 ( 29.3 ) 10 ( 29.4 ) 2 ( 28.6 ) 

 •   1 7 ( 17.0 ) 7 ( 20.6 ) 0 ( 0 ) 

 •   0 12 ( 29.3 ) 8 ( 23.5 ) 4 ( 57.1 ) 

6. Regimen for induction 

treatment 

      

 •   Anthracyclines + Ara-C 39  ( 95.2 ) 32  ( 94.2 ) 7  (100.0) 

 •   Anthracyclines + Ara-C 

+ etoposide 

1  ( 2.4 ) 1  ( 2.9 ) 0 ( 0 ) 

 •   Anthracyclines + 

etoposide + 

cyclophosphamide 

1  ( 2.4 ) 1  ( 2.9 ) 0  ( 0 ) 

7. Survival outcome       

 •   Alive 12 ( 29.3 ) 12 ( 35.3 ) 0 ( 0 ) 

 •   Loss to follow-up 3 ( 7.3 ) 3 (  8.8 ) 0 ( 0 ) 

 •   Death 26 ( 63.4 ) 19 ( 55.9 ) 7 ( 100.0 ) 

 - Chemotherapy 

related death 

6 (14.6) 4 (11.8) 2 (28.6) 

The result was presented in absolute count (n) and percentage (%), unless otherwise specified.  

FAB: French-American-British; Anthracyclines include mitoxantrone and daunorubicin. Min: 

minimum; Max: maximum. 
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The eligibility for study was determined based on history of remission and 

chemotherapy. First, a patient must undergo both induction and consolidation treatments 

before relapse or death. A CR must be achieved before the start of a consolidation 

treatment. A chemotherapy is classified as a consolidation treatment only if it is used after 

the attainment of a CR. A CR is defined as clearance of leukemic blasts in the bone 

marrow to less than 5 percent of all nucleated cells, morphologically normal 

hematopoiesis and return of peripheral blood cells count to normal level (Fey & Buske, 

2013). In this study, we excluded patients who had received hematopoietic cell 

transplantation (HCT) as transplantation is a totally different treatment modality for AML 

and transplantation associated mortality could be a competing risk to the outcome event.  

  The post induction treatment response was confirmed by bone marrow aspiration 

and/or biopsy and complete blood counts. The OS is measured from the date of diagnosis 

until death of any causes, with observations censored for patients last known alive. The 

DFS is measured from the date of attainment of a CR to recurrence of AML or death of 

any causes (Delgado et al., 2014). The date of diagnosis, CR and event are based on date 

documented in the patient’s electronic medical record. We defined chemotherapy related 

mortality as death within 30 days after chemotherapy. 

The study cohort included patients with a median age at diagnosis of 61.2 years 

old (range, 54.1 – 75.3 years), majority female (58.5%) and Malay (48.8%) patients. 

Majority of patients (29 patients, 70.7%) were found to have at least one comorbidity at 

diagnosis. Standard induction regimen with anthracycline plus Ara-C was used in 39 out 

of 41 patients (95.1%). There were about 26 deaths (event for OS) and 27 relapses/deaths 

(event for DFS) found during the study period. Fifteen patients were right censored 

including 3 cases of loss to follow-up. The minimum follow-up duration were 24 months. 
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3.2.1 Consolidation chemotherapy 

The types of chemotherapy and the number of cycles used as consolidation are 

summarized and presented in Table 3.2. 

Table 3.2: The types of chemotherapy and the number of cycles used as consolidation 

in the study cohort. 

Consolidation 

chemotherapy 

Number 

of 

Patients 

Cycles of 

induction 

chemotherapy 

(mean) 

Cycles of 

consolidation 

chemotherapy 

(mean) 

Total cycles of 

chemotherapy 

(mean) 

FLAG group 34 57 (1.4) 86 (2.1) 143 (3.5) 

 A. FLAG only 19 28 (1.5) 32 (1.7) 60 (3.2) 

   a. FLAG 11    

   b. FLAG-gemtuzumab 6    

   c. FLAG + FLAG-

gemtuzumab 

2    

 B. Combination 15 20 (1.3) 40 (2.7) 60 (4.0) 

   a. FLAG + MiDAC 4    

   b. FLAG + MiDAC + 

HiDAC 

4    

   c. FLAG + maintenance 3    

   d. FLAG + HiDAC 2    

   e. FLAG-IDA + HiDAC 

+ maintenance 

1    

   f. FLAG- gemtuzumab + 

HiDAC 

    1    

Non-FLAG group 7 9 (1.3) 14 (2.0) 23 (3.3) 

   a. HiDAC + MiDAC 3    

   b. HiDAC + MiDAC + 

maintenance 

1    

   c. HiDAC 1    

   d. DA + azacitidine 1    

   e. HiDAC-Ida 1    

DA: daunorubicin plus Ara-C; Ida: Idarubicin; Maintenance includes Ara-C + etoposide,  

Ara-C + thioguanine or decitabine 

 

Of the 41 eligible patients, 34 (82.9%) patients were consolidated with at least a 

cycle of FLAG and were designated as ‘FLAG’ group; the remaining 7 (17.1%) patients 

receiving other types of chemotherapy for consolidation were designated as ‘non-FLAG’ 
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group. Among those patients in the FLAG group, 19 (46.3%) patients were further 

designated as ‘FLAG only’ group as they received only FLAG for consolidation and 15 

patients (36.6%) were further designated as ‘combination’ group as they were 

consolidated with combination of FLAG and other regimens. Other regimens used as 

consolidation treatment were HiDAC and MiDAC. Maintenance chemotherapy with low 

dose Ara-C, thioguanine, decitabine and etoposide were given to patients who were 

considered unfit for more intensive treatments. The total number (mean) of cycles of 

chemotherapy delivered to patients were 143 (3.5) cycles including 60 (3.2) cycles for the 

FLAG only group, 60 (4.0) cycles for the combination group and 23 (3.3) cycles for the 

non-FLAG group. The number (mean) of cycles of chemotherapy used as consolidation 

were 32 (1.7) cycles for the FLAG only group, 40 (2.7) for the combination group and 14 

(2.0) for the non-FLAG group. 

There was not specific institutional standard that determined the type of 

chemotherapy a patient should receive for consolidation. The choice of chemotherapy 

was primarily physician oriented, while considering other factors such as patient’s 

motivation and family supports, cytogenetics, type of comorbidities and so on. Patient’s 

motivation and family supports were very crucial as intensive chemotherapy like the 

FLAG regimen was more likely to cause longer hospitalization and more complications.  

