CONTROL APPLICATION FOR
CLIENT/SERVER BASED:
INTERACTIVE PUZZLE GAME
by,

EVELYN BT. FRANCIS
WEK 000430

WXES3182

Under the supervision of
Mr. Noorzaily Mohamed Noor
and
Moderatored by,

Dr. Rosli Salleh

Faculty of Computer Science & Information Technology

University of Malaya

Acknowledgements

First of all, I would like to thank to my supervisor, Mr. Noorzaily Mohamed Noor for
supervising me during the development of this project. Without his helping, guidance
and thought, this project would not be complete. I also want to express my deepest

gratitude to Dr. Rosli Salleh for sparing his time as a moderator of this project.
[also want to give my appreciation to all my friends, lecturers for their supports, ideas,
and thoughts. Last but not least, I want to thank my beloved family for giving supports

and prayers that keep me strong in time of trouble.

[thank GOD for all.

Abstract

Interactive Puzzle Game (IPG)

IPG is a web-enabled application developed through client/server based architecture.
Client/server architecture can be define as a design approach that divides the functional
processing of an application and distributes it across two or more processing platforms.
IPG is design in fulfillment of the client/server environment, which provides the
infrastructure of such as middleware, networks, operating systems, hardware that
supports the current distributed applications. IPG gives the interactive utility that enables
concurrent users in the networked computing. This application supports the gaming
features such as winning, loss, and draw, create a new game and many else. IPG also
acts and tries to get a feel for the real life gaming capability into the virtual concept. The
methodology to implement this application is using the V-Model. The software and
programming languages that use to develop this application are varies. Java and Visual
Basic are the most essential tools for network and the application itself. This project will
try to create a new web-enabled client/server application that ensures additional gaming

skill.

ii

Table of contents

Contents

ACKNOWIEAZEMENT. coe e ittt ettt et et et et e e e e

Abstract.

RO T L s oo e SRR
TASE OETRDIC o snvuononsvmvin s op et s S AR a0 O s S S B e e i e
7050 0T S S el TR T ST e MR T

Chapter 1: Introduction

1.0 An Overview: TradttioBal PUZRIEiovarn i son v son shse by iasseises sins
1.1 Problem Definition. oottt o e e e e e e e e e e e e e e

1.2 Project Scope
1.2.1 Synhchronization: .. .v uvivessyes s

1.2.2 ComMmUBICRLION . vxvnsssinnnnsarsmmasanssinnmssmanamens Mo Dnme s ostnsanmadl
1.2.3 DHSERROE .« i nswniviviis svansusinies cssinawissngeofl g s b oo s
124 ReBabIY.cornsormnrmnmmmannsssns enmmmsmenanssn Mg Raghlors v annsesinieseninns
1:3 Project ODJEShYE. «inssaisisunisminiiggv o gis R

1.4 Project Challenges

1.4. 1 Clietit/server ISSURS . .ivivmisnsve s oM M e
1.4.2 Othier Challenoms. ..ol i o g BuuaMs s s ssisasmsmsiss ks

1.5 Project Motivation

1.5.1 Benefits:1o. Dowelapers. ... M Do s se snea

1.6 Project Schedule

161 Tithe SCBEInle o sas o b i s S s e ats

Chapter 2: Literature Review
2.0 Introduction...
2.0.1 Purpose.

Page

.1
...l
Vi
Vil

.t\’_

VRV RN

oo O

.10

S

.14

05

WE vl Termmomg.les L SIS TIRT A o nisn s sinmiinrsBepmatindls

2.1.1 Networked Environment Application...c..ce ..
2.1.2 CHomServer ATCHItECINIE. .ooviviiss civigsss sasivats s usdsss o e i
D BAATRICWRIS T I . TR . ottt ian i s B A M i 4

2.2 Hardware and Software

A M R DRI L oot e s R A A e ol
) S WAL e DEtiIS s s s e e s S s s s

2.3 Research on Existing System
2.3.1 BINGO...
232 TIC-TAC-TOE

Chapter 3: Methodology

3.0 Introduction... .

3.1 Project Development Llfe Cycle
3.2 The Software Engmeermg

3.3 The V-Model...

.16
oy
ad)

=29
...26

i

DERREIERG. . o L o E

.. 34

N =

36
a7
.40

il

Chapter 4: System Analysis
4.0 Introduction. ..

4.1 Client/server Arehitecture

4.1.1 Client Technologies...
4.1.2 Server Technologies
4.1.3 Network Technologles

4.2.1 Java Makes Web Pages Dynamic...
4.2.2 Java Adds New Content Types to the Web
4.2.3 Java Lets Users Interact with a Web Page...

4.4 Why Microsoft Access (usmg SQL) server?
4.4.1 The Power of SQL...
4.5 System Requirements

4:5.1 Operational TEQUIXETHNENE. . oo ivciovivsvanvevennis spsnsasegisnad s Pinoss
4.5.2 Performance TOqUITCINENL. <. covewssssmsassnsnsssvages o cnrisss
4.5.3 Security TEqUIrCMERE. .. covoiivov sy vvsvs vvinn cuv giase s s v vo s oeh

Chapter S: System Demgn Analysns
5.0 Introduction...
5.1 System Module

5.1.1 The Client/Server Application Module...............................
5.1.2 The Graphical User Interface (GUI) Module.........................
5.1.3 The Database Application Module....................................
53 Example User Tntraceo &R oivnninivinminms vsiinsmammssraus

Chapter 6: System Development/Implementation
6.0 Introduction...

o SystemDevelopment Strateg1es b e . VSRR 3 . Sl
6.1.0 Distributed Concurrent/ Parallel Processing...........................

6.2 The Changes

6.2.0 Design Module Changes................cooovieriiiiiiiie e e e
6. 2.1 AlgoriMRLIBENPEE. .. o.ooocuiniivnswdirines s e oo T SRR
6.3 Java Message Passing — Sockets..........................l
6.4 DevelOpIgIt PIOCEUSES. v oovuicncontsimmssmsses sy ass svss s Amaeav s s

6.4.0 The Primary Classes. ..
6.5 System Development Platform...

6.6 Software and Hardware Conﬁgurat:on for Development

Chapter 7: System Testing
7.0 Introduction.

7.1 Integrate, Complllng; Runmng and Debuggmg .

7.2 Testing Environment...
7.3 Testing Phase..

7.3.1 Integration Testing
7.3.2 System Testing

.. 43

... 44
45
4.2 Why Java not like others sueh as C++ and C‘?
o 47
seisaian 0
4.2.4 Why Java’s a Better Programming Language?
4.3 Why AcBVEX AL .. onerrarethossnsmmss sttt esisrashe

53
62

...64

.65
.03
.. 66

00

s O
.. 69
i 10
s

w43
.73

.74
.74
.. 80
AL
P o4

84

.. 85
.85
SORRL i
73.0 Component Testmg

v

Chapter 8: System Evaluation

R AU O O T e e e e RN e R VT O

8.1 What’s Interesting?

810 The WebBaablen. . ccvis v vvis sonmssaisms s v A e ey
211 The GamMe TITADICE .. e soe s kme s ot STl f A il s
R 1.2 Complex Evett BantBRE. . .cocisssimsinmesivnmasaissbi e sn s i
8.1.3 Multiple CONNECHONS.... ... : crviss vsivissivins sresanisssss sis s psohasan

8.2 The Weaknesses

8 D et S e TN CHONY s o0 v evinis e e s i
821 RecOTd Of GAME. e vieiin e cenvervasvensessnsassvononssonnensones
8.0 The ORADRICHL . s vrs vovmrss s aa s s s

8.3 Future Enhancements

8.3.0 ConcufrentlV PIay PUZZIC. . oo cisvinivssnimesss vabshisvesn s iaimets
8.3.1 Server with More Functions.coomiiiir e e
8.3.2 Interactive Multimedia Features. oo oo e,

Chapter 9: Conclusion

O 0 TNtTOQUCTION. .. o e vt e et e e e e e e e e e e et e e e e s

9.1 Problems

9.1.0 The Experience of Using Java...cccooiviiiiiii i
9.1.1 The Game Cannot Play Concurrently..................cco oo
012 The DatabhBse:........movennamenmmsanso sy vasei aceis s s susssminys s saas oh
9.2 Profect ConcluBION. . . <.o.ovinvasaiimilapesinn Mpsins s ivsiniliasssssvas s’

RETEICHIEE ..o nvnvnsmenwmmimonvionngon ave MWy v i ne s m s ms s waskiabius
BiblIOGIAPRY. ocooice siwsssssigivipgeuss wesiissns s ssousionssosaiases

88

.88
..89
89
.89

.90
.90
.90

91
v 2
.94

93
)
93
.93
94

95

oo 1B
BRI

Table 1.0
Table 2.0
Table 3.0
Table 4.0
Table 5.0

Table 6.0

List of tables

Project Time - Table

Client/server Attributes

N-Tiered versus Two-Tiered Client/Server Architecture
Operational Requirement |

Performance requirement

Security requirement

vi

Figure 1.0
Figure 2.0
Figure 3.0
Figure 4.0
Figure 5.0
Figure 6.0
Figure 7.0
Figure 8.0
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Figure 22

List of figures

Client-Server based Architecture (two-tiered)

Three-Tiered Client-Server Architecture

Four-tiered Client-Server Architecture

The location of Middlewafe in the layer of distributed systems
This is an example of shared device-processing environment
Application divided to the clients only

Bingo Box

The applet tries to upload

Client Interface for Slider

System Development Life Cycles

Software Development Life Cycles

The V Model

The Design Module

Context Diagram of System

Data Flow Diagram (DFD)

Example Interface

Design Module

RMI Interfaces (1)

RMI Interfaces (2)

RMI Architecture

Stubs and Skel

vii

Figure 23 Transport Layer

Figure 24 Web-Enabled

Viii

Chapter 1: Introduction

1.0

An Overview: Traditional Puzzle Game

Traditionally, puzzle. game was being played minimum number of one person in
a room, hall and even everywhere. Then, the number of player can be add as
many as they can to play simultaneously and get the result. The main goal of
playing this game is only one which is to solve the puzzle and create a full result
than needed. The material that was used in the real - world are many and from
different types. The demand of applications that related to online and networked
game become many and its growth are getting excellent by the use of modem

technologies.

The chapter will explain the purpose on this project, the reason of its

development, objectives, scopes and many more on this section.

11

Problem Definition

As we see, the increases of computer program applications around the world are
getting bigger and wider. There are many programming and graphic application
nowadays since they are getting popular and the modem technologies are getting
improve by time. Most of today’s popular desktop database development
products having been around for several years in one form or another. In fact,
most were around long before the Internet was as popular and as well adopted as
it is now. While many are extremely admirable in their range of features, they all
have had to be adapted to work with Internet or Intranet style applications,

atomic transactions, and the feature rich capabilities of the modem browser.

But, nowadays the application of virtual reality is not the new thing for
programmers and many software developers. Concerning the issue related to the

subject matter, this project is proposed as to tackle the problem.

Let us consider for two-users want to play game in the different places. First user
wants to play the game simultaneously and all the opponent movement available
to be seen on the screen. This is also goes the same with user two. The problem
with this matter is how is the two players (which is considered as two mouse
pointer) can be seen on the same screen on the web but in the different places in
the networked computing environment. The first matter is the concurrent issues

that can be undertake as same as the programming solutions nowadays.

The concern is not only just concurrent but something more. If the two-users
play simultaneously, there is problem, example when they want to choose, pick
and drag on the same cubic. What will come about in the real life when the thing
occurs? They will bump into. Therefore, the problem is the reality concept, which

this project will try to deal with.

The other one is the network issues. This application gives the ability to control
and monitor the game between two - users. So that, there will be someone that in
charge for this. The administrator has that power over the database server and the

application server. So, the programming will be more complicated and difficult.

Web - enabled application is technically client/server application running inside
a browser. In order to run a Web-enabled application, user must install additional
software on client machine. Normally, the Web-enabled application forces the
browser the download some sort of a CAB file or ActiveX.dll. This causes
maintenance headache for supporting the application. Eventually, user must deal
with dll version conflict, dll registration, configuration, installation,
uninstallation, upgrading, etc. Communication between the client and the
database typically uses programming protocol such CORBA, DCOM, and
sockets. Client machines usually must meet a certain speed/memory requirement
to run the application. That translates to time and money. In general, deployment
of this type of application is not an easy task when involve with security and
other network components. It involves compromising the firewall integrity to

allow the requested traffic.

1.2 Project Scope

Identifying the scope of application will help determine if application needs to be
integrated with any current systems and problems that need to be solved. If this is
the case, the important thing is to identify what data needs to be exchanged

between any current system and the application that will develop.

From the issues and problems that arise, for this project, few scopes have been
identified and separated to further guide to overcome and construct a more

flexible and interactive application.

1.2.1 Synchronization
o This is how the application can be manage or the entire components to
build the system can be put together. This also collaborate the concurrent

issue.

1.2.2 Communication

. The main part of the network is the communication issues. This is how
the network can be solved between the administrator (server) and the

users (clients).

1.2.3 Distance (latency)

B The problem comes from the data latency, which is related to the network
and the web. These also range on the application server and the request

on data from the database application.

1.2.4 Reliability (network congestion and failure)

1.3

. Handling reliability .reliability problem are congestion related packet loss

and sequence loss, and network failure.

Project Objective / Purpose

The goal of this thesis is, as the name implies, to create a flexible and interactive
puzzle game for concurrent user in the networked distributed computing using
the client/server architecture approach. As it is hard to envision something solely

on this description a more detailed discussion of the subject matter follows.

The objectives developments of JPG are:

. IPG is develop to fulfill the gaming features that enables distributed
computing and application to minimum two users in the distributed
computing.

. [PG gives the reliable communication skills and abilities of client/server
architecture using the networking environment.

. 1PG provides the ability to give the easy and user-friendly game as same
as the real world game.

. IPG is also implementing to offer a multi-function administrator (server)

that have the control and monitoring application to the clients.

1.4

1.4.1

Project Challenges

Client-server issues

Besides taking into account all the aforementioned issues when developing a
client-server application, there are also some specific designs issues that need to

be consider.

Data distribution is necessary in order to obtain certain performance levels. Data
distribution does have its own problems such as ensuring consistent data
throughout the network, making data distribution transparent, dealing with
failures and deciding who should own the data, but these are minimal when

compared to the benefits.

Although it may be hard to believe, the main problems associated with
client/server architecture tend to be politically rather than technically based,
because the CS architecture represents a paradigm shift in relation to the
processing of information. Therefore, it is vital that three political problems be

addressed before client/server technology is introduced:

. Organization
. Resources
. Functionality

1.4.1.1 Organization
Highly compartmentalized proprietary hardware and software which was
previously stored in a central repository known as the corporate data centre, will
now be replaced with multivendor hardware and software that may be poorly
integrated. This can lead to disputes regarding the control of, and responsibility

for, various components of a client/server architecture.

