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HIGH IMPEDANCE FAULT DETECTION AND LOCALIZATION IN 11KV 

DISTRIBUTION SYSTEM 

ABSTRACT 

High impedance fault (HIF) is a type of fault, where the fault current flow is restricted 

by the high impedance element. The insufficient fault current will not trigger the fuse or 

conventional overcurrent protection relay. As such, any undetected HIF will lead to 

potential hazards to human life and equipment damages. On the long run, it can affect 

power system quality in terms of service continuity, disturbance propagation and energy 

losses if HIF left untreated. In order to overcome the stated problems, it is imperative for 

the utilities to detect the HIF and its location in distribution system quickly. However, the 

detection of HIF is challenging as the resultant distortion on the voltage profile and 

increment in harmonic content are similar to the non-HIF events such as load switching, 

motor starting and capacitor switching. Moreover, locating the HIF is also a complicated 

task especially for a distribution network. This is due to the complexity of the network 

such as the presence of non-homogeneous line, lateral branches and load variations. 

Considering the importance of detecting and locating HIF in the distribution system, this 

study proposes a combined technique comprising of two independent techniques utilizing 

single measurement point. The first technique, based on Phase Displacement 

Computation (PDC) is proposed to detect the occurrence of HIF utilizing the three-phase 

voltage waveforms. Concurrently, the proposed technique is able to discriminate the HIF 

from non-HIF events. The second technique, based on intelligent approach is proposed to 

identify the location of HIF. For this purpose, the measured three-phase voltage and 

current waveforms are analyzed using the wavelet transform (WT). Then, the extracted 

approximation features from WT are fed into Artificial Neural Network (ANN) to be 

trained. In this process, the grey wolf optimization (GWO) technique is adopted in order 

to provide the optimal value of ANN parameters. Fault simulations were carried out using 
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the PSCAD/EMTDC software to obtain the distorted voltage and current waveforms 

during the HIF events. Subsequent algorithm simulation results show that the proposed 

methods are able to detect and subsequently locate the faults with high accuracies. In 

addition, the proposed methods are found to be effective and economical since the 

methods require only single measurement of voltage and current waveforms. 

Keywords: High impedance fault, fault distance, fault type, fault impedance and faulty 

section. 
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PENGESANAN DAN PENYETEMPATAN KESALAHAN HALANGAN TINGGI 

DALAM 11KV SISTEM PENGAGIHAN 

ABSTRAK 

Kesalahan halangan tinggi (HIF) merupakan sejenis kesalahan, yang mana aliran arus 

bersalah dihadkan oleh unsur halangan tinggi. Oleh itu, aliran arus bersalah yang tidak 

mencukupi tidak dapat mencetuskan fius atau penyampai konvensional perlindungan arus 

terlebih. Kejadian HIF boleh menyebabkan satu cas elektrik diantara mesin yang 

membawa kepada potensi bahaya kepada kehidupan manusia dan alam sekitar. Selain itu, 

risiko kebakaran kerana cas elektrik diantara mesin boleh menimbulkan kemungkinan 

kerosakkan peralatan sistem kuasa. Pada jangka masa panjang, ia boleh menjejaskan 

kualiti sistem kuasa dari segi kesinambungan perkhidmatan, gangguan penyebaran dan 

kerugian tenaga jika HIF tidak dirawat. Untuk mengatasi masalah ini, syarikat utiliti 

kuasa perlu mengesan dan mencari HIF secepat yang mungkin. Walaubagaimanapun, 

untuk mengesan berlakunya HIF adalah mencabar kerana hasil herotan pada profil voltan 

serta kenaikan kandungan harmonik adalah hampir sama dengan kejadian bukan-HIF 

seperti penukaran beban, pemulaan motor dan penukaran kapasitor. Selain itu, mencari 

HIF juga merupakan tugas yang rumit terutamanya bagi rangkaian pengedaran. Ini adalah 

disebabkan oleh kerumitan rangkaian seperti kewujudan line homogen, cawangan sisian 

dan variasi beban. Memandangkan kepentingan mengesan dan mencari HIF dalam sistem 

pengagihan, kajian ini mencadangkan teknik gabungan yang terdiri daripada dua teknik 

yang berbeza menggunakan satu titik pengukuran. Teknik yang pertama berdasarkan 

Pengiraan Anjakan Fasa (PDC) dicadangkan untuk mengesan kejadian HIF 

menggunakan tiga fasa gelombang voltan. Serentak dengan itu, teknik yang dicadangkan 

ini juga mampu untuk mendiskriminasikan antara kejadian HIF dan bukan-HIF. Teknik 

ynag kedua berdasarkan pendekatan bijak dicadangkan untuk mengenalpasti lokasi HIF. 

Bagi tujuan ini, tiga fasa gelombang voltan dan arus dinilai dan dianalisis menggunakan 
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pengubah wavelet. Kemudian, ciri-ciri butiran dan penghampiran yang diekstrak dari WT 

akan dimasukkan ke dalam Rangkaian Tiruan Neural (ANN) untuk dilatih. Dalam proses 

ini, teknik Pengoptimuman Serigala Kelabu (GWO) digunapakai untuk memberi nilai 

yang optimum bagi parameter ANN. Simulasi telah dijalankan menggunakan perisian 

PSCAD/EMTDC untuk mendapatkan gelombang voltan dan arus bersalah semasa 

kejadian HIF. Keputusan simulasi menunjukkan bahawa kaedah yang dicadangkan 

mampu untuk mengesan dan seterusnya mencari kesalahan dengan jayanya. Tambahan 

pula, kaedah yang dicadangkan dianggap efektif dan jimat kerana kaedah ini hanya 

memerlukan satu pengukuran untuk gelombang voltan dan arus. 

Katakunci: Kesalahan halangan tinggi, jarak kesalahan, jenis kesalahan, halangan 

kesalahan dan seksyen kesalahan. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction  

Faults in a power distribution network are mainly caused by natural disasters and 

degradation as well as human factors. Examples of these factors include storms, lightning 

strikes, a fallen tree trunk, animal encroachment, heat cycling, water, aging components, 

broken insulation and a host of human errors in the forms of accidents or other activities 

carried out in the vicinity of the power system (Filomena, Resener et al. 2009). The above 

mentioned events can lead to short-circuit. 

The accompanying power quality disturbances during fault will cause interruptions to 

manufacturing processes in surrounding regions where sensitive equipment such as 

automated machines, power drive and process control in semiconductor factories are 

forced to shut down (Melhorn, Davis et al. 1998). In addition, the continuity of supply in 

the downstream network will be interrupted when the protection relay isolates the fault.  

Based on the survey done by (Abraham;, Dhaliwal; et al. 2004), it was found that more 

than 80% of the interruptions that occurred in the distribution systems were caused by 

faults. Therefore, it is important for the utility companies to detect, identify and locate the 

fault speedily to minimize the impact of the fault to power system equipment and losses 

due to power supply interruption. Reducing the interruption time also improves the 

reliability indices of the utility companies. The System Average Interruption Duration 

Index (SAIDI), Customer Average Interruption Duration Index (CAIDI) and System 

Average Interruption Frequency Index (SAIFI) are examples of indices that examines the 

reliability and efficiency of a utility company. 
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1.2 Problem Statement  

The detection and localization of faults in a power network are important to ensure the 

supply of electrical power that is reliable, efficient, safe and secure. Thus, immediate and 

accurate detection and localization of a fault are crucial. However, the detection of HIF 

with a low fault current is very challenging. Many methods have been proposed and tested 

and they can be broadly divided into two categories namely mechanical and electrical 

HIF detection approaches (Adamiak, Wester et al.).  

Mechanical HIF detection techniques use devices that make contact with the ground 

to provide a low impedance ground fault when a HIF occurs. Consequently, sufficient 

fault current is generated to activate the overcurrent protection relay. These techniques 

work best when the devices are stationed at each pole. However, since there are many 

poles in a distribution network, it becomes prohibitively expensive and impractical.  

Electrical HIF detection techniques are favorable since they only utilize voltage and 

current signals to detect the occurrence of a HIF. Once a HIF is detected, its location must 

be identified correctly. Unfortunately, it is difficult to pinpoint the HIF location due to 

the complex nature of the distribution network, which contains lateral branches, 

unbalanced network and non-homogeneous lines. The most popular conventional 

methods in use are trial-and-error switching, visual inspection and fault indicators 

(Krajnak 2000). These methods can be easily adopted but they are time-consuming and 

unsuitable for underground power systems. 

Numerous works have been reported in locating low impedance faults (LIFs) on the 

transmission and overhead distribution lines. Unfortunately, only a few works have been 

dedicated to locate the high impedance faults (HIF), especially in an underground 

distribution network. The most common practice used by the utilities to locate the HIF is 

using a surge generator that injects high voltage pulses at each cable section, which is 
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also known as thumping. However, if all cables at each section are thumped, especially 

for a long cable, it could take days to locate the fault. Furthermore, this will reduce the 

lifespan of cables. Besides that, there are several other techniques have been proposed 

such as network topology, traveling wave, analytical formulation and knowledge-based 

techniques. However, most of the techniques only consider the fault distance. Therefore, 

the exact fault location still difficult to be pinpointed due to the lateral branches of the 

distribution network. Consequently, it is of utmost importance for a project to be initiated 

to develop an efficient HIF detection and localization techniques that are fast, reliable and 

do not accelerate cable ageing. 

1.3 Research Objectives  

The focus of this research is mainly to develop a novel technique to detect and locate 

HIF events. Considering the importance of HIF detection and localization in a distribution 

network, the following main objectives are outlined as follows: 

1. To detect and differentiate HIF events from non-HIF events such as capacitor 

switching, motor starting and load switching.  

2. To propose fault location method through fault type identification, fault 

impedance estimation and fault distance calculation. 

3. To propose an enhanced fault location method incorporating faulty section 

identification algorithm to enhance fault distance estimation. 

4. To compare and evaluate the effectiveness of the proposed method against 

existing fault detection and localization techniques in terms of accuracy and 

reliability. 

The proposed method uses only voltage and current waveforms to detect and locate 

the HIF. These data can be obtained from any type of measurement devices such as Fault 

Recorder located at the primary substation. It is expected to be effective and economical 
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since the method considers only a single measurement of voltage and current waveforms 

and does not require any communication links to access remote nodes. 

1.4 Research Contribution 

To achieve the outlined objectives, the background of the distribution network and HIF 

event is first studied. Then, a distribution network model is developed and HIF events are 

simulated using PSCAD/EMTDC software. Subsequently, the measured voltage 

waveforms at the primary substation are analyzed to detect the occurrence of HIF event. 

To classify the fault type, estimate the fault impedance and distance values as well as 

identify the faulty section, both voltage and current waveforms are analyzed using digital 

signal processing techniques. The MATLAB algorithms are employed to extract 

important features from the voltage and current waveforms in both HIF detection and 

localization techniques.  

1.5 Scope of Work  

The scope and limitations of this research are as follows: 

1. The scope of this research is limited to the 132/11kV distribution system. 

2. The high impedance faults considered in this study range from 50-150Ω. 

3. Distributed generator in the distribution system is not included in this study. 

4. Only one measurement point is considered at the primary substation to measure 

voltage and current waveforms. 

5. The application of an optimization technique in this research is mainly to 

provide an optimal values of ANN parameters.  

6. All the simulations are conducted using the PSCAD/EMTDC software. 
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1.6 Thesis Outline  

This thesis comprising of six chapters. Chapter 1 provides an overview of faults in 

power distribution system, the importance of fault detection and localization, the 

objectives of the research, a brief methodology as well as the scope and limitations of the 

research.  

Chapter 2 reviews the existing techniques on fault detection and localization in 

distribution systems. First, the overview for general fault detection and localization 

methods are discussed. Special emphasis is then placed on HIF and the various HIF 

detection and localization techniques. There are several types of HIF localization 

techniques comprising of network topology, traveling wave, analytical formulation and 

knowledge-based techniques.  

In Chapter 3, the theoretical background of the wavelet transform is presented. The 

working principles, advantages and disadvantages for different types of wavelet 

transform are discussed. Besides that, the theoretical background of GWO and ANN are 

also presented.  

The methodology of the proposed technique for HIF detection and identification is 

presented in Chapter 4. A typical 132/11kV radial distribution system consisting of 18 

nodes is considered and modeled using PSCAD/EMTDC software to generate reference 

and faulted voltage waveforms. HIF events are simulated and distinguished from various 

non-HIF events such as motor starting, capacitor switching and load switching. The 

robustness of the proposed method is tested with regard to variation of fault inception 

angles and consecutive events occurrence. Finally, an automatic HIF detection and 

identification algorithms are developed.  
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In Chapter 5, the performance of the proposed fault location method in classifying 

various types of fault, estimating fault impedance and fault distance values are discussed. 

A typical 132/11kV radial distribution system consisting of 33 nodes is modeled using 

PSCAD/EMTDC software. Then, various types of HIF faults are simulated at different 

locations in the network. The proposed method in conjunction with an ANN classifier 

and GWO technique is able to classify the fault types, estimate the fault impedance and 

distance values. Subsequently, an enhanced fault location method is proposed 

incorporating the faulty section identification algorithm to enhance the fault distance 

estimation. Finally, Chapter 6 concludes the study, summarizes the main findings and 

proposes future work to improve the proposed method further. 
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CHAPTER 2: OVERVIEW ON FAULT DETECTION AND LOCALIZATION 

FOR DISTRIBUTION SYSTEM, WAVELET TRANSFORM, OPTIMIZATION 

TECHNIQUE AND ARTIFICIAL NEURAL NETWORK 

2.1 Introduction 

There are two types of faults and they are low impedance fault (LIF) and high 

impedance fault (HIF). The focus of the work reported in this thesis is to detect, 

discriminate and locate HIF faults only. Detecting the occurrence of a HIF is challenging 

because it does not produce a significant fault current that can trigger the conventional 

overcurrent protection relay. However, a HIF can still distort the voltage profile and 

increase the harmonic content. To complicate matters, the pattern of the distortion is 

similar to that of a non-HIF event such as load switching, motor starting and capacitor 

switching. Due to the detrimental effects of a HIF to a power system, it is important for 

the utility company to detect and locate it as quickly and accurately as possible. In this 

chapter, the significance and issues associated with detecting, discriminating and locating 

HIF faults are discussed. An overview of existing LIF and HIF detection and localization 

methods in the forms of their working principle, advantages and disadvantages is 

presented.  

Subsequently, an overview of wavelet transform (WT), optimization technique and 

artificial neural network (ANN) is presented. WT is used to extract the important features 

from the voltage and current signals. As such, the working principle, variety of WT and 

advantages of WT is explained. Then, the working principle and the effect of ANN 

variables is discussed. ANN is responsible to estimate the fault impedance and distance 

values as well as classify the fault type by utilizing the extracted features from WT. 

Besides that, the significance of utilizing the optimization technique to provide the 
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optimal values of ANN parameters is discussed. Here, the grey wolf optimization (GWO) 

technique is used and its working principle is explained. 

2.2 Fault Classification Analysis 

In fault analysis, differentiating power system faults from other similar transient events 

is crucial. Figure 2.1 shows the classification of power system disturbances into 

temporary and permanent events. A temporary event such as a transient event only occurs 

for a short period of time. There are several examples of transient events that resemble 

HIFs such as capacitor bank switching, inrush current, harmonic load, motor starting and 

insulator leakage current (Sarlak and Shahrtash 2011). Permanent disturbances are 

considered as faults and they can be categorized into two groups, which are LIF and HIF. 

They are similarly grouped into Single Line to Ground Fault (SLGF), Double Line to 

Ground Fault (LLGF), Double Line Fault (LLF), Three Line to Ground Fault (LLLGF) 

and Three Line Fault (LLLF). The only difference between LIF and HIF is the magnitude 

of fault impedance. 

LIF and HIF have similar causes in the forms of bare overhead line falling on the 

ground, animal contact, a tree branch bridging the lines, insulation breakdown and 

adverse weather condition like flooding. However, as stated earlier, the difference 

between LIF and HIF is the amount of impedance introduced by the object that touches 

the live conductor. In an LIF event, the fault generates a sufficient fault current that can 

be detected by a conventional overcurrent protection relay or fuse. Then, the faulty line 

can be isolated from other faultless lines. In an HIF, the fault is due to a high impedance 

object, which results in a small fault current drawn. Thus the fault current is insufficient 

to trigger the conventional overcurrent protection relay or fuse making it hard to localize 

the faulted line. Since it is not isolated from the system, it poses a hazard to the system, 

human, and environment.   
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Figure 2.1: Classification of Power System Disturbance 

2.3 Low Impedance Fault 

2.3.1 Overview of Low Impedance Fault Localization Method 

In this subsection, an overview of the methods used to locate low impedance faults are 

presented. They are classified as: 

1. Conventional method 

2. Impedance-based method 

3. Travelling wave method 

4. Knowledge-based method 

2.3.1.1 Conventional Method 

The conventional methods locate LIFs via visual inspection, trial and error switching 

and fault indicators (Krajnak 2000; Sharaf and Abu-Azab 2000; 2005). Visual inspection 

technique requires engineers to patrol along the faulty feeder to identify the fault location. 

Initially, an experienced engineer intelligently guesses a possible location of the fault 

before checking the selected location. This technique is inefficient and time-consuming 

since multiple locations need to be checked if the first estimated fault location is incorrect. 

In trial and error switching approach, every substation is switched on and off until a circuit 

breaker trip off is identified which indicates the faulty section. This technique is also time-

consuming and exposes the equipment to additional stress due to the switch on and off 
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processes. The last conventional method uses fault indicators to locate the LIFs. A fault 

indicator is a device, which identifies the faulty section via the signal provided by two 

adjacent indicators. This technique is impractical since an indicator needs to be installed 

at each section. In addition, visual inspection is still required to ensure functionality of 

fault indicators. 

2.3.1.2 Impedance-based Method 

The impedance-based method is a mathematical technique in which the impedance is 

calculated from the faulted current and voltage values. There are two types of impedance-

based methods. The first type is the one-ended measurement in which faulted current and 

voltage values are measured at one end of the line (Takagi, Yamakoshi et al. 1982; Girgis, 

Fallon et al. 1993; Aggarwal, Aslan et al. 1997; Santoso, Dugan et al. 2000; Filomena, 

Resener et al. 2009). The second one is the two-ended measurement which requires 

faulted current and voltage values to be measured at both ends of the line (Girgis, Hart et 

al. 1992; Novosel, Hart et al. 1996; Ying-Hong, Chih-Wen et al. 2002). 

The advantage of this method is its simplicity to estimate the fault location. It only 

requires a fundamental component of current and voltage signals during the fault (Mora-

Flòrez, Meléndez et al. 2008; Gazzana, Ferreira et al. 2014). This method is widely used 

for fault location identification in transmission line systems, but not practical to be 

implemented in distribution systems. This is because of the complexity of the distribution 

network due to the existence of non-homogeneous cable and multiple lateral branches, 

which contributes to inaccurate results. Besides that, this method also leads to multiple 

possible fault locations due to the lateral branches (Novosel, Hart et al. 1998). Generally, 

the error of this fault location estimation increases as the fault impedance and the distance 

to the fault point increases. Thus, it can be inferred that impedance-based method is only 

suitable for locating low impedance fault cases. 
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2.3.1.3 Traveling Wave Method 

The principle of traveling wave method is based on the transmission and reflection of 

the voltage or current signal that produces traveling waves. This concept is illustrated in 

Figure 2.2. The voltage or current signal will be transmitted from Terminal A and then 

the signal will be reflected at the fault point. The reflected wave will return to Terminal 

A and the transmitted wave will propagate to Terminal B as shown in the figure.  

 

Figure 2.2: Travelling wave diagram 

This method is commonly used for location of LIF on a transmission line (Elhaffar 

2008). For a distribution system, this method is impractical due to the complexity of the 

network topology, which contains many points of electrical discontinuity. The 

discontinuities will cause many reflections and refractions of the transmitted signal, 

which is coming from the fault point and lateral junctions in the network. Besides that, 

the implementation of this technique is costly as it requires the sensors, high-speed data 

acquisition devices and a Global Positioning System (GPS) to capture the transient 

waveform (Lee and Mousa 1996).  

2.3.1.4 Knowledge-based Method 

To overcome the complexity of locating faults in a distribution network, several 

researchers have resorted to the knowledge-based method. It is a popular type of method, 

which can analyze a large amount of information. Some information such as feeder switch 

status, atmospheric condition, feeder measurement and the signals provided by fault 
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detection devices are used. The accuracy of this method is highly dependent on the 

amount of information available. Several examples of a knowledge-based method that are 

widely used are: 

1. Expert system (ES) 

2. Genetic algorithm (GA) 

3. Artificial neural network (ANN) 

4. Fuzzy set theory (FST) 

5. Matching approach (MA). 

(a) Expert System (ES) 

ES is a sort of technique that emulates human reasoning in diagnosing a problem to 

obtain solutions. This technique is based on pre-defined rules about system behaviors 

such as a breaker and relay status to estimate the fault location. Therefore, reliable and 

correct information from experienced engineers and data from SCADA systems are 

gathered and utilized. ES techniques have been successfully used in locating the faults in 

the works of (Martinez and Richards 1991; Yuan-Yih, Lu et al. 1991; Kumano, Ito et al. 

1993). However, this technique has their own disadvantages. First, a large amount of data 

needs to be collected and analyzed. In addition, the task of applying pre-defined rules is 

difficult because the rules have to be updated and replaced according to the dynamics of 

the system where expertise and knowledge are again required from experts.  

(b) Genetic Algorithm (GA) 

GA is an adaptive heuristic search algorithm based on the evolutionary idea. In this 

algorithm, intelligent exploitation of random search within a defined search space is 

performed. The basic concept of GA is to generate a random population for evolution 

process. In each evolution, the fitness of the populations will be evaluated. Populations 

with a good fitness will be selected for mutation and recombination to form a new 
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population.  Then, this new population will undergo the same process and it will be 

iterated until a satisfactory fitness level is achieved. Besides that, the process can be 

terminated if the maximum number of iterations is reached. However, in this case, a 

satisfactory solution may or may not be achieved. (Wen and Han 1995) utilized GA to 

estimate the potential faulty sections. The main drawback of this technique is it is time 

consuming due to the repetition process to obtain satisfactory fitness level. 

(c) Artificial Neural Network (ANN) 

ANN technique has also been used to locate faults in distribution systems (Glinkowski 

and Wang 1995; Cardoso, Rolim et al. 2004) and transmission line (Mohamed, El-

Saadany et al. 2003). In order to locate a fault, a pre-defined input with respect to the 

expected output will undergo a training process. The pre-defined input may include feeder 

and circuit breaker status, voltage and current signals. The disadvantage of this technique 

is its dependence on correct and complete information to generate a well-trained ANN. If 

the information given is inaccurate or insufficient, it will affect the accuracy of ANN. 