The FLAG regimen was once used with gemtuzumab ozogamicin, a drug-linked 

monoclonal antibody which was marketed by Wyeth (now Pfizer) as Mylotarg from 2000 

to 2010. The monoclonal antibody was withdrawn from the market in June 2010 when a 

clinical trial failed to demonstrate additional clinical benefit (survival time) in AML 

patients and observed a greater number of deaths occurred in the test group (Jefferson, 

2010). In this study, a subset of patients who received FLAG plus gemtuzumab 

ozogamicin for consolidation was also designated as the ‘FLAG only’ group. 
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3.2.2  Statistical analysis 

The survival data was analyzed by using SAS software, version 9.4. The 

characteristics of patients were summarized using descriptive statistics by types of 

consolidation treatment (FLAG and non-FLAG). In the analysis, survival outcomes were 

compared as follows: FLAG versus non-FLAG, FLAG only versus non-FLAG, and 

combination versus non-FLAG. The KM method was used to plot survival curves and to 

estimate median survival duration. Equality of survival curves between groups was tested 

by using the log-rank test with significance level set at 0.05. Bonferroni adjustment was 

used in multiple strata comparison for log-rank test to maintain a familywise type I error 

rate of 0.05. 

A regression analysis with Cox model were performed to estimate the effect of 

the consolidation treatment (FLAG and non-FLAG) to OS and DFS. The effect of 

consolidation was quantified by using HR and adjusted for other explanatory variables 

such as age, race and sex. To ensure valid results, the proportional hazards assumption 

was checked by using cumulative sums of martingale-based residuals and tested with 

supremum test1. A p-value, p > 0.05 would indicate that the assumption holds for the Cox 

model (Lin, Wei, & Ying, 1993).  

A HR less than one (negative regression coefficient) indicates that the use of 

FLAG as consolidation treatment was associated with a protective effect. If this is true, 

the FLAG group should experience longer OS and DFS when compared to the non-FLAG 

group. As the HR does not translate directly into information about the duration of time 

until events, a ratio of median survival durations between groups should be reported 

(Spruance et al., 2004). For this reason, we derived the ratio of median survival durations 

                                                 
1 Cumulative sums of martingale-based residuals is a plot of standardized score residuals over time for checking the adequacy of the 

Cox model. If the residuals get unusually large at any time point, the method suggests the proportional hazards assumption may not 

hold for a particular Cox model. 
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for the FLAG, FLAG only and combination versus the non-FLAG group. If consolidation 

with FLAG regimen was truly effective, the ratio of median survival times should be 

greater than one.  

The survival models had 6.5 EPV for OS (26 deaths divided by 4 variables) and 

6.75 EPV for DFS (27 relapses/deaths divided by 4 variables). As both survival models 

had EPV values less than the 10 to 20 EPV rule recommended (Peduzzi et al., 1995), a 

simulation study was conducted to assess the performance of the coefficient estimates of 

the primary treatment variable (FLAG and non-FLAG) at low EPV condition. Further 

details of the simulation study can be found in the Chapter 4. 

3.3 Results 

3.3.1 Kaplan-Meier survival curves and median survival durations 

Relative to the non-FLAG group, the FLAG group consisted of patients with 

median age at diagnosis of 3 years older (61.7 years versus 58.7 years) and majority 

female (67.6% versus 14.3%). Majority of patients in the FLAG group had at least 2 extra 

comorbidities (55.9%) while majority of patients in the non-FLAG group were free of 

comorbidity at diagnosis (57.1%). Chemotherapy regimens used for induction treatment 

were similar in both groups. Standard induction protocol with anthracyclines and high-

dose Ara-C was used in more than 94% of patients in the FLAG group and all patients in 

the non-FLAG group (Table 3.1). All patients had entered CR before undergoing 

consolidation treatment. Among the 26 deaths in the cohort, 19 (55.9%) cases of death 

were from the FLAG group and 7 (100.0%) cases of death were from the non-FLAG 

group. The chemotherapy related mortality were 6 (14.6%) cases in total, with 4 (11.8%) 

cases from the FLAG group and 2 (28.6%) cases from the non-FLAG group. Within the 

FLAG group, 10 (52.6%) cases of death with 3 (15.8%) cases of chemotherapy related 
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death were from the FLAG only group; 9 (60.0%) cases of death with only 1 (6.7%) case 

of chemotherapy related death were from the combination group. 

Figure 3.2 shows the OS curves of the FLAG group versus non-FLAG group. The 

survival curves were significantly different (log-rank, p = 0.0025). The median OS was 

longer for the FLAG group when compared to the non-FLAG group (18.70 vs 8.09 

months). The ratio of median OS (FLAG: non-FLAG) was 2.31. Figure 3.3 shows the 

DFS curves of the FLAG group versus non-FLAG group. The survival curves were 

significantly different (log-rank, p = 0.0026). The median DFS was longer for the FLAG 

group when compared to the non-FLAG group (13.84 vs 4.44 months). The ratio of 

median DFS (FLAG: non-FLAG) was 3.12.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The KM survival curves and median OS for older AML 

patients consolidated with the FLAG and non-FLAG regimens.    
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Figure 3.4 shows the OS curves for the FLAG only, combination and non-FLAG 

groups. The survival curves were significantly different (log-rank, p = 0.0089). The 

combination group had the longest median OS of 24.32 months, followed by the FLAG 

only group of 17.72 months when compared with the non-FLAG group of 8.09 months. 

When Bonferroni correction was applied, only the combination group had the OS curve 

significantly different from the non-FLAG group (Table 3.3). The ratios of median OS 

were 2.19 for the FLAG only group and 3.01 for the combination group, when compared 

with the non-FLAG group. 

 

 

 

 

 

 

 

Figure 3.3: The KM survival curves and median DFS for older AML 

patients consolidated with the FLAG and non-FLAG regimens. 
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Figure 3.5 shows the DFS curves for the FLAG only, combination and non-FLAG 

groups. The survival curves were significantly different (log-rank, p = 0.0102). The 

Figure 3.4: The KM survival curves and median OS for older AML patients 

consolidated with the FLAG only, combination and non-FLAG regimens. 

Figure 3.5: The KM survival curves and median DFS for older AML patients 

consolidated with the FLAG only, combination and non-FLAG regimens. 
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combination group had the longest median DFS of 14.05 months, followed by the FLAG 

only group of 11.21 months when compared with the non-FLAG of 4.44 months. When 

Bonferroni correction was applied with significance level set at 0.0167, no significant 

differences were found among the three groups (Table 3.3). The ratios of median DFS 

were 2.52 for the FLAG only group and 3.16 for the combination group, when compared 

with the non-FLAG group. 

