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FULLY AUTOMATED SEGMENTATION OF THE  

LEFT VENTRICLE IN CINE CARDIAC MAGNETIC RESONANCE IMAGING 

ABSTRACT 

Cardiovascular diseases (CVD) are the primary cause of death globally, accounting for 

approximately 31% of all deaths worldwide. Cardiac magnetic resonance imaging (MRI) 

is the reference standard for the medical assessment of cardiac volumes and regional 

functions due to its accuracy and reproducibility. Most standard cardiac MRI protocols 

begin with assessing the left ventricle (LV) structure and functions due to the LVs’ role 

in supplying most of the body with oxygenated blood. In standard clinical practice, 

quantification of LV function is performed via manual delineation of the LV myocardium 

within the MR images, for the end-diastole (ED) and end-systole (ES) cardiac phases. 

This enables the evaluation of standard diagnostic clinical measurements such as LV ED 

and ES blood volumes, ejection fraction, and LV mass. Despite delineating only two 

cardiac phases, such manual tracing can take up to 20 minutes by a radiologist. Full 

delineation across all cardiac phases would enable useful quantification of motion 

parameters to identify regional LV dysfunction. However, the excessive effort required 

for manual full delineation makes it impractical for clinical adoption. In this thesis, two 

fully automatic algorithms for cardiac MRI were presented: the first for localization of 

the LV blood pool – a sub-problem for enabling subsequent automatic segmentation; and 

the second for segmentation of the LV with full coverage from base to apex across all 

cardiac phases. The novel use of neural network regression for image segmentation was 

introduced, whereby multiple independent networks were designed and trained for the 

inference of LV landmarks, LV centrepoints, and myocardial contours, respectively. A 

large range of data sources was utilized for training and validation, including both in-

house and publicly available databases, representing a heterogeneous mix of scanner 

types, imaging protocols, and parameters. Tested against the public 2011 Left Ventricle 
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Segmentation Challenge (LVSC) database, a final Jaccard index result of 0.77 ± 0.11 was 

obtained for segmentation accuracy. This represents the best published LVSC 

performance to date for a fully automated algorithm. Tested against the public 2016 

Kaggle Second Annual Data Science Bowl challenge, a final result of +7.2 ± 13.0 mL 

and −19.8 ± 18.8 mL was obtained for clinical blood volume measurement accuracy in 

the ES and ED phases, respectively. This performance is comparable to published inter-

reader variability values for multiple independent expert readers. The execution speed is 

approximately 12 s per case. In conclusion, two algorithms were developed and tested 

leading to fully automatic segmentation of LV in cardiac cine MRI. These were validated 

against a diverse set of publicly available and in-house cardiac cine MRI data. The strong 

performance overall is suggestive of practical clinical utility. 

Keywords: cardiac MRI, LV localization, LV segmentation, automated segmentation, 

neural network regression 
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SEGMENTASI AUTOMATIK PADA VENTRICLE KIRI UNTUK  

PENGIMEJAN RESONANS MAGNETIK CINE JANTUNG 

ABSTRAK 

Penyakit kardiovaskular (CVD) adalah punca kematian utama di seluruh dunia, 

merangkumi kira-kira 31% daripada semua kematian di seluruh dunia. Pengimejan 

resonans magnetik (MRI) jantung  adalah sistem rujukan klinikal untuk menilai isipadu 

dan fungsi jantung, disebabkan oleh ketepatan dan kebolehulangannya. Kebanyakan 

protokol MR jantung standard bermula dengan menilai struktur dan fungsi ventrikel kiri 

(LV) kerana peranan LV dalam membekalkan seluruh badan dengan darah oksigen. 

Dalam amalan klinikal yang standard, kuantifikasi fungsi LV dilakukan melalui lukisan 

manual otot LV dalam imej MR, untuk fasa jantung di akhir-diastol (ED) dan akhir-sistol 

(ES). Ini membolehkan penilaian ukuran klinikal diagnostik piawai seperti isi padu darah 

LV ED dan ES, fraksi ejeksi, dan jisim LV. Walaupun hanya dua fasa jantung 

dianalisakan, lukisan manual sedemikian boleh mengambil masa selama 20 minit oleh 

pakar radiologi. Kuntur otot LV pada semua fasa akan membolehkan kuantifikasi yang 

berguna dilakukan seperti pergerakan jantung untuk mengenal pasti fungsi tempatan yang 

luar biasa di LV. Walau bagaimanapun, usaha berlebihan yang diperlukan untuk melukis 

secara manual pada semua fasa menjadikannya tidak praktikal untuk diterima pakai di 

klinik. Dalam tesis ini, saya membentangkan dua algoritma automatik untuk cine MRI 

jantung: yang pertama untuk penyetempatan kawasan darah LV – suatu applikasi 

permulaan untuk membolehkan segmentasi automatik berikutnya; dan kedua untuk 

segmentasi otot LV dengan liputan penuh dari bawah ke atas, bagi semua fasa jantung. 

Saya memperkenalkan teknik novel bernama regresi rangkaian neural untuk segmen imej, 

di mana pelbagai rangkaian direkabentuk dan dilatih untuk menyimpulkan landasan, titik 

pusat, dan kontur LV. Saya menggunakan pelbagai sumber data, termasuk pangkalan data 

dalaman dan awam, untuk latihan dan pengesahan teknik ini. Sumber data ini 
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mengandungi imej-imej yang diperolehi daripada pelbagai jenis pengimbas, protokol 

pengimejan, dan parameter. Apabila diuji pada pangkalan data awam, iaitu 2011 Left 

Ventricle Segmentation Challenge (LVSC), saya memperolehi keputusan akhir indeks 

Jaccard 0.77 ± 0.11 sebagai ketepatan segmentasi. Ini mewakili prestasi LVSC yang 

terbaik yang pernah diterbitkan untuk algoritma automatik sepenuhnya. Apabila diuji 

terhadap pangkalan data awam 2016 Kaggle Second Annual Data Science Bowl 

Challenge, saya memperolehi keputusan akhir ketepatan pengukuran isi padu darah LV 

klinikal sebanyak +7.2 ± 13.0 mL pada fasa ES dan -19.8 ± 18.8 mL pada fasa ED. 

Prestasi ini adalah setanding dengan nilai variabiliti antara pakar-pakar klinikal. Kelajuan 

pelaksanaan adalah lebih kurang 12 s bagi setiap kes. Kesimpulannya, saya memperkenal 

dan menguji dua algoritma yang membawa kepada segmentasi LV secara automatik 

untuk MRI jantung. Teknik-teknik ini telah disahkan dengan menggunakan pelbagai 

pangkalan data MRI jantung dalaman dan awam. Prestasi keseluruhannya yang tepat dan 

cepat  mencadangkan utiliti klinikal secara praktikal. 

Kata kunci: MRI jantung, penyetempatan LV, segmentasi LV, segmentasi automatik, 

regresi rangkaian neural 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Motivation 

Cardiovascular diseases (CVDs) are the most common cause of death globally; it is 

estimated that 31% of all global deaths in 2012 were due to CVDs (Low, Lee, & Samy, 

2014; Mendis, 2014). These include congenital heart disease, where birth defects affect 

the normal operation of the heart; coronary heart disease, where the blood supply to the 

heart muscle is occluded; and strokes, where the blood supply to the brain is occluded.  

Cardiac magnetic resonance imaging (MRI) is currently considered the gold standard for 

the assessment of various aspects of CVDs (Abdul Aziz et al., 2013). Quantification of 

key parameters from cardiac MRI is now recommended as a standard diagnostic 

procedure by cardiovascular expert groups (Schulz-Menger et al., 2013). Of the 

standardized protocols for CVD imaging, 10 out of 13 require the quantification of LV 

function (Kramer, Barkhausen, Flamm, Kim, & Nagel, 2013). These quantifications 

typically require the delineation of LV myocardial borders, enabling clinically diagnostic 

measurements such as LV blood volume and cardiac ejection fraction. Clinically, most 

physicians restrict delineation to only the end-diastole (ED) and end-systole (ES) cardiac 

phases, which can require up to 20 minutes to delineate manually (Petitjean & Dacher, 

2011). Complete delineation across the entire cardiac cycle would be desirable, but 

modern 20+ cardiac acquisition framerates make this far too tedious and time consuming 

to be performed manually. 

Computer aided semi- and fully-automated techniques for the segmentation of LV 

myocardium are valuable, both for the reduction in human labour as well as the reduction 

of inter-observer variability. There have been numerous published approaches tackling 

this task, ranging from semi-automated single phase, single slice segmentation of the LV 

inner wall (endocardium), to fully-automated full cycle, base-to-apex segmentation of the 
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full LV myocardium (Petitjean & Dacher, 2011; Tavakoli & Amini, 2013). Due to the far 

more challenging nature of a fully automated approach (i.e. no human interaction), there 

are correspondingly fewer published works addressing this task. At time of writing, the 

LV quantification tools used in this author’s healthcare institution for routine clinical 

practice, still require significant manual input for their operation.  

1.2 Project scope & objectives 

The ultimate goal of this thesis is the development and implementation of a fully 

automated algorithm for the segmentation of LV myocardium in cardiac magnetic 

resonance cine images. For this thesis, computerised image segmentation techniques are 

broadly classify into two families: (1) expert knowledge-based techniques, which are 

defined here as techniques largely derived from human hand-crafted features or 

algorithms, and (2) data-driven techniques, which are defined as techniques based on 

elementary operations with minimal human enforced explicit constraints or assumptions, 

where the performance is almost completely driven by the provided training data. 

Expert knowledge-based techniques was first utilized to develop a method for fully 

automatic localization of the LV blood pool, as presented in Chapter 3. LV localization 

is a sub-problem enabling subsequent automatic full myocardial segmentation, as 

indicated in numerous published LV segmentation approaches (Hu, Liu, Gao, & Huang, 

2013; Nambakhsh et al., 2013; Yin Wu et al., 2015) which require the initial manual 

localization of the LV blood pool. The system was developed utilizing a chain of image 

processing functions, each targeting a logical subset of the problem employing techniques 

such as motion analysis and shape morphology. There are a limited number of published 

approaches (Jolly, 2008; X. Lin, Cowan, & Young, 2006) focused on LV localization. It 

was shown that this technique can provide more reliable performance in the presence of 

motion and scanning artifacts. 
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Next, data-driven techniques were utilized to develop a method for fully automatic 

segmentation of the LV myocardium from base-to-tip, across all cardiac phases, 

presented in Chapter 4 and Chapter 5. The specific technique used was convolutional 

neural network regression. This was approached in two stages, first by developing a semi-

automated LV segmentation system targeting solely short axis (SA) images (Chapter 4). 

This required manual input to identify LV slice coverage. The algorithm was then 

extended to handle long axis (LA) images (Chapter 5), making the segmentation system 

fully automatic. Existing published approaches (Baumgartner, Koch, Pollefeys, & 

Konukoglu, 2018; Tran, 2016) for LV segmentation based on neural networks all utilize 

the specific method of per-pixel classification. A different approach was adopted, by 

parameterising the location of the LV as a distance from a central point using neural 

network regression. This provided an improvement in performance compared to existing 

methods. 

In summary, the objectives of this project are two-fold: 

(1) To develop and validate a fully automated algorithm for localization of the LV 

blood pool. 

(2) To develop and validate a fully automated algorithm for segmentation of the LV 

myocardium from base to apex, for all cardiac phases. 

1.3 Thesis organization 

Chapter 2 provides background on human heart anatomy, as well as on standard clinical 

cardiac MR acquisition protocols and standard clinical LV quantification practices. 

Expert knowledge-based LV segmentation techniques are briefly reviewed and contrasted 

to LV segmentation techniques utilizing the neural network data-driven approach. 

Univ
ers

ity
 of

 M
ala

ya



 

  4 

Chapter 3 (Tan, Liew, et al., 2018) presents an expert knowledge-based method for fully 

automatic localization of the LV blood pool, a sub-problem for enabling subsequent 

automatic segmentation. Chapter 4 (Tan, Liew, Lim, & McLaughlin, 2017) presents a 

neural network regression-based method for semi-automatic base-to-apex segmentation 

of the LV myocardium in SA images across all cardiac phases. Chapter 5 (Tan, 

McLaughlin, Lim, Abdul Aziz, & Liew, 2018) builds on the neural network regression 

technique, extending it to LA images and making the LV segmentation algorithm fully 

automatic. Chapter 6 (Yong, Tan, McLaughlin, Chee, & Liew, 2017) describes the 

extension of the neural network regression technique to a separate clinical task – 

automatic segmentation of vessel lumen wall in optical coherence tomography (OCT). 

This extension demonstrates the generalizability of the underlying technique. 

Finally, Chapter 7 concludes this thesis, and provides some suggestions on future work. 

1.4 Research contribution 

The chapters in this thesis are primarily derived from four published full-length journal 

articles: three first-authored, and one co-authored. The specific contributions of this 

author to each journal article (and by extension, the respective thesis chapters), are stated 

below. 

Chapter 3: Tan, L. K., Liew, Y. M., Lim, E., Abdul Aziz, Y. F., Chee, K. H., & McLaughlin, R. 

A. (2018). Automatic localization of the left ventricular blood pool centroid in short axis cardiac 

cine MR images. Medical & Biological Engineering & Computing, (in press). 

(doi:10.1007/s11517-017-1750-7) 

TLK (this author) was the principal author of this article. TLK collected and 

prepared the imaging data, devised and implemented the image processing 
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code, conducted the experiments, led the data analysis, and led the writing of 

the manuscript, which was edited and reviewed by all co-authors. 

Chapter 4: Tan, L. K., Liew, Y. M., Lim, E., & McLaughlin, R. A. (2017). Convolutional neural 

network regression for short-axis left ventricle segmentation in cardiac cine MR sequences. 

Medical Image Analysis, 39, 78–86. 

TLK was the principal author of this article. TLK collected and prepared the 

imaging data, devised and implemented the neural network architecture, 

conducted the experiments, led the data analysis, and led the writing of the 

manuscript, which was edited and reviewed by all co-authors. 

Chapter 5: Tan, L. K., McLaughlin, R. A., Lim, E., Abdul Aziz, Y. F., & Liew, Y. M. (2018). 

Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network 

regression. Journal of Magnetic Resonance Imaging, (in press). (doi:10.1002/jmri.25932) 

TLK was the principal author of this article. TLK collected and prepared the 

imaging data, devised and implemented the neural network architecture, 

conducted the experiments, led the data analysis, and led the writing of the 

manuscript, which was edited and reviewed by all co-authors. 

Chapter 6: Yong, Y. L., Tan, L. K., McLaughlin, R. A., Chee, K. H., & Liew, Y. M. (2017). 

Linear-regression convolutional neural network for fully automated coronary lumen segmentation 

in intravascular optical coherence tomography. Journal of Biomedical Optics, 22(12), 126005. 

YYL and LYM were the principal authors of this article. YYL and LYM 

collected and prepared the imaging data, led the data analysis, and led the 

writing of the manuscript, which was edited and reviewed by all co-authors. 

TLK (this author) devised and implemented the neural network architecture. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Preface 

This chapter provides background to the problem domain of left ventricular (LV) 

segmentation, and reviews the published literature on automated methods tackling this 

task. Section 2.2 provides a brief background on human heart anatomy; Section 2.3 

introduces typical cardiac magnetic resonance (MR) acquisition protocols and clinical 

quantification practices; Section 2.4 provides a brief review of published LV automated 

segmentation approaches utilizing expert knowledge techniques; Finally, Section 2.5 

introduces the specific data-driven technique of convolutional neural networks, also 

known as deep learning. 

2.2 Human heart anatomy 

The human heart is an approximately fist-sized muscular organ in the body located 

between the lungs, and is responsible for generating the primary pumping force for the 

circulation of blood throughout the body. There are two main loops of blood circulation 

in the body: the first, smaller loop (pulmonary circulation) sends deoxygenated blood to 

the lungs where it is oxygenated, and the second, larger loop (systemic circulation) sends 

the oxygenated blood throughout the rest of the body. The heart consists of four chambers, 

divided into left/right and upper/lower; the upper/lower chambers are known as the atrium 

and ventricle, respectively. In brief, the atrium chambers receive blood supply from the 

lungs (left atrium) or from the body (right atrium) through the veins, and the ventricles 

send blood supply out to the lungs (right ventricle) or to the body (left ventricle) through 

the arteries. The right atrium and ventricle serve the pulmonary circulation loop (from the 

rest of the body to the lungs), while the left atrium and ventricle serve the systemic 

circulation loop (from the lungs to the rest of the body) (Figure 2.1). In both cases, the 
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pumping force is primarily generated by the myocardium (heart muscle) surrounding the 

ventricles (Walsh, Fang, Fuster, & O’Rourke, 2012a). 

 

Figure 2.1: Illustration of the human heart, focusing on the systemic circulation 
loop. Blood flow follows the sequence of pulmonary veins (from the lungs) → left 

atrium → mitral valve → left ventricle → aortic valve → aorta (to rest of the 
body). Adapted from (“Heart,” 2017)  

The systemic circulation loop supplies the entire body with oxygenated blood excepting 

the lungs, thus the left heart needs to generate a substantially larger pumping force 

compared to the right heart. Anatomically this manifests as the substantially thicker 

myocardium wall of the LV compared to its right counterpart. This relative importance is 

also reflected in clinical practice, whereby most heart disease imaging protocols are 

founded on or begin with a structural and functional assessment of the LV (Kramer et al., 

2013). 

In a complete cardiac cycle, the heart periodically contracts and relaxes the myocardium 

surrounding the atrium and ventricles. This contraction is the primary force generator for 
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the blood pump, and a typical young adult heart might beat at 70 cycles per minute (Hall, 

2015). Focusing on the LV, the time period where the myocardium contracts is known as 

systole – this is where ventricular pressure peaks to expel the blood through the aorta to 

supply the rest of the body. The time where the myocardium then relaxes is known as 

diastole – this is where ventricular pressure drops to a minimum, allowing the ventricle 

to be refilled with blood for the next cycle. End-diastole (ED) and end-systole (ES) are 

two specific time points often referenced in LV quantification. The temporal state of the 

cardiac cycle is controlled by the electrical activity within the myocardium, however in 

practice, for imaging use, ED and ES are usually defined as the time points where the LV 

has maximum and minimum blood volumes, respectively (Schulz-Menger et al., 2013). 

This is also taken to correspond to the point of maximum dilation and maximum 

contraction of the LV, respectively. 

The orientation of the heart is typically defined by the wall (septum) that divides the left 

and right sides; this approximately defines the longitudinal or long-axis (LA) plane 

(Figure 2.2). Viewed in this light, the LV coverage can be localized by two landmarks: 

the tip where the heart tapers off (apex), and the approximate midpoint of the mitral valve 

(base). Orthogonal to the LA plane is the transverse or short-axis (SA) plane; this defines 

a plane roughly parallel with the orientation of the mitral valve. Finally, the four-chamber 

orientation defines a plane that cuts through all four chambers of the heart, and is 

approximately orthogonal to the  LA (along the septum wall) and SA planes (Walsh et al., 

2012a). It should be noted that these three planes (SA, LA, four-chamber) do not 

correspond to the standard anatomic planes of the body (coronal, sagittal, transverse); the 

heart is oriented obliquely within the chest. 
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Figure 2.2: Illustration of the orientation and landmarks of the human heart. The 
LA plane is approximately defined by the septum wall dividing the left and right 
sides. The SA plane defines a plane approximately parallel with the orientation of 
the mitral valve. The LV coverage is commonly localized through the apical (apex) 

and basal (base) points. Adapted from (“Heart,” 2017)  

2.3 Magnetic resonance acquisition and quantification of the LV 

Magnetic resonance is an imaging modality that utilizes magnetic fields and 

radiofrequency pulses to measure and image tissue properties. Compared to computed 

tomography (CT) scans, MR does not use ionizing radiation, offers better soft tissue 

contrast, and is able to natively image at arbitrary oblique planes. Compared to ultrasound 

scans, MR has a larger field-of-view, significantly better spatial resolution and image 

quality, and has little to no dependence on operator skill. For these and related reasons, 

MR imaging is currently considered the gold standard for diagnostic cardiac imaging 

(Walsh, Fang, Fuster, & O’Rourke, 2012b). 

MR is a relatively complex imaging modality. By adjusting key acquisition parameters, 

different acquisition protocols or pulse sequences can be designed, which measure 
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different tissue characteristics (Bitar et al., 2006). These pulse sequences are usually 

categorized based on their principle method of triggering the measured return signal, the 

most common being the spin echo and gradient echo sequence families. Steady-state free 

precession (SSFP) is at present the most common clinical pulse sequence used for 

standard 2D+time multi-slice cine cardiac MR acquisitions of the heart. It is a gradient 

echo technique, and provides strong contrast between the blood (high intensity) and 

myocardium (low intensity) (Figure 2.3). 

 

Figure 2.3: Sample SSFP acquisition of the LV in the SA plane. Good contrast is 
seen between the blood pool (high intensity) and myocardium (low intensity). 

Papillary muscles can also been seen; these connect the mitral valve cusps to the 
main body of the heart. 

Clinical SSFP acquisitions are still largely 2D with slice thickness around 8−10 mm, and 

3D volumes are acquired slice-by-slice. Clinical quantification is usually performed 

against images captured in the SA plane, as the contraction motion of the LV is best 

visualized there. Multi-slice SA acquisitions are performed for coverage of the LV from 
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apex tip to base (mid of mitral valve); typically this would encompass around 10 slice 

locations (Kramer et al., 2013). To capture the cardiac motion, electrocardiography gated 

acquisitions are used to image individual time points evenly sampled through a full 

cardiac cycle; typically this would encompass around 20 separate cardiac phases. Thus, a 

representative SA SSFP cine acquisition with 10 slice locations and 20 cardiac phases 

would result in 200 individual 2D images (Kramer et al., 2013). 

In-plane spatial resolution for clinical protocols commonly varies around 1−2 mm/pixel. 

Given typical clinical protocols utilizing 8−10 mm slice thickness, it can be seen that 

multi-slice SA volumes are significantly under-sampled along the long axis, and thus not 

useful for any form of multi-planar reconstruction. To address this, most clinical 

guidelines recommend additional supporting acquisitions at various useful LV-focused 

orientations. Typically these would include the 2-chamber vertical LA view, which cuts 

through the LV and left atrium through the centre of the mitral valve, the 4-chamber LA 

view, which cuts through all four chambers of the heart through the mitral and tricuspid 

valves, and less frequently the LV outflow tract view, which cuts through the LV and the 

centres of the mitral and aortic valves (Figure 2.4) (Kramer et al., 2013).  
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Figure 2.4: Common cardiac MR acquisition views for structural and functional 
assessment of the LV. (Red) Vertical LA 2-chamber view aligned through the apex 

and centre of the mitral valve. (Green) Multi-slice SA view, typically aligned 
perpendicular to the 2-channel view. (Purple) 4-chamber LA view aligned through 

all four chambers of the heart through the mitral and tricuspid valves. (Yellow) 
LV outflow tract view aligned through the LV and the centres of the mitral and 

aortic valves.  

Standard guidelines for clinical assessment call for the quantification of multiple 

parameters including LV ED and ES volumes, LV ejection fraction, LV stroke volume, 

cardiac output, and LV mass. These parameters are quantified via the delineation of the 

myocardium walls across the entire stack of SA multi-slice images (Schulz-Menger et al., 

2013). In the SA plane, the LV myocardium resembles a connected low intensity ring, 

defined by the endocardial (the inner wall neighbouring the LV blood pool) and 

epicardial contours (the outer wall neighbouring the RV and lungs). Certain clinical 

parameters only require delineation of the endocardial contours (e.g. LV ED and ES 

volumes and LV ejection fraction), whereas others require full myocardium delineation 

(e.g. LV mass). Papillary muscles are technically part of the myocardium, but it is a 
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common clinical practice to exclude them during quantification (Schulz-Menger et al., 

2013) (Figure 2.5). 

 

 

Figure 2.5: Sample delineation of the LV myocardium for quantification of clinical 
parameters. Red contour indicates endocardial wall, green contour indicates 
epicardial wall. Images from left-to-right, top-to-bottom, reflect selected slice 

positions in apex-to-base order.  

