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ABSTRACT 

The influence of buffer composition on the conformational stability of native 

and calcium-depleted Bacillus licheniformis α-amylase (BLA) was investigated against 

guanidine hydrochloride (GdnHCl) denaturation using circular dichroism, fluorescence 

and UV-difference spectroscopy. Buffers used in these experiments were:

0.05 M sodium phosphate buffer, pH 7.5, 0.15 M Tris-HCl buffer, pH 7.5,

0.15 M HEPES buffer, pH 7.5 and 0.15 M MOPS buffer, pH 7.5. Differential effects of 

buffer composition on GdnHCl denaturation of BLA were evident from the magnitude 

of these spectral signals, which followed the order: sodium phosphate > Tris-HCl > 

HEPES > MOPS. These effects became more pronounced when calcium-depleted BLA 

was used in the incubation mixture as revealed by a lower relative mean residue 

ellipticity, lower relative fluorescence intensity, and higher change in emission 

maximum. Depletion of calcium from BLA suggested a decrease in the protein 

conformational stability. Gel chromatographic analyses of native, 3 M GdnHCl-

denatured and 6 M GdnHCl-denatured BLAs were made in different runs on Sephacryl 

S-200 HR column (1.0×30 cm), equilibrated with these buffers. The results obtained 

clearly suggested formation of similar denatured states and aggregated forms of BLA in 

3 M and 6 M GdnHCl in the presence of these buffers. However, quantitative 

differences in BLA aggregation were noticed in these buffers in the presence of 6 M 

GdnHCl. In view of the above, spectral results on BLA stability against GdnHCl 

obtained with different probes (MRE, fluorescence intensity and emission maximum) in 

different buffers should be treated with caution.  
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ABSTRAK 

Pengaruh komposisi buffer terhadap penstabilan struktur asli dan ketiadaan- 

CaCl2 Bacillus licheniformis α-amilase (BLA) yang dikaji dengan denaturasi 

menggunakan GdnHCl dengan ‘circular dichroism’ (CD), fluoresens dan ‘ultraviolet’ 

(UV) perbezaan spectroskopik. Buffer-buffer yang telah diselidik oleh kajian ini adalah: 

0.05 M sodium phosphate buffer, pH 7.5, 0.15 M Tris-HCl buffer, pH 7.5, 0.15 M 

HEPES buffer, pH 7.5 and 0.15 M MOPS buffer, pH 7.5. Berbezaan kesan terhadap 

komposisi buffer dengan ‘GdnHCl-denatured BLA’ terbukti daripada magnitud isyarat 

spectrum, yang diikuti turutan sodium fosfat > Tris - HCl > HEPES > MOPS. Kesan-

kesan ini menjadi lebih ketara apabila ketiadaan-CaCl2 BLA dalam campuran 

pengeraman mendedahkan ‘mean residue ellipticity’ yang lebih rendah, relative intensiti 

fluoresens lebih rendah dan perubahan yang lebih tinggi dalam ‘emission maksimum’. 

Ketiadaan-CaCl2 BLA, mencadangkan kekurangkan penstabilan protein. Gel 

kromatografi analisis dengan sruktur asli, 3 M ‘GdnHCl-denatured’ dan ‘6 M GdnHCl-

denatured BLAs’ yang diperolehi dengan mengunakan Sephacryl S-200 HR column 

(1.0×30 cm), dengan buffer-buffer ini. Hasil kajian yang diperolehi, jelas mencadangan 

persamaan dalam penghasilan bentuk denaturasi dan agregat BLA dalam struktur asli,    

3 M ‘GdnHCl-denatured’ dan 6 M ‘GdnHCl-denatured’ dengan kehadiran buffer-buffer 

ini. Bagaimanapun, kuantitatif perbezaan dalam BLA agregat telah diperhati 

mengunakan buffer-buffer ini dengan kehadiran 6 M GdnHCl. Oleh itu, keputusan 

spektrum yang menunjukkan kestabilan BLA patut disimpulkan dengan berhati-hati 

dengan kehadiran pengagregatan. 
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1.    INTRODUCTION 

α-Amylases are among the most important enzymes used in modern industry due 

to their application in the production of maltodextrin, alcohol, detergent, baking and 

textile industries (Pandey et al., 2000; Ammar et al., 2002; Bessler et al., 2003; 

Nagarajan et al., 2006). α-Amylases can be obtained from plants, animals and 

microorganisms. However, bacterial and fungal enzymes dominate the applications in 

the industrial processes (Souza and Magalhaes, 2010). Bacillus licheniformis α-amylase 

(BLA) has been the most popular enzyme in the present industry due to its remarkable 

thermostability (Tm ~103°C), (Declerck et al., 2002; Fitter and Haber-Pohlmeier, 2004) 

In fact, being a thermophilic enzyme from a mesophilic organism, BLA is even more 

thermostable than other α-amylases from thermophilic organisms, e.g. Bacillus 

amyloquefaciens α-amylase (BAA) and Bacillus stearothermophilus α-amylase (BStA) 

(Tomazic and Klibanov, 1988). Therefore, BLA has been the choice of many 

researchers to reveal the structure-fuction relationship of amylases (Tomazic and 

Klibanov, 1988; Machius et al., 1995; Khajeh et al., 2001, Nazmi et al., 2006). 

Although BLA shows similarity in the number of amino acid residues and molecular 

weight with other amylases, it possesses a much longer half-life (T1/2 ~ 270 min) than 

other amylases (Table 1.1) under similar conditions (Tomazic and Klibanov, 1988). The 

presence of a few salt bridges in BLA, which are absent in BAA might be responsible 

for its higher thermostability (Tomazic and Klibanov, 1988; Machius et al., 1995). 

Furthermore, calcium ions have also been found to increase the thermal stability of BLA 

(Vihinen and Mantsala, 1989; Violet and Meunier, 1989; Feller et al., 1999). In view of 

the resistance towards chemical denaturation, shown by thermophilic proteins (Griffin 

et al., 2003), it would be of interest to study GdnHCl denaturation of BLA under 

different experimental conditions. Recently, a few papers have been published on 

GdnHCl denaturation of BLA, suggesting the importance of calcium and lysine residues 
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               Table 1.1    Properties of several α-amylases from Bacillus species. 

                           *Half-life of these enzymes was determined at 90°C, pH 6.5 (Tomazic & Klibanov, 1988 
 

Property         Bacillus licheniformis Bacillus amyloliquefaciens Bacillus stearothermophilus 

No. of residues                     483 

            (Yuuki et al., 1985) 

                 483 

     (Takkinen et al., 1983) 

 

              515 

     (Nakajima et al., 1985) 

Molecular weight (Da)                   58 000 
(Damodara Rao et al., 2002) 

             54 778 
     (Takkinen et al., 1983) 
 

           78 000 
     (Inagaki et al., 1986) 

Identity with BLA (%)                         100 
            (Declerck et al., 2002) 

                  81 
     (Declerck et al., 2002) 
 

              64 
     (Declerck et al., 2002) 

*Half-life (T1/2 min)*                     270 
            (Declerck et al., 2002) 

                  2 
     (Declerck et al., 2002) 
 

              50 
     (Declerck et al., 2002) 

Melting temperature                     101 
            (Fitter & HaberPohlmeir 2004) 

                  86 
    (Fitter & Haber-Pohlmeir 2004) 

 

               - 
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towards its stability (Strucksberg et al., 2007; Tan et al., 2011). The role of other 

extrinsic factors in BLA stabilization remains to be explored. 

Problem statement 

In view of the above, several research questions arose in mind: 

1) Does buffer composition affect the GdnHCl denaturation behavior of BLA?  

2) Is the stabilizing effect of calcium on BLA similar in different buffers? 

3) Does buffer composition affect GdnHCl-induced aggregation of BLA? 

Objectives of the study 

In order to address the above questions, the work presented in this dissertation was     

undertaken with the following objectives: 

1) To study the effect of different buffer composition on GdnHCl denaturation of 

native BLA. 

2) To study the effect of different buffer compositions on GdnHCl denaturation      

of calcium-depleted BLA. 

3) To study GdnHCl-induced aggregation of native BLA in the presence of 

different buffers. 
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2.    LITERATURE REVIEW 

2.1    Background 

Proteins preserve their native globular structures in order to display their 

biological functions. This conformational state of a protein, unique to itself, is formed 

as a result of folding involving different non-covalent interactions and disulfide bonds. 

Hydrophobic interactions and hydrogen bonds play an important role in stabilizing most   

proteins (Tanford, 1997; Machius et al., 2003; Ahmad et al., 2005; Pace et al., 2009). 

