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ABSTRACT 

The effects of acute treatment of hydrogen peroxide (LC50 = 21.52% (v/v)) on the 

expression of cytosolic and thiol proteins of housefly (Musca domestica) 3rd instar larvae 

were investigated. Using two dimensional gel electrophoresis, differential analysis was 

performed to identify protein with moderate (2 to 5 times) and high (more than 5 times) 

fold changes. In the total proteome, 17 spots and 23 spots were discovered to have 

moderate fold change respectively in control and treated samples. 3 different identified 

protein spots were shown increase in high fold change in both treated and non-treated 

larvae samples respectively. Qualitatively, there was presence of extra expression in 2 

and 4 different protein spots in both control and treated samples respectively. The 

variation of expression of thiol proteins was also investigated by analyzing the purified 

thiol proteome upon acute peroxide treatment. 5 thiol proteins and 6 thiol proteins were 

found to have a moderate fold change in control and treated samples respectively. There 

were 2 different identified thiol protein spots increased at high fold changes in both 

treated and non-treated larvae samples. Our work has also shown that qualitatively, a 

significant presence of 4 protein spots in treated samples which were absent in the control 

samples. Protein spots with high fold changes were identified using LC-MS/MS based 

peptide mass fingerprinting and biomarkers related with important biological functions 

were identified including cytoskeleton (actin and tropomyosin), protein degradation 

(ubiquitin), odorant binding (PBP/GOBP family protein), energy metabolism (arginine 

kinase), anaerobic metabolism/gluconeogenesis/TCA cycle (Lactate/malate 

dehydrogenase), and glycolysis/gluconeogenesis (Fructose bisphosphate aldolase). 

Arginine kinase and fructose bisphosphate aldolase are high in abundance in thiol 

proteome profile, suggesting their high tolerance of cysteine residues under acute 

hydrogen peroxide induced oxidative stress.  
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ABSTRAK 

Kesan rawatan akut hidrogen peroksida (LC50 = 21.52% (v/v)) dari segi ekspresi inti sel 

dan protein thiol larva instar ketiga lalat rumah (Musca domestica) telah disiasat. Dengan 

menggunakan elektroforesis gel 2 dimensi, analisis secara pembezaan dijalankan bagi 

mengenalpasti tompok protein yang meningkat secara sederhana (2 hingga 5 kali) dan 

tinggi (lebih daripada 5 kali). Dalam proteome secara keseluruhan, 17 and 23 tompok 

protein dijumpai menunjukkan peningkatan sederhana masing-masing sampel kawalan 

dan dirawat. 3 protein yang berbeza menunjukkan peningkat tinggi dalam sampel 

kawalan dan rawatan masing-masing. Secara qualitatif, sampel kawalan dan sampel 

rawatan masing-masing menunjukkan 2 dan 4 tompok protein yang muncul secara unik. 

Variasi ekspresi protein thiol setelah dirawat secara akut oleh peroksida juga disiasat. 5 

protein thiol dan 6 protein thiol masing-masing menunjukkan peningkatan secara 

sederhana dalam sampel kawalan dan rawatan masing masing. Kerja kami turut 

menunjukkan secara kualitatif, Masing-masing dalam sampel larva kawalan dan dirawat, 

2 tompok protein thiol telah dikesan. 4 tompok protein dalam sampel rawatan tidak hadir 

dalam sampel kawalan. Pengenalpastian peptida melalui kromatografi cecair dan 

spektrometri jisim selaras dalam tompok protin yang berubah secara tinggi mengaitkan 

petanda dengan fungsi biologi penting termasuk sitorangka (aktin dan tropomiosin), 

metabolisme tenaga (kinase arginina), degradasi protein (ubikuitin), pengikatan 

pengahbau (keluarga protein PBP/GOBP), metabolisme anaerobik/gluconeogenesis/ 

kitaran TCA (laktat/malate dehidrogenase), dan glikolisis/gluconeogenesis (aldolase 

fruktos bisfosfat). Kinase arginina dan aldolase fruktos bisfosfat menunjukkan 

peningkatan tinggi dalam profil protein thiol, mencadangkan bahawa toleransi tinggi 

cysteine di bawah rawatan akut peroksida hidrogen yang mencetuskan tekanan oksidatif.    
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1.0 LITERATURE REVIEW 

1.1 Introduction 

 Houseflies (Musca domestica) are one of the wonderfully evolved organism of 

the Diptera clade since Jurassic. An estimated 150,000 of species of Diptera have been 

described (Thompson, 2004).  

 A notorious vector, houseflies are associated with more than 100 pathogens (Scott 

et al., 2009), and resistance towards insecticides of houseflies have been reported all over 

the world. According to Scott et al., Musca domestica is suitable as a model organism for 

resistance studies and development of new insecticides.  

 The knowledge on cellular metabolism in recent years has been expanded to 

understand the metabolic workings upon oxidative stress. Cellular metabolism, 

particularly in oxygen metabolism, produce reactive oxygen species like superoxide 

anion (O2
- ●). Different response system had been developed to sense and respond towards 

oxidative stress (Groitl and Jakob, 2014). 

 Cysteine residue in amino acid reactive site undergoes oxidative changes (Biswas 

et al., 2006) and oxidative modification of proteins containing cysteine residue have been 

shown to play a role during oxidative stress (Song et al., 2002; Azevedo et al.,2003; 

Georgiou and Masip, 2003; Alonso et al., 2004; Enoksson et al., 2005; Winter et al., 2005; 

Biswas et al., 2006; Brandes et al., 2007; Brandes et al., 2009). 

 In Musca domestica alone, a few family of proteins have been more or less 

associated with oxidative stress response  : glutathione –s-transferases (Ketterer, 1998; 

Strange et al., 2000; Eaton and Bammler, 1999; Yin et al., 2000), superoxide dismutase 

(den Hartog et al., 2003; Tang et al., 2012), glutathione peroxidases (Simmons et al., 

1987; Simmons et al., 1989), and catalase (Allen et al., 1983).  
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Combination of thiol protein trapping techniques (Hu et al., 2010), the prowess of 

two dimensional gel electrophoresis (O’ Farrell, 1975 and Klose, 1975) and the liquid 

chromatography tandem mass spectrometry (LC-MS/MS) identification is possible to 

probe and observe cytosolic proteins. From that we will be able to provide information 

on how Musca domestica larvae survive under oxidative stress at proteomic level. 
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1.2 Musca domestica 

 Musca domestica (1758, Linnaeus) (Diptera: Muscidae), commonly known as 

housefly, is a synanthropic insect living and interacting with human and its environment, 

especially in urban areas.  

 

 

 

Figure 1.1: Adult house fly, Musca domestica Linnaeus (1758, Linnaeus) 

(Adapted from http://diptera.info/forum/viewthread.php?thread_id=42656n 

Photograph by Jim Kalisch, University of Nebraska-Lincoln.) 
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 The survival of a wild type adults usually spans from 15 to 25 days, which they 

exhibit the same behavior during our laboratory cultivation. Where during this stage adult 

housefly undertakes complete metamorphosis from of an egg, larval, pupal, and finally to 

adult stage.  

  Houseflies breed extremely fast when compared to other species of flies. Female 

houseflies lay 500 eggs, in 5 to 6 batches throughout her lifespan, with 75 – 100 eggs 

deposited each batch in the span of just 3 to 4 days. Females are able to do so by just on 

fertilization of one male. The white and oval eggs are laid into a moist environment such 

as animal feces, excrement and garbage, preferably the ones which exposed under light. 

Larvae weighs from 0.008 to 0.02g at birth.  

  Larvae develops in 5 days, surviving best in compost mixtures of decaying 

vegetables enriched with animal material or dung. Throughout this investigation, our 

cultivation aims to create such similar environment by distilled water-moistened mouse 

feed for larval cultivation (Hewitt, 1914; Robinson, 2005; Marshall, 2006). 
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Figure 1.2: Life cycle of the house fly, Musca domestica (1758, Linnaeus) 

(Clockwise from left: eggs, larva, pupa, adult.) 

(Adapted from 

http://www.forestryimages.org/browse/detail.cfm?imgnum=1234161 Photograph 

by Clemson University - USDA Cooperative Extension Slide Series, Bugwood.org) 

 

Classifications: 

Domain: Eukarya 

Kingdom: Animalia 

Phylum: Arthopoda 

Class: Insecta 

Order: Diptera 

Family: Muscidae 

Genus: Musca 

Species: domestica 
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1.3 Health impacts of Musca domestica 

 Naturally houseflies’ main ecosystem role is to decompose and recycle organic 

material.  Houseflies is a synanthropic insect in urban areas where high densities of human 

waste as their food source. (Dahlem, 2003; Marshall, 2006; Robinson, 2005).  

 It has known to be vectors of various diseases of over 30 bacteria, protozoan, 

viruses and helminth eggs (Greenberg et al., 1970, Kobayashi et al., 1999). It also 

transfers viruses such as polioviruses (Kettle, 1990) and Coxackie viruses, as well as 

numerous bacteria such as Campylobacter jejuni, Heliobacter pylori (Grubel et al., 1997), 

Salmonella sp. (Greenberg et al., 1970), Listeria sp., Yersinia pseudotuberculosis (Zurek 

et al., 2001), Shigella sp. (Ugbogu et al., 2006), Escherichia coli (Szalanski. et al., 2004), 

and Vibrio sp. (Kettle, 1990). Flies may also be vectors of protozoan flies such as Giardia 

and Entameba (Ugbogu et al., 2006) and eggs of several tapeworms (Graczyk et al., 2005).  

In 2010, there were further proof on transmission of Newcastle disease virus (NDV - 

Paramyxoviridae), a highly infectious virus shed in the faeces in infectious birds (Barin 

et al., 2010) with Musca domestica as vector in both field and laboratory. More recently, 

Musca domestica were also reported to carry antibiotic resistant bacteria such as 

methicillin resistant Staphylococcus and tiarcilin resistant Pseudomonas (Boulesteix et 

al., 2005), which possess threat in hospitals and healthcare facilities (Graczyk et al., 2001). 

In Africa, houseflies transmit pathogens that is responsible for trachoma (Keiding, 1986). 

Flies causing 6 million cases of childhood blindness each year 

(http://www.who.int/topics/trachoma/en/).  

 Musca domestica also create implications in economical ways, costs of pesticides 

were estimated at more than US$200 million yearly in the United States (Geden et 

al.,1994) and US$1.6 million in 1998 (Crespo et al.,1998).  
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1.4 Insecticide control and resistance of Musca domestica 

Types of insecticides used to control houseflies on field are adulticides and 

larvicides (www.flycontrol.norvatis.com). Adulticides are carbamates (e.g. propoxur and 

methomyl), organophosphates (e.g. fenitrophon, azamethiphos and dimethaoate), 

pyrethroids (e.g. cyfluthrin, deltamethrin and permethrin) and recently neocotinoids (e.g. 

imidacloprid, thiamethoxam)(Kaufman et al., 2006). Larvicides are insect growth 

regulators (IGRs) (e.g. triflumuron, diflubenzuron, cyromazine (Kočišová et al.,2004)), 

and nonvaluron (Cetin et al.,2006)) and juvenile hormone synthetic analogues (e.g. 

methoprene, fenoxycarb, pyriproxyfen (Kočišová et al.,2004)) 

(www.flycontrol.novartis.com).  

Since 1st case of DDT-resistance is reported on the housefly (Saccà, 1947), 

resistance of adult Musca domestica towards various insecticides in various sites 

(agricultural, wild, and urban) is a fast-growing global issue. There has been an increasing 

resistance profiles report from various places in the world.  

In United Kingdom a resistance risk-assessment done by Learmount et al. (2002) 

shown that although farmers claimed they had reduced using insecticides (a measure to 

reduce selective stress on field housefly strains), there were no sign of decrease of 

housefly resistance towards piperonyl butoxide-synergized pyrethrins.  

In Denmark, Keiding (1976) discovered high fenitrothion and dimethoate 

resistance in field. In 1997, Kristensen et al. confirmed increase in pyrethroid-resistant 

strains and widespread of azamethiphos-resistant strains in 21 different farms all over 

Denmark.  

In Argentina, a first insecticide survey was reported by Acevedo et al. (2009). 

Musca domestica populations there were found to be permethrin, dichlorovinyl dimethyl 

phosphate (an organophosphate) and cyromazine resistant. In the neighbouring Brazil, 
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Pinto and Prado (2001) led a first evaluation of cyromazine resistance of houseflies in 5 

different sites and 3 out of the 5 sites indicated cyromazine resistance.  

One finding of insecticide tolerance in tsunami-hit villages in India, emphasizing 

on post-disaster pest control is done by Srinivasan et al. (2008). With hygiene is at 

minimum provision, immediate fly control was imposed by spraying 76% dichlorvos and 

LD90 of adult housefly was 3.5-3.9 times higher than the flies from control sites.  

As in the United States, Scott et al. (2000) tested against nine insecticides, flies 

from caged-layer poultry facilities across New York. The fly strain showed high 

resistances in tetrachlorvinphos, permethrin and cyfluthrin while in southeastern 

Nebraska, houseflies are shown to be moderately resistant to permethrin yet extremely 

resistant to stirofos and methoxychlor (Marçon et al., 2003). 

In China, Cao et al. (2006) discovered deltamethrin resistance in urban garbage 

dump of cities of Beijing, Tianjin and Zhangjiakou.  

Back at Malaysia, Nazni et al. (1999) has been evaluating resistance of housefly 

from a garbage dump, poultry farm and agricultural farm. Five insecticides were 

evaluated for the purpose. Garbage dump and poultry farm fly samples were more 

resistant than agricultural farm. Bong and Zairi (2010) has also worked on two poultry 

farms in the state of Penang against malathion, propoxur and DDT, with resistance ratio 

have been found with strong correlations against relative humidity, which is a first in field 

discovery. 

While on housefly larvae, resistance assessment has been relatively  scarce with 

only a handful of feeding and toxicity tests done. Other than Acevedo et al. (2009) and 

Pinto and Prado (2001) mentioned above, in Denmark, Kristensen and Jespersen (2003) 

reported an increase on field in diflubenzuron resistance and new-found cyromazine-

resistant strain. A dip test-emergence test of Musca domestica third instar larvae on 

eucalyptol extracts has been done by Sukontason et al. (2004), with LD50 values of 
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118mg/fly and 177mg/fly on male and female flies respectively. By the means of feeding 

assay, Cetin et al. (2009) firstly reported existence of low-level IGR-resistance housefly 

strain in Turkey.  

