
 

 

DYNAMIC UNSUPERVISED FEEDFORWARD NEURAL 
NETWORK CLUSTERING 

 

 

 

 

 

ROYA ASADI  

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE AND INFORMATION 
TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
 

2016 
 

Univ
ers

ity
 of

 M
ala

ya



 

 

DYNAMIC UNSUPERVISED FEEDFORWARD 
NEURAL NETWORK CLUSTERING 

 
 

 

 

 

 

 

ROYA ASADI 

 

 
THESIS SUBMITTED IN FULFILMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF 
PHILOSOPHY 

 

FACULTY OF COMPUTER SCIENCE AND 
INFORMATION TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
 
 

2016

Univ
ers

ity
 of

 M
ala

ya



UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate:  Roya Asadi                                  

Registration/Matric No: WHA100009 

Name of Degree: PhD in Computer Science 

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): 

DYNAMIC UNSUPERVISED FEEDFORWARD NEURAL NETWORK 

CLUSTERING 

Field of Study: Artificial Intelligence - Neural Network 

I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work; 
(2) This Work is original; 
(3) Any use of any work in which copyright exists was done by way of fair 

dealing and for permitted purposes and any excerpt or extract from, or 
reference to or reproduction of any copyright work has been disclosed 
expressly and sufficiently and the title of the Work and its authorship have 
been acknowledged in this Work; 

(4) I do not have any actual knowledge nor do I ought reasonably to know that 
the making of this work constitutes an infringement of any copyright work; 

(5) I hereby assign all and every rights in the copyright to this Work to the 
University of Malaya (“UM”), who henceforth shall be owner of the 
copyright in this Work and that any reproduction or use in any form or by any 
means whatsoever is prohibited without the written consent of UM having 
been first had and obtained; 

(6) I am fully aware that if in the course of making this Work I have infringed 
any copyright whether intentionally or otherwise, I may be subject to legal 
action or any other action as may be determined by UM. 

Candidate’s Signature     Date: 

Subscribed and solemnly declared before, 

Witness’s Signature Date: 

Name: 

Designation: 

Univ
ers

ity
 of

 M
ala

ya



 

iii 

ABSTRACT 

Artificial neural networks are computational models inspired by neurobiology for 

enhancing and testing computational analogues of neurons. In a feedforward neural 

network (FFNN), data processing occurs in only one forward interconnection from the 

input layer to the output layer without any backward loop. Unsupervised FFNN 

(UFFNN) clustering has great capabilities such as inherent distributed parallel 

processing architectures, adjusting the interconnection weights to learn and divide data 

into meaningful groups with special goals, classifying related data into similar groups 

without using any class label, controlling noisy data and learning the types of input data 

values based on their weights and properties. Generally in real environments, dynamic 

data is high volume and dimensional, therefore, the online dynamic UFFNN 

(ODUFFNN) clustering methods should be developed to have online incremental 

learning capability. Incremental learning refers to the ability of repeatedly training a 

network using new data or deleting unnecessary data, without destroying outdated 

prototype patterns. The ODUFFNN should also be compatible with the changes that 

occur in continuous data and should be able to control noisy data. We reviewed and 

investigated current ODUFFNN clustering methods and identified their limitations, 

main problems such as high training time, low accuracy and high time complexity and 

memory complexity of clustering, and  some reasons of these problems.  

In order to overcome the problems, we developed a dynamic UFFNN (DUFFNN) 

clustering model with only one epoch training. Dynamically after each entrance of the 

online input data, the DUFFNN learns and stores important information about the 

current online data, such as the non-random weights and consequently completes a 

codebook of the weights. Then, a unique and standard weight vector is extracted and 

updated from the codebook. Subsequently, a single layer DUFFNN calculates the 

exclusive distance threshold of each data based on the standard weight vector, and 

Univ
ers

ity
 of

 M
ala

ya



 

iv 

clusters the data based on the exclusive distance threshold. Based on the literature, after 

learning in order to improve the quality of the DUFFNN clustering result, the model 

assigns a class label to the input data through the training data. The class label of each 

initially unlabeled input data is predicted by considering a linear activation function and 

the exclusive distance threshold. Finally, the number of clusters and the density of each 

cluster are updated.  

For evaluation purposes,  the clustering performances of the DUFFNN were 

compared with several related clustering methods using the various datasets from the 

University of California at Irvine Machine Learning Repository, which illustrated great 

results. For example, the accuracy of the proposed model was measured through the 

number of clusters, the quantity of corectly classified nodes and also an F-measure 

which was 97.71% of the Breast Cancer, 97.24% of Iris, 73.41% of Spam, 90.52% of 

SPECT Heart, 86.62% of SPECTF Heart, 52.57% of Musk1, 84.31% of Musk2, 66.07% 

of Arcene, and 27.25% of Yeast datasets respectively, and the superior F-measure 

results between 98.14% and 100% accuracies for the breast cancer dataset from the 

University of Malaya Medical Center to predict the survival time of the patients.  

  

Univ
ers

ity
 of

 M
ala

ya



 

v 

ABSTRAK 

Rangkaian neural buatan merupakan model komputer yang mendapat inspirasi dari 

bidang neurobiologi untuk ujian dan peningkatan neuron-neuron berasaskan analog-

analog komputer. Bagi suatu rangkaian neural feedforward (FFNN), pemprosesan data 

berlaku dalam siri sambungan ke hadapan dari lapisan input ke lapisan output tanpa 

ulangan ke belakang. Pengelompokan unsupervised FFNN (UFFNN) mempunyai 

keupayaan yang hebat seperti memiliki senibina pemprosesan edaran selari, pelaras 

pemberat sambungan untuk belajar dan membahagi data kepada kumpulan-kumpulan 

yang mempuyai maksud dan matlamat-matlamat khas, pengkelasan data berkaitan 

kepada kumpulan-kumpulan serupa tanpa menggunakan apa-apa label kelas, 

pengawalan data tidak tepat dan pembelajaran jenis-jenis input data berdasarkan 

pemberat dan sifat masing-masing.  

Kebiasaannya dalam persekitaran sebenar,  data bergerak adalah besar dan 

mempunyai dimensi tinggi, untuk itu, kaedah-kaedah pengelompokan dinamik secara 

atas-talian UFFNN (ODUFFNN) perlu melibatkan keupayaan pembelajaran secara 

bertingkat. Pembelajaran bertingkat merujuk kepada keupayaan untuk berlatih secara 

berulang dengan menambah atau membuang nod-nod data dalam pembelajaran atas-

talian tanpa menghapuskan corak-corak prototaip yang ketinggalan zaman. ODUFFNN 

sepatutnya juga serasi dengan perubahan-perubahan yang berlaku dalam data berterusan 

dan mampu mengawal data tidak tepat. Kami telah mengkaji dan menyiasat kaedah-

kaedah pengelompokan ODUFFNN semasa dan mengenalpasti had-had mereka; 

masalah-masalah utama seperti masa latihan tinggi, ketepatan rendah serta memori dan 

kompleks masa yang tinggi sewaktu proses pengelompokan; dan beberapa faktor yang 

menyebabkan masalah-masalah tersebut.  

Untuk mengatasi masalah-masalah tersebut, kami telah membangunkan satu model 

pengelompokan UFFNN yang dinamik (DUFFNN) dengan satu latihan epoch. Secara 

Univ
ers

ity
 of

 M
ala

ya



 

vi 

dinamiknya selepas setiap kemasukan data input secara atas-talian, DUFFNN akan 

mempelajari dan menyimpan informasi penting berkenaan data atas-talian semasa, 

seperti pemberat-pemberat tidak-rawak dan menyempurnakan satu buku-kod untuk 

pemberat-pemberat itu. Kemudian, satu vektor pemberat yang mengikut piawai dan 

unik akan diekstrak dan dikemaskini dari buku-kod tersebut. Selaras dengan itu, satu 

lapisan tunggal DUFFNN akan mengira ambang jarak khusus untuk setiap data 

berdasarkan vektor pemberat piawai itu. Data-data akan dikelompokan berdasarkan 

ambang jarak khusus yang ditentukan. Berdasarkan kajian literasi, untuk meningkatkan 

kualiti pengelompokan DUFFNN, suatu model itu perlu menetapkan satu label kelas 

kepada data input melalui data latihan. Label kelas untuk setiap input data yang tidak 

berlabel adalah diramalkan dengan mempertimbangkan satu fungsi pengaktifan linear 

dan ambang jarak khusus tersebut. Akhirnya, bilangan kelompok-kelompok dan 

ketumpatan setiap kelompok akan dikemaskinikan.  

Untuk tujuan penilaian, prestasi pengelompokan DUFFNN dibandingkan dengan 

beberapa kaedah-kaedah pengelompokan berkaitan menggunakan pelbagai set-set data 

dari Irvine Machine Learning Repository dari University of California, yang 

memberikan keputusan yang menggalakkan. Ketepatan model yang dibangunkan telah 

diukur mengikut bilangan kelompok-kelompok, kuantiti nod-nod yang telah 

diklasifikasikan secara tepat, dan juga suatu ukuran F untuk set-set data yang 

berasingan iaitu 97.71% untuk Kanser Payudara, 97.24% untuk Iris, 73.41% untuk 

Spam, 90.52% untuk SPECT Heart, 86.62% untuk SPECTF Heart, 52.57% untuk 

Musk1, 84.31% untuk Musk2, 66.07% untuk Arcene, dan 27.25% untuk dataset Yeast, 

yang mana ukuran F tertinggi adalah di antara 98.14% dan 100% ketepatan untuk set 

data Kanser Payudara dari Pusat Perubatan Universiti Malaya untuk meramalkan 

jangkahayat para pesakit. 

  

Univ
ers

ity
 of

 M
ala

ya



 

vii 

ACKNOWLEDGEMENTS 

First of all, thank to Allah, the most Gracious and most Merciful. 

Many people have made contributions in completing this work. My deepest 

appreciation and gratitude to Assoc. Prof. Datin Dr. Sameem Abdul Kareem selamat for 

her ideas and intellectual experiences that paved the way to this research work. Also, 

my most affectionate gratitude to my beloved parents, sisters, and brother that support 

me financially and spiritually.  

Finally, sincere thanks towards everyone in the Faculty of Computer Science and 

Information Technology, University of Malaya for their intellectual and social 

contributions, especially for making my research years to be more memorable and 

enjoyable times. 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

viii 

TABLE OF CONTENTS 

 

ABSTRACT .................................................................................................................... III 

ABSTRAK ....................................................................................................................... V 

ACKNOWLEDGEMENTS .......................................................................................... VII 

TABLE OF CONTENTS ............................................................................................. VIII 

LIST OF FIGURES ..................................................................................................... XIV 

LIST OF TABLES ....................................................................................................... XIX 

LIST OF SYMBOLS AND ABBREVIATIONS ..................................................... XXIII 

LIST OF APPENDICES ........................................................................................... XXVI 

CHAPTER 1: INTRODUCTION ............................................................................. 1 

1.1 Background and Motivation .................................................................................... 1 

1.1.1 Fundamental Unsupervised Feedforward Neural Network Clustering ...... 2 

1.1.2 An Overview of Current Online Dynamic Unsupervised Feedforward 

Neural Network Clustering ........................................................................ 4 

1.2 Problem Statement ................................................................................................... 8 

1.2.1 Some Reasons of the Problems Related to the Structure and Features of 

the Data .................................................................................................... 11 

1.2.2 Some Reasons of the Problems Related to the Topology and Algorithm of 

the Current ODUFFNN Clustering Method ............................................. 13 

1.3 Objectives of Research .......................................................................................... 16 

1.4 Preliminary Research Questions ............................................................................ 17 

1.5 Scope of Research ................................................................................................. 18 

1.6 Research Methodology .......................................................................................... 20 

1.7 Overview of the Contributions of Thesis .............................................................. 23 

iii 

v 

vii 

viii 

xiv 

xix 

xxiii 

xxvi 

Univ
ers

ity
 of

 M
ala

ya



 

ix 

1.8 Organization of Thesis........................................................................................... 24 

CHAPTER 2: CONCEPT  IN UNSUPERVISED CLUSTERING ..................... 26 

2.1 Introduction ........................................................................................................... 26 

2.2 Overviews of Unsupervised Clustering ................................................................. 26 

2.3 Types of Data in Unsupervised Clustering ............................................................ 30 

2.4 Distance Functions For Measuring the Dissimilarity of Objects .......................... 32 

2.4.1 Distance Measuring of Interval-Scaled Variable ..................................... 32 

2.4.2 Distance Measuring Binary Variables ...................................................... 33 

2.4.3 Distance Measuring Nominal Variables .................................................. 35 

2.4.4 Distance Measuring Ordinal Variables and Interval-Scaled Variables .... 35 

2.4.5 Distance Measuring Ratio-Scaled Variables ............................................ 36 

2.4.6 Distance Measuring of Vector Object ...................................................... 36 

2.5 Clustering Evaluation ............................................................................................ 37 

2.5.1 External Indexes ....................................................................................... 37 

2.5.2 Internal Index ........................................................................................... 44 

2.5.3 Relative Index .......................................................................................... 45 

2.6 The Overview of the Main Unsupervised Clustering Methods ............................. 46 

2.6.1 Partitioning Clustering ............................................................................. 47 

2.6.2 Hierarchical Clustering ............................................................................ 49 

2.6.3 Density Based Clustering ......................................................................... 51 

2.6.4 Model-based Clustering ........................................................................... 53 

2.6.5 Grid-based Clustering .............................................................................. 55 

2.6.6 Other Categories of Clustering ................................................................. 57 

2.7 The Time Complexity and Memory Complexity of the Main Unsupervised 

Clustering Methods ............................................................................................... 57 

2.8 Summary ................................................................................................................ 59 

Univ
ers

ity
 of

 M
ala

ya



 

x 

CHAPTER 3: CONCEPT IN Online Dynamic Unsupervised Feedforward 

Neural Network Clustering .......................................................................................... 60 

3.1 Introduction ........................................................................................................... 60 

3.2 Concepts in Feedforward Neural Networks .......................................................... 61 

3.2.1 Neural Network Models ........................................................................... 62 

3.2.2 Perspectives of Learning Problems .......................................................... 67 

3.2.3 Architecture of Neural Networks ............................................................. 69 

3.2.4 History of Early Artificial Feedforward Neural Network Models ........... 71 

3.2.5 Activation Functions ................................................................................ 74 

3.2.6 Preprocessing Techniques of Feedforward Neural Networks .................. 77 

3.3 Unsupervised Feedforward Neural Network Clustering ....................................... 88 

3.3.1 Self-organization Map .............................................................................. 91 

3.3.2 Growing Neural Gas ................................................................................. 93 

3.4 The Time Complexity and Memory Complexity of the Unsupervised Feedforward 

Neural Network Clustering and Some Related Clustering Methods ..................... 95 

3.5 Online Dynamic Unsupervised Feedforward Neural Network Clustering ............ 95 

3.5.1 Evolving Self-organizing Map ................................................................. 96 

3.5.2 Enhanced Self-organizing Incremental Neural Network for Online 

Unsupervised Learning ............................................................................ 99 

3.5.3 Dynamic Self-organizing Map ............................................................... 101 

3.5.4 Incremental Growing with Neural Gas Utility Parameter ...................... 102 

3.5.5 An Enhancing Dynamic Self-organizing Map ....................................... 103 

3.5.6 Enhanced Incremental Growing Neural Gas .......................................... 104 

3.6 Comparison and Discussion ................................................................................ 105 

3.7 Summary .............................................................................................................. 108 

CHAPTER 4: RESEARCH METHODOLOGY ................................................ 109 

Univ
ers

ity
 of

 M
ala

ya



 

xi 

4.1 Introduction ......................................................................................................... 109 

4.2 Approaches to Research ...................................................................................... 109 

4.2.1 Reviewing Related Literature ................................................................. 109 

4.2.2 Problem Formulation .............................................................................. 109 

4.2.3 Definition of the Research Objectives ................................................... 110 

4.2.4 Proposed Model ...................................................................................... 110 

4.2.5 System Design ........................................................................................ 112 

4.2.6 System and Data Requirements for Running Experiment ..................... 113 

4.2.7 Experimental Evaluation ........................................................................ 124 

4.3 Summary .............................................................................................................. 127 

CHAPTER 5: SYSTEM DESIGN ........................................................................ 128 

5.1 Introduction ......................................................................................................... 128 

5.2 The Real Unsupervised Feedforward Neural Network Clustering ...................... 128 

5.2.1 Analysis of the RUFFNN Clustering Method ........................................ 130 

5.3 The Real Semi-supervised Feedforward Neural Network Clustering ................. 141 

5.4 The Dynamic Unsupervised Feedforward Neural Network Clustering .............. 143 

5.4.1 Analysis of the DUFFNN Clustering Method ........................................ 145 

5.5 The Dynamic Semi-supervised Feedforward Neural Network Clustering .......... 156 

5.6 The Time Complexity and Memory Complexity of the Purposes ...................... 157 

5.7 Summary .............................................................................................................. 160 

CHAPTER 6: EXPERIMENTAL RESULTS AND EVALUATION ON THE 

RUFFNN AND RSFFNN CLUSTERING METHODS ........................................... 162 

6.1 Introduction ......................................................................................................... 162 

6.2 Experimental Evaluation on the RUFFNN and RSFFNN Clustering Methods .. 162 

Univ
ers

ity
 of

 M
ala

ya



 

xii 

6.2.1 The RUFFNN and RSFFNN Clustering on the Breast Cancer 

Wisconsin................. .............................................................................. 163 

6.2.2 The RUFFNN and RSFFNN Clustering on Iris ..................................... 166 

6.2.3 The RUFFNN and RSFFNN clustering on Spambase ........................... 169 

6.2.4 The RUFFNN and RSFFNN clustering on Arcene ................................ 172 

6.2.5 The RUFFNN and RSFFNN clustering on Yeast .................................. 175 

6.2.6 The RSFFNN Clustering on the Breast Cancer (UMMC) ..................... 177 

6.3 Summary .............................................................................................................. 180 

CHAPTER 7: EXPERIMENTAL RESULTS AND EVALUATION ON THE 

DUFFNN AND DSFFNN CLUSTERING METHODS ........................................... 181 

7.1 Introduction ......................................................................................................... 181 

7.2 Experimental Evaluation on the DUFFNN and DSFFNN Clustering ................. 181 

7.2.1 The DUFFNN and DSFFNN Clustering on the Breast Cancer 

Wisconsin................................................................................................182 

7.2.2 The DUFFNN and DSFFNN Clustering on the Iris ............................... 186 

7.2.3 The DUFFNN and DSFFNN Clustering on Spambase .......................... 189 

7.2.4 The DUFFNN and DSFFNN Clustering on SPECT Heart .................... 193 

7.2.5 The DUFFNN and DSFFNN Clustering on the SPECTF Heart ............ 197 

7.2.6 The DUFFNN and DSFFNN Clustering on MUSK1 ............................ 200 

7.2.7 The DUFFNN and DSFFNN Clustering on the MUSK2 ...................... 205 

7.2.8 The DUFFNN and DSFFNN Clustering on Arcene .............................. 209 

7.2.9 The DUFFNN and DSFFNN Clustering on Yeast ................................. 212 

7.2.10 The DSFFNN Clustering on the Breast Cancer (UMMC) ..................... 215 

7.3 Summary .............................................................................................................. 217 

CHAPTER 8: CONCLUSIONS AND FUTURE RESEARCH ......................... 218 

Univ
ers

ity
 of

 M
ala

ya



 

xiii 

8.1 Introduction ......................................................................................................... 218 

8.2 Achievement to Objectives of Research .............................................................. 218 

8.3 Summary of the results and finding ..................................................................... 219 

8.4 Contributions of the research ............................................................................... 223 

8.5 Recommendation and Future Directions ............................................................. 228 

REFERENCES ............................................................................................................. 229 

LIST OF PUBLICATIONS AND PAPERS PRESENTED ......................................... 241 

APPENDIX A ............................................................................................................... 245 

APPENDICES B ........................................................................................................... 260 

  
   

Univ
ers

ity
 of

 M
ala

ya



 

xiv 

LIST OF FIGURES 

Figure 1-1: The problems of the ODUFFNN clustering methods and two reasons of 
these problems ................................................................................................................ 11 
 

Figure 1-2: The solutions for the mentioned problems ................................................... 15 
 
Figure 1-3: The framework of the research methodology .............................................. 22 
 
Figure 2-1: The relations of data mining and other fields............................................... 27 
 
Figure 2-2: The KDD process ......................................................................................... 29 
 
Figure 2-3: An example of two clusters .......................................................................... 30 
 
Figure 2-4: An example of irregular shape cluster ......................................................... 30 
 
Figure 2-5: The data matrix and the dissimilarity matrix ............................................... 31 
 
Figure 2-6: A sample of the distances between the clusters and within each cluster ..... 46 
 
Figure 2-7: The K-means clustering method................................................................... 48 
 
Figure 2-8: The hierarchical clustering method .............................................................. 49 
 
Figure 2-9: The density based clustering method ........................................................... 51 
 
Figure 2-10: The DBSCAN clustering method .............................................................. 52 
 
Figure 2-11: An example of the COBWEB in decision tree clustering method ............. 54 
 
Figure 2-12: The grid-based based clustering method .................................................... 55 
 
Figure 3-1: The neuron ................................................................................................... 63 
 
Figure 3-2: A sample neural network ............................................................................. 66 
 
Figure 3-3: Single-layer perceptrons feedforward network ............................................ 69 
 
Figure 3-4: Multilayer perceptrons feedforward network............................................... 70 
 
Figure 3-5: Recurrent networks ...................................................................................... 70 
 

Univ
ers

ity
 of

 M
ala

ya



 

xv 

Figure 3-6: Single layer unsupervised feedforward neural network with Hebbian 
learning ........................................................................................................................... 72 
 
Figure 3-7: The single layer perceptron sample ............................................................. 73 
 
Figure 3-8: The multiLayer perceptron sample .............................................................. 74 
 
Figure 3-9: Identity function ........................................................................................... 74 
 
Figure 3-10: Binary step function ................................................................................... 75 
 
Figure 3-11: Sigmoid function ........................................................................................ 76 
 
Figure 3-12: Bipolar sigmoid function ........................................................................... 76 
 
Figure 3-13: A sample topology of the competitive clustering ...................................... 89 
 
Figure 3-14: A simple topology of the SOM .................................................................. 91 
 
Figure 3-15: One stage of the SOM process as an example ........................................... 92 
 
Figure 3-16: Classification of Iris dataset by using the GNG (Costa & Oliveira, 2007) 94 
 
Figure 4-1: The sample of breast cancer Wisconsin dataset ......................................... 115 
 
Figure 4-2: The sample of the Iris dataset..................................................................... 115 
 
Figure 4-3: The sample of the Spambase dataset .......................................................... 116 
 
Figure 4-4: The sample of SPECT Heart dataset .......................................................... 117 
 
Figure 4-5: The sample of SPECTF Heart dataset ........................................................ 118 
 
Figure 4-6: The sample of the Musk1 dataset ............................................................... 119 
 
Figure 4-7: The sample of the Musk2 dataset ............................................................... 120 
 
Figure 4-8: The sample of the Arcene dataset .............................................................. 121 
 
Figure 4-9: The sample of the Yeast dataset ................................................................. 122 
 
Figure 4-10: The sample of breast cancer from UMMC dataset .................................. 123 
 
Figure 5-1: The design of real unsupervised feedforward neural network model for 
clustering ....................................................................................................................... 129 
 

Univ
ers

ity
 of

 M
ala

ya



 

xvi 

Figure 5-2: The algorithm of the real unsupervised feedforward neural network 
clustering ....................................................................................................................... 131 
 
Figure 5-3: Standard normal distribution for each attribute value of input instance Xi 133 
 
Figure 5-4: Smoothing the BMW components of the breast consin (original) dataset by 
using the RUFFNN method .......................................................................................... 137 
 
Figure 5-5: Distribution of the normal input data attributes and their distances from the 
gravity centre of the dataset .......................................................................................... 139 
 
Figure 5-6: The outlook of clustering the Iris dataset by RUFFNN before using class 
labels ............................................................................................................................. 140 
 
Figure 5-7: The design of changed section of the RUFFNN suitable for real semi-
supervised feedforward neural network clustering method .......................................... 141 
 
Figure 5-8: The algorithm of the real semisupervised feedforward neural network 
clustering method .......................................................................................................... 142 
 
Figure 5-9: An example of the real semi-supervised feedforward neural network 
clustering method .......................................................................................................... 143 
 
Figure 5-10: The design of the dynamic unsupervised feedforward neural network 
clustering method. ......................................................................................................... 144 
 
Figure 5-11: The algorithm of the dynamic unsupervised feedforward neural network 
clustering ....................................................................................................................... 147 
 
Figure 5-12: An example for clustering the data nodes to three clusters by the DUFFNN
 ....................................................................................................................................... 154 
 
Figure 5-13: The outlook of clustering the online Iris data to three clusters based on a 
unique total threshold of each data point by the DUFFNN .......................................... 155 
 
Figure 5-14: The design of changed section of the DUFFNN suitable for dynamic semi-
supervised feedforward neural network clustering method .......................................... 156 
 
Figure 5-15: Dynamic semi-supervised feedforward neural network clustering algorithm
 ....................................................................................................................................... 157 
 
Figure 6-1: The SW vector of the Breast cancer Wisconsin (original) dataset using the 
RUFFNN method .......................................................................................................... 164 
 
Figure 6-2: The clusters of the RUFFNN method on breast cancer Wisconsin (original) 
dataset ........................................................................................................................... 165 

Univ
ers

ity
 of

 M
ala

ya



 

xvii 

Figure 6-3: The SW vector of the Iris dataset using the RUFFNN method .................. 167 
 
Figure 6-4: The clusters of the RUFFNN method on the Iris dataset ........................... 168 
 
Figure 6-5: The SW vector of the Spambase dataset using the RUFFNN method ....... 170 
 
Figure 6-6: The clusters of the RUFFNN method on the Spambase dataset ................ 171 
 
Figure 6-7: The clusters of the RUFFNN method on the Arcene dataset ..................... 173 
 
Figure 6-8: The final SW vector of the Yeast  dataset using the RUFFNN method ..... 175 
 
Figure 7-1: The final BMW vector of the breast cancer Wisconsin (original) using the 
DUFFNN method .......................................................................................................... 184 
 
Figure 7-2: The clusters of the DUFFNN method on the breast cancer Wisconsin 
(original) ....................................................................................................................... 184 
 
Figure 7-3: Comparison of the clustering density of CCN % on the breast cancer 
Wisconsin data points by the DUFFNN, DSFFNN and some related methods ........... 185 
 
Figure 7-4: The final BMW vector of the Iris by the DUFFNN method ....................... 187 
 
Figure 7-5: The clusters of the DUFFNN method on the Iris ....................................... 187 
 
Figure  7-6: Comparison of the clustering density of CCN % on the Iris data points by 
the DUFFNN, DSFFNN and some related methods ..................................................... 188 
 
Figure 7-7: The final BMW vector of the Spambase dataset by the DUFFNN method 190 
 
Figure 7-8: The clusters of the DUFFNN method on the Spambase ............................ 191 
 
Figure  7-9: Comparison of the clustering density of CCN % on the Spambase data 
points by the DUFFNN, DSFFNN and some related methods ..................................... 192 
 
Figure 7-10: The final BMW vector of the SPECT Heart dataset using the DUFFNN 
method ........................................................................................................................... 194 
 
Figure 7-11: The clusters of the DUFFNN method on the SPECT Heart .................... 195 
 
Figure 7-12: Comparison of the clustering density of CCN % on the SPECT Heart data 
points by the DUFFNN, DSFFNN and some related methods ..................................... 196 
 
Figure 7-13: The final BMW vector of the SPECTF Heart dataset of the DUFFNN 
method ........................................................................................................................... 198 
 

Univ
ers

ity
 of

 M
ala

ya



 

xviii 

Figure 7-14: The clusters of the DUFFNN method on the SPECTF Heart .................. 199 
 
Figure  7-15: Comparison of the clustering density of CCN % on the SPECTF Heart data 
points by the DUFFNN, DSFFNN and some related methods ..................................... 200 
 
Figure 7-16: The final BMW vector of the MUSK1 dataset by the DUFFNN method 203 
 
Figure 7-17: The clusters of the DUFFNN method on the MUSK1 ............................. 203 
 
Figure  7-18: Comparison of the clustering density of CCN % on the MUSK1 data points 
by the DUFFNN, DSFFNN and some related methods ................................................ 204 
 
Figure 7-19: The final BMW vector of the MUSK2 using the DUFFNN method ........ 207 
 
Figure 7-20: The clusters of the DUFFNN method on the MUSK2 ............................. 207 
 
Figure  7-21: Comparison of the clustering density of CCN % on the MUSK2 data points 
by the DUFFNN, DSFFNN and some related methods ................................................ 208 
 
Figure 7-22: The clusters of the DUFFNN method on the Arcene ............................... 210 
 
Figure  7-23: Comparison of the clustering density of CCN % on the Arcene data points 
by the DUFFNN, DSFFNN and some related methods ................................................ 211 
 
Figure 7-24: The final BMW vector of the Yeast  dataset by the DUFFNN method .... 213 
 
Figure  7-25: Comparison of the clustering density of CCN % on the Yeast data points 
by the DUFFNN, DSFFNN and some related methods ................................................ 214 
 
  

Univ
ers

ity
 of

 M
ala

ya



 

xix 

LIST OF TABLES 

Table 2-1: A contingency table of the binary variables .................................................. 33 
 
Table 2-2: Comparing characters to compute the F-measure ......................................... 41 
 
Table 2-3: Computing F-measure of clustering of a dataset with three classes ............. 42 
 
Table 2-4: The time complexity and memory complexity of the main unsupervised 
clustering methods .......................................................................................................... 58 
 
Table 3-1: The time complexities and memory complexities of some UFFNN clustering 
and related clustering methods ........................................................................................ 95 
 
Table 3-2: Some bold advantages of current online dynamic unsupervised feedforward 
neural network clustering models ................................................................................. 106 
 
Table 4-1: The system information of model implementation ..................................... 113 
 
Table  4-2: The features of the breast cancer Wisconsin dataset ................................... 114 
 
Table 4-3: The features of the Iris dataset..................................................................... 115 
 
Table 4-4: The features of the Spambase dataset .......................................................... 116 
 
Table 4-5: The features of SPECT Heart dataset .......................................................... 117 
 
Table 4-6: The features of SPECTF Heart dataset ........................................................ 118 
 
Table 4-7: The features of the Musk1 dataset ............................................................... 119 
 
Table 4-8: The features of the Musk2 dataset ............................................................... 120 
 
Table 4-9: The features of the Arcene dataset .............................................................. 121 
 
Table 4-10: The features of the Yeast dataset ............................................................... 122 
 
Table 4-11: The observed data of breast cancer based on the interval of survival time
 ....................................................................................................................................... 123 
 
Table 5-1: The code book of the weight vectors and the standard weight vector ......... 135 
 
Table 5-2: The online input data X ................................................................................ 149 
 
Table  5-3: The code book of the weight vectors and the BMW vector ......................... 151 

Univ
ers

ity
 of

 M
ala

ya



 

xx 

Table  5-4: Comparison of time complexity and memory complexity of the proposed 
clustering methods with some related methods ............................................................ 159 
 
Table  6-1: The clustering results of the RUFFNN method the breast cancer Wisconsin 
(Original) dataset .......................................................................................................... 163 
 
Table  6-2: The SW vector of the breast cancer Wisconsin (original) dataset using the 
RUFFNN method .......................................................................................................... 164 
 
Table  6-3: Comparison of the clustering results on the breast cancer Wisconsin dataset 
by the RUFFNN, RSFFNN and some related methods ................................................ 165 
 
Table  6-4: The clustering results of the RUFFNN method on the Iris dataset ............. 167 
 
Table  6-5: The SW vector of the Iris dataset using the RUFFNN method.................... 167 
 
Table  6-6: Comparison of the clustering results on the Iris dataset by the RUFFNN, 
RSFFNN and some related methods ............................................................................. 168 
 
Table  6-7: The clustering results of the RUFFNN method on the Spambase dataset .. 169 
 
Table  6-8: The SW vector of the Spambase dataset by the RUFFNN method ............. 170 
 
Table  6-9: Comparison of the clustering results on the Spambase dataset by the 
RUFFNN, RSFFNN and some related methods ........................................................... 171 
 
Table  6-10: The clustering results of the RUFFNN method on the Arcene dataset ..... 172 
 
Table  6-11: The SW vector of the Arcene dataset by the RUFFNN method ................ 173 
 
Table  6-12: Comparison of the clustering results on the Arcene dataset by the 
RUFFNN, RSFFNN and some related methods ........................................................... 174 
 
Table  6-13: The SW vector of the Yeast dataset by the RUFFNN method .................. 175 
 
Table  6-14: The clusters of the RUFFNN method on the Yeast dataset ...................... 176 
 
Table  6-15 : Comparison of the clustering results on the Yeast dataset by the RUFFNN, 
RSFFNN and some related methods ............................................................................. 176 
 
Table  6-16: The RSFFNN results for each subset of the UMMC breast cancer data ... 178 
 
Table  6-17: Comparison of the results of the PCA-BPN, the SOM-BPN and the 
RSFFNN for each subset of the UMMC breast cancer dataset .................................... 179 
 

Univ
ers

ity
 of

 M
ala

ya



 

xxi 

Table  7-1: The clustering result of the DUFFNN method on the breast cancer Wisconsin
 ....................................................................................................................................... 183 
 
Table  7-2: The final BMW vector of the breast cancer Wisconsin (original) using the 
DUFFNN method .......................................................................................................... 183 
 
Table  7-3: Comparison of the clustering results on the breast cancer Wisconsin data 
points by the DUFFNN, DSFFNN and some related methods ..................................... 185 
 
Table  7-4: The clustering result of the DUFFNN method on the Iris ........................... 186 
 
Table  7-5: The final BMW vector of the Iris using the DUFFNN method ................... 187 
 
Table  7-6: Comparison of the clustering results on the Iris data points by the DUFFNN, 
DSFFNN and some related methods ............................................................................. 188 
 
Table  7-7: The clustering result of the DUFFNN method on the Spambase ................ 189 
 
Table  7-8: The final computed BMW vector from the received Spambase data using the 
DUFFNN method .......................................................................................................... 190 
 
Table  7-9: Comparison the clustering results on the Spambase data points by the 
DUFFNN, DSFFNN and some related methods ........................................................... 191 
 
Table  7-10: The clustering result of the DUFFNN method on the SPECT Heart ........ 193 
 
Table  7-11: The final computed BMW vector from the received SPECT Heart data using 
the DUFFNN method .................................................................................................... 194 
 
Table  7-12: Comparison of the clustering results on the SPECT Heart data points by the 
DUFFNN, DSFFNN and some related methods ........................................................... 195 
 
 
Table  7-13: The clustering result of the DUFFNN method on the SPECT Heart ........ 197 
 
Table  7-14: The final computed BMW vector from the received SPECTF Heart data 
using the DUFFNN method .......................................................................................... 198 
 
Table  7-15: Comparison of the clustering results on the SPECTF Heart data points by 
the DUFFNN, DSFFNN and some related methods ..................................................... 199 
 
Table  7-16: The clustering result of the DUFFNN method on the Musk1 ................... 201 
 
Table  7-17: The final computed BMW vector from the received MUSK1 data using the 
DUFFNN method .......................................................................................................... 202 

Univ
ers

ity
 of

 M
ala

ya



 

xxii 

Table  7-18: Comparison of the clustering results on the MUSK1 data points by the 
DUFFNN, DSFFNN and some related methods ........................................................... 204 
 
Table  7-19: The clustering result of the DUFFNN method of the Musk2 .................... 205 
 
Table  7-20: The final BMW vector of the MUSK2 using the DUFFNN method ......... 206 
 
Table  7-21: Comparison of the clustering results on the MUSK2 data points by the 
DUFFNN, DSFFNN and some related methods ........................................................... 208 
 
Table  7-22: The clustering result of the DUFFNN method on the Arcene .................. 209 
 
Table  7-23: The BMW vector of the Arcene dataset by the DUFFNN method ............ 210 
 
Table  7-24: Comparison of the clustering results on the Arcene data points by the 
DUFFNN, DSFFNN and some related methods ........................................................... 211 
 
Table  7-25: The final computed BMW vector from the received Yeast data using the 
DUFFNN method .......................................................................................................... 212 
 
Table  7-26: The clusters of the DUFFNN method on the Yeast dataset ...................... 213 
 
Table  7-27: Comparison of the clustering results on the Yeast data points by the 
DUFFNN, DSFFNN and some related methods ........................................................... 214 
 
Table  7-28: The results of implementation of the DSFFNN for each subset of the breast 
cancer from UMMC ...................................................................................................... 216 
 
Table  7-29: Comparison of the results of the PCA-BPN, the SOM-BPN and the 
DSFFNN for each subset of the UMMC breast cancer dataset .................................... 216 
 
Table  8-1: Comparison of the DUFFNN clustering method with some current online 
dynamic unsupervised feedforward neural network clustering methods ...................... 222 
  Univ

ers
ity

 of
 M

ala
ya



 

xxiii 

LIST OF SYMBOLS AND ABBREVIATIONS 

ADALIN            : Adaptive linear neuron  

AGNES : Agglomerative  nesting 

AI : Artificial intelligence 

ANN : Artificial neural network 

ARI : Adjusted rand index 

BMU : Best matching unit  

BMW : Best matching weight 

BPN : Back propagation network 

CCN : Correctly classified nodes 

CPU : Central processing unit 

DBSCAN : Density based special clustering of applications with noise 

DIANA : Divisive analysis 

DM : Data mining 

DPT : Delta pre-training  

DSFFNN : Dynamic semi-supervised feedforward neural network 

DSFFNN : Dynamic semi-supervised feedforward neural network 

DSOM : Dynamic self-organizing map 

DUFFNN : Dynamic unsupervised feedforward neural network 

EII : Essential important information 

ESOINN : Enhanced self-organizing incremental neural network 

ESOM : Evolving self-organizing map 

EVMS : Eastern virginia medical school 

FFNN : Feedforward neural network 

FM : Folkes and Mallow 

Univ
ers

ity
 of

 M
ala

ya



 

xxiv 

GNG : Growing neural gas 

IGNG : Incremental growing with neural gas  

IGNGU : Incremental growing with neural gas utility parameter 

KDD : Knowledge discovery in databases 

K-NN : K nearest neighbour 

LMS : Least mean square  

MADALINE : Multiple ADALINE  

MLP : Multilayer perceptrons 

NCI : National cancer institute 

NIPS : Neural information processing systems 

NMI : Normalized mutual information 

ODUFFNN : Online dynamic unsupervised feedforward neural network 

OPTICS : Ordering points to identify the clustering structure 

PAM : Partitioning around medoids 

PCA : Principal component analysis 

PCA : Principal component analysis  

RBM : Restricted boltzmann machines  

RN : Recurrent networks 

RSFFNN : Real semi-supervised feedforward neural network 

RUFFNN : Real unsupervised feedforward neural network 

SCAWI : Statistically controlled activation weight initialization  

Semi-ESOM : Semi-supervised evolving self-organizing map 

SLP : Single-layer perceptrons 

SND : Standard normal distribution  

SOINN : Self-organizing incremental neural network  

SOM : Self-organizing map 

Univ
ers

ity
 of

 M
ala

ya



 

xxv 

SSE : Sum of squared error 

STING : Statistical information grid 

SW : Standard weight  

TLU : Threshold logic unit 

UCI : University of California at Irvine 

UFFNN : Unsupervised feedforward neural network 

UMMC : University of Malaya Medical centre 

VLS : Very large scale integrated  

VQ : Vector quantization 

WLA : Weight linear analysis  

 

  

Univ
ers

ity
 of

 M
ala

ya



 

xxvi 

LIST OF APPENDICES 

APPENDIX A: Algorithms ........................................................................................... 245 

APPENDICES B:Datasets Features ............................................................................. 260 

Univ
ers

ity
 of

 M
ala

ya



 

1 

CHAPTER 1: INTRODUCTION 

1.1 Background and Motivation 

An artificial neural network (ANN) has its roots in mathematics, statistics, numerical 

analysis, biology and psychology, and is an artificial representation of the human brain 

that has the capability to simulate its learning process.  An ANN is one of the numerous 

algorithms used in machine learning and data mining. Neural networks are flexible 

algorithms that allow users to encode nonlinear relationships between input and the 

desirable outputs (Dasarathy, 1990; Goebel & Gruenwald, 1999; Hegland, 2003; 

Kantardzic, 2011; Kemp, et al., 1997). An ANN is suitable to be applied for special 

applications such as pattern recognition and data classification through a learning 

process (Andonie & Kovalerchuk, 2007; Bengio, et al., 2000; Bose & Liang, 1996).  

Learning is an imperative property of the neural network. There are many types of 

learning rules used in the neural networks, which falls under the broad category of 

supervised learning, unsupervised learning, and reinforcement learning. Most 

applications to unsupervised learning in machine learning are statistical modelling, 

compression, filtering,  and clustering (Andonie & Kovalerchuk, 2007; Han & Kamber, 

2011; Hegland, 2003; Kantardzic, 2011).  

In this study, the clustering aspect of unsupervised neural network learning is 

considered. Learning from observations with unlabeled data in an unsupervised neural 

network clustering is more desirable and affordable than learning by examples in 

supervised neural network classification, because of the costly preparation of the 

training set, time consuming and necessary efforts of human observers. However, the 

desired output of unsupervised learning is not presented to the unsupervised neural 

network, therefore, to assess the performance of unsupervised learning, there is no error 

Univ
ers

ity
 of

 M
ala

ya



 

2 

or reward signal (Demuth, et al., 2008; Kohonen, 1997; Van der Maaten, et al., 2009). 

Clustering aims to mine useful information hidden among the multivariate data, 

discover similar groups, and identify meaningful distributions and prototypes in datasets 

(Deng & Kasabov, 2003; Rougier & Boniface, 2011). When using an unsupervised 

neural network for clustering, data is divided into meaningful groups with special goals, 

with related data classified as having higher similarities within groups and unrelated 

data as dissimilarities between groups (Hegland, 2003).  

A feedforward neural network is a popular tool for statistical decision making and in 

this network, data processing has only one forward direction from the input layer to the 

output layer without any backward loop (Andonie & Kovalerchuk, 2007; Bose & Liang, 

1996; McCloskey, 2000).  

1.1.1 Fundamental Unsupervised Feedforward Neural Network Clustering 

The unsupervised feedforward neural network (UFFNN) clustering has great 

capabilities, such as, the inherent distributed parallel processing architectures and the 

ability to adjust the interconnecting weights to learn and divide data into meaningful 

groups. Unsupervised neural network clustering methods classifies related data into 

similar groups without using any class label, and additionally controls noisy data and 

learns types of input data values based on their weights and properties (Andonie & 

Kovalerchuk, 2007; Bengio, et al., 2000; Hegland, 2003; Jain, 2010; Rougier & 

Boniface, 2011).  

 The UFFNN clustering methods often use Hebbian learning, or competitive 

learning, or competitive Hebbian learning  (Chakraborty, 2010; Hebooul, et al., 2015; 

Liu, et al., 2013; Martinetz, 1993). The similarities between Hebbian learning and 

competitive learning include unsupervised learning without error signal, and is strongly 

associated with biological systems. However, in competitive learning, only one output 

Univ
ers

ity
 of

 M
ala

ya



 

3 

must be active; such that, only the weights of the winner are updated in each epoch. By 

contrast, no constraint is enforced by neighbouring nodes in Hebbian learning, and all 

weights are updated at each epoch. In the case of competitive Hebbian learning, the 

neural network method shares some properties of both competitive learning and 

Hebbian learning (Fritzke, 1997; Hebooul, et al., 2015; Liu, et al., 2013; Martinetz, 

Berkovich, & Schulten, 1993; McClelland, et al., 1999). Competitive learning can apply 

vector quantization (VQ)  (Linde, et al., 1980) during clustering. Quantization is the 

process of mapping a large dataset to a smaller set. Linde et al. (Linde, et al., 1980) 

introduced an algorithm for the VQ design to obtain a suitable code book of weights for 

input data nodes clustering. VQ is based on the probability density functions through 

the distribution of the vector of the weights. VQ divides a large set of the data (vectors) 

into clusters, each of which is represented by its centroid node, as in K-means 

(MacQueen, 1967) which is a partitioning clustering method and some other clustering 

algorithms. Kohonen’s self-organizing map (SOM) (Kohonen, 1982) maps multi-

dimensional data onto lower dimensional subspaces, with the geometric relationships 

between points indicating their similarity. SOM generates subspaces with unsupervised 

learning neural network training through a competitive learning algorithm. The weights 

are adjusted based on their proximity to the "winning" nodes, that is, the nodes that 

most closely resembles an input instance (Germano, 1999; Honkela, 1998; Kohonen, 

2000; Ultsch & Siemon, 1990). The existence of incomplete and noisy data affect the 

accuracy of clustering (Germano, 1999; Honkela, 1998; Kohonen, 2000). The weight 

vectors are dependent on the data that can significantly cluster and recognize inputs, but 

the initialization of the weights is often randomly (Germano, 1999; Honkela, 1998; 

Kohonen, 2000). The weights have to be updated in each epoch during learning and 

results in slow training time, especially for training of a large data. Also, the model 

cannot converge properly, through applying unsuitable weights. Therefore, using 

Univ
ers

ity
 of

 M
ala

ya



 

4 

random or unsuitable weights affects accuracy and memory usage (Andonie & 

Kovalerchuk, 2007; Demuth, et al., 2008; Han & Kamber, 2011; Jain, 2010). The SOM 

creates fix code book of the weights. Therefore, the SOM clustering methods is not 

suitable for lifelong incremental learning (Kulkarni & Mulay, 2013; Wang, et al., 2013). 

The growing neural gas (GNG) (Fritzke, 1995) method is an example which uses the 

competitive Hebbian learning, in which the connection between the winner node and 

the second nearest node is created or updated in each training cycle. The GNG method 

can follow dynamic distributions by adding nodes and deleting them in the network 

during clustering by using the utility parameters. The disadvantages of the GNG include 

the increase in the  number of nodes to obtain the input probability density and the 

requirement for predetermining the maximum number of nodes and thresholds which 

affect the accuracy of clustering, training time and memory usage (Furao, et al., 2007; 

Hamker, 2001; Hebboul, et al., 2011). The VQ, K-means and some UFFNN clustering 

methods, such as the SOM and GNG are suitable for stationary information 

environments and batch datasets in which the data does not change. The static UFFNN 

clustering methods are generally considered as the fundamental clustering  methods and 

are adapted/modified to be used in non-stationary environments, and forms the current 

online dynamic UFFNN (ODUFFNN) clustering methods (Bouchachia, et al., 2007; 

Hebboul, et al., 2011; Kasabov, 1998; Schaal & Atkeson, 1998).                       

1.1.2 An Overview of Current Online Dynamic Unsupervised Feedforward 

Neural Network Clustering 

Many real world environments, such as credit card transactions, intelligent multi-

agent systems, and medical informatics, use online continuous data that are updated 

frequently (Bouchachia, et al., 2007; Hebboul, et al., 2011; Hsu, 2003; Kasabov, 1998; 

Rougier & Boniface, 2011). For example, we consider the credit card transaction 

records environment with 300,000 consumers and several hundred attributes. The 

Univ
ers

ity
 of

 M
ala

ya



 

5 

problems of such environments are collection, storage, search, transfer, visualization 

and analysis of large volume of the data including data noise and the high dimensions of 

the data (Bouchachia, et al., 2007; Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & 

Mulay, 2013; Liu, et al., 2013; Schaal & Atkeson, 1998). In this research, the Arcene 

dataset was used as a benchmark, and as an example of high dimensional medical data 

with 10,000 attributes. The Arcene dataset was collected from two different sources: the 

national cancer institute (NCI) and the eastern Virginia medical school (EVMS) 

(Asuncion & Newman, 2007). Arcene’s task is to distinguish cancer versus normal 

patterns from mass-spectrometric data (Asuncion & Newman, 2007).  This dataset is 

one of 5 datasets of the neural information processing systems (NIPS) 2003 feature 

selection challenge. As such, most current publications in this area  are on the selection 

of the best attributes so as to reduce the dimension of the Arcene dataset to get better 

clustering accuracy, to reduce the central processing unit (CPU) time usage and 

memory usage (Guyon, 2003; Guyon & Elisseeff, 2003). Data mining is the process of 

knowledge discovery in databases (KDD), and the knowledge discovery is a data 

analysis and extraction of the knowledge and potentially useful information based on 

the relationships between data values in large rational databases, and discovering 

meaningful patterns and rules from large quantities of data (Brachman & Anand, 1994). 

Consequently, clustering methods in data mining are used to recognize patterns and 

discover the knowledge of the data, in order to group them meaningfully (Bouchachia, 

et al., 2007). As the data environment is an online non-stationary, the online dynamic 

UFFNN (ODUFFNN) clustering methods should support online incremental learning. 

In these environments, the data are often highly massive, continuous and uninterrupted 

input data, the distributions of data are not known and the data distribution may change 

over time. Incremental learning refers to the ability of repeatedly training a network 

using new data or deleting unnecessary data, without destroying outdated prototype 

Univ
ers

ity
 of

 M
ala

ya



 

6 

patterns.  (Bouchachia, et al., 2007; Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & 

Mulay, 2013; Liu, et al., 2013; Schaal & Atkeson, 1998). The ODUFFNN clustering 

method should be able to control noisy data, adapt its algorithm and adjust itself in a 

flexible way to new conditions of the environment over time dynamically for processing 

of both data and knowledge. The ODUFFNN should accommodate and prune the data 

and rules without destroying old knowledge, should learn a number of clusters and 

density of each cluster without predetermining the rules. In addition, the ODUFFNN 

method must control time, memory space and accuracy efficiently (Bouchachia, et al., 

2007; Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & Mulay, 2013; Liu, et al., 2013; 

Schaal & Atkeson, 1998).   

Existing ODUFFNN clustering methods often use competitive learning as used in the 

dynamic self-organizing map (DSOM) (Rougier & Boniface, 2011), or competitive 

Hebbian learning as used in the evolving self-organizing map (ESOM) (Deng & 

Kasabov, 2003). Furao and Hasegawa introduced enhanced self-organizing incremental 

neural network (ESOINN) (Furao, et al., 2007) based on the GNG method (Furao & 

Hasegawa, 2006). The ESOINN method has one layer, and in this model, it is necessary 

that very old learning information is forgotten. The ESOINN model finds the winner 

and the second winner of the input vector, and then if it is obvious to create a 

connection between them or to remove the connection. The density, the weight of the 

winner and the subclass label of nodes will be updated in each epoch and the noise 

nodes based on the input values will be deleted. After learning, all nodes will be 

classified into different classes. However, it cannot solve the main problems of 

clustering. The disadvantages of the ESOINN method are:  out of date learning 

information is forgotten and new learned patterns are lost. Therefore the topological 

structure of the incremental online data cannot be well represented.  Furthermore, the 

initialization of the parameters for training is based on trial and error; and there is 

Univ
ers

ity
 of

 M
ala

ya



 

7 

relearning in several epochs (Hebboul, et al., 2011; Rougier & Boniface, 2011). 

Hebboul et al. (2011) proposed incremental growing with neural gas utility parameter 

(IGNGU) as the online incremental unsupervised clustering, which is based on the 

structures of the GNG and Hebbian (Hebb, 1949) models, but without any restraint and 

control on the network structure. The structure of the IGNGU contains two layers of 

learning. The first layer creates a suitable structure of the clusters of the input data 

nodes with lower noise data, and computes the threshold. The second layer uses the 

output of the first layer in parallel and creates the final structure of clusters. However, 

the IGNGU could not control noise and the density overlapping (Hebooul, et al., 2015; 

Kulkarni & Mulay, 2013; Liu, et al., 2013; Wang, et al., 2013). Evolving self-

organizing map (ESOM) (Deng & Kasabov, 2003) is an ODUFFNN method, that is 

based on the SOM and GNG methods. ESOM starts without nodes and the network 

updates itself with online entry, and if necessary, it creates new nodes during one 

training epoch. Similar to the SOM method, each node has a special weight vector and 

the strong neighbourhood relation is determined by the distance between connected 

nodes. If the distance is too big, it creates a weak threshold and the connection can be 

pruned. ESOM is a method based on a normal distribution and VQ in its own way, and 

creates normal sub clusters across the data space. ESOM is sensitive to noise nodes, 

prunes weak connections and isolated nodes based on the Hebbian learning (Hebb, 

1949) with the forgetting constant parameter for controlling the growing of the weights. 

However, the ESOM is unable to control the growth of the number of clusters and the 

size of the network, and takes a long time to train as well as large memory usage; 

although, the clustering is carried out in just one epoch (Furao & Hasegawa, 2006; 

Hebooul, et al., 2015; Liu, et al., 2013; Rougier & Boniface, 2011). Dynamic self-

organizing map (DSOM) (Rougier & Boniface, 2011) is similar to the SOM based on 

competitive learning. In order to update the weights of the neighbouring nodes, time 

Univ
ers

ity
 of

 M
ala

ya



 

8 

dependency is removed, and the parameter of the elasticity or flexibility is considered 

which is learned through trial and error. If the parameter of the elasticity is too high, 

DSOM does not converge; and if it is too low, it may prevent DSOM to occur and is not 

sensitive to the relation between neighbouring nodes. In the DSOM based on initialized 

thresholds and other clustering task parameters, if no node is close enough to the input 

values, other nodes must learn according to their distance to the input value. The 

enhancing dynamic self-organizing map (EDSOM) (Wang, et al., 2013) is based on the 

SOM and GNG, and its bold advantage includes pruning the weak connections; also the 

enhanced incremental growing neural gas (Hi-GNG) (Liu, et al., 2013) is based on 

GNG and Hebbian, and applies the enhanced Hebbian learning, which makes the 

method robust to noisy data nodes. Reviewing current ODUFFNN clustering methods 

shows that they inherit the properties and constructions of the VQ, K-means and some 

fundamental UFFNN clustering methods, such as SOM and GNG. The current 

ODUFFNN methods also inherit the limitations and problems of the primary UFFNN 

clustering methods (Bouchachia, et al., 2007; Hebboul, et al., 2011; Kasabov, 1998; 

Prudent & Ennaji, 2005; Shen, et al., 2011). The ODUFFNN clustering is a valuable 

subject to research; nevertheless, high training time, low accuracy and high memory 

usage of clustering are common critical issues in the current ODUFFNN clustering 

methods.     

1.2 Problem Statement 

In unsupervised neural network clustering, data is divided into meaningful groups 

with special goals, with related data classified as higher similarities within groups and 

unrelated data as dissimilarities between groups without using any class label. 

Additionally, the unsupervised neural network clustering learns types of input data 

values based on their weights and properties (Andonie & Kovalerchuk, 2007; Bengio, 

2013; Hegland, 2003; Jain, 2010). The UFFNN clustering methods such as SOM and 

Univ
ers

ity
 of

 M
ala

ya



 

9 

GNG are able to inhere distributed parallel processing architectures and adjust the 

interconnection weights to learn (Andonie & Kovalerchuk, 2007; Bengio, 2013; 

Hegland, 2003; Jain, 2010; Rougier & Boniface, 2011). 

In the online non-stationary data environments, the data are often large and 

continuous, as well,  the data distribution and network structure may change over time. 

In such environments, data noise and high dimensional data create problems during the 

clustering process (Bouchachia, et al., 2007; Hebboul, et al., 2011; Hsu, 2003; Kasabov, 

1998; Rougier & Boniface, 2011). In the real online area, the static UFFNN clustering 

methods are not suitable, however, they are generally considered as the fundamental 

clustering  methods and are adapted/modified to be used in non-stationary 

environments, and forms the current online dynamic UFFNN (ODUFFNN) clustering 

methods such as the ESOM and DSOM (Bouchachia, et al., 2007; Hebboul, et al., 2011; 

Kasabov, 1998; Schaal & Atkeson, 1998). Nevertheless, current ODUFFNN methods 

inherit the limitations and problems of the primary UFFNN clustering methods too 

(Bouchachia, et al., 2007; Furao, et al., 2007; Hebboul, et al., 2011; Kasabov, 1998; 

Prudent & Ennaji, 2005; Shen, et al., 2011). 

The ODUFFNN clustering method should not be rigid and after the entrance of each 

online data, the ODUFFNN clustering model should be ready to change and update its 

structure, nodes, and connections. Therefore, the ODUFFNN clustering method should 

be capable of handling new data, controlling noisy data, accommodating and pruning 

data and rules incrementally and adjusting itself in a flexible way to new conditions of 

the environment over time dynamically, for processing of both data and knowledge. 

Relearning is a critical issue in the ODUFFNN clustering method with lifelong and 

incremental learning. The ODUFFNN clustering methods should train online data fast 

without the need for relearning. Also, the ODUFFNN should cluster the continuous data 

Univ
ers

ity
 of

 M
ala

ya



 

10 

in one pass, because there is no capacity to store the whole information and details of 

the online new data, previous data and the connections of the data points in consequent 

steps (Hamker, 2001; Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & Mulay, 2013; 

Liu & Ban, 2015; Liu, et al., 2013). However, the current ODUFFNN clustering 

methods are not able to accommodate and adjust the data and rules without destroying 

old data and old knowledge (Bouchachia, et al., 2007; Kulkarni & Mulay, 2013; Liu & 

Ban, 2015; Liu, et al., 2013). In addition, the ODUFFNN clustering method must 

control time, memory space and accuracy efficiently (Hamker, 2001; Hebooul, et al., 

2015; Kasabov, 1998; Kulkarni & Mulay, 2013; Liu & Ban, 2015; Liu, et al., 2013). 

Hence, the current ODUFFNN clustering methods generally suffer from high training 

time and low accuracy of clustering, besides, high time complexity and high memory 

complexity of clustering (Hamker, 2001; Hebooul, et al., 2015; Kasabov, 1998; 

Kulkarni & Mulay, 2013; Liu & Ban, 2015; Liu, et al., 2013). There is a trade-off 

between training time, clustering accuracy, complexity and memory complexity of the 

ODUFFNN clustering methods, and there is surprisingly and comparatively very little 

previous works dealing with them together in one ODUFFNN clustering model (Furao 

& Hasegawa, 2006; Hebooul, et al., 2015; Kulkarni & Mulay, 2013; Liu, et al., 2013; 

Prudent & Ennaji, 2005; Rougier & Boniface, 2011). We identified the limitations, 

problems and some reasons of the problems associated with the current ODUFFNN 

clustering methods through the literature review, investigations and our 

experimentations, as summarized in Figure 1-1.  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

11 

-  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: The problems of the ODUFFNN clustering methods and two reasons 
of these problems 

Essentially, we recognized the  reasons of the problems of the current ODUFFNN 

clustering methods are related to the structure and features of the data, and the topology 

and algorithm of the current ODUFFNN clustering method. 

1.2.1 Some Reasons of the Problems Related to the Structure and Features of 

the Data 

In real non-stationary data environments, the dynamic clustering models use online 

continuous data that are updated frequently, the number of received online data grows 

continuously and the conditions of both data and knowledge change over time. 

However, the space and memory of systems for the ODUFFNN clustering process are 

limited (Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & Mulay, 2013; Liu, et al., 

2013; Rougier & Boniface, 2011). In order to limit the memory usage and obtain higher 

speed of clustering, the ODUFFNN clustering models need to reduce the data 

dimensions. If the number of attributes or the dimensions of the input data vectors are 

large, the components of the vectors are highly correlated (redundant) (DeMers & 

 

 

 

Use of random or unsuitable 
weights, thresholds and parameters 
for controlling clustering tasks 

High volume of data, large 
number of  attributes, and 
noisy data 

Relearning during several 
epochs with destroying old 
data and knowledge 

 

Low accuracy of clustering 

 

High CPU time usage 

 

High time and memory complexities of clustering 

 

The problems of the online dynamic unsupervised feedforward neural network clustering 

The structure and features of the data The topology and algorithm of the current  ODUFFNN 
clustering method 

Univ
ers

ity
 of

 M
ala

ya



 

12 

Cottrell, 1993; Furao, et al., 2007; Hebooul, et al., 2015; Liu, et al., 2013; Van der 

Maaten, et al., 2009). As mentioned in clustering, data is divided into meaningful 

groups with special goals, with related data classified as higher similarities within 

groups and unrelated data as dissimilarities between groups. Therefore, highly 

correlated data vector and noisy data cause difficulty in the clustering process, 

recognizing the special property of each attribute and finding its related cluster. 