Under specific conditions i.e. pH, temperature, pressure and salinity, a protein has to 

maintain its native globular structure to prevent loss of biological activity (Imoto, 1973; 

Fagain and Kennedy, 1991; Fagain, 1995). An enzyme’s biological activity in solution 

is built upon its three-dimensional conformation, which in turn is governed by its amino 

acid sequence (Anfinsen, 1973). About ~23 % of the total number of amino acid 

residues are distributed at the surface of the protein (Miller et al., 1987; Isom et al., 

2010). Maintenance of the native structure of the protein is highly dependent on the 

environment (habitat) in which the organism thrives. Although thermophilic and 

mesophilic proteins are obtained from different sources, they are very similar in their 

native folded conformation (Arnold et al., 2001; Motono et al., 2001; Shiraki et al., 

2004; Luke et al., 2007). Elucidation of the mechanism of thermostability of these 

proteins, has been made by various groups using techniques such as site-directed 

mutagenesis and chemical modification (Declerck et al., 1990; Declerck et al., 1995; 

Singh and Kayastha, 2014; Oliveira et al., 2015). Amylolytic α-amylase is a good 

example representing thermophilic protein, which can be obtained from both 

thermophilic and mesophilic organisms (Declerck et al., 2002; Fitter, 2005). It offers 

greater advantage as a source of enzyme for industrial use, which in most cases involves 

endothermic processes (Sterner and Liebl, 2001; Vieille and Zeikus, 2001). 
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Any structural alteration in the protein molecule may affect its function. 

Incorrect folding of a protein along with nonspecific interactions among various side 

chains may result in protein aggregation leading to the development of many protein 

folding diseases such as prion, Alzheimer and Parkinson’s diseases (Zhang et al., 1995; 

Wood et al., 1996; Selkoe, 2004; Broadley and Hartl, 2009). Exposure of a protein to 

chemical denaturants during operational conditions of many industrial processes may 

lead to the loss of its function (Alonso and Dill, 1991; Pace et al., 2000; Iyer and 

Ananthanarayanan, 2008). Therefore, a detailed understanding about the mechanism of 

protein folding and protein stability involving the characterization of various 

intermediates and denatured states of a protein are essential (Ptitsyn et al., 1990; Ramos 

et al., 2004; Gianni et al., 2007; Sancho, 2013;Tsytlonok and Itzhaki, 2013). The most 

common chemical denaturants used for the protein denaturation studies are urea and 

guanidine hydrochloride (GdnHCl) (Tanford, 1968; Rizzolo and Tanford, 1978; Alonso 

and Dill, 1991; Dill and Shortle, 1991). These denaturants weaken both hydrophobic as 

well as polar interactions at higher concentrations (Dill and Shortle, 1991).  

α-Amylases (α-1,4-glucan-4-glucanohydrolases, EC 3.2.1.1) are members of the  

endo-amylase family and catalyze the cleavage of α-D-(1,4) glycosidic linkages of 

starch (Machius et al., 1995; Pandey et al., 2000; Fitter, 2005). These enzymes are long 

established in industries involving starch processing, beverage, textile and detergent 

technologies (Asghari et al., 2004). In view of the industrial operations at high 

temperatures (Tm ~ 103°C), thermostable α-amylases specifically from the Bacillus 

genus have attracted greater attention in modern industrial practices (Pandey et al., 

2000; Nielsen and Brochert, 2004; Roy et al., 2013; Park et al., 2014). Bacillus 

licheniformis α-amylase (BLA) has been the preferred enzyme over other α-amylases in 

the starch processing industry involving a high operational temperature (Janecek and 

Balaz, 1992).  
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2.2    Isolation and purification 

      α-Amylases are widely distributed in nature and have been isolated from various 

sources such as fungi, bacteria, plants and animals. Among the microorganisms, 

Bacillus sp. are the most common sources for α-amylases (Table 2.1). Bacillus 

amyloliquefaciens (BAA) and Bacillus licheniformis (BLA) from Bacillus sp and 

Aspergillus oryzae, Aspergillus niger and Aspergillus awamori from Aspergillus sp 

(Table 2.1), have been frequently used for the commercial production of the enzyme 

(Sundram and Murty, 2014). Production of α-amylases is usually determined by the 

strain of the bacterial species, medium composition and culture conditions (Lin et al., 

1998; Okolo et al., 2000). Different techniques of fermentation such as solid-state 

fermentation, submerged fermentation and batch and fed batch fermentation have been 

employed to produce α-amylases. Solid-state fermentation is preferred due to its 

simplicity and similarity to the natural growth conditions of the organism (Kunamneni 

et al., 2005; Sun et al., 2010).  

     Table 2.2 shows different purification strategies, which have been employed for 

α-amylases from Bacillus species. Initially, precipitation with ethanol or acetone is 

carried out to obtain the crude enzyme preparation, which is then subjected to various 

chromatographic procedures such as gel chromatography, ion exchange 

chromatography or hydrophobic chromatography. Hamilton et al. (1999) have used 

affinity purification employing α-Cyclodextrin-Sepharose 6B chromatography to 

prurify α-amylases with high purification fold. 
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Table 2.1  α-Amylase producing microorganisms. 

Microorganism Reference 

Fungi  

Aspergillus awamori KT-11 Matsubara et al. (2004) 

Aspergillus ficum Hayashida & Teramoto  (1986) 

Aspergillus niger AM07 Omemu et al. (2005) 

Aspergillus oryzae VB6 Joel and Bhima (2012) 

Streptomyces sp.  No 4. Primarini & Ohta (2000) 

Bacteria  

Anoxybacillus contaminas Lefuji et al. (1996) 

Bacillus amyloliquefaciens Demirkan et al. (2005) 

Bacillus licheniformis Arasaratnam & Balasubramaniam (1992) 

Bacillus sp. IMD 434 

Bacillus sp. IMD 435 

Bacillus sp. TS-23 

Bacillus stearothermophilus 

Hamilton et al. (1999a) 

Hamilton et al. (1999b) 

Lin et al. (1998) 

Kim et al. (1989) 

Bacillus subtilitis 65 Hayashida et al. (1988) 

Cytophaga sp. Jeang et al. (2002) 

Streptococcus bovis 148 Satoh et al. (1997) 
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Table 2.2    Production of α-amylase from Bacillus species. 

 
Microorganism 
 

 
Purification strategy 

 
Purification 
fold 

 
Yield 
(%) 

 
Reference 

 
Bacillus sp. 
IMD 370 

 
Ethanol precitation 
 
DEAE-BioGel A 
chromatography 
 
Superose 12 gel 
chromatography 
 

 
104.3 

 
14.9 

 
Mctigue et al. 
(1995) 

 
Bacillus sp. 
TS-23 

 
Raw starch adsorption 
 
Sephacryl S-100 HR 

 
708.5 

 
13.2 

 
Lin et al.(1988) 

 
 
Bacillus sp. 
IMD 434 

gel chromatography 
 
α-Cyclodextrin-Sepharose 6B 
chromatography 
 

 
 
375 

 
 
65 

 
 
Hamilton et al. 
(1988) 

 
Bacillus sp. 
IMD 434 

 
Acetone precipitation 
 
Resource Q column 
chromatography 
 
Phenyl-Sepharose 
chromatography 
 

 
266 

 
10 

 
Hamilton et al. 
(1999a) 

 
Bacillus sp. 
IMD 435 

 
α-Cyclodextrin-Sepharose 6B 
chromatography 
 

 
774 

 
65 

 
Hamilton et al. 
(1999b) 

 
Bacillus 
licheniformis 
NHI 

 
40-60% (NH4)2SO4 
fractionation 
 
Sephadex G-100 
gel chromatography 
 
Sepharose mono Q 
chromatography 
 

 
3.08 

 
15.9 

 
Hmidet et al.  
(2008) 
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Table 2.2 continued 
 
 
Bacillus  
licheniformis 

 
70% (NH4)2SO4 fractionation 
 
DEAE-Sepharose 
chromatography 
  
Sephadex G-75 
gel chromatography 
 

 
187.1 

 
19.5 

 
Liu et al. 
(2008) 

 
Bacillus sp. 
YX-1 

 
60% (NH4)2SO4 fractionation 
 
DEAE-Sepharose 
chromatography 
 
Sephadex G-75 
gel chromatography 
 

 
34 

 
6.6 

 
Liu & Xu 
(2008) 
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2.3    Physicochemical properties 

 As shown in Table 2.3, techniques of sedimentation equilibrium and SDS-PAGE 

have yielded different values of the molecular weight of BLA, being 48,700 Da and 

58,000 Da, respectively (Chiang et al., 1979; Damodara Rao et al., 2002). However, a 

low value of the molecular weight (22, 500 Da) has been reported on the basis of gel 

filtration results (Saito, 1973). Such discrepancy in the molecular weight obtained with 

gel filtration data can be attributed to the possible interaction of BLA with the gel 

matrix (Kruger and Lineback, 1987). Dynamic light scattering method has produced a 

value of 3.20 nm for the Stokes radius of BLA (Fitter and Haber-Pohlmeier, 2004). 

BLA has been characterized as a neutral protein on the basis of its isoelectric point 

(7.18), obtained from isoelectric focusing (Esteve-Romero et al., 1996). However, a 

value of 6.0 has been found for the isoelectric point using the charge ladder technique 

(Shaw et al., 2008). BLA shows maximum activity at pH 6.0 (Endo, 1999) and posseses 

high termostability as reflected from its Tm value, 103°C (Fitter and Haber-Pohlmeier, 

2004). About 26% helical structure and 24% β-structure constitute the secondary 

structures of BLA (PDB entry code1BLI). 

