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NETWORK RECONFIGURATION AND DG SIZING INCORPORATING 

OPTIMAL SWITCHING SEQUENCE FOR SYSTEM IMPROVEMENT 

ABSTRACT 

Minimizing power losses in a distributed system are commonly achieved via optimal 

network reconfiguration. In the past, network reconfiguration research focused on 

planning, where the final configuration reporting the lowest power loss being the main 

goal. However, power losses during the switching operations from the initial state to the 

final state of configuration was never studied. This research presents the optimal 

switching sequence path to minimize power losses during the network switching 

operation. Apart from this contribution, simultaneous optimal network reconfiguration 

and optimal distributed generation (DG) output generation were also proposed. The 

proposed methodology involves (1) Optimal network reconfiguration and DG output 

simultaneously, (2) Optimal network reconfiguration with variable load and the different 

types of DGs and (3) Optimal sequence of switching operations required to convert the 

network from the original configuration to the optimal configuration obtained from (1) 

for both planning and operational mode. The proposed method is applied to reduce power 

losses and improve the overall voltage profile of the system. The proposed network 

reconfiguration also considered load profiles, DG output generation, DG types, and DG 

operating mode to decrease the total daily power loss. The chosen optimization techniques 

in this work include evolutionary programming (EP), particle swarm optimization (PSO), 

gravitational Search Algorithm (GSA), and firefly algorithm (FA). To assess the 

capabilities of the proposed method, simulations using MATLAB were carried out on 

IEEE 16-bus, IEEE 33-bus, IEEE 69-bus, and IEEE 118-bus radial distribution networks. 

The obtained results demonstrate the effectiveness of the proposed strategy to determine 

the sequence path of switching operations, as well as the optimal network configuration 

and optimal generation output of DG units. The optimal network reconfiguration with 
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optimal DGs output reported high power loss reduction of (23.63%-82.233%) for 

different test systems. These values exceeded the values reported by other works. The 

proposed method also produced better voltage profile compared to other published works. 

The minimum value of the buses voltages was between (0.9502 p.u.-0.98176 p.u.) for 

different systems. The power losses during optimal switching sequence process were 

between (365.52kW-9265.5kW) for different systems. These values were much lower 

compared to any other random case. Furthermore, the optimal sequence keeps the buses 

voltages within allowable limit during the switching process. Meanwhile, random 

switching caused voltage violation during the switching process. The daily solution of the 

network considering load profiles and DG operating mode and type, obtained total daily 

power losses of 747.76kWh compare to 915.65kWh reported by other works. The 

proposed method also produced voltage profile within allowable limits. The minimum 

value of the buses voltages was between (0.985 p.u.-0.989 p.u.) during 24hr. The energy 

losses during the switching sequence process when considering DG operating mode and 

type and when the load profile was average, was 465.66 kWh compared to (543.8kWh-

586.4kWh) for the different random case. Moreover, the voltage profile during the 

switching sequence process was within the allowable limit.  

Keywords: Switching sequence, distribution network reconfiguration, distributed 

generation, load profile, voltage profile.  
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KONFIGURASI SEMULA RANGKAIAN DAN SAIZ DG YANG 

MENGGABUNGKAN ATURAN PENSUISAN YANG OPTIMUM UNTUK 

PENAMBAHBAIKAN SISTEM 

 ABSTRAK 

Pengurangan kehilangan kuasa dalam sistem algorithm biasanya dicapai melalui 

konfigurasi sistem rangkaian yang optimum. Pada masa lalu, penyelidikan terhadap 

rekonfigurasi  semula rangkaian lebih difokuskan pada bahagian perancangan, di mana 

matlamat utama adalah untuk mendapatkkan konfigurasi akhir dengan kehilangan kuasa 

terendah. Walau bagaimanapun, kehilangan kuasa semasa operasi pensuisan bertukar dari 

keadaan awal ke keadaan konfigurasi akhir belum pernah dikaji. Kajian ini 

membentangkan laluan aturan pensuisan yang optimum untuk meminimakan kehilangan 

kuasa semasa operasi pensuisan rangkaian dijalankan. Selain itu, konfigurasi semula 

rangkaian optimum bersama output DG juga dicadangkan. Metodologi yang dicadangkan 

melibatkan; (1) Konfigurasi sistem rangkaian yang optimum dan output DG dilakukan 

secara serentak, (2) Konfigurasi sistem rangkaian yang optimum dengan beban berubah-

ubah dan jenis DGS yang berlainan, (3) Aturan optimum operasi pensuisan yang 

diperlukan untuk menukar rangkaian dari konfigurasi asal kepada konfigurasi optimum 

yang diperolehi dari (1) bagi kedua-dua mod perancangan dan operasi. Kaedah yang 

dicadangkan, digunakan untuk mengurangkan kehilangan kuasa dan meningkatkan profil 

voltan. Selain itu, konfigurasi semula rangkaian dengan mengambil kira profil beban, 

penjanaan output DG, teknologi DG, dan mod operasi DG juga dicadangkan untuk 

mengurangkan jumlah kehilangan kuasa harian. Teknik pengoptimuman yang dipilih 

dalam kajian ini adalah evolutionary programming (EP), particle swarm optimization 

(PSO), Gravitational Search Algorithm (GSA), dan Firefly (FA). Untuk menilai 

keupayaan kaedah yang dicadangkan, simulasi menggunakan perisian MATLAB 

dilaksanakan pada rangkaian sistem pembahagian radial bas “IEEE 16-bus”, “IEEE 33-
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bus”, “IEEE 69-bus”, dan “IEEE 118-bus”. Keputusan yang diperolehi menunjukkan 

keberkesanan strategi yang dicadangkan untuk menentukan laluan aturan operasi 

pensuisan serta konfigurasi sistem rangkaian secara optimum dengan output optimum 

unit DG. Konfigurasi semula rangkaian dengan output DG yang optimum merekodkan 

pengurangan yang tinggi terhadap kehilangan kuasa (23.63%-82.233%) bagi sistem uji 

IEEE yang berbeza-beza, Nilai-nilai bacaan tersebut melebihi dari nilai yang dilaporkan 

di dalam kajian lain  yang diterbitkan.  Nilai minima yang didapati bagi voltan bas adalah 

di antara (0.9502 p.u.-0.98176 p.u.) bagi sistem yang berbeza. Kehilangan kuasa semasa 

proses aturan pensuisan yang optimum adalah di antara (365.52kW-9265.5kW) untuk 

sistem yang berbeza. Nilai ini adalah amat rendah dibandingkan dengan kes-kes yang 

lain. Tambahan pula, aturan optimum sentiasa menetapkan voltan bas berada di dalam 

had yang dibenarkan semasa proses pensuisan. Sementara itu, pensuisan secara rawak 

telah menyebabkan pelanggaran voltan semasa proses pensuisan. Penyelesaian harian 

bagi rangkaian dengan mengambil kira profil beban dan mod operasi serta jenis DG telah 

merekodkan jumlah kehilangan kuasa harian 747.76kWh berbanding dengan 915.65kWh 

seperti yang dilaporkan di dalam kajian lain. Kaedah yang dicadangkan juga telah 

menghasilkan profil voltan di dalam had yang dibenarkan. Nilai minima bagi voltan bas 

adalah di antara (0.985 p.u.-0.989 p.u.) dalam  tempoh 24 jam. Kehilangan tenaga semasa 

proses aturan pensuisan apabila mempertimbangkan operasi mod DG dan jenisnya serta 

apabila profil beban adalah sederhana, adalah 465.66 kWh berbanding dengan 

(543.8kWh-586.4kWh) untuk kes rawak yang berbeza. Tambahan pula, profil voltan 

semasa proses aturan pensuisan adalah didalam had yang dibenarkan. 

Kata kunci: aturan pensuisan, konfigurasi semula rangkaian pengagihan, 

penjanaan teragih, profil beban, profil voltan.  
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CHAPTER 1: INTRODUCTION 

1.1 Overview  

An electrical distribution system is the final stage in an electricity supply system, 

where electrical power is distributed to customers. In power distribution, power losses 

occur in the form of heat caused by current flow on the cables (I2R). As a result of this, 

high power losses occur for large-scale distribution systems. According to (Sulaima, 

Mohd Fadhlan, et al., 2014), power losses on the transmission and sub-transmission lines 

accounted for 30% of total power losses in power system networks, while losses in a 

distribution network system accounted for 70% of the total losses in power system 

networks. 

A well-known technique in minimizing power losses in distribution systems is network 

reconfiguration. It is a process of changing the switches’ state of the network. This switch 

is normally open, a state referred to as tie switches, and if its closed, its referred to as 

sectionalizing switches. Tie switches are used to reconfigure the distribution network, 

while sectionalizing switches are used to localize damages caused by faults. These 

switches isolate the faulted subsystem, while the rest of the system is supplied normally. 

The topological structure of the network is reconfigured by closing the open switches and 

vice versa. This will reduce power losses and improve the overall voltage profile, 

provided that the reconfigured topology is optimized. By doing this, the load will be 

transferred to relatively less heavily loaded feeders from the heavily loaded feeders, 

which minimize the subsequent power losses. 

Another technique that can be used to reduce power losses in a distribution system is 

interconnecting to a local power supply. By having a local supply, power can be delivered 

to the loads within a short distance, which reduces the overall power losses. A local power 

supply from renewable energy sources (RESs), such as mini-hydro, wind, solar, and 
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biomass are commonly found installed in the distribution system, generating electrical 

power. This type of power supply is called “Distributed Generations” (DG). A DG is a 

small generating unit installed at strategic points in the distribution system, mainly near 

the load centers. The capacity of DG is usually 10 MW or less (Pilo, Pisano, & Soma, 

2011; C.-L. Su, 2010). The integration of DG would lead to improvement in load balance, 

voltage profile, energy efficiency, and reliability. Therefore, it is crucial to ensure that the 

DG is at its optimal size and location to maximize its potential benefits. An inappropriate 

location and size of DG will cause higher power losses in a system, relative to that without 

a DG. Moreover, the implementation of DG and its related equipment in a distribution 

system is quite expensive. Therefore, optimal size and appropriate location of DG are 

essential in maintaining the stability of the system and minimize power losses in the 

network. 

1.2 Problem Statement 

Power losses in a distribution system is a severe problem, and it could cause huge 

revenue loss. For instance, in (Chandramohan, Atturulu, Devi, & Venkatesh, 2010), it 

was estimated that operational losses due to power losses amounted to USD 5,851.85. 

Furthermore, in the long run, environmental problems, such as CO2 pollution, could be 

an issue, due to increased power requirements generated from conventional power plants 

to compensate for power losses. Technically, power losses could also reduce the voltage 

profile, especially in heavily loaded systems. For these reasons, various methods have 

been proposed by research in this area towards reducing power losses in an electric 

distribution system. Different optimization methods have been used to find an optimal 

network reconfiguration. These optimization methods were used due to complexity of the 

network reconfiguration problem, where there are huge numbers of possible opening 

switch combinations. 
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It can be seen from literature that existing methods are limited by certain factors. 

Firstly, DGs’ impact on the reconfiguration process was not considered in depth. Only 

few works studied DGs in network reconfiguration, such as in (Rao, Ravindra, Satish, & 

Narasimham, 2013; Wu, Lee, Liu, & Tsai, 2010). These methods incorporate DGs via 

sequential approach, where network reconfiguration was solved first, and then optimal 

DGs generation was determined, and vice versa. This approach however does not 

guarantee optimal results. Therefore, a new approach based on the simultaneous approach 

is done by (Dahalan, 2013) and also done in this work to ensure that the results are optimal 

for both network reconfiguration and DG generation. Furthermore, with newly developed 

optimization techniques, such as gravitational search algorithm (GSA) and firefly 

algorithm (FA), there is a high possibility to further improve the results if applied for 

network reconfiguration.  

Second, the sequence of switching process from the initial state to the optimal state is 

not widely considered. The switching sequence will cause huge power losses or load 

disconnection if it is not optimal. There was only one research on network reconfiguration 

focusing on minimizing power losses considering switching sequences (Bernardon et al., 

2014). In this work, the best sequence of the switches was determined using the Analytic 

Hierarchy Process (AHP) multi-criteria analysis. Since this method was based on 

heuristic technique for selecting configurations, it assumes that only remote-controlled 

switches are considered. This method skips many probabilities of switching sequence 

paths because it searches for one solution within acceptable time, and high-power losses 

will still occur during this process. Thus, further research is needed to formulate a method 

to determine optimal switching sequence that results in minimum power losses. 

Third, previous works in network reconfiguration assumed that the DG output 

generation power is constant. This assumption is only true for controllable DGs, such as 
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mini-hydro or biomass types. However, in the case of photo-voltaic (PV) or wind type 

DGs cases, its generation is unpredictable due to the intermittent nature of irradiance and 

wind speed. Therefore, the network reconfiguration result will be inaccurate if the 

generation is assumed constant. It is therefore crucial to incorporate different types of 

DG, modes of operation, and load profile to network reconfiguration in order to obtain 

more practical result.  

There are currently no available works on optimal switching sequence considering 

different DG types, its modes of operation, and dynamic load profiles. Therefore, it is 

important to analyze the impact of these factors towards determining the optimal 

switching sequence.  

This work proposes simultaneously solving the network reconfiguration and DG 

output generation and finding an optimal switching sequence. The proposed network 

reconfiguration and switching sequence is expected to be flexible to cater towards 

practical conditions based on dynamic load profiles, DG output generation, DG types, 

and DG modes in finding the optimal daily solution.  

1.3 Research Objectives 

The main aim of this research is to propose a method that can reduce power losses and 

improve voltage profile in a distribution network connected to the DGs for planning and 

operations. The following are the objectives of the work: 

1) To propose simultaneous network reconfiguration and DG output generation using 

evolutionary programming (EP), particle swarm optimization (PSO), gravitational search 

algorithm (GSA), and firefly algorithm (FA) for power loss reduction and voltage profile 

improvement. 
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2) To formulate optimal switching sequence method using evolutionary programming 

(EP), particle swarm optimization (PSO), gravitational search algorithm (GSA), and 

firefly algorithm (FA) to minimize power loss and improve voltage profile during 

reconfiguration process. 

3) To analyze optimum daily solution for network reconfiguration and DG output 

generation by considering the load profiles and DG operating modes and types. 

4)  To determine optimum switching sequence path for daily operation by considering 

load profiles and DG operating modes and types. 

1.4 Scope of Research 

This study proposes simultaneous network reconfiguration and DG output generation 

for constant load profiles for reducing power losses and improving the overall voltage 

profile for distribution systems. This work also proposes an optimal switching sequence 

path to convert the network from the initial form to the optimal form based on minimum 

power losses and the best voltage profile. Then, both the simultaneous network 

reconfiguration and DG output generation and switching sequence path methods are 

applied for its 24 hours data (one day) to obtain optimal solution that accounts for load 

profiles, DG output generation, DG types, and its operating mode. The constraints of this 

study are radial structure of the distribution system, voltage bus constraints, and DG 

capacity. 

The proposed method in this work employs meta-heuristic optimization methods, 

namely evolutionary programming (EP), particle swarm optimization (PSO), 

gravitational Search Algorithm (GSA), and firefly algorithm (FA). To validate the 

proposed method, 16-bus, 33-bus, 69-bus, and 118-bus test systems are used. Additional 

PV and PQ mode of DGs are used on top of the daily load profile. The method is 
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implemented using MATLAB on a PC with 3.07 GHz CPU and 8-GB RAM. Additional 

PSCAD/EMTDC program is used to model IEEE 33-bus network.  
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1.5 Methodology of Research 

The steps taken to fulfill the objectives of this work are detailed in Figure 1.1.  

Journals of previous researches related to network reconfiguration and DG 

output generation using different approaches for distribution power loss 

reduction are studied thoroughly

The works on switching sequence process are studied

The possible improvements to the existing methods are identified. The materials 

for the possible improvements are explored in great detail. These include 

switching sequence process, simultaneous network reconfiguration, DG output 

generation, recent optimization techniques, load profiles, and different DG 

operating modes

A method based on network reconfiguration and DG output generation to reduce 

power loss and improve voltage profile is proposed

PSCAD/EMTDC program is used to model IEEE 33-bus network in order to 

validate the effectiveness of the proposed method in keeping the network buses 

voltages under limitations

The proposed method is evaluated on the standard IEEE 16-bus, IEEE 33-bus, 

IEEE 69-bus, and 118-bus systems

The proposed method is applied to obtain an optimal solution for a day 

considering load profiles and DG operating modes for both network 

reconfiguration process and switching sequence process

 This is done to find out the effective approaches and possible improvement that 

can be proposed to the existing method to further reduce power loss and voltage 

profile improvement

A simulation program for the proposed method is developed using MATLAB 

software. The program is incorporated with Graph Theory to ensure only 

combination switches that remain the radial structure of the distribution system 

are generated

The results obtained are analyzed and validated with relevant previous works

 

Figure 1.1: Flow chart of research methodology  
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1.6 Structure of Dissertation 

This thesis consists of six chapters and two appendices. The background, problem 

statements, research objectives, scope and methodology of research are presented in the 

first chapter. 

Previous works on network reconfiguration using heuristic approaches and 

metaheuristic approaches for power loss reduction are detailed in Chapter 2. The 

installation of DG for power loss reduction is reviewed as well. Reviews on simultaneous 

of network reconfiguration and DG output generation are presented, on top of switching 

sequence. An overview of power losses reduction in dynamic application, considering the 

important factors such as load profiles and DG operating mode are also discussed. 

The problem formulation, implementation of EP, PSO, GSA, and FA in the proposed 

method are detailed in Chapter 3. 

The simulation results are presented, and performance of the proposed method is 

analyzed in Chapter 4. The analyses are focused on power loss reduction and voltage 

profiles improvement. The validation and robustness of the proposed method are 

highlighted at the end of the chapter. 

Chapter 5 presents the simulation results on the application of the proposed method 

for a day, considering load profiles and DG operating mode. The results obtained are 

analyzed and later discussed.  

The conclusions of this research study are presented in Chapter 6, alongside 

suggestions for future works. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction  

This chapter review the literature on existing methods for power loss reduction in 

distribution system. The presented methods include optimal network reconfiguration, 

optimal DG output generation, and sequential optimization of network reconfiguration 

and DG output generation. The term of ‘DG output generation’ used in this thesis is also 

referred to as ‘DG sizing’ in other works. Thus, both terms will be used interchangeably 

here. At the end of this chapter, some areas of improvements on the existing methods will 

be identified and highlighted. 

2.2 Network Reconfiguration 

Network reconfiguration is a process of changing the switches’ state of a network. This 

switch could be normally open, a situation called tie switches, or normally closed, a 

situation called sectionalizing switches. The topological structure of a network can be 

changed by closing the open switches, and vice versa. This decrease power losses and 

improve the overall voltage profile, provided that its optimum reconfiguration is 

determined beforehand. This will transfer the load to relatively less heavily loaded feeders 

from heavily loaded feeders, which culminates in reduced power losses. (Nara, Shiose, 

Kitagawa, & Ishihara, 1992b) proposed a network reconfiguration method to minimize 

distribution power losses using Genetic Algorithm (GA). They confirmed that the method 

reconfigured the network with minimal power losses. (Kashem, Ganapathy, & Jasmon, 

2000) enhanced voltage stability by reconfiguring a network using a new algorithm. First, 

a tie and two neighboring switches were generated. The combination switch that generates 

the maximum voltage stability for the system was determined. The search was then 

extended to the neighbor of the best branch to check for any combination that results in 

better voltage stability. The proposed method could enhance voltage stability at no 

additional cost pertaining to tap-changing transformers, switching equipment, and 
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installed capacitors in the distribution system. A 69-bus test system was used to confirm 

the proposed method’s viability in reducing network power loss. (Das, 2006) used the 

fuzzy multi objective and heuristic rules approach to reconfigure their network. Their 

main objectives were to minimize power losses, balance feeder loads, and improve the 

overall voltage by accounting for specific constraints. These objectives were modeled 

using fuzzy sets to determine its imprecise nature and its anticipated value for each 

objective. The Heuristic rules were used to decrease the number of tie switch operation. 

The simulation results confirmed that the method is able to reduce the search space and 

minimize computational time, and proved the feasibility of the presented methodology. 

(Nguyen, Nguyen, Truong, Nguyen, & Phung, 2017) used a runner-root algorithm (RRA) 

to solve the electric distribution network reconfiguration (NR) problem. His objectives 

were to minimize real power loss, load balance the feeders, load balance the branches, 

deviate node voltage, and selecting the number of switching operations using max-min 

method to affect a final compromised solution. RRA could escape from the local optimal 

since it creates a re-initialization strategy and jumps at large steps. 33-node and 70-node 

distribution networks were used to prove the effectiveness of RRA in the case of both 

single-and multi-objectives. The results were compared with other that of published 

works, and it was confirmed that a runner-root algorithm is effective for solving single-

and multi-objective network reconfiguration problems. 

2.3 Distributed Generation Sizing and Placement 

Distributed generation (DG) is defined as the electric power generation within 

distribution networks or on the end-user side of the network (Ackermann, Andersson, & 

Söder, 2001). DG placement and sizing has been identified as one of the promising 

solutions for power loss reduction in a distribution system. There are many different 

technologies for DG based on non-renewable and renewable resources. The combustion 

engine, combined cycle, combustion turbine, micro turbine and fuel cell forms the former, 
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while photovoltaic, wind turbine, hydro, geothermal and biomass forms the latter (Hung 

& Mithulananthan, 2013). DG with different resources will report a different location, 

rating, environmental impact, and operating mode. 

Works in minimizing power losses via optimal DG output generation have also been 

reported. In (Celli, Ghiani, Mocci, & Pilo, 2005), a multi-objective formulation was 

proposed in order to set the size and location of the DG resources for the system. The 

methodology allowed the manager to balance between cost of power losses, cost of 

network upgrading, the cost of energy required by the served customers, and the cost of 

energy not supplied. A set of non-inferior solutions for the implemented technically were 

obtained based on a constrained method and genetic algorithm. Meanwhile, (Wang & 

Nehrir, 2004) presented analytical methods in order to determine the optimal location 

placement of a DG in a radial distribution networked system. The goal was to minimize 

the power loss of the network. Since the presented approaches are not repeated 

algorithms, the presented approaches did not report a convergence problem, and the 

results were obtained very quickly. To verify the validity of the presented approaches, a 

series of simulation studies were conducted, and the results show that the proposed 

methods successfully selected suitable sites to place the DGs. (Hadidian-Moghaddam, 

Arabi-Nowdeh, Bigdeli, & Azizian, 2017) solved the optimal sizing and siting problem 

of the DG using a new optimization method. Different objectives were considered using 

the ant lion optimizer (ALO). The objectives were to reduce DGs losses, DGs’ application 

cost, buses’ voltage deviation, and energy cost from the upstream network while 

improving reliability. The optimization problem was solved as single-objective 

optimization (SOO) and a multi-objective optimization (MOO). 33 and 69-bus IEEE 

networks were utilized to find the optimal sizing and siting of the DGs. The result 

confirmed that ALO is better than PSO and GA in extracting the solution of the optimal 

sizing and siting problem of the DGs. 
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2.4 Network Reconfiguration with Presence of DG for Power Loss Reduction 

Network reconfiguration and DG installation have been proven to be effective towards 

reducing power losses in distribution systems. In order to further reduce power losses in 

a distribution system, both methods were combined. Many works have been conducted 

for optimal reconfiguration method and optimal DGs output. However, there are not many 

works on network reconfiguration that took into account the optimal DGs output 

generation. Most are based on sequential or simultaneous techniques. In the former, the 

optimal size of DG is determined prior to network reconfiguration. (Wu et al., 2010) is 

an example of the sequential technique. The Ant Colony Algorithm was used in the 

proposed reconfiguration method with DG, aiming to minimize power losses and improve 

the load balance factor of the radial distribution networks. The effectiveness of the 

proposed method was validated using 33-bus distribution network of 11.4kV system. The 

results show that network reconfiguration with DG reported lower power losses and better 

load balancing relative to a system without a DG(s). Meanwhile, (Rao et al., 2013) 

presented a method to simultaneously solve the DG sizing and reconfiguration problem. 

His main objective was to reduce total power losses and improve the voltage profile. 

Sensitive analysis was conducted using the harmony search algorithm to solve the 

simultaneous process and compare it to Genetic algorithm and refined genetic algorithm. 

Various scenarios were applied on the 33 and 69 bus system for reconfiguration and DG 

sizing. The results proved that the simultaneous process is more effective than the 

sequential process in the context of minimizing power losses and improving voltage 

profiles. (Liu, Sheng, Liu, & Meng, 2017) carried out a simultaneous distribution network 

reconfiguration and DG allocation. Prior to network reconfiguration, the uncertainties of 

load fluctuation were accounted for. The objectives were to minimize the Expected 

Energy Not Supplied, line loss cost, and switch operation costs. Due to the multi-objective 

problem, weighting factors were used. The proposed method consists of two periods; the 
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first creates a feasible topology network using binary particle swarm optimization 

(BPSO), while the second solves the DG allocation using harmony search algorithm 

(HSA). To deal with the device parameters and uncertainties of load, an interval analysis 

was applied. They also used the IEEE 33-bus and 69-bus systems and analyzed multiple 

comparisons and scenarios. The results confirmed that the proposed network 

reconfiguration algorithm is feasible.  

2.5 Methodologies of Network Reconfiguration and DG Sizing Techniques 

Many methods have been developed for reconfiguration. However, not many took into 

account the optimal sizing of the DGs (Dahalan, Mokhlis, Ahmad, Abu Bakar, & Musirin, 

2014; Olamaei, Niknam, & Gharehpetian, 2008; Wu et al., 2010). Reported works can be 

categorized into ‘sequential’ and ‘simultaneous’ techniques. In the case of the former, the 

optimal size of the DGs needs to be determined prior to network configuration, while in 

the case of the latter, optimal sizing of the DGs and network reconfiguration are 

simultaneously executed. 

 Different optimization technique was used to solve network reconfiguration and DG 

sizing. Figure 2.1 summarize the available techniques.  
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Figure 2.1: Optimization Methodologies of distribution network reconfiguration 

embedded with DG 

2.5.1 Heuristic Technique 

A heuristic technique is an optimization process that is used to find an approximation 

for the optimal solution to a problem, which could be the maximum/minimum values. For 

it to be effective, we need to formulate the correct function for the problem. The trial-
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and-error method is an example of a heuristic method (Carreno, Romero, & Padilha-

Feltrin, 2008; Gupta, Swarnkar, & Niazi, 2012). 

