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MULTISTRANGE BARYON PRODUCTION IN HIGH ENERGY ELECTRON-

PROTON COLLISION 

ABSTRACT 

A search for Ξ−‘s decaying to Λ𝜋− combinations is carried out to calculate the total cross 

sections in electron-proton collisions at HERA. The analysed data were collected using 

the ZEUS detector during the running period of 2002-2007 with an integrated luminosity 

of 323 pb-1. The data analysis was done using online and offline analysis at center-of-

mass energy of √s = 318 GeV. Strange and multistrange baryon production 

phenomenology such as String Model is reviewed, as it is not fully understood yet. The 

cross section carried out has been compared with ARIADNE Monte Carlo (MC) 

simulation predictions. 

Keywords: baryon production, electron-proton, strange quark 
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PENGELUARAN BARYON MULTIANEH DALAM PERLANGGARAN 

ELEKTRON-PROTON TENAGA TINGGI 

ABSTRAK 

Satu carian untuk Ξ−  yang mereput kepada Λ𝜋− dijalankan untuk mengira jumlah 

keratan rentas dalam pelanggaran elektron-proton di HERA. Data yang dikumpulkan 

dianalisis menggunakan alat pengesanan ZEUS pada tahun 2002-2007 dengan nilai 

kilauan bersepadu 323 pb-1. Analisis data dilakukan dengan menggunakan kuasa pada 

tenaga pusat √s = 318 GeV. Fenomenologi seperti Model String dalam penghasilan 

barion kuark aneh dan multianeh disemak kerana ia masih belum difahami sepenuhnya. 

Keratan rentas kajian yang dilakukan terhadap data telah dibandingkan dengan ramalan 

simulasi Monte Carlo (MC) Ariadne. 

Kata kunci: pengeluaran baryon, elektron-proton, kuark aneh 
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CHAPTER 1: INTRODUCTION 

 

1.1 The Standard Model 

The never-ending question about what matter consists of is very fundamental. It has 

mesmerised many generations of physicists in the past and will still be topical in the 

future. Everything in the universe, from our solar system to the most distant galaxy, all 

of it can be traced back to the Big Bang (Linde et al., 1994). The Big Bang theory is the 

current cosmological model that describes the origin, early history, and evolution of the 

universe. About 13.8 billion years ago, the universe was no larger than an atom. It 

remains a mystery where this "primordial atom" came from until now.  After matter 

began to form, there was a kind of "war" between antimatter and matter. In the early 

universe, there would have been an equal amount of matter and antimatter created. 

Because they both have opposite charges, they cancel each other out. If there was an 

equal amount of both, why does the universe have so much matter? For some unknown 

reason, there was a slight imbalance in the ratio of matter and antimatter. The matter 

that was slightly more than antimatter survived is the one that makes up the world 

around us.  

Ernest Rutherford (Rutherford, 1911) revealed at the early XX century, an intrinsic 

structure of the atom by scattering 𝛼 particles on a thin gold foil. His idea leads to the 

beliefs that an atom is built of a combination neutron and proton inside the nucleus and 

electron orbiting the nucleus. This increases the curiosity in understanding in depth of 

the building blocks of matter and their interactions, where many experiments in high 

energy physics have been conducted such as at DESY, CERN and SLAC. 

After inflation, the first forms of matter began to form. Quarks were formed and soon 

combined to form protons and neutrons, which would combine to form atomic nuclei. 

Due to the extreme temperatures of the early universe, however, the protons and 
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neutrons could not capture electrons to form atoms. It would be another 380,000 years 

until the first atoms formed. During this period, the temperature was cold enough to 

allow the nuclei to capture electrons, creating the first atoms. The illustration of atoms, 

nucleus, and quarks are shown in Figure 1.1. 

 

 
Figure 1.1: The size of the atom (Berkeley Lab, 2014). 

 

A theory called The Standard Model (Herrero, 1999) that has been developed by the 

physicist to explain what the world is made up and what holds it together. The 

discoveries believe that leptons and quarks made up particles. Each group consists of six 

flavours, which comes in three generations. The first generation which is the lightest, 

(up and down quark) makes the most stable particles, followed by less stable second 

generations, (charm and strange quark) and third generations, (top and bottom quark).  

Same goes to the leptons group, they are similarly arranged in three generations with 

paired – the lightest, (electron and electron neutrino), the heavier, (muon and muon 

neutrino), and the most massive, (tau and tau neutrino).  

Not only that, Standard Model also tells us about the four fundamental forces in the 

universe. Nature is controlled by just four significant forces; namely gravity, the strong 

nuclear force, electromagnetism, and the weak nuclear force. During the first moments 

Univ
ers

ity
 of

 M
ala

ya



 

3 

 

of the universes life, all the forces in the universe were all united as a single "super 

force." Immediately after the Big Bang, these four forces were united as a single super-

force, yet due to the rapid expansion and cooling down of the universe the super force 

began to break and broke the symmetry.  

The first force to break off from the super-force was gravity. Gravity is by far the 

weakest of the forces. It certainly does not appear that way. Every particle of matter 

exerts some gravitational pull on every other particle, which is why gravity dominates 

large scale structures in the universe. Unlike the other forces, gravity works on much 

bigger scales, so its effects are more noticeable, yet carries the most weakling forces. 

The strong nuclear force was the next force to break from the original super-force. The 

strong force, as the name suggests, is the strongest of the four forces and are used to 

bind the elementary particles of matter to form larger particles, such as binding quarks 

together to form protons and neutrons (Honc, 2011). The third force to break from the 

super-force was the electromagnetic force. The electromagnetic force is the attraction 

between unlike poles. It is responsible for holding atoms together. The positive charge 

is likely to be attracted by the negative charge. And to hold protons together, neutrons 

are also drawn to the positive charge of protons. The very last force to arise in the 

universe was the weak nuclear force. This force is weaker than both the strong force and 

electromagnetic force, yet it is still stronger than gravity. It is responsible for the process 

of radioactive decay within atoms.  

Each of these forces also has a particular kind of particle which carries the force. For 

electromagnetism, photons (particles of light) carry the electromagnetic force. Gluons, 

which are particles that act as a type of glue that holds particles such as quarks together, 

carries the strong force. W and Z bosons carry weak force (Loveland, 2017). It remains 

unknown; however, what particle carries the gravitational force. Scientists have 

proposed the existence of the graviton, yet its existence remains unknown. To date, 
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scientists have no complete theory of quantum gravity, and without any one of these, 

scientists will never fully understand our universe. Figure 1.2 shows the Standard 

Model. 

 

 

Figure 1.2: The Standard Model (CERN Collaboration et al., 2014). 

 

1.2 Objectives 

This thesis is devoted to strange analysis production. Therefore, the objectives of this 

research are:  

1. To study the efficiency of doubly-strange baryon Ξ− production in Monte Carlo 

and Data respectively as the indications on mechanism of baryon production in 

hadronization. 

2. To implement optimization cuts in Monte Carlo and Data analysis so that the 

signal can be enhanced. 
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1.3 Thesis Layout 

This thesis is systematized in the following way: Chapter 1 gives a brief introduction 

to the standard model in particle physics, objectives associated in this research, and 

thesis layout is also in this chapter. In the following Chapter 2 physics concept that 

describes the processes involved in the electron-proton collision is presented. The 

HERA physics, doubly-strange production mechanism, deep inelastic scattering, and 

quark parton model is also discussed here. A description of the experimental conditions 

and procedures used to operate the analysis, the HERA collider and the ZEUS detector 

where some essential components of the detector part were explained can be found in 

Chapter 3. Chapter 4 tells about Monte Carlo simulations in general, event selection, 

and the particle tracks reconstruction. In Chapter 5, the offline selection of events is 

included here, the brief description for triggers and cuts selected, and identification of 

candidates to reconstruct Ξ− baryon, matching analysis and some optimization cuts are 

included here. Chapter 6 discussed about the related results and discussion on the 

analysis efficiency and cross sections in Monte Carlo and HERA II data. The conclusion 

of this research is in Chapter 7. 
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CHAPTER 2: PHYSICS OVERVIEW 

In this chapter, various studies which have been done related to physics that involved 

in the electron-proton collision are reviewed. An introduction to strange baryon 

production is also presented here, as well as kinematics and phase space at HERA. 

 

2.1 Electron-proton collision at HERA 

In 1992, the very first electron-proton (𝑒𝑝) collider in the world (Hilton, 1999), the 

Hadron Electron Ring Accelerator, HERA (Szuba et al., 2012) started running at 

Deutsches Elektronen-Synchrotron, DESY to study the internal proton structure. It has 

about 30 GeV of electrons and 920 GeV of protons (820 GeV until the end of 1997), 

giving a fixed centre-of-mass energy of 318 GeV (Brock et al., 2009). With the aim of 

increasing luminosity, a long shut down in 2000 and 2001 was intended to upgrade the 

machine and detectors. After the collision happened, many particles were produced, and 

one of the particles is Ξ−. This study focuses on the search of strange baryon production 

through the measurement of inclusive baryon production in 𝑒𝑝 neutral current deep 

inelastic scattering using ZEUS detector (Szuba et al., 2012).  

Having two strange quarks (down, strange, strange), Ξ−are much more sensitive to 

strange production where this weak decaying particle has the spin of ½. The selected 

decay mode for the searched particle is Ξ− → Λ0 + 𝜋− (Patrignani, 2016). The 

production of strange particle in high energy electron-proton collision is one of the 

many studies by various researchers in strange production. The discovery of strange 

quarks in cosmic rays before the quarks model was proposed makes the searches 

become more interesting, as it has long lifetimes (Mohammad Nasir & Wan Abdullah, 

2015). Apart from that, the motivation for this analysis is that the strange hadron 

production is not well understood in hadronic collisions, as its measurements at HERA 
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lag behind those experiment at LEP. For the record, there is a disagreement between 

HERA and LEP regarding the fragmentation of strange hadrons measurements, i.e., Λs 

≈ 0.2 and Λs ≈ 0.3  respectively.  

 

2.2 Doubly-strange production mechanism 

Researchers agreed that deep study in Neutral Current in Deep Inelastic Scattering 

(D’ Agostini & Nigro, 1997) about production of the strange particle could give 

information of 𝑠-quarks in the nucleon. The first so-called “strange” particles — 𝐾 

mesons with a mass of about 500 MeV — were observed in cosmic rays in the same 

period. They were followed by the first strange baryons given the name hyperons, such 

as 𝜆0, Σ+ and Ξ− (Okun, 2012). They were known as strange because these particles 

were created repeatedly and rapidly (through the strong interaction) but then decayed 

moderately to strongly interacting particles by the weak interaction. The doublets 𝐾+ 

and 𝐾0 were discovered with positive strangeness and the corresponding doublets 

antiparticles 𝐾− and 𝐾0 with negative strangeness. Anti𝐾 were always created together 

alongside 𝐾 mesons in any collisions of non-strange particles, be it mesons or with 

hyperons. This is to ensure that total strangeness was conserved (Borisovich, 2012).  

The possible mechanism processes involved in multi-strange baryon production are 

highlighted in the next section.  

 

2.2.1 Boson Gluon fusion 

The production of strange quark can also be seen in boson-gluon fusion (BGF) in 

Figure 2.1. It is a process where gluon from proton couples with photon emitted via a 

virtual strange anti-strange quark (Ziegler, 2002). The production of light quarks in deep 

inelastic scattering is taken into account as it contributes to high cross sections. Apart 

from that, light quarks can be produced from the decaying of heavier quarks which are 
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in the higher generations, but due to small cross-section of strange quark being 

produced, usually, this decaying method is neglected.  

