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ABSTRACT 

The convective boundary layer flow,. heat (and mass) transfer of nanofluid over a wedge 

are investigated. The fluid flow and heat transfer characteristics of nanofluid have re­

ceived considerable attention due to wide range of engineering applications. In many 

boundary layer flow studies, it is found that nanofluid exhibits higher thermal conductiv­

ity and heat transfer coefficients compared to the conventional fluid. In this thesis, the 

mathematical nanofluid model proposed by Buongiomo is used to study the boundary 

layer flow of nanofluid past a wedge under the influence of various effects. The nanofluid 

model takes into account the transport mechanism of nanoparticles, namely the Brow­

nian diffusion and thermophoresis. Based on this model, the mathematical formulation 

is developed to study the characteristics of flow, heat (and mass) transfer of six bound­

ary layer flow problems. The problems are limited to steady, two-dimensional, laminar 

flow of incompressible viscous nanofluid along a wedge. The governing partial differen­

tial equations are reduced to a system of nonlinear ordinary differential equations using 

similarity transformation. The resulting system is solved numerically using the fourth­

order Runge-Kutta-Gill method along with the shooting technique and Newton Raphson 

method. Then, the numerical values of the skin friction, heat (and mass) transfer coeffi­

cients are obtained for various values of the governing parameters such as wedge angle, 

heat generation/absorption, thermal radiation, Brownian motion, thermophoresis, suction, 

power law variation, Soret and Dufour effects. Comparisons with previously published 

work for verification and accuracy of the method used is performed and found to be in 

good agreement. The solutions are expressed graphically in terms of velocity, tempera­

ture, solutal concentration and nanoparticle volume fraction profiles. The effects of per­

tinent parameters entering into the problems on skin friction coefficient, local Nusselt 

number and local Sherwood number are discussed in detail. 
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ABSTRAK 

Olakan aliran lapisan sempadan, pemindahan haba (dan j isim) bagi bendalir nano ter­

hadap baji telah dikaji. Ciri aliran biendalir dan pemindahan haba bagi bendalir nano 

mendapat perhatian kerana mempuny:ai aplikasi kejuruteraan yang meluas. Dalam ke­

banyakan kajian aliran lapisan sempadlan, didapati bendalir nano mempamerkan kebole­

haliran terma dan pekali pemindahan haba yang lebih tinggi berbanding bendalir kon­

vensional. Dalam tesis ini, model matematik bendalir nano yang dicadangkan oleh 

Buongiorno telah digunakan untuk mengkaji aliran lapisan sempadan bagi bendalir nano 

melalui baji yang dipengaruhi oleh pelbagai kesan. Model bendalir nano melibatkan 

mekanisma pengangkutan partikel nano iaitu pergerakan Brownian dan termoforesis. 

Berasaskan kepada model ini, formula:si matematik dibina untuk mengkaji ciri aliran, pe­

mindahan haba (danjisim) bagi enam masalah aliran lapisan sempadan. Masalah tersebut 

dihadkan kepada aliran laminar, mantap dua matra dalam nano bendalir likat tak mam­

pat sepanjang baji. Persamaan pembezaan separa penakluk dijelmakan kepada sistem 

persamaan pembezaan biasa menggunakan penjelmaan keserupaan. Sistem persamaan 

yang terhasil diselesaikan secara berangka menggunakan kaedah Runge-Kutta-Gill den­

gan teknik tembakan dan kaedah Newton Raphson. Nilai berangka bagi pekali geseran 

kulit, pekali pemindahan haba (danjisim) diperoleh untuk pelbagai nilai parameter seperti 

parameter sudut baji, penjanaan haba, :sinaran terma, pergerakan Brownian, termoforesis, 

sedutan, kesan Soret dan Dufour. Perbandingan keputusan dengan kajian penerbitan ter­

dahulu telah dilakukan bagi menentusah serta menguji ketepatan kaedah yang digunakan 

dan didapati hasil perbandingan sangat memuaskan. Penyelesaian berangka yang diper­

oleh dipersembahkan dalam bentuk graf dari segi profil-profil halaju, suhu, kepekatan 

solutal dan pecahan isipadu nanopartikel. Kesan pelbagai parameter berkenaan masalah 

ke atas pekali geseran kulit, nombor Nusselt setempat dan nombor Sherwood setempat 

dibincangkan secara terperinci. 
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CHAPTER'. 1: INTRODUCTION 

1.1 Fluid Dynamics 

Fluid dynamics is categorized as the part of fluid mechanics that studies the causes and 

effects of the motion of fluid. Aerodynamics and hydrodynamics are the examples of 

several subdisciplines in fluid dynamics. Aerodynamics deals with the motion of air, 

particularly when it interacts with a solild object. Hydrodynamics concerned with studying 

the motion of liquids acting on solid body immersed in fluids. 

1.1.1 Conservation laws 

Fluid dynamics offers bountiful source of mathematical, experimental and computational 

challenges. Fluid dynamics aims to construct a mathematical theory of fluid motion, 

which govern by the conservation principles, specifically conservation of mass, conserva­

tion of momentum (also known as Newton's Second Law of Motion) and conservation of 

energy (also known as the First Law oJf Thermodynamics). These fundamental principles 

can be expressed in terms of mathematical equations. The applications of fluid dynam­

ics are enormous including heating, ventilation, air conditioning systems, oil pipelines, 

aircraft designs and wind turbines . 

1.2 Boundary Layer 

The concept of boundary layer introduced by Ludwig Prandtl in a paper presented on 

August 12, 1904 at the Third International Congress of Mathematicians in Heidelberg, 

Germany is one of the cornerstones of modern fluid dynamics (Curle, 1962). The classical 

theories of inviscid flow assumed that the viscous forces in a fluid are small in comparison 

with the inertia forces. This would seem a reasonable assumption since the viscosity of 

many fluids is extremely low. However, Prandtl observed that the viscous forces can still 

be locally important in certain region:s of flow. He remarked that as the fluid passed a 

surface of an object, the fluid which is immediately adjacent to the surface sticks to the 

surface due to the effect of friction. This creates a thin layer near the surface in which the 

velocity changes enormously from zero to the stream value away from the surface. This 
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layer is referred to as the boundary layer in which the frictional effects are experienced. 

Prandtl simplified the equations of fluid flow by splitting the flow field into two regions. 

In the thin boundary layer, viscosity and the skin friction drag are dominant. Outside 

the boundary layer, the flow is inviscid. With the advent of the boundary layer concept, 

Prandtl showed that the Navier-Stokes equations can be significantly reduced to a simpler 

form . The application of boundary lay1er theory is mainly to the aerodynamics industries; 

designing special aircraft wing sections to avoid boundary layer separation. 

1.3 Heat Transfer 

Heat transfer refers to the exchange of thermal energy due to a temperature difference. 

It occurs from the part of high temperature to another part of lower temperature. Heat 

transfer changes the internal energy of both objects involved according to the first law of 

thermodynamics. Three primary modes of heat transfer are conduction, convection and 

radiation. 

1.3.1 Conduction 

Conduction can be described as the tramsfer of energy within an object or between objects 

that are in physical contact. It occurs in solid or fluid. Heat conduction also referred 

as a microscopic phenomenon in which the temperature gradient present in a stationary 

medium. Energy is transmitted through collisions between neighboring molecules, atoms 

and electrons. Here are some examples of the process of conduction: 

• A metal spoon immersed in a cup of boiling liquid will eventually be waimed. 

• The heat from a hot liquid makes the cup itself hot. 

• The metal skillet or pot is heated by a stove burner. Heat will transfer from the stove 

burner to the skillet or pot. 

• A light bulb that is turned on because electricity travels through the wires due to 

conduction of electricity. 
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1.3.2 Convection 

Convection refers to the process of heat transfer through the collective movement of par­

ticles within fluids (liquids or gases). Unlike conduction, convection is a macroscopic 

phenomenon. The fluid particles themselves transit and cany energy from a high tem­

perature area to a low temperature ar,ea. The direction of heat convection depends on 

the relative magnitude of the temperature of the fluid and the surface. Here are some 

examples of the process of convection: 

• The metal pot that holds water is: heated by a stove burner. As the pot becomes hot, 

the water at the bottom of the pot becomes warmer. Hot particles of water begin 

to rise to the top of the pot and cooler particles of water move down to replace it, 

causing a circular motion. 

• The warm air rising from the radliator then falling back to the floor as cool air. 

• A heater inside a hot air balloon heats the air and so the air moves upward. This 

causes the balloon to rise because the hot air gets trapped inside. When the pilot 

want to descend, he releases some of the hot air and cool air takes it place, causing 

the balloon to lower. 

1.3.3 Radiation 

Radiation can be described as the proieess of heat transfer by means of electromagnetic 

waves. It is generated by a direct result of the random movements of atoms and molecules 

in matter. All matter with a temperature greater than absolute zero emits thermal radiation. 

Here are some examples of thermal radiation: 

• The sun radiates heat in all directions. The heat is transferred to the surface of the 

Earth through space between the Earth and the sun. 

• A camp fire heats a person who sit in front of it. 

• The visible light and infrared light emitted by an incandescent light bulb. 

• A microwave oven emits thermal radiation to heat up food. 
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1.4 Types of Convection 

Convection may occurs by density differences caused by temperature differences within 

fluid motion. This fluid motion is associated with the aggregates of a great number of 

molecules. Convection takes place by mainly two mechanisms, advection and diffusion. 

Advection is the energy transferred by the bulk or macroscopic motion of the fluid. Diffu­

sion is the energy transfer due to random molecular motion. Convection can be classified 

in terms of being natural, forced or as ;a combination of both of them. 

1.4.1 Natural Convection 

Natural convection happens when the flow is induced by density differences caused by 

the temperature variations in the fluid. The fluid motion is not generated by any external 

induced flow. Buoyancy works as the driving force for natural convection. Examples of 

natural convection include: 

• The air circulation of the oceans during days and nights. 

• The rising plume of smoke from fire. 

• Free air cooling of hot componeints of a circuit boards. 

• The formation of micro structures during the cooling of molten metals. 

1.4.2 Forced Convection 

In contrast to natural convection, forced convection is a mechanism in which the fluid 

motion is generated by an external agent such as a fan, a pump, a blower or a suction 

device. Examples of forced convectiorn flow can be found in: 

• Centralized heating. 

• Air conditioning. 

• Steam turbines. 

• Heat exchangers. 
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1.4.3 Mixed Convection 

Mixed convection is a combination of forced and free convection to transfer heat. It 

occurs when both pressure forces and buoyant forces interact simultaneously. Examples 

of mixed convection flow can be found in: 

• Nuclear reactor. 

• Solar energy storage. 

• Refrigeration devices. 

1.4.4 Double Diffusive Convection 

Double diffusive convection occurs when the fluid is subjected by two different density 

gradients, which have different rates of diffusion. The density variations may be triggered 

by gradients in the concentration of the fluid, or by differences in temperature. Tempera­

ture and concentration gradients can often diffuse with time, reducing their ability to drive 

the convection, and requiring that gradlients in other regions of the flow exist in order for 

convection to continue. Examples of double diffusive convection can be found in: 

• adding one tea spoon of sugar into a cup of hot coffee. 

• oceanography: heat and salt concentrations exist with different gradients and dif­

fuse at differing rates. 

• geology: the layered convection exists in magma reservoirs from which pyroclastic 

flows are erupted. 

1.5 Mass Transfer 

Mass transfer takes place when there is a difference in the concentration of some chemical 

species in a mixture. A species concentration gradient in a mixture provides the driving 

potential for transport of that species. Mass transfer commonly involves diffusion. Mass 

diffusion occurs in liquids, solids and! gases. However, since mass transfer is strongly 

influenced by molecular spacing, difflLlsion occurs more easily in gases than in liquids. 
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It also happens without difficulty in liquids than in solids. Examples of mass transfer 

process include: 

• The evaporation of water from a pond to the atmosphere. 

• the purification of blood in the kidneys and liver. 

• The transfer of water vapor into dry air in home humidifier. 

• The distillation of alcohol. 

1.6 Nanofluid 

The major use of conventional fluids, such as water, ethylene glycol and oil, is as a 

medium for convective heat transfer. However, they have lower ability to conduct heat 

compared to metals. Metals have thermal conductivities up to several times higher than 

these fluids. In order to produce an efficient medium for convective heat transfer that 

would maintained as fluid, but has the thermal conductivity of a metal, thus it is necessary 

to combine both fluids and metals. So there is a strong need to develop advanced heat 

transfer fluids with substantially higher conductivities to enhance thermal characteristics 

(Khan et al. , 2013). Nanofluid consists of uniformly dispersed and suspended nanometer­

scale solid particles into base fluid. Choi (1995) introduced the term nanofluid as refer­

ence to a liquid containing nanoparticles with average sizes below 100 nm. The nanoparti­

cles are made of oxides, metals and carbides, nitride and even immiscible nanoscale liquid 

droplets. The shape of nanoparticles can be spherical, rod-like or tubular shapes and they 

can be dispersed individually. The common nanoparticles that have been used are alu­

minum, copper, iron and titanium or their oxides. For the base fluids, the commonly used 

fluids are water, ethylene glycol and oils. 

Nanofluid is said to differ from the conventional fluid because of the following reasons: 

• It possesses high specific surface area and therefore more heat transfer surface be­

tween particles and fluids. 

• It reduced particle clogging as compared to conventional slurries, thus promoting 

system miniaturization. 
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• It bas adjustable properties, including thermal conductivity and surface wettability, 

by varying particle concentrations to suit different applications. 

Nanofluids may be used in a wide variety of industries, ranging from transportation to 

energy production, in electronics systems, as well as in the field of biotechnology. The 

following examples show that how nanotechnology can be integrated into each of these 

industrial areas: 

• engine cooling. 

• electronic cooling. 

• nuclear systems cooling. 

• biomedical applications. 

• refrigeration (domestic refrigeraltors and chillers). 

• drag reductions. 

1.7 Research Objectives 

This study embarks on the following objectives: 

1. To formulate mathematical models for convective flow, heat (and mass) transfer of 

nanofluid under the influence of various effects. 

2. To develop numerical algorithm for solving the model problems. 

3. To investigate the influences of thermal radiation, heat generation/absorption, chem­

ical reaction and suction on convective heat transfer of nanofluid along a wedge. 

4. To investigate the Soret and Dufour effects on double diffusive convective flow of 

nanofluid over a moving wedge iin the presence of suction, . 

5. To investigate the effects of thermal radiation, Soret and Dufour on mixed convec­

tive flow of nanofluid over a wedge with power law variation in surface temperature 

and species concentration. 
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1.8 Thesis Organization 

This thesis is organized into 9 chapters. Starting with a general introduction to fluid 

dynamics, Chapter 1 evolves through boundary layer, heat transfer and mass transfer. The 

chapter then stated the objectives of the study. 

Reviews of past research works on wedge flow of nanofluid with various effects are 

given in Chapter 2. From the review, it: is revealed that a significant scope exists to inves­

tigate the convective heat and mass transfer of nanofluid along a wedge. 

From the descriptions of the mathematical modeling on the convective boundary layer 

flow of nanofluid over a wedge, the governing equations of the problem are given in 

Chapter 3. A detailed explanations on :similarity transformations is also included. As part 

of this research, a numerical routine is presented in order to solve the equations. 

Chapters 4 through 8, respectively, deal with 6 different research problems. Chapter 

4 consists of two research problems. In the first problem, the convective flow and heat 

transfer of heat generating nanofluid over a wedge with suction/injection are analyzed. 

The second problem of Chapter 4 presents the convective flow and heat transfer of heat 

generating nanofluid over a wedge with suction and thermal radiation. The convective 

flow and heat transfer of heat generating nanofluid over a wedge with suction and chemi­

cal reaction are analyzed in Chapter 5. Chapter 6 presents the double diffusive convective 

flow of nanofluid over a moving wedge with suction, Soret and Dufour effects. Chapter 7 

focuses on the double diffusive convective flow of nanofluid over a wedge with suction, 

thermal radiation, Soret and Dufour effects. Chapter 8 discusses the double diffusive con­

vective flow of nanofluid over a wedgie with power law variation in surface temperature 

in the presence of suction, thermal radiiation, Soret and Dufour effects. 

The conclusion and recommendations for future work are given in Chapter 9. 
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CHAPTER 2: LITERATURE SURVEY 

Numerous studies have been conducted on various convective boundary layer flow 

phenomena past different types of geometries. One of the most frequently studied is the 

wedge flows. Fig. 2.1 shows the configurations of the horizontal and vertical wedge. The 

horizontal flow circumstance is the one in which the plane of the wedge is aligned with 

the free stream velocity, U as shown in Fig. 2.l(a). The vertical wedge in Figs. 2.l(b) 

and 2.1 ( c) show that the flow moves parallel to the axis of the wedge in the downward 

and upward directions, respectively, with free stream velocity. In addition, the buoyancy 

forces aid or oppose the development of the boundary layer flow, depending on the ori­

entation of the wedge. The wedge angle is denoted by .Q = /3 n, where /3 is the Hartree 

pressure gradient. Jaluria (1980) stated that the wedge geometry comprises a few prac­

tical circumstances such as stagnation point flow and the flow over horizontal surfaces. 

The case of /3 = 0 corresponds to the horizontal plate as shown in the Fig. 2.2(a). Mean­

while, Fig. 2.2(b) shows the vertical plate case for /3 = 1. The latter case is also known as 

stagnation point flow. 

u 

u 

(a) (b) (c) 

Figure 2.1: The (a) horizontal wedge; (b) vertical wedge downward flow; (c) vertical 
wedge upward flow configurations 
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-1•--x ~-------- /J= O 

/J = l 

(a) (b) 

Figure 2.2: The (a) horizontal plate; (b) stagnation point flow 

2.1 Boundary Layer Flow over :a Wedge 

The wedge flows are also called the Falkner and Skan flows after the authors who first 

published their boundary layer solutioins. Falkner & Skan (1931) introduced the velocity 

gradient which occurs in two-dimensional potential flow between two straight walls meet­

ing at an angle. The authors considered that the velocity of the free stream (inviscid flow) 

in the x direction is V = Uoor" where Uoo and m are constants. The index m is a wedge 

angle parameter and m is a function of /3 such that m = f3 / (2 - /3 ). Based on these con­

siderations, they gave the general fom1 of the boundary layer equations and obtained the 

approximate solutions by applying two-step numerical procedures. Its similar solution 

was later studied by Hartree (1937) UJsing the differential analyzer. Schuh (1947) em­

ployed the exact velocity distributions of Hartree (1937) for the constant property values 

when Pr = 0.7. The heat produced by friction and compression were neglected in Schuh 

(1947) and Falkner & Skan (1931), buit, partially accounted in the work of Levy (1952), 

who investigated the heat transfer and laminar boundary layer flow over the wedge with 

power-law variation in surface temperature. A comprehensive study on the Falkner-Skan 

solutions has been carried out by Stewartson (1954). He figured out that there exists a fur­

ther solution within the region of pressrure gradient, -0.199 < /3 < 0 and the velocity pro­

file demonstrates the back flows. A detailed discussion on the solutions with back flow for 

f3 -+ 0 can be found in the work by Brown & Stewartson (1966) and Libby & Li (1967). 

Stewart & Prober (1962) investigated the heat and mass transfer along a wedge. They ob­

tained the boundary layer solutions for the flow of binary constant-property mixtures over 
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plane and wedge by using direct or inverse interpolation of the tabulated solutions. The 

exact numerical solutions are also given in this paper for the Prandtl and Schmidt numbers 

from 0.1 to 10. Later, Prober & Stewart (1963) studied the heat and mass transfer along 

a wedge by using the perturbation method. Gunness & Gebhart (1965) considered the si­

multaneous phenomena of forced and natural convective flow over an isothermal wedge. 

The numerical results are obtained for surface shear and heat-transfer rates with different 

values of wedge angle when Pr = 0.7 .. The effect of changing surface heat flux on con­

vective boundary layer flow over a wedge was studied by Chen & Chao (1970). They 

restricted their investigation to the determination of the entire time-history of the heat 

transfer process in Falkner-Skan flow subsequent to a step change in the wedge's surface 

temperature or heat flux. Chao & Cheema (1971) examined the steady forced convection 

past a wedge with a step discontinuity in temperature. They obtained a solution which 

describes the arbitrary variations of surface temperature. Drake & Riley (1975), Chen & 

Radulovic (1973) and Jeng et al. (1978) used the solution method introduced by Chao 

& Cheema (1971) for solving the convective heat transfer with non-isothermal surfaces. 

Drake & Riley (1975) provided an extension to the results of Chao & Cheema (1971) for 

small Prandtl number. Chen & Radullovic (1973) focused on the analytical solution of 

laminar boundary layer flow of power ]law fluids past a wedge. Jeng et al. (1978) general­

ized the work by Chao & Cheema (1971) by handling the axis-symmetric boundary layer 

flows. Later, Unsworth & Chiam (1980) adopted the same mathematical formulation as 

Drake & Riley (1975) for various values of Prandtl numbers ranging from 0.001 to 20000. 