Besides that, ANN needs to be re-trained when there are changes in the system.  

(d) Fuzzy Set Theory (FST) 

In (Jarventausta, Verho et al. 1994; Wen-Hui, Chih-Wen et al. 2000; Jung, Kim et al. 

2007), FST was used to determine the location of LIF. The advantage of FST is it has the 

capability to model uncertainty and inexactness regarding the decision making of fault 

location. The main drawback of this technique is it requires a large number of data, such 

as information obtained from the network database, data from the SCADA system such 

as relay and circuit breaker status and heuristic knowledge of the control center operators 

to form the fuzzy rules. 
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(e) Matching Approach (MA) 

MA technique requires a database of simulated faults at each node to be stored as 

references. When a LIF occurs, the measured data taken are compared with the simulated 

data (reference data stored in the database) to determine the faulty section. The faulty 

section is identified if the measured data fall between the simulated data of two adjacent 

nodes. Usually, the voltage and current signals are used for this purpose as these signals 

can be obtained easily at the primary substation. Voltage sag pattern and database 

approach have been proposed by (Li, Mokhlis et al. 2005; Mokhlis, Li et al. 2010; 

Mokhlis, Mohamad et al. 2011) to locate the faulty section. The faulty section is identified 

when the measured magnitude of voltage sag lies between two magnitudes of voltage sags 

that have been simulated to represent two adjacent nodes of a line section. 

2.4 High Impedance Fault  

2.4.1 Introduction 

A HIF is defined as a fault which does not produce enough fault current that can trip 

the conventional overcurrent protection relay (John Tengdin, Ron Westfall et al. 1996; 

Torres, Guardado et al. 2014; Thomas, Bhaskar et al. 2016). This is due to the high 

impedance of the connecting object or surface that restricts the flow of the fault current, 

making it difficult to detect. HIF can occur in an overhead or underground distribution 

system. Normally, in an overhead system, HIF occurs when a conductor touches the 

ground or a high impedance object connected to the ground. This is probably due to a 

fallen pole or a failure of the mounting system. It is observed that a HIF can also happen 

without a path to ground, such as when a tree limb bridges two conductors. For an 

underground system, HIF is normally caused by insulation defects that expose the 

conductor to make contact with non-conducting elements. Common causes of insulation 

defects include cracking, chaffing, abrasion, flash fault and insulation degradation due to 

moisture and corrosive contamination. In addition, a cut to the cable insulation may 
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expose the conductor and cause a HIF. HIF may produce arcing, which is a potential 

hazard to human life and can cause damage to the power system equipment (Ghaderi, 

Ginn et al. 2017). Figure 2.3 shows an example of electrical arcing that was produced 

when the tree branch bridged across the live conductor at 7,200 Volts. Whereas an arcing 

at underground cable can lead to an unexpected explosion due to very high flashover 

energy as shown in Figure 2.4. Furthermore, it is observed that if HIF is left untreated, it 

will affect the power system quality in terms of service continuity and energy loss.  

 

Figure 2.3: An electric arcing phenomenon                  

(http://phys.org/news/2010-11-faults-vegetation-contact-lines.html#jCp) 

 

Figure 2.4: Explosion during HIF event 

(http://www.gedigitalenergy.com/multilin/feeder_spotlight.htm) 
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2.4.2 High Impedance Fault Detection Method 

A HIF event must be differentiated from non-HIF events that show similar signatures 

to maintain the reliability of the system. The detection methods must have the capability 

to detect and subsequently classify the event as HIF or non-HIF. There are two types of 

HIF detection methods namely the mechanical and electrical HIF detection methods. A 

brief review of these methods is given in the following subsections. 

2.4.2.1 Mechanical HIF Detection methods 

Mechanical HIF detection method is a technique that utilizes a mechanical device that 

makes contact with the ground in order to provide a low impedance route when a HIF 

occurs to allow a conventional overcurrent protection relay to operate (Adamiak, Wester 

et al.). There are 2 common techniques for mechanical HIF detection method. The first 

technique employs a device that is mounted to a cross arm or pole. This device is installed 

under each phase wire in order to catch falling conductors. During a HIF event, the force 

of a falling conductor hits an internal spring that ejects a bus bar to make contact with the 

fallen wire. This contact will create a low impedance ground fault, which will trigger the 

conventional overcurrent protection relay to operate. The second technique utilizes a 

pendulum mounted aluminum rod with a hooked end. The device is suspended from an 

under-built neutral conductor. During the event of falling conductors to the ground, the 

hook will catch it and produce a low impedance ground fault. Thus, the conventional 

overcurrent protection relay will be triggered. 

The disadvantage of this mechanical method is they also react to sagging conductors, 

which are not in contact with a grounded object or earth. Thus, they are prone to create 

false alarm and falsely trip the line. Besides that, this method requires a high cost of 

installation and maintenance. Furthermore, they are only applicable for overhead 

distribution network and transmission lines, not for an underground distribution system.   
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2.4.2.2 Electrical HIF Detection 

Electrical HIF detection method utilizes voltage and current signals obtained from the 

measurement devices. The characteristic features are extracted from these signals 

periodically and the occurrence of HIF event is determined from time to time. In short, 

the process of electrical HIF detection using voltage and current signals consists of two 

basic steps, which are feature extraction and pattern recognition (classification) (Ghaderi, 

Mohammadpour et al. 2015). In the first step, significant features are extracted from the 

voltage and current signals using various feature extractors or digital signal processing 

techniques. Subsequently, in the second step, the extracted features will be fed into a 

classifier that decides whether a HIF occurs in the system. In the training stage, samples 

of features from voltage and current signals extracted during HIF and non-HIF events are 

used to train the classifier. After the classifier is successfully trained, it can be used to 

classify unknown features from the network to determine whether a HIF has occurred or 

not at any instance. Details of some famous feature extractors and classifiers are given as 

follows: 

(a) Feature Extraction 

A number of feature extractors have been used to extract features from voltage and 

current signals for HIF analysis. They are listed as follows. 

a) Fourier Transform (FT) 

b) S-Transform and TT-Transform 

c) Mathematical Morphology (MM) 

d) Wavelet Transform (WT) 
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i Fourier Transform 

FT is a mathematical operation that converts a signal from a function of time to a 

function of frequency and it can be displayed in form of magnitude and phase angle in 

the frequency spectrum. Generally, FT can be described as a mathematical tool that 

decomposes the signal waveform, F(x) into its sinusoidal components that consist of sine 

and cosine waves as shown in Equation (2.1).  

F(x) = a0/2 + a1cos(x) + b1sin(x) + a2cos(2x) + b2sin(2x) + … + ancos(nx) + bnsin(nx)                

(2.1) 

In (Zadeh 2005), Discrete Fourier Transform (DFT) was used to extract the second 

and third harmonic (magnitude and angle) components of the voltage and current signals 

to detect the occurrence of HIF. Whereas in (Aziz, Hassan et al. 2012), DFT is applied to 

extract the third harmonics consists of magnitude and angle of the three phases of the 

current signal to detect and locate the fault during HIF. As well, the fundamental 

component is used to classify the faulted phases. In (Zanjani and Kargar 2012), it only 

utilizes the third harmonic current angle to detect and distinguish the HIF event. In 

(Macedo, Resende et al. 2015), DFT is used to quantify the root mean square (rms) 

magnitude of the set of interharmonic currents that associated with electric arcs of varying 

length. The variation in amplitude of the third and fifth order harmonic components 

extracted using Fast Fourier Transform (FFT) was monitored to detect the occurrence of 

HIF in (Bansal and Pillai 2007).  

The main disadvantage of FT is it represents a signal with perfect frequency 

representation without time information. FT gives poor performance when it is applied to 

transform the time domain signal embedded with noise. It will limit the certainty of 

magnitudes, phases, peak frequencies and widths to be computed by FT because the time 
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domain noise is distributed uniformly throughout the frequency domain during the 

transformation process. Furthermore, a truncated time domain signal will produce 

undesirable frequency domain, which makes it difficult to observe a small peak in the 

vicinity of a large peak.  

ii S-Transform and TT-Transform 

S-transform is the simplification of short-time Fourier transform (STFT) and an 

extension to the idea of continuous wavelet transform (CWT) (Stockwell, Mansinha et al. 

1996). It is based on a moving (translation) and scalable (dilation) localizing Gaussian 

window. S-transform is able to give both time and frequency information with proper 

time and frequency resolutions respectively. Whereas TT-transform is a two-dimensional 

time-time representation, which is derived from one-dimensional time series based on S-

transform (Pinnegar and Mansinha 2003). TT-transform represents the time–local view 

of the time series through the scaled windows. Therefore, TT-transform provides proper 

time-local properties of the time series, which is necessary to localize the frequency 

components. In (Samantaray, Panigrahi et al. 2008), S-transform and TT-transform are 

used to extract the energy and standard deviation information from the current signal to 

classify the HIF from no fault event.  

iii Mathematical Morphology 

Mathematical Morphology (MM) is a technique used in analysis and processing of 

geometrical structure, which is based on set theory, lattice theory, randomness and 

topology functions. The purpose of MM is to extract image components and provides 

image descriptions and representations. In (Sarlak and Shahrtash 2011), MM was utilized 

to detect the occurrence of HIF and differentiate it from other non-HIF events such as 

load switching, fault on adjacent feeders, capacitor bank switching, harmonic load and 

Univ
ers

ity
 of

 M
ala

ya



20 

insulator leakage current. In that analysis, the time-based features from the post-

disturbance current waveforms are extracted using the Multi-resolution Morphological 

Gradient (MMG) to highlight the irregularities of the current signal during disturbances. 

The main drawback of MM is no information available about the moment of event 

occurrence. Besides that, it is difficult to discriminate a signal that has very small 

differences thus providing an inaccurate result. 

iv Wavelet Transform 

Wavelet signal is a wave-like oscillation with an amplitude that starts from zero, 

increases and then decreases back to zero within a limited duration that has an average 

value of zero. It behaves as a mathematical function that satisfies the certain mathematical 

requirement to represent the signal in time and frequency domains. Wavelet transform 

(WT) had overcome the drawback of FT in term of constructing a time-frequency 

representation of a signal that offers very good time and frequency localization (David 

Chan Tat and Xia 1998; Shyh-Jier and Cheng-Tao 1999; Sedighi, Haghifam et al. 2005; 

Ghaffarzadeh and Vahidi 2010; Vahidi, Ghaffarzadeh et al. 2010; Shinde and Hase 2012). 

WT has been widely used in extracting information for HIF detection in (Lai, Snider et 

al. 2005; Haghifam, Sedighi et al. 2006; Michalik, Rebizant et al. 2006; Michalik, 

Lukowicz et al. 2007; Elkalashy, Lehtonen et al. 2008; Etemadi and Sanaye-Pasand 2008; 

Akorede and Katende 2010; Rafinia and Moshtagh 2014; Ye, You et al. 2014; Costa, 

Souza et al. 2015; Sekar, Mohanty et al. 2018). In (Borghetti, Corsi et al. 2006; Michalik, 

Rebizant et al. 2006; Michalik, Lukowicz et al. 2007), continuous wavelet transform 

(CWT) is used to extract the important features from the current and voltage signals to 

determine the occurrence of HIF. Discrete wavelet transform (DWT) has been used to 

analyze the voltage and current signal during the HIF event in (Lai, Snider et al. 2005; 

Haghifam, Sedighi et al. 2006; Elkalashy, Lehtonen et al. 2008; Akorede and Katende 
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2010; Goudarzi, Vahidi et al. 2015; Prabhavathi, Surya Kalavathi et al. 2017). Whereas 

in (Etemadi and Sanaye-Pasand 2008), the multi-resolution analysis-discrete wavelet 

transforms (MRA-DWT) was utilized to extract the input features from the nonlinear 

behavior of the current waveform for the HIF detection.  

The main advantage of the wavelet transform is its localization property in both time 

and frequency domain. It can represent the signal that has tiny discontinuity and sharp 

peaks. It also gives an indication of the frequency content of the disturbance signal and 

reveals the important features in the signal by partitioning the signal energy at a different 

frequency band.  

(b) Pattern Recognition (Classification) 

There are several types of classifiers have been widely used to classify HIF and LIF 

events. They include artificial neural network (ANN), fuzzy inference system (FIS), 

moving window (MW) and nearest neighbor rule (NNR). 

i Artificial Neural Network 

ANN is an information processing method that is motivated by the nerve system. The 

ANN structure can deal with the imprecise, complicated and large amount of data as input 

when properly trained or adjusted. There are several types of ANN such as feedforward 

neural network, probabilistic neural network and learning vector quantization neural 

network. 

The feedforward neural network (FNN) is the simplest type of ANN where the 

information is moving in one direction (do not form a directed cycle or loops). The 

information travels forward, from the input layer through the hidden layer and lastly to 

the output layer. Thus, the output of any layer does not affect the previous layer. The 

second type of neural network is a probabilistic neural network (PNN). PNN is based on 
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a statistical algorithm called Kernel Fisher discriminant analysis. PNN has four layers 

consists of the input layer, hidden layer, pattern layer/summation layer and an output 

layer. PNN is a supervised learning network with the fast learning process. The third type 

of neural network is learning vector quantization neural network (LVQNN) which is a 

supervised learning network. LVQNN is a technique in which the input space is divided 

into different regions, and for each region, a reconstruction vector is defined. When a new 

input is present, the vector quantizer will determine the region for that input data. 

 ANN had been widely used to detect and classify HIF from non-HIF events in (Zadeh 

2005; Michalik, Rebizant et al. 2006; Bansal and Pillai 2007; Samantaray, Panigrahi et 

al. 2008; Sarlak and Shahrtash 2011; Moravej, Mortazavi et al. 2015). However, this 

technique requires a large amount of input data to achieve a good result.  Besides that, the 

reliability of input data is important to ensure its accuracy.  

ii Fuzzy Inference System 

FIS is a process of mapping formulation for a given input using the fuzzy logic to 

produce an output. In FIS, the rule-based method is used to get the desired input and 

output mapping. Based on the input and output mapping, a decision can be made 

according to the distinguished patterns. In (Haghifam, Sedighi et al. 2006), FIS had been 

implemented for fault classification.  

iii Moving Window  

MW is a nonparametric approach in which a window centered at the point of interest 

is imposed to calculate the weighted sum of coefficients. Then, the window is moving to 

the adjacent point of interest to calculate again the weighted sum of coefficients. This 

procedure is repeated until the moving window visits all the points of interest in the study 
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area. In (Akorede and Katende 2010), this method was used to discriminate different types 

of fault based on a unique pattern obtained from the weighted sum of coefficients.  

iv Nearest Neighbor Rule 

NNR is a nonparametric approach in supervised learning method. NNR is a typical 

pattern classification method in which the object is classified based on the closest distance 

between the input data and the classified data in the feature space. In (Lai, Snider et al. 

2005), NNR method was used to classify two categories of data based on the boundaries 

decision. The data and boundaries were plotted in two-dimensional contour graph to 

observe the distribution pattern of the data. The disadvantage of this method is when the 

input data falls in overlapping area of 2 boundaries.  

2.4.3 High Impedance Fault Location Method 

Locating a HIF event is quite challenging due to the small fault current magnitude, 

small changes in voltage profile and its similar signatures to other non-HIF events. There 

are several methods for HIF location have been proposed such as: 

1) Network Topology Technique 

2) Travelling Wave Technique 

3) Analytical Formulation Technique 

4) Knowledge-based Technique 

2.4.3.1 Network Topology Technique 

The network topology technique requires a sensor or measurement device to be 

installed at each node. The sensors or measurement devices will communicate to each 

other and send data to the primary substation through the Global Positioning System 

(GPS). Then, the data will be analyzed to determine the fault location. 
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In (Gohokar and Khedkar 2005), a current transformer (CT) was installed at each node 

whereas in (Garcia-Santander, Bastard et al. 2005), voltage sensor was installed at each 

end of the network branch in order to identify the faulty section. Faulty section 

identification based on the ratio of the residual current amplitude concept was proposed 

by (Elkalashy, Lehtonen et al. 2007). Besides that, (Elkalashy, Lehtonen et al. 2008) was 

also proposed power polarity concept to identify the faulty section. Both concepts utilized 

wireless sensors to be installed at each measurement node. Last but not least, in (Uriarte 

and Centeno 2005), the fault location is determined based on the information given by 

the sectionalizer and recloser devices.  

This technique is efficient and gives high accuracy to identify the faulty section. The 

main drawback of this technique is the requirement for a sensor device or measurement 

unit to be installed at each node. Thus, it is costly, as it requires high installation and 

maintenance costs. Besides that, all sensors or measurement units must be functioning 

well for the technique to work. 

2.4.3.2 Travelling Wave Technique 

In the previous subsection, the application of traveling wave technique in locating LIF 

was discussed. Recently, this technique has been implemented to trace HIF events. In 

(Bernadić and Leonowicz 2012; Glik and Rasolomampionona 2013; Zimath, Dutra et al. 

2014), traveling wave technique was applied to find the fault location in a transmission 

line during the HIF event.  

2.4.3.3 Analytical Formulation Technique 

Analytical formulation technique is a process to break down a complex and 

complicated problem into its constituent elements. This step reduces the complexity of 

the problem to its simplest form and makes it easier to be solved. This technique has been 

implemented in various fields of study (Ranjan, Pai et al. 1993; Guler and Menendez 
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2014; Siddiqui, AlOthman et al. 2017). In (Nam, Kang et al. 2012; Xiu and Liao 2014; 

Iurinic, Orozco et al. 2015), this technique was proposed to locate the HIF fault in the 

distribution network.  

Synchronized zero-sequence voltage and current signals measured at the faulted node 

were used by (Nam, Kang et al. 2012) to calculate the fault distance. Whereas in (Xiu and 

Liao 2014), the fault location was estimated based on the product of the bus impedance 

matrix and current injected at the substation. Least square estimator based approach was 

proposed by (Ferraz, Iurinic et al. 2014) to locate the occurrence of HIF for short 

transmission lines. In (Iurinic, Orozco et al. 2015) the estimation of fault location based 

on parameter estimation approach using the derivation equation is used to calculate the 

fault distance.  

2.4.3.4 Knowledge-based Technique 

There are several types of knowledge-based technique have been proposed to 

determine the HIF locations such as Artificial Neural Network (ANN) (Jensen, Munk et 

al. 1998; Bretas, Moreto et al. 2006; Moshtagh and Aggarwal 2006; Baqui, Zamora et al. 

2011; Zayandehroodi, Mohamed et al. 2012; Zayandehroodi, Mohamed et al. 2013; Aslan 

and Yağan 2016), Fuzzy Logic System (FLS) (Chunju, Li et al. 2007; Rafinia and 

Moshtagh 2014), Adaptive Neuro-Fuzzy Inference System (ANFIS) (Aziz, Hassan et al. 

2012; Barakat, Eteiba et al. 2014), Support Vector Machine (SVM) (Thukaram, Khincha 

et al. 2005; Ye, You et al. 2014; Hong and Huang 2015) and Core Vector Regression 

(CVR) (Khorramdel, Marzooghi et al. 2014). 

The main advantage of this technique is its capability to generalize the output through 

the learning process. Besides that, it can give fast and accurate results. However, this 

technique requires a large number of data to be trained and tested to produce a reliable 

network reference. Thus, the accuracy of this technique relies on the accuracy and validity 
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of the input data. Furthermore, the networks have to be retrained if there are changes in 

the system topology. 

2.5 Wavelet Transform  

2.5.1 Introduction 

Wavelet transforms is a wave-like oscillation with an amplitude that starts from zero, 

increases and decreases in a certain amount of amplitude and goes back to zero amplitude 

within a limited duration, which has an average value of zero. Generally, the wavelet 

transform is a mathematical function that must satisfy certain mathematical requirements 

to represent the signal in time and frequency domains.  

The fundamental idea behind the wavelet transform is to analyze the original signal 

according to the scale (by dilation and translation). It can be assumed as cutting the signal 

of interest into various lengths with the same size of the samples and then analyze each 

sample separately. For example, if we sample a signal with a small “window” (small 

dilation) and move the window along the signal (translation), we would notice the distinct 

features of the signal. Similarly, if we sample a signal with a large “window”, vague 

features of the signal will be obtained. Therefore, by varying the size of the “window” 

and shifting the “window” across the signal, more significant and various features of the 

signal can be gained (Wavelet Transform). 

Wavelet transform allows exceptional localization in both time and frequency domains 

via translation and dilation processes of the mother wavelet respectively. Figure 2.3 

shows the pattern of the dilated Gaussian type of mother wavelet which is scaled by the 

parameter a. The translation and dilation operations are performed to calculate the 

wavelet coefficients that represent the correlation between the signal of interest and 

mother wavelet. Wavelet coefficients are calculated for each signal segment, giving a 
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time-scale function relating the correlation between wavelet and signal. Figure 2.4 shows 

the process of translation and dilation of mother wavelet on the signal.  

 

Figure 2.5: Dilation patterns of Gaussian wavelet 

 

Figure 2.6: Translation and dilation of mother wavelet 

Wavelet transform was widely used in various fields of research such as astronomy, 

signal and image processing, magnetic resonance imaging and pure mathematics 

applications such as solving partial differential equations. Nowadays, the application of 
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wavelet transform has been drastically evolving in solving the power system issues such 

as fault detection (Akorede and Katende 2010; Sarlak and Shahrtash 2011), power system 

dynamic (Wenzhong and Jiaxin 2011; Avdakovic, Nuhanovic et al. 2012), incipient fault 

analysis (Sidhu and Zhihan 2010) and power quality issue (Dilokratanatrakool, Na 

Ayudhya et al. 2003).  

2.5.2 Variety of Wavelet Transforms 

Wavelet transforms can be classified into two: 

a) Continuous Wavelet Transform (CWT) 

b) Discrete Wavelet Transform (DWT) 

In CWT analysis, the wavelet coefficients are calculated based on the convolution 

between the input data sequence with the set of the function generated by the mother 

wavelet. Whereas in the DWT analysis, the continuous signal will be digitized first before 

the matrix of digitized data is multiplied with the matrix of discrete mother wavelets. 

Figure 2.5 shows the simplified operation of CWT and DWT. 

 

Figure 2.7: CWT and DWT operations 

DWT can be further expanded into two: 

 Multi-Resolution Analysis-Discrete Wavelet Transform (MRA-DWT) 

 Spanning Tree-Discrete Wavelet Transform (ST-DWT) 

Analog to Digital

Converter (ADC)

Analog signal

(Continuous signal)

Digitized signal

(Discrete data)

CWT

DWT

Wavelet

coefficients
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This expanded DWT gives a better signal representation and analysis. The operations 

and uniqueness of each type of wavelet transform will be explained briefly in the next 

subsection. 