1.5 Insecticide resistance and oxidative stress research  

 For oxidative stress induced insecticide resistance research, rats (Lukaszewicz-

Hussain and Moniuszko-Jakoniuk,1999, 2001 and 2003; El-Demerdash et al.,2011), 

humans (Ranjbar et al.,2005), fresh water fish Brycon cephalus (Monteiro et al.,2009), 

and black tiger shrimp Penaeus monodon (Dorts et al.,2009) has been used as model to 

investigate insecticide inflicted oxidative stress. Insecticides including pyrethroids (Giray 

et al., 2001; Gupta et al., 1999; Kale et al., 1999), organophosphates (Akhgari et al., 2003; 

Fortunato et al.,2006; Lukaszewicz-Hussain, 2010), and organochlorines 

(Latchoumycandane et al., 2002; Koner et al., 1998) have known to be inducing oxidative 

stress. Lukaszewicz-Hussain et al. (2003) reported that there were changes in activities 

of the antioxidative enzymes such as superoxide dismutase, catalase, glutathione 

peroxidase, glutathione reductase and in GSH level changes both in liver and erythrocyte 

homogenate. 

 Pre-2014, genomics work has been extensively conducted in scale to evaluating 

insecticide resistance in a molecular basis. Molecular resistances are consisted of target 

site resistance and metabolic-based resistance (Perry et al., 2011). Yet, most of the works, 

as far as Musca domestica is concerned, these genomic works have been more in top-

down approach. With genome sequencing was still ongoing for that time being, specific 

gene family is identified and sequenced before getting into expression studies . With other 

fly species such as the dipteran Drosophila melanogaster and Anopheles genome as 

comparable reference database, Ranson et al. (2002) concluded 3 groups of gene 

superfamilies that involved metabolic-based resistance i.e.: glutathione S-transferases, 
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cytochrome P450s, and acetylcholinesterase. Resistance on target site such as kdr-

resistance and ligand-gated ion channels (ffrench-Constant et al., 2004) are target gene 

of interest.  

In cytochrome P450s, work from Zhu et al. (2008) revealed that 3 P450s genes, 

CYP4D4v2, CYP4G2, and CYP 6A38 were up-regulated in response to permethrin 

treatment on permethrin resistant ALHF strains. Kristensen et al. (2010), by PCR 

technology, demonstrated constant overexpression CYP 6A1, CYP 6D1 and CYP 6D3 in 

neocotinoid-resistant strains in Denmark during thiomethoxam challenge. CYP6D1 was 

also found to be implicating more than 5000-fold of cypermethrin resistance in Learn 

pyrethroid-resistant strain found in New York (Scott and Georghiou, 1985).  

In glutathione S-tranferases, (GSTs; E.C 2.5.1.18), Nazni et al. (1999) also 

evaluated non-specific esterases and glutathione S-transferases and non-specific esterases 

has significant increase. A remarkable drop on GST activity has been reported on a DDT-

resistant strain 698ab was reported by Kristensen (2005). 

Point mutation is the blame on insecticide sensitivity in the case of 

acetylcholineesterases (E.C 3.1.1.7) (Fournier, 2001). Oppenorth et al. (1976) in fact 

discovered 20-fold insensitivity of acetylcholinseesterases in houseflies, alongside with 

findings of high GST expression is in correlation with de-alkylated and hydrolysation of 

parathion and methylparaoxon.   

As far as metabolic-based resistance is concerned, there still much more questions 

to be addressed. Scott et al. (2000) stated that there is very little known about the 

mechanism of the pyrethroid resistance (monooxygenase/CYP450s), although pathways 

have been elucidated via genomic means. Between two different strains tested by Scott et 

al.: Lean Dairy and caged-layer strains, both have opposite effects on pyrethrins. Cao et 

al. (2006) showed a significant correlation between kdr allele (i.e. genes reducing the 

sensitivity of the nervous system to pyrethroids) frequencies and the levels of  knockdown 
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resistance by deltamethrin via a PCR-based assay. Kristensen (2005) suggested that there 

had been leading to altered substrate specificity, and did not rule out the potential of GSTs 

mediating pyrethroid resistance. Learmount et al. (2002), from their findings, suggested 

that behavioral resistance might be playing a role in contributing such resistance and such 

traits are still being inherited in the field. Possibility of an up-regulation mediated by 

changes to trans-acting factors is pointed, which appears these mechanisms were 

underlying in some cases of resistances of P450s, GSTs, and acetylcholineesterases 

(Feyereisen, 1999 and Hemingway, 2000).  

1.6 Reactive oxygen species and hydrogen peroxide in living organisms. 

 Free radical is defined as any chemical species that contains one or more unpaired 

electrons. Reactive oxygen species are activated oxygen species including oxygen 

radicals (e.g. superoxide anion radical, O2
- ●, hydroxyl radical, ●OH) and non-radicals 

(hydrogen peroxide, H2O2, hypochlorous acid, HOCl), which can be easily converted to 

radicals (Hülya, 2005; Demidchik, 2015). 

 Living organism deals and generates reactive oxygen species in vivo and under 

such understanding, hydrogen peroxide is not an obscure molecule in a living system. 

The discovery opened up when Chance (1952) observed that catalase was saturated with 

intermediates of hydrogen peroxide in high concentrations in bacteria Micrococcus 

lysodeikticus. In 1969, McCord and Fridovich had purified and demonstrated the catalytic 

activity of superoxide dismutase, which transforms superoxide anion radical O2
- ●, into 

hydrogen peroxide. A year later, Sies and Chance (1970) showed that difference in 

absorbance on the steady state of catalase compound I when glycolate, a hydrogen 

peroxide generating substrate is inserted into rat liver. Oshino et al. (1975) examined the 

H2O2 production of rats under different conditions such as starvation, glycolate and 
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octanoate diffusion. Loschen et al. (1974) drew the relation that products of superoxide 

dismutase, the superoxide anion is the precursor of hydrogen peroxide.   

 Oxygen metabolism is one of the essential processes in an aerobic cell and a 

common site for ROS generation, better known as the ‘electron leak’ at the electron 

transport chain in mitochondria. Electron leak is the phenomenon of passing the electrons 

to oxygen instead of water, causing the reduction of oxygen to superoxide (Jastroch et al., 

2010) in mitochondria. Numerous locations in mitochondria were found to be generating 

superoxides and hydrogen peroxides, including outer/inner side of complex III ubiquinol–

cytochrome c reductase (Cadenas et al., 1977; Turrens, 1985; Han et al., 2001), complex 

I NADH dehydrogenase (Turrens and Boveris, 1980; Kushnareva et al., 2002), complex 

II succinate dehydrogenase (Lenaz et al., 2001), external NADH dehydrogenase (Fang 

and Beattie, 2003) , dihydroorotate dehydrogenase (Forman and Kennedy, 1976) 

glycerophosphate dehydrogenase (Drahota et al., 2002) and mono amino oxidase 

(Hauptmann et al., 1996; Cadenas and Davies, 2000). 

  There was also a plethora of other enzymatic and non-enzymatic generation of 

ROS generation than mitochondria of superoxide anion. NAD(P)H oxidase in vascular 

cell, produce superoxide anion and hydrogen peroxide under stimulation of growth 

factors and cytokine (Griendling et al., 2000). In human dermal fibroblasts, superoxide 

was observed to be released in a controlled manner (Meier et al., 1989). Xanthine oxidase 

produces hydrogen peroxide directly other than superoxide (Kelley et al., 2010).  

Cytochrome P-450 dependent oxygenases produce superoxide anion and hydrogen 

peroxide in the catalytic cycle (Zangar et al., 2004).     

 What happened when there is an excess of reactive oxygen species in vivo? Sies 

(1991) coined the term “oxidative stress” by the definition of “an imbalance between 

oxidants and antioxidants in the favour of the oxidants”. A practical definition of oxidative 
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stress by Betteridge et al. (2000) will be “a disturbance in the balance between the 

production of reactive oxygen species (free radicals) and antioxidant defences”.  

1.7 Enzymatic removal of cellular hydrogen peroxide 

 Due to their constant metabolism on oxygen and releasing ROS as discussed in 

Section 1.6,  Halliwell and Gutteridge (2006) suggested that aerobic organisms survive 

due to their evolved antioxidant capability. In this section we hope to provide an overview 

of the enzymatic mechanisms that remove cellular hydrogen peroxide.  

 Catalase (EC 1.11.1.6) was discovered in tobacco extracts by Loew (1900).  

Catalase detoxifies H2O2 into water and oxygen (Keilin and Hartree, 1938). Catalase is 

one of the well described enzyme and it is a class of enzyme including the iron-heme 

enzyme, catalase-peroxidases and a small group of manganese enzymes (Nicholls, 2012).  

 Superoxide dismutase (EC 1.15.1.1) is well known enzyme against oxidative 

stress. SOD1, the first superoxide dismutase to be identified, uses free radical as a 

substrate (McCord and Fridovich, 1969). A metalloenzyme, superoxide dismutase 

catalyzes the dismutation of superoxide anion (O2
- ●) to hydrogen peroxide and oxygen, 

as the first defense line against oxidative stress (Fridovich, 1995). They are also known 

to exhibit additional peroxidase activity when hydrogen peroxide level is at its large. It 

has been suggested removal of superoxide anion will reduce SOD1’s alternate toxic 

behaviour (den Hartog et al., 2003).  

 Copper-zinc and manganese SODs scavenge and dismutate superoxide anion in 

mitochondrial electron transport systems. Guidot et al. (1993) demonstrated that a 

manganese superoxide dismutase deficient yeast thrived in hyperoxia conditions (95% 

oxygen, 5% carbon dioxide) under the removal of electron transport system. Sturtz et al. 

(2001) characterized copper-zinc SOD1 in baker’s yeast at intermembrane space of 

mitochondria.  
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Glutathione peroxidase (EC 1.11.1.9) utilizes reduced glutathione (GSH) to 

decompose hydrogen peroxide (Mills, 1959; Forstrom et al., 1978; Ursini et al., 1995). 

This enzyme was discovered by Mills (1957), and identified as selenocyseteine enzymes 

at first (Rotruck et. al., 1973 and Chance et al., 1979), better known as GPx1. The three 

consecutive selenocysteine GPxs - GPx2, GPx3 and GPx4 were found by Chu et al. 

(1993), Takahashi et al. (1987) and Ursini et al. (1985) respectively from mammals.  

Later Ghyselinck and Dufaure (1990) discovered a catalytic cysteine residue on rat, 

known as GPx5, and followed by GPx6 (Dear et al., 1991), which is a selenocysteine 

proteins in humans but not in rats or mice (Kryukov et al., 2003).  Mammalians GPx7 

and GPx8 were the last to be elucidated but have a low GPx activity (Brigelius-Flohe and 

Maiorino, 2012).       

Peroxiredoxins (EC 1.11.1.15) is another group of enzyme worth mentioning 

when discussing about oxidative stress in cellular organisms. Discovered by Kim et al. 

(1988), peroxiredoxins are a family of antioxidants enzymes. Highly specific in reducing 

hydrogen peroxide (Peskin et al., 2007), its cysteine residue makes up the active site of 

peroxiredoxins, which in turn being oxidized to sulfenic acid and recycled back to thiol, 

via sulfiredoxins (Woo et al., 2005). They also control cytokine-induced peroxide levels 

which in turn, mediates signal transduction in mammalian cells (Hofmann et al., 2002).  

1.8 Cysteine residues, thiol proteins and its redox mechanism and modification 

during oxidative stress 

 Cysteine residues, the only sulfhydryl/thiol ( ̶ SH) - bearing amino acid, has a 

number of unique properties. Thiol group deprotonates itself into thiolate groups, with 

the pKa of 8.5 (Poole, 2014) (Fig 1.3). Thiol active site of this residue have high reactivity, 

unique redox properties, and notably   ̶ SH are able to coordinate metal ions to form key 

catalytic components of enzyme on the active site (Barford, 2004). In an evolutionary 
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genetics point of view, cysteine is one of the four most conserved amino acid residue 

within proteins (Marino and Gladyshev, 2010), highlighting its importance in protein 

functions, thus triggering its selection pressure favouring the preservation of this residue.  

 

Figure 1.3: The reversible deprotonation of cysteine thiol side chain to thiolate, and 

protonation vice versa. Adapted from Poole (2015). 

 Due to the highly reduced environment in the cytoplasm (mammalian and bacteria) 

(Fahey, 1977; Mallick, 2002), cysteines residues exist in free thiols.  The first-off 

oxidation by hydrogen peroxide on a sulfhydryl group would be to a sulfenic group ( ̶ 

SOH) (Luo et al., 2005). Such two electron oxidation of the sulfenic acid is reactive, and 

short lived (Poole et al., 2004). This regenerated moiety raised the interest of a possible 

involvement in redox modification, where it undergoes reversible and irreversible thiol 

modifications with reactive oxygen species (Ghezzi, 2005). 

 Further irreversible oxidation of the sulfenic oxysulfur acid group give rise 

towards sulfinic ( ̶ SO2H) and sulfonic acid ( ̶ SO3H) (Kice, 1980). Hamann et al. (2011) 

estimated 5% of cysteine residues in protein occur in sulfinic and sulfonic form. 

 There is one exception in the irreversible oxidation department. Human 

inactivated 2-Cys peroxiredoxins due to sulfinic acid oxidation were able to reduce by 

sulfiredoxins (Jönsson et al., 2005).  
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 Glutathione disulfide (GSSG) and free glutathione (GSH) couple indicated the 

redox condition in the cell as they form mixed disulfide to reduce and return protein thiols 

(Schafer and Buettner, 2001). Similarly, in the event of oxidative stress, protein thiols can 

conjugate with GSSG in the process of S-glutahionylation. However, the cellular redox 

state would have been in an extremity to promote such conjugation (Gallogly and Mieyal, 

2007).  