An approximate solution of the impulsive motion of a wedge in viscous fluid was 

obtained by Smith (1967) by using the momentum integral method. However, Nanbu 

(1971) claimed that Smith (1967) gave a very strange result that the time required for the 

unsteady boundary layer to settle into iits steady state tends to infinity as the wedge angle 

tends to 1r. Thus, Nanbu (1971) solved the same problem with some improved aspects 

by the finite difference method where the effect of pressure gradient of the boundary 

layer was clarified. Watkins (1976) extended the previous works of Smith (1967) and 

Nanbu (1971) by considering the unsteady heat transfer in impulsive Falkner-Skan flows 

past a semi-infinite wedge. King & Varwig (1971) presented an analytical study of the 
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hypersonic boundary layer over a wedlge with uniform blowing and viscous interaction. 

They found that the effect of viscous il!lteraction dominates the flow when the interaction 

is strong and the effects of blowing become more impo1tant as the strength of the viscous 

interaction decreases. Olsson (1973) used an integral method to solve the problem of heat 

transfer from a finite wedge-shaped fin with limited heat conductivity. The solution of 

Falkner-Skan equation for a wide range of Prandtl numbers was studied by Lin & Lin 

( 1987). In addition, the asymptotic approach for heat transfer of boundary layer flow past 

a wedge for small Prandtl numbers was studied by a number of authors (Chen (1985), 

Chen (1986) and Herwig (1987)). 

2.2 Boundary Layer Flow of Nainofluid over a Wedge 

Fluid flow and heat transfer characteristics of nanofluid have received considerable atten­

tion due to wide range of engineering applications such as in engine cooling, solar water 

heating, cooling of electronics, cooling of transformer oil, improving diesel generator effi­

ciency, cooling of heat exchanging devices, improving heat transfer efficiency of chillers, 

domestic refrigerator-freezers, cooling in machining, in nuclear reactor and defense (Das 

et al., 2007). Nanofluid is a dispersion of metallic or non-metallic nanometer-sized par­

ticles in a liquid resulting in the modification of the carrier fluid properties such as ther­

mal conductivity, viscosity, density, and heat transfer capability. Undoubtedly, nanofluids 

exhibit some unique features that are quite different from conventional colloidal suspen­

sions. The work of Choi (1995) was one of the first attempts to study the enhancement of 

thermal conductivity of fluids with nanoparticles. They performed experiments and found 

that nanofluids are expected to exhibit high thermal conductivities compared to conven­

tional fluids. Numerous studies have been conducted afterward concerning on mathemat­

ical and numerical modeling of convective heat transfer in nanofluid, for example, Tiwari 

& Das (2007) and Buongiorno (2006}. The former approach analyzes the behaviour of 

nanofluids taking into account the solid volume fraction of the nanofluid. On the other 

hand, Buongiorno (2006) stated that nanoparticles absolute velocity can be viewed as the 

sum of the base fluid velocity and a slip velocity, with total of seven slip mechanisms 

involved: inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus effect, 
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fluid drainage and gravity. He indicated from those seven that only Brownian diffusion 

and thermophoresis are important slip mechanisms in nanofluids. Based on this finding, 

he developed a mathematical nanofluid model by taking into account the Brownian mo­

tion and thermophoresis effects on flow and heat transfer fields. 

Many researchers have employed numerical techniques to explore the convective heat 

transfer of nanofluids over a wedge by using the model proposed by Tiwari & Das (2007). 

Yacob et al. (201 la) used an implicit finite difference scheme known as the Keller-box 

method to solve the Falkner-Skan equation for a static or moving wedge in nanofluids 

with prescribed surface heat flux. Later, Yacob et al. (201 lb) investigated the same prob­

lem but excluded the surface heat flux effect. Both Yacob et al. (2011a) and Yacob et 

al. (2011b) considered three different types of nanofluids, namely copper (Cu), alumina 

(A}i03) and titanium dioxide (Ti02) with water as the base fluid. Their results revealed 

that the skin friction coefficient and the heat transfer rates are highest for copper-water 

nanofluids compared to alumina-water and titanium-water nanofluids. Salem et al. (2014) 

investigated the numerical solutions for hydromagnetic flow over a moving wedge in Cu­

water nanofluid with viscous dissipation. They found that the temperature of the fluid 

increases on increasing the magnetic 1field and viscous dissipation parameters. Rahman 

et al. (2012) investigated the hydromagnetic slip flow of water based nanofluids past a 

wedge with convective surface in the presence of heat generation or absorption. Their 

results indicated that the velocity increases with the increase of the Biot number, wedge 

angle, thermal buoyancy, slip, magnetic field and heat generation parameters. In addition, 

Rahman et al. (2012) concluded that the rate of heat transfer in the Cu-water nanofluid 

is found to be higher than the rate of heat transfer in the Ti02-water and Ah03-water 

nanofluids. Detailed numerical studies on the Hiemenz flow of Cu-water nanofluid over 

a wedge embedded in a porous mediuim with thermal radiation and suction or injection 

had been carried out by Raman et al. (2014), Kandasamy et al. (2012), Kandasamy et al. 

(2013) and Mohamad et al. (2013). Kandasamy et al. (2012) also considered the influ­

ence of thermal stratification at the boundary condition in their study. Meanwhile, both 

Kandasamy et al. (2013) and Mohamad et al. (2013) performed numerical studies on the 

unsteady flow. Unsteady MHD non-Darcy Cu-water nanofluid flow along a wedge em-
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bedded in a porous medium was reported by Kandasamy et al. (2014). They found out 

that the temperature of the nanofluid increases with the increase of unsteadiness param­

eter. Su & Zheng (2013) investigated the Hall effect on MHD flow and heat transfer 

of nanofluids over a stretching wedge in the presence of velocity slip and Joule heating. 

They analyzed four different types of water-base nanofluids containing copper (Cu), silver 

(Ag), alumina (A}i03), and titania (Ti02) nanopatticles. They found that an increase in 

nanoparticle volume fraction leads to an increase in the fluid temperature. Kameswaran 

et al. (2014) conducted a study of combined heat and mass transfer over an isothermal 

wedge immersed in nanofluid. They compared two types of nanofluids, Ag-water and 

Au-water nanofluids. They observed that the skin friction and heat transfer rates are more 

enhanced in the case of gold nanopartides compared with silver nanoparticles. 

Many research works have been performed on convective flow and heat transfer over a 

wedge by employing the nanofluid model proposed by Buongiomo (2006). The numerical 

solutions of the mixed convective boundary layer flow of nanofluid over a vertical wedge 

embedded in a porous medium, can be found in the work by Gorla et al. (2011), Chamkha 

et al. (2012), Charnkha et al. (2014) and James et al. (2015). The results obtained in 

Gorla et al. (2011) showed that the Nusselt number decreases on increasing the value of 

thermophoresis and Brownian motion parameters. Chamkha et al. (2012) and Chamkha 

et al. (2014) provide extension work of Gorla et al. (2011) for thermal radiation effect 

and non-Newtonian base fluid, respecltively. Chamkha et al. (2012) found that the local 

Nusselt number increases when eithe1r buoyancy ratio, or the Brownian motion, or the 

thermophoresis, or the radiation-cond1uction or Lewis number increases. Charnkha et al. 

(2014) used power law fluid or also known as the Ostwald-de Waele fluid to describe the 

behaviour of non-Newtonian fluid. James et al. (2015) investigated the influence of ther­

mal radiation, chemical reaction, variable viscosity and suction of nanofluid flow over 

a permeable wedge embedded in saturated porous medium. They concluded that the 

nanoparticle volume fraction thickness decreases with the increase of chemical reaction 

parameter and Lewis number. Khan & Pop (2013) investigated the boundary layer flow of 

nanofluid past a moving wedge. They found that the temperature of nanofluid increases 

when increasing both Brownian motion and thermophoresis parameters. Chamkha & 
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Rashad (2014) studied the MHD forced convection flow of a nanofluid adjacent to a 

non-isothermal wedge. The results indicated that owing to the presence of the Brown­

ian motion and the thennophoresis effects, the local Nusselt number decreases while the 

local Sherwood number increases. Khan et al. (2014) numerically analyzed the MHD 

boundary layer flow of nanofluid past a wedge in the presence of thermal radiation, heat 

generation and chemical reaction. Their results indicated that the nanoparticle volume 

fraction increases on increasing the he.at generation and chemical reaction parameters. 

2.3 Boundary Layer Flow over :a Moving Wedge 

A milestone contribution in wedge floiw was made by Falkner & Skan (1931) who first 

published their boundary layer solutioins. Since then, the boundary layer flow and heat 

transfer along a wedge has been theoreitically developed. However, the abundant literature 

on the boundary layer flow over a wedge is limited to static wedge and little attention was 

given to moving ones. Boundary layer separation can be prevented by moving the wedge 

wall in the flow direction. A moving wall could remove the existence of the velocity 

difference between the wall and the outer flow. 

Riley & Wiedman (1989) studied the effect of moving boundary of the Falkner-Skan 

flow in a viscous fluid. They obtaine:d multiple solutions for various values of wedge 

angle parameter. Ishak et al. (2007) extended the paper by Riley & Wiedman (1989) 

to the case when the walls of the moving wedge are permeable with suction and injec­

tion effects. The results reported were consistent with those found by Riley & Wiedman 

(1989). There have been several studies on boundary layer flow of non-Newtonian fluid 

over a moving wedge, for example: ][shak et al. (2006), Ishak et al. (2011), Ak<;ay & 

Ytikselen (2011) and Postelnicu & Pop (2011). All of these investigations have demon­

strated that the non-Newtonian fluids display a drag reduction compared to Newtonian 

fluids. Butt & Ali (2013) considered the convective flow and heat transfer past a static 

and moving wedge. They figured out that when the wedge and fluid are moving in oppo­

site directions, the momentum boundary layer is thicker than the case when the fluid and 

the wedge are moving in same direction. Ahmad & Khan (2013) analyzed the heat trans­

fer of a viscous fluid with the effect of heat generation/absorption and viscous dissipation 
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over a moving wedge with convective boundary condition in the presence of suction and 

injection. It is shown that the dimensionless velocity and temperature depend upon the 

stretching/shrinking, suction/injection,. and pressure gradient parameters. The study of 

MHD laminar boundary layer flow past a moving wedge was considered by Jafar et al. 

(2013) and Ahmad & Khan (2014). Jafar et al. (2013) focused on the parallel free stream 

of an electrically conducting fluid witlh the induced magnetic field. Meanwhile, Ahmad 

& Khan (2014) examined the combined effects of heat and mass transfer of MHD flow 

over a moving wedge with viscous dissipation, heat source/sink and convection boundary 

condition. 

2.4 Boundary Layer Flow over :a Wedge with Suction/Injection 

Suction and injection (blowing) are known as the useful techniques to prevent bound­

ary layer separation. Schlichting & Gersten (2000) mentioned that the separation of the 

boundary layer is generally undesirable since it leads to great losses of energy. The wall 

of the wedge is assumed to be permeable, so that fluid can be sucked or blown through the 

narrow slits on the wall. Separation can be almost completely prevented by this continu­

ous suction or injection because the boundary layer can be given enough kinetic energy. 

Investigation on boundary layer fluid flows along a wedge with suction or injection has 

increased and has been widely emphasized. The effect of injection/suction on the veloc­

ity and temperature distributions within the boundary layer has important applications in 

engineering processes such as the design of the thrust bearings, the entrance region of the 

pipe flow and the reduction of the drag force. Watanabe (1990) investigated the behaviour 

of incompressible laminar boundary layer in forced flow over a wedge with uniform suc­

tion or injection. It is found that the velocity distributions become thick and temperature 

distributions become thin, as the suction/injection parameter is increased. Later, Watan­

abe et al. (1994) investigated the mixed convection boundary layer flow over a wedge in 

the presence of suction and injection. Their results indicated that the skin friction and 

heat transfer rate increase on decreasing the buoyancy parameter. Kafoussias & Nanousis 

(1997) considered the MHD laminar boundary layer flow over a wedge with suction or 

injection. They obtained that the velocity profile increases on increasing the suction pa-

16 

Univ
ers

ity
 of

 M
ala

ya



rameter. Nanousis (1999) extended the previous work of Kafoussias & Nanousis (1997) 

by considering the mixed convection flow. He indicated that the fluid velocity increases as 

the value of the buoyancy parameter increases. Yih (1998) studied the forced convection 

with uniform heat flux in the presence of suction or injection. The results indicated that 

the local skin friction coefficient and tlhe local Nusselt number increase owing to suction 

of fluid. This trend reversed for blowing of the fluid. Kumari (1998) examined the ef­

fect of large blowing rates on the unsteady conducting fluid flow over an infinite wedge 

with magnetic field. The author conclu1ded that the boundary layer thickness increases on 

increasing the blowing rate and magnetic parameter. Meanwhile, Hossain et al. (2000) 

investigated the effects of temperature dependent viscosity and thermal conductivity on 

forced convective flow with surface heat flux and suction. They concluded that both the 

local skin-friction coefficient and local! Nusselt number increase as suction parameter in­

creases. Kumari et al. (2001) investiga1£ed the MHD mixed convection flow over a vertical 

wedge embedded in a porous medium with suction or injection. They found that both the 

skin friction coefficient and heat transfer rate increase with suction. The mixed convection 

flow over a vertical wedge was considlered by Singh et al. (2009). A detailed analytical 

solution of heat transfer and boundary layer flow over a wedge with suction or injection 

by using Gyarmati's variational technilque can be found in Chandrasekar (2003). Later, 

Chandrasekar & Baskaran (2008) andl Chandrasekar & Shanmugapriya (2008) provide 

the extension work of Chandrasekar (2003) for MHD flow and mixed convection flow, 

respectively. Meanwhile, Yao (2009) obtained the analytical solutions of Falkner-Skan 

problem with suction by using the Homotopy analysis method. In addition, further so­

lutions of the boundary layer flow of a second grade fluid over a wedge with suction or 

injection, can be found in the works by Massoudi & Ramezan (1989), Hsu et al. (1997) 

and Hsiao (2011). 

2.5 Boundary Layer Flow over :a Wedge with Chemical Reaction 

Chemical reactions are classified into two categories; viz., homogeneous reaction, which 

involves only single phase reaction and heterogeneous reaction, which involves two or 

more phases and occur at the interface between fluid and solid or between two fluids 
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separated by an interface. The import.ant applications of homogeneous reactions are the 

combination of common household gas and oxygen to produce a flame and the reactions 

between aqueous solutions of acids and bases. Tbamelis (1995) stated that the majority of 

chemical reactions encountered in applications are first-order and heterogeneous reactions 

such as hydrolysis of methyl acetate il1 the presence of mineral acids and inversion of cane 

sugar in the presence of mineral acids. A chemical reaction is said to be first-order when 

a reaction rate depends on a single sub:stance and the value of the exponent is one. Mid ya 

(2012) observed from their study that the first-order chemical reaction is very important 

in chemical engineering where the chemical reactions take place between a foreign mass 

and the working fluid. 

There are comparatively a few studies on the wedge flow in the presence of chemical 

reaction. Kandasamy et al. (2005) studied the effect of chemical reaction on heat and 

mass transfer along a wedge with heat source, suction and injection. They concluded that 

the increase of chemical reaction decelerates the fluid motion, temperature distribution 

and concentration of the fluid along the wall of the wedge, due to the uniform suction and 

heat source. Kandasamy & Palanimarni (2007) obtained numerical solutions of heat and 

mass transfer on MHD flow over a wedge embedded in a porous medium with chemical 

reaction. Kandasamy et al. (2008) cornsidered the thermophoresis and chemical reaction 

effects on non-Darcy mixed convective heat and mass transfer past a porous wedge with 

variable viscosity in the presence of suction or injection. They found that the skin friction, 

heat and mass rates decrease with the increase of Forchheimer number, thermophoresis 

and chemical reaction parameters. Later, Muhaimin et al. (2009) extended the work of 

Kandasamy et al. (2008) by considering the influence of magnetic field. They indicated 

that the velocity of the fluid increases on increasing the strength of magnetic field. Ganap­

athirao et al. (2013) investigated the non-uniform slot suction/injection on unsteady mixed 

convection flow over a wedge with c:hemical reaction and heat generation/absorption. 

Deka & Sharma (2013) used Falkner-S:kan transformations to solve MHD mixed convec­

tion flow past a wedge under variable temperature and chemical reaction. The unsteady 

mixed convection flow past a wedge in the presence of chemical reaction, heat genera­

tion/absorption and suction/injection was carried out by Ganapathirao et al. (2015). They 
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found that the local skin friction coefficient increases with the increase of buoyancy ratio 

parameter for an accelerating flow. Loganathan et al. (2010) used the local non-similarity 

transformation for solving the MHD mixed convection, heat and mass transfer over a 

wedge embedded in a porous medium. They incorporated the effects of chemical reaction 

and suction or injection. Their results iindicated that the velocity and concentration of the 

fluid decrease with the increase of chemical reaction parameter and Schmidt number. 

2.6 Boundary Layer Flow over :a Wedge with Radiation 

It is well known that thermal radiation changes the temperature distribution by playing a 

role like controlling heat transfer process such as in polymer processing and nuclear reac­

tor cooling system. Ahmed et al. (2014) stated that the role of thermal radiation is of ma­

jor importance in the designing of many advanced energy convection systems operating 

at high temperature. Bhuvaneswari et al. (2012) mentioned that the study of convective 

heat transfer in the presence of thermal radiation has attracted many investigators over the 

past few decades due to its wide range of applications in the petroleum industry, geother­

mal problems and boundary layer control in aerodynamics. Thus, a significant amount of 

research has been carried out to study 1the effect of thermal radiation on convective flow. 

Yih (2001) investigated the effect of thermal radiation on mixed-convection flow over 

an isothermal wedge embedded in a satturated porous medium. The results indicated that 

the local Nusselt number increases on increasing the wedge angle and radiation param­

eters. The effect of radiation on convective flow and heat transfer over a wedge with 

variable viscosity was studied by Elbashbeshy & Dimian (2002). It is shown that in­

creasing both the viscosity and radiation parameters tend to enhance the local Nusselt 

number and local skin friction coefficient. Chamkha et al. (2003) studied the influence 

of thermal radiation on MHD forced convection flow over a non-isothermal wedge in the 

presence of heat generation or absorption. They found that the local Nusselt number de­

creases on increasing the thermal radiation parameter. Mukhopadhyay (2009) examined 

the effects of temperature-dependent viscosity and thermal radiation along a symmetric 

wedge. The results indicated that the temperature decreases with increasing the value 

of radiation parameter and Prandtl number. Pal & Mondal (2009) extended the previous 
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work of Mukbopadhyay (2009) by co111sidering the MHD forced convection over a non­

isothermal wedge. The effects of viscous dissipation, Joule heating, stress work, heat gen­

eration/absorption and suction/injection were also included. Their results indicated that 

the temperature increases on increasing the thermal radiation and magnetic parameters. 

Su et al. (2012) presented the analytical solutions of the influence of thermal radiation 

and ohmic heating on MHD heat and mass transfer over a permeable stretching wedge. 

Rashidi et al. (2014) studied the effect of thermal radiation on MHD mixed convective 

heat transfer of a viscoelastic fluid flow over a porous wedge. They found that increasing 

the thermal radiation parameter reduces the heat transfer coefficient between the wedge 

and the fluid. 

2.7 Boundary Layer Flow over :a Wedge with Heat Generation or Absorption 

Heat generation or absorption in boundary layer flow is very important because it may 

change the temperature distribution. The investigation on boundary layer flow with heat 

generation or absorption has considerable practical applications related to nuclear reactor 

cores, fibre and combustion modeling, electronic chips and semi-conductor wafers. Thus, 

there are many remarkable works have been done to reveal the effect of heat generation 

or absorption in boundary layer flow allong a wedge. 

Chamkha et al. (2000) investigated the MHD natural convection of heat and mass trans­

fer over a vertical wedge embedded in a porous medium with heat generation or absorp­

tion. They considered two cases of thermal boundary conditions, namely the uniform 

wall temperature and the uniform wall heat flux. They concluded that the Nusselt number 

increases on increasing the absorption parameter for both cases. Rashad & Bakier (2009) 

studied the MHD convective forced flow and heat transfer of heat generating fluid past a 

wedge embedded in a non-Darcy porous medium with uniform surface heat flux. They 

found that the Nusselt number and the skin friction coefficient are significantly affected 

by the porosity and heat generation/absorption parameters. Salem (2010) considered the 

effect of temperature-dependent viscosity on free convective boundary layer flow and heat 

transfer over a vertical wedge in a non--Darcy porous medium with heat generation or ab­

sorption. The results showed that the velocity and temperature of the fluid decrease on 
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increasing the heat absorption parameter. Ashwinj & Eswara (2012) examined the MHD 

Falkner-Skan boundary layer flow with internal heat generation or absorption and figured 

out that the effect of heat generation or absorption is found to be very sigruficant on heat 

transfer, but its effect on the skin frictiion is negligible. The influence of heat generation 

or absorption on the non-linear slip flow and heat transfer over a wedge with temperature 

dependent was studied by Rahman & Al-Hadhrami (2013). Prasad et al. (2013) obtained 

the numerical solutions on MHD rruxed convection flow over a permeable non-isothermal 

wedge by using the implicit finite difference scheme. They also include the effects of vis­

cous djssipation, internal heat generation/absorption, thermal radiation, Joule heating and 

stress work. They observed that the temperature djstribution decreases on increasing the 

heat sink parameter while a reversed trend is obtained for the heat source. 