2.5.3 Continuous Wavelet Transforms (CWT) 

In CWT analysis, it uses the inner product of the signal, f (t) to measure the correlation 

between the signal of interest and mother wavelet, 𝜓(𝑡). The correlation can be measured 

based on the wavelet coefficient value. If the wavelet coefficient value is equal to one, it 

signifies a perfect matching between the signal and mother wavelet. The wavelet 

coefficient can be derived as below (2.2):  

   2.2 

where the parameter ɑ and b represent the scale (dilation) and position (translation) values 

respectively and " ∗ " denotes the complex conjugate. C (a,b) is the continuous wavelet 

transform coefficients that indicate the correlation between the signal and mother wavelet.  

There are four basic steps to construct the CWT analysis: 

1) Correlate the selected mother wavelet with a section of the original signal. 

2) Calculate the coefficient, C to observe the correlation between the input and 

wavelet signals.  
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3) Step 1 and 2 are repeated by shifting the wavelet signal until it covers the entire 

input signal. 

 

4) Step 1 to 3 are repeated by increasing the scale value of mother wavelet.  

 

CWT has been implemented to detect and analyze power quality disturbance in power 

system in (Poisson, Rioual et al. 2000). In (Tria, Ovarlez et al. 2007; Briassouli, Matsiki 

et al. 2010), CWT was used for image processing analysis. Besides that, CWT was also 

employed in the medical field as reported in (Cnockaert, Migeotte et al. 2008; Hulzink, 

Konijnenburg et al. 2011) for diagnosis purposes. 

2.5.4 Discrete Wavelet Transforms (DWT)  

In DWT analysis, the original input signal is decomposed into high-frequency and low-

frequency components through two complementary filters which are high-pass and low-

pass filters respectively as shown in Figure 2.6. The high-frequency component is a low-

Signal 

Wavelet 

   Signal 

Wavelet 
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scale decomposition, which also called as details coefficients, cD. Whereas the low-

frequency components is a high-scale decomposition, which also known as 

approximations coefficients, cA (Wavelet Transform). Generally, the low-frequency 

components are the crucial part as it gives the signal identity. Whereas, the high-

frequency components are conveyed of flavor or nuance in the signal.  

Original Signal

High-pass filter

Low-pass filter

High-frequency component 

(details coefficients)

Low-frequency components

(approximations coefficients)
 

Figure 2.8: DWT decomposition process 

DWT has been widely used in many applications and fields such as in signal, audio 

and video analysis and power system research. In (Nath, Sinha et al. 2012), power quality 

issue related to the location of harmonic pollution source is identified using the DWT. 

Detection and classification of fault in a transmission system using DWT had been 

proposed in (Martin and Aguado 2003; Bhalja and Maheshwari 2008). Besides that, DWT 

has been utilized in (Avdakovic, Nuhanovic et al. 2012) to analyze and locate the lower 

frequency oscillations during the power system dynamic event.  

2.5.5 Multi-Resolution Analysis-Discrete Wavelet Transform (MRA-DWT) 

MRA-DWT is the extension to DWT in which the decomposition process further 

continues with the successive approximation coefficients. MRA-DWT decomposition 

process will split the original signal, S into different levels of decomposition as shown in 

Figure 2.7. The main purpose of the MRA-DWT analysis is to reduce the size of the 

signal, but significantly maintains the similarity and the shape of the original signal. It 

can be obtained by eliminating the unnecessary noise signal that embedded in the original 

signal.  
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Figure 2.9: MRA-DWT operation 

Recently, MRA-DWT has been applied in many power system problems such as 

power system protection, power system analysis, power quality detection and 

classification. In (Gaouda, Salama et al. 1999; S. Nath 2009), MRA-DWT was used for 

power quality disturbance detection and classification. Whereas in (Chanda, Kishore et 

al. 2003),  MRA-DWT was used to determine the fault location on transmission lines. 

2.5.6 Spanning Tree-Discrete Wavelet Transform (ST-DWT) 

ST-DWT is a generalization of wavelet decomposition process, which provides a wide 

range of possibilities for signal analysis. ST-DWT is similar to MRA-DWT except that 

both successive approximations and details coefficients are further decomposed into 

different levels of decomposition as shown in Figure 2.8. The ST-DWT analysis offers 
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superior resolution and clarification about the signal, which cannot be obtained from other 

types of the wavelet transform. 

 

Figure 2.10: ST-DWT operation 

2.5.7 Advantages of Wavelet Transform 

The main advantage of wavelet transforms is its property of irregularity in shape, 

which make it a well-suited tool for analyzing signals with a discontinuity, sharp changes 

and impulse functions. Besides that, the compatibility-supported feature enables the time 

localization in a signal to be determined. Other than that, WT has the capability to perform 

a local analysis, which is to analyze a localized area of a larger signal.  For instance, a 

small discontinuity in the signal and the exact moment of the event can be identified. 

Furthermore, WT can give a complete and efficient spectral analysis without losing any 

valuable information. WT analysis has the capability to reveal the data features, such as 

trends, breakdown points, discontinuities in higher derivatives and self-similarity. WT is 

also capable to partition the energy signal at different frequency bands. Thus, give an 

indication of the frequency content for the disturbance signal. Last but not least, WT is 

always used in compressing or de-noising image without significant degradation.  
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2.6 Optimization Techniques 

2.6.1 Introduction 

An optimization technique is an approach to determine the optimal solution with the 

cheapest and high performance under various constraints. In this section, the difference 

between heuristics and meta-heuristics technique is explained. Then, the implementation 

and mechanism of grey wolf optimization (GWO) are described in details. Finally, the 

advantages of the meta-heuristics technique are discussed. 

2.6.2 Meta-heuristics Technique 

An optimization technique can be classified into heuristics and meta-heuristics 

techniques. The main difference between these two techniques is heuristics are very 

specific and problem-dependent, whereas meta-heuristics are problem-independent. The 

main disadvantage of the heuristic technique is its easily stuck in local optima, thus fail 

to get the global optimum solution, which can be overcome by meta-heuristic technique. 

In addition, meta-heuristic technique even allows a short-term deterioration of the local 

solution as a return to provide them with a more thorough exploration to solution space 

and consequently provide a better solution which sometimes nearly to the global solution. 

The meta-heuristic technique can be divided into three categories which are 

evolutionary strategies (ES), physics-based and swarm intelligence (SI) techniques. ES 

technique is inspired by evolution concepts in nature. Genetic algorithm (GA) and EP are 

the most popular ES technique used to provide the optimal solution in many applications. 

Whereas physics-based technique is inspired based on impersonation of physic rules such 

as ray casting, gravitational force, inertia force and electromagnetic force. The 

mechanism of this technique is through a random set of search agents that communicate 

and move throughout the search space according to the physic rules. Last but not least, 

the SI technique, which is inspired by the social behavior of swarms, flocks, herds or 
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schools of creatures in nature. The mechanism of the search agent for this technique is 

based on the simulated collective and social intelligence of the creatures. The most 

popular algorithm in this technique is particle swarm optimization (PSO) which is 

inspired by the social behavior of the bird flocking. One of the most recent and promising 

SI technique is grey wolf optimization (GWO) that is inspired by the leadership hierarchy 

of the grey wolves. 

2.6.3 Grey Wolf Optimization (GWO) 

GWO has been proposed by (Mirjalili, Mirjalili et al. 2014) which is inspired by the 

hunting mechanism of the grey wolves in nature and its leadership hierarchy. The 

leadership hierarchy of grey wolves consists of four levels known as alpha (α), beta (β), 

delta (δ) and omega (ω) as shown in Figure 2.9. (Muro, Escobedo et al. 2011) explains 

the hunting mechanism of the grey wolves, which consists of searching, encircling and 

attacking the prey.  At first, the wolves will track the location of the prey, chase them and 

finally will try to approach the prey at a safe distance as shown in Figure 2.10(A). Once 

the group of wolves has approached the prey, they will pursue, encircle and harass the 

prey until the prey stop from moving as shown in Figure 2.10(B)–(D). Finally, the wolves 

will attack the prey when the prey is unable doing anything and stop stationary as shown 

in Figure 2.10(E).  

 

Figure 2.11: Leadership hierarchy of grey wolf 
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Figure 2.12: Hunting behavior of the wolves (Muro, Escobedo et al. 2011) 

The GWO algorithm and its implementation process can be simplified as follows: 

Step 1: Social hierarchy 

Initially, it is important to describe the social hierarchy of the wolves in order to design 

the GWO algorithm, which consists of α, β, δ and ω. The α is considered as the fittest 

solution followed by the β and δ as the second and the third best solutions respectively. 

Whereas the ω belongs to the rest of the candidate solutions and it will follow the other 

three wolves (α, β, δ) when optimizing the solution. 

Step 2: Hunting 

It is noticed that the grey wolves have the ability to identify the potential location of the 

prey. Usually, the hunting process is initiated by the alpha wolf and occasionally will be 

participated by the beta and delta wolves. To mathematically model this hunting behavior, 

it is assumed that the α, β and δ wolves know the potential location of the prey. As such, 

these three best solutions are first saved and accordingly assist the other search agents, 

including the omegas to update their current position with respect to the position of the 

best search agents. Thus, the mathematical equations can be derived as follows: 
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        2.3 

where 

  = distance between the alpha wolf with each wolf 

  = distance between the beta wolf with each wolf 

  = distance between the delta wolf with each wolf 

 = position vector for each wolf with respect to position of α, β and δ 

Step 3: Encircling prey 

The nature of the wolves will encircle their prey during the hunting. In order to describe 

this behavior, the mathematical equation is derived as follows:  
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where 

t   = current iteration 

 and  = coefficient vectors 

  = linearly decrease from 2 to 0 over the course of iterations 

 and  = random vectors in [0 1] 

  = position vector of the prey 

  = position vector of the grey wolves  

  = distance between the prey and the wolves 

Based on these equations, it can be observed that the current position of the grey 

wolves can be updated in any random location according to the position of the prey. 

Step 4: Attacking prey (exploitation) 

After the prey being hunted and encircled, it is the time for the grey wolves start to attack 

the immobile prey. To model this attacking process, the value of  and  is decreasing 

indicate that the wolves are approaching near to the prey. The attack towards the prey is 

triggered if the value of < 1.  

Step 5: Search for prey (exploration) 

It is important to be noted that in this proposed GWO algorithm, it is susceptible to 

stagnation in local solutions. Therefore, it is required for the capability to explore. As 

such, to describe the divergence of the wolves from the prey, the random value of  is 

set either greater than 1 or lower than -1 to accommodate the search agent thus provide 

the global search. Concurrently, by setting the value of >1, it does not just diverge the 

prey from the wolves, but also allowing the wolves to search for the better prey. Besides 

that, vector  also contributes the divergence or convergence of the wolves from the 

prey. The vector  contains a random value in between [0 2] which responsible to 
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provide the random weight for prey to stochastically emphasize or deemphasize the effect 

of prey in defining the distance. Apart from diverging the prey, vector  also works as 

the obstacle effect, which prevents the wolves from approaching the prey easily and 

quickly. This is due to that fact that there is always a hindrance in nature during the 

hunting process. As such, it gives difficulties by making the wolves get harder or farther 

to catch the prey or vice versa.  

All the above steps can be summarized as follows. Initially, the process is started by 

creating a random population of grey wolves (candidate solutions) which consists of α, β, 

δ and ω. These candidate solutions will estimate and update their distance from the prey 

for each iteration. Every iteration, the value of parameter a will decreases from 2 to 0 in 

order to emphasize the exploitation and exploration process. The candidate solutions can 

be either diverge or converge with respect to the value of . Finally, the iteration is 

terminated if the optimal solution is achieved or reach the maximum number of iterations.  

2.6.4 Advantages of Meta-heuristics Technique 

Recently, various meta-heuristics techniques have been applied in different fields of 

studies. These techniques become popular due to its outstanding performance to provide 

the optimal solution. The advantages of meta-heuristics technique can be summarized 

into 4 main points, which are the flexibility, simplicity, local optima avoidance and 

derivation-free mechanism as follows: 

1) Flexibility 

The capability of meta-heuristics to be implemented in different kind of problems 

without the need for special adjustment in the algorithm structure. Thus, it can be 

assumed as the black box. As such, it only important to know how to relate the input 

and output data with the application of meta-heuristics technique. 
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2) Simplicity 

The mechanism of this technique usually gets inspired by a very simple concept, 

which is related to physic phenomena, animal’s behaviors or evolutionary concepts. 

This simplicity allows a new meta-heuristics technique to be proposed, which the 

inspiration can be obtained through different natural concepts, hybridized different 

meta-heuristic techniques and modified or improve the current meta-heuristics 

technique. Besides that, this simplicity factor makes it easier and interesting to be 

learned and to be implemented in many applications. 

3) Local optima avoidance 

Meta-heuristics technique has the capability to avoid the local optima. This is due to 

the fact that, the meta-heuristics technique utilized stochastic behavior in nature to 

solve the problem. This gives meta-heuristics an advantage to search for a broad area 

of the search space and thus the capability to avoid stagnation in the local solutions.  

4) Derivation-free mechanism 

Last but not least, meta-heuristics technique optimizes the problem stochastically with 

a random solution at first. Therefore, it is not required for the sophisticated or complex 

formulation for the derivative of the search space in order to obtain the optimal 

solution. This characteristic makes meta-heuristics highly recommended to solve the 

real problems with unknown derivative information. 
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2.7 Artificial Neural Network 

2.7.1 Introduction 

The development of ANN gets an inspiration from the neural structure of the brain that 

consists of millions of cells. Each of these cells is interconnected to each other and 

provide the ability to analyze, remember and think. As such, the concept of ANN is 

developed in which the cells are introduced as neurons. ANN is used for prediction, 

forecasting and classification (Raza, Mokhlis et al. 2016). Figure 2.11 shows a typical 

diagram of ANN architecture consisting of the input layer, neurons in hidden layer and 

output layer.  

 

Figure 2.13: Basic artificial neural network architecture 

During the training process, the input data will be trained and weighted by the neurons. 

Then, the estimated output during the training process will be compared with the required 

target based on the minimum root mean square (rms) error. The process is repeated by 

adjusting the weights inside the neurons until the estimated output is matched with the 

required target or minimum rms error is achieved. The main advantage of ANN is its 

ability to solve the random and non-linear problem.  
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2.7.2 Effect of ANN Variables 

There are several variables that can influence the effectiveness of ANN such as 

momentum constant, learning rate, number of hidden layers, number of neurons in hidden 

layers and learning technique.  

Momentum constant, mc is responsible to ensure that the system is not converging to 

local minima by adding the previous weight of fraction momentum to the current weight. 

Besides that, the mc assists in accelerating the training process by increasing the 

convergence speed of the system. If the value of mc is set too high, it can cause the risk 

of minima overshooting, thus making the system unstable. However, if the mc value is 

set too low, the training process will become slower because the system cannot avoid the 

local minima.  

Learning rate, lr is used to control the size of weight and bias for the neurons. By 

adjusting the value of lr, it can accelerate the convergence of training process. If the value 

of lr is set too low, it will affect the speed of network learning, thus slow down the training 

process. However, if the value is set too high, it will cause the weight and objective 

function to diverge. The value of lr can be adjusted based on the value of the sum-squared 

error (SSE) over several consequent epochs. If the value of SSE is alternating then the 

value of lr should be decreased. Otherwise, the value of lr can be increased to expedite 

the convergence of training process.  

Hidden layer is located in between the input and output layers. The number of hidden 

layers can be more than one depending on the complexity of the input data. Usually, the 

first hidden layer is involved with a linear transformation. Whereas in the second hidden 

layer, a squashing nonlinearity is applied. However, another function such as computing 

logical function, inverse transfer function and statistical function can be selected. 
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Basically, inside the hidden layer, there are a number of neurons in which a specific 

computation is involved that will mapping the input data with respect to the required 

target. There is no limit to the number of neurons in the hidden layer can be utilized. 

However, if too many neurons are applied to the hidden layer, it can cause an over-fitting. 

Due to over-fitting, ANN loses its ability to predict (generalize) the input data thus affect 

the accuracy. However, if a small number of neurons are utilized, it may give difficulties 

to the ANN to learn the input data. Insufficient learning will lead to ANN failure.  

There are several types of learning algorithm such as Levenberg-Marquardt 

backpropagation, Bayesian regularization and others. Each of these learning algorithms 

has their own advantages and disadvantages, which can be determined based on many 

aspects such as the type and number of input data, the complexity of the problem, the 

number of weight and biases in the network. Besides that, it is also affected by the purpose 

of the training either for pattern recognition or function approximation. 

2.7.3 Training, Validation and Testing Data for ANN Training 

It is noted that there are 3 sets of data used during the ANN training process, which 

are training, validation and testing data. A training set of data is used to adjust the weights 

inside the neurons so that the fitting can be achieved between the input data and required 

target. However, an overfitting may occur during the ANN training process, thus the 

network loss its generalization. Consequently, the ANN cannot perform well when a new 

set of testing data are presented.  

In order to avoid the ANN from overfitting, a validation set of data are required. 

Basically, a validation set of data are responsible to ensure that the network is capable to 

generalize the training set of data. The generalization is important to ensure that when the 

new data, which are not involved in the training process can be successfully identified. 

Besides that, a validation set can be used as the stopping criterion for the ANN training 
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process. It is important to be noted that when the validation set of data are utilized, the 

network weight is not adjusted. However, the process can affect indirectly the weight 

configuration by monitoring the obtained error values from the training and validation 

sets. If the obtained error is reduced for the validation set, it indicates that the accuracy 

of the training set is increased. However, if the obtained error is increased or remains the 

same for several epochs, it indicates that the ANN has been overfitted. Thus, the ANN 

training process has to be stopped immediately. 

Finally, after the ANN training process is terminated, the test set of data are applied to 

the network file that is obtained from the training process. Then the errors are calculated 

for this test set. This error is a representative of the possible error, which can be obtained 

when the new set of data is tested. It also indicates the predictive capability of the network 

file. If the obtained error from the test set is small, thus it indicates that the network file 

has a powerful predictive capability.  

Usually, the total number of data to be allocated for each set of data are 70%, 20% and 

10% for training, validation and testing sets respectively. For this purpose, the samples 

used for each set will be selected randomly. As such, the accuracy of ANN can be affected 

by the samples used for the training, validation and testing.  

2.8 Conclusion 

Many methods have been proposed by researchers to tackle the complexity of 

detecting and locating HIF in a distribution system. Each of the methods has its merits 

and limitations. Mechanical HIF detection methods utilize mechanical devices that 

require installation and maintenance cost. Therefore, they are expensive and only 

applicable for overhead distribution network and transmission lines. Whereas electrical 

HIF detection methods comprise a feature extractor and a classifier. They utilize voltage 

and current signals obtained from the measurement device.  
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Popular electrical HIF localization techniques include network topology, travelling 

wave, analytical formulation and knowledge-based techniques. All the proposed 

techniques have the potential to estimate the location of HIF successfully. However, each 

of the techniques possesses drawbacks that limit its application and effectiveness. 

Therefore, a reliable technique that is accurate, cost-effective, efficient and practical to 

be implemented in a radial distribution system with lateral branches is needed.  

Subsequently, the wavelet transform, grey wolf optimization technique and artificial 

neural network were explained. Firstly, the basic concept and types of wavelet transform 

had been explained. Two different types of wavelet transform which are CWT and DWT 

had been discussed briefly. It was followed by MRA-DWT and ST-DWT which are the 

successive types of DWT. Finally, the advantages of wavelet transform had been 

highlighted. 

Secondly, the basic concept of optimization technique was studied. The difference 

between heuristics and meta-heuristics techniques was discussed. In a meta-heuristics 

technique, the GWO was explained in details. The advantages of the meta-heuristics 

technique were highlighted to explain it significance in most of the studies. 

Lastly, the ANN was explained briefly as one of the most popular knowledge-based 

technique.  Besides that, the effects of ANN variables toward the accuracy of the results 

were studied. The relationship between the training, validation and testing data during the 

training process were explained.   
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CHAPTER 3: METHODOLOGY OF PROPOSED TECHNIQUE FOR HIGH 

IMPEDANCE FAULT DETECTION AND LOCALIZATION 

3.1 Introduction  

In this research, it is our best interest to detect and locate the occurrence of high 

impedance fault (HIF) in the distribution system. In this chapter, the investigation is 

divided into three main phases. In the first phase, the occurrence of HIF is detected and 

differentiated from non-HIF events. Subsequently, in the second phase, the location of 

the HIF is identified. In the third phase, the estimated fault distance is enhanced by 

identifying the faulty section. In this chapter, the three main phases of the investigation 

are presented as follows: 

a) Proposed technique for high impedance fault detection and identification 

b) Proposed method for high impedance fault localization 

c) Proposed enhanced fault location method 

3.2 Proposed Technique for High Impedance Fault Detection and 

Identification 

The phase displacement computation (PDC) is proposed to detect and identify HIF 

from non-HIF events. The different types of non-HIF events considered in this analysis 

include capacitor switching, load switching and motor starting. The three-phase voltage 

waveforms measured at the main substation is analyzed to detect and identify HIF from 

non-HIF events. The proposed PDC method will calculate the phase angle difference 

between the measured and reference voltage waveforms. The resultant PDC will then be 

used by detection index algorithm to detect the occurrence of a disturbance while another 

identification index algorithm will identify the occurrence of HIF from the various types 

of disturbances. Details of the above proposed algorithms are explained in the following 

subsection. 

Univ
ers

ity
 of

 M
ala

ya



47 

3.2.1 Phase Displacement Computation (PDC) Method 

When a fault occurs in the network, there will be a slight distortion in the voltage 

waveform. This distortion can be observed clearly through the differences between the 

reference and faulted voltage waveforms in Figure 3.1 and Figure 3.2. Figure 3.1 shows 

an example of a few cycles of reference and faulted voltage waveforms when HIF occurs 

in the network. While Figure 3.2 shows an enlarged view of the circled part in Figure 3.1, 

showing the onset of fault. 

