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OUTLIER DETECTION IN CYLINDRICAL DATA

ABSTRACT

A cylindrical data set consists of a circular and a linear variables. Few distributions have

been proposed for such data pioneered by Johnson and Wehrly (1978). In this study, we

look at two problems of detecting outliers in cylindrical data. Firstly, we define outlier

in cylindrical data and propose a new test of discordancy to detect outlier in cylindrical

data generated from Johnson-Wehrly distribution. Secondly, we focus on detecting outliers

in Johnson-Wehrly circular-linear regression model. In both cases, the outlier detection

procedures are developed using the k-nearest neighbor distance. The cut-off points

are obtained and the performance of the new statistic is examined via simulation. A

practical example is presented using the wind data set from the Malaysian Meteorological

Department. The findings of the study should lead to better inferences, model fitting and

forecasting of cylindrical data sets.

Keywords: cylindrical data, cylindrical regression model, detection procedure, k-nearest

neighbor’s method, outlier
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PENGESANAN CERAPAN TERSISIH DALAM DATA SILINDER

ABSTRAK

Data silinder adalah data yang mengandungi satu pembolehubah linear dan satu pembolehu-

bah bulatan. Beberapa taburan untuk data silinder telah dicadangkan yang dipelopori oleh

Johnson dan Wehrly (1978). Kajian ini mempertimbangkan dua masalah untuk mengesan

kewujudan cerapan tersisih di dalam data silinder. Pertamanya, kami mendefinasikan

cerapan tersisih di dalam data silinder dan seterusnya mencadangkan satu ujian sejajar

yang baru untuk mengesan kewujudan cerapan tersisih dalam data silinder yang di jana

daripada taburan Johnson-Wehrly. Keduanya, kami fokus untuk mengesan kewujudan

cerapan tersisih di dalam model regresi bulatan-linear Johnson-Wehrly. Bagi kedua-dua

kes tersebut, prosedur pengesanan cerapan tersisih dibina menggunakan teori jarak jiran

k-terdekat. Titik potongan diperolehi dan prestasi bagi kedua-dua ujian tersebut diperiksa

secara simulasi. Contoh praktikal dipersembahkan menggunakan set data angin daripada

Jabatan Meteorologi Malaysia. Hasil daripada kajian ini seharusnya membawa kesan yang

lebih baik kepada inferens, pemadanan model dan peramalan set data silinder.

Kata kunci: data silinder, model regresi silinder, prosedur pengesanan, kaedah jiran

k-terdekat, cerapan tersisih
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CHAPTER 1: INTRODUCTION

1.1 Background of the Study

Linear data set is commonly found in the real world albeit of different forms in various

areas. At the same time, there are also variables measured in degrees or radians. Data with

such variables are referred as directional data. Measure of directions of birds’ migration

and wind are examples of directional variables. The simplest form of directional data is

the univariate circular data which can be depicted on a circle. Higher order of directional

data and a mixture of directional/linear variables requires the development of different

statistical tools from that for linear data and become the focus of this study.

A circular observation refers to a point on a circumference of a circle or a vector in a

plane. Each circular observation can be specified by the angle between the initial point to

the corresponding observation point on a circle. Circular data usually deals with direction

and bounded in the range of [0, 2π). Hence, we need to consider special statistical methods

in analyzing such data, which cannot be carried out using the corresponding linear statistics.

Circular data arise in many fields including those corresponding to two circular measuring

instruments, the clock and the compass. The data measured using these measurements

include the migration or homing of birds, the wind and wave directions, the direction of

earthquake displacement and the arrival times (in 24-hour clock) of patient at an emergency

unit in a hospital.

Meanwhile, cylindrical data is a form of bivariate data, where one component is

measured on the circular scale while the other is linear. The variables can be represented

in two different form. First, they can be represented in three dimensional polar coordinate

(r, θi, xi). Second, they can be represented in Cartesian coordinate (xi, yi, zi) where

xi = r cos θi, yi = r sin θi and z = xi. The joint distribution between the random vector of
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linear and circular components is called a cylindrical distribution or a distribution on the

cylinder.

The analysis of circular data as well as cylindrical data has attracted the interest of

statisticians and researchers from different scientific fields due to the emergence of such

data. Cylindrical data can arise in various applications, such as

1. Meteorology: wind direction and speed or ozone or temperature. For example,

analysis and parameterizations of wind profiles in the low atmosphere (Perez et al.,

2005) , analysis of wind speed and temperature (Perez et al., 2007) and wind speed

and direction for wind energy analysis (Carta et al., 2008).

2. Biology: plant or animal migration patterns. For example, directions and distances

moved by small blue periwinkles (Fisher & Lee, 1992).

3. Industrial applications: quantifying the imbalance of rotating parts as a direction

of imbalance and magnitude in automotive industry with wheel, brake and engine

component. For example, the relationship between the imbalance of rotating parts

and the magnitude (Anderson-Cook, 2000).

There are different types of distributions available for the linear case such as uniform,

normal, gamma and exponential. Normal distribution is often used in the linear case due

to its valuable properties. Similarly, there are various literature in circular and cylindrical

distributions. In the circular case, various distributions such as vonMises, wrapped Cauchy,

wrapped normal, and Fisher are available in the literature. The von Mises distribution is

the most common distribution used for circular data. This distribution can be considered as

important as the normal distribution for the linear case. Meanwhile, in the cylindrical case,

there have been limited attempts to handle such data. However, there are a few researchers

who have been working on cylindrical models for the past few decades. Johnson andWehrly
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(1978) developed four circular-linear distributions based on the principle of maximum

entropy and one circular-linear distribution with specified marginal distribution. In this

study, we will use one of the distributions from Johnson and Wehrly (1978). On the same

year, Mardia and Sutton (1978) also proposed a model for cylindrical variables. Then, an

extension to the Mardia and Sutton (1978) model has been proposed by Anderson-Cook

(1997). Anderson-Cook (2000) once again extended Mardia and Sutton first order model

to form a second order model. Kato and Shimizu (2008) proposed a model which could

be useful to fit cylindrical data with asymmetry and/or bimodality of marginal circular

component based on the principle of maximum entropy. Their model is an extension from

the Mardia and Sutton model.

In statistical modeling, regression analysis is one of the most important methods to

estimate the relationship among the variables. For the linear case, linear regression can be

found in various literature. In circular regression, the regression can be divided into three

categories; namely (i) circular-circular regression: both the dependent and independent

variables are circular (ii) circular-linear regression: the linear variable depends on the

circular variable and (iii) linear-circular regression: the circular variable depends on the

linear variable (Jammalamadaka & SenGupta, 2001). The regression for cylindrical data

can be considered as the circular-linear regression or the linear-circular regression since

both types use the circular and linear variables.

The existence of unexpected or outlying observations has been a concern in statistical

analysis. These are often seen as contaminating the data and may affect the information

that can be obtained from the data set. Hence, it is natural to find a way to identify the

outliers and treat them accordingly. Outlier is an observation having extremely large or

small values (Barnett & Lewis, 1994). Meanwhile outlier in circular data is defined as an

observation having large value of circular distance from the value of its two neighboring
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observations on a unit circle (Mohamed et al., 2016). Just like the linear case, the existence

of outliers in circular data will affect the parameter estimation as well as the forecasted

values. Hence, it is very important to handle outlier problem by developing appropriate

methods of identifying them.

There are several tests that can be used to detect outlier in circular data. Collett (1980)

presented four different discordancy tests in circular data namely L, C, D and M statistics.

Then Abuzaid et al. (2009) proposed a new test known as A statistic. On the other

hand, there are also a few methods available in handling outliers in circular regression,

particularly in circular-circular regression. Ibrahim et al. (2013) proposed the COVRATIO

statistic and Abuzaid et al. (2013) and Rambli et al. (2016) proposed the Mean Circular

Error (MCE) statistic using a row-deletion method with different approach. Abuzaid et

al. (2013) used the circular distance between two circular observations while Rambli

et al. (2016) transformed the residuals into linear scales using a trigonometric function.

However, there is no literature available yet on the outlier detection in cylindrical data and

cylindrical regression model, and hence these become the objectives of this study.

1.2 Problem Statement

The existence of outlier in data sets is one of the most common problems that may occur

in any statistical analysis. Outlier in circular data can be defined as an observation having

large value of circular distance from the value of its two neighboring observations on a

unit circle (Mohamed et al., 2016). Similar problems have also been explored with circular

regression models. While different outlier detection procedures have been developed for

circular samples and regression models, no such work has been done on cylindrical data

and the corresponding regression model. Hence, we intend to develop new theories on

outliers in cylindrical data, and later to develop numerical methods of identifying outliers

in this type of data and the corresponding regression model.

4
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1.3 Objective

Based on the statement of the problem above, we have outlined the following objectives

for this study:

1. To develop a discordancy test of identifying outliers in cylindrical data.

2. To propose a new procedure of outlier detection in the JW circular-linear regression

model for cylindrical data.

3. To apply the proposed methods on real data sets.

1.4 Research Outline

This research attempts to handle the problem of outliers in cylindrical data and the

corresponding regression model by proposing two new statistical methods. The research is

outlined as follows:

Chapter two gives the literature review on the linear, circular and cylindrical data. The

review on the linear, circular and cylindrical distributions are also presented as well as the

outlier detection methods for these data. Then, we review the circular regression models

and the outlier detection methods in the regression models. Some of the theories on the

method used in the construction of the discordancy tests are also presented.

Chapter three discusses the properties of JW distribution and its parameter estimation.

Some theories of the optimization method for estimation purposes are presented. Then,

through simulation study, we investigate the accuracy of the estimation.

Chapter four presents the development of a new discordancy test of identifying outlier

in the cylindrical data. We present the distance between two points on the surface of a

cylinder. Through simulation, we obtain the cut-off points and study the performance of

the test for a single outlier. The statistic is then applied on the wind direction and wind

speed data.
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Chapter five presents a new test statistic to detect outlier in the regression model for

cylindrical data. We discuss the theory of the JW circular-linear regression model and the

effect of outliers on the model. We obtain the cut-off points and investigate the performance

of the test for a single outlier through simulation. The statistic is then applied on the wind

data set.

Chapter six presents the summary of the research work. We also provide suggestions

for extending the research work.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In this chapter, we review the theories related to linear, circular and cylindrical data.

First, we look at the topics in circular data; the descriptive statistics and the distance

measurement. Then, we review the circular and cylindrical distributions as well as the

circular regression models. Next, we look at the outlier detection methods in circular data

and circular regression. Finally, we review the theory of the k-nearest neighbor method

which will be employed in the outlier detection in cylindrical data and its regression

problems.

2.2 Outliers

In statistical analysis, one of the most common problems that arises is the existence

of unexpected observations in data set which are called outliers. The existence of outlier

can affect the results and violate model assumptions. However, outlier might provide

useful information about the data when we look into the response of the study. Outlier

can occur due to many reasons including error during recording, reading and calculating.

If the collection of the data is correct, the outlier represents a rare event. When the

existence of outlier are questionable to the data set, the pertaining values should be dealt

with accordingly. Therefore, appropriate treatment of outlier has become an important

discussion by many authors. Outlier refers to observation that stands out remarkably

from other observations (Barnett & Lewis, 1994). However, the detection of outlier in

circular data necessitate different method from the linear case. In circular data, the outlier

is defined as an observation having large value of circular distance from the value of its

two neighboring observations on a unit circle (Mohamed et al., 2016).
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Many outlier detection methods have been developed for different types of data including

linear and directional data. Various tests according to different distributions are discussed

in Barnett and Lewis (1994). Iglewicz and Hoaglin (1993) reviewed five different

tests for normal distribution, including generalized Extreme Studentized Deviate (ESD),

Shapiro-Wilk and Dixon test.

In linear regression, there are many outlier detection methods that have been proposed.