 

 

Figure 2.1: Boson gluon fusion (Zur Nedden, 2009). 

 

2.2.2  Fragmentation 

Other than that, this light quark could also come from fragmentation process. See 

Figure 2.2. During this process, the strange quarks happens to appear, which means the 

quarks are not straightforwardly involved in hard scattering, but it come out from gluon 

splitting in parton shower. The colourless hadrons due to changes in quarks and gluons 

at perturbative region of QCD must be simulated by fragmentation models, as it is not 

calculable. Lund string model is a successful model that describes this process. One of 

the simulation programs that help described such process is JETSET Monte Carlo. The 

program is based on Lund string model where the production of meson can be designed 

to begin from the initial quark, 𝑞0. A new duo of 𝑞1𝑞̅1 may be formed, creating a new 

meson 𝑞0𝑞̅1 and leaves the other 𝑞1 behind. This quantum mechanical tunnelling 

approach from Lund model was generated so that the duo 𝑞𝑖𝑞̅𝑖 led to the string 

separation. The concept is that both generated quarks are being produced at the equal 

point though it tunnels into the allowed region within a certain range. The iteration 

keeps on following for the next fragmentations. 

Univ
ers

ity
 of

 M
ala

ya



 

9 

 

 

Figure 2.2: The origin of strange quarks in DIS (a) a quark, 𝒒, that receives a large 
momentum transfer in the proton (b) a quark-antiquark pair, 𝒒𝒒 ̅appear from 
BGF process (Ziegler, 2002). 

 

 

2.2.3  Excitation of flavour 

The production of strange quark can be described by giving such example that quarks 

inside hadrons are held strongly by the carrier, gluons. Flavour excitation as in Figure 

2.3 is a process where gluon inside the proton could transform into quark-antiquark 

pairs, and therefore a “sea” of quarks is present inside the hadron. Having a short 

period, depending on ∆𝜏 ~
ℏ

𝑚𝑞
 usually most of light quark-antiquark will be emitted in 

the sea as pairs. As a result of fluctuations, the strange quarks might be struck, and a 

large momentum transfer received so that the pair cannot recombine to its original state. 

The phenomenon is known as flavour excitation. 

 
 

Figure 2.3: Flavour excitation where gluon transform into quark-antiquark pairs 
(Zur Nedden, 2009). 

e 

p 
p 
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2.3  Deep Inelastic Scattering (DIS) 

The aim of accelerating electrons to very large energies and allows it to combine 

near side of static proton as the existence of quarks is known as deep inelastic 

scattering. DIS studies are interesting because it can be used to extract the momentum 

distributions of the partons inside the proton, and elucidate the theory of strong 

interaction. Figure 2.4 shows Feynman diagram of DIS process. Different types of 

exchanged bosons in electron-proton collisions can be classified into two classes, 

namely Neutral Current (NC) and Charged Current (CC). 

 

Figure 2.4: Deep Inelastic Scattering (Placakyte, 2011). 

 

2.3.1 Neutral Current 

Neutral Current DIS is a process which occur when the exchanged of mediator 𝑍0 or 

𝛾 occur when an electron interacts with the proton. The large scattering angle allows the 

scattered electron to be detected. See Figure 2.5.  

 

Figure 2.5: Neutral Current in DIS (Zolkapli, 2013). 
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2.3.2 Charged Current 

Charge Current DIS occur when the exchanged of charged 𝑊± boson as mediator, 

where the electron transforms into a neutrino and escapes the detector, as in Figure 2.6. 

 

 

Figure 2.6: Charged Current in DIS (Zolkapli, 2013). 

 

The equation for both NC and CC interactions can be written respectively as, 

 

   𝑒 + 𝑝 → 𝑒′ + 𝑋                           (2.1) 

    𝑒+ (𝑒−) + 𝑝 →  𝑣̅(𝑣) + 𝑋                   (2.2) 

 

The 𝑒𝑝 scattering is classified by the photon virtuality, 𝑄2. There are two regimes, 

namely Deep Inelastic Scattering (DIS) and Photoproduction (PHP). Both events can be 

differentiated by 𝑄2where this variable is used to separate electron-proton into different 

regions of phase space. DIS belongs to a region with 𝑄2 > 1 GeV2 while PHP is in the 

𝑄2 ≪ 1GeV2 region.  

 

2.4 HERA kinematics and phase space 

Figure 2.7 discusses the interactions that took place at HERA and their kinematics. 

Most of HERA kinematic phase space occurs by the exchange of 𝛾 mediator. The four-

momentum of incoming and scattered lepton are represented by 𝑒(𝑘) and 𝑒′(𝑘′) 
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respectively, while 𝑝(𝑃) and 𝑝′(𝑃′) are the four-momentum of incoming and scattered 

proton. 𝑄2 is known as the squared of large 4-momentum-transfer at lepton vertex, 

which means exchanged boson virtuality. The center-of-mass energy squared, 𝑠 is fixed 

for fixed beam energies and as for HERA, it has √318 GeV. In proton (𝑝) system,  𝑊2 

is virtual photon (𝛾∗)’s center-of-mass, and 𝐻 defines a set of all final state particles 

except for scattered electron and proton. 𝜀 is the Bjorken scaling variable of four-

momentum of incoming proton. 

 

Figure 2.7: HERA kinematics (Guzik, 2011). 

 

The scattering can be described using the Lorentz variables where these four 

variables are correlated to each other, and only 3 of them are independent. The variable 

𝑥 is known as Bjorken scaling variable, the partial longitudinally momentum of hit 

quark inside proton. While on the other hand, inelasticity 𝑦 is the respective electron 

energy transfer to the proton, in rest frame of proton. The equation is as shown. 

 

 𝑄2 = −𝑞2 = −(𝑘 − 𝑘′)2       (2.3) 

    𝑥 =
𝑄2

2𝑝.𝑞
        (2.4) 

   𝑦 =
𝑞.𝑝

𝑘.𝑝
         (2.5) 
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   𝑠 = (𝑘 + 𝑝)2        (2.6) 

 

As 𝑥 and 𝑦 are two independent variables, usually it is described as (𝑥, 𝑄2) or (𝑦, 𝑄2) 

for DIS inclusive kinematics.  

 

2.5 Proton Structure 

Figure 2.8 shows cross sections for both HERA I and HERA II in Neutral Current 

and Charged Current for H1 and ZEUS experiments. Neutral Current contains three 

structure functions, 𝐹2, 𝐹𝐿 and 𝑥𝐹3which can be written in general form as, 

 

        𝑑
2𝜎𝑁𝐶(𝑒𝑝)

𝑑𝑥𝑑𝑄2 =  
2𝜋𝛼2

𝑄4𝑥
[𝑌+𝐹2

𝑁𝐶(𝑥, 𝑄2) − 𝑦2𝐹𝐿
𝑁𝐶(𝑥, 𝑄2) ∓ 𝑌−𝑥𝐹3

𝑁𝐶(𝑥, 𝑄2)]    (2.7) 

 

where 𝑌± = 1 ± (1 − 𝑦)2 and 𝛼, is the coupling constant of electromagnetic. At high 

𝑄2, it is often to neglect the mass terms. For low 𝑄2, the structure functions 𝐹2, 𝐹𝐿are 

given by 𝛾∗exchange, while the parity-violating 𝑥𝐹3 arising from 𝛾𝑍0 interference is 

being ignored (Cooper-Sarkar et al., 1998).  

 

The Charge Current differential cross section carried by  𝑊± is  

 

      𝑑
2𝜎𝐶𝐶(𝑒𝑝)

𝑑𝑥𝑑𝑄2 =
𝐺𝐹

2

4𝜋𝑥
 

𝑀𝑊
4

(𝑄2+𝑀𝑊
2 )2

[𝑌+𝐹2
𝐶𝐶(𝑥, 𝑄2) − 𝑦2𝐹𝐿

𝐶𝐶(𝑥, 𝑄2) ∓ 𝑌−𝑥𝐹3
𝐶𝐶(𝑥, 𝑄2)]   (2.8) 

 

where 𝐺𝐹 =
𝜋𝛼

√2 sin 2𝜃𝑤𝑀𝑊
2  is the Fermi coupling constant,  𝑀𝑊, is mass 𝑊±, and 𝜃𝑤, is 

Weinberg angle. At 𝑄2 ≪  𝑀𝑊
2  the CC cross section is mostly cover up to NC as 

𝜎𝐶𝐶

𝜎𝑁𝐶 ~
𝑄4

𝑀𝑊
4 . 
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Figure 2.8: Charge Current (CC) and Neutral Current (NC) cross sections at DIS 
(𝑸𝟐dependence) as measured by ZEUS and H1 experiments (Zenaiev, 2017). 
 
 
 
2.6 Quark Parton Model 

Proposed by Feynman (Feynman, 1969), Quark Parton Model, QPM can be used to 

define the fraction of the proton’s momentum carried by a parton (Chekanov et al., 

2007). Parton is a set point-like object, which does not interact with each other. QPM 

can be understood well in 𝑒𝑝 scattering model as electron bounced back when hits on 

one of the partons. Thus, with a resolution that improves energy, DIS event gives a very 

clean way of probing the internal hadronic structure. In this case, it is deep as photon 

penetrates deeply into the proton, and due to the proton breaks up, it is known as 

inelastic. Figure 2.9 illustrates QPM.  
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Figure 2.9: 𝒆𝒑 scattering in QPM (Zenaiev, 2017). 

 

Neglecting the proton and parton masses, 𝑀 and 𝑚 respectively, a simple relation can 

be derived for the fractional of proton momentum transported by a parton,𝜉 using 

momentum conservation (Chekanov et al., 2007). It corresponds approximately to the 

Bjorken scaling variable, 𝑥 (Bjorken, 1969). 

 

       0 ≈ 𝑚2 = (𝜉𝑝 + 𝑞)2 = 𝜉2𝑀2 + 2𝜉𝑝. 𝑞2 =
𝜉𝑄2

𝑥
− 𝑄2; ⇒ 𝜉 = 𝑥        (2.9) 

 

      The Bjorken variable 𝑥 corresponds to the proton momentum carried by proton in 

hard scattering. In Quark Parton Model, both structure functions 𝐹1 and 𝐹2 are free from 

𝑄2 but rely on 𝑥. The structure functions 𝐹1 and 𝐹2 is as follows: 

 

 𝐹1 (𝑥) =
1

2
 ∑ 𝑒𝑖

2𝑓𝑖(𝑥)𝑖       (2.10) 

 𝐹2 (𝑥) = ∑ 𝑒𝑖
2𝑥𝑓𝑖(𝑥)𝑖       (2.11) 

 

where 𝑒𝑖 is the charge of the 𝑖-th parton in units of the elementary charge and 𝑓𝑖 is the 

parton distribution functions (Perez & Rizvi, 2013) that define all the possibility to 
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search a parton of the 𝑖-th with the momentum fraction in a proton. This has been 

proven at SLAC which conducts the experiments on DIS (Miller, 1972).  

Anyhow, if there would be three valence quarks in the proton, then the sum of 

their fractional momenta would be equal to 1, as in the equation written,  

 

 ∑ ∫ 𝑓𝑖(𝑥)𝑥𝑑𝑥 = 1𝑖       (2.12) 

 

However, this quantity is near to 0.5, which is about 50% of the proton momentum 

carried by neutral particles, as proven experimentally (Eichten et al., 1973). It was 

found to be the gluons of QCD in the 𝑒+𝑒−collisions at PETRA in the events with three 

hadronic jets (Brandelik et al., 1979). The gluon discovery established QCD in the way 

that it is the theory of strong interactions. Protons are filled with low 𝑥 gluons, which 

can split into quark-antiquarks pairs, producing the sea quark. 

