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CHALCONE BASED DITHIOCARBAMATE DERIVATIVE INCORPORATED 

SOL-GEL FOR THE REMOVAL AND PRE-CONCENTRATION OF 

AQUEOUS MERCURY(II) ION 

ABSTRACT 

This study demonstrated the application of chalcone based dithiocarbamate derivative as 

metal capturing ligands for the removal and pre-concentration of mercury ion (Hg2+). 

Chalcones are a group of naturally occurring compounds, which can be extracted from 

fruits, vegetables, plants, and spice. In the first part of this work, chalcone was first 

chemically modified to produce dithiocarbamate derivative, 3-oxo-1,3-diphenylpropyl-2-

(naphthalen-2-ylamino) ethylcarbamodithioate (ODPPNE). After that, chalcone 

incorporated sol-gel (SG-C) and ODPPNE incorporated sol-gel (SG-ODPPNE) were 

prepared and used as adsorbents to remove Hg2+. The result showed that with the presence 

of dithiocarbamate functional group, SG-ODPPNE exhibited the high selectivity toward 

Hg2+ adsorption as compared to other metal ions. The effect of operating conditions (such 

as the size of adsorbent, adsorbent dosage, contact time, the initial concentration of Hg2+ 

and pH of solution) were examined for the adsorption of Hg2+ by SG-ODPPNE. The 

adsorption data were fitted well to Langmuir isotherm, and the monolayer adsorption 

capacity was found to be 13.5 mg/g. In the adsorption kinetic study, the obtained data 

were well fitted to pseudo-second order model. According to intraparticle diffusion 

model, the adsorption process of Hg2+ by SG-ODPPNE involves film diffusion, 

intraparticle diffusion, and equilibrium stages. For the second part of this study, ODPPNE 

incorporated silica was coated onto magnetic nanoparticle (ODPPNE@MNP). This 

ODPPNE@MNP was used as the solid phase in magnetic dispersive micro-solid phase 

extraction method (D-𝜇SPE) for the pre-concentration and determination of trace amount 

of Hg2+ ion in water samples. Under optimized condition, this method achieved low 
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method detection limit (4.0 ng/L), wide linearity (50.0-5000.0 ng/L), high pre-

concentration factor (100), a good coefficient of regression (0.9985) and good 

repeatability (4.5-6.5%). This proposed method was also successfully utilized for 

determination of Hg2+ in drinking water, tap water and surface water with good extraction 

efficiency (90.1-99.0%) as well as the relative standard deviation value for intra-day and 

inter-day study of 0.7-8.8% and 1.1-7.7%, respectively. In conclusion, the natural product 

based ODPPNE is an effective and selective ligand, which can be used to determine Hg2+ 

in aqueous samples and to remove Hg2+ from the water. 

Keywords: Chalcone, dithiocarbmate derivative, sol-gel, mercury, adsorption 
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TERBITAN DITIOKARBAMAT BAGI KALKON YANG DIGABUNGKAN 

DENGAN SOL-GEL UNTUK PENYINGKIRAN DAN PEMEKATAN ION 

RAKSA(II) ION DALAM LARUTAN AKUEUS. 

ABSTRAK 

Kajian ini menunjukkan penggunaan terbitan ditiokarbamat bagi kalkon sebagai ligan 

untuk penyingkiran dan pra-pemekatan ion raksa (Hg2+) dalam air. Kalkon merupakan 

sebatian semulajadi yang boleh diperolehi daripada buah-buahan, sayur-sayuran, 

tumbuhan dan rempah. Di bahagian pertama kajian ini, kalkon telah diubah suai secara 

kimia untuk menghasilkan terbitan ditiokarbamat,  3-okso-1,3-difenilpropil-2-(naftalena-

2-ilamino) etilkarbamoditioat (ODPPNE). Seterusnya, sol-gel yang bergabung dengan 

kalkon (SG-C) dan sol-gel yang bergabung dengan ODPPNE (SG-ODPPNE)  

disintesiskan sebagai penjerap untuk Hg2+. Hasil kajian ini menunjukkan bahawa dengan 

kehadiran kumpulan berfungsi ditiokarbamat, SG-ODPPNE menunjukan kepilihan yang 

tinggi terhadap penjerapan Hg2+ berbanding dengan ion logam yang  lain. Kesan daripada 

parameter seperti saiz penjerap, jumlah penjerap, masa, kepekatan  Hg2+ dan pH larutan 

bagi penjerapan Hg2+ oleh SG-ODPPNE telah dikaji. Data penjerapan  yang diperolehi 

adalah patuh kepada isoterma Langmuir dan muatan jerapan ekalapis yang diperolehi 

ialah 13.5 mg/g. Dalam kajian kinetik jerapan, data eksperimen adalah padan dengan 

model tertib pseudo kedua. Menurut kepada model resapan intrazarah, proces penjerapan 

Hg2+ oleh SG-ODPPNE melibatkan resapan tipisan, resapan intrazarah dan peringkat 

keseimbangan. Untuk bahagian kedua kajian ini, nanopartikel bermagnet  telah disalutkan 

dengan gel silika yang digabungkan dengan ODPPNE (ODPPNE@MNP). 

ODPPNE@MNP telah digunakan sebagai fasa pepejal dalam kaedah pengekstrakan fasa 

pepejal bermagnet secara penyebaran (D-𝜇SPE) untuk permekatan dan penentuan Hg2+ 

dalam sampel air. Dibawah keadaan optimum, kaedah ini berjaya mencapai had 
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pengesanan kaedah yang rendah ( 4.0 ng/L) , julat linear yang luas (50.0-5000.0 ng/L), 

faktor pra-pemekatan yang tinggi (100), pekali regresi yang baik (0.9985) dan  

keterulangan yang memuaskan (4.5-6.5%) . Kaedah ini juga telah berjaya digunakan 

dalam penentuan Hg2+ dalam air minuman,  air paip dan air permukaan dengan pemisahan 

keupayaan yang baik (90.1-99.0%). Sisihan piawai relatif bagi analisis  intraday dan 

interday adalah 0.7-8.8% dan 1.1-7.7% masing-masing. Kesimpulannya, ODPPNE 

berasaskan sebatian semulajadi merupakan ligan yang berkesan dan berpilih dalam 

penentuan Hg2+ dan penyingkiran Hg2+ dalam air. 

Kata kunci: Kalkone, terbitan ditiokarbamat, sol-gel, raksa, penjerapan 
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CHAPTER 1: INTRODUCTION 

1.1 Background Study 

Clean drinking water is a basic human need. Unfortunately, 748 million people around 

the world still facing the lack access to the improved drinking-water (WHO and UNICEF, 

2014). This problem is particularly acute in the developing countries (WHO, 2017). There 

are numbers of threats to drinking water which include chemicals, animal wastes, 

pollutants and human wastes which have been frequently contaminated the sources of 

drinking water (USEPA, 2004). Among various pollutants, metal contamination in the 

aquatic environment has attracted global attention owing to its toxicity and persistence in 

the environment (Islam et al., 2015). Small amounts of heavy metal are commonly found 

in our environment and diet. Some of these metals are necessary for diet; for example, 

living organism required various amounts of heavy metal such as iron, cobalt, copper, 

manganese, molybdenum and zinc (Singh et al., 2011) for metabolism process 

(Abbaspour et al., 2014; Bost et al., 2016; Fenech, 2001; Mendel, 2013; Roohani et al., 

2013; Seo and Park, 2008). However, due to the bioaccumulation and biomagnifications 

in the food chain, metals and metalloids from natural and anthropogenic sources are 

continuously posing the serious threat to human and ecological health (Rahman et al., 

2012). Most of the metals are entering to the natural water system through the 

anthropogenic activities such as mining, disposal of untreated and partially treated 

effluents which containing toxic metals, metal chelates from different industries, 

indiscriminate use of heavy metal-containing fertilizer and pesticides in agricultural fields 

(Reza and Singh, 2010). Table 1.1 shows the heavy metal pollution status in several 

surface water sources in Malaysia and other countries. The amount of some heavy metal 

such as aluminum (Al), arsenic (As), boron (B), cadmium (Cd), chromium (Cr), iron (Fe), 

lead (Pb), manganese (Mn), mercury (Hg) and selenium (Se) have been found at the level 

which is higher than the quality standard regulated by National Water Quality Standards 
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for Malaysia (NWQS), Drinking Water Quality Standard for Malaysia (DWQS) and 

World Health Organization (WHO) Guidelines for Drinking-water Quality. 

 

Table 1.1: Heavy metal pollution status of some rivers and lakes in Malaysia and other countries 

Heavy metal that    
exceeded the water 
quality standard 

Location 

Hg a, b, c, 1 Langat River Basin, Selangor 

Fe and Mn a, b, c, 2 Well, river and tap water, Sungai Buloh village, Selangor. 

Al and Fe a, b, c, 3 Selangor River, Selangor 

As a, b, c, 1 Klang River Basin, Kuala Lumpur 

Fe, Pb and Se a, b, c, 4 Curtin Lake, Miri Sarawak 

As, Cd, Cr and Pb c, 5 Dhalai Beel , Bangladesh 

As ,Cd, Cr and Pb c, 5 Bangshi River, Bangladesh 

As and B c, 6 Chasicó Lake, Argentina 

Al, Cd and Pb c, 7 Ismailia Canal, Nile River, Egypt 

Pb c, 8 Siling Reservoir Watershed in Zhejiang Province, China 

As and Pb c, 9 Shadow Lake of Yangtze River region, China 

Hg c, 10 River in Artisanal gold mining site, Asutifi District, Ghana 

As and Hg c, 11 Can Tho/Hau Giang provinces, Mekong Delta, Vietnam 

 

aNWQS (WEPA, 2006), bDWQS (MOHM, 2010), cWHO Guidelines for Drinking-water Quality 
(WHO, 2011) 
 
1Poon et al., 2016, 2Ambu et al., 2014, 3Daniela and Kawasaki, 2016, 4Prasanna et al., 2012, 
5Rahman et al., 2014, 6Avigliano et al., 2015, 7Goher et al., 2014, 8Naveedullah et al., 2014, 9Liu 
and Li, 2011, 10Adjei-Kyereme et al., 2015, 11Wilbers et al., 2014 
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 Among various heavy metals, one of the serious threats to human health is 

associated with the exposure to mercury (Hg) and this metal is required to be removed to 

very low levels during water treatment. Hg has been found to bioaccumulate in the living 

organism to a level that produced adverse effects (Hennebery et al., 2011). In the 

environment, mercury can exist and circulate in several chemical forms which include 

elemental mercury (Hg0), mercury ions (Hg+ and Hg2+) and organomercury (CH3Hg+) as 

shown in Figure 1.1. 

 

Figure 1.1: Mercury species exist in environment system. 

 

 Elemental Hg0 is the predominant form of mercury in the atmosphere (Lamborg 

et al., 2002) with natural and anthropogenic activities as the major sources (Strode et al., 

2007). The atmospheric half-life of Hg0 vapour is within 0.5 to 1 year. Due to the long 

half-life, Hg0 can spread globally in the atmosphere (Selin, 2009; Weiss-Penzias et al., 

2016). For the human, the poisoning of Hg0 vapour is mainly through inhalation 

(Lambertson, 2005). In Prestea, Ghana, 46.7% of small-scale gold miners inhaled high 
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level of Hg0 vapour that released from gold mining activities were experienced high Hg0 

concentration in their urine (Mensah et al., 2016). The chronic exposure of Hg0 vapour 

can damage the central nervous system and kidneys (Lambertson, 2005). On the other 

hand, the absorption of Hg0 through ingestion and the dermal process has been found to 

be poor and limited (Park and Zheng, 2012).  

 Inorganic mercury in the form of mercuric (II) ion (Hg2+) is the most abundant 

mercury species in the aquatic environment (Bridges and Zalups, 2010). Conversion of 

elemental Hg0 to gaseous inorganic mercury Hg2+ or particle bound Hg2+ compounds can 

be occurred through photochemical oxidation of Hg0 in the atmosphere (Selin, 2009; 

Weiss-Penzias et al., 2016). Hg2+ species with shorter half-life and water-soluble 

behaviour is then deposited in the aquatic system (Stein et al., 1996; Zhang et al., 2012). 

Thus, the Hg2+ was predominantly found in freshwater and sea water system (Karthiga et 

al., 2016). Mercurous (Hg+) and mercuric (Hg2+) complexes can be found in the aquatic 

system resulted from the complexation between deposited Hg+ or Hg2+ with anions in 

water such as chloride and hydroxide ions (Lambertson, 2005). On the other hand, the 

atmospheric Hg2+ tends to form complex also with the other ions such as chloride ion in 

the atmosphere (Stein et al., 1996).  The main Hg2+ intake route for the human is by Hg2+ 

contaminated food or drink (Bridges and Zalups, 2010).  The study by Monteiro et al. 

(2013) also showed that, inorganic mercury has the potential to undergo bioaccumulation 

through the food chain in the aquatic system. The toxicity of Hg2+ complexes is largely 

depending on their solubility in water. Hence, the low water-soluble forms of Hg+ 

complexes are less poisonous than water soluble Hg2+ complexes (Langford and Ferner, 

1999). The corrosive feature of inorganic mercury enhances the gastrointestinal 

permeability and absorption. Oral exposure to mercury salt causes the syndrome like 

burning chest pain, darkened discoloration of the oral mucous membrane and severe 
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gastrointestinal symptoms and follow by signs of mercurial stomatitis and impaired 

kidney function (Park and Cheng, 2012). 

 Organic mercury such as methyl mercury (CH3Hg+) is the most toxic mercury 

form as compared to Hg0, Hg+ and Hg2+ (Hong et al., 2012). Methyl mercury is forms 

through methylation of Hg2+ in the aquatic system by microorganism such as sulfate and 

iron reducing bacteria (Gilmour et al., 2013). The hazardous methylmercury is intake by 

the aquatic organism and initiates the bioaccumulation of mercury in the food chain. 

Methyl mercury intake by human body can happen through the contaminated aquatic 

organism such as fish which are consumed and as food. (Hong et al., 2012).  Methyl 

mercury with high lipid-soluble properties can permeate into the blood and reach the brain 

and placental barrier which ended up at central nervous system (Lambertson, 2005).  

 This study was focused on the removal and pre-concentration of Hg2+. World 

Health Organization (2005) reported that almost all mercury in drinking water present in 

the form of Hg2+. The Hg mostly presences in the air as Hg0 vapour while the organic 

mercury such as methyl mercury is mainly accumulating in biota. Moreover, methyl 

mercury is not produced until the methylation of inorganic mercury (Hong et al., 2012) 

in water.  Due to the hazardous effect of mercury, the maximum allowable concentration 

of mercury in drinking water is keep under 0.001 mg/L by Drinking Water Quality 

Standard of Malaysia (DWQS) (MOHM, 2010), 0.002 mg/L by the United States 

Environmental Protection Agency (USEPA) (USEPA, 2009) and 0.001 mg/L by World 

Health Organization (WHO) (WHO, 2011). 

 Conventional water treatment methods for mercury ion (Hg2+) removal that have 

been developed are such as coagulation and flocculation (Henneberry et al., 2011), 

chemical precipitation (Lewis, 2010; Sumesh et al., 2011), electrochemical methods 

(Wang et al., 2011), membrane filtration (Bessbousse et al., 2010; Song et al., 2012) and 

adsorption process (Dong et al., 2016). Among these methods, adsorption process is 
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receiving high attention because of its high efficiency, technical flexibility and cost-

effectiveness (Dong et al., 2016). A variety of adsorbents for heavy metal removal had 

been studied and discussed by many researchers. These adsorbents are such as activated 

carbon, bioadsorbent, agricultural wastes and clay material (Abu-Eishah, 2008; Ghorbani 

et al., 2011; Kavand et al., 2014; Khoramzadeh et al., 2013; Monier and Abdel-Latif, 

2012; Najafi et al., 2012). On the other hand, these materials have its own limitation such 

as low loading capacities, relatively small metal ion binding constant and less selectivity 

(Najafi et al., 2012). Recently, the used of porous silica frameworks (SiO2) or so-called 

sol-gel as adsorbent in the removal of toxic substances such as heavy metal have become 

a popular method due to the simplicity in preparation, low cost, large surface areas, 

excellent thermal and mechanical stability, rapid adsorption kinetics, and excellent anti-

swelling properties (Niu et al., 2015; Zhao et al., 2012). In addition, the sol-gel is readily 

modified by a variety of functionalities ligand for selective removal of the target metal 

ion such as aqueous Hg2+ (Esmaeili Bidhendi et al., 2014; Khor et al., 2017)   

 A wide range of sol-gel based adsorbents has been developed for the adsorption 

of heavy metals and the sol-gel with incorporated metal capturing ligand has been 

reported as one of the effective adsorbents (Zhao et al., 2012). This material has become 

an attractive adsorbent due to its simplicity in preparation (Zaitoun et al., 2014). Thus far, 

various ligands such as N-(dipropylcarbamothioyl) thiophene-2-carboxamide, 

polyamidoamine dendrimers, trioctylmethylammonium 1-phenyl-3-methyl-4-benzoyl-5-

onate, 2-aminothiazole, 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane- 7,16-

bis(malonate), and dithizone have been synthesized for the removal and also the 

determination of metals ions (Mehmood et al., 2013; Sun et al., 2014; Turanov et al., 

2016; Tzvetkova and Nickolov, 2012; Yost et al., 2000; Zhang et al., 2014). These ligands 

are often synthesized through a series of organic reactions, which is not environmental 

friendly. On the other hand, numerous studies also have shown the ability of natural 
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products such as rutin (Ikeda et al., 2015) and curcumin (Picciano and Vaden, 2013) to 

form complexes with metal ions.  