2.4 LV segmentation algorithms 

Given the importance of LV quantification, there has been significant research focused 

on automated segmentation of LV myocardium, particularly for MR cine images in the 

SA plane. This section focuses on published approaches utilizing expert knowledge 

segmentation techniques, which are defined here as techniques largely derived from 

human hand-crafted features or algorithms. A common characteristic of these techniques 

is a set of assumptions derived from human expert knowledge. In the next section 

(Section 2.5), an alternate neural network data-focused approach with no expert 

assumptions required will be discussed. 
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In this section, existing expert knowledge-based LV segmentation techniques are 

categorized into three general categories: (1) purely image- or pixel-driven methods such 

as intensity thresholding or distribution modelling utilizing blood pool to myocardium 

contrast; (2) methods incorporating statistical or geometric shape methods to model the 

LV such as truncated ellipsoids; and (3) anatomical atlas-based registration. Frangi, 

Niessen, & Viergever (2001), Petitjean & Dacher (2011), Tavakoli & Amini (2013), 

Zhuang (2013), as well as Peng et al. (2016) have provided comprehensive reviews of 

state-of-the-art techniques. 

2.4.1 Image- or pixel-driven methods 

Image- or pixel-driven methods encompass basic image processing techniques such as 

intensity thresholding or binning, as well as more complex texture classification methods 

or edge and regional energy techniques such as active contours (also known as snakes). 

A selection of representative papers are listed below. 

Nachtomy et al. (1998) utilized minimum error thresholding to categorize pixel intensities 

into three classes: lung, myocardium, and blood. The threshold was applied against a 

dynamically expanding region-of-interest centred on an initial seed point, utilizing the 

assumption that the image histogram would change from unimodal (blood only) to bi-

modal (blood and myocardium) to tri-modal (blood, myocardium, and lung) as the region-

of-interest expanded. The algorithm was semi-automatic – requiring manual localization 

of the LV centrepoint. It was evaluated against the data of 20 subjects. 

Lynch, Ghita, & Whelan (2006) used a modified k-means clustering algorithm to 

iteratively cluster and merge pixel intensities into connected regions. The LV blood pool 

was then identified via multiple morphological criteria including shape (circularity) and 

continuity between slices. This was then used to identify the similar intensity right 

ventricle (RV) blood pool, and to identify the myocardium (septum) separating the LV 
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and RV. Finally, the identified septum was extrapolated via a cubic spline fit to surround 

the LV blood pool, to represent the full myocardium. The algorithm was fully automatic, 

and it was evaluated against the data of 25 subjects. 

Üzümcü, van der Geest, Swingen, Reiber, & Lelieveldt (2006) used dynamic 

programming to optimize the myocardial contours in 2D+time volumes. Dynamic 

programming is a general optimization technique; in this instance it was used to solve for 

the optimal connected path given a cost function (image gradient) and constraints (spatial 

and temporal shifts between neighbours). The algorithm was semi-automatic – it required 

an initial manual contour to be performed. This was used to generate 32 equally spaced 

2D+time region of interests sampled uniformly around the contour, which was then used 

as the search space for the optimal connected path. The algorithm was evaluated against 

the data of 20 subjects. 

Jolly (2006) developed a flexible system for LV segmentation in both MR and CT images, 

for both single frame and multi-frame (propagation across time) applications. The system 

started with LV localization: an LV cross sectional intensity profile was generated from 

training data and a Hough-based voting procedure was used to localize its position in 

evaluated images. For LV segmentation, a Gaussian mixture model was used to 

categorize pixel intensities to air, muscle, and blood. This rough segmentation was then 

used as the starting point for an active contour fit against the image gradient including 

temporal propagation of the curve. The system was fully automatic, and it was evaluated 

against the data of 29 subjects. 

2.4.2 Statistical geometric models 

In comparison to the image- or pixel-driven methods described in Section 2.4.1, the 

methods described in this section incorporate stronger assumptions about shape. In the 

case of LV segmentation, this might be reflected in the circular or elliptical shape of the 
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LV in 2D SA images, or the truncated cone shape of the LV in LA or 3D SA volumes. 

The representative papers listed here include techniques based on geometric parameters 

as well as learned statistical objects derived from training data. 

Pluempitiwiriyawej, Moura, Wu, & Ho (2005) utilized a modified active contour-based 

technique, incorporating strong shape priors in the energy function in addition to the 

standard edge and smoothness terms. Their function operated on 2D SA images, and the 

shape prior was modelled as a five-parameter ellipse function. The algorithm was semi-

automatic – requiring an initial circle bounding the LV to be defined. It was evaluated 

against the data of 48 subjects, though only at the mid-level LV. 

O’Brien, Ghita, & Whelan, (2011) collated a training set of SA images with a 32 point 

contour defined for each endo- and epicardial contour. After rigid registration of the 

training set, principal component analysis was applied to quantize the training shape 

parameters to 98% variation coverage. This derived statistical parametric shape was then 

incorporated to an active contour model for the LV segmentation. The authors also 

utilized endo-epicardium dependencies by building a statistical model deriving an 

additional weighted function for the epicardium size, given a prior evaluated endocardial 

contour. The algorithm was semi-automatic – requiring manual localization of the LV 

centrepoint. It was evaluated against the data of 33 subjects. 

Assen et al. (2006) built a training set of SA and LA images, including LA planes captured 

at regularly spaced radial angles. From this a point cloud of LV landmarks was defined, 

and principal component analysis was applied to quantize the shape parameters. When 

matching the statistical shape to the target volume, the authors transformed the image 

intensity values to categorical tissue classes via fuzzy C-means clustering. This allowed 

the algorithm to be generalized to multimodality use, the only assumption being that air, 

myocardium, and blood pool have successively higher intensity values. The algorithm 
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was semi-automatic – requiring manual delineation at the basal and apex slices. It was 

evaluated against the data of 20 subjects. 

Zhang, Wahle, Johnson, Scholz, & Sonka (2010) first built a 4D template model of the 

LV and RV, then utilized a combination of 4D and 3D active shape and active appearance 

models to perform segmentation. The 4D template was generated as sixteen 3D point 

clouds in Euclidean space. For the appearance model, a reduced resolution texture was 

sampled from the template surfaces of the LV and RV. The algorithm was semi-automatic, 

segmentation was performed in two steps: a manually assisted first pass fit the 4D 

template model to the 4D volume data. The second pass refined the segmentation based 

on 3D fitting at each individual phase. The algorithm was evaluated against the data of 

25 subjects. 

2.4.3 Anatomical atlas-based registration 

The methods described in Section 2.4.2 are often based on a sparse point cloud template 

of the LV; the derived shape or atlas coverage is usually restricted to the myocardium 

surface. In contrast, anatomical atlas-based registration is usually based on a dense 3D or 

4D voxel volume derived from training data, which includes surrounding non-

myocardium tissue like blood and lung. Segmentation via anatomical atlas-based 

registration is thus comparatively more data-driven. Nevertheless, strong human-enforced 

assumptions and constraints are present, e.g. atlas creation is usually performed via an 

arithmetic mean function across co-registered training data. The registration algorithm 

also carries strong assumptions and constraints via the choice of transformation used. E.g., 

rigid (translation + rotation + scale), affine (rigid + shear), or more complicated geometric 

transforms such as meshed warp fields (Vercauteren, Pennec, Perchant, & Ayache, 2009).  

Zhuang et al. (2008) utilized a high resolution single individual volume for their 

anatomical atlas. They initialized the registration with separate masked similarity 
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transforms for the LV and RV, respectively, resolving overlap conflicts via a distance 

weighted interpolation. Following that, a non-rigid fluid registration was performed to 

determine the final transformation. This was a gridded diffeomorphic deformation field 

based off a viscous fluid model, i.e. the transformation was invertible. The algorithm was 

fully automatic, and it was evaluated against the data of eight subjects. 

Zhuang, Rhode, Razavi, Hawkes, & Ourselin (2010) was an evolution on the work of 

Zhuang et al. (2008). The authors built an anatomic atlas from the combined, averaged 

scans of ten healthy volunteers. The registration was initialized with separate masked 

affine transforms for all four chambers of the heart plus the major veins and arteries, 

resolving overlap conflicts via a distance weighted interpolation. Following that, a non-

rigid adaptive control point free-form deformation registration was performed to 

determine the final transformation. This was a gridded diffeomorphic deformation field, 

designed to identify key control points around which the search space was focused, for 

the reduction of computation time. The algorithm was fully automatic, and it was 

evaluated against the data of 37 subjects. 

Rikxoort et al. (2010) acquired 15 cardiac scans from a lung cancer screening trial, for 

atlas construction. However, instead of combining them into a single composite volume, 

the authors maintained them as separate volumes in a multi-atlas reference library. During 

segmentation, a fast first pass was performed, utilizing affine registration to match the 

target volume to each individual volume in the multi-atlas reference. The difference 

image was then calculated for each registration and used to determine which individual 

atlas best matched the target, and subsequently a full non-rigid B-spline registration was 

performed for the final registration and segmentation. The algorithm was fully automatic, 

and it was evaluated against the data of 29 subjects, though for cardiac CT rather than 

MR. 
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Table 2.1: Expert knowledge-based approaches for LV segmentation 

Publication Description Manual input No. of 
subjects 

Image- or pixel-driven methods 
Nachtomy et al. 
(1998) 

Pixel intensity categorization 
via minimum error 
thresholding 

LV centroid 20 

Lynch et al. (2006) Pixel intensity categorization 
via k-means clustering  

None 25 

Üzümcü et al. (2006) Contour modelled as optimal 
connected path using dynamic 
programming 

Initial contour 20 

Jolly (2006) Pixel intensity categorization 
via Gaussian mixture model 

None 29 

Lu et al. (2013) Shape metric + intensity 
thresholding + region-growing 

Select mid-
slice 

133 

Eslami et al. (2013) Random walks guided by 
database of subjects 

Seed LV and 
background 

104 

Albà (2014) Graph cut with shape and 
interslice smoothness 
constraints 

None 35 

Statistical geometric models 
Pluempitiwiriyawej et 
al. (2005) 

2D active contour using five-
parameter ellipse function 

Initial contour 48 

Assen et al. (2006) Principal component analysis 
on LV point cloud + fuzzy C-
means clustering 

Initial contour 20 

Zhang et al. (2010) 3D+4D active shape and 
appearance model 

Adjust first 
pass 

25 

O’Brien et al. (2011) Principal component analysis 
+ active contour model 

LV centroid 33 

Wu et al. (2013) Circular active contour + 
modified edge gradient vector 
convolution 

None 171 

Woo et al. (2013) Level sets with coupled endo- 
& epicardium shape 
constraints 

LV centroid 
and radius 

15 

Queirós et al. (2014) B-spline explicit active surface 
+ optical flow motion tracking 

Select apex & 
base 

45 

Anatomical atlas-based registration 
Zhuang et al. (2008) Masked rigid + non-rigid 

registration 
None 8 

Zhuang et al. (2010) Individual chamber masks + 
non-rigid registration 

None 37 

Rikxoort et al. (2010) (CT) Multi-atlas library + non-
rigid registration 

None 29 

Bai et al. (2015) Multi-atlas library + 
augmented feature vector 
including neighbouring 
appearance 

None 83 
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2.5 Neural networks and deep learning 

2.5.1 Introduction 

Artificial neural networks (ANNs) are a family of mathematical functions with numerous 

recent successes in tackling artificial intelligence problems, including image processing 

and recognition (LeCun, Bengio, & Hinton, 2015). Originating in the 1960s, ANNs 

showed early promise, but limitations in hardware computational power largely led to 

disappointing performance in complex tasks. ANNs experienced an extended period of 

low interest from the 1980s onwards, but have seen a strong resurgence in recent years, 

largely due to improvements in computing hardware and the availability of large 

quantities of training data (Goodfellow, Bengio, & Courville, 2016). 

The expert knowledge image processing techniques described in Section 2.4 are strongly 

dependent on hand-crafted features or algorithms. They tend to be compact in their 

representation; though a technique such as active contours may be complex in description, 

its execution is only dependent on a small number of tuned parameters. In contrast, ANNs 

are almost completely data-driven. The algorithms used in ANNs tend to be structured as 

a network of elementary operations, and the underlying training data and learning process 

provides the bulk of the network performance. Post-training, the “learned” parameters 

typically number in the millions. 

ANNs can be understood as a chain of linear operations interspersed with various 

nonlinear activation functions. Each group in the chain is more commonly known as a 

layer, which consists of a matrix of weights, W, and a vector of biases, b. For each 

individual layer the input vector is multiplied and summed against W and b, respectively. 

An element-wise nonlinear activation function (e.g. a hyperbolic tangent function) is then 

applied and the resulting output is used as the input to the subsequent layer and the general 
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series of operations is repeated in further layers. Each output element is a learned feature, 

excepting the final layer, whose output is expected to be target result of the training. 

Traditional ANNs are also known as fully connected networks (FCONs), and are typically 

used with unstructured vector input (Figure 2.6). For inputs with regular structure (e.g. a 

2D image), convolutional neural networks (CNNs) are a more suitable variant. Here, W 

and b are applied repeatedly in a sliding window fashion analogous to the standard 

convolution operation in signal processing (Figure 2.7). 

 

Figure 2.6: Simplified diagram depicting a two-layer fully connected neural 
network. The input, x, is a seven-element unstructured vector. It is multiplied and 

summed by the weight matrix W1 and bias vector b1, respectively, resulting in a 
five-element feature vector f1. f1 is used as the input to the second layer, resulting 

in the final six-element output vector, y. The sizes of the weight matrixes and biases 
vectors are design decisions. The non-linear activation functions are not shown, 

but would typically be applied as the final step prior to each layers’ output. Shaded 
boxes indicate the network parameters, i.e. these would be the variables being 

optimized during network training. Univ
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Figure 2.7: Simplified diagram depicting a two-layer convolutional neural 
network. The input, X, is a 6×6×1 gridded matrix. It is multiplied and summed 
(convolved) by the weight matrix W1 and bias vector b1, respectively via sliding 
window, resulting in a 6×6×3 feature matrix F1. F1 is used as the input to the 

second layer, resulting in the final 6×6×2 output matrix, Y. The sizes of the weight 
matrixes and biases vectors are design decisions. The non-linear activation 

functions are not shown, but would typically be applied as the final step prior to 
each layers’ output. Shaded boxes indicate the network parameters, i.e. these 

would be the variables being optimized during network training. Dotted boxes 
demonstrate how an individual output element is mapped from the corresponding 

input convolution window. 

The W and b values of all layers are collectively referred to as the network parameters. 

Starting from a random initialization, the parameters are iteratively updated by feeding 

random batches of training data through the network, calculating a loss function against 

the desired output (e.g. mean squared error), then back-propagating the result via an 

optimization function such as gradient descent. This is repeated until convergence. In 
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recent years various performance-enhancing tweaks have been introduced to the general 

ANN architecture. Representative examples include rectified linear units (ReLUs) as 

activation functions (Glorot, Bordes, & Bengio, 2011), max-pooling feature matrixes for 

local translational invariance and reduced computational load (Krizhevsky, Sutskever, & 

Hinton, 2012), and random parameter dropout to improve network generalization 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). In general there are 

few restrictions on allowed operations in the network architecture, save that the final 

computational graph be differentiable so that the optimization function may be applied. 

As previously mentioned, ANNs have a history reaching back to the 1960s. During the 

resurgence of ANNs in the past few years, a new term known as Deep Learning was 

introduced to differentiate current ANN architectures from previous generations (Bengio, 

2009; LeCun et al., 2015). Largely a rebranding exercise, there is no specific definition 

that describes a particular deep learning architecture. In general, the term implies ANN 

architectures which are tens to hundreds of layers deep, as opposed to the shallow 

architectures of previous generations; the implication being that these deeper levels of 

abstraction would allow for fundamentally higher levels of automatic learned data 

representation. 

2.5.2 Neural networks for image segmentation 

Most observers date the modern resurgence of ANNs to the year 2012, where a CNN-

based approach convincingly won the public ImageNet Large-Scale Visual Recognition 

Challenge (Krizhevsky et al., 2012; LeCun et al., 2015). ImageNet is an open image 

processing competition that is run annually since 2010. The primary challenge involves 

whole image classification of over one million images into 1000 possible classes (e.g. 

tiger, hamster, restaurant, water bottle, etc.) (Russakovsky et al., 2014). Most CNN 

approaches to whole image classification involve designing a network architecture that 
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accepts a consistently sized image as input, then through a series of pooling operations 

and FCON layers, would condense the output to a 1000 length vector of probabilities 

representing the 1000 unique classes. 

Given this existing design of neural network classification systems, the natural adaption 

to perform image segmentation is to switch from whole image classification to per-pixel 

classification. I.e., the output would be a 3D matrix where the first two dimensions would 

match the dimensions of the input image, and the third dimension would be the vector of 

class probabilities (Figure 2.8). This is also known as semantic image segmentation. A 

common design implementing this is the so-called encoder-decoder network or U-net 

architecture, where intermediate layers alternately reduce, then expand the feature matrix 

(Long, Shelhamer, & Darrell, 2015; Ronneberger, Fischer, & Brox, 2015), e.g., given a 

128×128 input image, the feature matrixes in intermediate layers might halve in steps till 

32×32 (encoding stage), then double in steps till 128×128 at the final output layer 

(decoding stage). 

  

Figure 2.8: Sample images demonstrating per-pixel image segmentation. A: source 
input image. B: coloured overlays indicate classified objects of interest. At least 
three different classes are shown, including person (magenta), dog (green), and 

bicycle (beige). Data sourced from T.-Y. Lin et al. (2014). 

The per-pixel classification method is an extremely flexible design for image 

segmentation, as there are no inherent restrictions to placement, shape, or connectivity, 
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save for any constraints learned automatically by the network. Indeed, even individual 

pixel class exclusivity is not a requirement, allowing for overlapping segmentation 

boundaries. This inherent flexibility is a boon for general image segmentation, but is 

excessive for segmentation tasks in specialized domains such as medical organ 

segmentation, where the input images have significantly less variance. An alternate image 

segmentation method utilizing CNN regression, rather than per-pixel classification, is 

therefore explored and introduced in Chapter 4. 

2.5.3 Neural networks for LV image segmentation 

Given the extended period of low interest in ANNs as mentioned in Section 2.5.1, the 

majority of published LV segmentation papers utilizing ANNs are found beginning of 

2016 or so. This brief literature review focuses on approaches targeting MR cardiac 

imaging. 

Stalidis, Maglaveras, Efstratiadis, Dimitriadis, & Pappas  (2002) is a rare early approach 

utilizing a three-layer non-convolutional (i.e. fully-connected) neural network variant for 

per-pixel LV segmentation from SA scans. Their approach was semi-automated, 

requiring initialization via manual localization of the LV centroid, as well as apical and 

basal planes. The network input consisted of only three values: the individual pixel 

intensity, angular position around the LV centrepoint, and SA slice position along the 

long axis. Unfortunately, the system appeared to have been evaluated against only three 

subject data, with no indication whether a training-testing data partitioning scheme was 

used. 

Right at the cusp of the ANN resurgence, Ngo & Carneiro (2013) combined level set 

methods with a two-layer fully-connected ANN to perform LV endocardial wall 

segmentation. Their approach required manual initialization of the LV bounding box and 

centroid. The ANN was used as a first pass to produce a 20×20 segmentation matrix; this 
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was then used to compute a distance function for the subsequent level set algorithm to 

produce the final segmentation image. The system was tested against 45 public datasets 

from the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2009 

challenge, also known as the Sunnybrook database (Radau et al., 2009). Interestingly, the 

authors labelled their ANN design as a deep belief and deep learning architecture despite 

having only two layers, demonstrating the fuzziness of the term at that time. 

More recently, Avendi, Kheradvar, & Jafarkhani (2016) combined CNNs and a 

deformable model to perform LV endocardial wall segmentation, though only in the ED 

and ES phases. Three separate networks were trained; consisting of a two-layer CNN for 

the initial localization of heart region-of-interest, and two separate three-layer fully-

connected networks for LV segmentation at basal and mid-ventricular slices, and for 

apical slices, respectively. The system was tested against the 45-subject Sunnybrook 

public database. 

To better model inter-phase spatial dependencies, Poudel, Lamata, & Montana (2016) 

utilized a 14-layer CNN encoder-decoder architecture and inserted a recurrent layer at the 

middle of the encoder-decoder graph, i.e. where the feature matrix was most dense. A 

recurrent layer is an ANN variant that allows for processing loops, where related data (in 

this case pixels from neighbouring cardiac phases) are fed into subsequent cycles of the 

processing loop, allowing data from previous phases to influence evaluation of the current 

phase. The system only performed LV endocardial wall segmentation, and was tested 

against the 45-subject Sunnybrook public database as well as a private 234-subject 

database. 

A 15-layer CNN encoder-decoder architecture was used by Tran (2016) to perform 

complete LV and RV segmentation, including endocardial and epicardial walls. The 

system was tested against multiple public databases, including the 45-subject Sunnybrook 
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database, as well as the Statistical Atlases and Computational Modelling of the Heart 

(STACOM) 2011 Left Ventricle Segmentation challenge (LVSC), a public database 

consisting of 200 subjects. 

All the ANN techniques documented above utilize fully supervised training. i.e., all 

images used for training were paired with gold standard target label maps for calculation 

of the loss function. In contrast, Bai et al. (2017) tested a two-step semi-supervised 

method of training: after an initial period of fully supervised training, new images with 

no gold standard label maps were introduced into the mix. The partially trained network 

was used to generate estimated label maps, which were then refined via a conditional 

random field. The refined label maps were used to train the network, and this was repeated 

until training plateaued. The authors showed a small improvement in the performance of 

semi-supervised training compared to the standard fully supervised training. The system 

was tested against a private 340 subject database (100 fully labelled, 240 unlabelled). 

Most recently, Baumgartner et al. (2018) investigated four different CNN architectures 

for complete LV and RV segmentation, including endocardial and epicardial walls. The 

four tested designs were variants on the basic CNN encoder-decoder architecture, with a 

notable exception being a variant that used multi-slice (i.e. 3D) images as input. 

Interestingly, the authors showed the conventional 2D networks having better 

performance overall, possibly due to limitations of clinical LV cine imaging such as low 

inter-slice spatial resolution and the presence of inter-slice shift. The system was tested 

against the Automated Cardiac Diagnosis Challenge 2017, a public database consisting 

of 150 subjects for training. 

All the ANN papers documented in this review perform LV segmentation through per-

pixel classification. An alternate approach utilizing CNN regression will be discussed in 

Chapter 4. 
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Table 2.2: Neural network and deep learning approaches for LV segmentation 

Publication Description Manual input No. of 
subjects 

Stalidis et al. 
(2002) 

ANN + image features LV centroid + select 
apex and base slices 

3 

Ngo et al. (2013) ANN + level set LV centroid and 
ROI 

45 

Avendi et al. 
(2016) 

Dual CNN + deformable 
model 

Select apex slices 45 

Poudel et al. 
(2016) 

U-net variant with recurrent 
design, 2D+time input 

None 279 

Tran (2016) U-net variant, 2D LV and 
RV 

None 245 

Bai et al. (2017) Semi-supervised training via 
conditional random field 

None 340 

Baumgartner et 
al. (2018) 

U-net variant, both 2D and 
3D input 

None 150 

Zheng et al. 
(2018) 

U-net variant, 3D input 
(contour propagation)  

None 3980 

 

 

2.6 Chapter Summary 

2.6.1 Review summary 

Clinically, the LV is the most important chamber of the heart, due to its role in supplying 

oxygenated blood to the majority of the body. The two primary orientations of the heart 

are the short- and long-axis, defined by the septum wall. In addition, the LV is typically 

localized through its apex and base landmarks, being the tip of the heart and the mid of 

the mitral valve, respectively. Multi-slice cine MRI is used to image the LV; standard 

acquisition protocols include multiple views or acquisition planes, namely the short-axis, 

2-chamber, 4-chamber, and LV outflow tract views. Clinical practice requires the 

delineation of LV endo- and epicardial contours for quantification of clinically useful 

diagnostic parameters such as blood volumes and ejection fraction. Automated 

localization and segmentation techniques are desirable to allow fast and accurate 

diagnosis of heart diseases.  
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In this chapter, two general approaches for LV segmentation from multi-slice cine MRI 

were reviewed: expert knowledge-based techniques and data-driven techniques. The 

defining differences between them are strong human-introduced assumptions in the 

former, and weak to no human-introduced assumptions in the latter. For expert 

knowledge-based techniques, existing approaches were further categorized into three sub-

groups: (1) purely image- or pixel-driven methods; (2) methods incorporating statistical 

or geometric shape methods; and (3) anatomical atlas-based registration. For data-driven 

techniques, the specific techniques of ANNs and CNNs were focused on.  