 

 

2.7 Quantum Chromodynamics 

Theoretically, inclusive deep inelastic lepton hadron scattering is an important 

process in perturbative quantum chromodynamics, QCD (Gell-Mann, 2015). In 1970s, a 

quantum theory of strong interactions was developed, where it includes a new gauge 

boson known as gluon. The “charge” of the strong force is called “colour”, and each 

quark comes in three colours, namely red, green or blue. See Figure 2.10. Particularly, 

the colour changes are conserved in all physical process, where gluon transmitted this 

colour force. 

Symmetrically, anti-coloured particles are being produced in conjunction of their 

corresponding coloured particles. It turns into effectively favourable to create new 

quark-antiquark duo in case they are far away against one another. These quark-
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antiquark duos will after that, combine to produce the colourless particles such as 

mesons or hadrons. 

 

Figure 2.10: Colour fields for a quark, antiquark, and meson (Parker, 1994), 
(Mansfield, 2011). 
 

 

QCD described that quarks are confining, by means quarks and gluons does not 

remain as confined matters. No strong force could fragment baryon into its constituents, 

as well as the quarks, even if it is the strongest. In lieu of breaking into any small pieces, 

the baryon produces extra particles through the self-interacting and quantum-

mechanical dynamics of the gluons field that hook up the quarks inside the baryon, via 

hadronization process (Webber, 2000).  

There are a few differences between quantum chromodynamics (QCD) and quantum 

electrodynamics, QED (Cohen-Tannoudji et al., 1989). Unlike photons, the gluons 

respond directly to one another in the presence and motion of colour charge as they can 

unbalance colour charge. Other than that, the gluons’ reaction towards the colour charge 

are more effective compared with photons in QED when being deliberate by the 

coupling constant.  

QCD can be categorised as non-abelian gauge theory (Altarelli & Wells, 2017) with 

quark-gluon interaction being simulated by the SU(3) group structure of the colour 

charges.  The fermion wave-functions can be written as  
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 𝜓(𝑥) → 𝜓′(𝑥) = 𝑒𝑖𝑔(𝑡−𝜃(𝑥))𝜓(𝑥),   (2.13) 

 

where 𝑔 is a constant defining the coupling strength while 𝑡 − 𝜃 is the product of colour 

group generators alongside vector space-time phase functions in colour space. The 

group generators 𝑡𝑎 satisfies 

 

 [𝑡𝑎 , 𝑡𝑏] = 𝑖𝑓𝑎𝑏𝑐𝑡𝑐 ,          (2.14) 

 

where  𝑓𝑎𝑏𝑐 is the structure constant. The gluon field-strength tensor can be defined as  

 

 𝐹𝑎
𝜇𝑣

= 𝛿𝜇𝐴𝑎
𝑣 − 𝛿𝑣𝐴𝑎

𝜇
+ 𝑔𝑓𝑎𝑏𝑐𝐴𝑏

𝜇
𝐴𝑐

𝑣,   (2.15) 

 

where  𝐴𝑎(𝑎 = 1 − 8) are the gluon fields while the final term symbolizes synergy of 

gluons amidst themselves in a way that they too, lift colour charges. The quark spinor 

fields 𝜓𝑖 revolutionize when triplets under SU(3) with 𝑖 = 1 − 3 brimming the three 

colour indices. The Lagrangian density are as equation shown,  

 

 ℒ𝑄𝐶𝐷 = ∑ 𝜓𝑓
𝑖 (𝑖𝛾𝜇𝐷𝜇 − 𝑚𝑓)𝑖𝑗𝜓𝑓

𝑗
−

1

4𝑓 𝐹𝑎
𝜇𝑣

𝐹𝜇𝑣
𝑎    (2.16) 

 

where  𝑚𝑓 are mass parameters, the covariant derivative 𝐷𝑖𝑗
𝜇

 is 

 

 𝐷𝑖𝑗
𝜇

= 𝛿𝑖𝑗𝛿𝜇 + 𝑖𝑔(𝑡𝑎)𝑖𝑗𝐴𝑎
𝜇    (2.17) 

 

and (𝑡𝑎)𝑖𝑗  are 3 x 3 Hermitian matrices, that the significant triplets portrayal of SU(3) 

are (𝜆𝑎)𝑖𝑗/2,  where Gell-Mann matrices is denoted by 𝜆𝑎. 
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The same coupling constant 𝑔 couples the gluon fields to themselves in  𝐹𝑎
𝜇𝑣

, with 

gluon to the quark fields covariant derivative (𝐷𝑖𝑗
𝜇 ). QCD is the strong force quanta – the 

spin 1 massless gluons – carries charge colour and hence couple with another gluon, but 

in QED the photon does not couple with another photon. 
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CHAPTER 3: EXPERIMENTAL CONDITIONS  

In this chapter, a brief explanation about the HERA collider built at DESY and some 

other experiments were introduced. The ZEUS detector and some other important 

components were in this chapter. The trigger system used was also included.  

 

3.1   The HERA collider 

The Hadron-Elektron-Ring-Anlage, HERA ring accelerator at the DESY laboratory 

in Hamburg is to date the world’s only lepton-hadron collider with the tunnel 

circumference of 6.4 km and built about 25 m below the ground level. The construction 

finished in 1987, when later on the accelerator, was installed in 1990. October 1991 had 

been observed to be the first collisions recorded. A center-of-mass energy of √𝑠 = 318 

GeV (300 GeV until 1998) provided by HERA, which is higher than in the previous 

fixed-target DIS experiments. The two different rings were used to accelerates electrons 

and protons to the final energies of 27.5 GeV and 920 GeV (820 GeV in HERA I) 

(Antonelli, 2009). Figure 3.1 shows the HERA ring. 

  

Figure 3.1: The HERA accelerator together with injection system PETRA (Verena 
Schonberg, 2006). 
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Both beams of electron and proton were kept in 180 bunches, where each bunch 

crossing rate was approximately about 10 MHz. The two general purpose colliders, 

ZEUS and H1 detectors were placed at North and South halls respectively, wherein 

these both regions the collisions happened. These two operated over 16 years of HERA 

operation. 

Other than that, HERMES and HERA-B were another two additional experiments 

found in HERA, constructed in purpose to operate the fixed target condition. In 1994 up 

until 2007, HERMES experiment studies the spin effects in lepton-nucleon interactions 

by using a polarised nuclear target (Baumgarten et al., 2003). Meanwhile, HERA-B 

operated between 1998 until 2003 (Zur Nedden & HERA B Collaboration, 2004) was 

invented to understand B-meson physics as well as the nuclear effects inside proton-

beam halo near a nuclear wire target interaction. The main components of the ZEUS 

detector are briefly described below. A description of the H1 detector and its main sub-

detectors can be found elsewhere (Abt, et al., 1997; Andrieu et al., 1993; Appuhn et al., 

1997; Pitzl et al., 2000).  

 

3.2 The ZEUS detector 

A detailed description of the ZEUS detector can be found elsewhere (ZEUS 

collaboration & Holm U, 1993; Derrick et al., 1992). Zeus is a multipurpose detector 

weighted 3600 tons with 12 m x 10 m x 19 m dimensions (Hilton, 1999). Figure 3.2 

shows the detector. The discovery in high energy physics world is affected for the 

adventure in more and higher energies, that let us dig into ever more deeply inside the 

admirable structure of the particles. Of course, by having higher energies increased the 

multiplicity of particles. The purpose of this detector is to discover the energies upon 

extreme precision, directions and nature of single particles and jets produced in the 

collisions.  
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Figure 3.2: The ZEUS detector (Polini, 2007). 
 

 

3.2.1 Central Tracking Detector 

The CTD was built in a shape of cylindrical wire drift chamber that contained 72 

cylindrical drift chamber layers, with 9 super layers (SL). The SL is divided into five 

axial and four stereo cells with (±5°), each has eight layers of sense wires. See Figure 

3.3. This component ascertains the trajectory extent of charged particles.  

 

       

Figure 3.3: The Central Tracking Detector. (a) The wire arrangement in one 
octant in 𝒙𝒚 view. (b) The event displays from ZEUS CTD, displaying sense wires 
with tracks being reconstructed. (Ziegler, 2002). 
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CTD has a magnetic field of 1.43 T; perpendicularly to the electric field afford with a 

light superconducting solenoid around the tracking detector. The drift cells are tilted by 

45° to the radial direction, allowing aligned tracks coming from the interaction point to 

lie across slightly at one cell in SL. Inside the CTD, there are several mixtures of 

gaseous, such as argon (𝐴𝑟), carbon dioxide (𝐶𝑂2), and ethane (𝐶2𝐻6) which functions 

as ionisation gas for the charged particles that pass through it. The charged particles can 

be reconstructed within an angular range of 15° < 𝜃 < 164°. The ionised electrons 

accelerate along the way in a uniform electric field of a cell to the sense wires. A “hit in 

SL” is defined when the electric pulse is induced in the sense wire by ionisation, and the 

spatial coordinates of the hit of the cell are calculated by time and pulse height. The 

transverse momentum of the full-length track’s resolution is 𝜎 (𝑃𝑇)/  𝑃𝑇 =

√(0.0058𝑃𝑇 )
2

+  √(0.0016)2  (𝑃𝑇 is in GeV). Good acceptance is in the region of  

−1.75 < 𝜂 < 1.75 .  

The description about tracks reconstruction and secondary vertices can be found 

elsewhere (Hall-Wilton et al., 1999). The tracks reconstruction by CTD hits only is 

crucial because the mixed use of CTD and other tracking detectors needs a pleasant 

ability and understanding of the corresponding alignments, and multiple scattering at the 

components border that is not specified.  

 

3.2.2 Calorimeter 

Uranium scintillator calorimeter, CAL is the heart in ZEUS detector. It is used to 

reconstructs the energy, direction of particle showers, and the particle’s position, to 

identify the reconstructed objects, to determine the energy deposited in calorimeter 

cells, and to search the jets by clustering the cells. See Figure 3.4. 
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Figure 3.4: ZEUS calorimeter structure (ZEUS Collaboration, 2008). 

 

CAL contained plates of depleted uranium interleaved with plastic scintillator in 

order to attain compensation and the excellent achievable energy resolution in hadrons. 

Once the particle enters the calorimeter, it loses most of its energy via collisions in the 

high-density material which then produces a shower of particles in the sandwich 

structure. The scintillator tiles form towers which are read out via wave length shifter 

bars, light guides, and photomultipliers (ZEUS collaboration & Holm, 1993). A tiny 

light signal is produced when the electrically charged particles traversed the scintillator 

plates. It is directly equivalent at the energy of particle and therefore, as the particle’s 

energy boost, the light signal increases. 

Interaction point in ZEUS experiment is situated in the calorimeter. By stacking the 

modules next to each other, the construction is possible. The blue scintillator light is 

absorbed in wavelength shifting material and re-emitted as green light with the help of 

photomultiplier.  

))
2

ln(tan( −= ))
2

ln(tan( −=
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The calorimeter is segmented longitudinally into electromagnetic and one or two 

hadronic sections. Typical tower sizes are 5 cm 𝑥 20 cm in the electromagnetic section 

and 20 cm 𝑥 20 cm in the hadronic section. The calorimeter is divided into a forward 

(FCAL), a barrel (BCAL), and a rear part (RCAL) with 7, 5 and 4 absorption lengths, 

respectively (ZEUS collaboration & Holm, 1993). Three parts of CAL covering polar 

angles are as follows, 

• the FCAL, from 2.2° <  𝜃 < 39.9° consisting 23 modules, 

• the BCAL, from 36.7° <  𝜃 < 129.1° consisting 32 modules, and 

• the RCAL, from 128.1° <  𝜃 < 176.5° consisting 23 modules 

An active area in the forward direction which is the photon beam direction, begins at 

60 𝑚𝑟𝑎𝑑. The solid angle coverage corresponds to 99.8% in the forward hemisphere 

and 99.5% in the backward hemisphere (ZEUS collaboration & Holm, 1993).  

