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STRONG OPTICAL SCATTERING BY FEMTOSECOND LASER INDUCED 

MICROBUBBLES INSIDE WATER AND OTHER MICROSCOPIC 

OBSERVATIONS 

ABSTRACT 

Nonlinear interactions of focused femtosecond laser with water can provide interesting 

optical phenomena, most commonly, laser induced breakdown in water which creates 

plasma, self-focusing or filamentation because of loose geometrical focusing condition, 

white light generation and blue shifted by plasma, conical emission and associated 

spectra, as well as creation of optical cavitation bubbles and their motions inside water. 

However, in our work, in addition to the well-known phenomena we have observed a new 

kind of colorful optical scattering flash from femtosecond laser induced microbubble 

surface. A closer look under the microscopic observation of the focused region of 

femtosecond laser pulse leads us to observe this scattering. Additionally, in this work, we 

also have discussed the nonlinear optical process including our new finding phenomena 

to elucidate the underlying physical mechanisms and laser induced bubble mechanism 

from the micro level observational point of view.  

 

Keywords: Laser, femtosecond, LIB, Microbubbles, Scattering, Optics 
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KUAT OPTIK BERSELERAK OLEH FEMTOSECOND LASER TERINDUKSI 

MICROBUBBLES DI DALAM AIR AIR DAN LAIN MICROSCOPIC 

PEMERHATIAN 

ABSTRAK 

Interaksi tak linear antara laser femtosecond dengan air membawa kepada fenomena optik 

yang menarik, di mana fenomena yang paling kerap merangkumi pecahan teraruh laser 

dalam air yang membawa kepada kewujudan plasma, fokus diri ataupun filamentasi yang 

disebabkan oleh keadaan geometri fokus yang longgar, penjanaan cahaya putih dan 

peralihan biru oleh plasma, pelepasan konikal dan spektrum yang berkaitan, serta 

penghasilan gelembung peronggaan optik dan gerakan mereka dalam air. Dalam kajian 

ini, selain daripada semua fenomena terkenal yang disebut, kami telah memerhati suatu 

penyerakan optik yang berwarna-warni pada permukaan gelembung mikro yang 

disebabkan oleh laser femtosecond. Pemerhatian kawasan fokus laser femtosecond yang 

lebih teliti di bawah mikroskop membawa kami kepada penemuan fenomena penyerakan 

tersebut. Di samping itu, dalam kajian ini, kami juga membincangkan proses optik tak 

linear selain daripada fenomena baru yang disebut tadi untuk menjelaskan mekanisme-

mekanisme fizikal asas di belakang fenomena itu serta mekanisme gelembung teraruh 

laser daripada sudut penglihatan pemerhatian pada tahap mikro. 

Kata kunci: Laser, femtosecond, LIB, Scattering, Optik 
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CHAPTER 1: INTRODUCTION 

In this chapter the literature review will be first discussed, forwarded by a short 

introductory, the objective of this work and finally outline of this thesis.  

1.1 Introductory 

Lasers are used to produce coherent beam of monochromatic light with high 

directional and relatively small divergence. In a coherent beam, all the photons are in the 

same phase, so it gives a single-color light and it is called monochromatic (where 

monochromatic means single wavelength of light). Although laser light is not found in 

nature, it is very important due to its many useful and practical applications. Those 

applications are designed based on laser matter interactions.  

In terms of laser matter interaction, the physical outcomes are determined by the way 

photon energy is transferred into the target matters. At present, two type of most common 

laser systems are used for laser matter-interactions applications. First, Continuous Wave 

or CW Lasers. This class of laser continuously pumps and emits light. Secondly, Pulsed 

Laser. This class do not emit light continuously, but it emits in the form of an optical 

pulse. Following, the invention of laser technology, a large number of researcher and 

research groups across the world have been working to understand the behavior of matter 

as interact with both classes of laser. More recently, ultrafast laser processing is becoming 

a more reliable tool for practical and industrial applications due to their unique features 

and have opened exciting research opportunities in the field of laser-matter interaction. 

These following consequences motivated us to explore on the topic femtosecond laser 

water interaction where less investigation has been done. In our research we used regular 

water because of its essentiality of sustaining life and necessity of vast area of uses.  
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1.2 Literature Review 

The first basic idea of Light Amplification by Stimulated Emission of Radiation or 

LASER came from an American scientist, Charles Hard Townes and two Soviet 

scientists, Alexander Mikhailovich Prokhorov and Nikolay Gennadiyevich Basov who 

shared the Nobel Prize in 1964. However, TH Maiman of the Hughes Research 

Laboratory at California, was the first scientist who experimentally demonstrated laser 

by flashing light through a ruby crystal in 1960. A few decades ago, it became possible 

to generate laser light pulses with a duration in the femtoseconds scale.  

At present, a femtosecond laser is an excellent tool for producing laser pulses with 

very high intensity for laser-matter interactions, leading to various applications as well as 

laboratory experiments. It is widely used in thin film deposition (Womack et al., 2004), 

material characterization (Kabashin et al., 2003), drilling (Kamlage et al., 2003), micro 

or nano structuring (Costache et al., 2004), lithography, medical surgery (Shen et al., 

2005) as well as fabrication of nanoparticles. 

Many experiments have been done using femtosecond laser interacting with different 

materials at ambient environment (Amoruso et al., 2007), in gaseous as well as solid 

materials (Machmudah et al., 2011). Interaction of laser with solid materials is 

characterized by the ablation depth and width per pulse, as well as morphology on the 

target. The physical outcomes are determined by the way photon energy is transferred to 

the target. 

Additionally, laser interaction with water has been explored (Barnes et al., 2016), with 

extensive reviews on underwater laser processing (Kruusing, 2004; Kruusing, 2004). It is 

important not only for fundamental research but also for applications such as synthesis of 

nanocrystals (Shen et al., 2004), (Yang, 2007) and medical applications especially when 

the laser is guided inside the human body to ablate tissues (Loesel et al., 1998). 
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Laser interaction with water enables us to understand the interaction between photons 

and fluids or soft matter with more complex assemblies. However, certain fundamental 

mechanisms in the interaction of intense laser with water have not been adequately 

explored. In picosecond laser ablation, there are many underlying mechanisms involved. 

First, during optical breakdown (Zysset et al., 1989) the electric field of the laser is 

sufficiently strong to rip apart the electrons from the atoms and molecules into ions and 

plasma through photoionization, photodissociation or photochemical processes. The 

focused region produces disruptive processes (Vogel et al., 1994) like nonequilibrium 

phase transition and/or explosive boiling. This is followed by cavitation of bubbles and 

shock waves (Juhasz et al., 1994) and photothermal process with thermal conduction at 

longer timescale. When the plasma is created (Noack & Vogel, 1999) the process 

escalates into breakdown dynamics (Schaffer et al., 2002). Cavitation is formed by spots 

of highly concentrated energy and ions that rapidly expands with hyper sonic velocity 

into bubbles as a result of the plasma and heat pressure accompanied by the generation 

of the pressure wave (Sakakura et al., 2007). A lot of work have been undertaken to study 

the dynamics and mechanism by looking at the shock waves generated in liquid (Brujan, 

2008; Ohl et al., 1999; Peyre et al., 1996).  

Further expansion of the plasma leads to the creation of cavitation bubbles (Akhatov 

et al., 2002), (Lim et al., 2010) and explosive boiling (Park et al., 1996). The kinetic 

behavior of nucleation and the growth of the bubbles have been studied by optical and 

acoustic means (Yavas et al., 1994). The mechanisms also involve thermodynamics and 

phase transition (Kim et al., 2001), particularly the change in temperature (Park et al., 

1996) and pressure (Park et al., 1996; Brujan et al., 2008). 

Subsequently, bubble expansion may decrease to subsonic velocity followed by 

implosion or collapse (Chen et al, 2004), (Lindau & Lauterborn, 2003) of the cavitation 
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bubble, creating secondary acoustic transients and light (Putterman & Weninger, 2000) 

accompanied by radially propagating acoustic waves (Yavas et al., 1994). 

However, interactions of ultrashort laser pulses like femtosecond laser with water are 

more challenging scientifically due to the many physical mechanisms involved in the 

ultrashort time dynamics. During femtosecond laser focusing in liquid, nonlinear optical 

and photoionization processes dominate over the photothermal process. Examples of 

useful application are advanced materials processing (Sugioka & Cheng, 2014) and 

ultrafast sensing (Chiou et al., 2010). A few studies were involved in the interaction 

between femtosecond laser pulse and water from the energetic point of view (Sreeja et 

al., 2013) and in the aspect of spectroscopy (Ilyin & Golik, 2013) by measurements of 

emission spectra. Laser plasma interactions and supercontinuum generation produce 

white light (Chin & Lagacé, 1996). Thus, focused femtosecond laser in water is a very 

complicated process full of interesting physics. Figure 1.1 demonstrates the basic 

phenomena when femtosecond laser focused inside water including the outcome of this 

research work.  

  

 

Figure 1.1: Phenomena and findings when high intense femtosecond laser focused 
inside water. 
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1.3 Objectives 

The aim of this thesis is to describe the physical mechanisms of focused femtosecond 

laser pulses in water and explaining the experimental results based on fundamental 

concepts. Furthermore, as an additional objective, during the experimental study a new 

kind of optical effect by focused femtosecond laser pulses in water has been observed 

which is completely new and considered as a new challenge to study and explain our 

current understanding of fundamental concepts of nonlinear optics. 