 The first part of this study demonstrated the application of a natural product called 

chalcone as a ligand for the removal of Hg2+ in water. Chalcone contains two aromatic 

rings linked by a three-carbon α, β-unsaturated carbonyl system (Figure 1.2a). Chalcone-

type of natural products can be obtained from fruits (e.g., citruses, apples), vegetables 

(e.g., tomatoes, shallots, bean sprouts, and potatoes), various plants and spices (Orlikova 

et al., 2011; Patil et al., 2009). Chalcone was selected because of its low-toxicity, eco-

friendly, and possible chemical modification (Ghouila et al., 2012; Hsieh et al., 2012). In 

this study, the chemical modification was also carried out on chalcone to increase its 

selectivity towards the removal of Hg2+. Among various functional groups, 

dithiocarbamate functionalized ligands have been found to be selective towards the 

interaction with Hg2+ (Figueira et al., 2011; Tavares et al., 2013). Therefore, in this study, 

chalcone was modified into dithiocarbamate derivative, 3-oxo-1,3-diphenylpropyl-2-

(naphthalen-2-ylamino) ethylcarbamodithioate (ODPPNE) (Figure 1.2b). The ODPPNE 

was then incorporated on the sol-gel to generate the effective adsorbent in removal 

aqueous Hg2+.  

 

Figure 1.2: (a) Chalcone and (b) ODPPNE. 

 

 The concentration of total dissolved mercury in natural water samples could be 

varying from pg/L to ng/L (Zhang et al., 2014). However, the detection limits for 

inorganic mercury for common instruments such as Atomic Absorption Spectrometry 

(AAS) are at the µg/L level (WHO, 2005). Therefore, an appropriate pre-concentration 
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method is required before Hg2+ determination. The application of solid phase extraction 

method that employing modified magnetic particles as adsorbents in analytical chemistry 

has increased significantly in recent years (Wierucka and Biziuk, 2014; Ríos and 

Zougagh, 2016). When magnetic particle-based adsorbents are used for the extraction, 

super paramagnetic properties of these materials allow it to be separated from water by 

an external magnetic field. As a result, the duration of sample preparation can 

significantly shorten and simplified. A wide range of magnetic adsorbents have been 

developed for selective determination of Hg2+ (e.g. Adlnasab et al., 2014; Abolhasani et 

al., 2015; Alonso et al., 2016; Cui et al., 2015; Es’haghi et al., 2016; López-Garcia et al., 

2015; Sobhi et al., 2017; Zhang et al., 2014). Most of these magnetic adsorbents were 

produced through a series of reactions. These reactions are such as synthesis of iron oxide 

(Fe3O4) magnetic nanoparticle, coating of Fe3O4 with silica layer, functionalization of 

silica coated Fe3O4 and bonding of selected ligand onto the functionalized silica coated 

Fe3O4 (Alonso et al., 2016; Cui et al., 2015; Sobhi et al., 2017). Some of this reactions 

involved high temperature reflux and also time consuming. Hence, the second part of this 

study demonstrated the coating of sol-gel doped with ODPPNE ligand onto Fe3O4 to 

produce an adsorbent (ODPPNE@MNP) for pre-concentration of Hg2+. This method 

simplifies the preparation of adsorbent by incorporating the ligand during the coating of 

Fe3O4 with silica layer. The performance of ODPPNE@MNP as solid phase for Hg2+ pre-

concentration and determination was evaluated through a series of experiment. 
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1.2 Objective of Study 

The objectives of this study were: 

a) to prepare and characterize the ODPPNE incorporated sol-gel (SG-ODPPNE) 

and the magnetic nanoparticle coated with ODPPNE incorporated sol-gel 

(ODPPNE@MNP). 

b) to evaluate the Hg2+ adsorption performance of the adsorbents 

c) to investigate the capability of selected adsorbent (ODPPNE@MNP) for pre-

concentration of Hg2+. 

d) to develop a Hg2+ pre-concentration method for analysis water sample by using 

ODPPNE@MNP as solid phase in magnetic dispersive micro-solid phase 

extraction technique (D-𝜇SPE). 

 

 

1.3 Research scope 

Generally, this research study can be divided into two parts. First part of the study was 

consisted of the synthesis of of SG-ODPPNE as adsorbent for the removal of Hg2+ in 

water sample. In the second part of the study, ODPPNE incorporated silica gel which 

showed the greatest selectivity towards the adsorption of Hg2+ was used as the coating 

material for iron oxide magneric nanoparticle (MNP) to produce ODPPNE@MNP. The 

ODPPNE@MNP was used as an adsorbent for dispersive micro-solid phase extraction 

technique (D-𝜇SPE) to pre-concentrate Hg2+ in water sample.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Conventional treatment methods for Hg2+ removal in water 

Generally, the conventional treatment methods which have been used for Hg2+ removal 

are include coagulation-flocculation, co-precipitation, electrochemical treatment, 

membrane filtration and adsorption (Dong et al., 2016; Henneberry et al., 2011; Huang et 

al., 2016; Nanseu-Njiki et al., 2009; Santhosh et al., 2013). 

2.1.1 Coagulation and Flocculation 

The coagulation-flocculation process is a common technique used for the removal of 

suspended solids in water during water and wastewater treatment (Lanciné et al., 2008). 

During coagulation, coagulants such as ferric chloride and alum are added to the water. 

The cation species such as Al3+ and Fe3+ are neutralized the negatively charged suspended 

solids. The suspended solids are then allowed to agglomerate into larger settable flocs 

during flocculation (Amuda and Amoo, 2007; Folens et al., 2017; Lanciné et al., 2008). 

The flocs are then precipitated as sludge. Positively charged heavy metals are known to 

form the strong complexes with organic based suspended solids (Muresan et al., 2011). 

Haitzer et al. (2002) reported that the Hg2+ bind favourably to organic matter that 

containing the sulphur atom. Hence, the certain fraction of Hg2+ can be removed from the 

water when the suspended solids are removed through coagulation-flocculation. For Hg 

removal, Henneberry et al. (2011) reported the efficiency of three different coagulants 

namely ferric sulfate (FeSO4), ferric chloride (FeCl2) and poly aluminium chloride (PAC) 

in the removal of inorganic mercury (Hg+ and Hg2+) in surface water by using 

coagulation-flocculation process. They found that 96, 97, and 84% of inorganic mercury 

were removed when FeSO4, FeCl2, and PAC were used as the coagulant. Although the 

coagulation-flocculation method was widely used it’s generally facing some limitation. 

This method required high operation cost due to chemical consumption (Kurniawan et 

al., 2006) and the further treatment of the sludge that generated during the process (Teh 
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et al., 2016).  Furthermore, the usage of the conventional coagulant such as alum was 

limited by its dosage due to the high dosage of alum-based coagulant released and 

increased the amount of toxic aluminium species in water (Teh et al., 2016). 

2.1.2 Co-precipitation 

The co-precipitation method was performed by the addition of the co-precipitation 

reagent such as sodium hydroxide and iron sulphide into the metal contaminated water. 

The metal ions are then reacted with the added reagent to form metal hydroxide or metal 

sulphide as insoluble precipitates (Santhosh et al., 2013). Besides that, heavy metal in 

water also can be removed as the insoluble metal-ligand precipitate by the addition of 

synthetic ligand into the water (Blue et al., 2008). The insoluble precipitates can be 

separated from aqueous solution by filtration or sedimentation. For Hg2+ removal through 

the co-precipitation method, a previous study reported the application of hydrogen 

sulphide and alkali metal sulphide salts as co-precipitation reagents (Ebadian, 2001). This 

study reported that 99.9% of Hg2+ was removal from water. In another study, Blue et al. 

(2008) applied a synthetic ligand called dipotassium salt of 1,3-benzendiamidoethanethiol 

(K2BDET) to treat Hg2+ contaminated ground water. The Hg2+ was found to bind with the 

BDET2- and subsequently, formed the insoluble Hg-BDET complex as the precipitate. 

They found that 99.9% of Hg2+ was removed. Although this method showed high 

efficiency in Hg2+ removal, it also has its own weaknesses. For example, the co-

precipitation process tends to produce the large amount of low-density sludge, which is 

difficult to remove from water (Fu and Wang, 2011). In addition, the metal sulphide based 

precipitate tends to form the colloidal system, which may cause difficulties in the 

separation process (Fu and Wang, 2011). Moreover, the evolution of toxic H2S fumes 

may occur under acidic condition if the sulphur-type of co-precipitation reagents was used 

(Fu and Wang, 2011).  
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2.1.3 Electrocoagulation 

Electrocoagulation (EC) is a technique that applies the electrochemical method for the 

treatment of polluted water (Ferniza-García et al., 2017; Hakizimana et al., 2017). In EC 

process, the electric current is applied to water through an electrode (anode) which 

commonly consisted of iron or aluminum material. The electrochemical dissolution of 

anode electrode generates the coagulants species such as Fe3+ or Al3+, which have the 

capability coagulate the soluble or suspended particles to form the settleable floc 

(Ferniza-García et al., 2017). On the other hand, the reduction of water at cathode will 

release the hydroxide ion (OH-) and hydrogen gas (H2) (Bazrafshan et al., 2012). The OH- 

reacts with Al3+ to form aluminum hydroxide (Al(OH)3) as floc. The Al(OH)3 floc with 

high surface area, acts as a trap for the contaminant such as metal ions in water (Nouri et 

al., 2010; Nanseu-Njiki et al., 2009). Meanwhile, the released H2 gases enhanced the 

removal of flocculated particles from water (Bazrafshan et al., 2012).  According to 

Nanseu-Njiki et al. (2009), Hg2+ also can be removed by EC from the water. In this study, 

the electrode consisted of iron or aluminum was used as the anode. The metal ion released 

from anode was found to react with OH- to form hydroxide species of Hg2+. The reported 

result showed that 99.9 to 100% of aqueous Hg2+ were removed. The main concern of 

this method was the large initial capital investment due to long term operation and costly 

electricity supply which may restrict its applicability (Arbabi and Golshani, 2016; Fu and 

Wang, 2011). 
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2.1.4 Membrane Filtration 

Membrane technology such as ultrafiltration (UF), nanofiltration (NF), and reverse 

osmosis (RO) is one of the popular methods for water purification (Bessbousse et al., 

2010). During the membrane filtration process, the water is passing through the 

permeable membrane with pore size varying from 0.5 to 20 nm. This membrane can retain 

macromolecule and suspended solid (Barakat et al., 2011). The low-molecular weight 

solutes and metal ions, which soluble in water are readily to pass through the membranes. 

Hence, removal of metal ions through membrane filtration always associated with the 

addition of metal chelating polymers to the water.  Incorporation of the metal chelating 

ligand into the membrane is also another method that has been introduced for metal ions 

removal. Among various membrane filtration process, polymer enhanced ultrafiltration 

(PEUF) process is one of the techniques which have been applied in the removal of Hg2+ 

in water. In PEUF process, the water-soluble polymer such as polyvinyl alcohol (PVA), 

polyethylenimine (PEI), polyvinylamine (PVAm) and poly (acrylic acid) (PAA) (Huang 

et al., 2016; Jana et al., 2011) was added to the water to bind with Hg2+. The water sample 

was then filtered through UF membrane where the Hg2+-polymer complexes were 

rejected by the membrane (Huang et al., 2016). Jana et al. (2011) applied the combination 

of PVA and chitosan coated ceramic ultrafiltration membrane in UF process. The result 

shows that almost 100% of Hg2+ and As3+ were removed. Huang et al., (2015) reported 

that the combination of PVAm and pristine UF membrane managed to remove 99% of 

Hg2+ in water. Although, PEUF can be a good alternative for metal ions removal, however, 

membrane fouling by the water-soluble polymer is the main concern in this method. To 

resolve the fouling problem, the increase of pressure and periodical cleaning have to be 

carried out and consequently, the maintenance cost increases (Kabay and Bryjak., 2013). 
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2.1.5 Adsorption 

Among various treatment methods, removal of heavy metal through adsorption process 

is receiving high attention because of its high efficiency, technical flexibility and cost-

effectiveness (Dong et al., 2016). A wide range of silica-based and carbon-based 

adsorbents have been developed for the metal ions removal. The carbonaceous materials 

such as activated carbon (AC), graphene oxide (GO) and carbon nanotube (CNT) have 

been frequently reported as the effective adsorbents for the removal of the heavy metal 

ion in water (Arcibar-Orozco et al., 2015; Mubarak et al., 2014; Ren et al., 2013).In 

general, the carbonaceous materials are not selective materials. In order to enhance the 

selectivity in the adsorption of the specific metal ion such as Hg2+, these carbonaceous 

materials were often modified with metal capturing groups. For example, Zhu et al. (2009) 

reported the application of AC that functionalized with the amine group in the removal 

of Hg2+. According to the result obtained by Zhu et al. (2009), the removal efficiency of 

Hg2+ by the modified AC was much higher than when the unmodified AC. In another 

study, polypyrrole was intercalating into GO, and the maximum adsorption capacity of 

this adsorbent to the Hg2+ was 980 mg/g (Chandra and Kim, 2011). Pillay et al. (2013) 

demonstrated the application of sulphur containing MWCNT (S-MWCNT) and AC (S-

AC) in the removal of Hg2+. They reported that the maximum adsorption capacity was 

72.8 μg/g for S-MWCNT and 44.7 μg/g for S-AC. The carbonaceous materials also suffer 

from a few drawbacks such as the high commercial cost and poor dispersal ability in water 

(Saka, 2012; Shawky et al., 2012). For example, low dispersal ability of GO in water 

causing the surface area of GO to decrease drastically in water (Hashim et al., 2016). 

Hence, the hybridized GO are often produced to overcome the concern on the dispersal 

ability (Hashim et al., 2016). Moreover, the synthesis processes hybridized carbonaceous 

materials was tedious and harsh reaction condition are often required.  
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2.2 Removal of aqueous metal ion by using sol-gel based adsorbent 

2.2.1 Sol-gel and silica gel 

A wide range of silica-based adsorbents has been developed for the removal of heavy 

metals in aqueous solution. The porous silica or metal frameworks (SiO2) or so-called 

sol-gel have become a popular material for metal ions removal due to its simplicity in 

preparation, low cost, large surface areas, excellent thermal and mechanical stability, 

rapid adsorption kinetics, excellent anti-swelling properties and good dispersal ability in 

water (Niu et al., 2015; Zhao et al., 2012). A “sol” is a colloidal suspension of the 

dispersed solid particle in a dispersion medium or liquid. In this system, the dispersed 

solid is stable and does not precipitate through gravitational force. The condensation 

process of the dispersion medium leads to the formation of the cluster, and the bonding 

between the clusters leads to the formation of a single giant network called gel (Brinker 

and Scherer, 2013).  

 There are several routes in producing sol-gel. These processes are such as 

hydrolysis and condensation of metal or metalloid alkoxide precursor, Pechini’s method, 

pyrolysis method, organic-hybrids method and non-hydrolytic reaction (Danks et al., 

2016; Kumar et al., 2015; Sciancalepore et al., 2017; Wang et al., 2014; Wu et al., 2016).  

Among these methods, hydrolysis and condensation of various metal or metalloid 

alkoxide are the most widely used method for the preparation of sol-gel (Dimitriev et al., 

2008; Brinker and Scherer, 2013). In hydrolysis and condensation method, various 

chemicals such as silicates, borate, aluminate and transition metal alkoxide have been 

used as the precursor (Brinker and Scherer, 2013). Silicon alkoxide such as 

tetraethoxysilane (Si(OC2H5)4, TEOS) and tetramethoxysilane (Si(OCH3)4, TMOS) are 

the most common and thoroughly studied materials in sol-gel preparation (Brinker and 

Scherer, 2013). Sol-gel that produced from silicon alkoxides is also known as silica gel   
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 The preparation of silica gel through hydrolysis and condensation of silicon 

alkoxide (Figure 2.1) begins with the hydrolysis of alkoxysilane (Si(OR)4) group under 

the acidic or basic condition to form the silanol group (Si-OH) (Equation 2.1). This 

process continues with the formation of siloxane group (Si-O-Si) which constitute the 

entire silica networks by condensation between Si-OH group (Equation 2.2) or between 

Si-OH and Si(OR)4 group (Equation 2.3) (Hench and West, 1990). Poly-condensation 

between Si-OH or Si-OH with Si(OR)4 form the cluster and the collision between cluster 

finally forms large aggregate called gel (Brinker and Scherer, 2013). The aging process 

takes place after gelation process where the poly-condensation process continued to 

complete the formation of the gel. During the aging process, the gel shrinks due to the 

expulsion of liquid from the pores (Hench and West, 1990). Finally, the entrapped liquid 

in the pore network is removed by evaporation to form a xerogel. The gels also can be 

dried under supercritical conditions to produce aerogels (Danks et al., 2016). 