The high-resolution calorimeter is encircled with a backing calorimeter that 

calculates the energy of delayed showering particles. The backing calorimeter acts as 

absorber the iron plates that create the magnet yoke (ZEUS collaboration & Holm, 

1993) . Aluminium tubes conducted in proportional mode are used for readout (Elliot & 

Teresa, 1998). The ratio of electromagnetic particles energy response to the hadronic 

particles energy response is near to one in the calorimeter. Resolution is defined as 𝜎𝐸

𝐸
=

0.18

√𝐸
 for electrons and 𝜎𝐸

𝐸
=

0.35

√𝐸
 for hadrons, where ZEUS detector has the best resolution 

of  𝑒

ℎ
= 1.00 ± 0.05. 

Identification of particles is from the deposited signal in calorimeter. For example, 

leptons and photons lose their energy as soon as they enter a calorimeter via 

electromagnetic interactions, while muon only lost some small fraction. Hadrons such 

as protons and pions lose their energy through the strong and electromagnetic 

interactions, which needs more material to be absorbed. 
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3.2.3  Micro vertex detector 

During the break in year 2000-2001, a silicon-strip vertex device is installed. This 

important sub detector was installed with the purpose of improving the space resolution 

of tracks in the vicinity of the interaction point. Divided into two independent 

components, it is known as barrel micro vertex detector (BMVD) and forward micro 

vertex detector (FMVD).   

About 600 silicon-strips modules were used to build BMVD, which were grouped in 

three cylindrical layers around the beampipe as seen in Figure 3.5.  The double-sided 

modules with strips on the opposite side sensors were perpendicular, so that 𝑟𝜙 and 𝑟𝑧 

position hit can be measured. The polar angle that can be covered by BMVD is around 

30° < 𝜃 < 150°. A single hit has a space resolution about 24 𝜇m and the two-track 

separation resolution was 120 𝜇m. Organised in four forward wheels, FMVD consists 

of 112 silicon-strip wedge shaped sensors. Its polar angle covers in the range of  𝜃 > 7°. 

 

 

Figure 3.5: Cross section of BMVD in XY plane (Korcsak-Gorzo, 2007). 
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3.2.4 Luminosity 

The luminosity, ℒ measurements has been described in detailed that are available 

elsewhere (Adamczyk et al., 2014). It is the amount of process over the cross section of 

some specific process, given by ℒ =
𝑅

𝜎
 measured in pb−1 / year, where 1 pb =

10−40m−2 . The amount of high energy photons from the bremsstrahlung process, 𝑒𝑝 →

𝑒𝑝𝛾 is used to measure the luminosity. This involved QED process, where it has high 

rate and cross section can be easily calculated. The first phase of HERA has recorded 

that a photon calorimeter used to measure the rate of bremsstrahlung photons. It is 

positioned in the tunnel for about 100 m downstream where the electron and proton 

beams were separated. Bremsstrahlung photons moved through a straight vacuum 

chamber and an aluminium exit window before entering the photon calorimeter.  

In 1992 to 2000, the 𝑒𝑝 HERA collider acquired its first phase of progression, known 

as “HERA I”. Both colliders, H1 and ZEUS recorded integrated luminosities of 

approximately 120 𝑝𝑏−1of 𝑒+𝑝 and 15 𝑝𝑏−1 of 𝑒−𝑝 collisions (Andruszków et al., 

2001).  

The long shutdown has been used to upgrade the collider and detector machine, to 

gain the luminosity four times, and also to afford longitudinally polarised lepton beams 

to experiments. By increasing luminosity, the beam is stronger on focusing and slightly 

larger beam currents. With HERA-II as the new phase, ZEUS and H1 experiments 

reported roughly about 200 𝑝𝑏−1 of 𝑒+𝑝 and 200 𝑝𝑏−1 of 𝑒−𝑝. Figure 3.6 shows the 

integrated luminosity successfully recorded by ZEUS detector.  
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Figure 3.6: The ZEUS luminosity. ZEUS detector recorded the luminosity in 
different periods of time when a long shutdown in year 2000-2001 (Klein, 2008). 
 
 

The final three months of HERA operation has shown that data for low energy run 

(LER) of 460 GeV and middle energy run (MER) of 575 GeV were taken, with 

approximately 13 𝑝𝑏−1 and 7 𝑝𝑏−1 recorded data, respectively. The main reason LER 

and MER data took place was because of the calculation of the longitudinal proton 

structure function, 𝐹𝐿. 

After a great success data taking period, the lepton-hadron colliders end the 

operations in the middle of year 2007. Up until today, with almost 450 physicists 

through the international collaborators, the data taking continues to probe the proton 

structure and study the HERA physic unique.  
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3.2.5  Small rear tracking detector 

Small rear tracking detector, SRTD installed in the detector contained sensitively 

segmented scintillator strips. With the aim of improving the electron and other charged 

particle measurement in the small-angle area about the beam pipe direction (Bamberger 

et al., 1997). This allows an accurate reconstruction of kinematic variables in the low 𝑥 

and 𝑄2 region with the resolution of 𝜎𝑥,𝑦 = 2.7 mm. Figure 3.7 shows SRTD in rear 

direction. In HERA kinematic region, the angle of scattered energy 𝜃 does not cover 

more than 165°. Hence, the precision of electron position is not well calculated. It is 

important to have precise electron impact position in consequence of kinematic 

variables reconstruction. Not only that, SRTD affords fast timing at the first-level 

trigger (FLT) to reject backgrounds outside the point of interaction. 

 

 

Figure 3.7: ZEUS detector in rear direction view (Bamberger, et al., 1997). 
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3.3  The trigger system 

The purpose of online trigger system is to detect intriguing physics events such as 

DIS and PHP. These events provide an understanding of interesting HERA physics 

together with suppress background-induced events thoroughly. ZEUS experiment had 

three-level triggering system, namely First Level Trigger, FLT, Second Level Trigger, 

SLT, and Third Level Trigger, TLT.   

FLT (Smith et al., 1995; Heath et al., 1992) is a hardware trigger system in individual 

sub-detector which functioned to send information signal to Global First Level Trigger 

(GFLT) for trigger decision. GFLT also used to synchronise sub-detectors with HERA 

bunch-crossing clock to produce fast decision to eliminate beam gas events. 

SLT received the decision events from FLT, and then based on software trigger it 

processed this information which were used on charged particle tracks, the interaction 

vertex, calorimeter timing cuts, and global energy sums (Quadt et al., 1999).  

TLT (Bhadra et al., 1989) processed events that were passed by SLT that accept the 

choice according on global information from an event. Events which pass this stage are 

recorded to tape and available for offline reconstruction. It is a commodity processor 

farm where it refined electron and jet finding and advanced physics filters are available 

here. Figure 3.8 shows a dataflow through the trigger system. Figure 3.8 is the ZEUS 

trigger system. 
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Figure 3.8: ZEUS trigger chain with rates at each trigger level (Lajoie, 2009). 
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CHAPTER 4: OFFLINE ANALYSIS 

In this chapter, it is all about events. Event simulation, event selection, and event 

reconstruction were described. Apart from that, the reconstruction of tracks, vertexes, 

and electron and hadronic were also included.  

 

4.1  Event Simulation 

In high energy physics, Monte Carlo simulations is a very important tool that are 

used to calculate the efficiency of interested events, estimating the rate of background, 

evaluating the kinematic reconstruction correctness, as well as studying the calculated 

cross section in the entire kinematic range. 

By having MC event samples, it can be used to determine the detector response, 

adjusting the correct data to the hadron level, along with computing predictions to be 

distinguished with the real data analysis (ZEUS Collaboration, 2003).  

Every detector has their respective response to the underlying physics processes. The 

cross sections cannot be perfectly measured if the acceptance level is limited. Therefore, 

to model the detector response, the commonly used MC simulations (Metropolis & 

Ulam, 1949) have two different stages, namely underlying physics simulations and 

detector response simulations. Brief descriptions about these two stages were described 

in the next section.  
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4.1.1 Underlying physics simulation 

It is carried out by certain MC generators, that generates a set of entire particles at 

the stable final states. The underlying physics processes includes simulation of hard 

scattering, hadronisation, parton showers, and particle decays. ARIADNE (Lönnblad, 

1992), RAPGAP (Jung, 1995), and PHYTIA (Sjöstrand et al., 2006) are some of event 

generators that are widely used in ZEUS experiment.  

 

4.1.2 Detector response simulation  

In this phase, the generated final-state particles move onward over a detector 

simulation. MOZART (Haas, 1992) is a program, originally based on GEANT 3.21 

(Allison et al., 1987) was used to perform the ZEUS detector simulation. Then, 

simulated events were passed over the trigger system as well as ZEUS Physics 

Reconstruction program, ZEPHYR. Lastly, MC events were recorded as a regular data 

in the tape, then processed by exactly the identical reconstruction and selection 

algorithms. The algorithm may also contain extra information on generated or true 

information. Figure 4.1 shows the ZEUS event analysis. 

Overlying Routine for Ntuple Generation, or better known as ORANGE is a software 

library that executes a user-selected subset of analysis routines (Bindi, 2008). ZSMSM 

software package can be turned on by using suitable control card. It was made up of 

various blocks of variables, the Ntuple are described in the documentation which 

appears with each released (Zolkapli, 2013). Some blocks used in this analysis were 

FMCKIN2, V0lite, Tracking, etc.  
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Figure 4.1: The ZEUS event analysis. 
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4.2 Event Selection 

Two steps were involved during the events selection, namely online selection and 

offline selection. Online selection is the actual time for the events where the resolution 

reached cannot be undo, thus data will be vanished forever. Meanwhile, offline 

selection took place when decision can still be considered and can be processed.  

 

4.2.1 Online Selection 

At online event selection, the detector performed to pick the physics events interests, 

where the only information available is tracking and coarse calorimeter. Events chosen 

depends on energy deposits inside CAL to be constant among an isolated positron. On 

top of that, events consist of high transverse energy, 𝐸𝑇 in conjunction with CTD track 

were also selected (ZEUS Collaboration, 2003). 

During online selection too, there are some needs upon Conservation of Energy-

Momentum, δ in order to choose the interested events. The timing fact from the 

calorimeter functioned to remove events that disagree in correspondence to the bunch-

crossing time.  

 

4.2.2 Offline Selection 

It is a process where the interest events in the calorimeter were characterized by 

scattered electron or positron so that their kinematic variables can be determined. 

SINISTRA (Abramowicz et al., 1995) is an electron finder which functions to determine 

the best candidates of electron and the scattered electron.   
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4.3 Event Reconstruction 

The same simulation program that was pre-owned by the ZEUS Monte Carlo was 

chosen to operate the reconstructed events. The kinematic variables 𝑄2, 𝑥 and 𝑦 can be 

reconstruct using these three methods below. 

 

4.3.1 Electron method 

Uses energy and scattering angle that coming from electron only, this method that 

can be calculated as follows:  

 

𝑄el
2 = 2𝐸𝑒𝐸𝑒′(1 + cos 𝜃𝑒),       (4.1) 

    𝑥el =   
𝑄el

2

𝑠𝑦el
,            (4.2) 

                                     𝑦el = 1 −
𝐸𝑒

′

2𝐸𝑒
(1 − 𝑐𝑜𝑠𝜃𝑒),          (4.3) 

 

where 𝐸𝑒 is the incoming electron energy, 𝐸𝑒′ and 𝜃𝑒 are the energy and angle of the 

scattered electron respectively. Electron method is greatly affected by electron energy 

and position. It becomes optimal at low 𝑄2, due to ZEUS detector is more precise in the 

rare zone. 