2.4   Structural organization 

2.4.1   Amino acid composition 

 BLA is a single polypeptide chain, consisting of 483 amino acid residues (PDB 

entry code 1BLI). As shown in Table 2.4, the total number of acidic amino residues  

(61) is slightly lower than the total number of basic amino acid residues (73).  Although  

BLA lacks cysteine residue, but the enzyme is characterized by the abundance of 17 

tryptophan residues. Presence of 31 tyrosine residues further adds to its absorptivity.  
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Table 2.3      Physicochemical properties of Bacillus licheniformis α- amylase. 

Property Value Reference 

Molecular mass 
  

     - Gel filtration 22, 500 Da Saito (1973) 

     - Sedimentation equilibrium 48, 700 Da Chiang et al. (1979) 

     - SDS-PAGE 58, 000 Da Damodara Rao et al. (2002) 

Stokes radius    

     - Dynamic light scattering 3.2 nm Fitter & Haber- Pohlmeier 
(2004) 

Isoelectric point   

     - Isoelectric focusing 7.18 Esteve-Romero et al. (1996) 

     - Charge ladder 6.00 Shaw et al. (2008) 

Melting temperature (Tm) 103 °C Fitter & Haber-Pohlmeier 

(2004) 

pH optimum 

Secondary structures 

6.0 Endo (1988) 

     - Helices (α- and 310) 26 % PDB entry code 1BLI 

     - β-forms 24 % PDB entry code 1BLI 
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Table 2.4     Amino acid composition of Bacillus licheniformis α-amylase.* 
 

Amino acid No. of residues 

Glycine 46 (45) 

Alanine 35 

Valine 32 

Leucine 29 (28) 

Isoleucine 20 

Serine 27 (26) 

Threonine 27 

Proline 15 

Aspartic acid 

Glutamic acid 

Asparagine 

Glutamine 

Histidine 

Lysine 

37 

24 (25) 

23 (25) 

19 (20) 

24 

28 

Arginine 

Phenylalanine 

Tyrosine 

Tryptophan 

Methionine 

21 (22) 

21 (20) 

31 (30) 

17 

7 

Total 483 

*PDB entry code 1BLI  
The number of residues in brackets show the variations in the number of residues 
obtained from cDNA (Yuuki et al., 1985). 
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2.4.2    Primary structure     

    Figure 2.1 shows the primary structure of BLA, which is arranged in the form 

of three domains, namely A, B and C without any disulfide linkage (Machius et al., 

1995). Domain A (N-terminal domain) is the most preserved domain in various α-

amylases. It consists of residues 1-110 and 203-396 in the primary sequence (Machius 

et al., 1995). Domain B, which is least similar region of BLA with higher degree of 

structural complexity is comprised of residues, 111-121 and 133-140 (Machius et al., 

1998). A stretch of residues 393-483 forms domain C, which is well-conserved among 

different α-amylases with the exception of barley α-amylase (Kadziola et al., 1994). 

2.4.3    Three-dimensional structure 

 Figure 2.2 shows the three-dimensional structures of various α-amylases. Most 

of them consist of a monomer with three domains (domains A, B and C). Domain A 

forms the central part as β/α-barrel. Domain B along with the central domain A 

constitute the substrate binding cleft while domain C is positioned opposite to the 

central β/α-barrel. These enzymes show the presence of at least one conserved calcium  

binding site (Violet and Meunier, 1989; Fitter et al., 2001; Nielsen et al., 2003). 

 Domain B, which is the least homologous in different α-amylases is formed 

from six loosely-connected and twisted antiparallel β sheets and protrudes from domain 

A as a hump (Machius et al., 1995).  Figure 2.3 shows the possible hydrogen bonding 

pattern in domain B of BLA, which is responsible for the stabilization of β sheet 

structures.  
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Figure 2.1 Primary structure of BLA. The complete amino acid sequence 

corresponding to mature BLA is adapted from Protein Data Bank (entry code 1BLI). 

The position of α-helices and β-sheets as determined from BLA crystal structure 

(Machius et al., 1998) are indicated by spirals and arrows respectively, coloured in 

red and yellow. dblia1 (dark blue) and dblia2 (purple) refer to glycosyl hydrolase 

domain and TIM β/α barrel, repectively.  

Univ
ers

ity
 of

 M
ala

ya



 

 15 

                          

                                   -

                                 

Figure 2.2  Three-dimensional structures of various α-amylases. (A) α-amylase from 

Bacillus licheniformis (PDB entry code 1BLI), (B) α-amylase from Bacillus 

amyloliquefaciens (PDB entry code 3BH4), (C) α-amylase from Aspergillus oryzae 

(TAKA) (PDB entry code 6TAA), (D) α-amylase from Alteramonas haloplanctis 

complexed with Tris (PDB entry code 1AQM), (E) α-amylase from Bacillus subtilis 

complexed with maltopentaose (PDB entry code 1BAG), (F) α-amylase from porcine 

pancrease (PPA) complexed with the proteinaceous inhibitor Tendamistat (PDB entry 

code 1BVN). 

D 

F 

A B 

C 
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Figure 2.3     A representation of all β structures in domain B of BLA. 

(Reprinted from Journal of Molecular Biology, 246, Machius, M., Wiegand, G. and 

Huber, R., Crystal structure of calcium-depleted Bacillus licheniformis α-amylase at  

2.2 Å resolution, 545−559 (1995), with permission from Elsevier.)  
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2.4.4   Calcium binding site  

 BLA contains three calcium binding sites, as shown in Figure 2.4. The first site 

(Ca I) is located at the interface between domain B and the C-terminus of the central 

barrel. The second calcium binding site (Ca II) is also located in close proximity to Ca I 

in domain B of BLA. The third calcium binding site (Ca III) lies at the interface 

between domains A and C (Figure 2.4) (Machius et al., 1998). Table 2.5 shows the 

distance between the metal ions in BLA and its ligand. The coordination geometry of 

Cal III differs from Ca I and Cal II in being the position trans to the bidentate aspartate, 

occupied by a water molecule (Machius et al., 1998). 

2.5    Stability 

 The stability of α-amylases has been extensively studied due to their importance 

in the industrial processes.  The protein stability is widely reflected from its tolerance 

towards several factors, such as temperature, pH and chemical denaturants (Fagain and 

Kennedy, 1991; Fagain, 1995). 

2.5.1   pH  

 The stable pH range differs in various α-amylases. For example, Thermus 

filiformis α-amylases remain active in the pH range, of 4.0−8.0 (Egas et al., 1988), 

whereas Bacillus subtilitis α-amylases are stable in the pH range, 4.0−9.0 (Nagarajan et 

al., 2006).  The stability of BLA has been found to be in the pH range from 7.0 to 9.0 

(Krishnan and Chandran, 1983). Furthermore, BLA has been shown to possess an 

activity of 95 % and 50 % at pH 10.0 and pH 3.0, respectively (Krishnan and Chandran, 

1983). α-Amylases from Clostridium acetobutylicum and Bacillus sp. KR-810, have 

shown stability under pH  range, 3.0–5.0 (Paquet et al., 1991) 
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Figure 2.4   Tertiary structure of Bacillus licheniformis α-amylase. The calcium and 

sodium ions bound to the protein in its native form are shown. Domain A, shown in red, 

is a β/α TIM barrel. Doman B is colored in green and domain C in blue. The three 

calcium ions are shown in blue and the sodium ions is shown in gold. 

(Reprinted from Structure, 6(3), Machius, M., Declerck, N., Huber, R. and Wiegand, R. 

Activation of Bacillus licheniformis α-amylase through a disorder →order transition of 

the substrate-binding site mediatedly by a calcium-sodium-calcium metal triad, 281-292 

(1998), with permission from Elsevier.) 
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Table 2.5   Distances between the metal ions in Bacillus licheniformis α-amylase 
and its ligands.* 

 
Metal ion  

 
Ligand 

 
Distance (Å) 
 

Calcium I  
Asn104 OD1 
Asp194 O 
Asp194 OD1 
Asp200 OD1 
Asp200 OD2 
His235 O 
Wat 

 
2.4 
2.4 
2.5 
2.4 
3.0 
2.4 
2.6 

Calcium II  
Asp161 OD1 
Asp161 OD2 
Ala181 O 
Asp183 OD1 
Asp202 OD2 
Asp204 OD1 
Wat 

 
2.6 
2.6 
2.4 
2.4 
2.5 
2.6 
2.6 

Calcium III  
Gly300 O 
Tyr302 O 
His406 O 
Asp407 OD2 
Asp430 OD1 
Asp430 OD2 
Wat 

 
2.6 
2.3 
2.6 
2.3 
2.6 
2.6 
2.9 

Sodium  
Asp161 OD1 
Asp183 OD2 
Asp194 OD1 
Asp194 OD2 
Asp200 OD2 
I1e201 O 

 
2.4 
2.7 
3.1 
2.5 
2.4 
2.5 

	

	

(Reprinted from Structure, 6(3), Machius, M., Declerck, N., Huber, R. and Wiegand, R. 