2.6.2 Research gaps 

Due to specific characteristics of MR imaging (namely phase wrap-around), cardiac MRI 

is usually acquired at a field-of-view that significantly exceeds the size of the heart. It is 

not uncommon for the heart to only occupy 10% of the acquired image matrix size. This 

large field-of-view is problematic for many algorithms, as it includes non-cardiac objects 

that might have a detrimental effect on performance. At a minimum, it increases 

computational time, especially for algorithms which utilize aspects of global exhaustive 

search such as registration based methods (Rikxoort et al., 2010). As such, many 

algorithms require human-assisted LV localization as a first step, e.g. placing a seed point 

in the centre of the LV blood pool, or defining a crop window. Despite this need, there 

are few published algorithms for automated LV localization; this is likely due to the 

research community deeming the problem not important enough to merit its own stand-

alone solution. In this light, a fully automatic expert-knowledge based approach for LV 

blood pool localization was introduced and evaluated in Chapter 3. This approach tackles 

LV blood pool localization as a sub-problem for enabling subsequent automatic LV 

segmentation. 
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In typical short-axis cine MR images, there is usually strong contrast between the blood 

pool within the LV and the endocardial wall. However, differentiating the epicardial wall 

from surrounding structures is more difficult, particularly against low-signal lung tissue 

(Figure 2.3). Delineation is most straightforward at the mid-LV level, where the LV is 

relatively large and strongly circular. Significant partial volume effects arise in apical 

slices where the LV tapers off, whereas in basal slices the LV branches off to the 

ascending aorta and left atrium, resulting in ambiguous boundaries. Delineation is also 

easiest for the ED and ES phases, when the heart is relatively static and the myocardial 

wall is well defined. Other phases during contraction exhibit significant motion blurring. 

Because of these difficulties, most published algorithms only solve for a subset of LV 

segmentation: endocardial wall only, mid-LV planes only, or ED and ES phases only. In 

addition, all current published LV segmentation algorithms utilizing ANNs and CNNs 

carry out the segmentation via per-pixel classification, a highly flexible technique suited 

to segmentation of generic imagery. It is hypothesized that the specialized domain of LV 

segmentation may benefit from a more restricted model.  An alternate method utilizing 

CNN regression is therefore introduced and developed for full segmentation of LV 

myocardium from base-to-apex over all cardiac phases. The details of this method 

including validation against public challenge data sets are described in more detail in 

Chapter 4 and Chapter 5.   
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CHAPTER 3: AUTOMATIC LOCALIZATION OF THE LEFT VENTRICULAR 

BLOOD POOL CENTROID IN SHORT AXIS CARDIAC CINE 

MR IMAGES 

3.1 Abstract 

This chapter presents and validates an expert knowledge-based algorithm for fully 

automatic localization of the left ventricular (LV) blood pool in short axis cardiac cine 

magnetic resonance (MR) images; this a sub-problem for enabling subsequent automatic 

LV segmentation. The algorithm was fully human designed in functionality and 

parameters; no direct machine learning techniques were used. 

The algorithm comprises four steps: (i) quantify motion to determine an initial region of 

interest surrounding the heart, (ii) identify potential 2D objects of interest using an 

intensity-based segmentation, (iii) assess contraction / expansion, circularity, and 

proximity to lung tissue to score all objects of interest in terms of their likelihood of 

constituting part of the LV, and (iv) aggregate the objects into connected groups and 

construct the final LV blood pool volume and centroid. This algorithm was tested against 

1140 datasets from the Kaggle Second Annual Data Science Bowl, as well as 45 datasets 

from the STACOM 2009 Cardiac MR Left Ventricle Segmentation Challenge. 

Correct LV localization was confirmed in 97.3% of the datasets. The mean absolute error 

between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12% to 22% 

of the average endocardial radius. The algorithm has been released as open source and is 

available online (https://github.com/tanlikuo/localizeLV). 

This chapter has been published as (Tan, Liew, et al., 2018); the published text is largely 

reproduced here excepting minor amendments for consistency and flow. 
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3.2 Introduction 

Cardiovascular diseases (CVDs) are the most common cause of death globally. It is 

estimated that 31% of all global deaths in 2012 were due to CVDs (Mendis, 2014). 

Cardiac MRI is considered the gold standard for assessment of various aspects of CVDs, 

particularly congenital heart diseases (Walsh et al., 2012b). Cardiovascular expert groups 

now recommend quantification as a standard assessment procedure (Schulz-Menger et al., 

2013). These quantifications typically include the full delineation of myocardial borders, 

which represent a significant time burden when performed manually. 

A significant amount of research has focused on automated delineation of the myocardial 

border, particularly for LV short axis cine images (Petitjean & Dacher, 2011). Such 

automated quantification usually involves multiple steps; a common initial step is 

localization of the heart within the large scan field of view (Kadir, Gao, Payne, Soraghan, 

& Berry, 2012; Petitjean & Dacher, 2011). Localization algorithms vary in their output 

result, ranging from a single 2D point representing the LV centroid (Pednekar, 

Muthupillai, Lenge, Kakadiaris, & Flamm, 2006), to approximate delineations of the 

blood pool or endocardial boundary (Jolly, 2008). For example, LV segmentation based 

on active contour techniques (Constantinides et al., 2009) or image grey level analysis 

(Jolly, Xue, Grady, & Guehring, 2009) require a gross initialization in the proximity of 

the LV endocardium or blood pool, typically via manual placement of a seed point in the 

LV cavity. Certain segmentation techniques do not directly require LV localization, for 

example atlas or geometric model registration-based techniques (Tavakoli & Amini, 

2013). However, these applications could still benefit from localization as it may reduce 

computation load (e.g. by cropping the initial volume) or by providing reasonable initial 

parameter estimates for the registration optimization. As the localization output is 

designed to be subsequently refined by further segmentation algorithms, robustness in 
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finding the general LV location is more important than precision of any approximate 

delineations. 

Pednekar et al. (2006) described two approaches to LV localization: a dual-contrast 

method utilizing a black-blood sequence to contrast the bright-blood images of the 

standard cine scan, and a geometric approach utilizing the intersection line of the vertical 

long axis and four chamber scout views. Both approaches output an LV centroid, but rely 

on secondary acquisitions, which may be clinically infeasible or not available (e.g. where 

limited series are exported for off-site analysis). Lin, Cowan, & Young (2006) utilized 

the first harmonic of a Fourier transform to mask out non-heart regions, followed by a 2D 

line profile based segmentation of the endocardium. However, such motion masking can 

fail in cases with strong non-cardiac motion (e.g. abdominal). Jolly (2008) expanded on 

Lin et al.’s approach, adding a shape-based scoring scheme that quantifies contraction, 

roundness, connectedness, and concavity. This performed well on a large sample of 253 

datasets, only failing in the presence of a strong aorta and motion artifacts. However, the 

technique uses direct Otsu thresholding of the blood pool intensity, which the author 

found to be unreliable in the presence of intensity artifacts (e.g. regions of high signal 

intensity caused by close proximity to the RF receiver coil). More recently, Zhong, Zhang, 

Zhao, Tan, & Wan (2014) utilized first and fifth harmonic images to produce edge maps, 

followed by an anisotropic weighted circular Hough transform to calculate LV centroids. 

However, this approach was only tested on 10 healthy subjects. While this chapter was in 

press, Albà et al. (2018) published an approach using random forests regression validated 

against over 1200 datasets. Notably, none of the aforementioned approaches were 

benchmarked against publicly available datasets. 

Despite these published approaches, many current quantification tools (e.g. Medviso 

Segment v1.9 R3895, http://segment.heiberg.se) and papers on automatic LV 

quantification (Hu et al., 2013; Nambakhsh et al., 2013; Yin Wu et al., 2015) still rely on 
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manual specification of the LV centroid, suggesting that automated localization remains 

an open issue. 

In this chapter, an automatic multi-slice LV short axis localisation algorithm utilizing 

temporal and shape information is proposed. The algorithm provides a robust 

determination of the blood pool intensity threshold and subsequent binary object 

segmentation, and making use of the proximity of the LV to low intensity tissue, such as 

lung, for novel LV localization. The algorithm was tested against 1185 externally 

published datasets. The code is written in the MATLAB programming language and has 

been released under a GPL open source license (https://github.com/tanlikuo/localizeLV). 

3.3 Materials and Methods 

3.3.1 Datasets and Protocol 

Following institutional ethics committee approval (989.75), 161 anonymized clinical cine 

datasets were obtained retrospectively from University Malaya Medical Centre, a tertiary 

referral hospital. These were routine clinical studies on patients with various cardiac and 

vascular diseases, acquired over the 12 month period of 2014. No exclusion criteria was 

used. The algorithm was exclusively designed against these 161 in-house datasets. No 

machine learning techniques were used. 

All in-house clinical studies were performed on a 1.5T MRI scanner (Signa HDxt, GE 

Healthcare, WI), using an 8-channel cardiac coil. Imaging parameters were: x/y resolution 

= 1.37 mm/pixel, slice thickness = 8 to 10 mm, cardiac frames/phases = 20. 

For primary testing, 1140 datasets from the Kaggle Data Science Bowl Cardiac Challenge 

(Kaggle & Booz Allen Hamilton, 2015) were utilized; this is a public machine learning 

challenge in 2015 for determining LV volumes from cardiac cine MRI data. In addition, 
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the algorithm was also tested against 45 published datasets from the STACOM 2009 

Cardiac MR Left Ventricle Segmentation Challenge (Radau et al., 2009). 

The Kaggle datasets consist of a heterogeneous mix of scanners and protocols, with 

imaging parameters: x/y resolution = 0.65 to 1.75 mm/pixel, slice thickness = 6 to 10 mm, 

cardiac frames/phases = 25 to 30. The STACOM datasets were acquired using a 1.5T 

MRI scanner (Signa, GE Healthcare, WI), with imaging parameters: x/y resolution = 

1.37 mm/pixel, slice thickness = 10 mm, cardiac frames/phases = 20 (Radau et al., 2009). 

 

Figure 3.1: Flowchart of the proposed algorithm. Steps 1 through 4 are described 
in their corresponding chapter sections. Middle column illustrates key results from 

each respective step. Right column indicates key variables and functions in the 
source code, corresponding to each respective step. 

3.3.2 Automated Localization 

The proposed algorithm, as illustrated in Figure 3.1, comprises four main steps: (i) 

Determining an initial region of interest (ROI) enclosing the heart, while removing 

background air and non-cardiac tissue; (ii) Identifying high intensity 2D objects of 
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interest within the initial ROI, focusing on the cardiac blood pool; (iii) Use three criteria 

to score all 2D objects of interest in terms of their likelihood of constituting part of the 

LV, and; (iv) Combining the 2D objects of interest into connected inter-slice groups, 

constructing the final volume and identifying the centroid of the LV blood pool. 

Due to the complexity of this multi-step algorithm, the reader is advised to refer to the 

published source code (https://github.com/tanlikuo/localizeLV) as a complement to the 

textual description. 

3.3.2.1 Step 1: Determine Initial Region of Interest 

Cardiac MRI scans are gated to capture one complete cycle of the heart. In a typical 

cardiac scan, it is reasonable to assume that the heart is the primary moving object. A 1D 

first harmonic Fourier Transform over time (X. Lin et al., 2006) was first calculated, 

resulting in a magnitude image, Mh1 (Figure 3.2B), which highlights regions of significant 

motion, primarily the heart, of each short-axis slice location from base to apex. 2D 

intensity weighted centroids of Mh1 were then calculated for each slice, and a 3D line was 

fitted against all centroids (X. Lin et al., 2006). All voxels were then assigned a score 

consisting of the product of the inverted Mh1 intensity and the 2D Euclidean distance of 

the intersection of the SA plane with the fitted 3D line. The resulting distribution of the 

scores was fitted to a log-logistic distribution, and voxels with probabilities exceeding 0.9 

of the cumulative distribution function were removed (Figure 3.2C). This served to 

eliminate voxels of low motion located away from the heart. The 3D intensity weighted 

centroid was then calculated, and all previous steps were repeated iteratively until the 

Euclidean distance of the 3D centroid between the current and previous iteration fell 

below one pixel, for a maximum of five iterations.  
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For each slice in Mh1, the remaining (not removed) voxels were consolidated as a single 

2D binary object, and the corresponding 2D convex hull was calculated. Finally, all the 

2D convex hulls were combined to produce the initial 3D binary ROI, Binitial (Figure 3.2B). 

 

Figure 3.2: Determining an initial ROI targeting the heart, then identifying 2D 
objects of interest. A: Original cine image. B: Magnitude image of the first 

harmonic Fourier Transform, Mh1, highlighting the convex hull of regions with 
significant motion. Dotted and solid lines depict the first and final iterations of the 
binary ROI Binitial, respectively. C: Gray histogram shows the distribution of the 

inverted Mh1 intensity and Euclidean distance product score. Dotted line shows the 
fitted log-logistic distribution function.  

3.3.2.2 Step 2: Identify 2D Objects of Interest 

The algorithm next identifies potential 2D objects of interest within the cine SA slices, 

masked by the Binitial ROI. The target is the LV blood pool, the primary feature being its 

higher intensity compared to surrounding myocardial tissue. To identify these objects, an 

appropriate intensity threshold was first determined and applied, then a custom binary 

connected components analysis was performed to identify and group the individual 

objects. 

Although an intensity threshold could be calculated directly from the cine volume (Jolly, 

2008) using Otsu's method, the author found this to be unreliable in the presence of high 

intensity artifacts which would skew the threshold, i.e. the LV blood pool may be 

completely omitted due to overestimation of the threshold value. To avoid these 
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difficulties, the first harmonic magnitude image, Mh1, from step 1 and the maximum 

intensity projection of the cine image across time, Vmax, were combined to determine a 

more reliable intensity threshold, tintensity. Specifically, Mh1 was first thresholded using 

Otsu’s method to produce a reference binary image, Bmagnitude. Successive intensity 

thresholds were then applied to Vmax until the thresholded 3D volume achieved 95% 

binary voxel intersection with Bmagnitude. This threshold was recorded as tintensity. This 

combination was used for two reasons: (i) Bmagnitude highlights voxels which fluctuate in 

intensity over time. The LV blood pool primarily exhibits contraction / expansion motion, 

resulting in intensity fluctuations at the object edges. (ii) Vmax maximizes the extent of the 

LV blood pool, enabling significant overlap with the corresponding LV blood pool edges 

in Mh1, as shown in Figure 3.3. This overlap restricts the selection of tintensity to a range 

useful for blood pool object identification. 

 

Figure 3.3: Calculating the intensity threshold to identify 2D objects of interest. A: 
Thresholded first harmonic magnitude binary image, Bmagnitude (red tint), overlaid 
over maximum intensity projection image across time, Vmax, showing correlated 

overlap with edges of moving objects. B: Result of calculating and applying 
threshold tintensity using Bmagnitude and Vmax. 

To differentiate individual 2D objects of interest, the original cine stack is thresholded 

using tintensity, producing a 4D binary volume Bfull (Figure 3.3B and Figure 3.4A). The goal 

is to identify and group individual 2D objects of interest across time, i.e., the LV blood 

pool at a particular slice should be isolated and grouped as a single 2D+time object. 

Standard 2D+time (3D) binary connected components analysis is not suitable here due to 
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heart motion causing connectivity “leaks” between cardiac phases, e.g., during systole 

the right ventricular (RV) blood pool in a particular phase will frequently “overlap” the 

LV blood pool of a neighbouring phase, resulting in the LV and RV blood pools being 

erroneously identified as a single 2D+time object. 

To tackle this problem, the original cine stack was used to calculate the minimum 

intensity projection across time, Vmin, then Vmin was thresholded using tintensity, resulting in 

the 3D binary volume, Bcore. This serves to maximize separation between regions of high 

intensity such as the LV and RV blood pools, and may be thought of as the unchanging 

“core” of objects that otherwise change shape over time. 

2D+time connectivity analysis is carried out between Bcore and Bfull with the following 

criteria: (i) isolated 2D objects in Bfull that connect across time and overlap a single 

common Bcore object, are labelled as a single unit (Figure 3.4A). (ii) If objects in Bfull 

overlap with more than one object in Bcore, then Bcore objects with area < 10% of the largest 

object (an empirically selected threshold) were separated out, and the smaller objects were 

grouped to their larger counterparts based on Euclidean distance. This gracefully handles 

scenarios where a homogenous region is inadvertently separated into a primary object 

and surrounding chunks due to imperfect thresholding (Figure 3.4B). (iii) If the previous 

scenario is not fully resolved, e.g. multiple large Bcore objects remain connected, then 

affected objects in Bfull are split up per-voxel and matched to the closest Bcore object by 

Euclidean distance (Figure 3.4C and D). This handles scenarios of intermittent 

connectivity between objects, such as branching of the RV to the pulmonary artery. The 

result of the connectivity analysis is a list of 2D+time binary object units, Bobjs. 
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Figure 3.4: Separation into 2D+time connected object units. A: Bcore (dark tint) 
overlaid on Bfull (light tint) at end diastole, demonstrating separation between 

objects. B: multiple Bcore objects (red) shared a common Bfull object in one or more 
phases, and were grouped together due to their relative sizes. C & D: at two 

particular phases, the RV blood pool demonstrates intermittent connectivity due to 
cardiac motion along the long axis near the pulmonary artery branch point. The 
shared Bfull object is split up to enforce separation (Bcore dark tint, Bfull light tint). 

3.3.2.3 Step 3: Scoring the Objects of Interest 

Each 2D+time Bobjs unit was next scored in terms of its likelihood of being a segment of 

the LV blood pool. The following criteria are used: (i) normalized range of object 

contraction and expansion over time, (ii) average circularity, and (iii) minimum distance 

to low intensity weighted centroid. 

The first score, s1, reflects the assumption that the LV volume should be changing over 

time due to contraction and expansion of the heart. For each connected unit in Bobjs, the 

range of the area was calculated, normalized by the average area as shown in Eq. 3.1. 
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where t = cardiac phase, T = total number of cardiac phases, at = 2D area of binary object 

calculated as sum of pixels, A = set of all 2D areas for all cardiac phases 

The second score, s2, reflects the assumption that the cross sectional LV is generally 

circular in shape. For each connected unit in Bobjs, the mean ratio of the major and minor 

axis lengths of the binary objects was calculated, such that a circle will score 1, and a line 

0. This is basically an inversion of the common eccentricity shape measure, where the 

major and minor axis lengths are derived from the object eigenvalues (Haralick & Shapiro, 

1992) as shown in Eq. 3.2. 
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where t = cardiac phase, T = total number of cardiac phases, lmajor = major axis length, 

lminor = minor axis length 

 

Figure 3.5: The inverted intensity weighted 2D centroid (crosshair), omitting 
background air and peripheral regions. The centroid was reliably located near the 

low intensity lung tissue. 

The third score, s3, reflects the assumption that the LV commonly neighbours regions of 

low intensity, particularly the lung, and therefore objects closer to lung tissue are assigned 

a higher score. This is done by calculating an inverted intensity weighted centroid on the 

main body, assuming that the centroid will be biased by the low intensity lung tissue: For 
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each slice of the original cine image, the average intensity image across time is first 

calculated, thresholded with the same threshold used in earlier steps, tintensity, and the area 

of the convex hull of the resulting binary image is recorded. 2D connected component 

analysis is applied, and the binary objects are removed one-by-one in inverse order to 

their Euclidean distance to the 2D centroid, until the resulting area of the combined 

convex hull drops below 75% of the original starting value. This was found to effectively 

minimize the effect of irrelevant low intensity regions including background air and semi-

connected extremities such as limbs. Within this restricted convex hull, the inverted 

intensity weighted 2D centroid, and its minimum distance score to each connected unit in 

Bobjs was calculated. The score was then inverted so that distinct objects in contact with 

the centroid will have high values (Figure 3.5). 

The final aggregated score is calculated by multiplying the three separate scores. To 

minimize false matches, the final score for a particular Bobjs unit is set to zero if the 

average area is < 400 mm2, reflecting a minimum threshold for the size of LV blood pool. 

This cut-off value was obtained empirically from the in-house datasets. 

3.3.2.4 Step 4: Combine Objects of Interest into Connected Groups 

In the final step, Bobjs units that are connected across slices were identified (along the LV 

long-axis) and combined into groups. The group with the highest total score is labelled as 

the LV blood pool. 

To simplify the inter-slice connectivity analysis, each 2D+time Bobjs unit was first reduced 

into a single 2D binary object by calculating the binary mode across time. Each object is 

then analysed in descending order of their score: for each object, neighbouring slices were 

examined sequentially, searching for objects that (i) have ≤ 15 mm Euclidean distance 

between their respective 2D centroids, and (ii) have ≥ 0.6 total fractional pixel overlap 

(normalized by the area of the smaller object). As before, both cut-off values were 

Univ
ers

ity
 of

 M
ala

ya



 

  43 

obtained empirically from the in-house datasets. The search is repeated until all Bobjs units 

have been analysed; the group with the highest total score is labelled as the LV blood 

pool, and the selected Bobjs units are merged to form a 4D binary object representing the 

final LV blood pool, BLV. From BLV 2D binary images and centroids may be obtained for 

each individual slice position and phase. However, in practice it is expected that a single 

representative 2D centroid will be used, obtained from the median slice position 

(targeting the LV mid-slice plane) and the phase with the largest blood pool area 

(targeting diastole).  

3.3.3 Validation and Computational Environment 

The STACOM datasets include gold standard endocardium contours for both end-diastole 

(ED) and end-systole (ES) phases. The median slice position was calculated from BLV, 

and the evaluated 2D binary object and centroid was assessed in both the ED and ES 

phases against the corresponding gold standard contours. The Kaggle datasets do not 

include gold standard contours, only clinical measurements of ED and ES blood volume. 

Therefore, a manual gold standard was constructed by first obtaining the median slice 

position and the phase with the largest blood pool area from BLV, then assessing the 

evaluated 2D binary object and centroid against a manual delineation of the LV 

endocardium wall. 

For validation, the absolute error was calculated as the Euclidean distance between the 

gold standard 2D centroid and the evaluated centroid result. For context, this was 

converted to a fractional result normalized by the average radius of the gold standard 2D 

binary object, i.e. this would be the fractional error as normalized by the average 

endocardium radius. Success was defined where the fractional error is ≤ 0.5, i.e. the 

evaluated centroid is within 50% of the endocardium radius, and a 1-tailed t-test of the 

mean fractional error being below 0.5 was performed. Finally, the evaluated and gold 
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standard 2D binary blood pool images was compared using the Dice index. This is defined 

as  YXYX 2 , where X  and Y  are the number of elements in each respective 

set (gold standard and evaluated result) of blood pool pixels. 

The algorithm was implemented in MATLAB R2014a (MathWorks, Natick, MA), on a 

workstation with a 4-core 3.4 GHz CPU and 16 GB RAM. 

3.4 Results 

A total of 1140 datasets (11868 slices) and 45 datasets (572 slices) were analysed from 

the Kaggle Data Science Bowl Cardiac Challenge and STACOM 2009 challenge, 

respectively. The average processing time for a single study was approximately 3.0 s. 

Table 3.1 depicts the validation results achieved with the proposed method. In both the 

Kaggle and STACOM 2009 challenge sets, the mean fractional error was lower than 0.5 

with a statistical significance of p < 0.001. 

Table 3.1: Validation results of the proposed method on the blinded test datasets 
from public challenges (n – sample size, ED – end diastole, ES – end systole) 

Test Set Success 
rate, % 

Absolute error, mm 
(mean ± std. dev) 

Fractional error 
(mean ± std. dev) 

Dice index  
(mean ± std. dev) 

Kaggle 
(n : 1140) 97.5 2.8 ± 3.7 0.12 ± 0.22 0.88 ± 0.10 

STACOM  
(n : 45) 

97.8 (ED) 
91.1 (ES) 

4.1 ± 2.2 (ED) 
4.7 ± 2.6 (ES) 

0.14 ± 0.07 (ED) 
0.22 ± 0.13 (ES) 

0.82 ± 0.10 (ED) 
0.67 ± 0.19 (ES) 

 

 

Correct LV localization was confirmed in 1111 (97.5%) datasets in the Kaggle challenge 

set, 44 (97.8%) ED and 41 (91.1%) ES datasets in the STACOM 2009 challenge set, 

resulting in a combined success rate of 97.3% (Figure 3.6). The mean absolute error 

between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12% to 22% 

of the average endocardial radius. The error was primarily due to the localization 
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algorithm not accounting for papillary muscles, which is also reflected in the mean Dice 

index of 0.67 to 0.88.  