 

Figure 2.1: The mechanism for the formation sol-gel through hydrolysis and condensation of 

silicon alkoxides (Brinker and Scherer, 2013). 
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2.2.2 Modification of silica gel 

Silica gel is a functional material with an impressive range of applications in controlled 

release process of drug delivery, protective coatings, adsorption, chromatography, 

separation, biotechnology, energy conservation, cultural heritage restoration, 

environmental remediation, and many other fields of contemporary technology 

(Ciriminna et al., 2013). In order to enhance the properties and effectiveness of silica gel 

in metal ions adsorption, this material is often modified through various surface 

functionalization process. The silica gel with the OH groups at the surface are often 

functionalized by grafting method, co-condensation method and the bridged organosilane 

as precursors (Hoffmann et al., 2006). To further improve the performance of the 

adsorbent in adsorption of metal ion, various metal capturing ligands also have been 

immobilized onto the functionalized silica gel or incorporated into the silica gel matrix. 

2.2.2.1 Surface modification of silica gel through grafting method 

The functionalization of mesoporous silica can be carried out by covalently immobilizing 

the organosilane or so-called silane coupling reagents onto the silica surface through 

grafting method (Yokoi et al., 2004). This process is achieved by reacting organosilanes 

such as 3-aminopropyltrimethoxysilane (APTES), 3-chloropropyltriethoxysilane (CPTS) 

and methacryloxypropyltriethoxysilane (MPTS) with the free silanol group of silica gel 

(Jal et al., 2004; Rahman and Padavettan, 2012) as shown in Figure 2.2. 

 

Figure 2.2: Surface functionalized silica gel through grafting methods. 
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 Heidari et al. (2009) functionalized the nano-MCM-41 mesoporous silica using 

APTES (Figure 2.3a) to generate the amine functionalized silica-based adsorbent (Figure 

2.3b) (nano NH2-MCM 41) for the removal of Ni2+, Cd2+, and Pb2+ from ternary aqueous 

solution. The removal efficiency of this material was 92, 93 and 97% for Ni2+, Cd2+, and 

Pb2+, respectively, by using 5.0 g/L of nano NH2-MCM 41. 

 

Figure 2.3: (a) APTES and (b) amine functionalized silica based adsorbent. 

Fan et al. (2016) grafted the MPTS (Figure 2.4a) onto the surface of silica gel surface to 

study the adsorption ability of this mercapto-functionalized silica gel (Figure 2.4b) 

towards Sb3+. This adsorbent showed high adsorption affinity toward Sb3+, and it was 

suggested as an efficient adsorbent for the removal of Sb3+ from aqueous solution. 

 

Figure 2.4: (a) MPTS and (b) mercapto-functionalized silica gel. 
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Diethylphosphatoethyltriethoxysilane (Figure 2.4a) was also grafted onto the silica gel to 

produce phosphorus acid-functionalized silica gel (Figure 2.4b) to produce an adsorbent 

for the adsorption of U6+ from aqueous solution. The maximum adsorption capacity of 

this material was found to be 76.9 mg/g (Zhou et al., 2016).       

 

Figure 2.5: (a) Diethylphosphatoethyltriethoxysilane and (b) phosphorus acid-functionalized    

silica gel. 

2.2.2.2 Surface modification of silica gel through co-condensation method 

Co-condensation process (Figure 2.6) is another method for the functionalization of silica 

gel. In this method, the organic functionalities are covalently bonded onto the silica gel 

through one-pot synthesis. For the synthesis, the organosilanes that are containing 

specific functional group is mixed with the aqueous cationic surfactant and Si(OR)4 

during condensation process under basic condition (Trewyn et al., 2007). The cationic 

surfactant such as cetyltrimethylammonium bromide (CTMABr–C19H42NBr), 

tetradecyltrimethylammonium bromide (TTMABr–C17H38NBr) and 

trimethyloctadecylammonium bromide (DTMABr–C21H46NBr) act as structure directing 

agent, which is responsible to generate the porosity of silica gel matrix (Costa et al., 2014; 

Soto et al., 2016). Da'na and Sayari (2011) synthesized amine-functionalized mesoporous 

silica gel by mixing TEOS, APTES, and Pluronic P123 surfactant. This adsorbent was 

found to be highly selective and effective in removing of Cu2+. On the other hand, 

Machida et al. (2012) investigated the ability of amino (NH2), and mercapto (SH) 

functionalized mesoporous silica (HMS) for the adsorption of Cd2+ and Pb2+. These 
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materials were synthesized through the co-condensation method by using TEOS, 

Dodecylamine (DDA) surfactant, APTES (for NH2-HMS) and MPTS (for SH-HMS) 

(Machida et al., 2012). The result showed that NH2-HMS adsorbed the highest amount of 

Cd2+ and Pb2+ with maximum adsorption capacity (Qm) equal to 0.25 and 0.45 mmol/g 

respectively. 

 

 

Figure 2.6: Formation pathways of functionalized silica gel through co-condensation method. 

2.2.2.3 Modification of silica gel by using Periodic mesoporous organosilica 

Grafting and co-condensation method are related to the surface modification of silica gel. 

On the other hand, functionalization of silica gel also can be carried out by using bridged 

organosilane precursors. Periodic mesoporous organosilica (PMO) are produced using 

bridged bi-silane, (RO)3Si-R'''-Si(OR)3. (RO)3Si-R'''-Si(OR)3 containing organic 

functionalities (R''') such as ethane, ethene, 2,5-thiophene, and 1,4-benzene (Dag et al., 

2001) which connecting two silane groups. The R''' group is entrapped in the three-

dimensional silica gel matrix (Figure 2.7). For example, Leng et al. (2013) used the 

bisilylated crown ether (Figure 2.8) alongside with TMOS to synthesize a PMO for the 

adsorption of Sr2+. As shown in the result obtained by Leng et al. (2013), the PMO 

incorporated silica adsorbent was selective towards the adsorption of Sr2+ in the presence 

of the various interfering ions. 
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Figure 2.7: Formation pathways of periodic mesoporous organosilicas (PMO). 

 

Figure 2.8: Bisilylated crown ether. 

2.2.2.4 Immobilization of metal capturing ligand onto the surface of silica gel 

Despite the direct functionalization of silica gel, various metal capturing ligands also have 

been immobilized onto silica gel. These metal capturing ligands tend to enhance the metal 

ions adsorption ability and selectivity of the functionalized silica gel. The ligands that 

exhibit strong affinity towards specific metal ion are widely available. For example, 

sulphur-containing ligands such as dithiocarbamate derivatives are often found to be the 

selective ligands toward the complexation with Hg2+. Hence, these ligands can be 

immobilized onto the silica gel to produce selective adsorbents for Hg2+.  

 Throughout the history, various selective adsorbents have been produced for the 

adsorption of specific metal ions. For example, in a study reported by Huang et al. (2008), 

the silica gel was first functionalized with chloro group (Figure 2.9a). Then, the tris(2-

aminoethyl) amine ligand (Figure 2.9b) was immobilized onto this chloro-functionalized 

silica gel. The tris(2-aminoethyl) amine modified silica gel (Figure 2.9c) was applied as 
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the adsorbent for Cr3+, Cd2+, and Pb2+. The reported maximum adsorption capacities were 

32.7, 36.4 and 64.6 mg/g for Cr3+, Cd2+, and Pb2+. In another study, a Schiff base, N-(2-

hydroxyethyl) salicylaldimine (Figure 2.10a), was used as a ligand to modify the chloro 

functionalized SBA-15 mesoporous silica (Tadjarodi et al., 2015). This material (Figure 

2.10b) removed 96% of La3+ in water (Tadjarodi et al., 2015).  

 

Figure 2.9: (a) Chloro functionalized silica gel, (b) tris(2-aminoethyl) amine and (c) tris(2-

aminoethyl) amine modified silica gel. 

 

 

Figure 2.10: (a) N-(2-hydroxyethyl) salicylaldimine and (b) N-(2-hydroxyethyl)   

salicylaldimine-functionalized mesoporous silica gel. 
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Radi et al. (2014) immobilized a ligand called 1H-pyrrole-2-carbaldehyde (Figure 

2.11a) onto an amine-functionalized silica gel to form a new adsorbent (Figure 2.11b). 

This adsorbent was found to be selective towards the adsorption of Cu2+, Zn2+, and Cd2+ 

from aqueous solution. The reported maximum adsorption capacity was 27.9, 24.2 and 

20.3 mg/g for Cu2+, Zn2+, and Cd2+. Banaei et al. (2015) reported the immobilization of 

bisaldehyde ligand,2,2'-(propane-1,3-diylbis(oxy))dibenzaldehyde (Figure 2.12a) onto 

the silica-coated magnetite particle to generate the bisaldehyde functionalized magnetic 

silica gel (Figure 2.12b). This material selectively removed more than 95% Ag+ from 

aqueous samples. 

 

Figure 2.11: (a) 1H-pyrrole-2-carbaldhyde and (b) 1-(Pyrrol-2-yl)imine modified silica gel. 

 

Figure 2.12: (a) 2, 2’-(propane-1,3-diylbis(oxy))dibenzaldehyde and (b) bisaldehyde modified 

silica gel. 
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 In another study, 5-sulfosalicylic acid (Figure 2.13a) was bonded to dendrimer-

like poly-amidoamine (PAMAM) modified silica gel (Wu et al., 2016). The immobilized 

5-sulfosalicylic acid silica gel (Figure 2.13b) was used to adsorb Pb2+ in the water sample. 

Wu et al. (2016) revealed that almost 100% of Pb2+ was successfully removed from the 

water. Guo et al. (2017) immobilized the dibutyl (3-chloro-2-hydroxypropyl) phosphate 

(Figure 2.14a) onto the surface of mesoporous silica gel (Figure 2.14b). This material was 

used to remove U6+ in water. The result showed that this material was able to remove 

almost 100% of U6+. 

 

Figure 2.13: (a) 5-sulfosalicylic acid and (b) 5-sulfosalicyclic acid / PAMAM modified silica gel. 

 

Figure 2.14: (a) Dibutyl (3-chloro-2-hydroxypropyl) phosphate and (b) phosphoryl modified 

mesoporous silica gel. 
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2.2.2.5 Metal capturing ligand incorporated silica gel 

The modification of silica gel by immobilization of ligand involved multi-step reaction. 

Also, the functionalization of silica gel through grafting, co-condensation, and PMO 

methods often involved the use of various chemicals, which included silane coupling 

agent, structure directing reagent, solvents, and ligands. This may increase the chemical 

usage and the time of synthesis. Hence, to overcome such disadvantages, the approach to 

incorporate the metal capturing ligand into silica gel matrix during its preparation has 

been developed (Figure 2.15). In this approach, the ligand is entrapped into the silica gel 

matrix instead of covalently bonding it to the silica gel. Furthermore, the incorporated 

ligand or so-called doped-ligand was found to retained its chemical properties (Yost et 

al., 2000) and the synthesized route was relatively simple compared with the 

immobilization method. 

 

Figure 2.15: Formation pathways of metal capturing incorporated silica gel. 
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For example, by just using TEOS as a precursor, Mehmood et al. (2013) incorporated a 

ligand called N,N-(dipropylcarbamothioyl) thiophene-2-carboxamide (Figure 2.16a) into 

the silica gel matrix. This adsorbent managed to remove 95% of Cu2+ from Cu2+ solution 

with the concentration of 1 mg/L. The crown ether type of ligand, 1, 4, 10, 13-tetraoxa-7, 

16-diazacyclooctadecane-7,-16-bis (malonate) (Figure 2.16b) was incorporated into the 

silica gel matrix. The selected ligand is selective toward the complexation with Sr2+ (Yost 

et al., 2000). The crown ether incorporated silica gel has been found to retain its chemical 

property where it was selective in the removal of Sr2+ in aqueous solution (Yost et al., 

2000). Besides that, an organic ligand, 1,5-diphenylcarbazide (DPC) (Figure 2.16c) was 

doped into the silica gel matrix by Khan et al. (2006). The DPC tends to coordinate with 

Hg2+ to form the complex. This ligand has been found to be a promising material for Hg2+ 

extraction from the aqueous sample. Khan et al. (2006) reported that about 90% of Hg2+ 

was removed from water by the DPC incorporated silica gel. 

Si

Si

SiSi

Si

Si

Si

Si

Si

SiSi

Si

Si

O

O

O

O

O

O

O

O

O

O

O

O

Si

O

 

Figure 2.16: A variety of ligand used to incorporate into silica gel. 
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2.3 Sulphur containing ligand modified silica gel for the removal of aqueous 

Hg2+ 

Sulphur containing compounds have frequently been used as the ligand to capture Hg2+ 

in aqueous solution (Qu et al., 2013). Hg2+ is a soft acid, and it tends to bind to the sulphur 

atom, which acts as the soft base through complexation (Wajima and Sugawara, 2011). 

Silica gel that modified with functional group that containing sulphur atom has also 

shown great chemical activity to remove Hg2+ in aqueous solution (Aguado et al., 2005; 

Antochshuk et al., 2003; Cestari and Airoldi, 1997; Evangelista et al., 2007; Johari et al., 

2014; Prado et al., 2004; Puanngam and Unob, 2008). 

 The sulphur containing ligands are often grafted or incorporated on silica gel. For 

example, 1-furoyl thiourea (Figure 2.17a) was covalently anchored onto chloro-

functionalized silica gel through co-condensation (Figure 2.17b) and grafting methods 

(Figure 2.17c) by Mureseanu et al. (2010) for the preparation of adsorbents for Hg2+. The 

maximum adsorption capacity of the adsorbents that prepared through co-condensation 

and grafting methods were 56.2 and 122.4 mg Hg/g, respectively. Esmaeili Bidhendi et 

al. (2014) synthesized another ligand named 1,3,5-trithiane (Figure 2.18) and 

incorporated it into mesoporous silica gel matrix. This 1,3,5-trithiane doped silica gel 

showed a good capability in Hg2+ removal with the maximum adsorption capacity of 10 

mg/g. 
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Figure 2.17: (a) 1-furoyl thiourea, (b)1-furoyl thiourea functionalized SBA-15 (co-condensation 

route) and (c) 1-furoyl thiourea functionalized SBA-15 (grafting method). 
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Figure 2.18: 1,3,5-trithiane doped in silica matrix. 

 Among the various sulphur containing ligands, the capability of dithiocarbamate 

(Figure 2.19) and its derivatives to complex with Hg2+ has been widely reported (Denizli 

et al., 2000; Figueira et al., 2011; Girginova et al., 2010; He et al., 2015; He et al., 2016; 

Say et al., 2008; Venkatesan et al., 2002).  Silica gel that containing dithiocarbamate 

group (Si-DiTC) can be synthesized directly by modifying the functionalized silica gel 

with CS2 (Venkatesan et al., 2002). For example, He et al. (2015) and He et al. (2016) 

functionalized the silica gel with diethylenetriamine, tetraethylenepentamine, 

diethylenetriamine-salicylaldehyde and tetraethylenepentamine-salicylaldehyde (Figure 

2.20) to prepare amine groups functionalized silica gel. The amine groups functionalized 
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silica gel was then modified with CS2 to produce Si-DiTC. With the presence of various 

metal ions, these synthetic adsorbents showed high maximum adsorption capacity 

ranging from 169.7 to 225.8 mg/g for Hg2+. 

 

Figure 2.19: Common structure of dithiocarbamate compound. 

 

Figure 2.20: (a) CS2 modified diethylenetriamine functionalized silica gel, (b) CS2 modified 

tetraethylenepentamine-salicaldehyde functionalized silica gel, (c) CS2 modified 

diethylenetriamine functionalized silica gel and (d) CS2 modified 

tetraethylenepentamine-salicaldehyde functionalized silica gel. 

Univ
ers

ity
 of

 M
ala

ya



30 

On the other hand, the silica coated magnetite particles derivatized with dithiocarbamate 

groups (Figure 2.21) was synthesized by Girginova et al. (2010) by grafting the CS2 on 

amine functionalized silica gel, and the high efficiency of Hg2+ uptake (74%) was 

recorded by this material. 

 

Figure 2.21: Silica coated magnetite particles derivatized with dithiocarbamate group. 

Instead of grafting CS2 to the functionalized silica gel, the Si-DiTC also can be obtained 

by converting the silane coupling agent such as APTES to dithiocarbamate derivative 

before the silica gel preparation (Tavares et al., 2013). The siloxydithiocarbamate (Figure 

2.22a) compound was used as precursor material alongside with TEOS to coat the surface 

of magnetite particles (Figure 2.22b). This material successfully removed 99.8% of Hg2+ 

in the aqueous sample. 

 

Figure 2.22: (a) Siloxydithiocarbamate compound, and (b) dithiocarbamate modified silica gel 

coated magnetite particle. 
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 The reaction between CS2 and amine group on silica surface are generally 

conducted under harsh conditions where the strong alkaline condition may cause the 

degradation of silica gel (Bai et al., 2011). In addition, to attach the dithiocarbamate group 

onto the silica gel, silica gel need to be functionalized with small molecular weight amine 

derivatives such as diethylenetriamine and tetraethylenepentamine (He et al., 2015; He et 

al., 2016) and this reduce the number of dithiocarbamate group on Si-DiTC (Bai et al., 

2011).  

 

2.4 Natural product based ligand 

2.4.1 Metal capturing ability of natural products 

So far, most of the doped or immobilized ligands onto the silica gel are mostly synthetic 

chemicals. Synthesis of ligands is not economic and not environmentally friendly since it 

involved multi-step reaction and required various chemicals. Therefore, it is worth to 

study the potential of natural products as metal capturing ligands. Natural products are 

organic compounds, which can be extracted from microbes, plants, and animals. These 

compounds have remarkable structural diversity and biological characteristics (Ding et 

al., 2016; Wang et al., 2016). Some natural products are containing various functional 

groups such as carbonyl, hydroxyl, amines, and ketone group as electron donating group. 