Activation of Bacillus licheniformis α-amylase through a disorder →order transition of 

the substrate-binding site mediatedly by a calcium-sodium-calcium metal triad, 281-292 

(1998), with permission from Elsevier.)	
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2.5.2   Temperature 

 The optimum temperature for most of α-amylases has been found to lie in the 

range, 40−65 °C (Sun et al., 2007). BLA possesses an optimum temperature of 90 °C 

(Fitter et al., 2001). However, this thermostability is affected by the presence of calcium 

ions. Thermal stability of various α-amylases has been studied using calorimetry and 

spectroscopic techniques. The half life (T1/2) of BLA has been shown to be much longer 

(270 min) compared to Bacillus amyloliquefaciens α-amylase (BAA) (2 min) and 

Bacillus stearothermophilus α-amylase BStA (50 min) under similar conditions of 90 

°C, pH 6.5 (Table 1.1) (Declerck et al., 2002). 

2.5.3   Chemical denaturants 

 Several studies on GdnHCl-denaturation of BLA have been made to investigate 

the role of calcium towards BLA stability (Fitter and Habber-Pohlmeier, 2004; Duy and 

Fitter, 2006; Strucksberg et al., 2007; Tan et al., 2010). GdnHCl-induced structural 

changes in BLA have been shown at 1.5 M GdnHCl using emission maximum probe. 

Fully unfolded BLA has been found to remain soluble without any aggregation at 6.0 M 

GdnHCl (Strucksberg et al., 2007). In the presence of 2 mM CaCl2, both native and 

calcium-depleted BLA have shown relatively higher stability against GdnHCl (Tan et 

al., 2010). Fluorescense quenching studies with potassium iodide have revealed the 

exposure of a few (8) Trp residues in the partially folded state and GdnHCl denaturation 

of BAA has been found free from any aggregated forms (Zhang et al., 2009). GdnHCl 

denaturation of  Bacillus subtilis α-amylase (BSUA) has been shown  to be reversible at 

pH 7.0, when monitored by intrinsic fluorescence measurements and proteolytic 

degradation (Haddaoui et al., 1997). The first renaturation step depicting conversion 
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from a totally denatured state to a partially-structured state of the protein within 1 

second. This intermediate has been found  resistant towards proteolytic degradation and 

requires calcium for its transformation into native state (Haddaoui et al., 1997)   

Aqueous, ready-to-use enzyme solutions are preferred for industrial applications. 

However, most of these are not stable in solution for a long period. Hence, additives in 

enzyme formulation such as metal ions (Brennan et al., 2003; Wu et al., 2015) and other 

stabilizing agents including buffer components are used to stabilize the enzyme (Ulrika 

et al., 2004). Buffers, such as cacodylate, MES, HEPES, Tris and phosphate buffers 

have been found to produce differential effects with respect to deoxynucleotidyl 

transferase-catalyzed polymerization of deoxynucleoside triphosphates (Ugwu and 

Apte, 2004). Therefore, the effect of buffer composition on the stability of BLA was 

studied. The role of calcium in the stability against GdnHCl denaturation of native and 

calcium depleted BLAs in the presence of different buffers was also investigated. 
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3.    MATERIALS AND METHODS 

3.1     Materials 

3.1.1  Protein  

α-Amylase from Bacillus licheniformis (BLA) (93−100% by SDS-PAGE) (Lot 

No. 018K7018V) was purchased from Sigma-Aldrich Co., USA. The commercial BLA 

preparation (partially saturated with calcium) was used as such in these studies without 

any further treatment and is termed as BLA / native BLA. 

3.1.2   Reagents used in gel chromatography 

Sephacryl S-200 HR, MW range 5-250 kDa (lot 116K0771) and blue dextran 

(lot 066K1083) were obtained from Sigma-Aldrich Co., USA. L-Tyrosine (lot 6380446) 

was supplied by Merck, Germany.  

3.1.3   Reagents used in denaturation experiments 

Guanidine hydrochloride (GdnHCl) (≥99 % pure), 3-(N-

morpholino)propanesulfonic acid sodium salt (MOPS), 4-(2-hydroxyethyl)piperazine-1-

ethanesulfonic acid sodium salt (HEPES), ethylene glycol-bis (2-aminoethylether)-

N,N,N’,N’-tetraacetic acid (EGTA), sodium dihydrogen phosphate and disodium 

hydrogen phosphate were purchased from Sigma-Aldrich Co., USA. Tris 

(hydroxymethyl)aminomethane was obtained from AMRESCO, USA. Hydrochloride 

acid (HCl) was the product of Systerm, Malaysia. 
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3.1.4   Miscellaneous 

Standard buffers of pH 7.0 and pH 10.0 as well as dialysis tubing of 27 mm 

diameter were purchased from Sigma-Aldrich Co., USA. Parafilm ‘M’ was the product 

of Bemis Flexible Packaging, USA. PVDF hydrophilic membrane (0.45µm) Millex HV 

syringe driven filter units were obtained from Millipore Corporation, Ireland. Cellulose 

nitrate membrane filters (0.22 and 0.45 µm pore size) were supplied by Merck Milipore, 

Germany.  

All glass distilled water or Ultrapure (Type 1) water produced by Milli-Q water 

purification system (Merck Millipore, Germany) was used throughout these studies. All 

experiments were carried out at room temperature (~ 25°C). 

3.2     Methods 

3.2.1   pH measurements 

pH measurements were made on Delta 320 pH meter (Mettler-Toledo GmbH, 

Switzerland) using a HA405-K2/120 combination electrode. The pH meter was 

routinely calibrated at room temperature with standard buffers of pH 7.0 and pH 10.0 

for pH measurements in the neutral and alkaline pH ranges, respectively. 

3.2.2   Preparation of calcium-depleted BLA 

The method described by Nazmi et al (2006) was used to prepare              

calcium-depleted BLA (Ca-depleted BLA) with slight modification. Ca-depleted BLA 

preparation was made by dialyzing the commercial BLA solution against 150 mM 

Tris/20 mM EGTA buffer, pH 7.5 overnight with three changes in the same buffer. 

Removal of EGTA from the dialyzed sample was performed by dialysis against the 

desired buffer (50 mM sodium phosphate, 150 mM Tris-HCl, 150 mM HEPES and     
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150 mM MOPS) of   pH 7.5.  Dialysis was carried out at 4°C for 24 h and the dialyzed 

protein solutions were stored in plastic bottles in order keep them free from Ca2+ 

contamination. 

3.2.3    Preparation of the stock protein solutions 

BLA (native and Ca-depleted) stock solutions were prepared by dissolving a 

fixed amount of the protein in a fixed volume of the respective buffers (50 mM sodium 

phosphate, 150 mM Tris-HCl, 150 mM HEPES and 150 mM MOPS) of pH 7.5. All the 

protein solutions prepared in different buffers were filtered using PVDF membrane 

(0.45 µm) syringe-driven Millipore filter units before concentration measurements. The 

protein stock solutions were stored in plastic bottles at 4°C and were used within 2 

weeks. 

3.2.4   Determination of protein concentration 

 
            Protein concentration of the stock protein solutions was determined 

spectrophotometrically using a molar extinction coefficient of   139,690 M−1cm−1 at 280 

nm (Nazmi et al., 2007).  

3.2.5   Absorption spectroscopy  

Absorption measurements were carried out on a Shimadzu double-beam 

spectrophotometer (Shimadzu Corp., Japan), model UV-2450, using quartz cuvettes of 1 

cm path length. Scattering corrections, if required, were made by extrapolation of the 

absorbance values in the wavelength range, 360−340 nm to the desired wavelength, as 

described elsewhere (Tayyab and Qasim, 1986). 
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3.2.6    Fluorescence spectroscopy 

 
Fluorescence spectra of different protein solutions were obtained on a Hitachi 

fluorescence spectrophotometer (Hitachi Corp., Japan), model F-2500, equipped with a 

thermostatically-regulated cell holder. Occasionally, fluorescence measurements were 

also performed on Jasco spectrofluorometer (Jasco International Co., Japan), model FP-

6500.  The excitation and emission slits were fixed at 10 nm each, while the scan speed 

was maintained at 500 nm/min. 

The fluorescence spectra of the protein solutions (0.1 µM) taken in 1 cm path 

length quartz cuvette were recorded in the wavelength range, 305–400 nm after exciting 

the protein solutions at 280 nm.  Values of the fluorescence intensity were plotted 

against wavelength to get the fluorescence spectra. 

3.2.7     Circular dichroism spectroscopy 

Circular dichroism (CD) spectral measurements of different BLA preparations 

were carried out in the far-UV range (200−250 nm) on a Jasco spectropolarimeter 

(Jasco International Co., Japan), model J-815, attached to a Jasco PTC-423S/15     

Peltier-type temperature controller under constant nitrogen flow.  The CD facilities were 

kindly provided by the Malaysian Genome Institute, Bangi, Selangor, Malaysia. After 

calibrating the instrument with (+)-10-camphorsulfonic acid, spectral measurements 

were recorded at 25°C using a scan speed of 100 nm/min and a response time of 1 sec. 

A protein concentration of 1.7 µM in a 1 mm path length cuvette was used for spectral 

measurements. Each spectrum was the average of three scans and was corrected with 

the suitable blank.  
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The CD values were transformed into mean residue ellipticity (MRE) in 

deg.cm2.dmol−1 using the following equation: 

                                MRE = θ obs × ( MRW / 10 × c × l )                    (1) 

where ‘θobs’ is the observed ellipticity in millidegrees; ‘MRW’ is the mean residue 

weight, obtained by dividing the molecular weight of the protein (55,200 Da) with the  

total number of amino acid residues (483) in the protein (Yuuki et al., 1985); ‘c’ is the 

concentration of protein in mg/mL and ‘l’ is the optical path length in centimeters.  The 

MRE values, thus obtained were plotted against wavelength to get the far-UV CD 

spectra. 