1.4.1.2 Resources
The allocation of human resources plays a significant role in determining
whether a client/server application project succeeds or fails. It may seem logical
to appoint the old communication / network specialist the role of installing and
supporting the new environment, however these specialists will now be
confronted with hardware and software that is simplistic, relatively unstable and
lack vendor support. This can lead to a situation in which the specialist

uncomfortable, or in which the specialist’s skills cannot be fairly assessed.

1.4.1.3 Functionality
The introduction of client/server technology forces the data centre to move into
new functional areas within the organization. Therefore, it is important to
identify exactly what those functions will be especially if it is use in the business
environment. The fact that the mainframe environment didn’t support the
integration of mainstream mission-critical business applications with desktop
based administrative, management and planning tools forced end-user

departments to take over the desktop and often establish their own LAN in order

to use these functions. Client/server technology is however capable of doing this,
but in order to provide the necessary functions the end user departments must

have some control over the client/server implementation.

1.4.2 Other Challenges
The construction of an IPG application produces many challenges related to

distributed application:

1.4.2.1 Heterogeneity
They must be constructed from a variety of different networks, operating
systems, computer hardware and programming languages. The internet
communication protocols mask the difference in networks, and middleware can

deal with the other differences.

1.4.2.2 Openness
[PG should be extensible _ the first step is to publish the interfaces of the
components, but the integration of components written by different programmers

is challenge.

1.4.2.3 Security
Encryption can be used to provide adequate protection of shared resources and
keep sensitive information secret when is transmitted in messages over a

network. Denial of service attacks are still a problem.

1.4.2.4 Scalability
A distributed system is scalable if the cost of adding a user is a constant amount
in terms of the resources that must be added. The algorithms used to access
shared data should avoid performance bottlenecks and data should be structured
hierarchically to get the best access times. Frequently accessed data can be

replicated.

1.4.2.5 Failure handling
Any process, computer or network may fail independently of the others.
Therefore, each component needs to be aware of the possible ways in which the
components it depends on may fail and be designed to deal with each of those

failures appropriately.

1.4.2.6 Concurrency
The presence of multiple users in distributed system is a source of concurrent
requests to its resources. Each resource must be designed to be safe in a

concurrent environment.

1.4.2.7 Transparency
The aim is to make certain aspects of distribution invisible to the application
programmer so that they need only be concerned with the design of their
particular application. For example, they need not be concerned with its location
or the details of how its operations are accessed by other components, or whether

it will be replicated or migrated. Even failures of networks and processes can be

1.5

1.5.1

presented to application programmers in the form of exceptions — but they must

be handled.

Project Motivation

Benefits to Developers
The benefits of client/server design to end-users have been trumpeted for years.
Nevertheless, the benefits are not lopsided in end-users favor. There are benefits

to developers as well.

1.5.1.1 Reliability

Because server routines are separated (physically) from application code (on the
clients), there is a reduced chance of one corrupting the other. This is not the case
with static or runtime libraries. Libraries eventually share the same logical
address space with the application, risking the traumas of wayward pointer
manipulation. Servers, however, are insulated-running as their own process in
their own address space and, quite frequently, on their own machine. In the case
of machine failure, redundant servers elsewhere on the network (along with the
necessary error-recovery code in the RPC library) can continue processing client

requests, all transparent to end-users.

In many software or application projects, bugs are found at a rate proportional to

their use. The more a function is used the more likely each of its logic branches

will be taken. Additionally, the longer a process runs the more likely memory

10

leaks and other wear-items are likely to be discovered. Server processes
epitomize both scenarios: they are frequently used and run for a long time. Both
of these features co_mmonly yield more bugs in the development and testing
phase than typical, library-only systems-saving developers grief and agony by

finding bugs early before users do.

1.5.1.2 Security
RPCs provide as much protection to servers as they do clients. More so, in fact,
if access security is implemented. Logon security is an important firewall to

database, transaction, and mail servers.

1.5.1.3 Mobility / Porting
Instead of porting the entire system, we can port just the client software or the
server software. To get into new markets or new platforms the whole application
does not have to move, just the part of developer want to move. This is where the

concept of software plumbing originates.

1.5.1.4 Easier Software Distribution
If wants to distributes both client and server software to networked
environments, imagine the ease of upgrading users (customers) systems by
simply loading the server onto a single machine. This is not unlike the benefits of
using runtime libraries; except runtimes must be loaded onto each machine

where software that uses them will run.

11

1.5.1.5 Easier to Debug
Servers are incredibly easy to debug. This is because they are independent from
applications, they can be started under a debugger (or attached to by a debugger)

without changing the client’s environment.

Because of the way servers are traditionally designed, a breakpoint can be set at
the entry to the server to catch all requests from all clients. This is also a great

place to put logging routines.

1.5.1.6 Easier to Support
Because the server is separated from applications, support personnel do not have
to be as concerned about the applications. They can focus on the server and the
diagnostics available and ignore the application (until the process of elimination

proves the problem is not the server’s).

1.6 Project Schedule

1.6.1 Time Schedule
As the task is really quite enormous and many aspects of the final output can

only be estimate at this point in time, I will present a pretty rough time schedule:

1.6.1.1 Seeking for information
During this stage, the actual planning of the project will be done. This not only
includes identifying the necessary components, but also trying to assess how

different external packages (libraries for physics, scripting languages, etc.) can

12

be used in the context of this project. It also includes doing quick technology
prototypes to test how a certain piece of technology works out in code. This
seems like valuable extra step to take before trying to integrate all components in

a single software system. Estimated time: 3 weeks.

1.6.1.2 Reviewing and comparison of tools
As everything has to work within the client/server architecture, the model for this
component should be developed first. This includes the abstraction of the actual
communication (local vs. remote) as the implementation of object distribution

features. Estimated time: 2 weeks.

1.6.1.3 Project time — table
Below is the time - table of the task and the estimated time to accomplish the

project.

Activities | March April May | Jun July Aug Sept
Task

Introduction

Literature

Review

Analysis

Design

Coding

Testing

Documentation

Table 1.0 Project Time - Table

13

Chapter 2: Literature Review

2.0

2.0.1

Introduction

Purpose

The purpose of literature review is finding any related information about the
system that plan to develop, to discuss regarding the terminology and indication
of same areas covered in the project. After gather information, the information is
analysed and the existing system is evaluate so that a better product can be

develop.

The research of this project has been done on the resources below:

. Internet

. Books

B Documentation Room
- Journals

“ Interviews

. Questionnaires

This chapter will explain the terms and terminologies that being developed that
related to this project. This chapter also will review over the existing system and

analysing its strength and weaknesses.

14

21

Terms and Terminologies

This project highlighted the terms of Control Application for Client/Server
Based: Interactive Puzzle Game. The research of the terms and terminologies
itself help the developer gain information about the project that going to be

develop.

The most well known terminologies and terms in the networking area are as
below:
e Networked environment application

. Client/Server Architecture

Networked environment application

What is a network?

A network is a set of devices (often referred to as nodes) connected by media
links. A node can be a computer, printer, or any other device capable of sending
and/or receiving data generated by other nodes on the network. The links

connecting the devices are often called communication channels.

So, what is a networking environment?
This means in the case of the project, it will be develop by network programming
and implement in the environment of set of devices that connected and

communicate each other using specified protocols and protected by standards.

15

2.1.2 Client/Server architecture
The term client-server architecture is a general description of a networked system
where a client program initiates contact with a separate server program (possibly
on a different machine) for a specific function or purpose. The client exists in the

position of the requester for the service, provided by the server.

There are many choices of client / server based architecture. Following are the
list of the client/server architecture. The pros and cons of each will the in the
next chapter.

Figure 1.0 Client-Server based Architecture (two-tiered)

Server
(Microcomputer,
Client minicomputer,
(Microcomputer) or mainframe)

e 7/%

Presentation logic Data storage logic
Application logic Data storage

Two-tier approach on client-server was developed in the early 80’s to overcome
the disadvantages of file sharing and to address the trend towards graphical
GUIs. One-step was to replace the file server with a database server. With this
approach the client sends a query to the server, which processes it, and returns
the exact information wanted instead of an entire file (which was the case with
file sharing). This reduces network traffic and increases update rates, reflecting a

true multi-user environment. There is a number of two-tier implementations.

16

A two-tier implementation where the bulk of data processing operations is
performed in the client side. The database server acts only as a repository
of data imposing only simple constraints to the data (like foreign key
constraints, not null constraints etc.), ensuring data integrity. This approach
is often characterized as “fat client” approach.

Although “fat client” is a term that refers to software, it can also be used for
a network computer with relatively strong processing abilities.

A two-tier implementation where application logic can be implemented in
both the server and the user-end depending on where it is judged to be more
efficient.

A two-tier implementation where all application logic is deployed on the
server. This is often characterized as a “thin-client” approach usually used
to describe the software on the client machines. The thin-client term is also
used to address network machines orNETPCs that communicate with a
server and do not have a hard disk, whereas a fat client includes a hard

disk.

Applications with the following attributes are well suited to 2-tier architecture:

The application is expected to support a limited number of users (e.g. no
more than a few hundred)

The application is networked and databases are “local” (i.e. not over WAN
or Internet)

A normal level of security is required (data is not overly sensitive)

Data access from outside applications is minimal

17

Figure 2.0 Three-Tiered Client-Server Architecture

Database server

(microcomputer,
Client s Application server minicomputer,
(microcomputer) (microcomputer) or mainframe)

—_— /E\ e

Presentation logic Application logic Data access logic
Data storage

To overcome the limitations of two-tier architecture, a middle logical tier (also
called application server), was added between the input / output device
(presentation tier) and the server (data tier). This is where the application /
business logic of the system now resides performing a number of different

functions like queuing, application execution, database staging and so forth.

The middle tier can be physically located on a separate machine but this is not
always necessary. In an application where the amount of users is limited, the
application server can be deployed on the client(s) machines or on the database
server, reducing the number of interface connections required making the system
faster. As the number of users grows, it can be moved on its separate machine(s),
addressing the desired scalability benefits. As the number of users or processing
needs grow, the number of machines, that application logic resides, and the

processing power in these machines can grow as needed.

18

It is not always rationale to place application logic in its entirety in the middle
tier. For example, integrity constraints are more efficient when placed in the data

tier.

The benefits of the 3-Tier model are as follows:

. Scalability: In this model, the appliéation servers (application logic) can be
deployed on many machines. The database server no longer needs
connections to every client. In stead it needs to be connected with a fewer
amount of application servers.

« Data Integrity: Because of the fact that all database updates pass through
the middle tier, the middle tier can ensure that only valid data is allowed to
be updated in the database thus removing the risk of data corruption from
fraud client applications.

. Security: Security is implemented in multiple levels thus making more
difficult for a client to access unauthorized data, than it would be if security
were placed only on the database. Business logic is implemented on a more
secure central server, than if it was distributed across the network.

> Reduced distribution: Potential changes in the business logic can be
centralized into one place.

« Hidden Database structure: The structure of the database is hidden from the
caller, so a potential enhancement of the database application (due to a new

app. Release) will be transparent from him.

19

2.1.3

Figure 30 Four-tiered Client-Server Architecture

Client Web server
(Microcomputer) (Microcomputer)

=_— =

— | T/‘%Jq_'\

Presentation logic Application logic
Application server Database server (Microcomputer,
(Microcomputer) minicomputer, or mainframe)

=] =

— b=

Application logic Data access logic
Data storage

This is just almost the same with three-tiered architecture.

This project is using the two-tiered client/server architecture. The pros and cons
of it will be discussed later. This explains on how the design of architecture will
affect the overall performance. The briefly discussion on this matter will be find

in next topic.

Middleware

What is Middleware?

Middleware is a logical software layer placed between software applications and
the various system components (operating systems, protocols) that are distributed

over a network. It simplifies the development of a distributed computer system

20

by eliminating the confusion caused from heterogeneous operating systems,

communication protocols, implementation languages, hardware platforms.

Middleware is represented by processes / objects in a set of computers that
interact with each other to implement communication and resource - sharing
support for distributed applications. Middleware is concerned with providing
useful building block for the construction of software components that can work

with one another in a distributed system. A brief discussion is in chapter 4.

Application, services

Middleware

Operating System
Platform

Computer and Network

=

Figure 4.0 The location of Middleware in the layer of distributed systems

Middleware can be implemented using various communication models.
International Systems Group Inc. classifies middleware into five distinct
categories:

. Remote Procedure Calls (RPC) based Middleware

21

2.2

2.2.1

. Message Oriented Middleware (MOM). MOM products can be categorized
as message passing, message queuing, and publish & subscribe products

. Portable Transz_lction Processing (TP) Monitors

. Object Request Brokers (ORBs) including OLE/COM/DCOM

. Database Middleware

Hardware and Software

Hardware details

For many years, applications were developed using a centralised multi-user
architecture. Put simply, applications resided and were executed upon one
centralised computing platform that was used by multiple simultaneous users.
Implementing such architecture meant investing in costly technologies that were
inflexible and difficult to maintain. The introduction of intelligent desktop
computers in the 1 970s changed all that. Using an intelligent desktop, the
concept of processing at the desktop became a reality. After years of research,

the early 1 980s saw the introduction of client-server architecture.

Client/server architecture can be defined as a design approach that divides the
functional processing of an application and distributes it across two or more
processing platforms. The division of functional processing is largely based upon
which functions provide commonly used services and which perform specific

tasks.

22

The success of client/server architecture is a direct result of its associated
benefits such as improved flexibility, the potential for technological
advancements and - lower cost. These benefits can only be achieved if

client/server applications are designed properly.

Client/server processing is seen as the Way of the 90s. Its growth in popularity
has been mainly due to the fact that it is a technology that eliminates application
backlogs, reduces software maintenance costs, increases application portability,
improves system and network performance and even eliminates the need for

minicomputers and mainframes.

The client/server model is an extension of the shared device model. The shared
device model gives personal computers (PCs) the ability to share resources like
files and printers. These shared devices are called servers in LAN terminology,
(a file server for a file and a printer server for a printer). “Server” is a good word
for these shared devices as they receive requests for service from other PCs.
However, this technology has a major problem; all processing is done on each

PC, meaning great delays especially when concurrent access to a file is required.