 

4.3.2  Jacquet-Blondel method 

Depending on parameters of the hadronic final state, this approach has an advantage 

of using this method is it can be used if the scattered electron cannot be detected such as 

CC in DIS. Below is the kinematics described: 

 

𝑄JB
2 =

𝑃𝑇 had
2

1−𝑦JB
,        (4.4) 
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𝑥JB =  
𝑄JB

2

𝑠𝑦JB
,        (4.5) 

𝑦JB =  
𝛿had

2𝐸𝑒
,        (4.6) 

 

where 𝑃𝑇 had and 𝛿had are given by 

 

         𝑃𝑇 had = √∑ (𝑃𝑥 had
𝑖 )2 + (𝑃𝑦 had

𝑖 )2,𝑖       (4.7) 

𝛿had = ∑ (𝐸had
𝑖 − 𝑃𝑧had

𝑖 ),𝑖        (4.8) 

 

where (𝑃𝑥 had
𝑖 , 𝑃𝑦 had

𝑖 , 𝑃𝑧 had
𝑖 , 𝐸had

𝑖 )  is the 4-momenta of every hadronic final state 

while the total goes to overall hadronic energy, not including the scattered electron.  The 

scattered electron does not need to be detected in this procedure, therefore it can be 

practised at CC and PHP events, though it consists low 𝑄2 resolution in DIS events.   

 

4.3.3 Double-Angle method  

It is a combination from Electron method and Jacquet-Blondel method described 

above (Bentvelsen et al., 1992), (Hoeger, 1991). The kinematic variables are as in the 

relations. 

 

                                       𝑄DA
2 = 4𝐸𝑒

2
cot(

𝜃𝑒 
2

)

tan(
𝜃𝑒 

2
)+tan(

𝜃had 
2

)
,      (4.9) 

𝑥DA =  
𝑄DA

2

𝑠𝑦DA
,      (4.10) 

𝑦DA =  
tan(

𝜃had 
2

)

tan(
𝜃𝑒 

2
)+tan(

𝜃had 
2

)
,    (4.11) 
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where hadronic angle 𝜃had  is  

 

tan(
𝜃had

2
) =  

𝛿had

 𝑃𝑇had

      (4.12) 

 

The angular resolution in hadronic system is always preferred compared to electron 

method, but 𝑄JB
2   and  𝑥JB are worse than the scattered electron, 𝑄el

2   and  𝑥el. 

 

4.4 Reconstruction of Tracks  

Particle trajectories were reconstructed by the hits in the tracking detectors such as 

CTD, MVD, and STT. It is important to look into account all the error on the hit 

measurement, the multiple scattering occurred, and also the present of any dead material 

distribution inside the detector. The detector components such as CTD, CAL and SRTD 

are important in selecting the NC DIS events. CTD for example, measures point of the 

first vertex as well as track positron. CAL determines the energy of the scattered 

electron and hadronic final state. SRTD functions to locate the impact point of scattered 

positron. Ever since the detector upgrade, new improvement of track reconstruction was 

built. In ZEUS, Kalman filter algorithm (Kalman, 1960) and ZTT tracks (Lisovyi, 2011) 

were used.  

 

4.4.1 Kalman Filter Algorithm 

This filter is an iteratively procedure for reconstruction of tracks from the measured 

hits, works by building tracks from the furthermost layer or point of the tracking system 

directed toward the center. This algorithm makes the track to “trail the measurement” 

over the detector (Avery, 1992), which is different from another global approach where 

it fit all calculations to a single set of track parameters.  
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By all means, this algorithm used all the information and will not give any bad track 

parameters by increasing another calculation. For instance, adding hits will not cause in 

increasing ambiguity of the track parameters. It is difference from any track fitting 

methods as the program filters the track backwardly, such that the parameters on the 

further part of the track unsatisfactorily driven compared to the nearer part.  Kalman 

filter allows tracks to be fitted in a separate portion, for example tracks can be used and 

fitted inside drift chambers before projecting into silicon detector alongside entire 

covariance matrix. This approach ensures the silicon hits can be added so that it does 

not need to do the entire fit again and thus make the fitting process much faster. 

 

4.4.2 ZTT tracks 

ZTT is the ZEUS software of track finding packages. It combines the information 

from CTD and MVD detectors, where there were two stages of track reconstructed, 

namely pattern recognition and refinement trajectory. 

The first stage was done by VCTRACK package (Hartner, 1998). VCTRACK is a 

software FORTRAN package that was used in ZEUS experiment for vertex and track 

finding. This program helps to find the first vertex and following vertices of the 

interested events, apart from searching for the right tracks. For every track 

reconstructed, it needs to have CTD hits, even though other tracking detectors might 

exploit. In 9th SL of CTD, the track density was low than the nearby interaction point. 

About three combination hits in CTD from the outer layer would result in the forming 

of tracking seeds. This seed was extrapolated inwardly, and any additional hits were 

gathered with increased in precision.  To guide the trajectory, a large “virtual” hit was 

joined at the beam line. Subsequently a “road” of hits from the CTD through the MVD 

to the intersection point successfully formed, the least-squares of a track was fit by the 

chosen hits on the road in favour of finding out parameters of helix at the helix origin 
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(Zenaiev, 2017). Generally, tracking reconstruction at ZEUS experiment has hits in only 

sub-detector, namely CTD-only and MVD-only tracks. 

The second stage, refinement trajectory was done by Kalman algorithm to enhance 

correctness of helix parameters in the area of the intersection point. The information for 

this second stage was taken from the fit output of pattern recognition. There were 

several steps involved in track fit; prediction, filtering and smoothing.  

Global trajectory parameterization (Spiridonov, 2008) of tracks used in this 

experiment includes helix parameters (Hartner, 1998), which are defined at tracks 

closest approached to the 𝑧-axis. There are five helix parameters, as shown. 

 

𝑥̃𝑇 = (𝜙𝐻,
𝑄

𝑅𝐻
, 𝑄𝐷𝐻, 𝑧𝐻 , cot 𝜃),     (4.13) 

where 

 𝜙𝐻 =angle of 𝑥𝑦-projection of track direction with the 𝑥-axis, 

 𝑄

𝑅𝐻
= helix curvature signed by a particle charge, 𝑄, 

 𝑄𝐷𝐻 = signed minimal distance to 𝑍-axis, 

 𝑧𝐻 = 𝑧-coordinate at point of closest approach, 

 cot 𝜃 = cotangent of track w.r.t 𝑧-axis. 

 

The ZEUS detector (ZEUS collaboration, 1993) coordinate system shown in Figure 

4.2 is an orthogonal right-handed. The x-plane is pointing perpendicular to the beams in 

the direction of the centre of HERA collider, while y-plane directing perpendicularly 

upward to collider plane, while z-plane is in the proton direction, parallel into beam 

pipe. The beam point, where interaction occurs is the origin of this Cartesian coordinate 

system. The azimuthal angle, 𝜙 is determined with respect to x-axis in r-𝜙 plane and the 
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polar angle, 𝜃 is often used to calculate the pseudorapidity, 𝜂 which was defined as 𝜂 =

−ln (tan 𝜃/2). 

 

Figure 4.2: ZEUS coordinate system. 

 

4.5 Vertex Reconstruction 

Vertex means the spot where decays or interaction occurred. There were two main 

reasons of doing vertex in ZEUS experiment. The main reason was to determine the 

significance position of the beam point collision and also determine the right momenta 

track upon the particular point.  Apart from that, reconstruction of vertices plays a role 

in estimating the probability of the tracks coming from the certain vertex. For instance, 

in event selection, the probability might be taken from vertex fit quality such as 𝜒2of 

vertex fit. It is very important to make sure both beam point of collision and vertex of 

Ξ− decay was identified correctly in the event. VCTRACK package did the vertex and 

track finding, where full description can be found elsewhere (Close, 2004).  

The first vertex fit was determined to be as near as the averaged of beam point. The 

point where collisions happened is known as beam point (Mankel, 2006). The secondary 

vertex for neutral strange particle Λ0 can be traced as it has distinctive signature. 
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Therefore, the ability to provide better tracking is crucial for their inspection. In 𝑒𝑝 

collision, they were created abundantly (Boogert, 2003). 

 

4.6 Electron and Hadronic Reconstruction 

Scattered electron is crucial as it helps in differentiating the NC DIS events from the 

CC DIS events, because it leaves clear signature spot of undetected neutrino escapes. 

SINISTRA (Abramowicz et al., 1995) together with probabilistic EM (Kappes, 2001) 

were the main electron finders in this experiment.  

ZEUS Unidentified Flying Objects, or better known as ZUFOS (Tuning, 2001) 

stored some info from the calorimeter and the tracking in order to gain accurate 

measurement of hadronic energy. The purpose of ZUFO was to stand for one final state 

particle. It is where the track momenta resolution given by 𝜎(𝑝𝑇)

𝑝𝑇
= 𝑎𝑝𝑇 ⊕ 𝑏 ⊕ 𝑐𝑝𝑇, 

gave more excellent energy for lower particle momenta and the resolution of the 

calorimeter was developed for higher particle energy 𝜎(𝐸)

𝐸
~1/𝐸. Calorimeter gives 

information for the neutral particles and the charged particles were given with 

information from the tracking, where the energy used were usually below 10 GeV.  
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CHAPTER 5: RECONSTRUCTION OF 𝚵−BARYON 

In this chapter, the samples and luminosity used for both MC and HERA II data, the 

selections of cuts implemented on trigger, DIS, box and geometry are described. The Ξ− 

and Λ identification are also being described here, including the matching analysis, 

optimization cuts, and some results and discussion on the analysis in MC and HERA II 

data.   

 

5.1 MC and Data Samples 

Different physical processes used different generators, depending on which they are 

likely most suited. The MC generator used in this analysis was Inclusive ARIADNE NC 

DIS at Low Q2 (Lönnblad, 1992), a simulation program of QCD cascades implementing 

the colour dipole model (CDM). ARIADNE simulates the production of inclusive light 

favours in DIS events.  

ARIADNE gives perfect definition of the observed hadronic final state in inclusive 

DIS (Aaron et al., 2010) where simulated events were take place for the entire event 

generator. Note that ARIADNE was used only in studies which involved the light 

flavour background, such as detector resolutions and efficiencies.  

An analysis (Libov, 2013) was done to evaluate tracking inefficiency for charged 

pions as a result of interactions in hadronic inside detector substantial and how good the 

MC simulation reproduced such interactions. Table 5.1 shows the full MC samples 

achieved by the ZEUS detector. The total number of events collected for HERA II was 

268 million events. A summary of luminosity of the generated samples for each period 

for Monte Carlo is given in Table 5.2. 
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Table 5.1: Number of events for HERA II MC samples. 

Run period Beam 𝐍𝒆𝒗, 𝟏𝟎𝟔 

2003/2004 e+p 31 

2005 e−p 87 

2006 e−p 34.7 

2006/2007 e+p 116 

 

 

Table 5.2: Integrated luminosity MC samples for each year. 

Run period Beam Integrated Luminosity, 

ℒ(𝐩𝐛−𝟏) 

2003/2004 e+p 41 

2005 e−p 133 

2006 e−p 55 

2006/2007 e+p 142 
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Meanwhile, Table 5.3 is the data sample used in this work that was collected during 

2003-2007 years in HERA II running periods. The total number of events was about 

355 million events. The total luminosity collected by ZEUS detector with center of mass 

of 318 GeV was about 360 pb−1as shown in Table 5.4.  