Table 3.3: The multiple strata comparisons for the log-rank test for both OS and DFS. 

Strata Comparison 
OS DFS 

Chi-Square p-value Chi-Square p-value 

FLAG only vs non-FLAG 2.6736 0.1020 3.5491 0.0823 

Combination vs non-FLAG 6.0716 0.0137 5.0084 0.0214 

FLAG only vs combination 0.3465 0.5561 0.0640 0.8003 

a. With Bonferroni correction, the significance level is set at 0.05/3=0.0167. 

 

 

3.3.2  Regression analysis with the Cox model 

Table 3.4 summarizes the results for both univariable and multivariable regression 

analysis. Univariable regression analysis refers to the construction of a Cox model with 

an independent variable only. The coefficient estimate of the independent variable 

generated is not adjusted for other variable effects. Multivariable regression analysis 

refers to the construction of a Cox model with more than one independent variable. In this 

study, four independent variables were used. The assumption of proportional hazards was 

satisfied for all variables as presented by Table 3.5. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



36 

 

Table 3.4: The unadjusted and adjusted HR of the treatment variable for both OS and DFS.  

Comparisons 
Univariable (unadjusted) Multivariable (adjusted) 

HR (95% CI)  p-value HR (95% CI) p-value 

OS     

FLAG versus non-FLAG 0.274 (0.112-0.671) 0.0046 0.245 (0.085-0.708) 0.0094 

 a. FLAG only versus non-FLAG 0.313 (0.116-0.843) 0.0216 0.389 (0.097-1.568) 0.1845 

 b. Combination versus non-FLAG 0.239 (0.086-0.661) 0.0058 0.214 (0.070-0.650) 0.0065 

DFS     

FLAG versus non-FLAG 0.277 (0.113-0.676) 0.0048 0.217 (0.072-0.656) 0.0068 

 a. FLAG only versus non-FLAG 0.302 (0.112-0.814) 0.0180 0.279 (0.069-1.125) 0.0727 

 b. Combination versus non-FLAG 0.254 (0.094-0.691) 0.0072 0.201 (0.064-0.632) 0.0060 

a. Information of the full regression models can be found in APPENDIX C. 

b. The HR is obtained by taking exponentiation of the coefficient estimates as shown in APPENDIX C.  

 

In the univariable regression analysis for OS, statistically significant difference in 

the hazard rate was obtained in the FLAG group versus non-FLAG group (HR = 0.274,  

p = 0.0046), in the FLAG only group versus non-FLAG group (HR = 0.313, p = 0.0216) 

and in the combination group versus non-FLAG group (HR = 0.239, p = 0.0058). When 

the outcomes were adjusted for covariate differences, statistically significant difference 

in the hazard rate was obtained in the FLAG group versus non-FLAG group (HR = 0.245, 

p = 0.0094) and in the combination group versus non-FLAG group (HR = 0.214,                   

p = 0.0065).  

In the univariable regression analysis for DFS, statistically significant difference 

in the hazard rate was obtained in the FLAG group vs non-FLAG group (HR = 0.277,      

p = 0.0048), in the FLAG only group versus non-FLAG group (HR = 0.302, p = 0.0180) 

and in the combination group versus non-FLAG group (HR = 0.254, p = 0.0072). When 

the outcomes were adjusted for covariate differences, statistically significant difference 

in the hazard rate was obtained in the FLAG group versus non-FLAG group (HR = 0.217, 

p = 0.0068) and in the combination group versus non-FLAG group (HR = 0.201,                   

p = 0.0060). 
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Table 3.5: The results of supremum test for checking the proportional hazards assumption. 

Model Variables 
Maximum 

Absolute Value 
p-value 

OS FLAG versus non-FLAG 0.6819 0.6420 

 Race- Chinese 1.1201 0.1500 

 Race - Indian 0.8993 0.2920 

 Sex - female 0.5404 0.8210 

 Age at diagnosis 0.4981 0.7780 

OS FLAG only versus non-

FLAG 

1.4396 0.3210 

 Combination versus non-

FLAG 

0.8930 0.4850 

 Race- Chinese 1.1106 0.1650 

 Race - Indian 0.8822 0.2960 

 Sex - female 0.7597 0.7740 

 Age at diagnosis 0.4861 0.8780 

DFS FLAG versus non-FLAG 0.8677 0.4210 

 Race- Chinese 0.7906 0.4790 

 Race - Indian 1.0157 0.2040 

 Sex - female 0.5966 0.6920 

 Age at diagnosis 0.8851 0.2200 

DFS FLAG only versus non-

FLAG 

1.6610 0.2060 

 Combination versus non-

FLAG 

1.1189 0.2790 

 Race- Chinese 0.8193 0.4540 

 Race - Indian 1.0066 0.2090 

 Sex - female 0.6997 0.7750 

 Age at diagnosis 0.8987 0.2700 

 

3.3.3 Performance of regression coefficients at low EPV condition 

The number of outcome events in relation to the number of independent variables 

used in the regression analysis with Cox model for both OS and DFS do not meet the 10 

to 20 EPV rule. Therefore, the performance of the coefficient estimate of the primary 
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treatment variable was checked in a simulation study. Based on the result of the 

simulation study, we confirmed that the Cox model required only 5 to 6 EPV for reliable 

estimation of the ‘true’ effect of the treatment variable for both OS and DFS. More works 

and discussions follow in Chapter 4. 

3.4 Discussion 

The consolidation treatment variable (FLAG and non-FLAG) had a strong 

association with both OS and DFS as shown in Figures 3.2 to 3.5. Patients who were 

consolidated with at least a cycle of the FLAG regimen had a significant longer median 

OS and median DFS than patients who received only non-FLAG regimens. Similar trend 

was observed for patients who received the FLAG only regimen and the combination 

regimens.  

It is noteworthy that although the FLAG only group had a lower mean cycle of 

chemotherapy than the non-FLAG group, patients in the FLAG only group had 

experienced longer median OS and median DFS than the non-FLAG group. Patients with 

the combination regimens recorded the longest median OS and median DFS when 

compared to the FLAG only group and non-FLAG group. It is observed that the 

combination group also recorded the highest number and mean cycles of consolidation 

chemotherapy, followed by the non-FLAG group and FLAG only group. More cycles of 

consolidation chemotherapy during consolidation might delay disease progression and 

relapse, causing longest median OS and median DFS in the combination group. However, 

we could not determine the causal relationship between the number of consolidation 

cycles and patient’s survival due to limitations in the study design and sample sizes.  

