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 SEED DISPERSER ANT ALGORITHM FOR OPTIMIZATION 

ABSTRACT 

The Seed Disperser Ant Algorithm (SDAA) is developed based on the evolution or 

expansion process of Seed Disperser Ant (Aphaenogaster senilis) colony. The genotype 

of every ant is represented in binary form as the variables. These binary variables are used 

to locally search for optimum solution. SDAA is developed using the concept of male 

ants performing nuptial flights to generate new superior colonies. The new colonies 

produce better male ants that repeat the nuptial flight cycle in following generation. New 

young queens are produced by the colony that migrates to establish new colonies after 

local optimum solution reached to start new local search. Nuptial flight and new young 

queens’ production aid in enhanced search exploitation and exploration respectively. This 

diversifies the search for global optimum. The classical benchmark problems and 

composite benchmark functions from Congress on Evolutionary Computation (CEC) 

2005 special session is used for validate SDAA. Engineering optimization has become 

important in design problems to reduce error and faulty production as many constrained 

condition should be taken in to account before manufacturing. Also, data clustering has 

become popular in data mining in recent time due to data explosion. In this research, we 

applied SDAA to solve the constrained engineering problems and introduce an efficient 

data clustering algorithm which is hybrid of K-means and SDAA. The optimal results 

obtained for constrained engineering problems as well as data clustering are very 

promising in terms of quality of solutions and convergence speed of the algorithm. 

Keywords: Optimization, composite benchmark function, constrained engineering 

problem, data clustering, Seed Disperser Ant Algorithm. 
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SEED DISPERSER ANT ALGORITHM UNTUK PENGOPTIMUMAN 

ABSTRAK 

Seed Disperser Ant Algorithm (SDAA) adalah inspirasi daripada proses evolusi koloni 

semut penyebar biji benih iaitu spesies Aphaenogaster senilis. Genotip semut sebagai 

pembolehubah diwakili dalam bentuk nombor perduaan. Pembolehubah ini digunakan 

untuk pencarian sebahagian mencapai peyelesaian optimum. SDAA merupakan 

algoritma berdasarkan penerbangan mengawan semut jantan untuk menghasilkan 

generasi dan koloni baru yang lebih unggul. Semut jantan yang telah bertambah baik 

dalam generasi atau koloni baru akan berterusan melaksanakan  penerbangan mengawan 

dan proses ini berulang untuk menghasilkan generasi atau koloni baru yang bertambah 

baik. Sekiranya koloni telah mencapai satu tahap kematangan, dengan kata lain, optimum 

sebahagian yang dicari telah capai, ratu semut muda akan dilahirkan oleh koloni dan 

berhijrah untuk menubuhkan koloni baru. Proses penebangan mengawan dan kelahiran 

ratu semut muda masing-masing membantu mempertingkatkan eksploitasi carian dan 

penerokaan. Ini memperluaskan pencarian optimum secara global. SDAA disahkan 

dengan menyelesaikan masalah ukur rujuk klasik dan masalah ukur rujuk komposit dari 

Congress on Evolutionary Computation (CEC) 2005 sesi khas. Pengoptimuman 

kejuruteraan telah menjadi unsur penting dalam masalah reka bentuk untuk 

mengurangkan kesilapan dan kerosakan produksi kerana banyak syarat dikekang perlu 

diambil kira sebelum pembuatan. Selain itu, pengelompokan data telah menjadi popular 

dalam bidang perlombongan data disebabkan data dihasilkan secara lampau 

kebelakangan ini. SDAA digunakan untuk menyelesaikan masalah kejuruteraan dikekang 

dan algoritma data pengelompokan yang cekap diperkenalkan dalam penyelidikan ini 

iaitu hibrid K-means dan SDAA. Keputusan optimum diperolehi bagi masalah 

kejuruteraan dikekang serta pengelompokan data adalah sangat memberangsangkan dari 

segi kualiti penyelesaian dan kelajuan penumpuan algoritma. 
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Kata kunci: Pengoptimuman, fungsi penanda aras komposit, masalah kejuruteraan 

dikekang, clustering data, Seed Disperser Ant Algorithm. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

The behaviour modelling of social insects as problem solving technique for efficient 

search has been the main context in swarm intelligence field. Various evolutionary 

computation (EC) techniques have been introduced in the field of optimization. This 

includes Swarm Intelligence (SI) inspired from social behaviours of insects and animals 

as well as Swarm inspired meta-heuristics that applied to many kind of optimization 

problems, for example: constrained engineering problems, combinatorial problems 

including traveling salesman problem, global optimization, vehicle routing problems, 

control engineering, assignment problems, traffic system design, scheduling, data 

clustering, etc. 

The year 2012 report shows that there were 2.5 Exabyte (2.5 billion gigabytes) of data 

being generated daily. The data sets are large and complex that need tools and approaches 

to process them. Thus, data processing is the fundamental and challenge for a data analyst. 

Data clustering is the most common technique used as unsupervised classification 

technique in data processing. A clustering technique divides the data groups into different 

cluster by bunch up the data with equal or similar characteristics or pattern. Generally, 

there are few major purposes of using data clustering which include gain insight into data, 

generate hypotheses, detect anomalies, and identify salient features, identify the degree 

of similarity among forms or organisms, and also organize the data and summarizing it 

through cluster prototypes. 

Many industrial engineering activities associate with high complexity and unstructured 

conditions. These real-life problems are difficult to model because of require unique 

factors. For constrained engineering problems, swarm intelligence techniques give 
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potential breakthrough. They are able to provide near-optimal or optimal solutions, thus 

enabling to choose the best solution based on the criteria that the industry needs. 

1.2 Challenge 

The No Free Lunch (NFL) theorem (Wolpert & Macready, 1997) has proved a 

particular meta-heuristic may obtain very convincing results on a set of problems, but 

also may show poor performance on a different set of problems. The results also show 

the importance of incorporating problem-specific knowledge into the behaviours of the 

algorithm used. This makes the field of optimization based meta-heuristics very active in 

enhancing current approaches and proposing new meta-heuristics every year. This 

motivates a new meta-heuristic to be developed with inspiration from seed disperser ant 

evolution concept for solving clustering problems. Also the evolutionary based algorithm 

developed in this research showing the reduction of tuning variables and parameter by 

modifying the algorithm to merge with others algorithm. 

1.3 Design and Solution 

In this research, Seed Dispenser Ant Algorithm (SDAA) is developed and verified with 

several classical and composite benchmarks. Seed Dispenser Ant Algorithm (SDAA) 

(Chang, Kanesan, & Kulkarni, 2015) is inspired from Aphaenogaster senilis (Cheron, 

Doums, Federici, & Monnin, 2009) evolution process. The queen ant/s with diploid genes 

and male ants provide haploid genes are represented using binary code number. Nuptial 

flight (Kenne & Dejean, 1998) occurred when male ants fly out to mate with the queen 

ant of others colony. The mated queens carrying the male haploid then will produce 

offspring for the next generation. The optimum solution search is done using both local 

and global search features. Each offspring is produced using male ant haploid gene copies 

their alleles from the adjoining haploid refer gene which is haploid of queen’s diploid. 

These offspring have high similarity to each other that useful in local search exploitation. 
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Once the offspring production search process saturated, the chosen colony will produce 

fittest young queen to form new colony. This is used for exploratory search to avoid 

trapped in local optima. The chosen young queen will create a new colony and continue 

with exploitation local search process. The exploitation and exploration search process is 

repeated and converges to achieve optimal solution. 

1.4 Objectives 

The main objective of this thesis is to develop a new algorithm which able to solve 

several kind and fields of problems using the concept which can observe from nature. 

Many nature inspired algorithms created for solving certain type of problem, this research 

is done for developing a new algorithm which able to solve as many problems as it could. 

Thus, the objectives under scrutiny are: 

• To create and develop a new algorithm inspired from nature. 

• To maximize the variety of problems solved using the same algorithm. 

• To obtain more accuracy and persistency of the solution. 

 

1.5 Contributions 

In this work, we are proposing its ability to handle constrained optimization and data 

clustering. Now days, there are many real world engineering problems such as 

engineering design problems requiring optimization to reduce cost and save energy, 

improve safety, quality of life, and efficiency of work. For an engineering design problem, 

there are many constrained conditions that should be taken into account before 

manufacturing the design.  

SDAA has advantages of on its searching technique where it searches by binary bit 

changing process to generate new solutions. The offspring generation advocates search 

exploitation where as young queen generation explores for better solution. Hence, SDAA 
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aggressively searches optimum solutions within the search domain and this helps to 

escape local optima. 

Also, there is a motivation for improvement on SDAA for data clustering problems, 

where function evaluations could be reduced significantly by some modification. In 

SDAA, the search exploration cost huge function evaluations. This dooms SDAA to the 

limited application as problems such as data clustering requires rapid solution. Therefore 

the young queen generation responsible for search exploration is removed in the modified 

SDAA (MSDAA). Besides, the initial search in SDAA is simply based on random 

generation of solutions. However, K-means in MSDAA is used to generate initial 

solutions. Due to the simplicity and ease of application, K-means is adopted for solving 

data clustering problems. Though K-means has a tendency to trap easily in local optima, 

the offspring generation feature of SDAA ensures the solution escapes from the local 

optima. The disadvantages of both SDAA and K-means are solved by hybridizing both 

techniques in MSDAA. A modified SDAA (MSDAA) is proposed which hybridizes the 

advantages of both SDAA and K-means for solving data clustering problems. The 

purpose of developing MSDAA is to enhance the original SDAA to produce improved 

accuracy, lower standard deviation with lower function evaluations and reduce the tuning 

parameters of SDAA with the aid of K-means in the algorithm. 
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1.6 Dissertation Outline 

The organizations of this paper are Section 1 to Section 5. Introduction in Section 1 

contain motivation to start this research work, problems or challenges faced, the 

objectives of the research, solution and contribution of this work. Next, continue with 

literature review in section 2. This Section review the previous algorithms used in 

optimization field and types of problem solved. In this Section, the past and recent ideas 

and methods used is referred and compared to create new algorithm. The original creation 

of SDAA and the modified SDAA for clustering is described and explained in Section 3. 

This Section explains the details and the design of the algorithms. Then followed by 

Section 4 for the Results and discussion, and lastly Section 5 provides the conclusions of 

this research. 
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CHAPTER 2: TYPES OF COMPUTATIONAL INTELLIGENCE 

 

Figure 2.1: Computational intelligence categories 

The computational intelligence algorithms categorised into physical and biological 

mimic. Physical mimic algorithms are developed based on nature phenomena, existing 

physic or mathematical formulas. For example, Gravitational Algorithm is developed 

based on Newton's law of universal gravitation; Black Hole Algorithm is developed based 

on black hole phenomena. Biological mimics algorithms can be separated into two groups 

which are Evolutionary Algorithms and Swarm Intelligence as shown in Figure 2.1. The 

Evolutionary Algorithms are developed based on the surviving and evolving ability of 

selected living creature for enhancing fitness for continuation of the next generation. 