 

Figure 3.1: Comparison between faulted and reference voltage waveform 

  

Figure 3.2: Enlarged view of the faulted and reference voltages 

The distortion of the waveform in Figure 3.2 can be quantified using the PDC method 

as follows. 
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Table 3.1: Voltage magnitude 

Time (s) 
Faulted 

waveform (V) 

Reference 

waveform (V) 

Distortion =                        

| Faulted - Reference | (V) 

0.99925 8.948 8.948 0.000 

0.9995 8.891 8.891 0.000 

0.99975 8.779 8.779 0.000 

1 8.250 8.613 0.363 

1.00025 8.085 8.394 0.309 

1.0005 7.835 8.124 0.289 

1.00075 7.533 7.803 0.270 

 

Table 3.1 shows the voltage magnitude before and after the fault occurrence. The fault 

is applied to the system at t=1s. As shown in the table, the voltage is distorted after the 

fault is applied. Figure 3.3 shows the plots of the faulted and reference waveforms just 

before and after the fault from Table 3.1. As shown in the figure, the voltage waveform 

starts to deviate at t=1s. This distortion can be represented by the PDC. The PDC will 

calculate the time difference between the faulted and reference waveforms in which the 

voltage magnitude for both waveforms are the same. As such, the time (tnew) at which the 

faulted waveform has the same magnitude as the reference waveform will first be 

computed. 

  

Figure 3.3: Illustration of the faulted and reference waveforms 
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Initially, the algorithm will continuously track for differences in magnitude between 

the faulted and reference voltage waveforms throughout the samples. Once the difference 

in magnitude was detected at t2, the magnitude of the reference waveform at Point A will 

be traced to the same magnitude of the faulted waveform at Point B to obtain tnew. The 

computation of tnew is based on the assumption that consecutive samples in the voltage 

waveforms are connected through a straight line. As such, tnew is calculated from the 

straight line equation as follows.   

      3.1  

where 

X = time = tnew 

Y = voltage magnitude = Vref 

m = gradient of the straight line 

C = y-axis intercept of the straight line. 

Therefore,  

      3.2 

Finally, the phase angle difference,  between both waveforms can be calculated 

as follows: 

    3.3 

where 

T = time over one full cycle = 1/f 

f = frequency of the system = 50Hertz 
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3.2.2 Phase Displacement Computation for HIF Detection and Identification 

Figure 3.4 shows the flowchart of the proposed HIF detection and identification 

method. After measuring the three-phase voltage waveforms, the phase displacement is 

calculated using the time difference between the faulted and reference voltage 

waveforms. Then, two processes consisting of moving window and grouping window are 

conducted to obtain the smooth pattern of phase displacement. Finally, the detection index 

and identification index algorithms are executed to detect the anomaly and then identify 

the HIF from the various anomalies. 

Simulation

Measure 3-phase 

voltage waveform

Calculate the phase 

displacement

Moving window 

process

Grouping window 

process

Detection index and 

identification index 

algorithms

End

 

Figure 3.4: Flowchart of the proposed HIF detection and identification method 

3.2.3 Phase Displacement Computation Process 

Figure 3.5 to Figure 3.8 show the process of PDC method until the final pattern of 

PDC is obtained. Figure 3.5 shows an example of absolute PDC obtained using Eq. 3.3 

during the occurrence of HIF event. The phase displacement between the reference and 

faulted waveforms is constantly calculated even before and after the event. It can be 

observed that the absolute PDC is constantly zero before the event, but starts to fluctuate 

after the event. The fluctuation of the absolute PDC value indicates an anomaly that has 

occurred in the system. Figures 3.5(a)-(c) show the absolute PDC of the voltage 

waveforms for phases A, B and C respectively. While Figure 3.5(d) shows the sum of 

absolute PDC of the three phases.  

Univ
ers

ity
 of

 M
ala

ya



51 

 
(a) Phase-A      (b) Phase-B 

 
(c) Phase-C    (d) Summation for all phases 

Figure 3.5: Absolute PDC during HIF event 

Subsequently, the obtained sum of absolute PDC data points in Figure 3.5(d) is 

summed by a moving window where each window contains 80 samples (one full cycle). 

The position of the window is shifted point by point consecutively as illustrated in Figure 

3.6. The result of the moving window process on the sum of absolute PDC is known as 

moving window PDC and it is displayed in Figure 3.7.  

 

Figure 3.6: Moving window process on the sum of absolute PDC 
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Figure 3.7: Grouping window process on moving window PDC 

 

Figure 3.8: Smoothed PDC 

As observed in Figure 3.7, the obtained moving window PDC is oscillatory. Thus, 

another grouping window is applied to smoothen the data further. The grouping window 

process is initiated if there is a significant change in moving window PDC. In this step, 

every 40 consecutive data are summed and the result is known as smoothed PDC as shown 

in Figure 3.8. Based on the pattern of smoothed PDC, the occurrence of HIF event is 

identified.  

3.2.4 High Impedance Fault Detection and Identification Index 

To simplify the detection and identification of HIF and non-HIF events, 2 indices are 

developed. The first is the detection index (D-index) which is used to detect the 

occurrence of an event in the network. The second is the identification index (Id-index) 

which is used to identify HIF from non-HIF events.  
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Figure 3.9 shows an example of smoothed PDC due to the occurrence of load 

switching event in the system. The increment in smoothed PDC value indicates that an 

event has occurred in the system. As such, the calculation of D-index is initiated. At first, 

the difference between two consecutive smoothed PDC data, G(1) – G(2),  is calculated. 

If the difference is negative, the value is stored and the difference between the next two 

data, G(2) – G(3), is calculated. If it is still negative, the value is stored and the subtraction 

step is carried out for G(3) – G(4). This step is repeated until a positive difference is 

obtained. Suppose the subtraction step is repeated for n times before the first positive 

difference is obtained, then, the D-index is calculated as follows: 

               3.4 

 

Figure 3.9: Smoothed PDC of a load switching event 

Besides detecting the event occurrence in the system, the D-index is also used to 

differentiate the event with the steady state condition. Based on thorough analysis, the 

threshold value of D-index is set to -200. It specifies that if the D-index value is greater 

than -200, it indicates a normal fluctuation. Otherwise, it indicates the occurrence of an 

event in the system.  
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It is noticed that the smoothed PDC for HIF events rises to the steady state value 

without noticeable dip as shown in Figure 3.8. While in Figure 3.9, the load switching 

event experiences a dip in the subsequent group which creates a peak before reaching the 

steady state value. As such, the Id-index is developed to differentiate between HIF and 

non-HIF events by detecting the presence of peak before the smoothed PDC reaches its 

steady state value. Referring to Figure 3.9, the Id-index starts calculating if there exist a 

slope change at any smoothed PDC datum, G(i), such that (G(i-1) – G(i)) < 0 and  (G(i) 

– G(i+1)) > 0. In other words, if two consecutive differences in smoothed PDC change 

sign from negative to positive, then the peak is expected to occur at that position. Thus, 

the Id-index is calculated as follows. 

    3.5 

From more simulations conducted, it is found that the best threshold value for the Id - 

index to separate HIF from non-HIF events is 0.01. If the Id-index falls below the 

threshold, it shows that the HIF event is identified. Otherwise, only a non-HIF event such 

as capacitor switching, load switching or motor starting is identified. Table 3.2 shows the 

steps for the calculation of the D-index and Id-index for the event in Figure 3.9. Whereas 

Figure 3.10 shows the flowchart of the steps in the whole process.   

Table 3.2: D-index and Id-index calculation 

Group 
Summed 

PDC value 

Difference in summed PDC value 

between two adjacent groups 

1 3265.91 G(1)-G(2)   = -7408.38 

2 10674.29 G(2)-G(3)   = -4024.32 

3 14698.61 G(3)-G(4)   = 22.31 

4 14676.30 G(4)-G(5)   = 862.63 

5 13813.67 G(5)-G(6)   = 1219.55 

6 12594.12 G(6)-G(7)   = 564.61 

7 12029.51 G(7)-G(8)   = 296.62 

8 11732.89 G(8)-G(9)   = 116.74 

   
 iG

3iGiG
indexId




Step 1: D-index  

= (-7408.38-4024.32)/2 

= -5716.35 

Step 2: Conditions to 

initiate Id-index fulfilled 

Step 3: Id-index  

= (14698.61-12594.12)/14698.61 

= 0.1432 
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Figure 3.10: HIF detection and identification flowchart 

3.3 Proposed Method for High Impedance Fault Localization 

In this chapter, the overall concept of the proposed method utilizing the Multi-

Resolution Analysis-Discrete Wavelet Transform (MRA-DWT) to extract the important 

features from the measured three-phase voltage and current waveforms to identify the 

fault location is presented. The proposed fault location method involves classifying the 

fault type and estimating the fault distance during the occurrence of high impedance fault 

(HIF) in the distribution network. The Artificial Neural Network (ANN) plays an integral 

role in the proposed fault location method where the extracted features are fed into the 

ANN for training and subsequently tested to evaluate the performance. In this proposed 

method, the Grey Wolf Optimization (GWO) technique is also utilized during the training 

process to determine the optimal ANN variables in order to obtain more accurate results. 

 

D(k)=0;

Id(k)=0;

k=1; 

count=0;

G=group data

i=1:length(G);

X(i)=G(i)-G(i+1)
D(k)=D(k)+X(i)

count=count+1
If X(i)<0

X(i-1)>0 ?

If X(i)>0
Yes

D(k)=D(k)/count
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j=i
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count=0;
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3.3.1 Overall Concept of the Proposed Method 

Figure 3.11 shows an example of the simple radial distribution network, which consists 

of one main feeder and two laterals, tapped at node 2 and 3. A line section is represented 

by two adjacent nodes and has its own line configuration. In this diagram, a fault is 

assumed to occur in the middle of line section S-R. Then, the three-phase voltage and 

current waveforms are measured at the measurement point, which is located at node 1.  

Substation

1 2 3

5

S

4

R

Fault

Measurement 

point Section i

 

Figure 3.11: A simple radial distribution network 

Figure 3.12 shows the overall flowchart of the proposed method during the occurrence 

of HIF. It consists of feature extraction, fault type classification, fault distance and 

impedance estimations as well as the faulty section identification. At first, the features of 

the measured three-phase voltage and current waveforms are extracted using the MRA-

DWT. Based on the extracted features, the fault type is classified and the fault distance 

and impedance are estimated, which form the basis for the proposed fault location 

method. Then, the faulty section is identified based on the estimated fault distance. To 

enhance the estimated fault distance, the previously estimated fault distance is re-

evaluated with respect to the identified faulty section, which forms the basis for the 

proposed enhanced fault location method.  
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current waveforms
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Figure 3.12: Flowchart of the fault location method 

3.3.2 Multi-Resolution Analysis Discrete Wavelet Transforms  

3.3.2.1 Features Extraction by MRA-DWT 

During the occurrence of HIF event, the measured three-phase voltage and current 

waveforms are decomposed using the MRA-DWT. From this decomposition process, 2 

important features can be obtained, which are:  

 Approximation coefficients (cA) 

 Detail coefficients (cD) 

The approximation and detail coefficients are extracted after the original waveform is 

decomposed using the low-pass and high-pass filters respectively. Figure 3.13(a) shows 

an example of the original phase-A voltage waveform with phase-A to ground fault 

initiated at Node 1 with 100Ω fault impedance. As highlighted in the figure, it can be 

observed that the voltage fluctuation during the fault is not easily noticed. However, by 

utilizing the MRA-DWT analysis, the first level of extracted cD can signify the fault 

occurrence through the sharp peak as shown in Figure 3.13(b). While Figure 3.13(c) 

shows the first level of extracted cA.  

Proposed 

Fault 

Location 

Method 

Proposed  

Enhanced 
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Figure 3.13: Decomposition process for voltage waveform using Db4 

3.3.2.2 MRA-DWT Analysis to Estimate the Fault Distance 

In this analysis, the fault distance is estimated by utilizing the energy content, E of the 

extracted cA from the voltage and current waveforms. The equation to calculate the Ej is 

shown as follows: 

 






k

k

k

2

j128

2

2128j128
n

2

k,j cAE        3.6 

where  

j = frame number (1 frame is equal to one full cycle of 
k

2

128
 samples) 

k = level of decomposition (k=1, 2,…, n) 

n = number of samples 
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Figure 3.14 shows the application of Eq 3.6 to the waveform in Figure 3.13(c) to 

extract the energy content of cA. It can be observed that there are no significant change 

in the first 4 energy content as the fault is not initiated in the system. However, after the 

fault is initiated at j=4, there is a significant decrease in energy content. As such, it 

indicates the starting point of the fault. This rapid change in the energy content will then 

settle at a constant value from the 6th cycle onwards. Therefore, the difference in energy 

content, sE can be calculated between the starting point of the fault, Ej and point Ej+3 as 

encircled in Figure 3.14. The point Ej+3 is selected to ensure that the energy content is 

totally stabilized. The equation to calculate the sE is shown as follows: 

     3.7  

It is important to note that the calculated sE can be either negative or positive. Negative 

sE indicates the decrement of energy content, whereas positive sE represents the 

increment of energy content. In this analysis, the calculated sE is used to estimate the 

fault distance, given that the voltage and current magnitudes vary for different fault 

distances. 

 

Figure 3.14: Energy content for each full cycle of phase-A voltage waveform 
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3.3.3 ANN Training for Determination of Optimal ANN Variables 

It must be noted that before the fault location algorithm using the ANN can be applied, 

the ANN has to be trained first using the obtained energy content. As such, the training 

methodology for the ANN is presented in this section. The training methodology consists 

of 3 steps which are fault distance estimation, fault type classification and fault impedance 

estimation. In this training process, thorough investigations through the fault distance 

estimation are first conducted to obtain the optimal ANN variables. Subsequently, the 

optimal ANN variables are also used in the ANN training for fault type classification and 

fault impedance estimation.  

3.3.3.1 Fault Distance Estimation 

As mentioned earlier, thorough investigations through the fault distance estimation are 

conducted to obtain the optimal ANN variables. The performance is evaluated based on 

the average error of fault distance. First, an investigation to observe the effect of different 

types of wavelet transforms is conducted. In this investigation, the best combination of 

mother wavelet and its associated decomposition level is obtained. Then, the effect of 

variations in ANN parameters is investigated. The ANN parameters comprise of a number 

of neurons, learning rates and momentum constant. Next, the GWO technique is 

implemented to find the optimal values of the ANN parameters. Further investigation is 

also conducted to evaluate the effect of variation in the number of neurons in a hidden 

layer. Subsequently, the effect of different types of ANN learning algorithms is 

investigated to identify the best ANN learning algorithm. In addition, the effects of 

performing the dataset categorization and different objective functions for GWO 

technique are conducted. Besides that, the effect of a different number of input data to be 

fed into the ANN is investigated. Last but not least, the effect of different types of 

optimization techniques to provide the optimal values of ANN parameters are 

investigated and compared. In this investigation, the other 2 optimization techniques to 
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be compared against the GWO technique are Evolutionary Programming (EP) and 

Particle Swarm Optimization (PSO) techniques. 

(a) Selection of Mother Wavelets and Its Associated Levels of Decomposition 

In this subsection, the performance of three different mother wavelets comprising of 

Biorthogonal (Bior3.3), Daubechies (Db4) and Symlet (Sym8) and its associated 4 levels 

of decomposition are investigated and compared to identify the best performing pair of 

mother wavelet and levels of decomposition. As such, there are 12 combinations of 

mother wavelets and its associated levels of decomposition to be compared.  

(b) Effect of Variations in ANN Parameters  

In this subsection, the effect of variations in ANN parameters is investigated. The 

parameters involved in this investigation are: 

 Learning rate (lr) 

 Momentum constant (mc) 

 Number of neurons in hidden layer (p) 

In this investigation, there are 3 different scenarios related to the above 3 different 

ANN parameters. In each scenario, one ANN parameter is changed while the other two 

ANN parameters are fixed.  

(c) Effect of Performing ANN Parameters Optimization through GWO  

In this subsection, the Grey Wolf Optimization (GWO) technique is proposed to 

determine the optimal values of ANN parameters comprising of lr, mc and p. In order to 

obtain the optimal values of ANN parameters, the range of values for lr, mc and p during 

initialization have to be defined. Here, the boundary limit for lr and mc are set in between 

[0 1], whereas the boundary of p is set in between [1 60].  
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(d) Effect of Different Types of ANN Learning Algorithm 

In this subsection, the effects of different types of ANN learning algorithm are 

investigated. The common types of ANN learning algorithm include Levenberg-

Marquardt backpropagation (trainlm), Bayesian regularization (trainbr) and others, 

which are mentioned in Table 3.3 (Mathworks 2016). In this study, the performance of 

each learning algorithms in ANN is evaluated with the assistance of GWO technique.  

Table 3.3: Different types of learning algorithm 

Learning algorithm (Mathworks 2016) 

trainbfg BFGS quasi-Newton backpropagation 

trainbr Bayesian regularization 

traincgb Conjugate gradient backpropagation with Powell-Beale restarts 

traincgf Conjugate gradient backpropagation with Fletcher-Reeves updates 

traincgp Conjugate gradient backpropagation with Polak-Ribiére updates 

trainlm Levenberg-Marquardt backpropagation 

trainoss One-step secant backpropagation 

trainr Random order incremental training with learning functions 

trainrp Resilient backpropagation 

trainscg Scaled conjugate gradient backpropagation 

 

(e) Effect of Performing Dataset Categorization   

In this subsection, the effect of performing dataset categorization, where the training 

process is conducted separately for each category of fault types comprising of single line 

to ground fault (SLGF), double line to ground fault (LLGF), double line fault (LLF) and 

balance fault (BF) is investigated.  

(f) Effect of Different Number and Combinations of Input Data 

In this subsection, the effects of different number and combinations of input data being 

fed into the ANN are investigated. The comparison analysis is first conducted using 3 

consistent input data in each level of MRA-DWT decompositions. Then, the comparative 

analysis is conducted for more input data comprising of consistent data from multiple 
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different combinations of MRA-DWT decompositions levels. Finally, the analysis for 

random selection of input data is also performed. A comparison of the results with and 

without the GWO technique in the above analysis is also conducted in this section. 

i Variation in the Number of Input Data 

In this investigation, the effects of a different number of input data to be fed into the 

ANN are observed. There are 5 scenarios wherein the number of input data is varied 

between 3, 6, 12, 18 and 24 input data. The input data comprise of the 1st, 2nd, 3rd and 4th 

levels of three-phase voltage and current energy contents that are extracted using the 

Bior3.3 mother wavelet. For each scenario, the best combination of input data is 

determined based on the average error. Then, this best combination of input data will be 

further trained with the application of GWO. 

ii Random Selection of Input Data (6 Input Data) 

In this subsection, the best random combination of 6 input data which are randomly 

selected from 24 available input data is determined. The purpose of this investigation is 

to evaluate the strength of each input data and its combinations that may improve the 

ANN accuracy. For this purpose, an exhaustive technique is used to obtain the best 

random combination of 6 input data and there are a total of 134596 random combinations 

that can be obtained using this technique. At first, all 134596 random combinations are 

evaluated using the stand-alone ANN. Subsequently, the best random combination of 

input data is repeated with the assistance of GWO-ANN.  

(g) Effect of Different Objective Functions for GWO Technique 

In this subsection, further investigation is conducted to evaluate the effect of different 

objective functions for GWO technique. It is noted that in the application of an 

optimization technique, it is necessary to define an objective function, ObjFunc which is 
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responsible to ensure that the optimal solution is minimized or maximized. The common 

types of ObjFunc that can be assigned include standard deviation (StD), average error 

(AverError), maximum error (MaxError) or several other statistical formulations.  

(h) Effect of Different Types of Optimization Techniques in Optimizing ANN 

Parameters 

In this subsection, different types of optimization technique, which are the Particle 

Swarm Optimization (PSO) and Evolutionary Programming (EP) are implemented. The 

main purpose of this research is to investigate the significance of utilizing the 

optimization technique to provide the optimal value of ANN parameters thus increasing 

the accuracy. Furthermore, the comparison between the techniques is evaluated. The 

performance of these optimization techniques is compared in terms of accuracy and 

training time. The accuracy can be determined based on the average error in which the 

least value of average error represents the highest accuracy. Whereas for the training time, 

it can be determined based on the number of neurons utilized. It is noted that more training 

time is required if the number of neurons is higher. 

3.3.3.2 Fault Type Classification 

In this subsection, the fault type is classified using the same approach to estimate the 

fault distance. However, it utilizes directly the optimal ANN variables, which had been 

obtained during the training process to estimate the fault distance. There are 11 types of 

fault to be classified as follows: 

1) Unbalanced Fault 

 Single Line to Ground Fault (SLGF) 

 Phase A-G (AGF) 

 Phase B-G (BGF) 

 Phase C-G (CGF) 
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 Double Line to Ground Fault (LLGF) 

 Phase A-B-G (ABGF) 

 Phase A-C-G (ACGF) 

 Phase B-C-G (BCGF) 

 Double Line Fault (LLF) 

 Phase A-B (ABF) 

 Phase A-C (ACF) 

 Phase B-C (BCF) 

2) Balanced Fault (BF) 

 Three Line to Ground Fault (LLLGF) 

 Phase A-B-C-G (ABCGF) 

 Three Line Fault (LLLF) 

 Phase A-B-C (ABCF 

3.3.3.3 Fault Impedance Estimation 

In this subsection, the fault impedance is estimated using the same method as in 

Subsection 3.3.3.2. The fault impedance value considered in this analysis ranges from 

50Ω to 150Ω. This range of HIF value is used since there is no commonly agreed or 

standardized range of HIF values. For instance, in (Uriarte and Centeno 2005) the 

recommended value of HIF is based on the type of surface where the conductor makes 

contacts such as dry sand and concrete. Another reported HIF value is 140kΩ in a case 

where the distribution network suffered from a fault due to leaning tree (Elkalashy, 

Lehtonen et al. 2008). While, in (Bretas, Moreto et al. 2006) and (Jung, Kim et al. 2007), 

the maximum HIF value is set to 100Ω and 200Ω respectively. 
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3.3.4 ANN Testing for Fault Location Determination  

Previously, thorough investigations to obtain the optimal ANN classifier had been 

conducted with the integration of GWO technique in the training process. The training 

process involves three main objectives, which are to identify the fault types, estimate the 

fault distance and fault impedance values. During the training process, the generated 

network files for fault type identification, fault distance and fault impedance estimations 

were saved. Subsequently, the testing process is conducted in this section to evaluate the 

predictive capability of the saved network files. For that purpose, new testing data are 

generated which are not the same data used during the training process and the capability 

of the saved network files to estimate the outputs with minimum error are evaluated. 

Figure 3.15 shows the flowchart for the testing procedures, in which the fault type is 

classified first and then followed by the fault distance estimation. 