However, using dimensional reduction techniques may cause the data loses some 

important its parts, which affect the accuracy of clustering results (DeMers & Cottrell, 

1993; Furao, et al., 2007; Van der Maaten, et al., 2009). An example of data with a large 

number of attributes is the Arcene dataset with 10,000 attributes, from the UCI machine 

learning repository (Asuncion & Newman, 2007). This dataset is one of five  datasets of 

the NIPS 2003 feature selection challenge. Most current existing papers try to select the 

best attributes in order to reduce the dimension of the arcane dataset with better 

accuracy, CPU time usage and memory usage (Guyon, 2003; Guyon & Elisseeff, 2003). 

Hence, ODUFFNN models should control and manage the distributions of data, the 

structure of the network of data nodes and their connections. As mentioned, the 

incremental ODUFFNN clustering methods should check all nodes as a neighbourhood 

or special cluster for inserting or updating the nodes of the network through the entrance 

of each online input data (Deng & Kasabov, 2003; Hinton & Salakhutdinov, 2006; 

Kasabov, 1998; Kohonen, 2000; Van der Maaten, et al., 2009), which affect CPU time 

usage, accuracy, time complexity and memory complexity of the ODUFFNN clustering 

methods (Hamker, 2001; Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & Mulay, 

2013; Liu & Ban, 2015; Liu, et al., 2013).  For example, the ESOM is unable to control 

the number of clusters and the size of the network (Furao & Hasegawa, 2006; Hebooul, 

et al., 2015; Liu, et al., 2013; Rougier & Boniface, 2011).  

Univ
ers

ity
 of

 M
ala

ya



 

13 

1.2.2 Some Reasons of the Problems Related to the Topology and Algorithm of 

the Current ODUFFNN Clustering Method 

The ODUFFNN models have the ability to adjust the interconnection weights to 

learn and divide online continuous data into meaningful groups by calculating distance 

thresholds, and classify related data into similar groups without using any class label, 

and additionally control noisy data and learns types of input data values based on their 

weights, properties and distance thresholds (Andonie & Kovalerchuk, 2007; Bengio, et 

al., 2000; Hegland, 2003; Jain, 2010; Rougier & Boniface, 2011). Therefore, current 

ODUFFNN clustering methods are sensitive to the initialization of the weights, distance 

thresholds and parameters for controlling the clustering tasks (Hebooul, et al., 2015; 

Kulkarni & Mulay, 2013; Liu, et al., 2013). Current ODUFFNN clustering methods 

generally use random weights, distance thresholds and parameters for controlling tasks 

during clustering, such as the, DSOM, that creates the code book of weights by 

selecting the input data randomly (Hebooul, et al., 2015; Kulkarni & Mulay, 2013; Liu, 

et al., 2013). Random initialization of weights results in the paradox of low accuracy 

and high training time (Han & Kamber, 2011; Jain, 2010; Rougier & Boniface, 2011). 

The clustering process is considerably slow because the weights have to be updated in 

each epoch during learning. Utilizing suitable weights and parameters is necessary 

because the neural network relies on the “garbage-in, garbage-out” principle. Therefore, 

the problem also affects memory usage (Andonie & Kovalerchuk, 2007; Demuth, et al., 

2008; Jolliffe, 2002; Kantardzic, 2011; Kasabov, 1998). The parameter values are often 

selected by trial and error after several executions of the clustering model, and the 

clustering method often uses many parameters to manage clustering performance 

(Hebooul, et al., 2015; Kulkarni & Mulay, 2013; Liu, et al., 2013). The ESOM is an 

example which applies a parameter set in order to measure the distance threshold, 

control the spread of the neighbourhood, learning rate, steps of learning time and 

Univ
ers

ity
 of

 M
ala

ya



 

14 

forgetting constant (Deng & Kasabov, 2003). Generally, the ODUFFNN clustering 

methods such as the ESOM initialize the parameters for training based on trial and 

error, and after several performances of the clustering model and checking the results, 

the best parameters are recognized. Therefore, based on our experience and reports of 

authors, the models are not suitable and have different results for each performance 

(Furao & Hasegawa, 2006; Hebooul, et al., 2015; Liu, et al., 2013; Rougier & Boniface, 

2011). 

Relearning is another critical issue in the ODUFFNN clustering method with lifelong 

and incremental learning. The ODUFFNN clustering methods should train online data 

quickly without relearning and cluster the continuous data in one pass, because there is 

no capacity to store all the details of the online data, previous data, and the connection 

of the data points in subsequent steps (Hebooul, et al., 2015; Kasabov, 1998; Kulkarni 

& Mulay, 2013; Liu, et al., 2013; Rougier & Boniface, 2011). The current ODUFFNN 

clustering methods are not able to accommodate and adjust the data and rules without 

destroying old data and old knowledge (Hebboul, et al., 2011; Jain, 2010; Jain, et al., 

1999; Pavel, 2002). Relearning over several epochs takes time and clustering is 

considerably slow. Relearning affects the clustering accuracy, as well as time 

complexity and memory complexity for clustering. In the case of relearning, the 

topological structure of the incremental data cannot be represented well, the number of 

clusters and density of each cluster are not clear, and cannot be easily learnt. Therefore, 

relearning affects the clustering accuracy, time complexity and memory complexity of 

clustering (Bouchachia, et al., 2007; Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & 

Mulay, 2013; Liu, et al., 2013; Pavel, 2002). 

Univ
ers

ity
 of

 M
ala

ya



 

15 

In order to overcome the problems, we developed a dynamic UFFNN (DUFFNN) 

clustering model with some solutions and strategies such as one epoch training, as 

shown in Figure 1-2. 

 

-  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: The solutions for the mentioned problems  

Dynamically after each entrance of the online  data, the DUFFNN learns and stores 

important information about the current online data, such as the non-random weights 

and completes a code book of the weights. Then, a standard weight vector is extracted 

and updated from the code book. For example, in order to cluster the Iris dataset as a 

standard dataset from the UCI Repository with 4 attributes and 150 instances (Asuncion 

& Newman, 2007), the model randomly selects one instance (data record) from the 

dataset for simulation of the online continuous input data. Immediately, the ODUFFNN 

model calculates the non-random weight vector of the data and the final standard weight 

vector of the Iris data will be (0.16, 0.33, 0.23, 0.28), after learning the last input data. 

Consequently, a single layer DUFFNN calculates the exclusive distance threshold of 

 

 

 

Use of real non-random weights 
and mining best matching weight, 

Capable of learning the number of 
clusters and density of each 
cluster without the need to 
initialise cluster parameters or 
thresholds 

Store the essential 
intelligent information 
during learning,  

Remove noisy data, 

Prune nodes with very 
weak thresholds 

Cluster in one epoch without the 
need to update the weights, 

Capable of  retrieving old data, 

Capable of updating the network  
nodes and rules corresponding 
to online input data 

 

 

High accuracy of 
clustering 

 

Low CPU time usage 

 

Low time complexity of clustering with O(n,m) 

Low memory complexity of clustering with 
O(n.m.sm) 

 

 Overcome the problems of the current ODUFFNN clustering methods by the proposed DUFFNN 
method 

The structure and features of the data The topology and algorithm of the proposed DUFFNN 
clustering method 

Univ
ers

ity
 of

 M
ala

ya



 

16 

each data based on the standard weight vector. The input data are clustered based on the 

exclusive distance thresholds. The calculated weight vector of the Iris shows that the 

weight of the first attribute is lower and weaker than the others and has least affect on 

the calculation of the related distance threshold. If the weight is very close to zero, the 

model is able to reduce the related attribute values.  Also, the model is able to recognize 

the outlier input data as noisy data through its solitary distance threshold. The threshold 

of each data point is stored in the memory as important information too. 

Based on the literature, after learning in order to improve the quality of the DUFFNN 

clustering result, the model assigns a class label to the input data through the training 

data (Deng & Kasabov, 2003; Hebooul, et al., 2015; Kamiya, et al., 2007; Prudent & 

Ennaji, 2005; Shen, et al., 2011). The class label of each initially unlabeled input data is 

predicted by considering a linear activation function and the exclusive distance 

threshold. Finally, the number of clusters and the density of each cluster are updated  

1.3 Objectives of Research 

In order to overcome the problems as mentioned in Section 1.2, the objectives of this 

research are as follows: 

 To review current effective ODUFFNN clustering methods. 

 To identify limitations and problems of current effective ODUFFNN clustering 

methods through the literature and practical investigations.  

 To develop a dynamic unsupervised feedforward neural network (DUFFNN) 

clustering method that is able to: 

1) Reduce the training time of clustering during one training epoch 

2) Increase the accuracy of clustering 

3) Reduce the time complexity of clustering 

Univ
ers

ity
 of

 M
ala

ya



 

17 

4) Reduce the memory complexity of clustering 

 To evaluate the performance of the proposed DUFFNN method. 

 To compare the results of the proposed DUFFNN method performance with 

rival methods within the scope of this research. 

1.4 Preliminary Research Questions  

The research essays the following preliminary questions corresponding to the 

research objectives identified in Section 1.3.  

Objectives 1 and 2: To review current effective ODUFFNN clustering methods; to 

identify limitations and problems of current effective ODUFFNN clustering methods 

through the literature and practical investigations. 

 Q1: What are the strategies, topologies and performances of current effective 

ODUFFNN clustering methods? 

 Q2: What are the limitations and problems of the current ODUFFNN clustering 

methods? 

Objective 3: To develop a dynamic unsupervised feedforward neural network 

(DUFFNN) clustering method that is able to: 

1) Reduce the training time of clustering during one training epoch 

2) Increase the accuracy of clustering 

3) Reduce the time complexity of clustering 

4) Reduce the memory complexity of clustering 

 Q3: Is the proposed DUFFNN clustering method appropriate in order to cluster 

online continuous data dynamically and incrementally?  

Univ
ers

ity
 of

 M
ala

ya



 

18 

 Q4: How can we develop a DUFFNN clustering method and what is the 

associated algorithm that is able to reduce the training time of clustering, increase the 

accuracy of clustering, reduce the time complexity and reduce the memory complexity of 

clustering? 

Objectives 4 and 5: To evaluate the performance of the proposed DUFFNN method; 

to compare the results of the proposed DUFFNN method performance with rival 

methods within the scope of this research. 

 Q5: How is the performance of the developed DUFFNN clustering method in 

comparison of results with rival methods? 

1.5 Scope of Research 

This research work focuses on the clustering aspect of unsupervised neural network 

learning. The focus is on the unsupervised neural network clustering methods, which 

have a feedforward topology and cluster the data in only one forward interconnection 

from the input layer to the output layer without any backward loop. Therefore, the 

proposed method is able to cluster the data without relearning in a short training time. 

 In order to achieve the objectives of the thesis, we focus on the abilities of reducing 

the training time of clustering during one epoch, reducing the time complexity and 

reducing the memory complexity, and increasing the accuracy of clustering. 

Also, the work is limited to unsupervised feedforward neural network clustering 

method with online incremental learning abilities. Since the data environment is an 

online non-stationary, the online dynamic UFFNN (ODUFFNN) clustering methods 

should have online incremental learning. In these environments, the data are often high 

volume, continuous and uninterrupted, the distributions of data is not known and the 

data distribution may change over time. Incremental learning refers to the ability of 

Univ
ers

ity
 of

 M
ala

ya



 

19 

repeatedly training a network using new data or deleting unnecessary data, without 

destroying outdated prototype patterns (see Section 1.1). 

For experimental results in this research, non-stationary continuous data is simulated 

by picking an instance data from the dataset randomly and uniformly at each training 

process of clustering (Rougier & Boniface, 2011) (see Section 4.2.6).  

All practical experiments are carried out under the domain of nine datasets with low 

dimension such as Iris dataset and with a large number of dimensions such as Arcene 

dataset from the University of California at Irvine (UCI) machine learning repository 

(Asuncion & Newman, 2007), (see Section 4.2.6).  

The selected datasets are remarkable, and most conventional methods do not 

satisfactorily cluster these datasets because of their features (see Section 1.2). The 

datasets from the UCI Repository of Machine Learning (Asuncion & Newman, 2007) 

are used for benchmarking purposes of unsupervised feedforward neural network 

clustering (see Section 4.2.6). This research work focuses on the ODUFFNN clustering 

methods for selected datasets with different size, number of attributes and number of 

classes, similar to the selected datasets in this thesis (see Section 4.2.6). However, the 

scope of the thesis is not on big and high dimensional datasets, and solving the 

problems associated with them. For example, this research work does not focus on 

mapping high dimensional data to low dimensional data, such as principal component 

analysis (PCA) (Jolliffe, 1986), which is considered as a preprocessing technique for 

dimensional reduction of data (see Section 3.2.6). 

The accuracy of the methods is measured through the number of clusters, the number 

of correctly classified nodes and the F-measure function by 10 folds of the test set 

Univ
ers

ity
 of

 M
ala

ya



 

20 

(Andrew, 2014; Chaimontree, et al., 2010; Rendón, et al., 2011; Rendón, et al., 2011; 

Sung & Mukkamala, 2003).  

The focus of this research is the DUFFNN clustering, however, based on the 

literature in order to improve the quality of the clustering results by assigning the class 

labels after learning (Deng & Kasabov, 2003; Hebooul, et al., 2015; Kamiya, et al., 

2007; Prudent & Ennaji, 2005; Shen, et al., 2011), the dynamic semi-supervised 

feedforward neural network (DSFFNN) clustering is introduced. Also, in order to 

illustrate the efficiency of the DSFFNN clustering method, in addition to the UCI 

datasets, the breast cancer dataset from the University of Malaya medical centre 

(UMMC) is used to predict the survival times of breast cancer patients. 

1.6 Research Methodology 

This research focuses on a developed dynamic unsupervised feedforward neural 

network clustering method. In order to overcome the mentioned problems in Section 

1.2, the methodology follows the steps of a framework, which is shown in Figure 1-3. 

The details of the research methodology are provided in Chapter 5. The research 

methodology has briefly three main processes:  

 We review, investigate and analyse current ODUFFNN clustering methods and 

identify their limitations and problems through the literature, their history, and identify 

some reasons of these problems through a practical investigation.  

 In order to overcome the mentioned problems in Section 1.2 and achieve to our 

objectives, we develop the DUFFNN clustering method with one epoch of training for 

clustering non-stationary continuous data with incremental learning ability. For this 

purpose, we firstly introduce a real unsupervised feedforward neural network 

(RUFFNN) clustering method suitable for stationary data environment, and improve the 

real semi-supervised FFNN (RSFFNN) clustering method, in order to further improve 

Univ
ers

ity
 of

 M
ala

ya



 

21 

the quality of the result of the RUFFNN method, we assign a class label to each of the 

unlabeled data by considering a linear activation function and the exclusive distance 

threshold. Then, we develop the DUFFNN clustering method by adapting the structure 

and the features of the RUFFNN method, and improve the dynamic semi-supervised 

FFNN (DSFFNN) clustering method, in order to improve the quality of the  result of the 

DUFFNN method by applying class labels, as illustrated in Chapters 4 and 5 of the 

thesis.  

 To evaluate the performance of the proposes methods and compare their results 

with similar methods, we use various datasets from the UCI machine learning 

repository and the breast cancer dataset from UMMC, as illustrated in Chapters 6 and 7 

of the thesis. 

  

Univ
ers

ity
 of

 M
ala

ya



 

22 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3: The framework of the research methodology 

  

 
Formulate the problem statement 

 
Develop RUFFNN clustering method for  
stationary data 
 

 
Develop DUFFNN clustering method for 
online continuous data 
 

Use nine datasets from UCI repository and the 
breast cancer dataset from UMMC 

Evaluate and compare the performance of 
the (RUFFNN and RSFFNN), and 
(DUFFNN and DSFFNN) methods with 
similar methods on different datasets by 
measuring accuracy, speed, and time 
complexity and memory complexity 

Improve RSFFNN as semi-supervised 
clustering method for stationary data 

Improve the DSFFNN as semi-
supervised clustering methods for online 
continuous  data Pr

op
os

e 
th

e 
m

od
el

 
 

 
Define research objectives 

 

- Distance measurement methods 
- Clustering evaluation methods 
- Main unsupervised clustering models 

 
System design 

 
 

Analysis and experimental results 
 

 
 

Experimental evaluation 
 

Ex
pe

rim
en

ta
l r

es
ul

ts
 a

nd
 

ev
al

ua
tio

n 
e 

Investigate and  review current effective 
ODUFFNN clustering methods through the 
literature experimentally to identify limitations 
and problems 
 

Univ
ers

ity
 of

 M
ala

ya



 

23 

1.7 Overview of the Contributions of Thesis 

The contributions are discussed with details in Section 8.4, however, the overall 

original contributions in several viewpoints are as follows: 

 A developed real unsupervised feedforward neural network (RUFFNN) model 

for single epoch clustering method, which does not require any training cycle, 

computation of error functions, and updating the weights. The model uses non random 

weights by using normalized input data. Also, the proposed RUFFNN method is able to 

control and delete attributes with weak weights to control the dimensions of data, and 

data with solitary distance thresholds in order to reduce noise. The number of clusters 

and the density of each cluster are predicted based on the thresholds by the model 

without any pre-initialization of parameters. 

 An improved real semi-supervised feedforward neural network (RSFFNN) 

clustering method. The RUFFNN clustering is improved by applying class labels as 

partial supervision, which is entitled, " real semi-supervised FFNN (RSFFNN) 

clustering", to assign a class label to the each unlabeled data by considering a linear 

activation function and the exclusive threshold for more accurate results. 

 A developed dynamic unsupervised feedforward neural network (DUFFNN) 

clustering method. The DUFFNN clustering method inherits the structure, features and 

capabilities of the RUFFNN clustering. The DUFFNN clustering with incremental 

lifelong or online learning property is developed for real non stationary environments. 

The DUFFNN clustering is a flexible method, and with each online continuous data,  

immediately updates all nodes, weights and distance thresholds. 

 An improved dynamic semi-supervised feedforward neural network (DSFFNN) 

clustering method. The DUFFNN clustering is improved by applying class labels as 

partial supervision, which is entitled, " dynamic semi-supervised FFNN (DSFFNN) 

Univ
ers

ity
 of

 M
ala

ya



 

24 

clustering", to assign a class label to each unlabeled data by considering a linear 

activation function and the exclusive threshold for more accurate results. 

The experimental results using various datasets prove that the methods, which have 

been developed based on the strong support of the theoretical background, are practical 

and efficient.  

1.8 Organization of Thesis 

The thesis is organized in accordance with the standard structure of thesis and 

dissertations at the University of Malaya. The thesis has eight chapters, including this 

introductory chapter. Chapter one covers the online dynamic unsupervised feedforward 

neural network (ODUFFNN) clustering that leads to the idea of exploring the details of 

the concepts of faster and more accurate ODUFFNN clustering with low time 

complexity and low memory complexity. 

Chapter two discusses the basic concepts in unsupervised clustering, which includes 

the distance function of similarities, clustering evaluation, and the main unsupervised 

clustering algorithms. 

Chapter three covers the literature review on the feedforward neural network, and 

online dynamic unsupervised feedforward neural network clustering. This chapter 

introduces the methods in general and the applications, which includes the limitations 

and problems are discussed in this research.  

In Chapter four, the details of the research methodology, in order to achieve the 

research objectives, are provided based on the framework of the research methodology 

as shown in Figure 1-3. This chapter includes a brief overview of proposed methods and 

the evaluation plan. Also, the data requirements for running experiments of the 

proposed methods are discussed. 

Univ
ers

ity
 of

 M
ala

ya



 

25 

Chapter five is the main part of the thesis. In this chapter, the design and algorithms 

of the developed RUFFNN, RSFFNN, DUFFNN, and DSFFNN are discussed.  

In Chapter six and seven, firstly the performances of the proposed methods are 

experimentally determined, and then experimental evaluation of the proposed methods 

and comparison of their results with similar methods are discussed by measuring speed, 

time complexity, memory complexity, and accuracy. Chapter six discusses on 

experimental results and evaluation on the RUFFNN and RSFFNN. Chapter seven 

discusses on experimental results and evaluation on the DUFFNN and DSFFNN. 

Chapter eight is the last chapter, which concludes the research with the contributions 

and some recommendations for future work and development. 

  

Univ
ers

ity
 of

 M
ala

ya



 

26 

CHAPTER 2: CONCEPT  IN UNSUPERVISED CLUSTERING 

2.1 Introduction 

Clustering has its roots in different domains, such as data mining, statistics, biology 

and machine learning. Clustering groups the data into clusters with high similarities 

between objects within each cluster, but high dissimilarities between objects within 

different clusters. Dissimilarities are measured based on the values of attributes of the 

objects. This chapter illustrates the overview of unsupervised clustering, the different 

types of data used in unsupervised clustering, and related distance measurements based 

on dissimilarity features between two objects, and the popular clustering validation 

methods. Then, we review the main unsupervised clustering methods in data mining, 

such as partitioning hierarchical, density-based, model-based, and grid based clustering.  

2.2 Overviews of Unsupervised Clustering 

Artificial intelligence (AI) includes learning in virtual environments and rule-based 

systems (Deconinck, 2010; Nilsson, 1998). AI has the capabilities of self-analysis, 

learning, adapting, improving through communication with its environment, and 

conducting intelligent tasks. Kuncheva in 2005 showed the relations of different areas, 

such as AI, machine learning, data mining, statistics, mathematics and pattern 

recognition in one graph (Kuncheva, 2005), as shown in Figure 2-1.  

 Univ
ers

ity
 of

 M
ala

ya



 

27 

 

 

Figure 2-1: The relations of data mining and other fields 

Machine learning (Mitchell, 1997) is an advanced approach of learning system in AI, 

and its main effort is making a machine with capability of learning and accommodating 

the new information. AI is a multi-interdisciplinary field that is connected to other fields 

such as computer science, statistics and mathematics. Machine learning is also 

concerned with the discovery of model, patterns, and regularities in data. In machine 

learning, the particular sample data and past knowledge are applied and learned to 

generate models. Learning rules are categorized broadly under supervised learning, 

unsupervised learning, and reinforcement learning (Andonie & Kovalerchuk, 2007; 

Bengio, et al., 2000; Han & Kamber, 2006, 2011; Kantardzic, 2011). Supervised 

learning determines patterns in the data that illustrates the relation between data 

attributes and a constraint such as a class label. The supervised model, learns these 

patterns and predicts the value of the target attribute for future input data. However, to 

assess the performance of unsupervised learning, there is no target attribute, no error or 

reward signal. Approaches to unsupervised learning in machine learning are statistical 

modelling, compression, filtering, blind source separation, and clustering. Unsupervised 

Univ
ers

ity
 of

 M
ala

ya



 

28 

learning or self-organized learning finds symmetries in the data represented by 

unlabeled input data. Unsupervised learning, discovers the data to extract some essential 

structures in the data (Han & Kamber, 2006, 2011; Hebboul, et al., 2011; Kantardzic, 

2011). In this research, we consider the clustering aspect of unsupervised learning. 

Unsupervised clustering learns raw data and divides the data into meaningful groups 

with special goals and classifies highly similar data into one group without using any 

class labels. In reinforcement learning, the model is capable of generating certain effects 

and interactions with the dynamic environment for recognizing an unknown attribute 

value. At each point in time, the environment generates an observation for this unknown 

attribute value which is the reward or reinforcement for the model. Consequently, the 

model can select and use suitable rule and interacts with the environment for more 

rewards (Lin, Osan, & Tsien, 2006).  

Existing methods with the capability of extracting valuable knowledge from large 

data stores, are necessary because of the growth of the database industry and the 

advanced resulting market. Data mining (DM) and knowledge discovery in databases 

(KDD) (Brachman & Anand, 1994; Liu & Ban, 2015) have emrged as a new scientific 

and engineering discipline. As mentioned earlier, machine learning is an advanced 

approach of learning system in AI with the capability of learning and accommodating 

new information in systems; while data mining is the process to solve the problems by 

analysing data that already exists in databases, and extracts the structured data stored in 

the data warehouse, in the form of rational data tables. Data mining is the core phase of 

the process of knowledge discovery in databases (KDD). Knowledge discovery is the 

process of data analysis and extraction of the knowledge and potentially useful 

information based on the relationships between data values in large rational databases, 

including discovery of the meaningful patterns from large quantities of data. The 

process of the KDD includes obtaining raw data from all sources of data values, 

Univ
ers

ity
 of

 M
ala

ya



 

29 

preprocessing, cleaning, analysing, and transforming or formatting of data values, and 

applying data mining algorithms, and finally interpreting and evaluating the results 

(Brachman & Anand, 1994; Han & Kamber, 2011; Hegland, 2003; Hsu, 2003; Liu & 

Ban, 2015). Figure 2-2 shows the KDD process, as follows: 

 

Figure 2-2: The KDD process 

In the final step of the KDD process, using some visualization techniques are useful. 

Visualization of data is the transition of the data into a visual or a two-dimensional 

format to analyse the type of data, and the relationship between attributes of data 

(Goebel & Gruenwald, 1999; Granda, 2003). Visualization techniques are dependent on 

the types of the data mining model, structure, and attributes of the data. Visualization 

techniques in clustering methods are often the scatter plots, dendrograms, smoothed 

data histograms, self organizing maps, and proximity matrixes.  For example, clusters 

can be represented by the centroid of each cluster, therefore, the radius of the cluster 

and standard deviation of the data points in ratio to the related centroid in each cluster 

shows the limited area of each cluster (Goebel & Gruenwald, 1999; Granda, 2003), as 

shown in Figure 2-3.  

Univ
ers

ity
 of

 M
ala

ya



 

30 

 

Figure 2-3: An example of two clusters 

However, representing the irregular shape clusters is difficult, and using centroid 

representation is not suitable in general. Figure 2-4 shows an example of irregular shape 

clusters.   

 
Figure 2-4: An example of irregular shape cluster 

2.3 Types of Data in Unsupervised Clustering 

Generally, the dataset which is considered for clustering contains n objects, and each 

object has p attributes. The memory based clustering methods usually consider two 

Univ
ers

ity
 of

 M
ala

ya



 

31 

structures of the dataset (Han & Kamber, 2011; Hebboul, et al., 2011; Kantardzic, 

2011): 

 Data matrix (objects by variable structure), has the structure of n objects by p 

variables of attributes (or measurements) in the form of relational table, such as n 

persons by p attributes of age, height, weight, gender and so on. The numbers of the 

rows and columns in the matrix are different, therefore, the data matrix is two mode 

matrix. 

 Dissimilarity matrix (objects by objects structure), has the structure of n objects 

by n objects for storing a collection of proximities that are available for all pairs of n 

objects. The numbers of the rows and columns in the matrix are the same, therefore, the 

data matrix is a one mode matrix, where d(i,j) points to the measured dissimilarities 

between objects i and j. The dissimilarities d(i,j) are not negative. If the objects i and j  

are far, their d(i,j) has a high value and shows less similarity between objects. 

Figure 2-5 shows the data matrix and the dissimilarity matrix.

 

Figure 2-5: The data matrix and the dissimilarity matrix 

During the clustering process, the clustering methods often convert the structure of 

raw data matrix to the dissimilarity matrix by measuring dissimilarities (Han & 

Kamber, 2011; Hebboul, et al., 2011; Kantardzic, 2011).  

 

Univ
ers

ity
 of

 M
ala

ya



 

32 

2.4 Distance Functions For Measuring the Dissimilarity of Objects 

The d(i,j) is a distance function for measuring the dissimilarity between two data 

objects, and is different for interval-scaled, boolean, categorical, ordinal and ratio 

variables.  

2.4.1 Distance Measuring of Interval-Scaled Variable 

Interval-scaled variables are defined as continuous variable quantities on the basis of 

an approximately linear scale, such as weight and height. There are several techniques 

to measure the distance of the interval-scaled objects such as the mean        as 

shown in Equation (2.1), absolute deviation    as shown in Equation (2.2), and standard 

measurement (Z-score)    as shown in Equation (2.3) (Han & Kamber, 2011; Hebboul, 

et al., 2011; Kantardzic, 2011). 

Mean,                                                                                    (2.1) 

Absolute deviation,                                                  

             (2.2) 

Standard measurement (Z-score),      
         

  
                                     (2.3) 

Minkowski distance as shown in Equation (2.4), 

                    
 
          

 
             

 
                       (2.4) 

Where                    , and                      are two p-dimensional 

data objects, and q is a positive integer. 

Manhatan distance, when q=1 , as shown in Equation (2.5),  

Univ
ers

ity
 of

 M
ala

ya



 

33 

                                                                                   (2.5) 

Euclidean distance, when  q=2, as shown in Equation (2.6), 

                    
 
          

 
             

 
                        (2.6) 

Moreover, weighted distances can be generated by using the mentioned formulas in 

the above Equations,  such the weighted Euclidean distance in Equation (2.7), 

                       
 
            

 
               

 
          (2.7) 

The mathematical requirements of the above distance functions are as follows: 

         : Distance is a nonnegative number; 

         : The distance of an object to itself is zero; 

              : Distance is a symetric function; 

                     : Triangular inequality; 

2.4.2 Distance Measuring Binary Variables 

A binary variable has just two states 0 and 1 such as absent and present for two cases 

of alive or dead. Table 2-1 shows a contingency table of the binary variables (Han & 

Kamber, 2006, 2011; Hebboul, et al., 2011; Kantardzic, 2011). 

Table 2-1: A contingency table of the binary variables 

 

  

Object  j 
 

 
  

  
1 0 Sum   

Object  i 1 q r q+r   

 
0 s t s+t   

 
Sum q+s r+t p   

Univ
ers

ity
 of

 M
ala

ya



 

34 

Where q is the number of variables that equal 1 for both objects i and j, r is the 

number of variables that equal 1 for object i but equal 0 for object j, s is the number of 

variables that equal 0 for object i but equal 1 for object j, t the number of variables that 

equal 0 for both objects i and j. The total number of variables is p,where p=q+r+s+t. 

When both of the states of a binary variable have the same weight, the binary variable is 

symmetric, and it is called symmetric binary dissimilarity. For example, the attribute of 

gender can be male or female, and it is not important which one is assigned 0 or 1 and 

they have the same weights. Equation (2.8) is used to the symmetric binary dissimilarity 

between objects i and j. This is a simple matching coefficient (Han & Kamber, 2011; 

Hebboul, et al., 2011; Kantardzic, 2011). 

                                                                                                    (2.8) 

A binary variable is asymmetric if the states of a binary variable have different 

weights, such as the positive and negative results of a disease test. Equation (2.9) is 

used to find the asymmetric binary dissimilarity between object i and object j (Han & 

Kamber, 2011; Hebboul, et al., 2011; Kantardzic, 2011). 

                                                                                                        (2.9) 

The distance between two binary variables can be computed based on the similarity 

instead of dissimilarity. For example, the asymmetric binary dissimilarity between 

object i and object  j, which is sim(i,j) can be measured as shown in Equation (2.10). 

sim(i,j) is called the Jaccard coefficient (Han & Kamber, 2011; Hebboul, et al., 2011; 

Kantardzic, 2011). 

                                                                                            (2.10) 

Univ
ers

ity
 of

 M
ala

ya



 

35 

2.4.3 Distance Measuring Nominal Variables 

A nominal variable is called categorical variable, if it can have more that two states, 

such as an attribute of colour with five states of blue, red, yellow, green and brown. The 

dissimilarity between two object i and object j can be measured based on the ratio of 

dissimilarities, as shown in Equation (2.11) (Han & Kamber, 2011; Hebboul, et al., 

2011; Kantardzic, 2011). 

       
   

                                                                                                   (2.11) 

Where m is the number of states of the categorical variable, and p is the total number 

of variables.  

2.4.4 Distance Measuring Ordinal Variables and Interval-Scaled Variables 

An ordinal variable is similar to a categorical variable, however, the states of the 

ordinal value are placed sequentially, such as rank variable. We can consider f  as a 

variable from a set of ordinal variables describing n objects, which has    states. For 

example, professional ranks often enumerated in a sequential order of assistant, 

associate and full professors, therefore it has three states or     .      is the value of 

the f for the ith object. Each      can replace by its matching rank, 

                    . In order to have equal weight, it is necessary to map the range 

of each variable onto [0.0,1.0] by replacing     object in the     variable as shown in 

Equation (2.12). 

    
        

    
                                                                                       (2.12) 

This technique can be applied to compute the dissimilarity of the interval-scaled 

variables too (Han & Kamber, 2011; Hebboul, et al., 2011; Kantardzic, 2011).  

Univ
ers

ity
 of

 M
ala

ya



 

36 

2.4.5 Distance Measuring Ratio-Scaled Variables 

A ratio-scaled variable is a positive quantity on a nonlinear scale. An example for a 

nonlinear scale is an exponential scale that approximately follows the formula of        

or        , where A and B are positive constants, and t is time. The bacteria population 

growth and the radioactive element decay are examples for the ration-scaled variable. 

There are three methods to adjust the dissimilarity between objects (Han & Kamber, 

2011; Hebboul, et al., 2011; Kantardzic, 2011), as follow: 

1) Treat ratio-scaled variables, similar interval-scaled variables, and follow 

Equation (2.12). 

2) Apply logarithmic transformation to a ratio-scaled variable, as shown in 

Equation (2.13). 

                                                                                                                (2.13) 

3) Treat     as continuous ordinal data and treat their rank as interval-scaled, and 

follow Equation (2.12).  

2.4.6 Distance Measuring of Vector Object  

There are several techniques to measure a similarity function for s(x,y) , to compare 

two vector X and vector Y. One accepted technique is to measure similarity function as a 

cosine measure, as shown in Equation (2.14). 

           
                                                                                          (2.14 ) 

When     is a transposition of vector X,     is the Euclidean norm of vector    , 

    is the Euclidean norm of vector Y, and s is fundamentally the cosine of the angle 

between vector X and the general linear transformation (Han & Kamber, 2011; 

Hebboul, et al., 2011; Kantardzic, 2011). 

Univ
ers

ity
 of

 M
ala

ya



 

37 

2.5 Clustering Evaluation  

Evaluation is a critical issue to identify the clustering tendency of the dataset with 

non-random structure and the correct number of clusters. Clustering evaluation is also 

important in order to recognize, how well the clustering results  are compatible and fit 

with the data, and to compare the results of different sets of cluster methods for 

determining the best one. Generally, there are three numerical criteria to evaluate 

clustering, namely external indexes, internal indexes, and relative indexes (Halkidi, et 

al. , 2001).  

2.5.1 External Indexes 

External indexes are used to measure the similarity of the processed cluster to the 

externally provided ground truth, such as cluster data points with class labels that are 

often built by human experts (Halkidi, et al., 2001). In the literature, this index is known 

as external validation, external criterion, or supervised methods through the class labels, 

such as entropy, purity, precision (Amigó, et al., 2009; Halkidi, et al., 2001).  

Cluster Purity is a simple and easy evaluation method to measure the quality of a 

clustering (Zhao & Karypis, 2004).  When G={G1 ,G2 , ...,GM} is a set of the ground 

truth clusters, and C={C1 , C2 , ...,CM} is a set of the processed clusters by a special 

clustering algorithm, the purity of cluster C is measured by considering cluster G. 

The cluster Purity method assigns each cluster to the special class label, which is 

most frequent in the cluster, and then the clustering accuracy is measured by computing 

the number of correctly assigned data points and dividing by the number of data points 

in the cluster. The purity of the cluster Cj is computed in Equation (2.15):  

             
            

    
                                                                    (2.15) 

Univ
ers

ity
 of

 M
ala

ya



 

38 

here |Cj| is the size of cluster Cj and              shows the number of data points of 

the class    which are assigned to cluster Cj. Also, the total purity of a clustering result 

is computed as shown in Equation (2.16), which can be measured as a weighted sum of 

individual cluster purities. 

             
    

   
  

                                                                     (2.16) 

Where K is the number of clusters,     is the size of the dataset D. The accuracy by 

cluster Purity will be between 0 and 1, and the Purity is 1 if each object gets its own 

cluster. The large number of clusters results in high purity, therefore, just computing the 

cluster Purity is not suitable to show the quality measurement (Zhao & Karypis, 2004).  

Density of the Correctly Classified Nodes (CCN) (Bouchachia, et al., 2007; 

Camastra & Verri, 2005; Costa & Oliveira, 2007) is the simple method for external 

evaluation measurement of clustering. The accuracies of the methods were measured 

through the number of clusters and the number of the CCN. The CCN showed the total 

of nodes and their densities, with the correct class in the correct related cluster, in all 

created clusters by the method. The CCN is shown in Equation (2.17). 

    
         

                   
                                                          (2.17) 

     is true positives, which refers to the number of the positive objects that are laid 

in correct related cluster,      is true negatives, which refers to the number of the 

negative objects that are laid in correct related cluster. The error clustering      is false 

negative, which refers to the number of the negative objects that are laid in incorrect 

related cluster, and      false positive which is which refers to the number of the 

Univ
ers

ity
 of

 M
ala

ya



 

39 

positive objects that are laid in incorrect related cluster (Bouchachia, et al., 2007; 

Camastra & Verri, 2005; Costa & Oliveira, 2007). 

Folkes and Mallow (FM) Index measures (Fowlkes & Mallows, 1983) is defined as 

shown in Equation (2.18):  

         
    

         
  

    

         
                                                   (2.18) 

In order to calculate the FM, we consider the same parameters as defined for CCN. 

Jaccard Score (Fowlkes & Mallows, 1983) is one of the evaluation methods in an 

external index (Halkidi, et al., 2001; Jiang & Ren, 2011). The Equation (2.19) shows the 

Jaccard index: 

              
    

              
                                                            (2.19) 

Rand Index is popular measure the evaluation method in external index, that is, how 

the clustering results are close to the ground truth (Halkidi, et al., 2001; Jiang & Ren, 

2011). The agreement between C and G can be estimated, as shown in Equation (2.20): 

           
         

                   
                                           (2.20) 

Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) can only take a value between 

0 and 1, and may can not take a constant value such as zero. Hence, the ARI can take a 

negative value if the index is less than the expected index. Therefore, the ARI is the 

corrected for chance version of the RI, which works better than RI and many other 

indexes (Milligan & Cooper, 1986; Steinley, 2004). As shown in Equation (2.21), the 

expected RI of random labelling E[RI], is pushed aside: 

Univ
ers

ity
 of

 M
ala

ya



 

40 

             
    

                                                                     (2.21) 

F-measure (Van Rijsbergen, 1979) is a strong established measure for computing 

the quality of any given clustering result with respect to ground truth, and shows how 

closely each cluster matches a set of categories of ground truth. The F-measure is 

computed by considering                and            .                is the 

probability that a randomly selected recovered instance is relevant, as shown in 

equation (2.22).              

               
    

         
                                                                    (2.22)  

            is the probability that a randomly selected relevant instance is 

recovered in a search, as shown in Equation (2.23).           

            
    

         
                                                                          (2.23)     

The F-measure is called balanced F-Score function  accuracy, or F1 measure 

because recall and precision are weighted, as shown in Equations (2.24) and (2.25) 

(Andrew, 2014; Chaimontree, et al., 2010; Rendón, et al., 2011; Sung & Mukkamala, 

2003).                                                   

               
                              

                            
  

(2.24) 

           
           

                     
                                         (2.25) 

Table 2-2 illustrates the details of variables and formulas of the F-measure for 

dataset with two classes.  

Univ
ers

ity
 of

 M
ala

ya



 

41 

Table 2-2: Comparing characters to compute the F-measure 

 
Correct result / Clustering 

E1 E2 

Obtained results of Clustering 
E1           

E2           
 

Table 2-3 shows an example for a computing F-measure of clustering of a dataset 

with three classes based on the definitions of Table 2-3 (Andrew, 2014). Parameter i 

refers to the special class, that i ={1,2,3} , and j refers to the special cluster, that  

j={1,2,3}. tci  is true objects, which refers to the number of the objects that are laid in 

correct related cluster.  fci and  f ‘
ci  are false objects related to first and second other 

classes, which refer to the number of the objects that are laid in incorrect cluster. 

Parameter Mj  is total members of cluster j. Ti     total number of objects with class i. 

  

Univ
ers

ity
 of

 M
ala

ya



 

42 

Table 2-3: Computing F-measure of clustering of a dataset with three classes 

a) Distribution the members of each cluster with their related classes 

 Class1 Class2 Class3 Total members of 
each cluster 

Cluster1 |tc1| |fc1| |f ‘c1| M1=|tc1|+ |fc1|+| f ‘c1| 

Cluster2 |fc2| |tc2| |f ‘c2| M2=| tc2|+ |fc2|+ |f ‘c2| 

Cluster3 |fc3| |f ‘c3| |tc3| M3=| tc3|+|fc3|+|f ‘c3| 
Total number 
of objects of 
each class 

T1=|tc1|+ |fc2|+ |fc3| T2=|tc2|+| fc1|+ |fc3| T3=|tc3|+| fc1|+ |fc2|  

 

b) Computing Recall 

Recall 

 Class1 Class2 Class3 
Cluster1 Recall11= |tc1|/T1 Recall 21=|fc1|/T2 Recall 31=|f ‘c1|/ T3 

Cluster2 Recall12=|fc2|/T1 Recall 22=|tc2|/ T2 Recall 32=|f ‘c2|/ T3 

Cluster3 Recall 13=|fc3|/T1 Recall 23=|fc3|/ T2 Recall 33=|tc3|/ T3 
 

c) Computing Precision 

Precision 

 Class1 Class2 Class3 
Cluster1 Preision11=|tc1|/M1 Preision 21=|fc1|/M1 Preision 31=|f ‘c1|/M1 

Cluster2 Preision 12=|fc2|/M2 Preision 22=|tc2|/M2 Preision 32=|f ‘c2|/M2 

Cluster3 Preision 13=|fc3|/M3 Preision 23=|fc3|/M3 Preision 33=|tc3|/M3 
 

d) Computing F-measure 

F-measure 

 Class1 Class2 Class3 
Cluster1 F-measure11= 2*( Recall11* Precision11)/( Recall11* 

Precision11) 
F-measure21 F-measure31 

Cluster2 F-measure12 F-measure22 F-measure32 

Cluster3 F-measure13 F-measure23 F-measure33 
 

Table 2-3 shows the phases of computing an F-measure of clustering for dataset with 

three classes. In phases b, c of Table 2-3 averages of the best Recalls and Precision are 

computed respectively. In phase d of Table 2-3 an F-measure of each element is 

Univ
ers

ity
 of

 M
ala

ya



 

43 

computed and consequently the average of the best computed values of the F-measure 

is considered as F-measure of the cluster. 

Normalized Mutual Information (NMI) (Studholme, et al., 1999) is a measure for 

computing the quality of clustering result, and improves the purity index in order to 

overcome the high number of clusters (Estévez, et al. , 2009; Fern & Brodley, 2004). 

The NMI as shown in Equation (2.26) is based on normalization, and can be used to 

compare clustering results with different numbers of clusters (Manning, et al. , 2008). 

        

         
 
   

 
       

 

 
            

         
 

 

 
 

 
  
  
  
  
  
 

      
 
        

    
   
    

 

 
 
 
     
 
       

 

 
     

   
 

 

 
 

 

 
 
 

  

(2.26) 

Entropy (Rohlf, 1974; Xianguang, 1998) is an external measure of  clustering, which 

is  a function of the distribution of classes in the resulting clusters. For each cluster     , 

the class distribution of data is computed as the probabilities           that is a data 

point in     belongs to class    . The normalized entropy is computed based on the class 

distribution, as shown in Equation (2.27) and (2.28):  

                                        
 
                                        (2.27) 

 

Where           
        

     
                                                                       (2.28) 

The overall entropy between 0 and 1 is defined as the sum of the individual cluster 

entropies weighted by the size of each cluster, as shown in Equation (2.29): 

                        
 
                                                            (2.29) 

Univ
ers

ity
 of

 M
ala

ya



 

44 

The low amount of the entropy measure shows a good clustering result.  

2.5.2 Internal Index 

In the case that the ground truth is not available, internal index is applied to measure 

validation (Han & Kamber, 2011; Marina, 2001). The internal index is called the 

internal criterion, internal validation, intrinsic and unsupervised evaluation method. 

Internal evaluation measures the amount of similarities between data points within the 

clusters and the dissimilarities between data points of different clusters. Therefore, the 

internal evaluation of clustering is based on only features and information inherent in a 

dataset. The internal index can only compare different clustering results by using the 

same model. Internal indexes are used to measure the fitness of a clustering structure 

without considering the external information. There are two internal measures, namely 

cohesion and separation.  

Cluster Cohesion measures how closely related data objects are in a cluster. Cluster 

cohesion includes the sum of squared error. Sum of squared error (SSE) (Han & 

Kamber, 2006, 2011; Marina, 2001) is an objective function in order to describe the 

coherence of a cluster. The low amount of the SSE shows good result of clustering. The 

SSE measure, is shown in Equation (2.30):  

                     
 
      

 
                                                                   (2.30) 

Where,    is a data point in cluster    and    is the representative for cluster   . 

Square error cohesion is measured by within cluster sum of SSE, as shown in  Equation 

(2.31): 

            
 

                                                                                       (2.31) 

Where    is the mean value of the number of objects in cluster i. 

Univ
ers

ity
 of

 M
ala

ya



 

45 

Cluster Separation measures how distinct  a cluster is from other clusters (Han & 

Kamber, 2011; Marina, 2001).  

Separation is measured by the between cluster sum of squares, as shown Equation 

(2.32): 

               
 

                                                                                       (2.32) 

where      is the size of cluster i, and   is the mean value of the number of objects in 

all clusters. 

Silhouette Coefficient (Han & Kamber, 2011) is an internal measure, that combines 

the ideas of both cohesion and separation for individual points and clusters. The 

silhouette coefficient for a data point i is computed, as shown in Equation (2.33), which 

is typically between 0 and 1, and closer 1 is the best result: 

                                                                   

     Silhouette coefficient= 

                                                                                         

(2.33) 

Where   is the average distance of i to the points in its cluster, and   is minimum 

average distance of i to points in another cluster. The average silhouette width can be 

considered for internal evaluation, as well. 

2.5.3 Relative Index 

Relative indexes are used to compare two different clustering methods or clusters, in 

which, internal or external indexes can be used for pre-specified measure, such as SSE 

or Entropy (Halkidi, et al., 2001; Han & Kamber, 2011; Marina, 2001). 

 

Univ
ers

ity
 of

 M
ala

ya



 

46 

2.6 The Overview of the Main Unsupervised Clustering Methods 

During clustering, the data are divided into meaningful groups based on the special 

goals, with related data classified as higher similarities within groups and unrelated data 

as dissimilarities between groups (Hegland, 2003). For example, as shown in Figure 2-6 

for one data point in cluster1, its threshold must be less than the distance between 

clusters and greater than the distance within each cluster. 

 

Figure 2-6: A sample of the distances between the clusters and within each 
cluster 

Clustering is often applied for data reduction such as summarization like 

preprocessing of classification; compression like vector quantization; and finding the 

nearest neighbours (Han & Kamber, 2006; Hegland, 2003; Kantardzic, 2011). Different 

unsupervised clustering methods are proposed in the literature, which can be 

categorized based on: type of input data clustering criterion in order to define the 

similarities between data points, and fundamental concepts and theory of clustering 

process. In data mining, the main unsupervised clustering methods can be categorized 

as follows (Han & Kamber, 2006; Hegland, 2003; Kantardzic, 2011): 

Univ
ers

ity
 of

 M
ala

ya



 

47 

2.6.1 Partitioning Clustering 

Partitioning clustering divides n data into K partitions and evaluates them by some 

criteria functions, such as a distance function based on dissimilarity. Objects within a 

cluster are similar, and the objects of different clusters are dissimilar in terms of the 

dataset attributes.  Each partition represents a cluster. Also, each partition has at least 

one object and each object is just in one special partition. For example K-means 

(MacQueen, 1967) is one type of partitioning methods. K-means randomly selects K 

objects from the input data and considers them as centroids of K partitions, and assign 

each object to the cluster with the nearest centroid. Consequently, the model computes 

each centroid as the mean of the objects assigned to it. In order to cluster the data, the 

centroids are considered as the standard points in the dataset, and the model distributes 

each group of data points based on a concept of similarity to the features of the centroid 

or centre of gravity of the cluster. Mostly, K-means applies the Euclidean distance in 

order to compute the dissimilarities between the centroid of each cluster and other 

objects, and continues this process until the model reaches the minimum error value 

based on the square-error criterion function. Therefore, the model usually provides a 

natural tendency summarization of the given data and knowledge to lead to cluster. 

(Hegland, 2003; Kantardzic, 2011; Pavel, 2002). Figure 2-7 shows a sample diagram of 

the K-means clustering method: 

Univ
ers

ity
 of

 M
ala

ya



 

48 

 

Figure 2-7: The K-means clustering method 

The K-means is a simple and straightforward model for clustering the data, and is 

based on the firm foundation of analysis of variances. The K-means also has some 

disadvantages: the results strongly depend on the initial guess of centroids (or 

assignments), the computed local optimum is known to be a far from the global one, it 

is not obvious what is a good K to use, the process is sensitive to outliers, it lacks 

scalability, only numerical attributes are covered, and resulting clusters can be 

unbalanced.  

Moreover, K-modes clustering method is another kind of K-means clustering for 

clustering of categorical data, which frequently updates the modes of clusters instead of 

the means. Another example of partitioning clustering method is of partitioning around 

medoids (PAM) (Kaufman & Rousseeuw, 1987). The PAM considers K partition of n 

objects. The PAM, firstly initializes random selection of K representative objects called 

medoids in each cluster. The PAM iteratively replaces one of the medoids by one of the 

non-medoids which improves the total distance of the clustering result for better 

Univ
ers

ity
 of

 M
ala

ya



 

49 

representative objects. Using PAM is suitable for clustering small datasets.  K-medoid 

clustering like K-means method  pre-describes the number of clusters K (Han & 

Kamber, 2011).     

2.6.2 Hierarchical Clustering 

Hierarchical clustering has the structure of nested sub-clusters; each cluster has 

several sub-clusters. The method applies distance matrix as clustering criteria. These 

methods do not require the number of clusters but a termination condition is necessary 

(Han & Kamber, 2011; Hegland, 2003; Jain & Dubes, 1988; Kantardzic, 2011). Figure 

2-8 shows a sample diagram of the hierarchical clustering method: 

 

Figure 2-8: The hierarchical clustering method 

Generally, there are two types of hierarchical clustering methods, agglomerative and 

divisive hierarchical clustering methods.  

Agglomerative hierarchical clustering has a bottom-up strategy and starts by placing 

each object in its own cluster and then merges these atomic clusters into a larger cluster, 

until all of the objects are in a single cluster or until certain termination conditions are 

satisfied. Most hierarchical clustering methods belong to this category. They differ only 

Univ
ers

ity
 of

 M
ala

ya



 

50 

in their definition of intercluster similarity. Agglomerative  nesting (AGNES) method is 

an example of this method and was introduced by Kaufmann and Rousseeuw 

(Kaufmann & Rousseeuw, 1990). Initially, AGNES places each object into a cluster of 

its own. The clusters are then merged step by step according to some criterion, such as 

Euclidean distance. AGNES uses the single link method and the dissimilarity matrix, 

and merges nodes that have the least dissimilarity.  

The divisive hierarchical clustering method has a top-down strategy and starts with 

all objects in one cluster. It subdivides the cluster into smaller and smaller pieces, until 

each object forms a cluster on its own or until it satisfies certain termination conditions, 

such as a desired number of clusters is obtained or the diameter of each cluster is within 

a certain threshold. The diameter is the square root of average mean squared distance 

between all pairs of points in the cluster. Divisive analysis (DIANA) is an example of 

this method , and introduced by Kaufmann and Rousseeuw (Kaufmann & Rousseeuw, 

1990).  

The advantages of hierarchical clustering include: embedded flexibility regarding the 

level of granularity, ease of handling of any forms of dissimilarity or distance, and 

consequently, applicability to any attribute types. It does not require the knowledge of 

the number of clusters.  The disadvantages of hierarchical clustering include: vagueness 

of termination criteria, the fact that most hierarchical algorithms do not revisit once 

constricted (intermediate) clusters with the purpose of their improvement, and they are 

unable to undo what was done previously (Han & Kamber, 2011; Hegland, 2003; Jain 

& Dubes, 1988; Kantardzic, 2011).  

 

Univ
ers

ity
 of

 M
ala

ya



 

51 

2.6.3 Density Based Clustering 

Density based clustering model clusters the data based on local cluster criteria, such 

as density-connected data points, with higher density in the special groups in the one 

scan. Also, the density based clustering models have the capabilities of controlling the 

noise and the border of each cluster space based on the property and density functions. 

The density method assumes that the data point of each cluster is based on a specific 

probability distribution function. The aim is to identify the clusters in the arbitrary 

shape, and their distribution and density parameters for a termination condition (Ester, 

et al., 1996; Ester, et al., 1995; Han & Kamber, 2011; Hegland, 2003; Kantardzic, 

2011). Figure 2-9 shows a sample diagram of the density-based clustering method: 

 

Figure 2-9: The density based clustering method 

A clustering method based on connected regions with sufficiently high density 

(DBSCAN) is an example of the density based method, and was introduced by Esster et 

al. (Ester, et al., 1996). The density is the number of points within a specified radius r 

(Eps), which is the maximum radius of the neighbourhood. The radius is the square root 

of the average distance from any point of the cluster to its centroid.  A point is a core 

Univ
ers

ity
 of

 M
ala

ya



 

52 

point if it has more than a specified number of points (MinPts), which is the minimum 

number of points in an Eps-neighbourhood of the points. These are points at the interior 

of a cluster, a border point has fewer than MinPts within Eps, but it is in the 

neibourhood of a core point. Furthermore, a noise point is any point that is not a core 

point or a border point. If the model finds a core point, a cluster is formed. The model 

continues the process until all of the points are checked. Figure 2-10 shows the 

DBSCAN clustering method. 

 

Figure 2-10: The DBSCAN clustering method  

Ordering points to identify the clustering structure (OPTICS) (Ankerst, et al., 1999) 

is based on the DBSCAN. The model develops a special order of the set of values in 

order to determine parameters to represent the density-based clustering structure. This 

cluster-ordering includes information equivalent to the density-based clusterings earned 

from a wide range of parameter settings. The OPTICS is suitable for both automatic and 

interactive cluster analysis, including finding intrinsic clustering structure.  

Some advantages of the density based clustering methods are discovery of arbitrary-

shaped clusters with different sizes, immunity to noise and outliers. Some disadvantages 

Univ
ers

ity
 of

 M
ala

ya



 

53 

of the density based clustering methods are high sensitivity to the input parameters set, 

disability to describe the clusters and clustering of high dimensional datasets. 

2.6.4 Model-based Clustering 

Model based clustering methods have their roots in some fields such as statistic and  

machine learning, which try to find a pattern based on the training data usually for 

prediction and description. This approach assumes a model for each cluster and finds 

the best fit of data to that model (Shavlik & Dietterich, 1990). The models may also 

apply a density function to reflect the special distribution of the data points. These 

methods can determine the number of clusters and their densities (Ester, et al., 1996; 

Ester, et al., 1995; Han & Kamber, 2011; Hegland, 2003; Kantardzic, 2011; 

McCloskey, 2000; Pavel, 2002). The popular methods in the model based clustering are 

decision tree and neural networks. 

A decision tree represents the data by using a hierarchical tree, in which each leaf 

points to a concept and includes a probabilistic description of that concept. There are 

several algorithms in this area, such as COBWEB. The COBWEB (Fisher, 1987) 

considers all attributes of the data are independent, and try to achieve high predictability 

to nominal variable values in each cluster. The model starts with a tree while consists of 

empty nodes, and data instances are added one by one, and the structure of the tree is 

updated to best fit nodes. Each node denotes a concept includes a probabilistic 

description of that concept. The objects are presented sequentially items. The 

COBWEB is not suitable for clustering high dimensional and large data because of the 

time complexity and memory complexity. The model has a high cost of probability 

distributions and checks all attributes of the data instances  (Fisher, 1987). Figure 2-11 

shows an example of the COBWEB as a decision tree model.  

 

Univ
ers

ity
 of

 M
ala

ya



 

54 

 

Figure 2-11: An example of the COBWEB in decision tree clustering method 

Neural networks are computational models inspired by neurobiology for enhancing 

and testing computational analogues of neurons. Neural networks are adaptable 

algorithms that permit users to encode nonlinear relationships between the input and the 

desirable outputs (Dasarathy, 1990; Goebel & Gruenwald, 1999; Hegland, 2003; 

Kantardzic, 2011; Kemp, et al., 1997). Neural network clustering method such as 

Kohonen’s self-organizing map (SOM) (Kohonen, 1982) is an example of the model 

based method. SOM maps multi-dimensional data onto lower dimensional subspaces, 

with the geometric relationships between points indicating their similarity. SOM 

generates subspaces with unsupervised learning neural network training through a 

competitive learning algorithm. The weights are adjusted based on their proximity to 

the "winning" nodes, that is, the nodes that most closely resembles a sample input 

(Germano, 1999; Honkela, 1998; Kohonen, 2000; Ultsch & Siemon, 1990). The SOM 

clustering will be discussed in Section 3.3.1.  

Neural networks are particularly useful for solving problems, which cannot be 

expressed as a series of steps. The neural networks are suitable for extracting rules, 

quantitative evaluation of these rules, classification, clustering, and regression feature 

Univ
ers

ity
 of

 M
ala

ya



 

55 

evaluation (Andonie & Kovalerchuk, 2007; Bengio, et al., 2000).  Pattern recognition 

which is a branch of machine learning, is mostly used in the neural networks. Neural 

networks extract a pattern of data which can be an image, a sound , or any other sources 

of data. The model based clustering has some critical problems, such as initialization of 

a set of parameters by user which are used during clustering and low processing time, 

especially on large and high dimensional datasets, that they affect the accuracy and 

speed of clustering. 

2.6.5 Grid-based Clustering 

Grid based clustering are based on multiple resolution grid data structure such as the 

quantized space. These methods approximate the instance space into a finite number of 

the cells in the grid structure. First the model predefines a set of grid-cells, then it 

assigns objects to the suitable grid cell and compute the density of each cell. The 

density should be below a certain threshold. The clustering is fast and independent of 

the number of objects, but it is dependent on the number of cells in each dimension in 

the quantized space (Han & Kamber, 2011; Kantardzic, 2011; Larson et al., 2013). 

Figure 2-12 shows a sample diagram of the grid-based clustering method: 

 

Figure 2-12: The grid-based based clustering method 

Univ
ers

ity
 of

 M
ala

ya



 

56 

Statistical information grid (STING) is an example of the grid based clustering 

method (Wang, et al., 1997). STING is a grid based multiresolution clustering technique 

and has several levels of rectangular cells matching with different levels of resolution. 

The cells have a hierarchical structure and each cell at the top level is partitioned to the 

cells at the lower related level. Each grid cell computes and stores  the statistical 

parameters of information and the data attributes such as mean, maximum, and 

minimum values, which are used during the processing of clustering.  