For the case of single outlier, Srikantan (1961) and Barnett and Lewis (1994) used residuals

from the least square fit. Cook (1977) presented a new distance measure based on two

maximum likelihood estimates, where one with full data set and one with reduced data set

by removing a specific observation. Srivastava and Rosen (1998) proposed a likelihood

ratio test for detecting single outlier in multivariate regression models. For the case of

multiple outlier, Hadi and Simonoff (1993) proposed procedures and tests to detect outliers

in univariate linear regression model. Barrett and Ling (1992) presented general classes

of multivariate influence measure for a univariate regression based on Cook’s influence

measure.

In circular data, graphical and numerical methods are the most common tools used to

investigate the outliers. The graphical methods include rose diagram, circular histogram,

P-P plot and circular plot. To date, there are several tests that can be used to detect

outlier in circular data. Collett (1980) pointed that the outlier detection in circular data

highly depends on the concentration parameter. It is easier to find an outlier when the

data is concentrated towards a particular direction than those with smaller concentration.

The author also suggested that an observation with maximum value of circular distance

d(θi, θ j) is expected to be a candidate of an outlier. The author also presented four different

discordancy tests in circular data namely L, C, D and M statistics. Abuzaid et al. (2009)

presented a new test of discordancy for univariate circular data, known as A statistic. The
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author developed this statistic based on the summation of circular distance of the point

interest to all other points.

The outlier detection in circular regression mainly focus on the circular-circular

regression models. A number of circular regression models have been proposed by various

authors. The earliest model was proposed by Laylock (1975) where the regression takes the

form of multiple regression model with complex entries. Jammalamada and Sarma (1993)

also proposed a regression model of two circular random variables by using the definition

of characteristic function of a complex number. Then Rivest (1997) proposed a model

to predict the y-direction based on the rotation of the decentred x-angle. On the other

hand, Downs and Mardia (2002) applied a mapping method on their regression model to

relate the variables and Hussin (2004) proposed a simple circular regression model with

one independent circular variable only. Then, Kato et al. (2008) proposed a regression

model where the regression curve is expressed as a form of Mobius circle transformation.

Recently, SenGupta and Kim (2016) proposed a new circular-circular regression model for

studying two circular genomes using Mobius transformation.

Abuzaid et al. (2011) and Ibrahim et al. (2013) extended the COVRATIO statistic

method that is used in linear regression for circular-circular regression models to detect

outlier. For circular-circular regression models, Abuzaid et al. (2013) and Rambli et al.

(2016) proposed new outlier detection methods in this type of regression models called

Mean Circular Error (MCE) statistic by using a row-deletion method. Rambli et al. (2016)

transformed the residuals into linear scales using a trigonometric function while Abuzaid

et al. (2013) used the circular distance between two circular observations.

Meanwhile, circular regression where the predictors are scalars was first introduced by

Gould (1969). His model follows closely the concept of linear regression and the iterative

method is used to find the parameter estimate via the corresponding log-likelihood function.
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However, his model has infinite number of curves on the surface of an infinite cylinders.

Mardia (1972) and Laylock (1975) also proposed regression model of circular variate on

linear variates. Johnson and Wehrly (1978) improved Gould method by proposing three

different class of models where two of them are the regression of a circular variate on

linear variate. Then, Fisher and Lee (1992) proposed a regression model where the mean

direction and dispersion of a von Mises variate are related to the explanatory variables by

a general link function. The mode basically transforms the linear variables into circular

using the chosen general link function. George and Ghosh (2006) developed a regression

of a circular variable on a linear predictor using a Bayesian approach where the regression

coefficients are assumed to be nonparametric.

Finally, Johnson and Wehrly (1978) proposed a regression of a linear variate on other

linear and circular variates in which the model follow closely the linear regression. The

least square method is used to find the parameter estimates. Then SenGupta and Ugwuowo

(2006) proposed three different models of circular-linear regression for multivariate data

based on both circular and linear predictors. These models can be used to deal with both

symmetric and asymmetric model forms. Qin et al. (2011) proposed a nonparametric

regression model for circular-linear multivariate regressors using a kernel-weighted local

linear method.

In this study, we propose a new test of outlier detection in regressionmodel for cylindrical

data.

2.3 Linear Data

2.3.1 Cartesian Coordinate

The Cartesian plane is a plane in rectangular coordinate system with points in the form

of a pair of numbers. A Cartesian coordinate is a point on the plane specified by a pair of

ordered real numbers where their distances to the origin is measured in a unit length. Each
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reference line is called as an axis of the system where two perpendicular real axes in the

plane describe a Cartesian coordinate system in two-dimensional space while a pairwise

perpendicular axes describe a Cartesian coordinate system in three-dimensional space.

In the two-dimensional space, the horizontal axis is called x-axis and the vertical axis is

called y-axis. Meanwhile, in three-dimensional space the axis is usually labeled by x, y

and z.

2.3.2 Euclidean Distance

Euclidean distance is a distance between two points in the Euclidean n-space. In one

dimension, the Euclidean distance is simply an absolute value of the differences between

two points say u and v such that

d =
√
(u − v)2 = |u − v |.

In two dimensional Euclidean space, the Euclidean distance between two points u = (u1, u2)

and v = (v1, v2) is given by

d(u, v) =
√
(u1 − v1)2 + (u2 − v2)2.

On the other hand, the Euclidean distance in three-dimensional Euclidean space between

points u = (u1, u2, u3) and v = (v1, v2, v3) is given by

d(u, v) =
√
(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2.

Hence in general, given Cartesian coordinates u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn)

in Euclidean n-space, the distance between these two points is given by
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d(u, v) =
√
(u1 − v1)2 + (u2 − v2)2 + · · · + (un − vn)2) =

√∑
(ui − vi)2.

2.3.3 Euclidean Length or Magnitude

Magnitude is a measure of the vector length. A length of vector u = (u1, u2, . . . , un)

can be measured by

|u | =
√

u2
1 + u2

2 + · · · + u2
n

2.4 Circular Data

Observations measured as angles in radian or degree are referred to as directional data.

A two-dimensional direction can be represented as angles measured between a starting

points, i.e, 0◦ moving either clockwise/anticlockwise in [0◦,360◦).

2.4.1 Descriptive Statistic for Circular Data

Descriptive statistic is used to describe the basic features of the data by providing a

simple summary about the sample. Some commonly used descriptive statistics in circular

data are described below (Jammalamadaka & SenGupta, 2001):

(i) Mean direction, µ

In circular statistics, the mean is generally referred to mean direction. Let

θ1, θ2, . . . , θn be a sample of circular data. The resultant length, R and the mean

direction, u is given by, respectively,

R =
√

C2 + S2,
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where

C =
n∑

i=1
cos θi, S =

n∑
i=1

sin θi

and

µ =



tan−1 S
C , if C > 0, S > 0,

Π
2 , if C = 0, S > 0,

tan−1
S
C + π, if C < 0,

tan−1
S
C + 2π, if C = 0, S = 0,

unde f ined, if C = 0, S = 0.

(ii) Mean resultant length, R̄

The mean resultant length is defined as

R̄ =
R
n
.

Mean resultant length is used to measure how concentrated the data is towards the

mean direction, µ. The value lies in the range [0,1]. When R̄ is close to 1, all the

directions in the data set are almost similar which means the data are concentrated

or have small dispersion.

(iii) Median direction

Mardia (1975) defined the median direction as any point φ, where

(i) Half of the sample points lie in the arc [φ, φ + π)

(ii) Majority of the sample are nearer to φ than to φ + π.

Fisher (1993) defined the median direction as the point φ which minimize the
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summation of circular distance of all observations given by

d(φ) = π −
n∑

i=1
|π − |θi − φ| |.

(iv) Sample circular variance

The sample circular variance is given by

V = 1 − R̄, 0 ≤ V ≤ 1.

The smaller the value of circular variance, the more concentrated the sample is said

to be. However, this measure is rarely used compared to other measures of circular

concentration.

(v) Sample circular standard deviation

The sample circular standard deviation is given by

v =
√
−2 log 1 − V

=

√
−2 log R̄, 0 < v < ∞.

(vi) Circular range

The circular range is defined as the length of the smallest arc which consist

all the sample observations. Let θ1, θ2, · · · , θn be the sample observation and

θ(1), θ(2), · · · , θ(n) is the linear order statistic. Then, the arc lengths between the

adjacent points are

Ti = θ(i+1) − θ(i), i = 1, 2, · · · , n

Tn = 2π − θ(n) + θ(1).
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The circular range w is

w = 2π − max(Ti, · · · ,Tn).

(vii) Concentration parameter

The standard measure for dispersion for circular data is the concentration parameter,

denoted by κ. Best and Fisher (1981) gave the maximum likelihood estimates of the

concentration parameter κ as

κ̂ =



2R̄ + R̄3 + 5
6 R̄5, if R̄ < 0.53

−0.4 + 1.39R̄ + 0.43
1−R̄, if 0.53 ≤ R̄ < 0.85

(R̄3 − 4R̄2 + 3R̄)−1, if R̄ ≥ 0.85

where R̄ is the mean resultant length.

2.4.2 Circular Distance

Jammalamadaka and SenGupta (2001) defined circular distance between any two points

as the smaller of the two arc lengths between the points along the circumference. The

circular distance between θi and θ j is given by

d(θi, θ j) = min(θi − θ j, 2π − (θi − θ j))

= π − |π − |θi − θ j | |.

where d(θi, θ j) ∈ [0, 2π). For example, the circular distance d(θi, θ j) between any two

points of circular data can be illustrated using the following set of circular data: 10◦, 15◦, 45◦

and 355◦. Using the equation above, the distance between observation 10◦ to the other
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points are 5◦, 35◦ and 15◦ respectively. Another circular distance between θi and θ j (Rao,

1969) is given by

d(θi, θ j) = 1 − cos (θi − θ j),

where d(θi, θ j) is a monotone increasing function of (θi − θ j) and d(θi, θ j) ∈ [0, 2].

2.4.3 Circular Distributions

(i) The von Mises Distribution

The von Mises distribution was introduced by von Mises (1918) to study the

deviations of measured atomic weight from integral values. It is the most common

distribution used in circular statistics for unimodal samples of circular data. Von

Mises distribution denoted by V M(µ, κ), has probability distribution function given

by

f (θ; µ, κ) = 1
2πI0(κ)

exp{κ cos θ − µ},

where 0 ≤ θ < 2π, κ > 0, 0 ≤ µ < 2π and I0(κ) is the modified Bessel function of

the first kind and order zero given by

I0(κ) =
1

2π

∫ 2π

0
exp{κ cos θ}dθ. (2.4.1)

This distribution also called circular normal (CN) distribution to emphasize its

importance and similarity to normal distribution in linear data. The parameters for

V M(µ, κ) are the mean direction, µ, and concentration parameter, κ. The distribution

is unimodal and symmetric about the direction µ. It appears as a normal distribution

that is truncated at ±180◦. When κ = 0, the von Mises distribution reduces to the

uniform distribution. As κ gets large, the von Mises distribution approaches the

normal distribution, N
(
µ, 1

κ
1
2

)
. Higher value of κ indicates that the sample has
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higher concentration towards the sample mean direction µ.

(ii) The Wrapped Cauchy Distribution

A wrapped Cauchy distribution is obtained by wrapping the Cauchy distribution on

the real line around the circle. The density of Cauchy distribution is given by

f (x) =
( 1
π

) σ

σ2 + (x − µ)2
, −∞ < x < ∞

and the probability density function for wrapped Cauchy distribution is

g(θ) = 1
2π

(
1 + 2

∞∑
k=1

ρk cos k(θ − µ)
)

=
1

2π
1 − ρ2

1 + ρ2 − 2ρ cos (θ − µ)
,

where 0 ≤ θ < 2π and ρ = e−σ. The equality of the equations above is verified by

equating the real parts of the geometric series identity as shown below

∞∑
k=1

ak =
a

1 − a

with a = ρe−i(θ−µ). The wrapped Cauchy distribution is unimodal and symmetric.