1.4 Outline 

This thesis begins with the introduction in Chapter 1 which presents literature review 

corresponding to this research including research objective. Chapter 2 reviews the basic 

principle of lasers, femtosecond laser and pulse generation. Chapter 3 reviews the optical 

properties of matter, laser-matter interactions, and finally laser-liquid (water) interaction. 

Chapter 4 describes the experimental procedure that had been developed for the work, 

including a short description of the equipment. The experimental result and related 

discussion are described in Chapter 5. 

An overall conclusion and future directions for this research are provided in Chapter 

6, forwarded by the appendices at the end of this thesis.  
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CHAPTER 2: CONCEPT OF LASER 

It is important to discuss few fundamental concepts of lasers before discussing about 

laser-water interactions. After all, this experiment is a laser (particularly femtosecond 

laser) based experiment. So, a discussion of laser is necessary to be considered.  

2.1 Laser Fundamentals 

Light Amplification by the Stimulated Emission of Radiation or LASER is an artificial 

light generated by a device that produces intense beams of light which are 

monochromatic, coherent, directional, and highly non-divergent. The wavelength of laser 

light is extremely pure (monochromatic or single color) when compared to other sources 

of light, and all of the photons that make up the laser beam have a fixed phase relationship 

(coherence) with respect to one another. Laser light typically have very low divergence, 

they can travel over great distances and can also be focused into a very small spot with a 

very high energy density. Figure 2.1 expresses these properties of laser light.   

 

 

 

 

 

 

 

Figure 2.1: Laser and Characteristics of Lasers (Herd et al., 1997). 
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As mentioned, laser light is not found in nature so it is made artificially by a device 

which contains three components (Figure 2.2):  

(i) Lasing material or gain or active medium usually solid (crystals, glasses and 

semiconductors); liquid (organic solvents and dyes; example: dye lasers); or 

gas. The type of laser is usually named after the lasing medium, and this is also 

the main factor determining the type of pump required and the wavelength of 

the resulting laser light.)   

(ii) External energy source or pump (which may be an electric current or discharge, 

flash lamp, light from another laser, or a chemical reaction) 

(iii) Optical resonator (this is laser’s simplest form consists of two parallel mirrors: 

a highly reflective mirror and a partially reflective mirror, also called output 

coupler.) 

 

 

 

 

 

 Figure 2.2: Laser Devices.  
 

To explain internal mechanism of laser generation we need to take help of atomic 

theory, moreover, to avoid complexity we will describe using classical atomic theory 

which is sufficient to explain the principle of laser operation rather than modern atomic 

theory. According to classical theory atomic structure as a central nucleus composed of 

protons and neutrons surrounded by a cloud of electrons that orbit the nucleus in a series 
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of discrete orbitals. When energy is supplied to the atom, the electrons move from their 

low-energy orbitals near the nucleus to high-energy orbitals further away. The atom is 

said to absorb energy, and move from the ground state energy level (E1) to an excited 

level (E2). An electron in a high-energy orbital eventually returns to the low-energy 

orbital. As it does so, the difference in energy is released in the form of a photon, which 

has random phase and direction. This process is called spontaneous emission, and is the 

same process which causes an incandescent bulb, neon light, fluorescent tube, cathode 

ray tube or heating element to produce light. 

The photon will have a frequency v and energy hv given by E2 – E1 = hv, where h is 

Planck’s constant 6.63 × 10–24J/s Hence, the wavelength of the light produced is 

determined by the amount of energy released when the electron returns to a lower orbital, 

and may be within the visible spectrum or beyond it (i.e. infrared or ultraviolet). If the 

photon collides with other excited electrons in the lasing medium, it will cause a second 

photon to be released which is identical to the original photon in its direction, phase, 

polarization and energy (wavelength). This is called stimulated emission. A cascade 

effect occurs as photons stimulate the emission of more photons, resulting in 

amplification or optical gain. The photons are initially released in random directions. 

However, as the chain reaction progresses, photons are reflected back and forth between 

the mirrors, and soon all atoms emit light along this axis. The output coupler is partially 

reflective, and allows a small number of photons to escape from the lasing medium. This 

is the usable laser light, which is directed to the target via a delivery system of fiber-optic 

light guides for visible light or a series of mirrors for infrared. For sustained laser action 

to occur, the majority of atoms must be maintained in the excited state (population 

inversion) by the continuous input of energy from the pump. If pumping is intermittent, 

a pulsed laser will result (Silfvast, 2004; Williams, 2008). 
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2.2 Device Types of Laser: CW and Pulse Laser and Some Quantities 

There are two types of lasers based on their output laser light operation, either 

continuous wave (CW) or the pulsed laser. In a CW laser, a constant power is continuous 

output. In a pulsed laser, optical pulses are output with a constant repetition frequency. 

Figure 2.3 (a) shows a schematic of the CW operation and pulsed operation. 

 
Figure 2.3: (a) CW Laser and Pulsed Laser & (b) Laser Quantity.  

 

A laser is characterized by an average power Pa. A pulsed laser is generally 

characterized by a pulse duration T, repetition rate fp, pulse energy Ep, and a peak power 

Ppeak. These parameters of the pulsed laser are associated by the following expressions 

(also shown in Figure. 2.3 (b), FWHM is full wave half maximum). However, some of 

the quantities we do use frequently for measurements and practical applications.  

repetition rate, 
T

f p
1

          (2.1) 

peak power, 
pp

a
peak ft

PP           (2.2) 

intensity, 
p

ppeak

At
E

A
P

I           (2.3) 

fluence, 
A

tP
A

E
w ppeakp

         (2.4) 
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pulse energy, tPPdtE peakP          (2.5) 

And, pt  = pulse width,  aP  = average power, A = area 

Table 2.1: Commercial Lasers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category Pumping method Laser wavelength 

Solid-state laser 

current compound semiconductor laser diode ultra violet~infrared 

flash lamp flash-lamp pumping 

Nd:YAG laser 1064 nm 
ruby laser 694 nm 

Nd: glass laser 1054 nm, 1062 nm 

Er: YAG laser 2.9 μm 
alexandrite laser 0.7 μm~0.82 μm 

laser 

laser diode pumping 

Nd:YAG laser 1064 nm 

Nd: YLF laser 1047 nm, 1053 nm 

Nd: glass laser 1054 nm, 1062 nm 

Nd: YVO4 laser 1065 nm 
Yb: YAG laser 1030 nm 

Yb-doped fiber laser 1.0 μm 

Er-doped fiber laser 1550 nm 

Cr:LiSAF laser 0.65 μm~1.1 μm 
Er: YAG laser 2.94 μm 
Tm:YAG laser 

1.8 μm~2.2 μm 

without laser diode pumping 

far infrared laser 
Ti:Sapphire laser 650 nm~1180 nm 
Ce:LiSAF laser 0.29 μm~0.30 μm 

Cr:Forsterite laser 1.13 μm~1.37 μm 
Ho:YLF laser 0.75 μm~2.06 μm 
Ho:YAG laser 2.09 μm~2.10 μm 

Liquid laser dye laser 300 nm~1200 nm 

Gas laser 

discharge 

metal laser 
copper vapor laser 511 nm, 578 nm 

He-Cd laser 325 nm, 442 nm 

non-metal laser 

He-Ne laser 633 nm 

Ar ion laser 275 nm~1090 nm 
(many oscillation lines) 

Kr ion laser 337 nm~858 nm 
(many oscillation lines) 

N2 laser 337 nm 
CO laser 5~7 μm 
CO2 laser 9~11 μm 

electron beam 
excimer laser 

KrF laser 

126 nm~351 nm 
XeCl laser 
ArF laser 
F2 laser 

Chemical laser chemical reaction 
HF laser 2.7 μm~2.9 μm 

iodine laser 1.3 μm 
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It is important to note that beside CW and Pulse, lasers are also categorized into solid-

state laser, liquid laser, gas laser, and chemical lasers. The categories and commercially 

available lasers are mentioned in Table 2.1 (Hitz, Ewing & Hecht, 2012). 

2.3 The Femtosecond Laser and Pulse Generation 

Nowadays almost all the research laboratories, dealing with high-resolution 

spectroscopy and non-stationary processes, use femtosecond lasers. Ti: Sapphire laser is 

the most popular among them. Femtosecond laser pulses are related to laser pulses with 

a duration on the femtosecond time scale. 1 fs or femtosecond = 1×10⁻¹⁵second. The short 

optical pulse allows for visualization of ultrafast dynamical process such as fluorescence 

and excited state absorption, and the high peak power of the pulse allows application in 

nonlinear spectroscopy, material processing in such process as multi photon absorption, 

optical harmonics generation, materials ablation, etc. Time-resolved spectroscopy, 

multiphoton imaging, micromachining, communications, isotope separation, and 

generation of intense bursts of x-rays are among the large number of applications of 

femtosecond laser pulses (Kaiser & Auston, 1993). 

The pulse energy comes out directly from a femtosecond laser is in the range of 

nanojoules. These femtosecond laser pulses then amplified to the microjoule and 

millijoule level to become fully potential. However, it does not have direct amplifying 

option since the high pulse intensity is the causes of damaging of the optics in the 

amplifier. The reason behind is the non-linear effects induced by the very high intensity 

of the femtosecond laser pulses. So, a technique called Chirped pulse amplification (CPA) 

is used for generation of ultrashort laser pulses without damage of the active medium or 

optics used. The concept of CPA is interesting, a femtosecond pulse train produced by 

the oscillator (Ti:Sapphire) is stretched in a pulse stretcher to reduce the intensity. The 

stretched pulse is then amplified to increase its energy. Finally, the amplified stretched 
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pulse is compressed to produce energetic femtosecond laser pulses as shown in Figure 

2.4 (Liu et al., 1997). 