Fault type classification  

network file

Fault type classification  

network file

Fault distance estimation

SLGF network file

(AGF, BGF & CGF)

Fault distance estimation

SLGF network file

(AGF, BGF & CGF)

6 input data6 input data

Fault distance estimation

LLGF network file

(ABGF, ACGF & BCGF)

Fault distance estimation

LLGF network file

(ABGF, ACGF & BCGF)

Fault distance estimation

LLF network file

(ABF, ACF & BCF)

Fault distance estimation

LLF network file

(ABF, ACF & BCF)

Fault distance estimation

Balanced network file

(ABCGF & ABCF)

Fault distance estimation

Balanced network file

(ABCGF & ABCF)
 

Figure 3.15: Flowchart for fault type identification and fault distance estimation 

3.4 Proposed Enhanced Fault Location Method 

In the previous proposed fault location method in Subsection 3.3, it only estimates the 

fault distance. However, the estimated fault distance may lead to multiple possible points 

of fault location due to the existence of lateral branches of equal distances from the 

measurement point. Therefore, determination of the exact fault location becomes difficult 
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and time-consuming. To overcome these difficulties, an enhanced fault location method 

is proposed in this section. In the proposed enhanced fault location method, the faulty 

section identification method is used to determine the most likely faulty section through 

a ranking process. Here, the proposed method will first identify all the possible faulty 

sections. Then, each of the previously estimated fault distance will be re-evaluated with 

respect to the identified faulty section to improve the fault location results.  

3.4.1 Faulty Section Identification 

The proposed faulty section identification method utilizes the previously estimated 

fault distance to identify the possible faulty section. The faulty section is considered if 

the estimated fault distance falls in between the length of the line section. However, it is 

important to take into account the error of the estimated fault distance.  For this purpose, 

the error is assumed to be ±10% of the estimated fault distance. Therefore, the range of 

the estimated fault distance to be considered in identifying the faulty section is as follows: 

Lower boundary of length, L1 = x − 10%  

Upper boundary of length, L2 = x + 10%  

where x is the previously estimated fault distance. 

Figure 3.16 shows an example of simple distribution network consisting of 3 line 

sections. A line section is represented by two adjacent nodes. Line section 1 (S1) is 

located between nodes N1 and N2, line section 2 (S2) is located between nodes N2 and 

N3 whereas line section 3 (S3) is located between nodes N3 and N4. 
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Substation

N1 N2 N3 N4

S1 S2 S3
 

Figure 3.16: Simple distribution network with 3 line sections 

To consider any line section as the possible faulty section, it must fulfil one of the 

following 3 conditions: 

Condition 1: N2 < L1 & L2 < N3 

Substation

N1 N2 N3 N4

S1 S2 S3
L1 & L2

 

If this condition is fulfilled, then there is only 1 possible faulty section which is S2. 

Condition 2: (N1 < L1 < N2) & (N2 < L2 < N3)  

Substation

N1 N2 N3 N4

S1 S2 S3

L1 L2
 

If this condition is fulfilled, there will be 2 possible faulty sections which are S1 and S2.  

Condition 3: (N1 < L1 < N2) & (N3 < L2 < N4) – special condition 

Substation

N1 N2 N3 N4

S1 S2 S3

L1 L2
 

If this condition is fulfilled in which the identified faulty sections are not adjacent to each 

other, then there will be 3 possible faulty sections which are S1, S2 and S3. This special 

condition usually occurs for short line sections. 
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3.4.2 Ranking Process 

In the previous subsection, multiple possible faulty sections with equal probability 

have been determined. As these faulty sections could be located far apart, the rectification 

process may be lengthy. Therefore, in this subsection, the identified faulty sections will 

be ranked from the most likely to least likely sections to generate a list of inspection 

sequence for the operators. Here, the database approach is adopted where the possible 

faulty sections are ranked based on the number of measured data that falls within the 

range of stored data. The measured data are the voltage and current data when the HIF 

event occurs in the system. Whereas the stored data are the simulated HIF event data at 

each node with pre-defined fault types and fault impedance values, stored in the database.  

3.4.2.1 Development of Database 

In this subsection, the process to develop the database is explained. Figure 3.17 shows 

the simple distribution network for line section k located between nodes i & j. To develop 

the database, the fault is first simulated at each node with pre-defined fault type and fault 

impedance values. For instance, the SLGF is simulated at node i with 50Ω of fault 

impedance. Then, the measured data will be saved together with the corresponding fault 

type and fault impedance value as shown in Table 3.4. 

 

Figure 3.17: Simple distribution network (Line Section k) 

Table 3.4: Measured data for SLGF  

 50Ω 60Ω 70Ω 

Node i 𝑉𝑎,𝑖
50, 𝑉𝑏,𝑖

50, 𝑉𝑐,𝑖
50, 𝐼𝑎,𝑖

50, 𝐼𝑏,𝑖
50, 𝐼𝑐,𝑖

50 𝑉𝑎,𝑖
60, 𝑉𝑏,𝑖

60, 𝑉𝑐,𝑖
60, 𝐼𝑎,𝑖

60, 𝐼𝑏,𝑖
60, 𝐼𝑐,𝑖

60 𝑉𝑎,𝑖
70, 𝑉𝑏,𝑖

70, 𝑉𝑐,𝑖
70, 𝐼𝑎,𝑖

70, 𝐼𝑏,𝑖
70, 𝐼𝑐,𝑖

70 

Node j 𝑉𝑎,𝑗
50, 𝑉𝑏,𝑗

50, 𝑉𝑐,𝑗
50, 𝐼𝑎,𝑗

50 , 𝐼𝑏,𝑗
50 , 𝐼𝑐,𝑗

50 𝑉𝑎,𝑗
60, 𝑉𝑏,𝑗

60, 𝑉𝑐,𝑗
60, 𝐼𝑎,𝑗

60 , 𝐼𝑏,𝑗
60 , 𝐼𝑐,𝑗

60 𝑉𝑎,𝑗
70, 𝑉𝑏,𝑗

70, 𝑉𝑐,𝑗
70, 𝐼𝑎,𝑗

70 , 𝐼𝑏,𝑗
70 , 𝐼𝑐,𝑗

70 

 

node i node j

132/11kV Measurement 

point Section k
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After each type of fault with pre-defined fault impedance values are simulated at each 

node, then the process to generate the database is initiated. To generate the database for a 

particular line section that lies between two nodes, it is best to store only the minimum 

and maximum values of the data. Table 3.5 shows the first database that covers 50Ω to 

60Ω of fault impedance for line section k that lies between node i and j. For the first data 

which is the phase-A voltage signal, there are 4 data consisting of 50Ω and 60Ω data at 

node i and j. Among these 4 data, only the minimum and maximum data will be selected 

as shown below. The same process is repeated for the other data and the selected data will 

be stored as shown in Table 3.5.  

𝑉𝑎,𝑖
50 , 𝑉𝑎,𝑗

50 , 𝑉𝑎,𝑖
60 , 𝑉𝑎,𝑗

60 

 

𝑉𝑎(min) , 𝑉𝑎(max) 

 

Table 3.5: Database 1 

 
Database 1 (50-60Ω) 

Min Max 

Section k 

(line section i-j) 

𝑉𝑎(min) , 𝑉𝑏(𝑚𝑖𝑛) , 𝑉𝑐(𝑚𝑖𝑛)  

𝐼𝑎(𝑚𝑖𝑛) , 𝐼𝑏(𝑚𝑖𝑛) , 𝐼𝑐(𝑚𝑖𝑛) 

𝑉𝑎(max) , 𝑉𝑏(max) , 𝑉𝑐(max)  

𝐼𝑎(max) , 𝐼𝑏(max) , 𝐼𝑐(max) 

 

The process is repeated for all line sections and fault impedance intervals. There will 

be a total of 10 generated databases as shown in Table 3.6. 

Table 3.6 : Database for each fault impedance interval 

Database Fault impedance interval (Ω) 

Database 1 50-60 

Database 2 60-70 

Database 3 70-80 

Database 4 80-90 

Database 5 90-100 

Database 6 100-110 

Database 7 110-120 

Database 8 120-130 

Database 9 130-140 

Database 10 140-150 
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3.4.2.2 Faulty Section Ranking 

To rank all the possible faulty section, the measured data are first compared against 

the stored data for each of the identified faulty sections. If the measured data fall in 

between the minimum and maximum values of the stored data, then it will be counted as 

‘√’, otherwise, it will be counted as ‘×’. Then, the total number of ‘√’ for each identified 

faulty section is calculated and ranked according to the highest number of ‘√’. 

3.5 Conclusion 

In this chapter, a new algorithm using phase displacement computation (PDC) method 

has been proposed to discriminate HIF from non-HIF events. The proposed method 

utilized three-phase voltage waveforms that were measured at the main substation. The 

PDC data were calculated between the measured and reference three-phase voltage 

waveforms. To identify the HIF from non-HIF events, the smoothed PDC pattern was 

observed. To simplify the HIF detection and identification process, an automatic HIF 

classification algorithm was proposed. The proposed algorithm uses two indices, which 

were detection index (D-index) and identification index (Id-index). The D-index is used 

to detect the occurrence of an event in the system. Subsequently, the Id-index is used to 

identify the event as HIF or non-HIF events.  

Subsequently, a hybrid technique comprising of Multi-Resolution Analysis-Discrete 

Wavelet Transform (MRA-DWT), Artificial Neural Network (ANN) and Grey Wolf 

Optimization (GWO) technique has been developed to estimate the fault location. The 

proposed fault location method involves classifying the fault type and estimating the fault 

distance and impedance values during the occurrence of HIF in the distribution network. 

The MRA-DWT is utilized to extract the important features from the measured three-

phase voltage and current waveforms. Then, the extracted features are fed into the ANN 

to be trained and subsequently tested to evaluate the performance of the proposed fault 
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location method. Besides that, the GWO technique is also utilized during the training 

process to obtain the optimal ANN variables. 

It is observed that the estimated fault distance may leads to multiple possibilities of 

faulty sections. Therefore, an enhanced fault location method was proposed where all the 

possible faulty sections were identified and ranked by the proposed faulty section 

identification algorithm.  
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CHAPTER 4: VALIDATION OF PROPOSED TECHNIQUE FOR HIGH 

IMPEDANCE FAULT DETECTION AND LOCALIZATION 

4.1 Introduction 

In this chapter, the proposed techniques for HIF detection and localization developed 

in Chapter 3 are implemented. There are three phases involved in this chapter as follows: 

a) Validation of proposed technique for high impedance fault detection and 

identification 

b) Validation of proposed method for high impedance fault localization 

c) Validation of  proposed enhanced fault location method 

4.2 Test System Modelling for the Proposed Method 

The test system used for analyzing the proposed method is 11kV and 50 Hz system as 

shown in Figure 4.1. The test system has 33 nodes that represent 32 line sections. All 

cables in the network are three-phase balanced and underground. The measurement point 

is located at the primary substation. The complete network data are given in the Appendix 

A.1. Figure 4.2 shows the test system that is modeled in PSCAD/EMTDC software. 
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Figure 4.1: Schematic diagram of 11kV distribution network 
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Figure 4.2: The typical 11kV distribution network modeled in PSCAD/EMTDC 

software 
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The grid is modeled by using an equivalent three-phase voltage source model. The 

transformer consists of three-phase 2-winding transformer and the line sections are 

modeled by using the π-model. The loads are modeled with a resistor (R) and inductor 

(L) elements, where the values are given in Appendix A.1. The multimeter is used to 

obtain the three-phase voltage and current waveforms at the primary substation. All of 

these models can be found in PSCAD/EMTDC master library. 

4.3 Validation of Proposed Technique for High Impedance Fault Detection and 

Identification 

In this subsection, the performance of the proposed PDC method to detect and identify 

the HIF from non-HIF events is evaluated. For this purpose, different types of disturbance 

are simulated in the system. Then, the transition and steady state periods for each 

disturbance are determined. Besides that, the robustness of the proposed method is 

investigated in terms of variation of fault inception angles and multiple consecutive 

events occurring in the system. Finally, the effectiveness of the proposed automatic HIF 

classification algorithm is discussed. 

4.3.1 Different Types of Disturbance for HIF Detection and Identification 

In order to validate the effectiveness of the proposed method to detect and identify the 

HIF, different sets of events are simulated. The events are described as follows: 

1) HIF: different types of HIF such as single line to ground fault (SLGF), double line to 

ground fault (LLGF), double line fault (LLF) and three phase to ground fault 

(LLLGF) are simulated with different fault impedance values. In this study, 50Ω and 

100Ω are chosen to represent the fault impedance. Besides that, different fault 

inception angles comprising of 0°, 30°, 45°, 90°, 135°, 150°, 180°, 210°, 225° and 

270° are simulated to observe the robustness of the proposed method.  
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2) Load switching: loads of 0.3MW/0.24MVar, 0.75MW/0.36MVar and 

1.5MW/0.9MVar are switched into the system. 

3) Motor starting: the motor bearing the ratings of 0.6431MW, 1.245MW and 1.029MW 

are injected into the system. 

4) Capacitor switching: the capacitor banks having the rating of 0.5MVar, 1.5MVar and 

2.5MVar are connected to the system.  

All of the above events are introduced at BUS2 at t=1.0sec. The process starts by 

measuring the three-phase voltage waveform at the measurement point. The measured 

voltage is compared to the reference voltage to calculate the absolute PDC and smoothed 

PDC. Based on the pattern of the smoothed PDC, the events can be identified as HIF or 

non-HIF event. To simplify the identification process, an automatic HIF classification 

algorithm is developed. 

4.3.1.1 HIF event 

Figures 4.3(a)-(d) show the patterns of smoothed PDC for different types of HIF with 

fault impedance of 50Ω and 100Ω. As shown in the figures, once the HIF occurs, the 

smoothed PDC starts to increase until it reaches a plateau without obvious dip, overshoot 

or fluctuation. Based on the results, it can be observed that the patterns are similar for 

each case, although the obtained smoothed PDC magnitudes are different.  

    
(a) SLGF type of fault 
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(b) LLGF type of fault 

    
(c) LLF type of fault 

    
(d) LLLGF type of fault 

Figure 4.3: Patterns of smoothed PDC for different types of HIF 

4.3.1.2 Load switching event 

Figures 4.4(a)-(c) show the changes in smoothed PDC when the loads are added to the 

system. It can be observed that the smoothed PDC increases to a peak value and then 

decreases before reaching a constant value. The peak before the dip differentiates this 

event from HIF events.  
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(a) 0.3MW / 0.24MVaR    (b) 0.75MW / 0.36MVaR 

 
(c) 1.5MW / 0.9MVaR 

Figure 4.4: Pattern of smoothed PDC for load switching event 

4.3.1.3 Motor starting event 

Figures 4.5(a)-(c) show the smoothed PDC patterns associated with motor starting 

events. It can be observed that the peak and subsequent dip is obvious. A little fluctuation 

is detected after the first dip. 

    
(a) 0.6431MW      (b)  1.245MW 
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(c) 1.029MW 

Figure 4.5: Pattern of smoothed PDC for motor starting event 

4.3.1.4 Capacitor switching event 

Finally, the smoothed PDC of capacitor switching with ratings of 0.5MVar, 1.5MVar, 

2.5MVar are shown in Figures 4.6(a)-(c). It can be seen that the peak and the subsequent 

dip are pronounced. 

    
0.5MVar     (b) 1.5MVar 

 
(c) 2.5MVar 

Figure 4.6: Pattern of smoothed PDC of capacitor switching event 
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Based on the results in Figure 4.3 to Figure 4.6, it clearly shows the difference in the 

pattern of smoothed PDC. It can be observed that only HIF event has no obvious peak 

and subsequent dip in the pattern as compared to the other events. As such, the occurrence 

of HIF event can be differentiated from the other non-HIF events. 

4.3.2 Transition and Steady State Period of Event 

It is noted that the smoothed PDC pattern fluctuates after the occurrence of an event 

before it stabilizes to its steady state condition. The volatile period before the steady state 

condition is known as a transition period. Likewise, the steady state condition is achieved 

when there is no obvious oscillation in the smoothed PDC.  

Figure 4.7 shows the transition periods for different types of events. As shown in the 

figures, each event has a different transition period. The HIF event has a shorter transition 

period as compared to the non-HIF events. It is noted that non-HIF events always oscillate 

before reaching the steady state condition. Through a thorough simulation and analysis 

process, the non-HIF events require a maximum transition period of 13 consecutive 

groups from the start of the event to reach the steady state condition. Therefore, if two 

events occur within 13 consecutive groups, only the first event is considered. While the 

other event is considered as a fluctuation within the transition period as shown in Figure 

4.7(b)-(d). Figure 4.8 shows an example of two events that are simulated with at least 14 

group apart. In this example, the occurrence of the second event is inspected from the 14th 

group and onward. Univ
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(a) HIF event 

 
(b) Load switching event 

 
(c) Motor starting event 

 
(d) Capacitor switching 

Figure 4.7: Transition and steady-state period for event 
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Figure 4.8: Transition and steady-state period for 2 consecutive events 

4.3.3 Sensitivity studies 

Based on the results above, it can be observed that the HIF and non-HIF events can be 

differentiated by the rising pattern of the smoothed PDC. However, it is crucial to 

investigate the robustness of the proposed method. For this purpose, two sensitivity 

studies are simulated as follows: 

1) Variation of fault inception angles 

2) Occurrence of multiple consecutive events  

4.3.3.1 Variation of fault inception angles 

In this subsection, the effect of fault inception angle towards the pattern of smoothed 

PDC during the occurrence of HIF event is analyzed. For this purpose, the SLGF fault 

with fault impedance of 50Ω is applied at BUS2. 10 different fault inception angles are 

simulated which are 0°, 30°, 45°, 90°, 135°, 150°, 180°, 210°, 225° and 270°. The reason 

for this study is to observe the existence of peak and subsequent dip in the pattern of 

smoothed PDC due to the variation of fault inception angles. The results of this analysis 

are shown in Figure 4.9. 
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(a) 0° inception angle    (b) 30° inception angle 

   
(c) 45° inception angle    (d) 90° inception angle 

   
(e) 135° inception angle    (f) 150° inception angle 

   
(g) 180° inception angle    (h) 210° inception angle 
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(i) 225° inception angle    (j) 270° inception angle 

Figure 4.9: Variation of fault inception angles 

As shown in the Figure 4.9, it can be observed that there is no obvious peak and 

subsequent dip in the pattern of smoothed PDC if the fault inception angle is varied. 

Nevertheless, a small change in smoothed PDC magnitude between the different 

smoothed PDCs of various inception angle can be noticed.  

4.3.3.2 Occurrence of multiple consecutive events 

In this subsection, the occurrence of multiple consecutive events are simulated to 

evaluate the robustness of the proposed method. The purpose of this analysis is to observe 

the capability of the proposed method to identify the HIF event after a non-HIF event 

occurred in the system. Table 4.1 shows the sequence of events that are simulated 

consecutively one after another. 

Table 4.1: Consecutive events occurring in the system 

Figure 5.7 t= 1s t= 1.2s t= 1.4s 

(a) Motor starting HIF fault - 

(b) Capacitor switching HIF fault - 

(c) Load switching HIF fault - 

(d) Load switching Capacitor switching - 

(e) Motor starting Load switching Capacitor switching 

(f) Motor starting Load switching HIF fault 
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The first event occurs at t=1s, the second event at t=1.2s and the third event at t=1.4s. 

The events are simulated at BUS2 and the smoothed PDC of the events are shown in 

Figure 4.10. For instance, Figure 4.10(a) shows the smoothed PDC of a motor starting 

followed by a HIF event. As shown in the figure, a sharp peak is followed by a dip of the 

smoothed PDC indicating that this event is a non-HIF event. The onset of the second 

event is marked by the rise of the smoothed PDC to a plateau signifying that HIF has 

occurred. 

    
(a) Motor starting – HIF   (b) Capacitor switching – HIF 

    
(c) Load switching – HIF   (d) Load switching – Capacitor switching 

    
(e) Motor starting–Load switching–Capacitor switching  (f) Motor starting–Load switching–HIF 

Figure 4.10: Pattern of the smoothed PDC 
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Figure 4.10(d) shows the pattern of smoothed PDC for two consecutive non-HIF 

events comprising of load switching first and then followed by capacitor switching events. 

As shown in the figure, it can be observed that the first event does not show noticeable 

peak and subsequent dip as compared to the second one. However, as depicted in the 

enlarged view of the circle part in the figure, it clearly shows a small peak and subsequent 

dip.  Thus, both events are identified as a non-HIF event. 

In contrast, Figure 4.10(f) shows the consecutive occurrence of motor starting, load 

switching and HIF events which are simulated at t=1s, t=1.2s and t=1.4s respectively. It 

can be observed that there is a peak and subsequent dip for the first two events and the 

peaks are pronounced for both events. Therefore, the proposed method identifies both 

events as non-HIF events. However, for the third event, the smoothed PDC reaches a 

plateau without a peak and subsequent dip. Thus, the occurrence of HIF event is 

identified.  

4.3.4 High Impedance Fault Detection and Identification Based on Index 

Previously, the occurrence of HIF is differentiated from non-HIF events based on the 

pattern of smoothed PDC. However, it has been noted that in some cases, it is difficult to 

detect the peak and subsequent dip pattern by the naked eyes as shown in Figure 4.10(d). 

As such, an automatic HIF classification algorithm is developed to simplify the 

identification process. In order to evaluate the effectiveness of the proposed algorithm, 

the same case studies as in Subsection 4.3.1 are repeated. Moreover, in this study, the 

events are simulated at four different locations that are at BUS2, BUS9, BUS14 and 

BUS27.  