 Gilbert (1984) discovered that under oxidative stress, S-glutathionylated protein 

made up to 20 – 50% of total glutathione content. During respiratory burst in neutrophils, 

17% of the GSH might be protein-bound (Seres et al., 1996). In the two-electron pathway, 

sulfenic acid moiety undergoes S-glutathionylation with free GSH (Nagy and Ashby, 

2007) as shown in Equation 1.  

    Protein–SOH + GSH → Protein–SSG + H2O   (1) 

 Reactive sulfenic ions also form intermolecular or intramolecular disulfide bond 

with other proximate protein-thiols. This has been shown by few protein biomarkers e.g. 

OxyR transcriptional factor bacteria (Zheng et al., 1998) and Hsp33 (Jakob et al., 1999).  

Sulfenylamide was demonstrated to undergo S-glutathionylation by van Monfort et al. 

(2003). Although there are evidences of S-glutathionylation during oxidative stress, the 

mechanism in vivo is still yet to be understood (Dalle-Donne et al., 2009). 

 Sulfenic acid is further oxidized to sulfenamide with other amino acids in 

proximity as demonstrated by Salmeen et al. (2003) and van Monfort et al. (2003) in 

protein tyrosine phosphatase 1B.  

 The oxidative thiol modification described above is summarized in Figure 1.4.  
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Figure 1.4: Oxidative thiol modification. Adapted from Brandes et al. (2009) 

(The reactive nitrogen species modification were masked as not in the context of the 

review) 

Thiol modified proteins are involved in a series of physiological process in living 

things as a whole, such as metabolism, signalling, cell growth, gene expression, 

transcription factor activation, differentiation, senescence and apoptosis (Brandes et al., 

2009).  

In the protein expression department, Yap1p is an AP-1 like transcription factor 

in Saccharomyces cerevisiae, which play a vital role in the regulation of multiple cellular 

processes, including proliferation, differentiation, stress response, and apoptosis 

(Azevedo et al., 2003). In yeast, Yap1p is the regulator for over 70 genes for most of the 

antioxidant enzymes and component of the cellular thiol reducing pathway such as 

thioredoxins, glutaredoxins, glutathione peroxidase, superoxide dismutase and catalase 

(Carmel-Harel et al. (2001), Inoue et al. (1999), Kuge and Jones, 1994). This particular 

transcription factor activates during oxidative stress conditions and reduced during non-
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stress conditions. Thiol peroxidase is the hydroperoxide sensor to activate the Yap 

transcription factor as further demonstrated by Delaunay et al. (2002).   

 Thiol proteins also shows their works from at the cellular metabolism level. One 

of the notable candidate to mention here is glyceraldehyde-3-phosphate dehydrogenase 

(GapDH). GapDH sits right at the center of the energy metabolism pathway of glycolysis. 

GapDH tetramers have highly conserved Cys149 and active site residues at Cys150 

(Brandes et al., 2007), which are heavily susceptible towards modification upon oxidative 

stress. At the event of oxidative stress, the highly inhibited GapDH will trigger redirection 

of glucose-6-phosphate to pentose phosphate pathway (Ralser et al., 2007). Pentose 

phosphate pathway as known is central for NADPH production which in turn increase the 

restoring capability of thioredoxins and gluthathione reductases. Reduced glutathione and 

thioredoxin restores GapDH as the oxidative attack subsides (Leichert and Jakob, 2004). 

 Thiols proteins involved in posttranstional modification as well, for example PTP-

1B (protein tyrosine phosphatases-1B), a protein involved in many signal transduction 

cascades, catalysing dephosphorylation reactions in the cell (Alonso et al., 2004). 

Catalytic cysteine residue Cys215 is present in active site, and modified from sulfenic 

acid to cyclic sulfenamide on the event of oxidative stress, thus inhibiting the enzyme by 

altering the structure of the active site (van Monfort et al., 2003). 

 Hsp 33 (Heat shock protein 33) is another common chaperone observed in 

eukaryotes (Winter et al., 2005). After heat shock regulated translation, Hsp 33 is 

regulated under oxidative stress (Jakob et al., 1999). Hsp33’s active site contains four 

cysteines tetrahedrally arranged and coordinating zinc with high affinity (Jakob et al., 

2000).  Oxidation of disulphide bonds in active site release the Zn2+ ions and Hsp33 dimer 

is partially unfolded for binding. When the reducing mechanisms kicks in the Hsp33 

dimer is back folded and inactivated (Graf et al., 2004). 

18 

Univ
ers

ity
 of

 M
ala

ya



p53 tumour suppressing factor is inhibited during oxidative stress. Velu et al. 

(2007) discovered that S-glutathionylation in either Cys-124 and -141 will inhibit p53 

DNA binding. S-glutathionylation of thimet oligopeptidase in mouse suggestively 

triggered oligomerization of the enzyme in the event of oxidative challenge (Demasi et 

al., 2008). 

In the peroxiredoxins as an example, Georgiou and Masip (2003) discovered that 

other than the aforementioned reducing and antioxidant features, eukaryotic 

peroxiredoxins are regulator of H2O2-mediated cell signalling in cancer and 

neurodegenerative diseases.  

Human glutaredoxin 1, apart from restoring thiol side chain to reduced form, as 

discovered to have an influence in apoptosis signalling by binding to apoptosis-signalling 

kinase-1 (ASK-1) (Song et al., 2002). Glutaredoxin 2 exhibits pronounced protective 

effect on mitochondria mediated apoptosis (Enoksson et al., 2005).  

Thioredoxins are involved in cellular phenomena such as reduction of 

ribonucleotide reductase, thioredoxin peroxidase, cell proliferation, thiol-dithiol 

exchange between cysteine residues of key transcription factors and protection against 

exogenous oxidants (Watson et al., 2004) There are a number of transcription factor 

which is sensitive to thiols, such as p53, NF-kB, AP-1 and Nrf2, and thioredoxins might 

act on these transcription at a certain level (Biswas et al., 2006).                  

1.9 Oxidative stress related proteins in Musca domestica 

 Allen et al. (1991), determined the activities of possible candidates of oxidative 

stress defense: superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione 

S-transferases (GST), GSSG reductase, thiol transferases, gamma glutamylcysteine 

synthetase, and glucose-6-phosphate dehydrogenase. The team looked in to the 

concentrations of H2O2 and reduced and oxidized glutathione as well across the various 
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developmental stage of houseflies as well, and revealed there was a massive change in 

H2O2 level towards pupation. Their work discovered that housefly, from egg to adult, 

increases in terms of cellular oxidizing equivalents and loses ground of cellular reducing 

capacity. Such work helped to raise our attention in looking into the proteome of the 

larvae.  

Oxidative stress hypothesis is evident on aging and always been raising questions 

from researchers. Musca domestica (Yan et al., 2000), Drosophila melanogaster 

(Magwere et al., 2006 and Rebrin and Sohal, 2006), and Caenorhabditis elegans (Leiers 

et al., 2003) are made as model tested on hyperoxia conditions. Aging is resulted from 

oxidative damage from cellular macromolecules (Magwere et al., 2006). Sohal and 

Weindruch (1996) stated that the main prediction of this hypothesis is the rate of aging 

cannot be slowed down without corresponding attenuation of oxidative damage/stress. 

Though this research has no interest of unlocking secret of longevity, the models above 

will leave an important reference on understanding how oxidative stress will fare in 

Musca domestica larvae.  

GSTs gene family and their isoforms have been discovered to participate in 

oxidative stress pathway. Overexpression and peroxidase activity of GSTs in peroxide 

treatment were observed (Veal et al. 2002). Thiol oxidoreductase activities of an GSTO-

1 isoform were shown during insecticides treatment (Burmeister et al., 2002).  Li et al. 

(2013) discovered in carcinoma cells, overexpression of GSTs increased resistance to 

insecticides.  Other than oxidative stress resistance, GSTs detoxifies xenobiotics, protects 

from tissue-damage, participates in Jun-kinase signaling pathway, and as non-catalytic 

carrier proteins (ligandins) in the intracellular transport of hydrophobic compounds 

(Ketterer, 1998; Strange et al., 2000; Eaton and Bammler, 1999; Yin et al., 2000). 

Glutathiones (GSHs) are responsible in the antioxidant defense as the dominant non-

protein sulphydryls in the cell (Ketterer, 1982), forming conjugates non-enzymatically or 

20 

Univ
ers

ity
 of

 M
ala

ya



more by the catalysis and mediation of GSTs. H2O2 oxidizes thiolate group in cysteine 

residues (-S-) into thiols (-SOH), which is present in the exposing active site.  

Reaction against peroxidants is also energy consuming due to inhibition of 

oxidative phosphorylation (Milatovic et al., 2006), deprives energy to maintain the 

recycling of NADPH during pentose phosphate pathway and glucose 6-phosphate 

dehydrogenase, making cells hyperglycemic (Rahimi and Abdollahi, 2007) and able to 

topple the condition of cell redox levels in levels of lactate/pyruvate ratio (Lukaszewicz-

Hussain et al., 1997). Most of the cases above were investigated towards 

organophosphates and pyrethroids.  

Tang et al. (2012) have been successfully characterizing and identifying two novel 

superoxide dismutase genes from Musca domestica. In cadmium ion treatment, 

concentration ranging from 0.2 to 5mM in the medium, widely known to enhance reactive 

oxygen species in cell increases the levels of superoxide dismutase (Dabas et al., 2012).   

Simmons et al. (1987), documented the activity of glutathione peroxidase for the 

first time in houseflies and in insects. Lowering the intake of selenium via diet increases 

the events of a peroxidative injury.  Simmons et al. (1989), further purified the selenium-

independent glutathione peroxidase, and suggested this enzyme and the related pathways 

should be in the picture during the investigation of insect antioxidant defense system.  

There was no direct research work on peroxiredoxins with relation to houseflies 

and its mechanisms and activities in vivo are not much of knowledge. 

However, Simmons et al. (1987) discovered in their work that there was no 

increase in catalase activity even though the diet of selenium in Musca domestica was 

lowered. Another investigation by Allen et al. (1983) in houseflies revealed that total 

inhibition of catalase also did not affect the survival of the flies, although slight increase 

in the level of SOD activity were observed. 
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Hence in this experiment we hope through proteomic means we recover more 

markers related to protein response to oxidative stress and signaling in Musca domestica 

larvae. 

1.10 Other genomic and transcriptomic works 

Despite such remarkable immunity and rising insecticide tolerance exhibited by 

Musca domestica, and being such prominence as model for biochemistry and insect 

physiology, no genome project has been launched till 2009 (Scott et al., 2009). More 

importantly, in the best of our knowledge, only a handful of Musca domestica related 

proteomics work has been reported as well. 

However, in this last 5 years there is an increasing interest unravelling the inner 

molecular workings of this insect. A genome project was launched and efforts coerced by 

Scott et al. in 2010 successfully in 2014, sequencing the full genome of Musca domestica.  

 The sequenced genome is 691 MB, some gene sequences notably 771 putative 

immune-related, 86 CYP450s-related, 33 glutathione S-transferase (GST), and 92 are 

predicted to have esterase activities.  In comparison, this genome contained a plethora of 

shared and novel sequences than its Drosophila counterparts, supporting the fact of an 

exemplary ability of Musca domestica of associating closely with numerous amounts of 

pathogens and living in a septic environment. 

Pioneering transcriptomic works have been done on Musca domestica larvae, by 

massive cDNA parallel pyrosequencing by Liu et al. (2012). The unique sequences are 

compared with Swiss-PROT and NCBI non-redundant protein database. A gene ontology 

map was done based on the sequence similarity, classified into 14 major biological 

processes. Liu et al. has successfully found a peptidoglycan recognition protein SC 

(PGRP-SC), a protein important in sensing microbial infection involving pathways such 

as Toll-like receptor and Imd (immune deficiency). 
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With the aid of qPCR technology, an up-regulation of expression was shown 

during Staphylococcus aureus and Escherichia coli infection. Liu et al. also suggested 

potential antioxidant enzymes and proteins, such superoxide dismutases, glutathione S-

tranferases, glutathione peroxidases and glutathione reductases, can be unravel in the 

future. Such findings, although is only one of many to come, it has opened the door in 

proteomics investigation especially in protein identification based on the sequence 

databases. 

1.11 Lipid peroxidation detection  

Lipids are the most susceptible during peroxidant attack in cellular levels. And 

malondialdehyde (MDA) is the by products produced during an oxidative event 

(Esterbauer and Cheeseman, 1990), due to attack of free radical species on 

polyunsaturated fatty acids of cellular membrane (Alessio ,2000). For the detection of the 

lipid peroxidation markers i.e. in this case malondialdehyde and 4-hydroxynonenal, reacts 

with 1-methyl-2-phenylindole to form a stable cyanin chromophore with a maximal 

absorbance at 586nm is used (Gerard-Monnier et al., 1998).  

 

 

 

Figure 1.5: Reaction of malondialdehyde with 1-methyl-2-phenylindole forming a 

stable cyanin chromophore with maximum absorbance at 586nm.   
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1.12 Purification of thiol proteins.  

The condition of   ̶ SH and  ̶ S groups in the cysteine-containing protein is a good 

measurement on how Musca domestica larvae counter oxidative stress in vivo. Activated 

Thiol Sepharose® 4B (Sigma-Aldrich) is a commercially available resin. It binds 

covalently to thiol groups by employing a thiol-disulfide interchange between protein 

thiol groups and the glutathione-2-pyridyl-disulfide conjugate of the affinity resin (Caldas 

et al., 1998). The particular resin for the activated group anchoring is CNBr-activated 

Sepharose 4B. Hu et al. (2010), worked on activated thiol sepharose to select thiol-

containing proteins from control- and menadione-treated Escherichia coli.  

 

Figure 1.6: The structure of Activated Thiol Sepharose® 4B (Sigma-Aldrich) 
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1.13 Proteomics, two dimensional gel electrophoresis and LC-MS/MS

 identification 

Proteome, described as the entire set of proteins expressed by a genome, cell, 

tissue or organism, more specifically, a set of expressed proteins in a given type of cells 

or an organism at a given time under defined conditions. (Wasinger et al., 1995) 

2-dimensional gel electrophoresis was described simultaneously by O’ Farrell 

(1975) and Klose (1975) with iso-electric focusing for separation of protein based on pI 

(1st dimension) and second separation is done with SDS-PAGE electrophoresis based on 

molecular weight (2nd dimension).  