2.8 Boundary Layer Flow over :a Wedge with Soret and Dufour Effects 

The Dufour or diffusion-thermal effeclt is the contribution to the thermal energy flux due 

to concentration gradients. On the other hand, Soret or thermo-diffusion effect is referred 

as the iliffusion of mass due to temperature gradjent. Soret and Dufour effects are very 

important where more than one chemical species is present under a large temperature gra­

dient. These effects have many applications such as serruconductor wafer, electrostatic 

precipitators, manufacturing of opticail fiber and drug discovery. Cheng (2012) inves­

tigated the Soret and Dufour effects on rruxed convection, heat and mass transfer over 

a downward-pointing vertical wedge embedded in a porous medjum with constant wall 

temperature and concentration. The iresults showed that the local Nusselt number de­

creases while the local Sherwood number slightly increases on increasing the values of 

the Dufour parameter. Meanwhile, ain increase in the Soret number tends to decrease 

the local Sherwood number. Pal & Monda.I (2013) investigated the influences of ther­

mophoresis, Soret and Dufour on MHD heat and mass transfer over a non-isothermal 

wedge with thermal radiation and Ohmic dissipation. They observed that the concentra­

tion profile increases on increasing the Soret parameter while a reverse trend is observed 

for temperature. The temperature incre:ases and the concentration decreases on increasing 

the Dufour parameter. 
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CHAPTER 3: MATHEMATICAL FORMULATION 

3.1 Introduction 

In this chapter, an overview of the governing equations of the nanofluid flow within the 

boundary layer is given. The similarity and local similarity solutions to the momen­

tum, thermal, concentration and nanoparticle volume fraction equations are thoroughly 

explained. The local skin friction, Nu1sselt number and Sherwood number are then dis­

cussed. The numerical solutions using the fourth-order Runge-Kutta-Gill method along 

with the shooting technique and Newton Raphson method are explained in detail. 

3.2 The Boundary Layer Flow r\rfodel 

Mathematical modeling of fluid flow is based on the partial differential equations which 

govern the physical behaviour of the fllows. These governing equations represent mathe­

matical statements of the related cons,ervation law of physics. The physical laws which 

govern the boundary layer flow under 1£he influence of specified forces are as follows: 

1. Based on the conservation of ma:ss, the mass of a fluid is conserved across the entire 

domain. 

2. Based on the Newton's second law of motion, the rate of change of momentum 

equals the sum of the forces on a fluid particle. 

3. Based on the the first law of thermodynamics, the rate of change of energy is equal 

to the sum of the rate of heat addition to and the rate of work done on a fluid particle. 

In addition to the statements abov,e, in the present study, it is necessary to include 

the assumptions of nanofluid that describe the constitutive behaviour of the fluid. The 

nanofluid is a dilute solid-liquid mixture with a uniform volume fraction of nanoparticles 

dispersed within the base liquid. Following the nanofluid model proposed by Buongiorno 

(2006), the assumptions are as follows: 

1. The fluid is incompressible. 
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Figure 3.1: A small volume element in the boundary layer region 

2. There are no chemical reactions. The nanoparticles are chosen for their chemical 

inertness with the base fluid. 

3. There are no external forces. The nanoparticles are carried by the turbulent eddies 

and other diffusion mechanisms are negligible. 

4. The base liquid and nanoparticles are in thermal equilibrium. This situation showed 

that as the nanoparticles move in the surrounding fluid , they achieved thermal equi­

librium with it very rapidly. 

5. There is no slip at the wall. 

6. There is no energy dissipation irn the boundary layer. 

Thus, with all these assumptions, the governing equations of the present problem can 

be derived. 

3.2.1 The Continuity Equation 

The continuity equation is the mathematical representation which states about the con­

servation of mass. It expresses the facit that, the rate of increase of mass in fluid element 

equals the net rate of flow of mass into fluid element. Consider a small volume element of 

fluid located at the point (x ,y) in the boundary layer as shown in Fig. 3.1. If pis the fluid 

density, the amount of fluid flowing in the x-direction through the face of element located 

at x is pu dy, and the amount flowing through the opposite face located at (x + dx) is 
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(3 .1) 

Therefore, the amount of fluid leaving; the element in the x-direction per unit volume is 

( J / J x) (p u). Similarly, for the y-direction is 

[pv + :y (pv )dy] dx, (3 .2) 

where the amount of fluid leaving the element in the y-direction per unit volume is 

( J / Jy) (pv ). In the steady state, the amount of fluid leaving the volume element per 

unit volume is zero. Thus, 

(3 .3) 

When the density p is uniform, it can be taken outside and we obtain 

(3 .4) 

3.2.2 The Momentum Equation 

The momentum equation is based on dhe basic law of mechanics (Newton's second law). 

The law states that the rate of change of the momentum of the fluid element is equal to 

the external force exerted on the element and is in the direction of that force. Following 

Buongiomo (2006), the momentum e,quation for the nanofluid with negligible external 

forces is 

[
Jv l . * p Jt + v · Vv = -VP - V · -r , (3 .5) 

where v is the nanofluid velocity, t is ti!ffie and P is the pressure. The stress tensor, -r* can 

be expanded by assuming Newtonian behaviour and incompressible flow: 

-r* = --µ [Vv+( Vv )7] , (3 .6) 

where µ is the coefficient of the viscosity of the fluid and the superscript T indicates the 

transpose of Vv. For a steady flow, we have Ju/ dt = 0 and by definition, Jx/ Jt = u and 
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dy/ dt = v, Eq. 3.5 becomes 

(3.7) 

At the beginning of the mainstream, tlhe total pressure force acting on the fluid element 

per unit volume is therefore can be written as 

dp . dV 
-·- - pU-

dx - dx ' 
(3.8) 

where U is the free stream velocity. Applying Eq. 3.8 in Eq. 3.7, the momentum equation 

which will be used later 
du .du . dV J2u 

u-=i- + v-~ = V -d + v -. 2 , ax .ay x ay 
(3 .9) 

where v = µ / pis the kinematic viscosity of the fluid. 

3.2.3 The Nanoparticle Volume Fraction Equation 

It is important to add the continuity equation for the nanoparticles in the present problem 

because the fluid around the nanoparticles can be regarded as a continuum. The nanopar­

ticle absolute velocity can be viewed as the sum of the base fluid velocity and a relative 

(slip) velocity. Buongiorno (2006) stated that the Brownian diffusion and thermophoresis 

are considered as the slip mechanisms. Thus, the nanoparticle volume fraction can be 

written as 

JS + v·VS = _ _!_v7. j 
dt Pp p, (3.10) 

where S is the nanoparticle volume fraction and jp is the nanoparticle mass flux which 

can be expressed as 

(3.11) 

where Pp is nanoparticle density, T is temperature, jp,B and jp,T are the nanoparticle mass 

flux due to Brownian diffusion and the1mophoretic effect, respectively. Ds = ksT / 3nµdp 

is the Brownian diffusion coefficient, which is given by the Einstein-Stokes's equation, 

where ks is the Boltzmann's constant and dp is the nanoparticle diameter. DT = /3* µ C / p 
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is the thermophoretic diffusion coefficient where /3* = 0.26ki/(2kJ + kp) is the ther­

mophoretic coefficient with kJ and kp are the thermal conductivity of the base fluid and 

nanoparticle, respectively. A detailed explanation and derivation of jp,B and jp,T can be 

found in Buongiorno (2006). Substituting Eq. 3.11 in Eq. 3. 10 yield 

(3.12) 

Eq. 3.12 states that the nanoparticles ican move homogeneously with the fluid, but they 

also possess a slip velocity relatively tio the fluid which is due to Brownian diffusion and 

thermophoresis. For a steady state condition, Eq. 3.12 becomes 

(3.13) 

where D8 and DT are the Brownian diffusion coefficient and thermophoretic diffusion 

coefficient, respectively. 

3.2.4 The Thermal Energy Equation 

The thermal energy equation is a statement about the first law of thermodynamics. It 

expresses the fact that the rate of change of the thermal energy of the volume element per 

unit volume. Following Buongiomo (2006), the thermal energy equation for the nanofluid 

is 

(3.14) 

where (pc)1 is the heat capacity of the base fluid, c is the specific heat, C is the solutal 

concentration, hp is the specific enthalpy of the nanoparticle material, DTc is the Dufour 

diffusivity and q is the energy flux relative to the nanofluid velocity v which can be defined 

as 

(3.15) 
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where k is the thermal conductivity. Substituting Eq. 3.15 in Eq. 3.14 yield 

(pc)J [ ~: + v· VT l = V -kVT - V · (hpj p) + hpV ·j p+ (pc)J DTcV2C 

= V -kVT - hpV ·j p-jp · Vhp + hpV ·jp + (pc)1 DTcV2C 

(3. 16) 

where Vhp = cp VT and cp is the narnoparticle specific heat. It is worth to note that if 

jP = 0, Eq 3.16 becomes the common energy equation for a pure fluid. Substituting 

Eq. 3.11 into Eq. 3.16 gives 

[
JT l [ VT -VT ] (pc)J Jt + v -VT = V -kVT + (pc)p DBVS- VT + DT T +(pc)J DTcV2C. 

(3.17) 

Note that (pc)p is the heat capacity olf the nanoparticles. If we assume that the thermal 

properties of the nanofluid are uniform and the flow is steady, then the thermal energy 

equation becomes 

(3.18) 

where a = k/(pc)1 is the thermal diffusivity and -r = (pc)p/(pc)1 is the ratio of the heat 

capacity of nanoparticle and heat capacity of the base fluid. 

3.2.5 The Concentration Equatio)[l 

In general, there may be a number of chemical components in the fluid. This normally 

happens when there be a transfer of mass to or from the fluid at the surface. At the body 

surface, some particular component olf the fluid has concentration, which is determined 

by the conditions of thermal equilibrium. Following Kuznetsov & Nield (2011), the con­

centration or mass diffusion equation of the boundary layer is 

(3.19) 
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where C is the solutal concentration, Ds is the solutal diffusivity and DcT is the Soret 

diffusivity. For a steady flow conditioin and using boundary layer assumptions, Eq. 3.19 

becomes 

(3.20) 

In summary, Eq. 3.4 represents the continuity equation of the nanofluid, Eq. 3.9 de­

notes the nanofluid momentum equation, Eq. 3. 13 indicates the nanoparticle volume frac­

tion equation, Eq. 3.18 represents the thermal energy equation and Eq. 3.20 indicates 

the solutal concentration equation. Alli these equations comprise a complete set of equa­

tions which explains the transport modlel of nanofluid. The model can be solved once the 

boundary and initial conditions are known. This nanofluid model developed by Buon­

giorno (2006) describes as a two-phase flow analysis and nonhomogeneous. 

3.2.6 The Boundary Conditions 

In all boundary layer problems, the boundary conditions play an important role which 

dictate the particular solutions to be obtained from the governing equations. The govern­

ing equations, Eqs. 3.4, 3.9, 3.13, 3.18 and 3.20 can be solved step-by-step by marching 

downstream from where the flow encounters a body, subject to specified inflow conditions 

at the encounter and specified boundary conditions at the outer edge of boundary layer. 

The velocity boundary conditions are 

1. for suction/injection; U = 0, V = VQ at y = 0, 

2. for moving wedge with suction/injection; u = Uw , v = VQ at y = 0, 

3. as y -+ =; u -t V , 

where vo is the suction (vo < 0) or injection (vo > 0) across the wedge surface. The 

velocity of the moving wedge is denoted as Uw. 

The boundary conditions for temperature are 

1. for constant temperature; T = Tw at y= 0, 

2. for power law variation; T == Tw = Too+b1x11 at y = 0, 

3. as y -+ =; 
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where Tw is temperature at the wedge wall, Too is the ambient values of temperature, b1 

and n1 are constants. 

The boundary conditions of nanoparticles volume fraction are: 

1. for constant nanoparticle volume fraction; S = Sw at y= 0, 

2. as y-t oo; 

where Sw is the nanoparticle volume fraction at the wedge wall and Soo is the ambient 

value of nanoparticle volume fraction. 

The solutal concentration boundary conditions are: 

1. for constant concentration; C=Cw at y= O, 

2. for power law variation; C == Cw = Coo + b2.x!'-2 at y = 0, 

3. as y-t oo; C -t Coo, 

where Cw is the solutal concentration at the wedge wall, Coo is the ambient value of solutal 

concentration, b2 and n2 are constants. 

3.2. 7 The Stream Function 

By introducing the stream function, the velocity components u and v can be replaced by a 

single function lJI. The boundary layer problem can be solved and simplified by choosing 

a stream function lJI which satisfies the continuity equation 3.4 automatically. The stream 

function lJl(x,y) is defined by the equations 

d l/J 
U = -· 

Jy 
dl/f 

and v = - Jx. (3.21) 

3.3 Similarity Solutions of the E:oundary Layer Equations 

The use of the word similar was explained in Evans (1968). For most flows, the shape 

of velocity profile varies gradually as x changes. This means that the manner of increase 

or decrease of velocity in the x-directit0n is the same for all values of y . Since the veloc­

ity profiles for these flows have a similar shape, such boundary layer may be described 
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as similar and the corresponding solut ions to the governing equations as similarity solu­

tion. The mathematical statement that expresses the velocity profiles at all x-positions are 

geometrically similar, differing only by a multiplying factor, is given as follows: 

u=f [y ·p(x)]. (3.22) 

Kays & Crawford (1980) derived and explained in detail of Eq. 3.22 in order to prove the 

assumption that the solution can be expressed in this form truly leads to such solution. 

The similarity solution procedure is described below for the general case of convective 

boundary layer flow of nanofluid along a wedge. Fig. 3.2 shows that the x-axis is ex­

tending along the wedge surface, while the y-axis normal to the surface of the wedge. 

The flow is assumed to be in the x direction. The total angle of the wedge is denoted as 

.Q = f3n, where /3 = 2m/(m+ 1) 2:'.: 0. The governing equations derived in Section 3.2 

describing the continuity, momentum, nanoparticles volume fraction, thermal energy and 

solutal concentration can be written as 

(3.23) 

du .du . dU J2u 
u--:i-- + v-~ = U -d + v .... 2 , 

ax .ay x ay 
(3.24) 

(3.25) 

(3.26) 

(3.27) 

Following Falkner & Skan (1931), the free stream or potential flow velocity is 

U = ax'1. (3.28) 

Clearly, the constant a is the value of U at the point where x is of unit length. The exponent 

m is the wedge angle parameter which depends on the pressure gradient, /3 in the stream 
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Figure 3.2: The physical configuration of the wedge 

direction. By differentiation of Eq. 3.28, it is shown that both m and /3 are related by the 

reciprocal relationships 

/3
- 2ri~ 
- m + l ' 

/3 
m= 2 - /3 · 

By evaluating lJI and its derivatives, fro m the first term of Eq. 3.21, we obtain 

f fi) vx 
lJI = y ;;+T !( 11 ) = h(x)J( 11 ), 

and the dimensionless distance from the wall is defined as 

We can derive 

f (m+ l )U ( ) 1J = ---y = p X y. 
2vx 

h(x)p(x) = J2U vx \I (m+ l )U = V , 
m+ 1 2vx 

dh =h ( m+ 1) 
dx 2x ' 

dp = ( m - 1) 
dx p 2x ' 

dU mU 
dx X 

dTJ p'TJ 
dx p 

(3.29) 

(3.30) 

(3.31) 

The velocity components u and v, as gilven in Eq. 3.21, in terms of new variables 1J and f 

are 
df 

U= V dTJ ' v= - [h'f+h ( df + df p'TJ)l · 
dx dTJ p 

(3.32) 
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The momentum equation 3.24 can be transformed to ( 77 , f ) using Eqs. 3.32. 

u J f !_ (u J f) _ [h' f + h ( J f + J f p' 11 ) ] !_ (u J f) 
J17 Jx J17 Jx J17 p Jy J17 

= v~=-(u Jf) +umV. 
Jy2 J17 X 

After some calculations, the result is 

(3.33) 

Eq. 3.33 is the ordinary differential equation which governs the distribution of fluid ve­

locity. 

The nanoparticle volume fraction, thermal energy and solutal concentration equations 

also contain the velocity components u and v. To establish the conditions which the 

nanoparticle volume fraction, S, the lluid temperature, T and solutal concentration, C 

must satisfy for similar solutions to Eqs. 3.25- 3.27, we shall go through the transforma­

tion to the ( 77 , !)-coordinates in some detail. The variation of S, T and C must be restricted 

to satisfy the conditions for the similarity of the nanoparticle volume fraction, tempera­

ture and concentration profiles. Thus, the dimensionless nanoparticle volume fraction, </J, 

dimensionless temperature, e and dimensionless concentration, y are defined as 

B(· ) = T - Too 
1J Tw - Too' 

(3.34) 

Substituting Eq. 3.32 and 3.34 into Eq:s. 3.25 - 3.27, we obtain 

(3.35) 

J2r Jr . J2o 2x ( J f Jr J f Jr) 
T2 + Pr Le f--=;- + Ncr Le~2 = Pr Le-- --=;---=i-- - -=i----=;- . 
017 017 017 m + 1 017 ax ax 017 

(3.37) 
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In Eqs. 3.35-3.37, the following dimensionless variables have been used 

V 
Pr = - Prandtl number_ a ' , 

a: 
Le = -- Lewis number, 

D ' s 
a 

Ln = Ds , nanofluid Lewis number, 

Brownian motion parameter, 

thermophoresis parameter, 

DcT(Tw - Too) 
Ncr = a (Cw-Coo) ' 

N - DTc(Cw - Coo ) 
TC - a (Tw - Too) ' 

Soret-type parameter, 

Dufour-type parameter. 

3.3.1 The Dimensionless Boundary Conditions 

The velocity boundary conditions which the variable f must satisfy are 

1. for suction/injection; df = 0 
d17 ' 

[_ (!... dU) +xdf = Fw at 11 = 0, 
2 V dx dx 

2. for moving wedge with suction/injection; 

d f _ 1 f (!... dU) a f __ at 
d17 - ' 2 V dx + x dx -- Fw 11 = 0, 

3. as 11 -t =; 
df 
d17 -t 1, 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

where the moving wedge parameter is denoted as 1 = Uw/ U. The suction (Fw > 0) or 

injection (Fw < 0) parameter is denoted as Fw = - voRe_!/2 / U where Rex= Ux/ v is the 

Reynolds number. 

The temperature boundary conditions which the variable 0 must satisfy are 

1. for constant temperature; 0 = 1 at 17 = 0, 

2. for power law variation; 0 == 1 at 77 = 0, 

3. as 17 -t =; 0 --t o. 
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The boundary conditions of nanoparticles volume fraction which the variable </) must 

satisfy are: 

1. for constant nanoparticle volume fraction; </> = l at 77 = 0, 

2. as 77 -t =; <p -t 0. 