3.2.8     Ultraviolet difference spectroscopy  

The ultraviolet (UV) absorption spectra of different protein solutions were 

recorded in the wavelength range, 250-305 nm, using a protein concentration of 5.2 µM 

in 1 cm quartz cells. UV difference spectra were obtained by subtracting the absorbance 

values of the native protein from the absorbance values of the GdnHCl-denatured BLA 

at each wavelength. These values were transformed into differential extinction 

coefficient and plotted against wavelength. 

3.2.9     Guanidine hydrochloride denaturation 

3.2.9.1  Preparation of guanidine hydrochloride stock solutions 

The stock guanidine hydrochloride (GdnHCl) solutions were prepared in 

different buffers, following the procedure described by Pace et al (1989) and its 

concentration was determined from the data of Nozaki (1972). 
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The weight fraction denaturant in the solution (W) was calculated using the 

following formula:

  
      (2) 

The ratio of the density of the solution to the density of water (d/d0) of the 

GdnHCl solution was calculated with the help of the value of ‘W’, using Eq. 3: 

 

                                  (3) 

The volume of the GdnHCl solution, V was obtained by substituting the value of 

d/d0 in the given formula:                              (4) 

 

 

The concentration of the stock GdnHCl solution was determined with the help of 

the following Eq. 5:                

                       (5) 

where MW is the molecular weight of GdnHCl (95.53 g/mole).   

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 28 

3.2.9.2   Guanidine hydrochloride denaturation experiments 

GdnHCl-denaturation experiments were carried out following the procedure 

described by Muzammil et al (2000). Different buffers (0.05 M sodium phosphate,                

0.15 M Tris-HCl, 0.15 M HEPES and 0.15 M MOPS) of similar pH value (7.5) were 

used to perform GdnHCl-denaturation experiments. All solutions for denaturation  

experiments were prepared in the same buffer.  

Increasing volumes of the buffer were added first to 0.5 ml of the stock protein 

solution  (native / Ca-depleted BLA) taken in different tubes, followed by the addition 

of different volumes of the stock (7 M) GdnHCl solution to obtain the desired 

concentration of the denaturant. The final protein concentration used was 0.1 µM and 

1.7 µM for fluorescence and CD spectral measurements, respectively. The tubes 

containing final reaction mixture (5.0 mL) were incubated for 12 h at room temperature 

(25°C) to achieve equilibrium before spectral measurements. Values of the MRE and 

the fluorescence intensity were transformed into the relative MRE and the relative 

fluorescence intensity in the same way as described earlier (Tan et al., 2010) and the 

data were plotted against GdnHCl concentration. These values at different GdnHCl 

concentrations were obtained by taking the MRE222nm or the fluorescence intensity at 

337 nm values of BLA in the absence of GdnHCl as 100%.  
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3.2.10   Gel chromatography 

AKTAprime plus (GE Healthcare, UK), equipped with a pre-packed Sephacryl      

S-200 HR column (Tricorn Column, GE Healthcare, UK) (1.0Í30 cm) was used to 

study the effect of GdnHCl on BLA aggregation.  

The void volume, V0 of the column was determined by injecting 1 mL of              

the blue dextran solution (5 mg/mL) prepared in the same buffer. GdnHCl-denatured  

BLA samples were prepared by incubating BLA in the desired GdnHCl 

concentration for 12 h at room temperature. The buffer contained the same 

concentration of GdnHCl for the chromatographic elution of GdnHCl-denatured BLA 

samples. Gel chromatography of different BLA samples (native BLA, 3 M and 6 M 

GdnHCl-denatured BLAs) was performed in various buffers (0.05 M sodium phosphate, 

0.15 M Tris-HCl, 0.15 M HEPES and 0.15 M MOPS) of the similar pH value (7.5) in 

the same way. A sample size of 1.25−1.50 mg/500 µL was used to inject various 

samples into the column and the elution was performed with a flow rate of 0.2 mL/min. 

Each experiment was repeated 2-4 times to check reproducibility. 
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4. RESULTS AND DISCUSSION 

4.1   Effect of buffer composition on guanidine hydrochloride denaturation of BLA 

GdnHCl denaturation of BLA was studied in different buffers using CD, 

fluorescence and UV difference spectral signals as probes.  

4.1.1   Circular dichroism   

 
        The effect of increasing GdnHCl concentrations on the secondary structural 

characteristics of BLA was studied using far-UV CD spectroscopy. Figure 4.1 shows 

the far-UV CD spectra of BLA in the absence and the presence of increasing GdnHCl 

concentrations, as obtained in 0.05 M sodium phosphate buffer, pH 7.5. As evident 

from the figure, the far-UV CD spectrum of the native state of BLA was characterized 

by the presence of two minima around 208 nm and 222 nm, characteristics of the α-

helical structure (Asghari et al., 2004; Shaw et al., 2008).  This was in agreement with 

the presence of 26 % α-helical content in BLA (PDB entry code 1BLI). The complete 

CD spectra of BLA could not be obtained in the presence of GdnHCl due to high signal 

to noise ratio at lower wavelengths. The presence of GdnHCl in the incubation mixture 

produced successive decrease in the MRE values in a concentration dependent manner. 

However, a small increase was also noted at higher GdnHCl concentrations. This can be 

more clearly seen in Figure 4.2, where the relative MRE222nm values are plotted against 

GdnHCl concentrations. Qualitatively similar far-UV CD spectra were obtained in 

different buffers. However, significant differences in the CD spectral signal were 

observed in different buffers at the same GdnHCl concentration. 
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Figure 4.1    Far-UV CD spectra of GdnHCl denaturation of native BLA in 0.05 M 

sodium phosphate buffer pH 7.5 at 25°C. GdnHCl concentrations from top to bottom 

were: 0.0, 0.25, 0.5, 1.0, 1.5, 2.0, 6.0, 2.5, 5.5, 5.0, 3.0, 3.5, 4.5 and 4 M GdnHCl 

respectively.  
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Figure 4.2 shows GdnHCl-induced denaturation curves of native BLA, as 

studied by MRE222nm measurements in the presence of different buffers (0.05 M sodium 

phosphate, 0.15 M Tris-HCl, 0.15 M HEPES and 0.15 M MOPS), pH 7.5. The 

denaturation curves obtained in these buffers displayed similar patterns, showing an 

initial decrease in the −MRE222nm value, reaching to a minimum, followed by an 

increase at higher GdnHCl concentrations. However, quantitative differences were 

noticed among them. Whereas maximum change in the −MRE222nm signal was observed 

in the presence of sodium phosphate buffer, smaller variations in the spectral signal 

were detected in MOPS buffer. More specifically, alterations in the MRE222nm signal 

followed the order: sodium phosphate > Tris-HCl > HEPES > MOPS buffers. It is 

worth noting that MRE222nm values could not be collected at lower (< 2.0 M) GdnHCl 

concentrations in the presence of Tris-HCl buffer due to significant precipitation. This 

was in agreement to the previous results on GdnHCl denaturation of BLA (Tan et al., 

2010).  

As evident from Figure 4.2, there was a continuous decrease in the −MRE222nm 

signal up to 3.0/3.5 M GdnHCl beyond which a continuous increase in the signal was 

noticed in all buffers. About 75% decrease in the −MRE222nm value was observed at 3.5 

M GdnHCl concentration in the presence of sodium phosphate buffer. On the other 

hand, ~61%, ~33% and ~24% decrease in the −MRE222nm value was detected in the 

presence of Tris-HCl, HEPES and MOPS buffers, respectively. Being an indicator of 

the α-helical structure, any decrease in the −MRE222nm value was suggestive of the loss 

of α-helical structure in BLA (Muzammil et al., 2000), which in turn suggested protein 

denaturation. Several earlier reports have proposed GdnHCl denaturation of proteins 

based on the decrease in the −MRE222nm signal (Lai et al., 1997; Fitter et al., 2004; 

Halim et al., 2013;). Anomalous behavior observed at higher (>4.0M) 
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Figure 4.2  GdnHCl denaturation of native BLA in different buffers using MRE 

measurements at 222 nm. Different buffers used were:  0.05 M sodium phosphate (!); 

0.15 M Tris-HCl (�); 0.15 M HEPES (p) and 0.15 M MOPS (r), of similar ionic 

strength (0.15) and pH (7.5). 
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GdnHCl concentrations can be ascribed to protein aggregation due to protein-protein 

interactions in the unfolded forms. This was not uncommon as Strucksberg et al (2007) 

have also shown similar aggregation of BLA, but at lower GdnHCl concentrations. Such 

differences can be explained on the basis of different BLA treatments, ionic strength 

and buffer composition used in an earlier study (Strucksberg et al., 2007). 