 

Figure 3.6: A to D: Sample images from four different datasets demonstrating 
typical results. E to H: Sample images from four different datasets demonstrating 

robustness of algorithm against suboptimal conditions, namely, E: non-circular LV 
& dilated RV, F: thin septum, G: thick myocardium / small blood pool, H: phase 
wraparound & high signal intensity caused by close proximity to the RF receiver 

coil 

The algorithm returned good results even in suboptimal conditions, including cases of 

non-circular LV, dilated RV, thin septum, thick LV myocardium, strong non-cardiac 

motion, and various scan artifacts (Figure 3.6). Analysing the failure cases, the most 

common factors were four cases of the RV being mistakenly localized due to various LV 

pathologies (Figure 3.7A), and four cases of inadvertent merging of the LV and RV due 

to indistinct septum boundaries (Figure 3.7B). 
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Figure 3.7: Failure cases caused by, A: LV hypertrabeculation leading to RV being 
mistakenly localized, and B: the LV and RV inadvertently being merged due to 

severe motion blurring 

3.5 Discussion 

In this chapter, an open source, fully automatic algorithm for localizing the LV blood 

pool centroid in short axis cardiac cine images has been described. The algorithm 

demonstrated robust performance across multiple publicly-available datasets, and proved 

to be generalizable across different clinical protocols.  

In step 1 of the algorithm, Lin et al.’s technique of obtaining the initial ROI (X. Lin et al., 

2006) was utilized, which the author found to be generally robust, but sensitive to motion 

artifacts and other sources of non-cardiac motion (e.g. intestinal). Lin et al.’s original 

paper assumes the resulting ROI to only consist of the heart; their subsequent steps relies 

on the ROI centroid being close to the interventricular septum. However, the author’s 

experience was that this ROI often extended beyond the heart and was best used only as 

an initial conservative filter for non-cardiac tissue. In step 3 of the algorithm – scoring 

objects of interest – a novel score reflecting proximity to lung tissue was introduced, on 

top of contraction and roundness criteria. Removing the lung score would result in a small 

but significant drop of the combined test success rate from 97.3% to 96.8%. In step 2 of 

the algorithm – determining an intensity threshold to segment the LV blood pool – the 

author found that direct application of Otsu’s method on the source cine image, as in Jolly 

(2008), would fail in the presence of high intensity scanning artifacts (e.g. regions of high 
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signal intensity caused by close proximity to the RF receiver coil). Applying Otsu’s 

method directly would result in a significant drop of the combined test success rate from 

97.3% to 93.4%. Instead, motion and intensity information were combined to obtain a 

more reliable threshold.  

The proposed algorithm has been shown to be applicable for a wide range of cine MRI 

images complicated with suboptimal acquisition and clinical conditions, including non-

circular LV and dilated RV, thin septum, thick myocardium/small blood pool, phase 

wraparound and high signal intensity caused by close proximity to the RF receiver coil. 

The proposed LV localization method is designed to be a precursor algorithm to a further, 

more complete segmentation system. Although the algorithm attempts to delineate the 

blood pool as part of the methodology, its direct use for calculating clinical parameters 

such as ejection fraction (EF) is not recommended, as the emphasis is on reliability of 

estimation of the LV centroid rather than accurate delineation. A possible future 

improvement would be the introduction of a goodness metric to flag ambiguous cases and 

avoid false positives. Several limitations have been noted. In particular, the use of the 

minimum intensity projection to identify objects of interest makes it possible that the 

algorithm will miss LV slices at the apex tip, where there is often no consistent presence 

of the blood pool. The same limitation arises in situations of hyper-contraction, where the 

derived “core” binary object is very small and risks being broken up or mistaken for noise. 

The algorithm also has no mechanism for recognizing the LV base, and thus will extend 

beyond the mitral valve under certain conditions. In addition, accuracy of the algorithm 

will suffer when individual slices are misaligned due to breathing motion or other motion 

artefacts, as no inter-slice registration is performed. However, these limitations do not 

significantly affect the primary utility of the algorithm, i.e. to provide a single robust 

estimate of the LV blood pool centroid position for segmentation initialization (Kadir et 

al., 2012). 
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In conclusion, an open source, fully automatic algorithm for localizing the LV blood pool 

centroid in short axis cardiac cine images has been described. The algorithm demonstrated 

excellent performance across 1185 externally published datasets, and is capable of 

eliminating manual LV centre point selection, thereby enabling the use of follow-on 

segmentation algorithms. 
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CHAPTER 4: CONVOLUTIONAL NEURAL NETWORK REGRESSION FOR 

SHORT-AXIS LEFT VENTRICLE SEGMENTATION IN CARDIAC CINE 

MR SEQUENCES 

4.1 Abstract 

This chapter presents and validates a convolutional neural network (CNN)-based method 

for the semi-automatic segmentation of the left ventricle (LV) in short axis cardiac cine 

magnetic resonance (MR) images. Manual input is only required for identification of the 

LV apical and basal slice locations. 

In this approach, the complete LV segmentation task (for all short axis slices and phases) 

is parameterized in terms of the radial distances between the LV centrepoint and the endo- 

and epicardial contours in polar space. Convolutional neural network regression is then 

utilized to infer these parameters. Utilizing parameter regression, as opposed to 

conventional per-pixel classification, allows the network to inherently reflect domain-

specific physical constraints. 

This approach was benchmarked primarily against the publicly-available left ventricle 

segmentation challenge (LVSC) dataset, which consists of 100 training and 100 

validation cardiac MRI cases representing a heterogeneous mix of cardiac pathologies 

and imaging parameters across multiple centres. This approach attained a 0.77 Jaccard 

index, which is the highest published overall result in comparison to other automated 

algorithms. To test general applicability, the algorithm was also evaluated against the 

Kaggle Second Annual Data Science Bowl, where the evaluation metric was the indirect 

clinical measures of LV volume rather than direct myocardial contours. This approach 

attained a Continuous Ranked Probability Score (CRPS) of 0.0124, which would have 

ranked tenth in the original challenge. With this the effectiveness of convolutional neural 
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network regression paired with domain-specific features in clinical segmentation has been 

demonstrated. 

This chapter has been published as (Tan et al., 2017) ; the published text is largely 

reproduced here excepting minor amendments for consistency and flow. 

4.2 Introduction 

Cardiovascular diseases (CVDs) are the most common cause of death globally; it is 

estimated that 31% of all global deaths in 2012 were due to CVDs (Low et al., 2014; 

Mendis, 2014). Cardiac MRI is currently considered the gold standard for the assessment 

of various aspects of CVDs, particularly congenital heart diseases (Abdul Aziz et al., 

2013). Quantification of key cardiac MR images is now recommended as a standard 

diagnostic procedure by cardiovascular expert groups (Schulz-Menger et al., 2013), 

including the calculation of LV end-diastolic (ED) and end-systolic (ES) volumes. These 

quantifications typically require the delineation of LV myocardial borders. Clinically, 

most physicians restrict delineation to only the ED and ES phases, which requires 

approximately 20 mins to complete manually (Petitjean & Dacher, 2011). Complete 

delineation across the entire cardiac cycle would be desirable, but modern 20+ cardiac 

framerates make this far too tedious and time consuming to be performed manually. 

There has been significant research focused on automated segmentation of LV 

myocardium, particularly for short-axis MR cine images. Techniques to date can 

generally be categorized as: (1) purely image- or pixel-driven methods such as intensity 

thresholding or distribution modelling utilizing blood pool to myocardium contrast; (2) 

methods incorporating statistical or geometric shape methods to model the LV such as 

truncated ellipsoids; and (3) anatomical atlas-based registration; and combinations of 

these various approaches (Petitjean & Dacher, 2011; Suinesiaputra et al., 2014; Tavakoli 

& Amini, 2013). 
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In typical short-axis steady-state free precession (SSFP) cine MR images, there is strong 

contrast between the blood pool within the LV and the endocardial wall. However, 

contrasting the epicardial wall to surrounding structures is more difficult, particularly 

against low-signal lung tissue. Delineation is most straightforward at the mid-LV level, 

where the LV is relatively large and strongly circular. Significant partial volume effects 

arise in apical slices where the LV tapers off, whereas in basal slices the LV branches off 

to the ascending aorta and left atrium, resulting in ambiguous boundaries. Delineation is 

also easiest for the ED and ES phases, when the heart is relatively static and the 

myocardial wall is well defined. Other phases during contraction exhibit significant 

motion blurring. Because of these difficulties, many published algorithms only solve for 

a subset of LV segmentation: endocardial wall only, mid-LV planes only, or restricted to 

the ED or ES phases. Notable automated complete LV segmentation algorithms with apex 

to base coverage include Lorenzo-Valdés, Sanchez-Ortiz, Elkington, Mohiaddin, & 

Rueckert (2004) via a 4D probabilistic atlas, Lynch, Ghita, & Whelan (2008) via 3D+time 

level sets, Cousty et al. (2010) via 4D spatio-temporal watershed graph cuts, Jolly, Guetter, 

Lu, Xue, & Guehring (2012) via 2D+time intensity distribution modelling and temporal 

registration, and Queirós et al. (2014) via 3D B-spline active surfaces and temporal optical 

flow tracking. 

In recent years, multi-layer neural networks have been shown to be effective automatic 

feature extractors for high-dimensional datasets, especially when large quantities of 

labelled data are available for training (LeCun et al., 2015). Convolutional neural 

networks (CNN) are a neural network variant modelled to take advantage of data with 

regular structure, such as the spatial grid matrix of images. CNN approaches have 

dominated various recent computer vision challenges (Krizhevsky et al., 2012; Szegedy 

et al., 2014). Initial applications were for whole-image classification, though CNNs are 

now increasingly being applied to object segmentation. In general, CNN object 
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segmentation is implemented via classification at the pixel level. For example, a CNN 

used to segment a 64×64 image into five possible classes would have an output matrix 

size of [64×64]×5. The output values would represent the per-pixel probability of 

belonging to one of the five classes, and individual pixels are assigned to the class with 

the highest probability value. 

Stalidis et al. (2002) is a rare early approach utilizing a three-layer non-convolutional 

(fully-connected) neural network for per-pixel LV segmentation. The network input 

consisted of only three values: the individual pixel intensity, angular position around the 

LV centrepoint, and slice location. More recently, Avendi et al. (2016) combined CNNs 

and a deformable model to perform LV segmentation, though only for the endocardial 

wall and only in the ED and ES phases. Three separate networks were trained; consisting 

of a two-layer CNN for the initial localization of heart region-of-interest, and two separate 

three-layer fully-connected networks for LV segmentation at basal and mid-ventricular 

slices, and for apical slices, respectively. Most recently, Tran (2016) used a 15-layer CNN 

to perform complete left and right ventricular (RV) segmentation. All three approaches 

referenced here utilized per-pixel classification. 

Per-pixel classification enables a high degree of flexibility in object segmentation. There 

are no restrictions in placement, shape, or quantity of applied labels, save for learned 

hidden constraints within the trained network. This flexibility is useful for object 

segmentation in general images, where the problem domain is largely unbounded. For 

example, categories in the ImageNet general image recognition challenge include animals, 

plants, geological formations, and man-made objects (Russakovsky et al., 2014). In 

contrast, medical images have a far more specific problem domain; the complete 

flexibility of per-pixel classification precludes the ability to enforce physiological 

constraints. For example, Figure 4 in Tran (2016) depicts LV segmentation failure cases 

where the CNN placed endo- and epicardial contours wholly separated from each other, 
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a physical impossibility. Other physiological improbabilities include results with more 

than one myocardial object cluster, or fragmented myocardial volumes. 

In this chapter, it is hypothesized that a restricted model is a useful approach to the task 

of LV segmentation. It is proposed that the task be parameterized by defining the 

segmentation in terms of radial distances of the LV walls from the centre of the blood 

pool rather than per-pixel binary image masks, and that the radial distances be computed 

via neural network regression as opposed to per-pixel classification. Specifically, two 

networks are designed. The first network estimates the 2D LV centrepoint, which is then 

used to remap the image into polar space. The resulting polar image is input to the second 

network, which computes the radial distances of the endo- and epicardial wall. Regression 

based segmentation approaches have been previously proposed, though to date not yet 

paired with CNNs. Further, most of these algorithms apply regression to the entire shape, 

typically through an intermediate dimension-reduction procedure such as principal 

component analysis on the shape parameters (Lay, Birkbeck, Zhang, & Zhou, 2013; Shao, 

Gao, Wang, Yang, & Shen, 2015; Zhou, 2010). In contrast, the proposed approach 

parameterizes and regresses LV radial distances point-by-point on a polar coordinate 

system; this retains the flexibility of the learned network while only incorporating two 

fundamental constraints: the isocentric relationship of the endo- and epicardium walls, as 

well as the LV being generally convex in shape. 

Finally, it is proposed that there is value in the inclusion of hand-crafted domain-specific 

features as opposed to the network using hidden learned features from the raw data 

exclusively. Specifically, the inclusion of a 1st-harmonic Fourier transform (FT-H1) 

magnitude image is shown to be an efficient way to incorporate information from the 

entire cardiac cycle and thus improve performance. 
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4.3 Materials and methods 

4.3.1 Dataset 

The primary dataset utilized is the left ventricle segmentation challenge (LVSC) dataset 

(Suinesiaputra et al., 2014), which was made publicly available in 2011 in conjunction 

with the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2011 

conference. The LVSC dataset consists of 200 sets of cardiac MR images of individual 

patients with coronary artery disease and prior myocardial infarction, sourced from 

multiple institutions. The primary sequences were short-axis SSFP cine images. 

Corresponding long-axis SSFP cine images were also available, although only for a 

subset of the cases. Scanner types and imaging parameters varied between cases, giving 

a heterogeneous mix of spatial resolutions (0.7 to 2.1 mm/pixel), matrix sizes (156×192 

to 512×512), and cardiac phase resolutions (18 to 35 phases). 

The LVSC datasets are separated into two groups: 100 fully annotated cases for training 

and testing, and 100 cases without annotation for validation. The gold standard 

annotations consist of expert-delineated binary masks representing the LV myocardium, 

from basal through apical slices for all cardiac phases. The gold standard annotations for 

the validation set are only available to challenge organizers, and challengers are required 

to submit their results to the organizers for independent assessment. The long term goal 

of the LVSC is to establish a consensus-based ground truth for the development, 

validation and benchmarking of LV segmentation algorithms (Suinesiaputra et al., 2014); 

the consensus ground truth being continually estimated from the results of participating 

algorithms, using the simultaneous truth and performance level estimate (STAPLE) 

method (Warfield, Zou, & Wells, 2004). 

The 100 training cases were split into individual 2D+time datasets. The datasets were 

manually filtered, removing duplicates and omitting data that would mislead the training 
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algorithm. For example, the gold standard was based on an expert-driven 3D surface finite 

element cardiac model, and this resulted in certain basal slices containing only partial 

myocardium contours due to the model having a slanted surface. Such slices were omitted 

from training. The final training set consisted of 866 2D+time datasets, or 20030 

individual images. These were randomly divided into two groups: 85% for direct training 

of the network and 15% for cross-validation and hyper-parameter tuning. An 80:20 

training to cross-validation ratio would be more conventional, but in this case a larger 

training fraction was used given the relatively small size of the database. 

As a secondary test, the trained network was evaluated against the Kaggle Data Science 

Bowl Cardiac Challenge, a public machine learning challenge in 2015 for determining 

LV volumes from cardiac cine MRI data (Kaggle & Booz Allen Hamilton, 2015). The 

Kaggle data consists of 700 datasets for training and cross-validation, as well as 440 test 

datasets for final scoring. Unlike the LVSC dataset, the Kaggle dataset has no gold 

standard LV contours available; the objective and evaluation metric is solely based on the 

predicted LV volume at end-diastole (ED) and end-systole (ES). 

4.3.2 Neural networks 

Neural networks for supervised machine learning are generally implemented as a 

cascading series of matrix operations. The values in the matrixes are the parameters of 

the network, often called weights, 𝑤 and biases, 𝑏. These values are initially randomized, 

and neural network training is carried out repeatedly to adjust these values such that a 

particular loss function, 𝐿 , is minimized. Pairs of 𝑤  and 𝑏  matrices are commonly 

grouped as a layer, and the result of a particular layer is forwarded to the next layer to be 

used as input. For example, a basic fully-connected layer assigns data in a 1D vector, and 

might be implemented as 𝑥1 = 𝑥0 ∙ 𝑤1 + 𝑏1 , where 𝑥0  is the result from the previous 

layer. Convolutional layers operate on 2D data with regular structure, and also contain 𝑤 

Univ
ers

ity
 of

 M
ala

ya



 

  56 

and 𝑏 matrix pairs. The 𝑤 and 𝑏 matrices are typically smaller than the input data, and 

the matrix multiplications and additions are carried out via a sliding window in a manner 

analogous to the convolution operation in signal and image processing. Further 

implementation details including activations, pooling, regularization, gradient 

optimization, and hyperparameters may be found in Goodfellow et al. (2016). 

4.3.3 Overview 

Applications of neural networks in image segmentation commonly utilize a per-pixel 

classification model, where the trained network classifies each pixel into two or more 

classes, e.g. myocardium and background. In this chapter a linear regression based model 

is utilized, where the LV myocardium is parameterized in terms of radial distance from 

the LV centrepoint. The motivations are that this implicitly enforces useful physiological 

constraints in the model: that there be only a single connected object; that the blood pool 

or endocardial wall be a subset of the epicardial wall; that the LV is generally convex in 

shape; and that the endocardial and epicardial contours share a common centrepoint. This 

requires two separate neural networks: the first for LV centrepoint localization (CPL) 

(referred to as the CPL network) (Figure 4.1A-C), and the second for the delineation of 

the LV myocardial borders (MB) (referred to as the MB network) (Figure 4.1D-F). 

In brief, the algorithm was initiated with a gross, automated estimate of the LV 

centrepoint. The source image was then cropped and fed into the CPL network (Figure 

4.1A-B), which generated a more accurate location of the LV centrepoint (Figure 4.1C). 

The source image was re-cropped based on this centrepoint and mapped into polar space, 

before being fed into the MB network (Figure 4.1D-E). The final outputs of the MB 

network were the endo- and epicardial wall radii (Figure 4.1F). Implementation is 

illustrated in Figure 4.1 and detailed in the following sections. 
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Figure 4.1: Block diagram of dual neural network architecture used for complete 
LV segmentation. (Upper row) CPL network for centrepoint localization. A: 2D 
source image is resampled and cropped. Yellow outline indicates crop bounding 

box, and red dot indicates top-left corner of cropped image. B: Preprocessed 
intensity IM and 1st harmonic Fourier transformation (FT-H1) IF images fed into 
CPL network. C: CPL network regression outputs two values representing LV 

centrepoint coordinates, (x, y) at blue crosshair. (Lower row) MB network for LV 
segmentation. D: 2D source image is resampled, cropped, and remapped to polar 

space using the LV centrepoint result from the CPL network as origin. Yellow dots 
indicate polar space sampling coordinates, red and orange dots indicate polar 

space at theta = 0° and theta = 30°, respectively. E: Preprocessed magnitude and 
FT-H1 (not shown) images. Separate crops are fed into the fine and coarse MB 

sub-networks via sliding window, respectively. F: MB network regression outputs 
two ρ values (per angulation θ) representing LV endo- (red) and epicardial (blue) 

wall radius. 

4.3.4 Data preparation and augmentation 

Both the CPL and MB networks operate on 2D images. Specifically, the input to both 

networks consisted of one cine intensity image, 𝐼𝑀 from a unique slice and cardiac phase, 

paired with the corresponding 1st harmonic image, 𝐼𝐹 as indicated in Figure 4.1 (B). 𝐼𝐹 
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was derived from the discrete 1D Fourier Transform of the image, applied on each (x, y) 

pixel location across the full cardiac cycle using Eq. 4.1. 

ℎ𝑥,𝑦 = |∑ 𝑣𝑥,𝑦,𝑡 ∙ (cos (−2𝜋
𝑡

𝑇
) + 𝑖 sin (−2𝜋

𝑡

𝑇
))𝑇−1

𝑡=0 | (4.1) 

where 𝑡  = cardiac phase, 𝑇  = total number of cardiac phases, 𝑣𝑥,𝑦,𝑡  = pixel value at a 

particular (x, y) location and phase, ℎ𝑥,𝑦 = resulting 1st harmonic magnitude at a particular 

(x, y) location. Eq. 1 is applied across all (x, y) locations to form 𝐼𝐹. The 1st harmonic was 

chosen as this correlates most closely to the standard gated single cardiac cycle 

acquisition. Figure 4.2 indicates the significant improvement in network performance 

with the inclusion of 𝐼𝐹 apart from the standard cine intensity image. 

 

Figure 4.2: The inclusion of the 1st harmonic image (FT-H1) brings a small but 
significant improvement in performance for both networks. Losses shown are the 

mean over each epoch. 

For the localization of the LV centrepoint, an initial estimate, 𝐶0, was first determined by 

calculating the unique intersection point between each short axis (SA) image and two 

long axis (LA) images, either the vertical long axis (two-chamber), four-chamber, or left 

ventricular outflow tract  views. If insufficient LA images were available, 𝐶0  would 

simply be initialized to the center of the SA image. 
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For the CPL network, 𝐼𝑀 and 𝐼𝐹 were resampled to 2 mm/pixel using linear interpolation, 

and cropped to 84×84 pixels with 𝐶0  in the center, resulting in 𝐼𝑀_𝐶𝑃𝐿  and 𝐼𝐹_𝐶𝑃𝐿 , 

respectively (Figure 4.1A-B). Both 𝐼𝑀_𝐶𝑃𝐿  and 𝐼𝐹_𝐶𝑃𝐿  are individually normalized to a 

mean and standard deviation (SD) of 0 and 1, respectively to remove inter-image contrast 

variation, before being input to the network. To improve model generalization, during 

training random augmentation was performed (Goodfellow et al., 2016), which includes 

displacing the centrepoint up to ±35 mm, scaling the image up to ±15%, performing 

rotation up to ±180°, distorting the mean and SD of image intensity up to ±0.15, and 

adding Gaussian noise with 0.15 SD (Figure 4.1A-B). The output of the CPL network is 

a new and more accurate LV centrepoint, 𝐶1 (Figure 4.1C). 

For the MB network, 𝐼𝑀 and 𝐼𝐹 were resampled to 1 mm/pixel using linear interpolation, 

then cropped and remapped both images into polar space using 𝐶1 as the origin. These 

resulting polar images 𝐼𝑀_𝑀𝐵 and 𝐼𝐹_𝑀𝐵 have a radius of 56 mm and 96 angular sectors, 

resulting in a size of 56×96 pixels. Both images were then individually normalized to a 

mean and SD of 0 and 1, respectively. Unlike the CPL network, 𝐼𝑀_𝑀𝐵 and 𝐼𝐹_𝑀𝐵 were 

not utilized directly. Instead, separate 56×64 and 56×3 windows were taken and fed into 

the network, representing one particular angular section in polar space (Figure 4.1D-E) 

using a sliding window over the angle. During training random augmentation were 

performed, by displacing the centrepoint up to ±50% of the radial distance to the gold 

standard endocardial wall, scaling up to ±15%, distorting the mean and SD up to ±0.15, 

and adding Gaussian noise with 0.15 SD (Figure 4.1D-E). The outputs of the MB network 

are two 𝜌 values representing the endo- and epicardial radius for a particular angular 

location. The MB network is repeated 96 times for a single image, where the inputs are 

taken from 𝐼𝑀_𝑀𝐵 and 𝐼𝐹_𝑀𝐵 via sliding window across the wrapped and buffered polar 

images (Figure 4.1F). The resulting radial points (96 endo- and 96 epicardial 𝜌 values) 

are remapped back to Cartesian space to form the final myocardium contour. 
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4.3.5 Network architecture and parameters 

The convolutional neural network architecture for the CPL network is summarized in 

Table 4.1, and for the MB network in Table 4.2. All input matrices were 3D because the 

magnitude (𝐼𝑀_𝐶𝑃𝐿 and 𝐼𝑀_𝑀𝐵) and 1st harmonic (𝐼𝐹_𝐶𝑃𝐿 and 𝐼𝐹_𝑀𝐵) images were stacked 

in the 3rd dimension and treated as a single input matrix. The MB network utilized a dual-

resolution design, where two parallel sub-networks operated on a “coarse” and “fine” 

view of the input images, respectively (Figure 4.1E-F). The fine sub-network has a 

coverage of 56×3 (radial × angular), located in the centre of the input window. It was 

expected to provide specific, detailed information for segmentation, and pooling was 

avoided so as to retain maximum spatial detail. The coarse sub-network has a coverage 

of 56×64, though a stride of 2 was immediately executed on the angular dimension prior 

to the 1st layer input (thus reducing it to 56×32). This sub-network was expected to 

provide overall, contextual information about the surrounding sectors, and is heavily 

pooled to reduce operational load. The choice of input matrix size (56×64) and (56×3) 

was a compromise between desired field-of-view and operational efficiency. 

