
SEED DISPERSER ANT ALGORITHM FOR
OPTIMIZATION

CHANG WEN LIANG

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA

KUALA LUMPUR

 2018

Univ
ers

ity
 of

 M
ala

ya

SEED DISPERSER ANT ALGORITHM FOR

OPTIMIZATION

CHANG WEN LIANG

DISSERTATION SUBMITTED IN FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING SCIENCE

FACULTY OF ENGINEERING

UNIVERSITY OF MALAYA

KUALA LUMPUR

2018

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate:

Matric No:

Name of Degree:

Chang Wen Liang KGA

Master of Engineering Science

Title of Dissertation: SEED DISPERSER ANT ALGORITHM FOR

OPTIMIZATION

Field of Study: Algorithms and Optimizations

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or

reproduction of any copyright work has been disclosed expressly and

sufficiently and the title of the Work and its authorship have been

acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the

making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the copyright

in this Work and that any reproduction or use in any form or by any means

whatsoever is prohibited without the written consent of UM having been first

had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any

copyright whether intentionally or otherwise, I may be subject to legal action

or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

 SEED DISPERSER ANT ALGORITHM FOR OPTIMIZATION

ABSTRACT

The Seed Disperser Ant Algorithm (SDAA) is developed based on the evolution or

expansion process of Seed Disperser Ant (Aphaenogaster senilis) colony. The genotype

of every ant is represented in binary form as the variables. These binary variables are used

to locally search for optimum solution. SDAA is developed using the concept of male

ants performing nuptial flights to generate new superior colonies. The new colonies

produce better male ants that repeat the nuptial flight cycle in following generation. New

young queens are produced by the colony that migrates to establish new colonies after

local optimum solution reached to start new local search. Nuptial flight and new young

queens’ production aid in enhanced search exploitation and exploration respectively. This

diversifies the search for global optimum. The classical benchmark problems and

composite benchmark functions from Congress on Evolutionary Computation (CEC)

2005 special session is used for validate SDAA. Engineering optimization has become

important in design problems to reduce error and faulty production as many constrained

condition should be taken in to account before manufacturing. Also, data clustering has

become popular in data mining in recent time due to data explosion. In this research, we

applied SDAA to solve the constrained engineering problems and introduce an efficient

data clustering algorithm which is hybrid of K-means and SDAA. The optimal results

obtained for constrained engineering problems as well as data clustering are very

promising in terms of quality of solutions and convergence speed of the algorithm.

Keywords: Optimization, composite benchmark function, constrained engineering

problem, data clustering, Seed Disperser Ant Algorithm.

Univ
ers

ity
 of

 M
ala

ya

iv

SEED DISPERSER ANT ALGORITHM UNTUK PENGOPTIMUMAN

ABSTRAK

Seed Disperser Ant Algorithm (SDAA) adalah inspirasi daripada proses evolusi koloni

semut penyebar biji benih iaitu spesies Aphaenogaster senilis. Genotip semut sebagai

pembolehubah diwakili dalam bentuk nombor perduaan. Pembolehubah ini digunakan

untuk pencarian sebahagian mencapai peyelesaian optimum. SDAA merupakan

algoritma berdasarkan penerbangan mengawan semut jantan untuk menghasilkan

generasi dan koloni baru yang lebih unggul. Semut jantan yang telah bertambah baik

dalam generasi atau koloni baru akan berterusan melaksanakan penerbangan mengawan

dan proses ini berulang untuk menghasilkan generasi atau koloni baru yang bertambah

baik. Sekiranya koloni telah mencapai satu tahap kematangan, dengan kata lain, optimum

sebahagian yang dicari telah capai, ratu semut muda akan dilahirkan oleh koloni dan

berhijrah untuk menubuhkan koloni baru. Proses penebangan mengawan dan kelahiran

ratu semut muda masing-masing membantu mempertingkatkan eksploitasi carian dan

penerokaan. Ini memperluaskan pencarian optimum secara global. SDAA disahkan

dengan menyelesaikan masalah ukur rujuk klasik dan masalah ukur rujuk komposit dari

Congress on Evolutionary Computation (CEC) 2005 sesi khas. Pengoptimuman

kejuruteraan telah menjadi unsur penting dalam masalah reka bentuk untuk

mengurangkan kesilapan dan kerosakan produksi kerana banyak syarat dikekang perlu

diambil kira sebelum pembuatan. Selain itu, pengelompokan data telah menjadi popular

dalam bidang perlombongan data disebabkan data dihasilkan secara lampau

kebelakangan ini. SDAA digunakan untuk menyelesaikan masalah kejuruteraan dikekang

dan algoritma data pengelompokan yang cekap diperkenalkan dalam penyelidikan ini

iaitu hibrid K-means dan SDAA. Keputusan optimum diperolehi bagi masalah

kejuruteraan dikekang serta pengelompokan data adalah sangat memberangsangkan dari

segi kualiti penyelesaian dan kelajuan penumpuan algoritma.

Univ
ers

ity
 of

 M
ala

ya

v

Kata kunci: Pengoptimuman, fungsi penanda aras komposit, masalah kejuruteraan

dikekang, clustering data, Seed Disperser Ant Algorithm.

Univ
ers

ity
 of

 M
ala

ya

vi

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisor also as my advisor,

Associate Professor Dr. Jeevan Kanesan and my second supervisor Associate Professor

Ir. Dr. Harikrishnan A/l Ramiah for the continuous support of my Master study and

related research. Their guidance helped me in all the time of research and preparing of

this dissertation. Apart from the technical knowledge, I have learned so much from their

insightful technical writing skill.

Next, my gratitude goes to Assistant Professor Dr Anand J Kulkarni from Symbiosis

Institute of Technology, India. He had spent his time and effort on guiding me for writhing

algorithm code effectively when he visiting Malaysia. When I am lost on my research, he

had help in checking my algorithm’s concept and guides me back to my research

objective. He also shared his experiences to help me in my research. I am also thanks for

his advice of the conference and journal paper writing.

I thank my fellow lab mates Mr. Tey Yong Yuen, Mr. Chong Wei Keat, Ms. Nandini

Vitee, Mr. Lim Chee Cheow, Mr. Jalil Ahmadian, Ms. Teo Ting Huan, and Mr.

Mohammad Zihin bin Mohd Zain. They have accompanied me in the same lab for doing

research, especially Mr. Chong Wei Keat, who has provided technical support for the

lab’s computers and printers and Mr. Tey Yong Yuen, who always share postgraduate’s

information and updates. With them, I am not lonely in doing my research, able to ask

and refer opinion from them.

The financial support of Universiti Malaya High Impact Research Grant

UM.C/HIR/MOHE/ENG/51 from the Ministry of Higher Education Malaysia is

gratefully acknowledged.

Univ
ers

ity
 of

 M
ala

ya

vii

Last but not the least, I would like to thank my parents and to my sisters for supporting

me spiritually throughout my research of my Master study and my life in general.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

Abstract .. iii

Abstrak ... iv

Acknowledgements .. vi

Table of Contents ... viii

List of Figures ... x

List of Tables.. xi

List of Symbols and Abbreviations .. xiii

List of Appendices ... xvi

CHAPTER 1: INTRODUCTION .. 1

1.1 Motivation.. 1

1.2 Challenge ... 2

1.3 Design and Solution ... 2

1.4 Objectives .. 3

1.5 Contributions ... 3

1.6 Dissertation Outline ... 5

CHAPTER 2: TYPES OF COMPUTATIONAL INTELLIGENCE 6

2.1 Evolutionary Algorithms ... 7

2.2 Swarm Intelligence .. 7

2.3 Exploration and Exploitation ... 9

2.4 Algorithms / Methods comparison .. 9

2.5 Data Clustering and Real World Engineering Problems 11

Univ
ers

ity
 of

 M
ala

ya

ix

CHAPTER 3: SOLUTION/ METHODOLOGY.. 13

3.1 Seed Disperser Ant Algorithm .. 16

3.2 Modified Seed Disperser Ant Algorithm for Data Clustering 26

CHAPTER 4: RESULTS AND DISCUSSION .. 34

4.1 Classical and Composite Benchmark Problem Solving .. 34

4.2 Constrained Engineering Problem Solving ... 39

4.3 Data Clustering Problem Solving .. 49

CHAPTER 5: CONCLUSION ... 59

References ... 60

List of Publications and Papers Presented .. 66

Appendix A ... 67

Appendix B ... 68

Univ
ers

ity
 of

 M
ala

ya

x

LIST OF FIGURES

Figure 2.1: Computational intelligence categories.. 6

Figure 3.1: Evolution concept of SDAA ... 14

Figure 3.2: Flowchart of SDAA .. 25

Figure 3.3: Flowchart of MSDAA .. 33

Figure 4.1: Plot for Composite benchmark functions CF1 ... 37

Figure 4.2: Enlarged plot of Composite benchmark functions CF1 38

Figure 4.3: Convergence of Tension Spring Design Problem .. 45

Figure 4.4: Magnified Convergence of Tension Spring Design Problem between nuptial

flights 75 to 240 .. 46

Figure 4.5: Convergence of Welded Beam Design Problem .. 47

Figure 4.6: Magnified Convergence of Welded Beam Design Problem between nuptial

flights 50 to 260 .. 48

Figure 4.7: Overall average FEs of data clustering algorithms 53

Figure 4.8: Convergence of Wine clustering problem .. 57

Figure 4.9: Convergence of Cancer clustering problem ... 58

Univ
ers

ity
 of

 M
ala

ya

xi

LIST OF TABLES

Table 2.1: Advantages and Disadvantages of Algorithms .. 10

Table 3.1: Offspring generated by LSB to MSB copying complement refer gene 18

Table 3.2: Offspring generated by MSB to LSB copying complement refer gene 18

Table 3.3: Offspring generated by LSB to MSB copying other refer gene 19

Table 3.4: Offspring generated by MSB to LSB copying other refer gene 19

Table 4.1: Simulation Result of 30 dimensional test problems 35

Table 4.2: Result of composite benchmark functions ... 37

Table 4.3: Result of Single Objective Test Problem ... 41

Table 4.4: Result of Tension Spring Design Problem .. 42

Table 4.5: Result of Pressure Vessel Design Problem .. 43

Table 4.6: Result of Welded Beam Design Problem .. 44

Table 4.7 Parameters used for SDAA for constrained engineering problem solving 44

Table 4.8: UCI Machine Learning Repository Data Set Information 49

Table 4.9: Simulation result of Iris dataset ... 50

Table 4.10: Simulation result of Wine dataset .. 50

Table 4.11: Simulation result of Cancer dataset ... 51

Table 4.12: Simulation result of CMC dataset .. 51

Table 4.13: Simulation result of Glass dataset .. 52

Table 4.14: Simulation result of Vowel dataset .. 52

Table 4.15: Overall averages FEs for all algorithms... 53

Table 4.16: Best centroids found by MSDAA for Iris problem (3 clusters) 54

Table 4.17: Best centroids found by MSDAA for Wine problem (3 clusters) 54

Table 4.18: Best centroids found by MSDAA for CMC problem (3 clusters) 55

Univ
ers

ity
 of

 M
ala

ya

xii

Table 4.19: Best centroids found by MSDAA for Cancer problem (2 clusters) 55

Table 4.20: Best centroids found by MSDAA for Glass problem (6 clusters) 56

Table 4.21: Best centroids found by MSDAA for Vowel problem (6 clusters) 56

Table 4.22: Parameters used for SDAA and MSDAA for data clustering...................... 56

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

SDAA : Seed Disperser Ant Algorithm

CEC : Congress on Evolutionary Computation

EC : evolutionary computation

SI : Swarm Intelligence

NFL : No Free Lunch theorem

MSDAA : modified Seed Disperser Ant Algorithm

EAs : Evolutionary Algorithms

GA : Genetic Algorithms

DE : Differential Evolution

MA : Memetic Algorithms

CMA-ES : Covariance Matrix Adaptation Evolution Strategy

PSO : Particle Swarm Optimization

CS : Cuckoo Search

GWO : Grey Wolf Optimizer

EPSO : Evolutionary Particle Swarm Optimization

IPSO : Iteration particle swarm optimization

GPSO : Global Particle Swarm Optimization

CPSO : Chaos-Particle Swarm Optimization

ES : Evolution Strategies

ACO : Ant Colony Optimization

HBMO : Honey-Bee Mating Optimization

CI : Cohort Intelligence

CMIWOKM : hybrid Cloud Model invasive weed optimization with K-Means

SRPSO : stochastic ranking particle swarm optimization

Univ
ers

ity
 of

 M
ala

ya

xiv

MSBA : Mutable Smart Bee Algorithm

EIWO : Enhanced Invasive Weed Optimization

RHPSO : Robust Hybrid Particle Swarm Optimization

BA-DE : Hybrid Bat-Inspired Algorithm with Differential Evolution

SA : Simulated Annealing

TS : Tabu Search

LSB : least significant bit

MSB : most significant bit

FEs : function evaluations

Std. : standard deviation

CF : Composite Benchmark Function

ASCHEA : Adaptive Segregational Constraint Handling Evolutionary Algorithm

DELC : Differential Evolution with Level Comparison

HPSO : Hybrid Particle Swarm Optimization

CDE : Co-evolutionary Differential Evolution

CAEP : cultural algorithms with evolutionary programming

NM-PSO : Hybrid Nelder-Mead simplex search & Particle Swarm Optimization

ABC : Artificial Bee Colony Algorithm

𝑄𝑎 : Queen 𝑎

𝑄𝑏 : Queen 𝑏

𝑋1 : Male ant 1

𝑋𝐴 : Male ant 𝐴

𝑄1 : Queen 1

𝑄𝑛 : Queen 𝑛

𝑓(𝐿ℎ) : Function to be optimize

𝑙𝑗 : Single input for function 𝑓(𝐿ℎ), where 𝑙𝑗 = 𝑥𝑗

Univ
ers

ity
 of

 M
ala

ya

xv

𝛹𝑗
𝑙𝑜𝑤𝑒𝑟 : Original lower boundary of input 𝑙𝑗

𝛹𝑗
𝑢𝑝𝑝𝑒𝑟

 : Original upper boundary of input 𝑙𝑗

𝐿ℎ : Input for function 𝑓(𝐿ℎ)

𝑔𝑘(𝐿ℎ) : Constrained condition function

𝑅ℎ : Refer gene, colony identical gene carried by Queen

𝐶𝑖 : 𝑖th colony

𝑄𝑑 : Mated queen carried diploid gene

𝐺 : Number of iterations

𝐶 : Number of colonies

𝑟 : Shrinking factor

𝜀 : Convergence parameter

𝑆 : Saturation number

𝐿𝐵𝑗 : Search space lower boundary of input 𝑙𝑗

𝑈𝐵𝑗 : Search space upper boundary of input 𝑙𝑗

𝑁 : Number of dimension

𝐿ℎ(𝑓𝑖𝑡) : Fittest input 𝐿ℎ

𝐿ℎ(𝑏𝑒𝑠𝑡) : Current best solution input found

𝐵𝑗 : Search space boundary size

𝐷 : Clustering data set

𝑀 : Number of data objects

𝐾 : Number of clusters

𝑌𝑖 : 𝑖th object in data set

𝑋𝑖 : Centroid of the 𝑖th cluster

𝐹(𝑋, 𝑌) : Clustering Function to be optimize

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF APPENDICES

Appendix A: Composite benchmark functions …………………………………. 67

Appendix B:

• Single-Objective Test Problem …………………………………………..