4.1.2 Intrinsic fluorescence 

     Tertiary structural alteration of BLA in the presence of increasing GdnHCl 

concentrations was evaluated by intrinsic fluorescence measurements. Figure 4.3 shows 

intrinsic fluorescence spectra of BLA in the absence and the presence of increasing 

GdnHCl concentrations in 0.05 M sodium phosphate buffer, pH 7.5. The intrinsic 

fluorescence spectrum of the native BLA was characterized by the presence of an 

emission maximum at 337 nm due to the abundance of Trp residues (Callis, 1997). A 

significant decrease in the fluorescence intensity was noticed at lower GdnHCl 

concentrations, followed by a small increase at higher GdnHCl concentrations. The 

fluorescence spectra of BLA also showed significant shift in the emission maximum 

upon GdnHCl treatment. The fluorescence spectra, obtained in the presence of Tris-

HCl, MOPS and HEPES buffers were qualitatively similar to those obtained in sodium 

phosphate buffer. 

Variations in the relative fluorescence intensity of the native BLA at 337 nm in 

the presence of increasing GdnHCl concentrations in different buffers are shown in 

Figure 4.4. A significant decrease in the fluorescence intensity was observed up to 1.5 

M GdnHCl, before sloping off in the presence of Tris-HCl, MOPS and HEPES buffers. 

Whereas, the decrease in the fluorescence intensity continued up to 2.5 M GdnHCl in 

the presence of sodium phosphate buffer and sloped off thereafter. A comparison of 

these results, obtained in four different buffers clearly suggested that the effect of   
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Figure 4.3   Fluorescence spectra of GdnHCl denaturation of native BLA in            

0.05 M sodium phosphate buffer, pH 7.5 at 25°C upon excitation at 280 nm. GdnHCl 

concentrations from top to bottom were: 0, 0.25, 0.5, 1.0, 1.5, 6.0, 5.5, 5.0, 4.5, 4.0, 

2.0, 2.5, 3.5 and 3.0 M GdhnHCl respectively.  
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Figure 4.4   GdnHCl denaturation of native BLA in different buffers using intrinsic 

fluorescence measurements at 337 nm upon excitation at 280 nm. Different buffers used 

were:  0.05 M sodium phosphate (!); 0.15 M Tris-HCl (�); 0.15 M HEPES (p) and 

0.15 M MOPS (r), of similar ionic strength (0.15) and pH (7.5). 
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sodium phosphate buffer was more pronounced showing 48% decrease in the 

fluorescence intensity at 2.5 M GdnHCl against 27% decrease, observed with Tris-HCl 

buffer. Interestingly, two other buffer systems i.e. HEPES and MOPS showed more or 

less similar changes in the fluorescence intensity up to 2.5 M GdnHCl concentration. 

About 15% decrease was observed at 2.5 M GdnHCl, followed by a slow increase up to 

6.0 M GdnHCl concentration. BLA has been reported to contain 17 Trp and 30 Tyr 

residues (Duy et al., 2006), all of which are distributed both in the protein interior and at 

the surface (Shokri et al., 2006). Therefore, a decrease in the fluorescence intensity in 

the presence of GdnHCl reflected the exposure of Tyr and Trp residues of BLA to a 

polar environment, suggesting protein denaturation. A similar decrease in the 

fluorescence intensity has been reported in many proteins upon GdnHCl treatment 

(Rashid et al., 2005; Jana et al., 2006; Zhang et al., 2013). As described in the section 

3.1.4, anomalous behavior in the fluorescence spectral signal at higher GdnHCl 

concentrations can be ascribed to BLA aggregation. Effectiveness of buffers in 

producing GdnHCl-induced changes in the fluorescence intensity followed the similar 

order (sodium phosphate > Tris-HCl > HEPES > MOPS), as observed with MRE222nm 

measurements. 

Besides showing a decrease in the fluorescence intensity, the fluorescence 

spectra of BLA also showed a significant shift in the emission maximum upon GdnHCl 

treatment (Figure 4.3). Such shift in the emission maximum of BLA with increasing 

GdnHCl concentrations, observed in four different buffers can be clearly seen from 

Figure 4.5. Sodium phosphate buffer produced the maximum red shift from 337 nm (for 

native BLA) to 347 nm at 3.5 M GdnHCl beyond which it decreased, reaching to a 

value of 344 nm at 6.0 M GdnHCl. In an earlier study, an emission maximum of 348 

nm was observed with 1.5 M GdnHCl-denatured BLA (Strucksberg et al., 2007). The 

difference in the GdnHCl concentration needed to produce similar denatured states can 

be ascribed to the different treatment and buffer composition used in the previous study. 
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On the other hand, the emission maximum shifted gradually towards higher wavelength 

up to 2.5 M GdnHCl and remained unchanged thereafter in the remaining three buffers. 

Whereas 3 nm red shift was observed at 2.5 M GdnHCl with Tris and HEPES buffers, 

only 2 nm red shift was produced in MOPS buffer. Red shift in the emission maximum, 

observed with increasing GdnHCl concentrations was suggestive of the transfer of Tyr 

and Trp residues from nonpolar to polar environment as a result of protein denaturation. 

These results were similar to those shown in Figures 4.2 and 4.4 in terms of greater 

effectiveness of the phosphate buffer, followed by Tris-HCl, HEPES and MOPS buffer 

systems. Significant reversal in the shift of the emission maximum, observed at higher 

GdnHCl concentrations indicated placement of Tyr and Trp residues in smaller 

hydrophobic pockets. This seems justifiable from the primary sequence of BLA, where 

most of the neighboring residues around Trp and Tyr are hydrophobic in nature 

(Declerck et al., 2002) It seems plausible to assume the formation of hydrophobic 

clusters in the denatured BLA, which might have led to the burial of Tyr and Trp 

residues into nonpolar environment, leading to reversal of the fluorescence intensity 

signal and its emission maximum (Machius et al., 2003). Furthermore, significant 

aggregation of BLA molecules was also observed at higher GdnHCl concentrations 

(section 4.2), which might have also contributed to such spectral behavior. 

Smaller fluctuations in the fluorescence signals (fluorescence intensity and 

emission maximum) obtained with HEPES and MOPS buffers may also be viewed as 

stabilizing effect of these buffers towards BLA against GdnHCl denaturation. This 

seems justifiable in view of the hydrophobic environment produced by piperazine ring 

of HEPES and morpholine ring of MOPS around surface residues of BLA. Ternary 

metal binding site in BLA has been suggested as one of the major nucleation sites for 

unfolding (Machius et al., 2003), which might be stabilized by these buffers. 

Alternatively, these buffers might have created nonpolar environment around protein  
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Figure 4.5   GdnHCl denaturation of native BLA in different buffers using emission 

maximum measurements upon excitation at 280 nm. Different buffers used were:       

0.05 M sodium phosphate (!); 0.15 M Tris-HCl (�); 0.15 M HEPES (p) and 0.15 M 

MOPS (r), of similar ionic strength (0.15) and pH (7.5). 
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fluorophores in the unfolded state due to which the spectral signal did not show any 

major change. 

    4.1.3 Ultraviolet difference spectroscopy 

Since maximum structural changes were observed in 3 M GdnHCl-treated BLA 

in sodium phosphate buffer, when monitored by MRE222nm and fluorescence intensity 

measurements, absorption spectroscopy was also employed to further investigate these 

structural changes. Figure 4.6 shows the UV absorption spectra of native and 3 M 

GdnHCl denatured BLAs. The UV absorption spectrum of native BLA was 

characterized by the presence of absorption maximum at 280 nm. Treatment of native 

BLA with 3 M GdnHCl showed significant decrease in the absorbance (hypochromism) 

and 2 nm blue shift in the emission maximum (Figure 4.6). Such difference in the 

absorption characteristic can be clearly seen from the UV difference spectra.  

 

Figure 4.7 shows the UV difference spectra of 3 M GdnHCl-denatured BLA, 

obtained in different buffers. The difference spectra were characterized by the presence 

of negative spectral signals at 280 nm, 286 nm and 291 nm. Presence of these signals in 

the difference spectra was suggestive of the environmental perturbation of Tyr and Trp 

residues (Sogami and Ogura, 1973). Specifically, appearance of negative spectral 

signals at 280 nm and 286 nm indicated microenvironmental changes around Tyr 

residues of BLA, whereas presence of a negative spectral signal at 291 nm characterized 

microenvironmental changes around Trp residues. A comparison of these spectra 

showed that stronger spectral signals were obtained in sodium phosphate and Tris-HCl 

buffers, being highest in sodium phosphate buffer. On the other hand, HEPES and 

MOPS buffers showed weaker signals. Effectiveness of these buffers to produce 

GdnHCl-induced changes in BLA followed the same order as observed with MRE222nm  
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Figure 4.6  UV-absorption spectra of native BLA (solid line) and 3 M 

GdnHCl-denatured BLA (dotted line), as obtained in 0.05 M sodium 

phosphate buffer, pH 7.5. 
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Figure 4.7 UV-difference spectra of 3 M GdnHCl-denatured BLA in different 

buffers. The buffers used were: 0.05 M sodium phosphate (solid line);  0.15 M Tris-HCl 

(dash double dot dashed line); 0.15 M HEPES (dash dot dashed line) and 0.15 M MOPS 

(dotted line) of similar ionic strength (0.15) and pH (7.5). 
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 (Figure 4.2) and fluorescence measurements (Figures 4.4 and 4.5).  