The solutal concentration boundary conditions which the variable y must satisfy are 

1. for constant concentration; J = 1 at 77 = 0, 

2. for power law variation; r = : 1 at 77 = 0, 

3. as 77 -t =; 

3.3.2 Local Similarity Solution 

Consider the general transformation of independent variables in the Eqs. 3.33, 3.35, 3.36 

and 3.37 from (x,y) to(~ , 77). Following Kafoussias & Nanousis (1997), ~ is denoted as 

the dimensionless distance along the wedge and 

~ = bx(l-m)/ 2. (3.45) 

Using Eq. 3.45 and its derivative with 1respect to x, Eqs. 3.33, 3.35, 3.36 and 3.37 become 

(3.46) 

(3.47) 

(3.48) 

(3.49) 
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The boundary condition which involves the suction/injection effect becomes 

- -- +x- = - (m+ l ) + --~- = F. f ( x dU) cJ f f 1 - m cJ f 
2 V dx Jx 2 2 J~ w 

It may be observed that if either ~ or derivative with respect to ~ remains in the trans­

formed Eqs. 3.46- 3.49, similarity soliutions will not exist. However, when dropping the 

terms containing partial derivatives with respect to~ and retaining~ as a parameter, this 

approach is called local similarity assumption. Kays & Crawford (1980) mentioned that 

the resulting solutions is generally valid if~ and the discarded derivatives are small. Thus, 

the local similarity solution of Eqs. 3.46- 3.49 are obtained by deleting the terms contain­

ing partial derivatives with respect to~ , and consider~ as a parameter. By employing this 

assumptions, Eqs. 3.46- 3.49 reduce to 

!"'+ti' + m2: i ( i - (!')2) = o, 

</>"+ Pr Lnf q,' + ~: 011 = 0, 

0" + Prf 0' + NB~~'e' + NT (0')2 
+ NTcY' = 0, 

y' + Pr Lefy + NcT Le0" = 0, 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

where primes denote as the differentiation with respect to 17. The boundary condition 
2 

which involves the suction/injection effect becomes f = --Fw. 
m+ l 

3.3.3 The Skin Friction, Nusselt Number and Sherwood Number 

The skin friction, heat and mass transfer rates are the important parameters in thermal 

engineering applications. The skin friction, Nusselt number and Sherwood number are 

defined as follows 

xqw 
Nux = · ( , 

k Tw - Too ) 
(3.54) 
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where 

'rw = µ (~u) ' 
y y=O 

qw = - k (~T) , 
y y=O 

. (JC) q,n= -DB T ' 
y y=O 

(3.55) 

are shear stress, heat flux and mass flux, respectively. Employing Eqs. 3.21 and 3.34, the 

local skin friction coefficient, local Nusselt number and local Sherwood number can be 

written, respectively as 

C1x(Rex)112 = J"(o)Jm; 1, 

Nux(Rex)- 1!2 = -B'(o)J m; l , 

Shx(Rex)- 1!2 = -y'(o)Jm; 1 . 

3.4 Numerical Method 

(3.56) 

(3.57) 

(3.58) 

The nonlinear ordinary differential Eqs. 3.50-3.53 are of the third order in f and second 

order in e, </Jandy. These equations are numerically solved by employing the fourth-order 

Runge-Kutta-Gill method (Gill, 1951) integrated with shooting technique and Newton 

Raphson method (Cebeci & Keller, 1971). We define: 

f = Y1 , J' = Y2 , f 11 = Y3 , B = Y4 , 81 =Y5 , 

We also define the following: 

J' = Fi , f" = F2 , f"' = F3 , B' = F4 , e" - P. - 5 , 

(3.59) 

(3.60) 

Substitute Eqs. 3.59 and 3.60 into Eqs. 3.50- 3.53, these equations are reduced to a system 

of nine simultaneous equations of first order as follows: 

(3.61) 
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(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

F1 = - Pr LeY1 Y1 + Ncr LeFs , (3.67) 

(3.68) 

(3.69) 

Assuming the boundary conditions have the specific case as follows: 

2 
Yi = --~v , Y2 = 0, Y4 == 1, Y6 = 1, Ys = 1, at 1J = 0, (3.70) 

m + l 

Y2 -+ 1, Y4 -+ 0, Y6 -+ 0, Ys -+ 0, as 1J -+ 00• (3.71) 

It is worth mentioning that the values o,f Y3 , Ys , Y1 , and Y9 at 1J = 0 are needed for solving 

the Eqs. 3.61 - 3.69. Since the four values are unknown, the initial guesses for Y3 (0) = 

s, Ys (O) = t , Y1(0) = sc, and Y9 (0) = np are chosen and denoted ass, t , sc and np. The 

problem is to find s, t , sc and np such that the solutions of Eqs. 3.61 - 3.70 satisfy the 

outer boundary conditions 3.71. We indicate the solutions of this initial value problem by 

F[Y1 ( 1J , s), Y2 ( 1J , s), ... , Y9 ( 1J , s)], F [Y1 ( 1J , t), Y2 ( 1J , t ), ... , Y9 ( 1J , t)], 

F [Y1 ( 1J ,sc),y2( 1J ,sc), ... , Y9 (1J ,sc)], F [Y1 ( 1J ,np ), Y2 ( 1J , np), ... , Y9 (1J , np )] . 

To find the value of s, we define such that 

To solve Eq. 3.72, we employ Newton Raphson method (Griffiths & Higham, 2010). For 
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some initial estimate s0 of the root, this yields the iterates s", defined by 

where k = 0, 1,2, 3, . . . and 

J'+l == i" - <p (sk) 
dcp(sk)/ds ' 

(3.73) 

(3.74) 

(3.75) 

In order to obtain the derivative of Y2 , f4 , Y6 and Ys with respect to s, we take the deriva­

tives of Eqs. 3.61 - 3.69 with respect to s (Cebeci & Keller, 1971). This leads to the fol­

lowing linear differential equations, known as the variational equations for Eqs . 3.61 - 3.69. 

Thus, we have: 

'Ys = Y1s , 'Ys = lV16 , <Ps = Y17 , q,; = f1s- (3.76) 

We also define the following: 

(3.77) 

The following equations are the derivative of Eqs. 3.61 - 3.69 with respect to s: 

F10 = Y11 , (3.78) 

F11 = f12 , (3.79) 

(3.80) 

(3.81) 

(3.82) 
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F17 = Y1s , 

NT 
Fis = -Pr Lrn(Y10Y9 + Y1Y1s) - - F14. 

Ns 

(3.83) 

(3.84) 

(3.85) 

(3.86) 

We repeat the same process in order to find one of the solutions for this initial value 

problem, [y1 ( 77 , t ) , Y2 ( 77 , t), ... , Y9 ( 77 , t )I]. To find the value oft, we define such that 

Eq. 3.87 can be solved by using Newton Raphson method. For some initial estimate t0 of 

the root, this yields the iterates tk, defined by 

(3.88) 

where k = 0, 1,2, 3, ... and 

(3.89) 

(3.90) 

For derivatives with respect tot, we have: 

(3.91) 

We also define the following: 

F19 = 1:, F20 = l:' , F21 = 1:11
, F22 = e:, F23 = et, 

(3.92) 
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The following equations are the derivative of Eqs. 3.61 - 3.69 with respect to t : 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

(3.97) 

(3.98) 

(3.99) 

(3 .100) 

(3.101) 

We indicate [f 1 ( 77 , sc), Y2 ( 77 , sc) , .. .. , Y9 ( 77 , sc)] as one of the solutions for this initial 

value problem. To find the value of sc, we define such that 

(3 .102) 

The Newton Raphson method can be u:sed for solving Eq. 3.102. For some initial estimate 

(sc)0 of the root, this yields the iterates (sc)k, defined by 

(sc)k+l - (sc)k - <p((sc)k) 
- ' d<p((sc)k)/d(sc) ' 

(3 .103) 

where k = 0, 1,2, 3, . . . and 

(3 .104) 

d<p( (scl)/ d(sc) = d[Y2( 1700 , (sc)k) -1, Y4 ( 1700 , (~c;::) Y6 (17oo , (sc)k) , fg ( 7700
, (sc)k)] . 

(3 .105) 
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The derivative of Eqs. 3.61 - 3.69 with respect to sc: 

(3.106) 

We also define the following: 

F f"' 30 = SC , 

(3.107) 

The following equations are the derivative of Eqs. 3.61 - 3.69 with respect to sc: 

F2s = Y29 , (3.108) 

(3.109) 

(3.110) 

(3.111) 

(3.112) 

(3.113) 

(3.114) 

(3.115) 

(3.116) 

Again, the same procedure is applied in order to find the unknown value of np. We 

indicate [Y1 (1J ,np), Y2 (1J ,np), ... ,Y9 (~1,np)] as one of the solution for the initial value 

problem. We now define 

<p(np) [Y2 (1Joo ,np) - l ,Y4 (1J,oo ,np),Y6 (1Joo ,np),Ys (1Joo ,np)] = 0. (3 .117) 
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The Newton Raphson method can be u:sed for solving Eq. 3.117. For some initial estimate 

(np )0 of the root, this yields the iterate:s (np )k, defined by 

(npl+l - (npl - cp((np)k) 
- dcp ((np)k)/d(np)' 

(3 .118) 

where k = 0, 1,2, 3, . . . and 

dcp ((np/)/d(np) = J [Y2 (1Joo , (np)k) - l ,Y4 (1Joo , (~~;)Y6 (1Joo , (np)k), Ys (1J00
, (np)k)]. 

(3 .120) 

For derivatives with respect to np, we ]have: 

fnp = Y31 , f~p = Y3g , J:p = Y39 , 0np = Y40 , 0~P = Y41, 

Ynp = Y42 , Ynp = Y43 , </>np = Y44 , </>~p = Y45. (3 .121) 

We also define the following: 

(3 .122) 

The following equations are the derivative of Eqs. 3.61 - 3.69 with respect to np: 

(3 .123) 

(3 .124) 

(3 .125) 

(3 .126) 

(3 .127) 

(3 .128) 
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(3.129) 

(3.130) 

(3.131) 

It is worth mentioning that, Fi - F45 are a system of first order ordinary differential equa­

tions which govern the distribution of nanofluid velocity, temperature, solutal concentra­

tion and nanoparticle volume fraction. We use the Newton Raphson method to solve the 

unknown variables, s, t, sc and np. Newton Raphson method is an iterative root-finding 

technique using the partial derivative of the function as the new system of equations. In 

this case, we start with the estimate val1ues ( s(O) , i(O) , sc(O), np(O)) by the shooting method. 

The Newton Raphson algorithm is expanded to include partial derivatives with respect 

to each variable's dimension (Bazaraat et al., 2006). This would yield the derivative of 

F(Fi ,F2 , ... ,F9) withrespecttos, t , sc andnp. 

Fs (Fio ,Fi1 , ... , Fis) , Ft(Fi9,F20 , ... , F21 ), 

(3 .132) 

Thus, we need to find F8 = 0 , Ft = 0 , Fsc = 0 and Fnp = 0 simultaneously. Follow­

ing Saaty & Bram (1964) and Cebeci & Keller (1971), this yield a system of algebraic 

equations which satisfy the boundary conditions when 17 -+ =. 

1:s + 1:t+ 1:cesc) + f~p(np) + !' - 1 = 0, 

Bss+ Btt+ Bsc(sc) + Bnp(np) + e = 0, 

YsS + '}'tt + Ysc(sc) + Ynp (np) + Y = 0, 

(3.133) 
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Rearrange the system 3.133, this yield a matrix equation: 

1; 1: 1;c l~p s 1-J' 

0s 0t 0sc 0np t -0 
(3.134) 

'Ys '}'t Ysc 'Yrzp SC -y 

</>s <Pt <Psc </>np np -</) 

This matrix equation 3.134 can be solved by the Cramer's rule for the system. Thus, the 

determinant of five matrices are: 

1: 1: l;c l~p 1- f' 1: l:c l~p 

D = 
0s et 0sc 0np - B' 

Ds= 
et 0sc 0np 

'Ys '}'t 'Ysc Ynp -y Yt Ysc Ynp 

<Ps <Pt <Psc </>np - ¢1 <Pt <Psc </>np 

1: 1: 1-l' f.' J np 1; 

Dsc= 
0s 0t -0 Onp 

Dnp = 
0s 

Ys Yt - y %p Ys 

<Ps <Pt -</) ~~np <Ps 

The corrections are then added to the solution vector: 

D 
t* =t + - t 

D ' 
Dsc 

sc* =sc + ­
D ' 

1: 1- l' 

0s - 0 
Dt = 

'Ys -y 

<Ps - </) 

1: l:c 1-l' 

0t 0sc -0 

'}'t 'Ysc - y 

<Pt <Psc -</) 

D 
np* =np+ ~P , 

l:c l~p 

0sc 0np 

'Ysc Ynp 

<Psc </>np 

(3 .135) 

where s*, t* , sc* and np* are the new guess values. Eq. 3.135 can be iterated until it 

converges within a tolerance. 

Once the initial-value problem given by F1 -F45 are solved, s , t , sc and np are known, 

we use the fourth order Runge-Kutta-Gill method (Gill, 1951) to solve the system. The 

system of simultaneous equations of fiirst order is solved numerically using fourth-order 

Runge-Kutta-Gill method from 77 = 0 to an appropriate finite value of 77 -+ 00, say 1700 · 

The value of 7700 is selected to vary from 5 to 7, depending on the set of the physical 

parameters. The step size of 6.77 = 0.01 is found to be satisfactory in obtaining the 

numerical solutions. For convergence, the maximum absolute relative difference between 
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two iterations is employed within a pre-assigned tolerance, £ ::; 10- 5. If the difference 

meets the convergence criteria, the solrntion is assumed to have converged and the iterative 

process is terminated . Following Gill (1951), the Runge-Kutta formula is: 

1 1 ( 2 - ·V2) 1 ( 2+./2) 1 Y;+1 =Y;+6hk1 + 3 - 2 hk2+ 3 2 
hk3+ 6hk4 , 

k1 = F(Yi) , 

k2 = F ( Y; + ik1) , (3.136) 

k3 ~ F [Y,+ ( J2z- l) hk1 + ( Z -
2
J2) hk2], 

le, ~ F [Y, - ~hk2 + ( 2+2J2) hk3 l, 
where h is the step size and i = 1, 2, 3, ... , 45. 

3.5 Code Validation 

Validation of the computer code is very important in the numerical simulation. Thus, an 

examination of the present data against the existing results has been done in order to verify 

the accuracy of the present computer code. Comparative studies of the present results for 

f"(O) and -B(O) with Watanabe et al. (1994), Kumari et al. (2001) and Ganapathirao et 

al. (2013) for various values of m whe:n Pr = 0.73 are presented in Table 3.1. Watanabe 

et al. (1994) used Runge-Kutta-Gill method, Kumari et al. (2001) used the Keller box 

method and Ganapathirao et al. (2013) used finite difference method to solve the system 

of ordinary differential equations in their work. It can be seen from Table 3.1 that the 

present results coincide very well up t:o 3 significant digits with previous results, which 

confirms that the numerical method us,ed in this study is accurate. 
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""" 0\ 

Table 3.1: Comparison of f"(O) and - 0(0) with those of Watanabe et al. (1994), Kumari et al. (2001) and Ganapathirao et al. (2013) when Pr= 0.73 
and ?i. = F..v = Ns = Nr = Ncr = Nrc = Le = Ln = 0. 

Watanabe et al. (1994) Kumari et al. (2001) Ganapathirao et al. (2013) Present 
m 

f" (O) - 0(0) f" (O) - 0(0) f" (O) - 0(0) f" (O) - 0 (0) 

0 0.46960 0.42015 0.46975 0.42079 0.46972 0.42055 0.46960 0.42016 

0.0141 - - 0.50472 0.42635 0.50481 0.42614 0.50461 0.42578 

0.0435 0.56898 0.43548 0.56904 0.43597 0.56890 0.43544 0.56898 0.43548 

0.0909 0.65498 0.44740 0.65501 0.44770 0.65493 0.44740 0.65498 0.44730 

0.1429 0.73200 0.45693 0.73202 0.45728 0.73196 0.45707 0.73200 0.45694 

0.2000 0.80213 0.46503 0.80214 0.46534 0.80215 0.46517 0.80213 0.46503 

0.3333 0.92765 0.47814 0.92766 0.47840 0.92767 0.47841 0.92765 0.47814 

0.5 1.03890 0.48848 - - 1.03893 0.48851 1.03890 0.48849 

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 4: CONVECTIVE FLOW AND HEAT TRANSFER OF NANOFLUID 

OVER A WEDGE WITH SUCTION 

Investigation on boundary layer flows with suction or injection has been widely em­

phasized. The velocity and temperatUJre distributions within the boundary layers in the 

presence of suction/injection have many important applications in engineering processes 

such as the design of the thrust bearings, the entrance region of the pipe flow and the 

reduction of the drag force. Moreover, the effect of suction can significantly change the 

flow field as well as the skin friction, heat and mass transfer coefficients. It is often nec­

essary to postpone or prevent separation of boundary layer to reduce drag force. This 

chapter consists of two problems. The first problem considered the effect of heat gen­

eration/absorption on convective flow and heat transfer of nanofluid over a wedge with 

suction/injection. In the second problem, we extend the first problem by the inclusion of 

thermal radiation. 

4.1 Convective Flow and Heat Transfer of Nanofluid over a Wedge with Heat 

Generation/ Absorption in the Presence of Suction/Injection 

4.1.1 Mathematical Formulation 

Consider a steady two-dimensional incompressible laminar boundary layer flow of a 

nanofluid as shown in the Fig. 3.2. The free stream velocity is denoted as V = ax" where 

a is a constant while the exponent mis a wedge angle parameter and mis a function of 

/3 such that m = f3 / (2 - /3) 2:'.: 0. The base fluid and nanoparticles are in thermal equilib­

rium. The x and y axes are measured !Parallel to the wedge wall direction and normal to 

it respectively, with the associated velocity components u and v. Tis the temperature and 

S is the nanoparticle volume fraction. The constant temperature and nanoparticle volume 

fraction at the wedge wall are denoted as Tw and Sw, respectively. Ambient values of 

temperature and nanoparticle volume fraction are taken as Too and Soo, respectively. The 

effects of Brownian motion and thermophoresis are included for the nanofluid based on 

the Buongiorno's model (Buongiorno, 2006). The suction and injection on the wall are 

included in the problem. Further, the boundary layer flow is considered in presence of 
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heat source or heat sink. It is assumed that there is no chemical reaction between the 

nanoparticle and base fluid. Taking the above assumptions into consideration, the govern­

ing equations describing momentum, energy and nanoparticle volume fraction along with 

the boundary conditions can be written as 

Ju au J2u dU 
u- +v-- -v- + V -

J X ,Jy - Jy2 dx ' 

JT JT J
2
T [ · as JT (DT) (JT) 2

] u- + v- = a - + -r DB·--- -- -- + Q(T - Too), 
dX Jy Jy2 ,Jy Jy Too Jy 

u = 0, v = vo , T = Tw , S = Sw , at y = 0, 

u-+ V, T -+· Too , S-+ Soo , as y-+ =, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where vis the kinematic viscosity, a == k/(pc) is nanofluid thermal diffusivity, k is ther­

mal conductivity, p is the fluid density, c is the specific heat, -r is the ratio of the heat 

capacity of nanoparticle and heat capacity of the base fluid, DB is the Brownian diffu­

sion coefficient, DT is the thermophoretic diffusion, Q is the heat generation/absorption 

coefficient and vo is the suction/injection parameter. 

To obtain similarity solution, we introduce the following dimensionless variables: 

11 =y 
(m + l )V 

2vx 

-
Uvx 

ljl = !(11) - +T, e( )= T-Too 11 Tw - Too' 

where 77 is the similarity variable, lJI is the stream function defined as u = ~; and v = 

- ~:- Substituting Eq. 4.6 into Eqs.4.2 - 4.4, we obtain the following system of nonlinear 

ordinary differential equations: 

!"' + f !" + m2; 1 ( 1 - (!')2) = 0, (4.7) 
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0" + Prf 0' +Ns</J' 0' +NT (0')
2 + m

2
:

1 
Pr~280 = 0, 

</>"+Pr Lnf </>' +NT 011 = 0, 
Ns 

(4.8) 

(4.9) 

where prime denotes the pa1tial differe:ntiation with respect to 17 , Pr = v / a is the Prandtl 

number, Ns = -rDs(Sw - Soo) / a is the Brownian parameter, NT= -rDT (Tw-Too)/aToo is 

the thennophoresis parameter, 8 = Q/ ab2 is the heat generation/absorption parameter and 

Ln = a/ D8 is the nanofluid Lewis number. The boundary conditions 4.5 then become 

2 
f F. !' = 0, = m+ 1 w, 0 = 1, </> = 1, at 17 = 0, 

f l -----'- 1, 0 -----'- 0, ,,. -----'- 0 as ri -----'------. -----, 'I' -----, l 'I -----, =, (4.10) 

where Fw = - voRe!12 / U is the suction parameter and Rex= V x/v is the Reynolds num­

ber. The main physical quantities of interest are the skin friction coefficient and the local 

Nusselt number, which are proportional to the quantities of f"(O) and -0(0), respectively. 

These physical parameters can be defined as Cjx = -rw/ P1V2 and Nux = xqw/ k(Tw -Too), 

where 'tw = µ (tu) and qw = - k (~r) ' are shear stress and heat flux, respectively. 
Y y=O Y y=O 

Using Eq. 4.6, the local skin friction coefficient and local Nusselt number can be written, 

respectively as 

C1x(Rex)112 = J"(o)Jm; 
1

, Nux(Rex)- 1!2 = -0'(o)Jm; 
1

. (4.11) 

4.1.2 Results and Discussion 

Table 4.1 presents the values off" (0) and -0' (0) for various combination of parameters. 

In all works in this thesis, the Prandtl number for the base fluid was fixed as Pr = 6.2. 