2.5 Cylindrical Data

Cylindrical data is a form of bivariate data, where one component is measured on the

angular scale while the other is linear. The angular component is a directional variable

which follows the circular statistics and is bounded in [0,2π). The joint distribution between

the random vector from linear and angular components is called a cylindrical distribution

or a distribution on the cylinder. This type of data arises in many fields such as biology,

meteorology, geology and industry. For example, consider a set of data comprising wind

17

Univ
ers

ity
 of

 M
ala

ya



speed (m/s) and wind direction (radian). The height of the cylinder is labeled to be the

wind speed which is the linear variable while the direction is considered to be a circular

distribution where the data is ranging from 0◦ to 360◦ as illustrated in Figure 2.1.

Figure 2.1: Illustration of wind data on cylinder

2.5.1 Cylindrical Coordinate

Cylindrical coordinate is a coordinate for three-dimensional space. In cylindrical

coordinate system, point P as illustrated in Figure 2.2 is specified by (r, θ, z) where

r =
√

x2 + y2, 0 ≤ r < ∞, is the radius between the center and point P, θ = tan−1 y
x, 0 ≤

θ < 2π is the angle measured from the x-axis and z, −∞ < z < ∞ is the height scale.

Figure 2.2: Cylindrical coordinate
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2.5.2 Cylindrical Distributions

There are several models for cylindrical data that have been introduced. Johnson

and Wehrly (1978) developed the angular-linear distributions based on the maximum

entropy principle and by the specification of the marginal distributions. Mardia and

Sutton (1978) proposed a cylindrical distribution using Fisher’s idea of constructing a

von Mises distribution as a conditional distribution of bivariate normal on a unit circle.

The later distributions are mostly the extension from Johnson-Wehrly and Mardia-Sutton

distributions.

Anderson-Cook (1997, 2000, 2001) proposed distributions with general type of circular-

linear association or known as C-association and a second order models. Both models

are the extension from the Mardia and Sutton model. Then in 2001,the author proposed

an alternate model for limited range data. Later, Fernandez-Duran (2007) proposed a

cylindrical model based on the nonnegative trigonometric sums.

Kato and Shimizu (2008) proposed two new distributions; (i) a generalized form of

the distribution by Johnson and Wehrly, and (ii) a flexible model which is procured as a

maximum entropy distribution or conditional distribution of a trivariate normal distribution.

Their second distribution can also be regarded as an extension to the distribution proposed

by Mardia and Sutton. Recently, Abe and Ley (2016) proposed a tractable, parsimonious

and highly flexible model for cylindrical data. The distribution is constructed by combining

the sine-skewed von Mises distribution from the circular part with the Weibull distribution

from the linear part. The focus of this study will be based on the cylindrical model

introduced by Johnson and Wehrly (1978).

2.6 k-Nearest Neighbor Method

The k-nearest neighbor (k-NN) is widely used in statistical estimation and classification.

It is a simple algorithm that classifies new cases based on a distance measure. A new case
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is identified by measuring the distance between each observations and the majority among

the most common from its k-NN goes to the same class. The optimal value of k can be

chosen by inspecting the data set.

Fukunage and Narendra (1975) implemented a method of branch and bound in the k-NN

algorithm to increase the calculation speed by eliminating the requirement of calculating

many distances. Hand (1981) provided a good review on the k-NN methods. A fuzzy

algorithm of k−NN has been introduced by Keller et al. (1985) to overcome the problem

in deciding the class of the samples regardless of their "typicalness". Tran et al. (2006)

developed a density-based clustering algorithm using k-NN kernel for a higher dimensional

data. Weinberger and Saul (2009) proposed a distance metric for k-NN classification

known as Mahalanobis metric.

2.7 Summary

In this chapter, we discuss the existence of outlier in different types of data and their

regression models as well as the methods to detect the outlier. We also highlight the

differences between linear, circular and cylindrical data. Due to the different nature of

their properties, we need different methods to analyze these data sets. Some descriptive

statistics and several distributions are reviewed. Next, we have reviewed the k-nearest

neighbor method. In our study, we consider the cylindrical distribution by Johnson and

Wehrly (1978) and the von Mises distribution for circular distribution in studying the

development of new statistical tests in cylindrical data.
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CHAPTER 3: CYLINDRICAL DATA - JW DISTRIBUTION

3.1 Introduction

This chapter reviews the theory on cylindrical distribution model based on Johnson-

Wehrly (JW) (1978) distribution. Then, we look at an alternative procedure to find the

maximum likelihood estimation using optimization. Next, we review the criteria to evaluate

the performance of the maximum likelihood estimation in order to estimate the parameters

of the JW distribution. Then, we obtain the parameter estimate of the distribution via

simulation study. Lastly, for illustration, we apply the distribution on wind data set obtained

from Malaysian Meteorological Department.

3.2 The JW Distribution for Cylindrical Data

The JW cylindrical density function (Johnson & Wehrly, 1978) of (Θ,X), denoted by

JW(µ, κ, λ) is given by

f (θ, x) =
√
λ2 − κ2

2π
exp(−λx + κxcos(θ − µ)) (3.2.1)

where 0≤θ<2π, x>0, 0<κ<λ, λ > 0 and 0≤µ<2π. Equation (3.2.1) is developed based

on the maximum entropy distribution subject to E(X), E(Xcos Θ) and E(Xsin Θ), taking

specified values which are consistent with expectation with respect to the distribution

(3.2.1). Then, we define a1, a2 and a3 by

E(X) = a1, E(XcosΘ) = a2, E(XsinΘ) = a3

where the expectations are taken with respect to the distribution (3.2.1).
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3.2.1 Marginal Distribution

For the JW probability density function given in equation (3.2.1), the marginal density

of x can be calculated by taking the integral of the joint distribution f (x, θ) with respect to

θ,

f1(x) =
∫ 2π

0

√
λ2 − κ2

2π
exp{−λx + κx cos(θ − µ)} dθ

=

√
λ2 − κ2

2π
e−λx

∫ 2π

0
exp{κx cos(θ − µ)} dθ

=
√
λ2 − κ2 e−λx

[
1

2π

∫ 2π

0
exp{κx cos(θ − µ)}

]
dθ

=
√
λ2 − κ2 I0(κx) e−λx (3.2.2)

where I0(κx) is the modified Bessel function of first kind and order zero as given in

equation (2.4.1).

Meanwhile, the marginal density of θ (Johnson & Wehrly, 1978) is given by

f2(θ) =
1

2π
1 − ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, 0 ≤ θ < 2π. (3.2.3)

In summary, the marginal distribution (3.2.2) does not follow a familiar distribution

while the marginal distribution (3.2.3) is the wrapped Cauchy distribution, where µ is the

mean direction and ρ is the mean resultant length.

3.2.2 Conditional Distributions

Now, we derive the conditional probability distribution of JW distribution. The

conditional distribution for x given θ is
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g1(x |θ) =
√
λ2 − κ2 (2π)−1 exp{−λx + κx cos(θ − µ)}
√
λ2 − κ2 (2π)−1 [λ − κ cos(θ − µ)]−1

= λ − κ cos(θ − µ) exp{−λx + κx cos(θ − µ)}. (3.2.4)

Comparing equation (3.2.4) with the exponential distribution function, we can see that

equation (3.2.4) is actually the pdf of the exponential distribution with mean [λ− κ cos(θ −

µ)]−1. Meanwhile, the conditional distribution for θ given x is given by

g2(θ |x) =
√
λ2 − κ2 (2π)−1 exp{−λx + κx cos(θ − µ)}

√
λ2 − κ2 I0(κx) e−λx

=
1

2π I0(κx) exp{κx cos(θ − µ)}. (3.2.5)

Notice that, equation (3.2.5) follows von Misses distribution with mean direction µ and

concentration parameter κx or V M(µ, κx).

3.3 Parameter Estimation of JW Distribution

Maximum likelihood estimation (MLE) method is used to find the parameter estimates

of JW distribution. The MLE of µ, κ, and λ are obtained by maximizing the log-likelihood

function of the JW distribution, JW(µ, κ, λ). The likelihood equation for JW(µ, κ, λ) is

given by

L =
n∏

i=1
f (xi, θi)

=
(λ2 − κ2) n2
(2π)n exp

[
−λ

n∑
i=1

xi + κ

n∑
i=1

xi cos(θi − µ)
]
,
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and the log-likelihood is

log (L) = log

{
(λ2 − κ2) n2

2πn exp

[
−λ

n∑
i=1

xi + κ

n∑
i=1

xi cos(θi − µ)
]}

=
n
2

log (λ2 − κ2) − n log 2π − λ
n∑

i=1
xi + κ

n∑
i=1

xi cos (θi − µ).

However it is quite difficult to separate the unknown parameters for the JW distribution,

so we are unable to find the closed-form or exact maximum likelihood estimator for each

parameter. Hence, we are using optimization method on the log-likelihood function to

estimate the parameters.

This can be done by using optim package in R statistical software. The default method

is an implementation of Nelder and Mead (1965) that uses only function values and is

robust but relatively slow. It will work reasonably well for non-differentiable functions.

3.3.1 Parameter Estimation using Optimization

Optimization is the selection of a best element from some set of available alternatives

with regards to some criteria. Optimization problems consist of finding the maximum

or the minimum value that a function can take by choosing initial values from within an

allowed set. Optimization take place in the absolute extrema where the maximum or the

minimum value that a function would take on an interval. An optimization problem can be

represented as follow:

Given f0(x) ∈ R,

i. minimize f0(x) subject to fi(x) ≤ bi or

ii. maximize f0(x) subject to fi(x) ≥ bi for i = 1, . . . , n

where bi is a constant.

There are several methods or algorithms of optimization that can be used to find the

MLE. Nelder-Mead method is often used to find the parameter estimations of a function.
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This method can be found in optim, optimx,maxLik or mle packages which are available

in the R statistical software. The maximum likelihood estimation is obtained by minimizing

the negative log-likelihood function of a distribution, namely here, JW(µ, κ, λ). Some

available algorithms in these packages are (Henningsen & Toomet, 2011):

(i) Newton-Raphson method (NR).

This method is based on quadratic approximation and uses both gradient and Hessian

of the function.

(ii) Berndt-Hall-Hall-Hausman method (BHHH).

A version of NR where the Hessian is approximated by information equality (only

works for maximizing log-likelihood).

(iii) Broyden-Fletcher-Goldfarb-Shanno method (BFGS).

Also known as a variable metric algorithm which is another quasi-Newton method

with a different approximation of Hessian. This method uses function values and

gradients to build up a picture of the surface to be optimized.

(iv) Conjugate gradients method (CG).

A method which only uses gradients and function values and does not approximate

the Hessian. May be useful (but slow) for large problems. Conjugate gradient

methods will generally be more fragile than the BFGS method, but as they do not

store a matrix they may be successful in much larger optimization problems.

(v) Simulated annealing method (SANN).

This method only uses function values. It is a stochastic optimization method which

may be used if the objective function has secondary maximums, and in case of

non-differentiable functions.

(vi) Nelder-Mead method (NM).

A simplex-based method using only the function values. It work reasonably well for
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non-differentiable functions.

(vii) Brent.

It is useful for one-dimensional problems only.

For this research, we find the maximum likelihood estimation (MLE) using Nelder-mead

method as available in optim package in R.

3.3.2 Nelder-Mead Method

A simplex method for finding a local minimum of a function of several variables has

been developed by Nelder and Mead (1965). Simplex is a generalization of the notion of a

triangle or tetrahedron to arbitrary n dimensions. Their method minimizes a function of

n variables, which depends on the comparison of function values at the (n + 1) vertices

of a general simplex, followed by the replacement of the vertex with the highest value by

another point.