These algorithms mostly use genetic code representation for improving the fitness. 

Examples of Evolutionary Algorithms are Genetic Algorithm and Differential Evolution. 

For the category of Swarm intelligence, we can divide it into 2 types of swarms mimic, 
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Intelligence

Biological mimic
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Algorithm 

Genetic Algorithm, 
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which is vertebrate and invertebrate animals. Most of the Swarm Intelligence algorithms 

mimic the food foraging ability or hunting strategy of the swarm. Vertebrate animals’ 

category algorithms have Grey Wolf Optimizer which mimics the wolf hunting strategy, 

and Particle Swarm Optimization mimics the swarm of fish or birds.  On the other hand, 

for invertebrate animals’ category algorithms, we have Ant Colony Algorithm and Honey 

Bee optimization which mimic the food foraging ability. 

2.1 Evolutionary Algorithms 

Evolutionary Algorithms (EAs) is a category of algorithm created based on evolution 

and survival of the fittest individual. EAs use genetic operators to exploit population 

evolution for global optimum search such as Genetic Algorithms (GA) (Goldberg, 

Zakrzewski, Chang, & Gallego, 1997; Mitchell, 1998), Differential Evolution (DE) (Qin, 

Huang, & Suganthan, 2009; Storn & Price, 1997) and Memetic Algorithms (MA) 

(Moscato, 1989; Moscato, Cotta, & Mendes, 2004). MA embeds individual learning 

procedure proficient of performing local search refinements through genetic operators 

which can categorize as an alternative of Genetic Algorithm (GA). In addition, DE has 

been emphasizing on the mutation that efficiently using exploratory search for global 

optimum solutions. Besides, Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) (Auger & Hansen, 2005) also categories into EAs. It indicates a mutation as an 

evolution strategy that adapts the full covariance matrix of a normal search distribution. 

The CMA-ES has an important property which is its constant against linear 

transformations of the search space compared to many other Evolutionary Algorithms. 

2.2 Swarm Intelligence 

Swarm Intelligence (SI) is a category of algorithm simulates the activities and 

movement of insects or animals. There are many SI techniques such as particle swarm 

optimization (PSO) (Eberhart & Kennedy, 1995), Cuckoo Search (CS) (X.-S. Yang & 
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Deb, 2009) and Grey Wolf Optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 2014). PSO 

is developed by mimicking the crowd of animals’ movement as in a flock of birds or a 

school of fish. The concept used to develop PSO is based on collision-proof birds’ 

movement. By following the creation of PSO, many variations or enhance PSO were 

developed such as Evolutionary Particle Swarm Optimization (EPSO) (Miranda & 

Fonseca, 2002), Iteration particle swarm optimization (IPSO) (Lee & Chen, 2007), Global 

Particle Swarm Optimization (GPSO) (Jamian, Abdullah, Mokhlis, Mustafa, & Bakar, 

2014) and Chaos-Particle Swarm Optimization (CPSO) (L. Liu, Zhong, & Qian, 2010). 

EPSO is a general-purpose algorithm that emphasize in Evolution Strategies (ES) using 

PSO concept. In ES, a number of models have been developed that rely on Darwinist 

selection to promote progress towards the optimum. IPSO is developed by sizing the 

distributed generation unit and applying new velocity of each particle before updating the 

position. On the other hand, GPSO share information about the particle position between 

the dimensions at any iteration to fasten the convergence process of classical PSO. CPSO 

is developed by combining chaos search strategy with PSO. Chaos is deterministic and it 

can be generated using fixed rules or equations. The "butterfly effect" in chaos can guide 

to a very different result in a very small change. CS is inspired by the obligate brood 

parasitism of some cuckoo species by laying their eggs in the nests of different species 

birds as host birds. Studies show that CS idealized such breeding behaviour that it could 

outperform existing algorithms such as PSO. Besides, GWO was inspired from grey 

wolves’ (Canis lupus) leadership hierarchy and hunting mechanism. 

There are many algorithms developed for solving these optimization problems such as 

Particle swarm Optimization (PSO) (Tsai & Kao, 2011), Ant Colony Optimization (ACO) 

(Shelokar, Jayaraman, & Kulkarni, 2004), Honey-Bee Mating Optimization (HBMO) 

(Fathian, Amiri, & Maroosi, 2007), Cohort Intelligence (CI) (Kulkarni, Durugkar, & 

Kumar, 2013), hybrid Cloud Model Invasive Weed Optimization with K-Means 
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(CMIWOKM) (Pan, Li, Ouyang, Zhou, & Xu, 2014), stochastic ranking particle swarm 

optimization (SRPSO)(Ali, Sabat, & Udgata, 2012), mutable smart bee algorithm 

(MSBA) (Mozaffari, Gorji-Bandpy, & Gorji, 2012), enhanced invasive weed 

optimization (EIWO) algorithm (Ramezani, Ahangaran, & Yang, 2013), Robust Hybrid 

Particle Swarm Optimization (RHPSO) (Xu, Geng, Zhu, & Gu, 2013), and Hybrid Bat-

Inspired Algorithm with Differential Evolution (BA-DE ) (Pei, Ouyang, & Tong, 2012). 

2.3 Exploration and Exploitation 

Most of the computational intelligence algorithms have two common aspects, which 

are exploration and exploitation search. The exploration is the ability of expanding search 

space, where the exploitation is the ability of finding the optima around a good solution. 

The exploratory search in an algorithm explores the search space to find new solutions to 

avoid trapping in a local optimum. Then the algorithm uses exploitation search to tunes 

it iteration by iteration to achieve an optimum solution. The exploration and exploitation 

search of different algorithms used different approaches and operators. These cause the 

different efficiency of different algorithms. 

2.4 Algorithms / Methods comparison 

None of the algorithms is perfect that able to solve all kind of problems. Every 

algorithm has its own strength and also weakness. Several algorithms are studies and 

compared. The algorithms include K-means, Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Ant colony Optimization (ACO), Differential Evolution (DE), 

Gravitational Search Algorithms (GSA), Grey Wolf Optimization (GWO), Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES), and Cuckoo Search (CS). By studying 

the algorithms, based on the behaviour and test, advantages and disadvantages are 

compared as the table below: 

 

Univ
ers

ity
 of

 M
ala

ya



10 

Table 2.1: Advantages and Disadvantages of Algorithms 

Algorithm Advantages Disadvantages 

K-Means 
Fast, robust and easier to 

understand. 

Easily trap in local search. Fails 

for non-linear data set. Unable 

to handle noisy data and 

outliers 

ACO 

Inherent parallelism. Efficient 

for Traveling Salesman 

Problem and similar 

problems. Can be used in 

dynamic applications. 

Sequences of random decisions 

(not independent). Probability 

distribution changes by 

iteration. Time to convergence 

uncertain. 

PSO 

No overlapping and mutation 

calculation. Calculation is 

very simple. 

Easy to fall into local optimum 

in high-dimensional problem. 

Low convergence rate in the 

iterative process. 

GA 

Parallelizability. Support 

multi-objective optimization. 

Good in noisy environment 

search.  

Slow convergence, time-

consuming. Solution depending 

on design of objective function 

representation. 

DE 

Support non-differentiable, 

nonlinear and multimodal cost 

functions. Parallelizability. 

Consistent convergence to the 

global minimum. 

Parameter tuning of necessary. 

Same parameters may not 

guarantee the global optimum 

solution. 

GSA 

Flexible. Balance exploration 

and exploitation search. 

Support nonlinear problem, 

multi-objective problem. 

Each iteration needs too many 

computations. 

GWO 
Only 2 main parameters to be 

adjust. 

Low precision. Weak in local 

search. 

CMA-ES 

Support high dimensions 

problems. Large search 

interval. 

Weak in solving partly 

separable problems, small 

dimension problems. High 

function evaluations. 

CS 
Easier to application and 

fewer tuning parameters. 
Easy to fall into local optimal. 
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2.5 Data Clustering and Real World Engineering Problems 

The technique to process big data has become a fundamental and critical challenge for 

modern society. Most of the data is stored digitally in electronic media, thus providing 

huge potential for the development of automatic data analysis, clustering, and retrieval 

techniques (Hashem et al., 2015; Jain, 2010; C. Yang et al., 2014). Data clustering 

approach had been applied to variety of applications, such as code book generation, data 

mining, image segmentation, pattern recognition, and sensor clustering. There are many 

algorithm developed which able to solve data clustering problems, for example several 

Swarm Intelligence (SI) (Blum & Li, 2008) methods and Evolutionary Algorithms (EAs) 

(Back, 1996) also have been used to solve data clustering problems. The most well known 

SI and EA methods implemented for data clustering are Particle swarm optimization 

(PSO) (James Kennedy, 2010; J. Kennedy & Eberhart, 1995; Tsai & Kao, 2011) and 

Genetic Algorithm (GA) (Goldberg et al., 1997; Maulik & Bandyopadhyay, 2000; 

Mitchell, 1998) respectively. Honeybee-mating optimization (HBMO)(Fathian & Amiri, 

2008) and Ant Colony Optimization (ACO) (Dorigo & Birattari, 2010) are both SI 

methods created for solving data clustering problems. Simulated Annealing (SA) 

(Niknam & Amiri, 2010; Selim & Alsultan, 1991) and Tabu Search (TS) (Al-Sultan, 

1995; Niknam & Amiri, 2010) are non SI/EA methods used to solve data clustering 

problems. Other than SI and EAs methods, there is also learning based algorithm such as 

Cohort Intelligence (CI) (Krishnasamy, Kulkarni, & Paramesran, 2014) developed for 

optimization in clustering. 

Real world engineering problems increases day by day. This is due to new 

development and improvement of technology now days. Whenever there is an 

improvement, there must be some problem to be solved. There are several algorithms 

were developed to solve constrained problems or engineering problems, for example: 

mutable smart bee algorithm (MSBA) (Mozaffari et al., 2012), Robust Hybrid Particle 
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Swarm Optimization (RHPSO) (Xu et al., 2013), and Hybrid Bat-Inspired Algorithm with 

Differential Evolution (BA-DE) (Pei et al., 2012), stochastic ranking particle swarm 

optimization (SRPSO)(Ali et al., 2012), mutable smart bee algorithm (MSBA) (Mozaffari 

et al., 2012), enhanced invasive weed optimization (EIWO) algorithm (Ramezani et al., 

2013), Robust Hybrid Particle Swarm Optimization (RHPSO) (Xu et al., 2013), and etc. 
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CHAPTER 3: SOLUTION/ METHODOLOGY 

Seed Disperser Ant Algorithm (SDAA) (Chang, Kanesan, & Kulkarni, 2015) is a new 

meta-heuristic inspired from nature. SDAA is proposed based on seed disperser ant 

species name Aphaenogaster senilis (Cheron et al., 2009) evolution process. SDAA 

mimics evolutionary strategy of seed disperser ant to enhance its fitness of future 

generation to continue survives. Common evolutionary techniques concern in genetic 

processes. In SDAA, ants’ haploid-diploid genetic idea invented by uses of Kin Altruism 

(Ashton, Paunonen, Helmes, & Jackson, 1998; Osiński, 2009) for its evolution of the 

colony. The haploid-diploid genetic code in binary form is represented the available 

solution of the problem. The infertile female workers and queen ant/s which have diploid 

genes are populated in the colony. Haploid genes provided by male ant used in performing 

nuptial flight (Kenne & Dejean, 1998). Male ants fly out in nuptial flight process and 

mate with the queen from others colony. The mated queens will generate offspring in 

their respective colony. The optimum search of SDAA is established in locally and also 

globally. The offspring is generated when male provided haploid gene replicate alleles 

from the contiguous female’s haploid gene. This offspring production performs as local 

search and the offspring produced are highly related to each other for search exploitation. 