• Tension Spring Design Problem …………………………………………

• Pressure Vessel Design Problem ………………………………………...

• Welded Beam Design Problem ………………………………………….

68

69

70

71

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Motivation

The behaviour modelling of social insects as problem solving technique for efficient

search has been the main context in swarm intelligence field. Various evolutionary

computation (EC) techniques have been introduced in the field of optimization. This

includes Swarm Intelligence (SI) inspired from social behaviours of insects and animals

as well as Swarm inspired meta-heuristics that applied to many kind of optimization

problems, for example: constrained engineering problems, combinatorial problems

including traveling salesman problem, global optimization, vehicle routing problems,

control engineering, assignment problems, traffic system design, scheduling, data

clustering, etc.

The year 2012 report shows that there were 2.5 Exabyte (2.5 billion gigabytes) of data

being generated daily. The data sets are large and complex that need tools and approaches

to process them. Thus, data processing is the fundamental and challenge for a data analyst.

Data clustering is the most common technique used as unsupervised classification

technique in data processing. A clustering technique divides the data groups into different

cluster by bunch up the data with equal or similar characteristics or pattern. Generally,

there are few major purposes of using data clustering which include gain insight into data,

generate hypotheses, detect anomalies, and identify salient features, identify the degree

of similarity among forms or organisms, and also organize the data and summarizing it

through cluster prototypes.

Many industrial engineering activities associate with high complexity and unstructured

conditions. These real-life problems are difficult to model because of require unique

factors. For constrained engineering problems, swarm intelligence techniques give

Univ
ers

ity
 of

 M
ala

ya

2

potential breakthrough. They are able to provide near-optimal or optimal solutions, thus

enabling to choose the best solution based on the criteria that the industry needs.

1.2 Challenge

The No Free Lunch (NFL) theorem (Wolpert & Macready, 1997) has proved a

particular meta-heuristic may obtain very convincing results on a set of problems, but

also may show poor performance on a different set of problems. The results also show

the importance of incorporating problem-specific knowledge into the behaviours of the

algorithm used. This makes the field of optimization based meta-heuristics very active in

enhancing current approaches and proposing new meta-heuristics every year. This

motivates a new meta-heuristic to be developed with inspiration from seed disperser ant

evolution concept for solving clustering problems. Also the evolutionary based algorithm

developed in this research showing the reduction of tuning variables and parameter by

modifying the algorithm to merge with others algorithm.

1.3 Design and Solution

In this research, Seed Dispenser Ant Algorithm (SDAA) is developed and verified with

several classical and composite benchmarks. Seed Dispenser Ant Algorithm (SDAA)

(Chang, Kanesan, & Kulkarni, 2015) is inspired from Aphaenogaster senilis (Cheron,

Doums, Federici, & Monnin, 2009) evolution process. The queen ant/s with diploid genes

and male ants provide haploid genes are represented using binary code number. Nuptial

flight (Kenne & Dejean, 1998) occurred when male ants fly out to mate with the queen

ant of others colony. The mated queens carrying the male haploid then will produce

offspring for the next generation. The optimum solution search is done using both local

and global search features. Each offspring is produced using male ant haploid gene copies

their alleles from the adjoining haploid refer gene which is haploid of queen’s diploid.

These offspring have high similarity to each other that useful in local search exploitation.

Univ
ers

ity
 of

 M
ala

ya

3

Once the offspring production search process saturated, the chosen colony will produce

fittest young queen to form new colony. This is used for exploratory search to avoid

trapped in local optima. The chosen young queen will create a new colony and continue

with exploitation local search process. The exploitation and exploration search process is

repeated and converges to achieve optimal solution.

1.4 Objectives

The main objective of this thesis is to develop a new algorithm which able to solve

several kind and fields of problems using the concept which can observe from nature.

Many nature inspired algorithms created for solving certain type of problem, this research

is done for developing a new algorithm which able to solve as many problems as it could.

Thus, the objectives under scrutiny are:

• To create and develop a new algorithm inspired from nature.

• To maximize the variety of problems solved using the same algorithm.

• To obtain more accuracy and persistency of the solution.

1.5 Contributions

In this work, we are proposing its ability to handle constrained optimization and data

clustering. Now days, there are many real world engineering problems such as

engineering design problems requiring optimization to reduce cost and save energy,

improve safety, quality of life, and efficiency of work. For an engineering design problem,

there are many constrained conditions that should be taken into account before

manufacturing the design.

SDAA has advantages of on its searching technique where it searches by binary bit

changing process to generate new solutions. The offspring generation advocates search

exploitation where as young queen generation explores for better solution. Hence, SDAA

Univ
ers

ity
 of

 M
ala

ya

4

aggressively searches optimum solutions within the search domain and this helps to

escape local optima.

Also, there is a motivation for improvement on SDAA for data clustering problems,

where function evaluations could be reduced significantly by some modification. In

SDAA, the search exploration cost huge function evaluations. This dooms SDAA to the

limited application as problems such as data clustering requires rapid solution. Therefore

the young queen generation responsible for search exploration is removed in the modified

SDAA (MSDAA). Besides, the initial search in SDAA is simply based on random

generation of solutions. However, K-means in MSDAA is used to generate initial

solutions. Due to the simplicity and ease of application, K-means is adopted for solving

data clustering problems. Though K-means has a tendency to trap easily in local optima,

the offspring generation feature of SDAA ensures the solution escapes from the local

optima. The disadvantages of both SDAA and K-means are solved by hybridizing both

techniques in MSDAA. A modified SDAA (MSDAA) is proposed which hybridizes the

advantages of both SDAA and K-means for solving data clustering problems. The

purpose of developing MSDAA is to enhance the original SDAA to produce improved

accuracy, lower standard deviation with lower function evaluations and reduce the tuning

parameters of SDAA with the aid of K-means in the algorithm.

Univ
ers

ity
 of

 M
ala

ya

5

1.6 Dissertation Outline

The organizations of this paper are Section 1 to Section 5. Introduction in Section 1

contain motivation to start this research work, problems or challenges faced, the

objectives of the research, solution and contribution of this work. Next, continue with

literature review in section 2. This Section review the previous algorithms used in

optimization field and types of problem solved. In this Section, the past and recent ideas

and methods used is referred and compared to create new algorithm. The original creation

of SDAA and the modified SDAA for clustering is described and explained in Section 3.

This Section explains the details and the design of the algorithms. Then followed by

Section 4 for the Results and discussion, and lastly Section 5 provides the conclusions of

this research.

Univ
ers

ity
 of

 M
ala

ya

6

CHAPTER 2: TYPES OF COMPUTATIONAL INTELLIGENCE

Figure 2.1: Computational intelligence categories

The computational intelligence algorithms categorised into physical and biological

mimic. Physical mimic algorithms are developed based on nature phenomena, existing

physic or mathematical formulas. For example, Gravitational Algorithm is developed

based on Newton's law of universal gravitation; Black Hole Algorithm is developed based

on black hole phenomena. Biological mimics algorithms can be separated into two groups

which are Evolutionary Algorithms and Swarm Intelligence as shown in Figure 2.1. The

Evolutionary Algorithms are developed based on the surviving and evolving ability of

selected living creature for enhancing fitness for continuation of the next generation.

These algorithms mostly use genetic code representation for improving the fitness.

Examples of Evolutionary Algorithms are Genetic Algorithm and Differential Evolution.

For the category of Swarm intelligence, we can divide it into 2 types of swarms mimic,

Computational
Intelligence

Biological mimic

Evolutionary
Algorithm

Genetic Algorithm,
Defferential
Evolution,

Swarm Intelligence

Vertebrates
(backbone)

Particle Swarm
Optimization, Grey

Wolf Optimizer

Invertebrates (no
backbone)

Ant Colony
Algorithm, Honey
Bee optimization,

physical mimic

Gravitational
Algorithm, Black
Hole Algorithm,

Univ
ers

ity
 of

 M
ala

ya

7

which is vertebrate and invertebrate animals. Most of the Swarm Intelligence algorithms

mimic the food foraging ability or hunting strategy of the swarm. Vertebrate animals’

category algorithms have Grey Wolf Optimizer which mimics the wolf hunting strategy,

and Particle Swarm Optimization mimics the swarm of fish or birds. On the other hand,

for invertebrate animals’ category algorithms, we have Ant Colony Algorithm and Honey

Bee optimization which mimic the food foraging ability.

2.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) is a category of algorithm created based on evolution

and survival of the fittest individual. EAs use genetic operators to exploit population

evolution for global optimum search such as Genetic Algorithms (GA) (Goldberg,

Zakrzewski, Chang, & Gallego, 1997; Mitchell, 1998), Differential Evolution (DE) (Qin,

Huang, & Suganthan, 2009; Storn & Price, 1997) and Memetic Algorithms (MA)

(Moscato, 1989; Moscato, Cotta, & Mendes, 2004). MA embeds individual learning

procedure proficient of performing local search refinements through genetic operators

which can categorize as an alternative of Genetic Algorithm (GA). In addition, DE has

been emphasizing on the mutation that efficiently using exploratory search for global

optimum solutions. Besides, Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) (Auger & Hansen, 2005) also categories into EAs. It indicates a mutation as an

evolution strategy that adapts the full covariance matrix of a normal search distribution.

The CMA-ES has an important property which is its constant against linear

transformations of the search space compared to many other Evolutionary Algorithms.

2.2 Swarm Intelligence

Swarm Intelligence (SI) is a category of algorithm simulates the activities and

movement of insects or animals. There are many SI techniques such as particle swarm

optimization (PSO) (Eberhart & Kennedy, 1995), Cuckoo Search (CS) (X.-S. Yang &

Univ
ers

ity
 of

 M
ala

ya

8

Deb, 2009) and Grey Wolf Optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 2014). PSO

is developed by mimicking the crowd of animals’ movement as in a flock of birds or a

school of fish. The concept used to develop PSO is based on collision-proof birds’

movement. By following the creation of PSO, many variations or enhance PSO were

developed such as Evolutionary Particle Swarm Optimization (EPSO) (Miranda &

Fonseca, 2002), Iteration particle swarm optimization (IPSO) (Lee & Chen, 2007), Global

Particle Swarm Optimization (GPSO) (Jamian, Abdullah, Mokhlis, Mustafa, & Bakar,

2014) and Chaos-Particle Swarm Optimization (CPSO) (L. Liu, Zhong, & Qian, 2010).

EPSO is a general-purpose algorithm that emphasize in Evolution Strategies (ES) using

PSO concept. In ES, a number of models have been developed that rely on Darwinist

selection to promote progress towards the optimum. IPSO is developed by sizing the

distributed generation unit and applying new velocity of each particle before updating the

position. On the other hand, GPSO share information about the particle position between

the dimensions at any iteration to fasten the convergence process of classical PSO. CPSO

is developed by combining chaos search strategy with PSO. Chaos is deterministic and it

can be generated using fixed rules or equations. The "butterfly effect" in chaos can guide

to a very different result in a very small change. CS is inspired by the obligate brood

parasitism of some cuckoo species by laying their eggs in the nests of different species

birds as host birds. Studies show that CS idealized such breeding behaviour that it could

outperform existing algorithms such as PSO. Besides, GWO was inspired from grey

wolves’ (Canis lupus) leadership hierarchy and hunting mechanism.

There are many algorithms developed for solving these optimization problems such as

Particle swarm Optimization (PSO) (Tsai & Kao, 2011), Ant Colony Optimization (ACO)

(Shelokar, Jayaraman, & Kulkarni, 2004), Honey-Bee Mating Optimization (HBMO)

(Fathian, Amiri, & Maroosi, 2007), Cohort Intelligence (CI) (Kulkarni, Durugkar, &

Kumar, 2013), hybrid Cloud Model Invasive Weed Optimization with K-Means

Univ
ers

ity
 of

 M
ala

ya

9

(CMIWOKM) (Pan, Li, Ouyang, Zhou, & Xu, 2014), stochastic ranking particle swarm

optimization (SRPSO)(Ali, Sabat, & Udgata, 2012), mutable smart bee algorithm

(MSBA) (Mozaffari, Gorji-Bandpy, & Gorji, 2012), enhanced invasive weed

optimization (EIWO) algorithm (Ramezani, Ahangaran, & Yang, 2013), Robust Hybrid

Particle Swarm Optimization (RHPSO) (Xu, Geng, Zhu, & Gu, 2013), and Hybrid Bat-

Inspired Algorithm with Differential Evolution (BA-DE) (Pei, Ouyang, & Tong, 2012).

2.3 Exploration and Exploitation

Most of the computational intelligence algorithms have two common aspects, which

are exploration and exploitation search. The exploration is the ability of expanding search

space, where the exploitation is the ability of finding the optima around a good solution.

The exploratory search in an algorithm explores the search space to find new solutions to

avoid trapping in a local optimum. Then the algorithm uses exploitation search to tunes

it iteration by iteration to achieve an optimum solution. The exploration and exploitation

search of different algorithms used different approaches and operators. These cause the

different efficiency of different algorithms.