More about CPA: To generate a laser pulse within a femtosecond time domain, the 

active medium should have a broad emission bandwidth. Because of the relationship 

between the pulse duration and its spectral bandwidth is associated by the Fourier-

transform-limited pulse relation: ∆v∆t ≥ K, where ∆v frequency bandwidth measured at 

full-width at half-maximum (FWHM), ∆t is the FWHM in time of the pulse and K is a 

constant depending only on the pulse shape, for an example, it equals 0.441 for Gaussian. 

The requirement of sufficient bandwidth during the amplification process limits the 

number of materials (active media) that can be used for the generation and amplification 

of femtosecond laser pulses to three types of materials: dye lasers (580-900 nm), Excimer 

lasers (ultraviolet), and solid state media (Patterson et al., 1990).  

 

Figure 2.4: Chirped Pulse Amplifier (CPA). 
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Based on CPA, a femtosecond laser system consists of four sections: 

a) The oscillator, which generates the femtosecond laser pulses: 

Titanium-sapphire (Ti:Al2O3) crystal, the gain medium of the laser oscillator, is 

commonly used for femtosecond pulse generation in the near infrared. Its broad gain 

bandwidth (~ 200 nm) and its high thermal conductivity and high damage threshold make 

it suitable for the generation and amplification of ultra-short laser pulses of a few 

femtosecond pulse width at the 800 nm central wavelength (Sullivan et al., 1991). The 

minimum pulse duration that is obtained from a spectrum with wavelength difference ∆λ 

nm at FWHM can be calculated from Fourier transformation: ∆𝑡 = 𝑘
λ0

∆λc
, where λ0 is the 

central wavelength and c is the velocity of light. This yields an expected minimum pulse 

duration for Ti:Sapphire of about 5 fs. Ultra-short laser pulses are generated by mode 

locking, this is a technique by which a laser can be made to produce laser pulses of 

extremely short duration, on the order of picoseconds (10-12s) or femtoseconds (10-15s)). 

This mode-locked laser typically generates light pulses at high repetition rate (~108Hz). 

It is mentionable, CW laser and pulse laser are also pumped by CW. The difference is 

mode-lock. 

When light propagates through a dispersive medium, different frequency component 

travel at different speeds (group velocity dispersion) because of the dependence of the 

refractive index of the medium on the wavelength. These result in stretching out a short 

pulse made of different frequency components. In case of positive dispersion 

(propagation of a pulse in media with normal dispersion), higher frequency components 

travel slower than lower frequency components and the pulse is said to be positively 

chirped. The opposite situation, when the pulse travels through a medium of negative 

dispersion, higher frequency components travel faster than lower frequency components 

and the pulse is said to be negatively chirped. In an ultra-short laser oscillator, positive 
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dispersion in the gain medium and other optical components must be compensated. This 

can be done by inserting optical components with negative dispersion (pair of prisms or 

specially made chirped mirrors) in the oscillator as shown in Figure 2.5 where Ti:Sapphire 

oscillator which consists of two double chirped mirrors (DCM1, DCM2) and fused silica 

(FS) prism pair for compensation of dispersion (Sutter,  et. al., 1998).  

Figure 2.5: Ti: Sapphire oscillator (Sutter et al., 1998). 

b) The stretcher, which consists of a pair of optical gratings used to expand the 

femtosecond pulse width: 

The laser pulses obtained from the Ti: Sapphire oscillator have energies of the order 

of a nanojoule and pulse duration of a few femtoseconds. For amplification of these pulses 

without damage of the optics used, the pulses are first stretched and then amplified. The 

pulses are stretched in time using the dispersion properties of a pair of gratings arranged 

to give positive group velocity dispersion. Figure 2.6 is showing the arrangement of a 

grating-pair pulse stretcher where G1 and G2 are diffraction gratings, L1 and L2 identical 

lenses separated by twice their focal length f. M is a mirror acting to double pass the beam 

through the system. The amount of pulse stretching is determined from the distance:  
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Ls = 4 f - Lsg where Lsg is the stretcher grating separation and f is the focal length 

(Backus et al., 1997).  

 
Figure 2.6: A schematic diagram of a stretcher (Backus et al., 1998). 

 

c)  The amplifier, which is used to amplify the stretched signal: 

After being stretched in the optical stretcher the oscillator generated femotosecond 

laser pulse generates and safely amplified without exceeding the damage threshold of the 

amplifier materials. Regenerative and multipass amplifiers are most widely used for the 

amplification of femtosecond laser pulses. Regenerative amplification is a well-

established technique for efficient generation of microjoule and millijoule energy ultra-

short pulses from solid state lasers (Lenzner et al., 1995). In regenerative amplifiers 

(Figure 2.7 (a)) the low energy stretched pulse is injected and trapped in a laser cavity 

similar to that of the oscillator using a fast-switching Pockels cell and thin film polarizer 

(Cheriaux, G., & Chambaret, J. P. 2001). For further amplification of the laser pulses, a 

multipass amplifier is used (Figure 2.7 (b)). In the multipass amplifier the laser beam 

passes through the gain medium multiple times without being trapped in a cavity. 
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Figure 2.7: Two schematic diagram of amplifiers (a) Regenerative amplifier & (b) 
Multipass amplifier (Cheriaux, & Chambaret, 2001). 

d)  The compressor, which is used to compress the amplified pulses 

Compression of amplified chirped pulses is the last stage in the generation of 

femtosecond laser pulses. This step is accomplished by using a grating pair similar to that 

used in the stretcher but arranged in such a way to give opposite dispersion, as shown in 

Figure 2.8. 

a) Regenerative amplifier                                                    

b) Multipass amplifier                                                    
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Figure 2.8: Schematic diagram for pulse compressor (Backuset el al., 1998). 

The amount of pulse compression is determined by the grating separation Lc and the 

shortest pulses can be obtained when the stretcher grating separation Lsg equals the grating 

separation of the compressor. By changing the compressor grating distance Lc, continuous 

pulse widths can be obtained from the shortest compressed pulse to the uncompressed 

stretched value (Backus et al., 1998).  
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CHAPTER 3: REVIEW ON LASER WATER INTERACTION 

The focused ultra-short laser into the water shows a sequence of separate events, where 

related but many different underlying mechanisms are involved, which is significantly 

different from laser and other material interaction.  

At the beginning, a focused ultra-short pulsed laser creates plasma on the medium, 

similarly when the pulse ultra-pulse laser is focused into water it creates plasma, and the 

phenomenon of laser induced plasmas in water can be described by a sequence of events: 

creation of plasma and optical breakdown, filamentation, optical cavitation bubbles 

creating and evaluation, shockwave, and white light super continuum emission (Felix et 

al., 1997). 

The detailed calculation of plasma formation and related events in aqueous media is 

difficult; primarily because liquid water is a surprisingly complex medium, whose 

structure and physical properties are still not completely understood despite decades of 

study (Grand et al., 1991).  

Therefore, this work has been done experimentally, although some theoretical 

modeling has also been done, typically to aid in evaluating experimental data. 

3.1 Creation of Plasma, Optical Breakdown and Filamentation   

In the focus region the high intense electric field of the pulse laser is strong enough to 

rip apart the electrons from atoms and molecules into ions and create plasma through 

photoionization or optical breakdown and photo chemical process (Zysset et al., 1989).  

This breakdown occurs in two ways, direct ionization of the medium by multiphoton 

absorption and cascade ionization, also known as avalanche ionization. These 

multiphoton and cascade breakdowns can occur in solids, liquids, or gases. In multiphoton 
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ionization, two or more photons are absorbed simultaneously by the medium particle so 

that there is enough energy to ionize it. High irradiances are usually required for occurring 

ionization where multiple photons are involved. This process is known to create ‘seed’ 

electrons in pure medium. However, this is for solids and liquids; the seed or free 

electrons do not truly exist in the same sense in gas plasmas. In condensed medium we 

have both electrons which are bound to a particular molecule or lattice site and electrons 

which are ‘quasi-free’, i.e. their kinetic energy is high enough that they can move through 

the liquid or solid lattice without being trapped by localized potential wells. When the 

medium breaks down, transitions between bound and quasi-free states both are the 

equivalent to molecular ionization in gases. 

In order to obtain an analytic expression for the threshold irradiance corresponding to 

multiphoton breakdown in aqueous media, a modified version of Keldysh formula for 

multiphoton ionization in semiconductors was employed (Kennedy, 1995).  

So, if W is multiphoton ionization probability, I₀ is the peak optical irradiance then we 

find a set of equations, 

                                                      𝑊 = 𝐴[𝐵𝐼0]
𝑥     (3.1) 

                                 𝐴 = (
2

9𝜋
)𝜔 (

𝑚𝜔

ℎ
)

3

2
exp⁡[2𝑘]𝜙(𝑧) (

1

16
)
𝑘

   (3.2) 

                                               𝐵 = [
𝑒2

𝑚
𝐸𝑖𝑜𝑛𝜔

2𝑐𝜀0𝑛0]    (3.3) 

     𝑧 = [2𝑘 −
2𝐸𝑖𝑜𝑛

ℎ𝜔
]

1

2     (3.4) 

Where k represents the number of photons of energy h  needed to ionize, Eion is the 

transition energy across the band gap (ionization energy), m represents the exciton 

reduced mass, € is the electron charge, c is the vacuum speed of light, ε₀ is the permittivity 

of free space, n₀ is the index of refraction of the medium at frequency ω, and the function 
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φ(z) represents Dawson’s Integral (Kennedy, 1995). The probability W gives the number 

of ionizations (or free carriers generated) per unit volume per unit time. 