A fit young queen is produced from the chosen fittest colony when saturated on local 

search. The fit young queen will then migrate and establish its own new colony. This 

search helps to explore the global optimum solution. The fit young queen established its 

new colony will start the process of local search. All there process will continuous repeat 

again until saturation or limit of iteration. Both local and global search process continuous 

converges to the optimum solutions. 
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Figure 3.1: Evolution concept of SDAA 

In Figure 3.1, the evolution concept of SDAA shows that from a colony, the queen  

𝑄𝑎 generate offspring which are 𝑋1 to 𝑋𝐴. The best male ant selected to perform nuptial 

flight for mating with queen 𝑄𝑏 from another colony. This process continues with all 

colonies until threshold reached. Where there is no improvement in generating offspring. 

Next, the best colonies will spawn new queens 𝑄1  to 𝑄𝑛  and become new colonies. 

SDAA perform the search in binary form, where it depends on the precisions used for the 

input variables. The precisions of the input variables affect the bits number used for binary 

representation. 

The general minimization of unconstrained problem as shown as below: 

Minimize 𝒇(𝑳𝒉) = 𝒇(𝒍𝟏, … 𝒍𝒋, … 𝒍𝑵)      (3.1) 

Subject to 

𝜳𝒋
𝒍𝒐𝒘𝒆𝒓 ≤ 𝒍𝒋 ≤ 𝜳𝒋

𝒖𝒑𝒑𝒆𝒓
 , 𝒋 = 𝟏, … 𝑵       (3.2) 
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There are several classical constrained engineering problems difficult to be optimized. 

These classical constrained engineering problems include single-objective test problem 

(Floudas & Pardalos, 1990), tension spring design problem (Belegundu & Arora, 1985), 

pressure vessel design problem (Kannan & Kramer, 1994) and welded beam design 

problem (Coello Coello, 2000) as shown in Appendix A. These problems have 

constrained conditions where all the design variables interrelated with each other. To 

obtain the minimum result, the design variables must satisfy all the constrained 

conditions. This makes optimizing constrained engineering problems cumbersome.  

The objective function of constrained engineering problem is embedded with the 

constrained condition. The input variables 𝑥 will evaluated by the constrained condition’s 

functions  𝑔𝑖(𝑥). If the input variables 𝑥 satisfied the conditions, then the input variables 

𝑥 will be evaluated by the objective function 𝑓(𝑥), else the 𝑓(𝑥) set to be equal to infinite. 

The 𝑁 number of variables 𝑥 in SDAA will represented by 𝐿ℎ: 

𝑳𝒉 = [𝒙𝟏, … 𝒙𝒋, … 𝒙𝑵] ,  𝒋 = 𝟏, … 𝑵       (3.3) 

The objective function 𝑓(𝑥) for SDAA solving constrained engineering problem is 

shown as below: 

𝒇(𝒙) = 𝐦𝐢𝐧 𝒇(𝑳𝒉)         (3.4) 

Subject to: 

𝒈𝒌(𝑳𝒉) ≤ 𝟎          (3.5) 

Objective function 𝑓(𝑥) assumed to be infinity if any requirement of constrained 

condition’s functions 𝑔𝑘(𝑥) is not satisfied. 
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3.1 Seed Disperser Ant Algorithm 

Considering the fitness of male ant as the objective function 𝑓(𝐿ℎ) in a colony. The 

gene code of male ant is represented by 𝐿ℎ = (𝑙1, … 𝑙𝑗 , … 𝑙𝑁). Every colony’s queen is 

assumed to give birth of many new young queens and with the identity gene of the colony 

represented by the refer gene [𝑅ℎ]𝐶𝑖
. A complete diploid gene is represented by combine 

a pair of haploid genes, which from the binary gene code of male ant and its complement 

[𝑅ℎ]𝐶𝑖
 as the mated queen [𝑄𝑑]𝐶𝑖

. The equation representation is shown in equation (3.6). 

[𝑸𝒅]𝑪𝒊
=  [𝑳𝒉]𝑪𝒊

[𝑹𝒉]𝑪𝒊
        (3.6) 

Where, 

𝑪𝒊 = 𝒊th colony         (3.7) 

The SDAA initialize with tuning parameters such as number of iterations 𝐺, shrinking 

factor 𝑟, number of colony 𝐶, saturation number 𝑆, convergence parameter 𝜀, and number 

of decimal points for input variables’ precisions. Upper boundary 𝑈𝐵𝑗  and lower 

boundary 𝐿𝐵𝑗 are fixed at the beginning as given in equations below. Number of bits in 

binary form is determined by the precisions in number of decimal points for input 

variables. The input variables (𝐿ℎ) in this research used precisions up to 5 decimal points. 

𝑼𝑩𝒋 = 𝜳𝒋
𝒖𝒑𝒑𝒆𝒓

         (3.8) 

𝑳𝑩𝒋 = 𝜳𝒋
𝒍𝒐𝒘𝒆𝒓         

 (3.9) 

Step 1: Random generate Male ant 𝐿ℎ as shown in equation (3.10) below: 

 [𝑳𝒉]𝑪𝒊
= [𝒍𝟏, … 𝒍𝒋, … 𝒍𝑵]

𝑪𝒊
        (3.10) 
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Where, 

𝒍𝒋 = 𝑳𝑩𝒋 + 𝒓𝒂𝒏𝒅 × (𝑼𝑩𝒋 − 𝑳𝑩𝒋)       (3.11) 

𝒓𝒂𝒏𝒅 ~ ∪ ([𝟎, 𝟏])         (3.12) 

𝑵 = Number of dimension        (3.13) 

Step 2: Binary form conversion of 𝑁 number of 𝑙𝑗 for the male gene [𝐿ℎ]𝐶𝑖
 in every 

colony take place. The colonies’ identity refers gene [𝑅ℎ]𝐶𝑖
 is form by complement of the 

binary code gene as shown as equation (3.14) below: 

 [𝑹𝒉]𝑪𝒊
= [𝑳𝒉]̅̅ ̅̅ ̅

𝑪𝒊
= [𝒍𝟏′, … 𝒍𝒋′, … 𝒍𝑵′]

𝑪𝒊
      (3.14) 

Then, every mated queen [𝑄𝑑]𝐶𝑖
is formed as given in equation (3.6). 

Step 3: Generate Offspring. This process representing mated queens generate 

offspring. The process is implemented by cloning the gene (𝐿ℎ) binary bits from refer 

gene (𝑅ℎ) start from the least significant bit (LSB) to the most significant bit (MSB) and 

vice-versa. Mathematical equation explanation can be represented as the following. If 

there is a 3 dimensions problem given, the gene 𝐿ℎof colony 1 represented as [𝐿ℎ]𝐶1
=

[𝑙1, 𝑙2, 𝑙3 ]𝐶1
 together with it’s refer gene as [𝑅ℎ]𝐶1

= [𝑙′1, 𝑙′2, 𝑙′3 ]𝐶1
. As an example, by 

letting one of the dimension 𝑙1 = 10110010 and the refer gene is the complement of it 

as 𝑙′1 = 01001101. The offspring of the dimensions 𝑙1 are generated as shown as the 

example below in Table 3.1 and Table 3.2: 
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Table 3.1: Offspring generated by LSB to MSB copying complement refer gene 

𝑙1 𝑙1′ 

10110010 01001101 

10110010 

10110011 

10110001 

10110101 

⋮ 

01001101 

 

 

- 

 

 

Table 3.2: Offspring generated by MSB to LSB copying complement refer gene 

𝑙1 𝑙1′ 

10110010 01001101 

10110010 

00110010 

01110010 

01010010 

⋮ 

01001101 

 

 

- 

 

Then, the same outcome of the offspring will be removed. 

After 1st iteration, the refer gene (𝑅ℎ) will remain, and the gene (𝐿ℎ) will be updated. 

In this case, the matching will be [𝐿ℎ]𝐶1
= [𝑙1, 𝑙2, 𝑙3 ]𝐶1

 with the refer gene  [𝑅ℎ]𝐶1
=

[𝑅ℎ1, 𝑅ℎ2, 𝑅ℎ3 ]𝐶1
. For example, let 𝑙1 = 11010011  and refer gene still same as 

previous, 𝑅ℎ1 = 01001101. The same outcome of the offspring will be removed. The 

dimensions 𝑙1 of the offsprings are generated as shown below: 
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Table 3.3: Offspring generated by LSB to MSB copying other refer gene 

𝑙1 𝑙1′ 

11010011 01001101 

11010011 

11010011 

11010001 

11010101 

⋮ 

01001101 

 

 

- 

 

 

Table 3.4: Offspring generated by MSB to LSB copying other refer gene  

𝑙1 𝑙1′ 

11010011 01001101 

11010011 

01010011 

01010011 

01010011 

⋮ 

01001101 

 

 

- 

 

Step 4: The fittest offspring of every colony will be chosen as [𝐿ℎ(𝑓𝑖𝑡)]
𝐶𝑖

 by assessing 

the fitness subjected to the objective function. Then the best fittest gene is selected among 

all the fittest offspring[𝐿ℎ(𝑓𝑖𝑡)]
𝐶𝑖

 and stored as 𝐿ℎ(𝑏𝑒𝑠𝑡). The 𝐿ℎ(𝑏𝑒𝑠𝑡) is endorsed as the 

contemporary solution found. If the 𝐿ℎ(𝑏𝑒𝑠𝑡) recorded is repeated as many as Saturation 

Number, 𝑆 times prefixed earlier. If the Saturation achieved, redirect to Step 6, otherwise 

redirect to Step 5. 
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Step 5: Nuptial Flight. In nuptial flight, males will fly away from their own colony 

to crossbreed with queens inhabited at other colony. This nuptial flight process is imitated 

by using the best offspring [𝐿ℎ(𝑓𝑖𝑡)]
𝐶𝑖

 as the fittest survived male ant of every colony 

paring to the next colony refer gene [𝑅ℎ]𝐶𝑖+1
 as the inhabited queen. In the equation, the 

best offspring [𝐿ℎ(𝑓𝑖𝑡)]
𝐶𝑁

 from the last colony will be paired with the refer gene  [𝑅ℎ]𝐶1
 

from the first colony. This mechanism is represented in the equation (3.15): 

In queen inhabited colony 𝐶𝑖+1, 

[𝑳𝒉]𝑪𝒊+𝟏
[𝑹𝒉]𝑪𝒊+𝟏

=  [𝑳𝒉(𝒇𝒊𝒕)]
𝑪𝒊

[𝑹𝒉]𝑪𝒊+𝟏
      (3.15) 

Where 𝑖 = 1,2, … 𝑁 − 1 

For the queen inhabited 1st colony 𝐶1: 

[𝑳𝒉]𝑪𝟏
[𝑹𝒉]𝑪𝟏

=  [𝑳𝒉(𝒇𝒊𝒕)]
𝑪𝑵

[𝑹𝒉]𝑪𝟏
       (3.16) 

This process will go to Step 3 for generating new offspring. The process of Step 3 to 

Step 5 will be repeated until saturation 𝑆 acheaved. 