2.5.1.1 Trial and error method 

Trial-and-Error represents the most basic method for solving optimization problems, 

which is characterized by repeated varied attempts, continuing until the agent stops trying, 

or until it is successful. 

Various trial-and-error methods were employed to reconfigure the electrical 

distribution network. In (Kashem, Jasmon, & Ganapathy, 2000), the interchange switch 

strategy was used to reconfigure the feeder. It looks for suitable options to reduce losses 

via a minimal tree-search. A simple formula for power loss was developed to determine 

the switching option that will result in minimum power loss. The results showed that the 

proposed method realized the optimal or near optimal configuration of the network in an 

efficient manner, with minimal computational effort. In (McDermott, Drezga, & 

Broadwater, 1999), the open-all switch strategy was used to reduce power losses for a 

radial distribution network. Load flow was used to set a lower bound on the losses. When 

implementing the proposed strategy, the switches were closed one-by-one, until a radial 

network was formed. The results showed that the proposed method is more 

computationally involved compared to other methods, but its control action was more 

accurate. (Gomes et al., 2005) used the close-all switch strategy. The methodology began 

with a meshed distribution network, which close all the switches. In order to eliminate 

loops, the switches were then successively opened. The opening criteria was based on the 

increased minimum total power loss. The power losses were calculated using a power-

flow program. The proposed method managed to avoid the combinatorial explosion of 

the number of configurations that needs to be tested. 
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2.5.1.2 Meta-heuristic method 

The meta-heuristic method is an iterative generation process that helps the search 

process efficiently locate near-optimal solutions using learning strategies and intelligently 

combining different concepts that will help exploit and scour the search space. This 

strategy can be utilized to look for the exact/near exact optimal solutions. This method 

can be divided into two distinct categories: Single (unique) solution and Population 

solution (Gendreau & Potvin, 2010). 

(a) Single (Unique) solution meta-heuristic method 

This type of method provides one solution at a time. This section presents the most 

popular algorithms pertaining to this method. 

i Simulated annealing  

Simulated annealing (SA) is a random search method that solves large combinatorial 

optimization problems. It can escape the local minima by incorporating a probability 

function when accepting/rejecting new solutions. It is an iterative algorithm with an initial 

random solution to the problem, then changing a single element of the solution 

incrementally in order to find a better one. The algorithm consists of initialization, cooling 

schedule, perturbation, and acceptance probability to perform the search (Alrefaei & 

Diabat, 2009). 

In (Zhanga, Zhanga, Xina, Zhangb, & Fana, 2012), the author analyzed the 

reconfiguration of a distribution network with a small capacity of oilfield associated gas 

DG. The network reconfiguration algorithm in this work is based on simulated annealing. 

The formulation to minimize losses for the reconfiguration problem is:  

min(𝑃𝑙𝑜𝑠𝑠) = ∑ 𝑟𝑖  
𝑃𝑖

2+𝑄𝑖
2

𝑉𝑖
2

𝑁𝑏
𝑖=1 ,                                                                                          (2.1) 
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subject to: 𝑔(𝑥) = 0,                        (2.2) 

𝑆𝑖 ≤ 𝑆𝑖,𝑚𝑎𝑥                                                         (2.3) 

𝑉𝑖,𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖,𝑚𝑎𝑥                                                      (2.4) 

where 𝑃𝑙𝑜𝑠𝑠 is the power loss of system, 𝑟𝑖 is resistance of branch 𝑖, 𝑁𝑏 is total the 

number of branches, 𝑃𝑖  is the active power of branch 𝑖, 𝑄𝑖 is the reactive power of 

branch 𝑖, 𝑉𝑖 is the voltage of the head node of branch 𝑖, 𝑔(𝑥) represents topology 

constraints, 𝑆𝑖,𝑚𝑎𝑥 is the maximal capacity of branch 𝑖, 𝑉𝑖,𝑚𝑖𝑛 and 𝑉𝑖,𝑚𝑎𝑥  are the voltage 

boundaries of branch 𝑖. The output production of the oilfield-associated gas DG is 

relatively stable compared to that of solar/wind DG since gas can easily be stored for use 

at any time. SA, combined with the Immune Algorithm, was used to avoid the 

unfeasibility of the solutions in the evolutionary process and accelerate the global 

optimization searching speed. This combination resulted in improved population 

characteristics. The algorithm was applied to the IEEE 33 bus. Four DGs were installed 

on buses 4, 8, 25, and 30. The results confirmed the great benefits of this reconfiguration, 

where the power loss after the DG is reconfigured is 201.9 kW, while prior to 

reconfiguration, it was 597.9 kW.   

ii Tabu search  

Tabu Search (TS) is a meta-heuristic algorithm that can be used to quickly look for an 

effective solution for the combinatorial problem. Its working principle is based on a 

memory structure. The information data (such as the current value of the objective 

function) and previous decisions are stored and tracked to avoid local optimal solutions. 

Prohibiting recent steps during the search process improves the efficiency of the 

exploration process. The stored data is used to guide the search for the next solutions in 
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a specific range, which is restricted by the previous steps. Typically, the search process 

stops after a maximum number of iterations without any improvement to the best solution 

(Glover, Laguna, & Marti, 2007). 

(Lantharthong & Rugthaicharoenchep, 2013) reported the benefits of network 

reconfiguration to accommodate capacitor placements and DG units in a distribution 

system to improve both bus voltage and load balancing. The TS algorithm was used to 

determine the state of the switches for minimizing the load-balancing index without 

violating any constraints on the system, while the load-balancing index was used to 

determine the maximum load capacity of the system. The optimization process was used 

to balance the load and eliminate any overloads. The load-balancing index (LBI) was 

minimized using the equation: 

𝑀𝑖𝑛𝐿𝐵𝐼 = ∑ 𝐿𝑘 (
|𝐼𝑘,𝑡|

𝐼𝑘
𝑚𝑎𝑥)

2

𝑘∈𝐵                                              (2.5) 

where 𝐵 is the set of network branches that form the loops, 𝐿𝑘 is the length of branch 

𝑘, 𝐼𝑘,𝑡 is the current capability of branch 𝑘 for the feeder reconfiguration pattern 𝑡, and 

𝐼𝑘
𝑚𝑎𝑥 is the maximum current capability of a given branch 𝑘. This algorithm was applied 

on the 69-bus radial network with DGs and capacitors positioned to obtain the optimal 

network reconfiguration when the balancing index is at its minimum. The results 

confirmed the algorithm's ability to decrease computational time and obtain the optimal 

solution(s) while satisfying all the constraints.  

In another work based on TS (Rugthaicharoencheep & Sirisumrannukul, 2009), the 

researchers investigated the reduction of power loss in the distribution system due to the 

integration of the DG. They used four case studies to show that configuring the network 

with DGs improved the bus voltage and reduced power losses. The results showed that 
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power loss decrease when both the reconfiguration technique and DG sizing take place 

simultaneously. Furthermore, the results identified the optimal state of the switches that 

would result in the lowest power loss while still satisfying the system’s constraints. The 

results proved the effectiveness of the TS algorithm in determining an optimum solution 

with fewer iterations. Meanwhile, in (Olamaei et al., 2008), a distribution network was 

reconfigured in order to minimize the number of operation switches, improve the 

deviation of the bus voltage, and minimize the active power cost generated by the DGs. 

These effects can be modelled using the following equation (Olamaei et al., 2008):  

𝑓(𝑋)̅̅ ̅̅ ̅ = ∑ 𝑃𝑠𝑢𝑏,𝑖 ∙ 𝑃𝑟𝑖𝑐𝑒𝑖 + ∑ 𝐶𝑃𝑔𝑖(𝑃𝑔𝑖) + 𝑤1 ∙ ∑ |𝑆𝑖 − 𝑆𝑜,𝑖| + 𝑤2 ∙ ∑ |𝑉𝑖 −
𝑁𝑏𝑢𝑠
𝑖=1

𝑁𝑠𝑤
𝑖=1

𝑁𝑔

𝑖=1
𝑁𝑠𝑢𝑏
𝑖=1

𝑉𝑟𝑎𝑡| ,                                                                                                                            (2.6) 

where 𝑁𝑠𝑢𝑏 is the number of substations, 𝑁𝑔 is the number of DGs, 𝑁𝑠𝑤 is the number 

of switches, 𝑁𝑏𝑢𝑠 are the number of buses, 𝑋̅ is the state variable vector, 𝑃𝑠𝑢𝑏,𝑖 is the 𝑖𝑡ℎ 

substation active power, 𝑃𝑟𝑖𝑐𝑒𝑖 is the electrical energy cost at the 𝑖𝑡ℎ substation, 𝑃𝑔𝑖 is 

the active power of the 𝑖𝑡ℎ DG, 𝐶𝑃𝑔𝑖(𝑃𝑔𝑖) is the price of active power generated by the 

𝑖𝑡ℎ DG, 𝑆𝑖 is the new state of switch 𝑖 𝑆𝑜,𝑖  is the original state of switch 𝑖, 𝑉𝑖 is the real 

voltage on bus 𝑖, 𝑉𝑟𝑎𝑡 is the rated voltage on bus 𝑖, 𝑤1 and 𝑤2 represent the weighting 

factors. The basic concept of this method is to determine the configuration of the 

distribution system, which is then followed by the creation of an initial population and 

velocity based on the load values and DGs. The objective function was then evaluated 

using the load flow method. The global and local positions were selected based on the 

values of the objective function, which was accordingly updated. The process was 

repeated until the maximum number of iterations was reached. The results proved that the 

integrated DG improved the system’s performance.  
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(b) Population solution meta-heuristic method 

This method provides a concurrently multi-solution. This section will detail the most 

popular algorithms belonging to the population solutions, such as evolutionary algorithms 

(EA), ant colony optimization (ACO), particle swarm optimization (PSO), harmony 

search algorithm (HSA), and artificial bee colony (ABC). 

i Evolutionary algorithm  

Evolutionary algorithm (EA) is a meta-heuristic method that generates solutions to 

optimize problems based on natural selection, such as recombination, mutation, selection, 

and reproduction. In the beginning, poor solutions are selected from the initial population. 

Then, it randomly provides a candidate solution via a mutation step, which then combines 

the initial population with the mutation results to form a novel solution via the 

recombination step. In the end, it reproduces the results, which means that it replicates 

the most successful solutions found within a population. EA includes genetic algorithm 

(GA) and evolutionary programming (EP) (Carreno, Moreira, & Romero, 2007;  Carreno 

et al., 2008). 

- Genetic algorithm 

Genetic algorithm (GA) is an optimization methodology based on a model of evolution 

and adaptation in nature. It can find a globally optimal solution for large-scale 

combinatorial optimization problems. GA is widely used in optimization, business, and 

machine learning (Vadivoo & Slochanal, 2009). Since it is easy to model and understand, 

it is usually utilized for multi-objective optimization. It is also easy to exploit alternate 

solutions and is flexible for hybrid applications. However, GA can only find the optimal 

solution if the population has a sufficiently large quantity of data (Ganesan & Venkatesh, 

2006). 
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An improved GA, called Non dominated Sorting - Genetic Algorithm (NSGA) for 

network reconfiguration was presented in (Chandramohan et al., 2010). The objective 

function of the method was to minimize the operating cost of the system. They also 

suggested some criteria that can maximize the system’s reliability and improve its power 

quality. The total amount of active and reactive power was minimized based on the 

operating cost using the equation:  

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 =  𝐾1 × 𝑃𝐿 × 𝐾2 × 𝑄𝑆𝑆                                                                              (2.7) 

where 𝐾1 is the real power price coefficient in $/𝑘𝑊, 𝑃𝐿 is the real power losses for 

system transmission, 𝐾2 is the reactive power price coefficient in $/𝑘𝑉𝐴𝑅, and 𝑄𝑆𝑆 is 

the reactive power drawn from the connected transmission system by the distribution 

system. In (Ganesan & Venkatesh, 2006; Mendoza et al., 2006), the GA method was used 

to improve the reconfiguration of a power distribution system. GA was also used to avoid 

the non-feasible solution via its branches form. The branch form is acceptable only if the 

solution provides a radial network. This method has been used to reduce the amount of 

power loss from a distribution system. Figure 2.2 illustrates the reconfiguration process. 

The result confirmed the simplicity and effectiveness of the algorithm. Meanwhile, 

(Prasad, Ranjan, Sahoo, & Chaturvedi, 2005) presented a radial distribution system with 

optimal reconfiguration based on the fuzzy mutated method. It deals with non-continuous 

multi-objective optimization and overcomes the combinatorial nature of the 

reconfiguration problem. This algorithm maintains the radial property of the network and 

avoids islanding for any load point via a special coding scheme and an effective 

convergence characteristic related to a controlled mutation using fuzzy logic. It was 

shown that the test results on a 69 bus for radial distribution network are satisfactory.  
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Figure 2.2: Flow chart for network reconfiguration process 

A new methodology of codification for the conventional GA was presented in (Aspari 

& Sreenivasulu, 2013) to reconfigure a radial distribution system of 33 buses in the 

presence of DGs. This method aimed to minimize power losses and improve the feeder 

voltage profile, taking into account network reconfiguration constraints, which consist of 

the radial configuration format, load point voltage limits, feeder capability limits, and no 

load-point interruption. The main innovation in this method is that the initial population 
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is generated using new types of crossover and mutation operators, which provide the best 

possible results with acceptable levels of computational effort. This meta-heuristic 

algorithm reduces the search space and renders the application of the algorithm possible 

for large distribution systems, since it could deal with problems with complex multi-

constraints with minimum computational effort. (Martins & Borges, 2011) proposed a 

model for active distribution systems. DGs were integrated with a conventional source to 

expand the system as a requirement for active modern networks. The model’s objectives 

were to plan a safe system that minimizes the cost of the system reliability, network 

investment, and power losses. Two methodologies based on GA were proposed to solve 

the uncertain power generation problems caused by the DG. The first analyzed the 

network reconfiguration and DG location individually, while the second analyzed both 

network reconfiguration and DG location simultaneously. The total cost for the methods 

were calculated based on the following equations: 

For the first methodology:  

𝑜𝑏𝑓 = 𝐶𝑙𝑜𝑠𝑠𝑒𝑠 + 𝐸𝐶𝑂𝑆𝑇 + 𝐶𝑖𝑛𝑣 + 𝐶𝑡𝑟𝑎𝑛𝑠                                 (2.8) 

where 𝐶𝑙𝑜𝑠𝑠𝑒𝑠 is the annualized energy losses costs, 𝐸𝐶𝑂𝑆𝑇 is the expected value of 

non-distributed energy cost, 𝐶𝑖𝑛𝑣 is the annualized cost of system investments, and 𝐶𝑡𝑟𝑎𝑛𝑠 

is the annualized costs of energy imported from the transmission system.   

For the second methodology: 

𝑜𝑏𝑓 = ∑ 𝑝𝑘(𝐶𝑙𝑜𝑠𝑠𝑒𝑠 𝑗,𝑘 + 𝐸𝐶𝑂𝑆𝑇𝑗,𝑘 + 𝐶𝑖𝑛𝑣 𝑗,𝑘 + 𝐶𝑡𝑟𝑎𝑛𝑠 𝑗,𝑘)
𝑛𝑐
𝑘=1                             (2.9) 

where 𝑛𝑐 is the number of scenarios considered, 𝑝𝑘 is the probability of occurrence of 

scenario 𝑘, 𝐶𝑙𝑜𝑠𝑠𝑒𝑠 𝑗,𝑘 is the annualized energy losses costs of individual 𝑗 on scenario 𝑘, 

𝐸𝐶𝑂𝑆𝑇𝑗,𝑘 is the expected value of non-distributed energy cost of individual 𝑗 on 
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scenario 𝑘, 𝐶𝑖𝑛𝑣 𝑗,𝑘 is the annualized costs of system investments of individual 𝑗 on 

scenario 𝑘, and 𝐶𝑡𝑟𝑎𝑛𝑠 𝑗,𝑘 is the annualized costs of energy imported from transmission of 

individual 𝑗 on scenario 𝑘. The results showed that the second method is superior to the 

first in the context of realizing the model’s objectives. The effectiveness and simplicity 

of the GA algorithm was also confirmed.  

(Cho, Shin, Park, & Kim, 2012) proposed a novel objective function to improve the 

reconfiguration system’s reliability under islanding conditions. The objective function 

was based on reliability cost. Both DGs’ reliability cost and customer interruption cost 

were accounted for. The model was implemented using MATLAB, with GA as its 

optimization tool. It was found that the DG reliability cost is more influential under a 

lightly loaded feeder, while the customer interruption cost is more influential under a 

heavily loaded feeder.  

- Evolutionary programming  

Evolutionary programming (EP) is a stochastic optimization method. Lawrence J. 

Fogel introduced it in 1960 (Fogel, 1966). It focuses on the linkage between parents and 

their children instead of seeking to simulate natural genetic operators. The EP algorithm 

is simple and direct. The basic concept of EP is as follows: First, randomly generate an 

initial population (parents). Then, the fitness of each parent is calculated using the 

objective function. After that, a new population (offspring) is generated using the 

mutation process. Then, both parents and offspring are combined to generate a new 

population. The new population is sorted based on their fitness value in an ascending 

order. The first half of the new population is stored as the next generation, while the 

second half is removed. The process is repeated until the fitness converges, which means 

that the entire population possess similar levels of fitness (Hsiao, 2004). 
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(Chakravorty, 2012) proposed a new type of EP algorithm to minimize the loss during 

reconfiguration for a radial distribution. Based on the heuristic information, a fuzzy 

controlled EP method was proposed to improve the performance of evolutionary 

programming. This algorithm adjusts the mutation rate during the evolutionary process 

that could reduce the combinatorial explosive switching problem to minimize the 

switching operation to a few numbers. (Hsiao, 2004) proposed a method to solve the 

network reconfiguration problem for multiple objective functions (minimizing power 

losses, maintaining voltage quality, enhancing service reliability, and reducing switching 

time). In this work, the execution of the EP resulted in a non-inferiority optimal solution 

and is also capable of solving problems with nonlinear and non-differentiable objective 

functions. 

ii Ant colony optimization 

The ant colony optimization (ACO) is defined as a novel nature-inspired Meta-

heuristic for solving hard combinatorial optimization (CO) problems. It is used to solve 

hard CO problems in a suitable amount of computation time. ACO is one of the 

evolutionary methods based on the implementation of finding the shortest path for ants 

when searching for food. Ants determined the shortest path from the nest to the food 

source by depositing a hormone called pheromone (Dorigo, Birattari, & Stutzle, 2006; 

Dorigo & Blum, 2005; Nayak, 2014). 

(Wu et al., 2010) proposed a reconfiguration methodology based on an Ant Colony 

Search Algorithm (ACS) objective to achieve the minimum power losses and increment 

load balance factor for radial distribution networks with DGs. The load balance was 

determined using the formula: 

𝐿𝐵𝑖 = ∑ (
𝑆𝑖

𝑆𝑖
𝑚𝑎𝑥)

2

= ∑
𝑃𝑖

2+𝑄𝑖
2

𝑆𝑖
max 2

𝑛𝑏
𝑖=1

𝑛𝑏
𝑖=1                                                                                  (2.10) 
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where 𝑃𝑖
2 and 𝑄𝑖

2 are the active and reactive power for bus 𝑖, respectively, 𝑛𝑏 is the 

number of the branch, 𝑆𝑖 is the complex power at the sending end of branch 𝑖, and 𝑆𝑖
𝑚𝑎𝑥 

is used as a measure of how much branch 𝑖 is loaded. The results show that lower system 

losses and better load balancing can be attained when the DG is compared to a system 

without DG. 

However, the work only emphasized the impact of DG on power losses, while the 

location and capacity of DG are fixed earlier and not detailed. The computational results 

showed that ACS becomes an extremely powerful method and is superior to the GA. It 

can be seen that when the distributed generation are installed in a system, a 44.626% of 

average loss reduction is reported by the ACS compared to 43.803% reported by the GA. 

(Voropai & Bat-Undraal, 2012) extended the work of (Wu et al., 2010), where the 

problem of multi criteria reconfiguration of distribution network with DG was presented 

in the context of power supply reliability under post-emergency conditions and minimum 

active power loss under normal conditions. An ACO algorithm was used to solve the 

multi criteria problem for the Mongolian power system, where it analyzed the efficiency 

of the system in a normal case based on the minimized active power losses. The cell 

formation method was used to solve the islanding problem. The reported robust solution 

proved the capability of the ACO in solving hard combinational problems. (Kasaei, 2012) 

worked along the guidelines reported in (Wu et al., 2010), where he employed the ACO 

algorithm applications on 10 and 33 bus networks to improve its reliability and efficiency. 

The algorithm reported better results for the reconfiguration process, regardless of the 

presence of DGs. Meanwhile, (Tolabi, Ali, & Rizwan, 2015) proposed an approach that 

combines the fuzzy approach and the ACO algorithm to solve the simultaneous 

reconfiguration problem. The method also optimizes the location and size of the PV and 

distribution static compensator in the distribution system. It includes the voltage profile, 

loss reduction, and load balancing for the feeders. The method was tested on a 33-bus real 
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system. The results showed that simultaneous reconfiguration is indeed possible for 

optimizing the location and size of the PV and the distributed static compensator, to 

improve the voltage profile reduce power losses, and balance load feeder. The results 

show that the fuzzy - ACO combined approach was more accurate and robust compared 

to the conventional ACO. 

iii Particle swarm optimization  

Particle swarm optimization (PSO) is another meta-heuristic method used by many 

researchers for optimization purposes. It was originally proposed by Dr. Eberhart and Dr. 

Kennedy in 1995 (Eberhart & Kennedy, 1995). PSO was inspired by the food searching 

behavior of birds or fish. The main concept of the PSO method involves the generation 

of random particles having random positions and velocities. The fitness value for each 

particle will then be evaluated, upon which the particles update their respective positions 

and velocities based on their own searching experience and those relative to others. The 

same process is repeated until the optimal or near optimal solution is found (Balakrishna 

& Babu, 2014). Researchers who utilized PSO in their works include the following. 

In (Dahal & Salehfar, 2016), PSO was used to determine the optimal placement and 

sizing of different types of DG units (PV cells, Fuel Cells (FC), synchronous generators, 

or induction generators) on a multi-phased unbalanced distribution network. The IEEE 

123 node network was used as its test system, while in a real experiment, a combination 

made up of all types of DGs were utilized. The results were compared with the Repeated 

Load Flow method (RLF), and it was shown that the proposed approach is more effective 

and quick (in terms of computational time) in allocating DGs. Moreover, optimized DG 

will improve the voltage profile and reduce power losses.  
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(Arya, Kumar, & Dubey, 2011) introduced a modified PSO as an optimization 

technique for the reconfiguration of distribution systems. PSO reports an optimal solution 

that is computationally less demanding compared to other algorithms. The proposed 

algorithm works by altering the normally open switches, while also taking into account 

the stabilization of the supplied loads and minimization of switches on the lines. This 

strategy minimizes loss via the application of the algorithm and maximizes the number 

of supplied loads, which means that the best solution can be found more quickly. This is 

very important for large-scale systems with a higher number of possible configurations. 

Meanwhile, (Nodushan, Ghadimi, & Salami, 2013) improved the voltage sag index and 

DG placement via reconfiguration. The performance evaluation index is the number of 

times the voltage of sensitive loads decreases to the critical voltage. The Binary Particle 

Swarm Optimization (BPSO) algorithm was used to minimize this index. The simulation 

results showed that simultaneously using reconfiguration and DG placement can improve 

the voltage sag index by 75%. 

In a different publication, (Balakrishna & Babu, 2014) presented a method based on 

the PSO algorithm and a load balancing index. The method was used in the optimal 

reconfiguration process that is embedded with a shunt capacitor bank and a DG unit. Its 

main objective was to eliminate overloading conditions and balance the feeder loads. A 

69-node network embedded with the DG and capacitor units were used to prove the 

method’s effectiveness. The results reported a better voltage profile and load balance. 

Comparing PSO and tabu search showed that PSO reported better results at a quicker rate.  

iv Harmony search algorithm 

Harmony search algorithm (HSA) is a music-based Meta-heuristic population search 

algorithm. It was inspired by the observation that music is the manifestation of the perfect 

state of harmony. This harmony leads to the search for optimal value of optimization 
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process. HSA could be used to solve various problems, such as power system design and 

multi-objective optimization. The principle of HSA consists of three operations; memory 

consideration, pitch adjustment, and random selection. Memory operation is used to find 

a value from the harmony memory; pitch adjustment is used to choose a value that is 

modified from harmony memory value; and random selection is used to select a random 

value from the entire value range. These three operations, combined, form a novel 

stochastic derivative for searching the optimal solution as opposed to the traditional 

operation based on basic derivatives (Lee & Geem, 2004; Mahdavi, Fesanghary, & 

Damangir, 2007). 

In (Abdelaziz, Osama, Elkhodary, & El-Saadany, 2012), optimizing the configuration 

network was compared with and without DG for 32 and 69 bus distribution systems. The 

optimization process was developed based on HSA and ACO algorithms. The results 

showed that both algorithms reported optimal solutions for the feeder reconfiguration 

while the active power losses were minimized. However, HSA required less computation 

time compared to ACO, but it required more iterations. In (Rao et al., 2013), HSA was 

used by the sensitivity analysis to identify the optimal location and carrying capacity of 

the DG simultaneously with the reconfigured feeders. The performances of the proposed 

method were analyzed via different scenarios implemented on 33 and 69 bus radial 

networks for three different load levels. The results were encouraging; installing the DG 

reduced active power loss. The loss percentage increased when the number of the DG 

increased from 1 to 4. Also, the voltage profile improved when both reconfiguration and 

DG sizing were simultaneously analyzed. HSA was compared to GA, and the 

computation results showed that the performance of the HSA was better than GA. Similar 

work was done in (Safavi, Vahidi, & Abedi, 2014), where the main objectives were to 

improve the voltage profile and minimize power loss using the following equation: 
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𝑉𝑂𝑖 =
(𝑉𝑖−𝑉𝑚𝑖𝑛)(𝑉𝑚𝑎𝑥−𝑉𝑖)

(𝑉𝑛𝑜𝑚−𝑉𝑚𝑖𝑛)(𝑉𝑚𝑎𝑥−𝑉𝑛𝑜𝑚)
                              (2.11) 

where 𝑉𝑂𝑖 is the voltage profile for node 𝑖, 𝑉𝑖 is the voltage in bus 𝑖, 𝑉𝑚𝑖𝑛 is the 

minimum voltage at each bus (nearly 0.95 pu), 𝑉𝑚𝑎𝑥 is the maximum allowable voltage 

at each bus (nearly 1.05 pu), and 𝑉𝑛𝑜𝑚 is the nominal voltage in each bus. In addition, 

PSO and HSA algorithms were compared by testing the method on 33 and 69 bus radial 

systems at three different load levels. The computational results confirmed that HSA is 

faster than PSO.  

v Artificial bee colony  

The Artificial bee colony (ABC) is an optimization algorithm based on swarm 

intelligence, which simulates the foraging behavior of honeybees looking for a high 

quality food sources (Karaboga & Basturk, 2008). The specific minimal model of forage 

selection that leads to the emergence of collective intelligence is composed of three 

necessary components: employed forager bees, unemployed forager bees, and a food 

source (Karaboga & Akay, 2009). Two principle mode behaviors have also defined 

recruitment to a nectar source and the abandonment of poor sources. Comprehensive 

studies were done in many fields utilizing the ABC algorithm to solve numerous practical 

optimization problems (Jamian et al., 2014; Karaboga & Akay, 2009). 