Grid based clustering can be used for clustering of data incrementally,  which is 

suitable for lifelong data in real environments. Also, the model has the capability to 

discover data clusters with irregular formats. The disadvantages of the grid based 

clustering methods are their sensitivity to the order of the data, and the clustering task is 

dependent on pre-initialization of the parameters such as thresholds. Another example 

of the grid based clustering is a wave clustering (Sheikholeslami, et al., 1998), which is 

a multi-resolution clustering approach and applies the signal processing technique. The 

wave clustering applies the wavelet transform. A wavelet transform is a signal 

processing technique in order to decompose a signal into different frequency sub-band, 

with high frequency parts of a signal representing the boundaries, and low frequency 

high amplitude parts of a signal representing insides of the clusters. The wave cluster is 

based on the grid based clustering and the density based clustering methods. The 

wavelet clustering method summarizes data by enforcing a multi-dimensional grid 

structure onto data space, which are represented in a n dimensional feature space. Then, 

the model iteratively applies wavelet transforms on the feature space to find the filtered  

data dense parts, in the feature space. 

Univ
ers

ity
 of

 M
ala

ya



 

57 

2.6.6 Other Categories of Clustering 

Constraint-based or user guided methods consider the feedback of users. These 

models have several constraints on individual objects, distances, parameters and user 

specified constraints (Hebooul, et al., 2015; Kamiya, et al., 2007; Prudent & Ennaji, 

2005; Shen, et al., 2011). Semi-supervised evolving self-organizing map (Semi-ESOM) 

(Deng & Kasabov, 2003) clustering is an example that will be explained in Section 

3.5.1.  

2.7 The Time Complexity and Memory Complexity of the Main Unsupervised 

Clustering Methods  

The time complexity and memory complexity of the main unsupervised clustering 

methods are summarized in Table 2-4. 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

58 

Table 2-4: The time complexity and memory complexity of the main 
unsupervised clustering methods 

Unsupervised 

clustering method 

Example 

method 
Time complexity Memory complexity 

Partitioning 

clustering 

(Halkidi, et al., 2001) 

K-means                      

K-medoids 

(PAM) 
                                

K-modes                      

Hierarchical 

clustering  

(Niknam, et al., 

2008) 

AGNES                              

DIANA                               

Density based 

clustering 

(Halkidi, et al., 2001) 

DBSCAN                          

OPTICS                           

Model based 

clustering 

(Satyanarayana & 

Acquaviva, 2014; 

Maiorana, et al., 

2008) 

COBWEB                                      

SOM                        

Grid based clustering 

(Halkidi, et al., 2001) 

STING              

WAVE               

         
n is the number of data points, m is the number of attributes, K the number of clusters, c is the number of 
iterations,     is size of each attribute. Also specially, the parameteres    is the number of grill cells at 
low level,    is mean of successful swaps of the data points with existing methods for the PAM clustering 
method, and   is the average number of values, as well,    is branching factor for the COBWEB 
clustering method. 
 
 

Univ
ers

ity
 of

 M
ala

ya



 

59 

2.8 Summary 

This chapter basically discussed the concepts in unsupervised clustering methods in 

data mining, such as artificial neural network, which is one of the most popular 

algorithms used in machine learning and data mining. Furthermore, we generally 

discussed the different aspects of unsupervised clustering, types of data in this area, and 

related distance measurements and popular clustering validation methods. 

Understanding the issues of this chapter, is useful to understand the main idea of this 

study.  

  

Univ
ers

ity
 of

 M
ala

ya



 

60 

CHAPTER 3: CONCEPT IN ONLINE DYNAMIC UNSUPERVISED 

FEEDFORWARD NEURAL NETWORK CLUSTERING 

3.1 Introduction 

An artificial neural network (ANN) is one of the numerous algorithms used in 

machine learning and data mining. An ANN has its roots in mathematics, statistics, 

numerical analysis, biology and psychology, and is an artificial representation of the 

human brain that has the capability to simulate its learning process.  One category of 

unsupervised learning is learning raw data and dividing data into meaningful groups 

with special goals and classifying higher similar data into one group without using any 

class label. Unsupervised classification is also known as data clustering. In feedforward 

neural network (FFNN), data processing has only one forward direction from the input 

layer to the output layer without any backward loop. Unsupervised feedforward neural 

network (UFFNN) clustering has several advantages such its inherent distributed 

parallel processing architectures and ability to adjust the interconnection weights, and 

cluster data by only one forward direction from the input layer to the output layer 

without any feedback loop. In the real environment while the data are non-stationary, 

the structure of the data changes frequently. Therefore, the online dynamic 

unsupervised feedforward neural network (ODUFFNN) clustering methods should 

involve to have lifelong (online) and the incremental learning ability and be compatible 

with the changes in the continuous data (Hebooul, et al., 2015; Kasabov, 1998; Liu & 

Ban, 2015; Liu, et al., 2013). 

In this chapter, we study the history, some advantages and disadvantages of the 

ODUFFNN clustering methods, and review the related literature works.  

 

Univ
ers

ity
 of

 M
ala

ya



 

61 

3.2 Concepts in Feedforward Neural Networks 

Neural networks are computational models inspired by neurobiology for enhancing 

and testing computational analogues of neurons. In feedforward neural networks, the 

data processing has merely one forward path from the input layer to the output layer 

without any cycles or backward loop (Andonie & Kovalerchuk, 2007; Bose & Liang, 

1996; McCloskey, 2000). 

Neural networks are flexible algorithms that let users encode nonlinear relationships 

between the input and the desirable outputs (Dasarathy, 1990; Goebel & Gruenwald, 

1999; Hegland, 2003; Kantardzic, 2011; Kemp, et al., 1997). The neural networks are 

suitable for extracting rules, quantitative evaluation of these rules, classification, 

clustering, and regression feature evaluation (Andonie & Kovalerchuk, 2007; Bengio, et 

al., 2000). 

Learning is an important property of the neural network. Neural networks are able to 

dynamically learn types of input information based on their weights and properties. 

There are many types of learning rules used in neural networks, which fall under the 

broad category of supervised learning, unsupervised learning, and reinforcement 

learning. Learning from observations with unlabeled data in an unsupervised neural 

network classification is more advantageous than learning by examples in the 

supervised neural network classification, because preparing the training set is costly and 

time consuming (Andonie & Kovalerchuk, 2007; Han & Kamber, 2011; Hegland, 2003; 

Kantardzic, 2011). 

In some cases collection of the data from dangerous environment is not possible 

(Han & Kamber, 2006; Kantardzic, 2011). However to evaluate the performance of 

unsupervised learning, there is no error or reward suggestion, and the learning process 

Univ
ers

ity
 of

 M
ala

ya



 

62 

is performed without considering class labels (Demuth, et al., 2008; Kohonen, 1997; 

Van der Maaten, et al., 2009).  

This chapter includes an introduction of neural networks, perspectives of the learning 

problems, the architectural structure of the neural networks, activation functions and the 

preprocessing techniques, while focusing on the feedforward neural network. 

3.2.1 Neural Network Models 

McCulloch and Pitts (McCulloch & Pitts, 1943) introduced an artificial neural 

network as a connective model and parallel distributed processing, resulting in 

computational power achieved through a combination of only a few simple processing 

units based on the idea of weights. The foundations of the artificial neural networks are 

in mathematics, statistics, numerical analysis, biology. The neural network is also 

associated with neurobiology for developing and testing computational analogues of 

neurons (Andonie & Kovalerchuk, 2007; Dasarathy, 1990; Goebel & Gruenwald, 1999; 

Hegland, 2003; Kantardzic, 2011; Kemp, et al., 1997). The neural network is one of the 

most popular algorithms used in machine learning and data mining. Hebb (Hebb, 1949) 

described a synaptic flexibility mechanism in which, if neuron i is close enough to 

stimulate neuron j at the same time and takes part in its activation repeatedly, the 

synaptic connection between these two neurons is strengthened and neuron j will be 

more sensitive to the action of the neuron i. The meaning of the synaptic flexibility is 

the ability in connection between two neurons to change the strength of responses. 

Haykin (1999) completed this idea with a parallel distributed processor (Haykin, 1999). 

As shown in Figure 3-1, the design of an artificial neural network is similar to a 

biological neural network. A neuron consists of a cell body (soma) with a nucleus, 

dendrites, and axon for connection with other neurons. Joints between neurons are 

called synapses. A signal is passed via a neuron to another neuron through 

Univ
ers

ity
 of

 M
ala

ya



 

63 

electrochemical reactions. If the inputs exceed the specific threshold level,  the soma 

will sum the input and send electrical impulse to the particular axon that will be fired. 

This signal is sent to another neuron in the synapse and the cycle continues. Figure 3-1a 

shows a biological neuron cell and Figure 3-1b shows a simple artificial neuron.  

Figure 3-1: The neuron 

An artificial neural network consists of neurons in three kinds of layers; the input 

layer, hidden layer and the output layer (Haykin, 1999). Each unit has its weight, and 

the sum of the input data is computed for each unit individually. Next, every unit 

Univ
ers

ity
 of

 M
ala

ya



 

64 

computes the activation function in order to obtain the desired output, before passing it 

down to the next layer in a feedforward topology. The number of layers, and the units of 

each layer should be selected. The training model works on the basis of the network 

weights and some thresholds. They also must be set to minimize the prediction error 

made by the network. Doszkocs et al. (1990) explained, “The components of neural 

networks consist of units similar to neurons and activation functions, which are used as 

input for local processing and obtained their weights from neighbouring nodes”. The 

learning rules are local procedures based on updating the weights and biases (Doszkocs, 

et al., 1990). Haykin (1999) recognized some useful capabilities for the neural 

networks:  

Nonlinearity: A neural network is made up of interconnections of nonlinear 

neurons. The non-linear modelling power of neural networks lies in adjusting the 

network to lower its error between the output activations and the target activations in 

the neural network. Nonetheless, a low error rate does not necessarily mean that errors 

have been successfully minimized. Given a sufficiently large neural network with non-

linear hidden units, it has been shown the model is able to approximate any continuous 

mapping from input to output, within the range of the desired degree of accuracy 

(Cybenko, 1989; Haykin, 1999). 

Input and Output Mapping: Artificial neural network models have the capabilities 

of input and output mapping such as non-parametric statistical inferences which 

assumes the structure of the model is not fixed. The model arises in complexity to adjust 

the size of the data, and the parametric distributions and connections between individual 

variables. Neural network models often employ the weights of each connection in order 

to reach the desirable output (Haykin, 1999). 

Univ
ers

ity
 of

 M
ala

ya

http://www.statsoft.com/textbook/glosf.html#Feedforward Networks


 

65 

Adaptation: Neural networks have the ability to change the weights in response to 

their environment(Haykin, 1999). 

Evidential Response: A neural network can be applied to classification problems 

and can be used in confidence for decision making (Haykin, 1999). 

Contextual information: In a neural network, every neuron accepts the effects of 

the global activity of all neurons (Haykin, 1999). 

Fault Tolerance: Neural networks have the inherent capability of robust 

computation, especially when the algorithm trains features and conditions of the 

network properly. For example, if the distribution or the connection of the data is 

damaged, the neural network can recall the pattern or reconnect the data (Haykin, 

1999).  

Very Large Scale Integrated (VLSI)  Implements Ability: Neural networks are 

suitable for solving the problems in using  VLSI technology, because of its parallel 

nature and the inherent distributed parallel processing architectures (Haykin, 1999). 

Uniformity of the Analysis and Design: Neural networks have a universal feature 

of information processors in the neurons through the meaning of learning and theories, 

as well as integration of the modules. For example, each neuron represents the common 

feature of all neurons in the neural network. Learning algorithms can be applied in 

different environments (Haykin, 1999).   

Neurobiological Analogy: Originally, a neural network is a computational model 

inspired by psychology and neurobiology with the capabilty of developing and testing 

computational analogues of neurons (Haykin, 1999). 

Figure 3-2 shows a sample neural network with details: 

Univ
ers

ity
 of

 M
ala

ya



 

66 

 

Figure 3-2: A sample neural network 

Figure 3-2 is an example of the neural network following three basic elements: 1) A 

set of synapses or connections. Each connection has a special weight Wi that is adjusted 

to train the knowledge. 2) A sum function for summing the input data    and related 

weights    as        . 3)  An activation function for transforming the output of a 

neuron. The output   is computed by considering the output of sum function and 

predetermined  threshold  as shown in Equation (3.1). 

                                                                                                            ( 3.1) 

Neural networks are commonly known as black boxes, however, they can provide 

simple and accurate sets of logical rules and knowledge from datasets (Han & Kamber, 

2011; Kantardzic, 2011; Kemp, et al., 1997). How can we understand what a neural 

network model has learned? One of the critical issues in the neural network is that the 

knowledge of the neural network cannot be represented properly, and the human is not 

able to interpret a network of units and their weight interconnections. Therefore, 

extracting the knowledge embedded in trained neural networks, and representing the 

knowledge symbolically are domains of research. There are different methods such as  

extracting rules from neural networks and sensitivity analysis, for analysing and 

understanding the process of training in a neural network model:  

Univ
ers

ity
 of

 M
ala

ya



 

67 

Extracting Rules from Neural Networks: The neural network methods are limited 

to the training process, topology and discretization of input data. The first step of 

extracting rules from the neural network is network pruning by removing weak weight 

connections that have the least effect on the trained network results. Therefore, the set 

of data and activation values of the hidden and output units of the neural networks 

should be studied to describe their connections and knowledge. The algorithms can 

derive rules in different forms, such as “If-Then” in the boolean rules with the rule 

ancestor sequentially similar decision tree. In this method, if there are some conditions, 

then there is a special output (Andonie & Kovalerchuk, 2007; Bengio, et al., 2000; Han 

& Kamber, 2011; Kantardzic, 2011; Kemp, et al., 1997).   

Sensitivity Analysis: Sensitivity analysis is used to evaluate the effective input data 

on the output of the neural network. For this purpose, an input variable is changed while 

the remaining input variables are fixed at some value. In the meanwhile, the changes of 

the neural network output are monitored (Andonie & Kovalerchuk, 2007; Bengio, et al., 

2000; Han & Kamber, 2011; Kantardzic, 2011; Kemp, et al., 1997).  

3.2.2 Perspectives of Learning Problems 

Learning is an imperative feature of the artificial neural network in machine learning. 

There are numerous types of learning rules that are categorized broadly under 

supervised learning, unsupervised learning, and reinforcement learning (Andonie & 

Kovalerchuk, 2007; Bengio, et al., 2000; Han & Kamber, 2011; Kantardzic, 2011). 

Supervised learning is similar to unsupervised learning in the sense that a training set is 

provided. However, in supervised learning the desired output is provided and the weight 

matrix is adjusted based on the difference between the predicted output and the actual 

output of the neural network. One of the popular supervised feedforward neural network 

models is the back propagation network (BPN) (Werbos, 1974). The BPN uses 

Univ
ers

ity
 of

 M
ala

ya



 

68 

gradient-based optimization methods in two basic steps: to calculate the gradient of the 

error function, and to employ the gradient. The optimization procedure includes a high 

number of small steps, causing the learning to be considerably slow. Optimization 

problem in supervised learning can be shown as the sum of squared errors between the 

output activations and the target activations in the neural network as well as the 

minimum weights (Andonie & Kovalerchuk, 2007; Bose & Liang, 1996; Craven & 

Shavlik, 1997). Approaches to unsupervised learning in machine learning are statistical 

modelling, compression, filtering, blind source separation, and clustering. Unsupervised 

learning or self-organized learning finds symmetries in the data represented by 

unlabeled input data. However, to assess the performance of unsupervised learning, 

there is no error or reward signal (Han & Kamber, 2011; Hegland, 2003; Kantardzic, 

2011).  

In this thesis, the clustering aspect of unsupervised neural network classification is 

considered as an unsupervised neural network clustering. In reinforcement learning, the 

model is capable of generating certain effects and interactions with dynamic 

environment for recognizing an unknown attribute value. At each point in time, the 

environment generates an observation for this unknown attribute value which is the 

reward or reinforcement for the model. Consequently, the model can select and use 

suitable rule and interacts with the environment for more rewards. The environment is 

dynamic, hence the long-run cost is unknown, but it can be estimated. Neural networks 

are frequently used in reinforcement learning as part of the algorithm. The tasks include 

control problems and sequential decision making tasks (Lin, et al., 2006). The main 

advantages of the neural networks are the abilities of scaling and learning as in the 

machine learning algorithms. Neural networks are useful, especially for analysing 

unknown data (McCloskey, 2000). 

Univ
ers

ity
 of

 M
ala

ya



 

69 

3.2.3 Architecture of Neural Networks 

Neural Networks can be classified into feedforward neural network (FFNN) and 

recurrent networks (RN) (also called feedback). In the FFNN model, connections of 

units are in one direction, forward from the input nodes, through the hidden nodes and 

to the output nodes. In the RN models, connections between units form a directed cycle. 

Neural Networks can also be classified as the following (Aleksander & Morton, 1990; 

Haykin, 1994; Lippmann, 1987): 

Single-layer perceptrons (SLP) are the feedforward networks with only two layers 

which has a single layer of output nodes. The input layer is fixed with weight 

connections to the output layer for learning as shown in Figure 3-3. The weighted sum 

function is calculated in each node. 

 

Figure 3-3: Single-layer perceptrons feedforward network 

Multilayer perceptrons (MLP) feedforward network, which consists of an input 

layer, at least one hidden layer, and an output layer. Each layer consists of several 

computational neurons as shown in Figure 3-4. The MLP is used together with 

nonlinear activation functions with a high degree of connection and  computation.  

Univ
ers

ity
 of

 M
ala

ya



 

70 

 

Figure 3-4: Multilayer perceptrons feedforward network 

Recurrent networks (RN) are the neural networks with one or several feedback 

connections or closed cycles. This topology gives the different capabilities of non-linear 

mapping, and special internal memory usage for processing arbitrary sequences of 

inputs to the RN models. The activation functions and errors are computed at sequence 

time t based on stored learnt information about input data through involvement of the 

initial and last states. Therefore, the RN has the capability of temporal processing and 

sequential learning.  The RN can have different forms, such as the MLP plus added 

loop, and can be fully connected (Haykin, 1999). There is a local global feedback for 

the whole network as shown in Figure 3-5: 

 

Figure 3-5: Recurrent networks 

Univ
ers

ity
 of

 M
ala

ya



 

71 

The connection weights in the RN models can be symmetric or asymmetric based on 

the measuring time of application of activation functions. In the symmetric RN, there is  

          , and the network converges to stable point, however, the RN can not 

adjust temporal sequences of pattern. In the asymmetric RN, there is          , and 

the dynamics of the network can show limit cycles and with a selection of suitable 

weights, temporal spatial patterns can be generated and stored in the network (Haykin, 

1999).  

3.2.4 History of Early Artificial Feedforward Neural Network Models 

McCulloch and Walter Pitts (1943) described biological neuron as a threshold logic 

unit (TLU) with binary input sample neurons and one binary output neuron (McCulloch 

& Pitts, 1943). In Equation (3.2) the output Y of the TLU is: 

                                                                                                            ( 3.2) 

Where Y is the output and is equal to the weighted sum function and the bias, as 

shown in Equation (3.2). Each neuron has a special weight and bias.  

McCulloch and Walter Pitts illustrated that universal computational capability is 

possible by using different networks with combination of units which create a special 

construction of logical function (McCulloch & Pitts, 1943).  However, they did not 

introduce any learning rule. Hebb (Hebb, 1949) developed the meaning of the first 

learning rule known as the Hebbian learning. The simplest topology of the single layer 

unsupervised feedforward neural network with a linear unit and the Hebbian learning is 

shown in Figure 3-6 (Kornel & Dave, 2006). 

Univ
ers

ity
 of

 M
ala

ya



 

72 

 

Figure 3-6: Single layer unsupervised feedforward neural network with 
Hebbian learning 

Hebb described a synaptic flexibility mechanism in which,  if neuron i is close 

enough to stimulate neuron j at the same time and takes part in its activation repeatedly, 

the synaptic connection between these two neurons is strengthened and neuron j will be 

more sensitive to the action of neuron i. Hebbian rule is shown in Equation (3.3): 

                                                                                                                    ( 3.3) 

X is the input vector, Y is the output vector and  is learning rate where      is used 

for controlling the size of each iteration of training.  

Frank Rosenblatt (Rosenblatt, 1958) proposed the perceptron model that can be used 

as a pattern association or a pattern classifier. The single layer perceptron (SLP) as a 

linear separability model includes one input layer of binary units, and one output layer 

of binary units. Therefore, there is just one layer without any hidden layer for adjusting 

the weights. The output layer of the SLP contains a hard-limiting threshold output 

function. The single layer perceptron is shown in Figure 3-7: Univ
ers

ity
 of

 M
ala

ya



 

73 

 

Figure 3-7: The single layer perceptron sample 

Widrow and Hoff (Widrow & Hoff, 1960) proposed the ADAptive linear neuron 

(ADALIN) which is a TLU with a bipolar output and bipolar inputs (-1,1) and weighted 

sum function plus a bias. If the sum is bigger than 0 then the output is equal to 1 , and if 

the sum is smaller than 0 or equal to 0 then the output is equal to -1. A multiple 

ADALINE (MADALINE)  is basically the single layer perceptron with bipolar inputs 

and outputs. In 1960, Widrow and Hoff proposed the Delta rule to use in the 

ADALINE/MADALINE training, that applied by the two layer feedforward neural 

network model includes the input and the output layers without any hidden layer. In 

addition, the Delta rule is known as the least mean square (LMS) algorithm with 

supervised learning and an error correction rule (Widrow & Hoff, 1960). Also, the 

single layer perceptron applies a gradient descent learning rule to update the weights 

(Bose & Liang, 1996; Demuth, et al., 2008; Han & Kamber, 2011). 

Minsky and Papert (Minsky & Seymour, 1969) expressed  the limitations of the SLP. 

In order to develop linear separability, the multiLayer perceptron (MLP) was considered 

with a hidden layer of the units for adjusting weights. Figure 3-8 shows an example of 

the MLP: 

Univ
ers

ity
 of

 M
ala

ya



 

74 

 

Figure 3-8: The multiLayer perceptron sample 

The topology of the MLP must have at least one hidden layer with nonlinear 

activation function. The output can have linear or nonlinear activation functions.  

3.2.5 Activation Functions 

Neural networks often transform the input samples to the output through an 

activation function. This activation function includes the identity function, a K-step 

function such as binary step function, sigmoid function, and bipolar sigmoid function as 

follows (Demuth, et al., 2008):  

Identity function: The identity function is a linear activation function that 

transforms the input data for computing output with an unknown range. The function 

f(X) in Equation (3.4) is an activation function for transforming X and the output will be 

X as shown in Figure 3-9 (Demuth, et al., 2008). 

                                                                                                                       (3.4) 

 

Figure 3-9: Identity function 

Univ
ers

ity
 of

 M
ala

ya



 

75 

K-step function: The threshold function is a linear activation function for 

transforming the input data. This kind of function is limited with K values based on the 

number of classes of the dataset; and each limited domain of thresholds refers to the 

special output value of the K-step function. The Binary-step function is a branch of the 

K-step function for two data classes 0, and 1 as shown in Equation (3.5) which is often 

used in single layer networks. The output will be 0 or 1 based on the threshold θ as 

shown in Figure 3-10 (Demuth, et al., 2008). 

                              
                        

                             
                                                                                                                     (3.5) 

 
 

 

Figure 3-10: Binary step function 

 

Sigmoid function: The sigmoid function as shown in Equation (3.6) is a nonlinear 

differentiable function that maps the perceptron’s inputs to a range of values such as 0 

to 1. This function is especially used in the back-propagation neural network to reduce  

computation of the weights in training. It is often used for the desired output between 0 

and 1, as shown in Figure 3-11: 

       

      
                                                                                                      (3.6) 

Univ
ers

ity
 of

 M
ala

ya



 

76 

 

Figure 3-11: Sigmoid function 

The sigmoid function v(X) is equivalent to   

      
  since 0<v(X)< 1. In the neural 

network applications, the coefficient   is a real number constant. Usually   is chosen 

between 0.5 and 2 experimentally. As a starting point   can be considered equal to 1 

and by fine tuning the network, the best value for this coefficient can be found.  The 

sigmoid function converts values that are less than 0.5 to 0, and values greater than 0.5 

to 1 (Demuth, et al., 2008). 

Bipolar sigmoid function: The bipolar sigmoid function is provided in Equation 

(3.7);      is a nonlinear function that is used to convert the desired output into 

between -1 and 1 as shown in Figure 3-12. The performance of the multilayer network 

is increased significantly through the use of the bipolar sigmoid function (Demuth, et 

al., 2008).  

           

     
                                                                                                          (3.7) 

  

 

Figure 3-12: Bipolar sigmoid function 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

77 

3.2.6 Preprocessing Techniques of Feedforward Neural Networks 

The data preprocessing and pre-training in the FFNN helps to choose the right input 

attributes and to generate the desirable output with better results in terms of both speed 

and accuracy. Changing the input data or initial conditions can immediately affect the 

supervised and unsupervised classification accuracy in the FFNN models. Also, without 

preprocessing, the classification process is comparatively slow and it may even 

converge leading to an incomplete classification (Han & Kamber, 2011; Hinton & 

Salakhutdinov, 2006; Ziarko & Shan, 1994). Nonetheless, the main problems in data 

preprocessing and pre-training include identifying suitable input values and attributes, 

suitable weights, and considerable processing time (Andonie & Kovalerchuk, 2007; 

Demuth, et al., 2008; Han & Kamber, 2011; Jolliffe, 1986). Existing pre-training 

techniques generate suitable weights for reducing the training process, but with the 

application of random values for initial weights (DeMers & Cottrell, 1993; Van der 

Maaten, et al., 2009). In this section, we review the powerful functions of data 

preprocessing,pre-training and their advantages and disadvantages.  

 Data Preprocessing Techniques of Feedforward Neural Network 

Neural network learning will be faster and the performance will be better when the 

input values are pre-processed (Erhan et al., 2010; Gabrys, 2012; Larochelle, et al., 

2009). Several powerful data preprocessing functions will be discussed in this study on 

the basis of improving efficiency of the feedforward neural network models (Demuth, et 

al., 2008; Erhan, et al., 2010; Gabrys, 2012; Han & Kamber, 2011; Larochelle, et al., 

2009). These are mathematical and statistical functions to scale, filter, and pre-process 

the data. 

Data Cleansing: In the real world, data may be incomplete, in attribute values and 

certain noisy with outliers, and or in codes or names (Maletic & Marcus, 2000; Marcus, 

Univ
ers

ity
 of

 M
ala

ya



 

78 

et al., 2001). Outliers are data objects, that are considerably different than most of the 

other data objects in the dataset (Bose & Liang, 1996; Demuth, et al., 2008; Han & 

Kamber, 2011; Hegland, 2003). Data cleaning has different techniques to solve these 

problems, such as filling in missing values, identifying outliers and smooth out noisy 

data, and correcting inconsistent data. .There are some techniques to handle missing 

values, such as the statistical functions for data cleaning are the mean, the standard 

deviation, and the range (Barnett, 1994). The technique for recognizing outliers and 

data cleaning, is a pattern-based technique, that uses the combined strategies of 

partitioning, classification and clustering (Knorr, et al., 2000; Murtagh, 1983). 

Therefore, clustering method has the capability to recognize  outliers, when similar 

values are organized into groups, or clusters. The noisy data that fall outside the set of 

clusters, are considered as outliers (Han & Kamber, 2011). Also, some important issues 

in data mining are duplication and redundancy of data (Galhardas, et al., 2001). 

Data Integration: The merging of data from multiple data stores causes the 

problems of data duplication, redundancy and conflicts of data values, therefore an 

integrated access to multiple data sources is necessary. Data integration utilizes two 

main techniques: schema integration and data integration (Christen, 2005; Han & 

Kamber, 2011). In the real world scenario, attribute values from different sources may 

differ because of different representation, scaling, or encoding such as different metric 

units. The functions of the mean, standard deviation and correlations between attributes 

of data can solve this problem (Christen, 2005; Ganesh, et al., 1996; Han & Kamber,  

2011). 

Data Transformation: Data transformation involves smoothing, aggregation, 

normalization and data reduction. Noise is a random error or variance in a measured 

variable. Smoothing is used to remove noise from the data, such as clustering. 

Univ
ers

ity
 of

 M
ala

ya



 

79 

Aggregation is used for summarizing the data based on dimensions. Therefore, the 

result is smaller in volume, without loss of information necessary for the analysis task. 

For example, the aggregation technique is useful to prepare the annual report sales of a 

shopping centre that is based on the monthly information on the sales. Normalization is 

used for scaling data attributes to fall within a small specified range, such as the 

MinMax normalization,  which is often used in standard back propagation network 

(BPN) as a supervised clasiffication (Werbos, 1974). The MinMax normalization 

technique is used to transform an input value of each attribute to fit in specific range 

such as [0,1]. The following Equation, Equation (3.8) shows the formula to normalize 

the input values (Han & Kamber, 2011; Kantardzic, 2011): 

                 
            

                 
                                        

(3.8) 

Where     is jth attribute value of the input data Xi , and has a special range and 

domain,  with          as the minimum value in this domain, and          is the 

maximum value in this domain. newMini is the minimum value for the specific domain 

of [0,1] which is 0, and newMaxi is the maximum value of the domain which is 1. 

Brown et al. (Brown, et al., 1993) used tanh on the hidden layer for speedup 

convergence, and they showed that when the input values of a two-layer network with 

linear output function is between –α to α, the learning is faster than when it is in the 

range of 0 to α, especially when using tanh as the activation function in three hidden 

layers. The main disadvantage of the MinMax technique is the lack of a special and 

unique class for each data (LeCun, et al., 1998). The function of tanh or hyperbolic  

tangent is defined based on the ration between the hyperbolic sine and the hyperbolic 

cosine functions, as shown in Equation (3.9). 

Univ
ers

ity
 of

 M
ala

ya



 

80 

          
         

         
    

         
          
                         (3.9) 

Where,            
           

    and            
           

    are the 

Equations of the hyperbole of sine and the hyperbole of cosine, based on e exponent 

value. 

Data reduction is used for reducing the volume of data representation and transform 

the data to the same analytical results. Data cube aggregation, data compression, 

numerosity reduction, discretization and concept hierarchy generation, and dimensional 

data reduction are some techniques of the data reduction. 

Data Cube Aggregation: Aggregation of operations and applying them to the data 

in the construction of a data cube. A data cube is a three or higher dimensional matrix of 

values.  

Data compression: Encoding the data and reducing the dataset size. If the original 

data can be reconstructed from the compressed data without any loss of information, we 

can reconstruct an approximation of the original data (Demuth, et al., 2008; Erhan, et 

al., 2010; Gabrys, 2012; Han & Kamber, 2011; Larochelle, et al., 2009).  

Numerosity Reduction: To replace the data with alternative, smaller data 

representations such as parametric models or non parametric models such as clustering, 

histograms, and sampling (Demuth, et al., 2008; Erhan, et al., 2010; Gabrys, 2012; Han 

& Kamber, 2011; Larochelle, et al., 2009).  

Discretization and Concept Hierarchy Generation: To divide the range of 

attributes from continuous to intervals. Some classification algorithms work on 

categorical (non-numerical) attributes. Data discretization is useful for automatic 

Univ
ers

ity
 of

 M
ala

ya



 

81 

generation of concept hierarchies based on the number of distinct values of each 

attribute. The attributes with the most distinct values is placed at the lowest level of the 

hierarchy (Demuth, et al., 2008; Erhan, et al., 2010; Gabrys, 2012; Han & Kamber, 

2011; Larochelle, et al., 2009). 

Dimension Data Reduction: If the dimension of the input vectors is large, the 

components of the vectors are highly correlated (redundant). In this situation, it would 

be useful to reduce the dimension of the input vectors. The assumption is that most 

information on classification of higher dimensional matrix has a large variety. The main 

disadvantage of dimensionality reduction techniques is missing input values (DeMers & 

Cottrell, 1993; Furao, et al., 2007; Van der Maaten, et al., 2009). Dimension data 

reduction method projects high dimensional data matrix to lower dimensional sub-

matrix for effective data processing at high speed (Han & Kamber, 2011; Van der 

Maaten, et al., 2009). There are two types of supervised and unsupervised dimension 

reduction methods. The type of reduction is based on the relationship of dimensionality 

reduction to the dataset  itself or on an integrated known feature. In supervised 

dimension reduction, a suitable sub-matrix is selected based on their scores, prediction 

accuracy, selection of the number of the necessary attributes, and computation of 

weights with a supervised classification method. Unsupervised dimension reduction 

maps a high dimension matrix to a new lower dimensional matrix of data points. The 

dimension reduction techniques are also divided into the linear and nonlinear methods 

based on the consideration of the various relations between parameters. In the real 

world, data is non-linear; hence only nonlinear techniques are able to handle them. 

Linear techniques consider a linear subset of higher dimensional space, while nonlinear 

techniques assume more complex subset of higher dimensional space (DeMers & 

Cottrell, 1993; Furao, et al., 2007; Han & Kamber, 2011; Van der Maaten, et al., 2009).  

Univ
ers

ity
 of

 M
ala

ya



 

82 

Principal component analysis (PCA) (Jolliffe, 1986) is a classical multivariate data 

analysis method that is useful in linear feature extraction and data compression. The 

PCA technique has three effects (Lindsay et al., 2002; Özbay, et al., 2006): it 

orthogonalizes the components of input vectors so they are uncorrelated with each 

other; it orders the resulting orthogonal components (principal components) so that 

those with larger variation come first; it eliminates the components that contribute least 

to the variation in the dataset. Next, the input vectors are normalized and the zero mean 

and unity variance are computed before the mean and standard deviation method is 

employed (Demuth, et al., 2008). The basic assumption is that most information in 

classification of high dimensional matrix has a large variation. The PCA computation 

maximizes the variance in a process environment for the standardized linear process. p-

dimensional dataset   is given and the   principal axes            , where     

 . The axes within variance are maximized in the process environment.            

lead to the eigenvectors of the sample covariance matrix    
         

     
 
   

   where       ,   is the sample mean and   is the number of samples, so that: 

        ;        .    is the     largest eigenvalue of  . The   principal 

components of the given observation vector   are given by                

   
    

      
      

 . The   principal components of   are uncorrelated during the 

processing. In multi-class problems, variations of data are determined on a global basis. 

This means that the principal axes are derived from a global covariance matrix: 

               
        

  
   

 
    where    is the global mean of all the samples,   

is the number of classes,    is the number of samples in class  ;      
 
    where     

represents the     observation from class  . The principal axes            are therefore 

the   leading eigenvectors of          ;         where     is the     largest 

eigenvalue of   . Each input data vector can be represented by its principal component 

vector with dimensionality  . The algorithm of the PCA is shown in APPENDIX A 

Univ
ers

ity
 of

 M
ala

ya



 

83 

Figure 3-1A. The advantages of PCA are in three-fold. First, it is an optimal linear 

scheme for compressing a set of high dimensional vectors into a set of lower 

dimensional vectors and reconstructing the original set. PCA is often used for reducing 

the dimensional input values into two or three dimensions. Second, dimensionality 

reduction is possible through computation of the highest variance in the components of 

the input feature vector, without performing any transformation on the input 

environment. The input values are analysed within their own input environment, and the 

transformation results are deterministic as well as independent of the initial conditions. 

Third, compression and decompression are easy to perform (Labib & Vemuri, 2006) 

because the calculation is based on matrix multiplication. The time complexity of the 

PCA is O(p2n)+(p3), where p is the number of data samples and n is the number of 

attributes (Lindsay, et al., 2002; Özbay, et al., 2006). 

 Pre-training Techniques of Feedforward Neural Network 

Initialization of weights is the first critical step in the training process of the FFNN 

models and it is often done at random. Training can be accelerated through a good 

initialization of weights during pre-training (DeMers & Cottrell, 1993; Kamyshanska & 

Memisevic, 2013; Van der Maaten, et al., 2009). The number of epochs in the training 

process depends on the initial weights. The FFNN may not obtain an acceptable range 

of results and may halt during training. The processing time depends on the initial 

values of the weights and biases, the learning rate, as well as the network topology 

(Bengio, 2013; Galhardas, et al., 2001; Kamyshanska & Memisevic, 2013; Larochelle, 

et al., 2012; Zhang, et al., 2004). In the following sections, the latest main methods of 

pre-training are discussed.  

Min and Max: Zhang et al. (Zhang, et al., 2004) and Fernández-Redondo and 

Hernández-Espinosa (Fernández-Redondo & Hernandez-Espinosa, 2001) discussed 

Univ
ers

ity
 of

 M
ala

ya



 

84 

several initial weight initialization techniques. In the Min and Max pre-training 

technique, weight is initialized based on a random value from a special range, which is 

a critical issue to research. 

Kim and Ra (Kim & Ra, 1991) introduced a minimum bound for initialization of 

weights by using the Equation (3.10):    

            
 
  

                                                                                             (3.10) 

 

L is the learning step. Fernández-Redondo and Hernández-Espinosa [13] proposed an upper 

bound of 0.1 plus a lower bound. 

Keeni et al. (Keeni, et al., 1999) introduced the idea for initializing the weight range 

within the domain of [−0.77; 0.77] with fixed variance of 0.2. The experiment achieved 

the best mean performance for multi-layer perceptrons with only one hidden layer.  

Currently, the Min and Max pre-training technique using a BPN has initial random 

weights in the range of [-0.05, 0.05] (Fernández-Redondo & Hernandez-Espinosa, 

2001). Also, Fernández-Redondo and Hernández-Espinosa presented a BPN with the 

weights initialized using the technique of Yoon and his cooperators (Yoon, Bae, & Min, 

1995) in two different ranges of [0, 0.5] and [0.5, 1] (Fernández-Redondo & 

Hernandez-Espinosa, 2001). Moreover, Fernández-Redondo and Hernández-Espinosa 

presented a BPN with the weights initialized using the technique of Kim and Ra (Kim 

& Ra, 1991) with an upper bound of 0.1 plus a lower bound (Fernández-Redondo & 

Hernandez-Espinosa, 2001). The disadvantage of the Min and Max pr-training 

technique is in the need to initialize random values which create critical problems 

during training. 

Univ
ers

ity
 of

 M
ala

ya



 

85 

Statistically Controlled Activation Weight Initialization: Drago and Ridella 

(Drago & Ridella, 1992) introduced a method called statistically controlled activation 

weight initialization (SCAWI). The formula in Equation (3.11) was designed for 

initializing the weights W, whereby V is the mean square value of the  input and rij is a 

random number uniformly distributed in the range [-1, +1].    

   
         

              
 
  

                                                                    (3.11) 

Fernandez-Redondo and Hernandez-Espinosa (Fernandez-Redondo & Hernandez-

Espinosa, 2000) and Funahash (Funahashi, 1989) improved this method in Equation 

(3.12) seeking better result:  

   
          

                 
 
  

                                                             (3.12)    

However, one of the disadvantages of the SCAWI is that it uses random numbers to 

feed the formula similar to the Min and Max pre-training technique, which is its 

disadvantage. 

Delta Pre-training (DPT): Li et al., (Li, et al., 1993) described the delta pre-training 

(DPT) technique as a different weights initialization technique. The core of the DPT is 

in using the Delta rule instead of using random numbers, after this phase, the FFNN 

model training process is carried out to complete the network training. First, the multi-

layer model is partitioned at the hidden layer into two simple perceptrons models. The 

weights are initialized with zero values by using the Delta rule in two perceptrons. The 

disadvantage of this technique is the initialization of the zero value that is not based on 

computing real weights. 

Univ
ers

ity
 of

 M
ala

ya



 

86 

Shimodaira Technique: Shimodaira (Shimodaira, 1994) introduced onepre-training 

technique based on geometrical considerations, as shown in Equations (3.13), (3.14), 

(3.15). Wi is the weights from n units in the lower layer to the unit number i. 

                                                                                                   ( 3.13) 
                            

Where   is the transfer function and e is a parameter which was appropriated the 

value of 0.1 in the reference (Shimodaira, 1994). 

    
 
 
  

                                                                                                      ( 3.14)                                                                                             

 

Where   is the parameter. γ is a parameter and    is generated as a uniform random 

number in the range of        . 

    
                                                                                                        ( 3.15) 

    
Where, the    is zero. Eqations (3.14) and (3.15) repeat n times to calculate the n 

weights.The disadvantage of this technique is in the initialization weights to zero, that is 

not based on the computation of the real weights. 

Multilayer Auto-encoder Networks: Multilayer encoder is the latest preprocessing 

technique in FFNN model, which trains an odd number of hidden layers (DeMers & 

Cottrell, 1993; Hinton & Salakhutdinov, 2006; Kamyshanska & Memisevic, 2013; Van 

der Maaten, et al., 2009). Generally the BPN is used in auto encoders. The FFNN trains 

to minimize the mean squared error between the input and the output by using the 

sigmoid function. A high-dimensional matrix may be reduced into a low-dimensional 

matrix through the extraction of node values in the middle hidden layer. In addition, the 

auto-encoder/auto-Associative neural networks are neural networks that are trained to 

recall their inputs. When the neural network uses the linear neuron and activation 

functions, the auto-encoder processes are similar to the PCA. The Sigmoid activation 

Univ
ers

ity
 of

 M
ala

ya



 

87 

function allows the auto-encoder network to train a nonlinear mapping between the 

high-dimensional and low-dimensional data matrix. After the pre-training phase, the 

model is “unfolded” to encode and decode the initial weights (Bengio, 2013; Goroshin 

& LeCun, 2013; Kamyshanska & Memisevic, 2013). The BPN advances the global 

fine-tuning phase through the auto-encoder to fine-tune the weights for optimization. In 

a high number of multi-layer auto-encoders connections, the BPN is considerably 

slower. The restricted boltzmann machines (RBM) (Smolensky, 1986) are able to train 

efficiently using an unsupervised learning procedure. The RBM is a two-layer network 

with visual and hidden nodes, and is suitable for an ensemble of binary vectors (i.e. 

images). The single layer of hidden units in the RBM is not connected to each other and 

have undirected, symmetrical connections to a layer of visible units. All visible and 

hidden unit configurations have energy (Bengio, 2013; Larochelle, et al., 2012). The 

auto-encoder network is fine-tuned by a supervised model of the BPN in a standard 

way. The main disadvantages of this method are the use of random numbers for weight 

initialization and the high number of multi-layer auto-encoders connections in the 

training process, resulting in slow performance. 

Weight Linear Analysis (WLA): The WLA (Asadi, et al., 2009) technique in the 

FFNN is incorporated as a combination of data preprocessing and a specific pre-training 

technique for simplifying the training process. The WLA is a technique for reducing the 

training time and increasing the accuracy of the feedforward neural network (FFNN). 

The WLA has two phases. During the first phase, the WLA considers data 

preprocessing through vertical evaluation of the input data matrix for generating 

normalized input values. The output of the first phase includes normalized input values, 

and is used to compute the weights of attributes. The WLA recognizes high deviations 

of data values from the global mean of the matrix similar to the PCA. The high 

deviation causes more score for the data value. The FFNN, uses the output of the WLA 

Univ
ers

ity
 of

 M
ala

ya



 

88 

which includes normalized values and weights to classify the dataset. The time 

complexity of the WLA is O(pn), where  p  is the number of attributes and n is the 

number of instances.  

3.3 Unsupervised Feedforward Neural Network Clustering 

As mentioned in the last Section, feedforward neural network processes data by only 

one forward direction from the input layer to the output layer without any feedback 

(Demuth, et al., 2008; Kohonen, 1997; Van der Maaten, et al., 2009). Generally, 

UFFNN clustering has several advantages such as its inherent distributed parallel 

processing architectures, the abilities to adjust the interconnection weights to learn and 

describe suitable clusters, process vector quantization prototypes and distribute similar 

data without class labels to describe the clusters. It can also control noisy data and 

cluster data for which they have not been trained, while learning the types of input 

values based on their weights and properties (Andonie & Kovalerchuk, 2007; Bengio, et 

al., 2000; Hegland, 2003; Jain, 2010; Rougier & Boniface, 2011). 

UFFNN clustering methods currently often use Hebbian learning (Hebb, 1949), 

competitive learning, or the competitive Hebbian learning (Chakraborty, 2010; 

Hebooul, et al., 2015; Liu, et al., 2013; Martinetz, 1993), as discussed in Section 3.5. 

Figure 3-13 is the topology of an unsupervised competitive learning neural network 

(Du, 2010; S. Haykin & Network, 2004). Univ
ers

ity
 of

 M
ala

ya



 

89 

 

Figure 3-13: A sample topology of the competitive clustering 

The UFFNN clustering methods with competitive learning train the nearest weight 

vector to the input vector as the winner node by computing a distance such as the 

Euclidean. The similarities of Hebbian learning and competitive learning include 

unsupervised learning without an error signal, and is strongly related to biological 

systems. However, in competitive learning, only one output must be active; that is, only 

the weights of the winner, which is very close to the input vector, are updated at each 

epoch, and for weights updating, it is necessary to consider the learning rate and input 

data from the input layer. Conversely, in Hebbian learning, no constraint is enforced by 

neighbouring nodes, all weights are updated at each epoch and for updating weights, it 

is necessary to consider the learning rate of input data from the input layer and output 

data. In the case of the competitive Hebbian learning, the neural network method shares 

some properties of both competitive learning and Hebbian learning (Fritzke, 1997; 

Hebooul, et al., 2015; Liu, et al., 2013; Martinetz, et al., 1993; McClelland, et al., 1999). 

The growing neural gas (GNG) (Fritzke, 1995) method and the evolving self-organizing 

map (ESOM) (Deng & Kasabov, 2003) are examples which use the competitive 

Hebbian learning where in each cycle of training the connection between the winner 

Univ
ers

ity
 of

 M
ala

ya



 

90 

node and the second nearest node is created or updated. Competitive learning can apply 

vector quantization (VQ) (Linde, et al., 1980) during clustering. Typically VQ, K-means 

(MacQueen, 1967) and some unsupervised feedforward neural network clustering 

methods such as Kohonen’s self-organizing map (SOM) (Kohonen, 1982), neural gas 

(NG) (Martinetz, et al., 1993) and growing neural gas (GNG) (Fritzke, 1995) are 

considered as the fundamental patterns in the current ODUFFNN clustering methods in 

stationary and non-stationary environments. Linde et al.  (Linde, et al., 1980) introduced 

an algorithm for the VQ design to gain a suitable code book of weights for data 

clustering. The VQ is based on probability density functions through the distribution of 

vectors of the weights, and it is often used for data compression. The VQ divides a huge 

set of the data (vectors) into clusters, in which, each cluster is represented by its 

centroid node, as in the K-means and some other clustering algorithms. The VQ is 

powerful for using in large and high-dimensional data. Since the data points are 

represented by the index of their closest centroid, commonly, clustered data are more 

accurate. K-means (MacQueen, 1967) is a partitioning clustering method by using 

centroid-based technique similar to the VQ. The main problem of partitioning methods 

is the definition of a special number of clusters and the initialization of the steps before 

the clustering tasks (Andrews & Fox, 2007; Mercer, 2003). Although, K-means 

clustering is not efficient in large datasets, it can be efficient if the initialization of the 

steps is well defined (Jain, 2010; Mercer, 2003).   

In the following sections, we will illustrate some unsupervised feedforward neural 

network clustering models such the SOM and GNG as foundation patterns which are 

used by current online dynamic unsupervised feedforward neural network clustering 

and are related to the proposed method. 

Univ
ers

ity
 of

 M
ala

ya



 

91 

3.3.1 Self-organization Map  

The self-organization map (SOM) (Kohonen, 1982) maps multidimensional data 

onto lower dimensional subspaces where the geometric relationships between the data 

points indicate their similarity. Figure 3-14 shows a simple topology of the SOM. 

 

Figure 3-14: A simple topology of the SOM 

The SOM is an unsupervised competitive learning neural network and generates 

subspaces. The algorithm of the SOM is shown in APPENDIX A, Figure 3-2A. The 

algorithm of the SOM contains several stages. The code book of weights is often 

initialized by using small random values. There are other techniques to initialize the 

code book of weights in the SOM, such as initializing by using the values from two 

largest principal components eigenvector subsets of the input data, but this will incur a 

long CPU time usage and high memory capacity. Then, one input data vector is chosen 

from the training set. The most similar weight to the input vector in the code book is 

distinguished as the winner node and the best matching unit (BMU). Two other 

neighbours from the code book are appointed as second and third winners. Figure 3-15 

shows one stage of processing in the SOM clustering. In order to increase the similarity 

of the winning node and neighbour nodes to the input data, their weights are updated. 

These iterations are repeated until the final BMU is obtained. Finally, the data nodes are 

clustered based on the BMU (Jolliffe, 1986; Kaski, 2009; Kohonen, 1997). 

Univ
ers

ity
 of

 M
ala

ya



 

92 

 

Figure 3-15: One stage of the SOM process as an example  

The fundamental focal point of utilizing the SOM can be simply interpreted. The 

SOM can cluster large datasets in a short duration of time. The model is not parameter 

free to control clustering tasks and commonly these parameters are selected as random 

numbers between [0,1]. The time complexity and memory complexity of the SOM are 

O(c.n.m2) and O(c.n.m2.sm) where n, m and sm  are the number of nodes, attributes and 

size of the attribute, respectively (Jolliffe, 1986; Kaski, 2009; Kohonen, 1997). 

Incomplete and noisy data as unclean data affect the accuracy of clustering (Germano, 

1999; Honkela, 1998; Kohonen, 2000). The weight vectors are dependent on the data 

that can cluster and recognize inputs, but the initialization of the weights is often 

random (Kohonen, 1997; Rougier & Boniface, 2011). The SOM creates fix code book 

of the weights. Therefore, the SOM clustering methods is not suitable for lifelong 

incremental learning (Kulkarni & Mulay, 2013; T. Wang, et al., 2013). 

Some literatures, devoted to improving the clustering methods by the technique of 

using constraints such as class labels (Hebooul, et al., 2015; Prudent & Ennaji, 2005). 

The constraints of class labels are based on the knowledge of experts and the user guide 

as partial supervision for better controlling the tasks of clustering and desired results 

Univ
ers

ity
 of

 M
ala

ya



 

93 

(Hebooul, et al., 2015; Kamiya, et al., 2007; Prudent & Ennaji, 2005; Shen, et al., 

2011). The semi-SOM (Herrmann & Ultsch, 2007) which was improved based on the 

SOM clustering method, is an example in this area. In order to improve the SOM 

clustering method, the users manage and correct the number of clusters and density of 

each cluster by inserting and deleting the data nodes and clusters. After clustering, the 

models assigned class label to the winning node and consequently assigned the same 

class labels to its neighbour nodes in its cluster. Each cluster must have a unique class 

label, if the data nodes of a cluster have different class labels, the cluster can be divided 

into different sub-clusters. However, assigning the class labels to the data nodes 

between the clusters can be somewhat vague.  The judgment of users can be wrong or 

they may make mistakes during the insertion, deletion or finding the link between nodes 

and assigning the class label to each disjoint sub-cluster (Hebooul, et al., 2015; Kamiya, 

et al., 2007; Prudent & Ennaji, 2005; Shen, et al., 2011). 

3.3.2 Growing Neural Gas  

Neural gas (NG) (Martinetz, et al., 1993) and growing neural gas (GNG) (Fritzke, 

1995) methods are based on the competitive Hebbian learning where in each cycle of 

training the connection between winner node and the second nearest node is created or 

updated. Neural gas (NG) (Martinetz, et al., 1993) is based on VQ and data 

compression. NG dynamically partitions the network of the data nodes like gas and 

initializes the number of clusters. The vectors of weights are initialized randomly. NG 

clustering is faster and more accurate, but it cannot control the network of data nodes by 

deleting or adding a node dynamically during clustering. The GNG clustering method is 

developed based on the structure of the NG method and it is able to dynamically create 

and delete nodes with limited utility parameters. The algorithm of the GNG contains 

several stages too. Firstly, two random nodes from the input data are selected and the 

network competition starts for the highest similarity to the input pattern. Then, one 

Univ
ers

ity
 of

 M
ala

ya

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression


 

94 

input data vector is chosen from the training set. First and second nodes closest to the 

input data vector are found. Consequently, local errors are computed during the learning 

to determine where to add new nodes. A new node close to the node with the highest 

accumulated error is added. During  learning, the related data nodes are classified based 

on the highest similarities within clusters. This process is repeated by chosen a new 

input vector from the training set, until the end of learning (Jolliffe, 1986; Kaski, 2009; 

Kohonen, 1997). 

The time complexity and memory complexity of the NG and the GNG are O(c.n2.m) 

and O(c.n2.m.sm) based on n, m and sm the number of nodes, attributes and size of the 

attribute, respectively. Figure 3-3A in APPENDIX A shows the algorithm of the GNG. 

The disadvantages of the GNG are, that the model should determine the thresholds of 

clusters and maximum size of the network of clusters in order to get the maximum 

number of the clusters and the density of each cluster (Furao, et al., 2007; Hamker, 

2001; Hebooul, et al., 2015; Liu, et al., 2013). Therefore, the NG and GNG clustering 

methods are not suitable for lifelong incremental learning. Figure 3-16 shows clustering 

of Iris dataset by using the GNG clustering method (Costa & Oliveira, 2007). 

 

Figure 3-16: Classification of Iris dataset by using the GNG (Costa & Oliveira, 
2007) 

Univ
ers

ity
 of

 M
ala

ya



 

95 

3.4 The Time Complexity and Memory Complexity of the Unsupervised 

Feedforward Neural Network Clustering and Some Related Clustering 

Methods  

In this section, the time complexities and memory complexities of the mentioned 

UFFNN clustering methods and some related clustering methods of this chapter are 

discussed, as shown in Table 3-1: 

Table 3-1: The time complexities and memory complexities of some UFFNN 
clustering and related clustering methods 

Methods Time complexity Memory complexity 
K-means O(c.k.n.m) O((n+k).m.sm) 

NG O(c.n2.m) O(c.n2.m.sm) 

GNG O(c.n2.m) O(c.n2.m.sm) 

SOM O(c.n.m2) O(c.n.m2.sm) 

         
n is the number of data points, m is the number of attributes, K the number of clusters, c is the number of 
iterations,     is size of each attribute.  
 

 

3.5 Online Dynamic Unsupervised Feedforward Neural Network Clustering 

Many real world data processing environments, such as credit card transactions, 

intelligent multi-agent systems, and medical informatics, demand intelligent 

computational models to learn online continuous data that are updated frequently. The 

problem of such environments are collection, storage, search, transfer, visualization and 

analysis of massive sample size and high dimensional data (Bouchachia, et al., 2007; 

Hebboul, et al., 2011; Hsu, 2003; Kasabov, 1998; Rougier & Boniface, 2011). 

Clustering method is applied to recognize the pattern and discover the knowledge of the 

data, in order to group them (Bouchachia, et al., 2007). As the data environment is non-

stationary, online dynamic UFFNN (ODUFFNN) clustering methods should have 

lifelong (online) and incremental learning. The ODUFFNN clustering method should be 

Univ
ers

ity
 of

 M
ala

ya



 

96 

able to control noisy data, adapt its algorithm and adjust itself in a flexible way to new 

conditions of the environment over time dynamically for processing of both data and 

knowledge. The ODUFFNN should accommodate and prune the data and rules without 

destroying old knowledge, should learn a number of clusters and density of each cluster 

without predetermining the rules. In addition, the ODUFFNN method must control 

time, memory space and accuracy efficiently (Bouchachia, et al., 2007; Hebooul, et al., 

2015; Kasabov, 1998; Kulkarni & Mulay, 2013; Liu, et al., 2013; Schaal & Atkeson, 

1998). Incremental learning refers to the ability of training in repetition by adding or 

deleting the data nodes in lifelong learning without destroying outdated prototype 

patterns (Furao, et al., 2007; Rougier & Boniface, 2011; Schaal & Atkeson, 1998). In 

this section, we consider some efficient ODUFFNN clustering methods such as 

evolving self-organizing map (ESOM) (Deng & Kasabov, 2003), self-organizing 

incremental neural network (SOINN) (Furao & Hasegawa, 2006) and its enhanced 

version (ESOINN) (Furao, et al., 2007), dynamic self-organizing map (DSOM) 

(Rougier & Boniface, 2011) and incremental growing with neural gas utility parameter 

(IGNGU) (Hebboul, et al., 2011). Current ODUFFNN clustering methods often use 

competitive Hebbian learning as used in the ESOM,  or competitive learning as used in 

the DSOM through online learning.  

In order to recognize and find the limitations and problems of existing ODUFFNN 

clustering methods, and their reasons, we select some strong related methods in the 

scope of this research, and then, we review and analyse the details of their topologies, 

algorithms and behaviours.      

3.5.1 Evolving Self-organizing Map  

Evolving self-organizing map (ESOM) (Deng & Kasabov, 2003) begins without the 

data nodes in its cluster network; and during training, the network earns non stationary 

Univ
ers

ity
 of

 M
ala

ya



 

97 

data and updates itself with online entry, and if it is necessary, it creates new nodes. 

Each node has a special weight vector. The strong neighbourhood relation is determined 

by the distance between connected nodes. If the distance between connected data nodes 

is too big, it creates a weak threshold and the connection can be pruned. Also, the 

ESOM is an incremental network quite similar to the GNG that dynamically measures 

the distance of the winner to the data. The algorithm of the ESOM is shown in 

APPENDIX A, Figure 3-4A. During the ESOM clustering, one input data vector is 

chosen from the training set. If the network of clusters is empty or none of the existing 

matching nodes with the input vector within a distance threshold, the model creates a 

new node in the network representing the input, and connects it to the first two best-

matching nodes. Consequently, the model searches for a winner node among the 

existing nodes. If the minimum distance is smaller than the distance threshold, the 

ESOM updates the winner node and its neighbours and their connections, otherwise, 

inserts it as a new node in the network. After several steps of learning time, the model 

prunes the weakest connection. The model continues to learn the new nodes until the 

end of training. The ESOM clustering process starts without any data node, and with the 

initialization of the number of clusters and the parameter set, such as a parameter of a 

distance threshold that controls the creation of the node, a parameter of controlling the 

spread of the neighbourhood, a parameter of a small constant learning rate which is 

usually 0.05, and a parameter of the steps of learning time. The ESOM is a model based 

clustering and is able to create the sub-clusters of the data points based on the normal 

distribution and the VQ. The ESOM is sensitive to noise nodes and prunes weak 

connections and isolated nodes based on Hebbian learning (Hebb, 1949), by computing 

and considering the strength of connections between the winner (or the newly created 

node) and its neighbours. After the entrance of each online input value, the ESOM 

checks all nodes and their weights of neighbour clusters for inserting or updating the 

Univ
ers

ity
 of

 M
ala

ya



 

98 

nodes of the network. This may take a long training time and large memory usage; 

however, the clustering is carried out in just one epoch. The ESOM is unable to control 

the growth of the number of clusters and the size of the network. The ESOM is sensitive 

to a first entrance of the input data, and creates the structure of the cluster network 

based on the first input data, which shows poor adaptability to the input data vector. 

Initialization of parameters for training is based on trial and error and after several 

performances of the clustering model and checking the results, the best parameters are 

recognized.  However, the model is not scalable and has different results for each 

performance (Furao & Hasegawa, 2006; Hebooul, et al., 2015; Liu, et al., 2013; Rougier 

& Boniface, 2011). The time complexity of the ESOM model is O(n2.m) and the 

memory complexity of the ESOM is O(n2.m. sm). The parameters n, m, sm are the 

number of nodes, attributes and size of each attribute respectively. The number of 

epochs is not considered in computing the time complexity and memory complexity 

because the clustering process is carried out just in one epoch.  

As discussed in Section 3.3.1, some literature are devoted to improve the clustering 

methods by using class labels (Prudent & Ennaji, 2005). Assigning the class labels are 

based on the knowledge of experts and the user guide as partial supervision for better 

controlling the tasks of clustering and desired results (Hebooul, et al., 2015; Kamiya, et 

al., 2007; Prudent & Ennaji, 2005; Shen, et al., 2011). The semi-ESOM (Deng & 

Kasabov, 2003) which was improved based on the ESOM clustering method, is another 

example in this area. After clustering, the semi-ESOM model assigned class label to the 

winning node and consequently assigned the same class labels to its neighbour nodes in 

its cluster. Each cluster must have a unique class label, if the data nodes of a cluster 

have different class labels, the cluster can be divided into different sub-clusters.  