23

Client

Figure 5.0 is an example of shared device-processing environment

Figure 6.0 Application divided to the clients only

24

2.2.2

In the client server model (see Figure 6.0) application processing can be divided
between the client and the server. The server is used to manage resources, such as
files, databases, etc. "-I'he client can then initiate a process (application) which is
used to access the resources. Thus, processing is initiated by the client but both
the client and the server work together to complete the application successfully.
There are a number of different types of resources that need to be managed by
servers, for example, you may have files, mail programs, printer resources, etc.
all of which the server must manage. By this it can be seen that both the client
and server work together in order to complete the application together. Excellent
examples of client/server processing are database servers like Centura SQLBase,

Sybase and MS SQL Server.

Software details

For the construction of this application, some research has been done to make
sure that the tools that being use is correct and helping. Below are the software
that useful in the development of this project:

. Operating System: Windows environment

. Programming languages: Java, Visual Basic 6.0

. Others: Microsoft Project, Microsoft Visio

. Database Server: Microsoft Access (SQL Query)

The advantages and disadvantages of the tools above will be discussed in chapter
4. The reason of its use in developing the application will be discuss briefly in

the next chapter.

25

2.3 Research on the existing System

23.1 BINGO

Traditional BINGO is played in person in a large hail. Players meet at the hall,
pay a fee to get in, then the games begins. A night of BINGO consists of many

BINGO games played continuously, one after another.

A single BINGO game proceeds like this: Each player has a number of BINGO
cards (players can usually play any number of cards). Each BINGO card has 5

rows and 5 columns thus providing 25 spaces.

The columns are labeled from left to right with the letters: ‘B’, ‘I’, ‘N’ ‘G’, 0’.
With one exception (the centre space is “free”) the spaces in the card are

assigned values as follows:

Each space in the ‘B’ column contains a number from 1 - 15.
Each space in the ‘I’ column contains a number from 16 - 30.
Each space in the ‘N’ column contains a number from 31 - 45.
Each space in the ‘G’ column contains a number from 46 - 60.
Each space in the ‘0” column contains a number from 61 - 75.

Furthermore, a number can appear only once on a single card.

26

Here’s a sample BINGO card:

B/ I N G O
10[17 39 49 64
| 12]/21}36 |55 | 62]
141]25|iP= | 55 1 70|

_Space |

719 * 565 68

= =)
|

|5 |24/ * [54 |71

Figure 7.0 Bingo Box

The number of unique BINGO cards is very large and can be calculated with this

equation:

// the B, 1, G, and 0 columns * the N column

(15* 14*13* 12* 1)M4 *(15* 182 k3" 12)

While perhaps interesting to a statistician, the number of possible BINGO cards
has nothing to do with player’s chances of winning.

You will note that there are 75 possible BINGO numbers:

B1, B2, B3,... B15, 116, 117, 118,...130, N31, N32,...074, 075.

Each of these numbers is represented by a ball in a large rotating bin. Each ball is

painted with its unique BINGO number. An announcer spins the bin, reaches in a

27

selects a ball, and announces it to the room. The players check all of their cards
to see if that number appears on their card. If it is, they mark it.

When a player has a-BINGO (5 in a row, column, or diagonal), he or she calls out
BINGO. The game pauses while the card is verified. If indeed a winner, the
game stops and a new game begins. If the card wasn’t a winner, the game
proceeds where it left off. Each BINGO game proceeds until someone wins

(there’s always a winner).

What are the chances of winning?

Every BINGO game has a winning card, so a player’s chances of winning
depend on the number of cards in the game and how many cards s/he is playing,
For example, if a player has 12 cards in a game with 1200 cards, the chances of

winning for that player is 1 in 100.

2.3.1.1 A Brief Description of the BINGO Programs
The implementation of the BINGO game in Java is a client/server application,
and as such, is comprised of two Java programs that run in separate Java Virtual
Machines. The Game application is the server, and the Player application is the
client.
There are three main applications:
= The Game
= The Player

" The Shared

28

2.3.1.4 Strength and Weakness

2.3.2

This application uses the client/server architecture fully and was developed fully
by Java. This application, I would say that no way of chance that the player can
play cheat and it is fully controlled by the server. This game also can be played
many clients and the weakness is the game is played by turn. So, no one can

make a move if not after the opponent, '

TIC - TAC - TOE

This is a classic game of tic-tac-toe. Once two players have connected to the
server, the game begins. The first person to down load this applet gets to go first.
Once a game ends, a new one may be started by reloading the applet again. This

is the example on how the client applets will run.

Figure 80 The applet tries to upload

If the applet appears like above, the server may not be running currently. If the
applet above fails, then you will need to activate the server and reload the applet.
The notification window appears if the server is started. Then, there is an icon

which asks the user to click to run the client.

29

Source Code:
Server.java
Connection.java

AnpletClient.java

StreamListener.java

This game consists of two separate programs, the Server and the Applet Client.
The Server can theoretically support an infinite number of connections, which
comes out to half infinity games, because there are two players per game. Of
course being a computer, infinity in this case is defined as an int, or 32 bits,
which are 4294967294 simultaneous connections. Anyways, the server spawns a
thread for each game which~ in order to keep the players honest, keeps track of
which player has selected which square. The server is made of two classes,
which are also threads. The Server class keeps looking for available connections
while the Connections class is spawned to handle the players of the game.

When the server is started, it creates a ServerSocket to listen on a network port.
The port can be assigned at runtime, but if one is not, the DEFAULT_PORT is
used. Once the socket has been established, the server enters its run loop. The run
loop waits for two clients to connect to the server and then spawns a Connection
thread, which handles the actual game. The server is then free to accept new

clients.

The Connection thread establishes DatalnputStreams and DataOutputStreams for

both clients and then enters its run loop, which handles the actual game. The

30

game engine is pretty simple, the current player is determined based on how
many turns have passed (the first client to connect gets to go first). When a turn
begins, the DatalnputStream is flushed so that any button clicks by the user
during the other player’s turn .are ignored (This is where SkipByteO would have
been used if it worked). When the player selects a square, the server determines
if it is a valid move and ignores if it is not. If it was a valid move, the server
sends each client a message indicating the location of the move, the first client is
X and the second is 0. Finally, in a rather ugly if statement with embedded logic,
the server checks to see if there was a victory by checking every possible
combination of squares for three in a row. Because this is tic-tac-toe, this simple
method can be used, but a more complicated check would be necessary for a
game like chess. Perhaps in a more complicated game an algorithmic solution
would be most efficient. If there was a victory, the winning client is sent a
victory code, and the losing client is sent a loser code. The Client is an applet,
and really doesn’t have much in the way of smarts. The client is simple because
it really cannot be trusted. “But it’s only a game!” You say. Yes, it is only a
game, but that is no excuse to be needlessly sloppy. The client is made of two
classes, which are also threads. The AppletClient class deals with user input

while the StreamListener class listens to what the server sends the client.

The AppletClient starts as soon as it is down loaded and attempts to contact the
server it was down loaded from on the DEFAULT PORT. Due to security
limitations in Java, the client is not capable of changing its port dynamically, so

port changes require a recompile. Once a Socket is created, the client creates and

31

a DatalnputStream and a DataOutputStreams to communicate with the server
with. Once a connection is established, the program draws the tic-tac-toe board
and spawns a StreamListener thread. The AppletClient class has an event driven
user interface that sends a‘ny button presses to the server for validation. The
StreaniListener thread listens to the server a handles all user feed back. The
StreamListener’s run ioop spins forever processing information from the server.
There are a finite number of codes that the server can send to the client. When a
code is received, it is tested to find out what the action shoul¢ be. Moves are

computed based on which button was pressed.

2.3.2.1 Strength and Weakness

In order to listen and connect to other machines, the server is a java application

not an applet, but it uses CGI technology.

The server is free to accept the new client so it is open game. However, the

weakness of this game is that once there has been a victory, the game ends, and

the player must reload the applet to play again. The others weaknesses are:

* Blocking reads: Java only supplies blocking reads in its stream class. A
blocking read is a read in which the program halts execution while it waits
for input data to appear. A non-blocking read would simply see that there
was no data and continue on. This annoys me because the only way around
this is to create a thread that will try to read and thus block while the main
thread continues. It seems like a waste to me, but perhaps it is what the

programmers at Sun had envisioned.

32

. InputStreams and skipping bytes: Occasionally there comes a time when
a programmer would like to skip a few bytes in a stream. The creators of
the java.io.Datalnpt_JtStream class saw this need and created a skipBytes()
method. This was wise, but it would help if it didn’t always throw 10
exceptions to the extent that it never works properly. At least I could get
around this manually with a for loop and readByte~.

* The final label: This has got to be the lamest thing in Java. Final keeps a
thus labeled method from being inherited, or extended, one of the
fundamental powers of Object Oriented Programming. If it were not for
this stupid label, I could have made a better stream class based on
java.io.DatalnputStream that had improvements that would have allowed

the class to actually function reasonably.

2.3.3 SLIDERS

SLIDERS
112 13 | SCRAMBLE |

® Lucky 7
4 S |6 e 0-Square

® 15-Square
718 * 14-15

Figure 10 Client Interface for Slider

The goal is to first scramble the board, then move the blocks to recreate the
Home State of the puzzle. Once the puzzle is scrambled, click on a block with the

mouse to move it into the vacant square.

33

How to play on the 14 -15 Puzzle?

Created in the 1870s by the American puzzlist Sam Loyd, the 14-15 puzzle
begins with 15 blocks in regular order, except that blocks 14 and 15 are reversed.
The goal of the original puzzle was to move the blocks into correct numerical
order, with the vacant square in the lower-right corner (the Home State of the 15

- Square puzzle).

What is interesting?

Loyd, this game developer offered $1,000 to the first person to find the correct
solution. The 14 -15 puzzles, also known as the Boss puzzle, became quite
famous internationally, but no one ever received the prize. The puzzle is in fact
unsolvable. |

But it is possible to solve the 14 -15 puzzle if the Home State is modified
slightly, by placing the vacant square in the upper-left corner of the board rather

than the lower right. This is the form of the puzzle presented here.
2.3.3.1 Strength and Weakness
This game provides a superb users interface and it provides function that can

manually initiates the server first when it fails to upload. However, this will takes

time.

34

Chapter 3: Methodology

3.0

Introduction

After analysing the infor;nation chapter, this chapter will compose the
justifications for the methodology to execute the project. This also includes the
project planning and all outlined procedures ;hat should be covered in to

understand the project requirement better.

What is a Methodology?

These new realities force us to come face to face with the “M” word .
methodology. A methodology is simply a clear declaration of “how we do things
around here.” A methodology can be defined as a collection of procedures,
techniques, tools and documentation aids. These collections of procedures,
techniques, tools and documentation aids help the software developer to speed up
and simplify the software development process. A methodology consist phases as
a guide for developer in the choice of techniques that are appropriate. A
methodology also helps the system developer to plan, manage, control and

evaluate information system project. (Pfleeger, 2001)

Methodologies depend on the type of architectures being used For example,
methodologies for developing client/server systems differ from the conventional
mainframe development methodologies. In particular, project-planning steps are

dependent on the underlying application architecture being deployed. Is it

35

31

possible to use expert systems in developing project plans based on a few
questions? Source:

An Expert System for Generating Methodologies
Hunter, R., and Conway, B., “C/S 10,000: Methodology Gain without Pain?”

Gartner Group Research Note, August 29, 1996.

A methodology may urge one or more techniques for carrying out specific
activities. Examples of techniques are root definition, entity-relations (E-R)
modeling, normalization, decision table, data flow diagram (DFD) and object

oriented.

Project Development Life Cycle

It is necessary to have a good method of design process before begin any
software development project. A systematic approach to the analysis and design
of information system will be the main cause of successful software development
project. So, this chapter covers the stages of feasibility study, system analysis
and database design, coding and testing, implementation and maintaining. Much

of this is embodied in System Development Life Cycle (SDLC).

A Process is referred to a series of steps involving activities, constraints and
resources that help us produce our intended output. Thus, it is usually involves a
set of tools and techniques. When the process involves the building of a certain
kind of output it is referred as a life cycle. Therefore, the development process of

this system is defined as the Project Development Life Cycle.

36

3.2

Survey and
Study

A

y

System
Analysis

A

System Design

A

System
Implementation

y

System
Operation

4

Figure 11 System Development Life Cycle

The Software Engineering

Software engineering is the application of scientific principles to the
orderly transformation of problem into a working software solution and
the subsequent maintenance of that software until the end of its useful

life.

37

Requirement » Design
Analysis

Coding

Operation/ > Testing
maintenance

Figure 12 Software Development Life Cycle

Requirements analysis

Including analyzing the software problems at hand and concludes with a
complete specification of the desired external behaviour of the software
system to build; also called functional description, function requirements
and specification by others.

Design Phase

Decomposes the software system into actual constituent (architectural)
components and then interactively decomposes those components into
smaller and smaller sub-components. Define and documents algorithms for
each module in the design tree that will be realized a code; also called
program design by others.

Coding Phase

Write the programs that implement the design. First, know the
organization’s standards and procedures before begin to write code. This

standards and procedures can help to organize and avoid mistakes. Second,

38

the code must be written in a way that is understandable base on
programming guidelines, any programming language component involves
at least three major aspects: control structures, algorithm and data structure.
Third, program documentation which set of written description that explain
to reader the program do and how they do it. (Internal and external
documentation)

Testing Stage

Once the program components are coded, we have to test them to ensure
the software we produce works properly every time it is run. Test types of
faults and failures and how to classify them. The process find faults in
components by examine the code, by reading through it, spot algorithm,
and syntax faults. Next, compile the code and eliminate remaining syntax
faults. Finally, develop test cases to show the input is properly converted to
desired output. These also called unit testing. Once the software working
correctly and meet the objectives, we combine them into working system.
This called integration testing. Test planning after integration testing help
us to design and organize the tests and finally we should know when to stop
testing by measure the software quality or if it achieve our objectives.
Operation / maintenance

Maintenance focuses on four major aspects of system evolution
simultaneously

1. Maintaining control over the system’s day-to-day functions

2. Maintaining control over system modifications

3. Perfecting existing acceptable functions

39

4. Preventing system performance from degrading to unacceptable

levels.

3.3 The V-Model

Validate Requirements
Requirement Operational &
Analysis Maintenance

System Design t——\ Acceptance Testing
Verify ac

Design System Testing

i

Unit & Integration
Testing

P

Program Design

Coding

Figure 13 The V — Model

40

The V Model is a variation of the waterfall model that demonstrates how the
testing activities are related to analysis and design (German Ministry of Defence
1992). As shown in the figure 6.0, coding forms the point of V, with analysis and
design on the left, testing and maintenance on the right. Unit and integration

testing addresses the correctness of programs.