Table 4.1: CPL network architecture for LV centrepoint localization. The outputs 
are the (x, y) coordinates of the LV centrepoint. CN[*]: convolutional layer, FC[*]: 

fully connected layer 

Layer In Weights Pool Out* 
CN1† 84×84×2 5×5×72 2×2 40×40×24 
CN2† 40×40×24 5×5×72 2×2 18×18×24 
CN3† 18×18×24 5×5×72 2×2 7×7×24 
FC1 7×7×24 7×7×768 – 1×1×256 
FC2 256 256×768 – 256 
FC3 256 256×768 – 256 
Out 256 256×2 – 2 

† Valid padding was used in all convolutional layers, i.e., the output matrix size is reduced by 4 
in both image dimensions after convolution 

* Maxout activations (3 maxout units) are used in all layers except for the final linear output. 
This reduces the output weight / convolutional channels dimension to ⅓ of the original size. 
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Table 4.2: MB network architecture for LV segmentation. The output is the 
endocardial and epicardial radiuses or distance ρ from LV centrepoint. There are 
two parallel sub-networks (coarse and fine) whose outputs are concatenated at the 

input of layer FC2. CN[*]: convolutional layer, FC[*]: fully connected layer 

 Coarse sub-network Fine sub-network 
Layer In Weights Pool Out* In Weights Pool Out* 
CN1 56×32×2 3×3×18 2×2 28×16×6 56×3×2 3×3×54 – 56×3×18 
CN2 28×16×6 3×3×18 2×2 14×8×6 56×3×18 3×3×54 – 56×3×18 
CN3 14×8×6 3×3×18 2×2 7×4×6 56×3×18 3×3×54 – 56×3×18 
FC1 7×4×6 7×4×192 – 1×1×64 56×3×18 56×3×576 – 1×1×192 
FC2 64+192 256×768 – 256 ← merge    
FC3 256 256×768 – 256     
Out 256 256×2 – 2     

* Maxout activations (3 maxout units) are used in all layers except for the final linear output. 
This reduces the output weight / convolutional channels dimension to ⅓ of the original size. 

Maxout activations (3 maxout units) (Goodfellow, Warde-farley, Mirza, Courville, & 

Bengio, 2013) were used in all cases due to their higher efficiency in parameter utilization. 

Dropout (Srivastava et al., 2014) was used for regularization (0.33 dropout probability), 

but only in the fully connected layers. All pooling operations were max-pool. All hyper-

parameters including the overall network designs were determined empirically. The CPL 

and MB networks consist of around 1.4 million and 2.2 million parameters to be 

estimated, respectively. 

The Adam stochastic optimization algorithm (Kingma & Ba, 2014) was used to minimize 

a standard mean-squared error loss function calculated from the predicted and gold 

standard radius values. Stochastic training was performed with a mini-batch size of 24 

and a base learning rate of 0.001, which was annealed by half each five epochs. Training 

was stopped when the cross-validation loss was manually observed to have ceased 

improving for at least 10 consecutive epochs. 

The neural network architecture was designed using the Python v2.7 scientific 

development environment (Python Software Foundation, Delaware, U.S.) and the 

TensorFlow r0.8 machine learning framework (Google Inc., California, U.S.). The 
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network was trained and executed on an Intel Core i7-4770 CPU based workstation with 

NVIDIA GeForce GTX 980 4 GB GPU. 

4.3.6 Post-processing 

The following operations were carried out on the MB network output: all radii were 

truncated at a minimum of 0 (i.e., no negative values), and the endocardial radius was 

truncated at a maximum equal to the corresponding epicardial radius (i.e., endocardial 

radius ≤ epicardial radius). 

In addition, for each contour, the distance between each point and their immediate 

neighbors was calculated. Points whose neighboring distance exceeded 2 mm were 

assumed to be errors and removed; this threshold was obtained from analysis of the gold 

standard training data. The contour was then smoothed and interpolated using a cubic 

smoothing spline (Barry, 1973). 

When applied to the LVSC validation set, this neighboring distance criteria affected 1.5% 

and 2.6% of the endo- and epicardium points, respectively, and was heavily weighted to 

the LV apex and base. Approximately 45% and 20% of the affected points were located 

in the apex and base end slices, respectively, defined here as the lower and upper 10% of 

the total slice coverage. The overall effect of the post-processing was a shift of 

1.5 ± 1.3 mm and 2.0 ± 1.7 mm (mean ± standard deviation) of the endo- and epicardium 

points, respectively. 

4.3.7 Supplementary Training 

The Kaggle dataset is an order of magnitude larger than the LVSC dataset, and as such is 

likely to contain images that the LVSC trained network does not generalize well against. 

The CPL network that was trained against the LVSC dataset was thus run against the 

Kaggle training dataset. From this 13 subjects were manually identified, where the LV 
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centrepoint prediction was deemed unacceptable. The LV centrepoints for these 13 

datasets were then manually annotated and added to the LVSC dataset pool for re-training. 

The resulting CPL* network with this supplementary training data was only used 

exclusively for evaluation against the Kaggle dataset. It was deemed impractical to 

perform similar supplementary training for the MB network due to the difficulty to 

produce full sets of 4D endo- and epicardial gold standard delineations. 

4.3.8 Validation 

The start and end slices reflecting the apex and base locations, respectively were manually 

identified; other image slices not within the coverage range were omitted from validation. 

Binary image masks were generated from the myocardial contours and validated against 

the corresponding gold standards using the Jaccard similarity index, as well as sensitivity, 

specificity, positive predictive values (PPV) and negative predictive values (NPV). These 

evaluations were carried out by an independent party – the LVSC challenge organizers. 

Of particular note, the specificity and NPV values were calculated based on a region of 

interest (ROI), which was obtained by dilating the gold standard binary mask by 1.5×. 

This is because the full image is dominated by non-myocardium tissue, which would 

heavily bias the specificity and NPV values (Suinesiaputra et al., 2014).  

Three gold standard clinical measurements in the LVSC dataset were also available for 

separate assessment: end-diastolic volume (EDV), end-systolic volume (ESV), and LV 

mass. The volumes were calculated using the trapezoidal rule, i.e. by summing the 

relevant binary areas of each slice, and multiplying the result with the mean slice 

thickness. 

The Kaggle challenge utilizes a continuous ranked probability score (CRPS) for 

evaluation (Kaggle & Booz Allen Hamilton, 2015); this basically involves determining a 

cumulative distribution function (CDF) for the LV volume as opposed to a single value 
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prediction. Thus, in addition to calculation of the LV volumes as described previously, 

the Kaggle training dataset was also used to fit a linear regression model against the initial 

predicted LV volume (ED and ES), the scan length, and the subject age and gender. The 

CDF for each subject was determined by building a Gaussian distribution with mean and 

standard deviation directly obtained from the regression model prediction and single-

observation confidence bounds. 

4.4 Results 

In Table 4.3, the results between the proposed convolutional network regression model 

(CNR) were compared against other published results using the same LVSC CS* 

consensus validation dataset (Suinesiaputra et al., 2014; Tran, 2016). For most of the 

evaluation measures including Jaccard index, the CNR model outperforms all other 

published methods except for AU. It is important to note that the AU method uses manual 

guide-point modeling to assist the fitting of a finite element cardiac model to the image 

data, and requires human expert approval of all slices and frames (B. Li, Liu, Occleshaw, 

Cowan, & Young, 2010).The AU method was used by the challenge organizer to estimate 

the gold standard global priors in the original 2011 LVSC study. 
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Table 4.3: Comparison of segmentation performance between the proposed 
convolutional network regression model (CNR, marked by arrow) and other 

techniques tested against the LVSC validation set using the CS* consensus. AU (B. 
Li et al., 2010), AO (Fahmy, Al-Agamy, & Khalifa, 2012), SCR (Jolly et al., 2012), 

DS, and INR (Margeta, Geremia, Criminisi, & Ayache, 2012) values are taken 
from Table 2 of (Suinesiaputra et al., 2014). FCN values are taken from Table 3 of 
(Tran, 2016). Values are provided as mean (standard deviation), and in descending 

order by Jaccard index. 

Method Manual input Jaccard 
Index Sensitivity Specificity PPV NPV 

     AU Interactive 4D guide 
point placement 

.84 (.17) .89 (.13) .96 (.06) .91 (.13) .95 (.06) 

→ CNR Identify basal and 
apical slice 

.77 (.11) .88 (.09) .95 (.04) .86 (.11) .96 (.02) 

     FCN None .74 (.13) .83 (.12) .96 (.03) .86 (.10) .95 (.03) 
     AO Delineate first 

frame 
.74 (.16) .88 (.15) .91 (.06) .82 (.12) .94 (.06) 

     SCR None .69 (.23) .74 (.23) .96 (.05) .87 (.16) .89 (.09) 
     DS Delineate first 

frame 
.64 (.18) .80 (.17) .86 (.08) .74 (.15) .90 (.08) 

     INR None .43 (.10) .89 (.17) .56 (.15) .50 (.10) .93 (.09) 
 

 

The LVSC validation set categorizes individual images into apex, mid, and base levels, 

in a rough 2:5:3 ratio. The mean ± SD Jaccard index was 0.71 ± 0.13, 0.79 ± 0.09, and 

0.77 ± 0.12 for the apex, mid, and base levels, respectively. Regarding image parameters, 

there was a weak positive correlation between x/y resolution and Jaccard Index 

(Spearman’s rank correlation, 𝑝 = .021 , 𝑟 = .238 ), i.e. higher x/y resolution was 

correlated with better Jaccard Index. No similar significant correlations were found for 

slice thickness and number of cardiac phases. 

Figure 4.3, Figure 4.4, and Figure 4.5 illustrate good results from both typical and 

difficult datasets. These include cases with severe image quality issues, as well as cases 

where the LV shapes were non-circular. Figure 4.6 illustrates a known problem with 

neural networks, where visually indistinguishable images can return significantly 

different results (Szegedy et al., 2013). The interconnected complexity of the networks – 
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particularly at the fully connected layers – makes such issues difficult to troubleshoot. 

Figure 4.7 depicts erroneous LV contours below the apex, illustrating an issue arising 

from the 2D nature of the model; the model is unable to utilize information in 

neighbouring slices to apply 3D physiological constraints. Figure 4.7 also illustrates an 

issue of the strong dependency of the MB network to the CPL network; in slices close to 

the apex where the blood pool is intermittent and/or small, poor estimation of the 

centrepoint directly leads to poor endo- and epicardial contours. 

 

Figure 4.3: (Left to right, top to bottom) Sample case from the validation set, 
demonstrating good delineation from apex to base. Blue crosshair represents LV 
centrepoint from CPL network, red and blue contours represent LV endo- and 

epicardial contours, respectively, from MB network. (Bottom row, 2nd and 3rd 
images from left) The 2D nature of the model allows the networks to be insensitive 

to inter-slice misalignment. 

 

Figure 4.4: (Left to right) Consecutive phases of a sample case from the validation 
set, demonstrating reasonable delineation results despite severe image quality 

issues. 

Univ
ers

ity
 of

 M
ala

ya



 

  67 

 

Figure 4.5: Sample cases from the validation set, demonstrating good delineation 
on LV shapes deviating from absolute circularity. 

 

Figure 4.6: (Left to right) Consecutive phases of a sample case from the validation 
set. Despite the three images appearing largely similar visually, the MB network 
nevertheless returned dramatically different endocardial contour results for the 

middle image. Due to the black box-like nature of neural networks, issues such as 
this can be hard to troubleshoot. 

 

Figure 4.7: (Left to right) A sample case from the validation set showing 
neighbouring slices from below the apex towards the mid-cavity. It is 

physiologically improbable for the LV area to increase dramatically towards the 
apex, but the 2D nature of the model precludes encoding for such physiological 

constraints. (Middle) The CTR network made a poor estimation of the LV 
centrepoint, directly affecting the quality of the subsequent endo- and epicardial 

contour. 
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Comparing clinical parameters to the gold standard, mean ± SD of absolute difference 

and signed difference of ejection fraction (EF) was 4.8% ± 4.5% and +0.3% ± 6.6%, 

respectively, demonstrating no significant bias towards over- or under-estimation of EF. 

Large overestimations for EDV, ESV and LV mass were observed, at +46.5 ± 38.0 ml, 

+29.9 ± 29.7 ml and +49.1 ± 31.0 g, respectively. It is hypothesized that this is primarily 

due to the elementary method of calculating volumes used, as well as differences in 

determining LV coverage. The basal and apical slices were manually identified from short 

axis images exclusively, and included 2.1 additional slices on average compared to the 

gold standard, which represents around 31% extra LV coverage not accounted for by the 

gold standard. More accurate volume measurements might be attained via 3D modelling 

and the use of long axis images (Liew et al., 2015), which is not covered in the current 

chapter. 

For the Kaggle challenge, a mean CRPS of 0.0124 was obtained, which would have 

placed tenth out of 192 in the original challenge rankings; a relatively strong result 

considering the MB network was not trained against the Kaggle data. The lack of gold 

standard contours makes it hard to identify issues in detail; it was observed that some of 

the weakest scores were obtained from contours which appear reasonable visually. As per 

comparison of the LVSC clinical parameters, it is hypothesized that the error is primarily 

due to differences in determining LV coverage. The mean ± SD of absolute and signed 

difference of EF was 4.4% ± 4.1% and −0.6% ± 6.0%, respectively. The absolute 

difference for EDV and ESV were 11.8 ± 9.8 ml and 8.7 ± 7.6 ml, respectively. 

CPL and MB network training required approximately 4 and 5 hours, respectively. Mean 

± SD of the time taken to process an entire 4D volume is 1.9 ± 1.0 s for the CPL network 

(around 10 ms per image), and 6.2 ± 2.9 s for the MB network (around 30 ms per image). 

The impact of omitting use of the GPU and only executing the networks on the CPU was 
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also assessed; the resulting execution time taken was approximately 3× longer, or 

approximately 30 s per 4D volume. 

4.5 Discussion 

Neural networks in supervised deep learning represents a new generation of data-driven 

techniques, where the underlying training data provides the bulk of the technique 

performance rather than hand-crafted features or algorithms. The roots of deep learning 

lie in early neural network research developed in the 1950s-60s, but practical utilization 

remained constrained until the development of GPU implementations, which allow for 

multiple order-of-magnitude increases in training speed (Schmidhuber, 2015). Due to the 

relatively small seven-layer, three million parameters network used, the author hesitated 

to label this approach as deep learning, especially when compared with the 20+ layers 

(Szegedy et al., 2014), 50+ million parameters (Krizhevsky et al., 2012) convolutional 

behemoths introduced in recent years. 

Comparison is restricted primarily to other published approaches that were also validated 

against the LVSC dataset (Table 4.3). The proposed approach calls for additional manual 

or automated (X. Lu & Jolly, 2013) identification of the basal and apical slices; however, 

identification can be carried out post-calculation as the network does not use slice position 

information, i.e., basal and apical slice identification is not expected to be a bottleneck in 

automated batch operations.  

Of all automated and semi-automated algorithms, the semi-automated AU method (B. Li 

et al., 2010) has demonstrated the best performance. However, as noted previously, the 

AU method uses manual guide-point modelling to assist the fitting of a finite element 

cardiac model to the image data. I.e., its operation requires significant manual input. The 

AO (Fahmy et al., 2012) and FCN (Tran, 2016) methods present results that are 

comparable, but inferior, to those presented here. The AO method uses optical flow 
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tracking to propagate a contour across all cardiac phases. However, it requires manual 

delineation of the first frame for all slices. Special comparison is made to the FCN method, 

as, like the method presented in this chapter, it is based on CNNs. 

The FCN method utilizes a 15 layer fully convolutional neural network comprising 

11 million parameters for per-pixel classification. The proposed approach utilizes two 

seven-layer mixed convolutional and fully connected neural networks comprising three 

million total parameters for LV parameter regression. Despite being approximately one 

third of the size, it is notable that the smaller architecture proposed here performed better 

overall when tested against the LVSC CS* validation set. It is difficult to pinpoint the 

primary factor in this, as there are multiple differences in both approaches: per-pixel 

classification vs. myocardial radius regression, single vs. dual (CPL and MB) networks, 

Cartesian vs. polar space, the inclusion of 1st harmonic Fourier transform (𝐼𝐹) images, 

data preparation and augmentation techniques, and rectified linear units (ReLU) vs. 

maxout activations amongst others. More experimentation will be needed to identify 

which factors provide the most significant impact, although care should be taken to avoid 

overfitting to the validation set. Smaller networks provide an additional advantage: the 

ability to utilize less powerful GPUs, facilitating adoption particularly in lower income 

settings. The results demonstrate that larger and deeper networks do not necessarily 

equate to better performance, and that carefully introduced domain-specific models and 

features can still be valuable as opposed to fully automated hidden feature learning. 

For the Kaggle challenge, most of the strongest-scoring entrants used CNN-based per-

pixel segmentation ensemble approaches trained with hand-labelled data, though only for 

endocardium delineation. The supplementary results against the Kaggle challenge 

demonstrate that the proposed approach is generally applicable against foreign datasets 

and secondary clinical measures including LV volume. The discrepancy seen in certain 

cases with visually reasonable contours but poor scores suggests that the primary error 
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lies in the determination of LV coverage. Inclusion of LA volumes would probably 

improve estimation significantly. Indeed, the winner of the Kaggle challenge utilized 

CNN per-pixel segmentation on both SA and LA volumes (T. Lee & Liu, 2016). 

It has been shown that the 1st harmonic magnitude image provides an efficient way of 

incorporating information from the entire temporal cycle; similar approaches may be 

useful in other applications with inherently cyclical data, e.g. respiration. The utilization 

of polar space allows the MB network to be inherently rotationally invariant. Similar polar 

space remapping combined with radial parameter regression models, may be suitable for 

related segmentation problems where the object of interest is circular or convex in shape, 

e.g. large vessel lumen segmentation. 

Some limitations and potential improvements remain.  Rudimentary 2D post-processing 

was utilized; additional filtering across slice depth and cardiac phase could be applied. 

For example, the erroneous result in Figure 4.7 might have been avoided by building a 

probabilistic regression function to estimate fractional slice area from apex-base slice 

position. The regression function could be tuned to reject results with slice areas deviating 

too far from the norm, although the required inclusion of an additional threshold may 

impact the generality of this implementation.  An extension of this work would be to 

apply the model to RV segmentation. However, it is suspected that a similar polar space 

model would be challenging because of the interventricular septum defining the RV being 

somewhat concave in shape. 

In conclusion, in this chapter an automated method for the complete short axis + time 

segmentation of LV MR cine images was presented. The proposed method is based on 

convolutional neural network regression, and utilizes a two-step approach of LV 

centrepoint localization followed by determination of the LV endocardial and epicardial 

radiuses in polar space. The approach was benchmarked against the LVSC dataset, and 
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exhibits the best overall results to date in comparison to other automated algorithms. With 

this it has been demonstrate that convolutional neural network regression paired with 

carefully introduced domain-specific models and features is effective for the specific 

clinical task. 
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CHAPTER 5: FULLY AUTOMATED SEGMENTATION OF THE 

LEFT VENTRICLE IN CINE CARDIAC MRI USING 

NEURAL NETWORK REGRESSION 

5.1 Abstract 

This chapter presents and validates a convolutional neural network (CNN) regression-

based method for the fully automatic segmentation of the left ventricle (LV), utilizing 

both short axis (SA) and long axis (LA) cardiac cine magnetic resonance (MR) images, 

with full coverage from apex to base across all cardiac phases. 

In this chapter, the use of neural network regression as introduced in Chapter 4 is further 

extended. Three independent networks were designed and trained for the inference of LV 

landmarks in LA volumes, as well as LV centrepoints and myocardial contours in SA 

volumes, respectively. The algorithm was validated against 100 datasets from the 

publicly-available Left Ventricle Segmentation Challenge (LVSC) database, 440 datasets 

from the publicly-available Kaggle Second Annual Data Science Bowl database, and 10 

subjects from in-house data, representing a heterogeneous mix of scanner types, imaging 

protocols and parameters. 

Tested against the LVSC database, a small but statistically significant improvement in 

both the Jaccard index (0.77 ± 0.11) and modified Hausdorff distance metrics 

(1.33 ± 0.71 mm) was obtained, when compared to the previous work in Chapter 4. This 

represents the best published LVSC performance to date for a fully automated algorithm. 

Tested against the Kaggle database, the signed difference in evaluated blood volume is 

+7.2 ± 13.0 mL and −19.8 ± 18.8 mL for the end-systolic (ES) and end-diastolic (ED) 

phases, respectively. This performance is comparable to published inter-reader variability 

values from multiple independent expert readers. The in-house data was used to measure 

scan-rescan reproducibility; there was no significant difference between the algorithm 
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and a manual quantification for both ES and ED phases (p > 0.05). Execution time per 

case was approximately 12s, including SA and LA volumes. The strong performance 

overall is suggestive of practical clinical utility. 

This chapter has been published as (Tan, McLaughlin, et al., 2018); the published text is 

largely reproduced here excepting minor amendments for consistency and flow. 

5.2 Introduction 

Cardiovascular diseases (CVD) are the primary cause of death globally, accounting for 

approximately 30% of all deaths in 2013 (Roth et al., 2015). Ultrasound is the primary 

imaging modality for CVD diagnosis due to its portability and low cost. However, cardiac 

MR is recognized as the reference standard for the assessment of cardiac volumes and 

regional functions due to its greater accuracy and reproducibility (Abdul Aziz et al., 2013; 

Gardner, Bingham, Allen, Blatter, & Anderson, 2009). Most standard cardiac MR 

protocols begin with assessing the LV structure and functions via steady state free 

precession (SSFP) gated cine imaging due to its high signal-to-noise ratio and excellent 

contrast between the myocardium and blood pool (Kramer et al., 2013). Standard 

acquisitions include LA images captured along the plane passing through the LV apex 

and mitral valve, and a stack of SA images orthogonal to the LA plane, captured between 

the LV apex and mitral valve. 

In standard clinical practice, quantification of LV function is performed via manual 

delineation of the LV myocardium (endo- and epicardium) within the SA images, for the 

end-diastole (ED) and end-systole (ES) cardiac phases. This allows the evaluation of 

standard clinical measurements such as LV ED and ES blood volumes, ejection fraction, 

and LV mass (Schulz-Menger et al., 2013). Despite delineating only two cardiac phases, 

such manual tracing can take up to 20 minutes by a radiologist. Full delineation across all 

cardiac phases would enable useful quantification of motion parameters to identify 
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regional LV dysfunction. However, the excessive effort required for manual full 

delineation makes it impractical for clinical adoption.  

Many LV segmentation algorithms have been published to date, with an extensive review 

provided by Petitjean & Dacher (2011). Techniques used include general image-

processing based methods such as intensity distribution modelling of the LV tissue and 

blood pool (Jolly et al., 2012, p. 201); deformable models such as active contours 

targeting the myocardium boundaries (Berbari et al., 2007); statistical shape and 

appearance models (Mitchell et al., 2001); and anatomical atlas-based registration (X. 