Breakdown by cascade ionization occurs in two steps: (i) cascade initiation through 

the creation of seed electrons and (ii) cascade build up to high free electron densities. 

Cascade initiation requires one or more free electrons to be present in the focal volume at 

the beginning of the pulse. In an impure medium, these ‘seed’ electrons are most likely 

to come from ionization of impurities by thermal excitation, which produces an initial 

free electron density in the focal volume prior to the pulse. In a pure medium, seed 

electrons must be produced by ionization of a few molecules in the medium through 

multiphoton absorption (Kennedy, 1997).  

To study cascade ionization, two models are used; lucky electron model, which is used 

for solid and the rate equation model, which is used in gas, solid and aqueous media 

(DeMichelis, 1995). 

A generic rate equation for cascade formation has the form, 

𝜕𝜌

𝜕𝑡
= 𝑛𝜌 − 𝑔𝜌 − 𝑣𝐴𝜌 − 𝑣𝑅𝜌

2    (3.5) 

     The first term on the right-hand side represents the increase in free electron density, ρ 

due to cascade ionization, where the cascade ionization rate, n is the probability per unit 

time that a free electron will have an ionizing collision with a bound electron. In the most 

general formulation, the net cascade ionization rate combines the effects of free electron 

energy gain by inverse bremsstrahlung absorption and free electron energy loss in 

nonionizing collisions with heavy particles. The last three terms represent losses of free 

electrons due to: (i) diffusion out of the focal volume, where g is the diffusion rate, (ii) 

attachment of neutral molecules (or trapping in localized potential wells), where vA is the 

rate of attachment (or trapping), and (iii) electron-ion (or electron-hole) recombination, 
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where vR is the rate of recombination. A term representing multiphoton ionization can 

also be added to allow for multiphoton initiation of cascade breakdown or for the 

transition from cascade to multiphoton ionization as the dominant breakdown mechanism 

in the femtosecond pulse width regime (Bloembergen, 1974).  

      A laser pulse focused into a volume of water or aqueous fluid will cause breakdown 

when the irradiance in the focal volume surpasses the breakdown threshold. The dense 

plasma formed by the breakdown is heated by inverse bremsstrahlung absorption while 

the laser pulse remains in the focal volume. Plasma temperatures of 6000-15,000° K 

(Barnes & Rieckhoff, 1968; Doukas et al., 1991) and plasma pressures as high as 20-60 

kbar (Vogel et al., 1994) have been measured for the breakdown in aqueous media. 

Bremsstrahlung emission from free electrons and emission from electron-ion 

recombination combine to produce a visible ‘flash’; i.e. a broadband plasma emission 

from the ultraviolet to the infrared. This flash is commonly used as an experimental 

indicator of laser induced breakdown spectroscopy (Vogel et al., 1999; Zysset et al., 

1989). The high temperatures and pressures can lead to plasma expansion at supersonic 

velocities and the creation of a shock wave.  

      The moving breakdown model for plasma growth (Docchio et al., 1988; Hammer et 

al., 1997) use of the Planck blackbody equation to calculate plasma temperatures from 

emission spectra.  

     Next the passage of the pulse the plasma continues to expand and vaporize the liquid, 

creating a cavitation bubble of water vapor, which grows about the breakdown site. When 

cooling and plasma decay reduces the interior pressure, the cavitation bubble collapses. 

If enough energy is stored in the bubble, the collapse may release a second shock wave 

and heat the gas sufficiently to cause the bubble to re expand (Hickling & Plesset, 1964).  
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     After that, while high intense laser focused inside water that moment under 

comparatively loose geometrical focusing condition (because of water) femtosecond laser 

pulse can form electron plasma strings that extend far beyond the focal spot, have a 

constant diameter, and their intensity is to a large extent not affected by fluctuations of 

the laser pulse energy. This is called femtosecond filamentation inside water (Hao et al., 

2011). Also, can be said, when femtosecond laser focused inside the water then dynamic 

balance between the optical Kerr self-focusing effect and the defocusing effect is caused 

by the plasma which produces laser filamentation inside the water (Liu et al., 2003).  

      The Kerr effect is represented by a nonlinear term in the index of refraction which is 

proportional to the optical irradiance n (Soileau et al., 1989), 

Innn 20        (3.6) 

     At high irradiances, and in materials with a significant nonlinear index n₂, nonlinear 

self-focusing can produce beam narrowing or even catastrophic beam collapse 

(filamentation) leading to breakdown. Self-focusing is both an irradiance dependent and 

a power-dependent process. The critical power for self-focusing (Marburger, 1975) is the 

input power for which a laser beam with vacuum wavelength λ, will undergo catastrophic 

self-focusing when propagating a long distance through a medium whose linear and 

nonlinear indices at the vacuum wavelength are given by n₀ and n₂. 

20

2)(15.0
nn

Pcr


      (3.7) 

     The filamentation under water also shows some interesting phenomena, such as a) 

white light continuum generation, b) conical emission and c) bubble generation by optical 

cavitation (Mizushima & Saito, 2015). 
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3.2 Optical Cavitation Bubbles 

     Plasma inside water vaporizes liquids and creates optical cavitation bubbles around 

the breakdown site. When cooling and plasma decay reduces the interior pressure, the 

cavitation bubble collapses. If enough energy is stored in the bubble, the collapse may 

release a second shock wave and heat the gas sufficiently to cause the bubble to re expand. 

And, for high energy breakdown events, multiple expansions and collapses may take 

place, ending only when the stored energy is insufficient to sustain bubble growth 

(Vogelet al., 1996) (Vogel et al., 1989). The movements of the generated bubbles in water 

are mainly driven by the filament-induced shock waves, Coulomb force and the pressure 

force induced by water density gradient (Sakakura et al., 2001). 

     Thes, from the discussion so far we can say, the life of an optical cavitation bubble 

can be further investigated in five stages:  

i) Irradiation; it’s the period for which absorption of optical energy occurs, for a 

CW laser, this period occurs throughout the cavitation process with a decrease 

in irradiation as the bubble grows in diameter. For a pulsed laser, irradiation 

occurs only when the laser is active. Previous studies have shown that 

irradiation with a pulsed laser excites the liquid so intensely that the atomic 

level is affected. The liquid molecules release electrons and form a plasma 

which continues to super heat the surrounding liquid even after, a process that 

CW lasers cannot produce.  

ii) Nucleation; it is the breaking down of the liquid’s molecules which allow for 

energy to lead to vaporization.   

iii) Growth; the is when bubble begins to grow and sees sizes of microns for 

pulsed lasers and diameters up to 5 mm for CW lasers. Higher laser power 
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correlates to smaller and faster formation of bubbles (Rastopov & 

Sukhodol'sky, 1990).   

iv) Collapse; the bubbles collapse as soon as the pressure within the bubble falls 

short of the local pressure outside, and  

v) Rebound; after collapsing it also shows periodic rebounding and collapse for 

a very short time. This is also the reason of the formation of powerful acoustic 

waves and secondary waves of bubbles (Csuka et al., 2016). 

     It is necessary to mention each period or stage of the bubble develops differently for 

CW and pulsed lasers (Sakakura et al., 2007), where for CW laser, the mechanism is 

thermal process and for pulsed laser (i.e. femtosecond laser), the nonlinear optical and 

photoionization process dominate over photo thermal process (Sugioka & Cheng, 2014). 

Therefore, optical cavitation can be classified into two types: one, thermocavitation, 

where CW laser does use and this bubbles are created by heated up and two, 

ionocavitation, where pulsed laser creates bubbles are generated by ionizing liquid into 

plasma. More details have been added to Appendix A to discuss mathematical 

formalization of bubbles and Appendix B to discuss motions of bubbles. 

3.3 White Light Continuum Generation and Conical Emission 

     A focused laser beam in medium results in the emission of light with a broad frequency 

range known as supercontinuum emission (SCE), extending, typically, from the 

ultraviolet to near-infrared spectral range. It is associated with filamentation of 

femtosecond laser pulses occurs when the laser power exceeds critical power for the self-

focusing in the medium (Kiran et al., 2010).  

    To simplify the explanation, we assume that the self-focused wave is a plane wave. In 

this plane wave approximation, the plane wave front at the self-focus is given by the 

function,⁡𝐹(𝑧, 𝑡). 
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                          𝐹(𝑧, 𝑡) = exp{𝑖[𝜔0𝑡 − 𝑘𝑧]} = 𝑒𝑥𝑝 {𝑖 [𝜔0𝑡 −
𝜔0𝑛

𝑐
𝑧]}   (3.8) 

                                                                  𝑛 = 𝑛0 + ∆𝑛(𝑡)   (3.9) 

                                                                ∆𝑛 = 𝑛2𝐼(𝑡) −
4𝜋𝑒2𝑁𝑒(𝑡)

2𝑚𝑒𝜔0
2      (3.10) 

where z is the propagation distance, 𝜔0 is the central angular frequency of the laser. 