2.4 Algorithms / Methods comparison

None of the algorithms is perfect that able to solve all kind of problems. Every

algorithm has its own strength and also weakness. Several algorithms are studies and

compared. The algorithms include K-means, Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), Ant colony Optimization (ACO), Differential Evolution (DE),

Gravitational Search Algorithms (GSA), Grey Wolf Optimization (GWO), Covariance

Matrix Adaptation Evolution Strategy (CMA-ES), and Cuckoo Search (CS). By studying

the algorithms, based on the behaviour and test, advantages and disadvantages are

compared as the table below:

Univ
ers

ity
 of

 M
ala

ya

10

Table 2.1: Advantages and Disadvantages of Algorithms

Algorithm Advantages Disadvantages

K-Means
Fast, robust and easier to

understand.

Easily trap in local search. Fails

for non-linear data set. Unable

to handle noisy data and

outliers

ACO

Inherent parallelism. Efficient

for Traveling Salesman

Problem and similar

problems. Can be used in

dynamic applications.

Sequences of random decisions

(not independent). Probability

distribution changes by

iteration. Time to convergence

uncertain.

PSO

No overlapping and mutation

calculation. Calculation is

very simple.

Easy to fall into local optimum

in high-dimensional problem.

Low convergence rate in the

iterative process.

GA

Parallelizability. Support

multi-objective optimization.

Good in noisy environment

search.

Slow convergence, time-

consuming. Solution depending

on design of objective function

representation.

DE

Support non-differentiable,

nonlinear and multimodal cost

functions. Parallelizability.

Consistent convergence to the

global minimum.

Parameter tuning of necessary.

Same parameters may not

guarantee the global optimum

solution.

GSA

Flexible. Balance exploration

and exploitation search.

Support nonlinear problem,

multi-objective problem.

Each iteration needs too many

computations.

GWO
Only 2 main parameters to be

adjust.

Low precision. Weak in local

search.

CMA-ES

Support high dimensions

problems. Large search

interval.

Weak in solving partly

separable problems, small

dimension problems. High

function evaluations.

CS
Easier to application and

fewer tuning parameters.
Easy to fall into local optimal.

Univ
ers

ity
 of

 M
ala

ya

11

2.5 Data Clustering and Real World Engineering Problems

The technique to process big data has become a fundamental and critical challenge for

modern society. Most of the data is stored digitally in electronic media, thus providing

huge potential for the development of automatic data analysis, clustering, and retrieval

techniques (Hashem et al., 2015; Jain, 2010; C. Yang et al., 2014). Data clustering

approach had been applied to variety of applications, such as code book generation, data

mining, image segmentation, pattern recognition, and sensor clustering. There are many

algorithm developed which able to solve data clustering problems, for example several

Swarm Intelligence (SI) (Blum & Li, 2008) methods and Evolutionary Algorithms (EAs)

(Back, 1996) also have been used to solve data clustering problems. The most well known

SI and EA methods implemented for data clustering are Particle swarm optimization

(PSO) (James Kennedy, 2010; J. Kennedy & Eberhart, 1995; Tsai & Kao, 2011) and

Genetic Algorithm (GA) (Goldberg et al., 1997; Maulik & Bandyopadhyay, 2000;

Mitchell, 1998) respectively. Honeybee-mating optimization (HBMO)(Fathian & Amiri,

2008) and Ant Colony Optimization (ACO) (Dorigo & Birattari, 2010) are both SI

methods created for solving data clustering problems. Simulated Annealing (SA)

(Niknam & Amiri, 2010; Selim & Alsultan, 1991) and Tabu Search (TS) (Al-Sultan,

1995; Niknam & Amiri, 2010) are non SI/EA methods used to solve data clustering

problems. Other than SI and EAs methods, there is also learning based algorithm such as

Cohort Intelligence (CI) (Krishnasamy, Kulkarni, & Paramesran, 2014) developed for

optimization in clustering.

Real world engineering problems increases day by day. This is due to new

development and improvement of technology now days. Whenever there is an

improvement, there must be some problem to be solved. There are several algorithms

were developed to solve constrained problems or engineering problems, for example:

mutable smart bee algorithm (MSBA) (Mozaffari et al., 2012), Robust Hybrid Particle

Univ
ers

ity
 of

 M
ala

ya

12

Swarm Optimization (RHPSO) (Xu et al., 2013), and Hybrid Bat-Inspired Algorithm with

Differential Evolution (BA-DE) (Pei et al., 2012), stochastic ranking particle swarm

optimization (SRPSO)(Ali et al., 2012), mutable smart bee algorithm (MSBA) (Mozaffari

et al., 2012), enhanced invasive weed optimization (EIWO) algorithm (Ramezani et al.,

2013), Robust Hybrid Particle Swarm Optimization (RHPSO) (Xu et al., 2013), and etc.

Univ
ers

ity
 of

 M
ala

ya

13

CHAPTER 3: SOLUTION/ METHODOLOGY

Seed Disperser Ant Algorithm (SDAA) (Chang, Kanesan, & Kulkarni, 2015) is a new

meta-heuristic inspired from nature. SDAA is proposed based on seed disperser ant

species name Aphaenogaster senilis (Cheron et al., 2009) evolution process. SDAA

mimics evolutionary strategy of seed disperser ant to enhance its fitness of future

generation to continue survives. Common evolutionary techniques concern in genetic

processes. In SDAA, ants’ haploid-diploid genetic idea invented by uses of Kin Altruism

(Ashton, Paunonen, Helmes, & Jackson, 1998; Osiński, 2009) for its evolution of the

colony. The haploid-diploid genetic code in binary form is represented the available

solution of the problem. The infertile female workers and queen ant/s which have diploid

genes are populated in the colony. Haploid genes provided by male ant used in performing

nuptial flight (Kenne & Dejean, 1998). Male ants fly out in nuptial flight process and

mate with the queen from others colony. The mated queens will generate offspring in

their respective colony. The optimum search of SDAA is established in locally and also

globally. The offspring is generated when male provided haploid gene replicate alleles

from the contiguous female’s haploid gene. This offspring production performs as local

search and the offspring produced are highly related to each other for search exploitation.

A fit young queen is produced from the chosen fittest colony when saturated on local

search. The fit young queen will then migrate and establish its own new colony. This

search helps to explore the global optimum solution. The fit young queen established its

new colony will start the process of local search. All there process will continuous repeat

again until saturation or limit of iteration. Both local and global search process continuous

converges to the optimum solutions.

Univ
ers

ity
 of

 M
ala

ya

14

Figure 3.1: Evolution concept of SDAA

In Figure 3.1, the evolution concept of SDAA shows that from a colony, the queen

𝑄𝑎 generate offspring which are 𝑋1 to 𝑋𝐴. The best male ant selected to perform nuptial

flight for mating with queen 𝑄𝑏 from another colony. This process continues with all

colonies until threshold reached. Where there is no improvement in generating offspring.

Next, the best colonies will spawn new queens 𝑄1 to 𝑄𝑛 and become new colonies.

SDAA perform the search in binary form, where it depends on the precisions used for the

input variables. The precisions of the input variables affect the bits number used for binary

representation.

The general minimization of unconstrained problem as shown as below:

Minimize 𝒇(𝑳𝒉) = 𝒇(𝒍𝟏, … 𝒍𝒋, … 𝒍𝑵) (3.1)

Subject to

𝜳𝒋
𝒍𝒐𝒘𝒆𝒓 ≤ 𝒍𝒋 ≤ 𝜳𝒋

𝒖𝒑𝒑𝒆𝒓
 , 𝒋 = 𝟏, … 𝑵 (3.2)

Best selected
male ants

𝑋𝑎

Another

Colony

𝑄𝑎

Reached

threshold

Colony 1 Colony n

Colony

𝑄𝑎

𝑋1

𝑋𝐴

𝑄1
𝑄𝑛

Mating

process

Univ
ers

ity
 of

 M
ala

ya

15

There are several classical constrained engineering problems difficult to be optimized.

These classical constrained engineering problems include single-objective test problem

(Floudas & Pardalos, 1990), tension spring design problem (Belegundu & Arora, 1985),

pressure vessel design problem (Kannan & Kramer, 1994) and welded beam design

problem (Coello Coello, 2000) as shown in Appendix A. These problems have

constrained conditions where all the design variables interrelated with each other. To

obtain the minimum result, the design variables must satisfy all the constrained

conditions. This makes optimizing constrained engineering problems cumbersome.

The objective function of constrained engineering problem is embedded with the

constrained condition. The input variables 𝑥 will evaluated by the constrained condition’s

functions 𝑔𝑖(𝑥). If the input variables 𝑥 satisfied the conditions, then the input variables

𝑥 will be evaluated by the objective function 𝑓(𝑥), else the 𝑓(𝑥) set to be equal to infinite.

The 𝑁 number of variables 𝑥 in SDAA will represented by 𝐿ℎ:

𝑳𝒉 = [𝒙𝟏, … 𝒙𝒋, … 𝒙𝑵] , 𝒋 = 𝟏, … 𝑵 (3.3)

The objective function 𝑓(𝑥) for SDAA solving constrained engineering problem is

shown as below:

𝒇(𝒙) = 𝐦𝐢𝐧 𝒇(𝑳𝒉) (3.4)

Subject to:

𝒈𝒌(𝑳𝒉) ≤ 𝟎 (3.5)

Objective function 𝑓(𝑥) assumed to be infinity if any requirement of constrained

condition’s functions 𝑔𝑘(𝑥) is not satisfied.

Univ
ers

ity
 of

 M
ala

ya

16

3.1 Seed Disperser Ant Algorithm

Considering the fitness of male ant as the objective function 𝑓(𝐿ℎ) in a colony. The

gene code of male ant is represented by 𝐿ℎ = (𝑙1, … 𝑙𝑗 , … 𝑙𝑁). Every colony’s queen is

assumed to give birth of many new young queens and with the identity gene of the colony

represented by the refer gene [𝑅ℎ]𝐶𝑖
. A complete diploid gene is represented by combine

a pair of haploid genes, which from the binary gene code of male ant and its complement

[𝑅ℎ]𝐶𝑖
 as the mated queen [𝑄𝑑]𝐶𝑖

. The equation representation is shown in equation (3.6).

[𝑸𝒅]𝑪𝒊
= [𝑳𝒉]𝑪𝒊

[𝑹𝒉]𝑪𝒊
 (3.6)

Where,

𝑪𝒊 = 𝒊th colony (3.7)

The SDAA initialize with tuning parameters such as number of iterations 𝐺, shrinking

factor 𝑟, number of colony 𝐶, saturation number 𝑆, convergence parameter 𝜀, and number

of decimal points for input variables’ precisions. Upper boundary 𝑈𝐵𝑗 and lower

boundary 𝐿𝐵𝑗 are fixed at the beginning as given in equations below. Number of bits in

binary form is determined by the precisions in number of decimal points for input

variables. The input variables (𝐿ℎ) in this research used precisions up to 5 decimal points.

𝑼𝑩𝒋 = 𝜳𝒋
𝒖𝒑𝒑𝒆𝒓

 (3.8)

𝑳𝑩𝒋 = 𝜳𝒋
𝒍𝒐𝒘𝒆𝒓

 (3.9)

Step 1: Random generate Male ant 𝐿ℎ as shown in equation (3.10) below:

 [𝑳𝒉]𝑪𝒊
= [𝒍𝟏, … 𝒍𝒋, … 𝒍𝑵]

𝑪𝒊
 (3.10)

Univ
ers

ity
 of

 M
ala

ya

17

Where,

𝒍𝒋 = 𝑳𝑩𝒋 + 𝒓𝒂𝒏𝒅 × (𝑼𝑩𝒋 − 𝑳𝑩𝒋) (3.11)

𝒓𝒂𝒏𝒅 ~ ∪ ([𝟎, 𝟏]) (3.12)

𝑵 = Number of dimension (3.13)

Step 2: Binary form conversion of 𝑁 number of 𝑙𝑗 for the male gene [𝐿ℎ]𝐶𝑖
 in every

colony take place. The colonies’ identity refers gene [𝑅ℎ]𝐶𝑖
 is form by complement of the

binary code gene as shown as equation (3.14) below:

 [𝑹𝒉]𝑪𝒊
= [𝑳𝒉]̅̅ ̅̅ ̅

𝑪𝒊
= [𝒍𝟏′, … 𝒍𝒋′, … 𝒍𝑵′]

𝑪𝒊
 (3.14)

Then, every mated queen [𝑄𝑑]𝐶𝑖
is formed as given in equation (3.6).

Step 3: Generate Offspring. This process representing mated queens generate

offspring. The process is implemented by cloning the gene (𝐿ℎ) binary bits from refer

gene (𝑅ℎ) start from the least significant bit (LSB) to the most significant bit (MSB) and

vice-versa. Mathematical equation explanation can be represented as the following. If

there is a 3 dimensions problem given, the gene 𝐿ℎof colony 1 represented as [𝐿ℎ]𝐶1
=

[𝑙1, 𝑙2, 𝑙3]𝐶1
 together with it’s refer gene as [𝑅ℎ]𝐶1

= [𝑙′1, 𝑙′2, 𝑙′3]𝐶1
. As an example, by

letting one of the dimension 𝑙1 = 10110010 and the refer gene is the complement of it

as 𝑙′1 = 01001101. The offspring of the dimensions 𝑙1 are generated as shown as the

example below in Table 3.1 and Table 3.2:

Univ
ers

ity
 of

 M
ala

ya

18

Table 3.1: Offspring generated by LSB to MSB copying complement refer gene

𝑙1 𝑙1′

10110010 01001101

10110010

10110011

10110001

10110101

⋮

01001101

-

Table 3.2: Offspring generated by MSB to LSB copying complement refer gene

𝑙1 𝑙1′

10110010 01001101

10110010

00110010

01110010

01010010

⋮

01001101

-

Then, the same outcome of the offspring will be removed.

After 1st iteration, the refer gene (𝑅ℎ) will remain, and the gene (𝐿ℎ) will be updated.