Table 4.2 to Table 4.5 show the results of the proposed automatic HIF classification 

algorithm for different types of event. The second column indicates the detection index 

(D-index) whereas the third column represents the identification index (Id-index). In this 
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proposed algorithm, the D-index is monitored first to detect the occurrence of any event 

in the system and also to differentiate it from normal fluctuation. An event is considered 

to occur if the value of D-index is lower than -200. Subsequently, the value of Id-index 

will be checked to determine whether it is HIF or non-HIF events. If the value of Id-index 

is lower than 0.01, then it will be considered as HIF event. Otherwise, it is a non-HIF 

event. Based on the obtained results, it can be observed that the proposed algorithm 

successfully classified the HIF and non-HIF events in all case studies. 
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Table 4.2: Capacitor switching event analysis 

Capacitor Switching 

Q (MVaR) 
BUS2 BUS9 BUS14 BUS27 

D-index Id-index D-index Id-index D-index Id-index D-index Id-index 

2.5 -18494.89 0.49347 -28672.05 2.26460 -43461.83 0.67783 -36707.76 0.65995 

1.5 -30909.55 0.71916 -66318.50 0.79723 -73841.18 0.89260 -67088.68 0.27606 

0.5 -82217.08 0.83989 -106161.12 0.65645 -19307.84 0.55731 -19429.25 0.74698 

 

Table 4.3: Load switching event analysis 

Load Switching 

P/Q (3phase) 

(MW/MVaR) 

BUS2 BUS9 BUS14 BUS27 

D-index Id-index D-index Id-index D-index Id-index D-index Id-index 

0.3/0.24 -2852.47 0.10900 -2929.09 0.18611 -4228.74 0.08803 -4491.97 0.09665 

0.75/0.36 -3203.02 0.13351 -2158.72 0.13684 -4162.06 0.17790 -4221.74 0.19221 

1.5/0.9 -5716.35 0.14318 -5666.82 0.12981 -17984.52 0.12627 -19476.85 0.22009 

 

 

 

89 
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Table 4.4: Motor starting event analysis 

Motor Starting  

P (3phase) 

(MW) 

BUS2 BUS9 BUS14 BUS27 

D-index Id-index D-index Id-index D-index Id-index D-index Id-index 

0.6431 -955145.41 0.73453 -192120.45 0.21661 -23315.63 0.66934 -24221.66 0.67975 

1.245 -51665.99 0.82490 -58663.68 0.84401 -26318.25 0.64914 -27480.54 0.66240 

1.029 -32054.57 0.64355 -34748.64 0.66958 -31196.62 0.53570 -32853.08 0.55697 

 

Table 4.5: HIF event analysis 

HIF 

Fault type 
BUS2 BUS9 BUS14 BUS27 

D-index Id-index D-index Id-index D-index Id-index D-index Id-index 

A-G (50 ohm) -37058.63 0.00000 -27644.10 0.00000 -33672.71 0.00000 -32631.21 0.00000 

A-G (100 ohm) -48266.71 0.00010 -49698.21 0.00004 -6736.06 0.00000 -30763.18 0.00000 

A-B-G (50 ohm) -15059.67 0.00000 -18553.23 0.00000 -10368.03 0.00000 -10720.72 0.00000 

A-B-G (100 ohm) -18685.65 0.00035 -18692.54 0.00012 -7195.17 0.00000 -7215.26 0.00000 

B-C (50 ohm) -4204.48 0.00048 -4087.50 0.00054 -2843.14 0.00000 -2892.59 0.00000 

B-C (100 ohm) -1954.98 0.00080 -1927.74 0.00086 -2006.28 0.00003 -2021.09 0.00004 

A-B-C-G (50 ohm) -2373.26 0.00315 -2353.64 0.00352 -2051.66 0.00010 -2060.97 0.00009 

A-B-C-G (100 ohm) -1286.64 0.00586 -1310.39 0.00524 -1049.94 0.00116 -1056.96 0.00089 

90 
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Table 4.6 and Table 4.7 show the results of automatic HIF classification algorithm for 

HIF event with different fault inception angles. In this analysis, the effectiveness of the 

proposed algorithm regardless of fault inception angle is shown. Table 4.6 shows the 

results when the SLGF fault is applied at BUS2 with fault impedance value of 50Ω and 

100Ω. Whereas Table 4.7 shows the results when the LLF fault is applied at BUS9 with 

fault impedance value of 50Ω and 100Ω. Based on the results, it is proven that the 

proposed automatic HIF classification algorithm is able to identify the occurrence of HIF 

events.  

Table 4.6: Different fault inception angles (SLGF-BUS2) 

Fault inception 

angle 

A-G (50Ω) A-G (100Ω) 

D-index Id-index D-index Id-index 

0° -48510.25 0.00004 -42479.51 0.00006 

30° -22453.15 0.00000 -20988.29 0.00000 

45° -44463.80 0.00013 -40568.98 0.00006 

90° -25263.60 0.00000 -23547.62 0.00000 

135° -26265.15 0.00000 -44467.02 0.00114 

150° -52177.70 0.00032 -31058.02 0.00000 

180° -48510.25 0.00004 -42479.51 0.00006 

210° -22453.15 0.00000 -20988.29 0.00000 

225° -44463.80 0.00013 -40568.98 0.00006 

270° -25263.60 0.00000 -23547.62 0.00000 

 

Table 4.7: Different fault inception angles (LLF-BUS9) 

Fault inception 

angle 

B-C (50Ω) B-C (100Ω) 

D-index Id-index D-index Id-index 

0° -4128.73 0.00172 -2005.49 0.00075 

30° -3099.12 0.00000 -1424.42 0.00000 

45° -3086.79 0.00000 -1441.83 0.00000 

90° -2906.20 0.00000 -1358.69 0.00000 

135° -3516.94 0.00238 -1498.86 0.00407 

150° -4249.14 0.00048 -1903.55 0.00037 

180° -4128.73 0.00172 -2005.49 0.00075 

210° -3099.12 0.00000 -1424.42 0.00000 

225° -3086.79 0.00000 -1441.83 0.00000 

270° -2906.20 0.00000 -1358.69 0.00000 
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Finally, to evaluate the robustness of the proposed automatic HIF classification 

algorithm, the occurrence of multiple consecutive events as in Subsection 4.3.3.2 is 

repeated and the results are shown in Table 4.8 and Table 4.9. Based on the results, it can 

be observed that the proposed algorithm has successfully identified the HIF events.  
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Table 4.8: Mix event analysis (BUS2) 

BUS 2 

Case study Event #1 Event #2 Event #3 D-index #1 Id-index #1 D-index #2 Id-index #2 D-index #3 Id-index #3 

1 Starting Motor HIF Fault (AGF)  -51665.99 0.82490 -29969.48 0.00038   

2 Capacitor Switching HIF Fault (ABGF)  -82217.14 0.83989 -2939.06 0.08460   

3 Load Switching HIF Fault (AB)  -5716.35 0.14318 -1252.25 0.00028   

4 Load Switching Capacitor Switching  -5716.35 0.14318 -68231.77 0.91398   

5 Starting Motor Load Switching Capacitor Switching -51665.99 0.82490 -2265.03 0.07121 -13818.71 0.91959 

6 Starting Motor Load Switching HIF Fault (ABCGF) -51665.99 0.82490 -2265.03 0.07121 -441.92 0.00030 

 

Table 4.9: Mix event analysis (BUS9) 

BUS 9 

Case study Event #1 Event #2 Event #3 D-index #1 Id-index #1 D-index #2 Id-index #2 D-index #3 Id-index #3 

1 Starting Motor HIF Fault (AGF)  -58663.68 0.84401 -21461.57 0.00001   

2 Capacitor Switching HIF Fault (ABGF)  -106161.12 0.65645 -1977.02 0.00712   

3 Load Switching HIF Fault (AB)  -5666.82 0.12981 -255.92 0.00000   

4 Load Switching Capacitor Switching  -5666.82 0.12981 -35606.50 0.84956   

5 Starting Motor Load Switching Capacitor Switching -58663.68 0.84401 -1635.64 0.07239 -6941.10 0.86672 

6 Starting Motor Load Switching HIF Fault (ABCGF) -58663.68 0.84401 -1635.64 0.07239 -426.97 0.00076 
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Several other techniques that have been proposed by other authors to detect and 

identify the HIF events are summarized and can be compared in Table 4.10. Basically, all 

the previous techniques were able to discriminate between the HIF and non-HIF events 

with accuracy higher than 97%.  However, in this proposed method, the obtained accuracy 

is 100%. Moreover, the proposed method is able to identify the HIF events, although 

multiple events were occurring consecutively.  

Table 4.10 Comparison with other literatures 

Techniques used in 

other similar paper 

Type of event presented by each 

of the techniques 

Accuracy 
Subsequent 

events 
Non-HIF 

HIF Capacitor 

switching 

Load 

switching 

Motor 

starting 

WT (Shinde and 

Hase 2012) 
Yes No No Yes - No 

DWT (Akorede and 

Katende 2010) 
Yes No No Yes - No 

DWT and ANN 

(Vahidi, 

Ghaffarzadeh et al. 

2010) 

Yes Yes No Yes 99% Yes 

WT, GA, fuzzy 

inference system 

and principal 

component analysis 

(Haghifam, Sedighi 

et al. 2006) 

Yes Yes No Yes 98.33% No 

WT and statistical 

pattern recognition 

(Sedighi, Haghifam 

et al. 2005) 

Yes Yes No Yes 97.60% No 

DWT, frequency 

range and RMS 

conversion (Lai, 

Snider et al. 2005) 

Yes No No Yes 97.48% No 

Proposed method Yes Yes Yes Yes 100% Yes 
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4.4 Validation of Proposed Method for High Impedance Fault Localization 

In this subsection, the performance of the proposed method for high impedance fault 

localization is evaluated. For this purpose, the ANN is trained first to obtain the optimal 

ANN variables. Various effects are investigated through fault distance estimation to 

obtain these optimal ANN variables. Subsequently, the obtained optimal ANN variables 

are utilized directly to train the ANN for fault type classification and fault impedance 

estimation. Finally, the ANN testing is conducted to evaluate the predictive capability of 

the saved network files during the ANN training. 

4.4.1 ANN Training for Fault Distance Estimation 

There are a total of 3993 ANN training cases of energy content consisting of 11 types 

of fault, 11 fault impedance values and 33 nodes. The energy contents for the ANN 

training cases are extracted using the Eq 3.6 and Eq 3.7 before they are being fed into the 

ANN for training. The fault impedance values range from 50Ω-150Ω (in step increment 

of 10Ω). Each of the 3993 resultant fault distance estimations from ANN training is then 

compared against the actual fault distance to calculate the average error of fault distance 

as follows:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =
∑ |𝑓𝑎𝑢𝑙𝑡_𝑑𝑖𝑠𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑖) − 𝑓𝑎𝑢𝑙𝑡_𝑑𝑖𝑠𝑡𝑎𝑐𝑡𝑢𝑎𝑙(𝑖)|𝑛

𝑖=1

𝑛
                         4.1 

 

where 

i = number of ANN training case 

n = total number of ANN training cases (eg. 3993 for this case) 

The training process is iterated for 50 times and only 10 iterations with the best average 

error results are shortlisted for analysis.  
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4.4.1.1 Selection of Mother Wavelets and Its Associated Levels of Decomposition 

In this subsection, the performance of three different mother wavelets comprising of 

Biorthogonal (Bior3.3), Daubechies (Db4) and Symlet (Sym8) and its associated 4 levels 

of decomposition are investigated and compared to identify the best performing pair of 

mother wavelet and levels of decomposition. Table 4.11 to Table 4.13 show the 

shortlisted average error results for the 4 levels of decompositions for Biorthogonal3.3, 

Daubechies4 and Symlet8 mother wavelets respectively. The best combination of mother 

wavelet and its associated level of decomposition is determined based on the least average 

error.  

Table 4.11: Average error results from Biorthogonal level 3.3 mother wavelet 

Bior3.3 

Shortlisted Iterations 1st level 2nd level 3rd level 4th level 

1 0.0976 0.1465 0.1400 0.1629 

2 0.1018 0.1476 0.1625 0.1670 

3 0.1081 0.1515 0.1627 0.1671 

4 0.1210 0.1553 0.1631 0.1683 

5 0.1282 0.1631 0.1641 0.1687 

6 0.1491 0.1631 0.1644 0.1713 

7 0.1606 0.1638 0.1673 0.1737 

8 0.1731 0.1655 0.1674 0.1737 

9 0.1785 0.1660 0.1684 0.1748 

10 0.1851 0.1662 0.1695 0.1768 

 

Table 4.12: Average error results from Daubechies level 4 mother wavelet 

Db4 

Shortlisted Iterations 1st level 2nd level 3rd level 4th level 

1 0.1098 0.1156 0.1403 0.1559 

2 0.1292 0.1157 0.1488 0.1592 

3 0.1390 0.1309 0.1537 0.1596 

4 0.1444 0.1473 0.1554 0.1600 

5 0.1466 0.1541 0.1569 0.1609 

6 0.1530 0.1552 0.1577 0.1618 

7 0.1648 0.1659 0.1651 0.1640 

8 0.1701 0.1700 0.1657 0.1652 

9 0.1703 0.1720 0.1671 0.1671 

10 0.1707 0.1852 0.1757 0.1720 
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Table 4.13: Average error results from Symlet level 8 mother wavelet 

Sym8 

Shortlisted Iterations 1st level 2nd level 3rd level 4th level 

1 0.1273 0.1502 0.1540 0.1680 

2 0.1374 0.1549 0.1648 0.1680 

3 0.1466 0.1642 0.1657 0.1702 

4 0.1649 0.1644 0.1671 0.1712 

5 0.1688 0.1647 0.1724 0.1715 

6 0.1700 0.1665 0.1725 0.1720 

7 0.1767 0.1696 0.1727 0.1747 

8 0.1767 0.1696 0.1727 0.1765 

9 0.1786 0.1697 0.1730 0.1768 

10 0.1791 0.1719 0.1762 0.1770 

 

As shown in the tables, it can be observed that the least average error for each type of 

mother wavelet is obtained in the first level of decomposition. The obtained average error 

are 0.0976, 0.1098 and 0.1273 for Bior3.3, Db4 and Sym8 mother wavelets respectively. 

As such, Bior3.3 mother wavelet at the 1st level of decomposition is selected to represent 

the best combination of mother wavelet and its associated level of decomposition. 

4.4.1.2 Effect of Variations in ANN Parameters  

In this subsection, the effect of variations in ANN parameters comprising of learning 

rate (lr), momentum constant (mc) and number of neurons in hidden layer (p) is 

investigated. A total of six input data for each of the 3993 ANN training cases are fed into 

the ANN. The 6 input data comprises of the 3 phases voltage and current energy contents 

that are extracted from the 1st level of decomposition of the Bior3.3 mother wavelet. This 

combination of mother wavelet and its associated level of decomposition is selected based 

on the results obtained from the previous investigation.  
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Table 4.14 shows the result when the value of lr is changed while the values of mc and 

p are fixed. For this purpose, the value of mc is set to 0.95 and p=6, while the values of lr 

are set to 0.3, 0.5 and 0.8. As shown in the table, it can be observed that the obtained 

average error changes as the value of lr changes.  

Table 4.14: Changing the value of lr 

p = 6, mc = 0.95 

lr Average error (km) 

0.3 0.0976 

0.5 0.0899 

0.8 0.0910 

 

Table 4.15 displays the results when the values of mc are varied between 0.35, 0.65 

and 0.95. Here, the value of lr and p are fixed to 0.3 and 6 respectively. As depicted in 

the table, it can be observed that the average error increases as the value of mc increases. 

Table 4.15: Changing the value of mc 

p = 6, lr = 0.3 

mc Average error (km) 

0.35 0.0875 

0.65 0.0921 

0.95 0.0976 

 

Lastly, the effects of changing the value of p is shown in Table 4.16. Here, the value 

of mc and lr are set to 0.95 and 0.3 respectively. Whereas, the values of p are varied 

between 3, 6 and 12. From the table, it can be observed that the average error decreases 

as the value of p increases. 
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Table 4.16: Changing the number of p 

mc = 0.95, lr = 0.3 

p Average error (km) 

3 0.1604 

6 0.0976 

12 0.0250 

 

As shown in Table 4.14 to Table 4.16, it can be noticed that the performance of ANN 

can be influenced by changing the values of ANN parameters such as lr, mc and p. A 

summary of the above results is shown in Figure 4.11. It can be observed that the right 

combinations and values for these parameters are important to ensure that the obtained 

average error is small. Unfortunately, it is difficult to determine the optimal values for 

these ANN parameters concurrently. Therefore, an optimization technique is proposed to 

determine the optimal values for these parameters in the next section.  

 

Figure 4.11: Average error results for different combinations of ANN parameter 

(a) Effect of Performing ANN Parameters Optimization through GWO  

In this subsection, the Grey Wolf Optimization (GWO) technique is proposed to 

determine the optimal values of ANN parameters comprising of lr, mc and p. Table 4.17 

shows the average error results when the 6 input data from the previous section are fed 
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into the ANN. The second column shows the best combination of ANN parameters that 

are manually determined from the previous investigation. The third column shows the 

best values of ANN parameters that are determined using the GWO. It can be seen that 

GWO managed to identify the optimal ANN parameters, thus deliver a least average error 

in the fault distance algorithm. 

Table 4.17: Average error results for different combinations of ANN parameters 

 

The best combination of 

ANN parameters that are 

manually determined 

The best combination of 

ANN parameters that 

determined by GWO 

lr 0.30 0.4137 

mc 0.95 0.4091 

p 12 58 

Average error (km) 0.0250 0.0069 

 

4.4.1.3 Effect of Different Types of ANN Learning Algorithm 

In this subsection, the effects of different types of ANN learning algorithm are 

investigated. The performance of each learning algorithms in ANN is evaluated with the 

assistance of GWO technique. Table 4.18 shows the average error results for different 

types of learning algorithms. As shown in the table, trainlm delivered the least average 

errors with the values of 0.0174.  

Table 4.18: Average error results for different types of learning algorithm 

Learning algorithm 

(Mathworks 2016) 
lr mc p 

Average 

error (km) 

trainbfg 0.414 0.6648 9 0.1261 

trainbr 0.0065 0.6041 15 0.0394 

traincgb 0.4214 0.9263 18 0.5293 

traincgf 0.5272 0.4695 17 0.5041 

traincgp 0.1508 0.5901 4 0.5262 

trainlm 0.4706 0.2387 24 0.0174 

trainoss 0.2155 0.4998 9 0.5857 

trainr 0.6236 0.7638 2 0.6274 

trainrp 0.7356 0.6722 14 0.5351 

trainscg 0.7724 0.1303 13 0.5661 
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4.4.1.4 Effect of Performing Dataset Categorization   

In the previous investigation, all the training cases comprising of 11 types of faults are 

fed into the ANN to be trained together. However, further investigation is conducted to 

observe the effect of performing dataset categorization, where the training process is 

conducted separately for each category of fault types – BF, SLGF, LLGF and LLF types 

of fault. Here, the performance is evaluated based on both the average error and maximum 

error. 

Table 4.19 shows the results and comparison when the dataset categorization is 

performed and each category of fault types is trained separately. As shown in the table, 

the obtained average error reduces significantly for SLGF and LLGF while the 

improvement is only marginal for BF and LLF if each type of faults is trained separately. 

Moreover, it is observed that the obtained maximum error decreases for all types of fault 

except for BF type of fault where it experiences a slight increase from 0.3539 to 0.3604.  

Table 4.19: Results for separating different types of fault 

Training Fault type Average error (km) Maximum error (km) 

Combined 

BF 0.0623 0.3539 

SLGF 0.0278 0.2646 

LLGF 0.0341 0.1726 

LLF 0.0495 0.2151 

Separate 

BF 0.0592 0.3604 

SLGF 0.0089 0.0796 

LLGF 0.0130 0.1170 

LLF 0.0458 0.1924 

 

4.4.1.5 Effect of Different Number and Combinations of Input Data 

In this subsection, the effects of different number and combinations of input data being 

fed into the ANN are investigated. The comparison analysis is first conducted using 3 

consistent input data in each level of MRA-DWT decompositions. Then, the comparative 

analysis is conducted for more input data comprising of consistent data from multiple 
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different combinations of MRA-DWT decompositions levels. Finally, the analysis for 

random selection of input data is also performed. A comparison of the results with and 

without the GWO technique in the above analysis is also conducted. 

(a) Variation in the Number of Input Data 

In this investigation, the effects of a different number of input data to be fed into the 

ANN are observed. There are 5 scenarios wherein the number of input data is varied 

between 3, 6, 12, 18 and 24 input data. For each scenario, the best combination of input 

data is determined based on the average error. Then, this best combination of input data 

will be further trained with the application of GWO. 

Table 4.20 shows the first scenario results when only 3 input data are fed into the ANN 

to estimate the fault distance. The input data can be either 3 phases of voltage or current 

energy contents from the same level of decomposition. This analysis is then repeated for 

every level of decomposition. The first column shows the level of decomposition, the 

second column represents the combination of input data and the third column shows the 

average error results. As shown in the table, the least value of the average error is 0.1818, 

which is obtained when the 1st level of 3 phases of voltage energy content is used.  

Table 4.20: Average error results utilizing 3 input data 

Level of decomposition Input combination Average error (km) 

1st level 
, ,  0.1818 

, ,  0.1840 

2nd level 
, ,  0.1821 

, ,  0.1834 

3rd level 
, ,  0.1825 

, ,  0.1839 

4th level 
, ,  0.1824 

, ,  0.1841 
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Whereas in Table 4.21, the average error results are shown when 6 input data 

consisting of 3 phases of voltage and current energy contents at the same level of 

decomposition are fed into the ANN. This analysis is then repeated for every level of 

decomposition. As depicted in the table, the least average error is obtained when the 

combination of 3 phases of voltage and current energy contents at the first level of 

decomposition is used. The obtained average error is 0.0976 

Table 4.21: Average error results utilizing 6 input data 

Level of decomposition Input combination Average error (km) 

1st level , , , , ,  0.0976 

2nd level , , , , ,  0.1465 

3rd level , , , , ,  0.1400 

4th level , , , , ,  0.1629 

 

Table 4.22 shows the average error results when 12 input data are fed into the ANN. 

The input data consists of 3 phases of voltage and current energy contents from a 

combination of 2 decomposition levels as shown in the table. The least average error 

recorded is 0.0122, which is obtained when the 1st and 2nd levels of decomposition data 

are used.  

Table 4.22: Average error results utilizing 12 input data 

Level of decomposition Input combination Average error (km) 

1st & 2nd level 
, , , , ,

, , , , ,  
0.0122 

1st & 3rd level 
, , , , ,

, , , , ,  
0.0133 
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, , , , ,

, , , , ,  
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2nd & 3rd level 
, , , , ,

, , , , ,  
0.0126 

2nd & 4th level 
, , , , ,

, , , , ,  
0.0139 

3rd & 4th level 
, , , , ,

, , , , ,  
0.0146 

 

Table 4.23 and Table 4.24 show the average error results when the number of input 

data are increased to 18 and 24 respectively. As shown in Table 4.23, the least value of 

the average error is 0.0089, which is obtained when the combination of the 2nd, 3rd and 

4th levels of decomposition is used. Whereas in Table 4.24, it shows that the obtained 

average error is 0.0084 when 24 input data are fed into the ANN altogether to estimate 

the fault distance. 