Univ
ers

ity
 of

 M
ala

ya



 

99 

3.5.2 Enhanced Self-organizing Incremental Neural Network for Online 

Unsupervised Learning  

Self-organizing incremental neural network (SOINN) (Furao & Hasegawa, 2006) 

and its enhanced SOINN (ESOINN) (Furao, et al., 2007) are also based on an 

incremental structure where the first version uses a two layer network while the 

enhanced version uses a single layer network.  The SOINN is useful to process online 

non-stationary data, report a suitable number of the classes, and represent the 

topological structure of the input probability density. The SOINN learns a necessary 

number of the data nodes, uses fewer nodes than the GNG, and obtains better results 

than the GNG. The SOINN has a two layer network that makes it unsuitable for using 

as an ODUFFNN clustering method. This is because it is unable to store all details of 

the data and loses them from one layer to another layer during training. Another 

disadvantage of the SOINN is that, it is able to separate clusters with very low density 

overlap. If there is a high density overlap between clusters, it cannot work 

appropriately, and the clusters will link together to form one cluster. Semi-SOINN 

(Shen, et al., 2011) was adapted from the SOINN (Furao & Hasegawa, 2006) in order to 

improve the accuracy of the clustering result. However, semi-SOINN inherits the 

problems and limitations of the SOINN. Furao & Hasegawa improved the structure of 

the SOINN to one layer and applied class labels for semi supervised feedforward neural 

network clustering.  After clustering, the semi-SIONN assigns a class label to the 

winning node and consequently assigns the same class labels to its neighbour nodes in 

its cluster. Each cluster must have a unique class label. If the data nodes of a cluster 

have different class labels, the cluster could be divided into different sub-clusters.  

However, assigning the class labels to the data nodes between the clusters could be 

somewhat vague. The semi-SOINN model inherits some disadvantages from the 

SOINN method, such as, very outdated learning information is forgotten; new learned 

Univ
ers

ity
 of

 M
ala

ya



 

100 

patterns are lost and only the old input pattern is represented and the topological 

structure of the incremental online data cannot be well represented; initialization of the 

parameters for training is based on trial and error; and there is relearning in several 

epochs (Han & Kamber, 2011; Kamiya, et al., 2007; Kantardzic, 2011; Shen, et al., 

2011). 

As a solution to the problems of the SOINN, Furao et al. (2007) proposed the 

ESOINN for online unsupervised learning. In the ESOINN method, it is necessary that 

very out of date learning information be forgotten because the method is unable to store, 

retrieve and manage very old data, and hence, this is a disadvantage of the ESOINN 

method (Hebboul, et al., 2011; Rougier & Boniface, 2011). The algorithm of the 

ESOINN is shown in APPENDIX A, Figure 3-5A. The ESOINN clustering algorithm 

contains several stages (Furao, et al., 2007). One input data vector is chosen from the 

training set. Then, the model finds the winner and the second winner close to the input 

vector node. If the distance between the new input vector and the winner or second 

winner is less than the similar distance threshold, the new node is added, and if it does 

not have the connection, the model creates a connection between the winner and second 

winner nodes. The model continues to learn other new nodes. During learningn, the 

density, the weight of the winner and neighbour, and the subclass label of the data 

nodes are updated depended on input data; and old connections, overlap, and  noise 

nodes are deleted.  

In the ESOINN, the input data vectors are not stored during learning. If the distance 

between the new data and the winner or second winner is greater than the similar 

distance threshold, the network will grow. If the distance between the new input vector 

and the winner or second winner is less than the similar threshold, the new data will be 

learned without changing the network. Therefore, learning of the new input does not 

Univ
ers

ity
 of

 M
ala

ya



 

101 

destroy the last learned knowledge. The disadvantages of the ESOINN method are: out 

of date learning information is forgotten and new learned patterns are lost. Therefore, 

the topological structure of the incremental online data cannot be well represented.  

Furthermore, the initialization of the parameters for training is based on trial and error; 

and there is relearning in several epochs (Hebboul, et al., 2011; Hebooul, et al., 2015; 

Liu, et al., 2013). The time complexity of the ESOINN is O(c.n2.m). The memory 

complexity is O(c.n2.m.sm). The parameters of n, m and sm are the number of nodes, 

attributes and size of each attribute respectively, and the parameter c is the number of 

epochs. 

3.5.3 Dynamic Self-organizing Map 

Dynamic self-organizing map (DSOM) (Rougier & Boniface, 2011) is based on the 

SOM but is suitable for incremental learning since it is not dependent on the time, it has 

a special formula for updating the weights and the flexibility property. In order to 

update weights of the neighbourhood nodes as shown in Equation (3.16), the time 

dependency is removed, and a special parameter of flexibility is considered:  

Wnew = Wi +ε | |X – Wi ||R α(γ ). (X  – Wi )                                                           (3.16) 

Where ε is learning rate, vector X is a subset of R which are sequentially presented in 

the map with respect to the probability density function. In Equation (3.17) α(γ) is the 

neighbourhood function in a different form: 

      
   

                
             

                                                           ( 3 3.17) 

Where position p is used for the vector-projection purposes and pi refers to the node i 

in the position or the weight codeword of node i. The distance of     

         represents the distance between the weight of node i and the winner. γ is the 

flexibility parameter and the optimal γ must be learned by using trial and error. If γ is 

too high, the DSOM does not converge and if it is too low, it is not sensitive to the 

Univ
ers

ity
 of

 M
ala

ya



 

102 

relation between neighbour nodes. If X= Wwinner, then α(γ)=0. In the DSOM, if the 

weight vector is similar to the input data, other neighbour nodes do not need to learn 

more and the winner can map the data (Rougier & Boniface, 2011). The DSOM method 

is sensitive to parameters and weights which are initialized randomly, the initialization 

of some parameters for controlling tasks is done by trial and error, and relearning occurs 

over several epochs (Hebboul, et al., 2011; Hebooul, et al., 2015; Liu, et al., 2013). The 

time complexity of the DSOM is O(c.n.m2) and the memory complexity is O(c.n.m2.sm) 

based on n, m and sm the number of nodes, attributes and size of the attribute. 

3.5.4 Incremental Growing with Neural Gas Utility Parameter  

Prudent and Abdel Ennaji (Prudent & Ennaji, 2000) introduced an incremental 

growing with neural gas (IGNG), based on the GNG with predefined thresholds, and it 

was not suitable for online dynamic clustering. Moreover, the IGNG could not control 

the noise and density overlapping (Hebboul, et al., 2011). Therefore, Hebboul and 

Hacini et al. (2011) proposed incremental growing with neural gas utility parameter 

(IGNGU) (Hebboul, et al., 2011) as the online incremental unsupervised clustering 

based on the structure of the GNG model and Hebbian (Hebb, 1949) learning.  The 

IGNGU was proposed without any restraint and control on the network structure 

associated with competitive learning method of the Hebbian. The algorithm of the 

IGNGU is shown in APPENDIX A, Figure 3-6A. The structure of the IGNGU contains 

two layers of learning (Hebboul, et al., 2011): The first layer of the IGNGU creates a 

suitable structure of the clusters of input data nodes with lower noise data, and 

computes the distance threshold. During training, the first layer considers a few data at a 

time and then moves to the second layer to process active nodes and disable all nodes 

and their parameters in the first layer; and then immediately trains some other data. The 

second layer uses and trains the output of the first layer in parallel and creates the final 

structure of clusters. The model learns the disable data nodes by the first layer again. 

Univ
ers

ity
 of

 M
ala

ya



 

103 

Some disadvantages of the IGNGU are: parameters are determined experimentally 

by trial and error ; and some data and their connections are lost for high speed 

clustering; memory usage is high for maintenance and allocation of the information in 

the first layer and the second layer (Hebooul, et al., 2015; Kulkarni & Mulay, 2013; Liu, 

et al., 2013; Wang, et al., 2013). The time complexity of the IGNGU is O(c.n2.m) and 

the memory complexity is O(c.n2.m.sm) based on n, m and sm the number of the nodes, 

the attributes and size of each attribute. 

3.5.5 An Enhancing Dynamic Self-organizing Map 

Wang et al. (Wang, et al., 2013) introduced an enhancing dynamic self-organizing 

map (EDSOM) for data clustering incrementally, based on the SOM and GNG. The 

EDSOM starts with four connected data nodes, and initialization of random weights. 

The algorithm of the EDSOM is shown in APPENDIX A, Figure 3-7A. The EDSOM 

starts with four connected data nodes, and initializes the weight vectors of the four data 

nodes with random values. Then, one input data vector is chosen from the training set, 

and subsequently, finds the winner node closer to the input vector node, using 

Euclidean distance. If the distance between the new input vector and the winner is less 

than the similar distance threshold, inserts it, and updates the winner and its neighbours 

nodes. If else, the EDSOM creates a new node, and connects it to the winner node. The 

EDSOM continues to learn other new nodes, and during learning prunes weak 

connections and inactive nodes (Wang, et al., 2013).  

The EDSOM has two bold advantages. It deletes the weak connections which 

represent large distances between connected data nodes, during pruning. It does not 

update all connections and weights, during learning. However, some disadvantages of 

the EDSOM are: selection four connected data nodes which affect the clustering 

accuracy; and losing some data nodes and their connections during clustering (Hebooul, 

Univ
ers

ity
 of

 M
ala

ya



 

104 

et al., 2015; Kulkarni & Mulay, 2013; Liu & Ban, 2015; Liu, et al., 2013). Initialization 

of parameters for training is based on trial and error, and after several performances of 

the clustering model and checking the results, the best parameters are recognized 

(Hebooul, et al., 2015; Kulkarni & Mulay, 2013; Liu & Ban, 2015; Liu, et al., 2013).  

However, the model has different results for each performance. The time complexity of 

the EDSOM is O(c.n2.m) and the memory complexity is O(c.n2.m.sm), based on n, m 

and sm the number of the nodes, the attributes and size of each attribute. 

3.5.6 Enhanced Incremental Growing Neural Gas  

Lio et al. (Liu, et al., 2013) introduced an incremental self-organizing neural network 

based on enhanced competitive Hebbian learning, which is suitable for clustering of 

non-stationary data. The algorithm of enhanced incremental growing neural gas (HI-

GNG) is shown in APPENDIX A, Figure 3-8A. The HI-GNG  starts without any data 

node. One input data vector is chosen from the training set. If the network is empty, or 

the Euclidean distance between the input data node and first or second nearest data 

nodes are larger than the threshold, inserts two new nodes. Weight of the first nearest 

node (   ) is set to input data node, and weight of second nearest node (     is 

randomly generated, such as           
 

  
  where ε is distance threshold. Then, 

the model creates a connection between two new nodes, increases their connection-

strength value, and updates the weight vectors of the first nearest node and its 

neighbours. During clustering, the HI-GNG model removes the weak connections and 

isolated data. If there is not any input data for learning, the model finishes learning and 

clusters all nodes (Liu, et al., 2013).  

Some disadvantages of the HI-GNG are: the parameters are determined by trial and 

error, and some data and their connections are lost for high speed clustering (Hebooul, 

et al., 2015; Kulkarni & Mulay, 2013; Liu & Ban, 2015; Liu, et al., 2013). The time 

Univ
ers

ity
 of

 M
ala

ya



 

105 

complexity of the HI-GNG is O(c.n2.m) and the memory complexity is O(c.n2.m.sm) 

based on n, m and sm the number of the nodes, the attributes and size of each attribute. 

3.6 Comparison and Discussion  

In this chapter, we reviewed the related literature works and history of online 

dynamic unsupervised feedforward neural network. Also, we showed that the 

ODUFFNN were developed based on the vector quantization and K-means methods, 

and some static unsupervised feedforward neural network clustering methods as the 

fundamental methods, in order to have lifelong (online) and incremental learning 

abilities and be compatible with the changes in the continuous data. Table 3-2 shows 

some bold advantages of the ESOM, ESOINN, DSOM, IGNGU, EDSOM, and HI-

GNG as current ODUFFNN clustering methods, according to the literature. 

 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

106 

Table 3-2: Some bold advantages of current online dynamic unsupervised 
feedforward neural network clustering models 

 
ESOM ESOINN DSOM IGNGU EDSOM HI-GNG 

Base patterns 
SOM and 

GNG, 
Hebbian 

GNG SOM 
GNG and 
Hebbian 

SOM and 
GNG 

GNG and 
Hebbian 

Some bold 
features 

(Advantages) 

Begin 
without 

any node 

Control the 
number and 
density of 

each cluster 

Improve the 
formula of 

updating the 
weights 

Train by two 
layers in 
parallel 

 

Begin with 
four 

connected 
nodes 

 

Begin 
without any 

node 

Update 
itself with 

online 
input data 

Initialize 
code book 

Elasticity or 
flexibility 
property 

 

 

 

Control 
density of 

each cluster 
and size of 
the network 

Initialize 
code book 

[m×4] 

Control 
density of 

each cluster 
and size of 
the network 

The nodes 
with weak 
threshold 

can be 
pruned 

Prune for 
controlling 
noise and 

weak 
thresholds 

Control 
noise 

The nodes 
with weak 
threshold 

can be 
pruned 

 

Prune nodes 
with weak 
thresholds 

Input 
vectors are 
not stored 

during 
learning Earning best 

matching 
unit (BMU) 

 

Fast training 
by pruning 

 

 

 

Earning best 
matching 

unit (BMU) 

 

Use the 
enhanced 
Hebbian 
learning 

which makes 
the method 
robust to 

noisy data 
nodes 

Clustering 
during one 

epoch 

New input 
does not 

destroy last 
learned 

knowledge 

Time 
Complexity 

O(n2.m) O(c.n2.m) O(c.n.m2) O(c.n2.m) O(c.n2.m) O(c.n2.m) 

Memory 
Complexity 

O(n2.m.sm) O(c.n2.m.sm) O(c.n.m2.sm) O(c.n2.m.sm) O(c.n2.m.sm) O(c.n2.m.sm) 

         
n is the number of data points, m is the number of attributes, K the number of clusters, c is the number of 
iterations,     is size of each attribute. 
 

For example, the DSOM is similar to the SOM and is based on competitive learning, 

thus it earns the property of elasticity (flexibility) by improving the formula of updating 

weights of the SOM. The DSOM can control the size of the network, the number of 

Univ
ers

ity
 of

 M
ala

ya



 

107 

clusters and their densities through the elasticity property (Rougier & Boniface, 2011). 

The ESOM is based on the SOM, GNG and Hebbian. The bold properties of the ESOM 

includes: starting without any node, updating the clusters by online input values, and 

pruning weak connection. The ESOM trains during one epoch and has better CPU time 

usage for clustering (Deng & Kasabov, 2003).  The ESOM is sensitive to noise nodes 

and prunes weak connections and isolated nodes based on Hebbian learning (Hebb, 

1949); it resets the strength of connections between the winner (or the newly created 

node) and its neighbours. The ESOINN is based on the GNG with some properties such 

as initializing a code book, controlling noise, but it also has the disadvantages losing 

accuracy (Furao, et al., 2007). The IGNGU is based on the GNG and the Hebbian 

learning rule (Hebb, 1949) with some abilities such as parallel training in two layers; 

controlling noise and densities of clusters (Prudent & Ennaji, 2000). The EDSOM is 

based on the SOM and GNG, and its bold advantage includes pruning the weak 

connections (Wang, et al., 2013). The Hi-GNG is based on GNG and Hebbian, and 

applies the enhanced Hebbian learning, which makes the method robust to noisy data 

nodes (Liu, et al., 2013). 

However, the ODUFFNN clustering methods also inherit some disadvantages of the 

UFFNN clustering methods, such as relearning, using random weights and parameters 

(Bouchachia, et al., 2007; Hebboul, et al., 2011; Kasabov, 1998; Schaal & Atkeson, 

1998). The ODUFFNN clustering methods should train online data fast without 

relearning and cluster the continuous data in one pass, because there is no capacity to 

store complete online data, previous data and the connection of the data points in 

consequent steps (Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & Mulay, 2013; Liu 

& Ban, 2015). As shown in literature, current ODUFFNN clustering methods are not 

able to accommodate and adjust the data and rules without destroying old data and old 

knowledge (Hebooul, et al., 2015; Jain, et al., 1999; Kasabov, 1998; Kulkarni & Mulay, 

Univ
ers

ity
 of

 M
ala

ya



 

108 

2013; Liu & Ban, 2015; Pavel, 2002). There is a trade-off between training time, 

clustering accuracy, time complexity and memory complexity of the algorithm in the 

ODUFFNN clustering methods, and there is surprisingly and comparatively very little 

works dealing with them together in one ODUFFNN clustering model (Deng & 

Kasabov, 2003; Furao & Hasegawa, 2006; Hebooul, et al., 2015; Kulkarni & Mulay, 

2013; Rougier & Boniface, 2011; Shen, et al., 2011). 

Generally, the critical issues in the current ODUFFNN clustering methods are high 

training time and low accuracy of clustering, also high time complexity and high 

memory complexity of clustering (Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & 

Mulay, 2013; Liu & Ban, 2015; Liu, et al., 2013; Rougier & Boniface, 2011). As 

mentioned in the details of the current ODUFFNN clustering methods in this chapter, 

massive data in size and the number of  attributes, using random weights, distance 

thresholds and parameters based on trial and error for controlling clustering tasks, and 

relearning during several epochs are some of the reasons that create the problems. 

3.7 Summary 

This chapter focused on the online dynamic unsupervised feedforward neural 

network (ODUFFNN) clustering. We reviewed, investigated and analysed the details of 

some effective current methods in this scope, such as the DSOM and ESOM. The study 

of structures, topologies and behaviours of the existing ODUFFNN methods showed 

their major problems, such as high training time and low accuracy of clustering, which 

are caused through some common reasons, such as using random weights, distance 

thresholds and parameters for controlling clustering tasks, and relearning during several 

epochs.    

Univ
ers

ity
 of

 M
ala

ya



 

109 

CHAPTER 4: RESEARCH METHODOLOGY 

4.1 Introduction 

This chapter illustrates the research methodology based on Section 1.6, as shown in 

the framework of Figure 1-3. Therefore, this chapter briefly follows the sub-topics 

include an overview of the proposed methods, especially the DUFFNN clustering 

method, and the motivation for the  design of the proposed models. It also includes the 

description of the methods and techniques in this study, in order to achieve the research 

objectives and overcome the problems, as discussed in Chapter 1.  In addition, the 

methods used for evaluating the performance of the proposed DUFFNN clustering 

method are also described. 

4.2 Approaches to Research 

In this section, each stage of the research methodology framework of this thesis as 

shown in Figure 1-2 of Section 1.6, is explained. 

4.2.1 Reviewing Related Literature 

This research investigates and  reviews the existing effective online dynamic 

unsupervised feedforward clustering methods through the literature experimentally. The 

literature review has clearly examined the features of the related methods, and identifies 

their limitations, some advantages and disadvantages. Furthermore, the distance 

measurement methods, clustering evaluation methods, and main unsupervised clustering 

models are discussed.  

4.2.2 Problem Formulation 

Based on the literature, we identified that the current ODUFFNN clustering methods 

generally suffer from high training time and low accuracy of clustering, also high time 

complexity and high memory complexity of clustering. Hence, the reasons of the 

Univ
ers

ity
 of

 M
ala

ya



 

110 

mentioned problems are investigated and we recognized the  reasons of the problems of 

the current ODUFFNN clustering methods are related to the structure and features of 

the data, and the topology and algorithm of the current ODUFFNN clustering method. 

4.2.3 Definition of the Research Objectives 

The objectives of this research are illustrated based on the formulation of the 

problems as mentioned in Section 1.2, as follows: 

 To review current effective ODUFFNN clustering methods. 

 To identify limitations and problems of current effective ODUFFNN clustering 

methods through the literature and practical investigations.  

 To develop a dynamic unsupervised feedforward neural network (DUFFNN) 

clustering method that is able to: 

1) Reduce the training time of clustering during one training epoch 

2) Increase the accuracy of clustering 

3) Reduce the time complexity of clustering 

4) Reduce the memory complexity of clustering 

 To evaluate the performance of the proposed DUFFNN method. 

 To compare the results of the proposed DUFFNN method performance with 

rival methods within the scope of this research. 

In order to achieve these objectives, the DUFFNN clustering method is developed 

and evaluated extensively in this study, as discussed in the next section. 

4.2.4 Proposed Model 

In order to accomplish the first objective, we reviewed, investigated and examined 

the current effective ODUFFNN clustering methods through the literature, and 

Univ
ers

ity
 of

 M
ala

ya



 

111 

identified their limitations and problems, and formulated the problems. Then, we 

identified some reasons of these problems through the practical probe. 

In order to accomplish the third objective and overcome the problems, we firstly 

introduce a real unsupervised FFNN (RUFFNN) clustering method suitable for 

stationary data environment with one epoch training to overcome the problems of high 

CPU time usage during training, low accuracy, high time complexity and high memory 

complexity of clustering. The RUFFNN considers a matrix of dataset as input data for 

clustering. During training, a non-random weights code book is learned through the 

input data matrix directly. A standard weight vector is extracted from the code book, 

and exclusive total threshold of each input instance (record of the data matrix) is 

calculated based on a standard weight vector. The input instances are clustered on the 

basis of their exclusive total thresholds.  

In order to improve the results of clustering based on the literature, the RUFFNN 

model is improved to real semi-supervised FFNN (RSFFNN) method, which assigns a 

class label as a partial supervision to each input instance by considering the training set. 

The class label of each unlabeled input instance, is predicted, by utilizing a linear 

activation function and the exclusive total threshold. Finally, the RSFFNN model 

updates the number of clusters and density of each cluster.  

Then, a dynamic unsupervised FFNN (DUFFNN) clustering method is developed by 

adapting the structure and the features of the RUFFNN method. The DUFFNN 

clustering method with incremental learning ability is suitable for clustering non-

stationary continuous data model, and starts without any random parameters or 

coefficient value which needs predefinition. The proposed DUFFNN clustering method 

is able to control and delete attributes with weak weights to reduce the data dimensions, 

and data with solitary thresholds in order to reduce noise. Moreover, the DUFFNN 

Univ
ers

ity
 of

 M
ala

ya



 

112 

method has the capabilities of increasing clustering accuracy and improving training 

time in a single epoch clustering without weight updating, and improving time 

complexity and memory complexity of clustering.  

The DUFFNN clustering is improved to dynamic semi-supervised FFNN (DSFFNN) 

clustering by assigning a class label to each unlabeled data by considering a linear 

activation function and the exclusive threshold for more accurate results. 

In order to accomplish the fourth and fifth objectives of the research,  the 

performances of the proposed models are evaluated and compared with other related 

models by using the various datasets from the UCI machine learning repository, and the 

breast cancer dataset from the University of Malaya medical centre (UMMC) to predict 

the survival time of patients. 

4.2.5 System Design 

Based on the proposed model, the designs and algorithms of following methods are 

described, which are considered as contributions of this study.  

 A developed RUFFNN method as a single epoch clustering method, which uses 

non random weights, and controls the number of dimensions of data and noise.  

 An improved RSFFNN clustering method based on the RUFFNN model, by 

assigning a class label to the each unlabeled data through using a linear activation 

function and the exclusive threshold for more accurate results. 

 A developed DUFFNN clustering method, which inherits the structure, features 

and capabilities of the RUFFNN clustering. The DUFFNN clustering with incremental 

lifelong or online learning property is developed for real non stationary environments.  

Univ
ers

ity
 of

 M
ala

ya



 

113 

 An improved DSFFNN clustering method based on the DUFFNN method, by 

assigning a class label to the each unlabeled data through using a linear activation 

function and the exclusive threshold for more accurate results. 

The details of the system design are explained in Chapter 5. 

4.2.6 System and Data Requirements for Running Experiment 

This section provides a summary of both the hardware and software requirements to 

run the proposed system. Furthermore, this section provides a summary of datasets used 

in this study for experimental evaluation. 

All the steps of the proposed methods are implemented in Visual C#.Net and Visual 

Basic under Microsoft windows 7 professional operating system (OS) by 4 GHz 

Pentium processor.   

Visual C#.net is a powerful programming language for building real applications in 

the infrastructure and low level machine language. It properly manages the memory in 

front of data garbages, unpointed free cells, and wasted cells during execution of the 

program. Also, it is able to handle the errors of the program by using a strong compiler, 

and has cross-language capabilities to interoperate with any other language on the .NET 

platform. Table 4-1 shows the system characteristics.  

Table 4-1: The system information of model implementation 

System Information 
Operating System Microsoft Windows 7 Professional 
Processor Pentium 2 GHz 
Physical Memory 4 GB 
Programming Language Visual C#.Net and Visual Basic 6.0 

 

Univ
ers

ity
 of

 M
ala

ya



 

114 

As mentioned in Section 4.2.3, the proposed model is experimentally evaluated in 

order to achieve the fourth and fifth objectives of the research. Validation experiments 

are performed on nine datasets selected from different domains from the UCI Irvine 

Machine Learning Database Repository (Asuncion & Newman, 2007) and the breast 

cancer dataset from the University of Malaya medical centre (UMMC). As previously 

mentioned, most conventional methods do not satisfactorily cluster these datasets. The 

details of  the features of datasets are provided in APPENDIX B. 

1) Breast Cancer Wisconsin (original) dataset was selected from the UCI 

Repository. The collected dataset was from the University of Wisconsin Hospitals, 

Madison, as reported by Dr. William H. Wolberg through his clinical cases (Asuncion 

& Newman, 2007; Wolberg & Mangasarian, 1990). As mentioned in the UCI 

Repository, the dataset characteristic is multivariable, the attribute characteristic is an 

integer, the number of cases is 699, and the number of attributes is 10 from the life area. 

Breast cancer can be classified into benign and malignant. The Breast Cancer 

Wisconsin dataset has 683 data points after cleaning. Therefore, in each iteration, we 

considered 614 data points as the training set and 69 data points as the test set. Table 4-

2 and Figure 4-1 illustrate the breast cancer Wisconsin (original) dataset features and its 

sample.  

Table 4-2: The features of the breast cancer Wisconsin dataset 

Data Set 

Characteristics: Multivariate Number of Data: 699 Area: Life 

Attribute 

Characteristics: Integer 

Number of 

Attributes: 10 Date Donated 1992-07-15 

Associated Tasks: Classification Missing Values? Yes 

Number of Web 

Hits: 77542 

 

Univ
ers

ity
 of

 M
ala

ya



 

115 

 

Figure 4-1: The sample of breast cancer Wisconsin dataset  

2) Iris dataset was selected from the UCI Repository. The Iris plants dataset was 

created by Fisher R.A. (Asuncion & Newman, 2007; R. Fisher, 1950). As reported in 

the UCI Repository, the dataset  characteristic is multivariable, the attributes 

characteristic is real, the number of cases is 150, the number of attributes is 4 from the 

life area. The Iris dataset can be classified into Iris Setosa, Iris Versicolour and Iris 

Virginica. Table 4-3 and Figure 4-2 illustrate the Iris dataset features and its sample.  

Table 4-3: The features of the Iris dataset 

Data Set Characteristics: Multivariate Number of Data: 150 Area: Life 

Attribute 

Characteristics: 

Real Number of 

Attributes: 

4 Date Donated 1988-07-01 

Associated Tasks: Classification Missing Values? No Number of Web 

Hits: 

390757 

 

 
Figure 4-2: The sample of the Iris dataset 

Univ
ers

ity
 of

 M
ala

ya



 

116 

3) Spambase dataset was selected from the UCI Repository. The Spam E-mail 

dataset  was created by Mark Hpkins, Erik Reeber, George Forman, Jaap Suermondt 

(Asuncion & Newman, 2007). As reported in the UCI Repository, the dataset  

characteristic is multivariable, the attributes characteristics are integer-real, the number 

of data is 4601 and the number of attributes is 57 from the computer area. The 

Spambase dataset can be classified into Spam and Non-Spam. Table 4-4 and Figure 4-3 

illustrate the Spambase dataset features.  

Table 4-4: The features of the Spambase dataset 

Data Set 

Characteristics: 

Multivariate Number of Data: 4601 Area: Computer 

Attribute 

Characteristics: 

Integer, Real Number of 

Attributes: 

57 Date Donated 1999-07-01 

Associated Tasks: Classification Missing Values? Yes Number of Web 

Hits: 

65066 

 

 

 

Figure 4-3: The sample of the Spambase dataset 

4) SPECT heart dataset was selected from the UCI Repository. Kurgan et al. 

created the dataset that described diagnosing of cardiac Single Proton Emission 

Computed Tomography (SPECT) images (Asuncion & Newman, 2007; Kurgan, et al., 

2001). As reported by the UCI Repository, the dataset  characteristic is multivariable, 

the attributes characteristic is categorical, the number of cases is 267 and the number of 

Univ
ers

ity
 of

 M
ala

ya



 

117 

attributes is 22 from the life area. The SPECT Heart dataset can be classified into 

normal and abnormal. Tables 4-5 and Figure 4-4 illustrate SPECT Heart dataset features 

and its sample.  

Table 4-5: The features of SPECT Heart dataset  

Data Set 

Characteristics: 
Multivariate Number of Data: 267 Area: Life 

Attribute 

Characteristics: 
Categorical 

Number of 

Attributes: 
22 Date Donated 2001-10-01 

Associated Tasks: Classification Missing Values? No 
Number of Web 

Hits: 
85546 

 

 

Figure 4-4: The sample of SPECT Heart dataset  

5) SPECTF Heart dataset was selected from the UCI Repository. Kurgan et al. 

created the dataset that described diagnosing of cardiac Single Proton Emission 

Computed Tomography (SPECT) images in different type in SPECTF Heart dataset  

(Asuncion & Newman, 2007; Kurgan, et al., 2001). As reported in the UCI Repository, 

the dataset  characteristic is multivariable, the attributes characteristic is integer, the 

number of cases is 267 and the number of the attributes is 44 from the life area. The 

SPECTF Heart dataset can be classified into normal and abnormal. Tables 4-6 and 

Figure 4-5 illustrate SPECTF Heart dataset features and its sample.  

Univ
ers

ity
 of

 M
ala

ya



 

118 

Table 4-6: The features of SPECTF Heart dataset  

Data Set 

Characteristics: 
Multivariate Number of Data: 267 Area: Life 

Attribute 

Characteristics: 
Integer 

Number of 

Attributes: 
44 Date Donated: 2001-10-01 

Associated Tasks: Classification Missing Values? No 
Number of Web 

Hits: 
21457 

 

 

Figure 4-5: The sample of SPECTF Heart dataset  

6) Musk1 dataset (version 1 of the musk dataset) was selected from the UCI 

Repository. The dataset was created by the “Artificial Intelligence” group at Arris 

Pharmaceutical Corporation, and describes a set of Musk or Non-Musk molecules 

(Asuncion & Newman, 2007). The goal is to train the dataset in order to predict whether 

new molecules will be Musk or Non-Musk based on their features. As mentioned in the 

UCI Repository, the dataset  characteristic is multivariable, the attributes characteristic 

is integer, the number of instance is 476, and the number of the attributes is 168 from 

the physical area. The Musk1 dataset can be classified into Musks or Non-Musks. Table 

4-7 and Figure 4-6  illustrate the Musk1 dataset features and its sample.  

 

 

Univ
ers

ity
 of

 M
ala

ya



 

119 

Table 4-7: The features of the Musk1 dataset 

Data Set 

Characteristics: Multivariate Number of Data: 476 Area: Physical 

Attribute 

Characteristics: Integer 

Number of 

Attributes: 168 Date Donated 1994-09-12 

Associated Tasks: Classification Missing Values? No 

Number of Web 

Hits: 16271 

 

 

Figure 4-6: The sample of the Musk1 dataset 

7) Musk2 dataset  (version 2 of the musk dataset) was selected from the UCI 

Repository. The dataset was created by the “Artificial Intelligence” group at Arris 

Pharmaceutical Corporation, and describes a set of Musk or Non-Musk molecules 

(Asuncion & Newman, 2007). The goal is to train the dataset in order to predict whether 

new molecules will be Musk or Non-Musk based on their features.  As mentioned in the 

UCI Repository, the dataset characteristic is multivariable, the attributes characteristic is 

integer, the number of data is 6598, and the number of attributes is 168 from the 

physical area. The Musk2 dataset can be classified into Musks or Non-Musks. Table 4-8 

and Figure 4-7 illustrate the Musk2 dataset features.  

 

Univ
ers

ity
 of

 M
ala

ya



 

120 

Table 4-8: The features of the Musk2 dataset 

Data Set 

Characteristics: Multivariate Number of Data: 6598 Area: Physical 

Attribute 

Characteristics: Integer 

Number of 

Attributes: 168 Date Donated 1994-09-12 

Associated Tasks: Classification Missing Values? No 

Number of Web 

Hits: 16028 

 

 

Figure 4-7: The sample of the Musk2 dataset 

8) The Arcene dataset was collected from two different sources: the national cancer 

institute (NCI) and the eastern Virginia medical school (EVMS) (Asuncion & Newman, 

2007). As mentioned in the UCI Repository, the dataset characteristic is multivariable, 

the attributes characteristic is real, the number of cases is 900, and the number of 

attributes is 10000 from the life area. All data were obtained by merging three mass-

spectrometry datasets to create training and test data as a benchmark. The training and 

validation instances include patients with cancer (ovarian, prostate cancer), and healthy 

patients. Each dataset of training and validation contains 44 positive samples and 56 

negative instances with 10,000 attributes. We considered the training dataset and 

validation dataset with 200 total instances together as one set. The Arcene dataset can 

be classified into cancer patients and healthy patients. Arcene’s task is to distinguish 

cancer versus normal patterns from mass-spectrometric data (Asuncion & Newman, 

2007).  This dataset is one of 5 datasets of the NIPS 2003 feature selection challenge 

Univ
ers

ity
 of

 M
ala

ya



 

121 

(Guyon, 2003; Guyon & Elisseeff, 2003). As such, most current publications in this 

area  are on the selection of the best attributes so as to reduce the dimension of the 

arcene dataset to get better clustering accuracy, to reduce the central processing unit 

(CPU) time usage and memory usage (Guyon, 2003; Guyon & Elisseeff, 2003). Table 

4-9 and Figure 4-8 illustrate the Arcene dataset features.  

Table 4-9: The features of the Arcene dataset 

Data Set 

Characteristics: Multivariate Number of Data: 900 Area: Life 

Attribute 

Characteristics: Real 

Number of 

Attributes: 10000 Date Donated 2008-02-29 

Associated Tasks: Classification Missing Values? N/A 

Number of Web 

Hits: 55435 

 

 

Figure 4-8: The sample of the Arcene dataset 

9) The Yeast dataset was obtained from the UCI Repository. The collected dataset 

was reported by Kentai Nakai from Institute of Molecular and Cellular Biology, 

university of  Osaka (Asuncion & Newman, 2007), in order to predict the cellular 

localization sites of proteins. As mentioned in the UCI Repository, the dataset 

characteristic is multivariable, the attributes characteristic is real, the number of cases is 

1484, and the number of attributes is 8 from the life area. The classes are Cytosolic, 

Nuclear, Mitochondrial, Membrane protein: no N-terminal signal, Membrane protein: 

uncleaved signal and Membrane protein: cleaved signal. Extracellular, Vacuolar, 

Univ
ers

ity
 of

 M
ala

ya



 

122 

Peroxisomal and Endoplasmic reticulum lumen (Asuncion & Newman, 2007). Table 4-

10 and Figure 4-9 illustrate the Arcene dataset features. 

Table 4-10: The features of the Yeast dataset 

Data Set 

Characteristics: Multivariate Number of Data: 1484 Area: Life 

Attribute 

Characteristics: Real 

Number of 

Attributes: 8 Date Donated 1996-09-01 

Associated Tasks: Classification Missing Values? No 

Number of Web 

Hits: 167248 

 

 

Figure 4-9: The sample of the Yeast dataset 

10) The breast cancer dataset consists of the patients data from the University of 

Malaya Medical centre (UMMC), Kuala Lumpur from 1992 until 2002 (Hazlina, et al., 

2004). As mentioned in Table 4-11, the dataset is divided into 9 sub sets based on the 

interval of survival time: 1st year, 2nd year, … , 9th year. Also, Figure 4-10 shows the 

sample of breast cancer dataset  from the UMMC.  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

123 

Table 4-11: The observed data of breast cancer based on the interval of survival 
time 

Year of 
treatment 1st year 2nd year 3rd year ... 8th year 9th year 

1993 
Data from 

1993 to 
1994 

Data from 
1993 to 

1995 

Data from 
1993 to 

1996 
… 

Data from 
1993 to 

2001 

Data from 
1993 to 

2002 

1994 
Data from 

1994 to 
1995 

Data from 
1994 to 

1996 

Data from 
1994 to 

1997 
… 

Data from 
1994 to 

2002 
 

1995 
Data from 

1995 to 
1996 

Data from 
1995 to 

1997 

Data from 
1995 to 

1998 
…   

 
… 
 

 
… 

 

 
… 
 

 
… 
 

   

2000 
Data from 

2000 to 
2001 

Data from 
2000 to 

2002 
    

2001 
Data from 

2001 to 
2002 

     

 

 

Figure 4-10: The sample of breast cancer from UMMC dataset 

The number of cases in the dataset  was 827, the number of attributes was 13 

continuous and one attribute for showing the binary class in two cases of alive or 

dead. The used breast cancer dataset  from UMMC has class labels of ‘0’ for alive 

and ‘1’ for dead as constraints. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

124 

4.2.7 Experimental Evaluation 

As mentioned in Section 4.2.3, in order to achieve the fourth and fifth objectives of 

the research and evaluate the performance of the proposed system, two main 

experiments are considered. Chapter 6 is the first experiment, that the developed 

RUFFNN and RSFFNN methods are compared against some related static clustering 

methods. Chapter 7 is the second experiment, that the results of the developed 

DUFFNN and DSFFNN methods are compared against the result of the first 

experiment, and some related dynamic clustering methods. Furthermore, the RSFFNN 

and DSFFNN as semi-supervised clustering methods are applied to the prognosis of the 

breast cancer in survival breast cancer analysis by comparison with some related 

methods. The details of experiments and results are discussed in Chapters 6 and 7.  

The performances of the proposed methods are compared with several current 

effective related methods in the scope of this research. In addition, the accuracy and 

speed of clustering as well as time complexity and memory complexity are assessed. 

 Quality metrics: For experimentation, the speed of processing is measured by 

the number of epochs and CPU time usage, which is measured by using a timer module 

in Visual C or Visual Basic environment for implementation of the proposed 

framework. Also, the time usage and memory usage are estimated by time complexity 

and memory complexity. The complexity of an algorithm demonstrates the efficiency of 

the algorithm in terms of the amount of the processed data by the algorithm, and often 

has natural units for the domain and range. There are two main complexity 

measurements. Time complexity describes the dimension of time for processing of the 

input data by an algorithm. Time efficiency depends on many factors such as the speed 

of the processor or compiler of the machine for processing the algorithm. However, 

some factors such as the number of multiplications of the process is considered in time 

Univ
ers

ity
 of

 M
ala

ya



 

125 

complexity. In addition, memory complexity or space utilization measures the memory 

space, which is necessary to process the input data by the program algorithm 

(Papadimitriou, 2003). In this research, the time complexity is computed by using the 

number of input data, attributes, training iterations and clusters. Also, the memory 

complexity is computed by using the number of input data, attributes, training iterations 

and clusters; and the densities of the clusters and the size of the attributes. There are 

different methods in order to measure and evaluate the clustering accuracy such as 

external evaluation. In this method the results of clustering are evaluated based on 

unused data for clustering such as a class label.  An external evaluation measures how 

close the clustering results are to the known benchmark results, for example externally 

given class label. In the scope of the thesis, there are limited published articles in the 

literature that can be used for comparison of proposed methods. Therefore, we follow 

the method of computing accuracy based on existing published papers. The correctly 

classified nodes (CCN) (Bouchachia, et al., 2007; Camastra & Verri, 2005; Costa & 

Oliveira, 2007) and F-measure or balanced F-Score function (Van Rijsbergen, 1979), 

are two methods for external evaluation measurement of clustering accuracy, as 

discussed in Section 2.5.1. The choice of these measuring methods is based on the most 

common-used measures in the scope of this research (Andrew, 2014; Chaimontree, et 

al., 2010; Rendón, et al., 2011; Rendón, et al., 2011; Sung & Mukkamala, 2003). 

Therefore, the accuracy of the methods is measured through the number of clusters and 

the quantity of the correctly classified nodes (CCN). The CCN shows the total of nodes 

and their densities, with the correct class in the correct related cluster, in all created 

clusters of the method. The CCN is equal to the true positive and true negative nodes. 

The accuracy of the proposed method is measured by the CCN in comparison with other 

methods; furthermore, the accuracy of clustering is also measured by using the F-

measure or balanced F-Score function with 10 folds of the test set (Andrew, 2014; 

Univ
ers

ity
 of

 M
ala

ya



 

126 

Chaimontree, et al., 2010; Rendón, et al., 2011; Rendón, et al., 2011; Sung & 

Mukkamala, 2003). The variables of true positive, false positive, true negative, false 

negative, are used to merit clustering of a data with the desired correct cluster. The F-

measure is called F1 measure, because recall and precision are weighted. Recall is the 

probability that a randomly selected relevant instance is recovered in a search. Precision 

is the probability that a randomly selected recovered instance is relevant.  

As was earlier mentioned, the accuracy of the proposed method is measured with 10 

folds of the test set, based on 10 fold cross validation. In order to evaluate each method, 

the dataset is divided into 10 subsets through random selection of the dataset, however, 

the test sets cover all data points in the dataset. Nine subsets are considered for training, 

and one subset is considered for testing. This process is repeated 10 times, and the 

average of the results is considered as the final value of accuracy. 

The precision of computing is considered with 15 decimal places. The time 

complexity and memory complexity are measured by the number of input data, training 

iterations, clusters and the densities of clusters. 

Needless to say, the scope of this research is ODUFFNN clustering and  the 

proposed method clusters datasets without utilizing the class label. However, selected 

datasets have a training set and a test set with class labels, which are used to compute 

the accuracy of the proposed method, as is normally done in similar researches  

(Andrew, 2014; Bouchachia, et al., 2007; Camastra & Verri, 2005; Costa & Oliveira, 

2007; Rendón, et al., 2011; Rendón, et al., 2011; Sung & Mukkamala, 2003). For 

simulation of the  purposes, during training or testing modes, only one instance of the 

training or test data is randomly selected and is processed by the model.  

Univ
ers

ity
 of

 M
ala

ya



 

127 

4.3 Summary 

This chapter outlined the steps of the research methodology followed in this thesis. 

First, a research methodology framework was proposed. This research focuses on a 

developing a dynamic unsupervised feedforward neural network clustering method. 

Therefore, as we explained, after an reviewing the problems, we proposed four models 

and subsequently developed the RUFFNN, RSFFNN, DUFFNN, and DSFFNN models.  

Finally, in the last stage of the research methodology framework, we discussed the 

design of evaluation procedure used for the proposed models. The details of the designs 

and development of the models are discussed in the next chapter.  

  

Univ
ers

ity
 of

 M
ala

ya



 

128 

CHAPTER 5: SYSTEM DESIGN  

5.1 Introduction 

In this chapter, the system designs and algorithms of proposed models are discussed 

in details. The discussion starts with the designs and algorithms of the developed real 

unsupervised feedforward neural network (RUFFNN) clustering method in the 

stationary mode, and then subsequently the developed DUFFNN clustering based on the 

RUFFNN method for online clustering suitable for dynamic mode. As mentioned in the 

last chapter, in order to improve the accuracy of the results of clustering based on 

literature, the RUFFNN and DUFFNN clustering methods are improved to real semi-

supervised FFNN (RSFFNN) and dynamic semi-supervised FFNN (DSFFNN) methods, 

respectively. In addition, the designs and algorithms of the RSFFNN and DSFFNN 

methods are discussed in this chapter too. 

5.2 The Real Unsupervised Feedforward Neural Network Clustering 

In this section, we illustrate the design of the real unsupervised feedforward neural 

network (RUFFNN) clustering method in detail; and show how it solves the 

aforementioned problems related to the static unsupervised feedforward neural network 

(UFFNN) clustering methods. The RUFFNN method can be applied as a UFFNN 

clustering method. Figure 5-1 shows the design of the real unsupervised feedforward 

neural network method for clustering: 

  
Univ

ers
ity

 of
 M

ala
ya



 

129 

 

Figure 5-1: The design of real unsupervised feedforward neural network model 
for clustering 

As shown in Figure 5-1, the RUFFNN considers a matrix of dataset as input data for 

clustering. During training, a non-random weights code book was learned through the 

input data matrix directly, by using normalized input data and standard normal 

distribution. A standard weight vector was extracted from the code book, and after fine 

tuning is applied by single layer feedforward neural network clustering section. The fine 

tuning process includes two techniques of smoothing the weights and pruning the weak 

Univ
ers

ity
 of

 M
ala

ya



 

130 

weights. The first, the Mid-range technique, a popular smoothing technique, is used  

(Jean & Wang, 1994; Gui et al., 2001). Then, the model prunes the data node attributes 

with weak weights in order to reduce the dimension of data. Consequently, the single 

layer feedforward neural network clustering section generates the exclusive threshold of 

each input instance (record of the data matrix) based on standard weight vector. Finally, 

the input instances were clustered on the basis of their exclusive thresholds.  

5.2.1 Analysis of the RUFFNN Clustering Method  

In this section, we illustrate the complete algorithm of the real unsupervised 

feedforward neural network (RUFFNN) clustering method, and discuss the details of 

the proposed clustering method as shown in Figure 5-1 step by step. Figure 5-2 shows 

the algorithm of the real unsupervised feedforward neural network (RUFFNN) method: 

Algorithm: The RUSFFNN clustering 
Input :  dataset X; 
Output: Clusters of dataset; 
Initialize the parameters: 
Let X : Data node set; 
Let n : Number of nodes; 
Let m : Number of attributes; 
Let i : Current number of the node; 
Let j : Current number of the attribute; 
Let Xi: Current input instance of dataset;  
Let Wij : Weight of attribute j of input instance Xi; 
Let SW: Standard Weight vector;  
Let SWj : jth Component of the SW vector; 
Let Ti: Threshold of input instance of Xi ; 
Method: 
{ 
 1- // Preprocessing of dataset 
    {     // Data preprocessing based on MinMax(Xij)  
              Forall i=1 to n         
                Forall j=1 to m 
               {   

                     
            

                 
   ; 

                } 

Univ
ers

ity
 of

 M
ala

ya



 

131 

            // Create the code book of the weights 
            // Compute the standard normal distribution (SND) of each input data attribute value  
                Xij based on  µi and σi which are  mean and standard deviation of the input data Xi: 
              Forall i=1 to n                        
                Forall j=1 to m 
               {   
                SND(Xij) = (Xij - µi)/σi ;                                                            
                // Consider Wij as weight of Xij  equal SND(Xij) 

               Wij = SND(Xij);  
               } 
// Generate the global geometric mean vector of the code book of non-random weights as the standard 
weight vector (SW), 
//  The SWj is the geometric mean of the real weights of each attribute of the input dataset 

            Forall j=1 to m 

                    
 
    

 
    ; 

//  The SW includes SWj 

                      = (SW1,SW2, … , SWm)                                                       
2- // Fine tuning through two techniques: 
         // a) Smooth the components of the SW vector 
                   Forall j=1 to m 
                            Mid-range (   ) ; 

         //  b) Data dimension reduction 
          Delete attributes with weak weights of     which are close to zero ; 

3- // Process of single layer unsupervised feedforward neural network for clustering of input 
dataset 
         // Compute  the exclusive threshold of each input instance of    
                    Forall i=1 to n 
                              Forall j=1 to m 
                             { If BMWj <>0                             
                               Ti = Ti + Xij . SWj;} 
         // Recognize and delete noise  
                    Delete isolated input instances with solitary thresholds   ; 
         // Clustering    
              { 
              Group the data points of input instances with similar thresholds (  ) in one cluster;      
              Learn and generate optimized number of clusters and their densities; 
               } 
               
  } 
 

 

Figure 5-2: The algorithm of the real unsupervised feedforward neural network 
clustering  

The RUFFNN clustering method involves several stages: 

Univ
ers

ity
 of

 M
ala

ya



 

132 

1) Preprocessing: Commonly preprocessing is the contributing feature in 

developing efficient techniques for low training time and high accuracy of feedforward 

neural network clustering (Han & Kamber, 2011; Larochelle, et al., 2012; Oh & Park, 

2011).  

 Data Preprocessing: In the RUFFNN model, the MinMax normalization 

technique was used to transform an input value of each attribute to fit to a specific range 

such as [0,1] (Han & Kamber, 2011). The input matrix of values consists of every single 

value with individual measurement unit type and range. The fundamental assumption of 

the proposed method is that no missing values exist and every value is acceptable. For 

this purpose, other data preprocessing techniques such as data cleaning are valuable. 

Equation (5.1) shows the special formula used to normalize the input values (Han & 

Kamber, 2011): 

                 
            

                 
                           

( 5.1) 

Where     is jth attribute value of input instance i. In the range of attribute j for all 

input instances,           is minimum value, and          is maximum value; 

       is equal to 1 and         is equal to 0.  

 Creating a Code Book of Non-random Weights: In order to solve the associated 

problem with the use of random weights, the RUFFNN method creates a code book of 

nonrandom weights. At this stage, the proposed model computes the mean µi of the 

normalized record Xi. Then the standard deviation σi of the input instance of Xi is 

computed by considering µi . This is the definition of the standard normal distribution 

(SND) (Ziegel, 2002) as shown in Figure 5-3.  

Univ
ers

ity
 of

 M
ala

ya



 

133 

 

Figure 5-3: Standard normal distribution for each attribute value of input 
instance Xi 

The SND shows how far each attribute value of the input instance Xi is from the 

mean, in the metric standard deviation unit. In this step, each normalized attribute value 

of the input instance  Xi is considered as the weight Wij for that value. Each element or 

code word of the weight code book is equal to Wij . The model receives other input 

values of the instances and computes the code book of all weights of input values. 

Therefore, each weight vector of the code book is computed based on the SND of each 

input instance value of Xi as shown in Equation (5.2).  

          
        

  
                                                                                               ( 5.2) 

The SND(Xij) is a standard normalized value of each attribute value of the input 

instance (record). µi and σi are mean and standard deviation of the input instance record. 

Therefore, each SND(Xij) shows the distance of each input value of each instance from 

the mean of the input instance. Accordingly, each Wij as weight of Xij is equal to 

SND(Xij) as in Equation (5.3) and the initialization of weights is not at random: 

                                                   ;                                    ( 5.3) 

Univ
ers

ity
 of

 M
ala

ya



 

134 

 Achieving standard weight (SW) vector: In the SOM, the weight of the code 

book which is nearest to the input vector is distinguished as the winner node and the 

best matching unit (BMU). Similarly, the RUFFNN method tries to learn and extract a 

standard unique weight vector through real weights code book, but in a slightly different 

way. Each weight vector of the code book is related to each input data vector and is 

computed by applying the SND based on the mean of the input data vector. The SW 

vector is the Geometric Mean (Jacquier, et al., 2003; Vandesompele, et al., 2002) vector 

of the code book of the non-random weights, and it is computed based on the centre of 

gravity of the matrix of input data vectors. In the RUFFNN method, the code book of 

real weights is initialized by considering properties of input values directly and without 

using any random values or random parameters. In order to extract a standard unique 

weight vector through the real weights code book, several techniques exist, such as 

principal component analysis (PCA) by Jolliffe (1986) which is one powerful method in 

dimension reduction to date (Daffertshofer, et al., 2004; Jolliffe, 1986; Lindsay, et al., 

2002; Van der Maaten, et al., 2009). However, the time complexity of the PCA is 

O(p2n)+O(p3) and the PCA losses the input values during training. Therefore at this 

stage, the RUFFNN model computes the SW vector by training the real weights in the 

code book. The SW vector is the extract of the code book of real weights as a base and a 

criterion weight vector for clustering input instances of the dataset globally. In other 

words, the SW is the essential feature of the RUFFNN model. The SW consists of the 

components SWj. There are several methods to compute the SWj, such as computing by 

the square root of the sum of the weights of each attribute of the input data, or 

     
  

    
  
   , however, in the RUFFNN algorithm of Figure 6.2, the SWj is computed 

by the nth root of the product of the weights of each attribute of the input data 

(Geometric Mean). The parameter n is the number of input instances, i is current 

number of the node of input instance; m is the number of attributes and j is the current 

Univ
ers

ity
 of

 M
ala

ya



 

135 

number of the attribute of input instance. Equations (5.4) and (5.5) show these 

relationships. 

          
 
    

 
                                                                                                (5.4) 

            = (SW1, SW2,…,S Wm)                                                                                     (5.5) 

Table 5-1 illustrates the code book of the weights and the process of extracting the 

standard weight vector.  

Table 5-1: The code book of the weight vectors and the standard weight vector 

The code book of weight vectors 
Weight vector of Xi Attribute1 Attribute2 … Attributem 
Weight vector of X1 W11 W12 … W1m 
Weight vector of X2 W21 W22 … W2m 

… … … … … 
Weight vector of Xn Wn1 Wn2 … Wnm 

     
          SW1 SW2 … SWm 

 

In the RUFFNN model, learning does not require computing any error function, such 

as the mean square errors and updating weights in any training cycle; therefore the 

approach results in a reduced training time. The main goal of the RUFFNN model is 

learning of the SW vector as the criterion weight vector. The next stages will show how 

the thresholds are computed and the dataset of input instances will be clustered easily 

based on just the SW.   

2) Fine Tuning: This process refers to the accurate modification and adjustment of 

the weights to obtain better input data clustering results (DeMers & Cottrell, 1993; 

Hinton & Salakhutdinov, 2006; Kamyshanska & Memisevic, 2013; Van der Maaten, et 

al., 2009). Smoothing the weights and pruning the weak weights are considered in this 

phase.  

Univ
ers

ity
 of

 M
ala

ya



 

136 

 Smoothing the Weights: As discussed in Section 3.7.1, noise is a random error 

or variance in a measured variable, and data smoothing is usually used to remove noise. 

Several techniques can be used to have smooth, flexible and robust parameters of the 

FFNN clustering tasks. These techniques include smoothing the amounts of the weights 

or thresholds to improve speed, accuracy, and training capability (Gui, et al., 2001; Jean 

& Wang, 1994; Peng & Lin, 1999; Tong, et al., 2010). Mid-range is a popular 

smoothing technique (Gui, et al., 2001; Jean & Wang, 1994). If some attributes of the 

input data have extremely high values of weight, their thresholds will be high, and they 

may affect the related data vector threshold and the data clustering results. Therefore, 

when some components of the SW vector are extremely higher than the other 

components, the HighMidRange technique can be used. To identify the HighMidRange, 

the Mid-Range of the SW vector components is computed, as shown in Equation (5.6).  

             
               

 
                                                             (5.6) 

      is a component of the SW vector with maximum value. Consequently, the 

average of all components of the SW which are bigger than MidRange(SW) as 

           are computed. Finally, the HighMidRange of the SW components is 

calculated as shown in Equations (5.7). 

             
                  

 
                                                   (5.7) 

In the HighMidRange technique, if some components of the SW vector are higher 

than the HighMidRange, the model fixes their weights to the HighMidRange value.  

Figure 5-4 shows, how the proposed model smooths the SW components of the 

breast cancer Wisconsin (original) dataset (Asuncion & Newman, 2007) by using the 

RUFFNN method. The HighMidRange of the SW components is equal 0.136665. The 

RUFFNN method changes the amount of      from 0.141244 to 0.136665 . 

Univ
ers

ity
 of

 M
ala

ya



 

137 

 

Figure 5-4: Smoothing the BMW components of the breast consin (original) 
dataset by using the RUFFNN method 

 Data dimension reduction: datasets that have a high dimension and large number 

of data instances are difficult to handle and control the noise. Whereas pruning would 

cause loss of data details (Deng & Kasabov, 2003; Hinton & Salakhutdinov, 2006; 

Kohonen, 2000; Van der Maaten, et al., 2009). The RUFFNN method reduces the 

dimension of data by recognizing weak and ineffective components of the SW and 

removing the related attributes during the clustering task. The effects of this data 

dimensionality reduction technique are high speed of clustering and low network 

memory usage complexity due to the deletion of unnecessary attributes and related 

information (Chattopadhyay, et al., 2011; Hinton & Salakhutdinov, 2006; Jolliffe, 

1986). If some components of the SW vector are close to zero, the method considers the 

values of these weights as zero and does not consider the attributes of the data point 

related the weak weights during clustering. Hence, the weights can be controlled and 

pruned in advance. Equation (5.8) shows that if     is close to zero, function 

               will be considered as zero. 

           
                                                                                         (5.8) 

3) Single Layer Unsupervised Feedforward Neural Network Clustering: The 

main section of the structure of RUFFNN model is a single layer feedforward neural 

network topology to cluster the data of the input instances by using normalized values 

Univ
ers

ity
 of

 M
ala

ya



 

138 

and the components of the SW vector. The topology is very simple, as illustrated in 

Figure 5-1 the number of layers and unit of nodes are clear, including just one input 

layer with n nodes (which is the same as the number of attributes) and an output layer 

with just one node. The units of the input layer are fed by the normalized data values 

from the data preprocessing stage of the RUFFNN model. Each unit has a related 

weight component SWj of the SW vector. The output layer has one unit with a weighted 

sum function for computing the actual desired output. The training of the RUFFNN is 

carried out in just one iteration and is based on real weights, without any weight 

updating and error function such as the mean square error. The threshold or output is 

computed by using normalized values of input instances and the SW vector. Since the 

mean of the weights was used for computing the SW, the range and properties of the 

input values of instances cannot dominate the values of the thresholds. The exclusive 

distance threshold of Ti of the actual output unit is computed by the weighted sum 

function similar to Hebbian learning but in only one training epoch. Equation (5.9) 

shows the real threshold Ti for each input instance vector of Xi: 

         
 
                                                                                                        ( 5.9) 

The threshold of each data point shows the distance between each data point and the 

central gravity of the matrix of input values. Each input instance, or data point has an 

exclusive and individual threshold. The art of the RUFFNN method is in finding the 

exclusive threshold for each input instance for better clustering results. Figure 5-5shows 

an example of the distribution of the normal attributes of data vector. Each     has its 

own      ratio to the gravity centre of the dataset.  

Univ
ers

ity
 of

 M
ala

ya



 

139 

 

Figure 5-5: Distribution of the normal input data attributes and their distances 
from the gravity centre of the dataset 

Some of the advantages of using exclusive thresholds in the RUFFNN clustering 

model: 

The RUFFNN has the capability of recognizing isolated input data point through the 

solitary thresholds Ti . The threshold of an isolated data point is further from the 

thresholds of other clustered data point. Therefore, the data point lies out of the 

locations of other clusters. The proposed model considers these data points as noise and 

deletes them. The noise in the data cause difficulty in the clustering process, and 

recognizing the special property of each attribute and finding its related cluster will be 

difficult. Therefore, the action of deleting the noise speeds up and improve the accuracy 

of clustering and results in low memory usage of the network. 

The RUFFNN clustering method groups the data points with similar thresholds into 

one cluster. For each data point, the model searches all clusters to find a suitable cluster 

with the thresholds of input instances similar or near to the threshold of the data point.  

Each input instance, has a distinct and special threshold. Data points should not have 

similar thresholds. The data points with similar thresholds are assumed to the noise. 

Univ
ers

ity
 of

 M
ala

ya



 

140 

Figure 5-6a and b shows the Iris dataset from UCI repository which is clustered to three 

clusters based on their distances to the gravity centre of the dataset or in the other word 

their thresholds. We can see the 10th input data point has T10 equal 0.009907566 and lies 

inside of the cluster 3 or the cluster of the ”Iris Virginica”. Therefore, the proposed 

method is able to learn the number of clusters and their densities without having any 

constraint and parameter for controlling the clustering tasks based on the thresholds; 

and generates the clusters after just one epoch.  