In this case, the matching will be [𝐿ℎ]𝐶1
= [𝑙1, 𝑙2, 𝑙3]𝐶1

 with the refer gene [𝑅ℎ]𝐶1
=

[𝑅ℎ1, 𝑅ℎ2, 𝑅ℎ3]𝐶1
. For example, let 𝑙1 = 11010011 and refer gene still same as

previous, 𝑅ℎ1 = 01001101. The same outcome of the offspring will be removed. The

dimensions 𝑙1 of the offsprings are generated as shown below:

Univ
ers

ity
 of

 M
ala

ya

19

Table 3.3: Offspring generated by LSB to MSB copying other refer gene

𝑙1 𝑙1′

11010011 01001101

11010011

11010011

11010001

11010101

⋮

01001101

-

Table 3.4: Offspring generated by MSB to LSB copying other refer gene

𝑙1 𝑙1′

11010011 01001101

11010011

01010011

01010011

01010011

⋮

01001101

-

Step 4: The fittest offspring of every colony will be chosen as [𝐿ℎ(𝑓𝑖𝑡)]
𝐶𝑖

 by assessing

the fitness subjected to the objective function. Then the best fittest gene is selected among

all the fittest offspring[𝐿ℎ(𝑓𝑖𝑡)]
𝐶𝑖

 and stored as 𝐿ℎ(𝑏𝑒𝑠𝑡). The 𝐿ℎ(𝑏𝑒𝑠𝑡) is endorsed as the

contemporary solution found. If the 𝐿ℎ(𝑏𝑒𝑠𝑡) recorded is repeated as many as Saturation

Number, 𝑆 times prefixed earlier. If the Saturation achieved, redirect to Step 6, otherwise

redirect to Step 5.

Univ
ers

ity
 of

 M
ala

ya

20

Step 5: Nuptial Flight. In nuptial flight, males will fly away from their own colony

to crossbreed with queens inhabited at other colony. This nuptial flight process is imitated

by using the best offspring [𝐿ℎ(𝑓𝑖𝑡)]
𝐶𝑖

 as the fittest survived male ant of every colony

paring to the next colony refer gene [𝑅ℎ]𝐶𝑖+1
 as the inhabited queen. In the equation, the

best offspring [𝐿ℎ(𝑓𝑖𝑡)]
𝐶𝑁

 from the last colony will be paired with the refer gene [𝑅ℎ]𝐶1

from the first colony. This mechanism is represented in the equation (3.15):

In queen inhabited colony 𝐶𝑖+1,

[𝑳𝒉]𝑪𝒊+𝟏
[𝑹𝒉]𝑪𝒊+𝟏

= [𝑳𝒉(𝒇𝒊𝒕)]
𝑪𝒊

[𝑹𝒉]𝑪𝒊+𝟏
 (3.15)

Where 𝑖 = 1,2, … 𝑁 − 1

For the queen inhabited 1st colony 𝐶1:

[𝑳𝒉]𝑪𝟏
[𝑹𝒉]𝑪𝟏

= [𝑳𝒉(𝒇𝒊𝒕)]
𝑪𝑵

[𝑹𝒉]𝑪𝟏
 (3.16)

This process will go to Step 3 for generating new offspring. The process of Step 3 to

Step 5 will be repeated until saturation 𝑆 acheaved.

Step 6: The shrinking factor 𝑟 is used to shrink the search boundary by positioned the

𝐿ℎ(𝑏𝑒𝑠𝑡) as the center of the boundary. The equations below show the shrinking

calculation.

Boundary size, 𝑩𝒋 = 𝒓 × (𝑼𝑩𝒋 − 𝑳𝑩𝒋) (3.17)

Then 𝑈𝐵𝑗 and 𝐿𝐵𝑗 are generated as shown below:

 𝑼𝑩𝒋 = [𝒍𝒋]
𝑳𝒉(𝒃𝒆𝒔𝒕)

+
𝟏

𝟐
𝑩𝒋 (3.18)

 𝑳𝑩𝒋 = [𝒍𝒋]
𝑳𝒉(𝒃𝒆𝒔𝒕)

−
𝟏

𝟐
𝑩𝒋 (3.19)

Step 7: New queens are produced for leading new colonies after certain times nuptial

flights happened in all colony. This new queen creation process is performed by

Univ
ers

ity
 of

 M
ala

ya

21

reproducing all the haploid gene [𝐿ℎ]𝐶𝑖
 and refer gene [𝑅ℎ]𝐶𝑖

 same as in Step 1 and

continue with Step 2. In this new colonies generated in Step 1 and Step 2, one of the refer

gene [𝑅ℎ]𝐶𝑖
 is replaced with current generation’s best gene 𝐿ℎ(𝑏𝑒𝑠𝑡). This shows the fittest

queen survived and brings forward the fittest gene to the next generation. The equation

of fittest gene replacement process is shown as:

[𝑹𝒉]𝑪𝒓𝒂𝒏𝒅𝒐𝒎
= 𝑳𝒉(𝒃𝒆𝒔𝒕) (3.20)

The evolution process could be considered converged when there is no consequential

improvement in 𝑓(𝐿ℎ(𝑏𝑒𝑠𝑡)). The best gene 𝐿ℎ(𝑏𝑒𝑠𝑡) is taken as the final solution for the

optimization problem if either of the 2 criteria listed below is valid or else the algorithm

continues from Step 2 to 7 until convergences to minimum solution:

• If maximum number of iterations 𝐺 exceeded.

• If SDAA saturated by satisfying these conditions shown below:

‖𝐦𝐚𝐱(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈

− 𝐦𝐚𝐱(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈−𝟏

‖ ≤ 𝜺 (3.21)

And

 ‖𝐦𝐢𝐧(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈

− 𝐦𝐢𝐧(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈−𝟏

‖ ≤ 𝜺 (3.22)

And

 ‖𝐦𝐚𝐱(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈

− 𝐦𝐢𝐧(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈

‖ ≤ 𝜺 (3.23)

Univ
ers

ity
 of

 M
ala

ya

22

The pseudo code of SDAA is shown below and SDAA optimization flowchart is

shown in Figure 3.2.

VARIABLES:

 dimension = number of dimension that problem defined.

 ub, lb, boundary= upper and lower bound, boundary defined by problem

 current boundary= boundary shrunken and used in every iteration in the program

 shrinking factor, r = between 0 and 1

 shrinking limit= minimum shrunken boundary

 input digit precision = input decimal size used for function evaluator

 max iteration = limit of iteration

 no. of colony = no. of solution take part in the program

 max inner loop = limit of inner loop

 max saturation count = to stop inner loop when saturated

 𝜀 = convergence parameter to check the maximum convergence

 function_evaluator () = objective function

MAIN PROGRAM

START

 //low precision input for 1st iteration

Input parameters: input digit precision, dimension, number of colony, ub, lb,

boundary, r, 𝜀, maximum iteration, maximum inner loop, saturation count, shrinking

limit.

 boundary = ub – lb

 current boundary = boundary

Univ
ers

ity
 of

 M
ala

ya

23

 //generate random [Lh](C(i)) as initial solutions

 [Lh](C(i)) = random × current boundary + lb

 Call bit size calculation(Lh); //count bit size needed

 Call floating_to_binary convertion(Lh);

 Best current L = min function_evaluator (Lh)

 Rh = complement of (Lh);

While (iteration <= max iteration OR boundaries > shrinking limit OR 𝜀 satisfied)

 While (inner loop < max inner loop OR saturation count<max saturation count)

 Diploid form, Od= [Lh](C(i)) [Rh](C(i))

 For colony= 1 to number of colony

 For variable= 1 to no. of dimension

 Generate offspring using copying process as describe in Step 3

 EndFor

 //test the problem function using Lh(new)All

 f(Lh(best))= min function_evaluator (Lh(new)All);

 Nuptial Flight as describe in Step 5

 EndFor

 saturation count // check saturation

 EndWhile

 Best current L= minimum result from all colonies [L(h(best))] (C(i))

 Check: iteration = max iteration? Boundary < shrinking limit? 𝜀 satisfied?

Univ
ers

ity
 of

 M
ala

ya

24

 If Check == yes for any of it

 final answer found as Best current L

 break;

 End If

 //before new iteration

 current range=r × current range;

 ub = Best current L + 0.5 × current range

 lb = Best current L - 0.5 × current range

 boundary =ub-lb

 Call bit size calculation(Lh); //count bit size needed

 Call floating_to_binary convertion(Best current L);

 [Lh](C(i)) = random × current boundary + lb; //generating new Lh

 [Rh](C(i)) = complement of ([Lh](C(i))); // generate new queens

 rand = random integer between number of colony

 [Rh] C(rand)= Best current L; //bring forward fittest gene to next generation

 End While

STOP

Univ
ers

ity
 of

 M
ala

ya

25

Figure 3.2: Flowchart of SDAA

Initialize decimal points of precisions, number of

Colonies 𝐶, number of iterations 𝐺, Shrinking Factor 𝑟,

Saturation Number 𝑆 and convergence parameter 𝜀

Convert 𝐿ℎ to binary form.

Assign 𝑅ℎ = 𝐿ℎ
̅̅ ̅ and paring as Diploid

Generate offspring male ants.

Choose fittest male ants for mating process.

Fitness 𝑓(𝑥) = min 𝑓(𝐿ℎ)

Record best male ant, 𝐿ℎ(𝑏𝑒𝑠𝑡)

Nuptial

flight Search

Space

Shrinking

Create new

queen

Accept 𝐿ℎ(𝑏𝑒𝑠𝑡) as the Final Solution

Saturatio

Convergence?

Generate 𝐿ℎ.

Start

End

N

Yes
No

Yes

Univ
ers

ity
 of

 M
ala

ya

26

3.2 Modified Seed Disperser Ant Algorithm for Data Clustering

K-means clustering is a type of unsupervised learning, which able to solve or cluster

the data given without defined categories or groups. K-means clustering is aiming to find

and groups the data and the number of groups given. Based on the features of every data

point provided K-means continually assign every data point to one of the groups. All the

data points are clustered based on feature similarity. K-means clustering target to partition

the data points into clusters in which each observation belongs to the cluster with the

nearest mean, serving as a prototype of the cluster.

The SDAA is modified name as Modified Seed Disperser Ant Algorithm (MSDAA)

(Chang, Kanesan, Kulkarni, & Ramiah, 2017) to achieve improvement in terms of

accuracy along with reducing function evaluations. This is implemented by modifying

the Step 1 and cutting out Step 6 and Step 7 from SDAA. The control parameters such as

number of colony 𝐶 , decimal points of precisions for input variables, and saturation

number 𝑆 are set in the initialization stage. The upper boundary 𝑈𝐵𝑗 and lower

boundary 𝐿𝐵𝑗 are generated same as original SDAA.

In Step 1, K-means search is used rather than using random creating initial solutions.

The centroid found by using K-means search is used as the refer point to generate Male

ant gene 𝐿ℎ. The search boundary is shrink by resized to 75% of the original boundary.

The male ant gene 𝐿ℎ is produced randomly around the reference point within the search

boundary.

Next, continue with the same steps from Step 2 to Step 5 as in original SDAA. 𝐿ℎ(𝑏𝑒𝑠𝑡)

will be chosen as the final solution once Saturation in Step 5 is achieved. Step 6 and Step

7 of the original SDAA are cut out as it consumes large number of function evaluations.

The modification implemented on SDAA resulted in impressive reductions of function

evaluations for data clustering in comparison with original SDAA as well as others

Univ
ers

ity
 of

 M
ala

ya

27

optimization algorithms. MSDAA is developed by adopting K-means search potential

solution that speed up the overall search process and remove the excess steps of new

queen spawn iteration from original SDAA. This enables MSDAA to obtain better result

in shorter period of time in conjunction to SDAA as well as other algorithms.

In clustering, for a set of data, 𝐷 with 𝑀 data object is clustered to 𝐾 sets of clusters:

𝑫 = [𝒀𝟏, 𝒀𝟐, … , 𝒀𝑴] (3.24)

Where

 𝒀𝒊 ∈ 𝕽𝑫 (3.25)

 Clusters, 𝑺 = [𝑿𝟏, 𝑿𝟐, … , 𝑿𝑲] (3.26)

Each data in set 𝐷 will be allocated in one of the 𝐾 clusters in such way that it will

minimize the objective function. The objective function, inter-cluster variance is defined

as the sum of squared Euclidean distance between each object 𝑌𝐼 and the center of the

cluster 𝑋𝐽 which it belongs (Krishnasamy et al., 2014). This objective function is given

by equation (3.27):

𝑭(𝑿, 𝒀) = ∑ 𝑴𝒊𝒏 ‖𝒀𝑰 − 𝑿𝑱‖
𝟐𝑴

𝑰=𝟏 (3.27)

Where 𝐽 = 1, 2, … , 𝐾

Also,

𝑿𝑱 ≠ ∅ (3.28)

 Where ∀𝐽{1, 2, … , 𝐾}

𝑿𝑰 ∩ 𝑿𝑱 ≠ ∅ (3.29)

 Where ∀𝐼 ≠ 𝐽 and ∀𝐼, 𝐽{1, 2, … , 𝐾}

⋃ 𝑿𝑱
𝑲
𝑱=𝟏 = 𝑫 (3.30)

Univ
ers

ity
 of

 M
ala

ya

28

For data clustering problems, the objective function 𝑓(𝑥) = 𝐹(𝑋, 𝑌) is represented by

the sum of squared Euclidean distance between each object 𝑌𝐼 and the center of the cluster

𝑋𝐽 as shown in equation (3.31).

Minimize 𝒇(𝑳𝒉) = 𝒇(𝒍𝟏, … 𝒍𝒋, … 𝒍𝑵) (3.31)

Subject to

 𝜳𝒋
𝒍𝒐𝒘𝒆𝒓 ≤ 𝒍𝒋 ≤ 𝜳𝒋

𝒖𝒑𝒑𝒆𝒓
 (3.32)

Where 𝑗 = 1, … 𝑁

In MSDAA, the Male ant gene 𝐿ℎ = [𝑙1, … 𝑙𝑗 , … 𝑙𝑁] is representing the center of the

cluster, where dimension 𝑋𝐽 = [𝑥1, … 𝑥𝑗 , … 𝑥𝑁] is represented by 𝑙𝑗.

Where 𝑳𝒉 = [𝒙𝟏, … 𝒙𝒋, … 𝒙𝑵] = [𝒍𝟏, … 𝒍𝒋, … 𝒍𝑵] (3.33)

Thus, the objective is shown as:

𝒇(𝒙) = 𝑭(𝑳𝒉, 𝒀) (3.34)

The K-means Clustering algorithm work in few steps. First, k-means clustering the

data into k groups where k is predefined. Second, random k points are selected as cluster

centres. Third, objects that closest to the cluster centres are assigned to the cluster

according to the Euclidean distance function. Forth, calculate the centroid or mean of all

objects in each cluster. Then, repeat the second step to forth step until the same points

are assigned to each cluster in consecutive rounds. Maximum iteration as a limit to

prevent infinite looping.