Table 4.23: Average error results utilizing 18 input data 

Level of decomposition Input combination Average error (km) 

1st, 2nd & 3rd level 

, , , , ,

, , , , ,

, , , , ,  

0.0098 

1st, 2nd & 4th level 

, , , , ,

, , , , ,

, , , , ,  

0.0096 

1st, 3rd & 4th level 

, , , , ,

, , , , ,

, , , , ,  

0.0097 

2nd, 3rd & 4th level 

, , , , ,

, , , , ,

, , , , ,  

0.0089 
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Table 4.24: Average error results utilizing 24 input data 

Level of decomposition Input combination Average error (km) 

1st, 2nd, 3rd & 4th level 

, , , , ,

, , , , ,

, , , , ,

, , , , ,  

0.0084 

 

 

Based on the above observations, the best combination of input data with the least 

average error for each scenario is further investigated with the application of GWO 

technique.  Table 4.25 shows the results for this investigation. The first column indicates 

the number of data being fed into the ANN.  The second until fourth columns show the 

optimal values of ANN parameters given by GWO. Whereas, the fifth column shows the 

average error results. As shown in the table, it can be observed that the average error 

reduces as the number of input data increases. However, the obtained average errors from 

12 to 24 input data do not show substantial improvement. 

Table 4.25: Average error results with application of GWO 

No. of data lr mc p Average error (km) 

3 0.0754 0.0753 6 0.1640 

6 0.4032 0.4091 11 0.0241 

12 1.000 1.000 24 0.0077 

18 0.3653 0.3653 35 0.0070 

24 0.4900 0.4905 31 0.0069 

 

A comparison in terms of average error between the stand-alone ANN with GWO-

ANN for a different number of input data is shown in Table 4.26. As depicted in the table, 

the obtained average error is higher for the stand-alone ANN as compared to GWO-ANN 

for all different number of input data. The most promising result is obtained when GWO-
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ANN with 12 input data delivered a lower average error than the stand-alone ANN with 

24 input data.  

Table 4.26: Comparison between stand-alone ANN with GWO-ANN 

No. of input data 
Average error (km) 

Stand-alone ANN GWO-ANN 

3 inputs 0.1818 0.1640 

6 inputs 0.0976 0.0241 

12 inputs 0.0122 0.0077 

18 inputs 0.0089 0.0070 

24 inputs 0.0084 0.0069 

 

Figure 4.12 illustrates the comparison between the stand-alone ANN with GWO-ANN 

for different numbers of input data. The average error for GWO-ANN is consistently 

lower than the stand-alone ANN, especially for 6 input data where the value of average 

error reduces significantly. Increasing the number of input data beyond 6 will only 

improve the accuracy slightly.  

 

Figure 4.12: Average error results between stand-alone ANN with GWO-ANN 
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(b) Random Selection of Input Data (6 Input Data) 

In the previous investigation, it was observed that utilizing too many input data does 

not lead to corresponding linear improvement in the accuracy of ANN as the obtained 

average error for 12 input data and 24 input data represents a minimal improvement in 

accuracy. In this subsection, further investigation is conducted to select the minimum 

number of input data, which can still improve the ANN accuracy. For this purpose, 6 

input data are considered because the difference of average error between 3 and 6 input 

data is quite big and the difference is only minimal for 6 and 12 input data as shown in 

Figure 4.12. To improve the ANN accuracy, the best random combination of 6 input data 

which are randomly selected from 24 available input data is determined. It is observed 

that in the previous investigation, the best combination of 6 input data is selected from 

the same level of decomposition. As such, the previous investigation had neglected the 

distinctive data from the other levels of decomposition. Therefore, in this investigation, 

it is to be expected that by evaluating the strength of each input data and its combinations 

might improve the ANN accuracy. For this purpose, an exhaustive technique is used to 

obtain the best random combination of 6 input data and there are a total of 134596 random 

combinations that can be obtained using this technique. 

In this investigation, all 134596 random combinations are first evaluated using the 

stand-alone ANN and each random combinations is iterated for 50 times. Besides that, all 

the training cases are fed into the ANN altogether to be trained. The reason is to reduce 

the computational time. Table 4.27 shows the results for the 5 best random combinations 

with the least value of average error. As shown in the table, the least average error 

(0.0770) is obtained when the first level of phase-A and phase-B voltage decomposition, 

the second level of phase-C voltage and phase-B current together with the fourth level 

decomposition of phase-C voltage and current are selected. 
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Table 4.27: Average error for different random combinations of 6 input data 

No. Random combinations Average error (km) 

1 
, , , , ,  0.0770 

2 
, , , , ,  

0.0779 

3 
, , , , ,  

0.0786 

4 
, , , , ,  

0.0804 

5 
, , , , ,  

0.0819 

 

Subsequently, the above analysis is repeated with the assistance of GWO-ANN. In this 

investigation, the best random combination of input data is first categorized into different 

types of fault, similar to the investigation conducted in Subsection 4.4.1.4, before the 

ANN can be trained with the application of GWO technique. Table 4.28 shows the 

comparison of average error results between the first level of decomposition input data 

and the best random combination of input data. It can be observed that the values of 

average error are reduced significantly for each category of fault types. 

Table 4.28: Comparison of average error for different 6 input data using GWO 

Type of 

fault 

Average error (km) 

Using 1st level of decomposition Using the best random combination 

BF 0.0592 0.0089 

SLGF 0.0089 0.0014 

LLGF 0.0130 0.0030 

LLF 0.0458 0.0077 

 

4.4.1.6 Effect of Different Objective Functions for GWO Technique 

In this subsection, further investigation is conducted to evaluate the effect of different 

objective functions, ObjFunc for GWO technique. In the previous investigation, the 

AverError was assigned as the ObjFunc. However, in this subsection, the effects of 

different types of ObjFunc are evaluated and the best ObjFunc to be implemented in 
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GWO technique is selected. To evaluate the performance for each ObjFunc, the average 

error, maximum error and standard deviation of the estimated fault distance are evaluated. 

In this investigation, the best ObjFunc is the one that results in the least values of average 

error, maximum error and standard deviation altogether.  

Table 4.29 shows the average error, maximum error and standard deviation results for 

different types of ObjFunc for the BF type of fault. The first column indicates the 

ObjFunc to be assigned in GWO. The second to the fourth columns represent the obtained 

average error, maximum error and standard deviation. As shown in the table, it can be 

observed that the least value of the average error is obtained when the AverError is used 

as the ObjFunc. Similar observations are noticed for the maximum error and standard 

deviation.  

Table 4.29: The average error, maximum error and standard deviation for 

different ObjFuncs under BF 

BF 

ObjFunc Average error (km) Maximum error (km) Standard deviation (km) 

AverError 0.0592 0.3604 0.0667 

MaxError 0.0639 0.3140 0.0650 

StD 0.0695 0.3551 0.0621 

 

Table 4.30 shows the results for the SLGF. As shown in the table, it can be observed 

that the least value of the average error, maximum error and standard deviation altogether 

can be obtained if the StD is assigned as the ObjFunc.  

Table 4.30: The average error, maximum error and standard deviation for 

different ObjFuncs under SLGF 

SLGF 

ObjFunc Average error (km) Maximum error (km) Standard deviation (km) 

AverError 0.0089 0.0796 0.0080 

MaxError 0.0102 0.0730 0.0097 

StD 0.0077 0.0343 0.0066 
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Table 4.31 and Table 4.32 show the results for LLGF and LLF respectively. As shown 

in Table 4.31, the least values of average error and standard deviation are obtained when 

the AverError is assigned as the ObjFunc. Whereas the least value of the maximum error 

is obtained when Std is assigned. For the LLF shown in Table 4.32, similar observation 

as per the results for BF type of fault is obtained.  

Table 4.31: The average error, maximum error and standard deviation for 

different ObjFuncs under LLGF 

LLGF 

ObjFunc Average error (km) Maximum error (km) Standard deviation (km) 

AverError 0.0130 0.1170 0.0132 

MaxError 0.0190 0.1170 0.0174 

StD 0.0158 0.1053 0.0154 

 

Table 4.32: The average error, maximum error and standard deviation for 

different ObjFuncs under LLF 

LLF 

ObjFunc Average error (km) Maximum error (km) Standard deviation (km) 

AverError 0.0458 0.1924 0.0423 

MaxError 0.0527 0.1672 0.0396 

StD 0.0502 0.1736 0.0386 

 

It is crucial to note that in this study, the GWO can only accept a single ObjFunc. Thus, 

based on the investigations above, StD is selected as a good candidate to represent the 

ObjFunc, where it delivered the highest number of best results. 
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4.4.1.7 Effect of Different Types of Optimization Techniques in Optimizing ANN 

Parameters 

In this subsection, different types of optimization technique, which are the Particle 

Swarm Optimization (PSO) and Evolutionary Programming (EP) are implemented and 

compared against the GWO. The performance of these optimization techniques is 

compared in terms of accuracy and training time.  

Table 4.33 to Table 4.36 show the average error results for all types of optimization 

technique for the BF, SLGF, LLGF and LLF types of fault respectively. The results for 

each type of fault show that the obtained average error was close to each other for all 

types of optimization techniques. It can be observed that for the BF and SLGF types of 

fault, the GWO technique delivered a slightly better performance as compared to the PSO 

and EP techniques. However, for the LLGF and LLF types of fault, EP and PSO 

techniques recorded the least value of average error respectively. In terms of the number 

of neurons utilized, it can be observed that the EP suggested the least number of neurons 

for the BF and LLF types of fault with 16 and 10 neurons respectively. Whereas for the 

SLGF and LLGF, the least number of neurons utilized are given by PSO and GWO with 

14 and 27 neurons respectively.  

Table 4.33: Different types of optimization techniques under BF 

BF 

Optimization method lr mc p Average error (km) 

GWO 0.1991 0.2608 19 0.00858 

PSO 0.6713 0.6602 22 0.00862 

EP 0.6449 0.1385 16 0.00862 

 

Table 4.34: Different types of optimization techniques under SLGF 

SLGF 

Optimization method lr mc p Average error (km) 

GWO 0.7276 0.1411 21 0.00136 

PSO 0.3965 0.6639 14 0.00194 

EP 0.6704 0.9635 20 0.00163 

Univ
ers

ity
 of

 M
ala

ya



112 

Table 4.35: Different types of optimization techniques under LLGF 

LLGF 

Optimization method lr mc p Average error (km) 

GWO 0.2798 0.6545 27 0.00304 

PSO 0.7264 0.5822 29 0.00287 

EP 0.4712 0.5858 52 0.00286 

 

Table 4.36: Different types of optimization techniques under LLF 

LLF 

Optimization method lr mc p Average error (km) 

GWO 0.3958 0.1943 60 0.00742 

PSO 0.1523 0.9579 40 0.00739 

EP 0.6423 0.3703 10 0.00745 

 

It is important to note that all the optimization techniques delivered excellent results. 

It can be observed that GWO delivered a better performance in terms of accuracy as 

compared to the others, whereas EP delivered a good performance in terms of training 

time. However, GWO is selected to represent the best optimization technique because, in 

this analysis, the accuracy is more important than training time.  

4.4.1.8 Summary for ANN Training in Fault Distance Estimation 

The summary of the above investigations are as follows: 

1) Different types of the mother wavelet: The Bior3.3 mother wavelet delivered better 

performance as compared to the Db4 and Sym8 mother wavelets. 

2) Variations in ANN parameters: It was demonstrated that different values in ANN 

parameters influence the ANN accuracy. The implementation of GWO allows the 

optimal values for the ANN parameters to be identified and thus increasing the 

ANN accuracy.  

3) Different types of ANN learning algorithm: trainlm delivered the best result as 

compared to the other learning algorithms. 
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4) Performing dataset categorization: The ANN accuracy improves significantly if 

each type of fault is trained separately in dedicated dataset category. 

5) Different number and combinations of input data: Increasing the number of input 

data increases the accuracy. The best accuracy is obtained from a combination of 

6 input data from different levels of MRA-DWT decomposition. 

6) Different types of ObjFunc: The StD delivered better performance as compared to 

the AverError and MaxError. 

7) Different types of optimization technique: GWO delivered better performance as 

compared to PSO and EP.  

4.4.2 ANN Training for Fault Type Classification 

In the previous section, thorough investigation for ANN training process to obtain the 

optimal ANN variables have been conducted to estimate the fault distance. As such, in 

this section, the previously obtained optimal ANN variables are utilized directly to 

classify the fault type. Here, the same process to estimate the fault distance is repeated to 

classify the fault types. As such, the best combination of 6 input data determined from 

Section 4.4.1.5 (b) is fed into the ANN and GWO technique with Std as the ObjFunc is 

used to provide the optimal values of ANN parameters. There are 11 types of fault to be 

classified namely AGF, BGF, CGF, ABGF, ACGF, BCGF, ABF, ACF, BCF, ABCGF 

and ABCF, with notations as shown in Table 4.37 .  
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Table 4.37: Fault types and its number notation  

Types of fault Number notation  

AGF 1 

BGF 2 

CGF 3 

ABGF 4 

ACGF 5 

BCGF 6 

ABF 7 

ACF 8 

BCF 9 

ABCGF 10 

ABCF 11 

 

Table 4.38 shows the results for the training of fault type classification. There are 363 

ANN training cases consisting of 11 fault impedance values applied at 33 nodes for each 

type of fault. As shown in the table, it can be observed that the proposed method delivered 

high accuracies in which each type of fault can be classified accurately except for ABCGF 

and ABCF types of fault. A total of 21 and 12 ANN training cases that were misclassified 

by the proposed method for ABCGF and ABCF respectively. A thorough investigation 

found that the error is due to the similarity of the input data between the 50Ω ABCGF 

and 150Ω ABCF. For instance, the same data are obtained for the ABCGF type of fault 

that occurs at node 4 with 50Ω fault impedance and the ABCF type of fault that occurs at 

node 3 with 150Ω fault impedance as shown in Table 4.39. Therefore, the proposed 

method is facing difficulties to classify the fault type for this data, which can be either 

ABCGF or ABCF.  
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Table 4.38: Fault type identification 

Type of fault 
No. of ANN 

training cases 

No. of ANN training cases that accurately 

identified by the proposed method 

AGF 363 363 

BGF 363 363 

CGF 363 363 

ABGF 363 363 

ACGF 363 363 

BCGF 363 363 

ABF 363 363 

ACF 363 363 

BCF 363 363 

ABCGF 363 342 

ABCF 363 351 

 

Table 4.39: Similarity data between two different scenarios 

Node 1 2 3 4 5 

50Ω 

(ABCGF) 

1st data -12.33 -12.38 -12.50 -12.50 -12.52 

2nd data -12.05 -12.10 -12.22 -12.23 -12.25 

3rd data -8.67 -8.72 -8.87 -8.88 -8.91 

4th data 3.97 3.96 3.93 3.92 3.91 

5th data 2.41 2.32 2.08 2.05 1.99 

6th data 4.71 4.70 4.66 4.66 4.64 

150Ω 

(ABCF) 

1st data -12.38 -12.49 -12.50 -12.52 -12.54 

2nd data -12.10 -12.22 -12.23 -12.25 -12.27 

3rd data -8.72 -8.87 -8.88 -8.91 -8.93 

4th data 3.96 3.93 3.92 3.91 3.90 

5th data 2.32 2.08 2.05 1.99 1.93 

6th data 4.69 4.66 4.66 4.64 4.63 

 

4.4.3 ANN Training for Fault Impedance Estimation 

In this subsection, the fault impedance is estimated using the same method as in 

Subsection 4.4.2. The fault impedance value considered in this analysis ranges from 50Ω 

to 150Ω. Table 4.40 shows the training results for the estimation of fault impedance. The 

table only shows the maximum error of fault impedance estimation for each type of fault. 

It can be observed that all the fault impedances can be estimated accurately with the 
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maximum error of 0.24253Ω, 0.21269Ω, 0.22660Ω and 0.20346Ω for the SLGF, LLGF 

LLF and BF cases respectively.  

Table 4.40: Maximum error of fault impedance estimation 

Fault type 
Maximum error of fault 

impedance estimation (Ω) 

SLGF 0.24253 

LLGF 0.21269 

LLF 0.22660 

BF 0.20346 

 

4.4.4 ANN Testing for Fault Location Determination 

As mentioned earlier, to evaluate the predictive capability of the saved network files, 

new testing data are generated in which the fault is applied in the middle of each line 

section with different fault types and fault impedances as shown in Table 4.41. The fault 

impedances are set systematically in increment by 10Ω for each type of fault in order to 

test the saved network file with all the possibilities of fault types and fault impedance 

values.   

Table 4.41: Fault type and fault impedance for testing 

Fault type Fault impedance  

SLGF 

AGF 45Ω & 155Ω 

BGF 55Ω 

CGF 65Ω 

LLGF 

ABGF 75Ω 

ACGF 85Ω 

BCGF 95Ω 

LLF 

ABF 105Ω 

ACF 115Ω 

BCF 125Ω 

BF 
ABCGF 65Ω & 135Ω 

ABCF 95Ω & 145Ω 
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In this analysis, the fault distance is estimated by using the 3 best network files from a 

total of 50 network files obtained in Section 4.4.1.6. Subsequently, the average value of 

the estimated fault distances is calculated as shown in Table 4.42. The table shows an 

example when 45Ω of fault impedance with the AGF type of fault is applied in the middle 

of line Section 1. It can be observed that the first estimated fault distance is 0.1546km, 

which yields the absolute error of fault distance of 0.0954km. Whereas, the absolute error 

of 0.0899km and 0.1177km are obtained if only the second or the third network file is 

used respectively. However, if the average value is considered, then the final estimated 

fault distance will be 0.2874km. Thus, the absolute error is reduced considerably to the 

value of 0.0374km. 

Table 4.42: AGF type of fault in the middle of line Section 1 with 45Ω of fault 

impedance 

Section 
Estimation of fault distance (km) Actual fault 

distance (km) 

Error fault 

distance (km) 1st 2nd 3rd Average 

1 0.1546 0.3399 0.3677 0.2874 0.2500 0.0374 

 

4.4.4.1 Case Study – Single Line to Ground Fault (SLGF) 

Figure 4.13 to Figure 4.16 show the results for the SLGF cases with fault impedances 

of 45Ω and 155Ω for AGF, 55Ω for BGF and 65Ω for CGF. As shown in the figures, the 

average estimated and actual fault distance values are shown by the bar chart whereas the 

line represents the absolute error of fault distance.   Univ
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Figure 4.13: SLGF_AGF type of fault for 45Ω fault impedance 

 

Figure 4.14: SLGF_BGF type of fault for 55Ω fault impedance 
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Figure 4.15: SLGF_CGF type of fault for 65Ω fault impedance 

 

Figure 4.16: SLGF_AGF type of fault for 155Ω fault impedance 
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As shown in the above figures, the maximum value of the absolute error for the SLGF 

case is obtained when BGF type of fault with 55Ω of fault impedance value is applied in 

the middle of line section 3. The average estimated fault distance is 1.4675km while the 

actual fault distance is 1.82km. Therefore, the calculated absolute error is 0.3525km. 

4.4.4.2 Case Study – Double Line to Ground Fault (LLGF) 

Figure 4.17 to Figure 4.19 show the results for the LLGF cases with the applied fault 

impedance of 75Ω, 85Ω and 95Ω for ABGF, ACGF and BCGF types of fault 

respectively. 

 

Figure 4.17: LLGF_ABGF type of fault for 75Ω fault impedance 
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Figure 4.18: LLGF_ACGF type of fault for 85Ω fault impedance 

 

Figure 4.19: LLGF_BCGF type of fault for 95Ω fault impedance 
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As shown in the figures, the maximum absolute error for the LLGF case is obtained 

when the ACGF with 85Ω of fault impedance is applied in the middle of line section 10. 

The error recorded is 0.0671km when the average estimated and actual fault distance are 

4.6879km and 4.755km respectively. 

4.4.4.3 Case Study – Double Line Fault (LLF) 

The results for LLF cases with 105Ω, 115Ω and 125Ω of fault impedances applied to 

ABF, ACF and BCF types of fault are shown in Figure 4.20 to Figure 4.22 respectively. 

 

Figure 4.20: LLF_ABF type of fault for 105Ω fault impedance 
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Figure 4.21: LLF_ACF type of fault for 115Ω fault impedance 

 

Figure 4.22: LLF_BCF type of fault for 125Ω fault impedance 

19; 0.119

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

ab
so

lu
te

 e
rr

o
r 

o
f 

fa
u
lt

 d
is

ta
n
ce

 (
k
m

)

av
er

ag
e 

es
ti

m
at

ed
 /

 a
ct

u
al

 f
au

lt
 d

is
ta

n
ce

 (
k
m

)

Section number

ACF_115Ω

Estimated Actual Absolute error

19; 0.1322

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

ab
so

lu
te

 e
rr

o
r 

o
f 

fa
u
lt

 d
is

ta
n
ce

 (
k
m

)

av
er

ag
e 

es
ti

m
at

ed
 /

 a
ct

u
al

 f
au

lt
 d

is
ta

n
ce

 (
k

m
)

Section number

BCF_125Ω

Estimated Actual Absolute error

Univ
ers

ity
 of

 M
ala

ya



124 

Based on the results obtained in the figures above, it can be observed that the maximum 

absolute error for LLF case is obtained due to BCF type of fault with the fault impedance 

of 125Ω applied in the middle of line section 19. The obtained absolute error is 0.1322km.  

4.4.4.4 Case Study – Balanced Fault (BF) 

Lastly, Figure 4.23 to Figure 4.26 show the results for the BF cases consisting of 

ABCGF and ABCF types of fault with the fault impedances of 65Ω, 95Ω, 135Ω and 

145Ω. Based on the results, it can be observed that the maximum absolute error 

(0.2430km) is obtained when the fault is applied in the middle of line section 19 with the 

fault impedance of 135Ω while the type of fault is ABCGF.   

 

Figure 4.23: BF_ABCGF type of fault for 65Ω fault impedance 
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Figure 4.24: BF_ABCF type of fault for 95Ω fault impedance 

 

Figure 4.25: BF_ABCGF type of fault for 135Ω fault impedance 
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Figure 4.26: BF_ABCF type of fault for 145Ω fault impedance 
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19; 0.103

0

0.02

0.04

0.06

0.08

0.1

0.12

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

ab
so

lu
te

 e
rr

o
r 

o
f 

fa
u
lt

 d
is

ta
n
ce

 (
k
m

)

av
er

ag
e 

es
ti

m
at

ed
 /

 a
ct

u
al

 f
au

lt
 d

is
ta

n
ce

 (
k
m

)

Section number

ABCF_145Ω

Estimated Actual Absolute error

Univ
ers

ity
 of

 M
ala

ya



127 

 

Figure 4.27: Random possible of fault type and fault impedance  

 

Figure 4.28: Random possible of line section and percentage of line section 

length 
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obtained from three computed fault distances. As shown in the table, the fault distance 

can be estimated successfully with the maximum error in the distance of 0.2713km. This 

maximum error is recorded when the ACGF type of fault with 71Ω fault impedance is 

applied at 32% of the line section length of section 29. 