Step 6: The shrinking factor 𝑟 is used to shrink the search boundary by positioned the 

𝐿ℎ(𝑏𝑒𝑠𝑡)  as the center of the boundary. The equations below show the shrinking 

calculation. 

Boundary size, 𝑩𝒋 = 𝒓 × (𝑼𝑩𝒋 − 𝑳𝑩𝒋)      (3.17) 

Then 𝑈𝐵𝑗 and 𝐿𝐵𝑗  are generated as shown below: 

 𝑼𝑩𝒋 = [𝒍𝒋]
𝑳𝒉(𝒃𝒆𝒔𝒕)

+
𝟏

𝟐
𝑩𝒋        (3.18) 

 𝑳𝑩𝒋 = [𝒍𝒋]
𝑳𝒉(𝒃𝒆𝒔𝒕)

−
𝟏

𝟐
𝑩𝒋        (3.19) 

Step 7: New queens are produced for leading new colonies after certain times nuptial 

flights happened in all colony. This new queen creation process is performed by 
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reproducing all the haploid gene  [𝐿ℎ]𝐶𝑖
 and refer gene  [𝑅ℎ]𝐶𝑖

 same as in Step 1 and 

continue with Step 2. In this new colonies generated in Step 1 and Step 2, one of the refer 

gene [𝑅ℎ]𝐶𝑖
 is replaced with current generation’s best gene 𝐿ℎ(𝑏𝑒𝑠𝑡). This shows the fittest 

queen survived and brings forward the fittest gene to the next generation. The equation 

of fittest gene replacement process is shown as: 

[𝑹𝒉]𝑪𝒓𝒂𝒏𝒅𝒐𝒎
= 𝑳𝒉(𝒃𝒆𝒔𝒕)        (3.20) 

The evolution process could be considered converged when there is no consequential 

improvement in 𝑓(𝐿ℎ(𝑏𝑒𝑠𝑡)). The best gene 𝐿ℎ(𝑏𝑒𝑠𝑡) is taken as the final solution for the 

optimization problem if either of the 2 criteria listed below is valid or else the algorithm 

continues from Step 2 to 7 until convergences to minimum solution: 

• If maximum number of iterations 𝐺 exceeded. 

• If SDAA saturated by satisfying these conditions shown below: 

‖𝐦𝐚𝐱(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈

− 𝐦𝐚𝐱(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈−𝟏

‖ ≤ 𝜺   (3.21) 

And  

  ‖𝐦𝐢𝐧(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈

− 𝐦𝐢𝐧(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈−𝟏

‖ ≤ 𝜺   (3.22) 

And  

  ‖𝐦𝐚𝐱(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈

− 𝐦𝐢𝐧(𝒇(𝑳𝒉(𝒃𝒆𝒔𝒕)))
𝒈

‖ ≤ 𝜺    (3.23) 
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The pseudo code of SDAA is shown below and SDAA optimization flowchart is 

shown in Figure 3.2. 

 

VARIABLES: 

  dimension = number of dimension that problem defined. 

  ub, lb, boundary= upper and lower bound, boundary defined by problem 

  current boundary= boundary shrunken and used in every iteration in the program 

  shrinking factor, r = between 0 and 1 

  shrinking limit= minimum shrunken boundary 

  input digit precision = input decimal size used for function evaluator 

  max iteration = limit of iteration 

  no. of colony = no. of solution take part in the program 

  max inner loop = limit of inner loop 

  max saturation count = to stop inner loop when saturated  

 𝜀 = convergence parameter to check the maximum convergence  

 function_evaluator () = objective function 

 

MAIN PROGRAM 

START 

 //low precision input for 1st iteration 

Input parameters: input digit precision, dimension, number of colony, ub, lb, 

boundary, r, 𝜀, maximum iteration, maximum inner loop, saturation count,  shrinking 

limit. 

  boundary = ub – lb 

  current boundary = boundary 
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  //generate random [Lh](C(i)) as initial solutions 

  [Lh](C(i)) = random × current boundary + lb 

  Call bit size calculation(Lh); //count bit size needed 

  Call floating_to_binary convertion(Lh); 

  Best current L = min function_evaluator (Lh) 

  Rh = complement of (Lh); 

 

While (iteration <= max iteration OR boundaries > shrinking limit OR 𝜀 satisfied) 

      While (inner loop < max inner loop OR saturation count<max saturation count) 

            Diploid form, Od= [Lh](C(i)) [Rh](C(i)) 

            For colony= 1 to number of colony 

                  For variable= 1 to no. of dimension 

                       Generate offspring using copying process as describe in Step 3  

                  EndFor  

 

                  //test the problem function using Lh( new)All   

                  f( Lh(best))= min function_evaluator (Lh( new)All  );   

                   Nuptial Flight as describe in Step 5 

            EndFor 

            saturation count  // check saturation 

      EndWhile 

      Best current L= minimum result from all colonies [L(h(best)) ] (C(i)) 

      Check: iteration = max iteration? Boundary < shrinking limit? 𝜀 satisfied? 
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     If Check == yes for any of it  

              final answer found as Best current L 

             break; 

     End If 

      //before new iteration 

      current range=r × current range; 

      ub = Best current L + 0.5 × current range 

      lb = Best current L - 0.5 × current range 

      boundary =ub-lb 

      Call bit size calculation(Lh);  //count bit size needed 

      Call floating_to_binary convertion(Best current L); 

      [Lh ](C(i)) = random × current boundary + lb;   //generating new  Lh 

       [Rh ](C(i)) = complement of ([Lh ](C(i)) ); // generate new queens 

      rand = random integer between number of colony 

       [Rh ] C(rand)= Best current L;  //bring forward fittest gene to next generation 

  End While 

STOP 
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Figure 3.2: Flowchart of SDAA 
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3.2 Modified Seed Disperser Ant Algorithm for Data Clustering 

K-means clustering is a type of unsupervised learning, which able to solve or cluster 

the data given without defined categories or groups. K-means clustering is aiming to find 

and groups the data and the number of groups given. Based on the features of every data 

point provided K-means continually assign every data point to one of the groups. All the 

data points are clustered based on feature similarity. K-means clustering target to partition 

the data points into clusters in which each observation belongs to the cluster with the 

nearest mean, serving as a prototype of the cluster. 

The SDAA is modified name as Modified Seed Disperser Ant Algorithm (MSDAA) 

(Chang, Kanesan, Kulkarni, & Ramiah, 2017) to achieve improvement in terms of 

accuracy along with reducing function evaluations. This is implemented by modifying 

the Step 1 and cutting out Step 6 and Step 7 from SDAA. The control parameters such as 

number of colony 𝐶 , decimal points of precisions for input variables, and saturation 

number  𝑆  are set in the initialization stage. The upper boundary 𝑈𝐵𝑗  and lower 

boundary 𝐿𝐵𝑗 are generated same as original SDAA. 

In Step 1, K-means search is used rather than using random creating initial solutions. 

The centroid found by using K-means search is used as the refer point to generate Male 

ant gene 𝐿ℎ. The search boundary is shrink by resized to 75% of the original boundary. 

The male ant gene 𝐿ℎ is produced randomly around the reference point within the search 

boundary.  

Next, continue with the same steps from Step 2 to Step 5 as in original SDAA. 𝐿ℎ(𝑏𝑒𝑠𝑡) 

will be chosen as the final solution once Saturation in Step 5 is achieved. Step 6 and Step 

7 of the original SDAA are cut out as it consumes large number of function evaluations. 

The modification implemented on SDAA resulted in impressive reductions of function 

evaluations for data clustering in comparison with original SDAA as well as others 
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optimization algorithms. MSDAA is developed by adopting K-means search potential 

solution that speed up the overall search process and remove the excess steps of new 

queen spawn iteration from original SDAA. This enables MSDAA to obtain better result 

in shorter period of time in conjunction to SDAA as well as other algorithms. 

In clustering, for a set of data, 𝐷 with 𝑀 data object is clustered to 𝐾 sets of clusters: 

𝑫 = [𝒀𝟏, 𝒀𝟐, … , 𝒀𝑴]         (3.24) 

Where 

 𝒀𝒊 ∈ 𝕽𝑫          (3.25) 

 Clusters, 𝑺 = [𝑿𝟏, 𝑿𝟐, … , 𝑿𝑲]       (3.26) 

 

Each data in set 𝐷 will be allocated in one of the 𝐾 clusters in such way that it will 

minimize the objective function. The objective function, inter-cluster variance is defined 

as the sum of squared Euclidean distance between each object 𝑌𝐼 and the center of the 

cluster 𝑋𝐽 which it belongs (Krishnasamy et al., 2014). This objective function is given 

by equation (3.27): 

𝑭(𝑿, 𝒀) = ∑ 𝑴𝒊𝒏 ‖𝒀𝑰 − 𝑿𝑱‖
𝟐𝑴

𝑰=𝟏       (3.27) 

Where 𝐽 = 1, 2, … , 𝐾 

Also, 

𝑿𝑱  ≠ ∅          (3.28) 

 Where ∀𝐽{1, 2, … , 𝐾} 

𝑿𝑰 ∩ 𝑿𝑱  ≠ ∅         (3.29) 

 Where ∀𝐼 ≠ 𝐽  and  ∀𝐼, 𝐽{1, 2, … , 𝐾}   

⋃ 𝑿𝑱
𝑲
𝑱=𝟏 = 𝑫          (3.30) 
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For data clustering problems, the objective function 𝑓(𝑥) = 𝐹(𝑋, 𝑌) is represented by 

the sum of squared Euclidean distance between each object 𝑌𝐼 and the center of the cluster 

𝑋𝐽 as shown in equation (3.31). 