𝑛2𝐼(𝑡) is the Kerr nonlinear refractive index of the neutral gas (fluid), 𝐼(𝑡) is intensity. 

𝑁𝑒(𝑡) is the electron density generated through tunnel ionization of the molecules and e 

and 𝑚𝑒 are the charge and mass of an electron. The electron-ion recombination time is 

normally of the order of many nanoseconds, much longer than the femtosecond time scale 

of the pulse. Hence, the generated plasma could be considered as static during the 

interaction with the pulse (Chin, 2010). 

     Experimentally observed spectra for aqueous laser induced breakdown have been 

found to exhibit a blackbody spectrum. The Planck blackbody distribution can therefore 

be used to calculate estimated plasma temperatures from the emitted irradiance spectra.  

(Barnes, & Rieckhoff, 1968) 

𝐼(𝜆, 𝑇) = 𝐼0𝐶1𝜆
−5 [𝑒𝑥𝑝 (

ℎ𝑐

𝜆𝑘𝐵𝑇
)
−1

]   (3.11) 

Here T is the plasma temperature in degrees Kelvin, h is Planck’s constant, and Bk  is 

Boltzmann’s constant. The parameter C₁ is a product of several physical constants which 

appear in the derivation of this equation and has the value 14388 μm³. The blackbody 

distribution peaks at a wavelength λ which is inversely proportional to the temperature; 

thus, a peak at a shorter wavelength indicates a higher temperature. Temperatures 

obtained from this equation are necessarily estimates since the true plasma temperature 

will vary in both space and time. The surface temperature will not only be cooler than the 
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plasma interior but will also make a larger contribution to the measured spectrum, since 

radiation emitted from the plasma will be partially reabsorbed before reaching the surface 

(Hecht, 1987). 

Other than supercontinuum emission, conical emission is a manifestation of self-phase 

modulation in the radial direction. Conical emission is the cause of colorful rings, those 

are rainbow-type colored rings, generated around the central white spot. They are 

produced by blue shifted radiation diverging into rings. As a note it is needed to be 

mentioned in gaseous medium rings are visible but in aqueous medium conical emission 

does split into colors rather than rings.  More details on this topic can be found in work 

of Kosareva (Kosareva et al., 1997). 
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CHAPTER 4: EXPERIMENTAL PROCEDURE 

This chapter discusses the setup of the experimental setup and procedures, which can 

be separated into two main parts: (1) experimental setup model, (2) description of the 

equipment description for detection and data collection.  

 An explanation of results and captured images based on the calibration of the 

spectrometer and microscopic observations are also provided in this chapter. 

4.1 Experimental Setup Model 

In this work, a commercial Ti: Sapphire femtosecond laser amplifier system (Coherent 

Inc.) is employed that generates laser pulses with duration of 50 fs, energy of 2.5 mJ per 

pulse with a central wavelength of 800 nm and repetition rate 1kHz, giving an average 

power of 3.5 W with an output of the peak powers of 5 × 1010 W, The laser beam, with 

diameter 1 cm, is focused into the water by a biconvex objective lens (2.5 cm focal length) 

from the side of the water container. The water specification will be found in Appendix 

C. The corresponding numerical aperture is : n sin(tan-1 (0.5/2.5 ) = 0.26 for n = 4/3 in 

water. At an estimated focused diameter of 70 μm, the peak intensity is about 2 × 1014 

W/cm2, which is in the tunnel ionization regime where plasma formation balances the 

Kerr nonlinearity that creates self-phase modulation, giving rise to filamentations. 

A schematic of the experimental setup for the laser-water interaction is shown in 

Figure 4.1. The curvature of the container causes some refraction that slightly enhances 

the focusing effect of the lens, but it does not significantly affect the results obtained. 

During the interaction, a CCD camera (Thorlabs) was placed in front of a neutral density 

filter to record images and live videos of the laser-water interactions. Another camera was 

placed on top of the eyepiece of the microscope to record at the microscopic level. In 

addition to imaging, a spectrometer (Ocean Optics) was placed on another side of the 
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setup. Light emitted and scattered from the focused region of the water can penetrate the 

transparent container and its spectrum detected by a spectrometer (Ocean Optics) without 

a fiber or a collimating lens. The spectrum was collected at the center of the 

supercontinuum light cone and along the transverse direction.  

 

Figure 4.1: Schematic Diagram of Experimental Setup. 

 

We chose this particular setup (Figure 4.1) on account of the fact that make sure less 

mechanical lose of laser energy before concentrating inside water by focusing using our 

experimental lens. Spectrometer and CCD cameras are soft hand movable to configure 

without any changing of the position of the experimental object. Despite the fact that there 

is a limitation of this setup, microscope system is not movable because the lens of 

microscope is static in microscope system which doesn’t allow smooth observation.  
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4.2 Equipment Description and their uses  

The Libra system employed in this work is a one-box, computer-controlled, kHz- 

repetition-rate, Ti: Sapphire laser. Libra also allows for a wide choice of pulse energy, 

pulse duration, and repetition-rates. The Libra offers >1-4 mJ at 1 kHz, it is also 

commercially available in 1 kHz, 5 kHz and 10 kHz configurations with pulse durations 

smaller than 50 fs or smaller than100 fs.  

The output power of the system is calibrated by changing the input current as show in 

in Figure 4.2.  

 

 

 

 

 

 

 

Figure 4.2: Current VS Power Curve.  

To observe the water-laser interaction, a microscope system called Olympus Ix73, 

which is well known for its simplicity and exceptional flexibility is employed the 

experimental object in place on the microscope’s platform and used view finder to watch 

the output live.  
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However, the system is not suitable for our required imaging without any modification 

as it is too much light sensitive that the camera was unable to handle. So, a much higher 

degree of brightness sensitive camera was placed on eye finder and using that the required 

images and live video shots were captured and recorder.  

The spectrometer is employed for spectroscopic analysis. It is a small-footprint, high-

resolution spectrometer that is well suited for applications such as wavelength 

characterization of lasers and LEDs, monitoring of gases and monochromatic light 

sources, and determination of elemental atomic emission lines. However, the input hole 

is very small and it is too sensitive that to get exact value using spectrometer was so 

difficult, to solve this problem the spectrometer were placed on a 3-axis stage to allow 3 

dimensional control and obtain consistent results. 

The water was contained in a transparent plastic Petri disk. Multiple numbers of Petri 

disks were used to get correct imaging, as for tiny displacement between lens and Petri 

disk’s placement became the reason of Petri disk’s surface burning. The distance between 

petri disk and lens were adjusted minimum to make sure there are no energy lose when 

focused laser beam was traveling from lens to petri disk surface before entering inside 

water. 

Finally, the cameras employed in this work were a commercial Canon, and Thorlab 

CCD camera and a Nikon digital single lens reflection camera. Before using the CCD 

camera a neutral density filter was placed in between camera and light source, without 

that CCD camera was not functioning for its high light sensitivity. The canon camera was 

placed on our microscope system’s eyepiece such a way that it can record macro level 

images and capture videos through the eyepiece.   
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CHAPTER 5: INVESTIGATED RESULT AND DISCUSSION 

To describe this femtosecond laser-water interaction experiment it is necessary to 

mention few selected observations, provide explanation of observations and discuss some 

mechanisms based on available theories. All these can be classified as:   

1.  Laser induced breakdown in water and filamentation 

2. Colors and blue shift by plasma and white light spectra  

3. Creation of Bubbles 

4. Rapid Generation of Bubbles 

5. Colored light scattering by bubbles 

6. Approximate position and size distribution of scattering color bubbles   

7. Laser power and Related Effects on multi Spectral Colors  

8. The forces on bubbles  

As discussed in chapter 3, during the laser-water interaction and tightly focused laser 

beam few extreme physical phenomena become visible, they occur spontaneously, and, 

can be mentioned as, generation of white light by water, explosive boiling of water and 

vaporization, plasma and production of hydrogen, oxygen and peroxides, shock wave 

formation and propagation, bubble formation, their growth, collapse and re-expanding as 

like oscillation. These phenomena are well known (as discussed in Chapter 3) and we 

have observed them in our experiment too. But all are not related to our experimental aim, 

so many of them are not discussed in this study 

The study has been done in microscopic level by a microscope system, the microscope 

system has halogen light so some of our observation has done under halogen light some 

of them without halogen light based on necessity (Figure 4.1), which leads us to observe 
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laser induced bubbles, their activities, explosive boiling, and surrounding environment 

more clearly at no-laser focused region. The captured images and recorded video clips 

under halogen light and without halogen light are demonstrated below.  

Under the microscope, illuminated by a halogen light from above, it is observed the 

formation of bubbles and twinkling or sparkling of tiny bright points of lights with various 

colors, namely blue, purple, green, orange, and red, near the focused region under the 

water (Figure 5.2) is observed. Interestingly, yellow light was observed, which 

corresponds to the dip at 600 nm in the spectrum of (Figure 5.4). It is observed that, the 

bubbles are approximately 20 microns in diameter and they appear dark under the 

microscope light illumination (Figure 5.3), with a bright center, due to the regular 

lensing/focusing effect of the translucent sphere (Sankin et al., 2005). 

 

 

 

 

Figure 5.1: Twinkling color lights without halogen light.  

 

 

 

 

 

 

 

Figure 5.2: Twinkling color lights with halogen light.  