From Table 4.1, the value of f"(O) increases on increasing the wedge angle and suction 

parameters. However, the value off" (0) remains unchanged when the values of 8, N8 , 

NT and Ln increase. The value of -0' (0) shows a decreasing pattern when m, 8, Ns , NT 

and Ln parameters increase. Howeve1r, the value of -0' (0) increases on increasing the 

suction/injection parameter. 

Fig. 4.1 displays the velocity, temperature and nanoparticle volume fraction profiles 
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Table 4.1: The values of f" (O) and - O'(O) for various values of m, Fw, 8, NB, NT and Ln 

m Fw 8 NB NT Ln !" (0) - 0'(0) 

0.0909 1.34053 3.32223 

0.2000 0.5 0.2 0.1 0.1 5 1.39034 3.01618 

0.3333 1.43445 2.71710 

-0.1 0.96241 0.03918 

-0.05 1.00017 0.16660 

0.0909 0 0.1 0.1 0.1 5 1.03890 0.31831 

0.7 1.66859 3.66353 

1 1.97741 5.26688 

-0.5 4.55591 

-0.2 4.07799 

0.0909 0.5 0 0.1 0.1 5 1.34053 3.72112 

0.5 2.60585 

1 0.63972 

0.3 1.50831 --0.0909 0.5 0.2 0.5 0.1 5 1.34053 0.56172 --
0.7 0.14375 

0.3 1.51107 
-

0.0909 0.5 0.2 0.2 0.5 5 1.34053 0.98019 
-

0.7 0.61277 

3.5 3.58531 
>---

0.0909 0.5 0.2 0.1 0.1 7 1.34053 3.09228 
>---

10 2.88194 
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Figure 4.1: The distributions off', Band</) for different values of m when Nr =NB= 0.1, 
8 = 0.2, Fw = 0.5, <; = 1 and Ln = 5 

against 77 for different values of the wedge angle, m. As form= 0 (0°), it corresponds to 

the boundary layer flow past a flat horizontal surface, whereas m = 1 (180°) represents to 

the boundary layer flow near the stagnation point of a vertical plate. It can be seen that the 

velocity, temperature and nanoparticle volume fraction profiles increase on increasing the 

wedge angle parameter, m. Therefore the thickness of the hydrodynamic boundary layer 

decreases with the increase of m. 

The impact of thermophoresis on th.e dimensionless temperature and nanopaiticle vol­

ume fraction is depicted in the Fig. 4.2'.(a). It is found that the nanofluid velocity remains 

unchanged on increasing the thermophoresis parameter. The temperature and nanoparticle 

volume fraction profiles increase on increasing the value of Nr. The effect of Brownian 

motion is presented in the Fig. 4.2(b ). It is observed that the temperature increases with 

the increase of NB, while the volume fraction of nanofluid decreases on increasing the 

value of NB. The Brownian motion parameter doesn't cause any significant effect on the 

velocity of the fluid. 

The dimensionless temperature and nanoparticle volume fraction as a function of 77 are 

presented in the Figs. 4.3(a) and 4.3(b),, respectively for various values of heat generation 

( 8 > 0) and heat absorption ( 8 < 0). It is observed that the temperature increases as the 

value of 8 increases for 8 > 0. Therefore, due to the presence of heat generation, it is 

apparent that there is an increase in the thermal state of the fluid. For heat absorption, the 

same situation is revealed for the temperature of the fluid. The nanoparticle volume frac-
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Figure 4.2: The distributions off', e and</> for different values of: (a) Nr when NB = 0.2; 
(b) NB when Nr = 0.1; with m = 0.0909, 8 = 0.2, Fw = 0.5, ~ = 1 and Ln = 5 
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Figure 4.3: The temperature,0 and nanoparticle volume fraction,(/> for various values of 
(a) heat generation (8 > 0) and; (b) heat absorption (8 < 0); when m = 0.0909, Nr = 

NB = 0.1, Fw = 0.5, ~ = 1 and Ln = 5 

tion profile decreases with the increase of heat generation parameter when 77 < 0.5. On the 

other hand, when 77 is approximately veater than 0.5 (77 > 0.5), the nanoparticle volume 

fraction profile increases on increasing the heat generation parameter. Fig. 4.3(b) shows 

that the nanoparticle volume fraction distribution decreases with the increase of heat ab­

sorption parameter. As we move away from the wedge surface, the nanoparticle volume 

fraction distribution is getting more closer to each other for the values of 8 = - 0.5, - 0.3 

and - 0.1. The internal heat absorptioin could not help to improve the distribution of the 

temperature and nanoparticle volume fraction. 

The influence of suction on the velocity, temperature and nanoparticle volume fraction 
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Figure 4.4: The distributions off', 0 and </> for different values of: (a) suction (Fw > 0) 
and; (b) injection (Fw < 0); when m = 0.5, Nr =NB= 0.1, 8 = 0.1, ~ = 1 and Ln = 5 

profiles is displayed in the Fig. 4.4(a). It can be seen that the velocity profile increases on 

increasing the suction parameter. However, the opposite results are observed for temper­

ature and nanoparticle volume fractiom distributions as the suction parameter increases. 

Fig. 4.4(b) depicts the effect of injection on the velocity, temperature and nanoparticle 

volume fraction profiles. It is observe:d that the velocity profile increases on increasing 

the injection parameter. On the other hand, the temperature profile decreases with the 

increase of injection parameter. The nanoparticle volume fraction profile affects in very 

different manner when increasing the injection parameter. That is, there is no change in 

boundary layer when 7J < 1 and then the nanoparticle volume fraction boundary layer 

decreases on increasing Fw values. 

4.2 The Effects of Thermal Radiation and Suction on Convective Heat Transfer 

of Nanofluid along a Wedge in the Presence of Heat Generation/Absorption 

4.2.1 Mathematical Formulation 

We consider the two-dimensional, steady, laminar boundary layer flow over a wedge im­

mersed in nanofluid. The nanofluid is a dilute solid-liquid mixture with a uniform volume 

fraction of nanoparticle dispersed within the base fluid. The base fluid and nanoparti­

cles are in thermal equilibrium. The effects of Brownian motion and thermophoresis are 

included for the nanofluid. The free stream velocity of the potential flow outside the 

boundary layer is denoted as U. Takiing the above assumptions into consideration, the 
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governing equations can be expressed .as 

(4.12) 

Ju .du J 2u dU 
u-=i- +v-~ = v -.. 2 + U-d , 

ax .ay ay x 
(4.13) 

udT + /JT = ad
2
T + -r [DB JSJ1~ (DT) (dT) 2

] + Q(T - Too )--1 dqr , (4_14) 
dx dy dy2 dy dy T00 dy pc dy 

(4.15) 

The radiative heat flux, qr = ( - 4a / 3k1 ) ( JT4 / dy) is employed accordance with the Rosse­

land approximation where a and k1 are the Stefan-Boltzmann constant and the Rosseland 

mean absorption coefficient, respectively. The fluid-phase temperature differences within 

the flow are assumed to be sufficiently small so that T4 may be expressed as a linear func­

tion of temperature. This is done by expanding T4 in a Taylor series about the free stream 

temperature Too and neglecting the higher-order terms to yield T 4 ,...., 4T2T - 3To! . Using 

this expression, the radiative heat flux in Eq. 4.14 becomes, qr = (- I6aT2/ 3k1 )( dT / J y) . 

The boundary conditions for the present problem are 

u = 0, v = vo , T = Tw, S = Sw , at y = 0, 

u -+ U , T -+· Too , S -+ Soo , as y-+ =, (4.16) 

where Tw and Sw are the constant temperature and nanoparticle volume fraction at the 

wedge wall, Too is the ambient temperature, Soo is the nanoparticle volume fraction far 

away from the wedge and vo is the suction velocity at the wall. The continuity equation 

4.12, can be satisfied automatically by defining the stream function such that u = d lJI / dy 

and v = - dlJl/ dx . Substituting Eq. 4.6 into Eqs. 4.13- 4.15, we get the dimensionless 

ordinary differential equations. 

!"' +ff'' + m2: 1 ( 1 - (/)2) = 0, (4.17) 

(4.18) 
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</>'' + Pr Lnf </J' + Nr 0" = 0, 
N B 

with the following boundary conditions 

2 
f F. !' = (), = m+ 1 w , 0 = 1, </J = 1, at 77 = 0, 

f f -----'" 1, 0 -----'" 0, ,,. -----'" 0 as n -----'" -, -, 'I' -, ' . , -, =, 

(4.19) 

(4.20) 

where prime denotes the partial differentiation with respect to 77 , R = k1k/ 4aT2 is the 

radiation parameter, Pr = v / a is the Prandtl number, N B = -rD B ( Sw - Soo) / a is the Brow­

nian parameter, Nr = -rDr (Tw - Too)/ a Too is the thermophoresis parameter, 8 = Q/ ab2 

is the heat generation/absorption parameter, Ln = a / DB is the nanofluid Lewis number, 

Fw = - voReY
2 
JU is the suction pararrneter and Rex = Ux/ v is the Reynolds number. The 

main physical quantities of interest are the skin friction coefficient and the local Nusselt 

number, which are proportional to the values of f" (O) and - 0(0), respectively. These 

physical parameters can be defined as Ctx = -rw/ PJV2 and Nux = xqw/ k(Tw - Too ), where 

'rw = µ (~u) ' 
y y=O 

(JT) 4a (JT4
) 

qw = - k Jy y=O - 3k1 Jy y=O' 
(4.21) 

are shear stress and heat flux, respectively. Using Eq. 4.6, the local skin friction coefficient 

and local Nusselt number can be written, respectively as 

4.2.2 Results and Discussion 

Fig. 4.5(a) shows the velocity, temperature and nanoparticle volume fraction profiles for 

various values of wedge angle parame:ter. The dimensionless velocity profile represents 

the fluid flow phenomenon toward the flow field. It can be observed that the fluid velocity 

increases as the wedge angle parameter increases and thus the hydrodynamic boundary 

layer becomes thin as m increases. It can be seen that both temperature and nanoparticle 

volume fraction profiles increase on increasing the values of m. The velocity, temperature 

and nanoparticle volume fraction profi.les for various values of suction are demonstrated 
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Figure 4.5: The distributions off', 0 and</> for different values of: (a) m when Fw = 0.5; 
(b) Fw when m = 0.0909; with Nr =N's= 0.1 , 8 = 0.5, R = 1, <; = 1 and Ln = 5 
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Figure 4.6: The distributions of: (a) 0 and; (b) </>; for different values of R when m = 
0.0909, Fw = 0.5, Nr = Ns = 0.1, 8 = 0.5, <; = 1 and Ln = 5 

in Fig. 4.5(b ). The velocity profile increases and both temperature and nanoparticle vol­

ume fraction distributions decrease on increasing the value of Fw. These situations lead 

to reduce the hydrodynamic boundary layer thickness and the thermal boundary layer 

thickness. 

Figs. 4.6(a) and 4.6(b) display the effect of thermal radiation on temperature and 

nanoparticle volume fraction distributions, respectively. The temperature profile decreases 

on increasing the thermal radiation parameter. Meanwhile, from the Fig. 4.6(b), we ob­

served that the nanoparticle volume fraction profile exhibits different behaviour before 

and after certain points of 1J . For 1J < 0.7 the nanoparticle volume fraction distribution 

increases and after that point it decreases. It is worth mentioning here that the thermal 
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Figure 4.7: The distributions of: (a) 0 and; (b) </>; for different values of 8 when m = 
0.0909, Fw = 0.5, NT = NB = 0.1, R = 1, ~ = 1 and Ln = 5 

radiation parameter doesn' t cause any significant effect on the velocity of the fluid. 

Figs. 4.7(a) and 4.7(b) present the effect of heat generation/absorption on the tem­

perature and nanoparticle volume fracltion profiles, respectively. The temperature profile 

increases on increasing the heat generation/absorption parameter. Increasing the value of 

8 causes the boundary layer thickness to decrease significantly as seen in Fig. 4.7(a). We 

observed two different types of behaviour for the nanoparticle volume profile on increas­

ing 8 along the domain. That is, </> decreases on increasing 8 up to 77 = 0.6 and then we 

observed the opposite trend in </> . 

Brownian motion is a random motion of particles suspended in the fluid which results 

from their collision with the atoms 0 1r molecules of the fluid. The effect of Brownian 

motion parameter on temperature and concentration profiles is shown in Fig. 4.8(a). As 

the Brownian motion parameter intensitfies (NB increases), the temperature profile and the 

thermal boundary layer thickness increase. This is due to the increase in the frequency of 

collisions of the fluid particles with nanoparticles. Meanwhile, the opposite behaviour is 

observed for the nanoparticle volume fraction profile. The nanoparticle volume fraction 

profile decreases as the Brownian motion parameter increases. This situation shows the 

weakening of nanoparticle volume fraction boundary layer thickness. Fig. 4.8(b) shows 

that, as the thermophoresis parameter increases, both the temperature and nanoparticle 

volume fraction profiles increase. The influence of thermophoresis on temperature dis­

tribution has similar effect with wedge angle parameter, heat generation/absorption and 
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Figure 4.8: The distributions of 0 and </J for different values of: (a) N8 when NT = 0.1; 
(b) NT when N8 = 0.1; with m = 0.0909, Fw = 0.5, 8 = 0.5, R = 1, <; = 1 and Ln = 5 

Brownian motion parameters. That is:, the increases in the value of NT cause the ther­

mal boundary layer thickness to increatse significantly. As the thermophoresis strengthen 

i.e for NT= 0.7, the nanoparticle volume fraction curve drops quickly for 1J < 0.3 and 

started rising for certain range of 1J i.e for 0.3 < 1J < 0.9. However, it slipped back after 

1J > 0.9 and continued declining and finally converges to O as 1J -+ = . It can be concluded 

that, the nanoparticle volume fraction profile decreases with thermophoresis effect. The 

nanoparticle volume fraction profile behaves in different manner near the plate and near 

the free stream which can be seen from the Figs. 4.6(b), 4.7(b) and 4.8(b). 
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CHAPTER 5: CONVECTIVE FJLOW AND HEAT TRANSFER OF HEAT 

GENERATING NANOFLUID OVER A WEDGE WITH SUCTION AND 

CHEMJ[CAL REACTION 

This chapter has undertaken to discuss the effects of fi rst-order chemical reaction, heat 

generation or absorption and suction on boundary layer flow of nanofluid past a wedge. 

The influence of wedge angle parameter, thermophoresis, Dufour and Soret type diffusiv­

ity are also included. 

5.1 Mathematical Formulation 

We consider the two-dimensional, steatdy, laminar boundary layer flow of nanofluid over 

a wedge with heat and mass transfer in the presence of heat generation/absorption. The 

velocity components u and v are asso,ciated along the x-axis and y-axis, respectively as 

depicted in the Fig. 3.2. The first-order chemical reaction is taking place in the flow 

which moves with the free stream velocity, V. The total angle of the wedge is denoted as 

.Q = /3 n, where /3 is the Hartree pressure gradient. Tw and Cw are the constant temperature 

and solutal concentration at the wedge wall, Too is the ambient temperature and Coo is the 

solutal concentration of the fluid far away from the wedge. The nanofluid is a dilute solid­

liquid mixture with a uniform volume fraction of nanoparticle dispersed within the base 

fluid. The base fluid and nanoparticles are in thermal equilibrium. The suction velocity 

on the wall is considered. Taking the above assumptions into consideration, the governing 

equations describing momentum, energy and solutal concentration can be written as 

(5.1) 

du .du J2u dU 
u--::;- + v-~ = v -. 2 + V -d , 

ax .ay ay x 
(5.2) 

(5.3) 

(5.4) 
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where Ko is the chemical reaction coefficient. The boundary conditions for Eqs. 5.1 - 5.4 

are expressed as: 

u = 0, v = vo , T = Tw, C = Cw , at y = 0, 

u-+ U, T-+ Too , C -+ Coo, as y-+ 00, (5.5) 

The mathematical analysis of the problem is simplified by introducing the following quan­

tities: 

11 =y 
(m + l)U 

2vx 
B( )= T - Too 

1J Tw - Too ' 

The stream function lJI is defined as u = dlJl/dy and v = - dlJl/dx, which automatically 

satisfied the continuity Eq. 5.1. Therefore, upon using these variables, the governing 

Eqs. 5.2- 5.4 can be written as 

!"' + f !" + m2: 1 ( 1 - (!')2) = 0, 

B" + PrfB' + N (e'') 2 + N "JI + ~ PrJ: 2 8 B = 0 T , TC! m+ l <:, , 

2m 2 y' + PrLefy +NcT LeB" + --PrLe~ K*y= 0, 
m+l 

with the corresponding boundary conditions 

2 
f F, !' = 10, = m+ 1 w , B = 1, r= 1, at 77 = 0, 

!' ~ 1, e ~ 0:, y -+ 0, as 77 ~ oo, 

(5 .7) 

(5 .8) 

(5 .9) 

(5 .10) 

where prime denotes the partial differentiation with respect to 77. Here, NT = -rDT (Tw -

Too)/ aToo is the thermophoresis parameter, NTc = DTc(Cw - Coo)/ a(Tw - Too) is theDufour­

type parameter, NcT = DcT(Tw - Too)/ a(Cw - Coo) is the Soret-type parameter, Pr = v /a 

is the Prandtl number, Le= a / Ds is: the Lewis number, 8 = Q/ab2 is the heat gen­

eration/absorption parameter, K* = Ko/ ab2 is the chemical reaction parameter, Fw = 

- voRe!12 /U is the suction parameter and Rex= Ux/v is the Reynolds number. 

The expression of local skin-frictiol!l coefficient, local Nusselt number and local Sher-
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wood number are given by 

N 
_ xqw 

Ux - · ( ) , k Tw-Too 
(5.11) 

where -rw =µ(tu) , qw = -k (~T') and qm = -D8 (~c) are shear stress, heat 
Y y=O Y , y=O Y y=O 

flux and mass flux, respectively. Using Eq. 5.6, the local skin friction coefficient, local 

N usselt number and local Sherwood number in dimensionless scale are 

Nux = _ 0'(o)Jm+ 1, 
~ 2 

Shx = -y(o)Jm+ 1. 
~ 2 

(5.12) 

5.2 Results and Discussion 

The impact of all physical parameters on the value of f"(O), -0'(0) and -y'(O) is given 

in Table 5 .1. It is observed from Table 5 .1 that the value off" ( 0) increases on increasing 

the wedge angle and suction parameters. The velocity gradient near the wedge surface 

is larger when suction is present and the wedge angle parameter increases. This result 

is consistent with the physical interpretation of the skin friction, which f"(O) represents 

the velocity gradient at the wedge surface and is also related to the drag coefficient on 

the wall. However, the value of f"(O) remains unchanged when the value of NT, NTc, 

NcT, 8 and K* are changing because those parameters appear only in the energy and 

solutal concentration equations. The value of -0' (0) shows an increasing pattern when 

the values of all the parameters are increasing except suction parameter. The value of 

-0'(0) decreases on increasing the suction parameter. Therefore, the thermal boundary 

layer thickness reduces as the suction parameter increases. It is observed that the value 

of -y' (0) increases as the value of m increases. The value of -y' (0) decreases when NT, 

NTc, Ncr, 8, Fw and K* increase as depicted in Table 5.1. 

Fig. 5.l (a) shows the dimensionless velocity, temperature and solutal concentration 

profiles for different values of wedge angle parameter, m. The fluid velocity increases on 

increasing the values of wedge angle ]parameter. The results also show that the velocity 

profiles became steeper for larger values of wedge angle. In addition, the velocity profiles 

squeeze closer and closer to the surface of the wall, thus the hydrodynamic boundary layer 
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Table 5.1: The values of J"(O), - 0'(0) and - y (O) for various values of m, ~v, Nr, Nrc, 
Ncr, 8 and K* when m = 0.0909, Fw == 0.5 and Le = 5. 

m Fw Nr Nrc Ncr 8 K* J"(O) - 0'(0) - r (O) 

0.0909 1.34053 3.25008 2.42073 

0.2000 1.39035 2.94983 2.34354 
0.5 0.1 0.1 0.1 0.2 0.2 

0.3333 1.43445 2.65698 2.26229 

0.5000 1.47391 2.37305 2.17555 

0.3 1.04808 1.66310 2.46897 
-

0.7 1.64951 4.80176 2.50337 
0.5 - 0.1 0.1 0.1 0.2 0.2 

0.9 1.97053 6.32726 2.61619 
-

1.2 2.46814 8.58918 2.94566 

0.3 2.17362 0.25197 
-

0.0909 0.5 0.5 0.1 0.1 0.2 0.2 1.34053 1.43882 0.62505 
-

0.7 0.93610 2.22326 

0.1 3.25008 2.42073 

0.0909 0.5 0.1 0.3 0.1 0.2 0.2 1.34053 1.44491 4.81450 

0.5 0.52777 5.11516 

0.3 1.37060 5.14912 

0.0909 0.5 0.1 0.1 0.5 0.2 0.2 1.34053 0.90375 5.33196 

0.7 0.58135 5.38980 

-0.6 4.60890 1.06391 

-0.4 4.31299 1.35946 

-0.2 3.99280 1.67933 
0.0909 0.5 0.1 0.1 0.1 0.2 1.34053 

0.4 2.80191 2.86763 

0.8 1.59676 4.06722 

1.0 0.64325 5.01408 

0.5 3.16473 3.21696 
-

0.0909 0.5 0.1 0.1 0.1 0.2 1.0 1.34053 3.06087 4.28092 
-

1.3 3.01328 4.81374 
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Figure 5.1: The distributions of f', 0 and r for different values of: (a) m when Fw = 0.5; 
(b) Fw when m = 0.0909; with Nr = Nrc = Ncr = 0.1, 8 = K* = 0.2 and Le= 5 

becomes thin as m increases. It can be observed from Fig. 5. l (a) that both temperature and 

solutal concentration profiles increase on increasing wedge angle parameter. Fig. 5.1 (b) 

displays the velocity, temperature and solutal concentration profiles against 1J for various 

values of suction parameter, Fw. It cain be seen from the Fig. 5. l (b) that the velocity of 

the fluid increases with an increase of suction velocity. Therefore, the thicknesses of the 

hydrodynamic and thermal boundary layers are found to decrease with the increase of 

suction parameter. It is clear that increasing the suction parameter tends to decrease the 

temperature of the fluid as well as the :solutal concentration. The imposition of suction at 

wedge surface reduces the region of viscous domination close to the wall, which causes 

decreasing in the fluid 's temperature as well as the solutal concentration profiles. 