Zhuang et al., 2010). The attributes of published algorithms vary, ranging from semi-

automated (Bricq et al., 2016) to fully automated (Margeta et al., 2012); endocardium 

only (Avendi et al., 2016) to complete myocardium (B. Li et al., 2010); mid-slices only 

(Mitchell et al., 2001) to full coverage from apex to base (mitral valve) (Jolly et al., 2012); 

and dual ED/ES phases only (Avendi et al., 2016) to all cardiac phases (Tran, 2016). Fully 

automated algorithms are inherently superior in terms of convenience, as well as their 

elimination of subjective inter-observer variability. However, it is still difficult for these 

algorithms to provide comparable performance to semi-automated algorithms which 

utilize human expert input. In addition, most published segmentation algorithms – both 

fully and semi-automated – are only validated against non-public, single institution 

datasets (Petitjean & Dacher, 2011). This makes comparison between such published 

results infeasible due to the differing test conditions: differing quantity of test images, the 

pathological status (or none) of the patients, as well as the imaging parameters and 

hardware. 

In Chapter 4, CNN regression was introduced for the segmentation of LV myocardium, 

including full coverage from LV apex to base, across all cardiac phases (Tan et al., 2017). 

However, the approach was only semi-automatic (i.e. required user input) and was solely 

trained on SA images; manual intervention was still required to identify the basal and 
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apical SA slices to constrain the volumetric quantification within the LV. In addition, the 

algorithm did not combine segmentation results across neighbouring phases, i.e. each 2D 

slice was processed in isolation, leading to inconsistent results in the contour from one 

phase to the next. In this chapter, the aim is to develop and validate a fully automated 

algorithm for segmentation of the LV in cardiac MRI. The work in this chapter improves 

over Chapter 4 through: (i) redesigning the network architecture to incorporate LA 

images for localizing apex and base landmarks, which enables full automation of the SA 

segmentation task, (ii) utilizing LA landmarks to stabilize SA segmentation in 

challenging apical and basal slices by restricting the input SA field-of-view (FOV), and 

(iii) implementing 2D+time post processing to improve segmentation consistency. 

5.3 Material and Methods 

5.3.1 Data 

Data was utilized from three sources – two sources for the training and primary 

assessment of the algorithm, and the third source solely for the assessment of scan-rescan 

reproducibility. The first was data from the 2011 LVSC – a segmentation competition 

initiated during the 2011 Statistical Atlases and Computational Modelling of the Heart 

(STACOM) workshop (Suinesiaputra et al., 2014). The LVSC database consists of 200 

publicly accessible cardiac MR cine cases; 100 with ground truth myocardial contours in 

all slices and phases for training and cross-validation, and 100 unlabelled cases for test 

validation. The database includes SA and LA volumes. The LA volumes are typically a 

mix of LA two-chamber (LA2C), LA four-chamber (LA4C), and LV outflow tract 

(LVOT) single slice 2D+time views. The subjects were comprised of patients with 

coronary artery diseases and regional wall motion abnormalities due to prior myocardial 

infarction. Patient characteristics were 76.8%/23.2% male/female, with mean age 
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62.7 years (range 34–84 years). By convention, the ground truth contours included 

trabeculae and papillary muscles in the blood pool, excluding them from the LV mass. 

The second data source was the Kaggle Second Annual Data Science Bowl – a 

competition held in 2016 to evaluate ES and ED blood volumes (Kaggle & Booz Allen 

Hamilton, 2015). The Kaggle database consists of 1140 publicly accessible cardiac MR 

cine cases; 700 with ground truth ES and ED blood volume measurements for training 

and cross-validation, and 440 unlabelled cases for test validation. The database includes 

SA and LA volumes for most subjects, the LA volumes having a mix of two-chamber and 

four-chamber single slice 2D+time views (<1% of subjects also included LVOT views, 

but these were omitted for ease of processing). The subjects were comprised of a mix of 

patients with both normal and abnormal cardiac functions. Patient characteristics were 

58.8%/41.2% male/female, with mean age 42.1 years (range 2 weeks – 88 years). The 

Kaggle ground truth only contains clinical blood volume measurements, i.e., no 

myocardial contours, centrepoints, or LA landmarks were available. To address this 

limitation, the training dataset was manually assessed and 104 LA views were manually 

labelled for additional LA landmark localization training, and 15 cases manually labelled 

for additional SA centrepoint localization training. 

The combined LVSC training data and the manually labelled Kaggle data was initially 

split 85:15 by subject for training and cross validation, respectively, during 

hyperparameter optimization. The entire training and cross-validation dataset was then 

combined for the final training run after all hyperparameters had been finalized. There 

are a total of 26,069 and 9,860 individual images for SA and LA training, respectively 

(Table 5.1). 
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Table 5.1: Datasets used for training, cross-validation, and test validation. 
Descriptions of the three networks (LM, CTR, MB) are in the “Segmentation 

System Overview” section 

 Training & cross-validation Test validation 
Networks LVSC Kaggle LVSC Kaggle 
LM network * − LA2C 
 − LA4C 
 − LVOT 

  98 (2,275) 
  99 (2,295) 
  93 (2,170) 

52 (1,560) 
52 (1,560) 
None 

  98 (2,310) 
  98 (2,315) 
  93 (2,210) 

434 (13,020) 
429 (12,870) 
None 

CTR network † 100 (22,259) 15 (3,810) 100 (28,115) 440 (136,620) 
MB network † 100 (22,259) None 100 (28,115) 440 (136,620) 

* Values shown are: number of 2D+time LA views (number of images);  
LA2C – two chamber, LA4C – four chamber, LVOT – outflow tract 

† Values shown are: number of 3D+time SA volumes (number of images) 

The third source of data consists of in-house scan-rescan data from a previous study on 

LV motion correction (Liew et al., 2015). Ten healthy subjects were recruited and 

scanned three times during the same session, and their respective ES and ED blood 

volumes quantified via a manually delineated, motion-corrected 3D surface model. All 

subjects had SA and LA scans, the LA volumes being two-chamber, four-chamber, and 

LVOT single slice 2D+time views. Subject characteristics were 30%/70% male/female, 

with mean age 48.4 years (range 39−61 years) 

Patient information from the public LVSC and Kaggle databases were anonymized by 

their respective providers; data usage agreements were obtained for use in this study. This 

study also received institutional review board approval (ref: 989.75) for the 

reproducibility analysis. 

5.3.2 MR protocol 

All MR images from the three databases were acquired using a gated SSFP pulse 

sequence. The LVSC and Kaggle databases were sourced from a variety of imaging 

centres and scanner types, leading to a heterogeneous mix of imaging protocols and 

parameters. For the LVSC database, the range (mode) of imaging parameters were: echo 

time [TE] 0.96 – 2.98 (1.13) ms, repetition time [TR] 2.50 – 79.1 (59.2) ms, flip angle 25° 
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– 90° (45°), in-plane (x/y) resolution 0.68 – 2.14 (1.56) mm, slice thickness 6 – 10 (8) mm, 

number of slices 5 – 17 (11), number of cardiac phases 18 – 35 (25). For the Kaggle 

database, the range (mode) of imaging parameters were: echo time [TE] 1.04 – 1.54 

(1.19) ms, repetition time [TR] 14 – 54.7 (34.2) ms, flip angle 35° – 79° (50°), in-plane 

(x/y) resolution 0.59 – 1.95 (1.41) mm, slice thickness 5 – 11 (8) mm, number of slices 

2 – 21 (10), number of cardiac phases 25 – 30 (30). The in-house scan-rescan data was 

acquired on a single 1.5T MRI system (Signa HDxt 1.5T, GE Healthcare, WI). The 

imaging parameters were: echo time [TE] 1.6 ms, repetition time [TR] 3.7 ms, flip angle 

55°, in-plane (x/y) resolution 1.37 mm, slice thickness 8 mm, number of slices 10 – 15, 

number of cardiac phases 20. 

5.3.3 Automated segmentation 

5.3.3.1 Neural networks 

Artificial neural networks are a family of mathematical functions with numerous recent 

successes in tackling artificial intelligence problems, including image processing and 

recognition (LeCun et al., 2015). Though originated in the 1960s, neural networks have 

seen a strong resurgence in recent years, thanks largely to improvements in computing 

hardware and the availability of large quantities of training data (Goodfellow et al., 2016). 

Neural networks can be understood as a chain of linear operations interspersed with 

various nonlinear activation functions. Each group in the chain is more commonly known 

as a layer, which consists of a matrix of weights, W, and a vector of biases, b. For each 

individual layer the input vector is multiplied and summed against W and b, respectively. 

An element-wise nonlinear activation function (e.g. a hyperbolic tangent function) is then 

applied and the resulting output is used as the input to the subsequent layer and the general 

series of operation is repeated in further layers. 
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Traditional neural networks are also known as fully connected networks (FCON), and are 

typically used with unstructured vector input. For inputs with regular structure (e.g. a 2D 

image), CNNs are a more suitable variant. Here, W and b are applied repeatedly in a 

sliding window fashion analogous to the standard convolution operation in signal 

processing. 

The W and b values of all layers are referred to as the network parameters. Starting from 

a random initialization, the parameters are iteratively updated by calculating a loss 

function (e.g. mean squared error) and back-propagating the result via an optimization 

function such as gradient descent, until convergence. Further information may be found 

in Goodfellow et al. (2016). 

5.3.3.2 Segmentation System Overview 

The proposed system primarily operates on 2D intensity images, as well as 2D first 

harmonic magnitude images, H1mag, obtained by applying a 1D Fourier transform across 

the temporal dimension of a 2D+time slice. In Chapter 4, H1mag was found to efficiently 

incorporate temporal information for SA volumes (Tan et al., 2017). 

Three separate neural networks were trained (Figure 5.1): (i) LV Landmarks (LM) 

network, where the LV base plane (mid of mitral valve) and the LV apex tip were 

localized in LA images. (ii) Centrepoint (CTR) network, where the LV centrepoint was 

localized in SA images, (iii) Myocardial Boundaries (MB) network, where the myocardial 

boundaries were delineated in SA images. In all three networks, the inferred result is 

obtained through neural network regression. This is particularly notable for the MB 

network, where the myocardial boundaries are delineated as individual radial points 

inferred from a polar transform of the input image centered on the LV centroid, as 

opposed to the more common technique of myocardial segmentation by per-pixel 

classification. In Chapter 4, this regression technique was found to be superior to other 
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state-of-the-art per-pixel classification networks; it implicitly enforces useful 

physiological constraints in the model, such as there being only a single connected object, 

and that the endo- and epicardium contours share a common centrepoint (Tan et al., 2017).  

 

Figure 5.1: Overview of the segmentation system. Each row represents one of the 
three independent networks (LM, CTR, and MB). Columns illustrate the left-to-
right sequential flow of the system: initial source image → pre-processed input 

images → neural network inference → evaluated output. The network imagery in 
the third column is representative for the purpose of illustration, refer to Table 5.2 

for the detailed network architecture. 

For both SA and LA images, an initial estimate of the location of the LV centrepoint, C0, 

was first determined by calculating the intersection point between the SA and LA images. 
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If insufficient LA images were available, C0 was initialized at the centre of each image 

instead. 

In the LM network, individual LA intensity images were first resampled to a standard 

resolution of 2mm/pixel, with intensity values normalized to zero mean and a standard 

deviation (SD) of 1, and a 96×96 pixel crop was performed centred on C0 (Figure 5.1a – 

red x-mark) to include the entire LV. The cropped images were input to the LM network, 

which outputs four values via regression: the evaluated (x, y) coordinates of the LV base 

and LV apex tip (Figure 5.1b – magenta dots). These coordinates were used to determine 

LV longitudinal coverage within the stack of corresponding SA images. This is primarily 

used to identify which SA slices to be included when evaluating clinical measurements 

such as ES and ED blood volume, as well as to identify basal and apical SA slices for 

additional processing, as described in the Pre- and Post-processing section. 

For the input of the CTR network, the same process of resampling (2mm/pixel), intensity-

normalization (zero mean, SD of 1) and cropping (96x96 pixels) was applied to both the 

SA intensity and H1mag images with centre at C0 (Figure 5.1c – red x-mark). Given this 

input, the CTR network outputs two values via regression: the evaluated (x, y) 

coordinates of the LV centrepoint, C1 (Figure 5.1d – red crosshair). These coordinates 

were used for the polar remapping of the SA images for input into the MB network. 

For the input of the MB network, individual SA intensity and H1mag images were first 

scaled to 1mm/pixel, normalized to zero mean and SD of 1, and the images were 

remapped to polar coordinate space centred on C1, with radius 80 pixels and 96 angular 

sections (Figure 5.1e – circular dot pattern represents the polar coordinate space and 

bounds, red dots indicate zero θ position and orange dots indicate positive angular 

direction). The finer resampling was chosen to improve accuracy of delineation of the 

myocardial boundary. The resulting remapped images were 80×96 in size with cyclical 
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buffering on both ends of the angular dimension. From this, individual 80×64 crops were 

taken along the angular dimension and input to the MB network, in the manner of a sliding 

window operation with unit step size (Figure 5.1f & 1g – dotted blue box indicates the 

size of sliding window). Each individual pass outputs two values via regression: the 

evaluated radius of the endo- and epicardial wall. Thus, for a single SA slice, the MB 

network was evaluated 96 times, resulting in 96 endo- and epicardial radius values 

(Figure 5.1g – red and green lines, respectively). Finally, these values were remapped 

back to Cartesian coordinate space to form the myocardial boundaries. 

5.3.3.3 Real-time random augmentation 

Where there are small numbers of training datasets, random augmentation has been shown 

to improve generalization of the network by artificially increasing the number of training 

datasets (Goodfellow et al., 2016). Specifically, this involves distorting the original 

training input data and target output result to create a new training sample, e.g. by 

displacing the image slightly and calculating the new corresponding target centrepoint. 

Random augmentation is only performed during network training. 

For the LM and CTR networks, input images were augmented by random rotation (by 

±180°), flipping, displacement (by 35 mm) and scaling (by ±15%). For the MB network, 

input images were randomly rotated by ±180°, flipped, centrepoint perturbed up to 75% 

of the minimum endocardial radius, and scaled by ±15%. In addition, for the CTR and 

MB networks, 10% of the time a circular crop mask was applied to mask out arbitrary 

non-LV portions of the image, emulating a post-processing field-of-view (FOV) 

reduction operation. Finally, for all networks random Gaussian noise (0 mean, 0.15 SD) 

was added. The aforementioned random FOV reduction was implemented to train the 

CTR and MB networks to handle the associated FOV reduction task during inference, as 

described later in the Pre- and Post-processing – CTR and MB network section 
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(Section 5.3.3.6). Interestingly, during training a small improvement in cross-validation 

loss with the addition of the random FOV reduction was observed, even though the cross-

validation inference did not apply any corresponding FOV reduction (Figure 5.2). It is 

hypothesized that the random FOV reduction influenced the network to de-emphasize 

non-LV information. 

Real-time random augmentation was performed as opposed to pre-generating a fixed 

number of augmented samples, i.e., the random distortions were generated and applied 

continuously during training. 

 

Figure 5.2: A small improvement in cross-validation loss is seen with the addition 
of random FOV reduction when training the CTR network. Dotted and solid lines 
are the absolute error averaged over 500 iterations. Each error bar indicates the 

10th and 90th percentiles. 

5.3.3.4 Network architecture 

In Chapter 4, two networks (CPL/CTR and MB) with differing architecture were utilized 

(Tan et al., 2017). In particular, the earlier MB network utilized a specific “coarse and 

fine” dual sub-network design with varying input windows; the total number of 

parameters for both networks was around three million. In this chapter, the network 
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architectures were simplified significantly and made consistent across all three networks, 

while maintaining the total number of parameters at three million despite the inclusion of 

an additional new network (LM) for processing the long axis views. 

All three networks (LM, CTR, MB) now use a single architecture: 8 CNN layers + 4 

FCON layers, including the final output layer. Each network consists of approximately 

1 million parameters. All intermediate layers had parameter quantities of comparable 

orders of magnitude (right column of Table 5.2). 

Table 5.2: Basic architecture of all three networks (LM, CTR, MB) 

Layer Size Parameters (000’s) 
 1. CNN * 5×5×64 3 
 2. CNN 5×5×64 102 
 3. CNN * 5×5×64 102 
 4. CNN 5×5×64 102 
 5. CNN * 3×3×96 55 
 6. CNN 3×3×96 83 
 7. CNN * 3×3×96 83 
 8. CNN 3×3×96 83 
 9. CNN → FCON † 6×6×960 95 
 10. FCON 320 103 
 11. FCON 320 103 
 12. FCON → OUT 4 (LM) or 2 (CTR, MB) 0.6 

* x = 2, y = 2 stride applied on input data 
† separable (separate depthwise and pointwise convolution) CNN. Maxout activation with 3 

units used.  

Exponential linear units (ELU) (Clevert, Unterthiner, & Hochreiter, 2016) were used as 

activation functions for all layers, except the final output layer (no activation function 

used) and layer nine (maxout activation (Goodfellow et al., 2013) with three units used). 

Pooling was not used; striding of size two produced similar accuracy at lower operational 

cost. Standard CNNs were used in all convolutional layers except layer nine, where a 

separable convolution was used instead; this is an operation where the spatial convolution 

(depth-wise) is performed independently from the channel convolution (pointwise). The 

use of maxout activation and separable convolution in layer nine was primarily motivated 
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by the need to control the number of parameters in this layer to be of comparable 

magnitude to the other layers. 

Although the quantity of training data here is relatively small, the author opted not to use 

any regularization techniques such as dropout, as there was little benefit in the observed 

cross-validation loss. The real-time augmentation used during training appears to provide 

sufficient regularization for the task. 

The Adam stochastic optimizer (Kingma & Ba, 2014) was used to minimize a standard 

mean squared error loss function, using a mini-batch size of 64. The initial learning rate 

was set to 0.001, and annealed by half every ten thousand training runs. The network was 

designed using the TensorFlow r1.0 machine learning framework (Google Inc., California, 

U.S.), and executed on a 3.4GHz Intel processor based workstation with a single NVIDIA 

GTX980 graphics processing unit (GPU). Each network took approximately two hours to 

complete training. During inference, complete execution of all three networks took 

approximately 12s per study, including SA and LA volumes. 

5.3.3.5 Adjustment for paediatric cases 

There were at least 99 subjects in the Kaggle database with age below 12 years, including 

17 subjects below one year old. The median spatial resolution for subjects ≤12 years 

and >12 years of age were 0.7 and 1.4 mm, respectively. The standard 2 mm (LM & CTR) 

and 1 mm (MB) rescaling used during data preparation would result in a loss of spatial 

resolution for images captured at finer resolutions. Despite being acceptable for adult-

sized hearts, such loss is detrimental for paediatric subjects, particularly infants. 

Acquisition FOV was utilized as a surrogate measurement for heart size, calculated as 

√𝑚𝑥 ×𝑚𝑦 × √𝑠𝑥 × 𝑠𝑦, where mx,y is the matrix size, and sx,y is the pixel spacing. From 

analysis of the Kaggle database, a median reference FOV value of 310mm, and a “small 
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heart” threshold of 250mm was determined empirically. For datasets with FOV metric 

below the threshold, the image is scaled up via bilinear interpolation to match the 

reference metric. E.g., a dataset with a 200mm FOV metric would be scaled up by 1.55× 

during data preparation. 

5.3.3.6 Pre- and Post-processing 

(a) LM network 

If a single subject had multiple LA volumes, the multiple evaluated landmark points were 

consolidated via the arithmetic mean. If an individual set of points were separated from 

their counterparts by >15 mm Euclidean distance, they were assumed to be errors and 

discarded. If only two LA volumes were available but their landmark points disagreed 

by >15 mm, preference was applied in this order: LA2C → LVOT → LA4C. This order 

was chosen as the LA2C acquisition is the most straightforward longitudinal view for LV 

landmark localization, whereas the LVOT and LA4C acquisitions are more complicated 

to process as they may have the aorta and the right ventricle, respectively, in view.  

A single set of (x, y) coordinates was obtained for each LA landmark by calculating the 

median across the cardiac phase. This provides a representative position of the LV apex 

tip and base (mid of mitral valve). These coordinates were then mapped to their 

corresponding positions in each SA slice to estimate z-dimension proximity to the LV 

apex and base position, the z-dimension here being the perpendicular dimension with 

respect to the SA plane. At least 20% LV coverage was expected (i.e., at least 20% of SA 

slices classified as between apex and base positions). If not, the points were assumed 

invalid and discarded. In all cases, the threshold constants were determined from analysis 

of the LVSC training data. 
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(b) CTR and MB network 

Using results from the LM network, each SA slice was categorized as apex, mid-level, or 

basal, using the criteria <0.2, 0.2 – 0.9, and >0.9 fractional z-position, respectively. The 

mid-level slices were assumed to produce more reliable results and were processed 

through the CTR and MB networks as-is. From these results, the various LV mid-level 

centrepoints were obtained, and used to calculate the global 95th percentile of the 

epicardial radius, r95, to be subsequently used as contextual information for processing 

the apical and basal slices. 

In the CTR network: for apical and basal slices, each initial centrepoint estimate C0 (the 

intersection between SA and LA images) is replaced by its evaluated C1 counterpart (the 

output of the CTR network) from the neighbouring medial slice, with the assumption that 

the neighbouring medial C1 is a better starting estimate of the current centrepoint under 

evaluation, particularly for apical slices. A FOV reduction (i.e., a circular crop mask) was 

also applied using r95 (the mid-level 95th percentile epicardial radius) as the base value, 

with 1.2× for basal slices, and 0.5× – 1× for apex-tip to apex-mid slices. The LV is 

especially small relative to the full image when close to the apex, potentially causing the 

network to be confused by other high intensity objects. This FOV reduction can be 

thought of as a conservative crop to exclude non-LV objects, which forces the network 

to only consider image data within the reduced FOV. 

For the MB network, directly applying a similar reduced FOV tended to reduce the 

segmentation accuracy of good quality images due to the elimination of surrounding 

contextual data. Instead, a two-pass run is performed: in the first pass the uncropped 

image is processed. A second-pass with reduced FOV is applied for images with >15% 

outlier points. Outlier points were determined by the filtering and smoothing process 

described below. 
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For post-processing, CTR and MB results were filtered and smoothed using a periodic 

cubic spline filter. MB results were smoothed across spatial and temporal dimensions (i.e. 

2D+time contour smoothing), while CTR results were smoothed temporally only. For the 

CTR network: outliers were identified by analysing point-to-point Euclidean distances 

between neighbouring phases; points >5.9 mm distance (which correspond to 99.99 

percentile of LVSC training data) were filtered out. For the MB network: outliers for each 

slice and time frame were identified by analysing the point-to-point Euclidean distance 

between neighbouring radial points; the threshold was determined using a standard 

sigmoid function (Eq. 5.1), with the median radial distance as input, x. Points exceeding 

the threshold were filtered out. In all cases, the threshold, categorization, and multiplier 

constants were empirically determined from analysis of the LVSC training data. 

𝑑 (1 + exp (−(𝑏 × (𝑥 + 𝑎)))) + 𝑐⁄   (5.1) 

5.3.4 Validation and Testing 

For the LVSC database, the validation ground truth was based on a merged, consensus 

dataset (identified as CS*) built from multiple automatic and semi-automatic raters 

(Suinesiaputra et al., 2014). The results were benchmarked to the LVSC ground truth in 

two ways: on an averaged point-by-point basis via the modified Hausdorff distance 

(MHD) (Dubuisson & Jain, 1994); and in the form of binary myocardium images via the 

Jaccard index and Dice index. In addition, the images were subdivided to apical, mid-

level, and basal slice locations, and their MHD metrics analysed separately (the Dice and 

Jaccard index can be unreliable metrics for apical slices due to the small size of the LV 

binary image). 

For the Kaggle database, only the ground truth ED and ES blood volumes are provided. 