  

Direction of Laser Beam 
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5.1 Laser Induced Breakdown in Water and Filamentation 

An intense laser pulse was focused into a volume of water will cause breakdown when 

the irradiance in the focal volume surpasses the breakdown threshold. The dense plasma 

formed by breakdown was heated by inverse bremsstrahlung absorption while the laser 

pulse remained in the focal volume. This kind of plasma’s temperature was recorded 

6000-15,000 °K (Barnes & Rieckhoff, 1968) and plasma pressure as high as 20-60 kbar 

(Doukas et al., 1991). The high temperatures and pressures led to plasma expansion at 

supersonic velocities and the creation of a shock wave. Then, through the passage of the 

pulse, the plasma continued to expand and vaporize liquid, before creating cavitation 

bubbles of water vapor, which grow about the breakdown site. After that, inside water, 

for comparatively loose geometrical focusing condition (because of dynamic balance 

between the optical Kerr self-focusing effect and defocusing effect in water) femtosecond 

laser pulse formed electron plasma strings that extend beyond the focal spot, these strings 

are called femtosecond filamentation inside water (Figure 5.3). Due to laser filamentation 

inside water; white light continuum generation, conical emission and bubble generation 

by optical cavitation become visible.  

 

 

 

 

 

 

Figure 5.3: Laser induced breakdown in water and filamentation.  
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5.2 Colors and Blue Shift by Plasma and White Light Spectra  

The spectrum of the white light scattered in the forward direction contains 

predominantly blue-shifted frequencies with respect to the input pulse. The blue shifting 

is due to self-phase modulation (SPM) of plasma resulting from tunnel ionization of the 

water molecules by focused laser pulse that causes a rapid increase in the electron density, 

which in turns causes divergence/defocusing of the intense laser field. It is also enhanced 

by self-steeping (Aközbek et al., 2001) 

                                        ∆𝜔 =
𝑑∆𝜑
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This is frequency shift (∆𝜔) which is related to the change in the reflective index (∆𝑛), 

here, (ω) is the laser frequency and (L) is the interaction length.  
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These last three components are the nonlinear (Kerr) polarization and plasma current 

Jf (r,t) , respectively. Thus, the refractive index change of the medium depends on the 

laser pulse intensity I. 

The frequency shift (neglecting the imaginary part) becomes,  
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The rate of tunnel ionization generating the electron density (Ne) in air in given by 
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Here, N0 is the density of neutral air, Wi is the photoionization rate, W is the avalanche 

rate depending on the intensity I and a is the plasma recombination constant. We see that 

the large frequency blue shift is due to the highly nonlinear dependence on the intensity 

(m-photon transition). By using a mathematical expression (Perelomov et al., 1966) for 

Wi (instead of multiphoton ionization rate Wi = m
mI  with m’th power relation (m = 8)) 

we find that 
t

tNe



 )(
has a positive peak that is much higher than the negative peak. This 

explains the substantial blueshift ∆ω compared to the redshift in the spectra of Figure 5.4. 

Negative values for 
t

tNe



 )(
is permitted if an exact expression of Equation 5.5 is 

computed without approximation. 

Below, in Figure 5.4 shows the spectra of white light (vertical axis is in arbitrary unit) 

for different average laser powers and lower repetition rate of 500 kHz, generated by the 

focused spot underwater and taken by the spectrometer connected to a fiber. 
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Figure 5.4: Spectroscopic graphs of laser induced plasma inside water. 
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Figure 5.4, Continued. 

 

Observations show that, the focused region glows intensely, emitting a bright white 

light in the forward direction as the result of supercontinuum generation in water. This is 

in contrast to the case of focused femtosecond laser in the air (Xu et al., 2014), where 

colorful scattered image is seen on the screen (Ooi & Talib, 2016) instead of a clear white 

light. A previous work (Aközbek et al., 2001) predicted that the spectral content in the 

case of air but it does not reflect on the frequencies distribution on the image plane. The 
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spectra of the white light generated in the forward direction, the focused laser inside the 

water, as shown in Figure 5.4. The white light is composed of a broadband spectrum with 

wavelengths shorter than 800 nm, spanning over the entire visible spectrum, down to 

ultraviolet 350 nm and up to near infrared 950 nm. Two strong and broad bands around 

500 nm and 700 nm overlap are due nonlinear processes, such as Raman and self-phase 

modulation in the water molecules. At sufficiently high intensity, we find multiple 

individual peaks within the white light continuum generated by nonlinear mixing 

processes. However, the peaks may contain spectroscopic lines associated with the water 

molecules but they are broadband in nature due to the typically large damping in fluidic 

environment. The dip around 610 nm is also found in other work (Sreeja et al., 2013).  

5.3 Creation of Bubbles  

The intense laser field near the focus creates intense photoionization, the breaking 

molecular bonds, generation of plasma and water vapor, leading to water splitting and 

catastrophic breakdown that manifest into explosive boiling and sporadic creation of 

bubbles that expand to a stable size. Intense photoionization of water molecules produces 

mixtures of hydrogen and oxygen ions as nucleation centers for the nanobubbles. After 

the plasma decays, the recombination energy is converted to boiling water where 

nonequilibrium phase transformation of the liquid into vapor takes place. Recombining 

plasma leads to vaporization of water and explosive boiling that creates expanding 

nanobubbles filled with gas or vapor. Once the nanobubble is created, it rapidly expands 

outward and radially into microbubble due to the pressure force originating from the 

ionized gas and pressurized vapor in the bubble. The bubbles that are created with a 

dimension smaller than about 10 microns were disappearing more quickly as they shrink 

and then collapse as the pressure force of the smaller bubbles are smaller and can be 

suppressed by the fluid pressure. 
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The expansion of nano-bubbles into micro-bubbles is rapid, well below a millisecond. 

However, this transformation is not ultrafast although it is driven by ultrafast laser pulses. 

As this work’s main focus is not bubble dynamics, therefore, time-resolve technique or 

study of dynamic processes in materials or chemical compounds by means of 

spectroscopic techniques were not used here as this work is not focused on the transient 

optical emission processes of nanobubbles transforming to microbubbles, we discussed 

the necessary parts of this dynamics relevant to our work. We estimate the timescale of 

the bubble dynamics by investigating captured video of the laser-water interaction 

process using a camera (Canon IXUS160) placed on a microscope eyepiece. We analyzed 

the dynamics and optical emissions was then analyzed by capturing the resulting process 

into video format, using a commercial video playing software where the speed of the 

motion picture can be controlled. We find that the motion picture is not resolved faster 

than a millisecond. Therefore, we may infer the duration of expansion from nanobubble 

to microbubble as below a millisecond. 

5.4 Rapid Generation of Bubbles  

We observe the creation of microbubbles in explosive boiling (shown in Figure 5.5), 

from focused femtosecond laser in the water. These microbubbles serve as the scattering 

medium which aids in visualisins the hydrodynamic flow of the fluid around the region 

of focused laser region inside the water. The process was captured in videos and 

snapshots, showing the motion of bubbles for different laser powers. Typically, the fluid 

is found to be to wards the focused region. However, at higher intensities (by controlling 

electronic current larger than 18 A or 1.5 W as Figure 4.2), we observed rapidly running 

bubbles (RRB) were observed glowing and moving opposite to the laser beam and 

towards the focus. This is the result of the strong optical force of the focused laser 

functioning like an optical tweezer. In the region just behind the focus, we notice the 

violently boiling bubbles (VBB) due to the extreme nonequilibrium water-vapor phase 
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transition caused by the femtosecond laser pulses at 800 nm, i.e. in the near IR regime. 

Convective flow of bubbles and stronger explosive boiling mechanisms here result in the 

removal of mass which converts the water molecules into water vapors. An interesting 

reason for this occurs here and not at the focus lies in the competing mechanism of plasma 

formation that generate bubbles and collective white light at the peak intensity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Generation of bubbles (side view) for different laser intensity. 

Direction of Laser Beam 
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As shown in Figure 5.6 violently boiling bubbles (VBB) is found behind the focus 

while at higher intensity, this rapidly running bubbles (RRB) can be seen moving opposite 

(green arrow) to the laser beam and towards the focus, with white light emitting in the 

forward direction for different values of current. 

5.5 Colored Light Scattering by Bubbles 

At a lower the average laser beam power 0.4 W (corresponding to electronic current 

of 17A), the bubbles are created sporadically near the focus before showing any colored 

lights. As the bubbles drift through the light cone of the focused femtosecond laser, they 

glow for about 0.1 second by emitting colored lights (or white light at high intensity) 

somewhere inside the conic region of the strong laser field as shown in Figure 5.6. The 

tiny colored lights are seen only at the back edge of the bubble, at the water-bubble 

boundary and have an estimated size of about 1 micron using microscope and microscopic 

software. As clearly shown in Figure 5.7 the fact that the colored lights are seen only 

within the conic region illuminated by the focused laser proves that these lights are due 

to scattering by the focused laser.  

We analyzed the optical emissions from the bubbles surface using a commercial video 

playing and editing software Filmora, where the speed of the motion picture can be 

controlled. Using the software we found 25 images from a single second-time length. So, 

the time difference of each frame is 0.04 second. This analyzing gave us a very good 

conception of our observed scattering. It has been found that the new-found phenomena 

of colored light emissions are actually due to scattering at the surface of the bubbles after 

the focused femtosecond laser undergoes nonlinear interactions and filamentations in the 

water. In contrast to recent works on microbubbles, the light emission here does not occur 

at the geometrical center of the bubble (Sankin et al., 2005; Liu et al., 2016), but at the 

back spot/edge facing the incoming laser as displayed Figure 5.7. The colored lights are 
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blue-shifted by nonlinear interactions (described in the following subsection) while the 

consistent light-emission point at the backside of the bubbles is due to 

scattering/reflection of lights from the filamentation hot spots of different spectral 

components assisted by self-focusing. According to Fresnel reflection, the electric field 

at the backside interface is )
2

(
12

1
0 nn

n
E


 i.e., the sum of the incident and reflected fields, 

is enhanced by11% taking n1=1.33 in water and n2=1 in the air (Crisp et al., 1972). 