 

Figure 5-6: The outlook of clustering the Iris dataset by RUFFNN before using 
class labels 

As a result, the essential feature of the proposed method is, computing the SW vector 

as the extract of the code book of weights without using random values or random 

parameters, without updating weights, or computing any error function. Unlike the 

current UFFNN methods, the training stage of the RUFFNN method must be performed 

completely to compute the SW, but during testing, the model just uses the vector of the 

SW to generate the total thresholds and immediately clusters the input data. This 

property affects the speed, accuracy and memory usage of the network. The proposed 

method is able to reduce the data dimension by deleting the attributes with weak 

weights SWj and to recognize the isolated data points as the noise by deleting the 

isolated input data with solitary thresholds. The RUFFNN method is a linear clustering 

Univ
ers

ity
 of

 M
ala

ya



 

141 

method and has time complexity and memory complexity of O(n.m) and O(n.m.sm) 

where the parameters c, k, n, m, sm are the number of epochs, clusters, nodes, attributes 

and size of each attribute. The clustering is carried out in just one iteration. 

5.3 The Real Semi-supervised Feedforward Neural Network Clustering 

As mentioned in the Section 3.3, there is a technique of converting a clustering 

method to semi-supervised clustering by considering some constraints or user guides as 

feedback from users. As discussed in the literature, the RSFFNN clustering is able to 

improve the accuracy of the RUFFNN clustering result by applying class labels as 

partial supervision. Figure 5-7 shows a modified section of the design of the RUFFNN 

clustering at the end of its algorithm, in order to convert the RUFFNN clustering 

method to the real semi-supervised feedforward neural network (RSFFNN) model,  

 

 

Figure 5-7: The design of changed section of the RUFFNN suitable for real 
semi-supervised feedforward neural network clustering method 

The RSFFNN assigns a class label to each unlabeled data by considering a linear 

activation function and the exclusive threshold. Through the use of K-step activation 

Univ
ers

ity
 of

 M
ala

ya



 

142 

function (Alippi et al., 1995) or threshold function as a linear activation function for 

transformation of input values, the model considers the exclusive threshold of each 

input instance and the related class label. Consequently, based on K class labels, and 

exclusive thresholds in the training set, the proposed model expects K clusters  and for 

each cluster considers a domain of thresholds. The model moves unlabeled input 

instance with a special threshold to the related cluster. Hence, the model updates the 

number of clusters and the density of each cluster by using class labels. Figure 5-8 

shows the algorithm of the RSFFNN clustering method. 

RSFFNN ( ) 
Input :  Online input data Xi; 
Output: Semi-clusters of data; 
Begin 
{ 
Call RUFFNN(); 
// Semi-clustering  by using K-Step activation function  
{ 
            Assign class label to each data node with similar total threshold by using training set;  
            Prediction the class label to unlabeled data nodes; 
            Updating the number of clusters and density of each cluster; 
            }         
            Output results;     
             End; 

Figure 5-8: The algorithm of the real semisupervised feedforward neural 
network clustering method 

On the other hand, in special cases such as prediction of survival time using the 

breast cancer dataset, the proposed model is able to consider additional techniques in 

order to manage the clustering process. If the threshold of an instance is not matched 

with any thresholds domain in any clusters then the input instance is considered as an 

unobserved or unknown data.  There are several ways to predict the class label for 

unobserved data. For example, some authors consider two unsupervised and supervised 

neural network models such as a combination of the SOM and the BPN for the 

prediction of class labels of the unobserved data (Larochelle, et al., 2009; Larochelle, et 

al., 2012). In order to predict the class label for the unobserved data, we proposed a 

Univ
ers

ity
 of

 M
ala

ya



 

143 

“Trial and Error” method. The class label of each unknown observation is signed and 

predicted based on the K-step function and the related cluster and thresholds domain of 

the cluster where the input instance is there. When, the semi-clustering accuracy is 

measured for example by F-measure function with 10 fold cross-validation, the 

accuracy will show the validation of the prediction. Figure 5-9a shows an example of 

clustering the data by the RUFFNN, and Figure 5-9b shows the improved result by the 

RSFFNN.  

 

Figure 5-9: An example of the real semi-supervised feedforward neural network 
clustering method 

5.4 The Dynamic Unsupervised Feedforward Neural Network Clustering 

In order to overcome the problems of the ODUFFNN clustering methods as 

discussed in Section 1.2, we developed dynamic unsupervised feedforward neural 

network (DUFFNN) clustering  method. For this purpose, the RUFFNN clustering 

method is structurally improved. The DUFFNN model updates its structure, connections 

and knowledge through learning the online input data dynamically. The DUFFNN 

Univ
ers

ity
 of

 M
ala

ya



 

144 

model starts without any random parameters or coefficient value which needs 

predefinition. Figure 5-10 shows the design of the DUFFNN clustering method. 

 

Figure 5-10: The design of the dynamic unsupervised feedforward neural network 
clustering method. 

 
As shown in Figure 5-10, the DUFFNN method includes two main sections: the 

preprocessing section, and the single layer dynamic semi-supervised feedforward neural 

network clustering section. In the preprocessing section, the DUFFNN method as an 

incremental ODUFFNN method considers a part of the memory called essential 

important information (EII) and initializes the EII by learning the important information 

Univ
ers

ity
 of

 M
ala

ya



 

145 

about each online input data in order to store and fetch them, during training, without 

storing any input data in the memory. The code words of non-random weights are 

generated by training current online input data just in one epoch, and are inserted in the 

weights code book.  Consequently, the unique standard vector called best matching 

weight (BMW) is mined from the code book of the weights and stored as the EII in the 

memory. The single layer of the DUFFNN clustering applies normalized data values, 

and fetches some information through the EII such as the BMW from the section of the 

preprocessing and generates thresholds and clusters the data nodes. The topology of the 

single layer dynamic semi-supervised feedforward neural network clustering model is 

very simple with incremental learning, as shown in Figure 5-10; it contains one input 

layer with m nodes and one output layer with just one node without any hidden layer. 

The output layer has one unit with a weighted sum function for computing the actual 

desired output.  

5.4.1 Analysis of the DUFFNN Clustering Method  

In this section, we illustrate the complete algorithm of the dynamic unsupervised 

feedforward neural network (DUFFNN) clustering method, and explain the details of 

the proposed clustering method as shown in Figure 5-11 step by step. 

Algorithm: The DUFFNN clustering 
Input :  Online input data Xi; 
Output: Clusters of data; 
Initialize the parameters: 
Let X: Data node domain; 
Let newMini : Minimum value of the specific domain of [0,1] which is zero; 
Let newMaxi : Maximum value of the specific domain [0,1] which is one; 
Let i : Current number of the online data node Xi; 
Let j : Current number of the attribute; 
Let Xi: ith  current online input data node from domain of X; 
Let D: Retrieved old data node from the memory; 
Let f : Current number of the received data node; 
Let n : Number of received data nodes; 
Let m : Number of attributes; 
Let Wij : Weight of attribute j of ith current online data node Xi; 
Let                : A vector of the weights product of each attribute of the weights code book; 
Let Prodj : jth component of the                 vector which                 = (Prod1, Prod2,…,Pr odm); 
Let SumBMW: a variable for storing the sum of the components of the BMW vector; 
Let                : Best matching weight vector which                  = (BMW1, BMW2, … , BMWm); 

Univ
ers

ity
 of

 M
ala

ya



 

146 

Let BMWj : jth component of the                 vector; 
Let BMWjOld : jth component of the old                  vector; 
Let BMWjNew : jth component of the new                  vector; 
Let    : Threshold of attributej of ith  current online data node Xi; 
Let     : Total threshold of ith  current online data node Xi; 
Let    : Threshold of attributej of fth  received data node; 
Let     : Total threshold of fth  received data node; 
Method: 
While the termination condition is not satisfied 
{      
Input a new online input data Xi; 
//1- Preprocessing  
// Data preprocessing of Xi  based on MinMax technique 
              j=1 to m 

                    
            // Compute the weight code words of the current online data Xi and update the code book 
           // Compute the standard normalize distribution (SND) of the current online input  data of Xi based 

on  µi and σi  which are mean and standard deviation of Xi : 
                j=1 to m 
               {   

                    ;                                                            
                  // Consider Wij as weight of Xij  equal SND(Xij) 

                 ; 
                  Insert Wij into the weights code book; 
                  // Update                 by considering Wij  
                                  ;    
              } 
             // Extracting the best matching weight (BMW) vector Extract the global geometric mean 

vector of the code book of nonrandom weights as the best matching weight vector (BMW) 
                  j=1 to m 
 
                                

 
     

 
                             

 
      

 
                   j=1 to m 
 

                                  
    

      
      ; 

            // Update essential intelligent information (EII): Store the weights, mean and standard 
deviation of Xi  as the EII in the memory  

               { 
                Memory(EII) ← Store (Wij ,μ i ,σ i) ; 
                  Memory(EII) ← Store (               ,                ) ; 
                If Xi  is from training data and has class label 
                   { 
                    Memory(EII) ← Store (class label ofX i ) 
                   }        
                } 
//2-  Fine-tuning through two techniques                                        
   // a) Smooth the components of the BMW vector 
            j=1 to m 
             Mid-range (    ) ; 

Univ
ers

ity
 of

 M
ala

ya



 

147 

  // b) Data dimension reduction 
         Delete attributes with weak weights of the      , that are close to zero ; 

 //3- Single layer DUFFNN clustering   

         Fetch (               ) ←Memory(EII);  

          // Compute the exclusive total threshold of just Xi  based on the new BMW 

                      j=1 to m 
                       TTi = TTi + Xij . BMWj ;  
                       If Xi  is from training data and has class label 
                          { 
                           Memory(EII) ← Store (class label ofX i , TTi) ; 
                           } 
          // If new BMW is different with old BMW, the model fetches Wf j , σf  and µf as the EII from memory 

and  updates thresholds of just the changed attributes, and update the  exclusive total threshold 
of related data point            

          If (               
                    

    ) 

              { 
                  j=1 to m 
                   If                    

                         f=1 to n-1 
                          { 
                           Fetch (Wf j ,σ f , µf ) ←Memory(EII);   
                              Df j=(Wf j .σ f )+  µf ;         
                              Tf j Old = Df j .         ;  
                             TTf = TTf  - Tf Old ; 
                              Tf j New = Df  j .         ; 
                             TTf = TTf  + TfNew  ; 
                          }    
                 Memory(EII) ← Update list of thresholds and related class labels; 
               }      
          // Recognize and delete noise 
             Delete isolated input data with solitary thresholds TT; 
          // Clustering   
            {  
             Group the data points with similar thresholds (TTi)  in one cluster; 
             Learn and generate optimized number of clusters and their densities; 
            } 
             If learning is finished  
                   {Output results;     
                   End; 
                   } 
              Else { Continue to train and cluster next online input data node 
                      } 
} 

Figure 5-11: The algorithm of the dynamic unsupervised feedforward neural 
network clustering  

 

 

Univ
ers

ity
 of

 M
ala

ya



 

148 

The DUFFNN clustering method involves several phases: 

1) Preprocessing: The DUFFNN clustering method, as opposed to the RUFFNN, 

applies the preprocessing method which is suitable for online input data preprocessing. 

The preprocessing phase of the DUFFNN clustering method is a combination of data 

preprocessing and computing the weight code words of the current online data Xi and 

update the code book: 

 Data Preprocessing: As shown in Figure 5-11, the DUFFNN method considers 

the MinMax normalization technique according Equation (5.1), which is suitable for 

online input data preprocessing, and is independent of the other data points (Han & 

Kamber, 2011). The MinMax normalization technique is used to transform an input 

value of each attribute to fit in specific range such as [0,1], where     is jth attribute 

value of online input data Xi , and has special range and domain,  in which          is 

the minimum value in this domain, and          is the maximum value in this domain. 

The newMini is the minimum value of the specific domain of [0,1] which is equal to 

zero, and newMaxi is the maximum value of the domain which is equal to one. After 

transformation of current online input data, the model continues to learn current data in 

the next stages.  

 Compute the Weight Code Words of the Current Online Data Xi and Update the 

Code book: The DUFFNN method creates a code book of nonrandom weights by 

entrance of first online input data and consequently completes the code book by 

inserting the code words of each future online input data. In this stage, the proposed 

model computes the mean µi of the normalized current online input data Xi. Then, the 

standard deviation σi of the input data of Xi is computed by considering µi . Table 5-2 

illustrates this matter. 

 

Univ
ers

ity
 of

 M
ala

ya



 

149 

Table 5-2: The online input data X 

The online input data X 
Input data vector 

Xi 
Attribute1 Attribute2 … Attributem Mean Standard 

deviation 
Xi Xi1 Xi2 … X1m µi σi 

 

Each weight vector of the code book is computed based on the SND of each online 

input data value of Xi as shown in Equation (5.2) and (5.3), similar to the RUFFNN 

clustering method. The weights of attributes of current input data Xi  are inserted in the 

weights code book as the code words of Xi. The model considers a vector of the weights 

as the product of each attribute of the weights code book. The      vector consists of 

the components Prodj for the attributes which is computed by the product of the weights 

of each attribute of the code book. The parameter n is the number of received data 

nodes, which were trained by the model, i is current number of the online input data 

node Xi ; m is the number of attributes and j is the current number of the attribute. The 

Equations (5.10) and (5.11) show these relationships. 

                                                                                                                         ( 5.10) 

                     = (Prod1, Prod2,…, Prodm)                                                                       (5.11) 

 Extracting the Best Matching Weight Vector: The DUFFNN learns the standard 

unique weight as best matching weight (BMW) similar to the RUFFNN clustering 

method. The BMW vector is the global geometric mean (Vandesompele et al., 2002; 

Jacquier et al., 2003) vector of the code book of the non-random weights, and is 

computed based on the centre of gravity of the current and last trained data nodes. In the 

DUFFNN method, the code book of real weights is initialized by considering properties 

of input values directly and without using any random values or random parameters 

similar to the RUFFNN clustering method. The RUFFNN computes the standard weight 

once through processing of all input data instances in the input matrix, however, the 

DUFFNN dynamically computes the BMW based on the gravity centre of the current 

Univ
ers

ity
 of

 M
ala

ya



 

150 

and last trained data nodes and with the entrance of each online input data, the BMW is 

updated. The BMW  vector is computed by Equations (5.12), (5.13), (5.14) as follows: 

          
 
                                                                                                               ( 5.12) 

            
    

      
                                                           ( 5.13) 

            
 
                                                                                                   ( 5.14)                                             

                    = (BMW1, BMW2      BMWm)                                                                   ( 5.15) 

   Equations (5.14) and (5.15) =>           
 
     =1                                              ( 5.16) 

The parameter n is the number of received data nodes (contains of the old data points 

and current online input data node Xi ), m is the number of attributes and j is the current 

number of attribute. In Equation (5.14), the parameter SumBMW is equal to the sum of 

the components of the     vector. Equation (5.15) shows the      is the global 

geometric mean of all     of the attributes   . As shown in Equation (5.13), the model 

considers Round function with 2 digits of each      ratio to SumBMW, because in this 

way, the model is able to control the changing         ratio to         . This 

technique affects the low time complexity and low memory complexity of the model, 

because the model just updates the thresholds related to changed      . Equation 

(5.16) shows the sum of components     is equal to one through Equations (5.14) 

and (5.15), therefore, we can understand the distribution of weights between attributes. 

Table 5-3 illustrates the code book of the weights and the process of extracting the 

    vector.  

 

 

Univ
ers

ity
 of

 M
ala

ya



 

151 

Table 5-3: The code book of the weight vectors and the BMW vector 

The code book of weight vectors 
Weight vector of Xi Attribute1 Attribute2 … Attributem 
Weight vector of X1 W11 W12 … W1m 
Weight vector of X2 W21 W22 … W2m 

… … … … … 
Weight vector of Xn Wn1 Wn2 … Wnm 

                     1      2 …      m 

                BMW1 BMW2 … BMWm 

 

As mentioned, the difference of Table 5-3 from Table 5-1 is in the dynamic 

computing and updating of the code book of the weights and the     vector. 

Therefore, the weights code book of the DUFFNN clustering method unlike the 

RUFFNN method is not a static matrix. The main goal of the DUFFNN model is 

learning of the BMW vector as the criterion weight vector. The next stages will show 

how the threshold of current online data is computed, the current online input data is 

dynamically clustered based on the computed BMW vector, and consequently the 

network of clusters is updated.   

 Update Essential Intelligent Information (EII): In this stage after learning the 

weights of the attributes of online input data Xi, the model stores the mean and standard 

deviation of Xi, and the new     and      as the EII in the memory. Some data 

nodes that acts as training data have a class label, therefore in this phase if the current 

online input data has class label, consequently, the model keeps it with other important 

information of the data in the memory. After clustering, the DUFFNN model similar to 

the RUFFNN model is able to improve to the DSFFNN model. Therefore, the model 

will consider the class label and its related total threshold  in order to semi-supervise 

clustering of the data in the future stages.  

2) Fine Tuning: The DUFFNN, like the RUFFNN clustering method, applies the 

techniques of fine tuning, but after each updating the BMW process. As mentioned 

Univ
ers

ity
 of

 M
ala

ya



 

152 

earlier, in order to adapt the weights accurately to achieve better results of clustering the 

data points, the two techniques of smoothing the weights and pruning the weak weights 

can be considered: 

 Smoothing the weights: The speed, accuracy and capability of the training of the 

feedforward neural network clustering can be improved, by applying some techniques 

such as smoothing parameters and weights interconnection (Jean & Wang, 1994; Peng 

& Lin, 1999; Gui et al., 2001; Tong & Zhou, 2010). In Mid-range technique, which is 

an accepted smoothing technique (Jean & Wang, 1994; Gui et al., 2001), the average of 

high weight components of the BMW vector is computed and considered as middle 

range (Mid-range). The input data attributes with too high weight values may cause 

them to dominate the high thresholds and affect the clustering results. When some  

BMWj are considerably higher than other components, the BMWj can be smoothed based 

on the Mid-range smooth technique. If the weights of some components of the BMW 

are higher than the Mid-range, the model will reset their weights to be the same as Mid-

range value.  

 Data dimensionality reduction: The DSFFNN model can reduce the dimension 

of data by recognizing the weak weights BMWj and deleting the related attributes. The 

weak weights which are close to zero, are less effective on thresholds and the desired 

output. Hence, the weights can be controlled and pruned in advance. 

3) Single Layer Dynamic Unsupervised Feedforward Neural Network 

Clustering: The main section of the DUFFNN clustering model is a single layer FFNN 

topology to cluster the online data by using normalized values and the components of 

the BMW vector. The proposed model is able to re-cluster all old data points by 

retrieving information from the essential intelligent information (EII). The DUFFNN 

clustering is carried out in one training iteration based on non-random weights, without 

Univ
ers

ity
 of

 M
ala

ya



 

153 

any weight update, activation function or error function, such as, the mean square error. 

The threshold or output is computed by using normalized values of the input data node 

and the BMW vector is fetched from the EII. When DUFFNN model learns a huge 

amount of data for clustering, the new BMW changes slowly and to close as to the last 

computed BMW. IF components of the new BMWj  is equal to the components of the old 

BMWj, the model just clusters Xi. In this case, computing the threshold of each attribute 

of current online input data Xij and total threshold of the online input data vector Xi are 

done based on Equations (5.17) and (5.18). 

                                                                                                                (5.17) 

        
 
          or         

 
                                                              (5.18) 

When the current online input data Xi has class label, the DUFFNN model stores the 

computed total threshold as related TTi  to this class label in the memory, because the 

DSFFNN clustering needs this class label. If the new BMW vector is different from the 

last BMW, the model considers the       vector based on the feature of Hebbian 

learning and re-clusters all old data points by retrieving information from the essential 

intelligent information (EII), based on their related total threshold during one iteration. 

In this case, the model considers Equations (5.19),(5.20),…, (5.23), respectively, and 

checks which components of        are changed. Consequently, the model fetches 

related Wf j , σf , µf  of each component         and retrieves related  data node Df j 

from EII based on Equations (5.2) and (5.3), and the computed related threshold of the 

data node Df j. By considering the total threshold of the Df j as the EII from the memory 

and replacing the values of the old threshold of attribute j of Df j as Tf Old and new 

threshold of attribute j of Df j as Tf New , the data node Df j lies in the special place of axis 

of total threshold and suitable cluster.   

 Df j=(Wf j .σ f )+  µf                                                                                                 (5.19) 

Univ
ers

ity
 of

 M
ala

ya



 

154 

Tf Old = Df j .                                                                                                   ( 5.20) 

 TTf = TTf  - Tf Old                                                                                                                                                       (5.21) 

Tf New = Df  j .                                                                                                (5.22) 

  TTf = TTf  + TfNew                                                                                                     (5.23) 

Therefore, it is not necessary to compute and update all thresholds of all old data 

nodes attributes. The single layer DUFFNN computes the total threshold of the current 

input data node Xi , updates the total thresholds of old data nodes, and list of thresholds 

and related class labels. Consequently, the model re-clusters all received data nodes. 

Figure 5-12 illustrates how the data nodes are clustered by the DUFFNN model.  

 
 

Figure 5-12: An example for clustering the data nodes to three clusters by the 
DUFFNN 

 
As shown in Figure 5-12, each TTi is the total threshold vector of each data point in 

ratio to the gravity centre of the data points. Therefore, each data vector takes its own 

position on the thresholds axis. The online input data Xi, based on its exclusive TTi, lies 

on the axis respectively. Each data point has an exclusive and individual threshold. If 

Univ
ers

ity
 of

 M
ala

ya



 

155 

two data points possess an equal total threshold, but are in different clusters, clustering 

accuracy is decreased because of the error of the clustering method. The DSFFNN 

considers the data points  with close total thresholds into one cluster. Figure 5-13 is an 

example of clustering the Iris data points into three clusters by the DSFFNN clustering. 

In Figure 5-13a and b, the Iris data from UCI repository is clustered to three clusters 

based on a unique total threshold of each data point by the DSFFNN method. Data 

point 22 has TT22 = 0.626317059 and lies inside of cluster 2 or the cluster of the ”Iris 

Versicolour”.  

 

Figure 5-13: The outlook of clustering the online Iris data to three clusters based 
on a unique total threshold of each data point by the DUFFNN 

Pruning the noise: The DUFFNN distinguishes isolated data points through the 

solitary total thresholds. The total threshold of an isolated data point is not close to the 

total thresholds of other clustered data point. Therefore, the isolated data point lies out 

of the locations of other clusters. The proposed DUFFNN method sets apart these data 

points as noise and removes them.  

 

 

Univ
ers

ity
 of

 M
ala

ya



 

156 

5.5 The Dynamic Semi-supervised Feedforward Neural Network Clustering 

After clustering the data node by the DUFFNN, the proposed method considers the 

class label as constraint in order to improve the accuracy of the result of clustering. 

Figure 5-14 shows a changed section of the design of the DUFFNN clustering related to 

the dynamic semi-supervised feedforward neural network (DSFFNN) model, which it 

adds to the end of the DUFFNN clustering method. 

 

 

Figure 5-14: The design of changed section of the DUFFNN suitable for dynamic 
semi-supervised feedforward neural network clustering method 

If the current online input data Xi is a training data and has class label, the model 

fetches the class label and related total threshold of Xi from memory as EII and assigns 

this class label to the data nodes with similar threshold and updates the data nodes by 

using the K-step function.  Consequently, based on the K class labels and related 

exclusive thresholds in the EII, the proposed method expects K clusters and for each 

cluster considers a domain of thresholds. By considering the cluster results of the last 

phase, if there are some data points with a related threshold in each cluster but without a 

class label, the model supposes that these data nodes have the same class label as their 

clusters. During the process of future online data nodes, when the model updates the 

data nodes, the class labels of these unknown data nodes will be recognized and 

Univ
ers

ity
 of

 M
ala

ya



 

157 

adjusted for suitable cluster if necessary. Hence, the class label of data is predicted in 

two ways: 1) during clustering by considering the related cluster, in which the data lies, 

2) by using K-step function based on the relationship between thresholds and class 

labels in the EII. Figure 5-15 shows the algorithm of the dynamic semi-supervised 

feedforward neural network (DSFFNN) clustering method. 

DSFFNN ( ) 
Input :  Online input data Xi; 
Output: Semi-clusters of data; 
Begin 
{ 
Call DUFFNN(); 
// Semi-clustering  by using K-Step activation function  
          { 
            Assign class label to each data node with similar total threshold by using EII;  
            Prediction the class label to unlabeled data nodes; 
            Updating the number of clusters and density of each cluster; 
            }         
            Output results;     
             End; 
Else { Continue to train and cluster next online input data node 
                      } 
} 

 

Figure 5-15: Dynamic semi-supervised feedforward neural network clustering 
algorithm 

The DSFFNN clustering method like the RSFFNN clustering method, in special 

cases, such as the prediction of survival time, is able to consider the “Trial and Error” 

method in order to manage the clustering process. Finally, the DSFFNN method is able 

to update the clusters and their densities based on assigning a class label to each input 

data by using the K-step activation function. The performance of the DSFFNN method 

is in just during one training iteration, for each online input data. 

5.6 The Time Complexity and Memory Complexity of the Purposes 

In this section, we present the time complexity and the memory complexity of the 

proposed methods, based on their algorithms. For example, the RUFFNN briefly 

Univ
ers

ity
 of

 M
ala

ya



 

158 

clusters the matrix of a dataset in three phases as mentioned in Section 5.2.1, and we 

calculate the number of necessary processes in front of them, as follows: 

1) Preprocessing includes: 

Data preprocessing .................................................................. (n.m) 

Create the code book of the weights ......................................... (n.m) 

2) Fine tuning includes: 

Smoothing ................................................................................... (m) 

Reducing attributes ..................................................................... (m) 

3) Process of single layer unsupervised feedforward neural network for clustering 

input dataset, includes: 

Compute  the exclusive threshold of each input ..................... (n.m) 

Recognize and delete noise ........................................................ (n) 

Clustering ............................................................................... (n.m) 

Therefore, the total number of processes will be 4 (n.m)+3m+n, and the time 

complexity will be O(n.m). Since the process is carried out sequentially during one 

training iteration on the matrix of the dataset. Also, the memory complexity will be 

O(n.m.sm). These complexities are the functions of the longest possible time or memory 

usage for processing the algorithm in the worst case scenario. The time complexity and 

the memory complexity of the RSFFNN clustering method are similar to the RUFFNN 

clustering method, since the RSFFNN is based on the RUFFNN method. 

Univ
ers

ity
 of

 M
ala

ya



 

159 

As shown in Table 5-4, the time complexity and the memory complexity of the NG 

and GNG are O(c.n2.m) and O(c.n2.m.sm), respectively. Also, the time complexity and 

the memory complexity of the SOM are O(c.n.m2) and O(c.n.m2.sm) , respectively. 

However, the RUFFNN method has better results in the time complexity and memory 

complexity which are O(n.m) and O(n.m.sm). Where the parameters c, k, n, m, sm are the 

number of epochs, clusters, nodes, attributes and size of each attribute.  

Table 5-4 shows time complexity and memory complexity of the proposed clustering 

methods and  some related methods. 

Table 5-4: Comparison of time complexity and memory complexity of the proposed 
clustering methods with some related methods 

Method Time Complexity Memory Complexity 
K-means O(c.k.n.m) O((n+k).m.sm) 

NG O(c.n2.m) O(c.n2.m.sm) 
GNG O(c.n2.m) O(c.n2.m.sm) 
SOM O(c.n.m2) O(c.n.m2.sm) 

Semi-SOM O(c.n.m2) O(c.n.m2.sm) 
RUFFNN O(n.m) O(n.m.sm) 
RSFFNN O(n.m) O(n.m.sm) 
ESOM O(n2.m) O(n2.m.sm) 

Semi-ESOM O(n2.m) O(n2.m.sm) 
ESOINN O(c.n2.m) O(c.n2.m.sm) 
DSOM O(c.n.m2) O(c.n.m2.sm) 
IGNGU O(c.n2.m) O(c.n2.m.sm) 
EDSOM O(c.n2.m) O(c.n2.m.sm) 
HI-GNG O(c.n2.m) O(c.n2.m.sm) 
DUFFNN O(n.m) O(n.m.sm) 
DSFFNN O(n.m) O(n.m.sm) 

         
n is the number of data points, m is the number of attributes, K the number of clusters, c is the number of 
iterations,     is size of each attribute.  
 
 

As shown in Table 5-4, the time complexity and memory complexity of the DSOM 

are O (c.n.m2) and O (c.n.m2.sm), respectively. Also, the time complexity and the 

memory complexity of the ESOM are O(n2.m) and O(n2.m.sm), respectively. However, 

the DUFFNN method has better results in terms of time complexity and memory 

Univ
ers

ity
 of

 M
ala

ya



 

160 

complexity, which are O(n.m) and O(n.m.sm) in the worst case scenario, based on the 

time complexity and memory complexity of the RUFFNN. Actually, in order to re-

cluster the nodes using the DUFFNN, the model has to update some nodes, and 

consequently some of their attributes, as mentioned in Section 5.4.1. The DSFFNN and 

the DUFFNN clustering methods have the same time complexity and memory 

complexity. 

5.7 Summary 

In this chapter, we explained the details of the algorithms and designs of the 

methods, which were proposed in Chapter 4. We specially developed the dynamic 

unsupervised feedforward neural network (DUFFNN) clustering method, in order to 

overcome the problems of low training speed, low accuracy as well as high time 

complexity and high memory complexity in the scope of the research. After the 

entrance of each online input data, the DUFFNN dynamically computes and stores 

Essential Intelligent Information (EII) of the current data, such as the best matching 

weight (BMW) vector. Consequently, a single layer DUFFNN fetches the BMW vector 

and the normalized current data to generate its exclusive total threshold (TT) during one 

training epoch. If the new BMW is not equal to the old BMW vector, the single layer 

DUFFNN retrieves the old data nodes by using the EII and updates their TT based on a 

new BMW. The proposed method is able to control and delete attributes with weak 

weights to reduce the data dimensions, and data with solitary thresholds in order to 

reduce noise. The DUFFNN clustering is improved by applying class labels as partial 

supervision, which is entitled dynamic semi-supervised feedforward neural network 

(DSFFNN) clustering, to assign a class label to the each unlabeled data by considering a 

linear activation function and the exclusive threshold for more accurate clustering 

results. In Chapters 6 and 7, we will introduce the controlled test and investigation of 

CPU time, accuracy, time complexity and memory complexity of the proposed 

Univ
ers

ity
 of

 M
ala

ya



 

161 

clustering models using several datasets from the UCI repository, and the breast cancer 

dataset from the UMMC.   

Univ
ers

ity
 of

 M
ala

ya



 

162 

CHAPTER 6: EXPERIMENTAL RESULTS AND EVALUATION ON THE 

RUFFNN AND RSFFNN CLUSTERING METHODS  

6.1 Introduction 

In this chapter, we implement the proposed real unsupervised feedforward neural 

network (RUFFNN) and real semisupervised feedforward neural network (RSFFNN) 

clustering methods, and evaluate their performances based on measuring the CPU time 

usage, clustering accuracy, time complexity and memory complexity of each method, 

on the five datasets obtained from the University of California at Irvine (UCI) Machine 

Learning Repository (Asuncion & Newman, 2007). Furthermore, the performance of 

the RUFFNN is compared against some effective related static unsupervised 

feedforward neural network clustering methods, such as the SOM and the GNG.  

In addition, an improved version of the RSFFNN, is also tested on the six datasets 

from UCI Repository and the breast cancer dataset from the UMMC.  

6.2 Experimental Evaluation on the RUFFNN and RSFFNN Clustering 

Methods 

The proposed RUFFNN and RSFFNN clustering methods were tested on the breast 

cancer-Wisconsin, Iris, Spambase, Arcene and Yeast dataset from UCI Repository 

(Asuncion & Newman, 2007), as mentioned in Section 4.2.6. The methods were also 

compared with several current related methods and a popular supervised feedforward 

neural network method, such as the back propagation network (BPN). Furthermore, the 

RSFFNN method was performed on the breast cancer dataset of the UMMC, in order to 

predict the survival time of each patient. 

Univ
ers

ity
 of

 M
ala

ya



 

163 

6.2.1 The RUFFNN and RSFFNN Clustering on the Breast Cancer Wisconsin 

The breast cancer Wisconsin (original) dataset   from the UCI Repository has two 

classes: benign and malignant related to the malignancy of breast tumours. For 

computing clustering accuracy of the RUFFNN on the breast cancer Wisconsin dataset, 

F-measure with 10 folds of the test set was considered. The breast cancer Wisconsin 

dataset  has 683 data after cleaning. Therefore, in each performance, we considered 614 

data as the training set and 69 data as the test set. 

Table 6-1 shows the details of the computation of the F-measure in different 

performances on the test set for computing clustering accuracy.      is true positives, 

which refers to the number of the positive objects that are laid in the correct related 

cluster,      is true negatives, which refers to the number of the negative objects that are 

laid in correct related cluster. The error clustering      is false negative, which refers to 

the number of the negative objects that are laid in incorrect related cluster, and      false 

positive which refers to the number of the positive objects that are laid in the incorrect 

related cluster. 

Table 6-1: The clustering results of the RUFFNN method the breast cancer 
Wisconsin (Original) dataset 

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 35 34 31 32 4 2 91.30 0.939394 0.885714 0.911765 

2 44 25 42 25 2 0 97.10 1 0.954545 0.976744 

3 48 21 48 20 0 1 98.55 0.979592 1 0.989691 

4 29 40 28 37 1 3 94.20 0.903226 0.965517 0.933333 

5 35 34 35 32 0 2 97.10 0.945946 1 0.972222 

6 56 13 56 12 0 1 98.55 0.982456 1 0.99115 

7 52 17 50 17 2 0 97.10 1 0.961538 0.980392 

8 54 15 54 15 0 0 100 1 1 1 

9 41 28 41 28 0 0 100 1 1 1 

10 57 12 57 11 0 1 98.55 0.982759 1 0.991304 

 

Univ
ers

ity
 of

 M
ala

ya



 

164 

As shown in Table 6-1, the average of the evaluated F-measure for the 10 folds of 

the test set using the RUFFNN clustering was 97.47% after just one epoch of training 

which takes 8.7262 milliseconds.  

Table 6-2 and Figure 6-1 show the computed SW vector of the breast cancer 

Wisconsin dataset by the RUFFNN clustering method. 

Table 6-2: The SW vector of the breast cancer Wisconsin (original) dataset 
using the RUFFNN method 

 
Vector of the SW for the Breast Cancer Wisconsin (original) dataset 

 
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 

0.150988 0.108832 0.110394 0.115023 0.110745 0.160967 0.120091 0.12296 0.139635 

 

 
Figure 6-1: The SW vector of the Breast cancer Wisconsin (original) dataset 

using the RUFFNN method 

The total thresholds of the input data were computed based on the SW vector, and the 

input data were subsequently clustered. As shown in Figure 6-2, two distinct clusters 

can be recognized. 

0.15099 

0.10883 

0.11039 

0.11502 0.11074 

0.16097 

0.12009 

0.12296 

0.13964 

0 
0.02 
0.04 
0.06 
0.08 

0.1 
0.12 
0.14 
0.16 
0.18 

1 2 3 4 5 6 7 8 9 

SW
 

Attributes 

Univ
ers

ity
 of

 M
ala

ya



 

165 

 
 

Figure 6-2: The clusters of the RUFFNN method on breast cancer Wisconsin 
(original) dataset 

We compared the results of the proposed RUFFNN method with the results of some 

related methods. Table 6-3 shows the speed of processing on the basis of the number of 

epochs and the accuracy on the basis of the density of the CCN and the F-measure for 

the breast cancer Wisconsin dataset. 

Table 6-3: Comparison of the clustering results on the breast cancer Wisconsin 
dataset by the RUFFNN, RSFFNN and some related methods 

The clustering method Density of CCN % F-measure% Epoch 
K-means 96.19 - 20 

Neural Gas 96.19 - 20 
GNG 69.84 - 5 
SOM 96.63 98.06 20 

Semi-SOM 98.39 98.75 20 
RUFFNN 97.25 97.47 1 
RSFFNN 100 100 1 

 

In Table 6-3 based on the outcomes of the experiment, the density of CCN of the K-

means and the NG methods are 96.19% after 20 epochs (Camastra & Verri, 2005). The 

density of the CCN of the GNG method is 69.84% after 5 epochs (Bouchachia, et al., 

2007). Camastra and Verri reported, the SOM produced 96.63% for the density of the 

CCN and 98.06% by using the F-measure after 20 epochs. The SOM clustering result 

0 

0.001 

0.002 

0.003 

0.004 

0.005 

0.006 

0.007 

Th
re

sh
ol

ds
 

Data points 

Malignant 

Benign 

Univ
ers

ity
 of

 M
ala

ya



 

166 

was improved by considering class labels like the semi-SOM method, and the accuracy 

was 98.39% for the density of the CCN and 98.75% by using F-measure. The accuracy 

of the proposed RUFFNN clustering method after one epoch was 97.25% for the 

density of the CCN and 97.47% for the F-measure. The density of the CCN and the 

accuracy of the F-measure of the semi-clustering by the proposed RSFFNN method 

after just one epoch of training was 100%. While for the BPN, the accuracy by F-

measure was 99.28% after 1000 epochs of training. All clustering methods show two 

distinct clusters for this dataset. 

6.2.2 The RUFFNN and RSFFNN Clustering on Iris  

The Iris dataset  from the UCI Repository has three classes: Iris Setosa, Iris 

Versicolour and Iris Virginica. For computing clustering accuracy of the RUFFNN on 

the Iris dataset, the F-measure for 10 folds of the test set was considered. The Iris 

dataset  has 150 data records. Therefore, in each performance, we consider 135 data as 

the training set and 15 data as the test set. Table 6-4 shows the details of the 

computation of the F-measure in different performances on the test set for computing 

clustering accuracy. Parameter i refers to the special class, that i ={1,2,3} , and j refers 

to the special cluster, that  j={1,2,3}. tci  is true objects, which refers to the number of 

the objects that are laid in the correct related cluster.  fci and  f ‘ci  are false objects related 

to first and second other classes, which refer to the number of the objects that are laid in 

incorrect cluster.   

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

167 

Table 6-4: The clustering results of the RUFFNN method on the Iris dataset 

Test subset 
Cluster1 Cluster2 Cluster3 

CCN% F-measure 
tc1 fc1 f ‘c1 fc2 tc2 f ‘c2 fc3 f ‘c3 tc3 

1 9 3 0 0 3 0 0 0 0 80 0.7619 

2 9 1 0 2 3 0 0 0 0 80 0.76905 

3 8 0 0 0 6 0 0 0 1 100 1 

4 13 0 0 0 2 0 0 0 0 100 1 

5 7 0 0 0 5 0 0 0 3 100 1 

6 0 0 0 2 6 0 0 0 7 86.67 0.9285 

7 0 0 0 0 14 0 0 0 1 100 1 

8 0 0 0 0 7 0 0 0 8 100 1 

9 0 0 0 0 0 0 0 0 15 100 1 

10 0 0 0 0 0 0 0 0 15 100 1 

 

As shown in Table 6-4, the average of F-measure for 10 folds of the test set using 

the RUFFNN clustering was 94.59% after just one epoch of training taking 4.1744 

milliseconds. 

Table 6-5 and Figure 6-3 show the computed SW vector of the Iris dataset by the 

RUFFNN clustering method.  

Table 6-5: The SW vector of the Iris dataset using the RUFFNN method 

Vector of the SW for the Iris dataset 

SW1 SW2 SW3 SW4 

0.158091 0.342448 0.29537 0.204091 

 

 
 

Figure 6-3: The SW vector of the Iris dataset using the RUFFNN method 

 

0.158090618 

0.342448078 
0.295370095 

0.204091209 

0 
0.05 

0.1 
0.15 

0.2 
0.25 

0.3 
0.35 

0.4 

1 2 3 4 

SW
 

Attributes 

Univ
ers

ity
 of

 M
ala

ya



 

168 

The total thresholds of input data were computed based on the SW vector, and the 

input data were subsequently clustered. As shown in Figure 6-4, three distinct clusters 

can be recognized.  

 
Figure 6-4: The clusters of the RUFFNN method on the Iris dataset 

We compared the results of the proposed RUFFNN method with the results of some 

related methods. Table 6-6 shows the speed of processing based on the number of 

epochs and the accuracy based on the density of the CCN for the Iris dataset. 

Table 6-6: Comparison of the clustering results on the Iris dataset by the 
RUFFNN, RSFFNN and some related methods 

The clustering method Density of CCN % F-measure% Epoch 
K-means 89.33 - 20 

Neural Gas 92.67 - 20 
GNG 90.00 - 10 
SOM 85.33 85.22 140 

Semi-SOM 92.67 92.66 140 
RUFFNN 94.67 94.59 1 
RSFFNN 100 100 1 

 

In Table 6-6 based on the outcomes of the experiment, the density of CCN of the K-

means and the NG methods are 89.33% and 92.67% respectively, after 20 epochs of 

training (Camastra & Verri, 2005). The density of CCN of the GNG method is 90.00% 

after 10 epochs (Costa & Oliveira, 2007). The SOM produced 85.33% for the density of 

the CCN and 85.22% by using the F-measure after 140 epochs. The SOM clustering 

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

Th
re

sh
ol

ds
 

Data points 

Iris-setosa 

Iris-versicolor 

Iris-virginica 

Univ
ers

ity
 of

 M
ala

ya



 

169 

result was improved by considering class labels like the semi-SOM method, and the 

accuracy was 92.67% for the density of the CCN and 92.66% for the F-measure. The 

accuracy of the proposed RUFFNN clustering method after one epoch was 94.67% for 

the density of the CCN and 94.59% for the F-measure. The density of the CCN and the 

accuracy of the F-measure using the proposed RSFFNN method after just one epoch of 

training was 100%. While for the BPN, the accuracy by F-measure was 94.00% after 

140 epochs of training. All clustering methods show three distinct clusters for this 

dataset. 

6.2.3 The RUFFNN and RSFFNN clustering on Spambase  

The Spambase dataset from the UCI Repository has two classes: Spam and Non-

Spam. For computing clustering accuracy of the RUFFNN on the Spambase dataset, the 

F-measure with 10 folds of the test set was considered. The Spambase dataset  has 4601 

data records. Therefore, in each performance, we considered 4141 data as the training 

set and 460 data as the test set. Table 6-7 shows the details of the computation of the F-

measure in different performances on the test set for computing clustering accuracy. 

Table 6-7: The clustering results of the RUFFNN method on the Spambase dataset  

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 360 100 234 51 126 49 61.96 0.82685512 0.65 0.72783826 

2 239 221 143 72 96 149 46.80 0.48972603 0.59832636 0.5386064 

3 435 25 311 25 124 0 73.04 1 0.71494253 0.83378016 

4 164 296 107 149 57 147 55.65 0.42125984 0.65243902 0.51196172 

5 189 271 120 125 69 146 53.26 0.45112782 0.63492063 0.52747253 

6 80 380 61 187 19 193 53.91 0.24015748 0.7625 0.36526946 

7 412 48 280 14 132 34 63.91 0.89171975 0.67961165 0.77134986 

8 159 301 138 139 21 162 60.22 0.46 0.86792453 0.60130719 

9 382 78 274 78 108 0 76.52 1 0.71727749 0.83536585 

10 367 93 184 38 183 55 48.26 0.76987448 0.5013624 0.60726073 

 

As shown in Table 6-7, the average of the evaluated F-measure with 10 folds of the 

test set for the RUFFNN clustering was 63.20% after just one epoch of training in 

Univ
ers

ity
 of

 M
ala

ya



 

170 

333.1057 milliseconds. Table 6-8 and Figure 6-5 show the computed SW vector of the 

Spambase dataset by the RUFFNN clustering method. 

Table 6-8: The SW vector of the Spambase dataset by the RUFFNN method 

Vector of the SW for the Spambase dataset 

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 
0.019631 0.015705 0.018765 0.012721 0.019144 0.020836 0.020431 0.019307 0.020269 0.017956 

SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18 SW19 SW20 
0.019922 0.017798 0.021841 0.018471 0.018038 0.019766 0.019989 0.020218 0.017627 0.017276 

SW21 SW22 SW23 SW24 SW25 SW26 SW27 SW28 SW29 SW30 
0.017263 0.015108 0.019839 0.018922 0.017958 0.017586 0.019759 0.017094 0.015709 0.016812 

SW31 SW32 SW33 SW34 SW35 SW36 SW37 SW38 SW39 SW40 
0.015201 0.014767 0.019572 0.014796 0.015992 0.017664 0.019267 0.014371 0.017750 0.015158 

SW41 SW42 SW43 SW44 SW45 SW46 SW47 SW48 SW49 SW50 
0.016484 0.017875 0.017785 0.018333 0.020550 0.020827 0.013631 0.017322 0.017239 0.015578 

SW51 SW52 SW53 SW54 SW55 SW56 SW57    
0.018241 0.017722 0.017128 0.014225 0.014375 0.012340 0.014047 

   

 
 

 
 

Figure 6-5: The SW vector of the Spambase dataset using the RUFFNN method 

The total thresholds of input data were computed based on the SW vector, and the 

input data were subsequently clustered. As shown in Figure 6-6, two distinct clusters 

can be recognized. 

0 

0.005 

0.01 

0.015 

0.02 

0.025 

SW
 

Attributes 

Univ
ers

ity
 of

 M
ala

ya



 

171 

 
Figure 6-6: The clusters of the RUFFNN method on the Spambase dataset 

We compared the results of the proposed RUFFNN method with the results of some 

related methods. Table 6-9 shows the speed of processing based on the number of 

epochs and the accuracy based on the density of  the CCN in the Spambase dataset. 

Table 6-9 : Comparison of the clustering results on the Spambase dataset by the 
RUFFNN, RSFFNN and some related methods 

The clustering method Density of CCN % F-measure% Epoch 
K-means 23.54 - 20 

Neural Gas 22.82 - 20 
GNG 21.02 - 5 
SOM 57.84 65.21 140 

Semi-SOM 76.67 80.74 140 
RUFFNN 59.35 63.20 1 
RSFFNN 99.90 99.89 1 

 

In Table 6-9 based on the outcomes of the experiment, the density of CCN of the K-

means and the NG methods are 23.54% and 22.82% respectively, after 20 epochs of 

training (Camastra & Verri, 2005). The density of CCN of the GNG method is 21.02% 

after 5 epochs (Costa & Oliveira, 2007). The SOM produced 57.84% for the density of 

the CCN and 65.21% of the F-measure after 140 epochs. The SOM clustering result 

was improved by considering class labels like the semi-SOM method, and the accuracy 

0 

0.0005 

0.001 

0.0015 

0.002 

0.0025 

0.003 

0.0035 

Th
re

sh
ol

ds
 

Data points 

Spam 

Non-spam 

Univ
ers

ity
 of

 M
ala

ya



 

172 

was improved to 76.67% for the density of the CCN and 80.74% of the F-measure. The 

accuracy of the proposed RUFFNN clustering method after one epoch was 59.35% for 

the density of the CCN and 63.20% of the F-measure. The density of the CCN and the 

accuracy by of the F-measure of the semi-clustering by the proposed RSFFNN method 

after just one epoch of training was 99.90% and 99.89%, respectively. While for the 

BPN, the accuracy of F-measure was 79.50% after 2000 epochs of training. All 

clustering methods show two distinct clusters for this dataset. 

6.2.4 The RUFFNN and RSFFNN clustering on Arcene  

The Arcene dataset from the UCI Repository has two classes, namely cancer patients 

and healthy patients. We considered the training dataset and validation dataset with 200 

total instances together as one set. Therefore, in each performance, we considered 180 

data as the training set and 20 data as the test set. Table 6-10 shows the details of the 

computation for the F-measure in different performances on the test set for computing 

clustering accuracy. 

Table 6-10: The clustering results of the RUFFNN method on the Arcene dataset  

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 13 7 7 5 6 2 60.00 0.7777778 0.5384615 0.6363636 

2 12 8 9 2 3 6 55.00 0.6 0.75 0.6666667 

3 11 9 7 4 4 5 55.00 0.5833333 0.6363636 0.6086957 

4 11 9 6 6 5 3 60.00 0.6666667 0.5454545 0.6 

5 9 11 7 6 2 5 65.00 0.5833333 0.7777778 0.6666667 

6 10 10 6 6 4 4 60.00 0.6 0.6 0.6 

7 13 7 8 5 5 2 65.00 0.8 0.6153846 0.6956522 

8 11 9 8 5 3 4 65.00 0.6666667 0.7272727 0.6956522 

9 12 8 8 5 4 3 65.00 0.7272727 0.6666667 0.6956522 

10 10 10 8 6 2 4 70.00 0.6666667 0.8 0.7272727 
 

As shown in Table 6-10, the average of the evaluated F-measure for 10 folds of the 

test set for the RUFFNN clustering was 65.93% after just one epoch of training in 5 

Univ
ers

ity
 of

 M
ala

ya



 

173 

seconds and 386.139 milliseconds. Table 6-11 shows the computed SW vector of the 

Arcene dataset by the RUFFNN clustering method. 

Table 6-11: The SW vector of the Arcene dataset by the RUFFNN method 

Vector of the SW for the Arcene dataset 

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 
0.000113 7.41E-05 0.000135 0.000148 9.08E-05 0.000167 0.000195 9.07E-05 0.000113 9.05E-05 

SW11 SW12 SW13 SW14 SW15 SW16 SW17 SW18 SW19 SW20 
7.90E-05 8.66E-05 8.94E-05 8.09E-05 0.000173 8.65E-05 9.20E-05 8.21E-05 0.000113 7.70E-05 

... ... ... ... ... ... ... ... ... ... 
... ... ... ... ... ... ... ... ... ... 

SW99991 SW99992 SW99993 SW99994 SW99995 SW99996 SW99997 SW99998 SW9999 SW10000 
0.000155 0.000211 0.000107 0.000101 0.000102 0.000136 0.000176 8.69E-05 9.70E-05 0.000231 

 

The total thresholds of input data were computed based on the SW vector, and the 

input data were subsequently clustered.  As shown in Figure 6-7, two distinct clusters 

can be recognized. 

 

Figure 6-7: The clusters of the RUFFNN method on the Arcene dataset 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

1 7 13
 

19
 

25
 

31
 

37
 

43
 

49
 

55
 

61
 

67
 

73
 

79
 

85
 

91
 

97
 

10
3 

10
9 

Th
re

sh
ol

ds
 

Data points 

Cancer patients 

Healthy patiant Univ
ers

ity
 of

 M
ala

ya



 

174 

We compared the results of the proposed RUFFNN method with the results of some 

related methods. Table 6-12 shows the speed of processing on the basis of the number 

of epochs and the accuracy on the basis of the density of  the CCN in the Arcene 

dataset. 

Table 6-12: Comparison of the clustering results on the Arcene dataset by the 
RUFFNN, RSFFNN and some related methods 

The clustering method Density of CCN % F-measure% Epoch 
K-means 59.00 - 10 

SOM 53.00 58.04 140 
Semi-SOM 64.00 67.86 140 
RUFFNN 62.00 65.93 1 
RSFFNN 100 100 1 

 

In Table 6-12, the K-means produced 59.00% for the density of the CCN after 10 

epochs (Sárközy, Song, Szemerédi, & Trivedi, 2012). The SOM produced 53.00% for 

the density of the CCN and 58.04% by using the F-measure after 140 epochs. The SOM 

clustering result was improved by considering class labels regarding the semi-SOM 

method, and the accuracy was changed to 64.00% for the density of the CCN and 

67.86% based on the F-measure. The accuracy of the proposed RUFFNN clustering 

method after one epoch was 62.00% for the density of the CCN and 65.93% by using 

the F-measure. The density of the CCN and the accuracy by using the F-measure of the 

semi-clustering by the proposed RSFFNN method after just one epoch of training was 

100%. Recently, Veenu Mangat and Renu Vig (Mangat & Vig, 2014) reported 

classification of the Arcene dataset by several classification methods such as K-NN. K-

nearest neighbour (K-NN) is a supervised classifier that is able to learn by analogy and 

performs on n-dimensional numeric attributes (Dasarathy, 1990). Given an unknown 

instance, K-NN finds K instances in the training set that are closest to the given instance 

pattern and predicts one or average of class labels or credit-rates. Unlike BPN, K-NN 

assigns equal weights to the attributes. The K-NN (K=10) was able to classify the 

Univ
ers

ity
 of

 M
ala

ya



 

175 

Arcene dataset with 77.00% accuracy by the F-measure after several epochs and 10 

times re-executing the method. All clustering methods show two distinct clusters for 

this dataset. 

6.2.5 The RUFFNN and RSFFNN clustering on Yeast  

The Yeast dataset from the UCI Repository contains 1484 samples with 8 attributes 

and 10 classes. Table 6-13 and Figure 6-8 shows the computed SW vector of the Yeast 

dataset by the RUFFNN clustering method. 

Table 6-13: The SW vector of the Yeast dataset by the RUFFNN method 

Vector of the SW for the Yeast dataset 

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 

 

0.067878 0.070346 0.087059 0.128631 0.226319 0.226192 0.073931 0.119643 

 

 

Figure 6-8: The final SW vector of the Yeast  dataset using the RUFFNN method 

The total thresholds of input data were computed based on the SW vector, and the 

input data were subsequently clustered. Finally, the clusters that the RUFFNN can 

recognized are shown in Table 6-14.  

 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

1 2 3 4 5 6 7 8 

SW
 

Attributes 

Univ
ers

ity
 of

 M
ala

ya



 

176 

Table 6-14: The clusters of the RUFFNN method on the Yeast dataset 

  

C
lass C

Y
T 

C
lass ER

L 

C
lass EX

C
 

C
lass M

E1 

C
lass M

E2 

C
lass M

E3 

C
lass M

IT 

C
lass N

U
C

 

C
lass PO

X
 

C
lass V

A
X

 

Cluster 1 201 0 2 2 7 38 39 164 4 0 

Cluster 2 0 5 0 0 0 0 1 1 0 0 

Cluster 3 5 0 3 5 3 1 13 7 0 0 

Cluster 4 9 0 5 6 1 0 7 14 1 0 

Cluster 5 30 0 7 12 6 5 43 45 0 0 

Cluster 6 59 0 1 0 4 40 8 46 0 0 

Cluster 7 52 0 7 15 13 7 80 64 1 0 

Cluster 8 183 0 4 3 9 24 46 149 3 0 

Cluster 9 8 0 0 0 1 1 1 7 1 0 

Cluster 10 13 0 0 0 2 2 2 8 1 3 

 

As shown in Table 6-14, clustering of the Yeast dataset was so difficult and the 

clusters often overlapped other near neighbour clusters. Therefore, each cluster shared 

members of other near neighbour clusters. We compared the results of the proposed 

RUFFNN method with the results of some related methods. Table 6-15 shows the speed 

of processing on the basis of the number of epochs and the accuracy based on the 

density of  the CCN in the Yeast dataset. 

Table 6-15 : Comparison of the clustering results on the Yeast dataset by the 
RUFFNN, RSFFNN and some related methods 

The clustering method Density of CCN % F-measure% Epoch 
SOM 32.55 24.02 140 

Semi-SOM 40.23 34.05 140 
RUFFNN 33.29 27.43 1 
RSFFNN 100 100 1 

 

In Table 6-15, the SOM produced 32.55% for the density of the CCN and 24.02% by 

using the F-measure after 140 epochs. The SOM clustering result was improved by 

considering class labels regarding the semi-SOM method, and the accuracy was 

Univ
ers

ity
 of

 M
ala

ya



 

177 

improved to 40.23% for the density of the CCN and 34.05% using the F-measure. The 

accuracy of the proposed RUFFNN clustering method after one epoch was 33.29% for 

the density of the CCN and 27.43% by using the F-measure, after 684.833 milliseconds 

in one epoch of training. The density of the CCN and the accuracy by using the F-

measure of the proposed RSFFNN method after one epoch was 100%, after just one 

epoch of training. Several literature reported the difficulty of clustering or classification 

of the Yeast dataset. Longadge et al. (Longadge & Dongre, 2013) reported the 

classification of the Yeast dataset by several classification methods such as K-NN. The 

K-NN (K=3) was able to classify the Yeast dataset with 0.11% accuracy by the F-

measure after several epochs and times re-executing the method. Also, Ahirwar 

(Ahirwar, 2014) reported that the K-means was able to classify the Yeast dataset with 

65.00% accuracy by the F-measure after several epochs. 

6.2.6 The RSFFNN Clustering on the Breast Cancer (UMMC) 

The dataset was collected by the University of Malaya Medical centre (UMMC), 

Kuala Lumpur from 1992 until 2002 (Hazlina, et al., 2004). Table 6-16 shows the 

results of the implementation of the proposed RSFFNN method. The number of data of 

each subset; CPU time usage per second for training each subset during one epoch; and 

the accuracy of the semi-clustering of each subset of the breast cancer dataset  based on 

the F-measure with 10 folds of the test dataset by using the RSFFNN clustering model 

are shown. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

178 

Table 6-16: The RSFFNN results for each subset of the UMMC breast cancer data   

Year Density of 
CCN  (%) 

The number of data 
in each subset 

Epoch 
CPU Time usage 

(milliseconds) 

Accuracy of the 
RSFFNN (F-
measure%) 

1st year 99.03 827 1 43 99.55 
2nd year 98.96 673 1 34.5 98.85 
3rd year 98.44 561 1 32.5 99.04 
4th year 97.5 440 1 32 98.29 
5th year 100 355 1 29.4 100 
6th year 100 270 1 15.8 100 
7th year 100 200 1 15 100 
8th year 100 124 1 14.5 100 
9th year 100 56 1 13.7 100 

 

Table 6-16 shows that the training process for each sub-set of the breast cancer 

dataset took one epoch between [13.7, 43] milliseconds of CPU time; and the accuracies 

of the RSFFNN using the F-measure for the breast cancer sub-data sets were between 

[98.29% - 100%]. For comparison with other similar methods in the scope of this 

research, we implemented the SOM using BPN as a hybrid method. The SOM clustered 

each subset of breast cancer dataset and found the SW vector of each instance after 20 

epochs. The BPN model fine-tuned the weights code book of unfolding SOM model 

instead of random weights. The training process in the BPN was 25 epochs. The results 

of the hybrid method of the SOM-BPN are shown in Table 6-17 for every subset of 

data. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

179 

Table 6-17: Comparison of the results of the PCA-BPN, the SOM-BPN and the 
RSFFNN for each subset of the UMMC breast cancer dataset  

Year PCA-BPN (F-measure%) SOM-BPN (F-measure%) RSFFNN (F-measure%) 
1st year 76 82 99.55 
2nd year 63 72 98.85 
3rd year 62 71 99.04 
4th year 77 78 98.29 
5th year 83 86 100 
6th year 93 93 100 
7th year 98 98 100 
8th year 99 99 100 
9th year 99 99 100 

 

The PCA was considered as a preprocessing technique for dimension reduction and 

used by the BPN model. Table 6-17 shows the result of the PCA-BPN hybrid model for 

every subset of the breast cancer dataset of the UMMC. The PCA took the time of  the 

CPU for dimension reduction and the BPN used the output of the PCA for classification 

after several epochs. The results of Table 6-17 shows the accuracies of implementation 

of the PCA-BPN model using the F-measure for the breast cancer dataset which were 

between [62%- 99%], and the accuracies of implementation of the SOM-BPN model 

using the F-measure for each subset of the breast cancer dataset which were between 

[71%- 99%]. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

180 

6.3 Summary 

This chapter illustrated the experimental results and evaluation of the RUFFNN and 

RSFFNN clustering performances, and compared the proposed methods to several 

related clustering methods by using the various datasets from UCI Repository and the 

UMMC. For experimentation of the purposes, the training speed was measured by the 

number of epochs and the CPU time usage. The accuracy of the clustering methods was 

measured by employing the F-measure with 10 folds of the test set, and also through the 

number of clusters and the density of the correctly classified nodes (CCN). The time 

complexity and the memory complexity were measured through the number of input 

data, training iterations and clusters; and the densities of the clusters. The outcomes of 

the experiments proved that the RUFFNN clustering method, which is the fundamental 

pattern to propose the DUFFNN clustering method, had the superior results. Also, this 

chapter showed the results of the RSFFNN on the five datasets from UCI Repository 

and the UMMC breast cancer dataset were more accurate than the results of the 

RUFFNN clustering method. 