Two-dimensional gel electrophoresis is a stalwart in proteomics until today 

(Victor et al., 2007). Godovac-Zimmermann (2000) also supported the prowess of 

proteomics analysis and stated the potential of detecting modifications such as splice 

variation, proteolytic processing, and post-translational phosphorylation.  

LC-MS/MS identification utilizes a high performance liquid chromatography 

(HPLC) coupled with tandem mass spectrometry to identify proteins. Technique of 

detection of peptide masses as pieces of puzzle to construct a protein thus identifying it 

is coined as “peptide mass fingerprinting”.  Tryptically digested peptide fragment were 

separated with HPLC before being ionized and detected in mass spectrometer. By 

searching through the MS/MS spectra alongside optimizing the acquisition of data (flow 

rate, ionization energy, spectral counting etc.), the identity of the protein can be deduced 

from the search score of the peptides (Chen and Pramanik, 2009)  
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1.14 Objective 

In this current investigation, we hope to achieve the following goals: 

1. To analyze the proteome of Musca domestica larvae. 

2. To analyze differential expression of the proteome under peroxide treatment.  

3. To investigate differential expression of the purified thiol proteome. 
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CHAPTER 2: MATERIALS AND METHOD 

2.0 Materials 

2.0.1 Chemicals 

10X Tris/Glycine/SDS Running Buffer (Bio-Rad), 1-methyl-2-phenylindole (Sigma 

Aldrich), 2-iodoacetamide (Merck Chemicals), 30% acrylamide/bis-acrylamide 29:1 (Bio 

- Rad), 30% hydrogen peroxide (Systerm), 37% HCl (Systerm), Acetone (Systerm), 

Acetonitrile (Systerm), Activated Thiol–Sepharose® 4B (Sigma Aldrich), Agarose (Bio-

Rad), Ammonium persulphate (Bio-Rad), Ammonium sulphate (Systerm), BenchMarkTM 

Unstained Protein Ladder (Invitrogen),  Bromophenol Blue (Bio-Rad), Carrier 

ampholytes pH 3-10 (Bio-Diagnostics Sdn. Bhd.), CHAPS (Merck Chemicals), 

Coomassie Brilliant Blue R-250 (Bio – Rad), DTT (Bio Rad), EDTA (Sigma Aldrich), 

Glycerol (Systerm), Immobiline™ Drystrips, pH 3-10 NL (GE Healthcare), Methanol 

(Systerm), N, N, N’, N’-tetramethyl-ethane-1,2-diamine (TEMED) (Bio-Rad), 

Phenylthiourea (Sigma-Aldrich), Phosphoric acid (Merck Chemicals), PlusOne Drystrip 

Cover Fluid (GE Healthcare), Protease inhibitor (Sigma-Aldrich), Ramy Feeds (Bengy), 

SDS (Bio-Rad), Sodium chloride (Systerm), Sodium dihydrogen phosphate (Systerm 

Malaysia), Thiourea (Sigma Aldrich), Tris-Base (Bio-Rad), Urea (Sigma Aldrich) 

2.0.2 Buffers  

Binding buffer solution (0.1M Tris-HCl pH 7.5, 0.5M NaCl, 1mM EDTA) 

0.1M Tris-HCl pH 7.5, 0.5M NaCl, 1mM EDTA 

1.5M Tris-HCl buffer, pH 8.8 (Bio-Rad) 

0.5M Tris-HCl buffer, pH 6.8 (Bio-Rad)  

Solubilizing buffer (8M urea, 4% CHAPS, 65mM DTT, 3M thiourea) 
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Rehydration solution (8M urea, 2% CHAPS, 0.2%(w/v) DTT, 2% carrier ampholytes (pH 

3-10), 30mM thiourea) 

Equilibration buffer 1 (1.5M Tris-HCl buffer, 6M Urea, 4.7M glycerol, 2% (w/v) SDS, 

16.2mM DTT) 

Equilibration buffer 2 (1.5M Tris-HCl buffer, 6M Urea, 4.7M glycerol, 2% (w/v) SDS, 

0.243mM 2-iodoacetamide) 

Homogenizing buffer (0.1M NaH2PO4 buffer, pH 7.5, 1.3mM EDTA, 0.1mM EDTA, 1% 

protease inhibitor, and trace phenylthiourea) 

2.0.3 Kits 

ReadyPrepTM Protein Extraction Kit (Cytoplasmic/Nuclear) (Bio-Rad) 

2-D Quant Kit (GE Healthcare) 

2.0.4 Equipment 

Agilent 1200 HPLC-Chip/MS Interface, coupled with Agilent 6520 Accurate-Mass Q-

TOF LC/MS (Agilent)  

EPS 3500 XL (GE Healthcare) 

Centrifuge machine (Eppendorf) 

HG-15D homgenizer (WiseTis ®) 

Image Scanner III (GE Healthcare) 

Laminar hood 

Microwave 

Mini-Protean II Tetra Cell (Bio-Rad) 
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Multiphor II (GE Healthcare) 

Multitemp III (GE Healthcare) 

Shaking incubator 

Sonicator 

Vortex mixer 

Water bath 

2.0.5 Software 

Labscan (GE Healthcare) 

PD Quest 8.0.1 (Bio-Rad) 

2.0.6 Insects 

Adult Musca domestica samples were obtained from Vector Control Research Unit, 

World Health Organization, Science University of Malaysia, Penang.   
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2.1 Methodology 

2.1.1 Musca domestica adult and larvae cultivation 

The flies were reared in modified plastic cages with ensured aeration in room 

temperature. Sugar and milk powder were mixed on a petri dish in a 1:1 (v/v) ratio as a 

glucose and protein supply to the adult flies. Water was supplied by moist cotton with 

distilled water.  Water, sugar and milk powder were exchanged every week. 

 For the medium of housefly larvae growth, the Bengy Ramy Feeds hamster pellet 

was mixed with distilled water in a 1:1.5 (v/v) ratio and left until all water had been 

absorbed by the pellet and mushy.  

The damp pellet was then placed in the cage for 4 hours for the oviposition by 

female flies to lay eggs in the moist mouse pellet. The pellet laid with Musca domestica 

eggs were then transferred into a new mouse pellet medium and left for 2-3 days for larvae 

hatching. A three or four day larvae were collected for analysis.  

For cultivation of adult larvae, the larvae were left pupating after 4-5 days. The 

pupae collected were transferred to a new cage ready with water and feed. New flies 

emerged approximately another 4-5 days upon pupation. 

2.1.2 Peroxidant feeding assay on 3rd instar larvae 

Approximately 6 g of mouse pellet was mixed with 10ml of solution of different 

dilutions of 30% hydrogen peroxide ranging from 0 – 30 %.  The mouse pellet was left 

to absorb the hydrogen peroxide solutions until moist and mushy. 15 individuals of 3- 

day-old larvae was collected, and placed to each medium with different concentrations 

and left to feed the medium for 48 hours. 3 – day old larvae is selected as it is grown 3rd 

instar larvae (Kočišová et al., 2004)  
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2.1.3 Determination of toxicity parameters 

The number of mortalities of the larvae was calculated and the lethal concentration 

for 50% (LC50) of hydrogen peroxide treatment of the particular larvae strain as subjected 

to PROBIT analysis (Finney, 1947) To obtain the larvae which was resistant on LC50, 

samples which survived were collected after 48 hours of feeding assay as mentioned at 

2.1.2.  Larvae knockdown and pupae formation was also noted and recorded.  

The concentration of the hydrogen peroxide which caused the LC50 of the tested 

larvae population was calculated and used in peroxidant assay for future investigation.  

 

2.1.4 Determination of lipid peroxidation (Tedesco et al., 2010)  

Approximately 1g of larvae sample was homogenized in homogenizing buffer 

(0.1 M NaH2PO4 buffer, pH 7.5, 1.3 mM EDTA, 0.1 mM EDTA, 1% protease inhibitor, 

and traces of phenylthiourea) in HG-15D homgenizer (WiseTis ®) at medium speeds. 

Samples were centrifuged at 3000 × g for 20 minutes and then derivatized in 1ml of 

reaction mixture containing 10.3 mM 1-methyl-2-phenylindole which was dissolved in 

acetonitrile:methanol with ratio of 3:1 (v/v) with 32% HCl. The unknowns and standard 

curve are read at absorbance of 586 nm. The malondialdehyde (MDA) standard curve 

was produced to determine the internal concentration of MDA in nmol/ g wet weight.  

2.1.5 Preparation of homogenous protein lysate. 

ReadyPrepTM Protein Extraction Kit (Cytoplasmic/Nuclear) from Bio-Rad was 

used to extract cytosolic proteins from the homogenate. The larvae samples were 

homogenized manually with a blue propylene pellet pestle (Sigma - Aldrich) in 

Eppendorf tubes in ice. For every 15 mg of tissue, 0.75 ml of CPEB from the kit 

(cytoplasmic protein extraction buffer) was added before homogenization.   
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After homogenizing the larvae, the lysate including pestle alongside with the 

Eppendorf tubes was incubated in ice for 1-2 minutes to sediment large tissue and cellular 

fragments. The supernatant was carefully transferred to a new tube.  

The cell lysate was centrifuged at 1000 × g for 10 minutes at 4 ºC. Upon 

completion the supernatant, which was the cytoplasmic protein fraction, was transferred 

to a new tube. The original tube was centrifuged for 5 – 10 seconds at 1000 × g again and 

pooled with the protein fraction above.  

The prepared cytoplasmic sample protein fraction lysate was later pipetted into 

aliquots of 50 µl, labeled and stored in PCR tubes, in -80 °C refrigerator until further 

analysis.  

2.1.6 Thiol protein purification (Hu et al., 2010) 

Protein extract with total protein content of 2.5 mg after peroxidant feeding was 

reacted with 5 M urea for 10min at room temperature. 20 mg of Activated Thiol–

Sepharose® 4B and 200 μl binding buffer solution (0.1 M Tris-HCl pH 7.5, 0.5 M NaCl, 

1 mM EDTA) was added. The samples were incubated on ice for 1.5 hours and the 

mixture is shaken every 15 minutes to ensure complete binding. The samples were 

washed with 500 μl binding buffer solution 8 times and centrifuged at 11000 × g for 3 

minutes for each wash. Supernatants were discarded to remove any unbounded proteins.  

200 μl buffer, containing 25 mM DTT, was added to sample after the final washing step 

and incubated on ice for 1 hour with gentle shaking every 15 minutes to release all thiol-

containing proteins bound to activated thiol sepharose. The sample was centrifuged at 

11000 × g for 3 minutes and thiol-containing proteins collected in the supernatant. 
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2.1.7 Protein quantitation 

  Protein quantitation of the sample lysate prior to 2-dimensional gel 

electrophoresis for both total proteome and thiol protein purified samples was done by 

using GE Healthcare’s 2-D Quant Kit.  

 Copper (II) ions binds towards the protein polypeptide backbone. Protein 

detection via this kit is based on the principle of binding of a colorimetric agent which 

binds towards the unreacted cupric ions in an alkaline solution. Hence the color intensity 

was inversely correlated with the protein content. The protein was mixed with a 

precipitant and co-precipitant to ensure effective binding on the cupric ions.  

 The standard curve was obtained by plotting the absorbance of the standard bovine 

serum albumin provide in the kit against the quantity of the protein. A bovine serum 

albumin solution of 2 mg/ml was diluted into protein content ranging from 0µg to 50 µg. 

500 µl of precipitant was added to each tube, vortexed and incubated for 2-3 minutes at 

room temperature. 500 µl of co-precipitant was later added and vortexed. The tubes were 

centrifuged for 10,000 × g for 5 minutes to sediment the protein. The precipitant and co-

precipitant were decanted and removed.  100 µl of copper solution and 400 µl of deionized 

water was added and vortexed to dissolve the protein precipitate. 1 ml of the working 

color reagent, prepared by mixing 100 parts of color reagent A and 1 part of color reagent 

B of the kit was added into each tubes, inverted and incubated in room temperature for 

15-20 minutes. Absorbance of 480 nm was read for each tubes with water as reference.   

 To determine the protein content of the larvae protein lysate, aliquots of lysate in 

triplicates were prepared using the kit as described above and the absorbance were read 

in 480 nm. The content of the protein was determined by comparing the absorbance value 

on the standard curve.  
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2.1.8 Two dimensional gel electrophoresis analysis  

 40 µl of protein lysates was dissolved in 40 µl of rehydration solution (8 M urea, 

2% CHAPS, 0.2% (w/v) DTT, 2% carrier ampholytes (pH 3-10)). The mixture of was 

later mixed with 45µl of solubilizing buffer (8 M urea, 4% CHAPS, 65 mM DTT, 3 M 

thiourea). 

 The protein lysates were then loaded into 7 cm Immobiline™ Drystrips, pH 3-10 

NL IPG strip (GE Healthcare) in a rehydration tray. Handling of IPG strips was done with 

forceps sterilized with acetone. The IPG strips were left overnight for the passive 

rehydration to take place for 18 hrs.  

 The strip after rehydration containing the protein sample were run for isoelectric 

focusing on the Multiphor III (GE Healthcare) under the voltage setup:  

Step 1(Gradient): Voltage: 200 V; Time: 1 minute; Current: 5 mA; Power: 2 W.  

Step 2(Gradient): Voltage: 3500 V; Time: 1.5 hours; Current: 5 mA; Power: 2 W. 

Step 3(Gradient): Voltage: 3500 V; Time: 1.5 hours; Current: 5 mA; Power: 2 W. 

The temperature of the focusing was controlled by the thermostatic circulator Multitemp 

III (GE Healthcare) at 16 °C, and the power supply was provided by EPS 3500 XL (GE 

Healthcare). The isoelectric focusing setup was covered in PlusOne Drystrip Cover Fluid 

(GE Healthcare).  

 Equilibration buffer 1 (1.5 M Tris-HCl buffer, 6 M Urea, 4.7 M glycerol, 2% (w/v) 

SDS, 16.2 mM DTT) and equilibration buffer 2 (1.5 M Tris-HCl buffer, 6 M Urea, 4.7 M 

glycerol, 2% (w/v) SDS, 0.243 mM 2-iodoacetamide) was prepared.  