Univ
ers

ity
 of

 M
ala

ya

29

The K-means pseudo code is shown below:

Input: 𝐷 = { 𝐷1, 𝐷2, 𝐷3, … , 𝐷𝑀}

 𝐾 = number of clusters

 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 = limit of iteration

Output: 𝐶 = { 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑀} (set of cluster centroids)

 𝐿 = {𝑙(𝑒) | 𝑒 = 1, 2, … , 𝑀} (set of cluster labels of 𝐷)

foreach 𝑐𝑖 ∈ 𝐶 do

 𝑐𝑖 ← 𝑒𝑗 ∈ 𝐷 (e.g. random selection)

end

foreach 𝑒𝑖 ∈ 𝐸 do

 𝑙(𝑒𝑖) ← 𝑎𝑟𝑔𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒𝑖, 𝑐𝑗) 𝑗 ∈ {1, … , 𝐾}

end

𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒;

 𝑖𝑡𝑒𝑟 ← 0;

Univ
ers

ity
 of

 M
ala

ya

30

repeat

 foreach 𝑐𝑖 ∈ 𝐶 do

 𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑐𝑖);

 end

 foreach 𝑒𝑖 ∈ 𝐸 do

 𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒𝑖, 𝑐𝑗) 𝑗 ∈ {1, … , 𝐾} ;

 If 𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ≠ 𝑙(𝑒𝑖)

 𝑙(𝑒𝑖) ← 𝑚𝑖𝑛𝐷𝑖𝑠𝑡;

 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑡𝑟𝑢𝑒;

 else

 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒;

 end

 end

 𝑖𝑡𝑒𝑟 + +;

until 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 = 𝑡𝑟𝑢𝑒 and 𝑖𝑡𝑒𝑟 ≤ 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟

Univ
ers

ity
 of

 M
ala

ya

31

The output centroids of K-means, 𝐶 = { 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑀} will bring into SDAA for

optimization. Output centroids of K-means 𝐶 will use as initial generated centroids for

SDAA, 𝐿ℎ = 𝐶. Pseudo code of MSDAA is shown below and the flowchart of MSDAA

is shown in Figure 3.3.

VARIABLES:

 dimension = number of dimension that problem defined.

 ub, lb, boundary= upper and lower bound, boundary defined by problem

 current boundary= boundary shrunken and used in every iteration in the

program

 input digit precision = input decimal size used for function evaluator

 no. of colony = no. of solution take part in the program

 max inner loop = limit of inner loop

 max saturation count = to stop inner loop when saturated

 𝜀 = convergence parameter to check the maximum convergence

function_evaluator () = objective function

MAIN PROGRAM

START

 //low precision input for 1st iteration

 Input parameters: input digit precision, dimension, number of colony, ub, lb,

boundary, r, 𝜀, maximum inner loop, saturation count

 //Set upper and lower boundaries

 boundary = ub – lb

 current boundary = boundary

Univ
ers

ity
 of

 M
ala

ya

32

 //generate Lh using K-means as initial solutions

 Lh= output centroids of K-means, 𝐶 = { 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑀}

 Call bit size calculation(Lh); //count bit size needed

 Call floating_to_binary convertion(Lh);

 Rh = complement of (Lh);

 While (inner loop < max inner loop OR saturation count<max saturation count)

 For colony= 1 to number of colony

 For variable= 1 to no. of dimension

 Generate offspring using copying process as describe in Step 3

 EndFor

 //test the problem function using Lh(new)All

 f(Lh(best))= min function_evaluator (Lh(new)All);

 Nuptial Flight as describe in Step 5

 EndFor

 saturation count // check saturation

 EndWhile

 Best current L= minimum result from all colonies [L(h(best))] (C(i))

 final answer found as Best current L

STOP

Univ
ers

ity
 of

 M
ala

ya

33

Figure 3.3: Flowchart of MSDAA

Comparing flowchart of SDAA on Figure 3.2 and flowchart of MSDAA on Figure 3.3,

SDAA contain 2 different loops where MSDAA only have 1 loop. K-means’ result

provide a good starting point and continue with SDAA search. This improves the

efficiency and accuracy of the solution. Initial convergence is done by K-means. With the

converged solution, SDAA explore to get better solution until saturation.

Initialize number of colonies 𝐶, decimal points of

precisions, and Saturation Number 𝑆

Step 2: Convert 𝐿ℎ to binary form.

Assign 𝑅ℎ = 𝐿ℎ
̅̅ ̅ and Generate Diploid

Step 3: Generate new male ants.

Step 4: Choose male ants for mating process.

Fitness 𝑓(𝑥) = min 𝑓(𝐿ℎ)

Record best male ant, 𝐿ℎ(𝑏𝑒𝑠𝑡)

Step 5:

Nuptial

Flight

Accept 𝐿ℎ(𝑏𝑒𝑠𝑡) as the Final Solution

Saturation 𝑆?

Step 1 K-means: Generate 𝐿ℎ using K-means.

Start

End

N

Yes

Univ
ers

ity
 of

 M
ala

ya

34

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Classical and Composite Benchmark Problem Solving

30 dimensional benchmark problems of Ackley function (Adorio & Diliman, 2005),

Rastrigin function (Molga & Smutnicki, 2005), Rosenbrock function (Shang & Qiu,

2006) and Sphere function (Molga & Smutnicki, 2005) are used for SDAA validation.

Rosenbrock function has the minimum in a deep and narrow parabolic valley with a flat

bottom. A large number of iterations needed for the gradient based methods to achieve

the global minimum (Shang & Qiu, 2006). Sphere function is unimodal and strongly

convex function. Ackley function is highly multimodal with unique global minimum

(Kulkarni & Tai, 2009). The Rastrigin function has a lot of local minima. It is highly

multimodal, but the minima locations are regularly distributed (Xu et al., 2013). These

functions have its own difficulty to be optimized and are commonly used as benchmarks

in literature to evaluate the performance of optimization techniques. 30 times of

simulations were executed using MATLAB version R2012a in computer with Intel i7-

4770 (3.40GHz) processor and 12GB RAM run on Windows 7 operation system.

The results of PSO, IPSO, EPSO, GPSO, CPSO, CS and SDAA are shown in Table

4.1. By comparing the results between all this optimization techniques, the results show

SDAA is obtained better result. The average function evaluations (FEs) of SDAA

achieving these results are recorded in Table 4.1. Most of the result shows that close to

theoretical global minimum is obtained by SDAA.

From Table 4.1, SDAA use more FEs to solve Rastrigin function and Rosenbrock

function. This is because SDAA need more exploratory search for exact minimum point

out of a lot of local minima for Rastrigin function and also the process search through the

minimal valley on the Rosenbrock function. The higher the FEs needed, the longer the

time used for aching the solution. The result of others algorithm in Table 4.1 is referred

Univ
ers

ity
 of

 M
ala

ya

35

from articles, this table is mainly to compare the best, mean, and the standard deviation

(Std.) of the result found, FEs and time is recorded for future research comparison.

Table 4.1: Simulation Result of 30 dimensional test problems

 Sphere Rosenbrock Rastrigin Ackley

PSO

Best

Mean

Std.

1.22E+03

3.70E+03

1.53E+03

1.79E+03

1.17E+04

7.31E+03

9.38E+01

1.48E+02

2.63E+01

9.48E+00

1.27E+01

1.45E+00

IPSO

Best

Mean

Std.

8.71E+02

2.25E+03

8.05E+02

7.16E+02

5.47E+03

5.08E+03

6.06E+01

1.19E+02

2.41E+01

7.48E+00

1.00E+01

1.16E+00

EPSO

Best

Mean

Std.

5.40E+03

1.14E+04

3.85E+03

1.62E+04

9.36E+04

7.21E+04

1.36E+02

2.35E+02

3.69E+01

1.30E+01

1.63E+01

1.14E+00

GPSO

Best

Mean

Std.

1.47E-10

4.51E-06

6.10E-06

5.36E-07

3.26E-05

5.57E-05

4.47E-07

2.96E-05

4.28E-05

5.59E-05

4.23E-04

2.83E-04

CPSO

Best

Mean

Std.

1.43E-81

3.04E-12

N/A

1.34E-05

4.81E-02

N/A

0.00E+00

2.52E-03

N/A

6.33E-07

1.38E-04

N/A

CS

Best

Mean

Std.

4.29E-15

6.04E-13

N/A

N/A

N/A

N/A

1.77E-15

4.72E-09

N/A

1.65E-07

1.10E-06

N/A

SDAA

Best

Mean

Std.

0.00E+00

0.00E+00

0.00E+00

1.74E-07

4.12E-05

7.70E-05

0.00E+00

0.00E+00

0.00E+00

8.88E-16

8.88E-16

0.00E+00

FEs 11625 54934 22270 16375

Time (s) 13.29 160.08 19.67 16.64

Univ
ers

ity
 of

 M
ala

ya

36

The Composite benchmark functions from Congress on Evolutionary Computation

(CEC) 2005 special session (Liang, Suganthan, & Deb, 2005) are shown in Appendix A

also solved using SDAA. These Composite benchmarks are 10 dimensional benchmarks.

The Composite benchmark functions are complicated optimization problems. These

benchmarks are challenging to be solve as they are expanded, shifted, rotated, and merged

with multiple variation of the classical functions. Furthermore these benchmark functions

having a lot local optima which provide higher complexity.

The results of Composite benchmark functions are recorded in Table 4.2. There are

several benchmarks with better result are shown by comparing the results of SDAA with

GWO, PSO, GSA, DE and CMA-ES. As specially CF1, CF2 and CF5 which SDAA able

to obtain lowest mean result and lowest standard deviation (Std.) among all this

algorithms. As No Free Lunch Theorem stated, no algorithm able to work perfectly on

every problem. In Table 4.2, none of an algorithm successfully solved all the Composite

benchmark functions. SDAA perform well on 3 out of 6 Composite benchmark functions.

Each Composite benchmark function is formed by combining different kinds of

conditions. The combination of different conditions problem becomes a big challenge for

every type of algorithms to solve.

Univ
ers

ity
 of

 M
ala

ya

37

Table 4.2: Result of composite benchmark functions

 CF1 CF2 CF3 CF4 CF5 CF6

SDAA
Mean 2.88E-17 16.4943 179.3623 335.8192 6.4585 457.4799

Std. 1.09E-17 6.4343 40.6356 77.7292 2.5709 43.3633

GWO
Mean 43.8354 91.8008 61.4377 123.1235 102.1429 43.1426

Std. 69.8614 95.5518 68.6881 163.9937 81.2553 84.4857

PSO
Mean 100 155.91 155.91 314.3 83.45 861.42

Std. 81.65 13.176 13.176 20.066 101.11 125.81

GSA
Mean 6.63E-17 200.6202 180 170 200 142.0906

Std. 2.78E-17 67.7208 91.8936 82.3272 47.1404 88.8714

DE
Mean 6.75E-02 28.759 144.41 324.86 10.789 490.94

Std. 1.11E-01 8.6277 19.401 14.784 2.604 39.461

CMA-

ES

Mean 100 161.99 214.06 616.4 358.3 900.26

Std. 188.56 151 74.181 671.92 168.26 8.32E-02

Figure 4.1: Plot for Composite benchmark functions CF1

Univ
ers

ity
 of

 M
ala

ya

38

Figure 4.1 shows the plot for Composite benchmark functions CF1 using SDAA. From

the shape of the plot, every haploid are converging to its saturation point. Exploration

start again the search, then continue on convergence to its saturation point. The

exploration search and exploitation search repeated until all the saturation point come to

the same. There are a lot of peak on every start of exploration search, the enlarged plot is

shown on Figure 4.2 or better vision.

Figure 4.2: Enlarged plot of Composite benchmark functions CF1

Figure 4.2 shows the enlarged version of Figure 4.1 between 400th to 540th generations.

Nuptial flight process can be observed in Figure 4.2 where the fitness haploid of male ant

represented by 𝐿ℎ change by generations. Subsequently, the peak in the plot is due to

migration of new fit queen and random colony generated near new fit queen in between

the shrunken boundary. The random generated colonies’ queens and male ant shows

minor reduction in fitness, however it exploring and converged to better solutions.

Convergence towards the best solution in SDAA is done using a shrinking process.

This shrinking process is control by a parameter namely shrinking factor. The search will

400 420 440 460 480 500 520

0

20

40

60

80

100

120

140

160

180

Generation

F
(x

)

haploid L
1

haploid L
2

haploid L
3

haploid L
4

haploid L
5

haploid L
6

haploid L
7

haploid L
8

Univ
ers

ity
 of

 M
ala

ya

39

shrinks towards the fittest haploid value in the given fixed boundary. SDAA expend local

search to decrease the duty of localize search accountable by shrinking factor. All SDAA

simulation shrinking factor is set to 0.75 and the colony size is set to 8 on every test

benchmarks in this research. To expressing altruistic behaviour, other haploids referring

the best haploid found as refer gene to enhance their corresponding fitness. In other hand,

the best haploid also able to enhance its fitness by referring less fit haploid as an

exploration search. This lead SDAA achieved the global optimum by all haploids locate

global fitness via robust local search on altruistic haploid.

4.2 Constrained Engineering Problem Solving

The single-objective test problem (Floudas & Pardalos, 1990) used in many research

(Ben Hadj-Alouane & Bean, 1997; Ben Hamida & Schoenauer, 2002; Coello & Cortés,

2004; Koziel & Michalewicz, 1999; Michalewicz & Attia, 1994; Yıldız, 2009; Yoo &

Hajela, 1999) as test benchmark has 13 variables and 9 inequality constraints. Tension

spring design problem was described by Belegundu (Belegundu & Arora, 1985) as

minimizing the weight of a tension spring subject to constraints on minimum deflection,

shear stress, surge frequency and outer diameter. The design variables are the mean coil

diameter 𝑥1 , wire diameter 𝑥2 and number of active coils 𝑥3 . Pressure vessel design

problem is taken from Kannan and Kramer design problem (Kannan & Kramer, 1994).