Lowest mortality rate was observed in the FLAG only group when compared with 

the combination group and non-FLAG group. However, the FLAG only group was having 

higher chemotherapy related mortality when compared with the combination group, but 
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still lower than the non-FLAG group. Majority of patients in the non-FLAG group even 

though did not have comorbidities, but were not considered for more intensive 

chemotherapy like FLAG. This indicated that the number of comorbidity a patient 

presented at diagnosis was not the primary consideration for intensive chemotherapy.  

A protecting effect was associated with the use FLAG regimen as consolidation 

treatment in older patients. This protecting effect caused significant reduction in hazards 

by approximately 60% to 80% and led to longer median survival in both OS and DFS. 

The strong variable association to the survival outcome allowed the regression analysis 

with Cox model to reliably estimate the true effect of the FLAG regimen even at low EPV 

condition. Our simulation study showed that the number of outcome events was sufficient. 

The EPV threshold was identified at 5 to 6 EPV. Above the threshold, the performance 

of the coefficient estimate of the treatment variable was stable and less likely to be 

affected by increasing EPV. More discussion about the EPV requirement for variable with 

strong association to survival outcome can be found in Chapter 4.   

Post induction remission have improved over years, but AML relapse remains the 

main cause of treatment failure. Instead of treating the patients after the relapse, the FLAG 

regimen and its intensified version seem somewhat protective before the occurrence of a 

relapse. The effectiveness of FLAG and its intensified versions relies on the enhanced 

intracellular conversion of Ara-C to its active metabolite Ara-CTP in the presence of 

fludarabine and G-CSF (Ossenkoppele et al., 2004). The enhanced killing mechanism at 

the intracellular level might prevent the mutational adaptation in the remaining small 

number of leukemic blasts which could eventually lead to relapse. 

In older patients, AML is highly heterogeneous and the treatment is often 

complicated by problems such as comorbidities, performance status, tolerance, risk of 

early death, pre-existing MDS and lack of motivation. Even majority of older patients up 
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to 80 years of age can tolerate and benefit from intensive chemotherapy, less than half 

would eventually be treated intensively for longer survival (Juliusson et al., 2009; Oran 

& Weisdorf, 2012). The effectiveness and toxicity profile of FLAG and its intensified 

versions have been investigated and reported in some clinical studies involving older 

patients in relapse and refractory AML, secondary AML, as well as those with poor 

prognosis and poor performance status. The highly appreciated outcomes warrant the use 

of the FLAG regimen as part of consolidation treatment for longer survival in patients.  

Finally, the use of FLAG was not limited by cardiotoxicity found in anthracyclines, which 

could be detrimental to some older patients with concurrent cardiac problems. This would 

allow more patients to receive the consolidation treatment for longer remission and 

survival. 

3.5 Conclusion 

A significantly longer remission and survival were found when the FLAG regimen 

was used as part of consolidation treatment in older AML patients.  By using regression 

analysis with Cox model, we adjusted the effect of the FLAG for covariate differences. 

The use of FLAG as consolidation contributed to substantial reduction in hazard rates. 

Therefore, the regimen should be recommended for consolidation treatment, especially 

for older patients who are still fit for intensive chemotherapy. 
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CHAPTER 4: ASSESSING THE PERFORMANCE OF THE COX 

REGRESSION COEFFICIENT WITH STRONG ASSOCIATION TO THE 

SURVIVAL OUTCOMES AT LOW EPV CONDITION 

 

4.1 Introduction 

Cox proportional hazards model (Cox model) is widely used in cancer research to 

describe and estimate the association of multiple variables towards patients’ survival 

times through hazard function (George, Seals, & Aban, 2014). The performance of Cox 

model and its coefficient estimates rely primarily on the independent variables and the 

outcome events, and are frequently investigated in simulation study (Bender, Augustin, 

& Blettner, 2005; Burton et al., 2006). The relationship of the outcome events and the 

independent variables can be expressed as 

EPV =  
Number of outcome events

Number of independent variables
 .                                                 (4.1)     

The value of EPV is determined by the number of outcome events and 

independent variables, therefore it increases with either increasing the outcome events or 

decreasing the independent variables. Several simulation studies have shown that a higher 

EPV value contributes to a more reliable regression analysis with Cox model, and 10 to 

20 EPV are generally required for the Cox model (Concato et al., 1995; Peduzzi et al., 

1995; Steyerberg, Eijkemans, & Habbema, 1999; Vittinghoff & McCulloh, 2007; 

Courvoisier et al., 2011; Ogundimu, Altman, & Collins, 2016). Though the EPV has 

provided a useful indication for assessing the performance of a proportional hazards 

model and sample size calculation, in fact the value does not reflect anything about the 

independent variables, other than just the quantity. The use of EPV rule in Cox model 

necessitated further investigations into other factors that may affect the performance of 

the Cox model and its estimates, and the EPV associated with those factors.  
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The EPV rule for Cox model is established based on several large simulation 

studies. As the performance of Cox model relies primarily on the outcome events and 

independent variables, not on sample size, simulation studies using large data set may 

overlook problems encountered in small scale studies. In real situation, not every clinical 

study is conducted with large sample size. Some single center clinical studies especially 

those on rare disease conditions and unique cohort of patients, small sample size and 

outcomes events are almost expected. Therefore, it is not uncommon to encounter studies 

with Cox models that do not meet the EPV rule (Concato et al., 1995). This problem is 

especially true in some cancer studies involving rare malignancies such as acute leukemia 

(Robak & Robak, 2013).  

The requirement of EPV somewhat depends on the simulated models and the 

characteristics of independent variables examined. According to a large factorial 

simulation study with a primary predictor variable and other variables as adjustment 

covariates, the authors were able to show that 10 to 20 EPV exceeded the minimum EPV 

required for certain conditions. In fact, 5 to 9 EPV were sufficient for Cox models with 

high prevalence variables (Vittinghoff & McCulloh, 2007). For Cox model with many 

low prevalence variables, more than 20 EPV were generally needed to eliminate bias of 

the Cox coefficient estimates (Ogundimu, Altman, & Collins, 2016). For Cox models 

with less than 6 EPV, partial likelihood methods may be too conservative, alternative 

estimators such as Firth’s estimator and Bayesian approaches can be used (Lin, Chang, & 

Liao, 2013). 

As the performance of a Cox model relies on some factors other than EPV, 

assessing the performance and output of the Cox model based on a definitive EPV value 

seems not convincing. To date, it is still uncertain as how variable association will affect 

the performance of the Cox coefficient estimate and what is the EPV for strong variable 

association. A strong variable association may require less events for the same precision 
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and accuracy in Cox coefficient estimate as compared to a weak variable association. This 

further suggests the EPV requirement may change according to the degree of association, 

and that a variable may respond to a different EPV value than others. Therefore, the rule 

of 10 to 20 EPV needs to be re-assessed for variable association.  