 

 

 

 Univ
ers

ity
 of

 M
ala

ya



 

181 

CHAPTER 7: EXPERIMENTAL RESULTS AND EVALUATION ON THE 

DUFFNN AND DSFFNN CLUSTERING METHODS  

7.1 Introduction 

In this chapter, we implement the proposed dynamic unsupervised feedforward 

neural network (DUFFNN) clustering method, and evaluate their performances based 

on measuring the CPU time usage, clustering accuracy, time complexity and memory 

complexity of each method in order to achieve the third objective of the research, as 

mentioned in Section 1.3. Furthermore, the performance of the DUFFNN is compared 

against the static unsupervised feedforward neural network (UFFNN) clustering and 

some effective related ODUFFNN clustering methods, such as the DSOM and ESOM. 

There is a trade-off between training time, clustering accuracy, time complexity and 

memory complexity of the ODUFFNN clustering methods, and there is surprisingly and 

comparatively very little works dealing with them together in one ODUFFNN 

clustering model (Furao & Hasegawa, 2006; Hebooul, et al., 2015; Kulkarni & Mulay, 

2013; Liu, et al., 2013; Prudent & Ennaji, 2005; Rougier & Boniface, 2011). In this 

chapter, we evaluate the exprimental results of the DSOM,  ESOM and semi-ESOM on 

the nine datasets obtained from the University of California at Irvine (UCI) Machine 

Learning Repository (Asuncion & Newman, 2007) and compare them with the 

DUFFNN clustering results. Moreover, an improved version of the DUFFNN, called the 

dynamic semi-supervised feedforward neural network (DSFFNN) method was also 

tested on the nine datasets from UCI Repository and the breast cancer dataset from the 

UMMC. 

7.2 Experimental Evaluation on the DUFFNN and DSFFNN Clustering 

The proposed DUFFNN and DSFFNN clustering methods were tested on the breast 

cancer-Wisconsin, Iris, Spambase, Spect Heart, Spectf Heart, Musk1, Musk2, Arcene 

Univ
ers

ity
 of

 M
ala

ya



 

182 

and Yeast datasets from the UCI Repository (Asuncion & Newman, 2007), as 

mentioned in Section 4.2.6. The methods were also compared with several current 

related methods such as the ESOM and DSOM, and some popular supervised 

feedforward neural network methods such as the BPN classification. There are a few 

published papers regarding implementation of the ODUFFNN clustering on common 

datasets. We implemented the ESOM and DSOM as effective methods in the 

ODUFFNN clustering, and compared their results with the results of our proposed 

methods. In order to initialize the parameters with the best values in the ESOM and 

DSOM, we executed three times these clustering models on each selected dataset. We 

implemented the ESOM,  by considering the parameter set P={ε, δ, γ, Tp}, ε as distance 

threshold, δ for controlling the spread of the neighbourhood, γ as a small constant 

learning rate, Tp as the steps of learning time, and β as forgetting constant. Also, we 

implemented the DSOM, by considering the parameters ε the rate of learning and δ 

control distance from the BMU as the elasticity. 

Furthermore, the DSFFNN method was performed on the breast cancer dataset of the 

UMMC, in order to predict the survival time of the patients. 

7.2.1 The DUFFNN and DSFFNN Clustering on the Breast Cancer Wisconsin  

In order to compute the clustering accuracy of the DUFFNN on the breast cancer 

Wisconsin dataset, the F-measure for 10 folds of the test set was considered. Table 7-1 

illustrates the details of the clustering results. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

183 

Table 7-1: The clustering result of the DUFFNN method on the breast cancer 
Wisconsin  

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 51 18 48 16 3 2 92.75 0.96 0.941176 0.950495 

2 44 25 42 25 2 0 97.10 1 0.954545 0.976744 

3 42 27 42 26 0 1 98.55 0.976744 1 0.988235 

4 46 23 44 20 2 3 92.75 0.93617 0.956522 0.946237 

5 48 21 46 17 2 4 91.30 0.92 0.958333 0.938776 

6 43 26 43 26 0 0 100 1 1 1 

7 51 18 49 17 2 1 95.65 0.98 0.960784 0.970297 

8 42 27 42 27 0 0 100 1 1 1 

9 41 28 41 28 0 0 100 1 1 1 

10 43 26 43 26 0 0 100 1 1 1 

 

As shown in Table 7-1, the average of the evaluated F-measure for 10 folds of the 

test set for the DUFFNN clustering was 97.71% after just one epoch of training during 

15.66 milliseconds.  

Table 7-2 and Figure 7-1 show the final computed BMW vector of the breast cancer 

Wisconsin dataset by the DUFFNN clustering method. 

Table 7-2: The final BMW vector of the breast cancer Wisconsin (original) using 
the DUFFNN method 

Vector of the final BMW for the received Breast cancer Wisconsin (original) data 

BMW1 BMW2 BMW3 BMW4 BMW5 BMW6 BMW7 BMW8 BMW9 
0.180225 0.076316 0.081864 0.093955 0.11711 0.112795 0.123886 0.093721 0.120128 

 
 
 
 
 
Univ

ers
ity

 of
 M

ala
ya



 

184 

 

Figure 7-1: The final BMW vector of the breast cancer Wisconsin (original) using 
the DUFFNN method 

The total thresholds of the received data points were computed on the basis of the 

final BMW vector, and the data points were sequentially clustered. As shown in Figure 

7-2, two distinct clusters can be recognized. 

 

Figure 7-2: The clusters of the DUFFNN method on the breast cancer Wisconsin 
(original)  

We compared the results of the proposed DUFFNN method with the results of some 

related ODUFFNN and UFFNN methods. In order to initialize the parameters of the 

ESOM, we considered: β = 0.8, ε = 0.005, δ = ε and γ = 0.005. Also, in order to 

initialize the parameters of the DSOM, we considered   =0.100 and δ =1.25. Table 7-3 

shows the speed of processing based on the number of epochs and the accuracy based 

0.180225266 

0.076315844 
0.081863623 

0.093955415 

0.117109999 

0.112795174 

0.123885947 

0.093721112 

0.120127621 

0 
0.02 
0.04 
0.06 
0.08 

0.1 
0.12 
0.14 
0.16 
0.18 

0.2 

1 2 3 4 5 6 7 8 9 

B
M

W
 

Attributes 

0.0000000 

0.0000010 

0.0000020 

0.0000030 

0.0000040 

0.0000050 

0.0000060 

0.0000070 

Th
re

sh
ol

ds
 

Data points 

Malignant 

Benign 

Univ
ers

ity
 of

 M
ala

ya



 

185 

on the density of the CCN and the F-measure for the breast cancer Wisconsin data 

points. 

Table 7-3: Comparison of the clustering results on the breast cancer Wisconsin 
data points by the DUFFNN, DSFFNN and some related methods 

The clustering 
method Density of CCN % F-measure% Epoch CPU TIME 

(milliseconds) 

SOM 96.63 - 20 - 
K-means 96.19 - 20 - 

Neural Gas 96.19 - 20 - 
GNG 69.84 - 5 - 

DSOM 67.20 74.77 700 4' , 22'' and 165 
ESOM 93.41 95.08 1 2'' and 912 

Semi-ESOM 94.00 95.52 1 2'' and 912 
DUFFNN 96.81 97.71 1 15.66 
DSFFNN 100 100 1 15.66 

 

 

Figure 7-3: Comparison of the clustering density of CCN % on the breast cancer 
Wisconsin data points by the DUFFNN, DSFFNN and some related methods 

As shown in Table 7-3 and Figure 7-3 based on the experiments, the density of CCN 

of the SOM was 96.63% after 20 epochs, which was the best result of the mentioned 

UFFNN clustering methods. The density of CCN and the F-measure of the DSOM 

method were 67.20% and 74.77%, respectively, after 700 epochs in 4' , 22'' and 165 

milliseconds. The density of the CCN and the F-measure of the ESOM method were 

93.41% and 95.08% , respectively, after 1 epoch in 2'' and 912 milliseconds. The ESOM 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 
96.63 96.19 96.19 

69.84 67.2 

93.41 94 96.81 100 

D
en

si
ty

 o
f C

C
N

 %
 

Univ
ers

ity
 of

 M
ala

ya



 

186 

clustering result was improved by considering class labels like the semi-ESOM method, 

and the accuracy was improved to 94.00% for the density of the CCN and 95.52% by 

the F-measure. The accuracy of the proposed DUFFNN clustering method was 96.81% 

for the density of the CCN and 97.71% by the F-measure, respectively after 1 epoch in 

15.66 milliseconds. The density of the CCN and the F-measure accuracy of the 

proposed DSFFNN method after one epoch was 100%, after just one epoch of training. 

While for the BPN, the F-measure was 99.28% after 1000 epochs of training. All 

clustering methods show two distinct  clusters for this dataset.  

7.2.2 The DUFFNN and DSFFNN Clustering on the Iris 

In order to compute the clustering accuracy of the DUFFNN on on the Iris data 

points, the F-measure with 10 folds of the test set was considered. Table 7-4 shows the 

details.  

Table 7-4: The clustering result of the DUFFNN method on the Iris  

Test subset Cluster1 Cluster2 Cluster3 CCN% F-measure 
tc1 fc1 f 

‘
c1 

fc2 tc2 f ‘c2 fc3 f ‘c3 tc3 

1 
9 1 0 0 5 0 0 0 0 93.33 0.9545 

2 
9 1 0 2 3 0 0 0 0 80.00 0.76905 

3 
8 0 0 0 6 0 0 0 1 100 1 

4 
13 0 0 0 2 0 0 0 0 100 1 

5 
7 0 0 0 5 0 0 0 3 100 1 

6 
2 0 0 0 6 0 0 0 7 100 1 

7 
0 0 0 0 14 0 0 0 1 100 1 

8 
0 0 0 0 7 0 0 0 8 100 1 

9 
0 0 0 0 0 0 0 0 15 100 1 

10 
0 0 0 0 0 0 0 0 15 100 1 

 

As shown in Table 7-4, the F-measure with 10 folds of the dataset was 97.24% after 

just one epoch of training in 26.68 milliseconds, by the DUFFNN clustering.  

Table 7-5 and Figure 7-4 show the final computed BMW vector components of the 

received Iris data using the DUFFNN clustering method. 

Univ
ers

ity
 of

 M
ala

ya



 

187 

Table 7-5: The final BMW vector of the Iris using the DUFFNN method 

Vector of the final BMW for the received Iris data 

BMW1 BMW2 BMW3 BMW4 

0.163002 0.328439 0.226318 0.282241 

 

 
Figure 7-4: The final BMW vector of the Iris by the DUFFNN method 

The total thresholds of the received data points were computed based on the final 

BMW vector, and the data points were sequentially clustered. As shown in Figure 7-5, 

three distinct clusters can be recognized. 

 

Figure 7-5: The clusters of the DUFFNN method on the Iris  

We compared the results of the proposed DUFFNN method with the results of some 

related ODUFFNN and UFFNN methods. In the ESOM,  we considered the parameter: 

β = 0.8, ε = 0.004, δ = ε and γ = 0.005. In the DSOM, we considered the parameters   

0.1630018 

0.328439163 

0.226317682 

0.282241355 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

1 2 3 4 

B
M

W
 

Attributes 

0.0000000 

0.0000100 

0.0000200 

0.0000300 

0.0000400 

0.0000500 

0.0000600 

0.0000700 

0.0000800 

0.0000900 

0.0001000 

Th
re

sh
ol

ds
 

Data points 

Iris-setosa 

Iris-versicolor 

Iris-virginica 

Univ
ers

ity
 of

 M
ala

ya



 

188 

=0.100 and δ =1.24. Table 7-6 shows the speed of processing based on the number of 

epochs and the accuracy based on the density of the CCN and the F-measure for the Iris 

data points. 

Table 7-6: Comparison of the clustering results on the Iris data points by the 
DUFFNN, DSFFNN and some related methods 

The clustering 
method Density of CCN % F-measure% Epoch CPU TIME 

(milliseconds) 

SOM 85.22 - 140 - 

K-means 89.33 - 20 - 

Neural Gas 92.67 - 20 - 

GNG 90.00 - 10 - 

ESOM 96.00 96.00 1 36  

DSOM 90.00 90.00 700 39'' and 576  

Semi-ESOM 100 100 1 36 

DUFFNN 97.33 97.24 1 26.68 

DSFFNN 100 100 1 26.68  
 

 

Figure 7-6: Comparison of the clustering density of CCN % on the Iris data points 
by the DUFFNN, DSFFNN and some related methods 

As shown in Table 7-6 and Figure 7-6, the density of the CCN for the NG was 

92.67% after 20 epochs, which was the best result of the mentioned UFFNN clustering 

75 

80 

85 

90 

95 

100 

85.22 

89.33 

92.67 

90 

96 

90 

100 

97.33 

100 

D
en

si
ty

 o
f C

C
N

 %
 

Univ
ers

ity
 of

 M
ala

ya



 

189 

methods. The DSOM clustered the data points with 90.00% for the density of the CCN  

and 90.00% for the F-measure after 700 epochs in 39'' and 576 milliseconds. The 

ESOM clustered the Iris data points with 96.00% for the density of the CCN and 

96.00% accuracy for the F-measure after 1 epoch in 36 milliseconds. The semi-ESOM 

clustered the Iris data points with 100% for the density of the CCN and 100% accuracy 

for the F-measure. The DUFFNN method clustered this dataset with 97.33% for the 

density of the CCN and 97.24% accuracy by the F-measure. The BPN classification 

model, learnt this dataset after 140 epochs with the accuracy of 94.00% by the F-

measure. The results of the DSFFNN show 100% for the density of the CCN and 100% 

accuracy for the F-measure after 1 epoch for training just in 26.68 milliseconds. All 

clustering methods show three distinct clusters for this dataset. 

7.2.3 The DUFFNN and DSFFNN Clustering on Spambase 

In order to compute the clustering accuracy of the DUFFNN on the Spambase 

dataset, the F-measure with 10 folds of the test set was considered. Table 7-7 shows the 

details. 

Table 7-7: The clustering result of the DUFFNN method on the Spambase  

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 304 157 158 134 146 23 63.34 0.872928 0.519737 0.651546 

2 290 171 166 136 124 35 65.51 0.825871 0.572414 0.676171 

3 361 100 274 79 87 21 76.57 0.928814 0.759003 0.835366 

4 320 141 204 127 116 14 71.80 0.93578 0.6375 0.758364 

5 362 99 267 86 95 13 76.57 0.953571 0.737569 0.831776 

6 242 219 217 124 25 95 73.97 0.695513 0.896694 0.783394 

7 217 244 189 123 28 121 67.68 0.609677 0.870968 0.717268 

8 174 287 141 132 33 155 59.22 0.476351 0.810345 0.6 

9 263 198 216 127 47 71 74.40 0.752613 0.821293 0.785455 

10 264 197 239 19 25 178 55.97 0.573141 0.905303 0.701909 

 

As shown in Table 7-7, the average of the evaluated F-measure for 10 folds of the 

test set for the DUFFNN clustering was 73.41% after just one epoch of training in 35'' 

Univ
ers

ity
 of

 M
ala

ya



 

190 

and 339 milliseconds. Table 7-8 and Figure 7-7 show the final computed BMW vector 

of the Spambase data by the DUFFNN clustering method. 

Table 7-8: The final computed BMW vector from the received Spambase data 
using the DUFFNN method 

Vector of the final BMW for the received Spambase data 

BMW1 BMW2 BMW3 BMW4 BMW5 BMW6 BMW7 BMW8 BMW9 BMW10 
0.02041 0.013759 0.039625 0.011594 0.024689 0.017592 0.017119 0.013722 0.019188 0.014086 

BMW11 BMW12 BMW13 BMW14 BMW15 BMW16 BMW17 BMW18 BMW19 BMW20 
0.020673 0.040274 0.018911 0.013514 0.015144 0.014275 0.019062 0.019466 0.062005 0.012114 

BMW21 BMW22 BMW23 BMW24 BMW25 BMW26 BMW27 BMW28 BMW29 BMW30 
0.04812 0.013873 0.018592 0.011919 0.023215 0.017149 0.019887 0.016455 0.012683 0.017408 

BMW31 BMW32 BMW33 BMW34 BMW35 BMW36 BMW37 BMW38 BMW39 BMW40 
0.011425 0.013366 0.014677 0.013428 0.011509 0.016 0.021896 0.011719 0.013494 0.014402 

BMW41 BMW42 BMW43 BMW44 BMW45 BMW46 BMW47 BMW48 BMW49 BMW50 
0.013976 0.015335 0.016717 0.013087 0.016456 0.015715 0.012225 0.012602 0.013692 0.013523 

BMW51 BMW52 BMW53 BMW54 BMW55 BMW56 BMW57    
0.012327 0.010982 0.013187 0.01097 0.012174 0.009847 0.018746 

   

 

 

Figure 7-7: The final BMW vector of the Spambase dataset by the DUFFNN 
method 

The total thresholds of the received data points were computed based on the final 

BMW vector, and the data points were subsequently clustered. As shown in Figure 7-8, 

two distinct clusters can be recognized. 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

1 3 5 7 9 11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 
53 
55 
57 

B
M

W
 

Attributes 

Univ
ers

ity
 of

 M
ala

ya



 

191 

 

Figure 7-8: The clusters of the DUFFNN method on the Spambase 

We compared the results of the proposed DUFFNN method with the results of some 

related ODUFFNN and UFFNN methods. In the ESOM,  we considered the parameters: 

β = 0.8, ε = 0.0053, δ = ε and γ = 0.005. In the DSOM, we considered the parameters:   

=0.100 and δ =1.25. Table 7-9 shows the speed of processing based on the number of 

epochs and the accuracy based on the density of the CCN and the F-measure for the 

Spambase data points. 

Table 7-9: Comparison the clustering results on the Spambase data points by the 
DUFFNN, DSFFNN and some related methods 

The clustering 
method Density of CCN % F-measure% Epoch CPU TIME 

(milliseconds) 

SOM 26.30 - 20 - 
K-means 23.54 - 20 - 

Neural Gas 22.82 - 20 - 
GNG 21.02 - 5 - 

DSOM 55.83 62.78 700 33' , 27" and 90  
ESOM 49.21 57.85 1 14' , 39'' and 773  

Semi-ESOM 58.29 65.03 1 14' , 39'' and 773  
DUFFNN 68.50 73.41 1 35'' and 339 
DSFFNN 99.97 99.96 1 35'' and 339 

 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

Th
re

sh
ol

ds
 

Data points 

Non-spam 

Spam 

Univ
ers

ity
 of

 M
ala

ya



 

192 

 

Figure 7-9: Comparison of the clustering density of CCN % on the Spambase data 
points by the DUFFNN, DSFFNN and some related methods 

As shown in Table 7-9 and Figure 7-9, the density of CCN of the SOM was 26.30% 

after 20 epochs (Camastra & Verri, 2005), which was the best result of the mentioned 

UFFNN clustering methods. The DSOM clustered the data points with 55.83% for the 

density of the CCN and 62.78% accuracy for the F-measure after 700 epochs during 33' 

, 27' and 90 milliseconds. The ESOM clustered the Spambase data points with 49.21% 

for the density of the CCN and 57.85% accuracy for the F-measure after 1 epoch during 

14' , 39'' and 773  milliseconds. The Semi-ESOM clustered the Spambase data points 

with 58.29% for the density of the CCN and 65.03% accuracy for the F-measure. The 

DUFFNN clustering method clustered this dataset with 68.50% for the density of the 

CCN and 73.41% accuracy for the F-measure after one epoch in 35'' and 339 

milliseconds. The BPN learnt this dataset after 2000 epochs with the accuracy of 

79.50% using the F-measure. The results of the DSFFNN show 99.97% for the density 

of the CCN and 99.96% accuracy for the F-measure with 1 epoch of training. All 

clustering methods show two distinct clusters for this dataset. 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

26.3 23.54 22.82 21.02 

55.83 
49.21 

58.29 

68.5 

99.97 

D
en

si
ty

 o
f C

C
N

 %
 

Univ
ers

ity
 of

 M
ala

ya



 

193 

7.2.4 The DUFFNN and DSFFNN Clustering on SPECT Heart 

The SPECT Heart dataset from the UCI Repository has two classes: Normal and 

Abnormal. In order to compute the clustering accuracy of the RUFFNN on the SPECT 

Heart dataset, the F-measure with 10 folds of the test set was considered. The SPECT 

Heart dataset  has 267 cases. Therefore, in each performance, we considered 240 data as 

the training set and 27 data as the test set.  

Table 7-10 shows the details of the computation of the F-measure in different 

performances on the test set for computing clustering accuracy. 

Table 7-10: The clustering result of the DUFFNN method on the SPECT Heart  

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 18 9 15 7 3 2 81.48 0.882353 0.833333 0.857143 

2 23 4 18 0 5 4 66.67 0.818182 0.782609 0.8 

3 27 0 21 0 6 0 77.78 1 0.777778 0.875 

4 16 11 16 10 0 1 96.30 0.941176 1 0.969697 

5 23 4 23 0 0 4 85.19 0.851852 1 0.92 

6 25 2 25 0 0 2 92.59 0.925926 1 0.961538 

7 26 1 19 0 7 1 70.37 0.95 0.730769 0.826087 

8 22 5 22 0 0 5 81.48 0.814815 1 0.897959 

9 17 10 17 9 0 1 96.30 0.944444 1 0.971429 

10 18 9 18 8 0 1 96.30 0.947368 1 0.972973 

 

As shown in Table 7-10, the average of the evaluated F-measure with 10 folds of the 

test set was 90.52% after just one epoch of training in 12.70  milliseconds using the 

DUFFNN clustering. 

Table 7-11 and Figure 7-10 show the final computed BMW vector of the SPECT 

Heart data by the DUFFNN clustering method. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

194 

Table 7-11: The final computed BMW vector from the received SPECT Heart data 
using the DUFFNN method 

Vector of the BMW for the SPECT HEART dataset 

BMW1 BMW2 BMW3 BMW4 BMW5 BMW6 BMW7 BMW8 BMW9 BMW10 
0.049134 0.042387 0.045839 0.044352 0.048043 0.043589 0.043897 0.049406 0.045298 0.047402 

BMW11 BMW12 BMW13 BMW14 BMW15 BMW16 BMW17 BMW18 BMW19 BMW20 
0.044492 0.043557 0.051054 0.045249 0.040808 0.043584 0.04315 0.04187 0.04384 0.045287 

BMW21 BMW22 
0.045333 0.05243 

 

 

Figure 7-10: The final BMW vector of the SPECT Heart dataset using the 
DUFFNN method  

The total thresholds of the received data points were computed on the basis of the 

final BMW vector, and the data points were subsequently clustered. As shown in Figure 

7-11, two distinct clusters can be recognized. 

0 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

B
M

W
 

Attributes 

Univ
ers

ity
 of

 M
ala

ya



 

195 

 

Figure 7-11: The clusters of the DUFFNN method on the SPECT Heart  

We compared the results of the proposed DUFFNN method with the results of some 

related ODUFFNN and UFFNN methods. In the ESOM,  we considered the parameters: 

β = 0.8, ε = 0.005, δ = ε and γ = 0.005. In the DSOM, we considered the parameters:   

=0.100 and δ =1.25. Table 7-12 shows the speed of processing based on the number of 

epochs and the accuracy based on the density of the CCN and F-measure for the SPECT 

Heart data points. 

Table 7-12: Comparison of the clustering results on the SPECT Heart data points 
by the DUFFNN, DSFFNN and some related methods  

The clustering 
method 

Density of 
CCN % F-measure% Epoch CPU TIME 

(milliseconds) 

DSOM 85.27 90.09 700 1', 16'' and 993  

ESOM 66.29 78.77 1 197  

Semi-ESOM 73.03 83.02 1 197 

DUFFNN 84.44 90.52 1 12.20  

DSFFNN 95.50 97.20 1 12.20   
 

0.0000000 

0.2000000 

0.4000000 

0.6000000 

0.8000000 

1.0000000 

1.2000000 

Th
re

sh
ol

ds
 

Data points 

Normal 

Abnormal 

Univ
ers

ity
 of

 M
ala

ya



 

196 

 

Figure 7-12: Comparison of the clustering density of CCN % on the SPECT Heart 
data points by the DUFFNN, DSFFNN and some related methods 

As shown in Table 7-12 and Figure 7-12, the DSOM clustered the data points with 

85.27% for the density of the CCN and 90.09% accuracy for the F-measure after 700 

epochs during 1', 16'' and 993 milliseconds. The ESOM clustered the data points with 

66.29% for the density of the CCN and 78.77% accuracy by the F-measure after 1 

epoch in 197  milliseconds. The Semi-ESOM clustered the Spambase data points with 

73.03% density of the CCN and 83.02% accuracy by the F-measure. The DUFFNN 

clustering method clustered this dataset with 84.44% density of the CCN and 90.52% 

accuracy by the F-measure after one epoch in 12.20 milliseconds. The BPN can learn 

this dataset after 25 epochs with an accuracy of 87.00% by the F-measure and the BPN 

using principal component analysis (PCA) learnt this dataset after 14 epochs training 

with an accuracy of 73.00% of the F-measure. The results of the DSFFNN show 

95.50% for the density of the CCN and 97.20% accuracy of the F-measure with 1 epoch 

of training. All clustering methods show two distinct clusters for this dataset. 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

DSOM ESOM Semi-ESOM DUFFNN DSFFNN 

85.27 

66.29 
73.03 

84.44 

95.5 

D
en

si
ty

 o
f C

C
N

 %
 

Univ
ers

ity
 of

 M
ala

ya



 

197 

7.2.5 The DUFFNN and DSFFNN Clustering on the SPECTF Heart 

The SPECTF Heart dataset from the UCI Repository has two classes: Normal and 

Abnormal. In order to compute the clustering accuracy of the DUFFNN on the SPECT 

Heart dataset, the F-measure with 10 folds of the test set was considered. The SPECT 

Heart dataset  has 267 cases. Therefore, in each performance, we considered 240 data as 

the training set and 27 data as the test set.  

Table 7-13 shows the details of the computation of the F-measure in different 

performances on the test set for computing clustering accuracy. 

Table 7-13: The clustering result of the DUFFNN method on the SPECT Heart 

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 17 10 17 3 0 7 74.07 0.708333 1 0.829268 

2 18 9 18 7 0 2 92.59 0.9 1 0.947368 

3 24 3 21 0 3 3 77.78 0.875 0.875 0.875 

4 22 5 20 2 2 3 81.48 0.869565 0.909091 0.888889 

5 18 9 16 3 2 6 70.37 0.727273 0.888889 0.8 

6 27 0 17 0 10 0 62.96 1 0.62963 0.772727 

7 27 0 18 0 9 0 66.67 1 0.666667 0.8 

8 23 4 20 1 3 3 77.78 0.869565 0.869565 0.869565 

9 19 8 19 5 0 3 88.89 0.863636 1 0.926829 

10 20 7 20 5 0 2 92.59 0.909091 1 0.952381 

 

As shown in Table 7-13, the accuracy of the DUFFNN using the F-measure with 10 

folds of the test was 86.62% after just one epoch of training in 34.97 milliseconds. 

Table 7-14 and Figure 7-13 show the final computed BMW vector components of the 

received SPECTF Heart data by using the DUFFNN clustering method. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

198 

Table 7-14: The final computed BMW vector from the received SPECTF Heart 
data using the DUFFNN method 

Vector of the final BMW for the received SPECTF HEART data 

BMW1 BMW2 BMW3 BMW4 BMW5 BMW6 BMW7 BMW8 BMW9 BMW10 
0.020301 0.02324 0.024093 0.025002 0.020584 0.031001 0.016547 0.020498 0.019843 0.020924 

BMW11 BMW12 BMW13 BMW14 BMW15 BMW16 BMW17 BMW18 BMW19 BMW20 
0.028376 0.027647 0.021853 0.021501 0.02167 0.019151 0.026944 0.01728 0.030749 0.019439 

BMW21 BMW22 BMW23 BMW24 BMW25 BMW26 BMW27 BMW28 BMW29 BMW30 
0.018362 0.021105 0.021016 0.024655 0.020383 0.02414 0.019098 0.02794 0.018298 0.022476 

BMW31 BMW32 BMW33 BMW34 BMW35 BMW36 BMW37 BMW38 BMW39 BMW40 
0.02199 0.02616 0.025613 0.01806 0.018809 0.021199 0.026339 0.024922 0.019154 0.021264 

BMW41 BMW42 BMW43 BMW44 
      

0.022103 0.0227 0.03403 0.023541 
      

 

 

Figure 7-13: The final BMW vector of the SPECTF Heart dataset of the DUFFNN 
method 

The total thresholds of the received data points were computed on the basis of the 

final BMW vector, and the data points were subsequently clustered. As shown in Figure 

7-14, two distinct clusters can be recognized. 

0 
0.005 

0.01 
0.015 

0.02 
0.025 

0.03 
0.035 

0.04 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 

B
M

W
 

Attributes 

Univ
ers

ity
 of

 M
ala

ya



 

199 

 

Figure 7-14: The clusters of the DUFFNN method on the SPECTF Heart 

We compared the results of the proposed DUFFNN method with the results of some 

related ODUFFNN and UFFNN methods. In the ESOM,  we considered the parameters: 

β = 0.8, ε = 0.005, δ = ε and γ = 0.005. In the DSOM, we considered the parameters:   

=0.100 and δ =1.25. Table 7-15 shows the speed of processing based on the number of 

epochs and the accuracy based on the density of the CCN and the F-measure for the 

SPECTF Heart data points. 

Table 7-15: Comparison of the clustering results on the SPECTF Heart data points 
by the DUFFNN, DSFFNN and some related methods 

The clustering 
method 

Density of 
CCN % F-measure% Epoch CPU TIME 

(milliseconds) 

DSOM 78.65 86.52 700 1' , 38'' and 165 

ESOM 61.80 77.83 1 342  

Semi-ESOM 63.67 80.19 1 342  

DUFFNN 78.52 86.62 1 34.97  

DSFFNN 100 100 1 34.97  
 

 

0.0000000 

0.1000000 

0.2000000 

0.3000000 

0.4000000 

0.5000000 

0.6000000 

0.7000000 

0.8000000 

0.9000000 

Th
re

sh
ol

ds
 

Data points 

Normal 

Abnormal 

Univ
ers

ity
 of

 M
ala

ya



 

200 

 

Figure 7-15: Comparison of the clustering density of CCN % on the SPECTF 
Heart data points by the DUFFNN, DSFFNN and some related methods 

As shown in Table 7-15 and Figure 7-15, the DSOM clustered the data points with 

78.65% for the density of the CCN and 86.52% accuracy by the F-measure after 700 

epochs in 1' , 38'' and 165 milliseconds. The ESOM clustered the data points with 

61.80% for the density of the CCN and 77.83% accuracy by the F-measure after 1 

epoch during 342  milliseconds. The semi-ESOM clustered the Spambase data points 

with 63.67% for the density of the CCN and 80.19% accuracy by the F-measure. The 

DUFFNN clustering method clustered this dataset with 78.52% for the density of the 

CCN and 86.62% accuracy by the F-measure after one epoch in 34.97 milliseconds. 

The BPN can learn this dataset after 25 epochs with an accuracy of 79.00% by the F-

measure and the BPN using PCA learnt this dataset after 14 epochs training with an 

accuracy of 75.00% by the F-measure. The results of the DSFFNN show 100% density 

of the CCN and 100% accuracy by the F-measure with 1 epoch for training. All 

clustering methods show two distinct clusters for this dataset. 

7.2.6 The DUFFNN and DSFFNN Clustering on MUSK1 

The MUSK1 dataset from the UCI Repository has two classes: Musks and Non-

Musks. In order to compute the clustering accuracy of the DUFFNN on the MUSK1 

dataset, the F-measure with 10 folds of the test set was considered. The Musk1 dataset  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

DSOM ESOM Semi-ESOM DUFFNN DSFFNN 

78.65 

61.8 63.67 

78.52 

100 

D
en

si
ty

 o
f C

C
N

 %
 

Univ
ers

ity
 of

 M
ala

ya



 

201 

has 476 cases. Therefore, in each performance, we consider 430 cases as the training set 

and 48 cases as the test set.  

Table 7-16 shows the details of the computation of the F-measure in different 

performances on the test set for computing clustering accuracy. 

Table 7-16: The clustering result of the DUFFNN method on the Musk1  

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 15 33 3 10 12 23 

27.08 
0.115385 0.2 0.146341 

2 34 14 18 0 16 14 
37.50 

0.5625 0.529412 0.545455 

3 38 10 19 5 19 5 
50.00 

0.791667 0.5 0.612903 

4 44 4 21 0 23 4 
43.75 

0.84 0.477273 0.608696 

5 48 0 24 0 24 0 
50.00 

1 0.5 0.666667 

6 28 20 14 16 14 4 
62.50 

0.777778 0.5 0.608696 

7 16 32 16 11 0 21 
56.25 

0.432432 1 0.603774 

8 15 33 15 21 0 12 
75.00 

0.555556 1 0.714286 

9 10 38 10 18 0 20 
58.33 

0.333333 1 0.5 

10 25 23 5 13 20 10 
37.50 

0.333333 0.2 0.25 

 

As shown in Table 7-16, the accuracy of the DUFFNN using the F-measure with 10 

folds of the test was 52.57%  after just one epoch of training in 1 second and 839 

milliseconds. 

Table 7-17 and Figure 7-16 show the final computed BMW vector components of the 

received MUSK1 data using the DUFFNN clustering method. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

202 

Table 7-17: The final computed BMW vector from the received MUSK1 data using 
the DUFFNN method 

Vector of the final BMW for the received Musk1 data 
BMW1 BMW2 BMW3 BMW4 BMW5 BMW6 BMW7 BMW8 BMW9 BMW10 
0.001904 0.007284 0.008115 0.006095 0.013277 0.006319 0.006934 0.006201 0.006132 0.002867 

BMW11 BMW12 BMW13 BMW14 BMW15 BMW16 BMW17 BMW18 BMW19 BMW20 
0.006883 0.003441 0.006037 0.006483 0.005469 0.009414 0.009752 0.004449 0.003581 0.001959 

BMW21 BMW22 BMW23 BMW24 BMW25 BMW26 BMW27 BMW28 BMW29 BMW30 
0.00267 0.005639 0.004471 0.010562 0.008453 0.004952 0.0081 0.005643 0.002777 0.009472 

BMW31 BMW32 BMW33 BMW34 BMW35 BMW36 BMW37 BMW38 BMW39 BMW40 
0.010655 0.007139 0.004034 0.008164 0.004536 0.00646 0.011952 0.005675 0.007572 0.005078 

BMW41 BMW42 BMW43 BMW44 BMW45 BMW46 BMW47 BMW48 BMW49 BMW50 
0.00817 0.004171 0.003545 0.007424 0.006327 0.003427 0.007848 0.004693 0.005164 0.002236 

BMW51 BMW52 BMW53 BMW54 BMW55 BMW56 BMW57 BMW58 BMW59 BMW60 
0.002047 0.00583 0.006205 0.003075 0.006655 0.002251 0.007617 0.009336 0.00358 0.005953 

BMW61 BMW62 BMW63 BMW64 BMW65 BMW66 BMW67 BMW68 BMW69 BMW70 
0.008415 0.009311 0.00491 0.010308 0.007203 0.003889 0.013175 0.00243 0.007645 0.002844 

BMW71 BMW72 BMW73 BMW74 BMW75 BMW76 BMW77 BMW78 BMW79 BMW80 
0.008343 0.00651 0.005426 0.005536 0.004047 0.009249 0.007558 0.00478 0.004087 0.00533 

BMW81 BMW82 BMW83 BMW84 BMW85 BMW86 BMW87 BMW88 BMW89 BMW90 
0.003836 0.005383 0.00234 0.008231 0.007726 0.006663 0.003217 0.004397 0.004205 0.009043 

BMW91 BMW92 BMW93 BMW94 BMW95 BMW96 BMW97 BMW98 BMW99 BMW100 
0.009071 0.006601 0.003965 0.001891 0.003279 0.006831 0.005427 0.006354 0.009716 0.006489 

BMW101 BMW102 BMW103 BMW104 BMW105 BMW106 BMW107 BMW108 BMW109 BMW110 
0.00718 0.003033 0.006162 0.006432 0.005628 0.003237 0.007276 0.005715 0.002115 0.005837 

BMW111 BMW112 BMW113 BMW114 BMW115 BMW116 BMW117 BMW118 BMW119 BMW120 
0.004958 0.003658 0.004631 0.005866 0.006539 0.003587 0.009881 0.008634 0.008303 0.007703 

BMW121 BMW122 BMW123 BMW124 BMW125 BMW126 BMW127 BMW128 BMW129 BMW130 
0.008981 0.006791 0.007775 0.004613 0.008823 0.004725 0.003702 0.008954 0.002726 0.004571 

BMW131 BMW132 BMW133 BMW134 BMW135 BMW136 BMW137 BMW138 BMW139 BMW140 
0.005336 0.007745 0.002839 0.002939 0.005629 0.003648 0.006744 0.004151 0.005545 0.002566 

BMW141 BMW142 BMW143 BMW144 BMW145 BMW146 BMW147 BMW148 BMW149 BMW150 
0.00219 0.004705 0.006233 0.007283 0.013224 0.012268 0.008316 0.003957 0.003644 0.00699 

BMW151 BMW152 BMW153 BMW154 BMW155 BMW156 BMW157 BMW158 BMW159 BMW160 
0.005458 0.003988 0.003697 0.00596 0.004732 0.006086 0.011766 0.006248 0.010729 0.003068 

BMW161 BMW162 BMW163 BMW164 BMW165 BMW166     
0.004954 0.002789 0.007779 0.007997 0.009746 0.003192  

    
 

Univ
ers

ity
 of

 M
ala

ya



 

203 

 

Figure 7-16: The final BMW vector of the MUSK1 dataset by the DUFFNN 
method 

The total thresholds of the received data points were computed on the basis of the 

final BMW vector, and the data points were sequentially clustered. As shown in Figure 

7-17, two distinct clusters can be recognized. 

 

Figure 7-17: The clusters of the DUFFNN method on the MUSK1 

We compared the results of the proposed DUFFNN method with the results of some 

related ODUFFNN and UFFNN methods. In the ESOM, we considered the parameters: 

β = 0.8, ε = 0.006, δ = ε and γ = 0.007. In the DSOM, we considered the parameters:   

=0.100 and δ =1.28. Table 7-18 shows the speed of processing based on the number of 

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

1 6 11
 

16
 

21
 

26
 

31
 

36
 

41
 

46
 

51
 

56
 

61
 

66
 

71
 

76
 

81
 

86
 

91
 

96
 

10
1 

10
6 

11
1 

11
6 

12
1 

12
6 

13
1 

13
6 

14
1 

14
6 

15
1 

15
6 

16
1 

16
6 

B
M

W
 

Attributes 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

Th
re

sh
ol

ds
 

Data points 

Non-Musk 

Musk 

Univ
ers

ity
 of

 M
ala

ya



 

204 

epochs and the accuracy based on the density of the CCN and the F-measure for the 

MUSK1 data points. 

Table 7-18: Comparison of the clustering results on the MUSK1 data points by the 
DUFFNN, DSFFNN and some related methods 

The clustering 
method 

Density of 
CCN % F-measure% Epoch CPU TIME 

(milliseconds) 

DSOM 42.44 48.19 700 4' , 52" and 562  

ESOM 42.44 48.19 1 1" and 1  

Semi-ESOM 57.98 62.83 1 1" and 1  

DUFFNN 49.79 52.57 1 382.49 

DSFFNN 100 100 1 382.49 

 

 

Figure 7-18: Comparison of the clustering density of CCN % on the MUSK1 data 
points by the DUFFNN, DSFFNN and some related methods 

 

As shown in Table 7-18 and Figure 7-18, the DSOM clustered the data points with 

42.44% for the density of the CCN and 48.19% accuracy by the F-measure after 700 

epochs in 4' , 52" and 562 milliseconds. The ESOM just like the DOM clustered the 

data points with 42.44% for the density of the CCN and 48.19% accuracy by the F-

measure but after only 1 epoch taking 1" and 1   milliseconds. The semi-ESOM 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

DSOM ESOM Semi-ESOM DUFFNN DSFFNN 

42.44 42.44 

57.98 
49.79 

100 

D
en

si
ty

 o
f C

C
N

 %
 

Univ
ers

ity
 of

 M
ala

ya



 

205 

clustered the MUSK1 data points with 57.98% for the density of the CCN and 62.83% 

accuracy by the F-measure. The DUFFNN clustering method clustered this dataset with 

49.79% for the density of the CCN and 52.57% accuracy by the F-measure after one 

epoch in 382.49 milliseconds. The BPN can learn this dataset after 100 epochs with an 

accuracy of 75.00% by the F-measure. The results of the DSFFNN show 100% for the 

density of the CCN and 100% accuracy by the F-measure after only 1 epoch of training. 

All clustering methods show two distinct clusters for this dataset. 

7.2.7 The DUFFNN and DSFFNN Clustering on the MUSK2 

In order to compute the clustering accuracy of the DUFFNN on the MUSK2 data 

points, F-measure with 10 folds of the test set was considered. Table 7-19 shows the 

details.  

Table 7-19: The clustering result of the DUFFNN method of the Musk2 

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 571 89 537 11 34 78 83.03 0.873171 0.940455 0.905565 

2 579 81 534 10 45 71 82.42 0.882645 0.92228 0.902027 

3 626 34 595 9 31 25 91.52 0.959677 0.950479 0.955056 

4 582 78 511 10 71 68 78.94 0.882556 0.878007 0.880276 

5 623 37 456 13 167 24 71.06 0.95 0.731942 0.826836 

6 607 53 464 8 143 45 71.52 0.911591 0.764415 0.831541 

7 621 39 517 10 104 29 79.85 0.946886 0.832528 0.886033 

8 546 114 419 9 127 105 64.85 0.799618 0.767399 0.783178 

9 400 260 356 68 44 192 64.24 0.649635 0.89 0.751055 

10 427 233 349 25 78 208 56.67 0.626571 0.81733 0.70935 

 

As shown in Table 7-19, the accuracy of the DUFFNN clustering by using the F-

measure with 10 folds of the test set was 84.31% after just one epoch of training in 24" 

and 127 milliseconds. 

Table 7-20 and Figure 7-19 show the final computed BMW vector components of the 

received MUSK2 data using the DUFFNN clustering method. 

Univ
ers

ity
 of

 M
ala

ya



 

206 

Table 7-20: The final BMW vector of the MUSK2 using the DUFFNN method 

Vector of the final BMW for the received Musk2 data 
BMW1 BMW2 BMW3 BMW4 BMW5 BMW6 BMW7 BMW8 BMW9 BMW10 
0.004979 0.00811 0.007209 0.006912 0.01085 0.006452 0.007426 0.003967 0.006969 0.004096 

BMW11 BMW12 BMW13 BMW14 BMW15 BMW16 BMW17 BMW18 BMW19 BMW20 
0.005264 0.004024 0.003666 0.004983 0.004491 0.008007 0.008793 0.003662 0.003994 0.00377 

BMW21 BMW22 BMW23 BMW24 BMW25 BMW26 BMW27 BMW28 BMW29 BMW30 
0.003676 0.006154 0.004953 0.008663 0.007852 0.005894 0.007276 0.007464 0.004961 0.008334 

BMW31 BMW32 BMW33 BMW34 BMW35 BMW36 BMW37 BMW38 BMW39 BMW40 
0.009754 0.006034 0.003968 0.007862 0.005849 0.004044 0.010295 0.006357 0.007718 0.006441 

BMW41 BMW42 BMW43 BMW44 BMW45 BMW46 BMW47 BMW48 BMW49 BMW50 
0.007821 0.004108 0.003606 0.004995 0.004567 0.004389 0.007494 0.004222 0.003778 0.003419 

BMW51 BMW52 BMW53 BMW54 BMW55 BMW56 BMW57 BMW58 BMW59 BMW60 
0.003258 0.006377 0.006932 0.004449 0.00693 0.003102 0.007348 0.008249 0.005205 0.006733 

BMW61 BMW62 BMW63 BMW64 BMW65 BMW66 BMW67 BMW68 BMW69 BMW70 
0.008153 0.008655 0.004134 0.008733 0.007407 0.005216 0.010683 0.004947 0.007093 0.005101 

BMW71 BMW72 BMW73 BMW74 BMW75 BMW76 BMW77 BMW78 BMW79 BMW80 
0.00776 0.007545 0.004475 0.004373 0.003703 0.00845 0.007671 0.004528 0.004209 0.004811 

BMW81 BMW82 BMW83 BMW84 BMW85 BMW86 BMW87 BMW88 BMW89 BMW90 
0.005043 0.006863 0.003563 0.007002 0.007237 0.007328 0.005594 0.005357 0.00574 0.008271 

BMW91 BMW92 BMW93 BMW94 BMW95 BMW96 BMW97 BMW98 BMW99 BMW100 
0.007865 0.005341 0.006465 0.003516 0.003211 0.007248 0.006413 0.007147 0.009298 0.006919 

BMW101 BMW102 BMW103 BMW104 BMW105 BMW106 BMW107 BMW108 BMW109 BMW110 
0.007512 0.004194 0.004843 0.004909 0.004829 0.004165 0.007385 0.004374 0.004735 0.004294 

BMW111 BMW112 BMW113 BMW114 BMW115 BMW116 BMW117 BMW118 BMW119 BMW120 
0.004344 0.004423 0.006095 0.006572 0.006286 0.004139 0.008496 0.008231 0.007904 0.007148 

BMW121 BMW122 BMW123 BMW124 BMW125 BMW126 BMW127 BMW128 BMW129 BMW130 
0.008146 0.006795 0.007315 0.004979 0.006593 0.003027 0.004985 0.008164 0.003727 0.007894 

BMW131 BMW132 BMW133 BMW134 BMW135 BMW136 BMW137 BMW138 BMW139 BMW140 
0.003467 0.005972 0.003673 0.003682 0.00381 0.005599 0.007382 0.005526 0.005099 0.003667 

BMW141 BMW142 BMW143 BMW144 BMW145 BMW146 BMW147 BMW148 BMW149 BMW150 
0.003529 0.006354 0.006419 0.006725 0.010709 0.010109 0.008924 0.005774 0.005377 0.006918 

BMW151 BMW152 BMW153 BMW154 BMW155 BMW156 BMW157 BMW158 BMW159 BMW160 
0.005664 0.006998 0.006783 0.006431 0.00479 0.006987 0.009542 0.006788 0.008947 0.00487 

BMW161 BMW162 BMW163 BMW164 BMW165 BMW166     
0.004896 0.003695 0.004871 0.001694 0.003514 0.007096 

    
 

Univ
ers

ity
 of

 M
ala

ya



 

207 

 

Figure 7-19: The final BMW vector of the MUSK2 using the DUFFNN method 

The total thresholds of the received data points were computed based on the final 

BMW vector, and the data points were subsequently clustered. As shown in Figure 7-20, 

two distinct clusters can be recognized. 

 

Figure 7-20: The clusters of the DUFFNN method on the MUSK2 

We compared the results of the proposed DUFFNN method with the results of some 

related ODUFFNN and UFFNN methods. In the ESOM,  we considered the parameters: 

β = 0.8, ε = 0.006, δ = ε and γ = 0.007. In the DSOM, we considered the parameters:   

=0.100 and δ =1.28. Table 7-21 shows the speed of processing based on the number of 

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

1 6 11
 

16
 

21
 

26
 

31
 

36
 

41
 

46
 

51
 

56
 

61
 

66
 

71
 

76
 

81
 

86
 

91
 

96
 

10
1 

10
6 

11
1 

11
6 

12
1 

12
6 

13
1 

13
6 

14
1 

14
6 

15
1 

15
6 

16
1 

16
6 

B
M

W
 

Attributes 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

Th
re

sh
ol

ds
 

Data points 

Non-MUSK 
MUSK 

Univ
ers

ity
 of

 M
ala

ya



 

208 

epochs and the accuracy based on the density of the CCN and the F-measure for the 

MUSK2 data points. 

Table 7-21: Comparison of the clustering results on the MUSK2 data points by the 
DUFFNN, DSFFNN and some related methods 

The clustering 
method Density of CCN % F-measure% Epoch CPU TIME 

(milliseconds) 

DSOM 60.28 41.40 700 41' , 1" and 633  

ESOM 70.58 56.40 1 28" and 1  

Semi-ESOM 78.34 87.19 1 28' and 1  

DUFFNN 74.41 84.31 1 27" and 572  

DSFFNN 100 100 1 27" and 572  

 

 

Figure 7-21: Comparison of the clustering density of CCN % on the MUSK2 data 
points by the DUFFNN, DSFFNN and some related methods 

As shown in Table 7-21 and Figure 7-21, the density of CCN of the DSOM clustered 

the data points with 60.28% for the density of the CCN and 41.40% accuracy by the F-

measure after 700 epochs in 41' , 1" and 633 milliseconds. The ESOM clustered the 

Spambase data points with 70.58% for the density of the CCN and 56.40% accuracy by 

the F-measure after 1 epoch in 28" and 1 milliseconds. The semi-ESOM clustered the 

Spambase data points with 78.34% for the density of the CCN and 87.19% accuracy by 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

DSOM ESOM Semi-ESOM DUFFNN DSFFNN 

60.28 

70.58 
78.34 

74.41 

100 

D
en

si
ty

 o
f C

C
N

 %
 

Univ
ers

ity
 of

 M
ala

ya



 

209 

the F-measure. The DUFFNN clustering method clustered this dataset with 74.41% for 

the density of the CCN and 84.31% accuracy by the F-measure after one epoch in 27" 

and 572 milliseconds. The BPN learnt this dataset after 100 epochs with an accuracy of 

67.00% by using the F-measure. The results of the DSFFNN show 100% for the density 

of the CCN and 100% accuracy for the F-measure after 1 epoch of training. All 

clustering methods show two distinct clusters for this dataset. 

7.2.8 The DUFFNN and DSFFNN Clustering on Arcene 

In order to compute the clustering accuracy of the DUFFNN on the Arcene data 

points, an F-measure with 10 folds of the test set was considered. Table 7-22 shows the 

details.   

Table 7-22: The clustering result of the DUFFNN method on the Arcene   

Test subset p n tp tn fp fn CCN% Recall Precision F-measure 
1 13 7 7 5 6 2 60.00 0.777777778 0.538461538 0.636363636 

2 12 8 9 2 3 6 55.00 0.6 0.75 0.666666667 

3 11 9 7 4 4 5 55.00 0.583333333 0.636363636 0.608695652 

4 11 9 6 6 5 3 60.00 0.666666667 0.545454545 0.6 

5 9 11 7 6 2 5 65.00 0.583333333 0.777777778 0.666666667 

6 10 10 6 6 4 4 60.00 0.6 0.6 0.6 

7 13 7 8 5 5 2 65.00 0.8 0.615384615 0.695652174 

8 11 9 8 5 3 4 65.00 0.666666667 0.727272727 0.695652174 

9 12 8 8 5 4 3 65.00 0.727272727 0.666666667 0.695652174 

10 10 10 8 6 2 4 70.00 0.666666667 0.8 0.727272727 
 

As shown in Table 7-22, the accuracy of the DUFFNN clustering using the F-

measure with 10 folds of the test set was 65.93% after just one epoch of training in 13” 

and 447 milliseconds. Table 7-23 shows the final computed BMW vector of the Arcene 

dataset by the DUFFNN clustering method. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

210 

Table 7-23: The BMW vector of the Arcene dataset by the DUFFNN method 

Vector of the SW for the Arcene dataset 
BMW1 BMW2 BMW3 BMW4 BMW5 BMW6 BMW7 BMW8 BMW9 BMW10 

0.000105 7.08E-05 0.000128 0.000146 9.25E-05 0.000165 0.000193 9.51E-05 0.000103 8.65E-05 

BMW11 BMW12 BMW13 BMW14 BMW15 BMW16 BMW17 BMW18 BMW19 BMW20 

8.13E-05 9.38E-05 8.67E-05 8.91E-05 0.000183 8.28E-05 9.52E-05 9.20E-05 0.000109 8.57E-05 

... ... ... ... ... ... ... ... ... ... 
... ... ... ... ... ... ... ... ... ... 

BMW99991 BMW99992 BMW99993 BMW99994 BMW99995 BMW99996 BMW99997 BMW99998 BMW9999 BMW10000 

0.000117 0.000221 1.00E-04 0.000101 9.11E-05 0.00014 0.000156 9.47E-05 9.27E-05 0.000251 

 

The total thresholds of the received data points were computed on the basis of the 

final BMW vector, and the data points were subsequently clustered. As shown in Figure 

7-22, two distinct clusters can be recognized. 

 

Figure 7-22: The clusters of the DUFFNN method on the Arcene  

We compared the results of the proposed DUFFNN and DSFFNN methods with the 

results of some related methods. In the ESOM,  we considered the parameters: β = 0.8, ε 

= 0.005, δ = ε and γ = 0.005. In the DSOM, we considered the parameters:   =0.100 and 

δ =1.25. Table 8.24 shows the speed of processing on the basis of the number of epochs 

and the accuracy on the basis of the density of  the CCN in the Arcene data points.  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

To
ta

l T
hr

es
ho

ld
s 

Data points 

Cancer patients 

Healthy patiant 

Univ
ers

ity
 of

 M
ala

ya



 

211 

Table 7-24: Comparison of the clustering results on the Arcene data points by the 
DUFFNN, DSFFNN and some related methods 

The 
clustering 
method 

Density of 

CCN % 

Accuracy by 

F-measure % 
Epoch CPU TIME (milliseconds) 

K-means 59.00 - 10 - 

SOM 53.00 58.04 140 - 

Semi-SOM 64.00 67.86 140 - 

DSOM 47.00 52.68 20 43' , 12” and 943 
ESOM 48.00 53.57 1 56” and 998 

Semi-ESOM 60.50 63.93 1 56” and 998 
DUFFNN 62.00 65.93 1 13” and 447 
DSFFNN 100 100 1 13” and 447 

 

 

Figure 7-23: Comparison of the clustering density of CCN % on the Arcene data 
points by the DUFFNN, DSFFNN and some related methods 

 

As shown in Table 7-24 and Figure 7-23, the K-means produced 59.00% for the 

density of the CCN after 10 epochs (Sárközy, et al., 2012). The SOM produced 53.00% 

for the density of the CCN and 58.04% using the F-measure after 140 epochs. The 

semi-SOM clustered the data with 64.00% for the density of the CCN and 67.86% using 

the F-measure. The DSOM clustered the data points with 47.00% for the density of the 

CCN and 52.68% accuracy by the F-measure after 20 epochs in 43' , 12” and 943 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

59 
53 

64 

47 48 

60.5 62 

100 

D
en

si
ty

 o
f C

C
N

 %
 

Univ
ers

ity
 of

 M
ala

ya



 

212 

milliseconds. The ESOM clustered the data points with 48.00% for the density of the 

CCN and 53.57% accuracy by the F-measure after 1 epoch in 56” and 998 milliseconds. 

The semi-ESOM clustered the data points with 60.50% for the density of the CCN and 

63.93% accuracy by the F-measure. The DUFFNN clustering method clustered this 

dataset with 62.00% for the density of the CCN and 65.93% accuracy by the F-measure 

after one epoch in 13” and 447 milliseconds. The results of the DSFFNN show 100% 

for the density of the CCN and 100% accuracy for the F-measure with 1 epoch of 

training. Recently, Veenu Mangat and Renu Vig (Mangat & Vig, 2014) reported 

classification of the Arcene dataset by several classification methods such as the K-NN. 

The K-NN (K=10) was able to classify the Arcene dataset with 77.00% accuracy by the 

F-measure after several epochs and 10 times executing the method. All clustering 

methods show two distinct clusters for this dataset. 

7.2.9 The DUFFNN and DSFFNN Clustering on Yeast 

The Yeast dataset from the UCI Repository contains 1484 samples with 8 attributes 

and 10 classes. Table 7-25 and Figure 7-24 shows the computed BMW vector of the 

Yeast dataset by the DUFFNN clustering method. 

Table 7-25: The final computed BMW vector from the received Yeast data using 
the DUFFNN method 

Vector of the SW for the Yeast dataset 

BMW1 BMW2 BMW3 BMW4 BMW5 BMW6 BMW7 BMW8 

0.0887 0.0826 0.0682 0.0688 0.1975 0.1973 0.243 0.054 

 

Univ
ers

ity
 of

 M
ala

ya



 

213 

 

Figure 7-24: The final BMW vector of the Yeast  dataset by the DUFFNN method 

The total thresholds of the received data points were computed on the basis of the 

final BMW vector, and the data points were subsequently clustered. Finally, the clusters 

that the RUFFNN can recognized are shown in Table 7-26.  

Table 7-26: The clusters of the DUFFNN method on the Yeast dataset 

  

C
lass C

Y
T 

C
lass ER

L 

C
lass EX

C
 

C
lass M

E1 

C
lass M

E2 

C
lass M

E3 

C
lass M

IT 

C
lass N

U
C

 

C
lass PO

X
 

C
lass V

A
X

 

Cluster 1 169 0 1 0 2 44 87 157 4 6 

Cluster 2 0 3 0 2 1 0 0 0 0 0 

Cluster 3 4 0 4 11 7 2 2 5 2 1 

Cluster 4 5 0 4 12 10 1 5 3 3 2 

Cluster 5 5 0 6 6 7 4 10 9 0 5 

Cluster 6 62 0 0 0 0 17 36 45 2 3 

Cluster 7 100 0 1 0 2 15 60 61 2 4 

Cluster 8 144 0 0 0 2 54 68 148 5 9 

Cluster 9 1 0 8 6 0 0 0 1 4 1 

Cluster 10 9 0 0 0 1 1 8 10 0 2 

 

As shown in Table 7-26, clustering of the Yeast dataset was so difficult and the 

clusters often covered and shared members of other near neighbour clusters. We 

compared the results of the proposed DUFFNN method with the results of some related 

methods. In the ESOM,  we considered the parameters: β = 0.8, ε = 0.005, δ = ε and γ = 

0.005. In the DSOM, we considered the parameters:   =0.100 and δ =1.25. Table 7-27 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

1 2 3 4 5 6 7 8 

B
M

W
 

Attributes 

Univ
ers

ity
 of

 M
ala

ya



 

214 

shows the speed of processing based on the number of epochs and the accuracy based 

on the density of  the CCN in the Yeast dataset. 

Table 7-27: Comparison of the clustering results on the Yeast data points by the 
DUFFNN, DSFFNN and some related methods 

The clustering method Density of 
CCN % F-measure% Epoch CPU TIME 

(milliseconds) 
DSOM 27.29 24.53 20 11” and 387 

ESOM 29.31 17.63 1 37” and 681 

Semi-ESOM 36.79 20.72 1 37” and 681 

DUFFNN 28.71 27.25 1 1” and 373 

DSFFNN 100 100 1 1” and 373 

 

 

Figure 7-25: Comparison of the clustering density of CCN % on the Yeast data 
points by the DUFFNN, DSFFNN and some related methods 

 

As shown in Table 7-27 and Figure 7-25, the DSOM clustered the Yeast data with 

27.29% for the density of the CCN and 24.53% accuracy by the F-measure after 20 

epoch in 11” and 387 milliseconds. The ESOM clustered the Yeast data with 29.31% 

for the density of the CCN and 17.63% accuracy by the F-measure after 1 epoch taking 

37” and 681 milliseconds. The semi-ESOM clustered this data with 36.79% for the 

density of the CCN and 20.72% accuracy by the F-measure. The DUFFNN clustering 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

DSOM ESOM Semi-ESOM DUFFNN DSFFNN 

27.29 29.31 
36.79 

28.71 

100 

D
en

si
ty

 o
f C

C
N

 %
 

Univ
ers

ity
 of

 M
ala

ya



 

215 

method clustered this dataset with 28.71% for the density of the CCN and 27.25% 

accuracy by the F-measure after 1 epoch just in 1” and 373 milliseconds. The DSFFNN 

clustering method clustered this dataset with 100% for the density of the CCN and also 

by the F-measure. Several literature reported the difficulty of clustering or classification 

of the Yeast dataset. As Longadge et al. reported, classification of the Yeast dataset by 

several classification methods such as the K-NN (Longadge & Dongre, 2013). The K-

NN (K=3) was able to classify the Yeast dataset with 0.11% accuracy by the F-measure 

after several epochs and times running the method. Also in 2014, Ahirwar  reported the 

K-means was able to classify the Yeast dataset with 65.00% accuracy by the F-measure 

after several epochs (Ahirwar, 2014). 