Consequently, these natural compounds also have the potential to complex with metal 

ions. The metal capturing ability of some natural products such as curcumin, quercetin, 

rutin, and morin also has been proven. 

 Curcumin (Figure 2.23a) is a hydrophobic polyphenol with the chemical structure 

called bis-R-unsaturated-diketone, which can be extracted from ginger (Arnand et al., 

2007; Karri et al., 2015). The ability of curcumin and its derivatives to form complexes 

with several metals was reported by Wanninger et al. (2015). Picciano and Vaden (2013) 
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further proved the binding ability of curcumin toward Cu2+. Rutin (Figure 2.23b) is a 

naturally occurring flavonoid, which consists of ketone and hydroxyl group. Due to the 

rich of functional group, natural rutin has been shown to have the capability to form the 

complexes with Cr3+, Zn2+, and Sn2+ (Ikeda et al., 2015; Panhwar and Memon, 2014; Zhai 

et al., 2014). Quercetin (Figure 2.23c) is another flavonoid that can be obtained from 

various plants. It tends to form complexes with Al3+ and Tb3+ (Dolatabadi et al., 2014; 

Furia et al., 2014). In addition, another natural product called morin (Figure 2.23d) was 

found to form a complex with Zn2+ (Sendrayaperumal et al., 2014). So far, most of these 

natural product based ligands are belong to a class of chemical named flavonoid. This 

study investigated the potential of another class of natural product named chalcone as 

metal capturing ligand. 

 

Figure 2.23: (a) Curcumin, (b) Rutin, (c) Quercetin and (d) Morin. 
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2.4.2 Chalcone 

Chalcone (Figure 1.2a) is a type of natural product that containing two aromatic rings 

linked by a three carbons α, β-unsaturated carbonyl system. Chalcone-type of natural 

products can be obtained easily from fruits (e.g., citruses, apples), vegetables (e.g., 

tomatoes, shallots, bean sprouts, and potatoes), and spices (Orlikova et al., 2011; Patil et 

al., 2010). Chalcone and its derivative showed the remarkable biological activities such 

as anti-cancer, anti-inflammatory, anti-HIV, etc. (Singh et al., 2014) but the adsorption 

ability of chalcone for various metal ions has not been reported elsewhere. In this study, 

the chalcone was modified into dithiocarbamate derivative, ODPPNE, through reaction 

pathway shown in Figure 2.24. As mentioned previously, dithiocarbamate has the 

chelating ability towards Hg2+ (Heard, 2005; Kanchi et al., 2014). The synthesized 

ODPPNE was doped into the silica gel for the preparation of adsorbent for the removal 

of Hg2+ in water. ODPPNE was also incorporated onto the silica gel coated magnetic 

particles for the preparation of solid phase to pre-concentrate Hg2+ in water.  

 

Figure 2.24: Synthesis pathway of ODPPNE. 
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2.5 Pre-concentration of trace heavy metal from aqueous sample. 

Direct determination of trace pollutants such as heavy metal ions in water may require 

complicated sample preparation procedure due to the limitation of instruments (Wen and 

Zhu, 2014). For example, the concentration of Hg in natural water samples could vary 

from pg/L to ng/L (Zhang et al., 2014) while the detection limit for instruments which 

can be used to quantify Hg such as ICP and AAS are at the µg/L level (WHO, 2005). In 

addition, the matrix effect appears in the water sample may interfere with the analysis. 

Therefore, an appropriate pre-concentration method for trace metal analysis is required. 

2.5.1 Solid phase extraction and solid phase micro-extraction as the pre-

concentration method 

Conventional solid phase extraction methods (SPE) have become the standard technique 

to pre-concentrate trace element in the aqueous sample due to its simplicity, less chemical 

consumption, rapid, and high enrichment factor (Hu et al., 2015; Pytlakowsk, 2016; 

Yilmaz and Soylak, 2014). In SPE process, the analytes are transferred from the water 

sample to the solid adsorbent phase (Hu et al., 2015). The analytes that retained on the 

adsorbent can be recovered by elution with specific solvent or reagent. The adsorbent 

phase employed in conventional SPE can consist of different materials such as polymer 

beads, silica gel, modified silica gel, activated carbon (Habila et al., 2014), molecularly 

imprinted polymer (Nestora et al., 2016) and metal-organic framework (Xie et al., 2015). 

These SPE adsorbents are contained in the cartridges, syringe barrels or disk (Wells et 

al., 2003).  

 In order to enhance the efficiency of conventional SPE, the manipulated SPE 

technique called solid phase micro-extraction (SPME) was developed. In SPME, the 

conventional adsorbents were replaced by the nano-size adsorbent in according to their 

high surface-area-to-volume ratio, simple derivatization procedure, and unique thermal, 
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mechanical or electronic properties (Zhang et al., 2013). Among the nano-size adsorbents, 

carbonaceous materials such as single wall carbon nanotube (SWMNT) (Asghari et al., 

2016; Gutierrez et al., 2017), multiwall carbon nanotube (MWCNT) (Yilmaz and Soylak, 

2014; Zhou et al., 2014), graphene oxide (GO) (Pourjavid et al., 2014; Yang et al., 2012) 

were widely used as adsorbent in SPME. However, the application of these nanoparticles 

in SPME can disrupt by several conditions. The nanoparticles may aggregate to cause the 

reduction of surface area of adsorbent, produced the back-pressure in extraction 

instrument and clogging SPME device resulted in the failure of extraction process 

(Pytlakowsk, 2016). Also, SPME method also suffers other drawbacks such as large 

secondary wastes, time-consuming, and complex equipment may be needed 

(Asgharinezhad et al., 2014). Therefore, to overcome the problems mentioned above, 

Anastassiades et al. (2003) have introduced an easy and rapid method called dispersive-

solid phase extraction (D-SPE). 

2.5.2 D-𝜇SPE 

In D-SPE, a small amount of adsorbent is directly added to the water sample. The nano-

size adsorbents are dispersed in water using various agitation methods (Khezeli and 

Daneshfar, 2017). The dispersed adsorbent adsorbs the target analytes such as heavy 

metal ions in the water. Then, centrifugation or filtration is often applied to isolate the 

dispersed adsorbent. The analytes retained on the isolated adsorbent can be recovered 

through desorption process using suitable solvent or reagent (Xian et al., 2017). This 

approach enables the adsorbent to interact equally with all samples and greater capacity 

per amount of adsorbent can be achieved (Abdolmohammad-Zadeh and Talleb, 2012). 

Recently, dispersive micro-solid phase extraction method (D-𝜇SPE) has been developed 

as the miniaturized extraction technique when nanoparticles with unique size and 

physical/chemical properties were used as the adsorbent (Pytlakowsk, 2016; Khezeli and 

Daneshfar, 2017).  
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2.5.3 D-𝜇SPE as pre-concentration method for heavy metal ions in water 

The application of D-𝜇SPE as the pre-concentration process of trace metal ion in aqueous 

solution has been widely reported. The conventional adsorbents used in D-𝜇SPE can 

consist of the nanoparticle materials such as carbon nanotube (CNT) (Krawczyk and 

Jeszka-Skowron, 2016), graphene (Kocot and Sitko, 2014), graphene oxide (GO) 

nanosheet (Ghazaghi et al., 2016). Application of these materials in D-𝜇SPE usually 

required the addition of metal capturing ligand to enhance the selectivity. For example, 

Feist (2016) incorporated a chelating reagent named 1,10-phenanthroline to the oxidized 

MWCNT. This adsorbent was to pre-concentrate Cd2+ and Pb2+. In another method, 

ammonium pyrrolidine dithiocarbamate (APDC) was applied as the metal capturing 

ligand for Cd2+ and Pb2+ in the D-𝜇SPE process (Kocot et al., 2013). In this method, the 

obtained Cd2+-APDC and Pb2+-ADDC complex was then adsorbed by the dispersed 

MWCNT to form the sediments which was isolated from the water sample (Kocot et al., 

2013). Another modification process was reported by Bahadir et al. (2015) where an 

anionic exchanger tricaprylmethylammonium chloride (Aliquat 336) was loaded onto the 

MWCNT in order to extract Cr6+ in drinking water through D-𝜇SPE. Pytlakowsk (2016) 

reported that another D-𝜇SPE process where Cr3+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ in water 

samples was pre-concentrated using an azo dye named 2-(5-bromo-2-pyridylazo)-5-

diethylaminophenol (5-Br-PADAP), as a complexing reagent and the GO nanoparticles 

as an adsorbent. Zawisza et al. (2016) reported the application of ethylenediamine 

modified GO (EDA-GO) as a solid phase for the pre-concentration Fe3+, Co2+, Cu2+, Ni2+, 

Pb2+, and Zn2+ in the real water sample. This material was synthesized through the 

suspension of GO in ethylenediamine and refluxed with N,N-dicyclohexylcarbodiimide 

(Zawisza et al., 2016).  
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 Instead of the carbonaceous nanoparticle, other nanomaterials such as halloysite 

nanotube (Krawczyk et al., 2016), silica-nanoparticle (Shirkhanloo et al., 2016), and 

silver-nanoparticle (Krawczyk and Stanisz, 2015) also have been employed as the 

adsorbent phase in D-𝜇SPE. Krawczyk et al. (2016) reported the application of dendrimer 

modified halloysite nanotubes as an adsorbent for ultrasound-assisted D-𝜇SPE for the 

pre-concentration of Cd2+ and Pb2+ in the water sample. For selective extraction of Ni2+ 

in the water sample, Jalali and Aliakbar, (2015) modified the mercapto functionalized 

MCM-41 mesoporous silica with 4-nitrophenol and the resulting material was employed 

as the adsorbent phase in the D-𝜇SPE system. The combination of silver-nanoparticle 

(Ag-NP) as solid adsorbent and D-𝜇SPE for determination of Hg2+ in water sample was 

reported by Krawczyk and Stanisz (2015).  

 In spite of the popularity gain by the application of D-µSPE technique in the pre-

concentration process, however, the laborious and time-consuming procedure such as 

centrifugation and filtration is always required in retrieving adsorbents after extraction 

(Wierucka and Biziuk, 2014). Hence, the application of magnetic nanoparticle (MNP) as 

the adsorbent phase for D-µSPE has drawn attention by many researchers (Giakisikli and 

Anthemidis, 2013). With magnetic property, MNP can be retrieved from the water by 

using external magnetic field without any instrumentation. 

2.5.4 MNP as adsorbent phase in D-𝜇SPE 

Magnetic nanoparticle (MNP) has the special characteristic such as large surface area, 

easy to isolate by applying the external magnetic force and simplicity in preparation. 

When MNP are used adsorbents, their superparamagnetic properties allow it to be 

separated from water by an external magnetic field. As a result, the duration of sample 

preparation can be significantly shortened. Iron oxide (Fe3O4) is the most common MNP 

(Lee et al., 2015). Pure Fe3O4 is an inorganic nanoparticle which tends to form large 
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aggregates which may alter its surface area. Fe3O4 is also not selective to any compounds, 

and this may lead to its unsuitability to be used as the adsorbent phase for D-𝜇SPE. Thus, 

coating and modification of the surface of Fe3O4 with appropriate method and materials 

are necessary to overcome this limitation. The coating material for Fe3O4 can consist of 

carbon (Baig et al., 2014), chitosan (Jiang et al., 2015), polymers (Muliwa et al., 2016), 

silica gel (Kunzmann et al., 2011; Lien and Wu, 2008), silver-nanoparticle (López-Garcia 

et al., 2015) and surfactants (Asgharinezhad and Ebrahimzadeh, 2016). 

2.5.5 Silica coated iron oxide magnetic nanoparticle (Fe3O4-SiO2) 

Silica gel is the most common used material that has been used to modified iron oxide 

due to its chemical stability, low-cost, simple preparation step, versatile and modifiable 

properties (Bumb et al., 2008; Kunzmann et al., 2011; Lien and Wu, 2008). Moreover, 

the silica gel can be modified with various chemicals to improve its property for metal 

ions adsorption (Khor et al., 2017). Hence, the silica gel coated iron oxide magnetic 

nanoparticle (Fe3O4-SiO2) that modified with various metal capturing ligand have been 

frequently applied as adsorbent phase for D-µSPE (Adlnasab et al., 2014; Abolhasani et 

al., 2015; Alonso et al., 2016; Cui et al., 2015; Es’haghi et al., 2016; Sobhi et al., 2017;  

Zhang et al., 2014).  

2.5.6 Ligand modified Fe3O4-SiO2 and its application in the pre-concentration of 

Hg2+ in water sample 

Various ligands have been used to modify the Fe3O4-SiO2 to produce adsorbent phase 

that selective towards the adsorption of Hg2+ in water. By using the ligand modified 

Fe3O4-SiO2 as the adsorbent in the extraction process, various analytical methods has 

been developed for the determination of traces Hg2+ in the water sample. For example, as 

reported in many literatures (Mudasir et al., 2016; Zhang et al., 2014), dithizone (Figure 

2.25a) was one of the effective adsorbents for Hg2+. Adlnasab et al. (2014) modified the 
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chloro-functionalized Fe3O4-SiO2 with dithizone, and this material was successfully 

applied for the determination of trace Hg2+ in the environmental sample by using D-µSPE 

technique coupling with Continuous-Flow Cold Vapor Atomic Absorption Spectrometry 

method (CF-CVAAS). The limit of detection (LOD) achieved by this method was 50 

ng/L. Cui et al. (2015) introduced a selective magnetic adsorbent for Hg2+ in 

environmental samples. They grafted the N-(2-acetylaminoethyl)-N’-(3-

triethoxysilylpropyl)thiourea (AMPTs) (Figure 2.25b) onto the Fe3O4-SiO2. The Hg2+ 

extracted by Fe3O4-SiO2-AMPTs was examined using mercury analyser and the detection 

limit obtained was 17 ng/L (Cui et al., 2015). To improve the analytical performance of 

MNP, the silica was also modified with L-cysteine (Figure 2.25c) (Xiang et al., 2013). 

This thiol modified Fe3O4-SiO2 was employed as the effective adsorbent for Hg2+ and the 

reported method of the detection limit of 60 ng/L (Xiang et al., 2013). In Beiraghi et al. 

(2014), a sulphur-rich ligand named thiodiethanethiol (Figure 2.25d) was used as the 

modifier to generate the adsorbent for separation and pre-concentration of various heavy 

metals which include Hg2+ in an environmental sample. The extracted Hg2+ was 

determined using CV-AAS and the LOD recorded by this proposed method was 4.0 ng/L. 

In another study, an effective and selective adsorbent for Hg2+ was synthesized through a 

series of reaction which includes the functionalization of Fe3O4-SiO2 with APTS and 

modification of this amine functionalized Fe3O4-SiO2 with a synthetic ligand named 1-

(p-acetyl phenyl)-3-(o-ethoxy phenyl)triazene (Figure 2.25e) (Rofouei et al., 2012). The 

Hg2+ extracted by this adsorbent via D-µSPE was analysed by Inductively Coupled 

Plasma Optical Emission Spectrometry (ICP-OES) and the LOD achieved by this 

proposed method was 40 ng/L (Rofouei et al., 2012). 1,5-diphenylcarbazide (DPC) 

(Figure 2.25f) with its favourable coordination capacity and selectively toward Hg2+ was 

chosen as the doping material for the preparation of functionalized magnetic particle 

(Zhai et al., 2010). Fe3O4-SiO2-DPC was used as an adsorbent in D-µSPE for the 

Univ
ers

ity
 of

 M
ala

ya



40 

determination of Hg2+ in aqueous solution.  In this study, Hg2+ was analysed using CV-

AAS, and the reported LOD was 160.0 ng/L. (Zhai et al., 2010). 

 

Figure 2.25: A variety of metal capturing ligand used to modify Fe3O4-SiO2.  
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2.5.7 Ligand incorporated Fe3O4-SiO2 in pre-concentration of Hg2+ from water 

sample 

Generally, the reactions involved in the preparation of adsorbents with magnetic property 

are such as (i) synthesis of Fe3O4, (ii) coating of Fe3O4 with silica layer, (iii) 

functionalization Fe3O4-SiO2 and (iv) bonding of selected ligand onto the functionalized 

Fe3O4-SiO2 which may also involve several steps (Alonso et al., 2016; Cui et al., 2015; 

Sobhi et al., 2017). Some of this reactions involved higher temperature reflux and also 

time-consuming. Hence, this study demonstrated a simple preparation route for the 

preparation of ligand modified Fe3O4-SiO2. This study demonstrated the coating of silica 

gel doped with metal capturing ligand onto Fe3O4 to produce an adsorbent for pre-

concentration of Hg2+. This method simplifies the preparation of adsorbent by 

incorporating the ligand during the coating of Fe3O4 with silica layer which was 

performed in single step (Figure 2.26). 
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Figure 2.26: ODPPNE incorporated silica coated magnetic nanoparticle (ODPPNE@MNP). 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Materials and Chemicals 

N-(1-Naphthyl)ethylenediamine hydrochloride (98.5%) was purchased from BDH 

(England). Chalcone (97%) and tetraethoxysilane (99.999%) (TEOS) were obtained from 

Sigma (USA). Carbon disulfide (≥99.90%) (CS2), mercury (II) nitrate (Hg(NO3)2), iron 

(II) chloride tetrahydrate (≥98.0%) (FeCl2.4H2O), iron (III) chloride hexahydrate (99.0-

102.0%) (FeCl3.6H2O), ammonia hydroxide solution (25%) (NH4OH), concentrated 

hydrochloric acid (37%) (HCl), concentrated sulphuric acid (98%) (H2SO4), concentrated 

phosphoric acid (85%) (H3PO4), ethanol (≥99.9%) (EtOH), methanol (≥99.8%) (MeOH), 

isopropanol (≥99.8%) (iPrOH) and dichloromethane (≥99.9%) (DCM) were obtained 

from Merck (Germany). The standard solutions of Cr3+, Cd2+, Cu2+, Ni2+, Pb2+, and Zn2+ 

with the concentration of 1000 mg/L were obtained from Merck (Germany). Ultra-pure 

deionized water was produced by Elga (UK) water purification system. 