(Rao, Narasimham, & Ramalingaraju, 2008) presented a new population for solving 

the radial distribution reconfiguration problem based on the ABC algorithm. The 

objectives of this method were to improve the voltage profile, minimize the real power 

losses, and balance the feeder where all the loads must be energized. The results obtained 

were compared with the GA method, and it was confirmed that ABC performed better 

than GA in the context of the quality of the solution and computation time.  
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(Jamian et al., 2014) used the ABC algorithm to minimize power loss by 

simultaneously executing the reconfiguration analysis and DG sizing. The test was 

conducted on systems embedded with 3 DG units working in the PV mode. The results 

showed that the simultaneous process decreased power losses and computational time, 

while avoiding being trapped in local optima.  

vi Firework algorithm   

The firework algorithm (FWA) is a swarm intelligence based on the stochastic search 

technique. FWA can be used for optimization and to search for promising areas for use 

as a solution space. The algorithm is inspired by the phenomenon of exploding fireworks 

and sparks generated within a space around the fireworks in the sky. FWA is regarded as 

a novel algorithm, due to its take on the explosive nature of fireworks and the 

incorporation of this feature when searching for a solution. The algorithm also manages 

to evenly allocate resources between firework swarms when searching for solutions 

(Nguyen & Truong, 2015). 

(Imran & Kowsalya, 2014) proposed a novel integration technique to minimize power 

loss and enhance voltage stability when reconfiguring the network and installing the DG 

in a distribution system. The placement of the DG and network reconfiguration took place 

simultaneously when using the FWA. The power flow method generates the proper parent 

node-child node path to guarantee the radiality of the network. The best location for the 

installation of the DG was identified using the Voltage Stability Index (VSI). Different 

scenarios were proposed during DG placement and reconfiguration of network to assess 

the performance of the proposed technique. The results proved that reconfiguring the 

network and installing the DG simultaneously represents the most effective scenario for 

minimizing loss and improving voltage profile. The simulated results were compared with 
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the results from HSA and GA, and it was confirmed that the performance of the FWA 

exceeded that of the HSA and GA in every scenario. 

2.5.2 Artificial Intelligent Technique 

Artificial intelligent (AI) is a technique that is defined as the science of making 

intelligent machines, such as intelligent computer programs. Artificial intelligence 

techniques that have been used to reconfigure networks include fuzzy and firework 

techniques (Qiu, Lv, & Chen, 2011).  

2.5.2.1 Fuzzy technique 

The fuzzy technique was introduced as a tool for dealing with soft and uncertain 

modelling. It is widely used in power systems. The fuzzy variable is modelled using a 

membership function that determines the degree of membership to a set that varies from 

zero to one (Qiu et al., 2011). 

(Niknam, Fard, & Seifi, 2012; Sedighizadeh, Esmaili, & Esmaeili, 2014) discussed the 

usage of the multi-objective function to reconfigure network and size DGs. The objectives 

include the minimization of power loss, total cost, and emissions, and the maximization 

of the voltage stability index (VSI). The VSI for a radial feeder is presented in the 

equation below: 

𝑉𝑆𝐼𝑟 = (𝑉𝑠)
4 − 4(𝑃𝑠𝑟𝑋𝑠𝑟 − 𝑄𝑠𝑟𝑅𝑠𝑟)

2 − 4(𝑉𝑠)
2(𝑃𝑠𝑟𝑅𝑠𝑟 − 𝑄𝑠𝑟𝑋𝑠𝑟), 𝑟 = 1,⋯ ,𝑁𝑏𝑢𝑠  (2.12) 

where 𝑉𝑠 is the voltage amplitude at bus 𝑠 in (pu), 𝑅𝑠𝑟  and 𝑋𝑠𝑟 are the resistance and 

reactance of branch 𝑠 − 𝑟, respectively in pu, 𝑃𝑠𝑟 and 𝑄𝑠𝑟 are the active and reactive 

power at the sending end of branch 𝑠 − 𝑟 in p.u, respectively. The total cost is formulated 

as follows: 

𝑀𝑖𝑛𝑓 = 𝐶𝑜𝑠𝑡 = 𝐶𝑠𝑢𝑏 + ∑ 𝐶𝑖
𝑁𝐷𝐺
𝑖=1                    (2.13) 
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where 𝐶𝑠𝑢𝑏($/ℎ) is the cost of purchased electrical energy from the main source, 

𝐶𝑖($/ℎ) is the cost of the power generation by the DG unit 𝑖, and 𝑁𝐷𝐺 is the number of 

DG. Moreover, the total emission produced by the grid and the DGs is formulated as 

follows: 

𝑀𝑖𝑛𝑓1 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝑃𝑠𝑢𝑏 ∙ 𝐿𝐹 ∙ 𝐸𝑅𝑔𝑟𝑖𝑑 × 8760 + ∑ (𝑃𝑖 ∙ 𝐶𝐹𝑖 ∙ 𝐸𝑅𝑖 × 8760)𝑁𝐷𝐺
𝑖=1  

(2.14) 

where 𝐸𝑅𝑖 and 𝐸𝑅𝑔𝑟𝑖𝑑 are the emission produce by the 𝐷𝐺𝑖 and grid in 𝑘𝑔/𝑘𝑊ℎ, 

respectively, 𝐿𝐹 is the load factor, 𝐶𝐹𝑖  is the 𝐷𝐺𝑖 capacity factor, 𝑃𝑠𝑢𝑏  is the imported 

power in 𝑘𝑊, and 𝑃𝑖 is the generated power in 𝑘𝑊. Since these objectives have different 

scales and a large data size, a fuzzy technique was used to control data size and unify the 

scales. In other words, the fuzzy method was used as a decision maker to obtain the best 

solution form for the multi objective case. 

2.5.2.2 Artificial neural network 

ANN technique is a computational model inspired by the human brain. It consists of 

many connected nodes, each one performing a simple mathematical operation. Based on 

node operation and a set of parameters that are specific to that node, the output of each 

node is determined. Combining these nodes together and setting their parameters 

carefully helps the algorithm learn and solve complex functions (Kim, Ko, & Jung, 1993; 

Salazar, Gallego, & Romero, 2006). 

(Kim et al., 1993) reconfigured the feeder strategies using ANN. The proposed method 

was used to reduce power losses according to the variation of load patterns. To minimize 

the size of the training set, ANN was designed for two groups. The first estimates the best 

load level based on the load data of each zone, while the second determine the suitable 

topology of the system based on the input load level. The proposed method proved the 
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ability of the high-speed control strategy decision and the robustness from the error, 

which could provide the best solution from imprecise data. The proposed methods could 

also provide the best solution for constant and the sudden load variations. (Salazar et al., 

2006) proposed an algorithm based on ANN theory to determine the best training set for 

a single neural network with generalization ability clustering techniques. The proposed 

method was used to solve two electrical systems. The method proved the feasibility of 

using the NN to solve the reconfiguration problem and its viability for large-scale systems 

in a real-time environment. 

2.6 Overall Summary of Previous Works on Network Reconfiguration  

The benefits and limitations of all the techniques are summarized in Table 2.1 Each 

algorithm has its own features in solving the distribution optimization problem with DGs. 
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Table 2.1: A brief description of the main benefits and weakness of the most popular algorithms 

Algorithm Main benefits Weakness Functions Reference 

Trial and 

Error 

Efficient, accurate, less 

computational effort, 

could avoid some of the 

local minima problems 

and could find the 

optimum or near-

optimum solution 

Slow and sometimes 

it could be trapped in 

a local minimum 

Used for 

reconfiguration of 

radial electrical 

distribution network 

(Gomes et al., 2005; 

McDermott et al., 

1999) 

Simulated 

annealing 

(SA) 

Rapid, surely find the 

local optimal solution, 

has the ability of 

escaping local minima, 

some inferior solutions 

can be chosen to join into 

evolution and diversity of 

population is remained 

preferably 

It frequently needs a 

schedule and 

formulate to optimize 

the system elements 

to find the best 

solution, take a large 

computation time and 

have lower 

performance to find 

the global optimum 

It is applied to a multi-

objective inventory 

problem, 

used to solve discrete 

stochastic optimization 

problems when the 

range of the objective 

function is bounded and 

well suited for solving 

combinatorial 

optimization 

(Alrefaei & Diabat, 

2009; Eldurssi & 

O'Connell, 2015; 

Zhanga et al., 2012) 

Tabu search 

(TS) 

It presents low 

computational effort, is 

able to find good quality 

configurations, efficient 

search for optimal or 

suboptimal value and it 

could avoid being 

trapped into cycling of 

the solutions 

Hard to code, 

convergence property 

is not guaranteed and 

lower precision factor 

 

 

Used to solve a wide 

range of hard 

optimization problems 

such as optimal 

network reconfiguration 

and energy distribution 

(Eldurssi & 

O'Connell, 2015; 

Lantharthong & 

Rugthaicharoenchep, 

2013; Olamaei et al., 

2008; 

Rugthaicharoencheep 

& Sirisumrannukul, 

2009) 
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Table 2.1: Continued 

Algorithm Main benefits Weakness Functions Reference 

Evolutionary 

algorithm 

(EA) 

Efficient, gave excellent 

results and computational 

efficiency 

Possible to trapped 

in to local optima 

and fewer literature 

examples 

Used to solve 

distribution network 

reconfiguration 

problem 

(Carreno et al., 2007; 

Carreno et al., 2008) 

Genetic 

algorithm 

(GA) 

Simple to implement, easy, 

with less computational 

efforts, efficient to search 

the large solution space 

without trapped in local 

minima, able to produce a 

near optimal solution, give a 

good solution of a certain 

problem in a reasonable 

computation time and robust 

method for seeking for 

global solution 

Slow and could not 

find the optimal 

solution easily 

Used to solve the 

combinatorial 

optimization 

problems and 

distribution 

reconfiguration 

problem 

(Aspari & Sreenivasulu, 

2013; Cho et al., 2012; 

Ganesan & Venkatesh, 

2006; Mendoza et al., 

2006; Rao et al., 2013; 

Safavi et al., 2014) 

Evolutionary 

programming 

(EP) 

 

Simple and direct Large convergence 

time and fewer 

literature examples 

Used in large 

distribution system 

under widely varying 

load conditions 

(Chakravorty, 2012; 

Hsiao, 2004) 

Ant colony 

optimization 

(ACO) 

Efficient algorithm, easy to 

understand and code 

Need high iteration 

to find the 

optimum solution 

and the 

computation time 

is very long 

Used to solve 

combinatorial and 

continuous 

optimization 

problems 

(Dorigo et al., 2006; 

Dorigo & Blum, 2005; 

Eldurssi & O'Connell, 

2015; Kasaei, 2012; 

Nayak, 2014; Tolabi et 

al., 2015) 
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Table 2.1: Continued 

Algorithm Main benefits Weakness Functions Reference 

Particle 

swarm 

optimization 

(PSO) 

Simple, precise, easy to 

implement, powerful 

algorithm to aid and 

speed up the decision-

making, able to escape 

the local optimal solution 

and can often find good 

solutions for complicated 

problems 

Does not designed 

for discrete 

functions 

optimization and 

hard to find the 

global optimum 

solution 

Used to solve non-linear, 

combinatorial and 

continuous functions 

optimization problem 

 

 

(Arya et al., 2011; 

Balakrishna & 

Babu, 2014; 

Olamaei et al., 

2008; S.-Y. Su, Lu, 

Chang, & 

Gutierrez-Alcaraz, 

2011) 

Harmony 

search 

algorithm 

(HSA) 

Comparatively simple, 

fast, efficient, powerful 

and required shorter 

simulation time 

Gets into trouble in 

performing local 

search for 

numerical 

applications 

Used to solve continuous, 

wide variety of optimization 

problem, optimization 

process of the network 

reconfiguration 

and DG installation and 

identifying the high-

performance regions of the 

solution space at a 

reasonable time 

(Abdelaziz et al., 

2012; Lee & Geem, 

2004; Mahdavi et 

al., 2007; Rao et 

al., 2013; Safavi et 

al., 2014) 

Artificial Bee 

Colony (ABC) 

Gave effective and 

efficient solution and 

easy to code 

Need large number 

of iteration 

Used to solve a radial feeder 

reconfiguration with DG 

optimization problem and 

for large scale optimization 

problems, multi-

dimensional and multi-

modal optimization 

problems 

(Karaboga & Akay, 

2009; Murthy, 

Satyanarayana, & 

Rao, 2012; Rao et 

al., 2008) Univ
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Table 2.1: Continued 

Algorithm Main benefits Weakness Functions Reference 

Firework 

algorithm 

(FWA) 

Fast Hard to find the 

optimal solution 

Used to solve 

engineering problems 

like clustering 

(Imran, Kowsalya, & 

Kothari, 2014; 

Nguyen & Truong, 

2015) 

Fuzzy 

technique 

Easy to understand, 

feasible and effective and 

used to extract the best 

compromised solution 

from the set of the Pareto 

optimal solutions 

effectively 

For large system 

fuzzy need large 

memory and large 

computation time, 

difficulties in 

determining the 

membership function 

coefficients and fewer 

literature example 

Successful to solve 

complex problems and 

suitable for 

uncertainties objectives 

or constraints and for 

multi-criterion decision 

making 

(Eldurssi & 

O'Connell, 2015; 

Niknam et al., 2012; 

Sedighizadeh et al., 

2014) 

Artificial 

Neural 

Network 

Technique 

(ANN) 

Processing times are very 

low 

Need great 

computational burden 

This approach suitable 

for online applications 

and complex function 

(Kim et al., 1993; 

Salazar et al., 2006) 
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2.7 Switching Sequence Process  

There are very few research on network reconfiguration that focuses on minimizing 

power losses by considering switching sequences. (Bernardon et al., 2014) proposed a 

method real time configuration of distribution network, incorporating solar photovoltaic 

panels, small hydropower, and wind turbines DG’s. This method uses a heuristic 

algorithm to set the weights of the criteria. According to this method, only remote-

controlled switches are used in the network analysis. The best sequences of the switches 

were determined by Analytic Hierarchy Process (AHP) multi criteria analysis. The 

presented method was tested in a real network of a power utility. Different scenarios for 

distribution reconfiguration within DG were proposed to evaluate the efficiency of the 

method. The results confirmed the importance of integrated DG to the network for 

reducing losses and increasing the reliability during automatic configuration of the 

system. Moreover, the automatic reconfiguration in real-time led to a more efficient use 

of DG resources and improved network performance.  In (Koutsoukis, 2017), an online 

reconfiguration process for active distribution systems was proposed. The controller of 

the DG power output was combined with the controller of the switching remote-control 

to reduce alleviate lines congestion, the curtailment of the DGs, and the mitigate voltage 

rise issues. To obtained fast and optimal solutions of the optimization model, mixed 

integer linear disjunctive formulations and ac power flow equations were used. Different 

distribution systems were used to verify the effectiveness of the proposed method. The 

results show the effectiveness of the proposed method to reduced switching actions.  

2.8 Consideration of Load Profiles, DG Output Generation, DG Type Operating 

Mode for Power Loss Reduction 

Actual load in distribution power system is dynamically changeable with respect to 

time. The load varies seasonally, daily, and hourly by time and type of the day (weekend 

or weekday). The distribution system will not operate at minimum power loss with the 
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proposed method without considering load profiles, the network configuration, and DG 

output generation, and the tap has to be adjusted dynamically based on the load profiles. 

DGs have been installed in distribution systems around the world in order to 

sufficiently supply the demand growth and improve the performance of entire power 

systems. When a mixed type DGs is connected to the distribution grid, load profiles and 

DG output generation needs to be taken into consideration, because making decision 

made without doing so could negatively affect power losses. The DG output generation 

might be overestimated, leading to increased power loss when the DGs are connected 

close to each other or the load demand is low, or underestimated, where it would not be 

able to reduce power losses when the DGs are connected too far from the substation or 

the load demand is high. 

Researchers who considered load variations and DGs mode proved that the total power 

losses decreased. (Yang, Peng, & Xiong, 2008) considered the load profile in order to 

minimize power losses without taking into account the DGs, while (Atwa, El-Saadany, 

Salama, & Seethapathy, 2010) integrated mix renewable resource of biomass, 

photovoltaic, and wind power to the system in order to minimize the annual power losses, 

taking into account all demand load conditions. It should be pointed out that DGs can be 

operated in two modes; PV and PQ, based on the generator or the interface between grid 

and DGs (Moghaddas-Tafreshi & Mashhour, 2009). These mode were studied in 

(Niknam et al., 2012) in the case of photovoltaic, wind, and fuel cell DGs in order to solve 

network reconfiguration issue. Meanwhile, (Ing, Jamian, Mokhlis, & Illias, 2016) 

analyzed the effect of different DG operating modes when simultaneous network 

reconfiguration were conducted with DG generation and tap changer setting to obtain the 

optimal configuration using imperialist competitive algorithm (ICA). Based on daily load 

profile and irradiance, the safety margin of total DGs penetration were determined. IEEE 
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33 bus were used to analyze the different DG modes of operations. The results confirmed 

that the total daily power losses are affected by the DGs’ operation modes. 

2.9 Summary  

Reviewing previously reported works on network reconfiguration area, we surmised 

that:  

Most researchers used the same basic objective (minimize power losses) to solve the 

reconfiguration problem in a distribution system. The power loss incurred in a network 

can be reduced via the optimal reconfiguration and optimal DG output generation. 

However, some works focused only the determination of the DG output generation, while 

others only on reconfigure networks. Other researches deal with both network 

reconfiguration and DG output generation. However, problem solving was carried out 

sequentially. Few reviews proposed a simultaneous network reconfiguration and DG 

output generation in the network system to observe its effect on power loss in a 

distribution system. This work proposed a new method to solve the simultaneous network 

reconfiguration and DG output problems.  

The sequence of the switching process from an initial state to an optimal state was not 

widely studied. There was only one research on network reconfiguration that focuses on 

minimizing power losses by considering switching sequences. The proposed method, 

however, did not result in an optimal solution, which means that it needs more work. This 

work proposed a new method to solve the switching sequence problems.  

Most previous works on network reconfiguration assumed that the DG generation 

power is constant. Few works included the different DG types, mode of operations, and 

load profile in the network reconfiguration in order to produce more practical results. 

Furthermore, there are no previous works on optimal switching sequence that took into 
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account the different DG types, mode of operations, and load profiles. This work 

proposed a new method to solve these problems with considering different DG types, 

mode of operations, and load profile.  
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction  

This chapter presents the implementation of simultaneous network reconfiguration and 

DG output generation for power loss reduction using meta-heuristic approaches. 

Evolutionary programming (EP), Particle swarm optimization (PSO), Gravitational 

Search Algorithm (GSA), and Firefly algorithm (FA) are some of the meta-heuristic 

approaches used in this study. The switching sequence process is also presented here. The 

PQ and PV mode modelling of DG is presented at the end of this chapter. 

3.2 Problem Formulation 

The main objective of this work is to minimize power losses and simultaneously 

improve voltage profile. The fitness function used for the optimization is: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = (𝑃𝑙𝑜𝑠𝑠
𝑅 + 𝐼𝑉𝐷)                                                                                                       (3.1) 

Since the total fitness function has a different objective unit, the net power loss 𝑃𝑙𝑜𝑠𝑠
𝑅  

is taken as the ratio of the system’s total active power loss after reconfiguration 𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐  and 

before reconfiguration 𝑃𝑙𝑜𝑠𝑠
0 : 

𝑃𝑙𝑜𝑠𝑠
𝑅 =

𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐

𝑃𝑙𝑜𝑠𝑠
0                                                                                                                      (3.2) 

The power losses equation for a distribution system is given by: 

𝑃𝑙𝑜𝑠𝑠 = ∑ (𝑅𝑁 × |𝐼𝑁|2)𝑀
𝑁=1                                                                                               (3.3) 

where,  

𝑃𝑙𝑜𝑠𝑠 = is the total active losses power in the network distribution. 

𝑀 = is the branch number. 
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𝑅𝑁 = is the resistance in the branch 𝑁.  

𝐼𝑁 = is the current in the branch 𝑁. 

Voltage Profile Index is defined as follows: 

𝐼𝑉𝐷 = 𝑚𝑎𝑥𝑖=2
𝑛 (|𝑉1|−|𝑉𝑖|)

|𝑉1|
                                                                                                   (3.4) 

where,  

𝑉1 = is the nominal voltage. 

𝑉𝑖 = is the voltage at bus 𝑖. 

𝑖 = 2, 3,⋯ , 𝑛𝑏𝑢𝑠. 

The main constraints that the optimization is expected to fulfill during network 

reconfiguration with DGs are: 

i) Distributed Generator capacity: 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺,𝑖 ≪ 𝑃𝑖

𝑚𝑎𝑥                                                                                       (3.5) 

where,  

𝑃𝑖
𝑚𝑎𝑥  and 𝑃𝑖

𝑚𝑖𝑛 = the upper and the lower bounds of the DG output. All DG units 

should function within an acceptable limit. 

ii) Power injection: 

∑ 𝑃𝐷𝐺,𝑖 < (𝑃𝐿𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠)
𝑘
𝑖=1                                                                                                              (3.6) 

where,  
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𝑘 = Number of the DG.  

𝑃𝐿𝑜𝑎𝑑  = the total load of active power of the network.  

𝑃𝑙𝑜𝑠𝑠 = the total active power losses of the network. This constraint guarantees that no 

power from the DGs flow to the grid, which could create a protection issue. 

iii) Power balance: 

∑ 𝑃𝐷𝐺,𝑖 + 𝑃𝑆𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑃𝐿𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠
𝑘
𝑖=1                                                                          (3.7) 

This depends on the principle of equilibrium, where the supply of power must be equal 

to its demand. The summation of power losses and power load should be equal to the total 

power generated from the DG units and substations. 

iv) Voltage magnitude: 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑏𝑢𝑠 ≤ 𝑉𝑚𝑎𝑥                                                                                                   (3.8) 

Each bus should have an acceptable voltage value within the limits of 0.95 and 1.05 

(±5 % of rated value).  

v) Radial Configuration: 

At all time, the distribution network should be in radial form. In order to guarantee 

this, a graph theory function in MATLAB is used: 

𝑇𝐹 = 𝑔𝑟𝑎𝑝ℎ𝑖𝑠𝑠𝑎𝑝_𝑛𝑡𝑟𝑒𝑒(𝐺)                                                                           (3.9) 

𝑇𝐹 = {
1           𝑟𝑎𝑑𝑖𝑎𝑙
0   𝑛𝑜𝑡_𝑟𝑎𝑑𝑖𝑎𝑙

}                                                                                                          (3.10) 

 where, 𝐺 = is the distribution network. 
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vi) No load isolation: 

All nodes must be energized to ensure that they receive power sources.  

3.3 Proposed Simultaneous Network Reconfiguration and DG Output 

Generation for Static Load 

The main objective discussed in this section is the minimization of power losses and 

improvement of voltage profile in the case of a static load model. For this application, the 

population size is set to 100, while the iteration size is set to 300.   

3.3.1 Evolutionary Programming (EP) 

The steps of the proposed EP for network reconfiguration and DG output generation 

are as follows: 

Step 1: Input data are determined, encompassing the bus load and voltage, network 

configuration, DG location, and the value of the resistance and reactance of the lines.  

Step 2: Randomly generate an initial population (parents). The proposed population 

consists of tie switches and DG output. The variable used in this work for tie switches is 

represented by 𝑆 and the DG output is represented by 𝑃𝐷𝐺 . The initial population should 

fulfill the constraints listed in (i) - (iv). 

For the simultaneous case, both switches’ number and DG output should be 

determined simultaneously, as follows: 

𝑥 = [

𝑆11, 𝑆12, ⋯ , 𝑆1𝑛, 𝑃𝐷𝐺11, 𝑃𝐷𝐺12, ⋯ , 𝑃𝐷𝐺1𝐾

𝑆21, 𝑆22, ⋯ , 𝑆2𝑛, 𝑃𝐷𝐺21, 𝑃𝐷𝐺22, ⋯ , 𝑃𝐷𝐺2𝐾

⋮     ⋮      ⋮      ⋮        ⋮        ⋮        ⋮       ⋮        ⋮
𝑆𝑚1, 𝑆𝑚2, ⋯ , 𝑆𝑚𝑛, 𝑃𝐷𝐺𝑚1, 𝑃𝐷𝐺𝑚2, ⋯ , 𝑃𝐷𝐺𝑚𝐾

]                                                         (3.11) 

where, 𝑚 = indicates the population size. 
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𝑛 = is the number of the switches. 

𝐾 = number of DG. 

Step 3:  The fitness of each parent (1 to m) is calculated using the objective function. 

The fitness function is based on active power losses and voltage profile index, as per 

given in equation (3.1). The power losses on each line is determined using the load flow 

method.  

Step 4: From the initial population, a new population (offspring) are generated using 

the mutation process. In this step, the offspring are randomly selected using Gaussian 

mutation operator, as follows: 

𝑥𝑒+𝑚,𝑗 = 𝑥𝑒,𝑗 + 𝑇(𝜇, 𝛾2)                                                               (3.12) 

where,  

𝑥𝑒+𝑚,𝑗 = is the offspring with 𝑚 number.  

𝑥𝑒,𝑗 = is the parents. 

𝑇(𝜇, 𝛾2) = is the Gaussian random variable with mean 𝜇 and variance 𝛾2. 