This design problem is based on a cylindrical vessel capped at both end with

hemispherical heads. The objective is to minimize the total cost, include the cost of

material, forming and welding. Four design variables include thickness of the shell 𝑥1,

thickness of the head 𝑥2, inner radius 𝑥3, and length of cylindrical section of the vessel

(not include heads) 𝑥4. The thickness of the shell and head, 𝑥1 and 𝑥2 are integer multiply

with 0.0625 inch, which are the available thickness of rolled steel plates. Inner radius 𝑥3,

and length of cylindrical section of the vessel 𝑥4 is continuous variables. From the

minimum result found, 𝑥1 and 𝑥2 is rounded up to the closest valid thickness (integer

Univ
ers

ity
 of

 M
ala

ya

40

multiply with 0.0625 inch). SDAA continues the optimization process by using 𝑥1 and 𝑥2

found. Available mathematical analysis of this problem proves that 6,059.7143 is the

global minimum (X.-S. Yang, Huyck, Karamanoglu, & Khan, 2013). Welded beam

design problem is firstly proposed by Coello (Coello Coello, 2000). A welded beam is

designed for minimum cost subject to constraints on shear stress 𝜏, bending stress in the

beam 𝜎, buckling load on the bar 𝑃𝐶, end deflection of the beam 𝛿, and side constraints

with the four design variables 𝑥1, 𝑥2, 𝑥3, and 𝑥4 (Rao & Rao, 2009).

SDAA shows the best result with standard deviation, Std. = 0 and lowest FEs in

comparison with other algorithms in Table 4.3. For the result of tension spring design

problem in Table 4.4, SDAA has the best result equal to RHPSO’s best result which is

the minimum found so far. RHPSO and DELC have slightly better mean result compared

to SDAA in tension spring design problem. However, SDAA used lowest FEs of 17125

to solve tension spring design problem in comparison with all algorithms shown in Table

4.4. Table 4.5 show the result comparison for pressure vessel design problem. SDAA able

to achieve best result and best mean result with lowest Std. and FEs. For the result of

welded beam design problem in Table 4.6, SDAA shows the best and mean result and

lowest FEs compared to all others algorithms.

The sample convergence histories for two problems namely Tension Spring Design

Problem and Welded Beam Design Problem are presented in Figure 4.3 and Figure 4.5

respectively. The position of 𝐿ℎ of each colony in every nuptial flight in the convergence

plot shows the fitness 𝐿ℎ that mated with the current colony queen. The spike or peak of

the convergences plots shows the new queen generation which regenerate all colonies

with shrunken search space. The spike can be observed clearly in magnified convergence

plots in Figure 4.4 and Figure 4.6.This perturbation helps the optimization to escape local

optima. Despite the perturbation, the solution converged to the minimum with rapid

Univ
ers

ity
 of

 M
ala

ya

41

improvement as shown in Figure 4.3 convergence of the Tension Spring Design Problem.

This is similar in Figure 4.5 that shows the convergence of Welded Beam Design

Problem. Again, the fitness/solution of male ants in every new colony was improved

compared to previous colony as emergence of young queen/ colony helps to improve the

fitness of male ants. In SDAA, both nuptial flight and young queen production helps the

optimization process in terms of exploitation and exploration respectively.

Table 4.3: Result of Single Objective Test Problem

Methods Best Mean Worst Std. FEs

SDAA -15.000000 -15.000000 -15.000000 0 2812

RHPSO (Xu et al.,

2013)
-15.000000 -14.921875 -13.828125 0.297314 100000

PSO (Yıldız, 2009) -15.000000 -14.876000 -14.681900 0.113000 100000

Hybrid GA (Coello

& Cortés, 2004)
-14.784100 -14.526600 -13.841700 0.233500 150000

Modified GA (Yoo

& Hajela, 1999)
-5.273500 -3.743500 -2.425500 0.969600 150000

ASCHEA (Ben

Hamida &

Schoenauer, 2002)

-15.000000 -14.840000 N/A N/A 1500000

Homomorphous

Mappings (Koziel

& Michalewicz,

1999)

-14.786400 -14.708200 -14.615400 N/A 1000000

GA (Ben Hadj-

Alouane & Bean,

1997)

-5.1655900 -3.6400400 -2.7251800 0.6062400 N/A

Genocop II

(Michalewicz &

Attia, 1994)

-7.3433400 -5.0713600 -3.5953600 0.7724700 N/A

The result in Table 4.3 shows that only SDAA able to achieve 0 standard deviation.

This mean SDAA able to solve Single Objective Test Problem every time without error.

Result from other algorithms show that they have chances to trap in local minima that not

always achieved the best result or theoretical result. The Result also shows SDAA have

the advantage to achieve the best result in low FEs.

Univ
ers

ity
 of

 M
ala

ya

42

Table 4.4: Result of Tension Spring Design Problem

Methods Best Mean Worst Std. FEs

SDAA 0.01266523 0.01266975 0.01267941 5.66E-06 17125

RHPSO (Xu et al.,

2013)
0.01266523 0.01266523 0.01266524 1.54E-09 30000

PSO (Yıldız,

2009)
0.01266527 0.01267300 0.01270800 6.24E-06 30000

Hybrid GA

(Coello & Cortés,

2004)

0.01268100 0.01274200 0.01297300 5.90E-05 80000

Self-Adaptive

Penalties GA

(Coello Coello,

2000)

0.01270480 0.01276900 0.01282200 3.94E-05 900000

DE (Lampinen,

2002)
0.0126702 0.012703 0.012790 2.7E−05 204800

DELC (Wang &

Li, 2010)
0.01266523 0.01266527 0.01266558 1.3E−07 20000

CPSO (He &

Wang, 2007a)
0.0126747 0.0127300 0.0129240 5.20E−04 240000

(μ + λ)-ES

(Mezura-Montes

& Coello, 2005)

0.012689 0.013165 N/A 3.9E-04 30000

Tension Spring Design Problem is giving some challenge to SDAA. Although the

mean result of SDAA not the best, SDAA still able to found the best result from 30 times

of test done. DELCE also able to achieve the best result and perform slightly better than

SDAA. RHPSO have the lowest standard deviation in Table 4.4 and the best result

slightly higher compare SDAA and DELCE. SDAA and DELCE perform well in solving

Tension Spring Problem that using a low number of FEs. The best result is important

because in real world engineering problem, a slightly better result may affect the cost and

quality of the production.

Univ
ers

ity
 of

 M
ala

ya

43

Table 4.5: Result of Pressure Vessel Design Problem

Methods Best Mean Worst Std. FEs

SDAA 6059.7143 6059.7143 6059.7143 0 28140

RHPSO (Xu et al.,

2013)
6059.7143 6059.7145 6059.7183 0.0007 30000

PSO (Yıldız, 2009) 6059.7144 6097.4460 6156.5700 35.7810 30000

Hybrid GA (Coello

& Cortés, 2004)
6061.1229 6734.0848 6738.0602 457.9959 150000

Constraint-Handling

GA (Coello Coello

& Mezura Montes,

2002)

6059.9463 6177.2533 6469.3220 130.9297 80000

Self-Adaptive

Penalties GA

(Coello Coello,

2000)

6288.7445 6293.8432 6308.1497 7.4133 900000

CPSO (He & Wang,

2007a)
6061.0777 6147.1332 6363.8041 86.45 240000

HPSO (He & Wang,

2007b)
6059.7143 6099.9323 6288.6770 86.20 81000

CDE (Huang,

Wang, & He, 2007)
6059.7340 6085.2303 6371.0455 43.0130 204800

In Table 4.5, SDAA again show its potential that solving Pressure Vessel Design

Problem with best result and 0 standard deviation. No other algorithms able to have

persistency to get the best result as SDAA in solving this problem. Although RHPSO and

HPSO able to achieve the best result, the FEs used in solving this problem is higher

compare SDAA. FEs is taking into account to reduce the time and computation power

used for solving the problem.

Univ
ers

ity
 of

 M
ala

ya

44

Table 4.6: Result of Welded Beam Design Problem

Methods Best Mean Worst Std. FEs

SDAA 1.723703 1.724654 1.728197 0.00453 18197

Self-Adaptive Penalties GA

(Coello Coello, 2000)
1.748309 1.771973 1.785835 0.0112 900000

Constraint-Handling GA

(Coello Coello & Mezura

Montes, 2002)

1.728226 1.792654 1.993408 0.0747 80000

CAEP (Coello Coello &

Becerra, 2004)
1.724852 1.971809 3.179709 0.443 50020

CPSO (He & Wang, 2007a) 1.728024 1.748831 1.782143 0.0129 240000

HPSO (He & Wang, 2007b) 1.724852 1.749040 1.814295 0.0401 81000

PSO-DE (H. Liu, Cai, &

Wang, 2010)
1.724852 1.724852 1.724852 6.7E−16 66600

NM-PSO (Zahara & Kao,

2009)
1.724717 1.726373 1.733393 0.00350 80000

DE (Lampinen, 2002) 1.733461 1.768158 1.824105 0.0221 204800

CDE (Huang et al., 2007) 1.73346 1.76815 N/A N/A 240000

(μ + λ)-ES (Mezura-Montes

& Coello, 2005)
1.724852 1.777692 N/A 0.088 30000

ABC (Akay & Karaboga,

2012)
1.724852 1.741913 N/A 0.031 30000

SDAA perform well in solving Welded Beam Design Problem as shown in Table 4.6.

The FEs used is for more lower compare other algorithms. Although SDAA might get the

worst solution that far away from the best solution. But the mean result is close to the best

result shows that the chances to get worst result is low. This is the reason mean result is

important on solving any optimization problems.

Table 4.7 Parameters used for SDAA for constrained engineering problem solving

𝐶 𝑆 𝐺 𝑟 𝜀

8 8 300 0.90 1E-05

Univ
ers

ity
 of

 M
ala

ya

45

Table 4.7 record the parameters used in SDAA to solve all the constrained engineering

problem. There is 5 parameter use to control SDAA behaviours. This is considered too

many parameters to control and hard to achieve optimum conditions that able to solve all

kinds of problem. Enhancement needed to reduce the parameter used and improve the

performance.

Figure 4.3: Convergence of Tension Spring Design Problem

Figure 4.3 shows the convergence of SDAA on solving Tension Spring Problem. The

plot shows the peak on every exploration search far away from the minimum. This is the

reason and behaviour of SDAA which cause the chances trap on local minima. Although

SDAA not always getting the best result in solving Tension Spring Problem, SDAA still

manage to get close to best result as shown in Table 4.4. Form Figure 4.3, the convergence

of SDAA shown is very robust in the exploitation search.

Univ
ers

ity
 of

 M
ala

ya

46

Figure 4.4: Magnified Convergence of Tension Spring Design Problem between

nuptial flights 75 to 240

In Figure 4.4, the plot shows the enlarged or magnified plot of Figure 4.3. From this

plot, the different haploid started different point at the start of every exploration. Almost

all haploid converged and saturated to the same saturation point and next exploration

search will start again. This behaviour of SDAA shown the exploration and exploitation

search happened.

80 100 120 140 160 180 200 220

0.015

0.02

0.025

0.03

0.035

Nuptial Flight

F
(x

)

 L
h
 for C

1

 L
h
 for C

2

 L
h
 for C

3

 L
h
 for C

4

 L
h
 for C

5

 L
h
 for C

6

 L
h
 for C

7

 L
h
 for C

8

Univ
ers

ity
 of

 M
ala

ya

47

Figure 4.5: Convergence of Welded Beam Design Problem

Figure 4.5 shows the plot of SDAA solving Welded Beam Design Problem. The Plot

shows that the convergence is fast and almost saturation just after 500 Nuptial Flight. This

shows that SDAA easy to get near best solution for solving Welded Beam Design

Problem. In another point of view, this is also the reason that SDAA might easily trap in

local minima if the number of haploid is not enough to randomly explore the solution.

 Univ
ers

ity
 of

 M
ala

ya

48

Figure 4.6: Magnified Convergence of Welded Beam Design Problem between

nuptial flights 50 to 260

Figure 4.6 shows magnified or enlarged the plot of SDAA solving Welded Beam

Problem with the fast saturation can see clearly. This means at the starting plot of each

exploration peak, SDAA found nearer to saturation point very fast. This behaviour of

SDAA solving Welded Beam Design Problem may give an advantage of low FEs used,

but also might have chances to cause SDAA trap in local minima.

60 80 100 120 140 160 180 200 220 240

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Nuptial Flight

F
(x

)

 L
h
 for C

1

 L
h
 for C

2

 L
h
 for C

3

 L
h
 for C

4

 L
h
 for C

5

 L
h
 for C

6

 L
h
 for C

7

 L
h
 for C

8

Univ
ers

ity
 of

 M
ala

ya

49

4.3 Data Clustering Problem Solving

The SDAA and MSDAA were coded in MATLAB 8.1 (R2012a) running in computer

with Windows 7 operating system, 12GB RAM and Intel i7-4770, 3.40GHz processor.

The simulations of every data clustering problem were carried out for 30 times. For data

clustering optimization, six real data sets from UCI Machine Learning Repository was

used to validate SDAA. Each data set has different numbers of clusters, data objects and

features as described in the Table 4.8 below (Bache & Lichman, 2013).

Table 4.8: UCI Machine Learning Repository Data Set Information

Dataset
Number of

data set, N

Dimension,

D

Number of

clusters, K

Iris 150 4 3

Wine 178 13 3

Breast Cancer Wisconsin 683 9 2

Contraceptive Method Choice

(CMC)
1473 10 3

Glass 214 9 6

Vowel 871 3 6

Table 4.9 to Table 4.14 show the clustering results of different algorithms solving these

dataset listed in Table 4.8. By comparing the best and mean result, MSDAA perform very

well where it able to achieved minimum result for all the cases. MSDAA also shows that

low standard deviation (Std.) which mean not frequent trap on local minima. In other

hand, MSDAA have the lowest function evaluation (FEs) compared to all other

algorithms in all these problems. It shows great improvement when comparing the FEs

of MSDAA and SDAA in Table 4.15.