For n = 2, a simplex is a triangle. The method is a pattern search that compares

function values at the three vertices of a triangle. The worst vertex, where f (x, y) is largest

is rejected and replaced with a new vertex. A new triangle is formed and the search is

continued. The process generates a sequence of triangles (could have different shapes), for

which the function values at the vertices get smaller and smaller. The size of the triangles

is reduced and the coordinates of the minimum point are found.

3.3.3 Criteria to Evaluate the MLE Method

(i) Mean squared error (MSE).

Mean squared error is a measure of how close data points to the fitted line. Another

definition is it measures the average of the squares of all of the errors, which is

the differences between the true values and the estimated values. Given Yi is the
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observed values and Ŷi is the estimates of the observed values, the MSE can be

estimated by

MSE =
1
n

n∑
i=1
(Yi − Ŷi)2

(ii) Bias.

Bias is an error that makes the estimated values wrong by certain amount. Bias

is defined as the difference between the estimated value and the true value of the

parameter, (Yi − Ŷi).

3.3.4 Simulation Study

For simulation, we generate random samples of size n = 20, 50, 100, 200 from JW

distribution as in equation (3.2.1) and estimate the parameters using the optim package in

R. For each sample, we repeat the simulation for different iteration = 100, 500, 1000, 5000.

Table 3.1 and Table 3.2 give the parameter estimates of µ, κ, and λ given the true values

for each parameter.

Table 3.1 gives the parameter estimates from a sample generated from JW distribution

with the true value of µ = 0, κ = 1, and λ = 2. Different sample size are generated to

compare the accuracy of the estimation. We can see that the estimated parameter values

of µ, κ, and λ are closer to their true values as the sample size increases. Notice that,

the values of the estimated parameters are also closer to their true values as the number

of iteration for each simulation increase. The MSE and bias for each sample size are

calculated. The MSE and bias are decreasing (closer to 0) as the sample size and iteration

increase. Similar results are observed for the case µ = 1.85, κ = 0.22, and λ = 0.40 as

given in Table 3.2.
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Table 3.1: Parameter estimates of JW(0, 1, 2).

iteration n estimated parameter bias mse

µ̂ κ̂ λ̂ µ̂ κ̂ λ̂ µ̂ κ̂ λ̂

100 20 0.36 1.20 2.35 0.36 0.20 0.35 0.94 0.31 0.59

500 0.33 1.24 2.34 0.33 0.24 0.34 0.70 0.44 0.64

1000 0.34 1.27 2.35 0.34 0.27 0.35 0.77 0.46 0.62

5000 0.34 1.31 2.36 0.34 0.31 0.36 0.76 0.55 0.61

100 50 0.19 1.08 2.15 0.19 0.08 0.15 0.43 0.11 0.14

500 0.20 1.12 2.13 0.20 0.12 0.13 0.22 0.13 0.15

1000 0.20 1.11 2.13 0.20 0.11 0.13 0.21 0.13 0.15

5000 0.20 1.10 2.13 0.20 0.10 0.13 0.16 0.13 0.15

100 100 0.14 1.04 2.05 0.14 0.04 0.05 0.03 0.06 0.07

500 0.14 1.05 2.06 0.14 0.05 0.06 0.05 0.06 0.06

1000 0.14 1.06 2.06 0.14 0.06 0.06 0.04 0.06 0.06

5000 0.14 1.05 2.06 0.14 0.05 0.06 0.04 0.06 0.06

100 200 0.10 1.00 2.05 0.10 0.00 0.05 0.01 0.02 0.03

500 0.09 1.02 2.03 0.09 0.02 0.03 0.01 0.02 0.03

1000 0.10 1.02 2.03 0.10 0.02 0.03 0.01 0.02 0.03

5000 0.10 1.02 2.03 0.10 0.02 0.03 0.02 0.03 0.03

100 500 0.06 1.01 2.00 0.06 0.01 0.00 0.01 0.01 0.01

500 0.06 1.01 2.01 0.06 0.01 0.01 0.01 0.01 0.01

1000 0.06 1.01 2.01 0.06 0.01 0.01 0.01 0.01 0.01

5000 0.06 1.01 2.01 0.06 0.01 0.01 0.01 0.01 0.01

100 1000 0.04 1.00 2.01 0.04 0.00 0.01 0.00 0.01 0.01

500 0.04 1.00 2.01 0.04 0.00 0.01 0.00 0.01 0.01

1000 0.04 1.01 2.01 0.04 0.01 0.01 0.00 0.01 0.00

5000 0.04 1.00 2.01 0.04 0.00 0.01 0.00 0.01 0.00
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Table 3.2: Parameter estimates of JW(1.85, 0.22, 0.40).

iteration n estimated parameter bias mse

µ̂ κ̂ λ̂ µ̂ κ̂ λ̂ µ̂ κ̂ λ̂

100 20 1.61 0.27 0.47 0.24 0.05 0.07 0.17 0.02 0.02

500 1.58 0.29 0.47 0.27 0.07 0.07 0.18 0.02 0.02

1000 1.59 0.28 0.47 0.26 0.06 0.07 0.16 0.02 0.03

5000 1.59 0.28 0.47 0.26 0.06 0.07 0.16 0.02 0.03

100 50 1.73 0.26 0.43 0.12 0.04 0.03 0.04 0.01 0.01

500 1.71 0.24 0.42 0.14 0.02 0.02 0.05 0.01 0.01

1000 1.71 0.24 0.43 0.14 0.02 0.03 0.05 0.01 0.01

5000 1.71 0.24 0.43 0.14 0.02 0.03 0.06 0.01 0.01

100 100 1.76 0.23 0.41 0.09 0.01 0.01 0.02 0.00 0.00

500 1.77 0.23 0.41 0.08 0.01 0.01 0.02 0.00 0.00

1000 1.77 0.23 0.41 0.08 0.01 0.01 0.03 0.00 0.00

5000 1.77 0.23 0.41 0.08 0.01 0.01 0.03 0.00 0.00

100 200 1.80 0.22 0.40 0.05 0.00 0.00 0.01 0.00 0.00

500 1.81 0.22 0.40 0.04 0.00 0.00 0.02 0.00 0.00

1000 1.81 0.22 0.40 0.04 0.00 0.00 0.02 0.00 0.00

5000 1.81 0.22 0.40 0.04 0.00 0.00 0.02 0.00 0.00

100 500 1.83 0.23 0.40 0.02 0.01 0.00 0.02 0.00 0.00

500 1.83 0.22 0.40 0.02 0.00 0.00 0.03 0.00 0.00

1000 1.83 0.22 0.40 0.02 0.00 0.00 0.03 0.00 0.00

5000 1.83 0.22 0.40 0.02 0.00 0.00 0.02 0.00 0.00

100 1000 1.85 0.22 0.40 0.00 0.00 0.00 0.00 0.00 0.00

500 1.85 0.22 0.40 0.00 0.00 0.00 0.01 0.00 0.00

1000 1.84 0.22 0.40 0.01 0.00 0.00 0.01 0.00 0.00

5000 1.84 0.22 0.40 0.01 0.00 0.00 0.02 0.00 0.00
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3.4 Application on Real Data Set

For illustration, we consider the wind direction and wind speed data taken from

Malaysian Meteorological Department. In total, we have 31 observations taken from

Bayan Lepas, Penang, Malaysia in January 2005 with pressure of 850 hPa. The data are

given in Table 3.3.

Table 3.3: The Wind Data.

Wind Speed Wind Direction (◦) Wind Speed Wind Direction (◦)
14.9 85 2.1 125
5.1 85 1.5 185
4.6 140 1 190
6.2 100 0.5 70
3.6 135 4.6 135
1.5 310 2.6 125
2.1 340 3.6 90
4.6 120 2.1 200
4.6 130 3.6 5
5.1 120 2.6 30
4.6 150 3.1 165
2.6 80 3.1 260
1 205 4.6 325
0.5 60 3.6 325
5.1 110 2.6 345
3.1 125

In Figure 3.1, the data were plotted in 3-dimensional plot to illustrate a cylindrical

shape. The horizontal axis is the linear component (wind speed) while x and y axes are

the transformation from the circular component (wind direction). Figure 3.3 shows the

scatter plot of the data with the fitted JW contour plot. Here, we can see that the data have

roughly follow the JW distribution.

The parameter estimates using optim package in R are given in Table 3.4. The mean

direction, µ̂ = 106.1◦, the concentration parameter, κ̂ = 0.22 and λ̂ = 0.40. It can be seen
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from Figure 3.1 and Figure 3.2 that most of the data are concentrated towards the mean

direction µ. Hence, the wind actually blew to the East. However, there is one observation

located further away from the rest. This observation is a candidate of outlier. Hence,

further investigation is needed to understand this observation.
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Figure 3.1: 3-D graph of wind speed vs wind direction
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Figure 3.2: The scatter plot of the data
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Figure 3.3: Scatter plot of the wind speed and wind direction data, together with the
fitted JW contour plot.

Table 3.4: Parameter Estimation of JW distribution

Parameter Estimates

Mean Direction (µ̂) 106.1◦

Concentration (κ̂) 0.22

λ̂ 0.40

3.5 Summary

In this chapter, we have discussed about cylindrical data and the theory of JW distribution.

Next, we reviewed on the parameter estimation of JW distribution and the alternative

method to find the parameter estimates. Then, the criteria for choosing the best method for

MLE is discussed and the simulation study is obtained using the optim package in R. As

an illustration, a real data set is used to obtain the parameter estimates of JW distribution.
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CHAPTER 4: A NEW TEST OF DISCORDANCY IN CYLINDRICAL DATA

4.1 Introduction

In this chapter, we propose a measure of distance for detecting outliers in cylindrical

data. The distance between two points on a cylindrical surface is measured based on law

of cosines. Then, we developed a new test statistic to detect an outlier in cylindrical data

based on k-nearest neighbor (k-NN) distance. We obtain the critical values and study the

performance of the test using simulation. We also apply the test on the wind data set which

obtained from Malaysian Meteorological Department.

4.2 Outlier in Cylindrical data

Outlier refers to observation that stands out remarkably in certain ways from other

observations. However, the detection of outlier in directional data necessitate different

method from the linear case. In circular data, the outlier is defined as an observation

having large value of circular distance from the value of its two neighboring observations

on a unit circle (Mohamed et al., 2016). In cylindrical set up, outlier can be categorized by

the type of variables; namely circular, linear or both. We divide the outlier detection into

three categories: (1) outlier in circular part; (2) outlier in linear part; (3) outlier in both

circular and linear parts. Hence, we define outlier in cylindrical data as an observation that

satisfies at least one of the outlier definitions in circular or linear or both. In other words,

when an observation is located far away from the rest of the observations in the linear or

circular direction, the observation will become a candidate of outlier in cylindrical data.

4.3 Distance on a Cylinder

Acombination of linear and circular data form a three-dimensional data called cylindrical

data. Distance between two cylindrical points can be calculated as a distance between

two vectors. Suppose we have cylindrical observations (θi, xi), i = 1, 2, . . . , n. For each
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observations (θi, xi), we transform the data into Cartesian coordinate vi = (vi1, vi2, vi3)

where

vi1 = r cos θi,

vi2 = r sin θi,

vi3 = xi .

Next, we standardize vi = (vi1, vi2, vi3) to form a new standardized set of data wi =

(wi1,wi2,wi3) using

wi j =
vi j − v̄ j

s j
, j = 1, 2, 3, (4.3.1)

where s j =

√
1

n−1
∑n

i=1(vi j − v̄ j)2 and v̄ j =
∑n

i=1
vi j
n . This standardization is needed to

eliminate the influence of radius, r , for the outlier detection purposes.