𝛾2 = 𝛽(𝑥𝑗 𝑚𝑎𝑥 − 𝑥𝑗 𝑚𝑖𝑛) (
𝑓𝑒

𝑓𝑚𝑎𝑥
)                                                                                      (3.13) 

where,  

𝛽 = is a mutation scale range between 0 and 1. 

𝑥𝑗 𝑚𝑖𝑛 and 𝑥𝑗 𝑚𝑎𝑥 = the minimum and maximum random number for each variable, 

respectively.  
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𝑓𝑒 = the 𝑒𝑡ℎ random number fitness.  

𝑓𝑚𝑎𝑥 = the maximum fitness.  

Step 5: Both parents and offspring are combined to generate a new population. The 

new population is sorted in an ascending order of its fitness value, as follows: 

[𝐹𝑅 , 𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑥)],   𝐹𝑅,𝑏𝑒𝑠𝑡 = 𝐹𝑅(1)                                                                          (3.14) 

Where, 

𝐹𝑅 = the fitness for reconfiguration process.  

The first half of the new population is stored as the next generation, while the second 

half is removed.  

Step 6: The process is repeated until its fitness converges, where all of the population 

produces similar fitness value. 

Step 7: After finishing the iteration number 𝐵, the program stops. The best solution, 

which represents the switch number that form a new network configuration, the output of 

the DGs, the power losses for this process and the voltage at each bus, and the fitness is 

then printed out. 

Figure 3.1 shows the flowchart of the proposed EP. Univ
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Figure 3.1: Flow chart of EP  

3.3.2 Particle Swarm Optimization (PSO) 

The steps of the proposed PSO for network reconfiguration and DG output generation 

are as follows: 

Step 1: The input data are determined, encompassing the bus load and voltage, network 

configuration, DG location, and line impedance, alongside the PSO parameters, such as 

weighting factors and number of particles (𝐷). 
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Step 2: Generate an array of random particles with random positions and velocities. 

Each particle represents tie switch 𝑆 and DG output  𝑃𝐷𝐺  that fulfil the set limitations and 

constraints (𝐿&𝐸). For the simultaneous case, 𝑥𝑝𝑎𝑟𝑡𝑖𝑐 representing switch numbers and 

DG output should be determined simultaneously using equation (3.11). 

Step 3: Evaluate the fitness value in equation (3.1) for each particle using distributed 

load flow based on Newton – Raphson method.  

Step 4: Each particle updates its position (tie switch 𝑆 and DG output) and velocity 

based on its own searching experience called 𝑃𝑏𝑒𝑠𝑡 and on the experience from the other 

particle called 𝐺𝑏𝑒𝑠𝑡. The update of the particles’ position and velocity is done using (Poli, 

Kennedy, & Blackwell, 2007): 

𝑥𝑎
𝑏+1 = 𝑥𝑎

𝑏 + 𝑥𝑎
𝑏+1                                                                     (3.15) 

𝑣𝑎
𝑏+1 = 𝑊𝑣𝑎

𝑏 + 𝑐1𝑟1 × (𝑃𝑏𝑒𝑠𝑡,𝑎 − 𝑥𝑎
𝑏) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡,𝑎 − 𝑥𝑎

𝑏)                                                (3.16) 

𝑊 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟                                                                                                          (3.17) 

where,  

𝑥𝑎
𝑏 and 𝑥𝑎

𝑏+1 = the current position of the particle 𝑖 at iteration 𝑏 and 𝑏 + 1, 

respectively. 

𝑣𝑎
𝑏 and 𝑣𝑎

𝑏+1 = the current velocity of the particle 𝑎 at iteration 𝑏 and 𝑏 + 1, 

respectively. 

𝑐1 and 𝑐2 = the weighting factors.  

𝑟1 and 𝑟2 = a random number between 0 and 1.  
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𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 = the maximum and the minimum weight of the initial, respectively.  

𝑖𝑡𝑒𝑟 and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = the current iteration number and the maximum iteration number, 

respectively.  

Step 5: The process is repeated until the optimal or near optimal solution is found based 

on the minimum power losses and the best voltage profile index. 

Step 6: Print out the best solution that represents the switch number forming the new 

network configuration, the output of the DGs, the power losses for this process, and the 

voltage at each bus, and its fitness. 

Figure 3.2 shows the flowchart of the PSO process. 
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Figure 3.2: Flowchart of PSO 

3.3.3 Gravitational Search Algorithm (GSA) 

Rashedi et. al originally conceived GSA in 2009 (Rashedi, Nezamabadi-Pour, & 

Saryazdi, 2009). It is a random search algorithm intended to solve optimization problems 

and is based on the mass interactions between agents and the law of gravity. In GSA, 

agents are treated as objects, and their features determined by their masses and by the 

gravitational force on all objects toward the heavier masses objective based on the 
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objects’ global movement. The steps of the proposed GSA for network reconfiguration 

and DG output generation are as follows: 

Step 1: The input data are determined, encompassing such as the bus load and voltage, 

DG location, and the value of the resistance and reactance of the lines. The parameter that 

needs to be set in the GSA is the number of mass (𝑁𝑚𝑎𝑠𝑠). 

Step 2: The initial population is determined by selecting random switches to be opened 

in the distribution network and DGs size to form the masses. Assume that the number of 

switches to be opened is 𝑁𝑜𝑝𝑒𝑛𝑒𝑑, then the length of the first part of the mass for network 

reconfiguration is 𝑁𝑜𝑝𝑒𝑛𝑒𝑑. Similarly, the length of second part of the mass 𝑁𝐷𝐺  is the 

number of the DG to be installed in the distribution system. The set of switches to be 

opened and DG sizes in the simultaneous case is: 

𝑀𝑎𝑠𝑠𝑖 = [𝑆1
1, 𝑆2

2, ⋯ , 𝑆𝑁𝑜𝑝𝑒𝑛𝑒𝑑

𝑑 , 𝐷1
𝑑+1, 𝐷2

𝑑+2, ⋯ , 𝐷𝑁𝐷𝐺

𝑁𝑑 ]                                                     (3.18) 

Where 𝑖 = 1, 2,⋯ ,𝑁𝑚𝑎𝑠𝑠 , 𝑁𝑑 is the number of variables or dimension or component 

which need to be optimized, and 𝑀𝑎𝑠𝑠𝑖 represents the position of 𝑖 − 𝑡ℎ mass in the 𝑑 −

𝑡ℎ  dimension or 𝑑 − 𝑡ℎ  component in 𝑖 − 𝑡ℎ mass. 𝑆1
1, 𝑆2

2 and 𝑆𝑁𝑜𝑝𝑒𝑛𝑒𝑑

𝑑  are the switches 

to be opened in 𝑑 − 𝑡ℎ dimension, and 𝐷1
𝑑+1, 𝐷2

𝑑+2 and 𝐷𝑁𝐷𝐺

𝑁𝑑  are the sizes or output 

generation of the DG units in MW of 𝑑 − 𝑡ℎ dimension installed at selected candidate 

buses, respectively.  

Step 3: Begin the first iteration by using the power flow program to compute the 

voltage at each bus and the power flow via all network lines. From the results, the power 

losses and minimum value of the voltage for the entire buses can be determined. We can 

then apply the fitness equation to calculate the main objectives function, as per equation 

(3.1). 
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Step 4: Calculate the gravitational constant 𝐺, inertia masses, and Best Mass, and 

Worst Mass. In order to control the searching accuracy, 𝐺 is initialized at the beginning 

and reduced via iteration. Hence, the gravitational constant 𝐺 is a function of the initial 

value of the gravitational constant, 𝐺0, and iteration, 𝑖𝑡𝑒𝑟, as follows: 

𝐺(𝑖𝑡𝑒𝑟) = 𝐺0𝑙
−𝛼

𝑖𝑡𝑒𝑟

max _𝑖𝑡𝑒𝑟                                                                                              (3.19) 

Where 𝛼 is a user specified constant, 𝑖𝑡𝑒𝑟 is the current iteration, and max _𝑖𝑡𝑒𝑟 is the 

total number of iteration. 

The active gravitational mass, 𝑀𝑎, passive gravitational mass, 𝑀𝑝, and inertial mass 

of mass 𝑖, 𝑀𝑖𝑖 are computed using the fitness evaluation. According to Newton’s law and 

law of motion, a heavier mass has higher attractions and move more slowly. Hence, in 

GSA, a heavier mass is represented as a good solution, while the pattern of movement is 

represented by the explorations. The inertia mass, 𝑀𝑖 is updated as follows by assuming 

that all of the masses are equal to: 

𝑀𝑎𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖𝑖 = 𝑀𝑖                                                                          (3.20) 

𝑚𝑖(𝑖𝑡𝑒𝑟) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖(𝑖𝑡𝑒𝑟)−𝑤𝑜𝑟𝑠𝑡(𝑖𝑡𝑒𝑟)

𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟)−𝑤𝑜𝑟𝑠𝑡(𝑖𝑡𝑒𝑟)
                                        (3.21) 

𝑀𝑖(𝑖𝑡𝑒𝑟) =
𝑚𝑖(𝑖𝑡𝑒𝑟)

∑ 𝑚𝑗(𝑖𝑡𝑒𝑟)
𝑁𝑚𝑎𝑠𝑠
𝑗=1

                                                                                                   (3.22) 

Where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖(𝑖𝑡𝑒𝑟) represents the power loss of the mass 𝑖 at iteration 𝑖𝑡𝑒𝑟, 

𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) while 𝑤𝑜𝑟𝑠𝑡(𝑖𝑡𝑒𝑟) represent the strongest and weakest mass with respect to 

the lowest and highest power loss in current iteration. The mass of 𝑗 of the current iteration 

is represented as 𝑚𝑗(𝑖𝑡𝑒𝑟). For the minimization problem, store the best and the worst 

solution, where 𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) and 𝑤𝑜𝑟𝑠𝑡(𝑖𝑡𝑒𝑟) are defined as:  
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𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) = 𝑚𝑖𝑛𝑗∈{1,2,⋯,𝑁𝑚𝑎𝑠𝑠}𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗(𝑖𝑡𝑒𝑟)                                                    (3.23) 

𝑤𝑜𝑟𝑠𝑡(𝑖𝑡𝑒𝑟) = 𝑚𝑎𝑥𝑗∈{1,2,⋯,𝑁𝑚𝑎𝑠𝑠}𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗(𝑖𝑡𝑒𝑟)                                                            (3.24) 

Step 5: Calculate the total force using Newton’s gravitation theory. The gravitational 

force, 𝐹𝑖𝑗 of mass 𝑖 due to mass 𝑗 at the current iteration 𝑖𝑡𝑒𝑟 can be computed as follows: 

𝐹𝑖𝑗(𝑖𝑡𝑒𝑟) = 𝐺(𝑖𝑡𝑒𝑟) × (
𝑀𝑖(𝑖𝑡𝑒𝑟)×𝑀𝑗(𝑖𝑡𝑒𝑟)

𝑅𝑖𝑗(𝑖𝑡𝑒𝑟)+𝜀
) × (𝑀𝑎𝑠𝑠𝑗(𝑖𝑡𝑒𝑟) − 𝑀𝑎𝑠𝑠𝑖(𝑖𝑡𝑒𝑟))               (3.25) 

where 𝑀𝑖 is the inertial mass of the mass 𝑖, 𝑀𝑗 is the inertial mass of mass 𝑗, 𝜀 is a 

small constant and 𝑅𝑖𝑗(𝑖𝑡𝑒𝑟) is the Euclidian distance between 𝑖 and 𝑗 masses, specified 

as follows: 

𝑅𝑖𝑗(𝑖𝑡𝑒𝑟) = ‖𝑀𝑎𝑠𝑠𝑖(𝑖𝑡𝑒𝑟),𝑀𝑎𝑠𝑠𝑗(𝑖𝑡𝑒𝑟)‖
2
                                                                  (3.26) 

Step 6: Calculate the acceleration and velocity. The acceleration of the mass 𝑖 at 

current iteration, 𝑖𝑡𝑒𝑟, in 𝑑 − 𝑡ℎ dimension, 𝑎𝑖
𝑑(𝑖𝑡𝑒𝑟) is defined as follows: 

𝑎𝑖
𝑑(𝑖𝑡𝑒𝑟) =

𝐹𝑖
𝑑(𝑖𝑡𝑒𝑟)

𝑀𝑖𝑖(𝑖𝑡𝑒𝑟)
                                                                                                      (3.27) 

where 𝐹𝑖
𝑑(𝑖𝑡𝑒𝑟) is the total force that acts on the mass 𝑖 of 𝑑 − 𝑡ℎ dimension, and is 

calculated as follows: 

𝐹𝑖
𝑑(𝑖𝑡𝑒𝑟) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑(𝑖𝑡𝑒𝑟)
𝑁𝑚𝑎𝑠𝑠
𝑗∈𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖                                                                                     (3.28) 

The random number between interval [0, 1], 𝑟𝑎𝑛𝑑𝑗 is introduced in GSA. In order to 

balance between exploration and exploitation in this algorithm, the former must fade out, 

while the latter must fade in with the lapse of iterations. In other words, the masses apply 

force to each other in the beginning, with only one mass applying force to others at the 

end of the algorithm. Based on the concept, 𝐾𝑏𝑒𝑠𝑡, a function of iteration, which is the 

Univ
ers

ity
 of

 M
ala

ya



 

56 

set of first 𝐾 masses with the lowest power loss and biggest mass, is introduced to this 

algorithm. 𝐾0, which is the initial value of 𝐾𝑏𝑒𝑠𝑡, is set at the beginning and decreased 

with more iterations. Thus, 𝐾𝑏𝑒𝑠𝑡 decreased linearly with iterations. The next velocity of 

a mass is given by:  

𝑉𝑖
𝑑(𝑖𝑡𝑒𝑟 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑(𝑖𝑡𝑒𝑟) + 𝑎𝑖
𝑑(𝑖𝑡𝑒𝑟)                                                          (3.29) 

Step 6: Update the masses position’s as follows: 

𝑀𝑎𝑠𝑠𝑖
𝑑(𝑖𝑡𝑒𝑟 + 1) = 𝑀𝑎𝑠𝑠𝑖

𝑑(𝑖𝑡𝑒𝑟) + 𝑣𝑖
𝑑(𝑖𝑡𝑒𝑟 + 1)                                                    (3.30) 

Step 7: Repeat the steps from step 3 until completing the maximum number of 

iteration.  

Step 8: Stop the process after a maximum number of iteration is completed and print 

out the best solution that represents the switch number that forms the new network 

configuration, the output of the DGs, the power losses for this process, the voltage at each 

bus, and its corresponding fitness. 

Figure 3.3 shows the flowchart of the GSA process. 
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Figure 3.3: Flowchart of GSA 

3.3.4 Firefly Algorithm (FA) 

Firefly is a recent nature inspired meta-heuristic optimization method developed in 

2008 (Yang, 2009). The main feature of FA is based on the flashing characteristics of the 

firefly (Gandomi, Yang, & Alavi, 2011), with the following sets of assumptions: 

Generate initial masses

Calculate the fitness for each mass refer to 

equation (3.1)

Start 

Update G, worst, best, and inertia mass 

refer to equation (3.19-3.24)

Calculate the total force in different 

direction refer to equation (3.25)

Update position refer to equation (3.30)

End

Number of iteration =maximum?

No 

Yes 

Best solution

Full fill all constraints 

from (i-vi)? 

Yes 

No 

Calculate the acceleration and velocity refer 

to equation (3.27, 3.29)
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a) All fireflies are unisex, where everyone is attracted to one other.  

b) The attractiveness of the fireflies is strongly proportional to their brightness. The 

firefly that are brighter attract the less bright ones, i.e. the less bright ones move 

towards the brighter ones. Both brightness and attractiveness decrease as the 

distance between the fireflies increase. If no firefly that are brighter is present, 

then the fireflies proceed to move randomly. 

The firefly’s brightness intensity is determined by the landscape of fitness function to 

be optimized, i.e. the objective function could be maximized/minimized. According to 

the minimization problem, the level of the brightness is inversely proportional to the 

fitness function value. 

The steps of the proposed FA for network reconfiguration and DG output generation 

are as follows: 

Step 1: The input data are determined, encompassing as the bus load and voltage, DG 

location, and the value of the resistance and reactance of the lines.  

Step 2: The basic firefly parameters are set as 𝛽0 = 1, 𝛾 = 1, and 𝛼 = 0.8.  

Step 3: Generate an array of random fireflies. Each firefly represents the tie switch 𝑆 

and DG output 𝑃𝐷𝐺  that fulfil all the limitations and constraints (𝐿&𝐸). In the 

simultaneous case, 𝑋𝑓𝑖𝑟𝑒𝑓𝑙𝑦 represent both switches number and DG output that needs to 

be determined simultaneously, as per equation (3.11). 

Step 4: Begin the first iteration using the power flow program to compute the voltage 

at each bus and power flowing through all network lines. From the results, the power 

losses and minimum value of the voltage for the entire buses can be determined. Then, 

apply the fitness equation to calculate the main objectives function, as per equation (3.1). 
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Step 5: Rank the population according to the light intensity (main fitness) and save the 

best value. 

Step 6: Update the fireflies and rank the moves by taking into account the limitation 

and constraints. 

The firefly attractiveness β can be determined using the following formula: 

𝛽(𝑟) = 𝛽0𝑒
−𝛾𝑟2

                                                                (3.31) 

where,  

𝛽0 = the attractiveness at 𝑟 = 0.  

𝛾 = the coefficient of the light absorption.  

𝑟 = the distance between any two fireflies.  

The Cartesian distance can be express as follows: 

𝑟𝑦𝑧 = ‖𝑥𝑦 − 𝑥𝑧‖ = √∑ (𝑥𝑦,𝑢 − 𝑥𝑧,𝑢)
2𝑙

𝑢=1                              (3.32) 

where,  

𝑥𝑦,𝑢 and 𝑥𝑧,𝑢 = represents a 𝑢𝑡ℎ component of the Cartesian coordinate 𝑥𝑦 and 𝑥𝑧 of 

fireflies 𝑦 and 𝑧, respectively. 

The movement of the fireflies, where the firefly 𝑦 is attracted to firefly 𝑧, is determined 

by: 

𝑥𝑦 = 𝑥𝑦 + 𝛽0𝑒
−𝛾𝑟𝑦𝑧

2
(𝑥𝑧 − 𝑥𝑦) + 𝛼(𝑟𝑎𝑛𝑑 − 0.5)                                                           (3.33) 
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where the second term is caused by the attraction.  

while the third term represent the randomized parameter and the random range being 

be between 0 - 1 and near 1, like 0.8 that quickens the program.  

Step 7: Repeat the steps from point 4 until completing the max iteration number (𝐵).  

Step 8: Stop the process and print out the best solution that represents the switch 

number forming the new network configuration, the output of the DGs, the power losses 

for this process and the voltage at each bus, and its corresponding fitness.   

Figure 3.4 shows the flowchart of the FA process. 
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Figure 3.4: Flowchart of FA 

Simultaneous Network Reconfiguration and DG output generation method using EP, 

PSO, GSA, and FA algorithms is summarized in Figure 3.5. 
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Figure 3.5: General flowchart for Simultaneous Network Reconfiguration and 

DG output generation method using EP, PSO, GSA, and FA algorithms 
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3.4 Proposed Switching Sequence Process for Static Load  

Once the optimal network reconfiguration and DG output generation are identified, the 

optimal sequence of opening/closing switches can be identified to change the network 

from its original form to its final optimal form. The original normally open switch should 

be changed to normally close, while the same number of normally closed switch should 

be change to normally open. In this case, there are many probabilities for changing the 

state of these switches. Generally, if the number of tie switches in the original network is 

𝑇, then the number of open switch that should be changed is 𝑡. The number of the 

sequence (changing) probability can be calculated by: 

𝑃𝑟𝑠𝑖𝑧𝑒 = 𝑡! × 𝑡! × 2                                (3.34) 

This equation shows that there is a high number of possibilities. It is therefore crucial 

to apply the optimization technique to find the optimal switching sequence of the network.  

The main steps of this process are: 

Step 1: Identify the initial and final configuration of the network.  

Step 2: Set the size of the DGs (obtained from configuration process). 

Step 3: Remove the replica switch. This means that if one of the switch is still in the 

same state after reconfiguration, it should be removed. i.e. if any of the switch has the 

same state of normally open before and after reconfiguration, there is no need to use it in 

the changing process. 

Step 4: Generate random initial populations, 𝑥 representing the switching changing 

paths as mentioned in equation (3.35), taking into the account the constraint of voltage 

limitation. 
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𝑥 =

[
 
 
 

𝑆𝐶11, 𝑆𝑂12, 𝑆𝐶13, 𝑆𝑂14, ⋯ , 𝑆𝐶1𝑞−1, 𝑆𝑂1𝑞

𝑆𝐶21, 𝑆𝑂22, 𝑆𝐶23, 𝑆𝑂24,⋯ , 𝑆𝐶2𝑞−1, 𝑆𝑂2𝑞

⋮       ⋮        ⋮       ⋮        ⋮        ⋮       ⋮        ⋮       ⋮
𝑆𝐶𝑚1, 𝑆𝑂𝑚2, 𝑆𝐶𝑚3, 𝑆𝑂𝑚4,⋯ , 𝑆𝐶𝑚𝑞−1, 𝑆𝑂𝑚𝑞]

 
 
 

                                                     (3.35) 

Where the variable 𝑆𝐶 represents the switches that should be closed during the switching 

changing process, while the variable 𝑆𝑂 represents the switches that should be open 

during the switching sequence process. 

𝑞 = is the number of the steps (number of switching changing steps in each path).  

𝑚 = indicates the population size. 

In this stage, the equality switches should also be accounted for. This means that the 

same switch should not be changed from closed to open, then open to closed. The same 

switch should not be closed or open more than once in the same path. Each path consists 

of several steps (switches opening and closing operation). 

Step 5: Compute the power losses and voltage profile for each step during the changing 

path for each population. This means that each population should have several steps, as 

follows: 

𝑁𝑠𝑡𝑒𝑝𝑠 = 2 × 𝑡                                                                                             (3.36) 

Where 𝑡 is the number of tie switch mentioned previously.                                    

In other words, the normally open switches will be closed, and a 𝑡 number of the normally 

closed switches will be open during 2 × 𝑡 steps in order to change the network’s topology. 

Another constraint that is accounted for here is the closed step that comes before the open 

step to avoid being disconnected by any bus.  

Step 6: Apply the fitness postulated in equation (3.1) for each step of each path 

(population), then calculate the total fitness for all steps of each path, as follows:  
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𝐹𝑆 = ∑ (
𝑃𝑙𝑜𝑠𝑠,𝑠

𝑃𝑙𝑜𝑠𝑠
0 + 𝐼𝑉𝐷𝑠)

𝑁𝑠𝑡𝑒𝑝𝑠

𝑠=1                                                                                                                                       (3.37) 

where, 

𝐹𝑆 = the fitness for sequence process. 

𝑠 = step number. 

𝑃𝑙𝑜𝑠𝑠,𝑠
 
= active power losses for step number s . 

𝑃𝑙𝑜𝑠𝑠
0  = power losses for initial network. 

𝐼𝑉𝐷𝑠 = voltage profile index during sequence process.  

Step 7: select one of the algorithms (EP, PSO, GSA, and FA) to update the populations 

in the account of the same constraints in point 4. For EP, use equations (3.12, 3.13), while 

for PSO, use equations (3.15, 3.16, 3.17), for GSA, use equations (3.29, 3.30), and for 

FA, use equations (3.31, 3.32, 3.33).  

Step 8: Repeat the process from step 5. 

Step 9: Save the best solution after the iteration are completed. The solutions are the 

optimal switching sequence that produces the minimum power losses. 

The steps are summarized in a flow chart, shown in Figure 3.6. Univ
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Figure 3.6: Flow chart for Switching Sequence Process using EP, PSO, GSA, 

and FA algorithms 
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3.5 Proposed Simultaneous Network Reconfiguration and DG Output 

Generation for Dynamic Load   

It is essential that the reconfiguration is done hourly, which means finding an optimal 

configuration that is suitable at any hour instead of a configuration for a fixed network. It 

should be pointed out that the proposed method that looks for the optimal configuration 

for the network at any hour (i.e one configuration suitable at any hour) instead of making 

hourly reconfiguration effects the functional capabilities of the circuit breaker. 

The main objective of this section is to analyze the minimization/maximization of the 

total daily power loss and improve the voltage stability index (SI). The SI index proposed 

in (Aman, Jasmon, Bakar, & Mokhlis, 2013) was used to find the weakest voltage bus in 

the system that can lead to voltage instability when the load increases. The fitness function 

𝐹 can be presented in the following form: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = ∑ (𝑤1 × 𝑃𝑙𝑜𝑠𝑠
𝑅 + 𝑤2 × 𝑠𝑖)𝑇

ℎ𝑟                                                                                    (3.38)  

where, 

ℎ𝑟 = the current time considered. 

𝑇 = the total hour considered in the time frame. 

𝑤1 
and 𝑤2 = the weighting factors 𝑤1 = 𝑤2 = 0.5.  

Since the total fitness has different objective units, the net power loss 𝑃𝑙𝑜𝑠𝑠
𝑅  is taken as 

the ratio between the system total active power loss after 𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐  and before 𝑃𝑙𝑜𝑠𝑠

0  

reconfiguration, as follows: 

𝑃𝑙𝑜𝑠𝑠
𝑅 =

𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐

𝑃𝑙𝑜𝑠𝑠
0                                                                                                                           (3.39)                                                                                                                                              
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The power losses equation for a distribution system is given by: 

𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐 = ∑ (𝑅𝑁 × |𝐼𝑁|2)𝑀

𝑁=1                                                                                           (3.40) 

where, 

𝑃𝑙𝑜𝑠𝑠
𝑟𝑒𝑐  = the total active losses power in the network distribution. 

𝑀 = the branch number. 

𝑅𝑁 is the resistance in the branch 𝑁. 

𝐼𝑁 is the current in the branch 𝑁. 

The formulation of SI Index is as follows (Chakravorty & Das, 2001): 

𝑆𝐼 = |𝑉𝑠|
4 − 4 × {𝑃𝑟𝑋𝑖𝑗 − 𝑄𝑟𝑟𝑖𝑗}

2
− 4 × {𝑃𝑟𝑟𝑖𝑗 − 𝑄𝑟𝑋𝑖𝑗}

2
× |𝑉𝑠|

2 ≥ 0                         (3.41) 

where  

𝑆𝐼 = is the voltage stability index. 

𝑉𝑠 = is the sending bus voltage in pu. 

𝑃𝑟 and 𝑄
𝑟
 = are the active and reactive load at the receiving end in pu, respectively. 