Minimize 𝒇(𝑳𝒉) = 𝒇(𝒍𝟏, … 𝒍𝒋, … 𝒍𝑵)      (3.31) 

Subject to 

 𝜳𝒋
𝒍𝒐𝒘𝒆𝒓 ≤ 𝒍𝒋 ≤ 𝜳𝒋

𝒖𝒑𝒑𝒆𝒓
        (3.32) 

Where  𝑗 = 1, … 𝑁 

In MSDAA, the Male ant gene 𝐿ℎ = [𝑙1, … 𝑙𝑗 , … 𝑙𝑁] is representing the center of the 

cluster, where dimension 𝑋𝐽 = [𝑥1, … 𝑥𝑗 , … 𝑥𝑁] is represented by 𝑙𝑗. 

Where 𝑳𝒉 = [𝒙𝟏, … 𝒙𝒋, … 𝒙𝑵] = [𝒍𝟏, … 𝒍𝒋, … 𝒍𝑵]     (3.33) 

Thus, the objective is shown as: 

𝒇(𝒙) = 𝑭( 𝑳𝒉, 𝒀)         (3.34) 

 

The K-means Clustering algorithm work in few steps. First, k-means clustering the 

data into k groups where k is predefined. Second, random k points are selected as cluster 

centres. Third, objects that closest to the cluster centres are assigned to the cluster 

according to the Euclidean distance function. Forth, calculate the centroid or mean of all 

objects in each cluster.  Then, repeat the second step to forth step until the same points 

are assigned to each cluster in consecutive rounds. Maximum iteration as a limit to 

prevent infinite looping. 
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The K-means pseudo code is shown below: 

 

Input: 𝐷 =  { 𝐷1, 𝐷2, 𝐷3, … , 𝐷𝑀}  

 𝐾 = number of clusters 

 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 = limit of iteration 

Output: 𝐶 =  { 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑀}  (set of cluster centroids) 

             𝐿 =  {𝑙(𝑒) | 𝑒 = 1, 2, … , 𝑀} (set of cluster labels of 𝐷) 

 

foreach  𝑐𝑖 ∈ 𝐶 do 

  𝑐𝑖 ← 𝑒𝑗  ∈ 𝐷 (e.g. random selection) 

end 

 

foreach  𝑒𝑖 ∈ 𝐸 do 

 𝑙(𝑒𝑖) ← 𝑎𝑟𝑔𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒𝑖, 𝑐𝑗) 𝑗 ∈ {1, … , 𝐾} 

end 

𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒;  

 𝑖𝑡𝑒𝑟 ← 0; 
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repeat 

 foreach  𝑐𝑖 ∈ 𝐶 do 

  𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟( 𝑐𝑖); 

 end 

 foreach  𝑒𝑖 ∈ 𝐸 do 

  𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒𝑖, 𝑐𝑗) 𝑗 ∈ {1, … , 𝐾} ; 

  If 𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ≠  𝑙(𝑒𝑖) 

   𝑙(𝑒𝑖) ← 𝑚𝑖𝑛𝐷𝑖𝑠𝑡; 

   𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑡𝑟𝑢𝑒;  

  else 

   𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒; 

  end 

 end 

 𝑖𝑡𝑒𝑟 + +; 

until 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 = 𝑡𝑟𝑢𝑒 and 𝑖𝑡𝑒𝑟 ≤ 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 
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The output centroids of K-means, 𝐶 =  { 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑀}  will bring into SDAA for 

optimization. Output centroids of K-means 𝐶 will use as initial generated centroids for 

SDAA, 𝐿ℎ = 𝐶. Pseudo code of MSDAA is shown below and the flowchart of MSDAA 

is shown in Figure 3.3. 

 

VARIABLES: 

  dimension = number of dimension that problem defined. 

  ub, lb, boundary= upper and lower bound, boundary defined by problem 

  current boundary= boundary shrunken and used in every iteration in the 

program 

  input digit precision = input decimal size used for function evaluator 

  no. of colony = no. of solution take part in the program 

  max inner loop = limit of inner loop 

  max saturation count = to stop inner loop when saturated  

 𝜀 = convergence parameter to check the maximum convergence  

function_evaluator () = objective function 

 

MAIN PROGRAM 

START 

  //low precision input for 1st iteration 

  Input parameters: input digit precision, dimension, number of colony, ub, lb, 

boundary, r, 𝜀, maximum inner loop, saturation count 

  //Set upper and lower boundaries 

  boundary = ub – lb 

  current boundary = boundary 
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  //generate Lh using K-means as initial solutions 

  Lh= output centroids of K-means, 𝐶 =  { 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑀}   

  Call bit size calculation(Lh); //count bit size needed 

  Call floating_to_binary convertion(Lh); 

  Rh = complement of (Lh); 

 

  While (inner loop < max inner loop OR saturation count<max saturation count) 

           For colony= 1 to number of colony 

                  For variable= 1 to no. of dimension 

                        Generate offspring using copying process as describe in Step 3  

                  EndFor  

                  //test the problem function using Lh( new)All   

                  f( Lh(best))= min function_evaluator (Lh( new)All  );   

                  Nuptial Flight as describe in Step 5 

            EndFor 

            saturation count  // check saturation 

  EndWhile 

  Best current L= minimum result from all colonies [L(h(best)) ] (C(i)) 

  final answer found as Best current L 

STOP 
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Figure 3.3: Flowchart of MSDAA 

Comparing flowchart of SDAA on Figure 3.2 and flowchart of MSDAA on Figure 3.3, 

SDAA contain 2 different loops where MSDAA only have 1 loop. K-means’ result 

provide a good starting point and continue with SDAA search. This improves the 

efficiency and accuracy of the solution. Initial convergence is done by K-means. With the 

converged solution, SDAA explore to get better solution until saturation. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Classical and Composite Benchmark Problem Solving 

30 dimensional benchmark problems of Ackley function (Adorio & Diliman, 2005), 

Rastrigin function (Molga & Smutnicki, 2005), Rosenbrock function (Shang & Qiu, 

2006) and Sphere function (Molga & Smutnicki, 2005) are used for SDAA validation. 

Rosenbrock function has the minimum in a deep and narrow parabolic valley with a flat 

bottom. A large number of iterations needed for the gradient based methods to achieve 

the global minimum (Shang & Qiu, 2006). Sphere function is unimodal and strongly 

convex function. Ackley function is highly multimodal with unique global minimum 

(Kulkarni & Tai, 2009). The Rastrigin function has a lot of local minima. It is highly 

multimodal, but the minima locations are regularly distributed (Xu et al., 2013). These 

functions have its own difficulty to be optimized and are commonly used as benchmarks 

in literature to evaluate the performance of optimization techniques. 30 times of 

simulations were executed using MATLAB version R2012a in computer with Intel i7-

4770 (3.40GHz) processor and 12GB RAM run on Windows 7 operation system. 

The results of PSO, IPSO, EPSO, GPSO, CPSO, CS and SDAA are shown in Table 

4.1. By comparing the results between all this optimization techniques, the results show 

SDAA is obtained better result. The average function evaluations (FEs) of SDAA 

achieving these results are recorded in Table 4.1. Most of the result shows that close to 

theoretical global minimum is obtained by SDAA. 

From Table 4.1, SDAA use more FEs to solve Rastrigin function and Rosenbrock 

function. This is because SDAA need more exploratory search for exact minimum point 

out of a lot of local minima for Rastrigin function and also the process search through the 

minimal valley on the Rosenbrock function. The higher the FEs needed, the longer the 

time used for aching the solution. The result of others algorithm in Table 4.1 is referred 
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from articles, this table is mainly to compare the best, mean, and the standard deviation 

(Std.) of the result found, FEs and time is recorded for future research comparison. 

 

Table 4.1: Simulation Result of 30 dimensional test problems 

  Sphere Rosenbrock Rastrigin Ackley 

PSO 

Best 

Mean 

Std. 

1.22E+03 

3.70E+03 

1.53E+03 

1.79E+03 

1.17E+04 

7.31E+03 

9.38E+01 

1.48E+02 

2.63E+01 

9.48E+00 

1.27E+01 

1.45E+00 

IPSO 

Best 

Mean 

Std. 

8.71E+02 

2.25E+03 

8.05E+02 

7.16E+02 

5.47E+03 

5.08E+03 

6.06E+01 

1.19E+02 

2.41E+01 

7.48E+00 

1.00E+01 

1.16E+00 

EPSO 

Best 

Mean 

Std. 

5.40E+03 

1.14E+04 

3.85E+03 

1.62E+04 

9.36E+04 

7.21E+04 

1.36E+02 

2.35E+02 

3.69E+01 

1.30E+01 

1.63E+01 

1.14E+00 

GPSO 

Best 

Mean 

Std. 

1.47E-10 

4.51E-06 

6.10E-06 

5.36E-07 

3.26E-05 

5.57E-05 

4.47E-07 

2.96E-05 

4.28E-05 

5.59E-05 

4.23E-04 

2.83E-04 

CPSO 

Best 

Mean 

Std. 

1.43E-81 

3.04E-12 

N/A 

1.34E-05 

4.81E-02 

N/A 

0.00E+00 

2.52E-03 

N/A 

6.33E-07 

1.38E-04 

N/A 

CS 

Best 

Mean 

Std. 

4.29E-15 

6.04E-13 

N/A 

N/A 

N/A 

N/A 

1.77E-15 

4.72E-09 

N/A 

1.65E-07 

1.10E-06 

N/A 

SDAA 

Best 

Mean 

Std. 

0.00E+00 

0.00E+00 

0.00E+00 

1.74E-07 

4.12E-05 

7.70E-05 

0.00E+00 

0.00E+00 

0.00E+00 

8.88E-16 

8.88E-16 

0.00E+00 

FEs 11625 54934 22270 16375 

Time (s) 13.29 160.08 19.67 16.64 
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The Composite benchmark functions from Congress on Evolutionary Computation 

(CEC) 2005 special session (Liang, Suganthan, & Deb, 2005) are shown in Appendix A 

also solved using SDAA. These Composite benchmarks are 10 dimensional benchmarks. 

The Composite benchmark functions are complicated optimization problems. These 

benchmarks are challenging to be solve as they are expanded, shifted, rotated, and merged 

with multiple variation of the classical functions. Furthermore these benchmark functions 

having a lot local optima which provide higher complexity. 

The results of Composite benchmark functions are recorded in Table 4.2. There are 

several benchmarks with better result are shown by comparing the results of SDAA with 

GWO, PSO, GSA, DE and CMA-ES. As specially CF1, CF2 and CF5 which SDAA able 

to obtain lowest mean result and lowest standard deviation (Std.) among all this 

algorithms. As No Free Lunch Theorem stated, no algorithm able to work perfectly on 

every problem. In Table 4.2, none of an algorithm successfully solved all the Composite 

benchmark functions. SDAA perform well on 3 out of 6 Composite benchmark functions. 