7.2.10 The DSFFNN Clustering on the Breast Cancer (UMMC) 

Table 7-28 shows the results of the implementation of the proposed DSFFNN 

method on the UMMC breast cancer data points. The number of cases of each subset, 

CPU time usage per second for training each subset during one epoch, and the accuracy 

of the semi-clustering of each subset of the breast cancer dataset  based on the F-

measure with 10 folds of the test dataset using the RSFFNN clustering model are 

provided in Table 7-28. 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

216 

Table 7-28: The results of implementation of the DSFFNN for each subset of the 
breast cancer from UMMC 

Year Density  
CCN (%) 

The number of cases 
in each subset 

Epoch 
CPU Time usage 

(milliseconds) 

Accuracy of the 
DSFFNN (F-
measure%) 

1st year 99.15 827 1 1', 05" and 2 99.43 
2nd year 98.96 673 1 882 98.69 
3rd year 98.93 561 1 501 98.93 
4th year 98.18 440 1 252 98.14 
5th year 100 355 1 137.39 99.99 
6th year 100 270 1 40.72 100 
7th year 100 200 1 28.93 100 
8th year 100 124 1 25.49 100 
9th year 100 56 1 22.95 100 
 

Table 7-28 shows that the training process for each subset of the breast cancer 

dataset was in one epoch between [22.95, 1', 05" and 2] milliseconds of CPU time; and 

the accuracy of the DSFFNN by the F-measure for the breast cancer sub-datasets was 

between [98.14% - 100%]. The results of the SOM-BPN  and the PCA-BPN are shown 

in Table 7-29 for every subset of the UMMC breast cancer dataset.  

Table 7-29: Comparison of the results of the PCA-BPN, the SOM-BPN and the 
DSFFNN for each subset of the UMMC breast cancer dataset  

Year PCA-BPN (F-
measure%) 

SOM-BPN (F-
measure%) 

DSFFNN (F-
measure%) 

1st year 76.00 82.00 99.43 
2nd year 63.00 72.00 98.69 
3rd year 62.00 71.00 98.93 
4th year 77.00 78.00 98.14 
5th year 83.00 86.00 99.99 
6th year 93.00 93.00 100 
7th year 98.00 98.00 100 
8th year 99.00 99.00 100 
9th year 99.00 99.00 100 

 

Univ
ers

ity
 of

 M
ala

ya



 

217 

The results of Table 7-29 shows the accuracy of implementation of the PCA-BPN 

model by the F-measure for the UMMC breast cancer dataset was between [62%- 

99%], and the accuracies of implementation of the SOM-BPN model by the F-measure  

for each subset of the breast cancer dataset  was between [71%- 99%]. However, the 

DSFFNN clustering method had better results with accuracy between [98.14%-100%] 

by the F-measure.  

7.3 Summary 

This chapter illustrated the experimental results and evaluation of the DUFFNN and 

the DUFFNN clustering performances, and compared the proposed methods to several 

related clustering methods using the various datasets from UCI Repository and the 

UMMC. For experimentation, the training speed was measured by the number of 

epochs and the CPU time usage. The accuracy of the clustering methods was measured 

by employing the F-measure with 10 folds of the test set, and also through the number 

of clusters and the density of the correctly classified nodes (CCN). The results of the 

experiments showed the superior outcomes of the proposed DUFFNN clustering 

method. Also, this chapter showed the results of the DSFFNN on the nine datasets from 

UCI Repository and the breast cancer dataset from the UMMC are more accurate than 

the results of the DUFFNN clustering method. We discuss and evaluate the proposed 

methods  with more details in Section 8.3 in the next chapter.  

Univ
ers

ity
 of

 M
ala

ya



 

218 

CHAPTER 8: CONCLUSIONS AND FUTURE RESEARCH 

8.1 Introduction 

Looking back, this thesis has presented eight chapters, including this chapter that 

began from the re-evaluation and exploration of the current online dynamic 

unsupervised feedforward neural network (ODUFFNN) clustering methods to the idea 

of developing the dynamic unsupervised feedforward neural network (DUFFNN) by 

reducing the training process to one epoch. We discussed some related researches of the 

ODUFFNN clustering, reducing the training process, increasing clustering accuracy and 

reducing the time complexity and reducing memory complexity. This chapter briefly 

discussed the summary of the results and findings, achievement of the objectives and 

contributions of the current study, in order to overcome the problems mentioned in 

Section 1.2. Finally, we recommend some future researches in order to improve the 

results of the proposed methods, and to apply the method in different environments.  

8.2 Achievement to Objectives of Research 

The following are the objectives of this research: 

 To review current effective ODUFFNN clustering methods. 

 To identify limitations and problems of current effective ODUFFNN clustering 

methods through the literature and practical investigations.  

 To develop a dynamic unsupervised feedforward neural network (DUFFNN) 

clustering method that is able to: 

1) Reduce the training time of clustering during one training epoch 

2) Increase the accuracy of clustering 

3) Reduce the time complexity of clustering 

4) Reduce the memory complexity of clustering 

Univ
ers

ity
 of

 M
ala

ya



 

219 

 To evaluate the performance of the proposed DUFFNN method. 

 To compare the results of the proposed DUFFNN method performance with 

rival methods within the scope of this research. 

In the next sections, we explain how we achieved the objectives of the research, in 

order to overcome the mentioned problems in Section 1.2: high training time and low 

accuracy of clustering, besides, high time complexity and high memory complexity of 

clustering. 

8.3 Summary of the results and finding 

The UFFNN clustering methods such as SOM and GNG are inherently distributed 

parallel processing architectures that can adjust their interconnection weights to learn 

(Andonie & Kovalerchuk, 2007; Bengio, et al., 2000; Hegland, 2003; Jain, 2010; 

Rougier & Boniface, 2011). In the online non-stationary data environment such as 

credit card transactions, the data are often highly massive and continuous, the 

distribution of data is not known and the data distribution may change over time. The 

problem of such environments are collection, storage, search, transfer, visualization and 

analysis of massive noise and the number of data dimensions (Bouchachia, et al., 2007; 

Hebboul, et al., 2011; Hsu, 2003; Kasabov, 1998; Rougier & Boniface, 2011). In the 

real online area, the static UFFNN are not suitable to use, however, they are generally 

considered as the fundamental clustering  methods and are adapted/modified to be used 

in non-stationary environments, and forms the current online dynamic UFFNN 

(ODUFFNN) clustering methods such as the ESOM and DSOM (Bouchachia, et al., 

2007; Hebboul, et al., 2011; Kasabov, 1998; Schaal & Atkeson, 1998). However, 

current ODUFFNN methods inherit the limitations and problems of the primary 

UFFNN clustering methods too (Bouchachia, et al., 2007; Hegland, 2003; Kasabov, 

1998; Schaal & Atkeson, 1998). We discussed the strategies and topologies of the 

Univ
ers

ity
 of

 M
ala

ya



 

220 

current effective ODUFFNN methods, and investigated and analysed their limitations, 

problems and some of the reasons of these problems in Chapter 3, in order to answer the 

questions, "Q1: What are the strategies, topologies and performances of current 

affective ODUFFNN clustering methods?" and "Q2: What are the limitations and 

problems of the current ODUFFNN clustering methods?" in Section 1.4. The 

ODUFFNN clustering methods should not be rigid; and should be ready to change and 

update its structure, nodes and connections with each online data entry. Therefore, the 

ODUFFNN clustering method should handle new data, control noisy data, adapt its 

algorithm, accommodate and prune data and rules incrementally and adjust itself in a 

flexible style to new conditions of the environment over time dynamically for 

processing of both data and knowledge. Relearning is a critical issue in the ODUFFNN 

clustering method with lifelong and incremental learning. The ODUFFNN clustering 

methods should train online data fast without relearning and cluster the continuous data 

in one pass, because there is no capacity to store the whole details of the online data, 

previous data and the connection of the data points in consequent steps (Bouchachia, et 

al., 2007; Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & Mulay, 2013; Liu, et al., 

2013; Schaal & Atkeson, 1998). However, the ODUFFNN clustering methods are not 

able to accommodate and adjust the data and rules without destroying old data and old 

knowledge (Bouchachia, et al., 2007; Kulkarni & Mulay, 2013; Liu & Ban, 2015; Liu, 

et al., 2013). In addition, the ODUFFNN method must control time, memory space and 

accuracy efficiently (Hamker, 2001; Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & 

Mulay, 2013; Liu & Ban, 2015; Liu, et al., 2013). As mentioned in Section 1.2, current 

ODUFFNN clustering methods generally suffer from high training time and low 

accuracy of clustering, also high time complexity and high memory complexity of 

clustering (Hamker, 2001; Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & Mulay, 

2013; Liu & Ban, 2015; Liu, et al., 2013). Essentially, we recognize the  reasons of the 

Univ
ers

ity
 of

 M
ala

ya



 

221 

problems of the current ODUFFNN clustering methods are related to the structure and 

features of the data, such as the size and dimensions of data, growth of the number of 

clusters and size of the network during clustering;  and the topology and algorithm of 

the current ODUFFNN clustering method, such as the use of random weights, distance 

thresholds and parameters for controlling tasks during clustering, and relearning that 

takes several epochs and CPU time usage. There is a trade-off between training time, 

clustering accuracy, time complexity and memory complexity, in the ODUFFNN 

clustering methods, and there is surprisingly and comparatively very few published 

works dealing with them together in one ODUFFNN clustering model (Hamker, 2001; 

Hebooul, et al., 2015; Kasabov, 1998; Kulkarni & Mulay, 2013; Liu & Ban, 2015; Liu, 

et al., 2013). For example, the IGNGU focuses on the strategy of fast training by 

pruning, however,  its action leads to low accuracy of clustering (Hebboul, et al., 2011). 

To the best of our knowledge, there are no published works related to the evaluation 

of current ODUFFNN clustering methods on a standard common datasets for 

benchmark purposes. In this research, we considered several datasets from the UCI 

Repository, and implemented, evaluated and compared the results of  the ESOM and 

DSOM as effective examples of the ODUFFNN methods. In addition, this research 

provides a good range of experimental results of these ODUFFNN methods and the 

proposed methods, and could potentially act as benchmarks for other researchers 

working in this field. As shown in Table 8-1, we compare the DUFFNN clustering 

method with some effective current ODUFFNN clustering methods, based on the 

experimental results and evaluation in Chapters 6 and 7, in order to answer question, 

"Q5: How is the performance of the developed DUFFNN clustering method in 

comparison of results with rival methods?", in Section 1.4. 

  

Univ
ers

ity
 of

 M
ala

ya



 

222 

Table 8-1: Comparison of the DUFFNN clustering method with some current 
online dynamic unsupervised feedforward neural network clustering methods 

 ESOM ESOINN DSOM IGNGU EDSOM HI-GNG DUFFNN 

Base patterns 
SOM and 

GNG, 
Hebbian 

GNG SOM 
 

GNG and 
Hebbian 

 
SOM and 

GNG 

 
GNG and 
Hebbian 

RUFFNN 

Some bold 
features 

(Advantages) 

Begin 
without 

any node 

Control the 
number and 
density of 

each cluster 

Improve the 
formula of 
updating 
weights 

Train by 
two layers 
in parallel 

 
Begin with 

four 
connected 

nodes 

 
Begin without 

any node 

 
Begin without 

any node 
Input vectors 
are not stored 

during learning 

Update 
itself with 

online 
input data 

Initialize code 
book 

Elasticity or 
Flexibility 
property 

 
 

Control 
density of 

each cluster 
and size of 
the network 

Initialize 
code book 

[m×4] 

Control 
density of 

each cluster 
and size of 
the network 

Update itself 
with online 
input data 

 

The nodes 
with weak 

Prune for 
controlling 

noise Control 
noise 

The nodes 
with weak 

threshold can 
be pruned 

Prune nodes 
with weak 
thresholds 

The nodes with 
weak  

thresholds 
can be 
pruned 

and weak 
thresholds 

thresholds can 
be pruned 

 

Input vectors 
are not stored 

during 
learning 

Fast training 
by pruning 

 

Initialize non-
random 
weights 

No sensitive to 
the order of the 

data entry 

 New input 
does not 
destroy 

last learned 
knowledge 

Mining BMW 

 

Cluster during 
one epoch 

without 
updating 
weights 

Cluster 
during one 

epoch 

 

Earn best 
matching 

Unit (BMU) 

 
 

Earn best 
matching unit 

(BMU) 

Use the 
enhanced 
Hebbian 
learning 

which makes 
the method 
robust to 

noisy data 
nodes 

Ability to 
retrieve old 

data 

 

Ability to learn 
the number of 

clusters 

Time 
Complexity O(n2.m) O(c.n2.m) O(c.n.m2) O(c.n2.m) O(c.n2.m) O(c.n2.m) O(n.m) 

Memory 
Complexity O(n2.m.sm) O(c.n2.m.sm) O(c.n.m2.sm) O(c.n2.m.sm) O(c.n2.m.sm) O(c.n2.m.sm) O(n.m.sm) 

 
The DUFFNN clustering with incremental lifelong or online learning property is 

developed for real non stationary environments, based on the structure, features and 

capabilities of the RUFFNN clustering in order to overcome the mentioned problems in 

Section 1.2. The DUFFNN clustering is a flexible method and with each online 

continuous data,  immediately updates all nodes, weights and distance thresholds. The 

proposed DUFFNN method is able to learn the number of clusters, without having any 

constraint and parameter for controlling the clustering tasks, based on the total 

Univ
ers

ity
 of

 M
ala

ya



 

223 

thresholds, and generates the clusters after just one epoch of training. As mentioned 

earlier, the DUFFNN is a flexible model and by changing the BMW, immediately re-

clusters the current online data node and old nodes dynamically, and subsequently 

clusters all data nodes based on the new structure of the network without suffering or 

destroying old data. The DUFFNN clustering method is able to control or delete 

attributes with weak weights to reduce the data dimensions, and data with solitary 

thresholds in order to reduce noise. Moreover, the DUFFNN method has the capabilities 

of increasing clustering accuracy and improving training time in a single epoch 

clustering without weight updating, and improving time complexity and memory 

complexity of clustering. 

8.4 Contributions of the research 

Based on the objectives in Section 1.3, we have considered several works and 

strategies to overcome the problems and achieve the goals of this research. Originally, 

the contributions of the research are outlined as follows: 

 A developed real unsupervised feedforward neural network (RUFFNN) 

clustering method 

 An improved real semi-supervised feedforward neural network (RSFFNN) 

clustering method 

 A developed dynamic unsupervised feedforward neural network (DUFFNN) 

clustering method 

 An improved dynamic semi-supervised feedforward neural network (DSFFNN) 

clustering method 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

224 

A Developed Real Unsupervised Feedforward Neural Network (RUFFNN) 

Clustering Method: We developed the RUFFNN method to cluster stationary data. 

The goals of developing the RUFFNN clustering are high accuracy, low training time, 

low time complexity and low memory complexity. In order to achieve these goals, the 

RUFFNN clustering method has several strategies. First, the method considers uniform 

normalized data through data preprocessing.  Then, the method generates non random 

weights by using input data directly. The method prunes attributes with weak weights 

and reduce the number of dimensions of the data matrix. Subsequently, the thresholds 

of each record of the data matrix are computed by considering non random weights and 

normalized data values. The RUFFNN recognizes noisy data by considering solitary 

thresholds and deleting them. The RUFFNN method clusters the data of a matrix based 

on the exclusion threshold of each record or data instance. Therefore, the number of 

clusters and capacity of each cluster is predicted based on the thresholds by the model 

without any pre-initialization of parameters. 

The RUFFNN clusters the matrix of the data during one training epoch, with low 

CPU time usage, without updating the weights and computing error function. Table 5-4 

in Section 5.6 showed, the time complexity and memory complexity of the RUFFNN 

are O(n.m) and O(n.m.sm) respectively, which are lower than related methods. 

An Improved Real Semi-supervised Feedforward Neural Network (RSFFNN) 

Clustering Method: We improved the result of the RUFFNN clustering method by 

assigning a class label to each input instance based on the training set. By using the K-

step activation function, the model considers the exclusive threshold of each input 

instance and the related class label. Consequently, based on K class labels and exclusive 

thresholds in the training set, the model expects K clusters  and for each cluster 

considers a domain of thresholds. By considering the clusters of results of the RUFFNN 

Univ
ers

ity
 of

 M
ala

ya



 

225 

method, if there is some input instance with a related threshold in each cluster but 

without related class label, the model moves this input instance to a related cluster. 

Therefore, the model updates the number of clusters and the density of each cluster by 

using class labels. This stage improves the accuracy of clustering.  

A Developed Dynamic Unsupervised Feedforward Neural Network (DUFFNN) 

Clustering Method: The main contribution of the thesis is the DUFFNN clustering 

method which has incremental lifelong learning suitable for dynamic environments. The 

goals of developing the DUFFNN clustering are high accuracy, low training time, low 

time complexity and low memory complexity in the scope of ODUFFNN clustering 

methods. In order to achieve these goals, the DUFFNN clustering method has several 

strategies. Dynamically after the entrance of each online input data, the method pre-

processes the data by considering uniform normalized online data.  Then, the method 

generates non random weights by using online input data directly. The DUFFNN 

computes and stores essential Intelligent Information (EII) of the current data, such as, 

the best matching weight (BMW) vector. The method is able to control and delete 

attributes with weak weights to reduce the data dimensions. Consequently, a single 

layer DUFFNN fetches the BMW vector and normalized the current data to generate its 

exclusive threshold during one epoch of training. If the new BMW vector is not equal to 

the old BMW, the single layer DUFFNN retrieves the old data nodes by using the EII 

and updates their TT based on the new BMW. The model recognizes and manages the 

data with solitary thresholds in order to reduce noise. Finally, the number of clusters 

and density of each cluster is updated. Similar to the RUFFNN clustering method, the 

DUFFNN method predicts the number of clusters and capacity of each cluster based on 

the thresholds without any pre-initialization of parameters. The DUFFNN clusters the 

online data in one training epoch, thus reduces CPU time usage, without updating the 

weights and computing error function. Also, the DUFFNN method is not sensitive to 

Univ
ers

ity
 of

 M
ala

ya



 

226 

the order of the entrance of the online data. The time complexity and memory 

complexity of the DUFFNN are O(n.m) and O(n.m.sm) respectively, which are lower 

than the mentioned related methods in the scope of this research, as Table 5-4 showed 

these matters in Section 5.6 . Therefore, the DUFFNN clustering method is able to 

achieve the objectives of the research appropriately, in answering the questions, "Q3: Is 

the proposed DUFFNN clustering method appropriate in order to cluster online 

continuous data dynamically and incrementally?" and "Q4: How can we develop a 

DUFFNN clustering method and what is the associated algorithm that is able to reduce 

the training time of clustering, increase the accuracy of clustering, reduce the time 

complexity and reduce memory complexity of clustering?", in Section 1.4. 

An Improved Dynamic Semi-supervised Feedforward Neural Network 

(DSFFNN) Clustering Method: The DUFFNN clustering is improved by applying 

class labels as partial supervision, which is called dynamic semi-supervised FFNN 

(DSFFNN) clustering, to assign a class label to each unlabeled data by considering a 

linear activation function and the exclusion threshold for more accurate results. The 

DSFFNN model like the RSFFNN, updates the number of clusters and the density of 

each cluster by using class labels through the feedback of users, which done 

dynamically. This stage affects the result of clustering and improves the accuracy of 

clustering of DUFFNN method. 

In Chapter 7, we evaluated and compared the performance of the proposed DUFFNN 

method with other related methods within the scope of this research, we used various 

datasets from the university of California at Irvine machine learning repository. 

Furthermore, we also used the breast cancer dataset from the University of Malaya 

Medical Centre (UMMC) to predict the survival time by using the DSFFNN clustering 

method. For experimental purposes, the training time is measured by the number of 

Univ
ers

ity
 of

 M
ala

ya



 

227 

epochs, the CPU time usage, and time complexity. The accuracy of the clustering 

methods are measured by employing the F-measure with 10 folds of the test set, and 

also through the number of clusters and the density of the correctly classified nodes 

(CCN) (Andrew, 2014; Chaimontree, et al., 2010; Rendón, et al., 2011; Rendón, et al., 

2011; Sung & Mukkamala, 2003). The memory usage is estimated by memory 

complexity which is computed by using the number of input data, training iterations and 

clusters; and the densities of the clusters. As part of the experimental results, the 

accuracy of the DUFFNN clustering method by using an F - measure with 10-fold 

cross-validation was 97.71% of the Breast Cancer, 97.24% of Iris, 73.41% of Spam, 

90.52% of SPECT Heart, 86.62% of SPECTF Heart, 52.57% of Musk1, 84.31% of 

Musk2, 66.07% of Arcene, and 27.25% of Yeast datasets , respectively, in just one 

epoch of training in a relatively short time, and so the results were improved around 

100% by using the DSFFNN clustering method.  Furthermore, the accuracy of 

clustering the breast cancer dataset from the university of Malaya medical centre to 

predict the survival time, were between 98.14% and 100% by the DSFFNN method 

showing superior results. Based on question in Section 1.4, "Q5: How is the 

performance of the developed DUFFNN clustering method in comparison of results 

with rival methods?", the experimental results, prove that the method is a practical 

proficiency with the strong support of theoretical background. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

228 

8.5 Recommendation and Future Directions 

In this research, the results of Chapter 7 presented the robust and flexible properties 

of the developed DUFFNN clustering method. The following are recommendations for 

future studies, suggested based on several prospects for investigating the research field: 

 To develop the DUFFNN clustering method in different data mining systems 

such as distributed stream data mining, time series data mining, world wide web 

mining, graph mining and multi-rational data mining. 

 To apply the DUFFNN clustering method in order to cluster higher dimensional 

data with the higher number of classes in the big data environment. 

 To implement the hardwares of the RUFFNN, RSFFNN, DUFFNN, and 

DSFFNN clustering methods,  in order to apply in different technological environments. 

As mentioned earlier, there are no published works related to the evaluation of 

current ODUFFNN clustering methods on a standard common datasets for benchmark 

purposes. Also, the selected datasets are remarkable, and most conventional methods do 

not satisfactorily cluster these datasets because of their features. In this research, we 

considered nine different datasets from the UCI Repository, and implemented, 

evaluated and compared several effective current ODUFFNN clustering methods. In 

addition, this research provides a good range of experimental results of these 

ODUFFNN methods and the proposed methods. We hope this research could 

potentially act as benchmarks for other researchers working in this field.  

  

Univ
ers

ity
 of

 M
ala

ya



 

229 

REFERENCES 

Ahirwar, G. (2014). A Novel K means Clustering Algorithm for Large Datasets Based 
on Divide and Conquer Technique. Pradnyesh. J. Bhisikar(IJCSIT) International 
Journal of Computer Science and Information Technologies, 5(1), 301-305.  

 
Aleksander, I., & Morton, H. (1990). An introduction to neural computing (Vol. 240): 

Chapman and Hall London. 
 
Amigó, E., Gonzalo, J., Artiles, J., & Verdejo, F. (2009). A comparison of extrinsic 

clustering evaluation metrics based on formal constraints. Information retrieval, 
12(4), 461-486.  

 
Andonie, R., & Kovalerchuk, B. (2007). Neural Networks for Data Mining: Constrains 

and Open Problems. Ellensburg, WA: Central Washington University, 
Computer Science Department.  

 
Andrew, P. (2014, 20 April 2014). Semantic Search Art, from 

http://semanticsearchart.com/downloadsdatacorpus.html 
 
Andrews, N. O., & Fox, E. A. (2007). Recent developments in document clustering. 

Computer Science, Virginia Tech, Tech. Rep.  
 
Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (1999). OPTICS: ordering 

points to identify the clustering structure. Paper presented at the ACM Sigmod 
Record. 

 
Asadi, R., Mustapha, N., & Sulaiman, N. (2009). Training Process Reduction Based On 

Potential Weights Linear Analysis To Accelarate Back Propagation Network. 
Arxiv preprint arXiv:0908.1453.  

 
Asuncion, A., & Newman, D. (2007). UCI Machine Learning Repository. Irvine,CA: 

University of California, School of Information andComputer Science. Accessed 
at http://www.ics.uci.edu/~mlearn/MLRepository.  

 
Barnett, V. (1994). Lewis, 1, 1994, Outliers in Statistical Data: Chichester, John Wiley. 
 
Bengio, Y. (2013). Deep Learning of Representations: Looking Forward. arXiv preprint 

arXiv:1305.0445.  
 
Bengio, Y., Buhmann, J. M., Embrechts, M., & Zurada, J. M. (2000). Neural networks 

for data mining and knowledge discovery [Special Issue]. (Vol. 100): IEEE 
Transactions on Neural Networks. 

 
Bose, N. K., & Liang, P. (1996). Neural network fundamentals with Graphs, 

Algorithms, and Applications: New York: McGraw–Hill. 
 
Bouchachia, A., Gabrys, B., & Sahel, Z. (2007). Overview of some incremental 

learning algorithms. Paper presented at the Proc. Fuzzy Systems Conf. Fuzz-
IEEE. 

 

Univ
ers

ity
 of

 M
ala

ya



 

230 

Brachman, R. J., & Anand, T. (1994). The Process of Knowledge Discovery in 
Databases: A First Sketch. Paper presented at the KDD Workshop. 

 
Brown, M., An, P. E., Harris, C. J., & Wang, H. (1993). How Biased is Your Multi-

Layered Perceptron?  
 
Camastra, F., & Verri, A. (2005). A novel kernel method for clustering. IEEE 

Transactions on Pattern Analysis and Machine Intelligence,, 27(5), 801-805.  
 
Chaimontree, S., Atkinson, K., & Coenen, F. (2010). Multi-agent based clustering: 

Towards generic multi-agent data mining Advances in Data Mining. 
Applications and Theoretical Aspects (pp. 115-127): Springer. 

 
Chakraborty, R. C. (2010). Fundamentals of Neural Networks. Soft Computing, 7-14.  
 
Chattopadhyay, M., Pranab, K., & Mazumdar, S. (2011). Principal component analysis 

and self-organizing map for visual clustering of machine-part cell formation in 
cellular manufacturing system. Paper presented at the Systems Research Forum. 

 
Christen, P. (2005). Probabilistic data generation for deduplication and data linkage 

Intelligent Data Engineering and Automated Learning-IDEAL 2005 (pp. 109-
116): Springer. 

 
Costa, J. A. F., & Oliveira, R. S. (2007). Cluster analysis using growing neural gas and 

graph partitioning. Paper presented at the Neural Networks, 2007. IJCNN 2007. 
International Joint Conference on. 

 
Craven, M. W., & Shavlik, J. W. (1997). Using neural networks for data mining. Future 

generation computer systems, 13(2), 211-229.  
 
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. 

Mathematics of Control, Signals, and Systems (MCSS), 2(4), 303-314.  
 
Daffertshofer, A., Lamoth, C. J. C., Meijer, O. G., & Beek, P. J. (2004). PCA in 

studying coordination and variability: a tutorial. Clinical Biomechanics, 19(4), 
415-428.  

 
Dasarathy, B. V. (1990). Nearest neighbor pattern classification techniques. Los 

Alamitos, CA: IEEE Computer Society Press. 
 
Deconinck, S. (2010). Artificial intelligence a modern approach.  
 
DeMers, D., & Cottrell, G. (1993). Non-linear dimensionality reduction. Advances in 

neural information processing systems, 580-580.  
 
Demuth, H., Beale, M., & Hagan, M. (2008). Neural Network Toolbox TM 6: User’s 

Guide. Natick, MA: Math Works.  
 
Deng, D., & Kasabov, N. (2003). On-line pattern analysis by evolving self-organizing 

maps. Neurocomputing, 51, 87-103.  
 

Univ
ers

ity
 of

 M
ala

ya



 

231 

Doszkocs, T. E., Reggia, J., & Lin, X. (1990). Connectionist models and information 
retrieval. Annual review of information science and technology, 25, 209-262.  

 
Drago, G. P., & Ridella, S. (1992). Statistically controlled activation weight 

initialization (SCAWI). Neural Networks, IEEE Transactions on, 3(4), 627-631.  
 
Du, K. L. (2010). Clustering: A neural network approach. Neural Networks, 23(1), 89-

107.  
 
Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., & Bengio, S. (2010). 

Why does unsupervised pre-training help deep learning? The Journal of 
Machine Learning Research, 11, 625-660.  

 
Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for 

discovering clusters in large spatial databases with noise. Paper presented at the 
Kdd. 

 
Ester, M., Kriegel, H. P., & Xu, X. (1995). A database interface for clustering in large 

spatial databases. Paper presented at the KDD. 
 
Estévez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized mutual 

information feature selection. Neural Networks, IEEE Transactions on, 20(2), 
189-201.  

 
Fern, X. Z., & Brodley, C. E. (2004). Solving cluster ensemble problems by bipartite 

graph partitioning. Paper presented at the Proceedings of the twenty-first 
international conference on Machine learning. 

 
Fernandez-Redondo, M., & Hernandez-Espinosa, C. (2000). A comparison among 

weight initialization methods for multilayer feedforward networks. Paper 
presented at the Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-
INNS-ENNS International Joint Conference on. 

 
Fernández-Redondo, M., & Hernandez-Espinosa, C. (2001). Weight initialization 

methods for multilayer feedforward. Paper presented at the ESANN'2001 
proceedings-European Symposium on Artificial Neural Networks. 

 
Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. 

Machine Learning, 2(2), 139-172.  
 
Fisher, R. (1950). The Use of Multiple Measurements in Taxonomic Problems: 

Contributions to Mathematical Statistics (Vol. (Original work published 1936)): 
JNew York: Wiley. 

 
Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical 

clusterings. Journal of the American statistical association, 78(383), 553-569.  
 
Fritzke, B. (1995). A growing neural gas network learns topologies. 
 
Fritzke, B. (1997). Some competitive learning methods. Dresden: Dresden University of 

Technology, Artificial Intelligence Institute.  
 

Univ
ers

ity
 of

 M
ala

ya



 

232 

Funahashi, K. I. (1989). On the approximate realization of continuous mappings by 
neural networks. Neural Networks, 2(3), 183-192.  

 
Furao, S., & Hasegawa, O. (2006). An incremental network for on-line unsupervised 

classification and topology learning. Neural Networks, 19(1), 90-106.  
 
Furao, S., Ogura, T., & Hasegawa, O. (2007). An enhanced self-organizing incremental 

neural network for online unsupervised learning. Neural Networks, 20(8), 893-
903.  

 
Gabrys, B. (2012). Adaptive Preprocessing for Streaming Data.  
 
Galhardas, H., Florescu, D., Shasha, D., Simon, E., & Saita, C. (2001). Declarative data 

cleaning: Language, model, and algorithms.  
 
Ganesh, M., Srivastava, J., & Richardson, T. (1996). Mining entity-identification rules 

for database integration. Paper presented at the Proceedings of the Second 
International Conference on Data Mining and Knowledge Discovery. 

 
Germano, T. (1999). Self Organizing Maps. Accessed at 

http://davis.wpi.edu/~matt/courses/soms.  
 
Goebel, M., & Gruenwald, L. (1999). A survey of data mining and knowledge 

discovery software tools. ACM SIGKDD Explorations Newsletter, 1(1), 20-33.  
 
Goroshin, R., & LeCun, Y. (2013). Saturating Auto-Encoder. arXiv preprint 

arXiv:1301.3577.  
 
Granda, W. V. (2003). Strategies for Clustering, Classifying, Integrating, Standardizing 

and Visualizing Microarray Gene Expression Data A Beginner’s Guide to 
Microarrays (pp. 277-340): Springer. 

 
Gui, V., Vasiu, R., & Bojković, Z. (2001). A new operator for image enhancement. 

Facta universitatis-series: Electronics and Energetics, 14(1), 109-117.  
 
Guyon, I. (2003). Design of experiments of the NIPS 2003 variable selection 

benchmark. Paper presented at the NIPS 2003 workshop on feature extraction 
and feature selection. 

 
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The 

Journal of Machine Learning Research, 3, 1157-1182.  
 
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation 

techniques. Journal of Intelligent Information Systems, 17(2-3), 107-145.  
 
Hamker, F. H. (2001). Life-long learning Cell Structures--continuously learning without 

catastrophic interference. Neural Networks, 14(4-5), 551-573.  
 
Han, J., & Kamber, M. (2006). Data Mining, Southeast Asia Edition: Concepts and 

Techniques. San Francisco, CA.: Morgan kaufmann. 
 

Univ
ers

ity
 of

 M
ala

ya



 

233 

Han, J., & Kamber, M. (2011). Pei. Data Mining Concepts and Techniques: The 
Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann 
Publishers. 

 
Haykin, S. (1994). Neural networks: a comprehensive foundation: Prentice Hall PTR. 
 
Haykin, S. (1999). Neural Networks: A Comprehensive Foundation.  
 
Haykin, S., & Network, N. (2004). A comprehensive foundation. Neural Networks, 2.  
 
Hazlina, H., Sameem, A., Nur Aishah, M., & Yip, C. (2004). Back Propagation Neural 

Network for the Pronosis of Breast Cancer: Comparison on Different Training 
Algorithms. Proceedings of the Second International Coriference on Artificial 
Intelligence in Engineering & Technology, Sabah, Malaysia, 445-449.  

 
Hebb, D. O. (1949). The organization of behavior: A neuropsychological approach. 

New York: Wiley, 1, 143-150.  
 
Hebboul, A., Hacini, M., & Hachouf, F. (2011). An incremental parallel neural network 

for unsupervised classification. Paper presented at the Proc. 7th Int. Workshop 
on Systems, Signal Processing Systems and Their Applications (WOSSPA). 

 
Hebooul, A., Hachouf, F., & Boulemnadjel, A. (2015). A new Incremental Neural 

Network for Simultaneous Clustering and Classification. Neurocomputing.  
 
Hegland, M. (2003). Data mining–challenges, models, methods and algorithms. 

Canberra, Australia: Australia National University, ANU Data Mining Group.  
 
Herrmann, L., & Ultsch, A. (2007). Label propagation for semi-supervised learning in 

self-organizing maps. Proceedings of the 6th WSOM.  
 
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with 

neural networks. Science, 313(5786), 504.  
 
Honkela, T. (1998). Description of Kohonen's Self-Organizing Map. Accessed at 

http://www.cis.hut.fi/~tho/thesis.  
 
Hsu, J. (2003). Data Mining and Business Intelligence: Tools, Technologies. Business 

Intelligence in the Digital Economy: Opportunities, Limitations and Risks: 
Opportunities, Limitations and Risks, 141.  

 
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 

193-218.  
 
Jacquier, E., Kane, A., & Marcus, A. J. (2003). Geometric or arithmetic mean: A 

reconsideration. Financial Analysts Journal, 46-53. 
  
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition 

Letters, 31(8), 651-666.  
 
Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data (Vol. 6): Prentice 

hall Englewood Cliffs. 

Univ
ers

ity
 of

 M
ala

ya



 

234 

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM 
computing surveys (CSUR), 31(3), 264-323.  

 
Jean, J. S., & Wang, J. (1994). Weight smoothing to improve network generalization. 

IEEE Transactions on Neural Networks, 5(5), 752-763.  
 
Jiang, Y., & Ren, J. (2011). Eigenvalue sensitive feature selection. Paper presented at 

the Proceedings of the 28th International Conference on Machine Learning 
(ICML-11). 

 
Jolliffe, I. T. (1986). Principal Component Analysis Springer Series in Statistics (pp. 1-

7): Springer New York. 
 
Jolliffe, I. T. (2002). Principal Component Analysis: New York: Springer–Verlag. 
 
Kamiya, Y., Ishii, T., Furao, S., & Hasegawa, O. (2007). An online semi-supervised 

clustering algorithm based on a self-organizing incremental neural network. 
Paper presented at the Proc. Int. Joint Conf. Neural Networks (IJCNN), IEEE. 

 
Kamyshanska, H., & Memisevic, R. (2013). On autoencoder scoring.  
 
Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms: New 

York: Wiley–Interscience. 
 
Kasabov, N. K. (1998). ECOS: Evolving Connectionist Systems and the ECO Learning 

Paradigm. Paper presented at the Proc. 5th Int. Conf. Neural Information 
Processing, ICONIP’98, Kitakyushu, Japan. 

 
Kaski, S. (2009). Self-organizing maps.  
 
Kaufman, L., & Rousseeuw, P. (1987). Clustering by means of medoids: North-

Holland. 
 
Kaufmann, L., & Rousseeuw, P. J. (1990). Finding groups in data. New York: J. Wiley 

& Sons.  
 
Keeni, K., Nakayama, K., & Shimodaira, H. (1999). A training scheme for pattern 

classification using multi-layer feed-forward neural networks. Paper presented at 
the Computational Intelligence and Multimedia Applications, 1999. 
ICCIMA'99. Proceedings. Third International Conference on. 

 
Kemp, R. A., MacAulay, C., Garner, D., & Palcic, B. (1997). Detection of malignancy 

associated changes in cervical cell nuclei using feed-forward neural networks. 
Journal of the European Society for Analytical Cellular Pathology, 14(1), 31-40.  

 
Kim, Y. K., & Ra, J. B. (1991). Weight value initialization for improving training speed 

in the backpropagation network. Paper presented at the Neural Networks, 1991. 
1991 IEEE International Joint Conference on. 

 
Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-based outliers: algorithms and 

applications. The VLDB Journal, 8(3-4), 237-253.  
 

Univ
ers

ity
 of

 M
ala

ya



 

235 

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. 
Biological cybernetics, 43(1), 59-69. 

  
Kohonen, T. (1997). Self-organizing maps (Springer Series in Information Sciences). 

Berlin: Springer–Verlag, 30, 22-25.  
 
Kohonen, T. (2000). Self-Organization Maps (3rd ed.): Berlin: Springer–Verlag. 
 
Kulkarni, P. A., & Mulay, P. (2013). Evolve systems using incremental clustering 

approach. Evolving Systems, 4(2), 71-85.  
 
Kuncheva, L. I. (2005). Using diversity measures for generating error-correcting output 

codes in classifier ensembles. Pattern Recognition Letters, 26(1), 83-90.  
 
Kurgan, L. A., Cios, K. J., Tadeusiewicz, R., Ogiela, M., & Goodenday, L. S. (2001). 

Knowledge discovery approach to automated cardiac SPECT diagnosis. 
Artificial Intelligence in Medicine, 23(2), 149-169.  

 
L., K., & T., D. (2006). Hebbian Learning, Principal Component Analysis, and 

Independent Component Analysis. 15-486/782: Artificial Neural Networks, 
from http://www.cs.cmu.edu/afs/cs/academic/class/15782-
f06/slides/hebbpca.pdf 

 
Labib, K., & Vemuri, V. R. (2006). An application of principal component analysis to 

the detection and visualization of computer network attacks. Paper presented at 
the Annales des télécommunications. 

 
Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009). Exploring strategies 

for training deep neural networks. Journal of Machine Learning Research, 10, 1-
40.  

 
Larochelle, H., Mandel, M., Pascanu, R., & Bengio, Y. (2012). Learning Algorithms for 

the Classification Restricted Boltzmann Machine. Journal of Machine Learning 
Research, 13, 643-669.  

 
Larson, J. W., Hegland, M., Harding, B., Roberts, S., Stals, L., Rendell, A. P., . . . 

Nobes, R. (2013). Fault-tolerant grid-based solvers: Combining concepts from 
sparse grids and mapreduce. Procedia Computer Science, 18, 130-139.  

 
LeCun, Y., Bottou, L., Orr, G., & Müller, K. (1998). Efficient backprop. Neural 

networks: Tricks of the trade, 546-546.  
 
Li, G., Alnuweiri, H., Wu, Y., & Li, H. (1993). Acceleration of back propagation 

through initial weight pre-training with delta rule. Paper presented at the Neural 
Networks, 1993., IEEE International Conference on. 

 
Lin, L., Osan, R., & Tsien, J. Z. (2006). Organizing principles of real-time memory 

encoding: neural clique assemblies and universal neural codes. TRENDS in 
Neurosciences, 29(1), 48-57.  

 
Linde, Y., Buzo, A., & Gray, R. (1980). An algorithm for vector quantizer design. IEEE 

Transactions on Communications, 28(1), 84-95.  

Univ
ers

ity
 of

 M
ala

ya



 

236 

Lindsay, R. S., Funahashi, T., Hanson, R. L., Matsuzawa, Y., Tanaka, S., Tataranni, P. 
A., . . . Krakoff, J. (2002). Adiponectin and development of type 2 diabetes in 
the Pima Indian population. Lancet, 360(9326), 57-58.  

 
Lippmann, R. P. (1987). An introduction to computing with neural nets. ASSP 

Magazine, IEEE, 4(2), 4-22.  
 
Liu, H., & Ban, X. J. (2015). Clustering by growing incremental self-organizing neural 

network. Expert Systems with Applications, 42(11), 4965-4981.  
 
Liu, H., Kurihara, M., Oyama, S., & Sato, H. (2013). An incremental self-organizing 

neural network based on enhanced competitive Hebbian learning. Paper 
presented at the Neural Networks (IJCNN), The 2013 International Joint 
Conference on. 

 
Longadge, R., & Dongre, S. (2013). Class Imbalance Problem in Data Mining Review. 

arXiv preprint arXiv:1305.1707. 
  
MacQueen, J. (1967). Some methods for classification and analysis of multivariate 

observations. Paper presented at the Proceedings of the fifth Berkeley 
symposium on mathematical statistics and probability. 

 
Maiorana, F., Mastorakis, N. E., Poulos, M., Mladenov, V., Bojkovic, Z., Simian, D., . . 

. Udriste, C. (2008). Performance improvements of a Kohonen self organizing 
classification algorithm on sparse data sets. Paper presented at the WSEAS 
International Conference. Proceedings. Mathematics and Computers in Science 
and Engineering. 

 
Maletic, J. I., & Marcus, A. J. (2000). Data cleansing: Beyond integrity analysis. Paper 

presented at the Proceedings of the Conference on Information Quality. 
 
Mangat, V., & Vig, R. (2014). Novel associative classifier based on dynamic adaptive 

PSO: Application to determining candidates for thoracic surgery. Expert 
Systems with Applications, 41(18), 8234-8244.  

 
Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information 

retrieval (Vol. 1): Cambridge university press Cambridge. 
 
Marcus, A. J., Maletic, J. I., & Lin, K. I. (2001). Ordinal association rules for error 

identification in data sets. Paper presented at the Proceedings of the tenth 
international conference on Information and knowledge management. 

 
Marina, M., D., H. . (2001). An Experimental Comparison of Model-Based Clustering 

Methods. . Machine Learning 42(1/2), 9-29.  
 
Martinetz, T. M. (1993). Competitive Hebbian learning rule forms perfectly topology 

preserving maps ICANN’93 (pp. 427-434): Springer. 
 
Martinetz, T. M., Berkovich, S. G., & Schulten, K. J. (1993). Neural-gas' network for 

vector quantization and its application to time-series prediction. IEEE 
Transactions on Neural Networks, 4(4), 558-569.  

 

Univ
ers

ity
 of

 M
ala

ya



 

237 

McClelland, J. L., Thomas, A. G., McCandliss, B. D., & Fiez, J. A. (1999). 
Understanding failures of learning: Hebbian learning, competition for 
representational space, and some preliminary experimental data. Progress in 
brain research, 121, 75-80.  

 
McCloskey, S. (2000). Neural Networks and Machine Learning Accessed at 

http://www.cim.mcgill.ca/~scott/RIT/research_project.html (pp. 755). 
 
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in 

nervous activity. Bulletin of mathematical biology, 5(4), 115-133.  
 
Mercer, D. P. (2003). Clustering large datasets. Linacre College.  
 
Milligan, G. W., & Cooper, M. C. (1986). A study of the comparability of external 

criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 
21(4), 441-458.  

 
Minsky, M., & Seymour, P. (1969). Perceptrons.  
 
Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45.  
 
Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms. 

The Computer Journal, 26(4), 354-359.  
 
Niknam, T., Firouzi, B. B., & Nayeripour, M. (2008). An efficient hybrid evolutionary 

algorithm for cluster analysis. Paper presented at the World Applied Sciences 
Journal. 

 
Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis: A New Synthesis: 

Elsevier. 
 
Oh, M., & Park, H. M. (2011). Preprocessing of independent vector analysis using feed-

forward network for robust speech recognition. Paper presented at the Proc. 
Neural Information Processing Conf. 

 
Özbay, Y., Ceylan, R., & Karlik, B. (2006). A fuzzy clustering neural network 

architecture for classification of ECG arrhythmias. Computers in Biology and 
Medicine, 36(4), 376-388.  

 
Papadimitriou, C. H. (2003). Computational complexity: John Wiley and Sons Ltd. 
 
Pavel, B. (2002). Survey of clustering data mining techniques. San Jose, CA: Accrue 

Software.  
 
Peng, J. M., & Lin, Z. (1999). A non-interior continuation method for generalized linear 

complementarity problems. Mathematical Programming, 86(3), 533-563. 
  
Prudent, Y., & Ennaji, A. (2000). Extraction incrémentale de la topologie des données. 

Laboratoire PSI, Université et INSA de Rouen, F-76821, France.  
 
Prudent, Y., & Ennaji, A. (2005). An incremental growing neural gas learns topologies. 

Paper presented at the Proc. IEEE Int. Joint Conf. Neural Networks, IJCNN’05. 

Univ
ers

ity
 of

 M
ala

ya



 

238 

 
Rendón, E., Abundez, I., Arizmendi, A., & Quiroz, E. M. (2011). Internal versus 

External cluster validation indexes. International Journal of computers and 
communications, 5(1), 27-34.  

 
Rendón, E., Abundez, I., Gutierrez, C., & DÍAZ, S. (2011). A comparison of internal 

and external cluster validation indexes. Paper presented at the Proceedings of the 
2011 American conference. 

 
Rohlf, F. J. (1974). Methods of comparing classifications. Annual Review of Ecology 

and Systematics, 101-113.  
 
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and 

organization in the brain. Psychological review, 65(6), 386.  
 
Rougier, N., & Boniface, Y. (2011). Dynamic self-organising map. Neurocomputing, 

74(11), 1840-1847.  
 
Sárközy, G. N., Song, F., Szemerédi, E., & Trivedi, S. (2012). A Practical Regularity 

Partitioning Algorithm and its Applications in Clustering. arXiv preprint 
arXiv:1209.6540.  

 
Satyanarayana, A., & Acquaviva, V. (2014). Enhanced cobweb clustering for 

identifying analog galaxies in astrophysics. Paper presented at the Electrical and 
Computer Engineering (CCECE), 2014 IEEE 27th Canadian Conference on. 

 
Schaal, S., & Atkeson, C. G. (1998). Constructive incremental learning from only local 

information. Neural computation, 10(8), 2047-2084.  
 
Shavlik, J. W., & Dietterich, T. G. (1990). Readings in machine learning: Morgan 

Kaufmann. 
 
Sheikholeslami, G., Chatterjee, S., & Zhang, A. (1998). Wavecluster: A multi-

resolution clustering approach for very large spatial databases. Paper presented 
at the VLDB. 

 
Shen, F., Yu, H., Sakurai, K., & Hasegawa, O. (2011). An incremental online semi-

supervised active learning algorithm based on self-organizing incremental neural 
network. Neural Computing and Applications, 20(7), 1061-1074.  

 
Shimodaira, H. (1994). A weight value initialization method for improving learning 

performance of the backpropagation algorithm in neural networks. Paper 
presented at the Tools with Artificial Intelligence, 1994. Proceedings., Sixth 
International Conference on. 

 
Smolensky, P. (1986). Information processing in dynamical systems: Foundations of 

harmony theory.  
 
Steinley, D. (2004). Properties of the Hubert-Arable Adjusted Rand Index. 

Psychological methods, 9(3), 386.  
 

Univ
ers

ity
 of

 M
ala

ya



 

239 

Studholme, C., Hill, D. L. G., & Hawkes, D. J. (1999). An overlap invariant entropy 
measure of 3D medical image alignment. Pattern Recognition, 32(1), 71-86.  

 
Sung, A. H., & Mukkamala, S. (2003). Identifying important features for intrusion 

detection using support vector machines and neural networks. Paper presented at 
the Applications and the Internet, 2003. Proceedings. 2003 Symposium on. 

 
Tong, X., Qi, L., Wu, F., & Zhou, H. (2010). A smoothing method for solving portfolio 

optimization with CVaR and applications in allocation of generation asset. 
Applied Mathematics and Computation, 216(6), 1723-1740.  

 
Ultsch, A., & Siemon, H. P. (1990). Kohonen's Self Organizing Feature Maps for 

Exploratory Data Analysis. Proc. Int. Neural Networks Conf., 305-308.  
 
Van der Maaten, L. J., Postma, E. O., & Van den Herik, H. J. (2009). Dimensionality 

reduction: A comparative review. Journal of Machine Learning Research, 10(1-
41), 66-71.  

 
Van Rijsbergen, C. J. (1979). Information Retrieval. Dept. of Computer Science, 

University of Glasgow. URL: citeseer. ist. psu. edu/vanrijsbergen79information. 
html.  

 
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & 

Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR 
data by geometric averaging of multiple internal control genes. Genome biology, 
3(7), research0034.  

 
Wang, T., Yu, X., Alahakoon, D., & Fei, S. (2013). An enhancing dynamic self-

organizing map for data clustering. Paper presented at the Control and 
Automation (ICCA), 2013 10th IEEE International Conference on. 

 
Wang, W., Yang, J., & Muntz, R. (1997). STING: A statistical information grid 

approach to spatial data mining. Paper presented at the VLDB. 
 
Werbos, P. (1974). Beyond regression: new tools for prediction and analysis in the 

behavioral sciences. PhD Thesis. Harvard University.  
 
Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits.  
 
Wolberg, W. H., & Mangasarian, O. L. (1990). Multisurface method of pattern 

separation for medical diagnosis applied to breast cytology. Proceedings of the 
National Academy of Sciences, 87(23), 9193-9196.  

 
Xianguang, G. (1998). Application of Improved Entropy Method in Evaluation of 

Economic Result [J]. Systems Engineering-Theory & Practice, 12.  
 
Yoon, H.-S., Bae, C.-S., & Min, B.-W. (1995). Neural networks using modified initial 

connection strengths by the importance of feature elements. Paper presented at 
the Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st 
Century., IEEE International Conference on. 

 

Univ
ers

ity
 of

 M
ala

ya



 

240 

Zhang, X. M., Chen, Y. Q., Ansari, N., & Shi, Y. Q. (2004). Mini-max initialization for 
function approximation. Neurocomputing, 57, 389-409.  

 
Zhao, Y., & Karypis, G. (2004). Empirical and theoretical comparisons of selected 

criterion functions for document clustering. Machine Learning, 55(3), 311-331.  
 
Ziarko, W., & Shan, N. (1994). KDD-R: A comprehensive system for knowledge 

discovery in databases using rough sets. Paper presented at the Proc. 3rd Int. 
Workshop Rough Sets Soft Comput. RSSC’94. 

 
Ziegel, E. R. (2002). Statistical inference. Technometrics, 44(4).  

Univ
ers

ity
 of

 M
ala

ya



 

241 

LIST OF PUBLICATIONS AND PAPERS PRESENTED 

ISI journals 

Asadi, R., Asadi, M., & Kareem, S. A. (2014). An efficient semisupervised feedforward 
neural network clustering. Artificial Intelligence for Engineering Design, 
Analysis and Manufacturing (AIEDAM), 1-15. The Cambridge University Press, 
University of Southern California, USA. (Q1) 

 
Asadi, R., Kareem, S. A., Asadi, M., & Asadi, S. (2015). A Single-Layer Semi-

Supervised Feed Forward Neural Network Clustering Method. Malaysian 
Journal of Computer Science (MJCS), 28, 3. The publication of University of 
Malaya, Malaysia. (Q4) 

 
Asadi, R., Kareem, S. A., Asadi, M., & Asadi, S. (2015). A dynamic semisupervised 

feedforward neural network clustering. Artificial Intelligence for Engineering 
Design, Analysis and Manufacturing (AIEDAM), (Accepted September 2015. 
The Cambridge University Press, University of Southern California, USA. (Q1) 

 
Asadi, R., Kareem, S. A., Asadi, M., & Asadi, S. (2015). An Unsupervised Feed 

Forward Neural Network Method for Efficient Clustering. The International 
Arab Journal of Information Technology (IAJIT), (Accepted September 2015). 
Zarqa University, Jordan. (Q2) 

 
 

Scopus and General journals 

Asadi, R., Mustapha, N., Sulaiman, N., & Shiri, N. (2009). New supervised multi layer 
feed forward neural network model to accelerate classification with high 
accuracy. European Journal of Scientific Research, 33(1), 163-178. 

 
Asadi, R., Mustapha, N., & Sulaiman, N. (2009). A framework for intelligent multi 

agent system based neural network classification model. arXiv preprint 
arXiv:0910.2029. 

 
Asadi, R., Mustapha, N., & Sulaiman, N. (2009). Training process reduction based on 

potential weights linear analysis to accelarate back propagation network. arXiv 
preprint arXiv:0908.1453. 

 
Asadi, R. (2009). Preprocessing And Pretraining Of Multilayer Feed Forward Neural 

Network (Doctoral dissertation, Universiti Putra Malaysia). 
 
Asadi, R., H. Sabah Hasan, et al. (2014). "Review of current Online Dynamic 

Unsupervised Feed Forward Neural Network classification." International 
Journal of Artificial Intelligence and Neural Networks (IJAINN) 4(2): 12.  

 
 

Univ
ers

ity
 of

 M
ala

ya



 

242 

 
Conference Papers and Presentations 

Asadi, R., Kareem, S. A., Hasan, S. H. (2014). Review of current Online Dynamic 
Unsupervised Feed Forward Neural Network classification. Computer Science 
and Electronics Engineering (CSEE) Kuala Lumpur, Malaysia. 

 
Asadi, R., & Kareem, S. A. (2014, June). Review of feed forward neural network 

classification preprocessing techniques. In PROCEEDINGS OF THE 3RD 
INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (Vol. 
1602, pp. 567-573). AIP Publishing. 

 
Asadi, R., Kareem, S. A., & Asadi, S. (2015). Assemble Intelligent Multi Agent System 

Based Feed-Forward Neural Network clustering. 
 
Asadi, R., Abdul-Kareem, S. (2011). Preprocessing techniques in multi-layer feed 

forward neural network classification. PGRES-2011, Faculty of Computer 
Science and Information Technology, University of Malaya (UM) Conference, 
Kuala Lumpur, Malaysia. 

 
Asadi,. R., Abdul-Kareem, S. (2013). A survey of feed forward neural network 

classification preprocessing techniques. PGRES-2013, Faculty of Computer 
Science and Information Technology, University of Malaya (UM) Conference, 
Kuala Lumpur, Malaysia. 

 
 
 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

243 

Reviewer of some  Journals and Conferences  

Journal of Computers & Electrical Engineering- Elsevier (CAEE). Having the 
ELSEVIER award because of contribution and manuscript review in the last two 
years for Computers and Electrical Engineering.  

 

 
 

Having the ELSEVIER award because of contribution and manuscript review in the last three years for 
Computers and Electrical Engineering, as 10 percent Top Reviewers.  

 

 
 

Univ
ers

ity
 of

 M
ala

ya



 

244 

Journal of IEEE Transactions on Neural Networks and Learning Systems (TNNLS). 
 
The International Joint Conference on Neural Networks - (IJCNN-2014), Organized and 

Sponsored by INNS and IEEE-CIS. 
 
The International Joint Conference on Neural Networks - (IJCNN-2016), Organized and 

Sponsored by INNS and IEEE-CIS. 
 