 

3.2 Instrumental Analysis 

FTIR spectra were recorded using Perkin Elmer Spectrum 400 ATR/FTIR 

spectrophotometer. NMR spectrum was recorded by using Nuclear Magnetic Resonance 

spectroscopy FT-NMR ECA 400. Hitachi Energy Dispersive X-ray spectroscopy (EDX) 

and Field Emission Scanning Electron Microscopy (FESEM) SU8200 was used for 

elemental analysis and SEM imaging. The thermogravimetric analysis (TGA) and 

differential thermal analysis (DTA) were carried out using Perkin Elmer Simultaneous 

Thermal Analyzer STA-6000. The concentration of Hg2+ ion was monitored using NIC 

Mercury Analyser RA-3 whereas the concentration of other metal ions was determined 

using Agilent Inductively Coupled Plasma Mass Spectrometry ICPMS 7500 Single Turbo 
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System. UV-Visible spectra were recorded using Thermo Fisher Scientific GENESYS 

10S UV-Vis Spectrophotometer. 

 

3.3 Preparation of ODPPNE 

ODPPNE was synthesized by reacting N-(1-Naphthyl)ethylenediamine hydrochloride, 

chalcone and CS2 in methanol as described by Behalo and Aly (2010). Briefly, 1 mmol 

of N-(1-Naphthyl)ethylenediamine hydrochloride and CS2 (9 mmol) were first dissolved 

in 30 mL methanol. The mixture was stirred for 60 min at room temperature. Then, 1 

mmol of chalcone was then added, and the mixture was refluxed for 24 h. The obtained 

product in solid form was washed with dichloromethane to remove the unreacted 

chalcone  followed by acidified water to separate N-(1-Naphthyl)ethylenediamine 

hydrochloride residue from the pure product. The NMR spectra of ODPPNE are presented 

in Appendix A (1H-NMR) and Appendix B (13C-NMR). 

Yield: 78%; Melting point. 171-173°C. (IR, cm-1) 3388 (N-H), 1675 (C=O), 1596-

1510 (N-C=S), 1080-979 (S-C=S), 820 (C=S). 1H-NMR DMSO-d6, δ ppm = 3.12 (t, 2H, 

CH2N), 3.49 (t, 2H, CH2N),  3.80 (dd, 1H, CH2CO), 4.02 (dd, 1H, CH2CO), 5.36 (t, 1H, 

CHS), 6.57 (d,1H, Ar), 7.10 (t, 1H, Ar), 7.22 (t, 2H, Ar), 7.35-7.53 (m, 8H, Ar), 7.63 (t, 

1H, Ar), 8.02 (d, 2H, Ar), 8.10 (d, 1H, Ar), 8.28 (d, 1H, Ar), 8.32 (brs, 2H, NH) . 13C-

NMR DMSO-d6, δ ppm = 37.96, 40.90, 41.10, 44.95, 103.36, 123.11, 124.20, 124.29, 

124.40, 125.18, 126.32, 127.91, 128.31, 128.51, 128.67, 129.19, 132.41, 133.66, 137.29, 

142.72, 145.77, 198.70. 
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3.4 Preparation of Chalcone and ODPPNE incorporated sol-gel 

Chalcone and ODPPNE incorporated sol-gel (SG-C and SG-ODPPNE) were prepared as 

reported by previous studies (Ali et al., 2012; Saad et al., 2006; Turanov et al., 2016; Yost 

et al., 2000). Briefly, a mixture of TEOS, ethanol, and water in the molar ratio of 1:4:16 

was first acidified with concentrated hydrochloric acid to form a sol solution (Buckley 

and Greenblatt, 1994). Then, the pre-dissolved chalcone and ODPPNE was added to the 

sol solution, and the molar ratio of TEOS to chalcone and ODPPNE was kept at 30:1 

(Esmaeili Bidhendi et al., 2014; Tadayon et al., 2012; Yost et al., 2000). The resulting 

solution was stirred vigorously for 2 h in a capped vial to allow the gelation to occur. The 

synthesized sol-gel was dried in the oven for 24 h at 60 °C. The gel was then ground to 

the size of 0.06 and 2.00 mm in diameter. For conditioning, the sol-gel was soaked in 

deionized water for 24 h and then dried at 60 °C for 24 h. 

 

3.5 Metal ion adsorption by SG-C and SG-ODPPNE 

3.5.1 Determination of the selectivity of SG-C and SG-ODPPNE 

The selectivity of SG-C and SG-ODPPNE towards the adsorption of metal ions was 

evaluated by adding 50 mg of the prepared adsorbents to 10 mL of aqueous solution 

containing 1 mg/L of Cr3+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ in a plastic vial. The 

mixture was shaken using an orbital shaker at 150 rpm for 24 h. The remaining 

concentration of the metal ions in the solution was analysed using ICP-MS. 
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3.5.2 Batch adsorption of aqueous Hg2+ by SG-ODPPNE 

In this study, 50 mg of SG-ODPPNE was first added to the 10 mL of 1 mg/L Hg2+ solution 

in a plastic vial. The mixture was then shaken with an orbital shaker at the defined time 

interval, and the remaining Hg2+ in solution was analysed using portable NIC Mercury 

Analyser model RA-3 (Tokyo, Japan).  Several operation conditions which can influence 

the adsorption process such as pH of the solution (pH 6-9), the initial concentration of 

Hg2+ (1-100 mg/L), contact time (5-360 min), dosage (0.01-0.10 g) and size of SG-

ODPPNE (0.06 mm and 2.00 mm) were evaluated. Removal percentage (%R) of Hg2+ in 

aqueous solution by SG-ODPPNE and the adsorption capacity Qe (mg/g) of SG-ODPPNE 

at equilibrium were determined using the following equations (Equation 3.1 and Equation 

3.2): 

%𝑅 =
𝐶𝑜 − 𝐶𝑒

𝐶𝑜
× 100%          Equation 3.1 

𝑄𝑒 =
𝐶𝑜 − 𝐶𝑒

𝑚
× 𝑉                    Equation 3.2 

where Co (mg/L) represents the initial concentration of Hg2+, Ce (mg/L) is the 

concentration of Hg2+ at equilibrium, m (g) is the amount of adsorbent and V (L) is the 

volume of aqueous solution. 

3.5.3 Hg2+ removal by SG-ODPPNE adsorbent in real water samples 

The ability of SG-ODPPNE to remove Hg2+ in real environment water samples was also 

investigated. In this study, lake water (from Tasik Varsity, University of Malaya, Kuala 

Lumpur, Malaysia), drinking water, and deionized water were spiked with 1 mg/L of 

Hg2+. Then, 50 mg of SG-ODPPNE was added to each 10 mL of this spiked real water 

sample in the plastic vial. The mixture was shaken using an orbital shaker for 6 h, and the 

concentration of the remaining Hg2+ was determined with Mercury Analyser. 
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3.6 Pre-concentration and determination of Hg2+ in water 

3.6.1 Synthesis of magnetic nanoparticle (MNP) 

MNP was synthesized as reported by Karaagac et al. (2010). Briefly, FeCl3.6H2O and 

FeCl2.4H2O was first dissolved in 50 mL of deionized water with the molar ratio Fe3+:Fe2+ 

of 3:2. Then, 50 mL of 25% ammonium hydroxide was added, and the mixture was stirred 

for 30 min. The MNP was precipitated using the external magnetic field. The synthesized 

MNP was washed with deionized water and dried using freeze dryer.  

3.6.2 Synthesis of ODPPNE-silica coated magnetic nanoparticle 

(ODPPNE@MNP)  

0.1 g of ODPPNE was first dissolved in 20 mL of methanol. Then, 0.3 g of MNP was 

dispersed in the mixture of isopropanol (50 mL) and deionized water (4 mL). The 

ODPPNE solution was then added into the dispersed MNP followed by the addition of 2 

mL of TEOS and 5 mL of 25% ammonium hydroxide solution. The mixture solution was 

stirred for 24 h. The obtained ODPPNE@MNP was precipitated using an external magnet 

field. ODPPNE@MNP was washed with deionized water and ethanol. Then, the 

ODPPNE@MNP was dried under vacuum. Besides ODPPNE@MNP, the silica coated 

MNP (SiO2@MNP) was obtained through same procedure but without the addition of 

ODPPNE.  

3.6.3 Pre-concentration of Hg2+ using ODPPNE@MNP as solid phase for 

dispersive micro solid phase extraction (D-µSPE)  

The pre-concentration and determination of Hg2+ in water were carried out using 

ODPPNE@MNP as the solid phase for the D-µSPE method. In this experiment, the 

operation parameters of D-µSPE such as pH of the solution (pH 5-9), the initial 

concentration of Hg2+ (0.5-100 mg/L), adsorption time (5-30 min), selectivity, dosage of 

ODPPNE@MNP (5-30 mg), type of desorption reagent (HCl, H2SO4 and H3PO4), the 
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volume of desorption reagent (0.25-25 mL), and desorption time (1-10 min) were 

optimized to obtain the optimal condition for Hg2+ analysis. These parameters were found 

to influence the performance of heavy metals pre-concentration process (Abolhasani et 

al., 2015; Adlnasab et al., 2014; Sobhi et al., 2017). This experiment was started by the 

addition of ODPPNE@MNP to the 25 mL of 1 mg/L Hg2+ solution. The mixture was then 

sonicated using an ultrasonic agitator for the defined time interval. After sonication, the 

ODPPNE@MNP was isolated by using a magnet, and the solution was decanted. The 

isolated ODPPNE@MNP was rinsed with deionized water for three times before Hg2+ 

desorption process. For the Hg2+ desorption process, the isolated ODPPNE@MNP was 

dispersed in HCl solution. The amount of Hg2+ in HCl was analysed using Mercury 

Analyser. Recovery efficiency (%E) of Hg2+ in aqueous solution by ODPPNE@MNP 

was determined using the following equation: 

%𝐸 =
𝐶𝑟

𝐶𝑜
× 100%     Equation 3.3 

where Co (mg/L) represents the initial concentration of Hg2+, Cr (mg/L) is the 

concentration of extracted Hg2+. 

3.6.4 Pre-concentration of Hg2+ in real water samples  

The developed D-µSPE method was applied in the real water samples analysis to verify 

its applicability. In this study, 25 mL of the selected drinking, tap and surface water (lake 

water) sample were spiked with known concentration of Hg2+ varying from 0.05 𝜇g/L to 

2 𝜇g/L and the pH of this water sample was adjusted to pH 7. 15 mg of ODPNNE@MNP 

was dispersed in the water sample by the aid of ultra-sonication for 10 min. After the 

sonication process, the ODPPNE@MNP was isolated from the water sample by using 

magnet. The isolated ODPPNE@MNP was washed with the deionized water three times 

to eliminate the unabsorbed Hg2+ before the desorption process. For the Hg2+ desorption 
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process, isolated ODPPNE@MNP was dispersed in 0.25 mL of 1.5 M HCl for 5 min. The 

HCl solution was separated from ODPPNE@MNP and the amount of desorbed Hg2+ in 

HCl was analysed.   

Univ
ers

ity
 of

 M
ala

ya



49 

CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Characterization of SG-C, SG-ODPPNE and ODPPNE@MNP 

4.1.1 FTIR Analysis 

In this study, the three-component one-pot reaction was used to produced ODPPNE as 

metal capturing ligand. The three components that involved were CS2, N-(1-

Naphthyl)ethylenediamine hydrochloride and chalcone. During the reaction, CS2 was 

first reacted with  N-(1-Naphthyl)ethylenediamine hydrochloride to produce (2-

(naphthalen-2-ylamino)ethyl)carbamodithioate (I). Then, (2-(naphthalen-2-

ylamino)ethyl)carbamodithioate was then reacted with chalcone to produce ODPPNE 

(Figure 2.24). For chalcone, the main characteristic peaks in FTIR were found to appear 

in the region of 1589-1400 cm-1 (Figure 4.1a). These peaks were attributed to aliphatic 

and aromatic C=C stretching of chalcone (Prasadarao and Mohan, 2012). Besides that, 

the C-H stretching bands of the =C-H group of chalcone were observed at 3050-3028   

cm-1 (Aksöz and Ertan, 2012). The characteristic peak of C=O for chalcone appeared at 

1663 cm-1. For ODPPNE, the peak at 3401 cm-1 was attributed to N-H stretching (Figure 

4.1b) and the peak at 2918 and 2907 was corresponded to the  sp3 C-H stretch (Behalo 

and Aly, 2010). The presence of S-C=S group was characterized by the peaks at 1060 and 

940 cm-1 (Onwudiwe and Ajibade, 2011). The peak at 820 cm-1 confirmed the presence 

of C=S (Tiwari et al., 2015). The peaks at 1580 -1450 cm-1 represents the C-N stretching 

in N-C=S group of ODPPNE (Onwudiwe and Ajibade, 2011).  

 IR spectra for SG (blank silica gel, Figure 4.2a), SG-C (Figure 4.2b) and, SG-

ODPPNE (Figure 4.2c) showed a strong peak around 1080 cm-1 corresponded to 

asymmetric stretching of Si-O-Si (Bari et al., 2009). SG-ODPPNE showed the 

characteristic peaks of free ODPPNE suggesting ODPPNE was incorporated into the sol-

gel matrix (Figure 4.2c). These characteristic peaks appeared at 3372, 2920, 2912, 1673, 
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Figure 4.1: IR spectrum of (a) Chalcone and (b) ODPPNE. 
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1587 and 1497 cm-1. On the other hand, the peaks that appeared around 1500-1400 cm-1 

for SG-C indicates the presence of chalcone in the sol-gel matrix (Figure 4.2b). To 

understand the mechanism of the interaction between Hg2+ and the ODPPNE that 

containing in the sol-gel matrix, SG-ODPPNE was isolated from the solution after Hg2+ 

adsorption process. The SG-ODPPNE was then characterized using FTIR. The result 

showed that the characteristic peak of N-C=S group of ODPPNE was shifted from 1497-

1466 cm-1 (Figure 4.2c) to 1488-1397 cm-1 (Figure 4.2d). This downward shift showed 

the involvement of N-C=S group in the complexation between ODPPNE with Hg2+. 

 In order to prove the presence of ODPPNE on the ODPPNE@MNP, the IR 

spectrum of MNP (Fe3O4), SiO2@MNP and ODPPNE@MNP (Figure 4.3) were recorded. 

For MNP (Figure 4.3a), the presence of a strong band at around 568 cm-1 was attributed 

to Fe–O stretching vibration (Karaagac and Kockar, 2016; Li et al., 2015). This peak was 

also observed in the IR spectrum of SiO2@MNP (Figure 4.3b) and ODPPNE@MNP 

(Figure 4.3c). For SiO2@MNP and ODPPNE@MNP, the appearances of strong 

absorption peak around 1080 cm-1 indicated the presence of Si-O bonding (Bari et al., 

2009). This observation indicated that silica gel was successfully coated on MNP. On the 

other hand, the characteristic peak of free ODPPNE ligand at 3352, 2918, 2890, 1673, 

1594, 1492 and 1467 cm-1 was found to appear in the IR spectrum of ODPPNE@MNP. 

Hence, this is a strong evidence that ODPPNE was incorporated into the silica gel matric 

which is coated on MNP. To prove the adsorption of Hg2+ by ODPPNE@MNP, 

ODPPNE@MNP was isolated from the Hg2+ solution after adsorption process. The 

characteristic peaks of ODPPNE which indicates the N-C=S group was found to be 

shifted from 1492-1467 cm-1 to 1497-1472 cm-1 (Figure 4.3d). This result further proves 

the interaction between ODPPNE and Hg2+ in the silica gel matrix. 
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Figure 4.2: IR spectrum of (a) SG, (b) SG-C and (c) SG-ODPPNE and (d) isolated SG-ODPPNE 

after Hg2+ adsorption. 

Univ
ers

ity
 of

 M
ala

ya



53 

 

Figure 4.3: IR spectrum of (a) MNP (Fe3O4), (b) SiO2@MNP, (c) ODPPNE@MNP and (d) 

isolated ODPPNE@MNP after Hg2+ adsorption. 