𝑟𝑖𝑗 and 𝑋𝑖𝑗 = are the resistance and reactance of the line 𝑖 − 𝑗 in pu. 

In an under stable operation, the value of 𝑆𝐼 should be greater than zero for all buses. 

When the value of 𝑆𝐼 becomes closer to one, all buses become more stable. In the 

proposed algorithm, the 𝑆𝐼 value is calculated for each bus in the network and sorted from 

the lowest to the highest value. The bus having the lowest value of 𝑆𝐼 will be considered 

in fitness function. Since the fitness equation (3.39) have two terms; one to minimize 

power losses and one to maximize the 𝑆𝐼, the equation should be similar, so in order to 
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minimize the 𝑆𝐼, the difference between the rated value of 𝑆𝐼 (1) and the weakest bus is 

used, as follows: 

𝑠𝑖 =
1−𝑚𝑖𝑛(𝑆𝐼)

𝑚𝑎𝑥(𝑆𝐼)
                                                                                                                   (3.42) 

where  

𝑚𝑖𝑛(𝑆𝐼) and 𝑚𝑎𝑥(𝑆𝐼)= are buses with the lowest/highest values of 𝑆𝐼, respectively. The 

second term of equation (3.38) becomes lower by one unit. In this case, equation (3.38) 

is consistent, and could be minimizing to decrease power losses and improve the voltage 

profile. The steps for this stage are as follows: 

Step 1: Input data are determined, such as the bus load and voltage, DG location, lines 

resistance and reactance values, DG mode, PV generation output, and load profile.  

Step 2: Generate random initial populations, 𝑥 representing the switches’ number and 

the DGs output, taking into consideration all of the limitations and constraints. The 

variable used in this work for tie switches are represented by 𝑆 , while the DG output is 

represented by 𝑃𝐷𝐺 . In the simultaneous case, both the number of switches and DG output 

should be determined simultaneously, as follows:  

𝑥 = [

𝑆11, 𝑆12, ⋯ , 𝑆1𝑛, 𝑃𝐷𝐺11, 𝑃𝐷𝐺12, ⋯ , 𝑃𝐷𝐺1𝐾

𝑆21, 𝑆22, ⋯ , 𝑆2𝑛, 𝑃𝐷𝐺21, 𝑃𝐷𝐺22, ⋯ , 𝑃𝐷𝐺2𝐾

⋮     ⋮      ⋮      ⋮        ⋮        ⋮        ⋮       ⋮        ⋮
𝑆𝑚1, 𝑆𝑚2, ⋯ , 𝑆𝑚𝑛, 𝑃𝐷𝐺𝑚1, 𝑃𝐷𝐺𝑚2, ⋯ , 𝑃𝐷𝐺𝑚𝐾

]                                                      (3.43)                                                                            

where, 

𝑚 = indicates the population size. 

𝑛 = the number of the switches. 
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𝐾 = the number of DG. 

Step 3: Begin the first iteration based on the power flow program to compute the power 

flow via all network lines. From the results, the power losses and minimum value of the 

voltage for the entire bus can be determined.  

Step 4: Evaluate the main fitness function in equation (3.38).  

Step 5: Choose one of the algorithms (EP, PSO, GSA, and FA) to update the 

populations, taking into account the same constraints in point 4.  

Step 6: Repeat the steps from step 3 until the max iteration number is completed (𝐵).  

Step 7: Stop the process and print the best solution that represents the switch number 

that form the optimal network configuration, the output of the DGs, the daily power 

losses, and the voltage at each bus for the optimal configuration, and the total fitness plots 

during all iterations. 

The flow chart of implementation of the Simultaneous Network Reconfiguration and 

DG output generation method, considering the load profile and different modes of DGs 

for total daily power loss reduction and voltage profile improvement are summarized in 

Figure 3.7. 
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Figure 3.7: Flow chart of the Simultaneous Network Reconfiguration and DG 

output generation method considering load profile and different mode of DGs for 

total daily power loss reduction and voltage profile improvement 
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same state after reconfiguration, it should be removed. i.e. if any switch has the same state 

of being normally open before and after reconfiguration, there is no need to use it in the 

sequencing process. 

Step 3: Generate random initial populations 𝑥, where in this case 𝑥 represents the 

switching sequence paths mentioned in (3.44), taking into the account the constraint of 

voltage limitation. 

𝑥 =

[
 
 
 

𝑆𝐶11, 𝑆𝑂12, 𝑆𝐶13, 𝑆𝑂14, ⋯ , 𝑆𝐶1𝑞−1, 𝑆𝑂1𝑞

𝑆𝐶21, 𝑆𝑂22, 𝑆𝐶23, 𝑆𝑂24,⋯ , 𝑆𝐶2𝑞−1, 𝑆𝑂2𝑞

⋮       ⋮        ⋮       ⋮        ⋮        ⋮       ⋮        ⋮       ⋮
𝑆𝐶𝑚1, 𝑆𝑂𝑚2, 𝑆𝐶𝑚3, 𝑆𝑂𝑚4,⋯ , 𝑆𝐶𝑚𝑞−1, 𝑆𝑂𝑚𝑞]

 
 
 

                                                                    (3.44)   

 The variable ‘𝑆𝐶’ represents the switches, where it should be closed during the switching 

sequence process, while the variable ‘𝑆𝑂’ represent the switches that should be open 

during the switching sequence process. This helps set the size of the DGs (obtained from 

configuration process) 

𝑞 is the number of the steps (number of switching sequence steps in each path), while 𝑚 

indicates the population size. 

The first row of matrix 𝑥 represent the first switching sequence path, 𝑆𝐶11 is the first 

switch that should be closed (in the first row and first column of the first population), and 

𝑆𝑂12 is the second switch that should be open (in the first row and second column of the 

first population), and after that, 𝑆𝐶13 is the third switch that should be closed (in the first 

row and third column of the first population), then 𝑆𝑂14 is the fourth switch that should 

be open (in the first row and fourth column of the first population), and so on, until 

𝑆𝐶1𝑞−1, 𝑆𝑂1𝑞, where 𝑆𝐶1𝑞−1 represent the switch number 𝑞 − 1 that should be closed (in 

the first row and column number 𝑞 − 1 of the first population), and 𝑆𝑂1𝑞 is the final 

switch that should be open (in the first row and final column of the first population). 
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The second row of matrix 𝑥 represent the second switching sequence path, where 𝑆𝐶21 

is the first switch that should be closed (in the second row and first column of the second 

population), and 𝑆𝑂22 is the second switch that should be open (in the second row and 

second column of the second population), after that, 𝑆𝐶23 is the third switch that should 

be closed (in the second row and third column of the second population), then 𝑆𝑂24 is the 

fourth switch that should be open (in the second row and fourth column of the second 

population), and so on until 𝑆𝐶2𝑞−1, 𝑆𝑂2𝑞, where 𝑆𝐶2𝑞−1 represent the switch number 𝑞 −

1 that should be closed (in the second row and column number 𝑞 − 1 of the second 

population), then 𝑆𝑂2𝑞 is the final switch that should be open (in the second row and final 

column of the second population), continuing until population number 𝑚. 

At this stage, the equality switches constraint should be considered. This means that 

the same switch should not be changed from closed-to-open, then open-to-closed. 

Furthermore, the same switch should not be closed or open more than once in the same 

path. Each path consists of several steps (switches opening and closing operation).  

For example, in the case of the 33-bus network, the initial configuration of the network 

(33, 34, 35, 36, and 37) are normally open. Suppose the final configuration of the network 

(8, 9, 12, 26, and 33) are normally closed, then the matrix 𝑥 for example, will be as 

follows: 

𝑥 = [

36, 8, 37, 26,⋯ , 34, 9
37, 9, 35, 8, ⋯ , 36, 26
⋮   ⋮   ⋮   ⋮   ⋮   ⋮   ⋮   ⋮   ⋮

36, 9, 37, 26,⋯ , 34, 8

]                                                                                        (3.45) 

That means that the first row represents the first switching sequence path. Switch 36 

should be closed first, then switch 8 should be opened after that, and switch 37 should be 

closed, then switch 26 should be open, and so on until the final switch number 9 is opened.   
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Step 4: Compute the power losses and voltage profile for each step (in each closed or 

open of the switch operation) during the sequence path for each population. This means 

that each population should have the number of steps, as follows: 

𝑁𝑠𝑡𝑒𝑝𝑠 = 2 × 𝑡                                                                                                                            (3.46)                                                                                                 

Where 𝑡 is the number of tie switch mentioned previously.                                    

In other words, the normally open switches will be closed, and another 𝑡 number of the 

normally closed switch will be open during 2 × 𝑡 steps in order to change the network’s 

topography. Another constraint that is accounted for here is the closed step that should 

come before the open step to avoid being disconnected from any bus.  

Step 5: The fitness of each population (sequence path) in Eq. (3.45) is calculated for 

all hours (considering the time frame of the system loading), as follows:  

𝐹𝑧 = ∑ ∑ (𝑤1 × 𝑃𝑙𝑜𝑠𝑠𝑟

𝑅 + 𝑤2 × 𝑠𝑖𝑟)
𝑁𝑠𝑡𝑒𝑝𝑠

𝑟=1
𝑇
ℎ𝑟=1                                                                                  (3.47) 

where 𝑟 is the step number; 𝑧 is the population (1⋯𝑚); 𝑇 is the total hour considered in 

the time frame; and ℎ𝑟 is the current time. In this study, the time frame is considered for 

24 hours. This mean that the proposed method will find one optimal switching sequence 

when applied in any hour of the day (24 hours) to produce minimum power losses and 

the best voltage index.  

Step 6: Choose one of the algorithms (EP, PSO, GSA, and FA) to update the 

populations, taking into account the same constraints mentioned in point 2 and 3.  

Step 7: Repeat the process beginning from step 4. 

Step 8: Save the best solution after the maximum iteration is completed. The best 

solution is the optimal switching sequence path during the time work of the system that 

produces the minimum power losses.  
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The flow chart of implementation of the Switching Sequence Process considering load 

profile and different mode of DGs for total daily power loss reduction and voltage profile 

improvement is summarized in Figure 3.8. 

 

Figure 3.8: Flow chart of the Switching Sequence Process considering load 

profile and different mode of DGs for total daily power loss reduction and voltage 

profile improvement 

3.7 Summary  

This chapter presented the methodologies of simultaneous network reconfiguration 

and DG output generation and switching sequence process for power loss reduction and 
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voltage profile improvement. The proposed method also considered the PQ and PV mode 

modelling of the DG and load profile for increased power losses reduction. Meta-heuristic 

approaches were used, such as EP, PSO, GSA, and FA.  The comparison and performance 

of the proposed methods will be detailed in the next chapter. 
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CHAPTER 4: PERFORMANCE OF THE PROPOSED METHOD 

4.1 Introduction  

This chapter discusses the performance of the proposed methods in solving network 

reconfiguration and DG output generation problem simultaneously. The switching 

sequence process is also presented. The effectiveness of the proposed methods is 

demonstrated on a standard IEEE 16-bus, IEEE 33-bus, IEEE 69-bus, and IEEE 118-bus 

test systems. The line data and bus data of the system are listed in Tables A.1, A.2, A.3, 

and A.4. The results are compared to the existing meta-heuristic methods. The main 

consideration in the comparison of the proposed methods with the existing method is the 

power loss reduction. The impact of the proposed methods to the overall voltage profiles 

is also presented in this chapter.  

4.2 Test System 1: IEEE 16-Bus 

An IEEE 16-bus distribution network system was used to test the proposed method. 

The network consists of three feeders with 15-bus radial distribution system (Zhu, 2002a). 

In order to solve the 3-feeder system, the system was transferred to a single feeder. It 

consists of 17 switches, 14 sectionalizing switches, and 3 tie switches. Switches number 

15, 16, and 17 are normally open for the original network, while other switches are 

normally closed, as shown in Figure 4.1. The total real load demand was 28.7 MW, while 

the system voltage was 12.66 kV. The base value of the apparent power was 100 MVA. 

The power losses of the network at the initial configuration were 511.43 kW, with 0.9693 

p.u. as its lowest bus voltage. The complete bus and line data was given in (Zhu, 2002a) 

and also in Appendix A Table A-1. The DG in this test system is assumed to be a mini-

hydro generation with a capacity of 2 MW. In this work, the optimal locations for the 

DGs are at bus 8, based on (Hung, Mithulananthan, & Bansal, 2010). The optimal solution 

is obtained for tie-switch, DG output (real power), and switching sequences. Both the DG 

output and the tie-switches were determined simultaneously.  
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Figure 4.1: IEEE 16-bus distribution network 

4.2.1 Simultaneously Network Reconfiguration and DG Output using EP, PSO, 

GSA, and FA Algorithms for IEEE 16 Bus System 

This section focuses on power loss reduction and voltage profile improvement by 

simultaneous network reconfiguration and DG output. 

4.2.1.1 Impact of simultaneous network reconfiguration and DG output generation 

on power losses 

Table 4.1 summarizes the test results obtained using EP, PSO, GSA, and FA and 

compared to the initial case. The lowest fitness function, 𝐹𝑅, according to equation (3.1), 

is 0.81646, obtained using FA. This means that FA produces the best solution compared 

to EP, PSO, and GSA.  FA also produces the lowest power losses after network 

reconfiguration (with DG), at 390.58 kW, while it was 511.43 kW before reconfiguration, 

which means that the power losses was reduced by 120.85 kW i.e. ~23.63% reduction 

compared to its initial state. The minimum voltage for all the busses after reconfiguration 

was improved to 0.9757 p.u., while before reconfiguration, its 0.9693 pu. The normally 

open switches after reconfiguration were 5, 8, and 9, while before reconfiguration, they 

were 15, 16, and 17. The DG1 output was 2 MW. However, the computational time taken 
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for using FA was 291.03 s, with 300 iterations for a population of 100, exceeding the 

other algorithms.  
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Table 4.1: Network reconfiguration and DG output results for IEEE 16-bus network  

Case Open 

switch 

DG output in 

MW (Bus 

number) 

Bus voltage (pu) 

(at bus) 

Reconfiguration 

fitness function 

𝐹𝑅 = (𝑃𝑙𝑜𝑠𝑠
𝑅 + 𝐼𝑉𝐷) 

Power 

losses 

(kW) 

Losses 

reduction 

(%) 

CPU 

Time (s) 

min           max 

Initial 15, 16, 17 No DG 0.9693(11)–1(1) 1.059 511.43 --------- 0.267 

EP 8, 9, 14 DG= 1.6 (8) 0.9748(11)–1(1) 0.87569 420.47 17.785 278.06 

PSO 8, 9, 14 DG= 1.999 (8) 0.9757(11)–1(1) 0.843012 404.159 20.975 239.12 

GSA 5, 8, 9 DG= 1.892 (8) 0.9754(11)–1(1) 0.82517 394.92 22.781 281.54 

FA 5, 8, 9 DG= 2 (8) 0.9757(11)–1(1) 0.81646 390.58 23.630 291.03 
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4.2.1.2 Impact of simultaneous network reconfiguration and DG output generation 

on voltage profile 

The voltage profile for both the initial and optimal cases using EP, PSO, GSA, and FA 

are shown in Figure 4.2. It can be seen from the figure that all the buses voltage magnitude 

for the algorithms are improved to values larger than its initial state. FA reported the best 

voltage profile.  

 

Figure 4.2: Voltage profile for IEEE 16-bus radial distribution network using 

different algorithms 

4.2.1.3 Analysis of overall performance for simultaneous network reconfiguration 

and DG output generation 

To prove the validity of the simultaneous network reconfiguration within the optimal 

DG output, the robustness test was conducted for the proposed method using different 

algorithms, and the value comparison is shown in Figure 4.3 in the case of 20 runs. It is 

evident from the robustness test that GSA or FA reported results that are almost equal in 

each run and the minimum value of standard deviation compared to the other algorithms 

shown in Table 4.2. This means that GSA and FA are highly robust compared to EP and 
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PSO. For each algorithm, there is a global optimal value, which is presented as the 

minimum value during the 20 times simulation run of the program, which are 0.87569, 

0.843012, 0.82517, and 0.81646 for the EP, PSO, GSA, and FA, respectively.  

 

Figure 4.3: Comparison of robustness test of the simultaneous reconfiguration 

and optimal DG output algorithms for IEEE 16-bus network 

Table 4.2: Statistical analysis results for robustness test for network 

reconfiguration and DG output generation process for IEEE 16-bus network 

Proposed 

Method 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

EP 0.87569 1.004272 0.947342 0.040754 

PSO 0.843012 0.97666 0.920134 0.032834 

GSA 0.82517 0.912602 0.868849 0.019821 

FA 0.81646 0.88409 0.85331 0.018051 

 

Based on the global cases for each algorithm, the convergence performance for these 

global values were also compared, and the results shown in Figure 4.4. FA reported the 
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minimum value of the reconfiguration fitness function, 𝐹𝑅, compared to the other 

algorithms.  

 

Figure 4.4: Comparison of convergence performance of the simultaneous 

reconfiguration and optimal DG output algorithms for IEEE 16-bus network 

The performance of the proposed method was also compared to published results with 

similar DG location and shown in Table 4.3. Generally, it is clear that the proposed 

methods performed better than the published results based on GA, PSO, EP, ABC, MGA, 

EPSO, MPSO, SABC (Dahalan, 2013). Only EP produce reported a slightly higher power 

loss compared to EPSO.  
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Table 4.3: Comparison of simulation result for IEEE 16-bus network 

Method Open 

switches 

Total DG 

output 

(MW) 

Lowest bus 

voltage 

(pu) 

Power 

losses (kW) 

Losses 

reduction 

(%) 

GA (Dahalan, 

2013) 

7, 8, 13 1.7101 0.9690 430 15.92 

PSO 

(Dahalan, 

2013) 

4, 8, 16 1.7260 0.9693 430.9 15.74 

EP (Dahalan, 

2013) 

7, 8, 13 1.7650 0.9712 429.9 15.94 

ABC 

(Dahalan, 

2013) 

4, 8, 16 1.7123 0.9716 430.9 15.74 

MGA 

(Dahalan, 

2013) 

7, 8, 16 1.7533 0.9714 421.5 17.58 

EPSO 

(Dahalan, 

2013) 

7, 14, 16 1.7995 0.9716 420.1 17.85 

MPSO 

(Dahalan, 

2013) 

8, 15, 16 1.7522 0.9703 421.4 17.60 

SABC 

(Dahalan, 

2013) 

7, 13, 14 1.7288 0.9716 421.9 17.50 

Proposed 

(EP) 

 8, 9, 14 1.6 0.9748 420.47 17.785 

Proposed 

(PSO) 

8, 9, 14 1.999 0.9757 404.159 20.975 

Proposed 

(GSA) 

5, 8, 9 1.892 0.9754 394.92 22.781 

Proposed 

(FA) 

5, 8, 9 2  0.9757 390.58 23.630 

 

4.2.2 Switching Sequence Process for IEEE 16 Bus System 

This section focuses on the optimal switching sequence path to change the network 

configuration from the original form to the optimal form, based on the configuration 

process.  
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Since the IEEE 16-bus network had 3 tie-switches and referring to equation (3.36), 

there are 3!  × 3!  × 2 = 72  probabilities, representing the switching sequence paths that 

could be used to transfer the network from the original form to the expected optimal form.  

4.2.2.1 Impact of switching sequence process and DG output generation on power 

losses and voltage profile 

The optimal solution of the network reconfiguration and DG output obtained from 

Table 4.1 is used to find the best switching sequence from the initial state (15, 16, and 

17) to the final state. The final state using EP/PSO is (8, 9, and 14), and using GSA/FA, 

its (5, 8, and 9). Based on equation (3.39) and by using FA, the best value of sequence 

fitness function, 𝐹𝑆, is obtained as shown in Table 4.4, equaling 4.77. The power losses 

during the steps is 2280.3kW. This means that the FA achieved a better optimal solution 

for switching sequence compared to the other algorithms. The obtained best sequence 

switching using FA is: 

Sequence 1: Sw16 (Close) → Sequence 2: Sw8 (Open),  

Sequence 3: Sw15 (Close) → Sequence 4: Sw9 (Open), 

Sequence 5: Sw17 (Close) → Sequence 6: Sw5 (Open). 

Furthermore, the minimum buses voltages in each switching step for all the algorithm 

is also presented. The best switching sequence obtained by any algorithm, does not cause 

the voltage profile to exceed its allowable limit (0.95 – 1.05) p.u. The computational time 

taken for using FA algorithm is 365.0543 s, with 300 iterations for a population of 100, 

which exceeds that of the other algorithms.  
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Table 4.4: Switching sequence results for IEEE 16-bus network 

Method Step 

NO. 

Switching 

Sequence 

Bus voltage (pu) (at 

bus) 

Sequence fitness function 

𝐹𝑆 = ∑ (
𝑃𝑙𝑜𝑠𝑠,𝑠

𝑃𝑙𝑜𝑠𝑠
0 + 𝐼𝑉𝐷𝑠)

𝑁𝑠𝑡𝑒𝑝𝑠

𝑠=1

 

Power 

Losses 

(kW) 

CPU Time 

(s) 

min   max 

EP 1 

2 

3 

4 

5 

6 

16 close 

8 open 

15 close 

9 open 

17 close 

14 open 

0.9764(11)–1(1) 

0.9748(11)–1(1) 

0.9792(11)–1(1) 

0.9748(11)–1(1) 

0.9748(11)–1(1) 

0.9748(11)–1(1) 

4.9882 2389.7 250.18 

 

PSO 1 

2 

3 

4 

5 

6 

16 close 

8 open 

15 close 

9 open 

17 close 

14 open 

0.9771(11)–1(1) 

0.9756(11)–1(1) 

0.9797(11)–1(1) 

0.9757(11)–1(1) 

0.9757(11)–1(1) 

0.9757(11)–1(1) 

4.7965 2293.827 240.816 

 

GSA 1 

2 

3 

4 

5 

6 

16 close 

8 open 

15 close 

9 open 

17 close 

5 open 

0.9769(11)–1(1) 

0.9753(11)–1(1) 

0.9796(11)–1(1) 

0.9754(11)–1(1) 

0.9754(11)–1(1) 

0.9754(11)–1(1) 

4.821 2305.8 278.73 

 

FA 1 

2 

3 

4 

5 

6 

16 close 

8 open 

15 close 

9 open 

17 close 

5 open 

0.9771(11)–1(1) 

0.9756(11)–1(1) 

0.9797(11)–1(1) 

0.9757(11)–1(1) 

0.9757(11)–1(1) 

0.9757(11)–1(1) 

4.77 2280.3 365.054 
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4.2.2.2 Analysis of overall performance for switching sequence process 

To prove the validity of the best switching sequence, the robustness test was conducted 

for the proposed method using EP, PSO, GSA, and FA, and the result was then compared, 

and the comparison presented in Figure 4.5 for 20 runs. From the robustness, the GSA or 

FA reported results that are almost equal to each run, and the minimum value of standard 

deviation compared to the other algorithms is shown in Table 4.5. This means that the 

GSA and FA algorithm are highly robust and reported a great level of consistency in its 

output. The minimum value for each algorithm during the 20 runs of the simulation 

program are taken as the global optimal result. The conversion performance for these 

global cases for all algorithms are compared and shown in Figure 4.6, and the FA reported 

the minimum value of the main fitness function, 𝐹𝑆, compared to the other algorithms.  

 

Figure 4.5: Comparison of robustness test of the switching sequence process 

algorithms for IEEE 16-bus network 
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Table 4.5: Statistical analysis results for robustness test for switching sequence 

process for IEEE 16-bus network 

Proposed 

Method 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

EP 4.9882 5.387 5.12932 0.163782 

PSO 4.7965 5.1879 4.980649 0.166363 

GSA 4.821 5.0497 4.90364 0.092445 

FA 4.77 4.9966 4.83307 0.088037 

 

 

Figure 4.6: Comparison of convergence performance of the switching sequence 

process algorithms for IEEE 16-bus network 

To further validate the results, different random sequence cases are presented in Table 

4.6 using different algorithms. It can be seen from the table that the random cases 

produced more power losses than the optimal sequence. 
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Table 4.6: Random switching sequence results for IEEE 16-bus network 

Method Step 

NO. 

Switching 

Sequence 

Bus voltage (pu) (at 

bus) 

Power 

Losses 

(kW) min              max 

Random 

case using 

EP method 

1 

2 

3 

4 

5 

6 

17 close 

14 open 

15 close 

9 open 

16 close 

8 open 

0.9726 (11)–1(1) 

0.9726 (11)–1(1) 

0.9775(11)–1(1) 

0.9727(11)–1(1) 

0.9768(11)–1(1) 

0.9749(11)–1(1) 

2589.7 

Random 

case using 

PSO method 

1 

2 

3 

4 

5 

6 

15 close 

9 open 

16 close 

8 open 

17 close 

14 open 

0.9784(11)–1(1) 

0.9735(11)–1(1) 

0.9771(11)–1(1) 

0.9756(11)–1(1) 

0.9756(11)–1(1) 

0.9756(11)–1(1) 

2306.964 

Random 

case using 

GSA method 

1 

2 

3 

4 

5 

6 

16 close 

8 open 

17 close 

5 open 

15 close 

9 open 

0.9769(11)–1(1) 

0.9754(11)–1(1) 

0.9754(11)–1(1) 

0.9754(11)–1(1) 

0.9795(11)–1(1) 

0.9754(11)–1(1) 

2352.3 

Random 

case using 

FA method 

 

1 

2 

3 

4 

5 

6 

17 close 

5 open 

15 close 

9 open 

16 close 

8 open 

0.9734(11)–1(1) 

0.9734(11)–1(1) 

0.9793(11)–1(1) 

0.9735(11)–1(1) 

0.9764(11)–1(1) 

0.9757(11)–1(1) 

2392.3 

 

4.3 Test System 2: IEEE 33-Bus 

An IEEE 33-bus distribution network system was used to test the proposed method. 

The network consists of 37 switches, 32 sectionalizing switches, and 5 tie switches. 