Here, we conduct a Monte Carlo simulation study based on the AML retrospective 

cohort study reported in Chapter 3. The primary objective of this simulation study is to 

assess the accuracy, precision and statistical properties of the Cox coefficient estimate of 

a primary treatment variable with strong variable association to the survival outcomes. In 

addition, an EPV threshold will be determined for the primary treatment variable. The 

EPV threshold is the minimum EPV required for stable coefficient estimate. The 

threshold value can be used to estimate the minimum number of events required or the 

effective sample size for a large confirmatory study. 

4.2 Design of the Simulation Study 

4.2.1 Background of the cohort study and data source 

Acute myeloid leukemia is a rare and aggressive form of leukemia. The disease is 

characterized by rapid growth and accumulation of abnormal white cells in bone marrow 

that interferes with the production of normal blood cells (Robinson & Broadfield, 2005; 

Deschler & Lübbert, 2006). Treatment for AML includes two phases of intensive 

chemotherapy, which are induction and consolidation treatments, and hematopoietic stem 

cell transplantation (Kantarjian et al., 2010; Burnett, Wetzler, & Lowenberg, 2011).  
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Figure 4.2: The KM survival curves for OS of the older AML patients 

consolidated with the FLAG regimen and non-FLAG regimens. The FLAG 

group experienced a longer OS than the non-FLAG group.  

 

 

 

 

 

The cohort study consisted of 41 older patients who were diagnosed with AML 

from 2008 to 2013. The aim of the cohort study was to compare the OS and DFS of older 

patients who had been consolidated with different types of chemotherapy regimen. The 

Figure 4.1: The KM survival curve for OS of older AML patients with a 

median OS duration of 17.23 months (95% CI: 9.86 – 27.51).  
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primary treatment variable was binary; it consisted of a group of patients who were 

consolidated with FLAG regimen (coded as ‘1’) and a group of patients who were 

consolidated with non-FLAG regimen (coded as ‘0’). The effect of the primary treatment 

variable on patient’s OS and DFS was adjusted for three other variables (sex, race, and 

age at diagnosis) in the Cox model. 

The EPV was calculated based on Equation (4.1) with 6.5 for OS (26 deaths 

divided by 4 variables) and 6.75 for DFS (27 relapses/deaths divided by 4 variables). 

According to the KM OS curve as shown in Figure 4.1, the primary treatment variable 

was strongly associated with the OS as it caused the OS to differ significantly between 

those who received the FLAG regimen and those who received non-FLAG regimens 

(Figure 4.2). We defined a strong variable association to survival outcome as a variable 

that causes a statistically significant difference, for example at significance level of 0.05, 

in the survival probabilities at small number of outcome events. The survival curve of the 

DFS for the treatment variable is similar of OS as presented by Figure 3.3. 

The effect of the primary treatment variable was estimated by using a Cox model 

as expressed by Equation (2.3). Table 4.1 summarizes the results of regression analysis 

with the Cox model. The primary treatment variable had a prevalence of 0.83 for the 

FLAG group and 0.17 for the non-FLAG group. Let β̂  be an estimate of the ‘true’ 

parameter of interest, β of the Cox model in the cohort study. The regression coefficient 

of the primary treatment variable was reported as β̂OS = ‒1.4073 (p = 0.0094) for OS and 

β̂DFS  = ‒1.5289 (p = 0.0068) for DFS. Taking the exponentiation of the regression 

coefficient (𝑒β̂) yielded a HR of 0.245 for OS and 0.217 for DFS. The results suggested 

that the use of FLAG regimen as the consolidation chemotherapy was associated with 

improved OS and DFS in the patients. The assumption of proportional hazards was tested 
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by using cumulative sums of martingale residuals with supremum test and was satisfied 

for all variables for the Cox model as shown in Table 3.5. 

Table 4.1: The summary of statistics of all variables used in the regression analysis with Cox 

model for the cohort study.  

Variables 

(coding) 
Prevalence 

OS DFS 

�̂� SE p HR �̂� SE p HR 

1. Treatment  
- FLAG (=1) 

- non-FLAG (=0) 

 

0.83 

0.17 

 

-1.4073 

 

 

0.542 

 

0.0094 

 

0.245 

 

-1.5289 

 

0.5650 

 

0.0068 

 

0.217 

2. Gender  
- Female (=1)  

- Male (=0) 

 

0.59 

0.41 

 

-0.3403 

 

0.432 

 

0.4305 

 

0.712 

 

-0.2894 

 

0.4378 

 

0.5088 

 

0.749 

3. Race  
- Chinese (=1) 

- Indian (=1) 

- Malay (=0) 

 

0.36 

0.15 

0.49 

 

0.3969 

0.1209 

 

0.397 

0.121 

 

0.3651 

0.8419 

 

1.487 

1.128 

 

0.4268 

0.5613 

 

0.4380 

0.5643 

 

 

0.3299 

0.3199 

 

1.532 

1.753 

4. Age - 0.0293 0.045 0.5137 1.030 0.0637 0.0456 0.1626 1.066 

SE = standard error. 

 

4.2.2 Simulation study 

The simulation study was performed by using SAS software (version 9.4). 

Survival times were approximated by a parametric distribution that shares the assumption 

of proportional hazards with Cox model (Bender, Augustin, & Blettner, 2005). The 

survival times for OS were first fitted by the Weibull distribution with a scale parameter, 

λ and a shape parameter, α. A Goodness-of-fit test showed that the survival times for OS 

fitted well with the Weibull distribution with λ = 2.864 ×10-2 and α = 1.129 (p > 0.05). 

By using the inverse cumulative hazard function for the Weibull distribution (see 

Equation (2.11)), the random survival time, Tos, of each patient in OS can be simulated 

by using 

  Tos = (λ−1[− log(U) × exp(−𝐗𝑗�̂�)])
1

α ,                                            (4.2) 
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where the random number, U is uniformly distributed, as U~Uni[0,1], �̂� is the set of ‘true’ 

regression coefficients, λ is the scale parameter and α is the shape parameter of the 

Weibull distribution as given above. Survival times for DFS were generated by using the 

following equation, 

 TDFS = TOS ×
TDFS

′

TOS
′  ,                                                                             (4.3) 

where TDFS
′  was the original survival time for an individual patient in DFS and TOS

′  was 

the original survival time for an individual patient in OS. The unique ratio (
TDFS

′

TOS
′ ) between 

OS and DFS available for each patient was used to generate the survival times in DFS. 