 The IPG strips were shaken in a container containing for 2.5 ml equilibration 

buffer 1 for 15 minutes and then equilibration buffer 2 for another 15 minutes.  
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 SDS-PAGE was done using the Mini-Protean II Tetra Cell (Bio-Rad). The casting 

of the gels was done according to the Bio-Rad’s manual. All the mixture was sonicated 

for 15 minutes in degassing mode. Table 2.1 describes the SDS-PAGE gel formulations.  

Table 2.1: The SDS-PAGE gel formulations. 

Solution 4% Stacking Gel 

(ml) 

12% Resolving Gel 

(ml) 

30% acrylamide/bis-acrylamide 

(29:1) 

3.3 4.3 

1.5 M Tris-HCl buffer pH 8.8 - 2.5 

1.5 M Tris-HCl buffer pH 6.8 2.5 - 

Deionized water 15 3.1 

10% (w/v) SDS 0.25 0.1 

TEMED 0.005 0.005 

10 % (w/v) Ammonium 

Persulphate 

0.125 0.05 

 

 To prepare the gel, the resolving solution was quickly loaded into the spaces 

between plates until the level reaches the green mark before overlaid with distilled water 

and left to polymerize. When the resolving gel layer was fully polymerized, the water was 

removed and the water on top of the gel surface was drawn up with filter paper. The 

stacking gel were poured until the plate level and covered with gel comb and left to 

polymerize. 
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 The agarose overlay solution was prepared by dissolving 0.5 g was dissolved in 

100 ml SDS-PAGE electrophoresis buffer. The IPG strips after equilibration was placed 

on top of the stacking gel and sealed with the agarose overlay solution above. Extra 

bubbles were pressed out.   

 The electrophoresis process was performed as described by the instructions of the 

Mini-Protean II Tetra Cell (Bio-Rad). The electrophoresis power pack was switched on 

and the voltage was set to 150 V. Electrophoresis was performed in a descending manner 

with 1 X SDS-PAGE running buffer (Bio-Rad). BenchMarkTM Unstained Protein Ladder 

(Life Technologies) was concurrently run as standards for estimating molecular weight 

of protein spots. After the dye front reaches on the bottom of the glass plate, the current 

was stopped and the power pack was switched off. 

 After SDS-gel electrophoresis, the gel was removed and stained with Coomassie 

Brilliant Blue R-250 staining solution (5% (w/v) Coomassie Brilliant Blue, 85% ortho-

phosphoric acid and ammonium sulphate). The staining was done placing on orbital 

shaker for 4 days. After 4 days, the gels were destained with destaining solution. The 

destaining solution was prepared by 80 ml of distilled water to 20 ml of methanol. The 

destaining of gel was done for 1-2 days until the gel background was clear and clear spots 

were observed. 

2.1.9 Differential expression analysis 

 The gel images were obtained from Image Scanner III (GE Healthcare) and 

Labscan software (GE Healthcare) and the spot analysis were done in PDQuest software 

(Bio-Rad). The gels replicates, in triplicates and analysis batches were labelled according 

to name and date.  
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 Spot detection were done in Gaussian distribution. Spot intensities with moderate 

fold change (2 times to 5 times with 90% significance in t-test), high fold change (more 

than 5 times with 90% significance in t-test) and presence of spots were picked. Mr-pI 

values of the picked protein were identified after the Mr-pI grid was drawn on the graph.  

 The gels containing desired spots were preserved, pooled over replicates if 

necessary, for the gel spot excision and protein identification via LC-MS/MS. 

2.2.0 Spot excision, in-gel digestion, and LC-MS/MS identification by peptide 

sequencing.  

The instrument that were used in this study was Agilent 1200 HPLC-Chip/MS Interface, 

coupled with Agilent 6520 Accurate-Mass Q-TOF LC/MS+ ESI. 

The gel plugs were destained using 15 mM potassium ferricyanide in 50 mM 

sodium thiosulphate pentahydrate until they were transparent.  They were further reduced 

and alkylated using 10 mM DTT in 100 mM ammonium bicarbonate and 55 mM 

iodoacetamide in 100 mM ammonium bicarbonate, respectively. Then, the gel plugs were 

washed with 50% acetonitrile in 100 mM ammonium bicarbonate and 100% acetonitrile 

and followed with dehydration using vacuum centrifugation.  The dried plugs were 

incubated overnight in 25 µl of 6 ng/µl trypsin in 50 mM ammonium bicarbonate at 37 

oC.  Finally, the peptides were dried using a vacuum centrifugation and prepared for 

ZipTip® desalting and MS analysis.  
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The samples were then applied into LC-MS/MS. The Information were collected 

and analysed by Agilent Spectrum Mill MS Proteomics Workbench software. The 

database selected aims at current Musca domestica species database (NCBI and 

SwissProt) and ALL species if the specific species database returns no significant search. 

The selection of protein entries was based by the notion that the identified entries’ MW 

to be closest to the approximated MW in the 2D gels, had the highest percentage of amino 

acid coverage in their respective entry lists.  
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CHAPTER 3: RESULTS 

3.1  Probit analysis of peroxide feeding assay. 

 The probit analysis of peroxide treatment of 3rd instar Musca domestica larvae 

(n=300) was performed and the probit graph was plotted. To figure out the LC50, the log10 

of concentration of probit number of 5 was determined. The LC50 of 3rd instar larvae were 

calculated as 21.52% (v/v) hydrogen peroxide.  

3.2  Lipid peroxidation determination 

  The malondialdehyde concentration for control and treated larvae samples was 

calculated from the standards and they were 1.040±0.612 nmol/ g wet weight and 

11.924±4.528 nmol/ g wet weight of 3rd instar larvae respectively. 

3.3  Two dimensional gel electrophoresis 

 Larvae grown in normal feed were labelled as “control” samples and larvae grown 

in feed with hydrogen peroxide were known as “treated” samples. For larvae total 

proteome analysis, an estimated amount of 180.30 µg and 193.91 µg of protein were 

loaded into each control and treated samples respectively. Thiol protein purification 

yielded 94.407 µg and 94.659 µg of protein respectively for loading into each control and 

treated gels. 

 After analysis of visualized gel in PDQuest, a total of 294 spots were present 

across control and treated proteome gels. For thiol proteome, 125 spots were found across 

the gels.  
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3.3.1 Proteome expression profile 

3.3.1.1 Protein spots with moderate fold changes 

 Based on our analysis in the total proteome of 3rd instar housefly larvae during 

hydrogen peroxide treatment, spots with fold change values from 2 to 5 were considered 

as the protein with moderate fold change.  

 In the proteome samples, it was discovered that 17 spots have a moderate fold 

change in the control samples. On the other hand, 23 spots changed moderately in 

hydrogen peroxide-treated samples. 

 Out of 17 spots of abundance in proteome control samples, 10 had a fold change 

in abundance between 2 to 3 times. 3 protein spots were discovered to be between 3 to 4 

times while 4 of them increased in 4 to 5 times in control samples.  Results were 

summarized in Figure 3.1 and Table 3.1 – 3.3.  

 Meanwhile in the treated samples, out of the 23 spots, 18 of them were more than 

2 – 3 times of abundance.  5 spots were found to have fold change between 3 – 4 times 

(Figure 3.2, Table 3.3 – 3.5).  

3.3.1.2 Protein spots with high fold changes  

 From protein spots which have more than 5 fold of change is considered with high 

fold changes. A total of 3 protein spots each were more than 5 fold change in control and 

treated samples each (Figure 3.3 and 3.4). Results were summarized in Table 3.6 and 3.7. 
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Figure 3.1: Protein spots with moderate fold change in control larvae proteome. Spots boxed in green were in between 2 to 3 fold changes, in 

blue were in between 3 to 4 fold changes, and in red between 4 – 5 fold change in control samples. Estimated amount of protein loaded in control 

gel = 180.2955 µg, treated gel =193.9065 µg; Larvae samples were fed in 21.52% (v/v) H2O2 in treated samples)  
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Table 3.1: Summary of protein spots between 2 - 3 fold changes in abundance in control proteome samples. (Note: MPC = moderate proteome 

control) (Note: All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in 

replicates with 2 - 3 fold change were shaded.) 

 

SPOT 

ID 

Label Mr pI 

Average spot intensity  Fold change of control 

samples Control Treated 

5303 MPC1 15.9 5.9 2618286.33 ↑ 1282666.26 2.04 

3203 MPC2 14.3 5.3 7211898.67 ↑ 3486531.42 2.07 

5103 MPC3 8.3 5.9 10168831.00 ↑ 4880658.08 2.08 

4505 MPC4 27.7 5.7 1216699.19 ↑ 533356.81 2.28 

8306 MPC5 16.1 8.7 3178349.42 ↑ 1381479.15 2.30 

1206 MPC6 11.5 4.8 5481872.33 ↑ 2361746.38 2.32 

6511 MPC7 37.5 5.9 843163.34 ↑ 325038.06 2.59 

7001 MPC8 6.7 7.2 850803.08 ↑ 313346.79 2.72 

4301 MPC9 15.1 5.6 5410657.00 ↑ 1938733.73 2.79 

1302 MPC10 16.6 4.7 3372263.33 ↑ 1170814.86 2.88 
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Table 3.2: Summary of protein spots between 3-4 fold changes in abundance in control proteome samples. (Note: MPC = moderate proteome 

control) (Note: All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in 

replicates with 3 - 4 fold change were shaded.) 

 

 

 

 

 

SPOT 

ID 

Label Mr pI 

Average spot intensity  Fold change of control 

samples Control Treated 

4603 MPC11 32.4 5.6 897415.48 ↑ 287815.61 3.12 

8006 MPC12 6.6 8.0 1832924.13 ↑ 561091.80 3.27 

2004 MPC13 6.0 5.1 21698006.00 ↑ 6033128.50 3.59 
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Table 3.3: Summary of protein spots between 4-5 fold changes in abundance in control proteome samples. (Note: MPC = moderate proteome 

control) (Note: All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in 

replicates with 4 - 5 fold change were shaded.) 

 

 

 

 

 

SPOT 

ID 

Label Mr pI 

Average spot intensity  Fold change of control 

samples Control Treated 

1507 MPC14 35.3 4.8 435566.91 ↑ 107874.70 4.04 

1404 MPC15 23.4 4.9 5224888.00 ↑ 1179168.65 4.43 

8708 MPC16 48.8 8.2 628861.37 ↑ 137791.29 4.56 

4708 MPC17 44.0 5.7 1760356.21 ↑ 384355.68 4.58 
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Figure 3.2: Protein spots with moderate fold change in treated larvae proteome. Spots boxed in green were in between 2 to 3 fold changes and 

spots boxed in blue were in between 3 to 4 fold changes. Estimated amount of protein loaded in control gel = 180.2955 µg, treated gel =193.9065 

µg; Larvae samples were fed in 21.52% (v/v) H2O2 in treated samples)  
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Table 3.4: Summary of protein spots between 2-3 fold changes in abundance in treated proteome samples. (Note: MPT = moderate proteome 

treated) (Note: All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in 

replicates with 2-3 fold change were shaded.) 

 

SPOT 

ID 

Label Mr pI 

Average spot intensity  Fold change of control 

samples Control Treated 

8503 MPT1 27.0 7.9 332350.75 744426.81 ↑  2.24 

6903 MPT2 59.9 6.0 100337.58 228788.07 ↑ 2.28 

5806 MPT3 54.8 6.0 643243.02 1469993.67 ↑ 2.29 

0502 MPT4 32.9 4.1 1856749.96 4459960.50 ↑ 2.40 

0605 MPT5 35.5 4.5 775818.53 1892672.83 ↑ 2.44 

6505 MPT6 25.6 6.8 1412236.46 3569123.83 ↑ 2.53 

2801 MPT7 50.1 5.0 401092.42 1026868.23 ↑ 2.56 

6902 MPT8 65.8 6.6 173128.91 443636.33 ↑ 2.56 

7801 MPT9 53.5 7.0 3402743.58 8804084.00 ↑ 2.59 

5801 MPT10 52.4 5.8 146313.59 382731.04 ↑ 2.62 
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Table 3.4 Summary of protein spots between 2-3 fold changes in abundance in treated proteome samples. (cont’d)  

 

 

 

SPOT 

ID 

Label Mr pI 

Average spot intensity  Fold change of control 

samples Control Treated 

5601 MPT11 36.0 5.8 2010372.29 5269147.67 ↑ 2.62 

4901 MPT12 72.3 5.5 155872.27 415449.03 ↑ 2.67 

6803 MPT13 54.3 6.5 952986.23 2660050.17 ↑ 2.79 

7202 MPT14 11.9 7.0 4631567.55 13112680.00 ↑ 2.83 

8301 MPT15 19.7 7.5 926789.73 2696738.83 ↑ 2.91 

2304 MPT16 18.4 5.3 2906423.00 8503007.17 ↑ 2.93 

0307 MPT17 18.0 4.2 14134637.33 41382388.00 ↑ 2.93 

4707 MPT18 41.7 5.6 330210.54 985959.11 ↑ 2.99 
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Table 3.5: Summary of protein spots between 3-4 fold changes in abundance in treated proteome samples. (Note: MPT = moderate proteome 

control) (Note: All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in 

replicates with 3-4 fold change were shaded.) 

 

 

 

 

 

SPOT 

ID 

Label Mr pI 

Average spot intensity  Fold change of control 

samples Control Treated 

4803 MPT19 58.8 5.6 264865.66 846104.75 ↑ 3.19 

3801 MPT20 61.1 5.3 2719612.00 951863.98 ↑ 3.50 

2502 MPT21 26.8 5.0 3336025.67 11889442.67 ↑ 3.56 

0208 MPT22 15.1 4.3 3793287.54 13845978.00 ↑ 3.65 

8205 MPT23 12.0 8.0 282288.96 1067930.40 ↑ 3.78 
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Figure 3.3: Spot position of proteome expression profile on more than 5 fold change in control samples of Musca domestica 3rd instar larvae.  