The V Model recommends that the unit and integration testing also be used to
verify the program design. That is for the duration of unit and integration testing,
the coders and test should ensure that all aspects of the program design have
been implemented correctly in code. Similarly, system testing should validate the
system design, making sure that all system design aspects are correctly
implemented. Acceptance testing which is conducted by the costumer rather than
the developer validates the requirements by associating a testing step with each
element of the specification; this type of testing checks to see that all
requirements have been fully implemented before the system is accepted and

paid for.

41

Why the V Model not other models?

The model’s linkage of the left side with the right side of the V implies that if
problems are found duri_ng verification and validation, then the left side of the V
can be re-executed to fix and improve the requirements, design, and code before
the testing steps on the right side are re-enacted. In other words, the V Model
makes explicit some of the iteration and the rework that are hidden in the

waterfall depiction.

Whereas the focus of the waterfall is often documents and artifacts, the focus of

V Model is activity and correctness.

42

Chapter 4: System Analysis

4.0

4.1

Introduction

System analysis is a sy-stematic approach to find out the pros and cons of the
hardware or software that will be use in the development process of this project.
Some analysis has been done to gather. and interpret facts and also help

diagnosing problems. This will help developer to improve the system.

Following are some of the goals:

. To review the problem faced by the user and find the solutions.

. To study how the new system will be use over the user.

* To acquire knowledge on how this system will be develop with the new
emerging technology.

* To identify the major modules to be included in the system

. To identify what are the modules that are feasible to develop and the

knowledge and tolls need to have in order to develop them.

Client/ server Architecture

There are certain requirements, which need to be met in order for the client-
server model to run successfully. These are:

. The client and server co-operate in their interactions, which the client must

initiate

43

4.1.1

. The server settles conflicting requests
. A reliable communication link between all clients and servers

. The server controls what services or data can be requested.

Before we can discuss the development of client/server applications, we must
identify the foundations of the environment. Client/server relies on several
different technologies and it is important to have an understanding of each of
them as they can have a dramatic affect on an application. The client/server
environment essentially is made up of three dominant technologies:

. Client technologies

. Server technologies

. Network technologies

Client technologies

Client technologies are concerned with the functions that run on the client’s
workstation. These functions make up a considerable portion of a client/server
application and this is why (along with the fact that the network and server only
exist to serve the client) many people consider the client the most important of

the three technologies.

Developers must be aware of the existing software on client workstations so that
they can relieve the server of unnecessary functions using communication
mechanisms such as dynamic data exchange (DDE), object linking and

embedding (OLE) and remote procedure calls (RPC).

44

4.1.2

4.1.3

Server technologies

The server acts as the shared resource component of the client/server
environment, and so it must be able to service multiple requests simultaneously.
The technology used for the server platform can range from the equivalent of a

client up to a large mainframe.

Because the server is servicing so many clients, if the server fails, all the clients
relying on the services provided by that server fail as well. That is why the
criteria for selecting a server are stability, performance and flexibility. Another
consideration when selecting and configuring server technology is the functions,

which the server is to provide.

Network technologies

In order to implement client/server architecture, the client and server must be
able to communicate. Local area networks are commonly used for establishing
communication between clients and servers. A local area network can be defined
as a combination of software and hardware used to transfer data between stations

over a limited geographical distance.

Like client and server technologies, the choice of local area networks should be
based on the requirements of your client/server applications in terms of the
number of clients and servers, what data is to be transferred between client and
server, how much data is being transferred, the required response time and of

course the project’s budget.

45

Because of the application is develop in the two-tiered client/server application,

below are the main advantages of the 2-tier model:

. Productive: many advanced tools have special optimizations that mean less
effort is required when working within the two-tier model (e.g. Visual
Basic, PowerBuilder, and Delphi)

. Better Re-use: Where application logic is placed solely on the server, it can

be initiated from many client applications and tools.

The main disadvantages of the 2-tier model are:
. Inability to partition application logic
* Lack of robust security

* Lack of scalability

The table below show of the reason of developing client/server architecture in

the previous chapter.

BENEFIT LIMITATION
Scalable Complexity
Works with multiple New programming languages
vendors/products through middleware and techniques(add stress to
personnel)
Improves modularity of web-based More complex to update
systems
No central point of failure

Table 2.0 Client/server Attributes

46

4.2

Table below is the reason of why this project develops in using the two-tiered

architecture model (refer to the previous chapter).

BENEFITS LIMITATIONS

Separates processing for better Greater load on network

balance load on difference server

More scalable - More difficult to program and test

Table 3.0 N-Tiered versus Two-Tiered Client/Server Architecture

Why Java not like others such as C++ and C?

Java (with a capital J) is a high-level, third generation programming language,
like C, FORTRAN, Smalltalk, Perl, and many others. You can use Java to write
computer applications that crunch numbers, process words, play games, store

data or do any of the thousands of other things computer software can do.

Compared to other programming languages, Java is most similar to C. However
although Java shares much of C’s syntax, it is not C. Knowing how to program in
C or, better yet, C++, (best of all: Objective C) will certainly help you to learn
Java more quickly; but you don’t need to know C to learn Java. Unlike C++,
Java is not a superset of C. A Java compiler will not compile C code, and C
programs need to be changed substantially before they can become Java

programs.

47

What is most special about Java in relation to other programming languages is
that it lets you write special programs called applets that can be downloaded
from the Internet and run safely within a web browser. Traditional computer
programs have far too much access to the system to be downloaded and executed
willy-nilly. Although it generally trust the maintainers of various FTP archives
and bulletin boards to do basic virus checking and not to post destructive
software, a lot still slips through the cracks. Even more software that is
dangerous would be promulgated if any web page you.visited could run
programs on your system. There is no way of checking these programs for bugs

or for out-and-out malicious behavior before downloading and running them.

Java solves this problem by severely restricting what an applet can do. A Java
applet cannot write to your hard disk without your permission. It cannot write to
arbitrary addresses in memory and thereby introduce a virus into your computer.

It cannot crash your system.

There’s another problem with distributing executable programs from web pages.
Computer programs are very closely tied to the specific hardware and operating
system they run on. A Windows program will not run on a computer that only
runs DOS. A Mac application can’t run on a UNIX workstation. VMS code
cannot be executed on an IBM mainframe, and so on. Therefore, major
commercial applications like Microsoft Word or Netscape Navigator have to be

written almost independently for all the different platforms they run on. Netscape

48

Navigator is one of the most cross-platform of major applications, and it still

only runs on a minority of platforms.

Java solves the problem of platform-independence by using byre code. The Java
compiler does not produce native executable code for a particular machine like a
C compiler would. Instead, it produces a special format called Java byte code.
Java byte code looks like this

CA FE BA BE 00 03 00 2D 00 3E 08 00 3B 08 00 01 08 00 20 08

This looks a lot like machine language, but unlike machine language Java byte
code is exactly the same on every platform. This byte code fragment means the
same thing on a Solaris workstation as it does on a Macintosh PowerBook. Java
programs that have been compiled into byte code still need an interpreter to
execute them on any given platform. The interpreter reads the byte code and
translates it into the native language of the host machine on the fly. The most
common such interpreter is Sun’s program Java (with a little j Since the byte
code is completely platform independent, only the interpreter and a few native
libraries need to be ported to get Java to run on a new computer or operating
system. The rest of the runtime environment including the compiler and most of
the class libraries are written in Java, and are therefore platform independent

themselves.

49

Here are just a few things that others can do on a web page with Java that could
not do before:

= Play a sound whenever a user visits a pane

* Play music in the Backg;round while the user reads a page

»= Use vector graphics instead of bitmaps and GIFs

* Run animation sequences in real-time

» Create forms that verify the user’s input

= Create real-time multiplayer interactive games

Java changes the Web from a static, fixed medium to a real-time interactive,

dynamic, expandable multimedia environment.

4.3.1 Java Makes Web Pages Dynamic
Until Java, web pages were static. They had text and they had pictures but they
had very little else, and they did not change much. For the most part text and
pictures just sat there. If you wanted to see something new, you clicked on a link
and loaded an entirely new page. Then that page sat there, doing nothing. Java
makes web pages dynamic. By using Java, you can make a page change while
the user watches it. You can animate pictures. You can change the text that s

displayed without reloading the entire page.

4.3.2 Java Adds New Content Types to the Web.
Before Java, users were limited to seeing the kinds of content their web browsers

supported; and web developers were limited to the most basic content supported

50

by their readers’ web browsers, generally HTML 2.0 and GIF’s. Java lets

developers expand the range of content types indefinitely.

For instance, HotJava was the first web browser to include inline sound in a web
page. Inline means that the sound plays inside the browser automatically. The
reader doesn’t need to launch a separate helper application to view it. The sound
can play when the reader first visits a page, it can play when the reader clicks a

button on a page, or it can play continuously in the background.

However, Java is more than just a web browser with special features. Although
HotJava was the first browser to include inline sound and animation, other

browsers have long since added this feature.

What makes Java special is that it doesn’t just allow you to add new types of
content to pages like Netscape and Internet Explorer do. Rather it lets you add
both the content and the code necessary to display that content. You no longer
need to wait for a browser to be released that supports your preferred image
format or special game protocol. With Java, you send browsers both the content

and the program necessary to view this content at the same time!
Think about what this means for a minute. Previously you had to wait for all the

companies that make the web browsers your readers use to update their browsers

before you could use a new content type. Then you had to hope that all your

51

433

readers actually did update their browsers. Java compatibility is a feature that any

browser can implement and, by so doing, implement every feature!

For instance, suppose you want to use EPS files on your Web site. Previously
you had to wait until at least one web browser implemented EPS support. Now
you don’t wait. Instead, you can write your own code to view EPS files and send
it to any client that requests your page at the same time they request the EPS file.
On the other hand, suppose you want people to be able to search your electronic
card catalog. However, the card catalog database exists on a mainframe system
that doesn’t speak HTTP. Before Java, you could hope that some browser
implemented your proprietary card catalog protocol; or you could try to program
some intermediate CGJ on a UNIX box that can speak HTTP and talk to the card
catalog, not an easy task. With Java when a client wants to talk to your card
catalog, you send them the code they need to do so. You do not have to try to

force everything through an httpd server on port 80.

Java Lets Users Interact With a Web Page.

Before Java, people browsed the Web. They moved from site to site passively
reading the text and viewing the pictures there, but they rarely interacted with the
page or changed it in any meaningful way. Occasionally someone might fill out a
form which would be submitted back to the server, but even that was slow and
limited to typing text and making menu choices. This was hot stuff in 1975, but
is not so exciting in an era where users are accustomed to the interactivity of

Quake.

52

4.3.4

After Java, users can use the keyboard for more than typing text and the mouse
for more than choosing from menus. Instead of just reading a page and perhaps
filling out a form, users can now play games, calculate spreadsheets, draw
pictures, and in general do anything they might do within a window displayed by
a traditional computer program. Most importa_ntly, users get immediate feedback.
When you press enter in a spreadsheet cell, you don’t want to wait for the entire
spreadsheet to be sent back to the server and then the entire revised spreadsheet
to be sent back to you. You want the update to happen instantaneously. With
Java, the calculations are performed on the client system and the results updated

locally rather than remotely as would have to be done using a CGI program.

Why Java’s a Better Programming Language?

If that were all Java was, it would still be more interesting than a <marquee> or
<frame> tag in some new browser beta, but there’s a lot more. Java isn’t just for
web sites. Java is a programming language that can do almost anything a
traditional programming language like FORTRAN, Basic or C++ can do.
However, Java has learned from the mistakes of its predecessors. It is
considerably easier to program and to learn than those languages without giving

up any of their power.

The Java language shares many superficial similarities with C, C++, and

Objective C. For instance, loops have identical syntax in all four languages,

53

However, Java is not based on any of these languages, nor have efforts been

made to make it compatible with them.

Java is sometimes referred to as C++++--. James Gosling invented Java because
C++ proved inadequate for certain tasks. Since Java’s designers were not
burdened with compatibility with existing languages, they were able to leam
from the experience and mistakes of previous object-oriented languages. They
added a few things C++ doesn’t have like garbage collection and multithreading
(the ++) and they threw away C++ features that had proven to be better in theory
than in practice like multiple inheritance and operator overloading (the -. A few
advanced features like closures and parameterized types that the Java team liked
were nonetheless left out of the language due to time constraints. There is still
argument over whether the right choices were made. Parameterized types
(templates to C++ programmers) may be added in a later revision of Java. Java

has learned a lot from previous languages.

4.3.4.1 Java is Simple
Java was designed to make it much easier to write bug free code. According to
Sun’s Bill Joy, shipping C code has, on average, one bug per 55 lines of code.
The most important part of helping programmers write bug-free code is keeping

the language simple.

Java has the bare bones functionality needed to implement its rich feature set. It

does not add lots of syntactic sugar or unnecessary features. The language

54

specification for Java is only about eighty pages long compared to a couple of
hundred pages for C and even more for C++. Despite its simplicity, Java has
considerably more funct_ionality than C.

Because Java is simple, it is easy to read and write. Obfuscated Java isn’t nearly

as common as obfuscated C. There are not a lot of special cases or tricks that will

confuse beginners.

About half of the bugs in C and C++ programs are related to. memory allocation
and deallocation. Therefore, the second important addition Java makes to provide
bug-free code is automatic memory allocation and deallocation. The C library

memory allocation functions malloc() and free() are gone as are Ct+’s

destructors.

Java is an excellent teaching language, and an excellent choice with which to
learn programming. The language is small so it’s easy to become fluent in it. The
language is interpreted so the compile-link-mn cycle is much shorter. (In fact, the
link phase is eliminated entirely.) The runtime environment provides automatic
memory allocation and garbage collection so there is less for the programmer to
think about. Java is object-oriented (unlike Basic) so the beginning programmer
doesn’t have to unlearn bad programming habits when moving into real world
projects. Finally, it’s very difficult (if not quite impossible to write a Java
program that will crash your system, something that you can’t say about any

other language.

55

4.3.4.2 Java is Object-Oriented
Object oriented programming was the catch phrase of computer programming in
the 1990’s. Although object oriented uroarammin2 has been around in one form
or another since the Sirnula language was invented in the 1960’s, it really took
hold in modern GUI environments like Windows, Motif and the Mac. In object-
oriented programs, data is represented by objects. Objects have two sections,
fields (instance variables) and methods. Fields tell you what an object is.
Methods tell you what an object does. These fields and methods are closely tied
to the object’s real world characteristics and behavior. When a program runs
messages are passed back and forth between objects. When an object receives a

message, it responds accordingly as defined by its methods.