This approach helped avoid situations whereby an individual patient would have DFS 

longer than OS. As the DFS was a subset to OS, the inherent relationship between OS 

and DFS should be maintained throughout the simulation process.  

The simulated survival times were then sorted from shortest to longest and 

combined with a preset outcome status (APPENDIX A) based on the number of outcome 

events required to achieve the desired EPV value. Events are coded as ‘1’ and non-events 

are coded as ‘0’ in the preset outcome status dataset. Non-event refers to censored 

observations either by default censoring or drop-out censoring. For EPV spectrum 

ranging from 3 to 9, the number of outcome events required were 12, 16, 20, 24, 28, 32 

and 36, respectively. The simulated survival times, preset outcome status and variable 

values of each individual patient were then analyzed by using PROC PHREG2 in SAS to 

estimate the simulated regression coefficient, �̃� and the corresponding variance, 𝐬𝟐. The 

simulation process was repeated for m=1000 times at each EPV value. This allowed the 

assessment of the performance of the Cox model and its estimates at different EPV values.  

                                                 
2 PROC PHREG is a SAS command that implements the Cox regression model developed by Sir David Cox in 1972 by using new 

estimation method called partial likelihood. Partial likelihood estimates still have two of the three standard properties of maximum 

likelihood: they are consistent and asymptotically normal (Allison, 2010).    
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In this simulation study, only the performance of the primary treatment variable is 

investigated in the following section. 

4.2.3 Performance of the simulated Cox coefficient estimates 

Table 4.2 summarizes the indexes used to assess the accuracy, precision and 

statistical properties of the simulated Cox coefficient estimates for the primary treatment 

variable. Accuracy was evaluated by using relative bias and proportion of simulations 

with percentage absolute relative bias greater than 100%, in accordance to the index used 

in establishment of EPV rule (Concato et al., 1995; Peduzzi et al., 1995). The absolute 

relative bias was calculated by taking the value of (β̃ − β̂)/β̂ in percentage. The absolute 

relative bias indicates disparity of the simulated regression coefficients (β̃) from the ‘true’ 

regression coefficient (β̂).  A proportion of simulations with absolute relative bias greater 

than 100%, which is closer to zero indicates a lower degree of bias. The mean relative 

bias was calculated by taking the value of (β̅̃ − β̂)/β̂ in percentage, where β̅̃ is the average 

value of β̃ found in m=1000 simulations. A mean relative bias of more than 15% is 

regarded as problematic (Vittinghoff & McCulloh, 2007). 

Table 4.2: The indexes used to assess the accuracy, precision and statistical properties of 

the simulated Cox coefficient estimates. 

Parameters    Indexes 

A. Accuracy • Relative bias 

• Proportion of simulations with absolute relative bias 

greater than 100% 

B. Precision  • Mean model variance (MMV) 

• Actual sample variance (ASV) 

• Ratio of MMV:ASV 

C. Statistical properties • 95% CI coverage  

• Statistical power  

• Minimum and maximum values of HR 
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Precision of coefficient estimate was evaluated by using mean model variance 

(MMV), actual sample variance (ASV) and the ratio of MMV:ASV. The MMV is the 

average of the corresponding variances for the  β̃ . The ASV is calculated from the 

simulated regression coefficients by using ∑ (β̃i − β̅̃)m
i=1

2
/(m − 1). A departure between 

the MMV and ASV would cause the ratio of MMV:ASV to deviate from the value of 1. 

Large sample properties of the Cox model might be lost if the ratio of MMV:ASV was 

substantially deviated from one (Concato et al., 1995).   

Statistical properties of the regression coefficient were checked by using 95% CI 

coverage, which was the proportion of the simulated models in which 95% CI of a 

simulated coefficient estimate to include the ‘true’ regression coefficient. For assessing 

the power, the proportion of simulated models in which the z-statistics exceeded the value 

of ‒1.28 for 90% power was calculated. Besides, we also evaluated the minimum and 

maximum HR for the primary treatment variable at each EPV value. 
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4.3  Results 

Figures 4.3 and 4.4 present the distributions of the simulated Cox regression coefficients 

for the primary treatment variable at different numbers of EPV in both OS and DFS. All 

the distributions of the regression coefficients are asymptotically normal. But the 

distributions became more dispersed when EPV decreased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The distributions of the simulated Cox regression coefficients for the 

treatment variable in OS at different numbers of EPV.   
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Figure 4.4: The distributions of the simulated Cox regression coefficients for 

the treatment variable in DFS at different number of EPV.   
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4.3.1  Accuracy of the simulated regression coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: The box-plots of the individual relative bias of the simulated 

regression coefficients for OS. 

Figure 4.6: The box-plots of the individual relative bias of the 

simulated regression coefficients for DFS. 
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Figures 4.5 and 4.6 show the boxplots3  of the individual relative bias of the 

simulated regression coefficients for both OS and DFS. According to the boxplots, bias 

greatly reduced when EPV increased. The bias appeared less varied from 5 to 9 EPV for 

both OS and DFS. The median and mean of the individual relative bias for both OS and 

DFS appeared unaffected by EPV change. Both mean and median were consistent and 

close to each other for all EPV values. Largest interquartile range (IQR) and most outliers 

were found at 3 EPV. The number of outliers greatly reduced from 5 to 9 EPV. More 

positive outliers were detected than negative outliers for both OS and DFS. Table 4.3 and 

Figure 4.7 show the mean relative bias for both OS and DFS across EPV. The mean 

relative bias was unaffected across EPV spectrum for both OS and DFS due to consistent 

mean values even at very low EPV. The simulated regression coefficients for OS had a 

mean relative bias of around 15% at 3 and 4 EPV and less than 15% from 5 to 9 EPV. 

The mean relative bias for DFS was consistently around 20% across the EPV spectrum. 

 

Table 4.3: The mean relative bias in percentage of the simulated Cox regression 

coefficients for both OS and DFS. 

EPV OS DFS 

 Percentage (%) Percentage (%) 

3 15.57 19.98 

4 15.32 21.37 

5 13.98 21.08 

6 13.96 21.43 

7 13.78 21.32 

8 12.98 20.42 

9 11.98 19.18 

 

                                                 
3 Upper and lower edges of box indicate third quartile (75th percentile) and first quartile (25th percentile). The length of the box 

indicates the interquartile range (IQR). The endpoints of the upper and lower whiskers indicate maximum and minimum data points 

still within 1.5 IQR from the edges of the box. The line inside the box indicates median and the symbol marker indicates mean. 
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The proportion of simulations in which the absolute relative bias exceeded 100% 

of the ‘true’ regression coefficient (β̂) decreased across EPV spectrum for both OS and 

DFS (Table 4.4 and Figure 4.8). At 6 EPV and above, less than 5% of the simulated 

models were found with absolute relative bias exceeded 100% of the ‘true’ regression 

coefficient. The result shows that bias increased substantially when the EPV was lower 

than 6. From 6 to 9 EPV, 50% increase (24 to 36 events) in the number of events only 

contributed to less than 2% improvement in the relative bias for both OS and DFS. This 

suggested that a strong variable association helped reduce bias in Cox coefficient estimate. 