Switch number 33, 34, 35, 36, and 37 were normally open for the original network, while 

the other switches were normally closed, as shown in Figure 4.7. The total real load 

demand was 3715 kW, while the system’s voltage was 12.66 kV. The base value of the 

apparent power was 100 MVA. The power losses of the network at the initial 

configuration were 202.677 kW, with 0.913 p.u. as the lowest bus voltage. The complete 

bus and line data was given in (Baran & Wu, 1989), and are tabulated in Appendix A 

Table A-2. The DG in this test system is assumed to be a mini-hydro generation. The 
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capacity for each DG is 2 MW. In this work, the optimal locations for the DGs are located 

at buses 31, 32, and 33. This location was based on (Rao et al., 2013). An optimal solution 

was obtained for tie-switch, DG output (real power) and switching sequences. Both DG 

output and tie-switches were determined simultaneously.  
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Figure 4.7: IEEE 33-bus distribution network before reconfiguration process 

4.3.1 Simultaneously Network Reconfiguration and DG Output for IEEE 33 Bus 

System 

This section focuses on power loss reduction and voltage profile improvement via 

simultaneous network reconfiguration and DG output. 

4.3.1.1 Impact of simultaneous network reconfiguration and DG output generation 

on power losses 

Table 4.7 summarizes the test results obtained using EP, PSO, GSA, and FA and 

compared to the initial case. The optimal main fitness, 𝐹𝑅, according to equation (3.1), is 

0.4105, obtained using FA. This means that FA provide a better value compared to EP, 

PSO, and GSA. As can be seen in Table 4.7, by using FA, the power losses after network 

reconfiguration within DG is 72.361 kW, while before reconfiguration, its 202. 6kW, 
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which means that the power losses decreased by 130.239 kWh i.e. ~64.28% reduction 

compare to its initial state. The minimum voltage for all busses after reconfiguration was 

improved to 0.9750 pu, while before reconfiguration, its 0.9131 pu. The normally open 

switches after reconfiguration were 7, 10, 13, 28 and 32, while before reconfiguration, its 

33, 34, 35, 36 and 37. The DG1 output was 0.6756 MW, DG2 was 0.516 MW and DG3 

was 0.6334 MW. The computation time taken for using FA was 666.997 s, with 300 

iterations for a population of a 100, exceeding the other algorithms.  
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Table 4.7: Network reconfiguration and DG output results for IEEE 33-bus network 

Case Open switch DG output in 

MW (Bus 

number) 

Bus voltage (pu) 

(at bus) 

Reconfiguration 

fitness function 

𝐹𝑅 = (𝑃𝑙𝑜𝑠𝑠
𝑅 + 𝐼𝑉𝐷) 

Power 

losses 

(kW) 

Losses 

reduction 

(%) 

CPU 

Time 

(s) min           max 

Initial 33, 34, 35, 

36, 37 

No DG 0.9131(18)–1(1) 1.1135 202.6 --------- 0.597 

 

EP 7, 8, 9, 28, 32 DG1= 0.7024(31) 

DG2= 0.6390(32) 

DG3= 0.6224(33) 

0.9710(9)–1(1) 0.4223 73.971 63.49 563.09

1 

 

PSO 7, 10, 13, 28, 

32 

DG1= 0.6120(31) 

DG2= 0.5200(32) 

DG3= 0.6340(33) 

0.9738(29)–1(1) 0.4116 72.336 64.30 542.40

6 

 

GSA 7, 9, 13, 28, 

32 

DG1= 0.6450(31) 

DG2= 0.5200(32) 

DG3= 0.5800(33) 

0.9742(14)–1(1) 0.4117 72.425 64.25 587.37

5 

 

FA 7, 10, 13, 28, 

32 

DG1= 0.6756(31) 

DG2= 0.5160(32) 

DG3=0.6334(33) 

0.9750(29)–1(1) 0.4105 72.361 64.28 666.99

7 
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4.3.1.2 Impact of simultaneous network reconfiguration and DG output generation 

on voltage profile 

The voltage profiles for both initial and optimal cases using EP, PSO, GSA, and FA 

are shown in Figure 4.8. The buses voltage magnitude in the case of all the algorithms 

increased relative to its respective initial states. FA reported the best voltage profile.  

 

Figure 4.8: Voltage profile for IEEE 33-bus radial distribution network using 

different algorithms 

4.3.1.3 Analysis of overall performance for simultaneous network reconfiguration 

and DG output generation 

To prove the validity of simultaneous network reconfiguration within an optimal DG 

output, the robustness test was conducted for the proposed method using different 

algorithms, and the result compared and shown in Figure 4.9 for 20 runs. It is evident that 

the GSA/FA reported results that are almost equal in each run and the minimum value of 

standard deviation compared to the other algorithms, as shown in Table 4.8.  This mean 

that GSA and FA are highly robust compared to EP and PSO. For each algorithm, there 
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is a global optimal value representing a minimum value during the 20 time of simulation 

run of the program, which are 0.4223, 0.4116, 0.4117, and 0.4105 for EP, PSO, GSA, and 

FA, respectively.  

 

Figure 4.9: Comparison of robustness test of the simultaneous reconfiguration 

and optimal DG output algorithms for IEEE 33-bus network 

Based on the global cases for each algorithm, the convergence performance of these 

global values was also compared and shown in Figure 4.10. It is evident that the FA 

obtained the minimum value of RF relative to the other algorithms.  

Table 4.8: Statistical analysis results for robustness test for network 

reconfiguration and DG output generation process for IEEE 33-bus network 

Proposed 

Method 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

EP 0.4223 0.479287 0.434739 0.015947 

PSO 0.4116 0.446859 0.427166 0.009934 

GSA 0.4117 0.431887 0.419218 0.004437 

FA 0.4105 0.434373 0.418335 0.006252 

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

1 4 7 10 13 16 19

F
it

n
es

s 
F

u
n
ct

io
n
 F

R

Number of Run

EP PSO GSA FA

Univ
ers

ity
 of

 M
ala

ya



 

 

95 

 

Figure 4.10: Comparison of convergence performance of the simultaneous 

reconfiguration and optimal DG output algorithms for IEEE 33-bus network 

The performance of the proposed method was also compared to that of published result 

with similarly reported DG location, with the results of the comparison tabulated in Table 

4.9. The proposed method, based on PSO, GSA, or FA, exceeded that of the GA, RGA, 

HSA, EP, PSO, EPSO, ABC, MGA, MPSO, and SABC, while the EP obtained value of 

power losses exceeding that of HSA.  
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Table 4.9: Comparison of simulation result for IEEE 33-bus network 

Method Open 

switches 

Total DG 

output 

(MW) 

Lowest bus 

voltage 

(pu) 

Power 

losses 

(kW) 

Losses 

reduction 

(%) 

GA    (Rao et al., 

2013) 

7, 10, 28, 

32, 34 

1.9633 0.9766 75.130 62.92 

RGA  (Rao et al., 

2013) 

7, 9, 12, 

27, 32 

1.7740 0.9691 74.320 63.33 

HSA  (Rao et al., 

2013) 

7, 10, 14, 

28, 32 

1.6684 0.9700 73.050 63.95 

GA (Dahalan et al., 

2014) 

7, 10, 14, 

28, 32 

5.598 0.9899 100.90 50.20 

EP (Dahalan et al., 

2014) 

7, 10, 12, 

16, 28 

5.429 0.9978 94.100 53.5 

PSO (Dahalan, 

Mokhlis, Bakar, & 

Jamian, 2013) 

7, 12, 29, 

33, 37 

4.1868 0.9820 89.30 55.92 

GA (Dahalan & 

Mokhlis, 2012) 

7, 9, 14, 

28, 32 

3.8737 0.9772 112.4 44.5 

PSO (Dahalan & 

Mokhlis, 2012) 

7, 10, 14, 

28, 32 

3.3338 0.9772 92.3 51.4 

EPSO (Sulaima, 

Shamsudin, Jaafar, 

Dahalan, & Mokhlis, 

2014) 

6, 10, 13, 

16, 28 

5.429 ------- 89.3 55.9 

ABC (Dahalan, 

2013) 

11, 20, 31, 

34, 37 

2.706 

 

------- 103.9 48.64 

MGA (Dahalan, 

2013) 

7, 10, 12, 

16, 28 

2.7532 

 

0.985983 

 

96.88 52.11 

EPSO (Dahalan, 

2013) 

6, 10, 13, 

16, 28 

2.7969 

 

0.986126 

 

89.4 55.81 

MPSO (Dahalan, 

2013) 

7, 9, 14, 

28, 32 

2.7747 

 

0.977692 

 

92.46 54.30 

SABC (Dahalan, 

2013) 

11, 20, 31, 

34, 37 

2.6374 

 

0.97698 

 

97.5 51.80 

Proposed (EP) 7, 8, 9, 28, 

32 

1.9638 0.9710 73.971 63.49 

Proposed (PSO) 7, 10, 13, 

28, 32 

1.7660 0.9738 72.336 64.30 

Proposed (GSA) 7, 9, 13, 

28, 32 

1.7450 0.9742 72.425 64.25 

Proposed (FA) 7, 10, 13, 

28, 32 

1.8250 0.9750 72.361 64.28 
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4.3.2 Switching Sequence Process for IEEE 33 Bus System 

This section focuses on the optimal switching sequence path to alter the network 

configuration from its original form to its optimal form, based on stage number one.  

Since IEEE 33-bus network had 5 tie-switches, and as per equation (3.36), there are 

5! × 5! × 2 = 2880 probabilities, representing the switching sequence paths that could 

be used to transfer the network from its original form to its expected optimal form.  

4.3.2.1 Impact of switching sequence process and DG output generation on power 

losses and voltage profile 

The optimal solution of network reconfiguration and DG output obtained from 

Table 4.5 is used to find the best switching sequence from an initial state (33, 34, 35, 36, 

and 37) to a final state. The final state, using EP, its (7, 8, 9, 28, and 32), using PSO or 

FA, its (7, 10, 13, 28, and 32), and using GSA, its (7, 9, 13, 28, and 32). Based in equation 

(3.39) and using GSA, the best value of sequence fitness SF  is obtained as shown in Table 

4.10, equal to 4.4381. The power losses during all the steps is 642.22 kW, which means 

that the GSA reported a better optimal solution for the switching sequence compared to 

the other algorithms. The obtained best sequence switching using GSA is: 

Sequence 1: Sw36 (Close) → Sequence 2: Sw32 (Open),  

Sequence 3: Sw35 (Close) → Sequence 4: Sw9 (Open), 

Sequence 5: Sw37 (Close) → Sequence 6: Sw28 (Open), 

Sequence 7: Sw33 (Close) → Sequence 8: Sw7 (Open), 

Sequence 9: Sw34 (Close) → Sequence 10: Sw13 (Open). 
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Furthermore, the minimum buses voltages in each switching step for all the algorithm 

is also presented. It is clear that the best switching sequence does not cause the voltage 

profile to exceed its the allowable limit. The computational time taken for using the GSA 

algorithm is 520.773 s, at an iteration of 300 for a population of 100, which is lower than 

that reported by the other algorithms.  
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Table 4.10: Switching sequence results for IEEE 33-bus network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Step 

NO. 

Switching 

Sequence 

Bus voltage (pu) (at bus) 

 

Sequence fitness function 

𝐹𝑆 = ∑ (
𝑃𝑙𝑜𝑠𝑠,𝑠

𝑃𝑙𝑜𝑠𝑠
0 + 𝐼𝑉𝐷𝑠)

𝑁𝑠𝑡𝑒𝑝𝑠

𝑠=1

 

Power 

Losses 

(kW) 

CPU Time 

(s) 

min   max 

EP 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

36 close 

32 open 

37 close 

28 open 

33 close 

7 open 

35 close 

9 open 

34 close 

8 open 

0.9704(11)–1(1) 

0.9670(14)–1(1) 

0.9671(14)–1(1) 

0.9669(14)–1(1) 

0.9748(14)–1(1) 

0.9674(14)–1(1) 

0.9756(14)–1(1) 

0.9742(14)–1(1) 

0.9759(14)–1(1) 

0.9710(9)–1(1) 

4.5387 803.56 751.108 

 

PSO 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

36 close 

32 open 

33 close 

7 open 

37 close 

28 open 

35 close 

10 open 

34 close 

13 open 

0.9659(14)–1(1) 

0.9648(14)–1(1) 

0.9733(14)–1(1) 

0.9679(14)–1(1) 

0.9679(14)–1(1) 

0.9679(14)–1(1) 

0.9738(29)–1(1) 

0.9738(29)–1(1) 

0.9738(29)–1(1) 

0.9738(29)–1(1) 

4.4664 787.451 550.836 
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Table 4.10: Continued 

 

 

Method Step 

NO. 

Switching 

Sequence 

Bus voltage (pu) (at bus) 

 

Sequence fitness function 

𝐹𝑆 = ∑ (
𝑃𝑙𝑜𝑠𝑠,𝑠

𝑃𝑙𝑜𝑠𝑠
0 + 𝐼𝑉𝐷𝑠)

𝑁𝑠𝑡𝑒𝑝𝑠

𝑠=1

 

Power 

Losses 

(kW) 

CPU Time 

(s) 

min   max 

GSA 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

36 close 

32 open 

35 close 

9 open 

37 close 

28 open 

33 close 

7 open 

34 close 

13 open 

0.9653(14)–1(1) 

0.9626(14)–1(1) 

0.9756(29)–1(1) 

0.9753(29)–1(1) 

0.9764(29)–1(1) 

0.9734(29)–1(1) 

0.9740(29)–1(1) 

0.9722(14)–1(1) 

0.9745(29)–1(1) 

0.9742(14)–1(1) 

4.4381 785.76 520.773 

 

FA 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

36 close 

32 open 

35 close 

10 open 

37 close 

28 open 

33 close 

7 open 

34 close 

13 open 

0.9672(14)–1(1) 

0.9659(14)–1(1) 

0.9766(29)–1(1) 

0.9742(10)–1(1) 

0.9745(10)–1(1) 

0.9738(29)–1(1) 

0.9746(29)–1(1) 

0.9750(29)–1(1) 

0.9750(29)–1(1) 

0.9750(29)–1(1) 

4.4602 791.84 565.084 
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4.3.2.2 Analysis of overall performance for switching sequence process 

To prove the validity of the best switching sequence, the robustness test was conducted 

for the proposed method using EP, PSO, GSA, and FA, and the results compared and 

presented in Figure 4.11 for 20 runs. It is evident that GSA or FA report results that are 

almost equal in each run and minimum value of standard deviation compared to the other 

algorithms, as shown in Table 4.11. This means that GSA and FA algorithm are highly 

robust and realizes a great level of consistency in the output result. The minimum value 

for each algorithm during 20 runs of the simulation program are taken as the global 

optimal result. Furthermore, the conversion performance for these global cases for all the 

algorithms are compared and shown in Figure 4.12. It is also clear that the GSA report 

the minimum value of 𝐹𝑆 compared to the other algorithms.  

 

Figure 4.11: Comparison of robustness test of the switching sequence process 

algorithms for IEEE 33-bus network 
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Table 4.11: Statistical analysis results for robustness test for switching sequence 

process for IEEE 33-bus network 

Proposed 

Method 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

EP 4.5387 5.9869 4.953479 0.342431 

PSO 4.466404 4.602795 4.524574 0.093251 

GSA 4.438055 4.514505 4.495027 0.018783 

FA 4.460182 4.729318 4.541553 0.08817 

 

 

Figure 4.12: Comparison of convergence performance of the switching sequence 

process algorithms for IEEE 33-bus network 

To further validate the results, different random sequence cases are presented in Table 

4.12 using different algorithms. Any random case produced larger power losses or bus 

voltage value exceeding the limitations, or both. 
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Table 4.12: Random switching sequence results for IEEE 33-bus network 

Method Step 

NO. 

Switching 

Sequence 

Bus voltage (pu) (at 

bus) 

Power 

Losses 

(kW) min              max 

Random 

case using 

EP method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

37 close 

28 open 

36 close 

32 open 

33 close 

7 open 

35 close 

9 open 

34 close 

8 open 

0.9402(18)–1(1) 

0.9364(18)–1(1) 

0.9708(14)–1(1) 

0.9669(14)–1(1) 

0.9748(14)–1(1) 

0.9674(14)–1(1) 

0.9756(14)–1(1) 

0.9742(14)–1(1) 

0.9759(14)–1(1) 

0.9710(9)–1(1) 

853.55 

Random 

case using 

PSO method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

36 close 

28 open 

33 close 

7 open 

37 close 

32 open 

35 close 

10 open 

34 close 

13 open 

0.9659(14)–1(1) 

0.9370(29)–1(1) 

0.9478(29)–1(1) 

0.9289(29)–1(1) 

0.9692(14)–1(1) 

0.9679(14)–1(1) 

0.9738(29)–1(1) 

0.9738(29)–1(1) 

0.9738(29)–1(1) 

0.9738(29)–1(1) 

1074.9 

Random 

case using 

GSA method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

34 close 

13 open 

35 close 

9 open 

37 close 

28 open 

33 close 

7 open 

36 close 

32 open 

0.9653(14)–1(1) 

0.9627(14)–1(1) 

0.9756(29)–1(1) 

0.9614 (8)–1(1) 

0.9614(8)–1(1) 

0.9614(8)–1(1) 

0.9740(14)–1(1) 

0.9723(14)–1(1) 

0.9745(29)–1(1) 

0.9742(14)–1(1) 

793.46 

Random 

case using 

FA method 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

36 close 

28 open 

37 close 

32open 

35 close 

10 open 

33 close 

7 open 

34 close 

13 open 

0.9672(14)–1(1) 

0.9414(29)–1(1) 

0.9685(14)–1(1) 

0.9668(14)–1(1) 

0.9742(29)–1(1) 

0.9738(29)–1(1) 

0.9746(29)–1(1) 

0.9751(29)–1(1) 

0.9751(29)–1(1) 

0.9751(29)–1(1) 

889.32 
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4.4 Test System 3: IEEE 69-Bus 

An IEEE 69-bus consists of 73 switches, 68 sectionalizing switches, and 5 tie switches. 

Switches number 69, 70, 71, 72, and 73 were normally open for the original network, 

while the other switches were normally closed, as shown in Figure 4.13. The total real 

load demand was 3801.89 kW. The system’s voltage was 12.66 kV. The base value of 

the apparent power was 100 MVA. The power losses of the network at the initial 

configuration were 224.56 kW, with 0.90929 p.u. as its lowest bus voltage. The complete 

bus and line data follows that of (Savier & Das, 2007), and are given in Appendix A Table 

A-3. The DG in this test system was assumed to be a mini-hydro generation. The capacity 

for each DG was 2 MW. In this work, the optimal locations for the DGs are located at 

buses 60, 61, and 62. These locations were based on (Rao et al., 2013). Optimal solutions 

were obtained for tie-switch, DG output (real power), and switching sequences. Both the 

DG output and tie- switches were simultaneously determined.  
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Figure 4.13: IEEE 69-bus distribution network before reconfiguration process 
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4.4.1 Simultaneously Network Reconfiguration and DG Output for IEEE 69 Bus 

System  

This section focuses on power loss reduction and voltage profile improvement via 

simultaneous network reconfiguration and DG output. 

4.4.1.1 Impact of simultaneous network reconfiguration and DG output generation 

on power losses 

Table 4.13 summarize the test results obtained using EP, PSO, GSA, and FA, and 

compared the values with that of the initial case. The 𝐹𝑅, according to equation (3.1), is 

0.22451, obtained using FA. This means that FA reports a better value than the EP, PSO, 

and GSA. As seen in Table 4.13, by using FA, the power losses after network 

reconfiguration within DG is 39.897 kW, while before reconfiguration, its 224.56 kW, 

which means that power losses were reduced by 184.663 kWh i.e. ~82.233 % reduction 

compared to its initial state. The minimum voltage for all the busses after reconfiguration 

was improved to 0.98176 p.u., while before reconfiguration, its 0.90929 p.u. The 

normally open switches after reconfiguration were 12, 13, 57, 61, and 69, while before 

reconfiguration, they were 69, 70, 71, 72, and 73. The DG1 output was 0.5412 MW, DG2 

was 0.99499 MW, and DG3 was 0.47008 MW. The computation time taken for using FA 

was 1087.551 s at an iteration of 300 for a population of 100, which is larger than the 

other algorithms.  
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Table 4.13: Network reconfiguration and DG output results for IEEE 69-bus network 

Case Open 

Switch 

DG Output in MW 

(Bus Number) 

Bus voltage (pu) (at bus) Reconfiguration 

fitness function 

𝐹𝑅 = (𝑃𝑙𝑜𝑠𝑠
𝑅 + 𝐼𝑉𝐷) 

Power 

Losses 

(kW) 

Power 

Reduction 

(%) 

CPU 

Time (s) min max 

Initial 69, 70, 71, 

72, 73 

No DG 0.90929(65) 1(1) 1.1172 224.56 --------- 0.10985 

 

EP 10, 13, 20, 

56, 61 

DG1= 0.538 (60) 

DG2= 0.665 (61) 

DG3= 0.513 (62) 

0.974611(61) 1(1) 0.2534 44.83 79.940 796.361 

PSO 10, 13, 17, 

56, 61 

DG1= 0.564 (60) 

DG2= 0.737 (61) 

DG3= 0.572 (62) 

0.981684(61) 1(1) 0.25007 44.524 80.173 1013.597 

GSA 12, 13, 58, 

61, 69 

DG1= 0.53531 (60) 

DG2= 0.99296 (61) 

DG3= 0.48986 (62) 

0.98161(61) 1(1) 0.22486 39.943 82.213 663.797 

FA 12, 13, 57, 

61, 69 

DG1= 0.5412 (60) 

DG2= 0.99499 (61) 

DG3= 0.47008 (62) 

0.98176(61) 1(1) 0.22451 39.897 82.233 1087.551 
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4.4.1.2 Impact of simultaneous network reconfiguration and DG output generation 

on voltage profile 

The voltage profile for both initial and optimal cases using EP, PSO, GSA, and FA are 

shown in Figure 4.14. All buses voltage magnitude for all the algorithms improved to a 

value larger than its respective initial state. FA reported the best voltage profile.  

 

Figure 4.14: Voltage profile of IEEE 69-bus radial distribution network 

4.4.1.3 Analysis of overall performance for simultaneous network reconfiguration 

and DG output generation 

To prove the validity of the simultaneous network reconfiguration within optimal DG 

outputs, the robustness test was conducted for the proposed method using different 

algorithms, and the results compared and shown in Figure 4.15 for 20 runs. It is evident 

that the GSA/FA reported results that were almost equal in each run and minimum value 

of standard deviation compared to the other algorithms, as shown in Table 4.14.  This 

mean that GSA and FA are highly robust compared to EP and PSO. For each algorithm, 
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there is a global optimal value, which represents the minimum value during the simulation 

of the program, which are 0.2534, 0.25007, 0.22486, and 0.22451 for EP, PSO, GSA, and 

FA, respectively.  

 

Figure 4.15: Comparison of robustness test of the simultaneous reconfiguration 

and optimal DG output algorithms for IEEE 69-bus network 

 

Table 4.14: Statistical analysis results for robustness test for network 

reconfiguration and DG output generation process for IEEE 69-bus network 

Proposed 

Method 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

EP 0.2534 0.956621 0.441218 0.188789 

PSO 0.25007 0.28906 0.272199 0.016505 

GSA 0.22486 0.27106 0.259794 0.010245 

FA 0.22451 0.273974 0.247164 0.015767 
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Based on the global cases for each algorithm, the convergence performance for these 

values were also compared, and the results shown in Figure 4.16. It can be seen that the 

FA reported the minimum value of 𝐹𝑅 compared to that of the other algorithms.  

 

Figure 4.16: Comparison of convergence performance of the simultaneous 

reconfiguration and optimal DG output algorithms for IEEE 69-bus network 

 

The performance of the proposed method was also compared to that of published result 

with similar DG location, and the result of this comparison shown in Table 4.15. It is clear 

that the proposed method, based on GSA or FA, are better than GA, RGA, HSA, PSO, 

EP, ABC, MGA, EPSO, MPSO, SABC, ICA, and GSA, while EP and PSO reported 

power losses larger than that of HSA, ICA, and GSA.  
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Table 4.15: Comparison of simulation result for IEEE 69-bus network 

Method Open 

Switches 

Total 

DG Output 

(MW) 

 

Lowest bus 

voltage 

(pu) 

Power 

Losses 

(kW) 

Losses 

reduction 

(%) 

GA (Rao et al., 

2013) 

10, 15, 45, 

55, 62 

2.0292 0.9727 46.50 73.38 

RGA (Rao et 

al., 2013) 

10, 16, 14, 

55, 62 

2.0654 0.9742 44.23 80.32 

HSA (Rao et 

al., 2013) 

69, 17, 13, 

58, 61 

1.8718 0.9736 40.30 82.08 

GA (Dahalan, 

2013) 

11, 25, 69, 

70, 73 

2.6197 ------- 74.1 67.01 

PSO (Dahalan, 

2013) 

9,17, 43, 

55, 64 

2.6383 ------- 64.07 71.47 

EP (Dahalan, 

2013) 

12, 

49,55,64, 

69 

2.672 ------- 62.7 72.08 

ABC (Dahalan, 

2013) 

17, 55, 61, 

69, 70 

2.6726 ------- 75.9 66.21 

MGA 

(Dahalan, 2013) 

10, 25, 69, 

70, 73 

2.6721 0.99649 70.4 68.66 

EPSO 

(Dahalan, 2013) 

9,17, 49, 

55, 64 

2.6992 0.99649 60.09 72.93 

MPSO 

(Dahalan, 2013) 

12,17, 44, 

55, 64 

2.6811 0.99649 64.01 71.5 

SABC 

(Dahalan, 2013) 

13, 56, 64, 

69, 70 

2.6573 0.99649 70.1 68.79 

ICA (Koong, 

2015) 

61,70,69,57

,13  

1.4707  0.9757  42.84  81.07  

GSA (Koong, 

2015) 

61,69,19,57

,12  

1.6362  0.975  42.09  81.40  

Proposed (EP) 10, 13, 20, 

56, 61 

1.716 0.974611 44.83 79.940 

Proposed 

(PSO) 

10, 13, 17, 

56, 61 

1.873 0.981684 44.524 80.173 

Proposed 

(GSA) 

12, 13, 58, 

61, 69 

2.018 0.98161 39.943 82.213 

Proposed (FA) 12, 13, 57, 

61, 69 

2.006 0.98176 39.897 82.233 
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4.4.2 Switching Sequence Process for IEEE 69 Bus System 

This section focuses on the optimal switching sequence path to change the network 

configuration from its original form to its optimal form based on the configuration 

process.  

Since IEEE 69-bus network had 5 tie-switches and referred to the equation (3.36), 

there are 5!  × 5!  × 2 = 28800 probabilities, representing the switching sequence paths 

that could be used to transfer the network from its original form to its expected optimal 

form.  