Object oriented programming is alleged to have a number of advantages
including:

. Simpler, easier to read programs

« More efficient reuse of code

« Faster time to market

. More robust, error-free code

In practice, object-oriented programs have been just as slow, expensive and
buggy as traditional non-object-oriented programs. In large part, this is because
the most popular object-oriented language is C++. C++ is a complex, difficult

language that shares all the obfuscation of C while sharing none of C’s

56

efficiencies. It is possible in practice to write clean, easy-to-read Java code. In

C-++, this is almost unheard of outside of programming textbooks.

4.3.4.3 Java is Platform indeliendent

Java was designed to not only be cross-platform in source form like C, but also
in compiled binary form: Since this is frankly impossible across processor
architectures, Java is compiled to an intermediate form called byte-code. A Java
program never really executes natively on the host machine. Rather a special
native program called the Java interpreter reads the byte code and executes the
corresponding native machine instructions. Thus to port Java programs to a new
platform, all you need to do is run it with an interpreter written for the new
platform. You don’t even need to recompile. Even the compiler is written in

Java. The byte codes are precisely defined, and remain the same on all platforms.

The second important part of Java’s cross-platform savvy is the elimination of
undefined and architecture dependent constructs. Integers are always four bytes
long, and floating point variables follow the IEEE 754 standard for computer
arithmetic exactly. You don’t have to worry that the meaning of an integer is
going to change if you move from a Pentium to a PowerPC. In Java, everything

is guaranteed.

However, the virtual machine itself and some parts of the class library must be

written in native code. These are not always as easy or as quick to port as pure

57

Java programs. This is why for example, there’s not yet a version of Java 1.2 for

the Mac.

4.3.4.4 Java is Safe

Java was designed from the ground up to allow for secure execution of code
across a network, even when the source of that code was untrusted and possibly

malicious.

This required the elimination of many features of C and C++. Most notably there
are no pointers in Java. Java programs cannot access arbitrary addresses in
memory. All memory access is handled behind the scenes by the (presumably)
trusted runtime environment. Furthermore, Java has strong typing. Variables
must be declared, and variables do not change types when you are not looking.
Casts are strictly limited to casts between types that make sense. Thus, you can
cast an int to a long or a byte to a short but not a long to a Boolean or an int to a

String.

Java implements a robust exception handling mechanism to deal with both
expected and unexpected errors. The worst that a Java program can do to a host
system is bringing down the runtime environment. It cannot bring down the

entire system.

Most importantly, Java applets can be executed in an environment that prohibits
them from introducing viruses, deleting or modifying files, or otherwise

destroying data and crashing the host computer. A Java enabled web browser

58

checks the byte codes of an applet to verify that it doesn’t do anything nasty

before it will run the applet.

However, the biggest security problem is not hackers. It’s not viruses. It’s not
Visual Basic worms transmitted by Outlook Express. It’s not even insiders
erasing their hard drives and quitting your company to go to work for your
competitors. No, the biggést security issu€ in computing today is bugs. Regular,
ordinary, non-malicious, unintended bugs are responsible for more data loss and
lost productivity than all other factors combined. Java, by making it easier to

write bug-free code, substantially improves the security of all kinds of programs.

4.3.4.5 Java is High Performance

Java byte codes can be compiled on the fly to code that rivals C++ in speed using
a ‘just-in-time compiler.” Several companies are also working on native-
machine-architecture compilers for Java. These will produce executable code
that does not require a separate interpreter, and that is indistinguishable in speed
from C++. While you will never get that last ounce of speed out of a Java
program that you might be able to wring from C or FORTRAN, the results will

be suitable for all but the most demanding applications.

As of May 1999, the fastest VM, IBM’s Java 1.1 VM for Windows, is very close
to C++ on CPU-intensive operations that do not involve a lot of disk 1/0 or GUI

work; C++ 1is itself only a few percent slower than C or FORTRAN on CPU

intensive operations.

59

It is certainly possible to write large programs in Java. The HotJava web
browser, the JBuilder integrated development environment and the javac

compiler are large programs that are written entirely in Java.

3.2.4.6 Java is Multi-Threaded

Java is inherently multi-threaded. A single Java program can have many different
processes executing independently and continuously. Three Java applets on the
same page can run simultaneously with each getting equal time from the CPU
with very little extra effort on the part of the programmer. This makes Java
incredibly responsive to user input. It also helps to contribute to Java’s
robustness and provides a mechanism whereby the Java environment can ensure

that a malicious applet doesn’t steal all of the host’s CPU cycles.

Unfortunately multithreading is so tightly integrated with Java, that it makes Java
rather difficult to port to architectures like Windows 3.1 or the PowerMac that do

not natively support preemptive multi-threading.

There is another cost associated with multi-threading. Multi-threading is to Java
what pointer arithmetic is to C; that is, a source of devilishly hard to find bugs.
Nonetheless, in simple programs it is possible to leave multi-threading alone and

normally be OK.

60

4.3.4.7 Java is Dynamically Linked

Java does not have an explicit link phase. Java source code is divided into .java
files, roughly one per each class in your program. The compiler compiles these
into .class files containing byte code. Each .java file generally produces exactly

one .class file.

The compiler searches the current directory and a few other well-specified places
to find other classes explicitly referenced by name in each source code file. If the
file you’re compiling depends on other, non-compiled files, then the compiler
will try to find them and compile them as well. The Java compiler is quite smart,
and can handle circular dependencies as well as methods that are used before
they are declared. It also can determine whether a source code file has changed

since the last time, it was compiled.

More importantly, classes that were unknown to a program when it was compiled
can still be loaded into it at runtime. For example, a web browser can load
applets of differing classes that it has never seen before without recompilation.
Furthermore, Java .class files tend to be quite small, a few kilobytes at most. It is
not necessary to link in large runtime libraries to produce an executable. Instead,

the necessary classes are loaded from the user’s local system.

4.3.4.8 Java is Garbage Collected
You do not need to explicitly allocate or deallocate memory in Java. Memory is

allocated, as needed, both on the stack and on the heap, and reclaimed by the

61

4.4

garbage collector when it is no longer needed. There are no malloc(), free(), or

destructor methods. There are constructors and these do allocate memory on the

heap, but this is transparent to the programmer.

Most Java virtual machines use an inefficient, mark and sweep garbage collector.
Some more recent virtual machines have improved matters quite a bit by using

generational garbage collection.

To sum up, Java is a safe, robust, garbage-collected, object-oriented, high-

performance, multi-threaded, interpreted, architecture-neutral, cross-platform,

buzzword-compliant programming language.

Why ActiveX?

ActiveX provides the bond that ties jointly a broad assortment of technology

building blocks to enable these “active” Web sites.

The primary benefits for ActiveX are:

= Active Web Content with Impact that will attract and retain users.

. Open, Cross-Platform Support on Macintosh, Windows and UNIX
operating systems.

. Familiar Tools from a wide assortment of tools and programming language

vendors, including Visual Basic, Visual C++, Borland Delphi, Borland

62

C++, Java, and Java-enabled tools. Developers can use what they know and
be productive immediately.

Existing Inventory of ActiveX controls available today for immediate use
by Web produceré.

Industry Standards, with built-in support for key industry and de-facto

marketplace standards, including HTML, TCP/IP, Java, COM, and others.

To understand more about ActiveX, we should know what are its elements as

ActiveX includes both client and server technologies.

L]

ActiveX Controls are the interactive objects in a Web page that provide
interactive and user-controllable functions and hence enliven the
experience of a Web site.

ActiveX Documents enable users to view non-HTML documents, such as
Microsoft Excel or Word files, through a Web browser.

Active Scripting controls the integrated behaviours of several ActiveX
controls and/or Java Applets from the browser or server.

Java TM Virtual Machine is the code that enables any ActiveX-supported
browser such as Internet Explorer 3.0 to run Java applets and to integrate
Java applets with ActiveX controls.

ActiveX Server Framework provides a number of Web server-based

functions such as security, database access, and others.

63

4.5

4.5.1

4.6

Why Microsoft Access (using SQL) server?

The Power of SQL

Structured Query Language: The power behind today’s data intensive websites.
SQL is used to access data in relational database management systems, such as
Oracle, Sybase, Informix, Microsoft SQL Server, Access, and others, by
allowing users to describe the data the user wishes to see. SQL also allows users
to define the data in a database, and manipulate that data. You have the power to
create your survey questionnaire to collect the data you wish to manipulate that

data, and to analyze the responses. All performed with SQL.

The best part of our service is that you do not have to an expert at SQL or even

know any of the commands. The Application software developed handles all of

that for you.

System Requirements

There are three main requirements to fulfill when designing this application.
Following are the requirements:

. Operational requirement

. Performance requirement

» Security requirement

64

4.6.1

4.6.2 Performance requirement

Operational requirement

REQUIREMENT

DEFINITION

EXAMPLE

Technical Environment

Special hardware,

Always-on network

software, and network
requirements imposed by

connection permitting
real-time database

business requirements u dates
System Integration | The extent to which the The system will read and
system will operate with | write to the main
other systems inventory database
Portability The extent to which the | The system may need to
system will need to operate with handheld
operate in other devices
environments
Maintainability Expected business The system must
changes to which the accommodate new
system should be able to | manufacturing plants
adapt

Table 4.0 Operational Requirement

REQUIREMENT DEFINITION EXAMPLE
Speed Time within which the Network transaction
system must perform its response time <= 7
function seconds
Capacity Total and peak number | Maximum of 100-200
of users and the volume | simultaneously users at
of data expected peak times
Availability and Extent to which the 99% uptime
Reliability system will be available performance
to users and the
permissible failure rate
due to errors
Table 5.0 Performance requirement

65

4.6.3 Security requirement

REQUIREMENT DEFINITION EXAMPLE
Limitation on who Any changes can be

Access Control can access what data made only by System

Administrator

Encryption and Defines what data will Data will be encrypted

Authentication be encrypted where and from the server
whether authentication . computer to the client to
will be needed for user provide secure ordering

access

Virus Control

Controls to limit viruses

All uploaded files will

be checked for viruses

before being saved in the
system

Table 6.0

Security requirement

66

Chapter 5: System Design Analysis

5.0

5.1

Introduction

System design consists of all things that you need to do when designing a
system. This is the task where need to give priority detailed specifications of the
systém that is going to be develop. The design process put together all
knowledge obtained from the analysis process. This chapter focused both on the
logical and physical or technical aspects of the system, which are based on the

data, processes, and interface components.

The system is carried out two levels, logical design and physical design. At the
logical level, physical or implementation details are ignored. The focus at this
level is on the processes, not on the physical aspects of the system. The physical
design follows the logical design. At this level, the hardware, physical file and

storage media, as well as the language used need to be specified.

System Module

When designing this application, I have identified number of module that need to
be consider and separate as to make this phase easier and helpful to manage.
Generally, module is a component of the system that provides services to other

components; however, it does not mean that they are separate system.

67

Followings are the module to implement:

System

Module
Client/Server Graphical User Database
Application Interface Application

Game Player

Administrator

Shared

Figure 14 The Design Module

5.1.1 The Client/Server Application Module
This module covered the discussion of the design and development of
client/server applications from various solutions and study of problem, system
planning, analysis, development, and implementation. This is where to design
event- driven applications utilizing applications management tools within the
database. This is where the discussion on object- oriented programming
capabilities and benefits.
This module separate into three sub-modules:
. The Game Module
. The Player Module

. The Shared Module

68

5.2.1.1 The Game Meodule

This module manages the games. It registers players and creates the puzzle that
they play with, starts and stops games, state the table or box of puzzle, verifies
winning game, prevents players from being a nuisance, and provides status of

game.

5.2.1.2 The Player Module

The Player provides the interface for users to interact with the puzziel game. To
play, a user pushes the Join the Next Game button or just clicks on the play new
game. If the Player is allowed to play, the Game gives some puzzle board to the
player. As the game precedes the users play the game and the winner are

announced.

5.2.1.3 The Shared Module

5.1.2

This module provides all the shared features that involve in the actions. This

module will have the coding that manages the shared application.

The Graphical User Interface (GUI) Module

In this module, it will combines all the fundamentals of GUI design by using
driven programming concepts and techniques to create several small graphical
user interfaces for the Windows environment. Visual Basic and Java will be used
to design, layout and implement screen controls, menus and graphical objects.
Programming techniques that being used such as logic flow and input validation,

as well as general GUI guidelines.

69

5.1.3 The Database Application Module

In this module, students will continue the creation of applications using SQL

tools. Programming techniques such as logic flow, input validation, data

management, object linking and ‘embedding (OLE), on-line help, and graphical

integration will be working in this module. All the information and data of the

game will be working in this module.

5.1.3.1 The Administrator Module

This is where all the control and monitoring tools will be doing. Therefore, all
the additional features that need to accomplish in this application such as the

game, client and database will be implementing in this module. The

administrator has all the responsibilities and authority of the server and database.

1 Client Data 2
Server > Client

—

0

GameData | Application
B System

Report

A

3
Administrator
Figure 15 Context Diagram of System

70

| 1 > Administrator
Create
record
el
y
3 Client
A p
D1| User Start Game)
A
2 |
Server
Generate
Result
Figure 16 Data Flow Diagram (DFD)

5.2

Example of Client Interface

& AATRIS - MIEFASATE AWELT E

Fla Fit Vi Fawres “ns Hal

LI

Figure 17 Example Interface

72

Chapter 6: System Development/Implementation

6.0

6.1

Introduction

In this phase, the system that has been designed will be implemented. The
development of software tools to take advantage of fast new hardware
traditionally lags of a cluster of homogeneous workstations all running behind
hardware production and development. The major process in this development
area is that the system must fulfill the requirements that have been written down.
From the analysis and research, the hardcore of the algorithms and modules offer
a very profound attention on how to employ this design to perform the desired
application that go after the requirements. But firstly, there are few overviews on

the techniques to implement distributed computing.

System Development Strategies

In this phase, there will be a few strategies on how is this application going to be
develop. This is important part of development process, a simple mistake can

ruin the whole plan.

6.1.0 Distributed Concurrent/ Parallel Processing

6.1.0.1 CORBA, RMI and Sockets

CORBA allows applications implemented in differing languages the ability to
communicate while RMI is a Java feature. Sockets provide a lower level of
communication where the programmer is responsible for establishing the method
of communication. This is the tools that provide a convenient tool for utilizing

the distributed systems.

73

6.2

6.2.0

The Changes

There are many problems occur during the beginning of the development of the

system. So, few changes have been done to make sure that it can be develop and

SUCCESS.

Design Module Changes

The design module that has been changed is the application module and the

database module. The hierarchy is shown below:

System
Module

Client/Server
Application

Client

Server

6.2.1

Administrator

Algorithm Changes

Figure 18 Design Module

Graphical User
Interface

At the early stage of development process, the RMI was chosen.

Why RMI (Java Method Invocation)?