Hence, less EPV are required for variable with strong variable association to the survival 

outcome. 

 

 

Figure 4.7: The mean relative bias of the simulated regression coefficients for 

both OS and DFS. 
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Table 4.4: The proportion of the simulated Cox models with absolute relative bias 

exceeded 100% of the ‘true’ regression coefficients for both OS and DFS. 

EPV 

OS DFS 

Total Proportion Total Proportion  

3 134 0.134 124 0.124 

4 98 0.098 102 0.102 

5 64 0.064 64 0.064 

6 47 0.047 47 0.047 

7 34 0.034 44 0.044 

8 33 0.033 33 0.033 

9 29 0.029 36 0.036 

 

 

 

 

 

 

 

 

Figure 4.8: The proportion of the simulated Cox models with absolute 

relative bias exceeded 100% of the ‘true’ regression coefficients for both 

OS and DFS. 

Univ
ers

ity
 of

 M
ala

ya



56 

 

4.3.2  Precision of the simulated regression coefficients 

Table 4.5 summarizes the MMV, ASV and the ratio of MMV:ASV for both OS 

and DFS. The MMV and ASV were relatively high at 3 and 4 EPV. Both MMV and ASV 

decreased with increasing EPV.  

Table 4.5: The MMV, ASV and ratio of MMV:ASV of the simulated Cox 

regression coefficients for both OS and DFS. 

 

EPV 

OS DFS 

 MMV  ASV 
𝐌𝐌𝐕

𝐀𝐒𝐕
  MMV  ASV 

𝐌𝐌𝐕

𝐀𝐒𝐕
 

3 0.7920 0.9640 0.8216 0.8390 1.0680 0.7856 

4 0.5860 0.6720 0.8720 0.6250 0.7540 0.8289 

5 0.4780 0.5050 0.9465 0.5110 0.5760 0.8872 

6 0.4210 0.4540 0.9273 0.4500 0.5080 0.8858 

7 0.3860 0.4110 0.9392 0.4120 0.4590 0.8976 

8 0.3640 0.3910 0.9309 0.3890 0.4320 0.9005 

9 0.3500 0.3720 0.9409 0.3730 0.4070 0.9165 

 

Departure between the MMV and ASV was found at 3 and 4 EPV for both OS 

(Figure 4.9) and DFS (Figure 4.10). The departure between the MMV and ASV was 

substantial at 3 and 4 EPV, but appeared consistently small from 5 to 9 EPV. Figure 4.11 

presents the change of the ratio of MMV:ASV across the EPV spectrum. According to 

Table 4.5, the MMV of the simulated regression coefficients was underestimated by 18% 

at 3 EPV and 13% at 4 EPV for OS and by 21% at 3 EPV and 17% at 4 EPV for DFS. 

The change of the ratio of MMV:ASV over the EPV spectrum showed that Cox 

coefficient estimates had a considerably small departure between variances from 5 to 9 

EPV. This implied that the precision of the Cox coefficient estimate would only be 

affected when the EPV was less than 5. Therefore, a strong variable association improved 

precision of Cox coefficient estimate at low EPV.   

 

Univ
ers

ity
 of

 M
ala

ya



57 

 

 

 

 

 

 

 

 

 

Figure 4.9: The MMV and ASV of the simulated regression coefficients 

of the treatment variable in OS. 

Figure 4.10: The MMV and ASV of the simulated regression 

coefficients of the treatment variable for DFS. 
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4.3.3  Statistical significance of the simulated regression coefficients 

Statistical properties of the simulated regression coefficients were assessed by 

using three indexes. Table 4.6 shows the maximum and minimum HR of the treatment 

variable for both OS and DFS. The change of the maximum and minimum HR over the 

EPV spectrum is shown in Figure 4.12. The range of HR was widest at 3 and 4 EPV, and 

appeared less varied from 5 to 9 EPV. At 3 and 4 EPV, the protective effect of the primary 

treatment variable tended to be wrongly estimated. The 95% CI coverage also appeared 

stable and unaffected by EPV (Table 4.7 and Figure 4.13). The results suggest that a 

strong variable association may provide more stable CI coverage for the Cox regression 

coefficient. 

 

 

Figure 4.11: The ratio of MMV:ASV for the simulated regression 

coefficients of the treatment variable for both OS and DFS.  
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Table 4.6: The maximum and minimum simulated HR at 95% level (two-

tailed) of the treatment variable for both OS and DFS. 

EPV OS DFS 

3 6.763, 0.001 5.434, 0.001 

4 3.926, 0.006 2.880, 0.005 

5 1.717, 0.016 1.363, 0.011 

6 1.647, 0.023 1.294, 0.013 

7 1.429, 0.030 1.464, 0.016 

8 1.075, 0.034 0.907, 0.014 

9 0.963, 0.034 0.998, 0.013 

 

 

 

 

 

 

 

 

Figure 4.12: The maximum and minimum simulated HR at 95% level 

(two-tailed) of the treatment variable for both OS and DFS. 
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Table 4.7: The proportion of the simulated Cox models in which 95% CI of 

the simulated Cox regression coefficients included the ‘true’ regression 

coefficient for both OS and DFS. 

EPV OS DFS 

3 0.945 0.952 

4 0.940 0.933 

5 0.941 0.932 

6 0.944 0.931 

7 0.948 0.935 

8 0.943 0.937 

9 0.946 0.943 

 

 

 

 

 

Table 4.8 and Figure 4.14 show the proportion of simulated models in which the 

z-statistics exceeded the value of ‒1.28 (a counterpart of 90% power). According to the 

figure, the power increased with increasing EPV. Ninety percent power was achieved at 

8 EPV for OS and 5 EPV for DFS. 

Figure 4.13: The proportion of the simulated Cox models in which 95% CI 

of the simulated Cox regression coefficients included the ‘true’ regression 

coefficient. 
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Table 4.8: The proportion of simulated Cox models with z-statistics more than 

‒1.28 for 90% power for both OS and DFS.   