4.4.2.1 Impact of switching sequence process and DG output generation on power 

losses and voltage profile 

The optimal solution of network reconfiguration and DG output obtained from 

Table 4.9 can be used to find the best switching sequence from an initial state (69, 70, 71, 

72, and 73) to a final state. The final state using EP is (10, 13, 20, 56, and 61), using PSO, 

its (10, 13, 17, 56, and 61), using GSA, its (12, 13, 58, 61, 69), and using FA, its (12, 13, 

57, 61, and 69). Based on equation (3.39) and using FA, the best value of 𝐹𝑆 is obtained 

as per Table 4.16, equal to 2.029319. The power losses during all the steps is 365.52 kW, 

which means that FA realized better optimal solution for switching sequence compared 

to the other algorithms. The obtained best sequence switching using FA is: 

Sequence 1: Sw72 (Close) → Sequence 2: Sw57 (Open), 

Sequence 3: Sw71 (Close) → Sequence 4: Sw13 (Open),  

Sequence 5: Sw73 (Close) → Sequence 6: Sw61 (Open), 

Sequence 7:  Sw70 (Close) → Sequence 8: Sw12 (Open), 
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Sw69 (NC). 

Moreover, the minimum buses voltages in each switching step for all the algorithm are 

also presented. It is clear that the best switching sequence does not cause the voltage 

profile to exceed its allowable limit. The computational time taken to using the firefly 

algorithm is 1210.051 s, at an iteration of 300 for a population of 100, exceeding that of 

the other algorithms.  
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Table 4.16: Switching sequence results for IEEE 69-bus network 

Proposed 

method  

Step NO. Switching 

Sequence 

path 

Bus voltage (pu) (at 

bus) 

Sequence fitness function 

𝐹𝑆 = ∑ (
𝑃𝑙𝑜𝑠𝑠,𝑠

𝑃𝑙𝑜𝑠𝑠
0 + 𝐼𝑉𝐷𝑠)

𝑁𝑠𝑡𝑒𝑝𝑠

𝑠=1

 

Power 

Losses 

(kW) 

CPU Time 

(s) 

min     max 

EP 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

73 close 

61 open 

72 close 

 56 open 

69 close 

10 open 

70 close 

 13 open 

71 close 

 20 open 

0.970277(24)–1.0(1) 

0.971865(61)–1.0(1) 

0.974936(21)–1.0(1) 

0.974587(61)–1.0(1) 

0.974600(61)–1.0(1) 

0.971928(21)–1.0(1) 

0.97461(61)–1.0(1) 

0.974327(14)–1.0(1) 

0.974611(61)-1.0(1) 

0.974611(61)-1.0(1) 

2.965901 

 

 

 

543.13 

 

1091.925 

 

PSO 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

72 close 

56 open 

71 close 

 13 open 

73 close 

61 open 

69 close 

 10 open 

70 close 

 17 open 

0.969827(27)–1.0(1) 

0.971157(27)–1.0(1) 

0.975675(65)–1.0(1) 

0.975674(65)–1.0(1) 

0.980996(64)–1.0(1) 

0.976638(61)–1.0(1) 

0.976639(61)–1.0(1) 

0.976648(61)–1.0(1) 

0.976648(61)-1.0(1) 

0.976647(61)-1.0(1) 

2.572721 

 

459.241 

 

1051.316 
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Table 4.16:  Continued 

Proposed 

method  

Step NO. Switching 

Sequence 

path 

Bus voltage (pu) (at 

bus) 

Sequence fitness function 

𝐹𝑆 = ∑ (
𝑃𝑙𝑜𝑠𝑠,𝑠

𝑃𝑙𝑜𝑠𝑠
0 + 𝐼𝑉𝐷𝑠)

𝑁𝑠𝑡𝑒𝑝𝑠

𝑠=1

 

Power 

Losses 

(kW) 

CPU Time 

(s) 

min     max 

GSA 1 

2 

3 

4 

5 

6 

7 

8 

 

72 close 

58 open 

71 close 

 13 open 

73 close 

61 open 

70 close 

 12 open 

69 NC 

0.970133(27)–1.0(1) 

0.971161(27)–1.0(1) 

0.978817(65)–1.0(1) 

0.978816(65)–1.0(1) 

0.982923(65)–1.0(1) 

0.981608(61)–1.0(1) 

0.981606(61)–1.0(1) 

0.981608(61)–1.0(1) 

2.030647 

 

365.884 

 

980.159 

 

FA 1 

2 

3 

4 

5 

6 

7 

8 

 

72 close 

57 open 

71 close 

13 open 

73 close 

61 open 

70 close 

12 open 

69 NC 

0.970108(27)–1.0(1) 

0.971160(27)–1.0(1) 

0.978533(65)–1.0(1) 

0.978533(65)–1.0(1) 

0.982766(65)–1.0(1) 

0.981757(61)–1.0(1) 

0.981755(61)–1.0(1) 

0.981757(61)–1.0(1) 

2.029319 

 

365.52 

 

1210.051 
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4.4.2.2 Analysis of overall performance for switching sequence process 

In order to prove the validity of the best switching sequence, the robustness test was 

conducted for the proposed method using EP, PSO, GSA, and FA, and the results 

compared and presented in Figure 4.17 for 20 runs. It is evident that the GSA or FA 

reported results that are almost equal to each run and minimum value of standard 

deviation compared to the other algorithms, as shown in Table 4.17. This means that the 

GSA and FA algorithms are highly robust and realizes a great level of consistency in its 

output results. The minimum value for each algorithm during the 20 runs of the simulation 

program is taken as the global optimal result. Furthermore, the conversion performance 

for these global cases in the case of all the algorithms were compared and shown in Figure 

4.18. It is evident that the FA reported the minimum value of  𝐹𝑆 compared to the other 

algorithms.   

 

Figure 4.17: Comparison of robustness test of the switching sequence process 

algorithms for IEEE 69-bus network 
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Table 4.17: Statistical analysis results for robustness test for switching sequence 

process for IEEE 69-bus network 

Proposed 

Method 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

EP 2.965901 4.163204 3.429894 0.408741 

PSO 2.572721 3.03781 2.716046 0.13865 

GSA 2.030647 2.160154 2.051356 0.036119 

FA 2.029319 2.131172 2.056027 0.035737 

 

 

Figure 4.18: Comparison of convergence performance of the switching sequence 

process algorithms for IEEE 69-bus network 

 

To further validate the results, different random sequence cases are presented in Table 

4.18 using different algorithms. Any random case produced larger power losses or bus 
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Table 4.18: Comparison of simulation result between the proposed method and 

random cases for IEEE 69-bus network 

Case Step  

NO. 

Switching 

Sequence  

Bus voltage (pu) (at bus) Power Losses 

(kW) 
min              max 

Random 

case using 

EP method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

73 close 

56 open 

72 close 

61 open 

69 close 

10 open 

70 close 

13 open 

71 close 

20 open 

0.97028(24)– 1(1) 

0.93594(61)– 1(1) 

0.97268(61)– 1(1) 

0.97459(61)– 1(1) 

0.9746(61)– 1(1) 

0.97193(21)– 1(1) 

0.97461(61)– 1(1) 

0.97433(14)– 1(1) 

0.97461(61)– 1(1) 

0.97461(61)– 1(1) 

651.8 

Random 

case using 

PSO 

method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

72 close 

56 open 

73 close 

13 open 

71 close 

61 open 

69 close 

10 open 

70 close 

17 open 

0.96983(27)- 1(1) 

0.97116(27)- 1(1) 

0.97445(23)- 1(1) 

0.94893(14)- 1(1) 

0.98100(64)- 1(1) 

0.97664(61)- 1(1) 

0.97664(61)- 1(1) 

0.97665(61)- 1(1) 

0.97665(61)- 1(1) 

0.97665(61)- 1(1) 

485.02 

Random 

case using 

GSA 

method 

1 

2 

3 

4 

5 

6 

7 

8 

71 close 

58 open 

72 close 

13 open 

73 close 

61 open 

70 close 

12 open 

0.98519 (27)- 1(1) 

0.90218 (65)- 1(1) 

0.97882 (65)- 1(1) 

0.97882 (65)- 1(1) 

0.98292 (65)- 1(1) 

0.98161 (61)- 1(1) 

0.98161 (61)- 1(1) 

0.98161 (61)- 1(1) 

4442 

Random 

case using 

FA method 

 

1 

2 

3 

4 

5 

6 

7 

8 

72 close 

57 open 

71 close 

13 open 

70 close 

12 open 

73 close 

61 open 

0.97011 (27)- 1(1) 

0.97116 (27)- 1(1) 

0.97853 (65)- 1(1) 

0.97853 (65)- 1(1) 

0.97853 (65)- 1(1) 

0.97853 (65)- 1(1) 

0.98264 (65)- 1(1) 

0.98176 (61)- 1(1) 

382.22 
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4.5 Test System 4: IEEE 118-Bus 

An IEEE 118-bus consists of 132 switches, 117 sectionalizing switches, and 15 tie 

switches. Switches number 118, 119, 120, 121, 122, 132, 124, 124, 126, 127, 128, 129, 

130, 131, and 132 were normally open in the case of the original network, while the other 

switches were normally closed as shown in Figure 4.19. The total real load demand was 

22709 kW, while the system’s voltage was 11 kV. The base value of the apparent power 

was 100 MVA. The power loss of the network at the initial configuration were 1297.8 

kW, with 0.8688 p.u. as its lowest bus voltage. The complete bus and line data was given 

in (Zhang, Fu, & Zhang, 2007a), and are given in Appendix A Table A-4. The DG in this 

test system was assumed to be a mini-hydro generation. The capacity for each DG was 3 

MW. In this work, the optimal locations for the DGs were located at buses 24, 42, 47, 74, 

78, 94, and 108, as per (Sultana & Roy, 2014). The optimal solution was obtained for tie-

switch, DG output (real power), and switching sequences. Both DG output and the tie-

switches were determined simultaneously. The selected optimization technique was the 

FA. 
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Figure 4.19: IEEE 118-bus distribution network before reconfiguration process 

4.5.1 Simultaneously Network Reconfiguration and DG Output for IEEE 118 Bus 

System  

This section focuses on power loss reduction and voltage profile improvement via 

simultaneously network reconfiguration and DG output for an IEEE 118-bus system. 
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4.5.1.1 Impact of simultaneous network reconfiguration and DG output generation 

on power losses 

Table 4.19 tabulates the comparison between the initial case and final state after 

reconfiguration, considering the optimal DG output using FA. Power losses after network 

reconfiguration within DG was 571.38 kW, while before reconfiguration, it was 1297.8 

kW, which means that the power loss was reduced by 726.42 kW i.e. ~55.97 % reduction 

compared to its initial state. The minimum voltage for all the busses after reconfiguration 

improved to 0.9502 p.u., while before reconfiguration, it was 0.8688 p.u. The normally 

open switches after reconfiguration are 41, 25, 21, 121, 122, 58, 38, 125, 70, 127, 128, 

81, 130, 131, and 33, while before reconfiguration, they were 118, 119, 120, 121, 122, 

132, 124, 124, 126, 127, 128, 129, 130, 131, and 132. The DG1 output was 1.5075 MW, 

DG2 output was 1.2489 MW, DG3 output was 1.8218 MW, DG4 output was 1.8248 MW, 

DG5 output was 1.2820 MW, DG6 output was 1.2642 MW, and DG7 output was 2.991 

MW.  
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Table 4.19:  Network reconfiguration and DG output results for IEEE 118-bus network 

Case Open Switch DG Output in 

MW 

(Bus Number) 

Bus voltage (pu) (at 

bus) 

Reconfiguration 

fitness function 

𝐹𝑅 = (𝑃𝑙𝑜𝑠𝑠
𝑅 + 𝐼𝑉𝐷) 

Power 

Losses 

(kW) 

Power 

Reduction 

(%) min max 

Initial 118, 119, 120, 

121, 122, 132, 

124, 124, 126, 

127, 128, 129, 

130, 131, 132 

No DG 0.8688(77) 1(1) 1.1565 

 

1297.8 --------- 

Proposed 

method (FA) 

41, 25, 21, 121, 

122, 58, 38, 125, 

70, 127, 128, 81, 

130, 131, 33 

DG1= 1.5075 (24) 

DG2= 1.2489 (42) 

DG3= 1.8218 (47) 

DG4= 1.8248 (74) 

DG5= 1.2820 (78) 

DG6= 1.2642 (94) 

DG7= 2.991 (108) 

0.9502(54) 

 

1(1) 0.51773 571.38 55.97 
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4.5.1.2 Impact of simultaneous network reconfiguration and DG output generation 

on voltage profile 

The voltage profile for both initial and optimal case using FA were compared, and the 

results of this comparison shown in Figure 4.20. All the buses’ voltage magnitude were 

improved to a value larger than its respective initial states.  

 

Figure 4.20: Voltage profile of IEEE 118-bus radial distribution network 

 

4.5.1.3 Validation of performance of FA algorithm for simultaneous network 

reconfiguration and DG output generation 

The performance of the proposed method was compared to that of published works, 

and the comparison shown in Table 4.20. The proposed method, based on FA, is superior 

to GA, RGA, ITS and MTS.  
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Table 4.20: Comparison of simulation result for IEEE 118-bus network in case of 

reconfiguration  
 

 

4.5.2 Switching Sequence Process for IEEE 118 Bus System 

This section focuses on the optimal switching sequence path to change the network 

configuration from its original form to its optimal form, based on the configuration 

process for an IEEE 118-bus test system.  

4.5.2.1 Impact of switching sequence process and DG output generation on power 

losses and voltage profile 

The optimal solution of network reconfiguration and DG output obtained from Table 

4.19 can be used to determine the best switching changing path to transfer the network 

from its initial state (118, 119, 120, 121, 122, 132, 124, 124, 126, 127, 128, 129, 130, 

131, 132) to its final state (41, 25, 21, 121, 122, 58, 38, 125, 70, 127, 128, 81, 130, 131, 

33). The obtained best switching changing path is: 

Sequence 1: Sw120 (Close) → Sequence 2: Sw21 (Open), 

 

Method 

 

 

Open Switch 

Lowest bus 

voltage 

(pu) 

Power 

Losses 

(kW) 

Losses 

reduction 

(%) 

GA (Nara, Shiose, 

Kitagawa, & 

Ishihara, 1992a) 

43, 120, 24, 51, 49, 

62, 40, 126, 74, 73, 

77, 83, 31, 110, 35 

 

0.9321 

 

885.56 

 

31.76 

MTS (Abdelaziz, 

Mohamed, 

Mekhamer, & 

Badr, 2010) 

42, 26, 23, 51, 122, 

58, 39, 95, 71, 74, 

97, 129, 130, 109, 34 

 

0.9323 

 

867.4 

 

33.16 

ITS (Zhang, Fu, & 

Zhang, 2007b) 

43, 27, 24, 52, 120, 

59, 40, 96, 75, 72, 

98, 130, 131, 110, 35 

 

0.9323 

 

865.86 

 

33.28 

 

RGA (Zhu, 2002b) 

43, 27, 23, 52, 49, 

62, 40, 126, 74, 73, 

77, 83, 131, 110, 33 

 

0.9321 

 

883.13 

 

31.95 

Proposed Method 

(FA) 

42, 23, 25, 121, 50, 

58, 33, 95, 74, 71, 

97, 130, 129, 109, 39 

 

0.93231 

 

859.38 

 

33.78 
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Sequence 3: Sw119 (Close) → Sequence 4: Sw25 (Open), 

Sequence 5: Sw118 (Close) → Sequence 6: Sw41 (Open),  

Sequence 7:  Sw132 (Close) → Sequence 8: Sw33 (Open), 

Sequence 9: Sw129 (Close) → Sequence 10: Sw81 (Open), 

Sequence 11: Sw126 (Close) → Sequence 12: Sw70 (Open), 

Sequence 13: Sw124 (Close) → Sequence 14: Sw38 (Open), 

Sequence 15: Sw123 (Close) → Sequence 16: Sw58 (Open), 

(Sw121, Sw122, Sw125, Sw127, Sw128, Sw130, Sw131 are NC). 

The optimal fitness for switching sequence path is 8.5017, while the summation of 

power losses during all steps of the optimal path is 9265.5 kW.  

Figure 4.21 shows the voltage profile during the optimal path sequence of switching. 

It is clear that the best switching sequence path resulted in minimum bus voltage larger 

than the initial case.  
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Figure 4.21: Voltage profile of 118-bus radial distribution network for all 

switching changing steps 

 

4.5.2.2 Validation of performance of FA algorithm for switching sequence process 

To validate the results, different random sequence cases are presented in Table 4.21 

using FA. Any random case produced larger power losses or bus voltage value exceeding 

its limitations, or both. 
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Table 4.21: Comparison of simulation result between the proposed method and 

random cases for IEEE 118-bus network 

Case Step 

NO.  

Switching 

Sequence  

Bus voltage (pu) (at bus) Power 

Losses 

(kW) min              max 

Optimal 

switching 

sequence 

path using 

FA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

120 close 

21 open 

119 close 

25 open 

118 close 

41 open 

132 close 

33 open 

129 close 

81 open 

126 close 

70 open 

124 close 

38 open 

123 close 

58 open 

     0.93329(54)- 1(1) 

      0.93347(54)- 1(1) 

      0.93332(54)- 1(1) 

      0.93349(54)- 1(1)   

      0.93362(54)- 1(1) 

      0.93344(54)- 1(1) 

      0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

      0.94292(77)- 1(1) 

      0.94492(77)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

9265.5 

Random 

case NO.1 

using FA 

method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

132 close 

33 open 

119 close 

25 open 

120 close 

21 open 

118 close 

41 open 

126 close 

70 open 

124 close 

38 open 

123 close 

58 open 

129 close 

81 open 

      0.94352(77)- 1(1) 

       0.91741(54)- 1(1) 

      0.93909(54)- 1(1) 

      0.91935(54)- 1(1)   

      0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

       0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

      0.95584(54)- 1(1) 

      0.95584(54)- 1(1) 

      0.95584(54)- 1(1) 

      0.95584(54)- 1(1) 

      0.95584(54)- 1(1) 

      0.95021(111)- 1(1) 

9305.4 

Random 

case NO.2 

using FA 

method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

132 close 

33 open 

119 close 

25 open 

120 close 

21 open 

118 close 

41 open 

126 close 

70 open 

124 close 

38 open 

123 close 

      0.94352(77)- 1(1) 

       0.91741(54)- 1(1) 

      0.93909(54)- 1(1) 

      0.91935(54)- 1(1)   

      0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

       0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

      0.95704(54)- 1(1) 

     0.95965(54)- 1(1) 

      0.95565(54)- 1(1) 

      0.95584(54)- 1(1) 

      0.95584(54)- 1(1) 

9359 
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Table 4.21: Continued 

Case Step  

NO. 

Switching 

Sequence  

Bus voltage (pu) (at bus) Power 

Losses 

(kW) min              max 

 14 

15 

16 

58 open 

129 close 

81 open 

      0. 95021 (54)- 1(1) 

      0. 95021 (54)- 1(1) 

      0.95021(111)- 1(1) 

 

Random 

case NO.3 

using FA 

method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

119 close 

21 open 

120 close 

25 open 

118 close 

41 open 

132 close 

33 open 

129 close 

81 open 

126 close 

70 open 

124 close 

38 open 

123 close 

58 open 

     0.93311(54)- 1(1) 

      0.93311(54)- 1(1.0024) 

      0.93332(54)- 1(1) 

      0.93349(54)- 1(1)   

      0.93362(54)- 1(1) 

      0.93344(54)- 1(1) 

      0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

      0.94292(77)- 1(1) 

      0.94492(77)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

      0.95021(111)- 1(1) 

9282.8 

Random 

case NO.4 

using FA 

method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

132 close 

33 open 

119 close 

25 open 

120 close 

21 open 

118 close 

41 open 

126 close 

70 open 

123 close 

58 open 

124 close 

38 open 

129 close 

81 open 

      0.94352(77)- 1(1) 

       0.91741(54)- 1(1) 

      0.93909(54)- 1(1) 

      0.91935(54)- 1(1)   

      0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

       0.94352(77)- 1(1) 

      0.94352(77)- 1(1) 

      0.95704(54)- 1(1) 

     0.95965(54)- 1(1) 

      0.95695(54)- 1(1) 

      0.95695(54)- 1(1) 

      0.9565(54)- 1(1) 

      0. 95584 (54)- 1(1) 

      0. 95584 (54)- 1(1) 

      0.95021(111)- 1(1) 

9301.1 
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4.6 Validation of Switching Sequence Process Based on Real Time Analysis  

The voltage stability of the system during switching process was validated using the 

PSCAD/EMTDC software. The IEEE 33-bus system was selected as the test system for 

the switching process. 

4.6.1 Switching Sequence Process Considering DGs 

It can be seen from Table 4.10 that the GSA algorithm reported the optimal 

solution for the switching sequence process. The obtained best sequence switching using 

GSA is: 

Sequence 1: Sw36 (Close) → Sequence 2: Sw32 (Open),  

Sequence 3: Sw35 (Close) → Sequence 4: Sw9 (Open), 

Sequence 5: Sw37 (Close) → Sequence 6: Sw28 (Open), 

Sequence 7: Sw33 (Close) → Sequence 8: Sw7 (Open), 

Sequence 9: Sw34 (Close) → Sequence 10: Sw13 (Open). 

Figurer 4.22 shows the IEEE 33-Bus network that is used to apply the switching 

sequence path. The same switching sequence, number of DGs, and location with optimal 

output, as described for the GSA algorithm, were modeled. Each DG was connected to 

the network via a step-up transformer (3.3 kV/12.66 kV), rated 30 MVA each. Each of 

the three Mini Hydro DG units has a 2 MVA rated capacity, operating at a 3.3 KV voltage 

level. As pointed out previously, the system voltage is 12.66kV (1 pu), which means that 

the lower and the upper voltage should be between 12.027kV (0.95 pu) and 13.293kV 

(1.05 pu). The delay time, which includes the calculation and the sequential steps, and 
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operation time of the circuit breaker, was assumed to be 100 ms, as per practical 

considerations (Committee, 2003). 
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Figure 4.22: IEEE 33 bus system modelled in PSCAD/EMTDC software 
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Figure 4.23 shows the real-time voltage profile for the switching sequence process 

within DGs. The time is divided into three intervals:  

a) Before the switching sequence process and with DGs, from (2.9s to <3.1s).  

b) During the switching process within DGs, from (3.1s to 4.1s). Each step takes 100 

ms, thus the switching process is completed after 1 s (i.e at 4.1s).  

c) After the switching sequence completed within DGs (>4.1s).  

It can be observed that by implementing the switching sequence process, the whole 

voltages at load buses comes within an allowable limit. 
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Figure 4.23: Real time voltage profile of 33 bus radial distribution network 

within DGs 
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4.6.2 Switching Sequence Process without DGs 

Figure 4.24 shows the real-time voltage profile for the switching sequence process 

without DGs. The time is divided into three intervals:  

a) Before the switching sequence process and without DGs, from (2.9s to <3.1s).  

b) During the switching process without DGs, from (3.1s to 4.1s). Each step takes 

100 ms, thus the switching process is completed after 1 s (i.e at 4.1s).  

c) After the switching sequence finished without DGs (>4.1s).  

It can be observed that the voltage for some buses is less than 0.95 p.u. before, during, 

and after the switching sequence process. 
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Figure 4.24: Real time voltage profile of 33 bus radial distribution network 

without DGs 
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4.6.3 Switching Sequence Process within DGs for Random Case 

 Figure 4.25 shows the real-time voltage profile for random switching sequence 

process with DGs. The time is divided into three intervals:  

a) Before the switching sequence process with DGs, from (2.8s to <3.1s).  

b) During the switching process without DGs, from (3.1s to 4.1s). Each step takes 

100 ms, thus the switching process is completed after 1 s (i.e at 4.1s).  

c) After the switching sequence is completed, with DGs (>4.1s).  

It can be observed that for the random switching sequence, the voltage for some buses 

are less than 0.95 pu, or larger than 1.05 pu during the switching sequence process. This 

means that it is essential to determine the switching sequence carefully to avoid 

overvoltage in the system.  
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Figure 4.25: Real time voltage profile of 33 bus radial distribution network with 

DGs for random switching sequence case 
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4.7 Summary  

The performance of the proposed methods has been tested using IEEE 16-bus, IEEE 

33-bus, IEEE 69-bus, and IEEE 118-bus systems. The presented approach is of high 

quality and robustness towards realizing an optimal network configuration and DG 

output. The results proved that the optimal reconfiguration within the optimal DG output 

minimized power losses and improve the overall systems’ voltage profile. The presented 

approach is also of high quality when it comes to realizing an optimal switching changing 

path. Furthermore, it can also be surmised that the proposed method (FA) always report 

the highest power loss reduction and best voltage profile compared to that of EP, PSO, 

and GSA. The real-time analysis test using PSCAD/EMTDC software proved that the 

optimal switching sequence does not cause over voltage or under voltage when 

implemented in real-time conditions. 
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CHAPTER 5: APPLICATION OF THE PROPOSED METHOD FOR DAILY 

OPERATION PLANNING 

5.1 Introduction  

The performance of the proposed method in solving network reconfiguration and DG 

output generation simultaneously and switching sequence process is presented in this 

chapter. Different types of DGs and load profile are applied based on the one-day data to 

minimize total daily power loss of a distribution system during switching sequence and 

for the final state. The effectiveness of the proposed methods is demonstrated on a 

standard IEEE 33 bus test system. The results obtained are compared to existing meta-

heuristic methods. The main consideration in the comparison of the proposed methods 

with the existing method is power loss reduction. The impact of the proposed methods to 

the overall voltage profiles is also presented in this chapter.  

5.2 Application of Daily Distribution Planning Via Proposed Method  

The proposed method for EP, PSO, GSA, and FA were detailed in Section 3.3. The 

following conditions were taken into consideration in the tests:  

a) Load profiles   

b) DG output generation  

c) DG operating mode  

d) DG types  

Here, the PV generation output based on the solar irradiance was taken from Kuantan 

in 2008 from the Malaysia Meteorological Department. The peak load per unit of 24 hours 

is shown in Figure 5.1,  as per (Ing, Mokhlis, Illias, Aman, & Jamian, 2015). The value 

of PV generation output of a day is shown in Figure 5.2, as per (JALAN, 2014). 
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Figure 5.1: Hourly load profile for individual loads 

 

Figure 5.2: Hourly PV power production 

The objective function of the proposed method is to minimize the total daily power 

loss and improve voltage profiles. 
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5.3 Simulation Results and Analysis 

The IEEE 33-BUS system was used. The DGs in this test system was assumed to be 

mini-hydro, biomass, and PV generation. The maximum capacity for each DG was 2 MW. 