Univ
ers

ity
 of

 M
ala

ya

50

Table 4.9: Simulation result of Iris dataset

Criteria Best Mean Worst Std. FEs

GA 113.9865 125.1970 139.7782 14.563 38128

SA 97.4573 99.9570 102.0100 2.018 5314

TS 97.3659 97.8680 98.5694 0.530 20201

ACO 97.1007 97.1715 97.8084 0.367 10998

HBMO 96.7520 96.9531 97.7576 0.531 11214

PSO 96.8942 97.2328 97.8973 0.347 4953

CI 96.6557 96.6561 96.6570 0.0002 7250

K-MCI 96.6554 96.6554 96.6554 0 3500

SDAA 96.6554 96.6554 96.6554 0 7080

MSDAA 96.6554 96.6554 96.6555 0 2800

Table 4.9 shows the result of solving Iris clustering problem data set. SDAA perform

very well to achieve the best result with 0 standard deviation. With the improvement or

modification of adding K-means to SDAA, MSDAA sacrificed the extra exploratory

search to lower down the FEs. This shows MSDAA have a great improvement on

reducing FEs and still able to get the targeted best and mean result. Only little chances

getting slightly higher for worst result and standard deviation still considers as 0.

Table 4.10: Simulation result of Wine dataset

Criteria Best Mean Worst Std. FEs

GA 16530.53 16530.53 16530.53 0 33551

SA 16473.48 17521.09 18083.25 753.084 17264

TS 16666.22 16785.45 16837.53 52.073 22716

ACO 16530.53 16530.53 16530.53 0 15473

HBMO 16357.28 16357.28 16357.28 0 7238

PSO 16345.96 16417.47 16562.31 85.497 16532

CI 16298.01 16300.98 16305.06 2.118 17500

K-MCI 16292.44 16292.70 16292.88 0.130 6250

SDAA 16292.23 16292.24 16292.51 8.24E-02 10150

MSDAA 16292.20 16292.24 16292.62 0.1782 2900

Table 4.10 shows that the simulation result of the Wine dataset clustering problem.

MSDAA shows the lowest best result compare other algorithms. This shows the

advantage of K-means search reduces the waste of extra exploration steps of SDAA and

Univ
ers

ity
 of

 M
ala

ya

51

exploit toward the best answer. MSDAA saved a lot of FEs used with the help of K-

Means by the sacrificed increase small amount of standard deviation.

Table 4.11: Simulation result of Cancer dataset

Criteria Best Mean Worst Std. FEs

GA 2999.32 3249.46 3427.43 229.734 20221

SA 2993.45 3239.17 3421.95 230.192 17387

TS 2982.84 3251.37 3434.16 232.217 18981

ACO 2970.49 3046.06 3242.01 90.500 15983

HBMO 2989.94 3112.42 3210.78 103.471 19982

PSO 2973.50 3050.04 3318.88 110.801 16290

CI 2964.64 2964.78 2964.96 0.094 7500

K-MCI 2964.38 2964.38 2964.38 0 5000

SDAA 2964.38 2964.38 2964.38 0 9860

MSDAA 2964.38 2964.38 2964.38 0 2900

MSDAA showing excellent results in solving Cancer dataset clustering problem. The

Table 4.11 shows the FEs of MSDAA reduced to about 70% FEs of SDAA but still

maintain the best result with 0 standard deviation.

Table 4.12: Simulation result of CMC dataset

Criteria Best Mean Worst Std. FEs

GA 5705.63 5756.59 5812.64 50.369 29483

SA 5849.03 5893.48 5966.94 50.867 26829

TS 5885.06 5993.59 5999.80 40.845 28945

ACO 5701.92 5819.13 5912.43 45.634 20436

HBMO 5699.26 5713.98 5725.35 12.690 19496

PSO 5700.98 5820.96 5923.24 46.959 21456

CI 5695.33 5696.01 5696.89 0.482 30000

K-MCI 5693.73 5693.75 5693.80 0.014 15000

SDAA 5693.73 5694.01 5694.29 0.247 11020

MSDAA 5693.73 5693.75 5693.79 0.01366 2900

Result in Table 4.12 shows the improvement of SDAA to MSDAA especially on FEs.

The mean result also gets closer to the best result after modification to MSDAA. The

result of this table able to say that K-means suitable to solve CMC dataset clustering

Univ
ers

ity
 of

 M
ala

ya

52

problem where K-MCI and MSDAA both merged with K-means improved the best and

mean result.

Table 4.13: Simulation result of Glass dataset

Criteria Best Mean Worst Std. FEs

GA 278.37 282.32 286.77 4.138 199892

SA 275.16 282.19 287.18 4.238 199438

TS 279.87 283.79 286.47 4.190 199574

ACO 269.72 273.46 280.08 3.584 196581

HBMO 245.73 247.71 249.54 2.438 195439

PSO 270.57 275.71 283.52 4.550 198765

CI 219.37 223.31 225.48 1.766 55000

K-MCI 212.34 212.57 212.80 0.135 25000

SDAA 210.53 220.05 234.33 9.453 11310

MSDAA 210.47 210.50 210.52 0.0142 3000

Glass dataset clustering problem has the highest number of clusters with high

dimensions problems among all the dataset problems. Most of the algorithms traps on

local minima. With the help of K-mean merged with SDAA become MSDAA, the best

and the mean result outperform compare others algorithms. The FEs used on MSDAA is

highly reduced and still able to get the best result out of all the algorithms compared.

Table 4.14: Simulation result of Vowel dataset

Criteria Best Mean Worst Std. FEs

GA 149513.73 159153.49 165991.65 3105.544 10548

SA 149370.47 161566.28 165986.42 2847.085 9423

TS 149468.26 162108.53 165996.42 2846.235 9528

ACO 149395.60 159458.14 165939.82 3485.381 8046

HBMO 149201.63 161431.04 165804.67 2746.041 8436

PSO 148976.01 151999.82 158121.18 2881.346 9635

CI 149139.86 149528.56 150468.36 495.059 15000

K-MCI 148967.24 148967.55 149048.58 36.086 7500

SDAA 148967.39 148969.63 148973.26 1.792 10150

MSDAA 148967.24 148967.45 148970.69 1.160 2900

Univ
ers

ity
 of

 M
ala

ya

53

Vowel dataset clustering problem also one of the highest number of cluster problem.

K-MCI and MSDAA perform well by getting the best result. MSDAA successfully

improve the mean result and getting lower standard deviation compare K-MCI. In

addition, MSDAA achieved the lowest FEs over all the clustering problem datasets.

Table 4.15: Overall averages FEs for all algorithms

GA SA TS ACO HBMO PSO CI K-MCI SDAA MSDAA

55303 45942 49990 44586 43634 44605 22041 10375 9928 2900

Based on overall average FEs, we can see MSDAA perform well which remain around

2900 FEs. This result means that the cluster size and number of dimension did not affect

much to MSDAA. The overall average FEs is revised from 9928 to 2900 by the

modification of SDAA to MSDAA resulted about 70% decrement of FEs. The overall

average FEs of different kind data clustering algorithms are compared in the Figure 4.7.

MSDAA shows that it used the lowest number of FEs for solving all the listed data

clustering problems.

Figure 4.7: Overall average FEs of data clustering algorithms

0

10000

20000

30000

40000

50000

60000

GA SA TS ACO HBMO PSO CI K-MCI SDAA MSDAA

O
v
er

al
l

A
v
er

ag
e

F
E

s

Univ
ers

ity
 of

 M
ala

ya

54

Table 4.16 to Table 4.20 shows the location of best centroid location found by

MSDAA. These are the dimensions or variables found by MSDAA for each cluster

centroid to achieve the result in Table 4.9 to Table 4.14.

Table 4.16: Best centroids found by MSDAA for Iris problem (3 clusters)

Dataset Centroid 1 Centroid 2 Centroid 3

Iris

5.93430 5.01213 6.73329

2.79785 3.40313 3.06788

4.41781 1.47164 5.63007

1.41732 0.23539 2.10681

The Table 4.16 shows the 3 clusters of Iris problem found by MSDAA with every

centroid location. There are 4 dimensions value as each centroid as shown in the table.

Table 4.17: Best centroids found by MSDAA for Wine problem (3 clusters)

Dataset Centroid 1 Centroid 2 Centroid 3

Wine

12.82075 13.73004 12.5031

2.54474 1.85073 2.32307

2.37680 2.43719 2.31535

19.58352 16.91519 21.35024

98.93214 105.22189 92.56646

2.06160 2.84618 2.04522

1.49349 3.05872 1.76859

0.43120 0.29498 0.39530

1.42292 2.00281 1.44528

5.77908 5.69008 4.34390

0.90115 1.09603 0.93938

2.19912 3.03242 2.49100

686.94478 1137.52274 463.53697

Table 4.17 shows the 3 clusters of Wine problem found by MSDAA with every

centroid location. There are 13 dimensions value for each centroid as shown in the table.

Univ
ers

ity
 of

 M
ala

ya

55

Table 4.18: Best centroids found by MSDAA for CMC problem (3 clusters)

Dataset Centroid 1 Centroid 2 Centroid 3

CMC

24.41491 43.63656 33.49713

3.04027 2.99127 3.13244

3.50985 3.44247 3.55441

1.78912 4.59965 3.65207

0.92444 0.79470 0.78938

0.79002 0.76585 0.69693

2.29240 1.82728 2.10167

2.96867 3.42056 3.28770

0.03699 0.09194 0.06126

2.00329 1.67795 2.11263

Table 4.18 shows the 3 clusters of CMC problem found by MSDAA with every

centroid location. There are 10 dimensions value for each centroid as shown in the table.

Table 4.19: Best centroids found by MSDAA for Cancer problem (2 clusters)

Dataset Centroid 1 Centroid 2

Cancer

2.88923 7.11773

1.12786 6.64029

1.20049 6.62656

1.16400 5.61481

1.99294 5.24096

1.12158 8.10104

2.00501 6.07799

1.10169 6.02385

1.03127 2.32470

Table 4.19 shows the 2 clusters of Cancer problem found by MSDAA with every

centroid location. There are 9 dimensions value for each centroid as shown in the table.

Univ
ers

ity
 of

 M
ala

ya

56

Table 4.20: Best centroids found by MSDAA for Glass problem (6 clusters)

Table 4.20 shows the 6 clusters of Glass problem found by MSDAA with every

centroid location. There are 9 dimensions value for each centroid as shown in the table.

Table 4.21: Best centroids found by MSDAA for Vowel problem (6 clusters)

Table 4.20 shows the 6 cluster of Vowel problem found by MSDAA with every

centroid location. There are 3 dimensions value for each centroid as shown in the table.

Table 4.22: Parameters used for SDAA and MSDAA for data clustering

SDAA MSDAA

𝐶 𝑆 𝐺 𝑟 𝜀 𝐶 𝑆

10 10 200 0.75 1E-05 10 10

Table 4.21 shows the parameters used by MSDAA compared to SDAA. The parameter

used for MSDAA is reduced compared to SDAA.

Dataset Centroid 1 Centroid 2 Centroid 3 Centroid 4 Centroid 5 Centroid 6

Glass

1.52812 1.52001 1.51297 1.51704 1.52103 1.51619

11.97964 13.25638 13.01245 13.08415 13.73654 14.65215

0 0.43237 0 3.52666 3.51784 0.05659

1.08559 1.51943 3.03408 1.36771 1.01966 2.20679

72.01313 73.02575 70.56388 72.84592 71.89594 73.25357

0.19669 0.39806 6.21 0.58061 0.21198 0.01067

14.35597 11.14605 6.98903 8.35731 9.44122 8.68399

0.15413 0 0 0.01318 0.03471 1.02733

0.11814 0.06663 0.00143 0.06073 0.05303 0.01929

Dataset Centroid 1 Centroid 2 Centroid 3 Centroid 4 Centroid 5 Centroid 6

Vowel

506.98293 407.89040 439.24957 357.25663 375.40162 623.71461

1839.67600 1018.05050 987.68298 2291.44507 2149.42076 1309.59120

2556.19948 2317.83193 2665.47360 2977.39302 2678.46239 2333.46185

Univ
ers

ity
 of

 M
ala

ya

57

Figure 4.8: Convergence of Wine clustering problem

0 10 20 30 40 50 60 70 80 90 100
1.625

1.63

1.635

1.64

1.645

1.65

1.655

1.66

1.665
x 10

4

Nuptial Flight

F
(x

)

 L
h
 for C

1

 L
h
 for C

2

 L
h
 for C

3

 L
h
 for C

4

 L
h
 for C

5

 L
h
 for C

6

 L
h
 for C

7

 L
h
 for C

8

 L
h
 for C

9

 L
h
 for C

10

Univ
ers

ity
 of

 M
ala

ya

58

Figure 4.9: Convergence of Cancer clustering problem

Figure 4.8 and Figure 4.9 show convergence plot of Wine and Cancer clustering

problems respectively. The convergence plots show the fitness which represented by

objective function 𝑓(𝑥) versus the number of Nuptial Flight. From the plots, all 10

colonies’ male ant 𝐿ℎ mated to others colony’s queen in every nuptial flight. The slope of

the plot shows that MSDAA able to fast achieve near best result and converge to the

global optima.

0 10 20 30 40 50 60 70 80 90 100
2960

2965

2970

2975

2980

2985

2990

2995

Nuptial Flight

F
(x

)

 L
h
 for C

1

 L
h
 for C

2

 L
h
 for C

3

 L
h
 for C

4

 L
h
 for C

5

 L
h
 for C

6

 L
h
 for C

7

 L
h
 for C

8

 L
h
 for C

9

 L
h
 for C

10

Univ
ers

ity
 of

 M
ala

ya

59

CHAPTER 5: CONCLUSION

On this research, a new algorithm is developed successfully, namely Seed Disperser

Ant Algorithm (SDAA) inspired from the nature ant evolution behaviour. SDAA is

applied to different kind of problem solving like real world engineering problems and

clustering problems. This shows that SDAA able to solve a variety of problems using

SDAA. SDAA also achieve high accuracy and persistency result based on the result

shown in Chapter 4. An Improvement applied to SDAA become Modified SDAA

(MSDAA) also discussed in this research.