(Note: Spots more than 5 fold change are marked in red, whereas its lower fold counterpart is marked in black; Estimated  

amount of protein loaded in control gel = 180.2955 µg, treated gel =193.9065 µg; Larvae samples were fed in 21.52% (v/v) H2O2 in treated 

samples)  
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Table 3.6: Summary of proteome expression profile on more than 5 fold change in control samples of Musca domestica 3rd instar larvae. (Note: 

All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in replicates 

with more than 5 fold change were shaded.) 

 

 

 

 

 

 

 

SPOT 

ID 

Label Mr pI 

Average spot intensity  Fold change of control 

samples Control Treated 

2507 A 34.9 5.2 1046096.19 ↑ 143442.90 7.29 

7703 B 43.1 N/A 603953.61 ↑ 78015.31 7.74 

9003 C 6.1 N/A 19684792.00 ↑ 2490603.29 7.90 
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Figure 3.4: Spot position of proteome expression profile on more than 5 fold change in treated samples of Musca domestica 3rd instar larvae.  

(Note: Spots more than 5 fold change are marked in red, whereas its lower fold counterpart is marked in black; Estimated amount of protein 

loaded in control gel = 180.2955 µg, treated gel =193.9065 µg; Larvae samples were fed in 21.52% (v/v) H2O2 in treated samples)  
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Table 3.7: Summary of proteome expression profile on more than 5 fold change in treated samples of Musca domestica 3rd instar larvae. 

(Note: All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in 

replicates with more than 5 fold change were shaded.) 

 

SPOT 

ID 

Label  Mr pI 

Average spot intensity 

Fold change of treated samples 

Control Treated 

1603 D 40.2 4.7 80903.52 3162137.33 ↑ 39.08 

4701 E 44.6 5.6 300237.75 2694532.71 ↑ 8.97 

5205 F 11.5 5.9 906649.99 5281080.08 ↑ 5.82 
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3.3.1.3 Presence of spots in proteome 

 By using PDQuest software the presence of the spots in each replicates were also 

probed. For proteome samples, 2 protein spots were detected to be present exclusively in 

control samples and 4 in treated samples (Figure 3.5, Table 3.8, Table 3.9). 
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Figure 3.5: Presence of spots exclusively in control and treated gels of Musca domestica 3rd instar larvae proteome. (Note: Spots present are 

marked in yellow and labelled. Absent spots are marked in red in the same position at replicate of comparison and not labelled; Estimated 

amount of protein loaded in control gel = 180.2955 µg, treated gel =193.9065 µg; Larvae were fed in 21.52% (v/v) H2O2 in treated samples)    
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Table 3.8: Summary of 2D and 3D gel images in PDQuest from the proteome expression profile present in control samples of Musca domestica 

3rd instar larvae.  (Note: PC = present in proteome control samples) 

 

SPOT 

ID 

Ref. 

Number 

2D image 3D image 

Control Treated Control Treated 

1607 PC1 

    

4405 PC2 
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Table 3.9: Summary of 2D and 3D gel images in PDQuest from the proteome expression profile present in control samples of Musca domestica 

3rd instar larvae.  (Note: PT = present in proteome treated samples)  

 

SPOT 

ID 

Ref. 

Number 

2D image 3D image 

Control Treated Control Treated 

0105 PT1 

    

0901 PT2 
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Table 3.9: Summary of 2D and 3D gel images from the proteome expression profile present in control samples of Musca domestica 3rd instar 

larvae. (cont’d)  

SPOT 

ID 

Ref. 

Number 

2D image 3D image 

Control Treated Control Treated 

7205 PT3 

    

9002 PT4 
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3.3.2  Thiol proteome expression profile 

3.3.2.1 Protein spots with moderate fold changes 

 Similar in the proteome samples, spots with fold change from 2 to 5 were 

considered as the protein with moderate fold change. 5 thiol protein spots have a moderate 

fold change in the control samples. 6 thiol protein spots were of moderate change in 

treated samples.  

 All 5 spots of control samples which have exhibited moderate fold change over 

treated samples were between 2 -3 times (Figure 3.6 and Table 3.10). 

 In treated samples, out of the 6 spots, 5 of them had shown fold change between 

2 -3 times while one of them had exhibited fold change between 3- 4 times (Figure 3.7, 

Table 3.11 and Table 3.12).  

3.3.2.2 Protein spots with high fold changes  

 Protein spots which have more than 5 fold of change is considered with high fold 

changes. A total of 2 protein spots each were in high fold change in control (Figure 3.8 

and Table 3.13) and treated (Figure 3.9 and Table 3.14) samples each.  
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Figure 3.6: Spots with moderate fold change in control gels of Musca domestica 3rd instar larvae thiol proteome. (Note: Spots boxed in green 

have shown fold change between 2 - 3 times while the black boxed spots are their counterparts in treated samples. Estimated amount of protein 

loaded in control gel = 94.407µg, treated gel =94.659µg; Larvae samples were fed in 21.52% (v/v) H2O2 in treated samples) 
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Table 3.10: Summary of protein spots between 2-3 fold changes in abundance in control proteome samples. (Note: MTC = moderate thiol control) 

(Note: All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in replicates 

with 2 – 3 fold change were shaded.) 

SPOT 

ID 

Label  Mr pI 

Average spot intensity 

Fold change of control samples 

Control Treated 

4615 MTC1 50.4 6.1 201779.97 ↑ 96495.39 2.09 

6502 MTC2 34.8 6.9 1071365.23 ↑ 491676.92 2.18 

4801 MTC3 63.2 6.2 409228.08 ↑ 146465.10 2.79 

5803 MTC4 66.9 6.5 870563.48 ↑ 297967.02 2.92 

5704 MTC5 54.0 6.6 454699.33 ↑ 153156.49 2.97 
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Figure 3.7: Spots with moderate fold change in treated gels of Musca domestica 3rd instar larvae thiol proteome. (Note: Spots boxed in green 

have shown fold change between 2 - 3 times while spots boxed in blue have 3 - 4 fold change. Estimated amount of protein loaded in control gel 

= 94.407µg, treated gel =94.659µg; Larvae samples were fed in 21.52% (v/v) H2O2 in treated samples) 
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Table 3.11: Summary of protein spots between 2-3 fold changes in treated proteome samples. (Note: MTT = moderate thiol treated) (Note: All 

spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in replicates with 2 – 

3 fold change were shaded.) 

 

SPOT 

ID 

Label  Mr pI 

Average spot intensity 

Fold change of control samples 

Control Treated 

3411 MTT1 51.2 6.1 404156.80 943081.69 ↑ 2.33 

3706 MTT2 33.6 6.2 522043.97 1219458.59 ↑ 2.34 

4504 MTT3 25.5 6.2 644845.93 1617695.96 ↑ 2.51 

2615 MTT4 33.5 5.9 51968.14 141463.10 ↑ 2.72 

3805 MTT5 48.8 5.8 136122.10 391188.02 ↑ 2.87 
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Table 3.12: Summary of protein spot between 3-4 fold changes in treated proteome samples. (Note: MTC = moderate thiol treated) (Note: All 

spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in replicates with 3 - 

4 fold change were shaded.) 

 

SPOT 

ID 

Label  Mr pI 

Average spot intensity 

Fold change of control samples 

Control Treated 

4307 MTT6 63.7 6.0 103841.34 325662.52 ↑ 3.14 

 

 

 

 

 

 

 6
3
  

Univ
ers

ity
 of

 M
ala

ya



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Spots with more than 5 fold of change in control gels of Musca domestica 3rd instar larvae thiol proteome. 

 (Note: Spots more than 5 fold change are marked in red, whereas its lower fold counterpart is marked in black. Estimated amount of protein 

loaded in control gel = 94.407µg, treated gel =94.659µg; Larvae samples were fed in 21.52% (v/v) H2O2 in treated samples) 
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Table 3.13: Summary of thiol proteome expression profile on more than 5 fold change in control samples of Musca domestica 3rd instar larvae. 

(Note: All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in replicates 

more than 5 fold change were shaded.) 

 

SPOT 

ID 

Label  Mr pI 

Average spot intensity 

Fold change of control samples 

Control Treated 

5305 G 21.5 6.8 3317977.44 ↑ 584182.65 5.67 

5503 H 34.9 6.7 506433.95 ↑ 62833.14 8.05 
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Figure 3.9: Spot with more than 5 fold of change in treated gels of Musca domestica 3rd instar larvae thiol proteome.  

(Note: Spots more than 5 fold change are marked in red, whereas its lower fold counterpart is marked in yellow. Estimated amount of protein 

loaded in control gel = 94.407µg, treated gel =94.659 µg; Larvae samples were fed in 21.52% (v/v) H2O2 in treated samples) 
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Table 3.14: Summary of thiol proteome expression profile on more than 5 fold change in treated samples of Musca domestica 3rd instar larvae. 

(Note: All spot intensity values in respective replicates were subjected to t-test and were of 90% confidence; Average spot intensities in replicates 

more than 5 fold change were shaded.) 

 

SPOT 

ID 

Label  Mr pI 

Average spot intensities  

Fold change of treated samples 

Control Treated 

2503 I 37.2 5.8 67202.12 589499.57 ↑ 8.77 

3403 J 31.8 6.0 104093.90  638692.95 ↑ 6.14 
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3.3.2.3 Presence of spots in thiol proteome profile 

 The presence of spots in the thiol proteome of the larvae were examined as well. 

A total of 2 spots were found present only in treated samples (Figure 3.10 and Table 3.15).  
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Figure 3.10: Spot that are present respectively in treated gels of Musca domestica 3rd instar larvae thiol proteome. (Note: Spots present are 

marked in yellow and labelled. Absent spots are marked in red in the same position at replicate of comparison and not labelled; Estimated 

amount of protein loaded in control gel = 94.407µg, treated gel =94.659 µg; Larvae samples were fed in 21.52% (v/v) H2O2 in treated samples) 
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Table 3.15: Summary of 2D and 3D gel spot images in PDQuest from the proteome expression profile present in treated samples of Musca 

domestica 3rd instar larvae.  (Note: TT = present in thiol proteome treated samples) 

SPOT 

ID 

Ref. 

Number 

2D image 3D image 

Control Treated Control Treated 

4405 TT1 

    

7402 TT2 
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 Table 3.16: Summary of presence of spots in both proteome and thiol proteome profile. 

Spot 

label 

Proteome Thiol 

Mr pI 

Control Treated Control Treated 

PC1  - - - 38.7 5.0 

PC2  - - - 23.9 5.7 

PC3  - - - 13.5 5.9 

PT1 - 
 - - 8.0 4.3 

PT2 - 
 - - 74.4 4.4 

PT3 - 
 - - 6.2 9.0 

TT1 - - - 
 32.9 6.0 

TT2 - - - 
 35.5 7.6 
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3.4 LC-MS/MS identification by peptide mass fingerprinting.  

Table 3.17: Summary of returned database search results of LC-MS/MS identification.  

Spot 

ID 

2D GE analysis 

Protein Name 
Mr  

(Da; 

Predicted) 

pI 

(Predicted) 

Mr 

(Da) 
pI 

Database 

accession 

number 

Database Species 

Distinct 

Summed 

MS/MS 

Search 

Score 

% AA 

Coverage 

Mean 

Peptide 

Spectral 

Intensity 
Profile 

Replicate 

group 

Fold 

change 

A Proteome Control 7.29 

Actin 34900.0 5.20 42229.5 5.30 399943076 NCBI 
Musca 

domestica 
49.78 11.7 6.41e+004 

Actin 34900.0 5.20 42229.5 5.30 T1PL65 SwissProt 
Musca 

domestica 
49.78 11.7 6.41e+004 

B Proteome Control 7.74 

ATP: guanido 

phosphotransferase 
43100.0 N/A 40399.0 5.91 3999399272 NCBI 

Musca 

domestica 
148.21 27.5 2.54e+005 

ATP: guanido 

phosphotransferase 
43100.0 N/A 40399.0 5.91 L0ESP4 SwissProt 

Musca 

domestica 
148.21 27.5 2.54e+005 

C Proteome Control 7.90 

Ubiquitin 

(Fragment) 
6100.0 N/A 8592.7 6.56 Q45TR8 NCBI 

Musca 

domestica 
99.06 64.4 8.54e+005 

Ubiquitin, partial 6100.0 N/A 8592.7 6.56 71040793 SwissProt 
Musca 

domestica 
99.06 64.4 8.54e+005 

D Proteome Treated 39.08 

Tropomyosin 40200.0 4.70 32742.9 4.74 39939626 NCBI 
Musca 

domestica 
90.43 25.2 1.01e+005 

Tropomyosin 40200.0 4.70 32742.9 4.74 T1PCF1 SwissProt 
Musca 

domestica 
90.43 25.2 1.01e+005 

E Proteome Treated 8.97 Arginine kinase 44600.0 5.60 40339.0 5.91 430769005 NCBI 
Musca 

domestica 
419.39 62.6 7.21e+005 

F Proteome Treated 5.82 

PBP/GOBP family 

protein 
11500.0 5.90 12579.5 7.92 399940676 NCBI 

Musca 

domestica 
135.37 47.1 5.89e+005 

PBP/GOBP family 

protein 
11500.0 5.90 12579.5 7.92 T1PDX8 SwissProt 

Musca 

domestica 
135.37 47.1 5.89e+005 
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Table 3.17: Summary of returned database search results of LC-MS/MS identification. (cont’d) 

Spot 

ID 

2D GE analysis 

Protein Name 

Mr  

(Da; 

Predicted) 

pI 

(Predicted) 

Mr 

(Da) 
pI 

Database 

accession 

number 

Database Species 

Distinct 

Summed 

MS/MS 

Search 

Score 

% AA 

Coverage 

Mean 

Peptide 

Spectral 

Intensity 
Profile  

Replicate 

group 

Fold 

change 

G Thiol Control 5.67 

PREDICTED: 

alcohol 

dehydrogenase-like 

isoform X1 

21500.0 6.80 28232.0 6.17 557782742 NCBI 
Musca 

domestica 
25.10 13.7 7.72e+004 

PREDICTED: 

alcohol 

dehydrogenase-like 

isoform X2 

21500.0 6.80 28232.0 6.17 557782744 NCBI 
Musca 

domestica 
25.10 13.7 7.72e+004 

Short chain 

dehydrogenase 
21500.0 6.80 24404.2 5.95 T1PI49 SwissProt 

Musca 

domestica 
15.87 3.6 5.48e+005 

H Thiol Control 8.05 

Lactate/malate 

dehydrogenase 
34900.0 6.70 36158.0 7.91 399938050 NCBI 

Musca 

domestica 
80.40 16.2 2.17e+005 

L-lactate 

dehydrogenase 
34900.0 6.70 36158.0 7.91 T1P9J0 NCBI 

Musca 

domestica 
80.40 16.2 2.17e+005 

I Thiol Treated  8.77 Arginine kinase 37200.0 5.80 40399.0 5.91 430769005 NCBI 
Musca 

domestica 
235.29 40.4 1.58e+005 

J Thiol Treated  6.14 

Fructose-

bisphosphate 

aldolase class-1 

31800.0 6.00 39697.5 7.04 399943052 NCBI 
Musca 

domestica 
58.39 18.1 1.09e+005 

Fructose 

bisphosphate 

aldolase 

31800.0 6.00 39697.5 7.04 399943052 SwissProt 
Musca 

domestica 
58.39 18.1 1.09e+005 
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CHAPTER 4: DISCUSSION 

 The growth of Musca domestica larvae and adults in our current lab conditions 

adheres to the condition stated: the cultivation of the housefly adult spanned from 2-3 

weeks, the housefly larvae hatched overnight after it was oviposited in a suitable medium 

and reached full pupation at the 5th day after hatching. This facilitated our selection of 

peroxide treatment stage on the 3rd day larvae. All mortality and survival were recorded. 