Table 4.43: Results for random testing data 

No. Fault type 

Fault 

impedance 

(Ω) 

Line 

Section 

Percentage 

of line 

section 

length (%) 

Estimated 

fault 

distance 

(km) 

Actual 

fault 

distance 

(km) 

Absolute 

error in 

fault 

distance 

estimation 

(km) 

1 ABF 134 26 72 4.7553 4.8110 0.0557 

2 ACGF 71 29 32 4.4869 4.7582 0.2713 

3 BCF 119 5 34 2.3505 2.4090 0.0585 

4 BCGF 97 29 84 5.0158 5.0234 0.0076 

5 ACGF 133 21 88 3.8941 3.8838 0.0103 

6 ABCGF 90 4 50 2.0997 2.0900 0.0097 

7 ABCGF 124 10 4 4.0652 4.1616 0.0964 

8 ABF 85 18 66 3.9581 3.8700 0.0881 

9 ABF 81 31 41 4.3650 4.3950 0.0300 

10 ABF 75 31 78 4.5678 4.5800 0.0122 

11 CGF 105 6 25 2.7049 2.6900 0.0149 

12 ABGF 142 31 74 4.5724 4.5600 0.0124 

13 BCGF 127 31 49 4.5448 4.4350 0.1098 

14 CGF 59 16 30 2.1296 2.1370 0.0074 

15 BCF 135 26 11 4.5654 4.6280 0.0626 

16 CGF 67 5 4 2.3139 2.3040 0.0099 

17 CGF 96 14 45 5.5693 5.5778 0.0085 

18 CGF 50 29 86 5.0490 5.0336 0.0154 

19 CGF 142 26 85 4.8478 4.8500 0.0022 

20 ACGF 106 31 74 4.5720 4.5600 0.0120 

21 ABGF 139 21 16 3.5186 3.5356 0.0170 

22 ABCGF 54 2 75 1.4326 1.4375 0.0049 

23 ACGF 150 27 19 4.9767 4.9900 0.0133 

24 CGF 73 30 76 4.0633 4.0700 0.0067 

25 ABCGF 68 22 7 2.6085 2.6610 0.0525 

26 ABCF 63 24 65 3.9371 3.9468 0.0096 

27 ACGF 142 24 80 3.9978 4.0060 0.0082 

28 BGF 110 13 75 6.5875 6.5875 0.0000 

29 ABGF 124 21 38 3.6317 3.6478 0.0161 

30 ACGF 70 6 53 2.7678 2.7460 0.0218 

31 ABF 107 23 65 3.3410 3.4275 0.0865 

32 ABGF 59 2 17 0.6979 0.7125 0.0146 

33 ABF 132 10 41 4.5881 4.6389 0.0508 

34 ACF 124 2 45 1.0925 1.0625 0.0300 

35 CGF 135 4 8 1.9195 1.9220 0.0025 

36 BGF 136 27 71 5.2547 5.2500 0.0047 
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37 ABGF 63 23 24 3.1232 3.1200 0.0032 

38 ABGF 92 11 25 5.5106 5.5250 0.0144 

39 ACGF 95 30 62 3.9965 4.0000 0.0035 

40 BCGF 136 2 43 1.2171 1.0375 0.1796 

41 BGF 65 15 92 6.4355 6.2642 0.1713 

42 ABGF 88 13 95 6.6328 6.6375 0.0047 

43 BCF 115 25 47 4.2678 4.3247 0.0569 

44 AGF 99 26 22 4.7074 4.6610 0.0464 

45 ABCGF 110 7 7 2.6911 2.8750 0.1839 

46 ACF 142 16 87 2.9611 2.8723 0.0888 

47 BCGF 126 15 43 6.1390 6.0143 0.1247 

48 ABF 138 21 53 3.8508 3.7243 0.1265 

49 CGF 132 23 99 3.6770 3.6825 0.0055 

50 BCGF 126 24 66 4.0382 3.9507 0.0875 

 

4.5 Validation of Proposed Enhanced Fault Location Method  

As shown in the previous subsection, the proposed fault location method generated 

good results. However, the estimated fault distance may lead to multiple possible points 

of fault location due to the existence of lateral branches of equal distances from the 

measurement point. As such, in the proposed enhanced fault location method, the faulty 

section identification method is used to determine the most likely faulty section. Then, 

each of the previously estimated fault distance will be re-evaluated with respect to the 

identified faulty section to improve the fault location results.  

4.5.1 Faulty Section Identification Process 

Table 4.44 shows an example of BGF type of fault occurring in the middle of line 

section 6 with 55Ω of fault impedance. At first, the average estimated fault distance is 

calculated. Then, the multiple possible faulty sections are identified based on the average 

estimated fault distance if the average estimated fault distance falls in between the length 

of any line section. Subsequently, all the possible faulty sections are ranked from the most 

likely to the least likely faulty section. To rank all the possible faulty sections, the 

measured data are first compared against the stored data for each of the identified faulty 

sections. Based on the example in Table 4.44, there are 5 possible faulty sections are 
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identified comprising of Section 4, Section 5, Section 6, Section 16, and Section 22. If 

the measured data fall in between the minimum and maximum values of the stored data, 

then it will be counted as ‘√’, otherwise, it will be counted as ‘×’. Then, the total number 

of ‘√’ for each identified faulty section is calculated and ranked according to the highest 

number of ‘√’. 

Table 4.44: Comparing measured data with stored data (BGF - 55Ω - Section 6) 

Measured 

data 
381.32 -686.68 375.53 2.92 456.33 -0.0042 

Stored data 

(Section 4) 

352.61 -755.94 346.92 2.61 416.73 -0.0043 

424.29 -640.21 397.98 3.39 424.53 -0.0035 

√ √ √ √ × √ 

Stored data 

(Section 5) 

350.82 -750.87 344.76 2.59 413.80 -0.0045 

421.37 -637.00 394.49 3.36 419.92 -0.0037 

√ √ √ √ × √ 

Stored data 

(Section 6) 

350.14 -746.50 343.85 2.59 412.58 -0.0045 

418.84 -635.73 411.97 3.33 506.81 -0.0038 

√ √ √ √ √ √ 

Stored data 

(Section 16) 

349.21 -757.73 342.53 2.58 410.81 -0.0041 

425.33 -633.92 410.08 3.41 504.26 -0.0034 

√ √ √ √ √ × 

Stored data 

(Section 22) 

349.80 -746.50 343.40 2.58 411.97 -0.0046 

418.84 -635.08 411.33 3.33 505.95 -0.0038 

√ √ √ √ √ √ 

 

Table 4.45 summarizes the obtained results from Table 4.44. It shows that only Section 

6 and 22 have the highest number of 6 ‘√’. Since both sections have the same total number 

of ‘√’, thus, these sections will be sorted in incremental order. As such, Section 6 is ranked 

as first and followed by Section 22. As the actual fault occurs in the middle of line section 

6, therefore, the proposed method has successfully identified the faulty section accurately 

in the first rank. 
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Table 4.45: List of possible faulty sections (BGF - 55Ω - Section 6) 

Possible faulty section 

Total number of measured 

data that falls in between 

the stored data 

4 5 

5 5 

6 6 

16 5 

22 6 

Sorted possible faulty 

section 
Rank 

6 1 

22 2 

4 3 

5 4 

16 5 

 

4.5.2 Implementation of the Proposed Enhanced Fault Location Method 

In the previous subsections, the fault distance has been estimated and multiple possible 

faulty sections have been identified and ranked. However, the fault location accuracy can 

be further improved by an enhanced fault distance algorithm. In this proposed enhanced 

method, the previously estimated fault distance will be re-evaluated with respect to the 

identified faulty section. Here, the average value of fault distance will only consider the 

estimated fault distances that fall in between the length of the identified faulty section.  

Table 4.46 shows the comparison of fault distance estimation calculation between the 

previously proposed fault location and newly proposed enhanced fault location methods 

when the ABCGF type of fault occurs in the middle of line section 5 with 135Ω of fault 

impedance. In the proposed fault location method in Section 4.4.4, the estimation of fault 

distance is obtained from the average value of 3 estimated fault distances. As such, the 

estimated fault distance is 2.3195km and the calculated fault distance error is 0.1455km. 

Whereas, in the newly proposed enhanced fault location method, the calculation of 

Univ
ers

ity
 of

 M
ala

ya



132 

average value for the enhanced fault distance only consider the first and third estimations 

of fault distance. The second fault distance estimation is not considered in the calculation 

because the estimated fault distance (2.2642km) is not in between the length of line 

section 5 (2.2900 – 2.6400km). As such, the enhanced fault distance recorded 2.3472km 

and the calculated fault distance error is 0.1178km, which is less than the previously 

proposed method with an error of 0.1455km. 

Table 4.46: Comparison between the previously and newly proposed enhanced 

method for Section 5 (2.2900 – 2.6400km) 

Previously proposed method 

1st estimated 

fault distance 

(km) 

2nd estimated 

fault distance 

(km) 

3rd estimated 

fault distance 

(km) 

Average value of 

estimated fault 

distance (km) 

Actual fault 

distance (km) 

Error of fault 

distance (km) 

2.3832 2.2642 2.3112 2.3195 2.4650 0.1455 

Newly proposed enhanced method 

1st estimated 

fault distance 

(km) 

2nd estimated 

fault distance 

(km) 

3rd estimated 

fault distance 

(km) 

Average value of 

estimated fault 

distance (km) 

Actual fault 

distance (km) 

Error of fault 

distance (km) 

2.3832 2.2642 2.3112 2.3472 2.4650 0.1178 

 

4.5.2.1 Performance of the Proposed Enhanced Fault Location Method under 

Random Selection of Testing Data 

Table 4.47 shows the results for the random fault analysis, using the same ANN test 

cases as in Subsection 4.4.4.5. The 1st to 4th columns indicate the actual fault types, fault 

distances, fault impedances and faulty sections respectively. The 5th to 8th columns show 

the estimated fault types, fault distances, fault impedances and faulty sections 

respectively. The 9th column indicates the fault type classification results. The 10th and 

11th columns show the absolute error between the actual and estimated values for both 

fault distance and fault impedance respectively. The 12th column indicates the ranking for 

the correctly identified faulty section.   
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As shown in the table, all types of fault are correctly classified by the proposed method. 

For the faulty section identification, the worst result is obtained when the fault occurs at 

line section 23 where it can only be correctly identified at the 8th rank. Nevertheless, the 

fault distance can be estimated accurately with the absolute error of 86.5m. The maximum 

error for the fault impedance estimation is 1.37Ω when the ABCGF type of fault occurs 

at line section 2 with the actual and estimated fault impedances of 54Ω and 55.37Ω 

respectively. Whereas, the maximum error for fault distance estimation is 179.6m when 

the BCGF type of fault occurs at line section 2 with the actual and estimated fault distance 

of 1.0375km and 1.2171km respectively.  
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Table 4.47: Random Fault Analysis 

Actual Estimated Absolute error / Results 

Fault 

Type  

Fault 

Distance 

(km) 

Fault 

Impedance 

(Ω) 

Faulty 

Section 

Fault 

Type  

Fault 

Distance 

(km) 

Fault 

Impedance 

(Ω) 

Faulty 

Section 
Classification 

Fault 

Distance 

(km) 

Fault 

Impedance 

(Ω) 

Ranking 

7 4.811 134 26 7 4.7553 134.04 26 classified 0.0557 0.04 1 

5 4.7582 71 29 5 4.7261 71.04 29 classified 0.0321 0.04 4 

9 2.409 119 5 9 2.3505 119.09 5 classified 0.0585 0.09 2 

6 5.0234 97 29 6 5.0158 97.05 29 classified 0.0076 0.05 7 

5 3.8838 133 21 5 3.8941 133.01 21 classified 0.0103 0.01 3 

10 2.09 90 4 10 2.0997 90.01 4 classified 0.0097 0.01 1 

10 4.1616 124 10 10 4.1100 124.34 10 classified 0.0516 0.34 2 

7 3.87 85 18 7 3.9581 84.96 18 classified 0.0881 0.04 5 

7 4.395 81 31 7 4.3650 81.00 31 classified 0.0300 0.00 5 

7 4.58 75 31 7 4.5678 75.04 31 classified 0.0122 0.04 6 

3 2.69 105 6 3 2.7049 105.17 6 classified 0.0149 0.17 2 

4 4.56 142 31 4 4.5724 142.04 31 classified 0.0124 0.04 6 

6 4.435 127 31 6 4.5448 127.03 31 classified 0.1098 0.03 6 

3 2.137 59 16 3 2.1296 58.91 16 classified 0.0074 0.09 3 

9 4.628 135 26 9 4.5950 135.08 26 classified 0.0330 0.08 4 

3 2.304 67 5 3 2.3139 67.04 5 classified 0.0099 0.04 2 

3 5.57775 96 14 3 5.5693 96.06 14 classified 0.0085 0.06 3 

3 5.0336 50 29 3 5.0490 50.04 29 classified 0.0154 0.04 4 

3 4.85 142 26 3 4.8478 142.05 26 classified 0.0022 0.05 2 

5 4.56 106 31 5 4.5720 106.00 31 classified 0.0120 0.00 5 

4 3.5356 139 21 4 3.5186 138.95 21 classified 0.0170 0.05 3 

10 1.4375 54 2 10 1.4326 55.37 2 classified 0.0049 1.37 1 

5 4.99 150 27 5 4.9767 150.03 27 classified 0.0133 0.03 4 

3 4.07 73 30 3 4.0633 72.97 30 classified 0.0067 0.03 6 
134 
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10 2.661 68 22 10 2.6469 69.20 22 classified 0.0141 1.20 5 

11 3.94675 63 24 11 3.9371 62.96 24 classified 0.0096 0.04 6 

5 4.006 142 24 5 3.9978 142.04 24 classified 0.0082 0.04 2 

2 6.5875 110 13 2 6.5875 110.04 13 classified 0.0000 0.04 1 

4 3.6478 124 21 4 3.6317 123.95 21 classified 0.0161 0.05 2 

5 2.746 70 6 5 2.7678 70.07 6 classified 0.0218 0.07 1 

7 3.4275 107 23 7 3.3410 107.04 23 classified 0.0865 0.04 8 

4 0.7125 59 2 4 0.6979 59.04 2 classified 0.0146 0.04 1 

7 4.6389 132 10 7 4.5881 131.97 10 classified 0.0508 0.03 2 

8 1.0625 124 2 8 1.0925 123.89 2 classified 0.0300 0.11 1 

3 1.922 135 4 3 1.9195 134.91 4 classified 0.0025 0.09 2 

2 5.25 136 27 2 5.2547 136.02 27 classified 0.0047 0.02 4 

4 3.12 63 23 4 3.1232 63.01 23 classified 0.0032 0.01 5 

4 5.525 92 11 4 5.5106 91.98 11 classified 0.0144 0.02 1 

5 4 95 30 5 3.9965 94.97 30 classified 0.0035 0.03 5 

6 1.0375 136 2 6 1.2171 135.93 2 classified 0.1796 0.07 1 

2 6.2642 65 15 2 6.2920 65.02 15 classified 0.0278 0.02 3 

4 6.6375 88 13 4 6.6328 87.98 13 classified 0.0047 0.02 1 

9 4.3247 115 25 9 4.2678 115.05 25 classified 0.0569 0.05 5 

1 4.661 99 26 1 4.7074 99.01 26 classified 0.0464 0.01 2 

10 2.875 110 7 10 2.8400 110.00 7 classified 0.0350 0.00 1 

8 2.8723 142 16 8 2.9611 141.96 16 classified 0.0888 0.04 3 

6 6.0143 126 15 6 6.1390 126.00 15 classified 0.1247 0.00 3 

7 3.7243 138 21 7 3.8508 137.90 21 classified 0.1265 0.10 1 

3 3.6825 132 23 3 3.6770 132.02 23 classified 0.0055 0.02 6 

6 3.9507 126 24 6 3.9936 126.04 24 classified 0.0429 0.04 5 
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In order to justify the effectiveness of the proposed method, different methods used in 

other literature were compared as shown in Table 4.48. The comparison is based on the 

maximum error of fault distance in a kilometer. As shown in the table, it can be observed 

that the proposed method delivered results with higher accuracies where the maximum 

error is 0.180km.  

Table 4.48: Comparison with the previous methods 

Technique proposed in other 

presented paper 

Maximum error of 

fault distance (in km) 

Wavelet, SVR                      

(Borghetti, Bosetti et al. 2008) 
0.214 

Wavelet, ANN, FLS       

(Pourahmadi-Nakhli and Safavi 2011) 
0.248 

EMD, CVR  (Liang, Fu et al. 2015) 0.393 

Unsynchronized phasor                 

(Xiu and Liao 2014) 
0.557 

Proposed method 0.180 

 

4.6 Conclusion 

In this chapter, the validation of the proposed techniques for HIF detection and 

localization has been performed. At first, the occurrence of HIF event was detected and 

identified. Once the occurrence of HIF event was identified, the location of the event can 

be estimated.  

In the proposed technique for HIF detection and identification, the occurrence of HIF 

event was differentiated from non-HIF events based on the smoothed PDC pattern. The 

HIF event was detected based on the smoothed PDC pattern that rises until it reaches a 

plateau without subsequent dip. To simplify the HIF detection and identification process, 

an automatic HIF classification algorithm was proposed. The event was considered to 

occur in the system if the value of D-index is lower than -200. Subsequently, the event 

was identified as HIF event if the value of Id-index is lower than 0.01. Based on the 
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obtained results, it was observed that the proposed algorithm successfully detected and 

identified the HIF from non-HIF events.  

Subsequently, a thorough investigation has been conducted to determine the fault 

location during the occurrence of HIF event. Hybrid technique comprising of Multi-

Resolution Analysis-Discrete Wavelet Transform (MRA-DWT), Artificial Neural 

Network (ANN) and Grey Wolf Optimization (GWO) technique have successfully 

classified the fault type and estimated the fault impedance and distance values.  

It was observed that the estimated fault distance had led to multiple possibilities of 

faulty sections. In this proposed enhanced fault location method, the multiple possibilities 

of faulty sections were successfully identified and ranked. Besides that, the estimated 

fault distance was enhanced with respect to the identified faulty section.  
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The work reported in this thesis can be divided into three parts. In the first part, a new 

algorithm for HIF detection and classification called the Phase Displacement 

Computation (PDC) was proposed. It utilized three-phase voltage waveforms to detect 

HIF and other disturbances that occurred in a distribution system and subsequently 

identified the events as HIF or non-HIF. In the algorithm, the data were calculated 

between the measured and reference three-phase voltage waveforms. The reference 

waveforms were the clean ones without any anomaly, while the measured waveforms 

were the ones that contain distortions caused by the event that occurred in the system. 

The event was classified based on the pattern of smoothed PDC. The HIF event was 

detected if the smoothed PDC pattern rises until it reaches a plateau without subsequent 

dip. Otherwise, it was regarded as a non-HIF event such as capacitor switching, motor 

starting and load switching. However, it was difficult to discriminate the event based on 

the pattern alone. Thus, an automatic HIF classification algorithm based on pre-defined 

indices was proposed. Two indices introduced for this purpose were detection index (D-

index) and identification index (Id-index). First, the D-index was used to detect any 

extraordinary event that occurred in the system. If an event was found to occur in the 

system, the Id-index was checked to classify it into HIF or non-HIF. An event was 

considered as a HIF if it has an Id-index value that was lower than 0.01. Otherwise, the 

event was classified as a non-HIF. As such, the first objective to detect and identify the 

occurrence of HIF event had been accomplished.  

In the second part of the work, if the detected event was considered as a HIF, the fault 

distance needs to be estimated using the three-phase voltage and current waveforms. 

Firstly, important features were extracted from the measured waveforms using the MRA-
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DWT with Bior3.3 mother wavelet. Only the best 6 out of 24 features were selected from 

the 4 decomposition levels of the three-phase voltage and current waveforms. Then, the 

selected features were fed into the ANN to estimate the fault distance. To improve the 

accuracy of the proposed ANN in estimating the fault distance, an optimization method 

was adopted. For this purpose, the GWO method was implemented to provide the optimal 

values of the ANN parameters. Besides estimating the fault distance, the proposed method 

also identified the fault type and its impedance value using the same input data. As such, 

the second objective to classify the fault type, estimate the fault distance and impedance 

values had been achieved.  

To improve the accuracy of the estimated fault distance, an enhanced fault location 

method was proposed in the third part of the work. In the proposed enhanced fault location 

method, a number of possible faulty sections were determined using the average value of 

fault distance estimation. The average value was calculated from 3 estimated fault 

distance using 3 different network files. Then, the multiple possibilities of faulty sections 

were ranked from the most likely to the least likely using a database and matching 

approach. The database to be used was chosen using the estimated fault impedance value. 

Subsequently, the input features were compared against the stored data in the database. 

The faulty section with the highest number of matching data will be ranked as the first. If 

more than one possible faulty sections have the same number of matching data, then they 

will be sorted in increment order based on the line section number. Subsequently, the 

estimated fault distance was re-evaluated with respect to the identified faulty section. For 

this purpose, the average value will only considers the estimated fault distance that falls 

within the range of the line section length of the faulty section. As such, the fault distance 

estimation had been enhanced and thus the third objective had been fulfilled.  
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The proposed methods for HIF detection and localization had also been compared with 

the previous methods. The comparisons show that the proposed methods delivered 

accurate results as compared to the previous techniques. Besides that, the proposed 

methods comprise of simple algorithm that can detect, classify and locate HIF in a 

distribution network accurately with less computational time. The methods were 

inexpensive and practical since it required only voltage and current waveforms from a 

single measurement unit. Therefore, the fourth objective of the research had been met. 
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5.2 Future Work 

The following suggestions are made to improve the proposed HIF detection, 

classification and localization technique. They are as follows: 

1) HIF detection and classification technique 

 In the proposed method, only the three-phase voltage waveforms are used to 

detect and classify the HIF from non-HIF events. In order to increase the 

accuracy and reliability of the method, the measured three-phase current 

waveforms can be considered as well to provide a double verification of the 

occurrence of a HIF event. 

 Different types of non-HIF events such as harmonic event, noise and others 

can be included to show the robustness of the proposed method. 

2) HIF localization technique 

 In the proposed technique, the GWO technique is utilized to provide the 

optimal value of the ANN parameters. In the future, a more advanced and new 

optimization technique can be adopted. 

 Instead of ANN, another AI classifier such as Support Vector Machine (SVM) 

can be utilized to estimate the fault distance.  

 Different types of digital signal processing techniques such as an Empirical 

Mode Decomposition (EMD) and Short Time Fourier Transform (STFT) can 

be tested to extract features from the three-phase voltage and current 

waveforms.  
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