Table 5.3: Number of events for HERA II real data samples. 

Run period Beam 𝐍𝒆𝒗, 𝟏𝟎𝟔 

2003 e+p 3.7 

2004 e+p 47.5 

2005 e−p 132.2 

2006 e−p 44.2 

2006 e+p 86.6 

2007 e+p 41.2 

 

Table 5.4: Integrated luminosity data samples for each year. 

Run period Beam Integrated 

Luminosity, ℒ(𝐩𝐛−𝟏) 

2003/2004 e+p 36 

2005 e−p 134 

2006 e−p 53 

2006/2007 e+p 137 
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5.2 Trigger Selection 

FLT helps in triggering with an output rate below 1 kHz. In FLT, a very short time is 

needed for the decision to be made, which is to select events originating from 𝑒𝑝 

collision. This also includes general background rejection and reconstructed of the 

scattered electron. FLT requires at least a single of the following being satisfied 

(Ziegler, 2002): 

• total energy in the electromagnetic sections of the CAL needs to be greater than 

15 GeV. 

• an isolated electron was found in FCAL or BCAL; in addition, a track had been 

found in the CTD 

• an isolated electron was identified in RCAL; in addition, more than 2GeV had to 

be found in the EMC section of RCAL 

• total transverse energy was greater than 18 GeV 

• total transverse energy was greater than 12 GeV and at least one track must have 

been found in the CTD 

• a signal in SRTD and a track was found 

A programmable transputer network builds the SLT. The events that passed FLT 

were sent to the SLT. More practical programs can be created such as algorithms 

involving cuts and applying some selections to remove noise events. It is important to 

keep the rate under 100 Hz. At SLT, at least two requirements had to be fulfilled 

(Ziegler, 2002): 

• more than 2.5 GeV in the EMC of RCAL or BCAL or more than 10 GeV in 

hadronic section 

• 𝐸 − 𝑃𝑍 + 2 ∗ 𝐸𝑙𝑢𝑚𝑖,𝛾 > 29 GeV, where 𝐸 − 𝑃𝑍 = Σ𝐸𝑖(1 − 𝑐𝑜𝑠𝜃𝑖), 𝐸𝑖 is the 

energy of the 𝑖th calorimeter cell, 𝜃𝑖  is the polar angle and the sum runs over all 
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cells and 𝐸𝑙𝑢𝑚𝑖,𝛾 is the energy deposited in the photon calorimeter of the 

luminosity monitor system. 

All final events were then passed through TLT, which discussed in the next section. 

Events passed the TLT were recorded to tape, alongside ready for use for offline 

reconstruction in the study. 

 

5.3 DIS Selection 

The DIS selection with both beams 𝑒− 𝑝 and 𝑒+𝑝 were taken into account. The DIS 

kinematic region was restricted for photon virtuality in the range of 20 < 𝑄2
𝑒𝑙 <

200 GeV, Bjorken scaling variable  3. 10−4 < 𝑥𝑒𝑙 < 2. 10−2 and elasticity 𝑦𝑒𝑙 < 0.7.  

The selected events for DIS third level trigger required DIS03, which means (Ziegler, 

2002): 

• one of the available electron finders found a positron with an energy above 

4 GeV 

• 𝐸 − 𝑃𝑍 > 30 GeV 

The following selections are required to ensure good DIS events as written in the 

published paper attached (Abramowicz et al., 2016):  

• 𝐸𝑒′ > 10 GeV, where the purpose was to ensure high efficiency of SINISTRA 

and to reject all the PHP background having fake scattered positron. 

• 20 < 𝑄2
el < 200 GeV, where it is DIS phase space. 

• 3. 10−4 < 𝑥el < 2. 10−2, where it has best resolution at low 𝑄2 

• 𝑦𝑒𝑙 < 0.7, where it removes events with low energy forward going photons 

which are misidentified as leptons.  

• 𝑦JB > 0.04, reject events with poorly reconstructed hadronic system and ensures 

sufficient accuracy for double-angle method. 
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• 41 < 𝐸 − 𝑃𝑍 < 60 GeV, the lower cut reduces undetected scattered electron 

while the latter cut rejected cosmic ray events particles. 

• |Zvertex| < 50 cm, where it is the 𝑍 coordinate of a primary vertex position. 

 

5.4 Box Cut and Geometry Cut 

In general, box cut means to get certain geometric position of the scattered electron, 

and to ensure it reaches proper part of the calorimeter. It is important for comparing data 

to MC for extraction of cross section purpose. 

 Box cut applied to the scattered electron position on the RCAL surface outside of a 

rectangle around the beampipe. It is to reject events where the electron went through 

edges of the CAL, with |𝑥|> 13 cm and |𝑦| > 13 cm. The offline box cut of SINISTRA 

are stricter compared to the online, due to a difference between online and offline 

version of SINISTRA. 

 Geometry cut is to remove regions of the calorimeter, where the scattered electron 

reconstructed is low as well as difficult to simulate because of their geometrical 

complexity, such as (Zenaiev, 2017): 

• electrons in the regions of cracks between the RCAL, BCAL and FCAL, super 

cracks in HERA II, were rejected, 164 < 𝑧 < 174 cm, −104 < 𝑧 < −98.5 cm, 

• electrons in the overlap region between the RCAL and BCAL (√𝑥2 + 𝑦2) >

175 cm on the RCAL surface, 

• the “chimney” cut, to remove a region in the RCAL where cooling tubes and 

supply cables for the solenoid were mounted as |𝑥| < 12 cm if 𝑦 > 80 cm. 

• the region of gaps between halves of the RCAL were removed, 6.5 < 𝑥 <

12 cm if 𝑦 > 0 and −14 < 𝑥 < −8.5 cm if 𝑦 < 0. 
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5.5 𝚵− Selection 

Having two strange quarks and a down quark, Ξ− and their charge conjugated Ξ+ is a 

weakly decaying particle with 𝜏 = 1.64 ± 0.02 s. The selected main decay for this 

analysis is Ξ− →  Λ +  𝜋− with 𝐵𝑟 = 99.89 ± 0.04 % (Patrignani, 2016). The 

reconstruction of Ξ− were based on charged detection of the tracks found in CTD when 

reconstructing displaced tertiary vertices. Since Ξ− has two daughters Λ and 𝜋−, the 

reconstruction also needs to consider the decay channel of Λ which decays into a proton 

and a pion.  Table 5.5 below summarise decay chains for this analysis. 

 

Table 5.5: Decay channel of 𝚵− and 𝚲𝟎. 

 Contents Mass/GeV 𝑩𝒓 𝝉/𝟏𝟎−𝟏𝟎s 𝒄𝝉/cm 

Ξ− →  Λ +  𝜋− 

Ξ̅+ →  Λ̅ +  𝜋+ 

𝑑𝑠𝑠 

 

1.321±0.07 99.89±0.04 1.64 ± 0.02 4.91 

Λ → 𝑝+ +  𝜋− 

Λ̅   →  𝑝̅ +  𝜋+  

𝑢𝑑𝑠 

𝑢̅𝑑𝑠̅ 

1.115±0.006 63.9±0.5 2.63±0.02 7.89 

  

 

5.5.1 𝚲 Candidate Identification 

A Λ candidate is a neutral baryon which can never be seen directly using CTD, but 

since the decay products are charged proton and pion, it can be identified as both leave a 

track that can be easily reconstructed back. Having a lifetime of 10−10 s, Λ is known as 

a weakly decaying particle that it will move few centimetres before decaying, thus an 

obvious secondary vertex is detected separated from the primary vertex. In the time of 

the reconstruction, all secondary vertex tracks were taken into consideration.  

Univ
ers

ity
 of

 M
ala

ya



 

50 

 

Λ events were required to have a strange hadron candidate, decaying into two 

oppositely charged tracks. These two charged particles were then fitted into a displaced 

secondary vertex, as in Figure 5.1. To build Λ event all reconstructed secondary vertices 

of an event were considered.  The invariant mass of each reconstructed candidate, 

𝑚(𝑝𝜋)  was solved by designating the proton mass (𝑚𝑝 = 938.2720 MeV) to the 

particle with the higher momentum than the other daughter, (𝑚𝜋 = 139.5702 MeV). To 

ensure precise invariant mass reconstruction, vectors of the momentum has to be at the 

decay vertex, with all tracks used must be vertex tracks. The reconstruction for Λ were 

by V0lite block as it contains information for the charged daughters.  

 
 

Figure 5.1: The decay of 𝚲𝟎candidate that decays into 𝒑 and 𝝅− (Zolkapli, 2013). 

 

5.5.2 𝚵− Identification with Reconstructed Displaced Tertiary Vertex (𝒅𝒕𝒗) 

As a weakly decaying particle, Ξ− decay near the first vertex, although it is quite 

distant from the decay vertex. Hence, the reconstruction of decay vertex for Ξ−can be 

differentiated from first vertex just like the reconstruction of the secondary vertices of Λ 

decays, known as displaced tertiary vertex. 
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The reconstruction of displaced tertiary vertex of Ξ−is by combining the neutral 

daughter candidates with entirely charged CTD tracks in an event.  The necessity for 

CTD track are (Ziegler, 2002): 

• at least three hits in superlayers; 

• track transverse momenta, 𝑃𝑇 > 0.15 GeV and 

• track pseudorapidity,  |𝜂| < 1.75 

See Figure 5.2. Displaced tertiary vertex was found by searching the nearest distance 

of closest approach, 𝑑𝑐𝑎 among a Λ candidate and a charged CTD track. After that, the 

central of a line associating the points of 𝑑𝑐𝑎 on Λ and CTD track describes the 

displaced tertiary vertex. The daughter particles, Λ and 𝜋−must come from the same Ξ− 

decay vertex. Therefore, 𝑑𝑐𝑎 cannot be too large. As a heavier daughter candidate, 

Λ takes higher fraction of Ξ−momentum and thus flies nearly the same direction with 

Ξ−. This helps to reject background combinations which do not comes from Ξ− decay.  

 

 

Figure 5.2: The (a) decay chain upon 𝒆𝒑 collision while (b) is where 𝒅𝒕𝒗 and 𝒅𝒄𝒂 is 
located (Ziegler, 2002). 
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5.6 Matching Analysis 

In this study, steps of matching between the truth and reconstructed Ξ− candidate 

were invented. This is because the complications may occur from the MC reweighting 

and control plots.  

An approach of MC reweighting should be applied at the generator level only, where 

by in inclusive event quantities, the kinematics weights such as 𝑄2 are considered. 

Meanwhile, in control plots it is only applied for the interested candidates only. For 

instance, if the weights were to be applied for both events and candidates, the 

uniqueness is lost. Weights are unique when it is applied for event at generator and 

reconstruction level.  

The idea of matching is quite simple, it is to look at the particle ID, the momenta, as 

well as the directions, which can be done with any suitable MC sample in the Common 

Ntuples format. Some values of 𝑝𝑇 and 𝜂 were adjusted to get good enough matching 

efficiency, but in principle different analysis might give different efficiency outcome.  