In this work, the optimal locations for the DGs were located at buses 31, 32, and 33. This 

location is based on (Rao et al., 2013). The biomass and mini-hydro DGs operated in the 

PQ mode (which means that the DG generates constant real and reactive powers). Active 

power was obtained by optimization, while it assumes that no reactive power was injected 

into the grid, while the photovoltaic unit operates on a PV mode (that means, the DG 

generates specific active power and bus voltage). This DG model was based on (Ing et 

al., 2016). The bus voltage was fixed at 1 p.u. 

5.3.1 Simultaneously Network Reconfiguration and DG Output  

This section focuses on power loss reduction and voltage profile improvement via 

simultaneously network reconfiguration and DG outputs. 

5.3.1.1 Impact of simultaneous network reconfiguration and DG output generation 

on power losses 

The proposed method looks for the best configuration that can realize the lowest daily 

power losses and best voltage profile at any hour of the day. Table 5.1 summarizes the 

test results for EP, PSO, GSA, and FA. Since a day is made up of 24 hours, instead of 

finding different configurations at each hour, the proposed method looks for one solution 

that best represents any hour of the day. Based on that, the main fitness function F, as per 

equation 3.38, is evaluated for a 24 hours slot, which is equal to 2.4491 after 

reconfiguration, while before reconfiguration, its 12.039. The daily power losses after 

network reconfiguration with DG during 24 hours was 747.76 kWh, obtained by using 

FA, while before reconfiguration, its 3622.7 kWh, which means that power losses were 

reduced by 2874.94 kWh i.e. ~79.36% reduction compared to its initial state. The 

Univ
ers

ity
 of

 M
ala

ya



 

 

141 

normally open switches after reconfiguration were 8, 9, 12, 26, and 33, as shown in Figure 

5.3, while before reconfiguration, they were 33, 34, 35, 36, and 37. The DG1 output was 

0.832 MW; DG2 output was shown in Figure 5.2, and that of DG3 was 0.47 MW. DG 

type, DG mode, and DG location are also presented in the table. The computation time 

taken for using FA is 3815.1 s, at an iteration of 300 based on a population of 100, which 

is larger than that of the other algorithms, except EP. It can also be seen that the power 

losses at any hour after the reconfiguration process are lower than the power losses before 

the reconfiguration process, as shown in Figure 5.4. 
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Table 5.1: Network reconfiguration and DG output results per day for IEEE 33-bus network 

Case Open 

switches 

DG output in 

MW  

DG Type DG 

Mode 

DG 

Location 

Reconfiguration fitness 

function 

𝐹 = 

∑(𝑤1 × 𝑃𝑙𝑜𝑠𝑠
𝑅 + 𝑤2 × 𝑠𝑖)

𝑇

ℎ𝑟

 

 

Total Daily 

Power Loss 

(kWh) for 

24 hr 

Power 

Reduction 

(%) 

CPU 

Time 

(s) 

Initial 33, 34, 

35, 36, 

37 

No DG ------------ ------- --------- 12.039 

 

3622.7 

 

--------- 2.115 

 

EP 9, 12, 25, 

32, 33 

DG1= 0.882 

DG2= Based on 

sun radiations 

DG3= 0.518 

Biomass 

Photovoltaic 

Mini hydro 

PV 

PQ 

PV 

31 

32 

33 

2.5113 

 

769.93 

 

78.747 7656.2 

 

PSO 8, 10, 12, 

25, 33 

DG1= 0.866 

DG2= Based on 

sun radiations 

DG3= 0.568 

Biomass 

Photovoltaic 

Mini hydro 

PV 

PQ 

PV 

31 

32 

33 

2.4709 

 

750.65 

 

79.279 3706.4 

 

GSA 8, 11, 13, 

25, 33 

DG1= 0.864 

DG2= Based on 

sun radiations 

DG3= 0.503 

Biomass 

Photovoltaic 

Mini hydro 

PV 

PQ 

PV 

31 

32 

33 

2.5004 

 

748.88 

 

79.328 2482.9 

 

FA 8, 9, 12, 

26, 33 

DG1= 0.832 

DG2= Based on 

sun radiations 

DG3=0.47 

Biomass 

Photovoltaic 

Mini hydro 

PV 

PQ 

PV 

31 

32 

33 

2.4491 

 

747.76 

 

79.359 3815.1 
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Figure 5.4: Power losses per hour before and after reconfiguration process for 

IEEE 33-bus network 

 

5.3.1.2 Impact of simultaneous network reconfiguration and DG output generation 

on voltage profile 

Figure 5.5 shows the minimum values of voltage profile (pu) for radial distribution 

network at any hour of the day. All minimum values of the buses voltage magnitude at 

any time is larger than its initial state. 
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Figure 5.5: Daily minimum value pf voltage profile (pu) for radial distribution 

network for IEEE 33-bus network 

 

5.3.1.3 Analysis of overall performance for simultaneous network reconfiguration 

and DG output generation 

To prove the validity of the proposed method with DG output, considering load profile 

and different type of DGs, the robustness test was carried out for the proposed method 

using the different algorithms, and the result compared and shown in Figure 5.6 for 20 

runs. It is evident that the GSA or FA reported almost equal results in each run and the 

minimum value of standard deviation compared to the other algorithms, as shown in 

Table 5.2. This means that the GSA and FA are highly robust compared to EP and PSO. 

In the case of each algorithm, there is a global optimal value representing the minimum 

value during simulation of the program, which are 2.5113, 2.4709, 2.5004, and 2.4491 

for EP, PSO, GSA, and FA, respectively.  
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Figure 5.6: Comparison of robustness test of the simultaneous reconfiguration 

and optimal DG output algorithms per day for IEEE 33-bus network 

 

Table 5.2: Statistical analysis results for robustness test for network 

reconfiguration and DG output generation process for IEEE 33-bus network 

Proposed 

Method 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

EP 2.5113 3.339539 2.660076 0.199267 

PSO 2.4709 3.028863 2.706054 0.129956 

GSA 2.5004 2.85916 2.669745 0.084667 

FA 2.4491 2.674791 2.564823 0.077152 

 

Based on the global cases for each algorithm, the convergence performance for these 

values were also compared, and the results shown in Figure 5.7. It can be seen that the 

FA reported the minimum value for the reconfiguration fitness relative to that of the other 

algorithms.  
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Figure 5.7: Comparison of convergence performance of the simultaneous 

reconfiguration and optimal DG output algorithms per day for IEEE 33-bus 

network 

The performance of the proposed method was compared to that of published results 

with similar DG unit’s locations, as per Table 5.3. It is evident that the proposed method, 

based on EP, PSO, GSA, and FA, are better than GSA and ICA. 

Table 5.3: Comparison of simulation result of 33-bus system considering 

variable loads 

Method Open Switches Total daily 

Power Losses 

(kWh) 

Total daily 

Power Losses 

Reduction (%) 

GSA (Ing et al., 

2016) 

32, 7, 33, 13, 26 915.91 74.717 

ICA (Ing et al., 

2016) 

33, 21, 13, 25, 32 915.65 74.725 

Proposed (EP) 9, 12, 25, 32, 33 769.93 78.747 

Proposed (PSO) 8, 10, 12, 25, 33 750.65 79.279 

Proposed (GSA) 8, 11, 13, 25, 33 748.88 79.328 

Proposed (FA) 8, 9, 12, 26, 33 747.76 79.360 
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5.3.2 Optimal Switching Sequence Path Process 

This section focuses on power loss reduction and voltage profile improvement via 

simultaneously network reconfiguration and DG outputs. 

5.3.2.1 Impact of switching sequence path process on power losses 

The optimal solution of network reconfiguration and DG output obtained from the first 

section were used to find the best switching sequence path to transfer the network from 

its initial state (33, 34, 35, 36, 37) to its final state (8, 9, 12, 26, 33) at any time. From 

Table 5.4, the obtained best switching sequence path using FA is: 

Sequence 1: Sw36 (close) → Sequence 2: Sw9 (open), 

Sequence 3: Sw357 (close) → Sequence 4: Sw26 (open), 

Sequence 5: Sw35 (close) → Sequence 6: Sw12 (open), 

Sequence 7:  Sw34 (close) → Sequence 8: Sw8 (open),  

Sw33 (NC). 

This means that the optimal switching sequence path minimizes the total power losses 

during all steps at any time. Practically, the state of the switches is changed manually, 

which require ~15 minutes. This will result in energy losses, as outlined in the same table. 

According to the proposed method, the optimal fitness for switching sequence path is 

21.444. The summation of the power losses during all steps of the optimal path when the 

voltage level is maximum, minimum, and middle are also outlined in the table. When the 

load level is minimum (7 hours), the summation of power losses during the steps is 157.9 

kW, and the energy is 330.5 kWh, while when the load level is in the middle (9 hours), 

the summation of the power losses during all steps is 232.83 kW, and the energy is 465.66 
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kWh. When the load level is maximum (15 hours), the summation of the power losses 

during all steps is 355.74 kW, and the energy is 711.48 kWh. 
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Table 5.4: Switching sequence results for IEEE 33-bus network 

Proposed 

Method 

Step NO. Switching 

Sequence  

Sequence 

fitness function 

 

Load levels hr Power losses 

(kW) 

Energy losses 

(kWh) 

EP 1 

2 

3 

4 

5 

6 

7 

8 

36 close 

9 open 

35 close 

12 open 

37 close 

25 open 

34 close 

32 open 

33 NC 

22.538 

 

Minimum value 7 186.69 

 

373.38 

Average value 9 260.55 

 

521.1 

Maximum value 15 447.13 

 

894.26 

PSO 1 

2 

3 

4 

5 

6 

7 

8 

36 close 

10 open 

37 close 

25 open 

35 close 

12 open 

34 close 

8 open 

33 NC 

21.823 

 

Minimum value 7 175.76 

 

351.52 

Average value 9 246.67 

 

493.34 

Maximum value 15 404.76 809.52 
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Table 5.4: Continued 

Proposed 

Method 

Step NO. Switching 

Sequence  

Sequence 

fitness function 

 

Load levels hr Power losses 

(kW) 

Energy losses 

(kWh) 

GSA 1 

2 

3 

4 

5 

6 

7 

8 

36 close 

11 open 

37 close 

25 open 

34 close 

8 open 

35 close 

13 open 

33 NC 

22.223 

 

Minimum value 7 165.25 

 

330.5 

Average value 9 240.43 

 

480.86 

Maximum value 15 373.47 

 

746.94 

FA 1 

2 

3 

4 

5 

6 

7 

8 

36 close 

9 open 

37 close 

26 open 

35 close 

12 open 

34 close 

8 open 

33 NC 

21.444 Minimum value 7 157.9 315.8 

Average value 9 232.83 465.66 

Maximum value 15 355.74 711.48 
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5.3.2.2 Impact of switching sequence path process on voltage profile 

Table 5.5 shows the minimum/maximum values of the voltage profile during the steps 

of the optimal path sequence of switching at different hours. At each hour, there are 8 

lines that represent the minimum values of the buses voltages during the switching 

sequence process. It is clear that the best switching sequence path does not cause the 

voltage profile to exceed its allowable limit (less than 0.95 pu and larger than 1.05 pu). 
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Table 5.5: Minimum and Maximum Values of Voltage Profile for each Step per hr (pu) for 33 bus radial network  

Proposed 

Method 

Step NO. Minimum value of load profile Average value of load profile Maximum value of load profile 

Min value of 

voltage profile 

(hr=7) 

Max value of 

voltage profile 

(hr=7) 

Min value of 

voltage profile 

(hr=9) 

Max value of 

voltage profile 

(hr=9) 

Min value of 

voltage profile 

(hr=15) 

Max value of 

voltage profile 

(hr=15) 

EP 1 0.9852 1 0.9818 1 0.9791 1.0004 

2 0.9852 1 0.9819 1 0.9790 1.0004 

3 0.9852 1 0.9818 1 0.9791 1.0004 

4 0.9853 1 0.9819 1 0.9792 1.0005 

5 0.9875 1 0.9847 1 0.9825 1.0005 

6 0.9877 1 0.9849 1 0.9828 1.0005 

7 0.9894 1 0.9870 1 0.9850 1.0004 

8 0.9894 1 0.9870 1 0.9850 1.0008 

PSO 1 0.9852 1 0.9818 1 0.9791 1.0004 

2 0.9852 1 0.9818 1 0.9791 1.0004 

3 0.9861 1 0.9829 1 0.9804 1.0004 

4 0.9860 1 0.9829 1 0.9804 1.0004 

5 0.9860 1 0.9829 1 0.9803 1.0004 

6 0.9861 1 0.9829 1 0.9804 1.0005 

7 0.9889 1 0.9863 1 0.9845 1.0004 

8 0.9889 1 0.9864 1 0.9842 1.0004 
 

 

 
Univ

ers
ity

 of
 M

ala
ya



 

 

 

 

1
5

3
 

Table 5.5: Continued 

Proposed 

Method 

Step NO. Minimum value of load profile Average value of load profile Maximum value of load profile 

Min value of 

voltage profile 

(hr=7) 

Max value of 

voltage profile 

(hr=7) 

Min value of 

voltage profile 

(hr=9) 

Max value of 

voltage profile 

(hr=9) 

Min value of 

voltage profile 

(hr=15) 

Max value of 

voltage profile 

(hr=15) 

GSA 1 0.9851 1 0.9818 1 0.9791 1.0004 

2 0.9850 1 0.9816 1 0.9789 1.0004 

3 0.9846 1 0.9812 1 0.9784 1.0004 

4 0.9844 1 0.9809 1 0.9781 1.0004 

5 0.9870 1 0.9840 1 0.9819 1.0004 

6 0.9853 1 0.9820 1 0.9791 1.0004 

7 0.9881 1 0.9855 1 0.9832 1.0004 

8 0.9881 1 0.9855 1 0.9832 1.0004 

FA 1 0.9851 1 0.9817 1 0.9790 1.0004 

2 0.9851 1 0.9818 1 0.9790 1.0004 

3 0.9852 1 0.9819 1 0.9790 1.0004 

4 0.9852 1 0.9819 1 0.9790 1.0004 

5 0.9869 1 0.9840 1 0.9816 1.0004 

6 0.9870 1 0.9840 1 0.9817 1.0004 

7 0.9891 1 0.9866 1 0.9849 1.0004 

8 0.9883 1 0.9856 1 0.9836 1.0004 
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5.3.2.3 Analysis of overall performance for switching sequence path process 

To prove the validity of the best switching sequence, the robustness test was conducted 

on the proposed method using EP, PSO, GSA, and FA, and the results compared and 

presented in Figure 5.8 for 20 runs. It is evident that GSA or FA reported results that are 

almost equal in each run with the smallest standard deviation compared to the other 

algorithms, as per Table 5.6. This means that the GSA and FA algorithm are highly robust 

and realizes a great level of consistency in its outputs. The minimum value for each 

algorithm during the simulation is taken as its global optimal result. Furthermore, the 

conversion performance for these global cases for the algorithms were compared, and the 

result of this comparison shown in Figure 5.9. It is evident that the FA reported the 

minimum value of the main fitness function relative to that of other algorithms.  

 

Figure 5.8: Comparison of robustness test of the switching sequence process 

algorithms per day for IEEE 33-bus network 
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Table 5.6: Statistical analysis results for robustness test for switching sequence 

process for IEEE 33-bus network 

Proposed 

Method 

Minimum 

value 

Maximum 

value 

Average 

value 

Standard 

deviation 

EP 22.53821 24.385 23.43562 0.748052 

PSO 21.82302 23.73329 22.50465 0.796756 

GSA 22.22331 23.16949 22.44587 0.257403 

FA 21.44395 22.41662 21.70173 0.360225 

 

 

Figure 5.9: Comparison of convergence performance of the switching sequence 

process algorithms per day for IEEE 33-bus network 

 

The results were further validated using random sequence cases, as presented in Tables 

5.7 and 5.8. These cases were randomly selected, and from the Tables, any random case 

could report larger power losses compared to the proposed method or bus voltage value 

exceeding its limitations, or both. 
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Table 5.7: Comparison of simulation result between the proposed method and 

random cases for IEEE 33-bus network 

Case Step 

NO. 

Switching 

Sequence  

Load levels 

 

hr Power 

losses 

(kW) 

Energy 

losses 

(kWh) 

Random 

case using 

EP 

1st step 

2nd step 

3rd step 

4th step 

5th step 

6th step 

7th step 

8th step 

36 close 

12 open 

35 close 

9 open 

37 close 

25 open 

34 close 

32 open 

33 NC 

Minimum 

value 

 

7 196.2 392.4 

Average 

value 

 

9 271.9 543.8 

Maximum 

value 

15 475.4 950.8 

Random 

case using 

PSO  

1st step 

2nd step 

3rd step 

4th step 

5th step 

6th step 

7th step 

8th step 

37 close 

25open 

36 close 

10 open 

35 close 

12 open 

34 close 

8 open 

33 NC 

Minimum 

value 

 

7 218.7 437.4 

Average 

value 

 

9 309.4 618.8 

Maximum 

value 

15 495.6 991.2 

Random 

case using 

GSA 

1st step 

2nd step 

3rd step 

4th step 

5th step 

6th step 

7th step 

8th step 

37 close 

25 open 

36 close 

11 open 

34close 

8 open 

35 close 

13 open 

33 NC 

Minimum 

value 

 

7 204.6 409.2 

Average 

value 

 

9 298.5 597 

Maximum 

value 

15 457.7 915.4 

Random 

case using 

FA 

1st step 

2nd step 

3rd step 

4th step 

5th step 

6th step 

7th step 

8th step 

37 close 

26 open 

36 close 

9 open 

35 close 

12 open 

34 close 

8 open 

33 NC 

Minimum 

value 

 

7 199.5 399 

Average 

value 

 

9 293.2 586.4 

Maximum 

value 

15 452.8 905.6 
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Table 5.8: Minimum and Maximum Values of Voltage Profile for each Step per hr (pu) for 33 bus radial network for random cases 

Proposed 

Method 

Step NO. Switching 

Sequence  

Minimum value of load 

profile 

Average value of load 

profile 

Maximum value of load 

profile 

Min value of 

voltage 

profile 

(hr=7) 

Max value of 

voltage 

profile 

(hr=7) 

Min value of 

voltage 

profile 

(hr=9) 

Max value of 

voltage 

profile 

(hr=9) 

Min value of 

voltage 

profile 

(hr=15) 

Max value of 

voltage 

profile 

(hr=15) 

Random 

case using 

EP 

1 36 close 0.9852 1 0.9818 1 0.9791 1.0004 

2 12 open 0.9835 1 0.9797 1 0.9767 1.0005 

3 35 close 0.9852 1 0.9819 1 0.9791 1.0005 

4 9 open 0.9853 1 0.9819 1 0.9792 1.0005 

5 37 close  0.9875 1 0.9847 1 0.9825 1.0005 

6 25 open 0.9877 1 0.9849 1 0.9828 1.0005 

7 34 close  0.9894 1 0.9870 1 0.9850 1.0004 

8 32 open 0.9894 1 0.9870 1 0.9850 1.0008 

Random 

case using 

PSO 

1 37 close 0.9603 1 0.9512 1.0001 0.9433 1.0006 

2 25 open 0.9579 1 0.9482 1.0001 0.9398 1.0006 

3 36 close 0.9867 1 0.9837 1 0.9814 1.0004 

4 10 open 0.9860 1 0.9829 1 0.9804 1.0004 

5 35 close 0.9860 1 0.9829 1 0.9803 1.0004 

6 12 open 0.9861 1 0.9829 1 0.9804 1.0005 

7 34 close 0.9889 1 0.9863 1 0.9845 1.0004 

8 8 open 0.9889 1 0.9864 1 0.9842 1.0004 
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Table 5.8: Continued  

Proposed 

Method 

Step NO. Switching 

Sequence  

Minimum value of load 

profile 

Average value of load 

profile 

Maximum value of load 

profile 

Min value of 

voltage 

profile 

(hr=7) 

Max value of 

voltage 

profile 

(hr=7) 

Min value of 

voltage 

profile 

(hr=9) 

Max value of 

voltage 

profile 

(hr=9) 

Min value of 

voltage 

profile 

(hr=15) 

Max value of 

voltage 

profile 

(hr=15) 

Random 

case using 

GSA 

1 37 close 0.9602 1 0.9511 1.0001 0.9433 1.0006 

2 25 open 0.9578 1 0.9482 1.0001 0.9398 1.0006 

3 36 close 0.9866 1 0.9836 1 0.9813 1.0004 

4 11 open 0.9844 1 0.9809 1 0.9781 1.0004 

5 34 close 0.9870 1 0.9840 1 0.9819 1.0004 

6 8 open 0.9853 1 0.9820 1 0.9791 1.0004 

7 35 close 0.9881 1 0.9855 1 0.9832 1.0004 

8 13 open 0.9881 1 0.9855 1 0.9832 1.0004 

Random 

case using 

FA 

1 37 close 0.9601 1 0.9510 1.0001 0.9432 1.0006 

2 26 open 0.9571 1 0.9473 1.0001 0.9388 1.0006 

3 36 close 0.9861 1 0.9830 1 0.9807 1.0004 

4 9 open 0.9852 1 0.9819 1 0.9790 1.0004 

5 35 close 0.9869 1 0.9840 1 0.9816 1.0004 

6 12 open 0.9870 1 0.9840 1 0.9817 1.0004 

7 34 close 0.9891 1 0.9866 1 0.9849 1.0004 

8 8 open 0.9883 1 0.9856 1 0.9836 1.0004 
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5.4 Summary 

A dynamic analysis with different DGs types and modes of operation has been 

performed. The proposed methods were applied to obtain an optimal configuration, DG 

output generation, and optimal switching sequence path setting for a day. Photovoltaic, 

biomass, and mini hydro DG were the types of DG considered for this study. The 

simulation results confirmed that it is important to consider the load profiles, DG output 

generation, DG type, and DG operating mode to decrease total daily power loss and 

improve the voltage profile in distribution operation planning. The simulation results also 

confirmed that the FA reported better results relative to that of EP, PSO, GSA and ICA 

in the context of finding the optimal switching sequence.   
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CHAPTER 6: CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusions 

This work intended to solve the network reconfiguration and DG output generation 

simultaneously using different meta-heuristic techniques. An optimal switching sequence 

technique during network reconfiguration was also proposed. The proposed network 

reconfiguration and switching sequence caters practical conditions based on dynamic load 

profiles, DG output generation, various types of DGs, and DG operating modes in finding 

optimal daily solution. The EP, PSO, GSA, and FA are meta-heuristic methods that have 

been used by the proposed methods. This work was verified using an IEEE 16, 33, 69 and 

118 test systems. These results were also compared to other published results. The 

objectives of this work have been successfully achieved.  

In the first objective, the proposed method successfully obtained optimal network 

reconfiguration with optimal DGs generation output. The results reported high power loss 

reduction of 23.63%, 64.3%, 82.233%, and 55.97% for IEEE 16-bus, 33-bus, 69-bus, and 

118-bus test systems, respectively. These values exceeded that reported by other works. 

The proposed method also produced better voltage profile compared to other published 

works. The minimum value of the buses voltages was 0.9757 p.u., 0.9750 p.u., 0.98176 

p.u., and 0.9502 p.u. for IEEE-16 buses 33, 69, and 118, respectively. 

For the second objective, the proposed method found the optimal switching sequence 

of the reconfiguration with its lowest power losses. The power losses during switching 

sequence process were 2280.3 kW, 785.76 kW, 365.52 kW, and 9265.5 kW for IEEE 16-

bus, IEEE 33-bus IEEE, 69-bus, and IEEE 118-bus networks, respectively. These values 

were much lower compared to any other random switching sequence path. Furthermore, 

the optimal sequence keeps the buses voltages within allowable limit during the switching 

process. Meanwhile, random switching caused voltage violation during the switching 
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changing process, which proved the importance of determining the optimal sequence of 

reconfiguration. This aspect has never been considered in any network reconfiguration 

methods. Furthermore, the proposed optimal switching method has also been tested using 

PSCAD/EMTDC in real-time conditions. It was found that the all of the voltages were 

within the allowable limit during the switching process. 

For the third objective, optimum daily solution for network reconfiguration and DG 

output generation by considering load profiles and DG operating mode was analyzed. The 

proposed method was tested using a combination of photovoltaic operated in PQ mode, 

biomass operated in PV mode, and mini hydro operated in PV mode. The results 

confirmed that the DG operating mode impact the reconfiguration process for both total 

daily power loss reduction and voltage stability index. The total daily power losses 

reduction for IEEE 33-bus network was 79.36 %, compared to 74.717% reported by other 

works. 

In the fourth objective, the proposed method of switching sequence path was applied, 

considering the combination of different DG types, DG operating modes (PQ and PV 

mode), load profiles, and DG output generation. The results confirmed that it is important 

to account for the DG operating mode in the switching sequence process for both the total 

daily power loss reduction and voltage stability index improvement. The energy losses 

during the switching sequence process when the load profile was average was 465.66 

kWh for the IEEE 33-bus networks, which was lower compared to any of the random 

case of switching sequence path. Moreover, the voltage profile during switching sequence 

process was within the allowable limit compared to any random case of switching 

sequence.  
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6.2 Future Works 

The analysis on network reconfiguration and DG based on the proposed method in this 

work can be further improved. Possible future works include:  

1) In this work, the switches and sizes of the DG were searched together during 

simulation in order to obtain the optimal reconfiguration and optimal size of DG. It is 

recommended that the switch, DG output generation, and location of DG are combined 

in the same algorithm, which reduces the processing time due to the fact that it does not 

need to utilize other methods to determine the optimal location of DG.  

2) It is suggested that the number of objective functions, such as minimizing the cost 

of energy generated by DGs and minimizing the total emissions produced by DGs and 

the grid be increased to obtain a more comprehensive result.  

3) Besides 16-bus, 33-bus, 69-bus, and 118-bus systems, further work can explore 

much larger networks, such as 129-bus and 185-bus for network reconfiguration. 

Furthermore, practical load demands, such as residential or industrial load, could also be 

accounted for, which allows for efficiency and competency of the proposed methods to 

be observed and compared in greater details.  

4) Other optimization techniques, such as Cuckoo Search (CS), Hybrid Intelligent 

System like Genetic-Fuzzy, or Genetic-Optimal Power Flow could also be explored in 

any future works involving network reconfiguration.  
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