Each Composite benchmark function is formed by combining different kinds of 

conditions. The combination of different conditions problem becomes a big challenge for 

every type of algorithms to solve. 
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Table 4.2: Result of composite benchmark functions 

 CF1 CF2 CF3 CF4 CF5 CF6 

SDAA 
Mean 2.88E-17 16.4943 179.3623 335.8192 6.4585 457.4799 

Std. 1.09E-17 6.4343 40.6356 77.7292 2.5709 43.3633 

GWO 
Mean 43.8354 91.8008 61.4377 123.1235 102.1429 43.1426 

Std. 69.8614 95.5518 68.6881 163.9937 81.2553 84.4857 

PSO 
Mean 100 155.91 155.91 314.3 83.45 861.42 

Std. 81.65 13.176 13.176 20.066 101.11 125.81 

GSA 
Mean 6.63E-17 200.6202 180 170 200 142.0906 

Std. 2.78E-17 67.7208 91.8936 82.3272 47.1404 88.8714 

DE 
Mean 6.75E-02 28.759 144.41 324.86 10.789 490.94 

Std. 1.11E-01 8.6277 19.401 14.784 2.604 39.461 

CMA-

ES 

Mean 100 161.99 214.06 616.4 358.3 900.26 

Std. 188.56 151 74.181 671.92 168.26 8.32E-02 

 

 

 

Figure 4.1: Plot for Composite benchmark functions CF1 
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Figure 4.1 shows the plot for Composite benchmark functions CF1 using SDAA. From 

the shape of the plot, every haploid are converging to its saturation point. Exploration 

start again the search, then continue on convergence to its saturation point. The 

exploration search and exploitation search repeated until all the saturation point come to 

the same. There are a lot of peak on every start of exploration search, the enlarged plot is 

shown on Figure 4.2 or better vision. 

 

Figure 4.2: Enlarged plot of Composite benchmark functions CF1 

Figure 4.2 shows the enlarged version of Figure 4.1 between 400th to 540th generations. 

Nuptial flight process can be observed in Figure 4.2 where the fitness haploid of male ant 

represented by 𝐿ℎ change by generations. Subsequently, the peak in the plot is due to 

migration of new fit queen and random colony generated near new fit queen in between 

the shrunken boundary. The random generated colonies’ queens and male ant shows 

minor reduction in fitness, however it exploring and converged to better solutions. 

Convergence towards the best solution in SDAA is done using a shrinking process. 

This shrinking process is control by a parameter namely shrinking factor. The search will 
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shrinks towards the fittest haploid value in the given fixed boundary. SDAA expend local 

search to decrease the duty of localize search accountable by shrinking factor. All SDAA 

simulation shrinking factor is set to 0.75 and the colony size is set to 8 on every test 

benchmarks in this research. To expressing altruistic behaviour, other haploids referring 

the best haploid found as refer gene to enhance their corresponding fitness. In other hand, 

the best haploid also able to enhance its fitness by referring less fit haploid as an 

exploration search. This lead SDAA achieved the global optimum by all haploids locate 

global fitness via robust local search on altruistic haploid. 

4.2 Constrained Engineering Problem Solving 

The single-objective test problem (Floudas & Pardalos, 1990) used in many research 

(Ben Hadj-Alouane & Bean, 1997; Ben Hamida & Schoenauer, 2002; Coello & Cortés, 

2004; Koziel & Michalewicz, 1999; Michalewicz & Attia, 1994; Yıldız, 2009; Yoo & 

Hajela, 1999) as test benchmark has 13 variables and 9 inequality constraints. Tension 

spring design problem was described by Belegundu (Belegundu & Arora, 1985) as 

minimizing the weight of a tension spring subject to constraints on minimum deflection, 

shear stress, surge frequency and outer diameter. The design variables are the mean coil 

diameter  𝑥1 , wire diameter  𝑥2  and number of active coils  𝑥3 . Pressure vessel design 

problem is taken from Kannan and Kramer design problem (Kannan & Kramer, 1994). 

This design problem is based on a cylindrical vessel capped at both end with 

hemispherical heads. The objective is to minimize the total cost, include the cost of 

material, forming and welding. Four design variables include thickness of the shell 𝑥1, 

thickness of the head 𝑥2, inner radius 𝑥3, and length of cylindrical section of the vessel 

(not include heads) 𝑥4. The thickness of the shell and head, 𝑥1 and 𝑥2 are integer multiply 

with 0.0625 inch, which are the available thickness of rolled steel plates. Inner radius 𝑥3, 

and length of cylindrical section of the vessel  𝑥4  is continuous variables. From the 

minimum result found, 𝑥1 and 𝑥2 is rounded up to the closest valid thickness (integer 
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multiply with 0.0625 inch). SDAA continues the optimization process by using 𝑥1 and 𝑥2 

found. Available mathematical analysis of this problem proves that 6,059.7143 is the 

global minimum (X.-S. Yang, Huyck, Karamanoglu, & Khan, 2013). Welded beam 

design problem is firstly proposed by Coello (Coello Coello, 2000). A welded beam is 

designed for minimum cost subject to constraints on shear stress 𝜏, bending stress in the 

beam 𝜎, buckling load on the bar 𝑃𝐶, end deflection of the beam 𝛿, and side constraints 

with the four design variables 𝑥1, 𝑥2, 𝑥3, and 𝑥4 (Rao & Rao, 2009). 

SDAA shows the best result with standard deviation, Std. = 0 and lowest FEs in 

comparison with other algorithms in Table 4.3. For the result of tension spring design 

problem in Table 4.4, SDAA has the best result equal to RHPSO’s best result which is 

the minimum found so far. RHPSO and DELC have slightly better mean result compared 

to SDAA in tension spring design problem. However, SDAA used lowest FEs of 17125 

to solve tension spring design problem in comparison with all algorithms shown in Table 

4.4. Table 4.5 show the result comparison for pressure vessel design problem. SDAA able 

to achieve best result and best mean result with lowest Std. and FEs. For the result of 

welded beam design problem in Table 4.6, SDAA shows the best and mean result and 

lowest FEs compared to all others algorithms. 

The sample convergence histories for two problems namely Tension Spring Design 

Problem and Welded Beam Design Problem are presented in Figure 4.3 and Figure 4.5 

respectively. The position of 𝐿ℎ of each colony in every nuptial flight in the convergence 

plot shows the fitness 𝐿ℎ that mated with the current colony queen. The spike or peak of 

the convergences plots shows the new queen generation which regenerate all colonies 

with shrunken search space. The spike can be observed clearly in magnified convergence 

plots in Figure 4.4 and Figure 4.6.This perturbation helps the optimization to escape local 

optima. Despite the perturbation, the solution converged to the minimum with rapid 
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improvement as shown in Figure 4.3 convergence of the Tension Spring Design Problem. 

This is similar in Figure 4.5 that shows the convergence of Welded Beam Design 

Problem. Again, the fitness/solution of male ants in every new colony was improved 

compared to previous colony as emergence of young queen/ colony helps to improve the 

fitness of male ants. In SDAA, both nuptial flight and young queen production helps the 

optimization process in terms of exploitation and exploration respectively.  

Table 4.3: Result of Single Objective Test Problem 

Methods Best Mean Worst Std. FEs 

SDAA -15.000000 -15.000000 -15.000000 0 2812 

RHPSO (Xu et al., 

2013) 
-15.000000 -14.921875 -13.828125 0.297314 100000 

PSO (Yıldız, 2009) -15.000000 -14.876000 -14.681900 0.113000 100000 

Hybrid GA (Coello 

& Cortés, 2004) 
-14.784100 -14.526600 -13.841700 0.233500 150000 

Modified GA (Yoo 

& Hajela, 1999) 
-5.273500 -3.743500 -2.425500 0.969600 150000 

ASCHEA (Ben 

Hamida & 

Schoenauer, 2002) 

-15.000000 -14.840000 N/A N/A 1500000 

Homomorphous 

Mappings (Koziel 

& Michalewicz, 

1999) 

-14.786400 -14.708200 -14.615400 N/A 1000000 

GA (Ben Hadj-

Alouane & Bean, 

1997) 

-5.1655900 -3.6400400 -2.7251800 0.6062400 N/A 

Genocop II 

(Michalewicz & 

Attia, 1994) 

-7.3433400 -5.0713600 -3.5953600 0.7724700 N/A 

 

The result in Table 4.3 shows that only SDAA able to achieve 0 standard deviation. 

This mean SDAA able to solve Single Objective Test Problem every time without error. 

Result from other algorithms show that they have chances to trap in local minima that not 

always achieved the best result or theoretical result. The Result also shows SDAA have 

the advantage to achieve the best result in low FEs. 
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Table 4.4: Result of Tension Spring Design Problem 

Methods Best Mean Worst Std. FEs 

SDAA 0.01266523 0.01266975 0.01267941 5.66E-06 17125 

RHPSO (Xu et al., 

2013) 
0.01266523 0.01266523 0.01266524 1.54E-09 30000 

PSO (Yıldız, 

2009) 
0.01266527 0.01267300 0.01270800 6.24E-06 30000 

Hybrid GA 

(Coello & Cortés, 

2004) 

0.01268100 0.01274200 0.01297300 5.90E-05 80000 

Self-Adaptive 

Penalties GA 

(Coello Coello, 

2000) 

0.01270480 0.01276900 0.01282200 3.94E-05 900000 

DE (Lampinen, 

2002) 
0.0126702 0.012703 0.012790 2.7E−05 204800 

DELC (Wang & 

Li, 2010) 
0.01266523 0.01266527 0.01266558 1.3E−07 20000 

CPSO (He & 

Wang, 2007a) 
0.0126747 0.0127300 0.0129240 5.20E−04 240000 

(μ + λ)-ES 

(Mezura-Montes 

& Coello, 2005) 

0.012689 0.013165 N/A 3.9E-04 30000 

 

Tension Spring Design Problem is giving some challenge to SDAA. Although the 

mean result of SDAA not the best, SDAA still able to found the best result from 30 times 

of test done. DELCE also able to achieve the best result and perform slightly better than 

SDAA. RHPSO have the lowest standard deviation in Table 4.4 and the best result 

slightly higher compare SDAA and DELCE. SDAA and DELCE perform well in solving 

Tension Spring Problem that using a low number of FEs. The best result is important 

because in real world engineering problem, a slightly better result may affect the cost and 

quality of the production.  
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Table 4.5: Result of Pressure Vessel Design Problem 

Methods Best Mean Worst Std. FEs 

SDAA 6059.7143 6059.7143 6059.7143 0 28140 

RHPSO  (Xu et al., 

2013) 
6059.7143 6059.7145 6059.7183 0.0007 30000 

PSO (Yıldız, 2009) 6059.7144 6097.4460 6156.5700 35.7810 30000 

Hybrid GA (Coello 

& Cortés, 2004) 
6061.1229 6734.0848 6738.0602 457.9959 150000 

Constraint-Handling 

GA (Coello Coello 

& Mezura Montes, 

2002) 