The matching was done by taking into account whether the truth-level particles 

comes from Ξ− baryon candidate in the studied decay channel, with all the daughter 

tracks (Λ and 𝜋−) were well matched to truth-level. It is therefore, the reconstructed 

Ξ− candidate was then said to be successfully matched to the truth-level. The correct 

charge combination of decay chain Ξ−, which is Λ decay and 𝜋− is known as the sample 

of signal, while the wrong combination or the one that is not coming from the decay 

channel is known as background sample. Figure 5.3 and Figure 5.4 are plots of particles 

that undergone matching procedure.  
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Figure 5.3: The (a) transverse momentum, 𝒑𝑻
𝒈𝒆𝒏 and (b) pseudorapidity, 

𝜼𝒈𝒆𝒏 of matched 𝚵− and the daughters, 𝚲 and 𝝅− respectively. 
  

  

(a) 

(a) 

(a) 

(b) 

(b) 

(b) 
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Figure 5.4: The (a) transverse momentum, 𝒑𝑻
𝒈𝒆𝒏 and (b) pseudorapidity, 

𝜼𝒈𝒆𝒏 of matched 𝚲 daughters, 𝒑 and 𝝅− respectively. 
 
 

In contemplation of limiting the combinatorial background and exclude the 

unsatisfactorily calculated secondary vertices, Λ event candidate is said to be found if 

the following requirements are fulfilled (Zolkapli, 2013): 

• events have at least one secondary vertex; 

• the secondary vertex is required to have two different charged tracks, with the 

𝑝 or 𝑝̅ mass was assigned to the track with larger momentum and the 𝜋 or 𝜋̅ to 

the other track for V0lite candidate.   

• hits in superlayers 1 to 3, to have advantage for the algorithms to reconstruct 

secondary vertices of the considerable resolution enhancement, and to restrict 

the CTD region where track acceptance is mostly high 

(a) 

(a) 

(b) 

(b) 
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• 𝑝𝑇 > 0.15 GeV, transverse momentum has to be larger than 0.15 GeV, as lower 

𝑝𝑇 gives the chances of not well measured  𝑝𝑇 because of the spiral by magnetic 

field is very close to the beam axis 

• |𝜂| < 1.75, to stay away from edge of acceptance that exists due to cut on 𝑝𝑇and 

|𝜂|set by requirements of three superlayers. 

Figure 5.5 shows the matched and unmatched distributions of Λ. The mass peak is 

around 1.116 GeV. The unmatched Λ dominates the distribution due to large 𝜂 at 

generator level (Refer Figure 5.3 (b) and Figure 5.4 (b)).  

The azimuthal angle, 𝜙 and the polar angle, 𝜃 was measured according to the 

𝑥 −plane and 𝑧 −plane, there was symmetry imbalance between forward and rear side 

of the detector. The ZEUS detector was designed with longer side on forward 

calorimeter than the rear calorimeter, due to large difference in proton and electron 

momentum. As a result, this gives huge number of particles being boosting towards the 

forward direction.  

Figure 5.6 shows the correlation distributions of transverse momentum, 𝑝𝑇
𝑔𝑒𝑛 and 

pseudorapidity, 𝜂𝑔𝑒𝑛 of matched Λ at generator level, while Figure 5.7 shows the 

reconstructed Ξ− successfully matched to the generator-level. 
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Figure 5.5: The simulated (a) matched 𝚲 and (b) unmatched 𝚲. 

 

 

 

 

(a) 
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Figure 5.6: The correlation in (a) 𝒑𝑻
𝒈𝒆𝒏 and (b) 𝜼𝒈𝒆𝒏 between generator level 

and reconstructed level of 𝚲. 
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Figure 5.7: The matched reconstructed 𝚵−. 

 

5.7 Optimization Cuts 

Separation between the one that carries the interest information, signal and the other 

one that consists of noise, background is one of the common problems faced by 

physicists in High Energy Physics (Narsky, 2006). It is perhaps difficult to decide in 

determining which one is suitable cuts for both signal and background due to the 

characteristics of signal and background itself. For instance, usually in HEP world, one 

typically wants to optimize a figure-of-merit (FOM) in the signal area that can be 

expressed as signal and background, 𝑆  and 𝐵. This FOM can be written as  𝑆

√𝑆+𝐵
, where 

it is the ratio of signal to the background. It is common for the analysts to express the 

cleanliness or peak of the signal with the presence of fluctuations of observed signal and 

background. To get good analysis and reliable result, the higher the ratio the better it is.  
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There are a lot of methods that have been developed to solve this problem. For 

example, feed forward back propagation neural network (Cowan, 1990) and Fisher 

discriminant (Fisher, 1936) are the most chosen by HEP community since then till 

nowadays. There were many other approaches as well, but it is always important to note 

that the choice of method chosen for the problem must be driven by the specifics of the 

analysis itself. Below are the lists of cuts that have been selected for this analysis. 

• the Λ candidates are defined as all Λ event candidates with invariant mass 

of 1.112 < 𝑚(𝑝𝜋) < 1.121. (Figure 5.8) 

• (0.2 < 𝑝𝑇Λ =< 1.0)  && (1.2 < 𝑝𝑇Λ =< 1.5). (Figure 5.9) 

• (−2.25 < 𝜂Λ < −0.25)  && (0. < 𝜂Λ < 2. ). (Figure 5.10) 

• 𝜙Λ > 0.1 (Figure 5.11) 

• collinearity of the secondary vertex > 0 .009 (Figure 5.12) 

• 𝜒2of the secondary vertex < 3.8. (Figure 5.13) 

• 𝑑𝑐𝑎Λof the secondary vertex < 0.6. (Figure 5.14) 

• 𝑑0𝜋 < 5.5. (Figure 5.15) 

• 0.1 < 𝑑0Ξ− < 2.2. (Figure 5.16) 

• 𝑑𝑐𝑎𝑧 > 0.2. where 𝑑𝑐𝑎𝑧stands for distance of closest approach in 𝑍 axis where 

it belongs to Λ  candidate, 𝑍Λ, and 𝜋−candidate, 𝑍 𝜋−, ie: 𝑑𝑐𝑎𝑧 = 𝑍Λ − 𝑍 𝜋−. 

(Figure 5.17) 

• collinearity of the primary vertex > 0 .09. (Figure 5.18) 
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Figure 5.8: The distribution of mass 𝚲 for (a) ARIADNE MC and (b) 
HERA II data. 
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Figure 5.9: The distribution of 𝑃𝑇 of 𝚲 for (a) ARIADNE MC and (b) HERA II 
data. 
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Figure 5.10: The distribution of 𝜼 𝚲 for (a) ARIADNE MC and (b) HERA II data. 
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Figure 5.11: The distribution of 𝜙Λ for (a) ARIADNE MC and (b) HERA II data. 
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Figure 5.12: The distribution of collinearity 𝚲 for (a) ARIADNE MC and 
(b) HERA II data. 
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Figure 5.13: The distribution of 𝜒2 𝚲 for (a) ARIADNE MC and (b) HERA II data. 
 

 

 

 

(a) 

(b) 

Univ
ers

ity
 of

 M
ala

ya



 

66 

 

 

 

 

 

 

 

Figure 5.14: The distribution of 𝒅𝒄𝒂 of 𝚲 for (a) ARIADNE MC and (b) 
HERA II data. 
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Figure 5.15: The distribution of 𝑑0𝜋 for (a) ARIADNE MC and (b) HERA II data. 
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Figure 5.16: The distribution of 𝑑𝑐𝑎𝑧 for (a) ARIADNE MC and (b) HERA II data. 
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Figure 5.17: The distribution of 𝑑0Ξ− for (a) ARIADNE MC and (b) HERA II data. 
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Figure 5.18: The distribution of collinearity of the primary vertex for (a) 
ARIADNE MC and (b) HERA II data. 
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CHAPTER 6: RESULTS AND DISCUSSION 

 

6.1 Acceptance, Efficiency, and Purity 

The reconstructed particles at hadron level undergone correction through the detector 

acceptance, 𝑨. By definition, acceptance means how far detector understands the 

process behind it whereby it is the ratio of the reconstructed all the possible candidates 

at the detector level, 𝜺 to the total of simulated candidates at the hadron level, 𝑷. 

Equation 6.1 shows how acceptance works. 

 

𝐴 =
𝜺

𝑃
         (6.1) 

 

where 𝜀 stands for efficiency and 𝑃 is the purity.  

While acceptance is depending on efficiency and purity it is important to take note 

on both definitions of 𝜀 and 𝑃. Efficiency is the ratio of the simulated particles at the 

hadron level in the reconstructed signal at the detector level. It is defined as in Equation 

6.2.  

 

𝜀 =
𝑁𝑀𝐶

𝑟𝑒𝑐

𝑁𝑀𝐶
𝑔𝑒𝑛        (6.2) 

 

where 𝑁
𝑟𝑒𝑐 
𝑀𝐶  is the total number of reconstructed particles at generator level and 

𝑁
𝑔𝑒𝑛 
𝑀𝐶 stands for the total number of generated particles at generator level.  

Purity on the other side means the ratio of the real particles to the total of candidates, 

where Equation 6.3 defines.  

𝑃 =
𝑁𝑀𝐶

𝑟𝑒𝑐

𝑁𝑑𝑎𝑡𝑎
𝑟𝑒𝑐         (6.3) 
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Table 6.1 shows the efficiency of truth particle produced at generator level. It can be 

seen that about 0.0156 or 1.56 %  Ξ−
𝑡𝑟𝑢𝑡ℎ’s produced per event. This is then followed 

by 93.57 % for both Ξ−‘s daughter particle,  Λ𝑡𝑟𝑢𝑡ℎ and 𝜋−
𝑡𝑟𝑢𝑡ℎ. As for both Λ’s 

daughter,  𝑝+
𝑡𝑟𝑢𝑡ℎ  

and 𝜋−
𝑡𝑟𝑢𝑡ℎ, the efficiency is about 52.90 %. The analysis then 

searched for the track matching efficiency which was done by finding the track match of 

three particles. This track efficiency only gives 8 %. According to branching ratio of the 

selected decay channel Ξ−, it is supposed to be about 99.89 %, while for decay channel 

Λ, 67.8%. The reason behind efficiency fall might be probably because of large 𝜂 

produced at generator level.  

The efficiency of reconstructed particle produced at generator level is in Table 6.2. 

After going through several cuts,  Ξ−
𝑀𝐶
𝑟𝑒𝑐 gives about 0.00404  or 0.4 ± 0.0039 %. Plot 

for  Ξ−
𝑀𝐶
𝑟𝑒𝑐 is as shown in Figure 6.1. 

 

Table 6.1: Efficiency at generator level. 

N𝑒𝑣, 106 164.5 

 Ξ−
𝑡𝑟𝑢𝑡ℎ 2 566 536 0.0156 

Λ𝑡𝑟𝑢𝑡ℎ 2 401 471 0.9357 

𝜋−
𝑡𝑟𝑢𝑡ℎ 2 401 471 0.9357 

𝑝+
𝑡𝑟𝑢𝑡ℎ

 1 270 280 0.5290 

𝜋−
𝑡𝑟𝑢𝑡ℎ 1 270 280 0.5290 

𝑝+
𝑡𝑟𝑢𝑡ℎ

, 𝜋−
𝑡𝑟𝑢𝑡ℎ, 𝜋−

𝑡𝑟𝑢𝑡ℎ 194 693 0.08 
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Table 6.2: Efficiency of 𝚲 and 𝚵−. 

 Before Optimization 

Cuts 

After Optimization 

Cuts 

Candidate 
survived 

(%) 

𝚲𝑴𝑪
𝒓𝒆𝒄 65273 31404 48.11 

 𝚵−
𝑴𝑪
𝒓𝒆𝒄 51581 10370 20.10 

 
 
 
 

 
 
 

 
 

Figure 6.1: The matched reconstructed 𝚵− (a) before cuts and (b) after cuts using 
ARIADNE MC generator. 