Blood volume was calculated via trapezoidal rule integration across the identified LV 

slices, adjusting the result to compensate for LV slice coverage, i.e. in cases where the 
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SA slices did not cover the full extent of the LV, the integrated volume result was adjusted 

to compensate via a truncated ellipsoid function simulating the generic shape of the 

endocardium. The Kaggle challenge utilizes a continuous ranked probability score (CRPS) 

for evaluation, which necessitates building a cumulative distribution function (CDF) for 

the LV volume as opposed to a single value prediction (Kaggle & Booz Allen Hamilton, 

2015). A linear regression model was fit against the Kaggle training set, with the predicted 

LV volumes and subject age and gender as regressors. The CDF was built as a Gaussian 

distribution with mean and standard deviation obtained from the regression model. For 

the LVSC and Kaggle evaluations, a paired t-test was performed comparing Chapter 4 

(Tan et al., 2017) to the current results. 

For the scan-rescan reproducibility experiment using in-house datasets from 10 healthy 

subjects, the ED and ES blood volumes were calculated in a similar manner to the Kaggle 

evaluation, then the standard deviation (SD) of the volumes across the three scans for 

each subject were calculated, and the overall mean SD across subjects obtained. A paired 

t-test was utilized to compare the automated and manual results. 

By design, the CTR and MB networks are tightly coupled. The results from the CTR 

network directly feed into the MB network; whereby the CTR network infers the LV 

centrepoints, and the MB network infers the myocardium as radial distances from the 

inferred centrepoint to the myocardium boundary. To test the independent errors of both 

networks, gold standard LV centrepoints were generated from the LVSC CS* reference 

binary images. For the CTR network, the independent error was calculated as the 

Euclidean distance between the evaluated C1 result and the gold standard centrepoints. 

For context, this was also converted to a fractional result normalized by the average radius 

of the endocardium (in images with no blood pool, the epicardium radius was used 

instead). For the MB network, the LVSC validation test and metrics were repeated, but 

centred on the gold standard centrepoints (as opposed to the C1 centrepoints). 
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Unfortunately, the LVSC CS* dataset does not include reference delineations for the LA 

volumes. Thus a similar independent error analysis for the LM network was unable to be 

carried out. 

Finally, the added effect of the pre- and post-processing was tested. The LVSC validation 

test and metrics were repeated, but with all pre- and post-processing disabled for both the 

Chapter 4 (Tan et al., 2017) and current architectures. Specifically, the special processing 

for apical and basal slices (FOV reduction) was disabled, as well as all filtering and 

smoothing functions as described in the Pre- and Post-processing section. The results 

reflect the raw, unfiltered output from the three networks. 

5.4 Results 

Evaluated against the LVSC database, there is a small but statistically significant 

improvement in all metrics when compared to the earlier, semi-automated architecture in 

Chapter 4 (Tan et al., 2017) (Table 5.3). Notably, there is an approximately 2% 

improvement in the MHD despite the change to a fully-automated algorithm. To place 

this metric in perspective, over 95% of slices have MHD values ≤2× the in-plane 

resolution (i.e. ≤2 pixels). To the best of the author’s knowledge, this is the highest overall 

performance to date for a fully-automated algorithm tested against the LVSC database 

(Table 5.4). Figure 5.3 illustrates results of a representative case from apex to base, 

diastole to systole. 
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Table 5.3: Comparison of results between the previous semi-automated algorithm 
of (Tan et al., 2017), and the fully-automated algorithm presented here. ES = end-

systole, ED = end-diastole. 

 Semi-automated 
(Chapter 4)  

Fully-automated  
(this work) 

Difference ‡ 

LVSC database    
Jaccard index (JI) * 0.765 ± 0.111 0.769 ± 0.109 0.003 ± 0.053 
Dice index (DI) * 0.862 ± 0.083 0.864 ± 0.080 0.003 ± 0.041 
Modified Hausdorff 
distance (MHD) (mm) * 

1.355 ± 0.718 1.329 ± 0.710 0.026 ± 0.495 

Apical 1.720 ± 1.002 1.769 ± 1.126 -0.049 ± 1.103 
Mid-level * 1.250 ± 0.557 1.212 ± 0.493 0.037 ± 0.287 
Basal * 1.963 ± 1.192 1.913 ± 1.168 0.050 ± 0.352 

Std. deviation of JI 
between phases † 

0.051 0.049 0.002 

Std. deviation of DI 
between phases * 

0.035 0.034 0.002 

Std. deviation of MHD 
between phases (mm) † 

0.352 0.329 0.023 

Kaggle database    
ES blood volume 
(absolute diff.) (mL) * 

9.9 ±   9.1 11.4 ±   9.5 −1.5 ±   9.1 

ES blood volume  
(signed diff.) (mL) * 

+1.9 ± 13.4 +7.2 ± 13.0 −5.3 ±   9.8 

ED blood volume 
(absolute diff.) (mL) * 

26.8 ± 16.3 21.7 ± 16.5 5.1 ± 13.2 

ED blood volume  
(signed diff.) (mL) * 

−25.0 ± 19.0  −19.8 ± 18.8  5.2 ± 15.1 

Continuous ranked 
probability score 

0.0124  0.0122  0.0002 

* Statistically significant difference at p<0.001 using paired t-test 
† Statistically significant difference at p<0.01 using paired t-test 
‡ Direction of comparison chosen such that positive values indicate improvement 

Table 5.4: Comparison of results between the proposed algorithm and other 
published techniques. AU (B. Li et al., 2010), AO (Fahmy et al., 2012), SCR (Jolly 
et al., 2012), DS, and INR (Margeta et al., 2012) values are taken from Table 2 of 
(Suinesiaputra et al., 2014). FCN values are taken from Table 3 of (Tran, 2016). 

Values are of mean (standard deviation). 

Method Manual input Jaccard Index 
AU Interactive 4D guide point placement .84 (.17) 
CNR (this work) None .77 (.11) 
FCN None .74 (.13) 
AO Delineate first frame .74 (.16) 
SCR None .69 (.23) 
DS Delineate first frame .64 (.18) 
INR None .43 (.10) 
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Comparing the Chapter 4 (Tan et al., 2017) semi-automated results and current automated 

results visually, the perceived improvement appears to come from the adoption of 

2D+time contour smoothing, which results in higher phase-to-phase consistency. This is 

measured by calculating the standard deviation of the Jaccard index, Dice index, and 

MHD metrics across all cardiac phases for each individual slice, demonstrating 

approximately 4% to 7% average reduced variation in performance on a phase-to-phase 

basis (Table 5.3). 

Another notable change is the additional pre- and post-processing applied to slices at the 

base and apex. In particular, apical slices are very challenging due to the relative small 

size of the blood pool (including disappearance during systolic phases). No statistically 

significant difference was found between the Chapter 4 (Tan et al., 2017) and current 

architecture in the MHD metric for apical slices (p = 0.027). However, it is suspected that 

this is because the LVSC consensus validation dataset (CS*) does not include ground 

truth data for many apical slices. Consensus images were only generated for slices with 

valid results from at least three contributing raters; since apical slices are problematic for 

many algorithms, this likely resulted in invalid results for many raters. Around 47% of 

slices categorized as apical by the LM network were not included in the LVSC consensus 

validation dataset (Figure 5.4 – low result density at both ends). This included slices that 

demonstrated clear visual improvement when compared to the Chapter 4 architecture 

(Figure 5.5). To explore this further, the MHD metric was calculated directly between the 

Chapter 4 (Tan et al., 2017) and current architecture for all apical slices (i.e., as opposed 

to calculating MHD against the CS* reference). It was found that slices missing from CS* 

had significantly higher mean MHD compared to slices in CS* (2.59 vs. 1.23 mm, 

p < 0.001), i.e., slices missing from CS* showed larger differences in results between the 

previous and current architectures. This strongly suggests that apical slices missing from 
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CS* may be more challenging (and are thus affected by the additional pre- and post-

processing in the current architecture). 

 

Figure 5.3: Representative segmentation result from the LVSC validation dataset. 
(Top to bottom) Representative slices from apex to base. (Left to Right) 

Representative cardiac phases from diastole to systole. Red and green contours are 
endo- and epicardium results from the MB network, respectively. 
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Figure 5.4: Segmentation quality as a function of fractional slice position along LV 
apex (zero) to base (one). Performance is strongest in the mid-LV, with noticeable 
drop-offs towards the apex and base ends. In addition, towards the apex and base 

ends there is a lack of data in the consensus gold standard for evaluation. 

 

Figure 5.5: Sample images from LVSC validation dataset demonstrating improved 
stability due to FOV reduction for apical slices. (Top row) Results from Chapter 4 
architecture (Tan et al., 2017), (bottom row) results for current architecture. Red 
and green contours are endo- and epicardial contours resulted from MB network. 

Bottom row dark blue tint areas indicate the FOV reduction crop masks. 

Evaluated against the Kaggle database, there is a similar statistically significant 

improvement in blood volume estimation for the ED phase, though the ES results are 

more mixed (Table 5.3). Notably, these results are comparable to reported inter-reader 
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variability values for multiple independent expert readers (Suinesiaputra et al., 2015): 

bias (mean signed difference) up to ±13 / ±19 mL for ES/ED, and precision (standard 

deviation of signed difference) up to 13 / 13 mL for ES/ED. In comparison, the algorithm 

bias is +7.2 / −19.8 mL for ES/ED, and the algorithm precision is 13.0 / 18.8 mL for 

ES/ED. Despite this, no statistically significant difference was found for the CRPS 

(p = 0.67). This is likely because the CRPS score is strongly affected by the separate 

linear regression used for its calculation; the regression technique used was unchanged 

between the Chapter 4 (Tan et al., 2017) and current architectures. 

Evaluating the scan-rescan reproducibility, no statistically significant difference was 

found between the automated and manual methods. The mean variability (standard 

deviation across three scans, averaged across all subjects) for the ES phase was 

2.43 ± 1.10 mL and 3.35 ± 3.63 mL, p = 0.41 for the automated and manual methods, 

respectively. The mean variability for the ED phase was 3.20 ± 2.26 mL and 

4.40 ± 3.17 mL, p = 0.32 for the automated and manual methods, respectively. 

For the independent error analysis, the CTR network was found to perform well, with a 

mean error of around 1.8 mm or 8% of the endocardial radius (Table 5.5). As expected, 

apical slices performed the worst and mid-level slices the best. The performance of basal 

slices was almost similar to apical slices in terms of absolute error, though it is suspected 

this is partially due to limitations of the gold standard centrepoints used; some of the 

LVSC CS* reference basal slices included only partial binary coverage of the 

myocardium, affecting calculation of the blood pool centrepoint. Given the low error of 

the CTR network, the independent error of the MB network was found to be largely 

similar to its end-to-end performance shown in Table 5.3. The independent error is around 

1% better for all metrics, the biggest increase being the MHD for apical slices (around 8% 

improvement). 
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Table 5.5: Independent error analysis of the CTR and MB networks. For the CTR 
network, the fractional error was determined by normalizing the absolute error 

against the average endocardium radius. For the MB network, the rightmost 
column is the end-to-end network error analysis reproduced from Table 5.3 for 

convenience of comparison. 

CTR network Independent Error End-to-End 
Absolute error (mm) (fractional error) 1.782 ± 1.271   (0.083)  

Apical 2.108 ± 1.987   (0.150)  
Mid-level 1.704 ± 1.053   (0.071)  
Basal 2.086 ± 1.622   (0.092)  

MB network   
Jaccard index (JI) 0.771 ± 0.108 0.769 ± 0.109 
Dice index (DI) 0.866 ± 0.079 0.864 ± 0.080 
Modified Hausdorff distance (MHD) (mm) 1.310 ± 0.621 1.329 ± 0.710 

Apical 1.692 ± 0.710 1.769 ± 1.126 
Mid-level 1.201 ± 0.489 1.212 ± 0.493 
Basal 1.930 ± 1.142 1.913 ± 1.168 

 

 

Finally, the added effect of pre- and post-processing (PPP) was tested, and its overall 

effect was found to be modest. For example, the mean Jaccard, Dice, and MHD metrics 

for the current architecture worsened from 0.769 / 0.864 / 1.329 mm to 0.767 / 0.863 / 

1.338 mm with PPP disabled. There was still a statistically significant difference 

(p < 0.001) for all three metrics comparing the Chapter 4 (Tan et al., 2017) to current 

architecture, demonstrating improvements in network training and architecture 

independent from the additional PPP. In contrast, with PPP disabled, there were no 

statistically significant differences for all three metrics when testing phase-to-phase 

consistency (i.e. standard deviation between phases) between the Chapter 4 (Tan et al., 

2017) to current architecture, further demonstrating the real effect of PPP 2D+time 

contour smoothing. 

5.5 Discussion 

In this chapter a fully automated algorithm has been presented, utilizing both SA and LA 

information concomitantly for the segmentation of LV myocardium in SA cardiac MR 
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images, with full coverage from apex to base, for all cardiac phases. Despite being a fully-

automated operation, a small but statistically significant improvement in segmentation 

performance as compared to the previous semi-automated approach (Chapter 4) (Tan et 

al., 2017) has been shown, while significantly simplifying and making consistent the 

network architecture. 

To the best of the author’s knowledge, the mean 0.77 Jaccard index represents the best 

performance to date for a fully automated algorithm as evaluated against the public LVSC 

database. The only approach exceeding this performance is the semi-automated AU rater 

(Table 5.4), which requires significant manual input through the interactive placement of 

guide points in 4D (B. Li et al., 2010). Additionally, the performance scores for AU are 

slightly advantaged due to its results being used to build the consensus validation dataset; 

i.e., the results for AU are not fully independent of the consensus ground truth. 

In the evaluation against the Kaggle Second Annual Data Science Bowl challenge, a small 

but significant improvement in ED blood volume estimation compared to the previous, 

semi-automated approach (Chapter 4) (Tan et al., 2017) was shown. Notably, the 

performance of the current algorithm is comparable to reported variability values for 

human raters (Suinesiaputra et al., 2015), despite being tested against an order of 

magnitude more studies. The Kaggle CRPS of 0.0122 would have placed tenth position 

out of the 192 original challengers, a relatively strong result considering the MB network 

used for segmentation was not trained against any of the Kaggle data. Notably, the top 

three competitors in the original challenge all utilized CNNs in some way or form: the 

champion (T. Lee & Liu, 2016) and second runner up (Wit, 2016) utilized per-pixel CNN 

segmentation of the blood pool (endocardium only), whereas the first runner up 

(Korshunova, 2016) utilized direct CNN regression of blood volume (no delineations).  
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LV delineation is inferred through the use of neural network regression. The proposed 

design necessitates the use of the polar transform so that the myocardium contour can be 

parameterized as radial distances from the LV centroid. The polar transform may 

introduce errors where the blood pool is small; the endocardium contour approaches the 

LV centroid and may lead to significant interpolation artefacts. This is most apparent in 

apical slices, and is likely a significant reason for the reduced performance there. 

Nevertheless, the proposed approach has been shown to be effective overall. 

The proposed approach is dependent on three notable assumptions. First, to handle 

pediatric cases, it is assumed that small FOVs are a reliable proxy for small hearts, where 

an extra zoom factor can be triggered to compensate. This assumption can fail in cases 

where an inappropriate large FOV was used during acquisition (i.e., excessive inclusion 

of empty space), in patients with a small heart but a large body (would not trigger the 

small FOV threshold), or in images that have been cropped beforehand (smaller FOV 

than expected, leading to inadvertent trigger of the zoom factor).  Nevertheless, none of 

these situations were seen to occur in the extensive collection of test data.  

The second assumption is a reliance on consistent patient positioning metadata in the 

DICOM tags; these are used to correlate the SA and LA scans together, enabling the initial 

centrepoint estimate, C0, as well as for mapping the localized LA landmarks to the SA 

images, defining the LV apex-to-base extent and thus the proper calculation of the clinical 

measurements, and enabling the FOV reduction in apical and basal slices. Unlike the first 

assumption of FOV size, a small number of cases in the Kaggle database were identified 

where the patient positioning metadata between the SA and LA volumes were 

inconsistent (e.g. where SA and LA volumes in the same study appeared to have different 

frames of reference). However, these situations were always easily detectable via out-of-

bounds C0 or landmark coordinates, allowing for straightforward flagging for manual 

intervention.  
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Finally, the majority of the proposed approach is purely based on 2D or 2D+time. This 

allows the algorithm as a whole to be insensitive to inter-slice shifts due to patient 

movement between slice acquisitions. The FOV reduction for apical and basal slices are 

exceptions to this, where they depend on consistent inter-slice positioning. The FOV 

reduction is based on a relatively conservative value – the 95th percentile of the mid-level 

epicardium radiuses – nevertheless it may fail in situations of extreme inter-slice shift, 

though no evidence of that was seen in the independent test data. 

There were some limitations in this study design. The study design was only retrospective 

in nature; no new datasets were collected. In addition, reference data is lacking for some 

aspects of the evaluation: the Kaggle dataset contains reference clinical volume 

measurements but no myocardium delineations, while the LVSC dataset is lacking gold 

standard delineations in a significant fraction of apical slices. 

In conclusion, a fully automated algorithm utilizing SA and LA information for the 

segmentation of LV myocardium in SA cardiac MR images has been presented, with full 

coverage from apex to base, for all cardiac phases. This is the best performing fully 

automated algorithm to date as evaluated by the public LVSC challenge, while 

demonstrating performance comparable to human readers in both absolute variability of 

clinical parameters, as well as in scan-rescan reproducibility. This overall performance is 

a strong indicator of practical clinical utility. Univ
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CHAPTER 6: LINEAR-REGRESSION CONVOLUTIONAL 

NEURAL NETWORK FOR FULLY AUTOMATED CORONARY LUMEN 

SEGMENTATION IN INTRAVASCULAR 

OPTICAL COHERENCE TOMOGRAPHY 

6.1 Abstract 

This chapter presents the convolutional neural network (CNN) regression technique 

introduced in Chapter 4 and Chapter 5, as applied to a new, unrelated task – automatic 

segmentation of vessel lumen wall in intravascular optical coherence tomography (OCT) 

– thus demonstrating the generalizability of the technique that was presented in Chapter 5. 

Intravascular OCT is an optical imaging modality commonly used in the assessment of 

coronary artery diseases during percutaneous coronary intervention. Manual 

segmentation to assess luminal stenosis from OCT pullback scans is challenging and time 

consuming. A linear-regression CNN is developed to automatically perform vessel lumen 

segmentation, parameterized in terms of radial distances from the catheter centroid in 

polar space. Benchmarked against gold standard manual segmentation, the proposed 

algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 

0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The 

average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms 

per image, suggesting the potential to be incorporated into a clinical workflow and to 

provide quantitative assessment of vessel lumen in an intra-operative timeframe. 

This chapter has been published as (Yong et al., 2017); the published text is largely 

reproduced here excepting minor amendments for consistency and flow. For the work 

described in this chapter, this authors’ role was on the conception and implementation of 

the neural network architecture. Data collection and analysis of the intravascular OCT 

scans were led by the first author, Yan Ling, Yong. 
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6.2 Introduction 

Cardiovascular disease is the leading cause of death globally (Mendis, 2014).  

Atherosclerosis of the coronary artery disease results in remodelling and narrowing of the 

arteries that supply oxygenated blood to the heart, and thus may lead to myocardial 

infarction. Common interventional approaches include percutaneous coronary 

intervention and coronary artery bypass graft surgery (American Heart Association, 

2017). The choice of treatment will vary depending on a range of clinical factors, 

including morphology of the vessel wall, and degree of stenosis as quantified by cross-

sectional luminal area. 

Imaging of the vasculature, specifically coronary arteries, plays a critical role in 

assessment of these treatment options. X-ray computed coronary angiography and cardiac 

magnetic resonance imaging (MRI) allow non-invasive imaging, but are very limited in 

their ability to assess the structure of the artery walls (Nikolaou, Alkadhi, Bamberg, 

Leschka, & Wintersperger, 2010). Invasive techniques, such as intravascular ultrasound 

(IVUS) (De Franco & Nissen, 2001), provide cross-sectional imaging of the artery walls, 

but with limited spatial resolution (Garcìa-Garcìa, Gogas, Serruys, & Bruining, 2011). 

Intravascular optical coherence tomography (IVOCT) lacks the image penetration depth 

of IVUS, but provides far higher resolution imaging, allowing visualization and 

quantification of critical structures such as the fibrous cap of atherosclerotic plaques and 

delineation of the arterial wall layers (Bezerra, Costa, Guagliumi, Rollins, & Simon, 2009; 

Jang et al., 2002; Stamper, Weissman, & Brezinski, 2006). In addition, IVOCT is finding 

application in imaging coronary stents to assess vascular healing and potential restenosis 

(Jaguszewski & Landmesser, 2012; Karanasos et al., 2014). 

Delineation of the vessel lumen in IVOCT images enables quantification of the luminal 

cross-sectional area. Such delineation has also been used as the first step towards plaque 
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segmentation (Celi & Berti, 2014; Wang et al., 2010) and the assessment of stent 

apposition (Adriaenssens et al., 2014). However, manual delineation is impractical due to 

the high number of cross-sectional scans acquired in a single IVOCT pullback scan, 

typically >100 images. Automatic delineation of the lumen wall is challenging due to 

various reasons. Non-homogenous intensity, blood residue, the presence and absence of 

different types of stents, irregular lumen shapes, image artifacts, and bifurcations are 

some of these challenges (Tearney et al., 2012). 

Previous delineation approaches have employed edge detection filters (Sihan et al., 2008) 

and spline-fitting to segment the lumen boundary and stent struts (Gurmeric, Isguder, 

Carlier, & Unal, 2009). Other approaches have included the use of wavelet transforms 

and mathematical morphology (Moraes, Cardenas, & Furuie, 2013),  Otsu's automatic 

thresholding and intersection of radial lines with lumen boundaries (Celi & Berti, 2014; 

Wang et al., 2010), Markov-Random fields models (Tsantis et al., 2012) and light back-

scattering methods (Guha Roy et al., 2016). 

Deep learning is a type of machine learning algorithm utilizing artificial neural networks 

(ANNs), which in recent years has been found useful for medical image processing. Input 

features are processed through a multi-layered network, defined by a network of weights 

and biases, to produce a non-linear output. During training, these weight and bias values 

are optimized by minimizing a loss function, mapping training input to known target 

output values. CNNs are a particular subset of ANN that operate on input with regular 

structure: they apply convolutional filters to the input of each layer, and have proven to 

be highly effective in image classification tasks (Havaei et al., 2017; Krizhevsky et al., 

2012; C. S. Lee et al., 2017). 

Most neural network applications in image processing are image-based classification 

models where the network is trained to classify each pixel in the input image into one of 
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several classes. The use of this technique has been extended into a variety of medical 

image segmentation applications. For example, CNNs has been used to classify lung 

image patches in interstitial lung disease (Q. Li et al., 2014) as well as head and neck 

cancer in hyperspectral imaging (Halicek et al., 2017). CNNs have also been applied in 

retinal layer and microvasculature segmentation of retinal OCT images (Fang et al., 2017; 

Prentašic et al., 2016), and arterial layers segmentation in patients with Kawasaki disease 

(Abdolmanafi, Duong, Dahdah, & Cheriet, 2017). These CNN methods employ the 

commonly used feature classification approach. 

An alternative approach is to train the network to perform linear-regression, in contrast 

to feature classification. In Chapter 4 and Chapter 5, a linear-regression CNN model has 

been demonstrated to outperform conventional CNN in cardiac left ventricle 

segmentation (Tan et al., 2017; Tan, McLaughlin, et al., 2018). CNN regression was used 

to infer the radial distances between the left ventricle centrepoint and the endo- and 

epicardial contours in polar space. This indicates the possibility of an alternative 

application of CNNs for image segmentation in comparable medical applications.  

In this chapter, a novel method of coronary lumen segmentation for clinical assessment 

and treatment planning of coronary artery stenosis using a linear-regression CNN is 

proposed. The algorithm is tested on in vivo clinical images and assessed against gold-

standard manual segmentations. This is the first use of a linear-regression CNN approach 

to the automated delineation of the vessel lumen in IVOCT images. This chapter is 

structured as follows: Section 6.3 provides experimental details and an explanation of the 

CNN architecture and implementation; Section 6.4 provides accuracy results 

benchmarked against inter-observer variability of manual segmentation, and an 

assessment of the impact of varying the amount of training data; and Section 6.5 

concludes with a discussion of the potential clinical impact and limitations of such an 

approach. 
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6.3 Materials and method  

6.3.1 IVOCT data acquisition and preparation for training and testing 

The data used for this study comprises IVOCT-acquired images of patients diagnosed 

with coronary artery disease. The IVOCT images were acquired from the University of 

Malaya Medical Centre catheterization laboratory using two standard clinical systems: 

Illumien and Illumien Optis IVOCT Systems (St. Jude Medical, USA). Both systems have 

an axial resolution of 15 µm and a scan diameter of 10 mm. The Ilumien system and the 

Illumien Optis system have maximum frame rates of 100 fps and 180 fps, respectively. 