Hence, given w1 = (w11,w12,w13) and w2 = (w21,w22,w23), the standardized distance

between two vectors on cylinder is given by

d(w1, w2) = (w1 − w2)· (w1 − w2)

= ‖w1‖2 + ‖w2‖2 − 2‖w1‖‖w2‖ cos θ

= ‖w1‖2 + ‖w2‖2 − 2(w1· w2)

where θ is the angle between two vector w1 and w2 and w1· w2 = ‖w1‖‖w2‖ cos θ.

In general, for any two vectors wi and w j , the cylindrical distance is given by

d(wi, w j) = ‖wi‖2 + ‖w j ‖2 − 2(wi · w j), i, j = 1, 2, . . . , n.

Note that this distance is a linear distance between vectors wi and w j , not the distance on
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the surface of a cylinder. For example, given three cylindrical points (θ1, x1)=(100◦,6.2),

(θ2, x2)=(135◦,3.6), and (θ3, x3)=(340◦,2.1). The distance between (θ1, x1) and (θ2, x2) is

2.13 which is logically smaller than the distance between (θ1, x1) and (θ3, x3) which is 9.26.

4.4 The k-Nearest Neighbor’s Distance

We denote d(wi,w1), d(wi,w2), . . . , d(wi,wn) as the distances between the i-th observa-

tion with the other observations, given i = 1, 2, . . . , n, while d(1)(wi,w1), d(2)(wi,w2), . . . ,

d(k)(wi,wn) are the corresponding ordered distances from each pair of observations. The

nearest distance for the i-th observation, say xi, is defined as the smallest distance or the

distance at the first position in the ordered distance (Rambli, 2015) given by

C1i = d(1)(wi, w j) for i, j = 1, 2, . . . , n, i , j (4.4.1)

Note that {C1i, i = 1, 2, . . . , n} gives a sequence of distances between successive

observations on the p-dimensional surface. We will use equation (4.4.1) to detect outliers

in cylindrical data. Hence, we define C1i as the k-nearest neighbor distance for the i-th

observation, k = 1, 2, 3, . . . and i = 1, 2, . . . , n, given by

Cki = d(k)(wi, w j) for j = 1, 2, . . . , n, i , j (4.4.2)

We develop a new test of discordancy to detect outlier in cylindrical data using equation

(4.4.2) which will be shown in the next section.
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4.5 A New Test of Outlier detection in Cylindrical Data

Suppose we have a sample vector of 3-dimensional variables, vi(xi, yi, zi), i = 1, 2, . . . , n,

with sample generated from the JW distribution. We define a test statistic Ck
n such that

Ck
n = maxi{Cki}. (4.5.1)

where n is the sample size, k > 0 is the k−NN andCki given in equation (4.4.2). Following

is the steps required to detect outlier in cylindrical data:

Step 1: Transform the cylindrical data, (θi, xi) into Cartesian data vi = (vi1, vi2, vi3), i =

1, 2, . . . , n.

Step 2: Then standardize vi to wi = (wi1, wi2, wi3) as described in equation (4.3.1) .

Step 3: Calculate Cki, k > 0, i = 1, 2, . . . , n as given in equation (4.4.2).

Step 4: Then we define the test statistic Ck
n given in equation (4.5.1).

Step 5: If the value of Ck
n exceeds the cut-off point, say ac, then the ith observation

corresponding to maxi{Cki} is identified as an outlier.

4.6 The cut-off point of Ck
n Statistic

We design a simulation study to find the percentage points under the null hypothesis

of no outlier present in the cylindrical data. This simulation study is developed using

R statistical package. We focus on the Ck
n statistic when k = 1 for the case of single

outlier. The generation of cut-off points is based on various values of sample size n with

parameters µ, κ, and λ as given in Table 4.1. For various combination n, κ, λ with µ = π/2,

we generate a sample from JW distribution and find the distance between each observation.

We then sort the distance from the smallest to largest to find the respective ordered distance.

Next, we set k = 1 to find the 1st nearest distance to obtain the C1
n statistic as given in
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equation (4.5.1). This process is repeated for 2000 times and the estimated percentage

points of the C1
n statistic at 10%, 5% and 1% upper percentiles are obtained.

The cut-off points of C1
n statistic are tabulated in Table 4.1. For the combination of

parameter κ, λ and the percentile level, the values of the cut-off point are an increasing

function of κ. Different combination of κ and λ will give different values of the cut-off

point. In addition, the cut-off points of C1
n statistic are similar for any value of µ, as the

distance calculated between two points are independent of the value of µ. The exact cut-off

point can be obtained for any combination of estimated κ and λ, and sample size n. In fact,

we expect to have a more accurate cut-off point by using higher number of simulation as

pointed by Verma et al. (2017).

4.7 Performance of C1
n Statistic

The focus is on C1
n statistic which is useful to find a single outlier. We want to find an

observation (θi, xi) that is located furthest away from the rest of the sample, which can be

attributed as an outlier in the cylindrical data. Simulation method is used to investigate the

power of performance of the Ck
n statistic when applied to the JW distribution. We perform

the simulation based on three categories: (1) outlier in circular component; (2) outlier in

linear component; (3) outlier in linear-circular component, to study the performance of C1
n

statistic.

Barnett and Lewis (1994) and David (1981) stated that a reasonable measure of the

performance of the test are based on the probabilities of P1, P3 and P5 where P1 = 1 − β

is the power function where β is the type-II error, P3 is the probability that the contaminant

point is an outlier and identified as discordant, and lastly P5 is the probability that the

contaminant point is an outlier given that it is identified as discordant. A good test can be

characterized by having: (i) high P1; (ii) high P5; and (iii) low P1 − P3.
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Table 4.1: Cut-off points for C1
n statistic.

λ 1.35 2.52 4.54 6.86 8.45 9.38 10.80 20.34

κ 1.21 2.32 4.31 6.72 8.33 9.26 10.68 20.15

n Significance

Level

10% 8.48 8.71 9.06 9.44 9.57 9.61 9.65 9.71

5 5% 9.37 9.52 9.77 10.00 10.09 10.12 10.13 10.17

1% 10.42 10.58 10.79 11.02 11.06 11.06 11.11 11.18

10% 9.46 9.71 10.60 12.38 13.16 13.34 13.64 14.05

10 5% 10.52 10.82 11.82 14.16 14.63 14.93 15.23 15.51

1% 13.00 13.89 14.71 16.21 16.79 16.96 17.13 17.40

10% 9.97 10.43 11.56 14.77 15.31 15.61 16.12 16.73

15 5% 11.56 11.90 13.27 15.85 17.09 17.49 17.96 18.62

1% 14.58 14.84 16.15 19.64 20.71 21.05 21.37 21.59

10% 9.37 10.37 12.01 16.08 17.72 18.21 18.68 19.48

20 5% 11.57 12.27 14.27 18.22 19.84 20.03 20.45 21.16

1% 14.87 16.59 17.43 21.12 23.76 24.44 25.09 25.98

10% 9.21 9.90 11.87 16.65 19.58 20.10 20.90 21.80

25 5% 11.35 12.42 14.37 19.77 22.36 22.52 23.08 23.99

1% 15.15 16.65 18.57 24.56 25.92 26.40 27.53 28.56

10% 8.27 8.79 10.73 16.79 19.89 20.70 22.14 23.20

30 5% 11.04 11.29 14.04 19.87 23.66 24.40 25.08 26.31

1% 15.74 16.26 19.67 25.07 28.42 29.11 29.73 30.45

10% 7.91 7.93 9.09 14.61 18.86 19.64 21.36 23.86

50 5% 11.47 11.67 12.95 18.86 24.04 25.18 26.66 29.12

1% 19.11 19.20 19.97 25.97 33.98 35.87 38.83 38.92

10% 7.73 7.85 8.34 11.42 15.60 17.15 19.15 21.79

70 5% 11.54 11.72 11.92 16.35 20.61 22.27 25.20 27.89

1% 22.47 22.48 23.37 26.22 29.87 32.86 36.32 41.24

10% 8.31 8.40 8.41 9.62 11.63 13.15 13.97 16.28

100 5% 12.59 12.78 12.81 14.03 16.03 17.06 18.84 21.28

1% 25.89 25.94 26.31 26.32 30.03 31.34 33.35 35.57
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The performance is constructed based on the null hypothesis that the sample comes

from the JW distribution. We generate samples from JW distribution based on different

sample size n = 30, 50 and 100 with concentration parameter values κ = 0.5, 1, 5, 10, 20

and also λ = 1, 2, 6, 11, 21. The C1
n statistic for each random sample is calculated, if the

C1
n value is greater than the cut-off point at upper 5% significance level, then we have

correctly detected the outlier. Note that the cut-off point for each category is the same.

The simulation generates 2000 replications of n samples from JW distribution and the

proportion of correct detection is obtained. We will study the performance of the proposed

statistic when the outlier appear in circular or linear or both components in the following

sections.

4.7.1 Outlier in Circular Component

The samples are generated in such a way that all n observations come from JW

distribution with fixed value of parameter µ = π/2. The outlier is generated by altering

(θ′n, x′n) = (θn + ∆θ, xn)

where ∆θ = 0, 0.3, 0.5, 0.7, 1 is the contamination level. The C1
n statistic for each random

sample is calculated and if theC1
n value greater than the cut off point, then we have correctly

detected the outlier. The process is repeated 2000 times and the results are obtained.

Table 4.2 shows the proportion of the correct detection of outlier for various values of

sample size n and κ. It can be seen that, the proportion of correct detection are almost zero

for all cases considered. This indicates that the performance is very weak. This is due to

the nature of the JW distribution that is spread along the circumference of a circle even

at large value of κ. Hence, when we introduce an outlier by adding the value of the n-th

observation by ∆θ on the circular component, this observation might not become an outlier.
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Table 4.2: The proportion of correct detection of C1
n statistic in circular component.

n κ 0.5 1 5 10 20
∆θ

0 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00

30 0.5 0.00 0.00 0.00 0.01 0.01
0.7 0.00 0.00 0.01 0.02 0.02
1 0.00 0.00 0.01 0.02 0.03
0 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00

50 0.5 0.00 0.00 0.00 0.00 0.00
0.7 0.00 0.00 0.00 0.00 0.01
1 0.00 0.00 0.00 0.01 0.02
0 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00

100 0.5 0.00 0.00 0.00 0.00 0.01
0.7 0.00 0.00 0.00 0.01 0.01
1 0.00 0.00 0.00 0.01 0.02

Similarly, the results based on the performance P1 and P5 for various values of κ and n

as given in Figures 4.1 and 4.2 are all unsatisfying. In conclusion, for JW distribution,

outlier in circular component is almost impossible to occur due to the nature of the

distribution that is spread along the circumference of a circle even at large value of κ.

4.7.2 Outlier in Linear Component

The samples are generated in which all n observations are coming from the JW

distribution with fixed value of parameter µ = π/2. The outlier is introduced at the nth

simulated value such that

(θ′n, x′n) = (θn, xn + ∆x)

where ∆x = 0, 3, 5, 7, 10, 15, 20 is the contamination level. This process is repeated for

2000 times and the results are obtained.
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Figure 4.1: The performance of the C1
30 statistic for different values of κ when n = 30.
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Figure 4.2: The performance of the C1
30 statistic for different values of sample size n

when κ = 1.
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Table 4.3 shows the proportion of correct detection of outlier. It can be seen that the

proportion is increasing as sample size increases. Figure 4.3(a)-(b) show the graphs of the

probability P1 and P5 against the contamination level ∆x using the upper 5% significance

level of C1
n statistic for various values of κ when n = 30. These curves imply a rapid

increase in the probability P1 and P5 as the contamination level ∆x increases. From these

figures, it can be seen that for κ ≥ 1, the values of P1 and P5 show similar behaviour when

the value rapidly increasing after ∆x = 4. This is because the data are very concentrated,

therefore it is easier to detect any outlier. However, when κ is very small (κ ≤ 1), the

increase in values is slow. This is because, when κ is small, the data are more dispersed,

therefore it is harder to detect any outliers.