 

4.2  Effect of buffer composition on GdnHCl-induced aggregation of BLA 

The possibility of GdnHCl-induced aggregation occurring at higher (> 3.5 M) 

GdnHCl concentrations, if any, was evaluated by gel chromatography of different BLA 

samples on Sephacryl S-200 HR column (1.0×30 cm). Figures 4.8−4.10 show the 

elution profiles of the native BLA, 3 M GdnHCl-denatured BLA and 6 M GdnHCl-

denatured BLA, respectively on the same column, equilibrated with 0.05 M sodium 

phosphate buffer, pH 7.5 containing respective concentrations of GdnHCl. Elution 

profiles of blue dextran on the same column under similar experimental conditions are 

also included in these figures. The elution characteristics of these samples are given in 

Table 4.1. As can be seen from Figure 4.8, the native BLA eluted as a single 

symmetrical peak with an elution volume, Ve of 17.43 mL, which corresponded to a 

Ve/Vo value of 1.83 (Table 4.1).  

The elution profile, obtained with 3 M GdnHCl-denatured BLA (Figure 4.9), 

also displayed a major peak, which eluted earlier than the native BLA and had an 

elution volume of 13.12 mL. It corresponded to a Ve/Vo ratio of 1.36. (Table 4.1). This 

suggested expansion in the hydrodynamic volume of the protein due to GdnHCl-

induced denaturation (Roseman et al., 1975, Pace et al., 1989). In addition to the major 

peak, a small concentration of BLA showed retarded elution with an approximate 

elution volume of 16.81 mL (Table 4.1), as represented by a small broader peak in 

Figure 4.9. Such retardation of a few GdnHCl-denatured BLA molecules seems possible 

due to its interaction with the gel particles (Kruger et al., 1987, Tan et al., 2011). 

Interestingly, elution of 6 M GdnHCl-denatured BLA (Figure 4.10) produced a major 

peak with the elution volume of 9.58 mL (Table 4.1). It eluted with the void volume  
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Figure 4.8 Gel chromatographic profile of native BLA (1.25 mg/500 µL) on 

Sephacryl S-200 HR column (1.0×30 cm), equilibrated with 0.05 M sodium phosphate 

buffer, pH 7.5.  Peak shown by the dotted line represents the elution profile of the blue 

dextran (2 mg/ 500 µL) on the same column.  
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Figure 4.9 Gel chromatographic profile of 3 M GdnHCl-denatured BLA               

(1.50 mg/500 µL) on Sephacryl S-200 HR column (1.0×30 cm), equilibrated with     

0.05 M sodium phosphate buffer, pH 7.5 containing 3 M GdnHCl. Peak shown by the 

dotted line represents the elution profile of the blue dextran (2 mg/ 500 µL) on the same 

column.  
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Figure 4.10     Gel chromatographic profile of 6 M GdnHCl-denatured BLA               

(1.50 mg/500 µL) on Sephacryl S-200 HR column (1.0×30 cm), equilibrated with   0.05 

M sodium phosphate buffer, pH 7.5 containing 6 M GdnHCl. Peak shown by the dotted 

line represents the elution profile of the blue dextran   (2 mg/ 500 µL) on the same 

column.  
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Table 4.1 Gel chromatographic data of native and GdnHCl-denatured BLAs on 

Sephacryl S-200 HR column (1.0�30 cm), equilibrated with  0.05 M sodium phosphate 

buffer, pH 7.5 under different experimental conditions. 

 

 

Protein Sample   Peak No.  Ve (mL)           Ve /V0 

 

 
Native BLA        1   17.43   1.83 

 
3 M GdnHCI-                   1   13.12   1.36 
denatured BLA 
         2   16.81   1.74 

 
6 M GdnHCI-                   1     9.58   1.02 
denatured BLA 
         2   11.93   1.27 

         3   19.24   2.01 
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(9.4 mL) of the column, as Ve/Vo value for this peak was found to be 1.02 (Table 4.1). 

These BLA molecules falling under peak 1 may represent BLA aggregates, as peak 2 

(Figure 4.10) with a Ve/Vo value of 1.27 (Table 4.1) might be referred to as GdnHCl-

denatured BLA. This seems understandable, as elution volume of peak 2 (11.93 mL) 

was found to be lower than the elution volume of peak 1 (13.12 mL) of 3 M GdnHCl-

denatured BLA, which represented the denatured form of BLA. A small change in Ve 

(Table 4.1) from 13.12 mL (for 3 M GdnHCl-denatured BLA) to 11.93 mL (for 6 M 

GdnHCl-denatured BLA) seems reasonable, as 6 M GdnHCl might have denatured the 

BLA completely compared to 3 M GdnHCl-denatured BLA.  6 M GdnHCl would have 

completely removed non-covalent interactions, compared to 3 M GdnHCl and thus had 

produced greater expansion in the hydrodynamic volume of the protein, which was 

responsible for its lower elution volume. In addition, a small fraction of the protein was 

also eluted as peak 3 in the elution profile (Figure 4.10), with an elution volume of 

19.24 mL (Table 4.1) due to protein interaction with the gel matrix. These results 

clearly indicated BLA aggregation in the presence of 6 M GdnHCl. 

  

Since different buffers i.e sodium phosphate, Tris-HCl, HEPES and MOPS 

buffers produced differential effects upon GdnHCl denaturation of BLA as revealed by 

the spectral signals (MRE222nm and fluorescence intensity at 337 nm) shown in Figures 

4.2 and 4.4, it was interesting to investigate the effect of these buffers on GdnHCl-

induced aggregation of BLA. Figures 4.11−4.13 show the elution behavior of native 

BLA, 3 M GdnHCl-denatured BLA and 6 M GdnHCl-denatured BLA on the Sephacryl 

S-200 HR column, equilibrated with 0.15 M Tris-HCl buffer, pH 7.5 under similar 

conditions with respect to GdnHCl concentration. Similar to the results obtained in    

0.05 M sodium phosphate buffer, pH 7.5 (Figure 4.8), a single symmetrical peak  
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Figure 4.11    Gel chromatographic profile of native BLA (1.25 mg/500 µL) on 

Sephacryl S-200 HR column (1.0×30 cm), equilibrated with 0.15 M Tris-HCl buffer, 

pH 7.5. Peak shown by the dotted line represents the elution profile of the blue dextran 

(2 mg/ 500 µL) on the same column.  
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Figure 4.12     Gel chromatographic profile of 3 M GdnHCl-denatured BLA             

(1.25 mg/500 µL) on Sephacryl S-200 HR column (1.0×30 cm), equilibrated with    

0.05 M Tris-HCl buffer, pH 7.5 containing 3 M GdnHCl. Peak shown by the dotted line 

represents the elution profile of the blue dextran (2 mg/ 500 µL) on the same column. 
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Figure 4.13     Gel chromatographic profile of 6 M GdnHCl-denatured BLA            

(1.50 mg/500 µL) on Sephacryl S-200 HR column (1.0×30 cm), equilibrated with 0.15 

M Tris-HCl buffer, pH 7.5 containing 6 M GdnHCl. Peak shown by the dotted line 

represents the elution profile of the blue dextran (2 mg/ 500 µL) on the same column.  
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Table 4.2 Gel chromatographic results of native and GdnHCl-denatured BLAs on 

Sephacryl S-200 HR column (1.0�30 cm), equilibrated with                   

0.15 M Tris-HCl buffer, pH 7.5 under different experimental conditions. 

 

 

Protein Sample   Peak No.  Ve (mL)           Ve /V0 

 

 
Native BLA        1   15.75   1.64 

 
3 M GdnHCI-       1   13.12   1.36 
denatured BLA  
         2   15.71   1.74 

 
6 M GdnHCI-       1     9.62   1.03 
denatured BLA  
         2   11.96   1.28 

         3   19.24   2.06 
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(Figure 4.11) with an elution volume of 15.75 mL and the corresponding Ve/V0 value of 

1.64 (Table 4.2) was observed with native BLA. Smaller changes in the Ve/V0 value of  

native BLA, obtained in two different buffers were not common and had been reported 

earlier (Aimar and Meireles, 2010).  This can be clearly seen from the elution patterns 

(Figures 4.12 and 4.13) and elution characteristics (Table 4.2) of 3 M and 6 M GdnHCl-

denatured BLAs, obtained in 0.15 M Tris-HCl buffer, pH 7.5, which were found similar 

within experimental error, to those obtained in 0.05 M sodium phosphate buffer, pH 7.5 

(Figures 4.9 and 4.10, Table 4.1).  

 

Interestingly, when gel chromatographic analyses of native, 3 M GdnHCl-

denatured and 6 M GdnHCl-denatured BLAs were made on the same Sephacryl S-200 

HR column, equilibrated with either 0.15 M HEPES buffer, pH 7.5 (Figures 4.14−4.16, 

Table 4.3) or 0.15 M MOPS buffer, pH 7.5 (Figures 4.17−4.19, Table 4.4), no 

significant variation in the Ve/Vo values of the major peaks was observed. Furthermore, 

these Ve/Vo values were similar to those obtained with sodium phosphate or Tris-HCl  

buffers (Tables 4.1−4.4). These results clearly suggested formation of similar denatured 

states and aggregated forms of BLA in 3 M and 6 M GdnHCl in the presence of these 

buffers. However, quantitative differences in BLA aggregation were noticed in these 

buffers in the presence of 6 M GdnHCl, as revealed by the differences in the peak areas 

under peak 1 and peak 2 (Figures 4.10, 4.13, 4.16 and 4.19). Due to the lack of the 

software, peak areas under these peaks could not be evaluated. 