 

Figure 5.6: Sparkling color lights and dark bubbles. 

The physics of the colored filaments was described in ref (Hao et al., 2011) as due to 

the filaments having different degrees of nonlinearity, self-focusing, SPM, and 

multiphoton ionization (plasma defocusing), as well as different laser intensities at 

different positions, leading to different degrees of spectral broadening (Figure 5.9). For 

peak power of 8 GW, the number of filaments is estimated to be (Couairon & 

Mysyrowicz, 2007), 

Direction of Laser Beam 
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 Where, inP is the average laser power, filP  is the power carried by each filament and 

we use n2 = 26 × 10-21m2/W  

Figure 5.7: Color light scattering by single bubbles.  

The scattering of supercontinuum at the formed bubble surfaces does identify the 

“hotspots” due to filamentation where the intensity is high but is not directly observable 

at points lateral to the propagation direction and outside the scattering cone. The bubbles, 

created by the hot spots where photoionization is strong enough to cause molecular 

disintegration and nucleation of bubbles, act as scattering medium to illuminate those hot 

spots. Thus, the hot spots are not necessarily the spots where the bubbles are created 

(referred to as hotter spots) and may be best illustrated by the bright regions in Figure 5.9 

for the case of focusing into the air. The supercontinuum (white light) generated at the 

“hotspot” can be seen (in Figure. 5.4) to propagate through the water for large distances 

away from the hotspot because it is scattered by the water since there are no bubbles in 

the water except near the focusing region. The following observations further support our 

explanation of the phenomena. The high (1kHz) repetition rate of the laser means that the 

bubbles are almost continuously illuminated within a fixed focused (conical) region in 

the water instead of just a single pulse excitation. But the colored lights are emitted as 

sparks and not continuous. Only at certain fixed locations, the bubbles come into contact 

Univ
ers

ity
 of

 M
ala

ya



44 

with the hot spots where strong colored lights at blue-shifted frequencies are optically 

scattered at the water-vapor interface of the bubbles. This shows the presence of hot spots 

due to filamentations. The convex surface of the spherical bubbles enables us to see the 

scattered/reflected colored lights at a finite range of observation angles/directions. As the 

bubbles move, the intensity and the colored of the scattered lights change. At times, the 

white glow can be seen at the same back side of each bubble, an effect due to strong self-

phase modulation. 

 

Figure 5.8: Multi filaments by focused femtosecond laser in air. 
 

After emitting the lights, the bubbles do not show any sign of collapse, thus there is no 

sonoluminescence here. The analyzed clips (Figure 5.9) clearly show the bubbles drift 

continuously and do not show any collapse or sudden disappearance, unlike the case of 

bubble sonoluminescence usually created by the ultrasonic method or weaker laser 

excitation. 

The bubbles in the regions outside the scope of the laser field appear dark and quite 

stable, with only a tiny bright spot at the center under the illumination of the halogen light 

of the microscope from above. This is typical when a transparent microsphere is not 

scattered by the laser light. 

At high electronic current 19A (average laser beam power 2.7 W), it seems that the 

colored lights are emitted prior to the formation of bubbles. This is because the laser field 
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is so intense that the scattering effect is so strong that it overshadows the formation of 

bubbles. 

 

 

 

 

 

Figure 5.9: Multi filaments by focused femtosecond laser in air. 
 
 

However, a closer look at the motion pictures in the video camera at lower power 

(current 16.4 A) reveals that the cluster of bubbles are always created before we see the 

sparkling colored lights. As an evidence below, a sequence of analyzed video snaps are 

attached with an analytical explanation in Figure 5.10. Besides, some additional 

observational informative decision will be found in section 5.7.  

 

 

 

 

 

 

Figure 5.10: Bubbles movement and scattering of color light within 0.48 second.  

Time = 0.00 s 

  

Direction of Laser Beam 
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Figure 5.10, Continued. 

Time = 0.04 s 

  

Time = 0.08 s 

  

Time = 0.12 s 

  

Direction of Laser Beam 
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Figure 5.10, Continued. 

Time = 0.16 s 

  

Time = 0.20 s 

  

Time = 0.24 s 
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Figure 5.10, Continued. 

Time = 0.28 s 

  

Time = 0.32 s 

  

Time = 0.36 s 
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Figure 5.10, Continued. 

This sequence of pictures can describe the basic finding in brief. These images are 

analyzed from 0.48 second of a captured video clip. At first, we see the first image was 

captured at zero seconds then each frame has been taken with the time difference of 0.04 

second. In first image an unfocused colorful region, this region is not in the layer of our 

Time = 0.40 s 

  

Time = 0.42 s 
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focusing point through the microscope, in following next image it has clearly seen that 

one bubble with red scattering color is moving left side toward laser, when the laser was 

focused from left side (Figure 5.10).  

In this picture is clear that bubbles are generating spontaneously, the dense but blur 

part of the images are representing focus region by laser but plasma is not visible because 

it is not in the focus point. A red light scattering bubble was always there since time frame  

0.02 s, and was moving more leftward (which is the directing from where laser was 

coming in). At time frame 0.20 s a blue color scattering bubble gets attention for its 

visibility, it’s almost double in size compare to red sparking bubble. After 0.38 s both 

blue and red color scattering bubbles gradually disappear. This due to upward direction 

of the bobbles, and at 0.42 it has seen those bubbles are completely disappeared by going 

out of focus.  

5.6 Approximate Position and Size Distribution of Scattering Color Bubbles   

In the early of this chapter it is mentioned this experiment is based on microscopic 

level observations, to do so a lot of precise recording, imaging and analysis were required 

during analysis. Some graphical representations were also performed by taking data when 

scattering lights were showing highest level of brightness. Figure 5.11 represent those 

data. Most of the bright sparks were in red, yellow, green, blue-violet, and violate color. 

And all were taken from four video clips, chronologically their durations are 47 s, 3 min 

21 s, 2 min 08 s and 29 s. The graphical units are abstract values, furthermore represented 

x and y axis also do not exist. A clear view of the total position of all the pick scattering 

will be found in scatter plot of Figure 5.13.  
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Figure 5.11: Position distribution during brightest spark.   

 

Video of 47s 

3 min 21s  

Note: These images are abstract 
positioning distribution of sparkling of 
bubbles surface based on similar images of 
each video sections found in Figure 5.10. So 
no scaling is required. Each crosses are 
representing each colors of brightest 
sparking.   
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Figure 5.11, Continued.   

 

2 min o8s 

29s 

Note: These images are abstract 
positioning distribution of sparkling of 
bubbles surface based on similar images of 
each video sections found in Figure 5.10. So 
no scaling is required. Each crosses are 
representing each colors of brightest 
sparking.   
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So from the images, we can clearly see violate color sparking was a higher amount, 

the second higher amount is red, third is blue and then rest.  

However, Figure 5.11 does not show any size and color relation of our observations. 

To see the relationship we have created Figure 5.12 of four plots by those four video clips, 

where each cross with color represents each color bubbles, and diameter of bubbles are 

also representing in a graphical way.  

Below colors and size of bubbles are also mentioned.  

Table 5.1: Scattering color and bubble diameter size distribution from different 
video clips. 

Video 
Clip 

Number 

Video 
Clip 

Duration 

Red Yellow Green Blue Blue 
Violate 

Violet 

1 47s 25  15, 20, 
20 

20, 13, 
20, 20, 
19, 20 

22, 19, 
20 

19, 25, 20 

2 3 min 21s 30, 20, 
20, 25, 
20, 15, 
18, 17, 

30 

20  18,20 20 20, 20, 13, 20, 20, 
19, 20, 21, 10, 15, 
18, 20, 30, 10, 10, 

21 

3 2 min 08 s 30 , 17, 
18, 20, 
20, 20, 
30, 22, 

25 

  22  20, 20, 20, 20, 20, 
18, 20, 21, 25, 22, 
20, 18, 17, 13, 23, 
20, 18, 15, 15, 20, 
25, 26, 20, 15, 30, 
22, 20, 18, 20, 23 

4 29 s 25, 20, 
21, 23, 
18, 21, 
20, 20, 
25, 22 

15,22 20, 20, 
22 

18 24, 20, 
21 

25.30 
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Figure 5.12: Bubble diameter and color distribution.   

Video of 47s 

3 min 21s  
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Figure 5.12, Continued. 

2 min o8s 

29s 
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Collected data and their graphical representations leads us to the answer of the question 

- Are the colors correlated with space and bubble size? In the finding, it is interesting to 

note that the distribution of blue dots is more spatially (radially) confined, but the red dots 

are everywhere as shown in Figure 5.13.  

 

 

 

 

 

 

Figure 5.13: Scatter plot of the spatial distributions of the sparkling colors.  

It was also observed that the bubbles can emit different colors without changing their 

size, mainly from pink to blue to red sequentially as they drift along. The mean values of 

the diameter of the bubbles that emit each color are almost the same based on the 

histogram of Figure 5.14.  