6059.9463 6177.2533 6469.3220 130.9297 80000 

Self-Adaptive 

Penalties GA 

(Coello Coello, 

2000) 

6288.7445 6293.8432 6308.1497 7.4133 900000 

CPSO (He & Wang, 

2007a) 
6061.0777 6147.1332 6363.8041 86.45 240000 

HPSO (He & Wang, 

2007b) 
6059.7143 6099.9323 6288.6770 86.20 81000 

CDE (Huang, 

Wang, & He, 2007) 
6059.7340 6085.2303 6371.0455 43.0130 204800 

 

In Table 4.5, SDAA again show its potential that solving Pressure Vessel Design 

Problem with best result and 0 standard deviation. No other algorithms able to have 

persistency to get the best result as SDAA in solving this problem. Although RHPSO and 

HPSO able to achieve the best result, the FEs used in solving this problem is higher 

compare SDAA. FEs is taking into account to reduce the time and computation power 

used for solving the problem. 
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Table 4.6: Result of Welded Beam Design Problem 

Methods Best Mean Worst Std. FEs 

SDAA 1.723703 1.724654 1.728197 0.00453 18197 

Self-Adaptive Penalties GA 

(Coello Coello, 2000) 
1.748309 1.771973 1.785835 0.0112 900000 

Constraint-Handling GA 

(Coello Coello & Mezura 

Montes, 2002) 

1.728226 1.792654 1.993408 0.0747 80000 

CAEP (Coello Coello & 

Becerra, 2004) 
1.724852 1.971809 3.179709 0.443 50020 

CPSO (He & Wang, 2007a) 1.728024 1.748831 1.782143 0.0129 240000 

HPSO (He & Wang, 2007b) 1.724852 1.749040 1.814295 0.0401 81000 

PSO-DE (H. Liu, Cai, & 

Wang, 2010) 
1.724852 1.724852 1.724852 6.7E−16 66600 

NM-PSO (Zahara & Kao, 

2009) 
1.724717 1.726373 1.733393 0.00350 80000 

DE (Lampinen, 2002) 1.733461 1.768158 1.824105 0.0221 204800 

CDE (Huang et al., 2007) 1.73346 1.76815 N/A N/A 240000 

(μ + λ)-ES (Mezura-Montes 

& Coello, 2005) 
1.724852 1.777692 N/A 0.088 30000 

ABC (Akay & Karaboga, 

2012) 
1.724852 1.741913 N/A 0.031 30000 

 

SDAA perform well in solving Welded Beam Design Problem as shown in Table 4.6. 

The FEs used is for more lower compare other algorithms. Although SDAA might get the 

worst solution that far away from the best solution. But the mean result is close to the best 

result shows that the chances to get worst result is low. This is the reason mean result is 

important on solving any optimization problems. 

 

Table 4.7 Parameters used for SDAA for constrained engineering problem solving 

𝐶 𝑆 𝐺 𝑟 𝜀 

8 8 300 0.90 1E-05 
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Table 4.7 record the parameters used in SDAA to solve all the constrained engineering 

problem. There is 5 parameter use to control SDAA behaviours. This is considered too 

many parameters to control and hard to achieve optimum conditions that able to solve all 

kinds of problem. Enhancement needed to reduce the parameter used and improve the 

performance. 

 

Figure 4.3: Convergence of Tension Spring Design Problem 

Figure 4.3 shows the convergence of SDAA on solving Tension Spring Problem. The 

plot shows the peak on every exploration search far away from the minimum. This is the 

reason and behaviour of SDAA which cause the chances trap on local minima. Although 

SDAA not always getting the best result in solving Tension Spring Problem, SDAA still 

manage to get close to best result as shown in Table 4.4. Form Figure 4.3, the convergence 

of SDAA shown is very robust in the exploitation search. 
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Figure 4.4: Magnified Convergence of Tension Spring Design Problem between 

nuptial flights 75 to 240 

In Figure 4.4, the plot shows the enlarged or magnified plot of Figure 4.3. From this 

plot, the different haploid started different point at the start of every exploration. Almost 

all haploid converged and saturated to the same saturation point and next exploration 

search will start again. This behaviour of SDAA shown the exploration and exploitation 

search happened. 
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Figure 4.5: Convergence of Welded Beam Design Problem 

Figure 4.5 shows the plot of SDAA solving Welded Beam Design Problem. The Plot 

shows that the convergence is fast and almost saturation just after 500 Nuptial Flight. This 

shows that SDAA easy to get near best solution for solving Welded Beam Design 

Problem. In another point of view, this is also the reason that SDAA might easily trap in 

local minima if the number of haploid is not enough to randomly explore the solution.  

 Univ
ers

ity
 of

 M
ala

ya



48 

 

Figure 4.6: Magnified Convergence of Welded Beam Design Problem between 

nuptial flights 50 to 260 

Figure 4.6 shows magnified or enlarged the plot of SDAA solving Welded Beam 

Problem with the fast saturation can see clearly. This means at the starting plot of each 

exploration peak, SDAA found nearer to saturation point very fast. This behaviour of 

SDAA solving Welded Beam Design Problem may give an advantage of low FEs used, 

but also might have chances to cause SDAA trap in local minima.  
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4.3 Data Clustering Problem Solving 

The SDAA and MSDAA were coded in MATLAB 8.1 (R2012a) running in computer 

with Windows 7 operating system, 12GB RAM and Intel i7-4770, 3.40GHz processor. 

The simulations of every data clustering problem were carried out for 30 times. For data 

clustering optimization, six real data sets from UCI Machine Learning Repository was 

used to validate SDAA. Each data set has different numbers of clusters, data objects and 

features as described in the Table 4.8 below (Bache & Lichman, 2013). 

Table 4.8: UCI Machine Learning Repository Data Set Information 

Dataset 
Number of 

data set, N 

Dimension,  

D 

Number of 

clusters, K 

Iris  150 4 3 

Wine 178 13 3 

Breast Cancer Wisconsin 683 9 2 

Contraceptive Method Choice 

(CMC) 
1473 10 3 

Glass 214 9 6 

Vowel 871 3 6 

 

Table 4.9 to Table 4.14 show the clustering results of different algorithms solving these 

dataset listed in Table 4.8. By comparing the best and mean result, MSDAA perform very 

well where it able to achieved minimum result for all the cases. MSDAA also shows that 

low standard deviation (Std.) which mean not frequent trap on local minima. In other 

hand, MSDAA have the lowest function evaluation (FEs) compared to all other 

algorithms in all these problems. It shows great improvement when comparing the FEs 

of MSDAA and SDAA in Table 4.15.  
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Table 4.9: Simulation result of Iris dataset 

Criteria Best Mean Worst Std. FEs 

GA 113.9865 125.1970 139.7782 14.563 38128 

SA 97.4573 99.9570 102.0100 2.018 5314 

TS 97.3659 97.8680 98.5694 0.530 20201 

ACO 97.1007 97.1715 97.8084 0.367 10998 

HBMO 96.7520 96.9531 97.7576 0.531 11214 

PSO 96.8942 97.2328 97.8973 0.347 4953 

CI 96.6557 96.6561 96.6570 0.0002 7250 

K-MCI 96.6554 96.6554 96.6554 0 3500 

SDAA 96.6554 96.6554 96.6554 0 7080 

MSDAA 96.6554 96.6554 96.6555 0 2800 

 

Table 4.9 shows the result of solving Iris clustering problem data set. SDAA perform 

very well to achieve the best result with 0 standard deviation. With the improvement or 

modification of adding K-means to SDAA, MSDAA sacrificed the extra exploratory 

search to lower down the FEs. This shows MSDAA have a great improvement on 

reducing FEs and still able to get the targeted best and mean result. Only little chances 

getting slightly higher for worst result and standard deviation still considers as 0.  

Table 4.10: Simulation result of Wine dataset 

Criteria Best Mean Worst Std. FEs 

GA 16530.53 16530.53 16530.53 0 33551 

SA 16473.48 17521.09 18083.25 753.084 17264 

TS 16666.22 16785.45 16837.53 52.073 22716 

ACO 16530.53 16530.53 16530.53 0 15473 

HBMO 16357.28 16357.28 16357.28 0 7238 

PSO 16345.96 16417.47 16562.31 85.497 16532 

CI 16298.01 16300.98 16305.06 2.118 17500 

K-MCI 16292.44 16292.70 16292.88 0.130 6250 

SDAA 16292.23 16292.24 16292.51 8.24E-02 10150 

MSDAA 16292.20 16292.24 16292.62 0.1782 2900 

 

Table 4.10 shows that the simulation result of the Wine dataset clustering problem. 

MSDAA shows the lowest best result compare other algorithms. This shows the 

advantage of K-means search reduces the waste of extra exploration steps of SDAA and 
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exploit toward the best answer. MSDAA saved a lot of FEs used with the help of K-

Means by the sacrificed increase small amount of standard deviation. 

Table 4.11: Simulation result of Cancer dataset 

Criteria Best Mean Worst Std. FEs 

GA 2999.32 3249.46 3427.43 229.734 20221 

SA 2993.45 3239.17 3421.95 230.192 17387 

TS 2982.84 3251.37 3434.16 232.217 18981 

ACO 2970.49 3046.06 3242.01 90.500 15983 

HBMO 2989.94 3112.42 3210.78 103.471 19982 

PSO 2973.50 3050.04 3318.88 110.801 16290 

CI 2964.64 2964.78 2964.96 0.094 7500 

K-MCI 2964.38 2964.38 2964.38 0 5000 

SDAA 2964.38 2964.38 2964.38 0 9860 

MSDAA 2964.38 2964.38 2964.38 0 2900 

 

MSDAA showing excellent results in solving Cancer dataset clustering problem. The 

Table 4.11 shows the FEs of MSDAA reduced to about 70% FEs of SDAA but still 

maintain the best result with 0 standard deviation. 

Table 4.12: Simulation result of CMC dataset 

Criteria Best Mean Worst Std. FEs 

GA 5705.63 5756.59 5812.64 50.369 29483 

SA 5849.03 5893.48 5966.94 50.867 26829 

TS 5885.06 5993.59 5999.80 40.845 28945 

ACO 5701.92 5819.13 5912.43 45.634 20436 

HBMO 5699.26 5713.98 5725.35 12.690 19496 

PSO 5700.98 5820.96 5923.24 46.959 21456 

CI 5695.33 5696.01 5696.89 0.482 30000 

K-MCI 5693.73 5693.75 5693.80 0.014 15000 

SDAA 5693.73 5694.01 5694.29 0.247 11020 

MSDAA 5693.73 5693.75 5693.79 0.01366 2900 

 

Result in Table 4.12 shows the improvement of SDAA to MSDAA especially on FEs. 