The influences of Dufour, thermophoresis, Soret and chemical reaction parameters on 

temperature and solutal concentration profiles are depicted in Figs. 5.2((a)- (d)), respec­

tively. The temperature profile shows an increasing pattern when all parameters increase. 

This means that the Nrc, Nr and Ncr parameters work to increase the values of temper­

ature in the fluid and then decrease the gradient at the wall. In addition, the thickness 

of thermal boundary layer increases on increasing the value of Nrc, Nr and Ncr param­

eters. The solutal concentration profile shows a decreasing behaviour when the Dufour 

parameter increases but the opposite iresults are obtained for thermophoresis and Soret 

parameters. This fact indicates that the Dufour parameter reduces the nanoparticle diffu­

sion while the thermophoresis and Soret parameters enhance the nanoparticle diffusion. 
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Figure 5.2: The distributions of e and y with m = 0.0909, 8 = 0.2, Fw = 0.5 and Le = 5 
for different values of: (a) Nrc when K* = 0.2, Nr = Ncr = 0.1; (b) Nr when K* = 0.2, 
Nrc = Ncr = 0.1 ; (c) Ncr when K* = 0.2, Nr = Nrc = 0.1; and, (d) K* when Nr = 
Nrc = Ncr = 0.1 

Fig. 5.2(d) depicts the influence of chemical reaction on the dimensionless temperature 

and solutal concentration profiles. It is obvious that an increase in the chemical reaction 

parameter results in the decreasing of solutal concentration profile. The distribution of 

solutal concentration becomes weak irn the presence of chemical reaction. So, the solutal 

concentration boundary layer becomes thin as the chemical reaction parameter increases. 

From Fig. 5.2(d), the chemical reaction parameter influences the solutal concentration 

field, however, it has a minor effect on temperature profile. It is worth mentioning here 

that, the large values of K* show small changes on temperature field. 

Figs. 5.3(a) and 5.3(b) present the effect of heat generation/absorption for temperature 

and solutal concentration profiles, respectively. The positive values of 8 indicate heat 

generation (source) and the negative values of 8 correspond to heat absorption (sink). It 
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Figure 5.3: Influence of 8 on: (a) 0; and (b) y; when m= 0.0909, Nr =Nrc =Ncr = 0.1, 
K* = 0.2, Fw = 0.5 and Le = 5 

is noted that the temperature of nanolluid increases with the increase of 8. Therefore, 

the thermal boundary layer thickness becomes high on increasing the heat source/sink 

parameter. This is due to the fact that heat generation causes the thermal boundary layer 

becomes thicker and the temperature of the fluid to increases. For the case of heat ab­

sorption, the opposite effects are obtained. The solutal concentration profile decreases 

with an increase of 8 when 77 < 0.5. However, when 77 is approximately greater than 0.5 

( 77 > 0.5), the solutal concentration of the nanoparticles shows an increasing pattern. 
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CHAPTER 6: DOUBLE DIFFUSIVE CONVECTIVE FLOW OF NANOFLUID 

OVER A MOVING WEDGE VVITH SUCTION, SORET AND DUFOUR 

EFFECTS 

Double diffusive convection occurs when the fluid is subjected by two different density 

gradients triggered by local variations of temperature and concentration. Diffusion of 

matter caused by temperature gradiernt is known as thermophoresis or the Soret effect 

while diffusion of heat caused by conc:entration gradient is called the Dufour effect. The 

aim of the present numerical study is to investigate the Soret and Dufour effects on double 

diffusive convective boundary layer flow of nanofluid past a moving wedge in the presence 

of suction. 

6.1 Mathematical Formulation 

Consider the two-dimensional, steady, incompressible, laminar flow of nanofluid with 

heat and mass transfer over a moving wedge. The coordinate system is chosen such that 

x-axis is along the surface of the wedg:e and y-axis is normal to the surface of the wedge 

(see Fig. 3.2 for schematic of the physical system). The ambient values attained as y 

tends to infinity of the temperature T , the solutal concentration C and the nanoparticle 

volume fraction Sare denoted by Too, (7oo and Soo, respectively. The constant temperature, 

solutal concentration and nanoparticle volume fraction at the wedge wall are denoted 

as Tw, Cw and Sw, respectively. The wedge at y = 0 is moved in the x-direction with 

velocity Uw. The nanofluid is a dilute S·olid-liquid mixture with a uniform volume fraction 

of nanoparticle dispersed within the base fluid. The base fluid and nanoparticles are in 

thermally equilibrium. Following Kuznetsov & Nield (2011), the governing equations for 

total mass, momentum, thermal energy, solute and nanoparticles can be expressed as 

(6.1) 

du .du J2u dU 
u~ +v-°"'\ = v -. 2 + U-d , 

ax .ay ay x 
(6.2) 
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(6.3) 

dS cJS . cJ2S (DT) cJ2T 
u dx + V dy == Ds cJy2 + Too cJy2 ) (6.4) 

cJC cJC cJ2C . cJ2T 
u dx +v Jy- = Ds cJy2 + DcT cJy2. (6.5) 

The boundary conditions are expressed as: 

u = Uw, v = vo) T = Tw, C = Cw, S = Sw at y = 0, 

u -"""7 U) T -"""7 Too, C -"""7 Coo, S -"""7 Soo, as y -"""7 00• (6.6) 

The velocity of the moving wedge is. denoted by Uw = bwxn where bw is a constant, 

Uw > 0 for a stretching wedge in the same direction as the external flow, Uw < 0 for a 

shrinking wedge in an opposite directiion to the outer flow and Uw = 0 corresponds to a 

static wedge. 

The mathematical analysis of the problem is simplified by introducing the following 

quantities: 

The stream function lJl(x>y) is defined by u = dl/f / dy and v = - dl/f / dx such that the 

continuity Eq. 6.1 is automatically satisfies. Therefore using Eq. 6. 7, Eqs. 6.2- 6.5 can be 

written as 

!"'+JI' + m2: i ( i - (/)2) = o) 

e" + Prfe' + Ns~~'e' + NT (e') 2 + NTc'Y' = 0) 

y' + PrLefy + NcT Lee" = 0> 

</>"+Pr Lnf q,' + ~: e" = 0) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

where primes indicate as the differentiation with respect to 7J, Pr = v / a is the Prandtl 

number, Ns = '!Ds(Sw - Soo)/a is the Brownian parameter, NT= '!DT(Tw -Too)/aToo 
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is the thermophoresis parameter, NTc = DTc(Cw - Coo) / a (Tw - Too) is the Dufour-type 

parameter, NcT = DcT(Tw - Too)/a(C;v - Coo) is the Soret-type parameter, Le = a/Ds 

is the Lewis number and Ln = a / DB is the nanofluid Lewis number. The boundary 

conditions 6.6 become 

2 
f = m+ l Fw, J' = 1 , 0 = 1, r= 1, </) = 1 at r, = 0, 

J' ---+ 1, 0 ---+ 0, y---+ 0, </) ---+ 0, as r, ---+ 00, (6.12) 

where Fw = - voReY
2 
/U is the suction parameter, Rex= Ux/v is the Reynolds number 

and 1 = Uw/U is the moving wedge parameter. 

The local skin friction coefficient C'Jx, local Nusselt number Nux and local Sherwood 

number Shx are of special significance for this type of flow, heat and mass transfer situa­

tions. These physical parameters can be defined as 

(6.13) 

where 'rw =µ(tu) 'qw = - k (r ') and qm = -DB (f) are shear stress, heat 
Y y=O Y , y=O Y y=O 

flux and mass flux, respectively. Using Eq. 6.7, the local skin friction coefficient, local 

Nusselt number and local Sherwood number can be written, respectively as 

Cfx~ = J"(o)Jm; 
1

, Nux = -e'(o)Jm + 1, 
~ 2 

Shx = -y'(o)Jm+ 1. 
~ 2 

(6.14) 

6.2 Results and Discussion 

Computational solutions are performed for the effects of all the thermophysical parame­

ters and are illustrated in Figs. 6.1-6.8 These figures depict the influences of the various 

controlling parameters on dimensionless velocity, temperature, solutal concentration and 

nanoparticle volume fraction as well as local skin-friction coefficient, local Nusselt num­

ber and local Sherwood number. 

Figs. 6.l (a) and 6.l(b) show the influence of wedge angle parameter, m on the di­

mensionless velocity, temperature, sollutal concentration and nanoparticle volume frac-
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0.2, A = 0.2; (b) m when Fw = 0.2, A = - 0.2; (c) Fw when m = 0.0909, A = 0.2; (d) Fw 
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tion profiles for the case of A = 0.2 and A = -0.2, respectively. Figs. 6. I (c) and 6. l(d) 

illustrate the influence of suction parameter Fw on all dimensionless fields when A = 0.2 

and A = -0.2, respectively. All four figures show that the velocity profile increases as 

m and Fw increase for both values of A = 0.2 and A = -0.2. This means that the ve­

locity profile move closer to the surface of the wedge and the hydrodynamic boundary 

layer decreases for larger values of m and Fw. The increases of wedge angle parame­

ter, m causes an increase in temperature, solutal concentration and nanoparticle volume 

fraction profiles as depicted in Figs. 6 .. l(a) and 6.l(b). Furthermore, it can be seen from 

Figs. 6. l(c) and 6. l(d) that the imposition of suction (Fw) at the wedge surface reduces 

the region of viscous domination close to the wall, which causes decreasing in the fluid 's 

temperature, solutal concentration and nanoparticle volume fraction distributions. Also, 

we observed that increasing of suction parameter results in the increasing of the shear 

stress on the wedge surface and causes the decrease in the thermal, solutal concentration 

and nanoparticle volume fraction boundary layer thickness. 

The effect of Brownian motion parameter on various dimensionless profiles is shown 

in Figs. 6.2(a) and 6.2(b), respectively for both A = 0.2 and A = -0.2. Brownian motion 

is the random motion of nanoparticles within the base fluid and results from continuous 

collisions between the nanoparticles and the molecules of the base fluid. It is examined 

that the nanofluid velocity remains urnchanged with increasing of NB. The temperature 

profile is continued to increase by increasing the Brownian motion parameter for both 

values of k Meanwhile, the solutal concentration and nanoparticle volume fraction pro­

files decrease as NB increases. These si1tuations indicate that the Brownian motion param­

eter works to increase the thermal boul!ldary layer thickness and decrease both the solutal 

concentration and nanoparticle volume fraction boundary layer thickness. 

The dimensionless temperature, solutal concentration and nanoparticle volume frac­

tion as a function of 17 for A = 0.2 and A = -0.2 are depicted in Figs. 6.3(a) and 6.3(b), 

respectively for various values of thermophoresis parameter, NT . In present study, ther­

mophoresis is assumed as the migration of nanoparticle in water due to nanoscopic tem­

perature gradient. It is observed that an increase in NT leads to enhance the temperature 

e ( 17 ), solutal concentration y( 17 ) and nanoparticle volume fraction </> ( 17 ) profiles within 
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Figure 6.3: The distributions of e, yarnd </> for different values of: (a) Nr when Ncr = 0.1, 
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the boundary layer region. These situations indicate that the thermal, solutal concentra­

tion and volume fraction boundary layers thickness increase when increasing the value of 

Nr from 0.1 to 0.5. The ratio of the thermal diffusion coefficient and the normal diffu­

sion coefficient is known as the Soret coefficient. The effect of Soret-type parameter, Ncr 

is illustrated in Figs. 6.3(c) and 6.3(d) for A = 0.2 and 1 = - 0.2, respectively. For both 

values of 1 = 0.2 and 1 = - 0.2, the distribution of nanofluid temperature and solutal con­

centration become strong as Ncr increases. In addition, the nanoparticle volume fraction 

boundary layer thickness is much thininer compared to thermal and solutal concentration 

boundary layer thickness. 

Dufour effect is the inverse phenomenon to the Soret effect. It is the formation of a 

temperature gradient as the result of the mixing of different molecular species. Results 
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for the effect of Dufour-type paramete:r, Nrc on dimensionless temperature, solutal con­

centration and nanoparticle volume fraction profiles are given in Fig. 6.4(a) for A = 0.2. 

It can be seen that all three dimensionless quantities experience an increase when Nrc 

increases from 0.1 to 0.3. Fig. 6.4(b) shows the similarity solutions of 0( 1J ), y( 1J ) and 

</>(TJ) for A = -0.2 with various values of Nrc- The graph follows the same pattern as 

in Fig. 6.4(a). As one would expect, 1the thickness of boundary layer for the nanoparti­

cle volume fraction is smaller than the: thermal and solutal concentration boundary layer 

thickness for both cases A = 0.2 and A. = -0.2. 

The variations of the local skin friction coefficient for various values of m with fixed 

values of other parameters is plotted in Fig. 6.5(a). It is observed that an increase in 

wedge angle parameter, m resulted in an increase in the local skin friction coefficient for 

A < 1, while the reverse behaviour is noticed for A > 1. In addition, the positive value of 

C1x(Re)Y
2 

is obtained when A < 1 and when A > 1, the opposite sign is yielded. This is 

agreed with the physical interpretation that there is a force that opposes the motion when 

the wedge moves through the nanofluid. The negative value of skin friction coefficient 

indicates that the drag force on the fluid is exerted by the moving wedge and the positive 

value implies the opposite. The variations of local Nusselt number and local Sherwood 

number for some values of mare depi,cted in Fig. 6.5(b) and 6.5(c), respectively. As the 

parameter m increases, the local Nussielt number increases. The reverse trend is seen in 

Fig. 6.5( c ), that is, the local Sherwood! number decreases on increasing the wedge angle 

parameter. 

Fig. 6.6(a) presents the variation of local skin friction coefficient against the moving 

wedge parameter A for different values of suction parameter, Fw. The skin friction coef­

ficient increases with the increase of F'w for A < 1 and it decreases for A > 1. All values 

of C1x(Re)!12 are negative as A > 1 and decrease to more negativity with larger values 

of Fw. This negative tendency of skin friction coefficient indicates that the elastic effect 

will reduce the drag on the wedge wall. A similar trend is observed when the curves from 

Fig. 6.5(a) and Fig. 6.6(a) are comparied. By comparing the curves for both Figs. 6.5(a) 

and 6.6(a), we noted that all curves are intersect at the point (1, 0), where the wedge mov­

ing parameter A = 1, and the skin frictiton coefficient is equal to zero. Physically, the zero 
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value of skin friction coefficient means that in the absence of shear stress, the wedge and 

the fluid move with the same velocity. Therefore, the stress on any surface, anywhere in 

the fluid , can be expressed in terms of a single scalar field. Fig. 6.6(b) exhibits the varia­

tion of local Nusselt number for different values of suction parameter. From this figure, it 

is observed that the local Nusselt number increases with the increase in suction parameter, 

Fw and moving wedge parameter, 1 . 

The effect of Brownian motion parameter N8 on the local Nusselt number and Sher­

wood number is presented in Figs. 6.7(a) and 6.7(b), respectively with fixed values of 

other parameters. As stated by Buongiomo (2006), the Brownian motion is an impor~ 

tant mechanism for nano size particles in nanofluid. The Brownian motion is assumed to 

enhance the heat transfer properties arnd promote heat conduction. The energy exchange 

rates increase due to the random movement (Brownian motion) of the nanoparticles. How­

ever, Brownian motion reduces the diffusion of nanoparticle. Therefore, it can be seen in 

Figs. 6.7(a) and 6.7(b) that with the increase in the values of Ns, a reduction in the local 

Nusselt number is noted whereas an increase in the local Sherwood number is noticed. 

Figs. 6.7(c) and 6.7(d) display the variiations of the local Nusselt number and Sherwood 

number, respective! y for different values of thermophoresis parameter, Nr. Thermophore­

sis parameter is also a vital mechanism of nanofluid in determining the heat diffusion and 

nanoparticle volume fraction in the boundary layer. Therefore this yields strong reduction 

in the local Nusselt number and an inc:rease in local Sherwood number on increasing the 
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with m = 0.0909, Ncr = Nrc = 0.1, Fi'w = 0.2, Le = 5 and Ln = 6 

value of Nr. Figs. 6.7((a)- (d)) show that the local Nusselt number and local Sherwood 

number increase as the wedge moving parameter A increases. 

The variations of the local Nusselt rnumber and local Sherwood number are depicted in 

Figs. 6.8(a) and 6.8(b), respectively for different values of Soret-type parameter, NcT- The 

Soret-type parameter appears in the setlutal concentration equation, therefore it accounts 

for additional mass diffusion. Thus, thils results in strong reduction of the local Sherwood 

number as the value of NcT increases. The present analysis shows that the local Sher­

wood number is appreciably influenced by the Soret-type parameter. It is observed from 

Fig. 6.8(a) that the effects of moving wedge and Soret-type parameters enhance the local 

Nusselt number. The effect of Dufour-1type parameter NTc on both the local Nusselt num­

ber and local Sherwood number is ploltted in Figs. 6.8(c) and 6.8(d), respectively against 
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0.1; with m = 0.0909, Fw =NB = 0.2, NT = 0.1, Le= 5 and Ln = 6 

the wedge moving parameter, k The graphs reveal that the local Nusselt number de­

creases as the value of the Dufour-type parameter, NTc increases, while a reverse trend is 

observed for the local Sherwood number. Fig. 6.8(d) shows that the Dufour-type param­

eter is less pronounced on the local Sherwood number than on the local Nusselt number. 

Comparing these figures (6.8(a)- 6.8(d)), we observed that both Soret-type and Dufour­

type parameters provide opposing tremds on local Nusselt number and local Sherwood 

number. 
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CHAPTER 7: DOUBLE DIFFUSIVE CONVECTIVE FLOW OF NANOFLUID 

OVER A WEDGE WITH SUCTION, THERMAL RADIATION, SORET AND 

DUFOUR EFFECTS 

This chapter discussed the combined effects of Soret and Dufour on doubly diffusive 

convective boundary layer flow of nanofluid over a wedge in the presence of thermal 

radiation and suction. In addition, the pertinent parameters of wedge angle, Brownian 

motion and thermophoresis are also considered in this study. 

7 .1 Mathematical Formulation 

We consider the steady, two-dimensional flow of an incompressible, laminar heat and 

mass transfer of nanofluid over a wedgie with thermal radiation, suction, Soret and Dufour 

effects. The nanofluid is a dilute solid-liquid mixture with uniform volume fraction of 

nanoparticle dispersed within the base liquid. The base liquid and nanoparticles are in 

thermally equilibrium. The effects of Brownian motion and thermophoresis are included 

for the nanofluid. Fig. 3.2 shows the flow model and physical configuration. We adopt 

Cartesian coordinate system in such a way that x- and y-axes are taken along the wedge 

surface and normal to the wedge surface, respectively. The flow is assumed to be in the x­

direction. The wedge surface is assumed to be permeable so as to allow for possible wall 

suction. Tw, Cw and Sw are constant temperature, solutal concentration and nanoparticle 

volume fraction at the wall, respectively. Too, Coo, and Soo are the free stream tempera­

ture, solutal concentration and nanoparticle volume fraction, respectively. The thermal­

diffusion (Soret) and diffusion-thermo (Dufour) effects are considered in this study. Thus, 

in accordance with these assumptions and employing the usual boundary layer approxi­

mations, along with Boussinesq's approximation, the governing equations describing the 

conservation of mass, momentum, thermal energy, solute concentration and nanoparticles 

volume fraction are given as follows (Buongiorno (2006) and Kuznetsov & Nield (2011)): 

(7.1) 
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(7.2) 

cJS cJS cJ
2
S (Dr) cJ

2
T 

u dx +v dy == DB dy2 + Too dy2 ' 
(7.4) 

cJC cJC cJ2C J2T 
u dx +v dy-= Ds cJy2 +Der cJy2 ' (7 .5) 

subject to the following boundary conditions 

u = 0, v = vo , T = Tw , C = Cw , S = Sw at y = 0, 

u -+ V, T -+ Too, C-+ Coo , S -+ Soo, as y -+ 00, (7 .6) 

where the radiative heat flux, qr = - · ( 4a /3k1) ( dT4 / dy) is employed by utilizing the 

Rosseland approximation where a is 1the Stefan-Boltzmann constant and k1 is the mean 

absorption coefficient. The fluid-phase temperature differences within the flow are as­

sumed to be sufficiently small, so that. T4 may be expressed as a linear function of tem­

perature by using Taylor's series about the free stream temperature, Too and neglecting the 

higher-order terms to yield, T4 "'4T2T - 3T,!. Applying this approximation, the radiative 

heat flux in Eq. 7.3 becomes, qr= - (l6aT2/3k1)(dT /cJy) . 