Table 4.3: The proportion of correct detection of C1
n statistic in linear component.

n κ 0.5 1 5 10 20
∆x

0 0.00 0.00 0.00 0.00 0.01
3 0.01 0.18 0.15 0.12 0.07
5 0.07 0.53 0.50 0.39 0.19

30 7 0.21 0.78 0.75 0.67 0.36
10 0.50 0.95 0.93 0.89 0.60
15 0.83 1.00 1.00 0.99 0.84
20 0.95 1.00 1.00 1.00 0.93
0 0.00 0.00 0.00 0.00 0.00
3 0.00 0.05 0.07 0.07 0.06
5 0.02 0.36 0.36 0.35 0.28

50 7 0.10 0.74 0.72 0.70 0.62
10 0.36 0.95 0.94 0.94 0.90
15 0.79 1.00 1.00 1.00 0.99
20 0.95 1.00 1.00 1.00 1.00
0 0.00 0.00 0.00 0.00 0.00
3 0.00 0.02 0.04 0.05 0.06
5 0.01 0.24 0.28 0.29 0.27

100 7 0.04 0.68 0.70 0.69 0.68
10 0.24 0.95 0.95 0.95 0.95
15 0.76 1.00 1.00 1.00 1.00
20 0.95 1.00 1.00 1.00 1.00
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Figure 4.3: The performance of the C1
30 statistic for different values of κ when n = 30.
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Figures 4.4(a)-(b) show the graphs of the probability P1 and P5 against the contamination

level ∆x using the upper 5% significance level of C1
n statistic for various values of n when

κ = 1. These curves show that smaller sample size has slightly better performance for

smaller value of ∆x . But in general, P1 and P5 show similar behaviour for n = 30, 50 and

100. However for larger values of κ, the performance of the C1
n statistic is actually slightly

better for larger sample size. As the value of the concentration parameter increases, the

performance actually is getting better at large sample size.

The values of the probability P1 and P5 for various sample size, n when κ = 20 are

given in Figures 4.5(a)-(b). When κ is large, the performance of the C1
n statistic is an

increasing function of sample size, n. In addition, the differences between P1 and P3

(Appendix C) are also approximately close to 0.

4.7.3 Outlier in Linear-Circular Component

Similar to the previous section, the outlier is generated by altering the nth simulated

value in both components such that

(θ′n, x′n) = (θn + ∆θπ, xn + ∆x)

where ∆θ = 0, 0.3, 0.5, 0.7, 1 and ∆x = 0, 3, 5, 7, 10, 15, 20 are the contamination levels for

θ and x respectively.

The power function P1 for the case when n = 30 are plotted in Figures 4.6(a)-(e), each

having different values of contamination level ∆θ . These curves show a rapid increase

in the power function P1 of the C1
30 statistic as the value of the contamination level ∆x

increases for κ ≥ 5. The P1 values of the C1
30 statistic show similar behaviour for all ∆θ .

For smaller value of κ, the increase in power is slower as the data are more dispersed and it

is harder to detect the outlier. Hence, the power function P1 is an increasing function of κ.
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Figure 4.4: The performance of the C1
n statistic when κ = 1.
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Figure 4.5: The performance of the C1
n statistic when κ = 20.
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Figure 4.6: Power function, P1 of the C1
30 statistic for different values of κ when

n = 30.
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The power performances of C1
n statistic for various value of n when κ = 1 are given in

Figures 4.7(a)-(e). From these curves, it can be seen that small sample size has slightly

better performance as the contamination level ∆x increases. However, for very concentrated

data (κ = 20), the power of the statistic is similar for all values of n as shown in Figures

4.8(a)-(e).
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(d) ∆θ = 0.7

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

∆
x

P
o

w
e

r 
fu

n
c
ti
o

n
 P

1

 

 

n = 30

n = 50

n = 100

(e) ∆θ = 1

Figure 4.7: Power function, P1 of the C1
30 statistic when κ = 1.
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(d) ∆θ = 0.7
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Figure 4.8: Power function, P1 of the C1
30 statistic when κ = 20.
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The performance is the same for the other performance criteria P3 and P5. In addition,

the differences between P1 and P3 (Appendix E) also close to 0. Based on the results

obtained, we conclude that C1
n statistic performs well in detecting outlier in a cylindrical

data.

4.8 Practical Example

For a practical example, we use wind direction (in degrees) and wind speed (in m/s)

data obtained from the Malaysian Meteorological Department, which were measured at

Bayan Lepas, Penang, in January 2005 with pressure of 850 hPa around 12:00 am. The

data is given in Table 3.3.

We obtain the parameter values of the JW distribution where µ̂ = 106◦, κ̂ = 0.22 and

λ̂ = 0.40 using the iterative MLE method. Low value of concentration parameter κ implies

that the data are dispersed with most of the wind blows to the east of Bayan Lepas. The

data were plotted in Figure 4.9. The figure shows a 3D plot of the data to illustrate a

cylindrical shape where the data are scattered around the circumference of the cylinder.

From the figure, its obviously shown that there is only one observation located further

away from the rest of the observations. This observation is notably an outlier from the

linear component. Hence, further investigation is needed to test the discordancy using Ck
n

statistic.

Based on the estimated parameter values, we obtain the critical values for the C1
31

statistic given in Table 4.4. The value of the test statistic which corresponds to observation

1 is C1
31 = 11.49. We reject the null hypothesis at 5% significance level which is 10.19,

given in Table 4.4. Hence, the Ck
n statistic has identified the 1st observation as an outlier.

The deletion of the 1st observation from the original data set changes the values of µ̂ to

113◦, κ̂ to 0.20 and λ̂ to 0.41.
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Table 4.4: The critical values for C1
31 statistic.

Upper Level C1
31

10% 8.04
5% 10.19
1% 15.16
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Figure 4.9: Scatter plot of wind speed vs wind direction.

4.9 Summary

In this chapter, we propose a new statistical test for detecting outlier in cylindrical

data based on the theory of k-nearest neighbor. For the case of 1-nearest neighbor, we

have shown that the C1
n statistic performs well in detecting single outlier especially for the

case of outlier in linear component and outlier in both circular and linear components.

Moreover, we have shown that the C1
n statistic can be used on wind data set by detecting an

outlier in linear component as expected.
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CHAPTER 5: REGRESSION FOR CYLINDRICAL DATA

5.1 Introduction

Cylindrical regression is a type of regression when both the circular and linear variables

present in the model. There are three different classes of regression in circular data,

namely circular-circular regression, circular-linear regression and linear-circular regression.

Hence, we can treat both circular-linear regression and linear-circular regression as a type

of cylindrical regression. In this chapter, we propose a new test statistic to detect outliers

in the regression for cylindrical data. We then try to obtain the critical values and study

the performance of the test statistic via simulation. As an illustration, the wind data set is

used for the purpose of outlier detection in cylindrical data.

5.2 Johnson &Wehrly (JW) Circular-Linear Regression Model

Johnson and Wehrly (1978) proposed three different models of circular regression.

One of the model is known as a regression of a linear variate on other linear and circular

variates or known as circular-linear regression. This model will be referred as the

JW circular-linear regression model. The model is constructed from the conditional

distribution of x1 = (x1, . . . , xr)′ given x2 and θ, f (x1 |x2, θ) which is the r-dimensional

normal distribution with mean λ1 + Σ12Σ
−1
22 [x2 − (λ2 + a2(θ))] and covariance matrix

Σ11 − Σ12Σ
−1
22 Σ21 from the joint density f (θ, x) such that

f (θ, x) = c · exp {−1
2
x′Σ−1x + λ′Σ−1x + a(θ)′Σ−1x}

where c is a constant of integration, a(θ)′ = (a1(θ), . . . , aq(θ)) given by

ai(θ) =
p∑

j=1

n∑
k=1

[
ui j k cos (kθ j) + vi j k sin (kθ j)

]
, i = 1, . . . , q,
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where x ∈ Rq, θ ∈ [0, 2π)p, λ ∈ Rq, Σ−1 is positive definite while ui j k and vi j k are constant.

Let us partition x = (x′1 |x
′
2)
′ and hence λ, Σ and a(θ) accordingly. The conditional

distribution of f (x |θ) is q-dimensional multivariate normal with mean λ + a(θ) and

covariance matrix Σ. To predict x1 for a given x2 and θ, consider the conditional

expectation of x1 given x2 and θ such that

E(x1 |x2, θ) = λ1 + Σ12Σ
−1
22 [x2 − (λ2 + a2(θ))]

= λ1 + Σ12Σ
−1
22 x2 − Σ12Σ

−1
22

(
λ2 + a2(θ)

)
= λ1 + Σ12Σ

−1
22 x2 − Σ12Σ

−1
22

[
λ2 +

q∑
i=r+1

p∑
j=1

n∑
k=1

(
ui j k cos (kθ j)

+ vi j k sin (kθ j)
)]

=
(
λ1 − Σ12Σ

−1
22 λ2

)
+ Σ12Σ

−1
22 x2 −

[
Σ12Σ

−1
22

q∑
i=r+1

p∑
j=1

n∑
k=1(

ui j k cos (kθ j) + vi j k sin (kθ j)
)]

=
(
λ1 − Σ12Σ

−1
22 λ2

)
+ Σ12Σ

−1
22 x2 − Σ12Σ

−1
22

q∑
i=r+1

p∑
j=1

n∑
k=1

(ui j k cos (kθ j) − Σ12Σ
−1
22

q∑
i=r+1

p∑
j=1

n∑
k=1

vi j k sin (kθ j)

= β0 + β2x2 +

q∑
i=r+1

p∑
j=1

n∑
k=1

[
γi j k cos (kθ j) + δi j k sin (kθ j)

]

where

β0 = λ1 − Σ12Σ
−1
22λ2,

γi j k = −Σ12Σ
−1
22 ui j k,

β2 = Σ12Σ
−1
22 ,

δi j k = −Σ12Σ
−1
22 vi j k .
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For each component xi, i = 1, . . . , r of x1, the mean is given by

β0 +

q∑
i=r+1

βi xi +

q∑
i=r+1

p∑
j=1

n∑
k=1

[
γi j k cos (kθ j) + δi j k sin (kθ j)

]
.

Hence, the regression for the cylindrical data of x1 given x2 and θ can be shown in the

form of

x1 = β0 + β2x2 +

n∑
k=1

[
γ cos (kθ) + δ sin (kθ)

]
+ ε, (5.2.1)

where β0, β2, γ and δ are the coefficients which represent the relationship between the

variables, k is the angular frequency. This model is basically reduced to a standard method

of predicting a linear variable from a mixture of linear and circular variables.

In the next section, we use the simple form of the model given in equation (5.2.1) with

one linear variable and one circular variable with the frequency k = 1. The model takes

the form of

x1i = β0 + β2x2i + γ cos (θi) + δ sin (θi) + εi, i = 1, 2, . . . , n, (5.2.2)

εi ∼ N(0, σ2). The estimation of the parameters β0, β2, γ and δ can be obtained using the

least square estimation method.

5.3 Estimation of JW Circular-Linear Regression Model

The matrix notation of the regression is given by



x11

x12

...

x1n


=



1 x21 cos (kθ1) sin (kθ1)

1 x22 cos (kθ2) sin (kθ2)
...

...
...

...

1 x2n cos (kθn) sin (kθn)





β0

β2

γ

δ


+



ε1

ε2

...

εn


.
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For simplicity. we define

x1 =



x11

x12

...

x1n


, x2 =



1 x21 cos (kθ1) sin (kθ1)

1 x22 cos (kθ2) sin (kθ2)
...

...
...

...

1 x2n cos (kθn) sin (kθn)


, b =



β0

β2

γ

δ


, ε =



ε1

ε2

...

εn


.