Univ
ers

ity
 of

 M
ala

ya



54 

4.1.2 Elemental Analysis 

SG-ODPPNE, SG-C, and SG were analysed using EDX to confirm the presence of 

ODPPNE and chalcone in the sol-gel matrix. The result in Table 4.1 indicated that the 

nitrogen and sulphur were detected in SG-ODPPNE as compared to SG and SG-C. This 

result further indicates the presence of ODPPNE in the silica gel matrix. For SG-C, the 

percentage of carbon was detected at the level of 9.73% showing the presence of chalcone 

in SG-C. To further confirm the adsorption of Hg2+ by the SG-ODPPNE, after adsorption 

of Hg2+, SG-ODPPNE, SG-C and SG were isolated and analysed using EDX. The result 

showed that Hg2+ was detected in both SG-C and SG-ODPPNE only. Therefore, it can be 

concluded that both SG-C and SG-ODPPNE have the ability to adsorb Hg2+.  

Table 4.1: Elemental composition of SG, SG-C and SG-ODPPNE. 

Element 
Composition of element (%) 

SG SG-C* SG-C** SG-ODPPNE* SG-ODPPNE** 

Silica (Si) 29.62 39.06 29.14 49.32 26.94 

Oxygen (O) 70.38 51.21 47.60 34.64 34.20 

Carbon (C) - 9.73 22.82 11.70 28.51 

Nitrogen (N) - - - 4.22 7.73 

Sulphur (S) - - - 0.12 1.71 

Hg2+ - - 0.44 - 0.91 

 
*  Determined before adsorption process 
**Determined after adsorption process 
#Not detected 
 
 
 In order to verify the presence of ODPPNE in ODPPNE@MNP, MNP, 

SiO2@MNP, and ODPPNE@MNP were also analysed using EDX. The presence of 

nitrogen and sulphur in ODPPNE@MNP indicated that ODPPNE was successfully 

incorporated on SiO2@MNP (Figure 4.2). To further confirm the adsorption of Hg2+ by 

SiO2@MNP and ODPPNE@MNP, both adsorbents were isolated from the Hg2+ solution 

after adsorption process, and the isolated adsorbents were then subjected to EDX analysis. 
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According to the result obtained (Table 4.2), Hg2+ was only detected on the isolated 

ODPPNE@MNP. This observation further indicates the role of ODPPNE in the 

adsorption of Hg2+. 

Table 4.2: Elemental composition of MNP, SiO2@MNP and ODPPNE@MNP. 

Element 

 Composition of element (%)  

MNP SiO2@MNP* SiO2@MNP** ODPPNE 

@MNP*  

ODPPNE 

@MNP** 

Iron (Fe) 74.63 23.85 17.18 15.58 9.73 

Oxygen (O) 25.37 43.25 52.79 45.55 37.49 

Silica (Si) - 32.90 30.03 19.07 12.98 

Carbon (C) - - - 12.65 11.11 

Nitrogen (N) - - - 5.93 1.83 

Sulphur (S) - - - 1.22 1.53 

Hg2+ - - #ND - 25.34 

 
*  Determined before adsorption process 
**Determined after adsorption process 
#Not detected 
 

4.1.3 SEM analysis 

Scanning electron microscopy was performed to observe the morphology of SG, SG-C, 

SG-ODPPNE, MNP, SiO2@MNP, and ODPPNE@MNP. The SEM image of SG (Figure 

4.4a), SG-C (Figure 4.4b) and SG-ODPPNE (Figure 4.4c) showed that the morphology 

of these three materials was almost similar.  For MNP, the agglomeration of this nano-

size material was observed in the SEM image (Figure 4.5a). Both SiO2@MNP (Figure 

4.5b) and ODPPNE@MNP (Figure 4.5c) exhibited the spherical shape with the diameter 

ranging from around 600 – 700 nm. There are no significant differences in morphology 

between SiO2@MNP and ODPPNE@MNP. 
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Figure 4.4: SEM images of (a) SG, (b) SG-C and (c) SG-ODPPNE. 
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Figure 4.5: SEM images of (a) MNP, (b) SiO2@MNP and (c) ODPPNE@MNP. 
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4.1.4 TGA and DTA Analysis 

TGA and DTA analysis were performed to further characterize the synthesized 

adsorbents. The TGA (Figure 4.6a) and DTA (Figure 4.6b) profiles showed that SG-

ODPPNE, SG-C, and SG exhibit the first weight loss at around 150 °C corresponded to 

the removal of physically adsorbed water. SG-ODPPNE and SG-C experienced the 

second weight loss that occurred at 160 – 400 °C. The maximum weight loss for SG-

ODPPNE and SG-C was found to occur at 241 and 344 °C, respectively. These weight 

losses indicate the decomposition of ODPPNE and chalcone that containing in the silica 

gel matrix. Based on the weight loss data, the loading of chalcone and ODPPNE in SG-

C and SG-ODPPNE was 50 and 90 mg/g, respectively.  

 The TGA and DTA profile of MNP, SiO2@MNP, and ODPPNE@MNP are 

presented in Figure 4.7. All synthesized materials showed a sharp weight loss at the 

temperature around 100 °C which corresponded to the loss of absorbed water. The 

ODPPNE@MNP experienced a second weight loss at around 400 to 600 °C, which 

corresponded to the decomposition of ODPPNE that incorporated in the silica gel matrix 

of ODPPNE@MNP. Based on the weight loss of ODPPNE, the concentration of 

ODPPNE in ODPPNE@MNP was 26 mg/g. 
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Figure 4.6: (a) TGA and (b) DTA profile of SG, SG-C and SG-ODPPNE. 
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Figure 4.7: (a) TGA and (b) DTA profile of MNP, SiO2@MNP and ODPPNE@MNP. 

 

 

 

 

 

 

88

90

92

94

96

98

100

0 200 400 600 800 1000 1200

Pe
rc

en
ta

ge
 o

f w
ei

gh
t l

os
s (

%
)

Temperature °C

(a)

MNP SiO₂@MNP ODPPNE@MNP

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000 1200

D
er

iv
at

iv
e 

w
ei

gh
t p

er
ce

nt
ag

e 
(%

/m
in

) Temperature °C

(b)

MNP SiO₂@MNP ODPPNE@MNP

First weight loss of MNP, SiO2@MNP and ODPPNE@MNP

Second weight loss of ODPPNE@MNP

Univ
ers

ity
 of

 M
ala

ya



61 

4.1.5 Leaching Test 

To investigate the stability of embedded ODPPNE in the silica gel matrix, the SG-

ODPPNE and ODPPNE@MNP were shaken in water at different pHs for 24 h. The water 

was then analysed using a UV-Visible spectrometer to detect the ODPPNE. The UV-

Visible spectrum of free ODPPNE at pH 5, 7 and 8 showed two λmax at 248 and 322 nm 

(Figure 4.8). The result indicated ODPPNE was not detected in water and therefore it was 

concluded that ODPPNE was not leached into the water during the adsorption process. 

Also, to ensure the stability of the adsorbed Hg2+ on SG-ODPPNE and ODPPNE@MNP, 

the isolated adsorbent was exposed to water with different pHs for 24 h. Then, the 

presence of Hg2+ was determined using Mercury Analyser. The results showed that the 

Hg2+ was not detected in all cases. 

 

Figure 4.8: The comparison of UV spectra for free ODPPNE, SG-ODPPNE and 

ODPPNE@MNP in water with different pH. (The overlapped UV spectra of SG-

ODPPNE and ODPPNE@MNP was separated by cumulatively adding 0.025 to 

the UV spectra in a sequence order SG-ODPPNE (pH 8, 5 and 7) and 

ODPPNE@MNP (pH 8, 5 and 7).) 
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4.2 Selectivity of SG-C, SG-ODPPNE, SiO2@MNP, and ODPPNE@MNP in the 

removal of heavy metals 

The ability of SG-C, SG-ODPPNE, and SG to remove metals ion was evaluated using a 

solution containing 1 mg/L of Cr3+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+ and Hg2+ (Figure 4.9). 

The removal percentage of the selected metal ions by SG was ranged from 10.4 to 16.6%. 

When SG-C was used as an adsorbent, removal percentage of Cu2+ and Hg2+ were clearly 

increased to 38.4 and 45.4%, respectively. The removal of Hg2+ was increased to 65.3% 

when SG-ODPPNE was used as an adsorbent. Also, the removal percentage of Cr3+ and 

Pb2+ was also found to increase to 34.2, and 23.9%, respectively.  

 The adsorption performance of SiO2@MNP and ODPPNE@MNP toward Hg2+ in 

the presence of various metal ions such as Cr3+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ was also 

investigated. As shown in Figure 4.10, the SiO2@MNP showed no selectivity and low 

removal percentages (3.3-20.8%) towards all selected metal ions. For ODPPNE@MNP, 

81.4% of Hg2+ was successfully removed as compared to the other metal ions where the 

removal efficiency was ranged from, 9.6 to 44.0%. In general, it can be concluded that 

the metal ions adsorption efficiency of the silica gel particularly for Cr3+, Cu2+, Hg2+, and 

Pb2+ could be enhanced by incorporating the chalcone. The selectivity of silica gel as well 

as the silica gel coated MNP in the adsorption of Hg2+, could be further enhanced by 

incorporating the ODPPNE with dithiocarbamate moiety as metal capturing ligand. 
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Figure 4.9: The removal percentage of Cr3+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+  by SG-

ODPPNE, SG-C and SG in aqueous sample. (Amount of adsorbent = 50 mg, [Metal 

ion] = 1 mg/L, volume of aqueous solution = 10 mL, pH of aqueous solution = 7.5 

and contact time = 24 h). 

 

Figure 4.10: The removal percentage of Cr3+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ by 

ODPPNE@MNP and SiO2@MNP in aqueous sample. (Amount of adsorbents = 

15 mg, [Metal ion] = 1 mg/L, volume of aqueous solution = 25 mL, pH of aqueous 

solution = 8 and contact time = 30 min). 
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4.3 Hg2+ removal in aqueous by SG-ODPPNE 

Effect of several important parameters toward the removal of aqueous Hg2+ by SG-

ODPPNE was studied in detail in order to obtain the optimum condition for removal Hg2+ 

in water. By using the obtained conditions, the isotherm and kinetics of the adsorption of 

Hg2+ by SG-ODPPNE were then determined. The performance of the developed method 

in the real water treatment was also evaluated. 

4.3.1 Effect of adsorbent size 

To study the effect of the size of SG-ODPPNE on the removal of Hg2+, SG-ODPPNE was 

ground into the size of 0.06 and 2 mm. 54.1% of Hg2+ was removed by SG-ODPPNE 

with the size of 2 mm whereas SG-ODPPNE with the size of 0.06 mm managed to 

improve the Hg2+ removal efficiency to 77.4% (Figure 4.11). This result indicated that 

SG-ODPPNE with the larger surface area (smaller particle size) (Rahman and Padavettan, 

2012) provides more binding sites to adsorb Hg2+. Therefore, adsorbent with the size of 

0.06 mm was selected for further study. 

 

Figure 4.11: Effect of 0.06 mm and 2.00 mm SG-ODPPNE on removal percentage of Hg2+ in 

aqueous sample. (Amount of SG-ODPPNE = 50 mg, [Hg2+] = 1 mg/L, volume of 

Hg2+ solution = 10 mL, pH of Hg2+ solution = 7.5 and contact time = 24 h). 
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4.3.2 Effect of pH of aqueous solution 

In this study, the effect of pH on the efficiency of Hg2+ removal was determined by 

varying the pH of the Hg2+ solution from 6 to 9 (Figure 4.12). The removal efficiency of 

Hg2+ was found to increase when the pH was increased from 6 to 8. The efficiency of 

Hg2+ removal was found to reduce when the pH was exceeded 8. This result indicated 

that the adsorption process in aqueous solution is a pH-dependent process. Due to the 

presence of secondary amine groups, ODPPNE can present in the form of neutral, 

deprotonated and protonated species (Figure 4.13a). In this study, the pKa of ODPPNE 

was calculated using MarvinSketch software (Version 17.2.6). The calculated pKa of 

ODPPNE was 4.21 and 7.32. Based on the calculated pKa, ODPPNE appeared 

dominantly in neutral and deprotonated forms at the selected pH range (Figure 4.13b). 

Therefore, the lower efficiency of SG-ODPPNE in Hg2+ removal at acidic condition was 

mainly due to the presence of the higher fraction of neutral ODPPNE (Figure 4.13a) 

which has the lower capability to complex with Hg2+. When the pH increases, the higher 

amount of ODPPNE appeared in the deprotonated form. Deprotonated ODPPNE could 

interact favorably with Hg2+ due to the presence of negative charge. At pH 9, the 

decreased in the adsorption efficiency might due to the formation of Hg(OH)2 which is 

neutral and less likely to complex with ODPPNE as compared to Hg2+ (Shen et al., 2014). 
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Figure 4.12: Effect of pH on the removal efficiency of Hg2+ in aqueous sample by SG-ODPPNE. 

(Amount of SG-ODPPNE = 50 mg, [Hg2+] = 1 mg/L, volume of Hg2+ solution = 10 

mL and contact time = 24 h). 

 

 

Figure 4.13: (a) The structure of neutral, protonated and deprotonated ODPPNE, and (b) The 

variation of fraction of neutral, protonated and deprotonated ODPPNE in the pH 

range of 6 to 8. 
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4.3.3 Effect of contact time 

The contact time for the adsorption process is important for the determination of the 

kinetic of Hg2+ removal. In this experiment, the removal of Hg2+ by SG-ODPPNE was 

evaluated from 5 to 360 min. The result showed that the percentage removal of Hg2+ 

increased rapidly to 58.9% for the first 60 min (Figure 4.14). After 60 min, the percentage 

removal of Hg2+ was found to increase slowly to 82.1% at 240 min. No significant 

enhancement in Hg2+ removal was observed after 240 min. This may due to the available 

site of adsorbent for adsorption of Hg2+decrease with time and finally saturated after 240 

min (Zewail and Yousef, 2015).   

 

Figure 4.14: Effect of contact time on the removal percentage of Hg2+ in aqueous sample by SG-

ODPPNE. (Amount of SG-ODPPNE = 50 mg, [Hg2+] = 1 mg/L, volume of Hg2+ 

solution = 10 mL and pH of Hg2+ solution = 8). 
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4.3.4 Effect of Hg2+ initial concentration 

The effect of initial Hg2+ concentration was studied by varying the initial concentration 

of Hg2+ from 1 to 100 mg/L. The result showed that the removal percentage decreased 

with increasing initial concentration of the Hg2+ solution (Figure 4.15). This could be 

explained by the fact that the amount of Hg2+ increases with increasing concentration of 

the Hg2+ solution. However, the number of adsorption sites remained constant and 

subsequently higher amount of Hg2+ was not absorbed and remained in the solution when 

the higher concentration of the Hg2+ solution was used. 

 

Figure 4.15: Effect of Hg2+ concentration on removal percentage of Hg2+ in aqueous sample. 

(Amount of SG-ODPPNE = 50 mg, volume of Hg2+ solution = 10 mL, pH of Hg2+ 

solution = 8 and contact time = 6 h). 
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4.3.5 Effect of SG-ODPPNE dosage 

The dosage of SG-ODPPNE is an important parameter to obtain quantitative Hg2+ 

removal. The removal of Hg2+ was found to increase from 58.2 to 78.7% when the amount 

of SG-ODPPNE increased from 10 to 50 mg (Figure 4.16). No significant improvement 

on Hg2+ removal was observed when 100 mg of SG-ODPPNE was used. The increased 

of the removal percentage of Hg2+ with increasing dosage was due to the presence of 

higher amount of adsorption site which is accessible for Hg2+. At the higher amount of 

SG-ODPPNE, the saturation of Hg2+ removal percentage was due to the overlapping of 

adsorption site that reduced the effective surface area (Mandal et al., 2013). 

 

Figure 4.16: Effect of SG-ODPPNE amount on removal percentage of Hg2+ in aqueous sample. 

([Hg2+] = 1 mg/L, volume of Hg2+ solution = 10 mL, pH of Hg2+ solution = 8 and 

contact time = 6 h). 
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4.3.6 Application of SG-ODPPNE in the removal of Hg2+ in real water samples 

Adsorption experiment was carried out in drinking water and lake water to evaluate the 

performance of SG-ODPPNE in the removal of Hg2+ in real water samples. These two 

water samples have different water matrices. The selected water samples were found to 

be free from Hg2+. Therefore, the selected water samples were spiked with Hg2+ at the 

level of 1 mg/L. As compared to the deionized water, no significant reduction in the Hg2+ 

removal efficiency was observed when the adsorption was performed in the selected 

water samples. This result indicated that the selected water matrices were not significantly 

influenced the adsorption of Hg2+ by SG-ODPPNE (Figure 4.17). 

 

Figure 4.17: Removal percentage of Hg2+ by SG-ODPPNE in real water samples. (Amount of 

SG-ODPPNE = 50 mg, spiked [Hg2+] = 1 mg/L, volume of water samples = 10 mL, 

pH of water samples = 8 and contact time = 6 h). 
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of CS2 to yield dithiocarbamate functional group. The adsorption capacity of SG-

ODPPNE was found to be lower than the dithiocarbamate anchored silica gel and 

mesoporous silica gel. This might due to the ODPPNE that located in the sol-gel matrix 

and less accessible by Hg2+. For dithiocarbamate anchored silica gel and mesoporous 

silica gel with higher adsorption capacity, the dithiocarbamate is located at the surface of 

adsorbents and more accessible by Hg2+. In term of selectivity, the performance of SG-

ODPPNE was found to be comparable with dithiocarbamate anchored silica gel 

(Mahmoud, 1999). 