Defining the stream function l/f such that u = ~; and v = - ~:, which identically 

satisfies the Eq. 7.1. Substituting Eq. 6.7 into Eqs. 7 .2- 7.5 yields the following equations: 

!"' + f !" + m2: 1 ( 1 - (!')2) = 0, 

( 1 + 
3
~) 0" +Prf0' +NB</>'0' +Nr ( 0')

2 +Nrci' = 0, 

i' + Pr Lefy + Ncr Le0" = 0, 

cf>"+ Pr Lnf cf>' +~: 011 = 0, 

(7 .7) 

(7 .8) 

(7 .9) 

(7.10) 
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with the corresponding boundary condition 

f 2 F. !' = 0, = m + l w , e = 1, r = 1, <P = 1 at 11 = o, 

!' -+ 1, e -+ 0, r -+ 0, </J -+ 0, as 77 -+ 00• (7.11) 

The primes denote the derivatives with respect to 77, Pr = v / a is the Prandtl number, Le = 

a / Ds is the Lewis number, Ln = a / DB is the nanofluid Lewis number, R = k1k/ 4aTJ, 

is the radiation parameter, NB= -rDB(Sw - Soo)/a is the Brownian parameter, Nr = 

-rDr (Tw - Too)/aToo is the thermophoriesis parameter, Nrc = Drc(Cw - Coo)/a (Tw - Too) 

is the Dufour-type parameter, Ncr = Dcr(Tw - Too )/a (Cw - Coo ) is the Soret-type param­

eter, Fw = - voRe!12 / U is the suction parameter and Rex = Ux/ v is the Reynolds number. 

The quantities of interest to be moniitored in this study are skin friction coefficient CJx, 

the local Nusselt Number Nux and local Sherwood number Shx which are defined by 

(7.12) 

where 

'tw =µ(~u) , 
y y=O 

(dT ) 4a (JT4
) q - - k - I -- --

w - dy y=O 3k1 dy y=O ' 
qm = - DB (~C) , 

y y=O 
(7.13) 

are shear stress, heat flux and mass flux, respectively. Using Eq. 6. 7, the local skin friction 

coefficient, local Nusselt number and local Sherwood number can be expressed, respec­

tively, as 

CJx(Rex)112 = J''(o)Jm; 1, 

Nux(Rex)- 1!2 ~ - 0'(0) (I + 3~) J m; 
1

, 

Shx(Rex)- 1!2 = - y'(o)Jm; l. 

(7.14) 

(7.15) 

(7.16) 
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Figure 7.1: The distributions of f' , 0 , 'yand </) with R = 1, NB= 0.2, Nr = 0.1, Ncr = 0.5, 
Nrc = 0.1, Le = 5 and Ln = 6 for difforent values of: (a) m when Fw = 0.2; (b) Fw when 
m = 0.2 
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Figure 7.2: The influence of R on: i(a) temperature and nanoparticle volume fraction 
profiles; (b) solutal concentration profile; when m = 0.2, Fw = 0.2, NB = 0.2, Nr = 0.1, 
Ncr = 0.5, Nrc = 0.1, Le = 5 and Ln = 6 

7 .2 Results and Discussion 

In this section, the numerical solutioins are plotted for values of different parameters. 

Figs. 7 .1- 7. 7 display the effects of all thermo-physical parameters on dimensionless ve­

locity, temperature, solutal concentration and nanoparticle volume fraction as well as local 

skin-friction coefficient, local Nusselt inumber and local Sherwood number. 

Figs. 7.l(a) and 7.l(b) display the velocity, temperature, solutal concentration and 

nanoparticle volume fraction profiles for various values of wedge angle parameter, m 

and suction parameter, Fw, respectively. Both figures show that the velocity of the fluid 
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Figure 7.3: The distributions of 0, rand</> with m = 0.2, Fw = 0.2, R = 1, Le= 5 and 
Ln = 6 for different values of: (a) Ns when NT= 0.5, NcT = 0.5, NTc = 0.1; (b) NT when 
Ns = 0.2, NcT = 0.5, NTc = 0.1; (c) NcT when Ns = 0.2, NT = 0.1 , NTc = 0.1; and (d) 
NTc when Ns = 0.2, NT = 0.1, NcT = 0.5; 

increases with an increase in m and Fw. This means that the velocity profile move closer to 

the surface of the wedge and the hydrodynamic boundary layer decreases for larger values 

of m and Fw . It can be seen from the Fig. 7.l(a) that the increase of wedge angle parameter 

causes an increase in temperature, solutal concentration and nanoparticle volume fraction 

profiles. Furthermore, Fig. 7 .1 (b) shows that the temperature, solutal concentration and 

nanoparticle volume fraction profiles decrease when increasing the suction parameter. 

This situation results in the increasing of the shear stress on the wedge surface. Also, we 

observed that the imposition of suction at the wedge surface reduces the region of viscous 

domination close to the wall, which causes decreasing in the fluid 's temperature, solutal 

concentration and nanoparticle volume fraction distributions. 

The effect of thermal radiation R on temperature and volume fraction profiles is de-
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Figure 7.4: Variations of: (a) Ctx(Re)!12
; (b) Nux(Re);112

; (c) Shx(Re);112
; against Fw 

for different values of m when R = 1, NB= 0.2, Nr = 0.1 , Ncr = 0.5, Nrc = 0.1, Le = 5 
and Ln = 6 

picted in the Fig. 7.2(a). An increase in the thermal radiation leads to the increase of 

fluid temperature, 0. Hence this will enhance the temperature at each point away from 

the wedge smface. The higher value of radiation parameter implies the higher surface 

heat flux. This situation also accompanied by an increase in thermal boundary layer and 

the convection effect. In addition, Fig. 7.2(a) shows that the nanoparticle volume fraction 

decreases on increasing R. The effeclt of </> with R is insignificant compare to 0 on R. 

Even though, the parameter R is not involved in the nanoparticle volume fraction equa­

tion, there is a small change in the </> profile. Fig. 7 .2(b) displays the solutal concentration 

profile for various values of thermal radiation. It is observed that the solutal concentration 

distribution decreases on increasing the radiation parameter. 

The random motion of nanoparticle:s within the base fluid is called the Brownian mo­

tion. The influence of Brownian motioin parameter, NB for the distribution of temperature, 
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Figure 7.5: Variations of: (a) Nux(Re); 112
; (b) Shx(Re); 112

; against N8 for different 
values of R when m = 0.2, Fw = 0.2, Nr = 0.1, Ncr = 0.5, Nrc = 0.1, Le = 5 and Ln = 6 

solutal concentration and nanoparticle volume fraction is shown in the Fig. 7.3(a). It can 

be seen that the fluid temperature is found to increase with an increase in the Brownian 

motion parameter. This means that the thickness of thermal boundary layer increases as 

N8 increases, which eventually enhances the temperature. Since the Brownian motion pa­

rameter is appeared in thermal energy equation, it gives the enhancement on temperature 

distribution. The increasing in the temperature distribution is also due to the continu­

ous collisions between the nanoparticles and the molecules of the base fluid (water). In 

Fig. 7.3(a), we observed that, the solutal concentration and nanoparticle volume fraction 

decrease with an increase in Browniarn motion parameter. An increase in N8 refers to an 

increase in the intermolecular space of nanoparticles. Thus, this situation results in low­

ering the nanoparticle volume fraction distribution as well as the solutal concentration. 

Fig. 7.3(b) presents the distributiorn of dimensionless temperature, solutal concentra­

tion and nanoparticle volume fraction against 17 for various values of thermophoresis pa­

rameter, Nr. Thermophoresis is referred as the transport of the nanoparticles in base 

fluid due to the temperature gradient under the influence of the thermophoretic force. It 

is observed that an increase in Nr leads to the increase in both fluid temperature and 

nanoparticle volume fraction. This phenomenon shows that the nanoparticles' molecules 

carry high kinetic energy and resulting in a net force on the particles. These enhance­

ments are due to the nanoparticles of high thermal conductivity being driven away from 
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the hot surface to the quiescent nanofl1uid. This net force is called thermophoretic. Also, 

it can be seen from the Fig. 7 .3(b) thalt the solutal concentration decreases on increasing 

the value of NT. These situations indicate that the thermophoresis parameter works to in­

crease the volume fraction and thermall boundary layer thickness and decrease the solutal 

concentration boundary layer thickness. 

Fig. 7.3(c) depicts the temperature, solutal concentration and nanoparticle volume frac­

tion profiles for different values of Soret-type parameter, NcT. It is observed that an in­

crease in the Soret-type parameter leads to a decrease in the temperature distribution. The 

solutal concentration and nanoparticle volume fraction increase on increasing the value 

of NcT· Fig. 7.3(d) shows the influence of Dufour effect, NTc on the temperature, solutal 
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concentration and nanoparticle volume fraction profiles. The temperature distribution of 

the fluid increases when the value of NTc increases, which in turn leads to a decrease in 

nanoparticle volume fraction and lowering the concentration of species. 

The variations of local skin frictiorn coefficient against suction parameter, Fw for var­

ious values of wedge angle parameter,. m is shown in the Fig. 7.4(a). It is observed that 

an increase in wedge angle parameter leads to an increase in the local skin friction coeffi­

cient for approximately when Fw < 1.4. The opposite behaviour is noticed for Fw > 1.4. 

Fig. 7.4(b) exhibits the variation of local Nusselt number for different values of m. It 

can be seen that the value of local Nusselt number shows different behaviour before and 

after certain points of Fw as the wedge angle parameter increases, particularly Fw = 0.45. 

Before Fw ~ 0.5, the local Nusselt number increases and after this point, it decreases. The 

variation of local Sherwood number for various values of m is displayed in Fig. 7.4(c) . 

The local Sherwood number decreases: as the wedge angle parameter increases and it in­

creases with an increase in suction parameter. The local mass transfer rate vanishes when 

the suction parameter approaching zero (i.e,Fw ---+ 0). 

The variations of local Nusselt number and local Sherwood number are plotted against 

NB in the Figs. 7 .5(a) and 7.5(b), respectively for various values of thermal radiation, R. It 

is observed that, an increase in Brownian motion parameter obviously decreases the local 

Nusselt number, whereas the reverse effect is seen in the local Sherwood number. It can 

be seen from the Figs. 7 .5( a) and 7 .5(b) that, both the local N usselt and Sherwood number 

increase on increasing the value of the1rmal radiation. 

The effects of Brownian motion ancil thermophoresis parameters on local Nusselt num­

ber and Sherwood number are presented in the Figs . 7.6(a) and 7 .6(b), respectively. The 

local Nusselt number decreases as both the Brownian motion and thermophoresis param­

eters increase. Meanwhile, the local Slherwood number increases as NB and NT increase. 

This is due to the fact that an increase in energy exchange rate causes an enhancement in 

the random movement of nanoparticles and promote heat conduction. 

The variations of local Nusselt number and local Sherwood number are plotted in 

Figs. 7.7(a) and 7.7(b), respectively, against NcT for various values of Dufour-type pa­

rameter, NTC· The graphs reveal that the local Nusselt number decreases as the value 
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of the Dufour-type parameter increases, while a reverse trend is observed for the local 

Sherwood number. Fig. 7.7(b) shows that the local Sherwood number increases as the 

Dufour-type and suction parameters increase. It is observed from Fig. 7.7(a) that, the 

local Nusselt number increases on increasing the Soret-type parameter. The Soret-type 

parameter appears in the solutal concentration equation, therefore it accounts for addi­

tional mass diffusion. Thus, the local Sherwood number reduces as the value of NcT 

increases. Comparing these Figs. 7.7(a) and 7.7(b), we observed that both Soret-type pa­

rameter and Dufour-type parameter provide opposing trends on local Nusselt number and 

local Sherwood number. 
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CHAPTER 8: DOUBLE DIFFUSIVE MIXED CONVECTIVE FLOW OF 

NANOFLUID OVER A WEDGE WITH POWER LAW VARIATION IN THE 

PRESENCE OF SUCTION AND THERMAL RADIATION, SORET AND 

DUFOUR EFFECTS 

Mixed (or combined) convection flow occurs when natural and forced convections 

mechanism are determined simultaneously. The flow is pronounced in situations where 

both pressure forces and buoyant forc:es interact. This chapter discussed the effects of 

thermal radiation, Soret and Dufour on double diffusive mixed convection of nanofluid 

flow past a wedge in the presence of srnction with power-law variation of the wall temper­

ature and concentration. 

8.1 Mathematical Formulation 

We consider heat and mass transfer arnalysis in steady, two-dimensional, incompressible 

flow of nanofluid over a wedge. Fig. 3.2 shows that the x-axis is extending along the 

wedge surface, while the y-axis is normal to the surface. The flow is assumed to be in the 

x direction. The nanofluid is a dilute solid-liquid mixture with a uniform volume fraction 

of nanoparticle dispersed within the base liquid. It is assumed that the nanoparticles and 

base liquid are in thermal equilibrium. The effects of Brownian motion and thermophore­

sis are included for the nanofluid. The Boussinesq approximation is valid. The thermal 

radiation, Soret and Dufour effects are considered. Following the nanofluid model pro­

posed by Buongiorno (2006) and Ku:z:netsov & Nield (2011), the governing equations 

describing the conservation of mass, momentum, thermal energy, solute concentration 

and nanoparticles volume fraction are 
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as as a
2
s (DT) a

2
T 

u ax + Vay == Ds ay2 + Too ay2 ' (8 .4) 

ac ac a2c a2T 
u ax +v ay· = Ds ay2 + DcT ay2 ' (8.5) 

where g is the gravity, f3T is the volumetric thermal expansion coefficient and f3c is the 

volumetric concentration expansion coefficient. It is important to note that f3T is positive 

in most fluids at normal pressures. However, f3c can be positive or negative depending on 

the contribution of the diffusing species to the density of the ambient medium. 

The initial and boundary conditions are given as follows: 

u = 0, V = vo, T = Tw = Too+b1xn1
, C =Cw= Coo+b2~2 , S= Sw at y = 0, 

u-+ U, T -+ Too, C -+ Coo, S-+ Soo, as y-+ 00• (8 .6) 

The wall temperature and concentration are assumed to have power-law variation forms 

where b1 and b2 are constants and n1 and n2 are the power-law exponent that signifies the 

change of amount of temperature and solute along the surface. 

The continuity Eq. 8.1 is automatically satisfied by defining the stream function lJl(x ,y) 

such that u = alJI / ay and v = - alJI / a.x. Substituting Eq. 6.7 into Eqs. 8.2- 8.5, yield the 

non-dimensional equations as follows: 

2m ( 2) 2 . . Q f"' + ff"+ -- 1 - (f') + --Ri(B + Ny) sm - = 0, 
m+l m + l 2 

(8 .7) 

( 1 + ~) e" + Prfe' - ~Pre +N ,1,'e' + N (e')2 + N ,.JI= 0 3R m + l B'I' T TC r , (8 .8) 

~JI ~I 2n2 II r + PrLef, ----PrLey+NcT Lee = 0, 
m+l 

(8.9) 

cp" + Pr Lnf q,' + ~: e" = 0, (8.10) 

with the corresponding boundary conditions 

f 2 F. f' = 0, = m+ 1 w, e = 1, y = 1, </J = 1 at 17 = 0, 

f' -+ 1, e -+ 0, r-+ 0, cf, -+ 0, as 17 -+ 00, (8.11) 
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where prime denotes the partial differentiation with respect to T] , Rex = U x/ v is the 

Reynold number, N = Ri* / Riis the rntio of buoyancy parameter, Ri = Grx/Re; is ther­

mal Richardson number, Ri* = Gr;/Re; is solutal Richardson number, Grx = gf3T(~v -

Too)x3 /v2 is thermal Grashof number, Gr;= gf3c(Cw - Coo)x3 / v2 is solutal Grashof 

number, R = k1 k/ 4crT2 is the thermal radiation parameter, Pr = v / a is the Prandtl num­

ber, Le = a/Ds is the Lewis number, NB= -rDB(Sw - Soo)/a is the Brownian motion 

parameter, NT= -rDT(Tw - Too)/ aToo is the thermophoresis parameter, NcT = DcT(Tw -

Too)/ a(Cw - Coo) is the Soret-type parameter, Nrc = DTc(Cw - Coo)/a(Tw - Too) is the 

Dufour-type parameter, Ln = a / DB is lthe nanofluid Lewis number and Fw = - voReY
2 /U 

is the suction parameter. 

The local skin friction, local Nusselt number and local Sherwood number are defined 

as follows. 

(8.12) 

where 

'rw=µ(~u) ' 
y y=O 

q _ -k (JT")I _ 4cr (JT4
) 

. w - Jy) y=O 3k1 Jy y=O ' 
qm = - DB (~C) , 

y y=O 
(8.13) 

are shear stress, heat flux and mass flux, respectively. Using Eq. 6. 7, the local skin friction 

coefficient, local Nusselt number and local Sherwood number can be written, respectively 

as 

Cjx(Rex) I/2 = J" (0) J m; I , 

Nux(Rex)- 112 = - 01(0) ( 1 + 
3
~) Jm; 1, 

Shx(Rex)- 1!2 = -y'(o)Jm; l. 

8.2 Results and Discussion 

(8.14) 

(8.15) 

(8.16) 

Table 8.1 shows the values of J"(O), - 0 (0), - y(O) and - q,(O) for different values of 

Richardson number, Ri and the buoyancy ratio parameter, N. The buoyancy ratio pa-
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rameter represents the ratio between concentration and thermal buoyancy forces. When 

N = 0, there is no mass transfer and the buoyancy force is due to the thermal diffusion 

only. When N > 0, the buoyancy for.ces are cooperating and act in the same direction 

(assisting flow). When N < 0 means tlhat concentration and thermal buoyancy forces act 

in the opposite direction (opposing flow). It is observed that, the value of f"(O) increases 

on increasing the parameter N for the case of assisting flow (N > 0) when n1 = 0.3 and 

n2 = 0.1. Meanwhile, for the case of opposing flow (N < 0), the value off" (0) de­

creases on increasing the values of N. It is important to note that Richardson number, 

Ri plays the role of a buoyancy or a mixed convection parameter. Ri > 0 and Ri < 0 are 

for the situation when the bouyancy forces assist the main flow and when they oppose 

the main flow, respectively. The case Ri » 1.0 corresponds to free convection, Ri = 1.0 

corresponds to mixed convection and Ri « 1.0 corresponds to pure forced convection. 

The results presented in Table 8.1 also indicated that when n1 = 0 and n2 = 0, the value 

of J" (0) increases on increasing the Richardson number for the case of assisting flow 

(Ri > 0). Further, the value of J"(O) dlecreases on increasing Ri for the case of opposing 

flow (Ri < 0). Both (Ri > 0) and (N > 0) parameters act as a favorable pressure gradient 

which accelerated the fluid flow and this situation leads to enhance the value of f" ( 0). 

For the opposing flow, an adverse pressure gradient occurs which decelerates the velocity 

of the fluid. The effects of N and Rion the values of -0(0), -r(O) and - </>(O) are very 

small because of the physical parameters N and Ri appear only in the momentum equa­

tion. Thus, the buoyancy ratio parameter and Richardson number are strongly affect the 

value of f"(O), whereas the effect of these parameters on -0(0), - y(O) and -</> (O) are 

not much significant. 

Figs. 8. l((a)- (c)) depict the velocity, temperature, solutal concentration and volume 

fraction profiles against 77 for various values of wedge angle, suction and thermal radi­

ation parameters, respectively. The velocity increases on increasing the values of m, Fw 

and R. The effect of increasing m is to show that the fluid velocity became faster and 

thereby the velocity profiles squeeze faster and move nearer to the surface of the wedge 

wall. In addition, the hydrodynamic boundary layer decreases for larger values of m. 