74

Unlike sockets, Java RMI is a higher form of communication where the
messaging is handled by the environment rather than explicitly by the
programmer. It is the programmer's responsibility to provide the appropriate
environment for the remote methods to be invoked. Once the environment has
been established, the messaging is handled as a simple method invocation, hence
the name. Java remote method invocation establishes interobject communication.
It is fundamental to the Java model. If the particular method happens to be on a
remote machine, Java provides the capability to make the remote method
invocation appear to the programmer to be the same as if the method is on the
local machine. Thus, Java makes remote method invocation transparent to the
user.

6.2.1.0 Interfaces: The Heart of RMI
The RMI architecture is based on one important principle: the definition of
behavior and the implementation of that behavior are separate concepts. RMI
allows the code that defines the behavior and the code that implements the
behavior to remain separate and to run on separate JVMs. Specifically, in RMI,
the definition of a remote service is coded using a Java interface. The
implementation of the remote service is coded in a class. Therefore, the key to
understanding RMI is to remember that interfaces define behavior and classes

define implementation. While the following diagram illustrates this separation,

75

I‘ ~ Client Program " SemerProgram

I Interface Implementation
E [

Figure 19 RMI Interfaces
Java interface does not contain executable code. RMI supports two classes that
implement the same interface. The first class is the implementation of the
behavior, and it runs on the server. The second class acts as a proxy for the

remote service and it runs on the client. This is shown in the following Figure 20,

dnterfaces
Sorvice
S \\'\N
2D e
Chert_~"~ . (T Server
Service l Service
Implemertation

Praoxy (o
se

A client program makes method calls on the proxy object, RMI sends the request

to the remote JVM, and forwards it to the implementation. Any return values
provided by the implementation are sent back to the proxy and then to the client's

program.

6.2.1.1 RMI Architecture Layers

76

The RMI implementation is essentially built from three abstraction layers. The
first is the Stub and Skeleton layer, which lies just beneath the view of the
developer. This layer intercepts method calls made by the client to the interface

reference variable and redirects these calls to a remote RMI service.

The. next layer is the Remote Reference Layer. This layer understands how to
interpret and manage references made from clients to the remote service objects.
In JDK 1.1, this layer connects clients to remote service objects that are running
and exported on a server. The connection is a one-to-one (unicast) link. In the
Java 2 SDK, this layer was enhanced to support the activation of dormant remote

service objects via Remote Object Activation.

The transport layer is based on TCP/IP connections between machines in a

network. It provides basic connectivity, as well as some firewall penetration

strategies.
-f'l Client Program { Servet Program
. Vo
¥) 4
Vi
| Stubs & Skelatons Stubs & Skeletons
AMI I el B S
AT >, o Femote Reference Layer Remote Reference Layer
oyslem
Transpont Layer
e S = ST ——

Figure 21 RMI Architecture

By using a layered architecture each of the layers could be enhanced or replaced

without affecting the rest of the system. For example, the transport layer could be

77

replaced by a UDP/IP layer without affecting the upper layers. So, things are

simple.

6.2.1.2 Stub and Skeleton Layer

The stub and skeleton layer of RMI lie just beneath the view of the Java

developer.

sintertaces
Subject
+waguest(’)
|
I
e e —
RealZubject L Prowxy
= realSubject
+requasti) srequest()

Figure 22 Stubs and Skel

A skeleton is a helper class that is generated for RMI to use. The skeleton
understands how to communicate with the stub across the RMI link. The skeleton
carries on a conversation with the stub; it reads the parameters for the method
call from the link, makes the call to the remote service implementation object,

accepts the return value, and then writes the return value back to the stub.

6.2.1.3 Remote Reference Layer

78

The Remote Reference Layers defines and supports the invocation semantics of
the RMI connection. This layer provides a RemoteRef object that represents the

link to the remote service implementation object.

The stub objects use the invoke() method in RemoteRef to forward the method
call; The RemoteRef object understands the invocation semantics for remote

Services.

6.2.1.4 Transport Layer

The Transport Layer makes the connection between JVMs. All connections are
stream-based network connections that use TCP/IP. Even if two JVMs are
running on the same physical computer, they connect through their host

computer's TCP/IP network protocol stack.

| ®E : JRE RE JRE
§, rostos / ' Hostos
&?'{Mirfé}er f" Network Layer
N 7
S 7
N A
-h‘\-‘\- e, — /-- -
0 —Network Cable)

Figure 23 Transport Layer

The RMI transport layer is designed to make a connection between clients and

server, even in the face of networking obstacles. While the transport layer prefers

79

to use multiple TCP/IP connections, some network configurations only allow a
single TCP/IP connection between a client and server (some browsers restrict

applets to a single network connection back to their hosting server).

In this case, the transport layer multiplexes multiple virtual connections within a

single TCP/IP connection.
6.2.1.5 Using RMI
A working RMI system is composed of several parts.

Interface definitions for the remote services

o Implementations of the remote services

e Stub and Skeleton files

e A server to host the remote services

e AnRMI Naming service that allows clients to find the remote services
« A class file provider (an HTTP or FTP server)

« A client program that needs the remote services

This isn’t work, so the development has been changed using Sockets.

Why these isn’t work?

The reason is because the RMI is not really suitable for developing this
application. The application need to change a little of its code so that it can be

implemented the RMI techniques. The RMI uses Object which is really hard to

80

deal with the registry and need to do lots of re-configuration. There are also

“unknown problems” which sometime give headache and need “brain-storming”.

6.3 Java Message Passing — Sockets

6.4

In Java it is possible to "serialize" a data structure. This means that the data as
well as its structure is packaged by the language to be stored on an external
device, such as a disk drive, or sent over a network to a remote host. Several
common data structures, including arrays and dynamic lists, can be serialized. To
do socket communication in any language the programmer must establish the
socket number to communicate through the server. The client, requesting
services from the server then writes to that socket number. Java, through its
ObjectInputStream and readObject facilities can send and receive a serialized
data structure, essentially packing and unpacking, or "deserialize" the data
communicated. Writing to a socket is much like writing to a file. Normally, when
communicating through a socket a programmer must send small units of data, but
with serialization Java is able to send complete data structures. To keep the
implementations consistent, this development stage did not use this serialization
feature, but rather only the features provided by the communication mechanism.

Thus, small portions of data were repeatedly written to socket.

Development Processes

In this stage, the main process is to develop a java file. Below are the files that
have been developed to fulfill the requirements. The java file using RMI:

1. IPGServer.java

81

8.

9.

[PGClient.java
IPGManager.java
RMIManager.java
ServerAdministrator.j ava
StoppableServer.java
ClientGUI java
Serverlmpl. java

ConnectListener.java

10. DisconnectListener.java

After tested (will be discuss in Chapter 7), the above codes have been changed to

Sockets based. Below are the java files:

1.

2

3

4.

5.

Puzzle.java
PuzzleServer.java
PuzzleFrame java
PuzzlePanel.java

PuzzlePanel Success.java

6.4.0 The Primary Classes

This section provides a few diagrams that show the most important classes in the

game applications and how they related. This section also provides a description

of the classes in the diagrams focusing on their relationships and their purpose.

6.4.0.1 Descriptions of Every Class

Puzzle.java

Main program: initialization; connection

82

Uses: PuzzleFrame, PuzzlePanel
Used by: PuzzleServer to receive connections from client and load Client

Interface of game.

Do: Web page online interface, asks for username, connect with server.

PuzzleServer.java

Main program: Overall Control

Uses: Puzzle, PuzzleFrame, PuzzlePanel

Used by: Puzzle to make connections and ask to load Client Interface of game.

Do: Give; Load client puzzle frame included with puzzle panel.

PuzzleFrame.java

Main program: custom frame

Used by: Puzzle, PuzzlePanel, PuzzleServer
Uses: --

Do: Sets up custom frame handler

PuzzlePanel.java

Main program: Panel for puzzle window: graphing; keyboard and mouse event
handling

Uses: PuzzleFrame, PuzzlePanel Success

Used by: Puzzle, PuzzlePanel, PuzzleServer

83

6.5

6.6

Do: Initializes puzzle, custom-sized window with puzzle on top, buttons for
restarting with different puzzle, or exiting window on bottom arrow keys change

puzzle tests if puzzle finished

PuzzlePanel_Success.java

Main program: “success" window
Uses: --

Used by: PuzzlePanel

Do: Displays small window, informs how long it took to finish the puzzle button

to exit the window

System Development Platform

In this section, the platform that being used is the windows environment and this
doesn’t cause much trouble because java is platform independent. The major
problem here is the java developer that always encounters various conflicts. This
really time consuming problem because it need to do some configurations and

settings before the program successfully running,

Hardware and Software Configuration for Development Platform

Below is a list of software tools used for the development platform:

84

SOFTWARE FUNCTION
Windows XP Professional, Operating system for
Windows NT development environment
Sun ONE Studio 4 Update 1, Java source code editor and
Community Edition developer
Oracle9i JDeveloper
Internet Explorer Version 6.0 Running Applet and web page

J2sdk, SEv1.4.1
Jdk1.3.1
J2re, SE vl 4.1
Java Web Start

Compile and run Java source
codes

The hardware is the personal computer (pc) or microcomputer.

85

Chapter 7: System Testing

7.0

7.1

Introduction

In this stage all the developed java files will be running with testing phase. The

reason of this phase is to make sure the implemented program can run and make

sure that it is free from any error.

Integrate, Compiling, Running and Debugging

After all the java files created, now the process to compile and running the file.

Below are the steps:

I

2

10.

Compile all files to create the generic class file (ex: PuzzleServer.class).
Test connection (using socket) of one client to one server. If this works,
test with more clients and the thread.

Test the connections.Integrate these classes with the PuzzleServer class
and Client class.

Test the integration of these classes to see whether they are able to
function well.

Integrate Puzzle class (login function) with Client class (PuzzleFrame).
Test integration.

Integrate all files included PuzzlePanel Success class.

Test overall. Try to solve puzzle and look whether the
PuzzleFrame_Success connected or not.

Test the message passing between server and client.

Try to connect the client using web page and check whether the applet

connected to the Server.

85

7.2

7.3

11. Implement the system (server and clients) in one computer using
Microsoft Internet Information Server (IIS).

12. Test the implementation of the system between 2 clients (this currently
didn’t works)

13. Evaluate overall programs.

In this stage, the process repeated over and over again until it functions correctly.
If there is class or an integration of classes doesn’t work, then it need to modify
to make sure they work.
Testing Environment
To make sure that this application runs properly, the computer must at least have
Java Virtual Machine (JVM) installed and the JDK files. These files must be
configured properly and the settings of its path and classpath correct. To run the
applet which is the web page for online login, the specified user pc or client must
have the Internet Explorer (latest version will be suitable).
Testing Phase
This section is really important to make sure that the system is running correctly.
In this stage, the process of validation and debugging will be done separately into
different stage.
This phase is divided into 3 steps:

1. Component testing

2. Integration testing

3. System Testing

86

7.3.0

7.3.1

7.3.2

Component Testing

Unit testing is testing stage that tests the very basic unit of the application and
individual program components. This stage will test all the basics and simple
source codes (hardcore). This will included the testing of program modules. The
hardcore module is all the java files (ex; Puzzle.java). Each of these files will be
compiled separately. This stage helps reducing errors in program module. Tests
are derived from the developer’s experience

Integration Testing

After integrate all the modules, it must be test the effectiveness whether they are
connected or not. The interconnected module must be working properly.
Sometimes in this stage the module when it is tested with the integration with
other module, problems occurred and the modification has to be done on that
module (this happened while implementing using the Java RMI). Integration
testing can be a very tiresome process because of the logical errors sometime
cannot be detected. Testing of groups of components integrated to create a
system or sub-system. Tests are based on a system specification

System Testing

This stage will be doing only after the unit and integration testing done their job.
This testing to make sure that the program can run to the various environments

with the specification configuration software and hardware.

87

Chapter 8: System Evaluation

8.0 Introduction

This chapter will give some discussion of what the pros and cons of this

application. This also shows how the system can be implemented in the future

with better functions.

8.1 What’s Interesting?

8.1.0 The web-enabled
This is web-enabled game because it is one of Java features. It enables the web

browser and applet can easily embed in any web programming such as html or

xml.

B play puzzles Game Dnline . Microsol{ Internel Explorer o, " R -
Fie Edt Vew Favortes Tools Help emms

X| &4 seach . Favoress @ Meda €< - i -
€] c:\Documents and Settings|evy\Desktop\thests\Play Puzzle Games Onine fles\Puzziehtm.html v g4 »

WELCOME TO INTERACTIVE PUZZLE GMIEGPG Vo. l)!
Cremd and mmmzd by Eve!ynfmm({c} 2003 2004)
Chocl: ifout) : '

o What's new?

o To the Soiirce

» E-mal e forinfmmaﬁon.'E mal

Tlnmam;.nluphyermmdw tis uomroﬂadﬁ'omﬂn specﬁednppﬁ:nonmu»dmaddl:&pm But, '
m&amﬁnmsmu mwymwmm :

Name. [Connect| Selectto load Puzziel

ﬁjwmﬂﬂd ¢ My Compub

A Play Puz2les Gome Online: Merosof LInternel EXpIoTer i v i

Fle Edt \iew Favorites Tools Help : . . l"r‘
%] 2] (0) sewch G Favortes @Meds € (e 5 > el
) CAments Sty Doskopthesly Pz Gaos i fes Pz o>

Characteristics of this game:

1. Shows howto wm'kwnh rop level mlw's = I
| .= o Opening/closingtop level windows .~ - e - i
= o Doing graphics in top level windows ; ; ; :
2. Shows complex event handlmg |
o Keyboard input changes graphics
o Server control the chent(purzle framel) and connecuon
3. Shows how to work with graphics(puzzle panel!)
. 4. Shows how to addfremove comzcﬁom(ctwmﬂy didn't workl)

| Source (‘ode
Purrle 1ava

All java files, as listed below, i one downloadable file. -

[Eszins ' = E-mail: phoenix_iynn@hotmail com

21 Applet Puzzle started £ My Computer

Figure 24 Web-Enabled
8.1.1 The Game Graphics
This game shows how to work with graphics (puzzle panel and panel success!).
This is using the paint method and how the inputs changes and repaint the frame.
8.1.2 Complex Event Handling
Shows the complex event handling of the program and how the keyboard input
changes graphics. This is also shows how the server can control the client
(puzzle frame!) and its connection.
8.1.3 Multiple Connections

This game can connect many clients because the server is multithreaded. This is
the responsibility of sockets communication that enables many clients (streams —
TCP).