EPV OS DFS 

3 0.732 0.786 

4 0.820 0.873 

5 0.853 0.909 

6 0.885 0.933 

7 0.893 0.951 

8 0.912 0.969 

9 0.920 0.967 

 

 

 

 

 

 

 

 

 

Figure 4.14: The proportion of simulated Cox models with z-statistics 

more than ‒1.28 for 90% power for both OS and DFS. 
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4.4  Discussion 

Other simulation studies investigate the performance of Cox estimators and 

logistic estimators with varying EPV under conditions such as different correlation 

between variables, strength of estimator, number of variables, type of variables, and 

prevalence of binary variables (Peduzzi et al., 1996; Vittinghoff & McCulloh, 2007; 

Courvoisier et al, 2011; Ogundimu, Altman, & Collins, 2016). Even with very large 

dataset, conclusions from those simulation studies still vary. Therefore, it is arguable to 

have one definitive EPV value that applies to all conditions.  

Our simulation study utilizes a small dataset as the validity of Cox model depends 

primarily on the outcome events and independent variables, not the sample size. Our study 

has shown that a variable with strong association to survival outcomes requires less EPV 

for reliable estimates, making it possible with less than 10 EPV. Our results show that the 

regression coefficient of the primary treatment variable had sufficient power, acceptable 

accuracy and precision at 6 EPV. Besides, our results are also consistent with other 

simulation studies that bias increases and statistical power decreases at very low EPV.  

Interestingly, an EPV threshold for the primary treatment variable was found at 6 

EPV. Above this value, variation and deviation appeared consistent and unaffected with 

increasing EPV. The EPV threshold may be variable-specific. It may also change 

according to the strength of association. However, further research is required to evaluate 

those assumptions. More importantly, the EPV threshold may be used to estimate the 

number of outcome events required to determine the sample size for a large confirmatory 

study.   

It is possible that the relative bias could have been affected during the simulation 

process. An ideal approximation should bring all the simulated survival times close to the 

original survival times and when a comparison was made, zero relative bias should be 
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obtained at the EPV threshold. However, that was not achieved at the end. This indicates 

that the results may be affected during the simulation of survival times. The Weibull 

distribution has provided a good fit to the survival times, but is still far from a perfect fit. 

Nevertheless, the trend of how the indexes change over the EPV spectrum has shown that 

the regression analysis with Cox model should have provided a good estimation to the 

‘true’ effect for the primary treatment variable at the given EPV value. 

4.4.1  Implications of EPV in sample size estimation 

A valid regression analysis with Cox model depends on sufficient number of 

events. Then, a sample size can be accurately estimated by knowing the number of events 

or EPV required. To do this, an investigator will need to consider the event prevalence 

(P), number of independent variables (k) and the EPV value. For example, let us assume 

that the three years prevalence of death in breast cancer was 60%. An investigator would 

like to assess the HR associated with a new chemotherapy in a group of terminal breast 

cancer patients, compared to the conventional treatment. Let us assume that the estimation 

of HR was done with adjustment of 5 other independent variables. Then, the sample size 

for the study =
k × EPV

P
=

6 × EPV

0.60
= 10 × EPV  patients over three years. As a rule of 

thumb, the sample size can be estimated by using 10 to 20 EPV, which gives the 

investigator an estimated 100 to 200 patients. However, if the new chemotherapy was 

effective and strongly associated to the survival outcome, 5 to 6 EPV may be sufficient, 

and the number of subjects could be reduced to 50 to 60 patients. 

4.4.2  Strength of association 

The requirement of 10 to 20 EPV was established by using variables with 

moderate association to the survival outcome (Peduzzi et al., 1995), therefore does not 

necessarily apply for variable with strong association to the survival outcome. Our results 

show that strong variable association requires less than 10 EPV. An investigator can 
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gauge the degree of association by studying KM survival curve. A variable with strong 

association should cause a significant difference in the KM survival curves with small 

number of events. To date, method for calculating an effective EPV for a particular 

variable is not available. Nevertheless, a simulation study can be conducted to identify an 

effective EPV threshold with helps from a statistician, provided the survival times can be 

approximated by a parametric distribution. 

4.5  Conclusion 

The performance of the Cox model not only relies on the EPV. The requirement 

of EPV may vary according to different conditions and characteristics of the independent 

variables, therefore it is arbitrary to have a definitive EPV value for all variables. Our 

simulation has shown that 3 and 4 EPV were associated with highest level of bias and 

disparity in accuracy, precision and statistical properties. At 5 to 6 EPV, the performance 

of the Cox coefficient estimate started to gain stability. Above 6 EPV, increasing the 

number of events was less likely to improve the overall performance of the Cox 

coefficient estimate.  We were able to demonstrate that the EPV rule is uncertain and 

should not apply to a variable with strong association to the survival outcomes. An EPV 

threshold for the primary treatment variable was identified at 6, which was much lower 

than the EPV rule published in other literatures.  

Our finding is useful for research of rare disease conditions with limited outcome 

events and variables of high association to survival outcome. This identified EPV 

threshold helps improve the estimation of sample size that can be applied for a large 

confirmatory study in the same scenario, as well as the interpretation of regression output 

by using the Cox model. 
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CHAPTER 5: CONCLUDING REMARKS 

 

The retrospective cohort study is small considering the number of patients 

enrolled and amount of data analyzed. However, a good study should not be only judged 

by its size, other parts of the study such as novelty of research question, study design, 

analytical methodology, variables and outcomes measured are equally important.    

The retrospective cohort study has successfully brought out an important 

treatment concept of intensifying the post induction treatment particularly for those with 

advanced age with the FLAG regimen. Not only that, further analysis has been done to 

differentiate the survival outcomes for those who had received the FLAG only regimen 

and those who had combination of regimens. Through a series of methods from KM to 

regression analysis with Cox model, we are able to analyze the complete survival and 

disease free experience of a group of older AML patients treated by local hematologists 

in a meaningful manner for the country. A clear difference in OS and DFS amongst those 

who took FLAG only, combination and non-FLAG chemotherapy evidences the need to 

intensify the post induction chemotherapy for those who are still clinically fit. The 

findings of the cohort study are also valuable for a large confirmatory study involving the 

FLAG regimen as consolidation later. 

  The simulation study, as a statistical tool to assess the adequacy of the Cox 

models in the cohort study presents another important concept of low EPV requirement 

for variable with high association to the survival outcome. As a popular survival analysis 

technique in clinical study, it is prudent to understand how a coefficient estimate would 

behave under low EPV condition. The findings of the simulation study have a practical 

contribution towards study planning, particularly in the estimation of sample size by using 

EPV.  However, more work should be carried out to investigate how the degree of 

association between a variable and a survival outcome could affect the EPV requirement. 
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