Table 4.3: Comparison of the adsorption capacity and selectivity of SG-ODPPNE with other 

reported dithiocarbamate-based absorbents. 

Adsorbent Maximum 
Adsorption 

Capacity (mg/g) 

Selectivity 
[Metal ion (normalized Qe)] 

Dithiocarbamate anchored silica 
gel1 

 

#NR Hg2+(1), Mg2+(0.02), 
Ca2+(0.06), Cr3+(0.12), 
Mn2+(0.12), Co2+(0.09), 
Cu2+(0.32), Zn2+(0.10), 
Cd2+(0.16), Ba2+(0.30), 

Pb2+(0.45) 
 

Dithiocarbamate anchored silica 
gel2 

~61 #NR 

Dithiocarbamate grafted on 
mesoporous silica3 

40 
 

#NR 

Magnetite coated with siliceous 
hybrid shells4 

20 #NR 

Chalcone based dithiocarbamate 
derivative incorporated sol-gel5 

13.5 Hg2+(1), Cr3+(0.52), 
Ni2+(0.16), Cu2+(0.54), 

Zn2+(0.24), Cd2+(0.28), and 
Pb2+(0.37) 

           

      #NR: Not reported 

        1Mahmoud, 1999, 2Venkatesan et al., 2002, 3Venkatesan et al., 2003, 4Tavares et al., 2013 and      
5This work. 
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4.4 Pre-concentration of Hg2+ in aqueous sample by ODPPNE@MNP 

So far, most of the ligand incorporated silica gels are frequently used as adsorbents for 

the metal ions removal. In this study, SG-ODPPNE was coated onto the magnetic 

particles for the preparation of adsorbent (ODPPNE@MNP) for the pre-concentration of 

Hg2+. This study demonstrated the application of ligand incorporated silica gel in trace 

Hg2+ analysis. The selected method for pre-concentration was D-𝜇SPE (Figure 4.18). In 

D-𝜇SPE, ODPPNE@MNP as the solid adsorbent was dispersed in water through 

sonication to allow the adsorption of Hg2+. After adsorption, ODPPNE@MNP was 

separated from water using an external magnet. In this case, the magnetic property was 

added to the ODPPNE@MNP to ease the separation of adsorbent after the pre-

concentration process. Then the water sample was decanted leaving the ODPPNE@MNP 

in the vials. The Hg2+ that adsorbed by ODPPNE@MNP was desorbed using desorption 

reagent, and the Hg2+ was analysed using mercury analyser. In this study, the operating 

parameters (such as the amount of adsorbent, adsorption time, pH and concentration of 

Hg2+) of D-𝜇SPE were optimized to develop an efficient pre-concentration technique. 

 

Figure 4.18: D-𝜇SPE process. 
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4.4.1 Amount of ODPPNE@MNP 

The adsorption process was carried out by varying the amount of ODPPNE@MNP from 

5 to 30 mg to determine the optimum amount of ODPPNE@MNP required to achieve the 

optimum adsorption of Hg2+. The percent removal of Hg2+ was found to increase from 

88.7 to 93.6% when the amount of ODPPNE@MNP was increased from 5 to 15 mg. This 

result was mainly due to the increased of metal adsorption site when the amount of 

ODPPNE@MNP was increased. However, there was no significant increase in the 

percent removal of Hg2+ when the amount of ODPPNE@MNP was increased to 20, and 

30 mg (Figure 4.19). This result indicates that 15 mg of ODPPNE@MNP was sufficient 

to achieve the highest Hg2+ removal efficiency. Thus, the dosage of ODPPNE@MNP 

used for subsequent adsorption process was 15 mg. 

 

Figure 4.19: Effect of the amount of ODPPNE@MNP on removal percentage of Hg2+ in water. 

([Hg2+] = 1 mg/L, volume of Hg2+ solution = 25 mL, pH of aqueous solution = 8 

and adsorption time = 30 min). 
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4.4.2 Adsorption time 

In D-μSPE, ODPPNE@MNP was dispersed in the water with the aid of sonication.  

Hence, the sonication time was investigated to ensure the ODPPNE@MNP was 

completely and evenly dispersed in the Hg2+ solution to acquire the optimal removal 

efficiency. According to the result obtained (Figure. 4.20), the removal efficiency 

achieved increased significantly to 91.6% for the first 5 min of sonication. At 10 min, the 

obtained percent removal was 93.6%, and it remained constant after 10 min of sonication 

time. Therefore, the adsorption time for D-μSPE was fixed to 10 min in this study. 

 

Figure 4.20: Effect of adsorption time on removal percentage of Hg2+ in aqueous solution. 

(Amount of ODPPNE@MNP = 15 mg, [Hg2+] = 1 mg/L, pH of aqueous solution 

= 8 and volume of Hg2+ solution = 25 mL. 
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Section 4.3.2, the calculated pKa of ODPPNE was 4.21 and 7.32. Therefore, ODPPNE 

also appeared dominantly in neutral and deprotonated forms at this selected pH range. 

The lower efficiency of ODPPNE@MNP in Hg2+ removal at acidic condition was mainly 

due to the presence of the higher fraction of neutral ODPPNE which has the lower 

capability to complex with Hg2+. When the pH increases to 8, the higher amount of 

ODPPNE appeared in the deprotonated form. Deprotonated ODPPNE could interact 

favorably with Hg2+ due to the presence of negative charge. When the pH of the aqueous 

solution was high, the formation of Hg(OH)2 which is neutral and less favorable (Shen et 

al., 2014) to interact with ODPPNE as compared with Hg2+. Since ODPPNE@MNP 

showed slightly higher efficiency in adsorbing Hg2+ at pH 7, this pH condition was 

selected for the following experiment.  

 

 

Figure 4.21: Effect of pH on removal percentage of Hg2+ in aqueous solution. (Amount of 

ODPPNE@MNP = 15 mg, [Hg2+] = 1 mg/L, volume of aqueous solution = 25 mL 

and adsorption time = 10 min). 
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4.4.4 Concentration of Hg2+ in aqueous solution 

The effect of initial concentration of Hg2+ in the aqueous sample on the adsorption 

performance of ODPPNE@MNP was studied by varying the initial concentration of Hg2+ 

from 0.5 to 100 mg/L. The result (Figure 4.22) indicated that the adsorption efficiency of 

Hg2+ by ODPPNE@MNP was excellent when the concentration of Hg2+ was increased 

from 0.5 to 10 mg/L, and 97% of Hg2+ was removed. However, the efficiency of 

ODPPNE@MNP was found to reduce when the concentration of Hg2+ was further 

increased to 50 and 100 mg/L. This observation was due to the increasing amount of Hg2+ 

when the concentration was increased, but the available active site at ODPPNE@MNP 

remained unchanged and saturated with Hg2+ (Denizli et al., 2000). 

 

Figure 4.22: Effect of Hg2+ concentration on removal percentage of Hg2+ in aqueous sample. 

(Amount of ODPPNE@MNP = 15 mg, volume of aqueous solution = 25 mL, 

adsorption time = 10 min and pH of aqueous solution = 7). 
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4.4.5 Desorption reagent for Hg2+ 

In order to determine the most suitable desorption reagent to desorb the adsorbed Hg2+ 

from ODPPNE@MNP, several types of acids which included hydrochloric acid (HCl), 

sulphuric acid (H2SO4) and phosphoric acid (H3PO4) with different concentration were 

used in the desorption process. Acid was selected because it can dissolve metal ions. 

Desorption process was also carry out using sonication. According to Figure 4.23, the 

highest percentage recovery of Hg2+ was achieved using HCl as desorption reagent as 

compared to H2SO4 and H3PO4. This result might be due to the favorable reaction between 

Hg2+ with HCl to form chloro complexes of Hg2+ (Bhattacharyya et al., 2013). The effect 

of concentration of acid on the desorption of Hg2+ was evaluated in this experiment. 

Figure 4.23 showed that the percent recovery of Hg2+ was increased with increasing 

concentration of acid ranging from 0.5 to 1.5 M.  No significant changes in the percent 

recovery when the concentration of acid was further increased to 2.0 M. Therefore, HCl 

with the concentration of 1.5 M was selected as desorption reagent in the D-µSPE. The 

recovery process was performed under by varying the volume of HCl from 0.25 to 25 mL 

to determine the effect of volume of 1.5 M HCl toward the Hg2+ recovery efficiency. The 

result showed that the recovery efficiency of Hg2+ was unaffected by the volume of HCl 

(Figure 4.24). Therefore, 0.25 mL of 1.5 M HCl was selected as desorption reagent to 

reduce the chemical consumption of the developed D-μSPE. 
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Figure 4.23: Effect of the type of eluent used and it’s concentration on recovery efficiency of 

Hg2+ in aqueous solution. (Amount of ODPPNE@MNP = 15 mg, volume of 

aqueous solution = 25 mL, adsorption time = 10 min, pH of aqueous solution = 7, 

desorption time = 30 min and volume of acid = 25 mL). 

 

Figure 4.24: Effect of the volume of HCl on recovery efficiency of Hg2+ in aqueous solution. 

(Amount of ODPPNE@MNP = 15 mg, volume of aqueous solution = 25 mL, 

adsorption time = 10 min, pH of aqueous solution = 7, desorption time = 30 min 

and and [HCl] = 1.5 M). 
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4.4.6 Desorption Time 

Desorption time was studied in detail to obtain a fast and efficient D-μSPE technique 

for Hg2+ analysis. In this study, the desorption proses were carried out with the aid of 

sonication to enhance desorption process. The recovery of Hg2+ was examined within 1 

to 10 min of sonication. The result showed that (Figure 4.25), the percent recovery of 

Hg2+ was increased significantly to 98.7% within first 5 min. The recovery of Hg2+ was 

remained unchanged after 5 min of sonication. Therefore, desorption process by 

sonication was performed at 5 min for the following experiment. 

 

Figure 4.25: Effect of the desorption time recovery efficiency of Hg2+ in aqueous solution. 

(Amount of ODPPNE@MNP = 15 mg, volume of aqueous solution = 25 mL, 

adsorption time = 10 min, pH of aqueous solution = 7, volume of HCl = 0.25 mL 

and [HCl] = 1.5 M). 
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4.4.7 Reusability of ODPPNE@MNP in D-𝜇SPE process 

Reusability is an important feature for the adsorbents in the green chemical analysis. 

Reusable adsorbents can reduce the chemical consumption during its production. In this 

experiment, the used ODPPNE@MNP was washed with 1.5 M of HCl and deionized 

water for three times before the following pre-concentration process was performed to 

ensure the ODPPNE@MNP was completely free from Hg2+. Each pre-concentration 

process was performed under identical conditions as the first process, and the percent 

recovery of Hg2+ was monitored. As shown in Figure 4.26, the percent recovery remained 

constant (> 95%) within the first four pre-concentration. However, the percent recovery 

of Hg2+ was found to decrease to 91.4% and 84.4% for the fifth and sixth time of the pre-

concentration process. The degradation in the Hg2+ pre-concentration efficiency might 

occur due to the dissolution of the silica gel coating by acid which causes the ODPPNE 

to leak from ODPPNE@MNP and consequently reduced the efficiency of 

ODPPNE@MNP in the pre-concentration process. As a conclusion, the ODPPNE@MNP 

can be reused up to four times of pre-concentration. 

 

Figure 4.26: Reusability of ODPPNE@MNP. (Amount of ODPPNE@MNP = 15 mg, volume of 

aqueous solution = 25 mL, adsorption time = 10 min, pH of aqueous solution = 7, 

volume of HCl = 0.25 mL, [HCl] = 1.5 M, and desorption time = 10 min). 
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4.4.8 Application of ODPPNE@MNP as solid adsorbent in the pre-concentration 

of Hg2+ in real water sample 

According to the Section 4.4.1-4.47, the optimized condition for the pre-concentration of 

Hg2+ was 15 mg of ODPPNE@MNP, adsorption time of 10 min, pH 7, 1.5 M of HCl as 

desorption reagent, and 5 min of desorption time. The pre-concentration factor for the 

optimized method was calculated using Equation 4.1: 

Pre − concentration Factor =
𝑉0

𝑉𝑓
       Equation 4.1 

where V0 and Vf are the initial volumes of the water sample and volume of desorption 

agent. In this experiment, Hg2+ in 25 mL of water sample was adsorbed by 

ODPPNE@MNP, and 0.25 mL of 1.5 M HCl was used to desorb the adsorbed Hg2+. 

Therefore, he pre-concentration factor for Hg2+ in this study was 100. 

 The analytical performance and validation of the optimized pre-concentration 

method were evaluated using linearity, the method of detection limit (MDL) or limit of 

detection (LOD), limit of quantitation (LOQ), inter-day and intra-day precision. The 

optimized method showed good regression coefficient (R2) of 0.9985 for the linear range 

of 50 to 5000 ng/L. The MDL and LOQ were determined through seven replicates of 

deionized water spiked with Hg2+ at the concentration that equal to signal to noise ratio 

of five (Ripp, 1996).  MDL and LOQ were determined using the following equations 

(Equation 4.2 and Equation 3): 

𝑀𝐷𝐿 = 𝑠 × (𝑡 − 𝑣𝑎𝑙𝑢𝑒)             Equation 4.2 

𝐿𝑂𝑄 = 𝑠 × 10                                Equation 4.3 

where s is the standard deviation of the concentration of Hg2+ obtained from the seven 

replicates and t-value is the t-student value based on six degrees of freedom which is 
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equal to 3.143. The obtained MDL and LOQ for the optimized method were 4.0 and 12.9 

ng/L, respectively. These values were far below the maximum contaminant level goal 

(MCLG) of inorganic mercury, which is 2 µg/L (U.S. EPA, 2009). The intra-day and 

inter-day reproducibility of the proposed method was expressed in relative standard 

deviation (%RSD) by analysing five replicates of 0.05 𝜇g/L Hg2+. %RSD obtained for 

intra-day and inter-day analyses were 6.9 and 3.7%, respectively. 

 For validation, drinking water, tap water, and surface water that spiked with Hg2+ 

at the concentration of 50, 500 and, 2000 ng/L were analysed using the optimized method. 

The intraday and interday precision of the optimized method are presented in Table 4.4. 

The obtained recovery for Hg2+ was ranged from 90.1 to 99.0 % with relative standard 

deviation of 0.7 - 8.8 and 1.1 - 7.7% for the intra-day and inter-day precision. These 

results showed that the matrices of the selected water samples have no significant effect 

on the performance of the developed method. A typical comparison with other methods 

reported by previous studies is presented in Table 4.5. The analytical characteristics such 

as MDL or LOD, LOQ, and linearity range obtained from the optimized method are more 

sensitive than other previous methods. Therefore, it can be concluded that the proposed 

method was an effective and robust method for the pre-concentration of Hg2+ in water. 
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Table 4.4: Intra and inter day analysis result for real water samples. 

Sample Spiked [Hg2+] 
(ng/L) 

Intra-day (n=5) Inter-day (n=5) 

  Recovery 
efficiency (%) 

RSD (%)   Recovery 
efficiency (%) 

RSD (%) 

 50 96.2 8.8        95.1 1.1 

Drinking water 500 97.5 1.9        96.9 2.3 

 2000 98.1 8.7        98.1 4.0 

 50 99.0 0.7        92.3 4.7 

Tap Water 500 98.2 6.6        98.1 5.9 

 2000 90.1 3.1        96.6 7.7 

 50 90.7 6.5        91.4 5.2 

Surface Water 500 90.8 3.6        90.3 3.4 

 2000 91.8 5.2        91.2 1.2 
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Table 4.5: Comparison with previous reported analytical methods for pre-concentration or 

determination of Hg2+ in aqueous sample. 

Adsorbent Analytical 
Method 

Detection 
Limit 
(ng/L) 

LOQ 
(ng/L) 

Linearity 
(𝜇g/L) 

Fe3O4 magnetic nanoparticles 
functionalized with 
dithizone1 

 

D-𝜇SPE/CV-
AAS 

50* 200 0.2-100 

Fe3O4 nanoparticles covered 
with a shell of silica and 
modified with the N-(2 
acetylaminoethyl)-N-(3-
triethoxysilylpropyl)thiourea2 

 

D-𝜇SPE /DMA 17* #NR #NR 

Thiol-modified magnetic 
silica sorbent3 

 

D-𝜇SPE /CV-
AAS 

60* #NR 0.2-5 

Thiodiethanethiol grafted 
tetraethyl orthosilicate 
modified nanoparticles4 

 

D-𝜇SPE /CV-
AAS 

4* #NR 0.01-750 

Fe3O4 magnetite 
nanoparticles modified with 
1-(p-acetyl phenyl)-3-(o-
ethoxy phenyl) triazene5 

 

D-𝜇SPE /ICP-
OES 

40* 130 0.2-200 

Magnetic nanoparticles 
functionalized with 1,5-
bis(di-2- pyridil)methylene 
thiocarbohydrazide6 

 

FI-MSPME/CV-
ETAAS 

 

7.4* #NR 0.099-10/10-
50 

Rattle-type Fe3O4@SnO2 
core-shell nanoparticles7 

 

D-𝜇SPE /CV-
AAS 

28* #NR 0.1-40 

ODPPNE@MNP8 

 
D-𝜇SPE /MA   4.0** 12.9 0.05-5.0 

 

   *LOD, **MDL, #NR: Not reported 
     1Adlnasab et al., 2014, 2Cui et al., 2015, 3Xiang et al., 2013, 4Beiraghi et al., 2014, 5Rofouei et 

al., 2012, 6Alonso et al., 2016, 7Mehdinia et al., 2017 and 8This work. 
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4.5 Adsorption isotherm 

Adsorption isotherm describes the phenomenon that is governing the retention, release, 

and mobility of a substance from the aqueous to a solid-phase at a constant temperature 

and pH (Foo and Hameed, 2010). In this study, the adsorption isotherm was determined 

to understand the mechanism of adsorption of Hg2+ by SG-ODPPNE and 

MNP@ODPPNE. The obtained adsorption data were fitted to Langmuir and Freundlich 

models to obtain the best model that described the adsorption Hg2+ process by both SG-

ODPPNE and MNP@ODPPNE (Abas et al., 2013). Langmuir model assumes the 

adsorption occurs at monolayer or so-called unilayer adsorption (Sadeek et al., 2015). 