89

8.2

8.2.0

8.2.1

8.2.2

8.3

8.3.0

The Weaknesses

Client/Server functions

This game just implemented the connections between client and server. So, it
cannot play against players. The <-:lcsircd function will be enhancing in the future
with the more advanced techniques.

Record of Game

The game server only passes the panel success when the player solved the
puzzle. It cannot save the record of moves because it needs a database to connect
and various functions need to be added in the program.

The Graphical

The puzzle applet needs to add more graphic has few functions. The server
application also needs to implement the function such as stop and restart the
server. The puzzle frame and panels also need to add more graphics so that it will

look nice.

Future Enhancements

Concurrently Play Puzzle
In the future, the puzzle can be played with other players (minimum 2 persons).
Below is the code of moving the puzzle using mouse event. If this is used in

client/server architecture based, the concurrent puzzle can be implemented.

public boolean handleEvent(Event evt) {
if (evt.id == Event MOUSE UP) {// the core of mouse event

/*argument here*/ }

90

if (evt.id == Event MOUSE_DOWN) {

// argument is here

}
if (evt.id = Event MOUSE_MOVE && inst==0) {

// your argument is here -

)

switch(evt.id) {

// example using mouse event action

case Event. ACTION_EVENT: {
if("Solve".equals(evt.arg)) { if(inst==0) cheat=1; }
if("Restart".equals(evt.arg)) { restart(); }
if("Instructions".equals(evt.arg)) { instructions(); }
if("Resume".equals(evt.arg)) { resume(); }
if("Rotate".equals(evt.arg)) { rotate(); }

}

return true;

13

8.3.1 Server With More Functions
Add more functions in the server such as can send stream messages or add function chat

while playing puzzle with others. Follows may be useful,

91

// initializing the data input stream and data output stream
try {
input = new DataInputStrt.:am(connection.getInputStream());
output = new DataOutputStream(connection.getOutputStream());
} catch(IOException €) {
e.printStackTrace();
System.exit(1);
}
// sending message
output.writeInt(221);

output.writetUTF(“HELLO”);

// receiving message
int Value = input.readint();

String Name = input.readUTF();

8.3.2 Interactive Multimedia Features
This game will be more fun if the multimedia features such as sound effects

while playing or when the connection created or when the message send and

received included.

Chapter 9: Conclusion

9.0

2.1

9.1.0

9.1.1

9.1.2

Introduction

This chapter is the overall view of the project and also what are the problems
during the development of this 'project.

Problems

The Experience of Using Java

This is really challenging because the java programming is not like basic
programming language such as C or C++. To develop this project using java
need more research or do lots of exercises in programming. The most
important is that how to debug and identify problem if there is an error during
the implementation. This also need to know how to deal with the event
method (using event handling), when is the right time to use and so on. So,
more practice and spend lots of time and focus on how to do programming in
java. To makes thing easier is to study the others developed program and
adapt the same concept from other programming language such as C++ and
many more.

The Game Cannot Play Concurrently

This is the hardest part in developing the project. The problem is that this
puzzle game never been done before play concurrently by using mouse. So, it
needs more study on how to implement concurrently using mouse event. This
is also hard because of java’s complexity and experience of the developer.
The Database

Java provides connectivity (JDBC) in developing an application that uses
more files and need to save information in the database. So, the problem

occurs when connecting the database and make sure that it can run and work

93

9.2

properly together without any conflict. This is tough to do because the

application will too large to fix if there is a problem.

Project Conclusion

As the benefits of client/server technologies are realized, the demand for high
quality applications will increase. The real power of client/server applications
comes from the developer’s ability to tailor each application to suit the needs

of the business and provide that service in an optimal way at the point of need

without overly impacting the needs of other users.

During this development project, there are many processes of learning. It is
especially in programming. This is because this project taught to be more
openness of doing programming which is nobody’s perfect. This project also
taught to be patient especially while dealing with problems. The problems can
be solved but because of lack of experience and time they cannot be tackling
on time. It is also the decision on technique to develop (in this case; RMI)

which really time consuming.

Even though many problems that happen during the development of this
project, the experiences that gained is the most valuable thing and it might be
useful in future. More skills and programming experience besides the
knowledge of implementing the network computing. Therefore, this project
achieved and utilizes all the knowledge and constructs a better application in

the future.

94

Appendix

User Manual

o e

User Manual

PG v1.0
Copyright 2003, Evelyn Francis

Faculty of Computer Science and Information Technology

This is a simple way to compile and running this program. If the class files (ex.,
PuzzleServer.class) are already in the same folder with java files (ex.,
PuzzleServer.java), you do not need to compile it anymore. Just follow these steps and

you’ll get the result.

[1] By using MSDOS, go to the path of folder containing puzzle game.
Just is case the copies of java files are not compiled, you need to compile it first by using
this command,

-- javac {AllJavaFiles}.java

[2] Run the server by using this command. (Make sure that JDK file is already installed

in your pc — minimum requirement is JDK1.2)

-- java PuzzleServer

95

[3] Then, run the applet. This is by either click on the html file - puzzle.html or run the

appletviewer like below,
-- appletviewer puzzle.html

Then, enter username.

[4] If connected, the puzzle game will be loaded and it is ready!

[5] If success to solve the puzzle, the puzzle panel will be loaded and you will know

your moves.

Try this and have fun!
Any enquiry, please contact me.

E-mail: phoenix lynn@yahoo.com

The End

e e o

96

Pictures:

&

File Edf View Froject Buld Debug VYersioning Tools Window Help

Q= 8 ¥ Db o | Q &1 > b FL 8 0

Edtng | GUIEdting | Running | Debugping | Frished PuzzieServer
ok

B --
Welcome to Administrator Game Server!
[RAMBENET. (jstening client connections...
Stop Senver |
Exit Server
List
&
‘ Pl
(8] Filesy
| GF Javado
| 4
&1 f
Nams 5 . i

Synchronizetion Mode Confirm All Changes

Templats False

[1] Server running

LB

"~

s Applet Virwer: Pozzle

Applet

i)
i)
&

Name Connact | Selectto load Puzzla!

=101

\pie s Logane~Pro i

Applet started

Welcome to Administrator Game Server!

L] :
Fiesystems
| G?.Iwadzc S Start Server Listening client connections
d | Stop Semver
&1
¥l n v L

[2] Applet loaded — server waiting connection

97

2] :

File Eck View Project Buld Debug Versionng Toc Applet
Ga # b t] Name: leve | Connacted to server

_Edtrg [Gi0Esting | Ruving | Delnugang | Piished Puzxi
| 5% Y=y o'l

Welcome to Administrator Game Server!

Click on Graphic if cannol startt

e ——ay | 5 ——————— e ——
| (BEASANETY | \aening client connections...

Stop Server |
player. 0
e T Listening client connections..
List | Piayer connected

client 0 message 389
Ragisterad

[3] Enter username — server connected — puzzle frame loaded

(4] £ ' i
File Ecit View Proect Buld Debug Versioning Toc Appiet
- a ¥ D o | connested to sarvar
Editing |wm.w‘_m} Fintshed Puzzl —
fa i |
I
i
Number of rmoves: 2 : = s
Welcome to Administrator Game Server!
_Stant8ever | [\ istening cllent connections
|} Stop Server
= j player 0
' _BxtBener | || icianing client connections..
_hpu Player connatted
i | client. 0 message 399
Restart Close Reglstered
:Javaﬁwlel Window

[4] Server connected — play puzzle — won — puzzle success loaded

98

Coding

Below are the 5 java files to run the

java.
java.
java.
java.lang.*;
java.i
java.net.*;
java.io.DatalnputStream;
java.io.DataOutputStream;

import
import
import
import
import
import
import
import

public class Puzzle extends Applet

{ static int height = 2;
static int length = 3;
private Button b_select;
private Button b_connect;
private Choice c_h;
private Choice c_1;
private Panel p_select;

gets

private Panel p_ resume;
static Button restart_button;
static Button quit button:

private Button resume_button;
TextField input name =

String nama = new String(""};

final static int PING = 299;

Label lab_1;

Socket sock = null;
DataOutputStream output;
DataInputStream input;
PuzzleFrame main;

public void init ()
{
Select () ;

public void Select()
{ int h, 1i
c_h = new Choice () ;

application.

//default height
//default length

//selected height
//selected length
//panel with selection menu;

//replaced with...
//after selection has been made

new TextField(20);

//set up selection frame

//selected height

99

c_1 = new Choice(); //selected length
b_select = new Button(" OK ");

b select.setEnabled(false);

b_connect = new Button("Connect");

Panel pUpper = new Panel();

Panel pLower new Panel () ;

Panel pCenter = new Panel();

Panel pLeft = new Panel();

Label name = new Label ("Name:");

lab 1 = new Label("Select to load Puzzle!");

this.setBackground(Color.lightGray) ;
this.setLayout (new BorderLayout ())

pUpper .add (name) ;

pUpper.add (input_name) ;
pUpper.add (b_connect) ;
pUpper.add(lab_1);

add ("North", pUpper) ;

nama = input name.getText():

main = new PuzzleFrame();

public boolean action(Event e, Object arg)
{

/*

if (e.target == c h) //height has been set

{ String tt;
tt = (String)e.arg;
height = java.lang.Integer.parselnt(tt.substring(2,3));
return true;

}

if (e.target == ¢ 1) //length has been set

{ Sstxing tt:;
tt = (String)e.arg;
length = java.lang.Integer.parselnt (tt.substring(2,3)):
return true;

}

if (e.target == b_select) //selection process completed

{ p_select.hide();
this.remove (p_select); //remove selection-panel
this.add (p_resume) ; //add resume-panel

resume_button.show() ;
p_resume.show () ;
this.show();

resume_button.validate();

100

p_resume.validate();
this.validate();

// £ = new PuzzleFrame("Welcome to Puzzle Frame!");

return true;
<)

if (e.target == resume_button) //new game!

{ p resume.hide(); //remove-resume-panel
tEis.remove(p_resume];
p_select.show() ;

this.add(p_select); //replace with selection panel
p_select.show();
this.show(); //start all over again!
)
if (e.target == b_connect)

{

tryl
b connect.setEnabled(false);
sock = new Socket ("localhost", 5050);
output = new DataOutputStream(sock.getOutputStream());
input = new DatalnputStream(sock.getInputStream());
lab_1.setText ("Connected to server");

main.login(this, sock,"localhost");

PuzzlePanel pp = new PuzzlePanel (length, height, main);
main.setLayout (new BorderLayout (15, 15)):

main.add ("North", pp):

main.pack();

main.resize (305,400) ;

main.show() ;

}catch (Exception ex) {
b _connect.setEnabled (true);
lab_l.setText ("Check Server!Try again"”);}

}

return super.action(e, arg);

public boolean handleEvent (Event e)

{
return super.handleEvent (e);

101

import java.lang.*;

import java.net.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

import java.awt.event.WindowListener;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent; -
import java.util.Vector;

public class PuzzleServer extends Frame {

private ServerSocket server;
final int port = 5050;
int MAXPLAYER = 5;

Player[] players = new Player [MAXPLAYER] ;
private int numOfPlayers =0;

//private List client list;
public TextArea view = new TextArea(13,35);
Font font = new Font ("Garamond", Font.BOLD, 16);

Label client_in = new Label ("Welcome to Administrator Game

Button StopServer = new Button("Stop Server");
Button StartServer = new Button("Start Server");
Button ExitServer = new Button ("Exit Server");
Button ClientList new Button("List");

final static int PING = 299;

public PuzzleServer ()
{

super ("Puzzle Server");

try {

server = new ServerSocket (port);

}

catch (Exception ex){ }

/* processing window events: */
WindowListener L= new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System.exit (1) ;

/* closeBpplication(); */
}

}:

addWindowListener (L) ;

Server!");

102

this.setSize (400,300);
this.setLayout (new BorderLayout()):
this.setBackground (Color.lightGray) ;

Panel upPanel = new Panel();

Panel Middle = new Panel();

Panel buttonPanel;

buttonPanel = new Panel (new GridLayout(10,1,5,5));

//StopServer.addActionListener (this);
//StartServer.addActionListener (this);

buttonPanel.add (StartServer) ;
buttonPanel.add (StopServer) ;
buttonPanel.add (ExitServer) ;
buttonPanel.add (ClientList) ;
add ("West", buttonPanel);

Middle.add (view) ;
upPanel.add(client_in);
client_in.setFont (font);

add ("Center",Middle) ;
add ("North",upPanel) ;
this.show() ;
execute()

}

public void execute()

{

for (int i=0; i < players.length; i++)
{

try

{
view.append ("Listening client connections...\n"):;
players[i] = new Player (server.accept(), this, i):
view.append ("\nplayer: " + i + "\n");
players([i].start():
++numOfPlayers;

}
catch (Exception e) {}
}
}
public void actionPerformed(ActionEvent e) {
Object src=e.getSource();

String pemain = new String("");

if (src == StartServer)
{

103

//msgFrame.show () ;
//player msg = to_player.getText () ;
//msgsToPlayers (player _msg) ;

}
if (src == StopServer)

{
System.exit (1) ;

}

public static void main(String args[]) {
new PuzzleServer():;
//execute() ;

}

}
/*A thread class*/

class Player extends Thread
{

Socket connection;
DataInputStream input;
DataQutputStream output;
PuzzleServer control;

int index = -1;

String Name;

final static int PING = 299;
final static int REGISTER = 399;

public Player (Socket sock, PuzzleServer puzzle, int i)
{

connection = sock;

try
{
input = new DataInputStream connection.getInputStream()):
output = new
DataOutputStream(connection.getOutputStream()):

}
catch(IOException e) {e.printStackTrace();}

control = puzzle;
index = 1i;

public final void run()

104

{
final boolean done =

try

{
control.view.append ("Player"” + " connected\n");

output.writeInt (PING);

while (!done) {)
int clientms = input.readInt():;

control.view.append ("\n") ;
control.view.append("client:
clientms);

false;

" + index + "

switch(clientms)
{
case REGISTER:
Name = input.readUTF():

message

control.view.append("\nRegistered " + Name);

break;
} //end switch
}//end while
}catch (IOException e) {e.printStackTrace();}
}//end run

}
/*end of thread class*/

n

o

o ————— o ———— o o o o o o o o o o o . o o o o o o i o o o o e o o T o .

import java.
import java.
import java.
import java.
import java.

public class PuzzleFrame extends Frame implements Runnable {

static
static
Socket
String

int height;
int length;
accept;

servername;

DataOutputStream output;
DataInputStream input;
Puzzle p_game;

Thread outputThread;
String name = new String("");

final static int PING = 299;
final static int REGISTER = 399;

public void login(Puzzle puzzle, Socket receive,

{

accept = receive;
servername = host;
try

String host)