The mean result also gets closer to the best result after modification to MSDAA. The 

result of this table able to say that K-means suitable to solve CMC dataset clustering 
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problem where K-MCI and MSDAA both merged with K-means improved the best and 

mean result.  

Table 4.13: Simulation result of Glass dataset 

Criteria Best Mean Worst Std. FEs 

GA 278.37 282.32 286.77 4.138 199892 

SA 275.16 282.19 287.18 4.238 199438 

TS 279.87 283.79 286.47 4.190 199574 

ACO 269.72 273.46 280.08 3.584 196581 

HBMO 245.73 247.71 249.54 2.438 195439 

PSO 270.57 275.71 283.52 4.550 198765 

CI 219.37 223.31 225.48 1.766 55000 

K-MCI 212.34 212.57 212.80 0.135 25000 

SDAA 210.53 220.05 234.33 9.453 11310 

MSDAA 210.47 210.50 210.52 0.0142 3000 

 

Glass dataset clustering problem has the highest number of clusters with high 

dimensions problems among all the dataset problems. Most of the algorithms traps on 

local minima. With the help of K-mean merged with SDAA become MSDAA, the best 

and the mean result outperform compare others algorithms. The FEs used on MSDAA is 

highly reduced and still able to get the best result out of all the algorithms compared.  

Table 4.14: Simulation result of Vowel dataset 

Criteria Best Mean Worst Std. FEs 

GA 149513.73 159153.49 165991.65 3105.544 10548 

SA 149370.47 161566.28 165986.42 2847.085 9423 

TS 149468.26 162108.53 165996.42 2846.235 9528 

ACO 149395.60 159458.14 165939.82 3485.381 8046 

HBMO 149201.63 161431.04 165804.67 2746.041 8436 

PSO 148976.01 151999.82 158121.18 2881.346 9635 

CI 149139.86 149528.56 150468.36 495.059 15000 

K-MCI 148967.24 148967.55 149048.58 36.086 7500 

SDAA 148967.39 148969.63 148973.26 1.792 10150 

MSDAA 148967.24 148967.45 148970.69 1.160 2900 
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Vowel dataset clustering problem also one of the highest number of cluster problem. 

K-MCI and MSDAA perform well by getting the best result. MSDAA successfully 

improve the mean result and getting lower standard deviation compare K-MCI. In 

addition, MSDAA achieved the lowest FEs over all the clustering problem datasets.  

Table 4.15: Overall averages FEs for all algorithms 

GA SA TS ACO HBMO PSO CI K-MCI SDAA MSDAA 

55303 45942 49990 44586 43634 44605 22041 10375 9928 2900 

 

Based on overall average FEs, we can see MSDAA perform well which remain around 

2900 FEs. This result means that the cluster size and number of dimension did not affect 

much to MSDAA. The overall average FEs is revised from 9928 to 2900 by the 

modification of SDAA to MSDAA resulted about 70% decrement of FEs. The overall 

average FEs of different kind data clustering algorithms are compared in the Figure 4.7. 

MSDAA shows that it used the lowest number of FEs for solving all the listed data 

clustering problems. 

 

 

Figure 4.7: Overall average FEs of data clustering algorithms 

0

10000

20000

30000

40000

50000

60000

GA SA TS ACO HBMO PSO CI K-MCI SDAA MSDAA

O
v
er

al
l 

A
v
er

ag
e 

F
E

s

Univ
ers

ity
 of

 M
ala

ya



54 

Table 4.16 to Table 4.20 shows the location of best centroid location found by 

MSDAA. These are the dimensions or variables found by MSDAA for each cluster 

centroid to achieve the result in Table 4.9 to Table 4.14. 

Table 4.16: Best centroids found by MSDAA for Iris problem (3 clusters) 

Dataset Centroid 1 Centroid 2 Centroid 3 

Iris 

5.93430 5.01213 6.73329 

2.79785 3.40313 3.06788 

4.41781 1.47164 5.63007 

1.41732 0.23539 2.10681 

 

The Table 4.16 shows the 3 clusters of Iris problem found by MSDAA with every 

centroid location. There are 4 dimensions value as each centroid as shown in the table. 

 

Table 4.17: Best centroids found by MSDAA for Wine problem (3 clusters) 

Dataset Centroid 1 Centroid 2 Centroid 3 

Wine 

12.82075 13.73004 12.5031 

2.54474 1.85073 2.32307 

2.37680 2.43719 2.31535 

19.58352 16.91519 21.35024 

98.93214 105.22189 92.56646 

2.06160 2.84618 2.04522 

1.49349 3.05872 1.76859 

0.43120 0.29498 0.39530 

1.42292 2.00281 1.44528 

5.77908 5.69008 4.34390 

0.90115 1.09603 0.93938 

2.19912 3.03242 2.49100 

686.94478 1137.52274 463.53697 

 

Table 4.17 shows the 3 clusters of Wine problem found by MSDAA with every 

centroid location. There are 13 dimensions value for each centroid as shown in the table. 
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Table 4.18: Best centroids found by MSDAA for CMC problem (3 clusters) 

Dataset Centroid 1 Centroid 2 Centroid 3 

CMC 

24.41491 43.63656 33.49713 

3.04027 2.99127 3.13244 

3.50985 3.44247 3.55441 

1.78912 4.59965 3.65207 

0.92444 0.79470 0.78938 

0.79002 0.76585 0.69693 

2.29240 1.82728 2.10167 

2.96867 3.42056 3.28770 

0.03699 0.09194 0.06126 

2.00329 1.67795 2.11263 

 

Table 4.18 shows the 3 clusters of CMC problem found by MSDAA with every 

centroid location. There are 10 dimensions value for each centroid as shown in the  table. 

 

Table 4.19: Best centroids found by MSDAA for Cancer problem (2 clusters) 

Dataset Centroid 1 Centroid 2 

Cancer 

2.88923 7.11773 

1.12786 6.64029 

1.20049 6.62656 

1.16400 5.61481 

1.99294 5.24096 

1.12158 8.10104 

2.00501 6.07799 

1.10169 6.02385 

1.03127 2.32470 

 

Table 4.19 shows the 2 clusters of Cancer problem found by MSDAA with every 

centroid location. There are 9 dimensions value for each centroid as shown in the table. 
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Table 4.20: Best centroids found by MSDAA for Glass problem (6 clusters) 

 

Table 4.20 shows the 6 clusters of Glass problem found by MSDAA with every 

centroid location. There are 9 dimensions value for each centroid as shown in the table. 

Table 4.21: Best centroids found by MSDAA for Vowel problem (6 clusters) 

 

Table 4.20 shows the 6 cluster of Vowel problem found by MSDAA with every 

centroid location. There are 3 dimensions value for each centroid as shown in the table. 

Table 4.22: Parameters used for SDAA and MSDAA for data clustering 

SDAA MSDAA 

𝐶 𝑆 𝐺 𝑟 𝜀 𝐶 𝑆 

10 10 200 0.75 1E-05 10 10 

 

Table 4.21 shows the parameters used by MSDAA compared to SDAA. The parameter 

used for MSDAA is reduced compared to SDAA. 

 

Dataset Centroid 1 Centroid 2 Centroid 3 Centroid 4 Centroid 5 Centroid 6 

Glass 

1.52812 1.52001 1.51297 1.51704 1.52103 1.51619 

11.97964 13.25638 13.01245 13.08415 13.73654 14.65215 

0 0.43237 0 3.52666 3.51784 0.05659 

1.08559 1.51943 3.03408 1.36771 1.01966 2.20679 

72.01313 73.02575 70.56388 72.84592 71.89594 73.25357 

0.19669 0.39806 6.21 0.58061 0.21198 0.01067 

14.35597 11.14605 6.98903 8.35731 9.44122 8.68399 

0.15413 0 0 0.01318 0.03471 1.02733 

0.11814 0.06663 0.00143 0.06073 0.05303 0.01929 

Dataset Centroid 1 Centroid 2 Centroid 3 Centroid 4 Centroid 5 Centroid 6 

Vowel 

506.98293 407.89040 439.24957 357.25663 375.40162 623.71461 

1839.67600 1018.05050 987.68298 2291.44507 2149.42076 1309.59120 

2556.19948 2317.83193 2665.47360 2977.39302 2678.46239 2333.46185 
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Figure 4.8: Convergence of Wine clustering problem 
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Figure 4.9: Convergence of Cancer clustering problem 

 

Figure 4.8 and Figure 4.9 show convergence plot of Wine and Cancer clustering 

problems respectively. The convergence plots show the fitness which represented by 

objective function 𝑓(𝑥) versus the number of Nuptial Flight. From the plots, all 10 

colonies’ male ant 𝐿ℎ mated to others colony’s queen in every nuptial flight. The slope of 

the plot shows that MSDAA able to fast achieve near best result and converge to the 

global optima. 

0 10 20 30 40 50 60 70 80 90 100
2960

2965

2970

2975

2980

2985

2990

2995

Nuptial Flight

F
(x

)

 

 

 L
h
 for C

1

 L
h
 for C

2

 L
h
 for C

3

 L
h
 for C

4

 L
h
 for C

5

 L
h
 for C

6

 L
h
 for C

7

 L
h
 for C

8

 L
h
 for C

9

 L
h
 for C

10

Univ
ers

ity
 of

 M
ala

ya



59 

CHAPTER 5: CONCLUSION 

On this research, a new algorithm is developed successfully, namely Seed Disperser 

Ant Algorithm (SDAA) inspired from the nature ant evolution behaviour. SDAA is 

applied to different kind of problem solving like real world engineering problems and 

clustering problems. This shows that SDAA able to solve a variety of problems using 

SDAA. SDAA also achieve high accuracy and persistency result based on the result 

shown in Chapter 4. An Improvement applied to SDAA become Modified SDAA 

(MSDAA) also discussed in this research. 

SDAA is successfully created using the ant colony evolution concept where male ants 

carrying out nuptial flights with queen in other colony to generate young fit queen. The 

new fit queen will establish a new superior colonies. The optimization process 

continuously improve is ensured by the nuptial flights process and young queen creation 

to achieve the global optimum. The new fit queen will establish new superior colonies to 

explore and help to escape from local optima. SDAA shows comparable result for solving 

constrained engineering problems and data clustering. However, SDAA still have 

potential to improve on reducing FEs for data clustering solving. With the purpose of 

enhancing SDAA, a modified algorithm is created by merging K-means and SDAA name 

as MSDAA. This advantage of K-means is solving optimization problem using low 

number of FEs. MSDAA is adopting the advantage of K-means and with the robust search 

of SDAA. With the behaviour of MSDAA, it show that a great start will reduce the burden 

of the process to achieve goal. A great algorithm might use a lot of FEs to achieve the 

goal if the starting point is too far away. K-means in MSDAA successfully reduces a lot 

of FEs and lead the initial staring point near the global optimum. 
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