The overall distribution has a mean diameter of 21 µm and variance 32.7 µm, and it 

does not have a Gaussian fit (Figure 5.15) as we only measure the sparkling bubbles 

(which are limited in number) are observed. Since the ranges of bubble diameter for the 

different colors are the same and they all have large variances, we deduce that the colorful 

emissions have nothing to do with the bubble size, i.e., there is no correlation between 

color and diameter. The bubble size does not determine which color it would emit. This 

Univ
ers

ity
 of

 M
ala

ya



57 

rules out the possibility that the colored emission might be due to surface plasmon 

resonance, as in the case of metallic nanoparticles. 

Figure 5.14: Distributions of the bubble diameters for each color. 

 

. 

 

 

 

 

Figure 5.15: Overall distribution of bubbles with all colors and a Gaussian fit.  
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5.7 Laser power Effect of Multi Spectral Colors 

In this experiment the supercontinuum white light was seen along the propagation axis, 

as it propagates through the water. The white light is created by nonlinear interactions 

with water as well as scattering by the bubbles near the focusing region. Below the 

experimental picture shows that the images along the propagation axis at low powers have 

distinct multiple colors, spatially segregated and inhomogeneously distributed instead of 

white light. Since there is hardly any bubble at low intensity, we can conclude that the 

multispectral phenomena of the sparkling bubbles (at higher intensity) is due to nonlinear 

interactions of the laser pulses with water. At higher power, the white light observed is 

due to dense overlap of this multiple colors and not due to the bubbles since bubbles 

merely scatter the sparkling lights at the backward direction and to the transverse 

direction, not in the forward direction. As the power increases, the colors become more 

mixed up and the image becomes more blurry, homogeneous and whiter. A different 

repetition rate affects the details of the image and can only be discerned at low power. 

a) White light with varying average power at 1 kHz. 

 

Figure 5.16: Unfocused color and vibrant motion. 
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b) Varying reputation rate with 0.95W 

Figure 5.16, Continued. 

The above multispectral images were taken at the laser axis 1 m away from the focus 

after the laser passes through the water due to nonlinear optical interactions for different 

average laser powers. It also shows the colorful image comes at low power and the effect 

of lower repetition rate of 500 kHz (Raymond & Sanny, 2017).  

5.8 The Forces on Bubbles 

While observing the optical phenomena of the bubbles, the dynamics of the moving 

bubbles we also observed. The microbubbles confined within the laser field would drift 

rapidly toward the direction of the high-intensity region, i.e. the focus, with a speed of 

300 µm per second (estimated from scope diameter of 265 micro meters at 40X traversed 

by bubbles within about 4/3 s).  

The pressure force is the main mechanism that drives the moving bubbles. The force 

is strong around the focus where shock wave creates a depression channel with 

cavitation/boiling bubbles on the laser axis convecting upward and attracted toward the 

focus. Similarly, on the other side of the focus, the force is anti-parallel and towards the 

focus. Near the focus, the bubbles (with larger sizes) are moving/convecting upward 
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creating the region of depression and the attractive force. This mechanism is well-known 

(Potemkin et al., 2014) but there is also a gradient force of focused laser on the bubbles 

that are less well studied and therefore also worth describing here, in addition to the 

pressure force. 

The bubbles are subjected to a strong optical force of the laser field that attracts the 

bubbles as dielectric particles and has been observed in reference (Liu et al., 2016). 

However, those bubbles near the edges of the light cone that can overcome the weaker 

light force of the laser would slowly drift upward while expanding slowly to about 30 

microns in diameter. 

The study of optical force (Unger & Marston, 1988) and the dynamics of the bubbles 

require careful theoretical work (Wright et al., 1994) that is beyond the present scope of 

this work. We are working on the theory of nonlinear optical scattering and the results 

will be reported elsewhere. However, based on existing theory (Chen et al., 2009; Agayan 

et al., 2002) we can provide some estimated numbers. The resulting attractive laser force 

is given by (Unger & Marston, 1988)  

cQnaIFl /2     (5.8) 

It can be noted that this is due to the lower refractive index of the bubble as a scattering 

particle, contrary to the usual dielectric particle (Z) (Chen et al., 2004), where it can be 

recalled that buoyancy force )(
3

4 2

airwb gaF 


 , here  represents density of water 

and air respectively, g is gravitational acceleration.  Near the laser focus of radius 35 μm, 

the average power of Pav = 0.4W (with repetition rate 1 kHz and peak power 8 GW, pulse 

peak intensity 2 × 1014 W/cm2) , the corresponding average intensity is I = 104 Wcm2. 
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Using the bubble radius = 10 µm, the efficiency factor for radiation pressure Q = 0.1914, 

the refractive index of water n = 4/3 the estimated laser force is 27 pN.  

According to the Stokes law, the drag force is,  

aFd 6      (5.9) 

Which gives 50 pN (pico Newton), using dynamic viscosity of water 4109.8 

kgm-1s-1, the bubble radius a is 10 µm and velocity v is 300 micro meter per second.   

Thus, the larger laser force provides a net force that accelerates the bubbles toward the 

focus. Thus, the pressure force driven by the convection of the bubbles must be at least 

larger than the sum of the viscous force Fd = 50pN and the laser force Fl = 27 pN (that 

repels the bubbles from the strong field region) to provide the net force that accelerates 

the bubbles toward the focus region. 

 

                 Time = 0.00 s  

Figure 5.17: Unfocused color and vibrant motion. 
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                                                                Time = 0.12 s 

Figure 5.17, Continued. 
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 Figure 5.17, Continued.  
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  As an additional information, Figure 5.17 has been added to demonstrate how focused 

region of laser inside water gets vibrant motion with sparkling colors with respect to time. 

Here no single bubble is visible because of non-focusing condition with the reason of no 

presence of halogen light (Figure 4.1). So, from these sequential pictures, we cannot track 

single or individual bubbles but can observe changeable complex dynamic movements of 

the whole region, discussion of this dynamic is not present project’s main issue but it has 

been chosen to be considered as an extension of present work. So mentioning this segment 

is necessary to get a guideline for further research. 
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CHAPTER 6: CONCLUSION AND SCOPE OF FUTURE WORK 

In our work, we have studied the light scattering of cavitation bubbles in water created 

by focused intense femtosecond laser pulses. Experimentally, we discover the striking 

colorful sparkling lights in the water, in addition to the supercontinuum generation of 

white light similar to that in fiber where the striking colorful sparkling light can be seen 

only when the laser intensity is sufficiently low. 

It is necessary to mention that despite the fact that various models have been used to 

study the laser cavitation of bubbles, the colored emissions have never been observed or 

studied before. Most of the previous research tended to focus on creating of laser induced 

bubbles, their growth, and dynamics rather than investigating optical phenomena. This 

study is the first step on the way towards enhancing our understanding of strong optical 

scattering by laser induced bubbles inside water. 

The newly found scattering of colored lights has a simple explanation and which is not 

due to whispering gallery effect (A whispering gallery is usually a circular, hemispherical, 

elliptical or ellipsoidal enclosure, in which wave can travel around the circumference, this 

traveling effect is called whispering gallery effect) where the light wave is guided by the 

bubble surface. The microbubbles scatter off sparkling lights in the optical range that are 

blueshifted from 800 nm superimpose to give the broadband whitelight spectrum. The 

effect is explained by nonlinear optical processes through intense laser interactions with 

water molecules. By studying the dynamics (by analyzing video clips) of the formation 

of microbubbles and light scattering we are now able to explain the phenomena of the 

colored sparkling lights as due to scattering from nonlinear processes of filamentation hot 

spots at the backside interface of the bubbles. 
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The sparkling lights with colors, observed only at low laser intensity, indicate that the 

filamentation hot spot at a particular spatial point contains spectral composition centered 

at a certain wavelength, giving a distinct color. And, to investigate further the spectral 

width and profile of the sparkling light with a particular color we need to capture its 

spectrum by using ultrafast camera system with high sensitivity and this is a significant 

challenge and beyond our present capability. Though, we observe white light when the 

intensity is increased. However, furthermore investigation should have done by using 

ultrafast camera system to revile more phenomena in microscale. 

Results so far have been very promising not only in fundamental science but also in 

the field of application. The future works may focus on the comparison with other 

aqueous mediums, ultrafast dynamical evolution corresponding to light emitting effects 

of the laser induced bubbles and underwater cavitation generated by femtosecond laser 

pulses. In this research work we considered tightly focus femtosecond laser, however, the 

supercontinuum emission from tight focusing geometry was always higher than the loose 

focusing geometry inside water. So this new found effect can be investigated with less 

focus or semi focus environment.  

This research could be a useful aid for decision makers those want to work in the field 

of laser matter interaction, and it could be a helpful aid for understanding optical 

behaviors of liquid under high intense femtosecond laser focused condition in the field of 

medical. We also think that our finding might be useful for photonics, ablation under 

water, nanoparticle fabrication and related studies, material characterization, micro and 

nano structuring, lithography, or even topics like underwater drilling using high intense 

lasers.   

The results and explanation with huge scope of further investigation presented here 

provide insights and understanding of the optical phenomena involved in high intense 
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laser interaction with liquid and interfaces. The physical mechanism is interesting and 

relevant to micro and nano photonics.  

Our result is encouraging for doing more theoretical work on this new found optical 

scattering. Mathematical formulation of this scattering could bring us to a new frontier of 

theoretical understanding of optical properties during light matter interaction.    
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