105

{
output = new DataQutputStream(accept.getOQutputStream());

input = new DatalnputsStream(accept.getInputStream());
}catch(IOException e) {e.printStackTrace();}

p_game = puzzle;
mainframe () ; g
outputThread =new Thread (this);

outputThread.start();
}

public void mainframe ()

{ F -
String name = new String("");

name = p_game.input*name.getText();

setTitle (name) ;

}

public boolean handleEvent (Event e)
{ if (e.id == Event.WINDOW DESTROY)
{ this.hide();
this.dispose():
return true;

return super.handleEvent (e);

public void run()

{

try{

int message = input.readInt();

switch (message)

{

case PING:

output.writeInt (REGISTER) ;
output.writeUTF (name) ;

}
}catch (IOException e) {}

import java.awt.*;

import java.util.*;

import java.lang.*;

import java.io.*;

public class PuzzlePanel extends Panel ({

static int height;

106

static
static
static
static
static
static
static
static
static

int length;

int height max = 6;
int length _max = 9;
int tot_x;

int tot_y:

int center x_ extra;
final int rect = 10;

final int extra vert
int counter;

= 20;

//of puzzle

//of puzzle

//horizontal dim of window
//vertical dim of window
//extra spacing

//indent spacing

//extra spacing

//counts puzzle moves

//actual state of puzzle

static char state[] = new char(height max*length max+1];
//possible labels for selected dimension of puzzle

static char letter[][] = new char[height max*length max+1] [2+1];
//all possible labels for puzzle elements)

static char letter hilf[] =

{'X','A','BI,'C';'D','E','F','G';lH.;'I';IJ',.K','L','M','N', 'O', lPl"
lQl" 'R', lSll'I |T|’ UUT' ‘V'l’ 'W" 'X" 'Yl; |Z|l'I |a|" 'b'; 'C', ldt'
'el, lfl' |g|' 'h" 'i'; 'jl, 'k', lll' 'm" 'n" '0.; lpl' l'ql" !rl'
'S" Tti’ 'U.', 'V', 'w'f lxl" Ty" TZI’ I*l’ |@l};

static int blank; //position of empty element

private Button restart_button;

private Button close button;

static boolean success = false;
yet

static Frame fpp;

//T: puzzle finished; F: not

//this.frame

public PuzzlePanel (int 11, int hh, Frame frame)

{
super () ;
fpp = frame;

this.setBackground (Color.cyan) ;

height = hh;
length = 11;
tot x = length * 25 + 1 * rect;
tot. y = height * 30+ 2 * rect;

center x_extra = Math.round((9 - length) * 12);

//initialize puzzle
//1lst: set possible element labels
for (int i=1; i <= height*length; i++)
{ this.letter[i][1l] = this.letter hilf[i];
this.letter[i] [2] = this.lettervhilf[i];
}
int: i = 13
//2nd: use random number generator to fill state variable
while(i <= height*length)
{ 4nt ‘h3
Random hr = new Random() ;
h = hr.nextInt();

h = Math.abs((h % (height*length)

)) + 1;

107

if (this.letter[h][1l] != " ")
{ this.state[i] = this.letter[h][1]:
this.letter(h][1] = ' ';
if (h == height*length)
{ this.state[i] =" ';
this.blank = i;
}

it+;

}

— L} T

this.letter[length*height] [2] = H
counter = 0; 3

this.setLayout (new FlowLayout (FlowLayout.CENTER, 50, 300));

//set up button elements in window

restart button = new Button ("Restart");
restart_button.setBackground(Color.1ightGray);
this.add ("North", restart button);

close button = new Button("Close");

close button.setBackground(Color.lightGray) ;
this.add("North", close_button);

return;

//test if puzzle done
public boolean finished()
{ boolean ret = true;
for(int i=1; i <= ((height * length) - 1); i++)
{ if (state[i] != letter hilf[i])
{ ret = false;
}
}

return ret;

//clears rectangle, draws blue rect, draws white lines
static void _paint(char(] state, Graphics g)
{ int x disp:
int y disp;
int tot_tot x = tot_x + extra vert - 10;
int tot_tot_y = tot_y:
x_disp = Math.round((tot_x + extra vert - 10) / length);
y _disp = Math.round(tot y / height);

I

g.setColor (Color.blue) ;

g.clearRect (50 + center x extra - rect - 10, 30 + rect,
tot_tot_x, tot_tot y):

g.fillRect (50 + center_x extra - rect - 10, 30 + rect, tot_tot x,
tot_tot_y):

g.setColor (Color.white) ;

//draws horizontal lines ----—---

for(int i=0; i < height; i++)

108

{ g.drawLine(50 + center x extra - rect - 10, 30 + rect + i *
y _disp, (50 + center_x extra - rect - 10) # tot tot x; 30 + reect ¥ 1 *
y_disp);

}

//draws vertical lines | | |

for(int j=0; j < length; Jj++)

{ g.drawLine (50 + center_x extra - rect - 10 + j * x_disp, 30 +
rect,50 + center x extra - rect - 10 + j * x disp, 30 + rect +
tot_tot_y);

}

//last lines exactly on border

//draws horizontal lines----

g.drawLine (50 + center_x_extra - rect - 10, 30 + rect +
tot_tot_y, 50 + center_x_extra - rect - 10 + tot_tot _x, 30 + rect +
tot_tot_y):

//draws vertical lines | | |

g.drawlLine (50 + center x extra - rect - 10 + tot_tot_x, 30 +
rect, 50 + center_ x_extra - rect - 10 + tot_tot_x, 30 + rect +
tot_tot_y) ¢

return;

//draws counter
static void _drawchar (int counter, Graphics g)
{ String sCounter;
sCounter = java.lang.Integer.toString(counter):;
g.setColor (Color.black) ;
g.clearRect (50 - rect -10, height*30 + 30 + 2 * extra vert,
length max * 25 + rect + 10 + 1000, 40); -
if (counter == 0)
{ g.drawString("Click on Graphic if cannot start!", 50,
height*30 + 60 + 2 * extra vert);
}
else
{ g.drawString("Number of moves: " + sCounter, 100, height*30 +
60 + 2 * extra vert);
}

return;
}

//main function: does everything - rectangle and counter
public void _paint_all (Graphics g)
{ _paint(state, g);
g.setColor (Color.white) ;
for(int i=1; i <= height; i++)
for(int j=1; j <= length; j++)
{ g.drawChars(state, (i-1)*length+j, 1, 50 + center x extra + 25
* (j-1), i*30 + 2 * extra vert); T
}
_drawchar (counter, g):
return;

109

public void paint (Graphics g)
{ if (counter >= 0)

{ _paint_all(g);

}

return;

public void update (Graphics g)
{ paint(g);

return;
}

public boolean handleEvent (Event e)
{ if ((e.target == restart button) & (e.id == e.ACTION_EVENT))
{ success = false; //looser!
for(int i=1; i <= height*length; i++)
{ this.letter([i][1] = this.letter hilf[i];
this.letter[i] [2] = this.letter hilf[i];
}
counter = 0;
int 1 = 1;
//set up everything for new game
while (i <= height*length)
{ int h;
Random hr = new Random() ;
h = hr.nextInt();
h = Math.abs((h % (height*length))) + 1;
if (this.letter[h][1] != " ")
{ this.state[i] = this.letter[h][1]:
this:letter[hL [T =0 ";
if (h == height*length)
{ this.state[i] = " ';
this.blank = i;
}

i44;

}
this.letter[length*height] [2] = ' ';

Graphics g = this.getGraphics();
_paint (state, g);

g.setColor (Color.white) ;

for(i=1; i <= height; i++)

for(int j=1; j <= length; j++)

{ g.drawChars(state, (i-1)*length+j, 1, 50 + center x extra +
25 * (j-1), i*30 + 2 * extra_vert); ”

}

_drawchar (counter, g);

//update (g) ; --not necessary!

this.validate(): //better!

110

smaller

}

//this
Dimens
you_ar
inE K

isn't nice
ion you_are so_hot = new Dimension();
e_so_hot = getParent().size();

Random hr = new Random() ;

h = hr

.nextInt ()

h = Math.abs(h % 2);
if o (h == 0))

{. k=
}

7/so h = -1 or 1; randomly make frame a triffle bigger or

_1;

getParent () .resize(you_are- so_hot.width + 0,
you_are so_hot.height + h);)

//do what you're supposed to do after arrow-key pressed
if (e.id == Event.KEY_ ACTION)

{

it (e
o B
{

if (e.
(i T

if (e.
. s

if (e.
i IE

key == Event.DOWN)

(blank >= (length + 1))

state[blank] = state[blank - length];
state[blank - length] ="' ';
counter++;

blank = blank - length;

Graphics g = this.getGraphics();
_paint (state, g):

key == Event.UP)

(blank <= ((height - 1) * length))
state([blank] = state[blank + length];
state[blank + length] = ' ';
counter++;

blank = blank + length;
Graphics g = this.getGraphics();
_paint(state, g);

key == Event.LEFT)

((blank % length) != 0)
state[blank] = state[blank + 1];
state[blank + 1] = " ';
counter++;

blank = blank + 1;
Graphics g = this.getGraphics():;
_paint(state, g);

key == Event.RIGHT)

((blank % length) != 1)
state[blank] = state[blank - 1];
state[blank - 1] = ' ';
counter++;

blank = blank - 1;

Graphics g = this.getGraphics();
_paint (state, g);

111

}

}
//redraw everything nicely if key has been pressed
if (e.id == Event.KEY ACTION)
{ Graphics g = getGraphics():
g.setColor (Color.white) ;
for (int i=1; i <= height; i++)
for (int j=1; j <= length; j++)
{ g.drawChars (state, (i-1)*length+j, 1, 50 + center_ x_extra +
25 * (j-1y, i*30 + 2 * extra_vert);
}
_drawchar (counter, g);
}

//done - finally!
//display success window
if ((finished() == true) & (success == false))
{ success = true;
Frame fs = new PuzzleFrame();
PuzzlePanel Success pps = new PuzzlePanel Success (counter,
fs);

GridBagLayout gbls = new GridBagLayout () ;
fs.setLayout (gbls) ;

GridBagConstraints gbcs = new GridBagConstraints();
gbcs.weightx=1.0;

gbcs.weighty=1.0;

gbcs.gridx=0;

gbcs.gridy=0;

gbcs.anchor = GridBagConstraints.NORTH;

gbcs.fill = GridBagConstraints.BOTH;

gbcs.gridwidth = GridBagConstraints.REMAINDER;
gbls.setConstraints (pps, gbcs);

fs.add (pps);

fs.pack():
fs.resize(140,140);
fs.show();
}
if ((e.target == close button) & (e.id == e.ACTION_EVENT))

{ fpp.hide();
fpp.dispose() ;
return true;

return super.handleEvent (e);

112

import java.awt.*;
import java.util.*;
import java.lang.*;
import java.io.*;

public class PuzzlePanel_Success.extends Panel

{

private Button close_button;
private Label ls; //how long it took
private Frame £f; -

public PuzzlePanel Success (int counter, Frame fs)

{
super () ;

f = £s;

String sCounter;

sCounter = java.lang.Integer.toString(counter);

ls = new Label ("Congratulation! Success of moves: " +
sCounter, Label.CENTER) ;

close button = new Button("Close");
close button.setBackground(Color.lightGray) :

this.setBackground(Color.orange) ;

GridBagLayout gblps = new GridBagLayout();
this.setLayout (gblps) ;

GridBagConstraints gbcps = new GridBagConstraints();
gbcps.gridx=0;

gbcps.gridy=0;

gbcps.anchor = GridBagConstraints.NORTH;

gbcps.fill = GridBagConstraints.BOTH;
gblps.setConstraints(ls, gbcps):

this.add(1ls);

gbcps.gridx=0;
gbcps.gridy=GridBagConstraints.RELATIVE;
gbcps.anchor = GridBagConstraints.SOUTH;
gbcps.fill = GridBagConstraints.NONE;
gbcps.gridwidth = GridBagConstraints.REMAINDER;
Insets yada_yada_yada = new Insets(40, 0, 0, 0);
gbcps.insets = yada_yada yada;
gblps.setConstraints (close_button, gbcps);
this.add(close_button);

}

public boolean handleEvent (Event e)
{

if ((e.target == close_button) & (e.id == e.ACTION_EVENT))
{ £.hide():

113

f.dispose();
return true;

}

if (e.id == e.WINDOW_DESTROY)
{ f.hide();

f.dispose();

return true;

}

return super.handleEvent (e);

114

References

Colouris, G., Dollimore, .J. and Kindberg, 1. (Eds) (2001). Distributed Systems,

Concepts and Design, 3" ed, Addison Wesley. (DSCD)

Roberta M. Roth (2000). Alan Dennis and Barbara Haley Wixom John Wiley &

Sons, Inc. System Analysis and Design, 2 ed.

Roger A. Lurie (2003). A Recipe for Success: Departmental Client Server Application

Development. Arizona State University.

P. Sellapan (2000). Database Management. Theory and Practice. Sejana Publishing,

2™ ed.

Halvorson, M. (2003). Microsoft Visual Basic 6.0 Professional step by step. 2™ ed.

Microsoft Press publisher.

Halvorson, M. (1998). Microsoft Visual Basic 6.0 Step by step: Quick and self-paced

Training in Microsoft Visual 6.0. Microsoft Press publisher.

Pfleeger, L. 5. (2001). Software engineering Theory and Practical. 2™ ed. Prentice

Hall publisher.

H. M. Dietel, P. J. Dietel (2002). Java: How to Program. Prentice Hall, 4™ ed.

115

H. M. Dietel, P. J. Dietel, S. E Santry (2002). Advanced Java 2 Platlbrm: How to

Program. Prentice Hall, 1% ed.

Andrew S. Tanenbaum (2003). Computer Networks. Pearson Education Inc, 4" ed.

DATANET. (2002). Internet For Business.

URL: http ://www.Datanet.uk/terminology.htm

Sliders Puzzle for Java.

URL: http ://www.mazeworks .com/sliders/index.htm

URL: http ://www.ecst.csuchico.edu/~tfsmiles/java/server/

116

Bibliography

Niu Swee Ling (1999/ 2000). Thesis report: Digital Network Learning Server

(Digital Network Learning Environment).

Mani Subramaniam (2000). Network Management: Principles and Practice. Addison

Wesley. (29-04-2003).

URL: http://computer.howstuffworks.comlau2mented-reality. htm/ (21-04-2003)

URL: http://www.unix. ualberta.ca/ADSM/admgde/a45eaaO3 .htmn (30-04-2003)

URL: http://www benchmarkresources.com/database_vendors.htinl (30-04-2003)

117