In order to estimate b, we need to minimize the sum of squares of the residual as given by

E = ε ′ε = (x1 − x2b)′(x1 − x2b)

= x1
′x1 − x1

′x2b − x2
′b′x1 + x2b

′x2b

= x1
′x1 − 2b′x2

′x1 + b′x2
′x2b

then differentiate E with respect to b and set the derivative equal to 0.

∂(E)
∂(b) = −2b′x2

′x1 + 2x2
′x2b = 0

x2
′x2b = x2

′x1

b̂ = (x2
′x2)−1x2

′x1

Therefore, the maximum likelihood estimation of b is b̂ = (x2
′x2)−1x2

′x1.

5.4 Outlier Detection in a Regression Model for Cylindrical Data using k-NN
statistic

The new outlier detection in a regression model for cylindrical data using JW circular-

linear regression model is constructed based on the k-NN approach. The method is then
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applied to the distance measure between two residual. The residual is given by

ei = x1i − x̂1i, i = 1, . . . , n. (5.4.1)

Given ei and e j , the distance between two residual is given by

d(ei, e j) = |ei − e j |, i = 1, 2, . . . , n.

Using the same k-NN approach given in section 4.4, the k-NN distance for this case is

given as

Lki = d(k)(ei, e j), k = 1, 2, 3, . . . , i, j = 1, 2, . . . , n, i , j . (5.4.2)

Therefore, the test statistic is given by

Lk
n = maxi{Lki}, (5.4.3)

where n is the sample size and k is the k th-nearest neighbor. The complete steps to detect

the outlier in regression for cylindrical data are given below:

Step 1: Fit the circular-linear regression x1 given in equation (5.2.2).

Step 2: Calculate the residual, e for each observations using equation (5.4.1).

Step 3: Choose any k = 1, 2, 3, . . . for the k-nearest neighbor distance, then calculate the

distance between each residuals, Lki as given in equation (5.4.2).

Step 4: Then define the test statistic Lk
n as given in equation (5.4.3).

Step 5: If the value of Lk
n exceeds the cut-off point, say aL , then the ith observation

corresponding to maxi{Lki} is identified as an outlier.
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We note that Lk
n statistic can also be used to detect a patch of outliers. For example,

when k = 1, it can be used to detect an outlier while when k = 2, it can be used to detect

a patch of 2 outliers. For multiple outliers, we usually need to repeat the Lk
n statistic

iteratively for k = 1, 2, 3, . . . until no outliers are detected.

5.5 Cut-off Points of the Test Statistics

We design a simulation study for Lk
n statistic to obtain the cut-off points using the R

statistical package based on the null hypothesis that there are no outliers present in the

cylindrical data set. The focus of this study is for single outlier and also two outliers.

The generation of the cut-off points are based on the sample size n and residual standard

deviation σ.

In our study, the cut-off points are generated from various values of sample size, n and σ

as shown in Table 5.1-5.4. We generate samples x2 from Normal distribution, N(5, 2) and

θ from von Mises distribution, V M(π, 2). Then, we generate e of size n from N(0, σ). For

each samples, we find the estimated value of the parameters β0 = 0.306, β2 = 1, γ = 1 and

δ = 1 and obtain the variable x1 using equation (5.2.2). Next, we compute the fitted value

x̂1 and calculate the residual, e. We then calculate the distance between each residuals and

sort the values from smallest to the largest to find the respective ordered distance. Next,

we set k = 1 for single outlier or k = 2 for two outliers to find the k th nearest distance to

obtain the Lk
n statistic as given in equation (5.4.3). The process is repeated 2000 times and

the estimated cut-off points at 10%, 5% and 1% upper percentile are collected.

The cut off-points of Lk
n statistic for k = 1, 2 are tabulated in Tables 5.1 - 5.4 respectively.

It can be seen that for each sample size n, the cut off points are increases as the value of

σ increases. High values of σ indicates that the residuals are spread out over the wider

range from the mean and resulting in higher values of cut-off points. On the other hand,

the cut-off points are a decreasing function of sample size n. The exact cut-off point can
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Table 5.1: Cut-off points for L1
n statistic when 0.05 ≤ σ ≤ 0.4.

n Significance σ

Level 0.05 0.08 0.1 0.2 0.3 0.4

10% 0.06 0.10 0.12 0.24 0.36 0.48

10 5% 0.07 0.11 0.14 0.28 0.43 0.57

1% 0.09 0.15 0.18 0.37 0.55 0.73

10% 0.06 0.09 0.12 0.23 0.35 0.47

20 5% 0.07 0.11 0.14 0.28 0.41 0.55

1% 0.09 0.14 0.18 0.36 0.54 0.72

10% 0.06 0.09 0.11 0.22 0.33 0.44

30 5% 0.07 0.11 0.13 0.26 0.40 0.53

1% 0.09 0.14 0.18 0.35 0.53 0.71

10% 0.05 0.08 0.10 0.21 0.31 0.42

50 5% 0.06 0.10 0.13 0.26 0.39 0.52

1% 0.09 0.14 0.18 0.36 0.53 0.71

10% 0.05 0.08 0.10 0.20 0.30 0.40

80 5% 0.06 0.10 0.12 0.24 0.37 0.49

1% 0.08 0.13 0.16 0.32 0.48 0.65

10% 0.05 0.08 0.10 0.20 0.31 0.41

100 5% 0.06 0.10 0.12 0.24 0.36 0.48

1% 0.08 0.12 0.16 0.31 0.47 0.62
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Table 5.2: Cut-off points for L1
n statistic when 0.5 ≤ σ ≤ 1.

n Significance σ

Level 0.5 0.6 0.7 0.8 0.9 1

10% 0.60 0.72 0.84 0.96 1.08 1.20

10 5% 0.71 0.85 0.99 1.14 1.28 1.42

1% 0.91 1.10 1.28 1.46 1.65 1.83

10% 0.59 0.70 0.82 0.94 1.06 1.17

20 5% 0.69 0.83 0.97 1.11 1.24 1.38

1% 0.90 1.08 1.26 1.44 1.62 1.80

10% 0.55 0.66 0.77 0.88 0.99 1.11

30 5% 0.66 0.79 0.93 1.06 1.19 1.32

1% 0.89 1.06 1.24 1.42 1.59 1.77

10% 0.52 0.63 0.73 0.84 0.94 1.05

50 5% 0.64 0.77 0.90 1.03 1.16 1.29

1% 0.89 1.07 1.25 1.43 1.60 1.78

10% 0.51 0.61 0.71 0.81 0.91 1.01

80 5% 0.61 0.73 0.85 0.98 1.10 1.22

1% 0.81 0.97 1.13 1.29 1.45 1.62

10% 0.51 0.61 0.71 0.82 0.92 1.02

100 5% 0.60 0.71 0.83 0.95 1.07 1.19

1% 0.78 0.94 1.09 1.25 1.40 1.56
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Table 5.3: Cut-off points for L2
n statistic when 0.05 ≤ σ ≤ 0.4.

n Significance σ

Level 0.05 0.08 0.1 0.2 0.3 0.4

10% 0.06 0.12 0.12 0.31 0.36 0.48

10 5% 0.07 0.14 0.14 0.36 0.43 0.57

1% 0.09 0.18 0.18 0.45 0.55 0.73

10% 0.06 0.12 0.12 0.30 0.35 0.47

20 5% 0.07 0.14 0.14 0.34 0.41 0.55

1% 0.09 0.17 0.18 0.41 0.54 0.72

10% 0.06 0.11 0.11 0.29 0.33 0.44

30 5% 0.07 0.13 0.13 0.33 0.40 0.53

1% 0.09 0.17 0.18 0.42 0.53 0.71

10% 0.05 0.11 0.10 0.27 0.31 0.42

50 5% 0.06 0.13 0.13 0.31 0.39 0.52

1% 0.09 0.16 0.18 0.40 0.53 0.71

10% 0.05 0.10 0.10 0.26 0.30 0.40

80 5% 0.06 0.12 0.12 0.30 0.37 0.49

1% 0.08 0.15 0.16 0.37 0.48 0.65

10% 0.05 0.10 0.10 0.25 0.31 0.41

100 5% 0.06 0.12 0.12 0.29 0.36 0.48

1% 0.08 0.15 0.16 0.37 0.47 0.62
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Table 5.4: Cut-off points for L2
n statistic when 0.5 ≤ σ ≤ 1.

n Significance σ

Level 0.5 0.6 0.7 0.8 0.9 1

10% 0.78 0.72 0.84 1.25 1.08 1.56

10 5% 0.90 0.85 0.99 1.44 1.28 1.80

1% 1.13 1.10 1.28 1.80 1.65 2.25

10% 0.75 0.70 0.82 1.19 1.06 1.49

20 5% 0.84 0.83 0.97 1.35 1.24 1.69

1% 1.03 1.08 1.26 1.65 1.62 2.07

10% 0.71 0.66 0.77 1.14 0.99 1.43

30 5% 0.81 0.79 0.93 1.30 1.19 1.63

1% 1.04 1.06 1.24 1.66 1.59 2.08

10% 0.67 0.63 0.73 1.08 0.94 1.35

50 5% 0.78 0.77 0.90 1.25 1.16 1.57

1% 1.01 1.07 1.25 1.61 1.60 2.01

10% 0.64 0.61 0.71 1.03 0.91 1.28

80 5% 0.75 0.73 0.85 1.19 1.10 1.49

1% 0.93 0.97 1.13 1.48 1.45 1.85

10% 0.63 0.61 0.71 1.01 0.92 1.26

100 5% 0.72 0.71 0.83 1.16 1.07 1.45

1% 0.93 0.94 1.09 1.49 1.40 1.86
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be obtained for any combination of estimated σ and sample size n. In fact, we expect to

have a more accurate cut-off point by using higher number of simulation as pointed by

Verma et al. (2017).

5.6 The Performance of Lk
n statistic

5.6.1 The Performance of L1
n Statistic

To investigate the performance of L1
n statistic, we use similar procedures as given in

section 4.7. The focus on this statistic is when k = 1 for single outlier. From Barnett and

Lewis (1994) and David (1981), P1 = 1 − β is the power function where β is the type-II

error; P3 is the probability that the contaminant point is an outlier and it is identified as

discordant; and P5 is the probability that that the contaminant point is an outlier given that

it is identified as discordant. A good test should have (i) high P1; (ii) high P5 and (iii) low

P1 − P3.

The performance of L1
n statistic is conducted using simulation method. The samples are

generated from various samples n = 20, 50, 80, 100 from Normal distribution, x2 ∼ N(5, 2)

and vonMises distribution, θ ∼ V M(π, 2)with different values of σ = 0.2, 0.3, 0.5, 0.8, 1, 2.

Using the generated data of x2 and θ, the values of the response variable x1 is obtained

using equation (5.2.2). Then, The outlier is generated by altering

x′1,n = x1,n + ∆,

where ∆ > 0 is the contamination level. Next, the generated cylindrical data of x1, x2, and

θ are fitted to JW circular-linear regression to find the estimates of β̂0, β̂1, γ̂ and δ̂. Then,

we apply the L1
n statistic for the detection of outlier in each samples. If the value of the

L1
n statistic is greater than the specified cut-off points, then we have correctly detected

the outlier. The process is repeated for 2000 times and the values of P1, P3 and P5 are
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obtained.

Table 5.5 shows the proportion of correct detection of outlier when applied to L1
n statistic.

The results shows that the proportion is an increasing function of n. The proportion is

decreasing as the value of σ increasing. It is expected since small σ indicates that the

samples are very close to the mean, hence make it easier to detect an outlier. For large

value of σ, the proportion are increasing as the value of the contamination level increases.

The results for the samples when n = 20 and n = 100 are plotted in Figure 5.1 and

Figure 5.2 respectively. From both figures, the performance of P1 and P5 shows similar

behaviour. It can be seen that the performance of L1
n statistic depend on the value of σ.