       These results, clearly demonstrated that differences observed in the spectral signals 

upon GdnHCl treatment of BLA in the presence of these buffers can not be ascribed to 

the stabilization of BLA with HEPES and MOPS buffers against GdnHCl denaturation. 
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Figure 4.14 Gel chromatographic profile of native BLA (1.25 mg/500 µL) on 

Sephacryl S-200 HR column (1.0×30 cm), equilibrated with 0.15 M HEPES buffer,    

pH 7.5. Peak shown by the dotted line represents the elution profile of the blue dextran 

(2 mg/ 500 µL) on the same column.  
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Figure 4.15  Gel chromatographic profile of 3 M GdnHCl-denatured BLA             

(1.50 mg/500 µL) on Sephacryl S-200 HR column (1.0Í30 cm), equilibrated with   

0.15 M HEPES buffer, pH 7.5 containing 3 M GdnHCl.  Peak shown by the dotted line 

represents the elution profile of the blue dextran (2 mg/ 500 µL) on the same column.  
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Figure 4.16 Gel chromatographic profile of 6 M GdnHCl-denatured BLA            

(1.50 mg/500 µL) on Sephacryl S-200 HR column (1.0Í30 cm), equilibrated with   

0.15 M HEPES buffer, pH 7.5 containing 6 M GdnHCl.  Peak shown by the dotted line 

represents the elution profile of the blue dextran (2 mg/ 500 µL), on the same column.  
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Table 4.3 Gel chromatographic results of data and GdnHCl-denatured BLAs on 

Sephacryl S-200 HR column (1.0�30 cm), equilibrated with                    

0.15 M HEPES buffer, pH 7.5 under different experimental conditions. 

 

 

Protein Sample   Peak No.  Ve (mL)           Ve /V0 

 

 
Native BLA        1   16.36   1.70 

 
3 M GdnHCI-       1   13.18   1.39 
denatured BLA  
         2   14.71   1.64 

 
6 M GdnHCI-       1     9.51   1.00 
denatured BLA  
         2   11.86   1.25 

         3   19.04   2.01 
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Figure 4.17    Gel chromatographic profile of native BLA (1.25 mg/500 µL) on 

Sephacryl S-200 HR column (1.0×30 cm), equilibrated with 0.15 M MOPS buffer,     

pH 7.5. Peak shown by the dotted line represents the elution profile of the blue dextran 

(2 mg/ 500 µL) on the same column. 
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Figure 4.18 Gel chromatographic profile of 3 M GdnHCl-denatured BLA             

(1.50 mg/500 µL) on Sephacryl S-200 HR column (1.0×30 cm), equilibrated with    

0.15 M MOPS buffer, pH 7.5 containing 3 M GdnHCl.  Peak shown by the dotted line 

represents the elution profile of the blue dextran (2 mg/ 500 µL) on the same column.  
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Figure 4.19     Gel chromatographic profile of 6 M GdnHCl-denatured BLA             

(1.50 mg/500 µL) on Sephacryl S-200 HR column (1.0×30 cm), equilibrated with 0.15 

M MOPS buffer, pH 7.5 containing 6 M GdnHCl.  Peak shown by the dotted line 

represents the elution profile of the blue dextran (2 mg/ 500 µL) on the same column.  
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Table 4.4 Gel chromatographic results of data and GdnHCl-denatured BLAs on 

Sephacryl S-200 HR column (1.0�30 cm), equilibrated with 0.15 M MOPS 

buffer, pH 7.5 under different experimental conditions. 

 

 

Protein Sample   Peak No.  Ve (mL)           Ve /V0 

 

 
Native BLA        1   16.52   1.72 

 
3 M GdnHCI-       1   13.00   1.37 
denatured BLA  
         2   15.71   1.74 

 
6 M GdnHCI-       1     9.61   1.00 
denatured BLA 
         2   12.00   1.30 

         3   19.20   2.09 
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4.3 Effect of buffer composition on GdnHCl denaturation of Ca-depleted BLA 

As calcium is known to offer stability to BLA (Declerck et al., 2002), we also 

checked the effect of buffer composition on GdnHCl denaturation of Ca-depleted BLA. 

In the absence of calcium, differential effects observed with different buffers on 

GdnHCl denaturation of BLA (Figures 4.2 and 4.4) should have been maximized. 

Figure 3.19 shows the effect of different buffer composition on GdnHCl denaturation of                

Ca-depleted BLA, when examined by fluorescence intensity measurements at 337 nm 

(Figure 4.20) and emission maximum (Figure 4.21). GdnHCl treatment produced a 

decrease in the fluorescence intensity up to 1.0 M GdnHCl concentration, which 

remained unchanged or showed slight variation up to 6.0 M GdnHCl. The decrease was 

drastic in both sodium phosphate and Tris-HCl buffers, but mild in HEPES and MOPS 

buffers (Figure 4.20). Quantitatively, ~ 65 % decrease in the fluorescence intensity was 

observed in sodium phosphate buffer against 48 % decrease, obtained in Tris-HCl 

buffer at 1.0 M GdnHCl. On the other hand, HEPES and MOPS buffers produced      

~34 % and ~28 % decrease in the fluorescence intensity, respectively, at 1.0 M 

GdnHCl. The magnitude of the decrease in the fluorescence intensity observed in these 

buffers with Ca-depleted BLA was much higher than that obtained with native BLA 

(Figure 4.4). Presence of calcium in the native BLA might be responsible for such 

difference. 

In addition to the decrease in the fluorescence intensity, GdnHCl also produced 

shift in the emission maximum. Figure 4.21 shows changes in the emission maximum 

with increasing GdnHCl concentrations in different buffers. Sodium phosphate buffer 

produced the maximum change, showing 12 nm red shift (from 337 nm to 349 nm, 

characteristic of solvent-exposed Trp residues) at 2.5 M GdnHCl concentration, which 

leveled off thereafter reaching 341 nm at 6 M GdnHCl due to protein aggregation. 

These results were qualitatively similar to those shown in Figure 4.5. However, a more  
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Figure 4.20 GdnHCl denaturation of calcium-depleted BLA in different buffers using 

intrinsic fluorescence measurements at 337 nm upon excitation at 280 nm. Different 

buffers used were:  0.05 M sodium phosphate (!); 0.15 M Tris-HCl (�); 0.15 M 

HEPES (p) and 0.15 M MOPS (r), of similar ionic strength (0.15) and          pH (7.5). 
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Figure 4.21 GdnHCl denaturation of calcium-depleted BLA in different buffers using 

emission maximum measurements upon excitation at 280 nm. Different buffers used 

were:  0.05 M sodium phosphate (!); 0.15 M Tris-HCl (�); 0.15 M HEPES (p) and 

0.15 M MOPS (r), of similar ionic strength (0.15) and pH (7.5). 
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pronounced red shift at 2.5 M GdnHCl was observed with Ca-depleted BLA, compared 

to native BLA, which can be ascribed to the presence of calcium in the native BLA. On 

the other hand, about 1-3 nm red shift was observed with MOPS, HEPES and Tris-HCl 

buffers at 1.5 M GdnHCl, which remained unchanged up to 6 M GdnHCl. 

 

Both the decrease in the fluorescence intensity and red shift in the emission 

maximum are usually taken as indicators of protein denaturation (Duy et al., 2006). A 

comparison of the results obtained with native BLA (Figure 3.4 and 3.5) and Ca-

depleted BLA (Figures 4.20 and 4.21) suggested a greater extent of denaturation of Ca-

depleted BLA, compared to native BLA at any GdnHCl concentration. This seems 

understandable as native BLA contained some bound calcium to it, which is known to 

provide structural stability (Declerck et al., 2002). Furthermore, the differential effects 

of buffer composition were found to be similar with Ca-depleted BLA to that obtained 

with native BLA, showing the effectiveness of these buffers in the order: sodium 

phosphate > Tris-HCl > HEPES > MOPS. Whether lesser extents of spectral changes, 

observed with HEPES and MOPS buffers in the presence of GdnHCl were due to some 

other factors need to be further investigated. 
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5.   CONCLUSION 

Taken together, the results suggested the influence of buffer composition on 

GdnHCl denaturation of BLA. Whereas, maximum change in the spectral signal was 

observed with sodium phosphate buffer followed by Tris-HCl buffer, both HEPES and 

MOPS buffers showed lesser spectral changes. The stabilizing effect of calcium was 

evident from the greater extent of spectral change, observed with Ca-depleted BLA 

compared to native BLA.  Although CD and fluorescence spectral signals showed the 

differential effects of buffers, gel chromatography of 3 M - and 6 M GdnHCl-denatured 

BLAs demonstrated the formation of similar denatured states and aggregated forms in 

these buffers.  
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