Treated individuals were experiencing loss of wet weight and reduced in size. Worthwhile 

to note that larviform were observed and generally appeared across dead larvae. 

Emergence of adult housefly from pupation of surviving individual were not investigated. 

A turning point of mortality of larvae was observed when passing the 20% (v/v) mark in 

our feeding assay.   

 Probing of cellular levels malondialdehyde (MDA) as a chemical marker via 

spectrophotometer means effectively showed that under the treatment of 21.52%(v/v) of 

H2O2, 1.040±0.612 nmol/ g wet weight and 11.924±4.528 nmol/ g wet weight were 

observed in control and treated samples respectively. This was an approximately 7-10 

fold of increase of MDA levels in 3rd instar larvae between control and treated samples.  

With the amount of change of MDA detected, it was evident that oxidative stress occurred 

inside housefly larvae during the treatment.  

 It is worth to mention that there are some limitations set in the experimental design. 

In our investigation, 7cm IPG strips and SDS gel systems were used, part of the selection 

criteria was relatively high (5 fold change). Under these boundaries of the experiment, it 

is conceivable that and in fact the expectation that the qualitative yield is on the low. 

Nonetheless, the experimental aim has been achieved as we aim to cover important 

proteins that represent the oxidative stress metabolism. Thiol proteome profile also 

exhibited a different proteome profile compared to the total cytosolic proteome profile.   
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Table 4.1: Summary of the LC-MS/MS identified proteins  

Spot 

ID 
Protein Name Profile 

Replicate 

group 

Fold 

change 

A Actin Proteome Control 7.29 

B 
ATP:guanido 

phosphotransferase 
Proteome Control 7.74 

C Ubiquitin Proteome Control 7.90 

D Tropomyosin Proteome Treated 39.08 

E Arginine kinase Proteome Treated 8.97 

F PBP/GOBP family protein Proteome Treated 5.82 

G 
Alcohol dehydrogenase-like 

isoform 
Thiol Control 5.67 

H Lactate/malate dehydrogenase Thiol Control 8.05 

I Arginine kinase Thiol Treated 8.77 

J 
Fructose-bisphosphate 

aldolase 
Thiol Treated 6.14 

  

 Interestingly, identified proteins were neither involved in the known oxidative 

stress defence active protection (S-glutathionylation, thioredoxin and H2O2 scavenging 

proteins) nor any other cellular actions (transcription, signalling and post translational 

modifications) (Table 4.1). Instead, common proteins mostly including structural and 

metabolic were highly regulated possibly due to the acute treatment of the larvae. 

Moreover, the high fold change window set might allow detection of a different set of 

proteins. Whole larvae are homogenized and the proteome was observed instead of 

specific cells/tissues, hence we could have recovered more protein with general metabolic 

functions.  

75 

Univ
ers

ity
 of

 M
ala

ya



 

 

 Protein spot A after subjected to LC-MS/MS based peptide fingerprinting returns 

actin, which has shown fold change of 7.29 times higher in proteome control samples. 

With molecular weight of 42kDa, actin is the monomer (G-actin) that polymerizes into 

filaments (F-actin) under physiological conditions to form cytoskeleton in cells (Huber et 

al., 2013). Actin has an ATP/ADP binding region where hydrolysing of ATP occurred 

during F-actin polymerization, which is vital for cell motility (Holmes, 2009). 

 Our investigation implied that in hydrogen peroxide-treated samples actin pool 

was in a low concentration. This had been with agreement on the extensive work in vitro 

had been done on P388D1 cell line (Hinshaw et al., 1986; Hinshaw et al., 1988;  Hinshaw 

et al., 1991). p38-MAP kinase and HSP27 phosphorylation could be regulating the actin 

reorganization and F-actin stabilization in hydrogen peroxide treated specific human 

umbilical vascular endothelial cell line (Huot et al., 1997) and fibrioblast cells secreting 

wild type HSP27 (Huot, 1998), forming stress fibers. However large changes in both p38-

MAP kinase and HSP27 were not detected in our investigation, at least not in our chosen 

large cutoff points (5 fold change). Reducing of levels of actin during peroxide challenge 

due to increase of actin polymerization could be occurring via S-thiolation of actin’s 

Cys374 residue (Dalle-Donne et al., 2003) or formation of disulfide bonds during slow 

thiol oxidation, creating dimers which cross links F-actin (Tang et al, 1999), where both 

further strengthen the formation of actin filaments rather than in monomers.  

 Given the fact that actin participated in wide range of cellular processes such as 

cytokinesis (Dean et al., 2005), tube formation (Nie et al., 2014), cell signalling 

(Carpenter, 2000), cellular and nuclear integrity (Revenu et al., 2004; Falahzadeh et al., 

2015), gene expression and transcription (Louvet and Percipalle, 2008) and cell-cell 

adhesion (Adams et al., 1996), actin polymerization could be a major physiological and 

cellular strategy for Musca domestica to resist against acute oxidative stress. 
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 On the other hand, actin is often used as a housekeeping gene for quantification 

in molecular studies (Zhong et al., 2013), hence based on our results, we suggest that care 

and consideration must be taken in selecting and interpreting actin levels from oxidative 

stress research, particularly involving housefly larvae.  

 Meanwhile tropomyosin (Spot D) were found in unusually high abundance in 

hydrogen peroxide treated 3rd instar Musca domestica larvae (39.08 fold change). 

Tropomyosin is vital to stabilize actin filament and mediate actin binding proteins in 

muscular tissues (Cooper, 2002). High fold changes of tropomyosin during hydrogen 

peroxide treatment was observed in clams (Rodríguez‐Ortega et al., 2003) and vascular 

smooth muscle cells (Partridge et al., 2005). Overexpression of tropomyosin during 

oxidative stress in housefly larvae could be accounted to calmodulin switching due to 

calcium ion influx, which in turn activates calcineurin that turns on muscle enhancer 

MEF2 (Lin et al., 1996; Wu et al., 2000), and enhances downstream TmI gene expression 

muscles in Drosophila (Lin and Stroti, 1997). Moreover, increase of tropomyosin 

expression could help endothelial cells stabilize F-actin (Gagat et al., 2014).   

  Taken together, a trend of opposing effects on actin (abundant in control samples) 

and tropomyosin (abundant in acute treatment samples) can be observed – suggesting that 

during oxidative stress Musca domestica larvae was active in maintaining the integrity of 

cytoskeletal network. 

 However, our untargeted investigation was incapable to discern the levels of 

possible tropomyosin isoforms and its localization in different tissues, muscle and non-

muscle alike during peroxide treatment. Different isoforms of tropomyosin function 

differently on the actin cytoskeleton molecule, in terms of actin binding properties and 

effect on other actin-binding proteins (Gunning et al., 2005; Lin et al, 2008), contributed 

during alternative splicing (Basi et al., 1986).  Future targeted investigations aiming on 
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resolving in vitro tropomyosin concentration and response should be isoform- and/or 

tissue- specific.  

 Arginine kinase was identified from sample E as the protein spot more than 5 fold 

abundance (8.97 fold and 8.77 fold respectively) in both treated proteome and thiol 

proteome profile via LCMS-based peptide mass fingerprinting.  

 Arginine kinase catalyzes the reversible reaction of transferring phosphorus group 

between MgATP and arginine acting as energy-storing phosphagen (Reaction 2)   

Phosphoarginine + MgADP- + H+ ↔ Arginine + MgATP2-          (2) 

 Phosphoarginine is one of the phosphagens which are smaller than ATP and able 

to diffuse to provide fast energy supply (Ellington, 2001). This enable cells to restore 

ATP levels during bursts of cellular events such as in nerves and muscles before catabolic 

events (Hird, 1986; Huennekens and Whiteley, 1960; McGilvery and Goldstein, 1979). 

L-arginine is shuttled to cytoplasm before converted into high-energy phosphoarginine 

for phoshorylating ADP to ATP in myofibrils in invertebrates (Schneider et al., 1989). 

Similar responses were also observed during treatment with hydrogen peroxide in 

protozoan Trypanosoma cruzi, where arginine kinase expression increased rapidly 

(Pereira et al., 2003; Miranda et al., 2006) and at the same time, due to the rapid 

phosphorylation of ADP, phosphoarginine levels were observed to decrease in nematode 

(Platzer et al. 1999) and prawns (Abe et al. 2006). 

 In thiol proteome two dimensional gel profile, a conserved Cys271 residue at the 

active site of arginine kinase were selected via our thiol purification protocol during 

hydrogen peroxide treatment. This residue acts as a salt bridge clamp on the guanidinium 

of the substrate arginine by forming a thiolate (Zhou et al., 1998). This cysteine residue 

was not only conserved but apparently highly protected against oxidative thiol 

modification, and highly expressed during peroxide treatment, albeit we are not sure 
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whether this is caused by active protection (S-glutathionylation/thioredoxin) or constant 

activity of the enzyme.  

  At the same time, peptide mass fingerprinting results also returned in control 

proteome profile that a protein (Spot B) from ATP: guanidino phosphotranferase family 

was identified to be more than 5 times in abundance in control replicates, with similar 

molecular weight compared with E and I (both arginine kinases in Mr = ~ 43100kDa) 

albeit in different position. ATP: guanidino phosphotransferases is a protein family, 

where arginine kinase belongs to, alongside with glycocyamine kinase, 

hypotaurocyamine kinase, lombricine kinase, opheline kinase, taurocyamine kinase, and 

thalessemine kinase in invertebrates (Jarilla and Agatsuma, 2010).  

 With arginine kinase the only plausible candidate of all the proteins in Musca 

domestica (based on genome database searches), we postulate this arginine kinase could 

possibly a different isoform that expressed in control samples and deactivates rapidly in 

the event of acute peroxide challenge. Arginine kinase exist in mitochondrial and 

cytoplasmic isoforms from a single gene (Munneke and Collier, 1988; Uda et al., 2006) 

and based on our results, during oxidative stress the isoforms of arginine kinase from 

different locations of the cell might act antagonistically to meet the cellular energy 

requirements. Taken together, during oxidative stress, arginine kinase through varied 

levels of possible isoforms and its high resistance, could be vital in Musca domestica 

larvae’s energy metabolism response, especially in terms of providing alternative cellular 

energy source and ATP buffering. 

  Ubiquitin is the only entry that returned from LC-MS/MS identification of Spot 

C. A 76-residue polypeptide, ubiquitin is highly conserved and present in all eukaryotes 

(Goldstein et al., 1975). Expressed in bulk (Ryu et al., 2007) and have a rather long half-
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life in the cell (Shabek and Ciechanover, 2010), this polypeptide is firstly known for 

ubiquitinylating substrate proteins for 26S proteasome damage.   

  From our investigation, ubiquitin abundance has been reduced in the event of the 

oxidative stress, suggesting a disruption or a shift of homeostasis of ubiquitin. Reduction 

of monomeric ubiquitin were observed in deletion of deubiquitinating enzymes (DUBs) 

encoding genes in yeast (Swaminathan et al., 1999). DUBs are enzymes catalyzing the 

process of breaking down free and ubiquitinated substrates, free polyubiquitin chain 

(Amerik and Hochstrasser, 2004), and synthesis of free ubiquitin (Redman and 

Rechsteiner, 1989). Interestingly, DUB’s catalytic consists of highly conserved regions 

of histidine and cysteine boxes (Reyes-Turcu et al., 2006), in which cysteine residues is 

highly susceptible for peroxide attack. Therefore, it is conceivable that oxidative damage 

occurred in DUBs during larvae acute peroxide treatment, which make larval cells unable 

to recycle free ubiquitin monomer from deubiquitination.     

  PBP/GOBP protein family (pheromone binding protein/general odorant binding 

protein) was identified from Spot F. Shown an increase of 5.82 times than control samples, 

this family of proteins are located in the aqueous fluid around olfactory sensory dendrites 

to bind and transport hydrophobic odorants (Vogt and Riddiford, 1981; Vogt et al., 1991b; 

Pelosi et al., 2006). PBP, binds specifically towards pheromone (Du and Prestwich, 1995; 

Feixas et al., 1995) compared to GOBP which associate with general-odorant sensitive 

neurons (Vogt et al., 1991a). Interestingly, both insect PBP and GOBP are characterized 

by three pairs of disulfide bonds with the same cysteine residue pairings (Scaloni et al., 

1999), which limits the folding and versatility in terms of functions (Pelosi et al., 2014). 