The performance is better as the value of σ decreases. Hence, the performances are a

decreasing function of σ. However, n = 100 has a better performance compared to when

n = 20. When n is large, the distance between the residuals is expected to be shorter

resulting in lower values of L1
n statistic as illustrated by the smaller cut-off points as shown

in Table 5.1. Hence, when outlier occurs in large sample size, we detect the corresponding

observation easier as its respective distance will be relatively longer compared to the case

in smaller sample size.

From Tables 5.3 - 5.5, we can see that the performance of P1 and P5 for different values

of n shows similar behaviour. However, we note that the large sample size approaching

1 slightly faster. In addition, the differences between P1 and P3 (Appendix F) are also

approximately close to 0.

5.6.2 The Performance of L2
n Statistic

To investigate the performance of L2
n statistic for multiple outlier, the samples are

generated from various samples n = 20, 50, 80, 100 from normal distribution, x2 ∼ N(5, 2)

and von Mises distribution, θ ∼ V M(π, 5) with different values of σ = 0.2, 0.5, 0.8, 1, 2.
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Table 5.5: The proportion of correct detection of outlier for L1
n statistic.

n ∆ σ
0.2 0.3 0.5 0.8 1 2

0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.78 0.38 0.09 0.02 0.01 0.00
3 0.99 0.97 0.89 0.49 0.28 0.04
5 0.99 0.99 0.97 0.91 0.78 0.18

20 7 0.99 0.99 0.99 0.97 0.94 0.43
10 1.00 0.99 0.99 0.99 0.97 0.78
13 1.00 1.00 0.99 0.99 0.99 0.92
15 1.00 1.00 0.99 0.99 0.99 0.96
18 1.00 1.00 0.99 0.99 0.99 0.97
20 1.00 1.00 0.99 0.99 0.99 0.97
0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.87 0.40 0.07 0.02 0.01 0.01
3 1.00 1.00 0.97 0.54 0.30 0.03
5 1.00 1.00 1.00 0.98 0.87 0.17

50 7 1.00 1.00 1.00 1.00 0.99 0.46
10 1.00 1.00 1.00 1.00 1.00 0.87
13 1.00 1.00 1.00 1.00 1.00 0.99
15 1.00 1.00 1.00 1.00 1.00 1.00
18 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.86 0.36 0.06 0.01 0.01 0.00
3 1.00 1.00 0.97 0.51 0.25 0.02
5 1.00 1.00 1.00 0.98 0.86 0.14

80 7 1.00 1.00 1.00 1.00 1.00 0.42
10 1.00 1.00 1.00 1.00 1.00 0.86
13 1.00 1.00 1.00 1.00 1.00 0.99
15 1.00 1.00 1.00 1.00 1.00 1.00
18 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.87 0.36 0.06 0.01 0.00 0.00
3 1.00 1.00 0.98 0.52 0.26 0.02
5 1.00 1.00 1.00 0.99 0.87 0.13

100 7 1.00 1.00 1.00 1.00 1.00 0.43
10 1.00 1.00 1.00 1.00 1.00 0.87
13 1.00 1.00 1.00 1.00 1.00 0.99
15 1.00 1.00 1.00 1.00 1.00 1.00
18 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 5.1: Sampling behaviour of the L1
n statistic for different values of σ when

n = 20.
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Figure 5.2: Sampling behaviour of the L1
n statistic for different values of σ when

n = 100.
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Figure 5.3: Sampling behaviour of the L1
n statistic for different values of n when

σ = 0.05.
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Figure 5.4: Sampling behaviour of the L1
n statistic for different values of n when

σ = 0.8.
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Figure 5.5: Sampling behaviour of the L1
n statistic for different values of n when

σ = 2.
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Then, the outliers are generated by altering

x′1,n = x1,n + ∆

x′1,n−1 = x1,n−1 + ∆

where ∆ ≥ 0 is the contamination level. Then, similar procedure as the performance of L1
n

is used.

The performance of L2
n statistic when n = 50 and n = 100 are given in Figure 5.6 and

Figure 5.7 respectively. It can be seen that the performance is increasing as the value of σ

is decreasing. Hence, the performance is a decreasing function of σ. Meanwhile, Figure

5.8 and Figure 5.9 shows that the performances of the test statistic at various sample size n

are similar. However, the performance is smaller when the sample size is small. On the

other hand, the differences between P1 and P3 (Appendix H) are also approximately close

to 0. Generally, the performance of L2
n statistic shows a similar behaviour to L1

n statistic.

5.7 Practical Example

We now apply the JW circular-linear regression model on a real data set. The same

data used in section 4.8 is applied here. However, we add another linear variable which is

Temperature (◦C) to be fitted by JW circular-linear regression. The data is given in Table

5.6.

The parameter estimates of the JW circular-linear regression model are β̂0 = 5.26, β̂2 =

−0.12, γ̂ = 0.31, and δ̂ = 1.49 with the fitted x̂1 is given by

x̂1 = 5.26 − 0.12x2 + 0.31 cos θ + 1.49 sin θ

The regression plot of the variables shows a possibility of occurrence of outlier in the data
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Figure 5.6: Sampling behaviour of the L2
n statistic for different values of σ when

n = 50.
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Figure 5.7: Sampling behaviour of the L2
n statistic for different values of σ when

n = 100.
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Figure 5.8: Sampling behaviour of the L2
n statistic for different values of n when

σ = 0.5.
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Figure 5.9: Sampling behaviour of the L2
n statistic for different values of n when

σ = 2.
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Table 5.6: The Wind Data.
Wind Speed (m/s) Temperature (◦C) Wind Direction (◦)

14.9 17.6 85
5.1 18.0 85
4.6 18.2 140
6.2 18.0 100
3.6 18.2 135
1.5 17.6 310
2.1 18.4 340
4.6 18.2 120
4.6 17.6 130
5.1 17.4 120
4.6 19.0 150
2.6 17.6 80
1.0 18.4 205
0.5 18.6 60
5.1 18.4 110
3.1 18.0 125
2.1 19.0 125
1.5 17.8 185
1.0 17.4 190
0.5 17.2 70
4.6 16.6 135
2.6 17.2 125
3.6 18.2 90
2.1 16.6 200
3.6 18.0 5
2.6 17.2 30
3.1 17.2 165
3.1 18.6 260
4.6 18.0 325
3.6 17.4 325
2.6 17.8 345

set. From Figures 5.10 and 5.11, it can be seen that there is an observation that is located

far away from the rest of the data. This observation affect the Q-Q plot as the point deviate

far away from the other points. This shows that a possible outlier is present in the data set.

Hence, further investigation is needed to test whether the 1st observation is an outlier by

applying the outlier detection method for circular-linear regression using L1
n statistic.

The root mean squared error (RMSE) for this data set is 2.55 and value of test statistic

L1
31 = 8.14. Given the values of n = 31 and the estimated σ = 2.55, we obtain the cut-off

point using simulation. The value of the cut-off point for L1
31 statistic at 5% significance
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level is 3.30. Clearly, the value of the L1
31 statistic for the 1st observation is greater than

the cut-off point. Hence, the observation is identified as an outlier. We apply again

the procedure on the reduced data set by removing the 1st observation and no outlier is

detected.
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Figure 5.10: The regression plot of wind speed, temperature and wind direction

The removal of the 1st observation from the data set notably changes the value of

β̂0, β̂2, γ̂, δ̂ and σ. The results are shown in Table 5.7. Before the outlier is removed, it

significantly affect the regression plane as shown in Figure 5.10. Thus, the removal of the

1st observation resulting in a better model fitting to the data set since the estimation is more

accurate as shown in Figure 5.12. From Table 5.7, it can be seen that the standard error of

the parameter estimates is reducing when the 1st observation is removed. Besides, the Q-Q

plot of the residuals without the 1st observation from the wind data is shown in Figure

5.13. The points are now much closer to the straight line indicating a better fit for the data.
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Figure 5.11: Q-Q normal plot of the residuals

Table 5.7: The summary of the effect of outlier removal from the wind data set.

Full data Data after excluding
Parameters the 1st observation

Estimate Standard Error Estimate Standard Error
β̂0 5.26 13.76 -0.14 8.19
β̂2 -0.12 0.77 0.17 0.46
γ̂ 0.31 0.70 -0.03 0.42
δ̂ 1.49 0.76 0.81 0.46
σ 2.55 - 1.51 -
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Figure 5.12: The regression plot of wind speed, temperature and wind direction
after removing the 1st observation
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Figure 5.13: Q-Q plot of the residuals without the 1st observation
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5.8 Summary

In this chapter, we have discussed the theory of JW circular-linear regression model

and proposed a new discordancy test using this regression model based on the theory

of k-nearest neighbor. The cut-off points of the test is obtained and the performance is

examined via simulation study. The outlier detection procedure is developed to identify

outliers in JW circular-linear regression model. However, the proposed procedure should

work for other circular-linear regression models with the corresponding cut-off points

obtained from simulation.
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CHAPTER 6: CONCLUSION

6.1 Summary of the Study

The study looks at the outlier detection in cylindrical data and their regression. In this

study, we focus on the JW cylindrical model and also JW circular-linear regression model.

We focus on the outlier detection in cylindrical data where the sample are generated

from the JW cylindrical model. At present, there is no outlier detection method have been

developed for the cylindrical data. Thus, we propose a new test called Ck
n statistic based

on the k-nearest neighbor method. The outlier in cylindrical data can be divided into three

categories; (i) outlier in the circular part; (ii) outlier in the linear part; (iii) outlier in the

linear-circular part. The new test were conducted through simulation for the case of single

outlier. Through simulation study, the C1
n statistic shows a good performance for a single

outlier in the case of outlier in the linear part and in the linear-circular part. However,

the performance of the new test statistic in the case of circular variable does not meet the

desirable result like the other two cases. This is because outlier in circular variable almost

impossible to occur due to the nature of the JW cylindrical model where the observations

are spread along the circumference of a circle. The method have been applied on the wind

data set and are able to detect observation that is located further away from the rest of

the data. The proposed method should work for other cylindrical distribution with its

corresponding generated cut-off points.

We then look at the outlier problem in the regression for the cylindrical data. We propose

a new discordancy test to detect outliers in the regression model using JW circular-linear

regression model called Lk
n statistic. This new test statistic also use the k-nearest neighbor

method but on the residuals. The focus of the study is to detect single and two outliers

where the performance shows that the test statistic can be used to detect one and two
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outliers. From the study, we conclude that the new test shows a good performance.

In conclusion, we look into an outlier problems using JW cylindrical distribution and

JW circular-linear regression model proposed by Johnson and Wehrly (1978). The work is

very significant in providing information on the outliers in the cylindrical data.

6.2 Contributions

The study has contributed to cylindrical data analysis in the following ways:

1. Using the k-nearest neighbor theory, the Ck
n statistic is used to detect outlier in

the cylindrical data. The cut-off points are generated via simulation. Through

simulation, the test statistic performs well in detecting outlier in the linear component

and linear-circular component.

2. Using the k-nearest neighbor theory on the residual, the Lk
n statistic is used to detect

outlier in the regression model for cylindrical data. A full table of cut-off points for

the statistic is generated through simulation. This statistic also proven to perform

well in identifying outlier in the regression model.

3. We apply the outlier detection methods in cylindrical data and circular-linear

regression using the wind data sets. The test statistics are able to detect outliers in

the corresponding data sets.

6.3 Further Research

There are various possibilities for further research in this area. Some suggestion are

given as follows:

1. To extend the Ck
n statistic to detect multiple or a patch of outliers in the cylindrical

data.

2. To extend the work for MLE for circuar-linear regression model with outlier occurs

in the circular variable.
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3. To develop a better statistic to detect outlier in circular component of cylindrical

data.

We are aware that there are still many problems ready to be explored in the directional

statistics especially in the cylindrical case.
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