Also, as invited reviewer of some other journals and conferences, such as Artificial 

Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), 
journal of Cambridge University Press. 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

245 

APPENDIX A 

Algorithms 

 
PCA (X; L)                                                 
Input: Database X, database of input values;              
Output: Matrix L, Transformed database of X;            
 
Begin 
Let row number: n;                                                      
Let column number: p;                                                
Let Matrixcov: matrix n×p;                                          
// Computing vertical mean and deviation in each column 

Let μp = Mean of values vectors in column p;              

Let devnp = deviation of values vectors from μp for each row n in column p;   

// Computing the Cov of each two columns 

Let p’= p;                                                                    

       Forall  columns of Matrix Xp do                              

              Forall  columns of Matrix Xp’  do                             

                     Forall  rows of Matrix Xn  do                                     

                     Matrixcov(p,p’)=  (devnp . devnp’) / (n-1) ;               

//computing the eigenvalues and eigenvectors by Convergence of Power Iteration, 
Xp=A.Xp-i 

Let Ap=eigenvalue(M atrixcov (p,p’) ) ;                   
Let Egp(p,p’)=eigenvector(Matrixcov (p,p’)) ;       
// Choosing component : eigenvectors with highest eigenvalues 
// Forming feature vectors(Sort eigen...) 
Let Ap =Sort descending (Ap) ;                                                          
//Deriving the new datasets: finaldata=rowfeaturevectore*rowdatabase 

Forall  p’  
       Forall  columns of Matrix Lp do                               
              Forall  rows of Matrix Ln do                                      
              L(n, p) = L(n, p) + D(n,p) * Egm(p,p’) ;  
                

Figure 3-1A:  Principal Component Analysis (PCA) algorithm 

 
 

Univ
ers

ity
 of

 M
ala

ya



 

246 

 
SOM ( ) 
Input:  Data Vector X; 
Output: Clusters of dataset ; 
 
Begin 
Let t : Time; 
Let   :Node set at time t; 
Let n : Current number of nodes in   ; 
Let m : Current number of weight in Wi

t for node i; 
Let    : For each node i, a vector weight initialed randomly; 
Let BMU : Best matching unit or winner node; 
Let p : Position of node; 
Let T: Threshold; 
Let    : The initial learning rate; 
Let    : The final learning rate; 
Let      : The initial neighbourhood width; 
Let    : The final neighbourhood width; 
Let      : The neighbourhood function; 
Let          : Rate of learning and Control distance from the BMU ; 
Let     : The codeword of node i ; 
Let     : The code word for next position (j) ; 
Let X: Input vector;  
While the termination condition is not satisfied  
{ 
Input a new vector X; 
// Which vector of weight matrix for X is more similar to vector X 
  Forall i=1 to n 
                  ; 
BMU = the winner or the Best Matching Unit with the lowest   ; 
  Finding the neighbours of winner in order; 
  // Update the nodes in the neighbourhood of the BMU by pulling them closer to the 
input vector by using “The neighbourhood function”  
Forall neighbours of winner node 
                { 
                 // Usually, the SOM has   <<    and   <<             
                                  

     ;      
                    
                                 

     ; 

                               
 
        ; 

                 ; 
                                        ; 
                 } 
}  Repeat  
 

Figure 3-2A: Algorithm of the self-organizing map (SOM) 

 

Univ
ers

ity
 of

 M
ala

ya



 

247 

 
GNG ( ) 
Input:  DataVector X; 
Output: Clusters of dataset ; 
 
Begin 
Let t : Time; 
Let Wi : vector node weight; 
Let C : Interconnection set of edges; 
Let X: Input vector X; 
Let age, edge, Error: three parameters for age, connection between two nodes and 
computing distance error; 
Let E: Error; 
Let S, T, U, V: nodes; 
Initialize two random nodes S and T; 
Agemax , Errormax = Max threshold for age and Max amount for the Error; 
Let α , ß = parameters for decreasing error; 
Set edge, age, Error = 0; 
While termination condition is not satisfied  
{ 
Input a new vector X; 
// Finding first and second nodes closet to vector X 
       First node = || Ws - X ||2; 
       Second node = || Wt - X ||2; 
 
If node S is winner node and nodes n are neighbour nodes of winner node 
// ew , en є [0, 1] 
   Es = Es + || Ws - X ||2 ; 
  Ws = Ws + ew (X - Ws ); 
  Wn = Wn + en (X – Wn ); 
 
Forall edges from node S to its neighbours 
 age = age +1; 
 
If edge between S and T are not connect 
            {     

Create c(S, T); 
 age =age +1; 
  } 
 
Forall nodes with age>agemax 
          { 
          Delete edge; 
          Delete nodes without edge; 
          } 
 
Forall nodes V and neighbour nodes U with Error>Errormax 
           {       

           Add new node r between two nodes V and U 
           Wr = (Wu + Wv ) /2 ; 
            Delete edgeuv ; 
             Add edgeur and edgerv ; 

Univ
ers

ity
 of

 M
ala

ya



 

248 

            // Decrease Errors of Eu ,Ev 
           Eu =α .E u ; 
                      Ev =α .E v ; 
           Set Er = Eu ; 
            } 
Forall nodes  
 Ej = Ej – ß. Errori ; 
 
}  Repeat  
 
 

Figure 3-3A: Algorithm of growing neural gas (GNG) 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

249 

 
ESOM ( ) 
Input:  DataVector X; 
Output: Clusters of dataset ; 
 
Begin 
Let t : Time; 
Let Nt: Node set at time t; 
Let m : Current number of nodes in Nt; 
Let Wi: Each prototype node Wi єN t as a dimensional vector d for i=1,…,m; 
Let C : Interconnection set; 
Let P, ε,δ , γ,T p : Parameter set, P={ε,δ ,γ ,T p}, ε is distance threshold, δ controls the 
spread of neighbourhood, γ is a small constant learning rate; Tp steps of learning time; 
While termination condition is not satisfied  
{ 
Input a new X; 
 
If (N=0 or none of the existing nodes matches the input vector X within a distance 
threshold ε) 
        Forall i=1 to m 
        { 
           d(Wi , X) = || Wi - X ||   
       
   If || Wi - X| |> ε 
           { 
            // Create new node in the network 
               Wm+1 = X ;  
               N=N U Wm+1 ;   
               m=m+1; 
            // Connect the new node with its two nearest neighbours Wn1 , Wn2 
               If there are not any connection 
                    Ct+1 = Ct U C( X, Wn1 ) U C( X, Wn2 ) U C(Wn1, Wn2 ); 
           } 
        Else  
           { 
             // In one epoch, update the matching node and each of its neighbours, denoted 

as W,  
             // according to their distances to the input vector X, modified each node and 

usually 
             // set δ= ε  
                      // Compute activation function 
                        D= -2 |X-Wi |2 /ε 2; 
                       α i(X) =eD; 
                      //   Compute neighbourhood rank related to k neighbours 
                       hi,winner index(X)= α i(X)/∑k α k(X) ; 
                      ΔW=γ h i,winner index(X)(X-Wi) ; 
              } 
 
//  Reset the strength of connections between the winner (or the newly created node) and 
its 
//  neighbours.     The connection strength s(i; j), for the connection C(wi;wj),  and  
β=0.8 as  

Univ
ers

ity
 of

 M
ala

ya



 

250 

//  forgetting constant: 
 
                              ; 
 
Prune weakness connection and isolated nodes; 
 
}  Repeat  
 

 

Figure 3-4A: Algorithm of evolving self-organizing map (ESOM) 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

251 

 
ESOINN ( ) 
Input:  DataVector X; 
Output: Clusters of dataset ; 
 
Begin 
Let A: node set A, used to store nodes 
Let C: connection set or edge set, used to store connection between nodes  
Let a1, a2 = first and second nearest nodes (or winners) 
Let Ni= the set of direct topological neighbour nodes of node i 
Let NA= number of nodes in A 
Let Wi= the n-dimensional weight vector of node i 
Let Ti = similarity threshold of node i 
Let Mi = local accumulated number of signals of node i; the number is updated when 
node i is the winner 
Let age(i,j) = age of edge that connects node i and node j. 
Let γ = the number of learning iteration  
Let hi = mean accumulated point (density) of node i 
Let pi = predefined parameter to take the place of number and use the mean of the 
accumulated point of node i to describe the density of that node 
Let Amax = apex density of subset A 
Let Bmax = apex density of subset B 
Let agemax = predefined max value for age 
Let c1, c2 = control parameters c1 for two neighbour nodes and c2 for one neighbour 
nodes to control the deletion,  
( 0 < c <=1 ) 
Let path = link between two nodes with a series of nodes 
Initialization: set A with two nodes of weight vectors chosen randomly from input 
pattern; Add connection of A×A to empty set; 
 
While termination condition is not satisfied  
{ 
Input new pattern X; 
           // Compute Ti distance threshold 
                                 If  node i has j neighbour nodes  
           Ti = maxjєNi || Wi – Wj ||; 
                                 Else (no neighbour) 
             // N is the set of all j nodes 
                                Ti  = minjєN\(i) || Wi – Wj ||; 
 Compute Ta1 and Ta2 based on Ti; 
              a1=  argmin || X - Wa ||;  a2 = argmin || X - Wa || ; 
              If  a1> Ta1  or  a2 > Ta2 
        { 
                                  // Node i is new,  
          Add node i to set A 
                                  // Do while for input new pattern X 
           Exit loop; 
         } 
  Increase the age of all edges linked with by 1; 
 
 // Judge if it is necessary to build a connection between a1, a2 
    If the a1 or  a2 is a new node (it is unknown which subclass the node belongs) 

Univ
ers

ity
 of

 M
ala

ya



 

252 

                                    connect two nodes with an edge; age = 0; 
    If the a1 or  a2 belong to the same subclass  
                                    connect two nodes with an edge; age = 0; 
    If the a1 belongs to subclass A, 
                                     the a2 belongs to subclass B; 
                        If min( ha1 , ha2 )> α AAmax Or min( ha1 , ha2 )>  αBBmax  is satisfied 
        {  

        connect the two nodes; age = 0;  
                                                                combine subclasses A and B;  

     } 
                        Else  
        { 

        don’t connect the two nodes; 
                                                                If a connection exists between the two nodes 

  remove the connection; 
         } 
 
 // Update the density of the winner            
 hi = 1/N      

 
     

   ; 
 // Add 1 to local accumulated number of signal Ma1 
 Ma1 (t+1) = Ma1 (t) +1; 

// Adapt the weight vectors of the winner and its direct topological neighbours by a 
fraction ε1(t) and ε2(t) of the total distance to the input signal, 
// Adopt the learning rate over time by ε1(t)=1/tan dε 2(t)=1/100t 
 
Updating weights by using 
           { 

∆Wa1 =ε 1 (Ma1)(X - Wa1) 
∆Wi =ε 2 (M a1)(X - Wi) for all direct neighbours i of a1 

            } 
For all edges  

If ages > agemax 
Remove such edges; 

 
If the number of input signals generated so far is an integer multiple of parameter γ 
   Update the subclass label of every node by: Separating a complex class into 
subclasses;  
 
// We call a node an peak of a subclass if the node has a local maximum density.  
For all peaks in the complex class 
             {  Give such peaks different labels; 
                Classify all other nodes with the same subclass label as their peaks;  
              } 
// Such nodes lie in the overlapped area if the connected nodes have different subclass 
labels 
// Delete nodes resulting from noise as follows: 
//NA is the number of nodes in node set A;    ( 0 < c <=1 ) 
 
              For all nodes in set A 
                                If node a has two neighbours and ha< c1   

  
    / NA 

                                       remove the node a; 
  For all nodes in set A 

Univ
ers

ity
 of

 M
ala

ya



 

253 

   If node ahas one neighbour, and ha< c2   
  
    / NA 

remove node a; 
  For all nodes in set A 
                 If node a  has no neighbour 

remove node a; 
 
If the learning process is finished 
            { 
 // Classify nodes to different classes 
     Initialize all nodes as unclassified; 
     Randomly choose one unclassified node i from node set A; 
     Mark node i as classified and label it as class Ci; 
     For all unclassified nodes in set A those are connected to node i with a “path”  

    Mark these nodes as classified and label them as the same class as node i; 
// Report the number of classes, output the prototype vectors of every class; 
// Stop the learning process; 

            } 
 } Repeat 
 

 
Figure 3-5A: The algorithm of enhanced self organizing incremental neural 

network for online unsupervised learning 

 

         
 
      In ESOINN, the parameter of “point” is used as the mean of the accumulated points of a node to 

describe the density of that data node. First, the mean distance of node i or    from its neighbours must be 

computed as in Equations (3.1A) and (3.2A):  

     
          

   
                                                                                                                (3.1A) 

     Where, m is the number of the neighbours of node i, Wi  is the weight vector of node i, while Wj  is the 

weight vector of node i neighbours.  

 

                                                    
       

      , if node i  is a winner; 

        pi = point of node i =     
   

           0                     , if node i is not a winner; 
                                                                                                                (3.2A) 

 

     The sum of the data points during the period of learning is equal to       
 
     

   , and parameter   is 

the number of input signals during one learning period; n includes learning period times. The mean 

accumulated points (density) of node i or hi is shown in Equation (3.3A): 

Univ
ers

ity
 of

 M
ala

ya



 

254 

Hi = 1/N      
 
     

                                                                                                                     (3.3A) 

     The ESOINN is able to detect the overlapped clusters and separate them into the different sub-clusters 

with lower densities by using Equation (3.4A), then, the connections between the data nodes in the sub-

clusters are renewed. Therefore, if A and B are the subclasses, Amax and Bmax in the algorithm refer to the 

peak density of subclass A and the peak density of subclass B. Both the subclasses of A and B can be 

combined in one subclass through the following conditions of  Equation (3.4A): 

If min( hwinner , hsecondwinner ) > αA Amax     Or   min( hwinner , hsecondwinner ) >α BBmax                                              (3.4A) 

     The data nodes of the winner and the second winner lie in the overlapped area between the subclasses 

A and B. Parameter α is measured in the domain of [0, 1] which can be calculated by using the threshold 

function as in Equation (3.5A) and (3.6A): 

                  0   if  2meanA >= Amax 
       αA =     0.5   if   3meanA >= Amax > 2meanA 
                   1   if        Amax  > 3meanA 
                                                                                                                                                               (3.5A) 

     =                                                                                                                                (3.6A) 

 

       Where NA is the number of nodes in subclass A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

255 

IGNGU ( ) 
Input:  DataVector X; 
Output: Clusters of dataset ; 
 
Begin 
Let t : Time 
Let Wi : Node feature vector 
Let T : Threshold 
Let C : Class label of every feature vector in first layer or second layer 
Let typei= type of feature vector in first layer or second layer which can be active or 
inactive 
Let Mi = activation number 
Let Na= the number of active nodes 
Let X: Input vector X 
Let age, edge: three parameters for age, connection between two nodes  
Let dw : within-cluster distance 
Let db : between-cluster distance 
agemax = Max threshold for age  
Set edge, age = 0; 
While termination condition is not satisfied  
{ 
Input a new vector X; 
// Finding first and second nodes closet to vector X, first winner g1, second winner g2 
If not satisfy (||X–Wi|| <= Ti ) and there are not at least two nodes which satisfy this 
condition (empty network) 
 { 

Add new node i; 
 Mi = 0; 
 Wi = X; 
 } 
If in first layer, network is not empty (there are at least two nodes which satisfy the 
condition of || X – Wi || <= Ti) 
                         Ti = || X – Wg1 ||; 
If g1 is first winner that satisfy ( || X – Wi || <= Ti ) 
 If this is first layer  

 Ti = || X – Wg1 ||; 

 Find g2 second winner 
  If g2 does not exist or not satisfy ( || X – Wi || <= Ti ) 
   {  

Add new node j; 
   Wj = X; 
   Add edge g1,node j; age of edgeg1, node j=0; 
   In first layer: Tj = || X – Wj ||; 
   } 
If satisfy ( || X – Wi || <= Ti ) and there are at least two nodes which satisfy this 
condition 
  // Adaptive rates of winner node and neighbour nodes:  εg1 =1/t ; ε v = (1/100×t) 
     Updating weights by using 
            { 
  ∆Wg1(t)= ε g1 (X - W g1); 
  Forall v neighbour nodes of g1 
            ∆Wv(t)= ε v (X - W v); 

Univ
ers

ity
 of

 M
ala

ya



 

256 

              } 
  Forall ages of nodes 
 If agei> agemax 
  {  

Delete edge;  
  Delete nodes without edge; 
  } 
  Forall first layer winner and its neighbour nodes  
 { 
 Typei = active; 

Mi = Mi +1; 
} 

  Forall first layer first winner and second winner nodes 
 Tg1 = maxc ε neibor node g1 || Wc – Wg1 ||; 

 Tg2 = maxc ε neibor node g2 || Wc – Wg2 ||; 

 
  // For removed to eliminate noise and to avoid exceeding the number of nodes 
  // 0< c <1 

  If Mi<  
  

  
   

    

 Delete nodes with this condition for Mi ; 
  Forall dw  within-cluster distance 
                         ; 
  Forall db between-cluster distance  
                                          ; 
   
}  Repeat  
 
 

Figure 3-6A: Incremental growing with neural gas utility parameter (IGNGU) 

algorithm 

  

Univ
ers

ity
 of

 M
ala

ya



 

257 

 
EDSOM ( ) 
Input:  DataVector X; 
Output: Clusters of dataset ; 
 
Begin 
Let t : Time; 
Let Nt: Node set at time t; 
Let m : Current number of nodes in Nt; 
Let Wi: Each prototype node Wi єN t as a dimensional vector d for i=1,…,m; 
Let C : Interconnection set; 
Let E : A set of edge connecting the nodes; 
Let winning node: The best matching unit toward the input value data;  
Let ε,δ , γ,T p :  ε is distance threshold, δ controls the spread of neighbourhood, γ is a 
small constant learning rate; Tp steps of learning time; 
While termination condition is not satisfied  
{ 
Initial four connected data nodes, and N=4; 
Initial a [m×4] matrix of the random weights; 
Input a new X; 
    If ||    - X ||< ε 
           { 
           Add X; 
           // Update the winner and its direct neighbours according to the distance to X, 
           // We usually consider δ= ε , 
 

                

 
               

    
  

          
           } 
    Else { 
            // Create new node in the network 
               Wm+1 = X ;  
               N=N U Wm+1 ;   
               m=m+1; 
              If winner node is a boundary node, connect the new node to winner node,  
              Else if it   is not boundary node, connect to secound winner node;                     
            } 
  Prune weakness connection and isolated nodes; 
 
}  Repeat  
 

 

Figure 3-7A: Algorithm of enhancing dynamic self-organizing map (EDSOM) 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

258 

 
HI-GNG ( ) 
Input:  DataVector X; 
Output: Clusters of data nodes which their maturity-level are larger than the boundary 
maturity-level; 
 
Begin 
Let t : Time; 
Let Nt: Node set at time t; 
Let m : Current number of nodes in Nt; 
Let Wi: Each prototype node Wi єN t as a dimensional vector d for i=1,…,m; 
Let C : Interconnection set; 
Let Δs : An integer value for updating connection-strength; 
Let winning node: The best matching unit toward the input value data;  
Let   ,    , δ,γ ,T p :   ,    are small constant learning rates which are integer values 
between (0,1), ε is distance threshold, δ controls the spread of neighbourhood, Tp steps 
of learning time; 
 
While termination condition is not satisfied  
{ 
Initial the network without any data node, and N=0; 
 
Input a new X; 
 
Search for first winner and second winner nodes by considering ||    - X ||< ε 
{    
If (N=0) or  (first winner node is larger than ε) or (seocond winner nodes is larger than 
ε) 
           { 
            Create two new nodes in the network; 
            Set their weights by: 
                
                             = X ;  
                              is randomly computed by ||               -                
||<  

  
 ; 

               N=N U (              and               );   
               m=m+2; 
               Create connection between first winner node and second winner node; 
               Connection-strength (first winner node , second winner node)   1; 
              } 
  Continue; 
  } 
// Update the weight vectors of the first nearest node and its neighbours: 
   {  
                                                      ; 
                                                                                           ; 
    Increase the maturity level values of first winner and second winner by 1; 
    } 
 
If there is connection between first node and second node,  
    Then update connection-strength(first and second nodes) by adding Δs;  

Univ
ers

ity
 of

 M
ala

ya



 

259 

If there is not connection between first node and second node,  
    Then create a connection and increase connection-strength(first and second nodes) by 
1; 
 
Reduce the connection-strength of the connections between first winner node and its 
neighbours; 
 
Remove the connections whose connection-strength is zero and if this make some nodes 
isolated, also remove the isolated nodes; 
 
If the number of iterations is so far an integer multiple of the pre-initialized maximum 
value of maturity-level,  
    Then Reduce the connection-strength of all existing connections; 
  
}  Repeat  
 

 

Figure 3-8A: Algorithm of enhanced incremental growing neural gas (HI-GNG) 

 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

260 

APPENDICES B 

Datasets Features 

Breast Cancer Wisconsin Dataset  

 Number of Instances: 699 and after cleaning 683 
 Number of Attributes: 11 (10 Integer + 1 binary class) 
 The attribute Information : 

1. Sample code number: ID number 
2. Clump Thickness: 1 - 10  
3. Uniformity of Cell Size: 1 - 10  
4. Uniformity of Cell Shape: 1 - 10  
5. Marginal Adhesion: 1 - 10  
6. Single Epithelial Cell Size: 1 - 10  
7. Bare Nuclei: 1 - 10  
8. Bland Chromatin: 1 - 10  
9. Normal Nucleoli: 1 - 10  
10. Mitoses: 1 - 10  
11. Class: (2 for benign, 4 for malignant) 

 Missing Attribute Values: Yes 
 Class Distribution: 

Class  # Instances  
Benign                         444 
malignant                     239 
 

  

Univ
ers

ity
 of

 M
ala

ya



 

261 

 Sample of the Breast Cancer Wisconsin Dataset  

Id A1 A2 A3 A4 A5 A6 A7 A8 A9 Class 

1000025 5 1 1 1 2 1 3 1 1 2 

1002945 5 4 4 5 7 10 3 2 1 2 

1015425 3 1 1 1 2 2 3 1 1 2 

1016277 6 8 8 1 3 4 3 7 1 2 

1017023 4 1 1 3 2 1 3 1 1 2 

1017122 8 10 10 8 7 10 9 7 1 4 

1018099 1 1 1 1 2 10 3 1 1 2 

1018561 2 1 2 1 2 1 3 1 1 2 

1033078 2 1 1 1 2 1 1 1 5 2 

1033078 4 2 1 1 2 1 2 1 1 2 

1035283 1 1 1 1 1 1 3 1 1 2 

1036172 2 1 1 1 2 1 2 1 1 2 

1041801 5 3 3 3 2 3 4 4 1 4 

1043999 1 1 1 1 2 3 3 1 1 2 

1044572 8 7 5 10 7 9 5 5 4 4 

1047630 7 4 6 4 6 1 4 3 1 4 

1048672 4 1 1 1 2 1 2 1 1 2 

1049815 4 1 1 1 2 1 3 1 1 2 

1050670 10 7 7 6 4 10 4 1 2 4 

1050718 6 1 1 1 2 1 3 1 1 2 

1054590 7 3 2 10 5 10 5 4 4 4 

1054593 10 5 5 3 6 7 7 10 1 4 

1056784 3 1 1 1 2 1 2 1 1 2 

1059552 1 1 1 1 2 1 3 1 1 2 

1065726 5 2 3 4 2 7 3 6 1 4 

1066373 3 2 1 1 1 1 2 1 1 2 

1066979 5 1 1 1 2 1 2 1 1 2 

1067444 2 1 1 1 2 1 2 1 1 2 

1070935 1 1 3 1 2 1 1 1 1 2 

... ... ... ... ... ... ... ... ... ... ... 

  Univ
ers

ity
 of

 M
ala

ya



 

262 

Iris Dataset  

 Number of Instances: 150 
 Number of Attributes: 5 (4 Real + 1 trinary class) 
 The attribute Information : 

1. Sepal length in cm 

2. Sepal width in cm 

3. Petal length in cm 

4. Petal width in cm 

5. Class: (Iris Setosa, Iris Versicolour , Iris Virginica) 

 Missing Attribute Values: None 

 Class Distribution: 
Class  # Instances  
Iris Setosa                      50 
Iris Versicolour              50 
Iris Virginica                 50 

  

Univ
ers

ity
 of

 M
ala

ya



 

263 

 Sample of the Iris Dataset  

A1 A2 A3 A4 Class 

5.6 2.8 4.9 2 Iris-virginica 

5.7 2.5 5 2 Iris-virginica 

5.8 2.7 5.1 1.9 Iris-virginica 

5.8 2.7 5.1 1.9 Iris-virginica 

6.3 2.5 5 1.9 Iris-virginica 

6.7 3.1 4.4 1.4 Iris-versicolor 

6 2.9 4.5 1.5 Iris-versicolor 

6 2.2 5 1.5 Iris-virginica 

6.6 3 4.4 1.4 Iris-versicolor 

6.1 2.9 4.7 1.4 Iris-versicolor 

4.9 2.5 4.5 1.7 Iris-virginica 

6.1 3 4.6 1.4 Iris-versicolor 

5.6 3 4.5 1.5 Iris-versicolor 

5.4 3 4.5 1.5 Iris-versicolor 

6.6 2.9 4.6 1.3 Iris-versicolor 

5.9 3 4.2 1.5 Iris-versicolor 

6.2 2.2 4.5 1.5 Iris-versicolor 

6.4 2.9 4.3 1.3 Iris-versicolor 

6.2 2.9 4.3 1.3 Iris-versicolor 

6.1 2.8 4.7 1.2 Iris-versicolor 

5.7 2.8 4.5 1.3 Iris-versicolor 

6.3 2.3 4.4 1.3 Iris-versicolor 

5.7 2.9 4.2 1.3 Iris-versicolor 

5.6 3 4.1 1.3 Iris-versicolor 

5.5 4.2 1.4 0.2 Iris-setosa 

5 2.3 3.3 1 Iris-versicolor 

5 2 3.5 1 Iris-versicolor 

5.8 4 1.2 0.2 Iris-setosa 

5.4 3.9 1.7 0.4 Iris-setosa 

5.7 3.8 1.7 0.3 Iris-setosa 

... ... ... ... ... 

 

  
Univ

ers
ity

 of
 M

ala
ya



 

264 

Spambase Dataset  

 Number of Instances: 4601 
 Number of Attributes: 57 (56 Integer, Real + 1 binary class) 
 The attribute Information : 
48 continuous real [0,100] attributes of type word_freq_WORD  
= percentage of words in the e-mail that match WORD, i.e. 100 * (number of times the 
WORD appears in the e-mail) / total number of words in e-mail. A "word" in this case 
is any string of alphanumeric characters bounded by non-alphanumeric characters or 
end-of-string.  
 
6 continuous real [0,100] attributes of type char_freq_CHAR]  
= percentage of characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR 
occurences)/total characters in e-mail  
 
1 continuous real [1,...] attribute of type capital_run_length_average  
= average length of uninterrupted sequences of capital letters  
 
1 continuous integer [1,...] attribute of type capital_run_length_longest  
= length of longest uninterrupted sequence of capital letters  
 
1 continuous integer [1,...] attribute of type capital_run_length_total  
= sum of length of uninterrupted sequences of capital letters  
= total number of capital letters in the e-mail  
 
1 nominal {0,1} class attribute of type spam  
= denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited 
commercial e-mail.  
 Missing Attribute Values: Yes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

265 

 Sample of the Spambase Dataset  

Class A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 ... 

1 0 0 0 0 0 1.29 0 0.64 0 0 0 0 0 0 0 ... 

1 0 0 0 0 0 0 0 3.19 0 0 0 0 0 0 0 ... 

1 0 0 1.35 1.35 0 0 0 1.35 0 0 0 0 0 0 0 ... 

1 0 1.03 0 0 1.03 0 1.03 0.51 0 0.51 0 1.03 0 0 0 ... 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.29 ... 

1 0 0 0.68 0 0 0 0 1.36 0 0 0.68 0.68 0 0 0 ... 

1 0.1 0.2 1.01 0 0.8 0.8 0.5 0 0.8 0.1 0.3 0.7 0.3 0 1.61 ... 

1 0 0 0.66 0 0.33 0 0.33 0.33 1.33 2 0 0.66 0 0.33 1 ... 

1 0 0 0 0 0 0.23 0 0 0 0 0 0.46 0 0 0 ... 

1 0.39 0 0 0 0 0.39 0.79 0 0 0.39 0 0.79 0 0 0 ... 

1 0 0 0.77 0 0.38 0.38 0.38 0 0 0.77 0.38 0.38 0 0 0 ... 

1 0 0 0 0 0.53 0 0.53 0 0.53 0 0 1.07 0 0 0 ... 

1 0 0.31 0.42 0 0 0.1 0 0.52 0.21 0.52 0 0.52 0.63 0.1 0.1 ... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0.85 0 0 0 0 1.7 ... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 2.04 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0 0 0.24 0 0 0 ... 

0 0.9 0 0 0 0.9 0 0 0 0 0 0 1.8 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0 0 1.85 0 0 0 ... 

0 0.08 0 0.08 0 0 0.08 0 0.49 0 0 0.08 1.48 0.08 0.08 0 ... 

0 0 0 0 0 1.85 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 1.44 0 0 0 0 0 0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 0 0 0 0 0 5.88 0 0 0 ... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

266 

SPECT Heart Dataset  

 Number of Instances: 267 
 Number of Attributes: 23 (22 binary + 1 binary class) 
 The attribute Information : 

1. OVERALL_DIAGNOSIS: 0,1 (class attribute, binary) 

2. F1:  0,1 (the partial diagnosis 1, binary) 

3. F2:  0,1 (the partial diagnosis 2, binary) 

4. F3:  0,1 (the partial diagnosis 3, binary) 

5. F4:  0,1 (the partial diagnosis 4, binary) 

6. F5:  0,1 (the partial diagnosis 5, binary) 

7. F6:  0,1 (the partial diagnosis 6, binary) 

8. F7:  0,1 (the partial diagnosis 7, binary) 

9. F8:  0,1 (the partial diagnosis 8, binary) 

10. F9:  0,1 (the partial diagnosis 9, binary) 

11. F10: 0,1 (the partial diagnosis 10, binary) 

12. F11: 0,1 (the partial diagnosis 11, binary) 

13. F12: 0,1 (the partial diagnosis 12, binary) 

14. F13: 0,1 (the partial diagnosis 13, binary) 

15. F14: 0,1 (the partial diagnosis 14, binary) 

16. F15: 0,1 (the partial diagnosis 15, binary) 

17. F16: 0,1 (the partial diagnosis 16, binary) 

18. F17: 0,1 (the partial diagnosis 17, binary) 

19. F18: 0,1 (the partial diagnosis 18, binary) 

20. F19: 0,1 (the partial diagnosis 19, binary) 

21. F20: 0,1 (the partial diagnosis 20, binary) 

22. F21: 0,1 (the partial diagnosis 21, binary) 

23. F22: 0,1 (the partial diagnosis 22, binary) 

 
 Data set is divided into: 

training data ("SPECT.train" 80 instances) 
testing data ("SPECT.test" 187 instances) 

 Missing Attribute Values: None 
 Class Distribution: 

 
Class  # examples 

0                     55 
    1       212 
Training dataset  
Class  # examples 

Univ
ers

ity
 of

 M
ala

ya



 

267 

0                     40 
1                     40 

Testing dataset  
Class  # examples 

0                     15 
    1                  172 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

268 

 Sample of the SPECT Heart Dataset: 

OVERALL_DIAGNOSIS F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 ... 

1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 
... 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
... 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
... 

1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 
... 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
... 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
... 

1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 
... 

1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 
... 

1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 
... 

1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 
... 

1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 
... 

1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 
... 

1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 
... 

1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 
... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
... 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
... 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
... 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
... 

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 
... 

0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 
... 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
... 

0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 
... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
... 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
... 

0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 
... 

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

269 

SPECTF Heart Dataset  

 Number of Instances: 267 
 Number of Attributes: 45 (44 continuous + 1 binary class) 
 The attribute Information : 

1. OVERALL_DIAGNOSIS: 0,1 (class attribute, binary) 
2. F1R:   continuous (count in ROI (region of interest) 1 in rest) 
3. F1S:   continuous (count in ROI 1 in stress) 
4. F2R:   continuous (count in ROI 2 in rest) 
5. F2S:   continuous (count in ROI 2 in stress) 
6. F3R:   continuous (count in ROI 3 in rest) 
7. F3S:   continuous (count in ROI 3 in stress) 
8. F4R:   continuous (count in ROI 4 in rest) 
9. F4S:   continuous (count in ROI 4 in stress) 
10. F5R:   continuous (count in ROI 5 in rest) 
11. F5S:   continuous (count in ROI 5 in stress) 
12. F6R:   continuous (count in ROI 6 in rest) 
13. F6S:   continuous (count in ROI 6 in stress) 
14. F7R:   continuous (count in ROI 7 in rest) 
15. F7S:   continuous (count in ROI 7 in stress) 
16. F8R:   continuous (count in ROI 8 in rest) 
17. F8S:   continuous (count in ROI 8 in stress) 
18. F9R:   continuous (count in ROI 9 in rest) 
19. F9S:   continuous (count in ROI 9 in stress) 
20. F10R:  continuous (count in ROI 10 in rest) 
21. F10S:  continuous (count in ROI 10 in stress) 
22. F11R:  continuous (count in ROI 11 in rest) 
23. F11S:  continuous (count in ROI 11 in stress) 
24. F12R:  continuous (count in ROI 12 in rest) 
25. F12S:  continuous (count in ROI 12 in stress) 
26. F13R:  continuous (count in ROI 13 in rest) 
27. F13S:  continuous (count in ROI 13 in stress) 
28. F14R:  continuous (count in ROI 14 in rest) 
29. F14S:  continuous (count in ROI 14 in stress) 
30. F15R:  continuous (count in ROI 15 in rest) 
31. F15S:  continuous (count in ROI 15 in stress) 
32. F16R:  continuous (count in ROI 16 in rest) 
33. F16S:  continuous (count in ROI 16 in stress) 
34. F17R:  continuous (count in ROI 17 in rest) 
35. F17S:  continuous (count in ROI 17 in stress) 
36. F18R:  continuous (count in ROI 18 in rest) 
37. F18S:  continuous (count in ROI 18 in stress) 
38. F19R:  continuous (count in ROI 19 in rest) 
39. F19S:  continuous (count in ROI 19 in stress) 
40. F20R:  continuous (count in ROI 20 in rest) 
41. F20S:  continuous (count in ROI 20 in stress) 
42. F21R:  continuous (count in ROI 21 in rest) 
43. F21S:  continuous (count in ROI 21 in stress) 
44. F22R:  continuous (count in ROI 22 in rest) 
45. F22S:  continuous (count in ROI 22 in stress) 

 
All continuous attributes have integer values from the 0 to 100 

Univ
ers

ity
 of

 M
ala

ya



 

270 

 Dataset is divided into: 

Training data ("SPECTF.train" 80 instances) 
Testing data ("SPECTF.test" 187 instances) 
 Missing Attribute Values: None 
 Class Distribution: 

Class  # examples 
0                      55 
1             212 

Training dataset  
Class  # examples 

0                      40 
1                         40 

Testing dataset  
Class  # examples 

0                      15 
1                       172 

  

Univ
ers

ity
 of

 M
ala

ya



 

271 

 Sample of the SPECTF Heart Dataset  

OVERALL_DIAGNOS
IS 

F1
R 

F1
S 

F2
R 

F2
S 

F3
R 

F3
S 

F4
R 

F4
S 

F5
R 

F5
S 

F6
R 

F6
S 

F7
R 

F7
S … 

1 59 52 70 67 73 66 72 61 58 52 72 71 70 77 … 

1 72 62 69 67 78 82 74 65 69 63 70 70 72 74 … 

1 71 62 70 64 67 64 79 65 70 69 72 71 68 65 … 

1 69 71 70 78 61 63 67 65 59 59 66 69 71 75 … 

1 70 66 61 66 61 58 69 69 72 68 62 71 71 71 … 

1 57 69 68 75 69 74 73 71 57 61 72 74 73 69 … 

1 69 66 62 75 67 71 72 76 69 70 66 69 71 80 … 

1 61 60 60 62 64 72 68 67 74 68 76 70 74 71 … 

1 65 62 67 68 65 67 71 71 64 56 73 72 68 69 … 

1 74 73 72 79 66 61 76 66 65 64 78 74 62 57 … 

1 70 69 60 62 58 60 71 77 69 69 73 68 68 70 … 

1 67 66 65 77 66 70 72 72 72 67 76 72 73 76 … 

1 76 69 78 73 68 67 75 70 77 70 79 73 79 75 … 

0 69 64 73 72 49 70 66 71 57 56 64 62 76 74 … 

0 70 64 68 67 76 68 76 69 67 64 69 65 62 65 … 

0 65 68 70 78 65 72 72 74 64 69 71 73 72 68 … 

0 64 53 74 70 65 63 70 70 57 57 64 64 73 74 … 

0 70 71 71 74 68 66 72 70 66 69 74 72 70 69 … 

0 72 70 75 80 73 70 76 73 66 56 72 70 73 75 … 

0 70 75 72 72 67 71 71 78 63 67 73 76 71 74 … 

0 59 57 67 71 66 68 68 70 56 62 77 61 67 71 … 

0 67 64 73 75 77 77 74 70 65 62 74 75 65 67 … 

0 68 65 72 72 47 74 76 74 67 66 71 69 69 67 … 

0 66 54 69 66 69 69 75 72 63 62 68 66 68 70 … 

1 75 71 54 51 53 50 68 69 46 55 11 12 43 48 … 

1 77 61 62 68 62 58 72 68 77 71 76 77 72 75 … 

1 75 72 75 79 72 68 79 77 69 66 73 77 67 73 … 

1 78 76 71 72 65 71 75 74 70 64 65 76 65 73 … 

1 69 68 75 74 78 72 75 72 61 57 72 71 75 72 … 

1 72 66 75 67 61 59 64 63 61 67 75 76 66 48 … 

… … … … … … … … … … … … … … … … 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

272 

Musk1 (Musk version 1) Dataset  

 Number of Instances:  476 
 Number of Attributes: 167 (166 Integer + 1 binary class) 
 The attribute Information : 

molecule_name: Symbolic name of each molecule. Musks have names such as MUSK-
188. Non-musks have names such as NON-MUSK-jp13.  
conformation_name: Symbolic name of each conformation. These have the format 
MOL_ISO+CONF, where MOL is the molecule number, ISO is the stereoisomer 
number (usually 1), and CONF is the conformation number.  
f1 through f162: These are "distance features" along rays (see paper cited above). The 
distances are measured in hundredths of Angstroms. The distances may be negative or 
positive, since they are actually measured relative to an origin placed along each ray. 
The origin was defined by a "consensus musk" surface that is no longer used. Hence, 
any experiments with the data should treat these feature values as lying on an arbitrary 
continuous scale. In particular, the algorithm should not make any use of the zero point 
or the sign of each feature value.  
f163: This is the distance of the oxygen atom in the molecule to a designated point in 3-
space. This is also called OXY-DIS.  
f164: OXY-X: X-displacement from the designated point.  
f165: OXY-Y: Y-displacement from the designated point.  
f166: OXY-Z: Z-displacement from the designated point.  
Class: Musk and Non-Musk 
 Missing Attribute Values: None 
 Class Distribution: 

Class  # Instances  
Musk                              207 
Non-Musk                      269 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Univ
ers

ity
 of

 M
ala

ya



 

273 

 Sample of the Musk1 (Musk version 1) Dataset  

Class A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 ... 

MUSK-188 42 -198 -109 -75 -117 11 23 -88 -28 -27 -232 -212 -66 -286 
... 

MUSK-188 42 -191 -142 -65 -117 55 49 -170 -45 5 -325 -115 -107 -281 
... 

MUSK-188 42 -191 -142 -75 -117 11 49 -161 -45 -28 -278 -115 -67 -274 
... 

MUSK-188 42 -198 -110 -65 -117 55 23 -95 -28 5 -301 -212 -107 -280 
... 

MUSK-190 42 -198 -102 -75 -117 10 24 -87 -28 -28 -233 -212 -67 -286 
... 

MUSK-190 42 -191 -142 -65 -117 55 49 -170 -45 6 -324 -114 -106 -280 
... 

MUSK-190 42 -190 -142 -75 -117 12 49 -161 -45 -29 -277 -114 -68 -274 
... 

MUSK-190 42 -199 -102 -65 -117 55 23 -94 -29 6 -299 -212 -106 -280 
... 

MUSK-211 40 -173 -142 13 -116 -7 50 -171 -44 -103 -321 -117 -242 -286 
... 

MUSK-211 44 -159 -63 -74 -117 17 5 -114 -31 -33 -287 -243 -73 -314 
... 

MUSK-212 42 -170 -63 -65 -117 58 11 -136 -33 7 -320 -247 -105 -315 
... 

MUSK-212 41 -95 -61 -75 -117 15 30 -164 -12 -25 -254 -204 -67 -294 
... 

MUSK-212 45 -199 -108 13 -117 -6 24 -96 -26 -102 -296 -217 -242 -286 
... 

MUSK-213 41 90 -141 12 -116 -8 49 -169 -44 -103 -322 -118 -243 -288 
... 

MUSK-213 70 -30 -61 -73 -117 11 12 -118 -32 -27 -284 -252 -71 -317 
... 

MUSK-213 85 -158 -63 -74 -117 18 5 -114 -31 -32 -287 -243 -72 -314 
... 

MUSK-213 50 -192 -143 34 214 55 50 -173 -44 -8 -317 -116 -81 -282 
... 

MUSK-219 46 -194 -148 34 -117 55 53 -200 -45 -8 -321 -253 -83 -329 
... 

MUSK-219 47 -102 -60 -113 -117 -127 35 -166 -14 -32 -265 -198 -86 -292 
... 

MUSK-224 47 -197 -144 33 -117 60 65 -44 -28 -10 -195 -110 -101 -190 
... 

MUSK-224 48 -100 -58 -78 -117 -65 43 -86 -4 -46 -190 -187 -149 -202 
... 

MUSK-227 43 -192 -151 -80 -117 -71 41 6 -45 -49 -168 -99 -144 -204 
... 

MUSK-227 40 -198 -160 -69 -117 27 35 -61 -31 21 -104 -95 -92 -186 
... 

MUSK-228 49 -197 -145 28 -117 -87 63 -13 -27 -173 -53 27 -95 -90 
... 

MUSK-228 38 -168 -157 31 -117 -94 42 40 -32 -106 -56 -57 -50 -94 
... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

274 

Musk2 (Musk version 2) Dataset  

 Number of Instances: 6598 
 Number of Attributes: 167 (166 Integer + 1 binary class) 
 The attribute Information : 

molecule_name: Symbolic name of each molecule. Musks have names such as MUSK-
188. Non-musks have names such as NON-MUSK-jp13.  
conformation_name: Symbolic name of each conformation. These have the format 
MOL_ISO+CONF, where MOL is the molecule number, ISO is the stereoisomer 
number (usually 1), and CONF is the conformation number.  
f1 through f162: These are "distance features" along rays (see paper cited above). The 
distances are measured in hundredths of Angstroms. The distances may be negative or 
positive, since they are actually measured relative to an origin placed along each ray. 
The origin was defined by a "consensus musk" surface that is no longer used. Hence, 
any experiments with the data should treat these feature values as lying on an arbitrary 
continuous scale. In particular, the algorithm should not make any use of the zero point 
or the sign of each feature value.  
f163: This is the distance of the oxygen atom in the molecule to a designated point in 3-
space. This is also called OXY-DIS.  
f164: OXY-X: X-displacement from the designated point.  
f165: OXY-Y: Y-displacement from the designated point.  
f166: OXY-Z: Z-displacement from the designated point.  
class: 0 => non-musk, 1 => musk 
Class: Musk and Non-Musk 
 Missing Attribute Values: None 
 Class Distribution: 

Entire data 
Class  # Instances  
Musk                              1017 
Non-Musk                      5581 
 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

275 

 Sample of the Musk2 (Musk version 2) Dataset  

Class A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 … 

MUSK-211 46 -108 -60 -69 -117 49 38 -161 -8 5 -323 -220 -113 -299 … 

MUSK-211 41 -188 -145 22 -117 -6 57 -171 -39 -100 -319 -111 -228 -281 … 

MUSK-211 46 -194 -145 28 -117 73 57 -168 -39 -22 -319 -111 -104 -283 … 

MUSK-211 41 -188 -145 22 -117 -7 57 -170 -39 -99 -319 -111 -228 -282 … 

MUSK-211 41 -188 -145 22 -117 -7 57 -170 -39 -99 -319 -111 -228 -282 … 

MUSK-211 46 -194 -145 28 -117 72 57 -168 -39 -22 -319 -112 -104 -284 … 

MUSK-211 47 -199 -106 28 -117 73 27 -104 -22 -23 -269 -210 -105 -285 … 

MUSK-211 41 -199 -101 22 -117 -6 26 -99 -21 -101 -293 -213 -229 -285 … 

MUSK-211 41 -199 -101 22 -117 -6 26 -100 -21 -101 -293 -213 -229 -285 … 

MUSK-211 47 -199 -106 28 -117 73 27 -104 -22 -23 -269 -210 -105 -285 … 

MUSK-211 41 -199 -101 22 -117 -6 26 -100 -21 -101 -293 -213 -229 -285 … 

MUSK-211 44 -131 -62 -71 -117 54 20 -142 -19 10 -317 -254 -98 -310 … 

MUSK-211 44 -130 -62 -71 -117 54 20 -142 -19 10 -317 -255 -97 -310 … 

MUSK-211 44 -129 -62 -71 -117 54 20 -141 -19 10 -317 -255 -98 -310 … 

MUSK-211 46 -107 -60 -77 -117 10 38 -160 -8 -18 -261 -220 -65 -298 … 

MUSK-211 44 -131 -62 -77 -117 12 20 -126 -19 -24 -285 -255 -68 -310 … 

MUSK-211 44 -132 -62 -76 -117 11 20 -126 -19 -25 -285 -255 -68 -310 … 

MUSK-211 46 -107 -60 -77 -117 10 38 -160 -8 -18 -261 -220 -65 -299 … 

MUSK-211 46 -107 -60 -78 -117 10 38 -160 -8 -18 -261 -220 -65 -299 … 

MUSK-212 33 -158 -62 -71 -117 50 26 -146 -18 8 -320 -259 -103 -311 … 

MUSK-212 33 -158 -61 -77 -117 9 26 -131 -18 -22 -284 -259 -66 -312 … 

MUSK-212 32 -92 -60 -78 -117 10 38 -160 -5 -20 -263 -230 -65 -300 … 

MUSK-212 33 -104 -62 -78 -117 9 32 -141 -10 -21 -268 -251 -65 -305 … 

MUSK-212 33 -93 -60 -99 -117 73 37 -161 -5 17 -268 -229 -40 -298 … 

MUSK-212 33 -93 -60 -99 -117 73 37 -161 -5 17 -268 -229 -39 -298 … 

MUSK-212 33 -158 -62 -51 -117 -56 26 -129 -19 -52 -319 -258 -241 -311 … 

MUSK-212 33 -159 -62 -99 -117 73 26 -147 -17 17 -276 -259 -38 -312 … 

MUSK-212 32 -92 -60 -51 -117 -57 38 -154 -6 -53 -319 -230 -243 -299 … 

MUSK-212 32 -93 -60 -50 -117 -57 38 -154 -6 -53 -319 -230 -244 -299 … 

… … … … … … … … … … … … … … … … 
 

  Univ
ers

ity
 of

 M
ala

ya



 

276 

Arcene Dataset  

 Number of Instances: 900 
 Number of Attributes: 10001 (10000 Real + 1 binary class) 
 Source: 

Original owners: The data were obtained from two sources: The National Cancer 
Institute (NCI) and the Eastern Virginia Medical School (EVMS). All the data consist 
of mass-spectra obtained with the SELDI technique. The samples include patients with 
cancer (ovarian or prostate cancer), and healthy or control patients.  
 
Donor of database: This version of the database was prepared for the NIPS 2003 
variable and feature selection benchmark by Isabelle Guyon, 955 Creston Road, 
Berkeley, CA 94708, USA (isabelle '@' clopinet.com).  
 
 Data set information: 

ARCENE was obtained by merging three mass-spectrometry datasets to obtain enough 
training and test data for a benchmark. The original features indicate the abundance of 
proteins in human sera having a given mass value. Based on those features one must 
separate cancer patients from healthy patients. We added a number of distractor feature 
called 'probes' having no predictive power. The order of the features and patterns were 
randomized.  
 
ARCENE       Positive ex.    Negative ex.     Total  
Training set                44                  56               100  
Validation set               44                  56               100  
Test set                  310                390               700  
All                      398                502               900  
 
Number of variables/features/attributes:  
Real:  7000  
Probes: 3000  
Total: 10000  
This dataset is one of five datasets used in the NIPS 2003 feature selection challenge. 
Our website [Web Link] is still open for post-challenge submissions. Information about 
other related challenges are found at:[Web Link]. The CLOP package includes sample 
code to process these data: [Web Link]. 
 
All details about the preparation of the data are found in our technical report: Design of 
experiments for the NIPS 2003 variable selection benchmark, Isabelle Guyon, July 
2003, [Web Link] (also included in the dataset archive). Such information was made 
available only after the end of the challenge. 
 
The data are split into training, validation, and test set. Target values are provided only 
for the 2 first sets. Test set performance results are obtained by submitting prediction 
results to: [Web Link]. 
 
The data are in the following format: 
dataname.param: Parameters and statistics about the data  
dataname.feat: Identities of the features (withheld, to avoid biasing feature selection).  
dataname_train.data: Training set (a coma delimited regular matrix, patterns in lines, 
features in columns). 

Univ
ers

ity
 of

 M
ala

ya

http://www.nipsfsc.ecs.soton.ac.uk/
http://clopinet.com/challenges
http://clopinet.com/CLOP
http://www.nipsfsc.ecs.soton.ac.uk/papers/NIPS2003-Datasets.pdf
http://www.nipsfsc.ecs.soton.ac.uk/


 

277 

dataname_valid.data: Validation set. 
dataname_test.data: Test set. 
dataname_train.labels: Labels (truth values of the classes) for training examples. 
dataname_valid.labels: Validation set labels (withheld during the benchmark, but 
provided now).  
dataname_test.labels: Test set labels (withheld, so the data can still be use as a 
benchmark). 
 
 Attribute Information: 

The attribute information is not provided to avoid biasing the feature selection process. 
 
 Class: Patients with cancer (ovarian, prostate cancer) and healthy patients 
 Missing Attribute Values: N/A 

Class Distribution: 10 
Class                                                                # Instances  
Patients with cancer (ovarian, prostate cancer)                        88 
Healthy patients                                                                      112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

278 

 Sample of the Arcene Dataset  

Class A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 

1 0 71 0 95 0 538 404 20 0 0 0 0 17 ... 

-1 0 41 82 165 60 554 379 0 71 0 0 0 0 ... 

1 0 0 1 40 0 451 402 0 0 0 0 0 15 ... 

1 0 56 44 275 14 511 470 0 0 0 0 0 0 ... 

-1 105 0 141 348 0 268 329 0 0 1 0 0 23 ... 

-1 38 62 0 251 75 515 0 9 85 300 0 52 0 ... 

1 76 80 236 213 0 324 361 21 0 0 0 0 116 ... 

-1 47 4 207 222 0 323 130 0 0 32 0 0 0 ... 

-1 0 17 5 82 0 395 471 0 0 0 0 0 32 ... 

-1 38 113 186 456 86 261 129 0 82 62 132 0 0 ... 

-1 0 0 102 111 0 553 400 0 34 0 0 0 0 ... 

1 17 26 0 299 0 501 0 0 17 144 98 0 0 ... 

-1 0 81 42 179 34 492 447 0 14 0 0 0 65 ... 

1 106 6 116 438 0 246 410 0 0 0 0 0 34 ... 

-1 7 6 0 199 0 440 0 0 39 363 10 0 0 ... 

1 71 34 184 341 0 296 266 0 0 0 0 0 50 ... 

-1 13 58 17 488 38 339 177 0 30 125 109 0 74 ... 

-1 0 0 0 543 64 453 0 0 150 177 166 0 0 ... 

-1 132 0 171 394 0 247 129 0 0 0 0 0 0 ... 

-1 3 46 0 426 0 533 0 16 113 165 103 0 0 ... 

-1 29 21 0 366 50 531 0 0 146 152 64 0 11 ... 

-1 168 63 151 470 0 315 86 6 0 29 20 0 77 ... 

-1 0 1 43 97 28 477 420 0 33 0 15 0 0 ... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Univ
ers

ity
 of

 M
ala

ya



 

279 

Yeast Dataset  

 Number of Instances: 1484 
 Number of Attributes: 9 ( 8 predictive, 1 name ) 
 Source: 

Original owners: 
Title: Protein Localization Sites 
 Creator and Maintainer: 
       Kenta Nakai 
                     Institue of Molecular and Cellular Biology 
      Osaka, University 
      1-3 Yamada-oka, Suita 565 Japan 
      nakai@imcb.osaka-u.ac.jp 
                    http://www.imcb.osaka-u.ac.jp/nakai/psort.html 
  Donor: Paul Horton (paulh@cs.berkeley.edu) 
  Date:  September, 1996 
  See also: ecoli database 
 
Past Usage: 
Reference: "A Probablistic Classification System for Predicting the Cellular  
           Localization Sites of Proteins", Paul Horton & Kenta Nakai, 
           Intelligent Systems in Molecular Biology, 109-115. 
    St. Louis, USA 1996. 
Results: 55% for Yeast data with an ad hoc structured 
  probability model. Also similar accuracy for Binary Decision Tree and 
  Bayesian Classifier methods applied by the same authors in 
  unpublished results. 
 
Predicted Attribute: Localization site of protein. ( non-numeric ). 
 
The references below describe a predecessor to this dataset and its  
development. They also give results (not cross-validated) for classification  
by a rule-based expert system with that version of the dataset. 
 
Reference: "Expert Sytem for Predicting Protein Localization Sites in  
           Gram-Negative Bacteria", Kenta Nakai & Minoru Kanehisa,   
           PROTEINS: Structure, Function, and Genetics 11:95-110, 1991. 
 
Reference: "A Knowledge Base for Predicting Protein Localization Sites in 
    Eukaryotic Cells", Kenta Nakai & Minoru Kanehisa,  
    Genomics 14:897-911, 1992. 
     
Attribute Information. 
  1.  Sequence Name: Accession number for the SWISS-PROT database 
  2.  mcg: McGeoch's method for signal sequence recognition. 
  3.  gvh: von Heijne's method for signal sequence recognition. 
  4.  alm: Score of the ALOM membrane spanning region prediction program. 
  5.  mit: Score of discriminant analysis of the amino acid content of 
    the N-terminal region (20 residues long) of mitochondrial and  
           non-mitochondrial proteins. 
  6.  erl: Presence of "HDEL" substring (thought to act as a signal for 

Univ
ers

ity
 of

 M
ala

ya



 

280 

    retention in the endoplasmic reticulum lumen). Binary attribute. 
  7.  pox: Peroxisomal targeting signal in the C-terminus. 
  8.  vac: Score of discriminant analysis of the amino acid content of 
           vacuolar and extracellular proteins. 
  9.  nuc: Score of discriminant analysis of nuclear localization signals 
    of nuclear and non-nuclear proteins. 
 
 
8. Missing Attribute Values: None. 
 
 
9. Class Distribution. The class is the localization site. Please see Nakai and 
  Kanehisa referenced above for more details. 
  CYT (cytosolic or cytoskeletal)                                    463 
  NUC (nuclear)                                                               429 
  MIT (mitochondrial)                                                     244 
  ME3 (membrane protein, no N-terminal signal)          163 
  ME2 (membrane protein, uncleaved signal)                  51 
  ME1 (membrane protein, cleaved signal)                      44 
  EXC (extracellular)                                                        37 
  VAC (vacuolar)                                                              30 
  POX (peroxisomal)                                                       20 
  ERL (endoplasmic reticulum lumen)                              5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Univ
ers

ity
 of

 M
ala

ya



 

281 

 Sample of the Yeast Dataset  

Class A1 A2 A3 A4 A5 A6 A7 A8 A9 

ABP1_YEAST 0.4 0.39 0.6 0.15 0.5 0 0.58 0.3 CYT 

ACE1_YEAST 0.43 0.39 0.54 0.21 0.5 0 0.53 0.27 NUC 

ACE2_YEAST 0.42 0.37 0.59 0.2 0.5 0 0.52 0.29 NUC 

ACH1_YEAST 0.4 0.42 0.57 0.35 0.5 0 0.53 0.25 CYT 

ACON_YEAST 0.6 0.4 0.52 0.46 0.5 0 0.53 0.22 MIT 

ACR1_YEAST 0.66 0.55 0.45 0.19 0.5 0 0.46 0.22 MIT 

ACT_YEAST 0.46 0.44 0.52 0.11 0.5 0 0.5 0.22 CYT 

ACT2_YEAST 0.47 0.39 0.5 0.11 0.5 0 0.49 0.4 CYT 

ACT3_YEAST 0.58 0.47 0.54 0.11 0.5 0 0.51 0.26 NUC 

ACT5_YEAST 0.5 0.34 0.55 0.21 0.5 0 0.49 0.22 NUC 

ADA2_YEAST 0.61 0.6 0.55 0.21 0.5 0 0.5 0.25 NUC 

C1TC_YEAST 0.45 0.4 0.5 0.16 0.5 0 0.5 0.22 CYT 

PUR4_YEAST 0.43 0.44 0.48 0.22 0.5 0 0.51 0.22 CYT 

PUR3_YEAST 0.73 0.63 0.42 0.3 0.5 0 0.49 0.22 CYT 

ADH1_YEAST 0.43 0.53 0.52 0.13 0.5 0 0.55 0.22 CYT 

ADH2_YEAST 0.46 0.53 0.52 0.15 0.5 0 0.58 0.22 CYT 

ADH3_YEAST 0.51 0.51 0.52 0.51 0.5 0 0.54 0.22 MIT 

ADH4_YEAST 0.59 0.45 0.53 0.19 0.5 0 0.59 0.27 CYT 

KAD1_YEAST 0.57 0.47 0.6 0.18 0.5 0 0.51 0.22 CYT 

KAD2_YEAST 0.63 0.67 0.57 0.24 0.5 0 0.49 0.22 MIT 

ADP1_YEAST 0.8 0.88 0.36 0.39 0.5 0 0.56 0.33 ME1 

ADR1_YEAST 0.53 0.54 0.43 0.1 0.5 0 0.57 0.32 NUC 

ABF2_YEAST 0.55 0.5 0.66 0.36 0.5 0 0.49 0.22 MIT 
... ... ... ... ... ... ... ... ... ... 

 
 

  

Univ
ers

ity
 of

 M
ala

ya



 

282 

Breast Cancer Dataset from the UMMC 

 Number of Instances: 827 
 Number of Attributes:14 (13 countinues+ 1 binary class) 
 The attribute Information : 

1. AGE: Patient’s age in year at time first diagnosis 
2. RACE: Ethnicity (Chinese, Malay, Indian and Others) 
3. STG: Stage (how far cancer has spread anatomically) 
4. T: tumours type (the extent of the primary tumours)  
5. N: Lymph node type (amount of regional lymph node involvement) 
6. M: Metastatic (presence or absence) 
7. LN: Number of node involved 
8. ER: Estrogen receptor (negative or positive) 
9. GD: tumours grade 
10. PT: Primary treatment (type of surgery performed) 
11. AC: Adjuvant Chemotherapy 
12. AR: Adjuvant Radiotherapy 
13. AT: Adjuvant Tamoxifen 
14. Class: Alive - Dead 

 Missing Attribute Values: None 
 Class Distribution: 

Class  # Instances 
Alive                            437 
Dead                            246 

 The number of data in each subset: 
Subset 1: 827 (Class 0: 790, Class 1: 37) 
Subset 2: 673 (Class 0: 604, Class 1: 69) 
Subset 3: 561 (Class 0: 462, Class 1: 99) 
Subset 4: 440 (Class 0: 323, Class 1: 117) 
Subset 5: 355 (Class 0: 244, Class 1: 111) 
Subset 6: 270 (Class 0: 172, Class 1: 98) 
Subset 7: 200 (Class 0: 118, Class 1: 82) 
Subset 8: 124 (Class 0: 63, Class 1: 61) 
Subset 9: 56   (Class 0: 26, Class 1: 30) 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

283 

 Sample of the Breast Cancer Dataset from the UMMC 
 

Year RACE AGE DOD DODeath Status STG T N M LN ER GD P2 AC AR AT 

1993 3 66 May-93  0 1 1 0 0 0 2 4 3 0 1 1 

1993 3 66 Sep-93  1 3 2 1 0 1 3 4 3 0 0 1 

1993 3 43 Dec-93  1 2 2 0 0 0 2 4 1 0 1 1 

1993 2 30 Jul-93 20/07/1995 1 3 2 1 0 2 2 4 1 1 1 0 

1993 1 65 Aug-93 15/11/1995 1 7 2 0 1 0 2 4 1 0 0 0 

1993 2 41 Jun-93  0 4 3 1 0 6 2 4 3 1 1 1 

1993 1 55 Jun-93 03/08/2001 1 3 2 1 0 0 2 4 3 1 1 1 

1993 1 36 Jul-93  1 5 3 1 0 1 3 4 3 1 0 1 

1993 1 51 Dec-92 28/03/1994 1 3 2 1 0 1 3 4 3 0 1 1 

1993 1 58 Feb-93  0 3 2 1 0 5 2 4 3 1 1 1 

1993 1 42 Oct-93  0 4 3 1 0 3 2 4 3 1 1 1 

1993 1 31 Feb-93 28/05/1996 1 2 1 1 0 4 2 4 1 1 1 1 

1993 1 30 May-93  0 1 1 0 0 0 2 1 3 0 0 1 

1993 1 48 Nov-93 30/06/1994 1 7 4 0 1 0 2 4 3 1 0 1 

1993 3 72 Sep-93  0 2 2 0 0 0 2 4 1 0 0 1 

1993 4 64 Nov-93 04/04/2000 1 3 2 1 0 10 3 4 3 1 0 1 

1993 3 54 Nov-93 20/11/1996 1 2 2 0 0 0 2 4 3 0 0 1 

1993 1 74 Feb-93 30/06/1997 1 2 2 0 0 0 2 4 3 0 0 1 

1993 1 59 Mar-93  0 2 2 0 0 0 2 4 3 0 0 1 

1993 1 42 Oct-93  0 3 2 1 0 2 2 4 1 1 1 1 

1993 1 49 Apr-93 11/06/1997 1 2 2 0 0 0 3 4 3 0 0 1 

1993 1 46 Mar-93  0 2 2 0 0 0 2 4 3 0 0 1 

1993 1 66 Dec-93  0 3 2 1 0 3 2 2 3 0 0 1 

1993 1 45 Feb-93 31/12/2001 1 2 2 0 0 0 2 4 1 0 1 1 

1993 4 70 Absc  0 3 2 1 0 2 2 3 3 0 1 1 

1993 1 44 Feb-93  0 3 2 1 0 2 2 4 3 1 0 1 

1993 1 47 Jan-93  1 3 2 1 0 3 2 4 3 1 0 1 

1993 1 46 Mar-93 21/02/1996 1 5 4 1 0 0 2 4 3 1 0 1 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

 

 Univ
ers

ity
 of

 M
ala

ya