Though known to bind pheromonal compounds, fatty acids and long-chain alcohols 

(Campanacci et al., 2001), it is still intriguing that how this protein family underexpressed 

during hydrogen peroxide treatment.  
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 Present in abundance of 5.67 times in control samples, spot G belongs to one of 

the member of short-chain alcohol dehydrogenase family.  Sequence analysis research of 

alcohol dehydrogenase from Drosophila melanogaster and Aedes aegypti suggested that 

the selection via our thiol protein purification methods, possibly on its Cys-218 (which is 

in proximity to NAD+ binding site and does not have any catalytic properties) (Chen et 

al., 1990) and two other solvent facing cysteine residues (Mayoral et al., 2013). It is a 

ubiquitous NAD(P)(H)-dependent enzyme belongs to large short-chain 

dehydrogenase/reductase family with over 46000 related members (Persson et al., 2009). 

Other than sharing a highly similar nucleotide binding region, the proteins in this family 

have very low pairwise sequence identity (15%-30%) (Filling et al., 2002), hence making 

this group of enzyme extremely diverse (Kallberg et al., 2002). In Drosophila sp. alone, 

other than common reactions of long chain and ethanol oxidation in aldehyde, some SDR 

gene products are found to be capable to oxidize farnesol and geraniol  (Mayoral et al., 

2013). Thus it is still far from conclusive that which exact short chain dehydrogenase 

involved in the current peroxide treatment of larvae of Musca domestica, and what 

possible catalytic activity undertaken which leads to its “sacrifice” during hydrogen 

peroxide attack. 

 Spot H are found to be in abundance for 8.05 fold change in control samples is a 

protein that belongs to lactate/malate dehydrogenase family. Lactate/malate 

dehydrogenases interconvert lactate and pyruvate/oxaloacetate and malate utilizing 

NAD(P)/NAD(P)(H) (Holbrook et al., 1975). A highly conserved cysteine residue, Cys-

165 located at the proximity of co-substrate binding site (Taylor et al., 1973) in lactate 

dehydrogenase and Cys-330 residues (Hara et al., 2006) in the malate dehydrogenase 

allow this group of protein to be purified in our thiol purification methods.  

 For lactate dehydrogenase, the decrease of its levels during peroxide attack might 

be due to the extracellular leakage of plasma membrane caused by damage of the plasma 
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membrane, which is a common parameter during cell death (Bagchi et al., 1995), hence 

this might be a physiological leakage rather than a metabolic regulation on our 

observation. Malate dehydrogenase in the mean time had been found downregulated and 

reduced in activity in oxidatively stressed organisms (George et al., 2012; Lv et al., 2013; 

Padmaja and Raju, 2005; Sharma et al., 2007)  

 Given the fact that, lactate dehydrogenases are vital to anaerobic metabolism 

(Holbrook et al., 1975) while malate dehydrogenases are critical in tricarboxylic acid 

cycle, glyoxylate bypass, amino acid synthesis and gluconeogenesis (Goward and 

Nicholls, 1994), lactate/malate dehydrogenase Cys residues could be susceptible against 

oxidative thiol modifications. Loss of this protein might indicate that arginine kinase 

could had taken over the role as energy reservoir during peroxide attack in Musca 

domestica larvae. 

  Fructose bisphosphate aldolase, upon peroxidant challenge, exhibited 6.14 times 

of fold change in treated samples. Sequence analysis by Brenner-Holzach (1979) showed 

that there are no exposed thiol groups of fructose bisphosphate aldolase in Drosophila 

melanogaster. We postulate that for fructose bisphosphate aldolase of Musca domestica, 

which contains 6 putative cysteine residues in the Uniprot repository to have sufficient 

exposed thiol groups to be selected from our purification methods.  

 Overexpression of fructose bisphosphate aldolase during oxidative stress were 

discovered in oral pathogen Fusobacterium nucleatum (oxygen-induced oxidative stress) 

(Steeves et al., 2011), and Agrostis capillaris roots (Hego et al., 2014).   

 Due to importance in the central metabolism which regulate a great amount of 

pathways downstream (e.g. energy production, amino acid synthesis, fatty acid synthesis, 

pentose phosphate pathway), and possible deactivation of preceding enzyme 

glyceraldehyde 3-phosphate dehydrogenase in glycolytic pathway by thiol modification 
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(Ralser et al., 2007), upregulation of fructose bisphosphate aldolase could be another key 

protective mechanism on glycolytic pathway against acute peroxide challenge in Musca 

domestica larvae. 
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CHAPTER 5: CONCLUSION 

 We have cultivated 3rd instar larvae of Musca domestica and determined LC50 of 

hydrogen peroxide treatment (21.52% (v/v)). Acute treatment of hydrogen peroxide of 

the concentration was later performed via feeding for 24 hours, both the proteome and 

the thiol protein purified protein were obtained and subjected to two dimensional gel 

electrophoresis. Differential analysis had mapped out in proteome samples with moderate 

fold change (2-5 times), high fold change (>5 times) and absence of spots.  

 Protein spots with high fold changes were identified using LC-MS/MS based 

peptide mass fingerprinting and proteins related with important biological functions were 

identified including cytoskeleton formation (actin and tropomyosin), protein degradation 

(ubiquitin), odorant binding and sensory (PBP/GOBP family protein), energy metabolism 

(arginine kinase), anaerobic metabolism/gluconeogenesis/TCA cycle (Lactate/malate 

dehydrogenase), and glycolysis/gluconeogenesis (Fructose bisphosphate aldolase). 

Arginine kinase and fructose bisphosphate aldolase are high in abundance in thiol 

proteome profile, suggesting their high level of protection under acute hydrogen peroxide 

induced oxidative stress. 

 Since the proteins involved in high fold changes have been detected, we suggest 

that in future more research should be focused on the protein with moderate fold changes 

for more holistic understanding in Musca domestica’s 3rd instar larvae oxidative stress 

responses. Exact isoform and localization of the protein and concentration of its substrate 

in vitro can be further determined to justify the direction of metabolic shift upon oxidative 

stress alongside with proteomic analyses.   
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APPENDICES 

Appendix A: Buffer solution preparation 

Binding buffer solution (0.1M Tris-HCl pH 7.5, 0.5M NaCl, 1mM EDTA) 

To make 1L of binding buffer solution, 141.1g of Tris-base was dissolved into 1L of 

distilled water. 29.22g of NaCl and 0.2922g of EDTA was mixed with the 1L of the Tris 

solution and the pH was adjusted with 1M HCl. 

Homogenizing buffer 

25mM NaH2PO4
 buffer, pH 7.4 was prepared by dissolving 0.390g of NaH2PO4 in 1L of 

distilled water and the pH was adjusted with 1M NaOH. 50ml of NaH2PO4 was 

dissolved with 0.5ml of protease inhibitor (Sigma-Aldrich), 0.019g of EDTA, 0.008g of 

DTT and traces of phenylthiourea. 
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Appendix B: Solutions for 2-dimensional gel electrophoresis 

Solubilizing buffer (8M urea, 4% CHAPS, 65mM DTT, 3M thiourea) 

To prepare the solubilizing buffer, 0.48g of urea was dissolved in approximately 0.45ml 

of deionized water with 0.01g of DTT and 0.23g of thiourea. 0.04g of CHAPS was 

added later, the mixture topped to 1ml and a trace of bromphenol blue was added. The 

mixture was mixed thoroughly by inverting.  

Rehydration solution (8M urea, 2% CHAPS, 0.2%(w/v) DTT, 2% carrier 

ampholytes(pH 3-10)) 

To prepare the solubilizing buffer, 0.48g of urea was dissolved in approximately 0.45ml 

of deionized water with 0.002g of DTT and 20µl of carrier ampholytes (pH 3-10). 0.02g 

of CHAPS was added later, the mixture topped to 1ml and a trace of bromphenol blue 

was added. The mixture was mixed thoroughly by inverting. 

Equilibration buffer 1 (1.5M Tris-HCl buffer, 6M Urea, 4.7M glycerol, 2% (w/v) 

SDS, 16.2mM DTT) 

1ml of pH 8.8, 3.6036g of urea, 3.5ml of glycerol, and 0.2g of SDS was added and 

topped up into 10ml of solution with deionized water in a 10ml centrifuge tube. 

25mg of DTT was added into and mixed thoroughly. 

Equilibration buffer 2 (1.5M Tris-HCl buffer, 6M Urea, 4.7M glycerol, 2% (w/v) 

SDS, 0.243mM 2-iodoacetamide) 

1ml of pH 8.8, 3.6036g of urea, 3.5ml of glycerol, and 0.2g of SDS was added and 

topped up into 10ml of solution with deionized water in a 10ml centrifuge tube. 0.45g of 

2-iodoacetamide was added into and mixed thoroughly. 
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SDS gel staining 

To prepare 1L of 5% Coomassie Brilliant Blue R-250 stain, 1g of CBB was dissolved in 

20ml of distilled water. The mixture was sonicated around 5 minutes until the CBB was 

fully dissolved. 11.8ml of concentrated phosphoric acid was added into the CBB 

solution and mixed thoroughly. 100g of ammonium sulphate was dissolved in 600-

700ml of distilled water and poured into 1L volumetric flask through a glass funnel. The 

volume was topped up to 1L.  

For gel destaining, CBB stain was prepared by mixed 80ml of 5% CBB solution to 

20ml of methanol. 
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Appendix C: Probit analysis for LC50 determination 

 

Graph: The probit graph plotted with probit values against log10 concentration of 

hydrogen peroxide (% (v/v)) 
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Appendix D:  Standard curve of malondialdehyde 

 

Graph: Malondialdehyde standard curve, plotted with concentrations of MDA 

(µM) against Abs 586nm. 
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Appendix E: 3D images of spots with high fold change. 

Table: 3D image of control spots more than 5x in fold change in proteome 

expression profile of Musca domestica 3rd instar larvae.  

Spot ID Label Control Treated 

2507 A 

  

7703 B 

  

9003 C 
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Table: 3D image of treated spots more than 5x in fold change in proteome 

expression profile of Musca domestica 3rd instar larvae. 

Spot ID Label Control Treated 

1603 D 

  

4701 E 

  

5205 F 
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Table: 3D image of control spots more than 5x in fold change in thiol proteome 

expression profile of Musca domestica 3rd instar larvae.  

Spot 

ID 

Label Control Treated 

5305 G 

  

5503 H 
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Table: Treated spots more than 5x in fold change in thiol proteome expression 

profile of Musca domestica 3rd instar larvae.  

Spot 

ID 

Label 

Control Treated 

2503 I 

  

3403 J 
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Appendix F: Summary of the LC-MS/MS analysis. 

ZipTip® C18 resin (Merck Millipore) desalting protocols  

 After in gel digestion, the sample prior to injection, the digested peptide was 

desalted to improve mass spectrometry detection and purify the peptides.  

Table: Solutions for ZipTip® C18 resin desalting procedure. 

Solution Composition 

Hydration Solution 50:50, ACN:H2O, 0.1% TFA  

Wash Solution 0.1% TFA in H2O  

Peptide Elution Solution 60:40, ACN:H2O, 0.1% TFA  

Reconstitution Solution For Dried 

Samples 

5:95, ACN:H2O, 0.1% TFA  

 

 Dried samples was reconstituted with 13 µl of reconstitution solution; vortex and 

centrifuge. The pH of the sample was checked and readjusted to equal or less than 3 

with 10% TFA.  

 C18 resin was used for peptide desalting. It was important to pipet slowly to 

avoid introducing air into the packing material and to maximize binding throughout the 

process. The peptide elution solution was chilled in ice. 

 The resin was hydrated by aspirating and discarding 10 µl of hydration solution 

twice and followed by aspirating and discarding 10 µl of wash solution, twice. 10 µl of 

sample was slowly aspirated and expelled the liquid back into the tube. This process 

was repeated 5-6 times.  

 After that 10 µl H2O was drawn and expelled and this step was repeated 4-5 

times. 1.3 µl aliquot of peptide elution solution was aspirated and expelled twice.  

130 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

Before injection, the sample was transferred by the ZipTip and dried with SpeedVacTM 

(Thermo Scientific) and resuspended in 4µl 0.1% formic acid in water.   

Liquid chromatography parameters      

 The column used was C18, 160nl enrichment column and 75µmx150mm 

analytical column (Agilent).  Flow rate employed was 4µl/min from Agilent 1200 Series 

Capillary pump and 0.3µl/min from Agilent 1200 Series Nano Pump. Sample injection 

volume was 2µl. The solvent gradient was summarized at table below. 

Table: Solvent gradient used during LC-MS/MS analysis 

Time (min) Solvent A(%) Solvent B(%) 

Initial 97 3 

30 50 50 

32 5 95 

37 5 95 

38 97 3 

   

 (Note: Stop time was at 47 minutes;Solvent A was 90% acetonitrile in water and 

solution B was 0.1% formic acid.) 

 

 

 

 

 

131 

Univ
ers

ity
 of

 M
ala

ya



 

 

Mass spectrometry parameters       

 Positive ionization was used with the Vcap of 1800V and the fragmentor voltage 

was set to 175V. Drying gas temperature was 325ºC and the flow was 5.0 L/min. 

 In the data acquisition department, the spectra acquired via two modes with the 

MS scan range of 110-3000 m/z, while in the MS/MS the scan range 50-3000 m/z was 

set.        

Precursor selection        

 For the precursor selection I, the absorbance threshold was 200. Precursor 

selection II was performed to select fragments of charge states of 2, 3, or more than 3. 

Precursor ion with the m/z of 922.009798 (charge state=1) and 121.050873 (charge 

state=1) are excluded as they were reference ions.     

Data analysis 

 Data was processed with aforementioned Agilent Spectrum Mill MS Proteomics 

Workbench software packages. The scan range for MH+ ion was set from 600 to 4000 

Da. Database search was done on SwissProt and NCBI. Filter by protein score was set 

by more than 11, and the peptide search filter was set to be more than 6. %SPI filter was 

toggled to be more than 60%.  
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Table: Additional protein rules of autovalidation of database search. 

Rule 

Precursor 

Charge 

Score 

Threshold 

% SPI 

Threshold 

Fw-Rev 

Score 

Threshold 

Rank 1-2 

Score 

Threshold 

1 2 6 60 2 2 

2 1 6 70 2 2 

3 3 8 70 2 2 

4 4 8 70 2 2 

5 5 12 70 2 2 

6 2 6 90 1 1 
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