Furthermore, the fluid particles intensify the velocity on increasing the suction and ther-
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Table 8.1: The values of f" (O), -0(0) , -y(O) and -</J (O) for various values of N, Ri, n1 

and n2 when m = 0.0435, Fw = NB = 0.2, Nr = Nrc = 0.1, Ncr = 0.5, Le = 5 and Ln = 6 

N Ri n1 n2 !" (0) -0(0) - y(O) -<fJ (O) 

-5 0.74106 1.42398 10.53373 13.89749 -
-3 0.82465 1.42849 10.55119 13.91043 -
-1 0.90796 1.43298 10.56837 13.92318 -
0 0.94920 1.43518 10.57673 13.92941 - 1 0.3 0.1 

0.2 0.95742 1.43561 10.57839 13.93064 -
1 0.99019 1.43735 10.58496 13.93555 -
2 1.03092 1.43949 10.59304 13.94160 -
3 1.07488 1.44203 10.60236 13.94840 

-5 0.08287 0.75221 10.85139 14.07351 

-3 0.42134 0.81416 10.92261 14.12697 

-1 0.7][207 0.85889 10.97739 14.16989 

-0.5 0.78018 0.86854 10.98957 14.17961 

0.2 0 0 0 0.84686 0.87773 11.00128 14.18903 

0.01 0.84818 0.87791 11.00151 14.18921 

0.1 0.86004 0.87951 11.00357 14.19088 

1 0.97644 0.89490 11 .02349 14.20703 

5 1.45692 0.95223 11.10049 14.27087 

mal radiation parameters. It can be seen from the Fig. 8.l(a) that the increase of wedge 

angle parameter causes an increase in temperature, solutal concentration and nanoparti­

cle volume fraction profiles. It is clear from Fig. 8.1 (b) that the effect of increasing Fw 

is to decrease the temperature of the fluid. The imposition of suction at wedge surface 

reduces the region of viscous domina1tion close to the wall, which causes decreasing in 

the fluid's temperature. However, an 1increase in the thermal radiation leads to enhance 

the fluid temperature. Hence this will boost the temperature at each point away from the 

wedge surface. The higher value of radiation parameter implies the higher surface heat 

flux. This situation also accompanied by an increase in thermal boundary layer thickness 

and the convection effect. It can be seen from the Figs. 8.l(b) and 8.l(c) that the solutal 

concentration and nanoparticle volume fraction profiles decrease on increasing the suc­

tion and thermal radiation parameters.. The effects of 0, y and </J on m are insignificant 
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Figure 8.1: The velocity, temperature, solutal concentration and nanoparticle volume 
fraction profiles with Ri = 1, NB = 0.2, NT = 0.1, NcT = 0.5, NTc = 0.1, n1 = 0.3, n2 = 
0.1 , N = l , Le = 5 and Ln = 6 for different values of: (a) m when Fw = 0.2 and R = 1; 
(b) Fw when m = 0.0435 and R = l; (c) R when m = 0.0435 and Fw = 0.2 

compared to f' on m. This is because ithe wedge angle plays a dominant role on velocity 

of the flow than other properties of the fluid such as temperature, solutal concentration 

and nanoparticle volume fraction. 

Fig. 8.2(a) presents the temperature., solutal concentration and volume fraction profiles 

for various values of Brownian motion parameter, NB. Brownian motion is one of the 

key physical forces in nanofluid. This motion caused by the particles suspended in liquid 

seem to constantly move at random as they are pushed to and fro by collisions with the 

atoms that comprise the liquid. As a result of this random movement, all particles are 

distributed throughout the fluid. Thus, it is observed from Fig. 8.2(a) that the temperature 

rises as the Brownian motion parameter increases. The solutal concentration decreases on 

increasing NB due to the rapid movement of the fluid molecules and nanoscopic particles. 
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Figure 8.2: The temperature, solutal concentration and volume fraction profiles with 
m = 0.0435, Ri = 1, Fw = 0.2, R = 1, n1 = 0.3, n2 = 0.1, N = 1, Le= 5 and Ln = 6 for 
different values of: (a) NB when Nr = 0.1, Ncr = 0.5, Nrc = 0.1; (b) Nr when NB= 0.2, 
Ncr = 0.5, Nrc = 0.1; (c) Ncr when NB = 0.2, Nr = 0.1, Nrc = 0.1; and (d) Nrc when 
NB = 0.2, Nr = 0.1, Ncr = 0.5 

An increase in NB refers to an increase in the intermolecular space of nanoparticles. Thus, 

this situation results in lowering the nanoparticle volume fraction distribution, </> . 

Thermophoresis is referred as the lcransport of the nanoparticles in base fluid due to 

the temperature gradient under the influence of thermophoretic force. Fig. 8.2(b) depicts 

the influence of thermophoresis, Nr on temperature, solutal concentration and volume 

fraction profi les. It is noticed that an increase in thermophoresis parameter leads to the 

increase in fluid temperature, solutal concentration and nanoparticle volume fraction dis­

tributions. This situation indicates that Nr works to increase the volume fraction, thermal 

boundary layer thickness and solutal concentration boundary layer thickness. In addition, 

this phenomenon shows that the nanoparticles' molecules contain high kinetic energy and 

resulting in a net force on the particles. This net force is called thermophoretic. More-
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Figure 8.3: Variations of: (a) Ctx(Rie)l12; (b) Nux(Re);112
; (c) Shx(Re); 112; against 

N for different values of m when Ri = 1, Fw = 0.2, NB= 0.2, Nr = 0.1, Ncr = 0.5, 
Nrc = 0.1, n1 = 0.3, n2 = 0.1, R = 1 , Le = 5 and Ln = 6 

over, these enhancements are due to the nanoparticles of high thermal conductivity being 

driven away from the hot surface to the quiescent nanofluid. 

The effects of Soret-type parameter, Ncr and Dufour-type parameter, Nrc on temper­

ature, solutal concentration and volume fraction distributions are shown in Figs. 8.2(c) 

and 8.2(d), respectively. It is observed that the temperature decreases on increasing Ncr 

and it increases on increasing Nrc. )Figs. 8.2(c) and 8.2(d) also show that the solutal 

concentration and nanoparticle volume fraction profiles increase on increasing the Soret­

type parameter and Dufour-type parameter. The influence of Ncr on r is more significant 

compared to Ncr on </>. 

The variations of local skin frictioni coefficient, local Nusselt number and local Sher­

wood number against the buoyancy ratio, N for various values of the wedge angle param­

eter, m are presented in Figs. 8.3((a)--(c)), respectively. It is observed that an increase 
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Figure 8.4: Variations of: (a) C1x(Re)l 12; (b) Nux(Re); 112; (c) Shx(Re); 112; against N 
for different values of Ri when m = 0.0435, Fw = 0.2, NB = 0.2, NT = 0.1, NcT = 0.5, 
NTc = 0.1, n1 = 0, n2 = 0, R = 1, Le == 5 and Ln = 6 

in wedge angle and buoyancy ratio parameter leads to an increase in local skin friction 

coefficient and local Nusselt number. Meanwhile, the local Sherwood number decreases 

on increasing m but opposite behaviour is observed on increasing N. This is due to the 

fact that the ratio of buoyancy acts like a favorable pressure gradient which accelerated 

the nanofluid. 

The influences of Richardson number, Ri and the buoyancy ratio parameter, N on 

the local skin friction coefficient, local Nusselt number and local Sherwood number are 

shown in Figs. 8.4((a)- (c)). Both assisting (Ri > 0) and opposing (Ri < 0) flow cases are 

considered. It can be seen that, there is a single intersection point of all the curves plotted 

in Figs. 8.4((a)- (c)) whenN changes within the range - 5 s N s 2 for various values of Ri 

and 1. Based on our computations, we obtained C1x(Re)!12 = 0.61171 when Ne= - 2.98, 

(R )- t /
2 

- 0 63 00 - 1' 89 S (R )- 112 - 9 6 - 3 6 Nux ex - . 4 whenNc - - ->. and hx ex - 7. 4 47whenNc - - . 2. 
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Figure 8.5: Variations of: (a) Ctx(Rie)l12; (b) Nux(Re); 112; (c) Shx(Re); 112; against 
Fw for different values of R when m == 0.0435, N = 1, NB = 0.2, NT = 0.1, NcT = 0.5, 
NTc = 0.1, n1 = 0.3, n2 = 0.1, Ri = 1, Le = 5 and Ln = 6 

Here, Ne is the value of buoyancy ratio parameter for which the intersections exist. It is 

worth mentioning that the curves of local skin friction coefficient, local Nusselt number 

and local Sherwood number are parallel to x-axis when Ri = 0. This is not surprising 

since there is no buoyancy effect at tlhe surface of the wedge. As it can be noticed in 

Figs. 8.4((a)- (c)), the local skin friction coefficient, local Nusselt number and local Sher­

wood number increase for the case of assisting flow (Ri > 0). The variation of local skin 

friction coefficient, local Nusselt number and local Sherwood number showed a decrease 

pattern for the case of opposing flow (Ri < 0). However, the opposite behaviour is ob­

served when N < Ne. 

Fig. 8.5(a) displays the variations of local skin friction coefficient against suction pa­

rameter, Fw for different values of R. It is observed that the local skin friction coefficient 

shows an increasing pattern when bo1th parameters, Fw and R increase. The same be-
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Figure 8.6: Variations of: (a) Ctx(Rie)l12; (b) Nux(Re);112; (c) Shx(Re);112; against 
NB for different values of NT when ,n = 0.0435, N = 1, Fw = 0.2, R = 1, NcT = 0.5, 
NTc = 0.1, n 1 = 0.3, n2 = 0.1, Ri = I, Le = 5 and Ln = 6 

haviour can be observed in Fig. 8.5(c), that is the local Sherwood number increases on 

increasing Fw and R. Fig. 8.5(b) shows that, the local Nusselt number decreases on in­

creasing the radiation parameter and it increases on increasing the values of suction. The 

value of local Nusselt number is higher for the case of R = 1, comparing with R = 2 and 

R = 3. This is due to the fact that once the fluid is drawn across the suction wall, both the 

hydrodynamic and thermal boundary layer lead to increase the temperature gradients on 

the wedge and rises the heat transfer rate. 

The simultaneous effects of thermoJphoresis and Brownian motion parameters on local 

skin friction coefficient, local Nusselt number and local Sherwood number are presented 

in Figs. 8.6((a)- (c)), respectively. Thermophoresis involves nanoparticle migration due 

to the imposed temperature gradient across the fluid. Meanwhile, Brownian motion expe­

riences the random drifting of suspended nanoparticles. Therefore, the numerical results 
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Figure 8.7: Variations of: (a) Cjx(Re)1/2
; (b) Nux(Re); 112

; (c) Shx(Re); 112
; againstNcT 

for different values of NTc when m = 0.0435, N = 1, Fw = 0.2, R = 1, NB = 0.2, NT = 0.1, 
n , = 0.3, n2 = 0.1, Ri = 1, Le = 5 and Ln = 6 

should be carried out for a wide range c,f Brownian motion and thermophoretic parameters 

to reveal their effects. Figs. 8.6(a) and 8.6(c) show that the local skin friction coefficient 

and local Sherwood number increase on increasing NT and NB parameters. It is observed 

that, the local Nusselt number decreases as NT and NB increase. This reduction occurs due 

to the fact that an increase in energy exchange rate causes an enhancement in the random 

movement of nanoparticles and promote heat conduction. 

The influences of NcT and NTc on local skin friction coefficient, local Nusselt num­

ber and local Sherwood number are diisplayed in Figs. 8.7((a)- (c)). It is observed from 

Fig. 8.7(a) that the local skin friction coefficient increases on increasing both NcT and 

NTc parameters. The local Nusselt number increases on increasing the Soret-type param­

eter while a reverse trend is observed for local Sherwood number. This is due to the fact 

that, the Soret-type parameter produce:s a mass flux from lower to higher solute concen-
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Figure 8.8: Variations of: (a) Ctx(Re)!12
; (b) Nux(Re); 112; (c) Shx(Re); 112

; against NB 
for different values of n1 when m = O.Ot435, N = 1, Fw = 0.2, R = 1, Nr = 0.1 , Ncr = 0.5, 
Nrc = 0.1, n2 = 0.1, Ri = 1, Le = 5 and Ln = 6 

tration driven by the temperature gradient. It can be seen from Fig. 8.7((c)) that the local 

Sherwood number increases on increasing the Dufour-type parameter and it decreases as 

the Soret-type parameter increases. 

The variations of Ctx(Re)! 12, Nux(Re);112 and Shx(Re); 112 against the Brownian mo­

tion parameter, NB for various values of temperature power-law exponent, n 1 are presented 

in Figs. 8.8((a)- (c)), respectively. It is observed that an increase in n1 leads to a decrease 

in local skin friction coefficient as well as local Sherwood number. However, a reverse 

behaviour is observed for the variatiorn of local Nusselt number. The local Nusselt num­

ber increases on increasing the values of surface temperature exponent. In other words, 

increasing the temperature power-law exponent tends to increase the buoyancy force, ac­

celerating the flow and thus increasing the heat transfer rate. 

Figs. 8.9((a)- (c)) show the variations of local skin friction coefficient, local Nusselt 
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Figure 8.9: Variations of: (a) C1x(Re)!12
; (b) Nux(Re); 112

; (c) Shx(Re); 112
; against Le 

for different values of n2 when m = 0 .0435, N = 1, Fw = 0.2, R = 1, NB = 0.2, NT = 0.1, 
NcT = 0.5, NTc = 0.1, n1 = 0.3, Ri = 1 and Ln = 6 

number and local Sherwood number against Lewis number, Le for various values of con­

centration power-law exponent, n2. Lewis number is defined as the ratio of thermal dif­

fu sivity to mass diffusivity. It is an effective parameter which is used to characterize the 

fluid flow where simultaneous heat and mass transfer occur because of convection. Obvi­

ously, an increase in the values of Le Ueads to decrease the local skin friction coefficient 

and local Nusselt number. It is observed from Figs. 8.9((a) - (b)) that both local skin fric­

tion coefficient and local Nusselt number exert the decreasing behavior when the value of 

n2 increases. Comparing the curves in Fig. 8.9(c), it can be seen that the local Sherwood 

number increases as the Lewis number and n2 increase. This is due to the fact that a larger 

Lewis number has relatively lower molecular diffusivity. 
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CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS 

This Doctoral thesis addresses the numerical study on convective boundary layer flow 

and heat transfer of nanofluid over a wedge. Starting with a brief introduction to fluid 

dynamics and boundary layer, Chapter I evolves through the mode of heat transfer and 

the classification of convection. This chapter also underlined the general introduction to 

nanofuid and listed its advantages as compared to conventional fluid. Chapter 2 focuses 

on a comprehensive literature review on the boundary layer flow over a wedge. The thor­

ough discussion in the review led to one significant outcome which is the boundary layer 

flow of nanofluid along a wedge. Besides that, the seven specification effects such as the 

moving wedge, suction, chemical reaction, heat generation or absorption, thermal radia­

tion, Soret and Dufour are emphasized .. Chapter 3 gives the details of the derivation of the 

governing equations which satisfied the flow field along the wedge. The solution of the 

governing equations is achieved with ithe aid of similarity and local similarity concepts. 

The reduced boundary layer equations, complete with transformed boundary conditions 

are solved by using the fourth-order Runge-Kutta-Gill method along with the shooting 

technique and Newton Raphson method. On the basis of the present numerical investiga­

tions on boundary layer flow of nanoflluid along a wedge, the following conclusions can 

be drawn: 

The velocity profile increases on increasing the value of wedge angle and suction pa­

rameters. The velocity profile also inicreases for both cases of stretching and shrinking 

wedge. This means that the fluid velocity became faster and thereby the velocity profiles 

squeeze faster and move closer to the surface of the wedge wall. In addition, the hydro­

dynamic boundary layer becomes thirn for larger values of the wedge angle and suction 

parameters. The velocity profile seems insignificant on increasing the values of Brownian 

motion, thermophoresis, Soret and Dufour because these parameters are not appeared in 

momentum equation. 

The temperature profile increases on increasing the wedge angle, thermal radiation, 

heat generation/absorption, Brownian motion, thermophoresis and Dufour-type parame­

ters. An increase in the thermal radiatiion leads to enhance the temperature at each point 
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away from the wedge surface. However, the temperature of the fluid decreases on increas­

ing the suction parameter. The irnposi6on of suction at the wedge surface reduces the re­

gion of viscous domination close to the wall, wbich causes decreasing in the temperature 

profile. Besides that, the sheer stress enhances when increasing the suction parameter and 

causes the decrease in thermal boundary layer thickness. It is noted that the dimensionless 

temperature profile decreases on increasing the value of Soret-type parameter. However, 

the temperature rises as the Soret-type parameter increases in the presence of chemical 

reaction or stretching or shrinking wedlge. 

The nanoparticle volume fraction profile decreases on increasing the value of suction, 

thermal radiation and Brownian motit0n parameters. An increase in Brownian motion 

parameter refers to an increase in the intermolecular space of nanoparticles. Thus, this 

situation results in lowering the nanoparticle volume fraction distribution. 

The solutal concentration profile increases on increasing wedge angle and Soret-type 

parameters. The increasing value of t:hermophoresis parameter also enhances the solu­

tal concentration profile in the presence of chemical reaction and moving wedge. Ther­

mophoresis is associated with the migration of nanoparticle in water due to nanoscopic 

temperature gradient. Thus, this yields strong increment in solutal concentration pro­

file. The solutal concentration profile decreases on increasing suction, thermal radiation 

and Brownian motion parameters. The higher value of suction parameter implies the in­

creasing of the sheer stress on the wedlge surface. Adding to that, an increase in thermal 

radiation parameter leads to enhance the surface heat flux. Both situations indicate to the 

decrease in solutal concentration profile. 

The local skin friction coefficient iincreases on increasing the value of wedge angle 

and suction parameters when the moving wedge parameter is less than 1 ( A < 1) and 

it decreases for A > 1. The results also showed that the positive value of local skin 

friction coefficient is obtained for A < 1 and for the case of A > 1, the opposite sign is 

obtained. All values of skin friction coefficient are negative as 1 > 1 and decrease to more 

negativity on increasing the value of wedge angle and suction parameters. As mentioned 

in Chapter 6, this situation happened when there is a force that opposes the motion when 

the wedge moves through the nanofluid. The negative value of skin friction coefficient 
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indicates that the drag force on the flui d is exerted by the moving wedge and the positive 

value implies the opposite. In the presence of thermal radiation, the local skin friction 

coefficient increases on increasing the value of wedge angle parameter when the suction 

value is less than 1.4 (Fw < 1.4), wh:ile the reverse behaviour is noticed for Fw > 1.4. 

An increase in buoyancy ratio parameter leads to an increase in the local skin friction 

coefficient. The local skin friction coefficient also increases for the case of assisting flow 

(Ri > 0), while it decreases for the case of opposing flow (Ri < 0) . 

The local Nusselt number increaseB on increasing the value of wedge angle, suction, 

moving wedge, Soret-type and buoyancy ratio parameters. The local Nusselt number 

reduces as the value of Lewis number, Brownian motion, thermophoresis and Dufour-type 

parameters increase. An increase in thermal radiation parameter leads to increase the local 

Nusselt number. However for the case of mixed convection, a strong reduction in local 

Nusselt number is obtained as the value of thermal radiation increases. The local Nusselt 

number increases on increasing the temperature power-law exponent and it decreases as 

the concentration power-law exponent increases. The local Nusselt number showed an 

increasing pattern for the case of assisiting flow (Ri > 0) . The opposite result is obtained 

for the case of opposing flow (Ri < 0) . 

The local Sherwood number decreases on increasing the value of wedge angle and 

Soret-type parameters as well as temperature power-law exponent. The Soret-type pa­

rameter appears in the solutal concentration equation, therefore it accounts for additional 

mass diffusion. Thus, this results in strong reduction of the local Sherwood number as 

the value of Soret-type parameter increases. Meanwhile, the local Sherwood number in­

creases on increasing the value of suction, thermal radiation, buoyancy ratio, Brownian 

motion, thermophoresis and Dufour-type parameters. In addition, the local Sherwood 

number increases as the Lewis number and concentration power-law exponent increase. 

This is due to the fact that a larger Lewis number has relatively lower molecular diffusiv­

ity. 
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9.1 Recommendations for Futmre Work 

As a result of the work done for this thesis, the following have emerged as work for the 

future. 

9.1.1 Flow Regimes 

The boundary layer nanofluid model can be extended for various flow regimes such as 

turbulance flow, flow through porous media and MHD flow. 

9.1.2 Experimental 

An experimental investigation could be set up in order to simulate the boundary layer flow 

of nanofluid along a wedge. The expe1rimental results can be used to validate the present 

numerical results and extended to the use of practical applications. 
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