According to this model, sorbates are adsorbed by equivalent active site with identical 

energy. These active sites were located on the surface of adsorbent and consequently 

formed a saturated monolayer. The Langmuir model can be expressed by Equation 4.4 

(Foo and Hameed, 2010):  

  
𝐶𝑒

𝑄𝑒
=  

1

𝑄𝑚𝐵𝐿
+  

𝐶𝑒

𝑄𝑚
                  Equation 4.4 

where Ce is referring to the concentration of sorbate which is Hg2+ at equilibrium, Qe and 

Qm represent the adsorption capacity of adsorbent at equilibrium and maximum 

adsorption capacity (mg/g), and BL is the Langmuir constant (L/mg) related to the energy 

of adsorption. By plotting the curve of Ce/Qe versus Ce, Qm and BL can be determined 

from slope and intercept of the graph. The dimensionless constant or separation factor RL 

can be determined to show the favorability of adsorption. RL can be calculated using the 

following Equation 4.5 (Ramos-Ramírez et al., 2009): 

𝑅𝐿 =  
1

1 + (𝐵𝐿 × 𝐶𝑜)
                 Equation 4.5 

where Co represents the initial concentration of Hg2+ as adsorbate. The adsorption process  
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is described as favorable if 0 < RL  <1, unfavorable if RL > 1 and linear when RL = 0 

(Ramos-Ramírez et al., 2009). For SG-ODPPNE, the Ce/Qe versus Ce plot (Figure 4.27a) 

was linear with the correlation coefficients (R2) of 0.9993. The Qm obtained from the 

curve was 13.5 mg/g, and the RL value was in the range of 0.1428 to 0.9434. The results 

obtained from the RL value indicates the adsorption of Hg2+ is a favorable process. The 

Ce/Qe versus Ce plot (Figure 4.27b) for ODPPNE@MNP was also linear with the R2 value 

of 0.9988. The Qm obtained for ODPPNE@MNP was 185.2 mg/g. 

 

 

Figure 4.27: Linearized adsorption isotherm Langmuir Model for Hg2+ adsorption on (a) SG-

ODPPNE and (b) ODPPNE@MNP. 
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ODPPNE@MNP also showed favorable adsorption process towards Hg2+ with the RL 

value ranging from 0.0333 to 0.8732. The Qm value obtained for ODPPNE@MNP was 

13.7 times higher than SG-ODPPNE. ODPPNE@MNP with smaller particle (~600 nm) 

with the larger surface area could adsorb higher amount of Hg2+ as compared to SG-

ODPPNE with the size of 0.06 mm.  

 Freundlich isotherm is an empirical equation that describes the adsorption process 

on the heterogeneous surface with the non-uniform active site, which also refers to 

multilayer adsorption process (Sadeek et al., 2015; Yan et al., 2015). The Freundlich 

model can be described by Equation 4.6 (Mushtaq et al., 2016): 

log 𝑄𝑒 =  log 𝐵𝑓 +  
1

𝑛
log 𝐶𝑒              Equation 4.6 

where Bf represents the Freundlich constant that related to adsorption capacity, and n is 

the adsorption intensity constant. The R2 values obtained from log Qe versus log Ce curve 

(Figure 4.28) for SG-ODPPNE and MNP@ODPPNE were 0.9713 and 0.9800, 

respectively.  

 The best-fitted model for this adsorption process was determined by the R2 and 

Chi-square values (χ2) obtained from Figure 4.27 and Figure 4.28 (Mandal et al., 2013). 

The result showed that the R2 value of Langmuir model was significantly higher than 

Freundlich model for both SG-ODPPNE and MNP@ODPPNE (Table 4.6). In addition, 

the χ2 of Langmuir model for SG-ODPPNE and MNP@ODPPNE adsorption was found 

to be lower than Freundlich model. This observation suggested that the adsorption process 

of Hg2+ on SG-ODPPNE and ODPPNE@MNP follows Langmuir isotherm model which 

indicates the unilayer adsorption. In addition, this result also indicated that ODPPNE 

trapped in the silica gel matrix are equivalent active site with identical energy for Hg2+ 

adsorption. 
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Figure 4.28: Linearized adsorption isotherm Freundlich Model for Hg2+ adsorption on (a) SG-

ODPPNE and (b) ODPPNE@MNP. 
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Table 4.6: Adsorption isotherm parameter of  (a) Langmuir and (b) Freundlich model. 

(a)  

Parameter 

Langmuir model 
 

SG-ODPPNE 
 

ODPPNE@MNP 

Qm (mg/g) 
 

13.5135 185.1852 

BL (L/mg) 
 

0.06926 0.2903 

RL 

 

0.14-0.94 0.033-0.87 

R2 

 
0.9993 0.9988 

χ2 

 
0.0139 0.1891 

 

(b)  

Parameter 

Freundlich model  
 

    SG-ODPPNE 
 

   ODPPNE@MNP 

BF (L/mg) 0.8078 30.1162 

1/n 0.7396 0.8098 

n 1.3521 1.2349 

R2 0.9713 0.9800 

χ2 1.6830 33.9432 
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4.6 Kinetics study 

Adsorption kinetics study was carried out to further determine the mechanism of the 

adsorption of Hg2+ by SG-ODPPNE and MNP@ODPPNE. This study was performed by 

fitting the obtained data to several kinetic models (Wu et al., 2014). In this study, the data 

were fitted into pseudo-first order, pseudo-second order and intra particle diffusion 

models. 

4.6.1 Pseudo-first order and Pseudo-second order Model 

In the past four decades, Pseudo-first order model has been widely used to study the 

kinetics of the adsorption of pollutants from aqueous solution by various adsorbents such 

as peat, organobentonite, chitosan, etc. (Cheung et al., 2007; Ho, 2006; Yan et al., 2015). 

This model describes the adsorption process in the absent of sorbate-sorbate interaction 

(Kumar, 2006). In this study the sorbate is referring to Hg2+. The linearized equation of 

pseudo-first order is presented as follows (Equation 4.7) (Ho, 2006): 

log(𝑄𝑒 − 𝑄𝑡) = log 𝑄𝑒 −
𝑘1

2.303
𝑡                   Equation 4.7 

where Qt (mg/g) is the amount of adsorbed adsorbate at time t and k1 represents the 

pseudo-first order rate constant.  

 The data from adsorption of Hg2+ by SG-ODPPNE were found to be well fitted at 

the early stages of the adsorption process (Figure 4.29a) due to the absent of sorbate-

sorbate interaction on SG-ODPPNE (Kumar, 2006). However, the linear slope was 

deviated after 60 min of adsorption time and suggested that pseudo-first order model was 

inapplicable to describe the entire adsorption process due to the sorbate-sorbate 

interaction that occurred after 60 min (Ho and MacKay, 1998). On the other hand, the 

data obtained from adsorption of Hg2+ by ODPPNE@MNP was not fitted well to this 
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model where the poor value of R2 (0.5275) was obtained (Figure 4.29b). This result 

further indicates the presence of strong sorbate-sorbate interaction. 

 

 

Figure 4.29: Pseudo-first order model for the adsorption of Hg2+ on (a) SG-ODPPNE and (b) 

ODPPNE@MNP. 
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 To further evaluate the kinetics of adsorption process, the experiment data were 

fitted into pseudo-second order model. Pseudo-second order model describes the 

chemisorption between sorbate and adsorbent, which involved sharing or transfer of 

valence electron (Ho, 2006). The pseudo-second order equation is described by equation 

4.8: 

𝑡

𝑄𝑡
=

𝑡

𝑄𝑒
+

1

𝑘2𝑄𝑒
2                       Equation 4.8 

where Qt (mg/g) is the amount of adsorbed adsorbate at time t and k2 is the pseudo-second 

order rate constant which can be determined from the intercept of graph t/Qt versus t.  

 According to Table 4.7 and Figure 4.30, the R2 values (0.9953 and 1) obtained 

from pseudo-second order plot of SG-ODPPNE and ODPPNE@MNP was found to be 

higher than that of pseudo-first order. This result suggested that the pseudo-second order 

model was the better model to describe the kinetics of the sorption process in this study. 

Therefore, it can be concluded that the adsorption of Hg2+ by SG-ODPPNE and 

ODPPNE@MNP was a chemisorption process which involved complexation reaction 

between ODPPNE and Hg2+. 
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Figure 4.30: Pseudo-second order model for the adsorption of Hg2+ on (a) SG-ODPPNE and 

(b) ODPPNE@MNP. 
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Table 4.7: Kinetic study parameter of (a) Pseudo-first order and (b) Pseudo-second order. 

(a)  

Parameter 

Pseudo-first order model 
 

SG-ODPPNE 
 

ODPPNE@MNP 

Qe,cal (mg/g) 
 

0.1653 1.6163 

Qe,exp (mg/g) 
 

0.1959 0.0791 

k1 (min-1) 
 

0.0244 0.0182 

R2 

 
0.9791 0.5275 

 

(b)  

Parameter 

Pseudo-second order model 
 

SG-ODPPNE 
 

ODPPNE@MNP 

Qe,cal (mg/g) 
 

0.1653 1.6163 

Qe,exp (mg/g) 
 

0.1929 1.5728 

k2 (min.g)/mg 
  

0.1118 5.4850 

R2 

 
0.9953 1.0000 
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4.6.2 Intra-particle diffusion and Boyd model 

In general, solid-liquid adsorption process involves three stages (Wen et al., 2015). The 

first stage is the film diffusion of sorbate through the bulk phase to the surface of the 

adsorbent. The second step involves the gradual adsorption or intra-particle diffusion of 

sorbate. The final stage is related to the equilibrium stage. In this study, the Weber and 

Morris intra-particle diffusion model was used to predict the rate of determining step of 

the adsorption process (Wen et al., 2015). This model can be described by Equation 4.9: 

𝑄𝑡 = 𝑘𝑖𝑑√𝑡 + 𝐶𝑖𝑑                Equation 4.9 

where kid is the intra-particle diffusion rate constant, and Cid is a constant related to the 

thickness of the boundary layer. If the graph of Qt versus √(t) is linear and pass through 

the origin, it indicates the intra-particle diffusion step is the only rate-determining step for 

entire adsorption process. Otherwise, multi-linear slope indicates that transportation stage 

and equilibrium stage may also control the adsorption process (Cheung et al., 2007). 

 According to Figure 4.31a, three linear portions were observed for Qt versus √(t) 

curve of SG-ODPPNE. The first slope represents the mechanism where Hg2+ was 

transported from aqueous solution to the external surface of the adsorbent. The second 

slope denotes the gradual adsorption of Hg2+ onto SG-ODPPNE. The final part of the 

linear slope represents the equilibrium stage. At this final stage, diffusion rate was slow 

down due to the low concentration of Hg2+. For the adsorption of Hg2+ by 

ODPPNE@MNP, the intra-particle diffusion curve (Figure 4.31b) showed two linear 

portions only. This observation also has been reported by other studies (Mahmound, 

2015; Nethaji et al., 2013). The first slope in this graph was corresponded to the external 

mass transport of Hg2+ to external surface of ODPPNE@MNP. The second portion of the 

slope represented the gradual adsorption of Hg2+ onto ODPPNE@MNP via intra-particle 

diffusion. 
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Figure 4.31: The intra-particle diffusion model for the adsorption of Hg2+ on (a) SG-ODPPNE 

and (b) ODPPNE@MNP. 
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 The multi-linear slope obtained from this kinetic study indicated that the entire 

adsorption process of Hg2+ onto SG-ODPPNE and ODPPNE@MNP was controlled by 

two or more mechanisms involved. However, there was only one rate-determining step 

that exists in the particular time range as described by Cheung et al. (2007). Since the 

equilibrium stages are fast and it can consider as not the determining step (Karthikeyan 

et al., 2010). Therefore, the kinetic data were further analysed with Boyd model to 

distinguished either film diffusion or intra-particle diffusion stages was the main rate-

determining step of this adsorption process, (Gusain et al., 2014). The Boyd model can 

be described by the Equation 4.10 (Kumar et al., 2005): 

𝐹 = 1 − (
6

𝜋2
) exp[−𝐵𝑡]          Equation 4.10 

𝐹 =
𝑄𝑡

𝑄𝑒
                                        Equation 4.11 

where F is the fraction of Hg2+ adsorbed at different time t and Bt is a mathematical 

function of F. By substituting Equation 4.10 into Equation 4.11, the kinetic expression 

can be written as: 

𝐵𝑡 = −0.4977 − ln(1 − 𝐹)       Equation 4.12 

 Therefore, the Bt value was calculated from Equation 4.12, and the Boyd plot was 

obtained by plotting the graph Bt against t.  If the slope of this graph is a straight line that 

passes through the origin, the intraparticle diffusion stages were the rate-determining step 

otherwise the reaction was governed by film diffusion stage (Mohan and Singh, 2002).  

According to Boyd plot presented in Figure 4.32, the slope obtained was not pass through 

the origin for both SG-ODPPNE and ODPPNE@MNP. This result indicated that film 

diffusion stage was the rate-determining step in both adsorption processes. 
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Figure 4.32: Boyd plot for the adsorption of Hg2+ on (a) SG-ODPPNE and (b) ODPPNE@MNP. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this study, the chalcone was chemically modified to obtain dithiocarbamate derivative 

(ODPPNE). The synthesized ODPPNE was incorporated into the sol-gel matrix to form 

SG-ODPPNE as the adsorbent. The result showed that the efficiency and selectivity of 

Hg2+ removal were largely enhanced by modifying the chalcone into dithiocarbamate 

derivative. The adsorption of Hg2+ was studied in batch mode under different 

experimental conditions. The result showed that the efficiency of the Hg2+ adsorption 

process depends on the size of adsorbent, pH of the solution, contact time, the 

concentration of Hg2+ and the SG-ODPPNE dosage. By applying the optimized condition, 

80% of Hg2+ was successfully removed from aqueous solution by using SG-ODPPNE as 

the adsorbent. The removal efficiency of Hg2+ by SG-ODPPNE was not significantly 

influenced by the matrices effect of the real water samples.  

 ODPPNE incorporated silica gel was also coated on the surface of the magnetic 

nanoparticle (MNP) to demonstrate the application of this hybrid material, 

ODPPNE@MNP, in the pre-concentration of Hg2+ in water. By using this method of 

preparation, the synthesize route of ligand modified adsorbent was simplified, and the 

chemical usage was minimized. The ODPPNE@MNP was used as the adsorbent for the 

pre-concentration process to determine the trace amount of Hg2+ in the water sample. 

Under optimize condition, an effective method was developed by employing 

ODPPNE@MNP as the solid adsorbent for aqueous Hg2+ in D-𝜇SPE process. This D-

𝜇SPE method with low method detection limit (4 ng/L), wide linearity (50-5000 ng/L), 

high pre-concentration factor (100) and good repeatability (4.5-6.5 %) was successfully 

demonstrated. The applicability of the developed method in the analysis of Hg2+ was 

evaluated by using three real water samples (drinking water, tap water, and surface water). 

The determination of Hg2+ in drinking water, tap water and surface water by the 
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developed method achieved the recovery efficiency of 90.1 to 99.0 % with the intraday 

and interday relative standard deviation of 0.7-8.8 % and 1.1-7.7 %, respectively. 

 The adsorption of Hg2+ by SG-ODPPNE and ODPPNE@MNP was found to obey 

the Langmuir model which suggested the presence of monolayer adsorption. The kinetics 

study showed that the adsorption of Hg2+ by SG-ODPPNE and ODPPNE@MNP was 

found to follow the pseudo-second-order model which implies the presence of 

chemisorption process. The mechanisms involved in adsorption process were film 

diffusion, intra-particle diffusion, and equilibrium stage. It was also found that the intra-

particle diffusion step was not the only rate-determining step in this adsorption process. 

The kinetic data were further analysed by Boyd model to distinguish either film diffusion, 

or intra-particle diffusion was governing the overall adsorption reaction. The Boyd plot 

indicated that overall adsorption process of Hg2+ by SG-ODPPNE and ODPPNE@MNP 

was governed by the film diffusion stage. 

 

5.2 Future works 

In future, several research works, which are the extension of the current study, can be 

carried out. First, the natural product with metal capturing ability such as curcumin, 

quercetin, rutin, and morin can be incorporated into silica gel matrix to generate the 

effective adsorbent for metal ions. Secondly, some of these natural products with similar 

structure with chalcone such as curcumin can be further modified into dithiocarbamate 

derivative to produce the selective and effective adsorbent for Hg2+ removal and pre-

concentration of trace Hg2+ in the water sample. 
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