The study was approved by the University of Malaya Medical Ethics Committee (Ref: 

20158-1554), and all patient data were anonymized. 

In total 64 pullbacks were acquired from 28 patients (25%/75% male/female, with mean 

age 59.71 (±9.61) years) using DragonflyTM Duo Imaging Catheter with 2.7 F crossing 

profile when the artery was under contrast flushing (Iopamiro® 370). The internal 

rotating fibre optic imaging core performed rotational motorized pullback scans for a 

length of 54 mm or 75 mm in under 5 sec. These scans include multiple pre- and post-

stented images of the coronary artery at different locations. These pullbacks were 

randomly assigned to one of two groups with a ratio of 7:3, i.e. 45 pullbacks were 

randomly designated as training sets and the remaining 19 as test sets. Excluding images 

depicting only the guide catheter, each pullback contains between 155 to 375 polar images. 

These images contain a heterogeneous mix of images with the absence or presence of 

stent struts (metal stents or bioresorbable stents or both), fibrous plaques, calcified 

plaques, lipid-rich plaques, ruptured plaques, thrombus, dissections, motion artifacts, 

bifurcations and blood artifacts. The original size of each pullback frame was 984 × 496 

pixels (axial × angular dimension), and was subsampled in both dimensions to 488 × 248 

pixels to reduce training and processing time. For each image, raw intensity values were 
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converted from linear scale to logarithmic scale before normalizing by mean and standard 

deviation. 

Gold-standard segmentations were generated on both training and test sets by manual 

frame-by-frame delineation using ImageJ (Schindelin, Rueden, Hiner, & Eliceiri, 2015) 

in Cartesian coordinates, according to the document of consensus (Tearney et al., 2012), 

whereby a contour was drawn between the lumen and the leading edge of the intima. The 

contour was also manually drawn across the guidewire shadow and bifurcation at 

locations that best represent the underlying border of the main lumen, gauged by the 

adjacent slices. The manual contour of the lumen border for each image was subsequently 

converted to polar coordinates, smoothed and interpolated to 100 points using cubic B-

spline interpolation method for CNN training and testing. 

6.3.2 CNN regression architecture & implementation details 

Using our linear-regression CNN model, in each polar image the radius parameter of the 

vessel wall is inferred at 100 equidistant radial locations, rather than the more 

conventional approach of classifying each pixel within the image. This has the advantage 

of avoiding the physiologically unrealistic results that may arise from segmentation of 

individual pixels. The lumen segmentation was parameterized in terms of radial distances 

from the centre of the catheter in polar space.  

The general flow of the proposed CNN model is illustrated in Figure 6.1. Our network 

consists of a simple structure with 4 convolutional layers and 3 fully-connected layers, 

including the final output layer. All polar images were padded circularly left and right 

before being windowed for input. The window dimension was 488 ×128 pixels centered 

on each individual radial point, therefore yielding 100 inputs and 100 evaluated radial 

distances per image.  
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Figure 6.1: Overview of the linear-regression CNN segmentation system (refer to 
text for details). 

The details of the network architecture are described in Table 6.1. In the network 

architecture, a filter kernel of size 5 × 5 × 24 with boundary zero-padding was applied for 

all convolutional layers, yielding 24 feature maps at each layer. In the first layer, a stride 

of 2 was also applied along the angular dimension to reduce computational load. The first 

three layers were also max-pooled by size 2 × 2. Each fully-connected layer contains 512 

nodes. Exponential linear units (ELU) (Clevert et al., 2016) were used as the activation 

functions for all layers, including both convolutional and fully-connected layers, except 

the final layer. Dropout with keep probability of 0.75 was applied to the fully-connected 

layers FC1 and FC2, to improve the robustness of the network (Rokach & Maimon, 2005).  

The final layer outputs a single value representative of the radial distance between the 

lumen border and the centre of the catheter for the radial position being evaluated. 

The objective function used for the network training is the standard mean-squared error. 

Starting from a random initialization, the weight and bias parameters are iteratively 

minimized by calculating the mean squared error between the gold standard radial 

distance and the output of the CNN training. The Adam stochastic gradient algorithm was 

used to perform the optimization, i.e. minimization, of the objective function (Kingma & 

Ba, 2014). The network was trained stochastically with a mini-batch size of 100 at a base-
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learning rate of 0.005. The learning rate was halved every 50,000 runs. The training was 

stopped at 400,000 runs where convergence was observed (i.e. when the observed losses 

had ceased to improve for at least 100,000 runs). The trained weights and biases of the 

network, amounting to approximately 6.3 million parameters, are subsequently used to 

predict the lumen contour on the test sets.  

The neural network was designed in a Python (Python Software Foundation, Delaware, 

USA) environment using the TensorFlow v1.0.1 machine learning framework (Google 

Inc., California, USA). The execution of the network was performed on a Linux-based 

Intel i5-6500 CPU workstation with NVIDIA GeForce GTX1080 8GB GPU. The training 

time for 45 train sets was 13.8 hours and the complete inference time for each test image 

was 40.6 ms.  

Table 6.1: Linear-regression CNN architecture for lumen segmentation at each 
windowed image. The output is the radial distance at the lumen border from the 

center of the catheter. CN: convolutional layer, FC: fully-connected layer. 

Layer In Weights Pooling Out 
CN1* 488×128×1 1×5×5×24 2×2 244×32×24 
CN2 244×32×24 24×5×5×24 2×2 122×16×24 
CN3 122×16×24 24×5×5×24 2×2 61×8×24 
CN4 61×8×24 24×5×5×24 - 61×8×24 
FC1 11712 11712×512 - 512 
FC2 512 512×512 - 512 
Out 512 512×1  1 

*A stride of size 2 was applied on the angular dimension to reduce computational load 

6.3.3 Validation 

The accuracy of our proposed linear-regression CNN lumen segmentation was validated 

against the gold standard segmentation of the test data pullback acquisitions, which were 

the aforementioned 19 manually delineated pullbacks. These pullbacks contain in total 

5685 images. The accuracy was assessed in three ways: (1) on a point-by-point basis via 
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distance error measure; (2) in the form of binary image overlaps and (3) based on luminal 

area.  

The first assessment involves point-by-point analysis on the 100 equidistant radial 

contour points from all images, whereby the mean absolute Euclidean distance error 

between the gold standard and predicted contours was computed for each image.  

The second assessment was performed to evaluate the regions delineated as lumen. The 

amount of overlap between the binary masks as generated from the predicted contours 

and the corresponding gold standards were computed using the Dice coefficient and 

Jaccard similarity index.   

The third assessment targeted at the luminal area, which is one of the clinical indices to 

locate and grade the extent of coronary stenosis for treatment planning. Luminal area was 

computed from the binary mask produced from the predicted contours and compared 

against the corresponding gold standard. A 1-tailed Wilcoxon signed ranks test is also 

performed on the errors of the estimated luminal areas at significance level of 0.001. 

Three-dimensional surface models of the lumen wall were also generated for all pullbacks 

to facilitate visual comparison of the segmentation by manual contouring and by 

automated contouring using the proposed CNN regression model.   

6.3.4 Dependency of network performance on training data quantity 

To understand the dependency of the network performance to the amount of training data 

required, the variation in accuracy of the 19 test pullbacks is assessed against different 

numbers of training data sets. Tests were performed with 10, 15, 20, 25, 30, 35, 40 and 

45 pullbacks. The training pullbacks for each group were selected randomly. The number 

of training runs with different training sets was kept constant at 400,000 runs, with a 

similar base learning rate and learning rate decay protocol. 
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6.3.5 Inter-observer variability against CNN accuracy 

To quantify the allowable variation in segmentation, an experiment is performed to assess 

variation in the manual gold standard that would be generated by three independent 

observers.  

One hundred images were selected randomly from five pullbacks of the test sets and the 

lumen manually delineated by three independent observers. The interobserver variability 

was assessed through Bland-Altman analyses, consistent with Celi and Berti in their study 

on the segmentation of coronary lesions (Celi & Berti, 2014). Specifically, the signed 

differences between all possible corresponding pairs of luminal areas from all three 

observers were plotted against their mean area differences. Bland-Altman analyses were 

also performed on luminal areas evaluated by the CNN against the corresponding 

evaluation by all observers. These analyses provide an understanding of the total bias and 

limits of agreement (i.e. 95% confidence interval or 1.96×standard deviation of the signed 

differences from the mean) among all observers themselves as well as between the CNN 

and the observers.  

6.4 Results 

6.4.1 Dependency of network performance on training data quantity 

The results assessing the impact of training data quantity on CNN accuracy are shown in 

Figure 6.2. The value reported here is the mean positional accuracy of each point along 

the vessel wall. There was notable improvement in CNN accuracy with increases in the 

training data quantity up until 25 training data sets. Beyond that, the mean absolute error 

per image varied little with increased data. However, the optimal CNN segmentation was 

obtained from training with the highest sample size, i.e. 45 pullbacks consisting of 13,342 

training images, as summarized in Table 6.2. At 45 training pullbacks, the median of the 
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mean absolute error per image as quantified using point-by-point analysis was 21.87 

microns, whereas Dice coefficient and Jaccard similarity index were calculated as 0.985 

and 0.970, respectively.  

 

Figure 6.2: Mean absolute error against different numbers of training datasets. 

Table 6.2: Accuracy of CNN segmentation with 45 training pullbacks (n = 13,342). 
The values are obtained based on the segmentation on 19 test pullbacks (n = 5,685). 

Measure Median (interquartile range) 
Mean absolute error per image (point-by-point analysis), µm 21.87 (16.28, 31.29) 
Dice coefficient 0.985 (0.979, 0.988) 
Jaccard similarity index 0.970 (0.958, 0.977) 

 

 

Representative segmentation results are shown in Figure 6.3. Apart from performing well 

on images with clear lumen border contrast Figure 6.3(a), linear-regression CNN 

segmentation has shown robustness in segmenting images with inhomogeneous lumen 

intensity (b), severe stenosis (c), blood residue due to suboptimal flushing (d)-(f), multiple 

reflections (g), embedded stent struts (h)-(i), malapposed metallic stent struts (j), 

malapposed bioresorbable stent struts (k), and minor side branches ((c), (i) & (l)). 

Acceptable lumen segmentation was found at the shadow behind the guide wire and 

Number of training datasets 
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metallic stent struts across all images. Errors were observed to occur most frequently at 

major bifurcations (angle spanning > approximately 90˚), where the appropriate boundary 

for segmenting the main vessel was ambiguous (Figure 6.4(c)-(d)). 72% of the 100 worst 

performing segmentation were found to contain major bifurcations and, at these locations, 

overestimation of the area of the main vessels was noted. 

Based on the results obtained with the optimal training quantity (45 pullback data sets), 

luminal area estimates in all 19 test pullbacks were calculated, as tabulated in Table 6.3. 

CNN segmentation yields median (interquartile range) luminal area of 5.28 (3.88, 7.45) 

mm2 matching well with the results of manual segmentation of 5.26 (3.93, 7.45) mm2 (i.e. 

gold standard). The median (interquartile range) absolute error of luminal area was 1.38%, 

which is statistically significantly below 2% (p<0.001) as tested by the 1-tailed Wilcoxon 

signed rank test. Figure 6.5 shows two representative examples of the 3D reconstructed 

vessel wall from two different pullbacks for visual comparison of CNN regression 

(middle column) against gold standard manual (left column) segmentation.  The vessel 

wall was color-coded with the cross-sectional luminal area. Difference in luminal area 

between CNN regression and gold standard segmentation are color-coded on the vessel 

wall on the right column.  
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Figure 6.3: Representative results from the test sets, showing good segmentation 
from linear-regression CNN on images with good lumen border contrast (a), 

inhomogenous lumen intensity (b), severe stenosis (c), blood swirl due to 
inadequate flushing (d)-(f), multiple reflections (indicated by yellow arrow) (g), 
embedded metallic and bioresorbable stent struts due to restenosis in (h) & (i), 

respectively, malapposed metallic stent struts (j), malapposed bioresorbable stent 
strut (k), and minor side branch (l). Blue and red contours represent CNN 
segmentation and gold standard, respectively. Scale bar (a) represents 500 

microns. 
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Figure 6.4: Representative cases from the test sets, showing reasonable lumen 
segmentation from linear-regression CNN on images with medium-sized 

bifurcations (a-b). Poorer results were seen at major bifurcations (c-d), where the 
appropriate boundary for segmenting the main vessel was ambiguous. Blue and 
red contours represent CNN segmentation and gold standard, respectively. Scale 

bar (a) represents 500 microns.  

Table 6.3: Luminal area in 19 test pullbacks with optimal training. 

Method Median (Interquartile range) 
Luminal Area (mm2) 
         Manual segmentation area 

 
5.28 (3.88, 7.45) 

         CNN segmentation area 5.26 (3.93, 7.45) 
Percentage Errora (%) 
         Signed percentage error  
         Absolute percentage errorb 

 
0.06 (-1.24, 1.53) 
1.38 (0.63, 2.62) 

aNormalized by manual segmentation area 
bSignificantly below 2%, p<0.001 
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Figure 6.5: Reconstruction of vessel wall from two different pullbacks for visual 
comparison of CNN regression segmentation against the gold standard manual 

segmentation. Vessel walls (left and middle columns) are color-coded with cross-
sectional luminal area. Difference in luminal area is displayed on the right. The 

axis is in mm and colourbar indicates luminal area in mm2. 
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6.4.2 Inter-observer variability against CNN accuracy 

The Bland-Altman analysis between all three observers showed a bias (mean signed 

difference) of 0.0 mm2 and limits of agreement of ±0.599 mm2 in terms of luminal area 

estimation (Figure 6.6(a)). Comparing the CNN to all observers, the bias was 0.057 mm2 

and the variability in terms of limits of agreement was comparable at ±0.665 mm2 (Figure 

6.6(b)). These results suggest that automated segmentation had sub-100 micron bias to 

over-estimate luminal area, and that the variation between automated and manual 

estimates of luminal area was only slightly greater than the inter-observer variability 

between human observers. 

 

Figure 6.6: Bland-Altman plot analysis of luminal area for all possible pair-
comparisons between different observers (a) and between CNN and observers (b) 

for the 100 randomly selected images from the test set.   

6.5 Discussion  

Lumen dimension is an important factor in the optimization of percutaneous coronary 

intervention. This measure allows the clinician to localize and measure the length of 

lesions along the vessel wall before making an optimum selection of stent for deployment. 

It also allows one to indirectly assess the quality of stenting (i.e. based on total expansion 

of the narrowed artery) and is the first step towards quantifying the amount of stent 
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malapposition. Misinterpretation of lesion location and length results in both clinical and 

financial consequences as additional stents are required for redeployment, and 

overlapping of multiple stents are often associated with increase incidences of restenosis, 

thrombosis and adverse clinical outcomes (Suzuki, 2014). 

Manually quantifying coronary lumen dimension from IVOCT images over the entire 

extent of the imaged segment is currently not clinically feasible in view of the number of 

sample images available per pullback (i.e. >100 images). Automatic segmentation is 

desirable but challenging due to the significant variety of image features and artifacts 

obtained in routine scanning, restricting the operation of most image processing 

algorithms to a specific subset of good quality images. Deep learning techniques have 

been shown to be more robust in a pool of heterogeneous input images, and this has also 

been demonstrated in our results (Tan et al., 2017). Our study represents the first study 

employing such a technique, combined with a linear regression approach, to the automatic 

segmentation of lumen from IVOCT images.  

Our results showed a notable increase in CNN accuracy up to 25 training pullbacks, and 

incremental improvements thereafter. The median accuracy in luminal radius at each 

radial location, against a manual gold standard, was 21.87μm at optimal training with 45 

training pullbacks, which is comparable to the OCT system's axial resolution (15μm). The 

median luminal area was marginally greater by manual segmentation in comparison to 

CNN segmentation (i.e. 5.28 mm2 vs 5.26 mm2), yielding a median error of 1.38% (i.e. 

significantly <2% at p = 0.001). The CNN also has good limits of agreement against all 

observers (±0.665 mm2), which is comparable with the limit of agreement among all 

observers (±0.599 mm2). 

Published algorithms have required the prior removal of guide-wires or blood artifacts in 

the images as well as interpolation of output contours across guidewire shadow and 
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bifurcation  (Abdolmanafi et al., 2017; Celi & Berti, 2014; Giovanni J Ughi, Adriaenssens, 

Desmet, & D’hooge, 2012; Wang et al., 2010) in order to complete an accurate 

segmentation. Our linear-regression CNN algorithm did not require additional pre- and 

post-processing of the data, with the behaviour across these features arising implicitly 

from the training data. In addition, the proposed method works on a wide spectrum of 

IVOCT images whether in presence or absence of stent struts. This approach was found 

to be of utility in assessing patient both pre- and post-stenting. Furthermore, the CNN 

segmentation was able to segment images regardless of stent types and no prior 

information on implanted type is needed, as can be required by some other segmentation 

techniques (G. J. Ughi et al., 2012), making it applicable in a wider range of clinical 

settings.  

While training time was significant (13.8 hours for 45 training pullbacks), this is all pre-

computed prior to clinical usage. The subsequent time to process a test image was 

extremely small (40.6 ms). Thus, the use of linear-regression CNNs offers the potential 

of intra-operative assessment of the vessel lumen during an intervention.  

Limitations of the algorithm occur at areas with highly irregular lumen shapes, and at 

major bifurcations, where vessel lumen of the main branch is ambiguous even for manual 

segmentation. This implementation of the algorithm has adopted a 2D processing 

approach where each image is processed independently. Extending this to a volumetric 

approach, where adjacent slices influence the segmentation of each image, may result in 

more stable results in these situations. Alternatively, some form of energy minimization 

approach may be incorporated into the CNN cost function to enforce additional 

regularization of the lumen shape.  

In conclusion, this chapter has demonstrated a novel linear-regression CNN for the 

segmentation of vessel lumen in IVOCT images. The algorithm was tested on clinical 
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data and compared against a manual gold-standard. Results suggested that the CNN 

provided accurate estimates of the lumen boundary, with errors only slightly greater than 

the inter-observer variability between multiple human observers. In addition, the 

algorithm was fast, processing test images at a rate of 40.6 ms per image. Our results 

suggest that linear-regression CNN-based approach has the potential to be incorporated 

into a clinical workflow and provide quantitative assessment of vessel lumen in an intra-

operative timeframe. 
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CHAPTER 7: CONCLUSION 

In this thesis, the development and implementation of two fully automatic algorithms has 

been presented: one for the localization of left ventricle (LV) blood pool in cardiac cine 

magnetic resonance imaging (MRI) (Chapter 3), and another for the segmentation of LV 

myocardium from basal to apical slice locations across all cardiac phases (Chapter 4 and 

Chapter 5). The LV localization algorithm was developed using expert knowledge-based 

techniques, while the LV segmentation algorithm was developed using a data-driven 

technique, specifically convolutional neural network (CNN) regression. In addition, the 

underlying CNN regression technique has been demonstrated to generalize to another, 

unrelated application: fully automatic segmentation of vessel lumen wall in intravascular 

optical coherence tomography (OCT) (Chapter 6). 

7.1 Research contributions and significance 

For the LV localization task, the proposed algorithm showed significant improvement to 

existing solutions (Jolly, 2008; X. Lin et al., 2006), particularly in the presence of non-

cardiac motion and high intensity scanning artifacts. The test against 1185 externally 

published datasets also represents the largest published validation to date for automatic 

LV localization. Correct LV localization was confirmed in 97.3% of the datasets, with an 

average processing time of 3.0 s per case. At time of writing, there are no known freely 

available LV localization implementations published online, whether open source or 

otherwise. The open source release of the proposed LV localization code will benefit the 

research community, as an easily accessible benchmark for future algorithmic 

improvements in automatic LV localization. 

For the LV segmentation task, the novel use of neural network regression for image 

segmentation was introduced, by parameterizing the task in the form of radial distances 

from the LV centrepoint. When compared to the standard practice of image segmentation 
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by per-pixel classification, it was hypothesized that this alternate approach would 

improve performance by encoding basic physiological constraints such as the LV endo- 

and epicardium contour having a common point of origin. The results demonstrated that 

this approach achieved superior performance when compared against a more 

conventional architecture with 3× larger parameter count (Tran, 2016). In addition, 

restricted field-of-view (FOV) processing was introduced for challenging slice locations 

near the LV apex, and demonstrated significant improvement in performance thereof. 

Benchmarked against the public Left Ventricle Segmentation challenge (LVSC), this 

approach achieved the best performance published to date (0.77 ± 0.11 Jaccard index) for 

a fully automatic algorithm. Execution time was approximately 12 s per case. 

7.2 Study limitations and future work 

For the LV localization task, a complete direct comparison against other published LV 

localization algorithms was not performed. This is because at the time of development: 

(1) there was no freely available implementation of said algorithms; (2) none of the 

published algorithms were tested against publicly available or standard databases of 

images; and (3) the primary published algorithms of interest (Jolly, 2008; X. Lin et al., 

2006) were missing details hindering full reimplementation, e.g. threshold values. As 

such a comprehensive comparison between competing approaches is still lacking, though 

the open source release of the proposed LV localization code should improve this 

situation for future researchers. 

For the LV segmentation task, the primary benchmark was the public LVSC database; at 

time of writing it remains the largest public database for full LV segmentation including 

both endo- and epicardial contours for all cardiac phases. This allowed for direct 

comparison to other published algorithms targeting the same database. In addition, the 

evaluation is semi-blinded as the results are calculated by the independent third-party 
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LVSC organizers. Nevertheless, there are quirks in the way the final LVSC performance 

is calculated: importantly, participating groups are allowed to test against a subset of the 

LVSC test set, and their final, averaged performance is only reflective of this subset rather 

than of the whole. This can include subsets by subject, slice position, phase, and even 

individual images. Thus, it is unlikely that the final result tables reflect an identical 

playing field (i.e., competitors can opt to skip images they deem problematic). This author 

considered implementing competing CNN per-pixel classification architectures for direct 

comparison, but at time of development did not have access to hardware that could 

support the size of state-of-the-art CNN architectures. Indeed, the significantly lower 

parameter count of the CNN regression architecture was partially an aspect of this 

hardware limitation. 

At time of writing, newer public LV segmentation databases have been released (e.g. the 

2017 Automated Cardiac Diagnosis Challenge). Due to the data-driven nature of CNNs, 

additional training data would likely improve performance further; the new training data 

should be integrated into the training pool for future study. 

Assessed visually, the current performance of the LV segmentation algorithm at mid-

level slice locations approaches human parity, especially when normal human inter-rater 

variability is taken into account. However, the LV contour radius CNN regression 

architecture necessitates an initial polar transformation of the image centred on the LV 

blood pool, and this produces strong image artifacts close to the polar centroid. Though 

targeted improvements such as restricted FOV processing were introduced (Chapter 5), 

the final segmentation performance remains noticeably weaker at slice locations near the 

LV apex where image artifacts are strongest. It is suspected that hybrid architectures may 

be useful here, where a CNN per-pixel classification network is used for slice locations 

near the apex, and the CNN regression network used for all other slice locations. This is 

Univ
ers

ity
 of

 M
ala

ya



 

  123 

because a CNN per-pixel classification architecture would not require the polar 

transformation and its subsequent image distortion. 

In summary, the following research directions might be promising for future work: 

(1) Integrate data from newly released public LV segmentation databases to improve 

the network performance. 

(2) Develop a hybrid architecture for LV segmentation: regression networks for base-

to-mid level positions, and per-pixel networks for apical positions. 

7.3 Final remarks 

Both project objectives have been met successfully. For the first objective, an open source 

algorithm for automatic LV blood pool localization has been introduced and published. 

For the second objective, a novel application of neural network regression was introduced 

and utilized to develop a fully automated LV segmentation algorithm for cardiac cine 

MRI. This was validated against a diverse set of publicly available and in-house cardiac 

cine MRI data. The strong performance overall is suggestive of practical clinical utility. 
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