SDAA is successfully created using the ant colony evolution concept where male ants

carrying out nuptial flights with queen in other colony to generate young fit queen. The

new fit queen will establish a new superior colonies. The optimization process

continuously improve is ensured by the nuptial flights process and young queen creation

to achieve the global optimum. The new fit queen will establish new superior colonies to

explore and help to escape from local optima. SDAA shows comparable result for solving

constrained engineering problems and data clustering. However, SDAA still have

potential to improve on reducing FEs for data clustering solving. With the purpose of

enhancing SDAA, a modified algorithm is created by merging K-means and SDAA name

as MSDAA. This advantage of K-means is solving optimization problem using low

number of FEs. MSDAA is adopting the advantage of K-means and with the robust search

of SDAA. With the behaviour of MSDAA, it show that a great start will reduce the burden

of the process to achieve goal. A great algorithm might use a lot of FEs to achieve the

goal if the starting point is too far away. K-means in MSDAA successfully reduces a lot

of FEs and lead the initial staring point near the global optimum.

Univ
ers

ity
 of

 M
ala

ya

60

REFERENCES

Adorio, E. P., & Diliman, U. (2005). Mvf-multivariate test functions library in c for

unconstrained global optimization: Technical report, Department of Mathematics,

UP Diliman.

Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for large-scale

problems and engineering design optimization. Journal of Intelligent

Manufacturing, 23(4), 1001-1014.

Al-Sultan, K. S. (1995). A tabu search approach to the clustering problem. Pattern

recognition, 28(9), 1443-1451.

Ali, L., Sabat, S. L., & Udgata, S. K. (2012). Particle swarm optimisation with stochastic

ranking for constrained numerical and engineering benchmark problems.

International Journal of Bio-Inspired Computation, 4(3), 155-166.

Ashton, M. C., Paunonen, S. V., Helmes, E., & Jackson, D. N. (1998). Kin altruism,

reciprocal altruism, and the Big Five personality factors. Evolution and Human

Behavior, 19(4), 243-255.

Auger, A., & Hansen, N. (2005). A restart CMA evolution strategy with increasing

population size. Paper presented at the Evolutionary Computation, 2005. The

2005 IEEE Congress on.

Bache, K., & Lichman, M. (2013). UCI machine learning repository. URL

http://archive.ics.uci.edu/ml, 19.

Back, T. (1996). Evolutionary algorithms in theory and practice: Oxford Univ. Press.

Belegundu, A. D., & Arora, J. S. (1985). A study of mathematical programming methods

for structural optimization. Part I: Theory. International Journal for Numerical

Methods in Engineering, 21(9), 1583-1599.

Ben Hadj-Alouane, A., & Bean, J. C. (1997). A genetic algorithm for the multiple-choice

integer program. Operations research, 45(1), 92-101.

Ben Hamida, S., & Schoenauer, M. (2002). ASCHEA: new results using adaptive

segregational constraint handling. Paper presented at the Proceedings of the 2002

Congress on Evolutionary Computation, 2002. CEC'02. .

Blum, C., & Li, X. (2008). Swarm intelligence in optimization: Springer.

Chang, W. L., Kanesan, J., & Kulkarni, A. J. (2015). Seed Disperser Ant Algorithm: An

Evolutionary Approach for Optimization Applications of Evolutionary

Computation (pp. 643-654): Springer.

Chang, W. L., Kanesan, J., Kulkarni, A. J., & Ramiah, H. (2017). Data clustering using

seed disperser ant algorithm. Turkish Journal of Electrical Engineering &

Computer Sciences. Advance online publication. doi: 10.3906/elk-1512-23.

Univ
ers

ity
 of

 M
ala

ya

http://archive.ics.uci.edu/ml

61

Cheron, B., Doums, C., Federici, P., & Monnin, T. (2009). Queen replacement in the

monogynous ant< i> Aphaenogaster senilis</i>: supernumerary queens as life

insurance. Animal Behaviour, 78(6), 1317-1325.

Coello, C. A. C., & Cortés, N. C. (2004). Hybridizing a genetic algorithm with an artificial

immune system for global optimization. Engineering Optimization, 36(5), 607-

634.

Coello Coello, C. A. (2000). Use of a self-adaptive penalty approach for engineering

optimization problems. Computers in Industry, 41(2), 113-127.

Coello Coello, C. A., & Becerra, R. L. (2004). Efficient evolutionary optimization

through the use of a cultural algorithm. Engineering Optimization, 36(2), 219-

236.

Coello Coello, C. A., & Mezura Montes, E. (2002). Constraint-handling in genetic

algorithms through the use of dominance-based tournament selection. Advanced

Engineering Informatics, 16(3), 193-203.

Dorigo, M., & Birattari, M. (2010). Ant colony optimization Encyclopedia of Machine

Learning (pp. 36-39): Springer.

Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory.

Paper presented at the Proceedings of the sixth international symposium on micro

machine and human science.

Fathian, M., & Amiri, B. (2008). A honeybee-mating approach for cluster analysis. The

International Journal of Advanced Manufacturing Technology, 38(7-8), 809-821.

Fathian, M., Amiri, B., & Maroosi, A. (2007). Application of honey-bee mating

optimization algorithm on clustering. Applied Mathematics and Computation,

190(2), 1502-1513.

Floudas, C. A., & Pardalos, P. M. (1990). A collection of test problems for constrained

global optimization algorithms (Vol. 455): Springer.

Goldberg, D. E., Zakrzewski, K., Chang, C., & Gallego, P. (1997). Genetic algorithms:

A bibliography. Urbana, 51, 61801.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015).

The rise of “big data” on cloud computing: Review and open research issues.

Information Systems, 47, 98-115.

He, Q., & Wang, L. (2007a). An effective co-evolutionary particle swarm optimization

for constrained engineering design problems. Engineering Applications of

Artificial Intelligence, 20(1), 89-99.

He, Q., & Wang, L. (2007b). A hybrid particle swarm optimization with a feasibility-

based rule for constrained optimization. Applied Mathematics and Computation,

186(2), 1407-1422.

Univ
ers

ity
 of

 M
ala

ya

62

Huang, F.-z., Wang, L., & He, Q. (2007). An effective co-evolutionary differential

evolution for constrained optimization. Applied Mathematics and Computation,

186(1), 340-356.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition

Letters, 31(8), 651-666.

Jamian, J. J., Abdullah, M. N., Mokhlis, H., Mustafa, M. W., & Bakar, A. H. A. (2014).

Global Particle Swarm Optimization for High Dimension Numerical Functions

Analysis. Journal of Applied Mathematics, 2014.

Kannan, B., & Kramer, S. N. (1994). An augmented Lagrange multiplier based method

for mixed integer discrete continuous optimization and its applications to

mechanical design. Journal of mechanical design, 116(2), 405-411.

Kenne, M., & Dejean, A. (1998). Nuptial Flight of Myrmicaria opaciventris.

Sociobiology, 31(1).

Kennedy, J. (2010). Particle swarm optimization Encyclopedia of Machine Learning (pp.

760-766): Springer.

Kennedy, J., & Eberhart, R. (1995, Nov/Dec 1995). Particle swarm optimization. Paper

presented at the Neural Networks, 1995. Proceedings., IEEE International

Conference on.

Koziel, S., & Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous

mappings, and constrained parameter optimization. Evolutionary Computation,

7(1), 19-44.

Krishnasamy, G., Kulkarni, A. J., & Paramesran, R. (2014). A hybrid approach for data

clustering based on modified cohort intelligence and K-means. Expert Systems

with Applications, 41(13), 6009-6016.

Kulkarni, A. J., Durugkar, I. P., & Kumar, M. (2013). Cohort intelligence: a self

supervised learning behavior. Paper presented at the Conference on Systems,

Man, and Cybernetics (SMC), 2013 IEEE International

Kulkarni, A. J., & Tai, K. (2009). Probability collectives: a decentralized, distributed

optimization for multi-agent systems Applications of Soft Computing (pp. 441-

450): Springer.

Lampinen, J. (2002). A constraint handling approach for the differential evolution

algorithm. Paper presented at the Computational Intelligence, Proceedings of the

World on Congress on.

Lee, T.-Y., & Chen, C.-L. (2007). Unit commitment with probabilistic reserve: An IPSO

approach. Energy conversion and Management, 48(2), 486-493.

Liang, J., Suganthan, P., & Deb, K. (2005). Novel composition test functions for

numerical global optimization. Paper presented at the Swarm Intelligence

Symposium, 2005. SIS 2005. Proceedings 2005 IEEE.

Univ
ers

ity
 of

 M
ala

ya

63

Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with

differential evolution for constrained numerical and engineering optimization.

Applied Soft Computing, 10(2), 629-640.

Liu, L., Zhong, W.-M., & Qian, F. (2010). An improved chaos-particle swarm

optimization algorithm. Journal of East China University of Science and

Technology, 36(2), 267-272.

Maulik, U., & Bandyopadhyay, S. (2000). Genetic algorithm-based clustering technique.

Pattern recognition, 33(9), 1455-1465.

Mezura-Montes, E., & Coello, C. A. C. (2005). Useful infeasible solutions in engineering

optimization with evolutionary algorithms MICAI 2005: Advances in Artificial

Intelligence (pp. 652-662): Springer.

Michalewicz, Z., & Attia, N. (1994). Evolutionary optimization of constrained problems.

Paper presented at the Proceedings of the 3rd annual conference on evolutionary

programming.

Miranda, V., & Fonseca, N. (2002). EPSO-evolutionary particle swarm optimization, a

new algorithm with applications in power systems. Paper presented at the Proc. of

the Asia Pacific IEEE/PES Transmission and Distribution Conference and

Exhibition.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in

Engineering Software, 69, 46-61.

Mitchell, M. (1998). An introduction to genetic algorithms: MIT press.

Molga, M., & Smutnicki, C. (2005). Test functions for optimization needs. Test functions

for optimization needs.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial

arts: Towards memetic algorithms. Caltech concurrent computation program,

C3P Report, 826, 1989.

Moscato, P., Cotta, C., & Mendes, A. (2004). Memetic algorithms New optimization

techniques in engineering (pp. 53-85): Springer.

Mozaffari, A., Gorji-Bandpy, M., & Gorji, T. B. (2012). Optimal design of constraint

engineering systems: application of mutable smart bee algorithm. International

Journal of Bio-Inspired Computation, 4(3), 167-180.

Niknam, T., & Amiri, B. (2010). An efficient hybrid approach based on PSO, ACO and<

i> k</i>-means for cluster analysis. Applied Soft Computing, 10(1), 183-197.

Osiński, J. (2009). Kin altruism, reciprocal altruism and social discounting. Personality

and Individual Differences, 47(4), 374-378.

Pan, G., Li, K., Ouyang, A., Zhou, X., & Xu, Y. (2014). A hybrid clustering algorithm

combining cloud model iwo and k-means. International Journal of Pattern

Recognition and Artificial Intelligence, 28(06), 1450015.

Univ
ers

ity
 of

 M
ala

ya

64

Pei, S., Ouyang, A., & Tong, L. (2012). A Hybrid Algorithm Based on Bat-Inspired

Algorithm and Differential Evolution for Constrained Optimization Problems.

International Journal of Pattern Recognition and Artificial Intelligence, 1559007.

Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm

with strategy adaptation for global numerical optimization. Evolutionary

Computation, IEEE Transactions on, 13(2), 398-417.

Ramezani, P., Ahangaran, M., & Yang, X.-S. (2013). Constrained optimisation and robust

function optimisation with EIWO. International Journal of Bio-Inspired

Computation, 5(2), 84-98.

Rao, S. S., & Rao, S. (2009). Engineering optimization: theory and practice: John Wiley

& Sons.

Selim, S. Z., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering

problem. Pattern recognition, 24(10), 1003-1008.

Shang, Y.-W., & Qiu, Y.-H. (2006). A note on the extended Rosenbrock function.

Evolutionary Computation, 14(1), 119-126.

Shelokar, P., Jayaraman, V. K., & Kulkarni, B. D. (2004). An ant colony approach for

clustering. Analytica Chimica Acta, 509(2), 187-195.

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. Journal of global optimization, 11(4),

341-359.

Tsai, C.-Y., & Kao, I.-W. (2011). Particle swarm optimization with selective particle

regeneration for data clustering. Expert Systems with Applications, 38(6), 6565-

6576.

Wang, L., & Li, L.-p. (2010). An effective differential evolution with level comparison

for constrained engineering design. Structural and Multidisciplinary

Optimization, 41(6), 947-963.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization.

Evolutionary Computation, IEEE Transactions on, 1(1), 67-82.

Xu, W., Geng, Z., Zhu, Q., & Gu, X. (2013). A piecewise linear chaotic map and

sequential quadratic programming based robust hybrid particle swarm

optimization. Information Sciences, 218, 85-102.

Yang, C., Zhang, X., Zhong, C., Liu, C., Pei, J., Ramamohanarao, K., & Chen, J. (2014).

A spatiotemporal compression based approach for efficient big data processing on

cloud. Journal of Computer and System Sciences.

Yang, X.-S., & Deb, S. (2009). Cuckoo search via Lévy flights. Paper presented at the

Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress

on.

Univ
ers

ity
 of

 M
ala

ya

65

Yang, X.-S., Huyck, C., Karamanoglu, M., & Khan, N. (2013). True global optimality of

the pressure vessel design problem: a benchmark for bio-inspired optimisation

algorithms. International Journal of Bio-Inspired Computation, 5(6), 329-335.

Yıldız, A. R. (2009). A novel particle swarm optimization approach for product design

and manufacturing. The International Journal of Advanced Manufacturing

Technology, 40(5-6), 617-628.

Yoo, J., & Hajela, P. (1999). Immune network simulations in multicriterion design.

Structural Optimization, 18(2-3), 85-94.

Zahara, E., & Kao, Y.-T. (2009). Hybrid Nelder–Mead simplex search and particle swarm

optimization for constrained engineering design problems. Expert Systems with

Applications, 36(2), 3880-3886.

Univ
ers

ity
 of

 M
ala

ya

66

LIST OF PUBLICATIONS AND PAPERS PRESENTED

Conference paper:

Chang, W. L., Kanesan, J., & Kulkarni, A. J. (2015). Seed Disperser Ant Algorithm: An

Evolutionary Approach for Optimization Applications of Evolutionary

Computation (pp. 643-654): Springer.

Journal article:

Chang, W. L., Kanesan, J., Kulkarni, A. J., & Ramiah, H. (2017). Data clustering using

seed disperser ant algorithm. Turkish Journal of Electrical Engineering &

Computer Sciences. Advance online publication. doi: 10.3906/elk-1512-23.

Univ
ers

ity
 of

 M
ala

ya