(a) 
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6.2 Functions and Fitting in Monte Carlo 

The “goodness of fit” or better known as Chi-square, 𝜒2 test tells how well it is 

likely the observed distribution of data fits or matches with the model, or expected 

distribution.  𝜒2 is the sum of independent number degrees of freedom squared 

Gaussian variables with unit standard deviation. High correlation between MC and Data 

when the value of 𝜒2 is small, which means the observed data fits very well with the 

expected data. But having too low of  𝜒2 might also means the data uncertainties are 

overestimated, or the model contains excess parameters tuned to “over fit” the data. 

Vice versa, large 𝜒2 means either the data is not well described by the model or the 

uncertainties is underestimated.   

 Fitting is a process in minimizing a quantity in order to search for the best estimates 

for certain function parameters, and to test if the given data are properly explained by 

some hypothesized function. It involves in adjusting certain parameters to get the best 

fit of the spectrum distributions. 

 

6.2.1 𝚲 candidate 

The invariant mass distributions were fit using Gaussian function as in Equation 6.4. 

 

𝑓(𝑥) = 𝑎0𝑒
−(𝑥−𝑎1)2

2𝑎2
2          (6.4) 

 

The total number of particles is given by Equation 6.5. 

 

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = ∫ 𝑓(𝑥)𝑑𝑥 =
√2𝜋

𝑤
𝑎0𝑎2       (6.5) 
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where 𝑎0and 𝑎2is the values of the 0th and 2nd parameters respectively, while 𝑤 is the 

bin width. 

Substituting 𝑎0 ≡
𝑎0

√2𝜋𝑎2
, 

 

𝑓(𝑥) = (
𝑎0

√2𝜋𝑎2
) 𝑒

−(𝑥−𝑎1)2

(2𝑎2
2)         (6.6) 

 

𝑎0, 𝑎1 and 𝑎2 are the fit parameters of the Gaussian distribution, where 𝑎0 is the height 

of the peak, 𝑎1  is the peak position of the Gaussian and 𝑎2  is the bin width of the 

histograms. The number of particles observed is the total area under the Gaussian 

distribution that can be found by 

 

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = ∫ 𝑓(𝑥)𝑑𝑥 =
𝑎0

𝑤
        (6.7) 

 

where 𝑎0 is the value of 0th Gaussian parameter after the fitting process and 𝑤 is the bin 

width of the histogram. Figure 6.2 shows the simulated and reconstructed distributions 

of Λ candidates. The mass peak shown is around 1.116 GeV. 
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Figure 6.2: The mass distribution 𝒎(𝒑𝝅) of all (a) simulated and (b) reconstructed 
𝚲 event candidates. 
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6.2.2 𝚵− candidate 

There were two attempts to fit the signal, using Breit-Wigner and Gaussian function 

and to fit the background, using 4th order of polynomial function and WA’s function. 

 

6.2.2.1 Breit-Wigner (BW) 

BW (Weinstein, 1999) is an approximate line-shape model designed for an unstable 

particle or resonance propagator in quantum field theory, where it is well defined for 

fundamental particles such as the 𝛾, 𝑍0 and 𝑊± . In non-relativistic quantum mechanics, 

BW is popular through the hand-waving argument where the exponential decay law is 

encoded via wave function and also their Fourier transform, as in Equation 6.8. 

 

|𝜓(𝑡)|2 = |𝜓(0)|2𝑒−Γ𝑡⇒ 𝜓(𝑡) = 𝜓(0)𝑒−Γ𝑡      (6.8) 

 

where Γ = 1/𝜏, with 𝜏 as the particle lifetime. The energy dependence is given by 

Equation 6.9 and Equation 6.10, 

  

𝜓̅(𝐸) = ∫ 𝜓(𝑡) 𝑒𝑖𝐸𝑡𝑑𝑡 ∝
1

𝐸−𝑀+(𝑖Γ/2)
       (6.9) 

|𝜓̅(𝐸)|
2

∝
1

𝐸−𝑀+(𝑖Γ/2)
       (6.10) 

 

Figure 6.3 shows the simulated distributions of Ξ− candidates with full mass window 

and with the present of mass window using Breit-Wigner function. The signal is around 

1.325 GeV. The mass distributions fitted gives 𝜒2/𝑁𝑑𝑜𝑓 = 3.03. 
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Figure 6.3: The mass distribution 𝒎(𝚲𝝅−) of all simulated 𝚵−with (a) full mass 
window and (b) present of mass window. 
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6.2.2.2 Gaussian functions 

The invariant mass distributions were fit using two Gaussian functions as shown in 

Equation 6.11, 

 

𝑓(𝑥) = 𝑎0𝑒
−(𝑥−𝑎1)2

2𝑎2
2 + 𝑎3𝑒

−(𝑥−𝑎4)2

2𝑎5
2      (6.11) 

 

The total number of particles is given by Equation 6.12, 

 

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = ∫ 𝑓(𝑥)𝑑𝑥 =
√2𝜋

𝑤
𝑎0𝑎2 + ∫ 𝑓(𝑥)𝑑𝑥 =

√2𝜋

𝑤
𝑎3𝑎5  (6.12) 

 

where 𝑎0, 𝑎2, 𝑎3 and 𝑎5is the values of the 0th, 2nd, 3rd, and 5th parameters respectively, 

while 𝑤 is the bin width. 

 

Substituting 𝑎0 ≡
𝑎0

√2𝜋𝑎2
 and 𝑎3 ≡

𝑎3

√2𝜋𝑎5
, 

 

𝑓(𝑥) = (
𝑎0

√2𝜋𝑎2
) 𝑒

−(𝑥−𝑎1)2

(2𝑎2
2) + (

𝑎3

√2𝜋𝑎5
) 𝑒

−(𝑥−𝑎4)2

(2𝑎5
2)    (6.13) 

 

𝑎0, 𝑎1, 𝑎2, and 𝑎3, 𝑎4, 𝑎5, are the fit parameters of the Gaussian distribution, where 

𝑎0and 𝑎3 is the height of the peak, 𝑎1 and 𝑎4is the peak position of the Gaussian and 𝑎2 

and 𝑎5is the bin width of the histogram. The number of particle observed is the total 

area of Gaussian distribution which can be found by 

 

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = ∫ 𝑓(𝑥)𝑑𝑥 =
𝑎0

𝑤
+

𝑎3

𝑤
     (6.14) 
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where 𝑎0 and 𝑎3 is the value of 0th and 3rd Gaussian parameter after the fitting process 

and 𝑤is the bin width of the histogram. Figure 6.4 shows the simulated distributions of 

Ξ− candidates with full mass window and with the present of mass window using two 

Gaussian functions. The signal obtained is around 1.325 GeV. The mass distributions 

fitted gives 𝜒2/𝑁𝑑𝑜𝑓 = 0.96. 

 

    
 
 

 
 

Figure 6.4: The mass distribution 𝒎(𝚲𝝅−) of all simulated signal 𝚵−with (a) full 
mass window and (b) present of mass window. 
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6.2.2.3 4th order polynomial function 

The 4th order of polynomial, or also known as quartic polynomial was used to fit the 

background MC that can be expressed as Equation 6.15, 

 

𝑓(𝑥) = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0    (6.15) 

 

where 𝑎 ≠ 0. The mass distributions fitted gives 𝜒2/𝑁𝑑𝑜𝑓 = 2.76. 

 

 
 

 

 
Figure 6.5: The mass distribution 𝒎(𝚲𝝅−) of all simulated background 𝚵−with (a) 
full mass window (b) present of mass window.  
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6.2.2.4 WA’s function 

Parametric estimations for background (Wan Abdullah, 1985) are carried out in such 

a way that the WA’s function was used to fit the background MC. It is important to take 

note on the sharp rise at the threshold and the long tail at higher masses. WA’s can be 

expressed as Equation 6.16, 

 

𝑓(𝑥) = 𝑎1𝐴(𝑥)𝐵(𝑥)      (6.16) 

 

Substituting 𝐴(𝑥) ≡ 1 − 𝑒−𝑎2(𝑥−𝑥𝑡ℎ𝑟) and 𝐵(𝑥) ≡ 𝑒(−𝑎3(𝑥−𝑎4)),   

  

𝑓(𝑥) = 𝑎1(1 − 𝑒−𝑎2(𝑥−𝑥𝑡ℎ𝑟))(𝑒(−𝑎3(𝑥−𝑎4)))   (6.17) 

 

where 𝐴(𝑥) is the initial rapid rise and 𝐵(𝑥) is the tail of the background distribution.   

𝑎1,  𝑎2,  𝑎3, and 𝑎4 are the constant coefficients to be fitted for, while 𝑥𝑡ℎ𝑟   is the 

threshold value. The fit was executed using the maximum likehood method, and it was 

found that the maximum somehow varies with the initial guesses for the coefficients. 

Thus, the starting values were varies to get an acceptable maximum likehood fit. In the 

region of greatest concern, the mass of Ξ−‘s and also the region which is near the 

threshold 𝑎1 dominates the function shape. The mass distributions fitted gives 𝜒2/

𝑁𝑑𝑜𝑓 = 2.38. 
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Figure 6.6: The mass distribution 𝒎(𝚲𝝅−) of all simulated background 𝚵−with (a) 
full mass window (b) present of mass window. 
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A fit of a mass spectrum was done not only because of the function needed, but it is 

because one would want to separate between signal and background. Therefore, certain 

assumptions about their shapes were made. For instance, signal is driven by Breit-

Wigner, and background is driven by polynomial or exponent or whatever smooth 

function with not too many parameters. These gives an additional degree of freedom 

and one can separate between signal and background by looking into events in data 

which are the mixture of both signal and background. This becomes possible due to 

assumptions made about the shapes of signal and background; without any assumption 

about their shape, one cannot separate one from another.     

A mass window functions to select events in a certain range dominated by signal. It 

is reasonable strategy to use the Gaussian function for signal samples or any other 

function which is suitable to describe the distributions. The two Gaussian functions give 

better fitting method in signal compared to BW function.  

As for background, if it is “smooth” in the fitting area and does not have a threshold, 

typically it is needed to try several different polynomial orders and choose the minimum 

power that can describe the spectrum good enough. If the background clearly has a 

specific structure, for example a threshold, one typically needs to invent an appropriate 

function. As long as background is concerned, the fitting function really fully empirical 

and data-driven. From the figures shown above, WA’s functions are much more 

relevant to choose due to smaller 𝜒2/𝑁𝑑𝑜𝑓 obtained.  
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6.3 Functions and Fitting in HERA II Data 

The signal and background functions, i.e. two Gaussian functions and WA’s function 

were used to fit the whole spectrum in HERA II real data situation, as expressed, 

 

𝐴𝑓𝑠𝑖𝑔(𝑥) + 𝐵𝑓𝑏𝑘𝑔(𝑥)      (6.18) 

𝑓(𝑥) = 𝐴(𝑎0𝑒
−(𝑥−𝑎1)2

2𝑎2
2 + 𝑎3𝑒

−(𝑥−𝑎4)2

2𝑎5
2 ) + 𝐵(𝑎1𝐴(𝑥)𝐵(𝑥))   (6.19) 

𝑓(𝑥) = 𝐴(𝑎0𝑒
−(𝑥−𝑎1)2

2𝑎2
2 + 𝑎3𝑒

−(𝑥−𝑎4)2

2𝑎5
2 ) + 𝐵(𝑎1(1 − 𝑒−𝑎2(𝑥−𝑥𝑡ℎ𝑟))(𝑒(−𝑎3(𝑥−𝑎4)))) (6.20) 

 

Substituting 𝐴 = 11.59 and 𝐵 = 1.05, the 𝜒2/𝑁𝑑𝑜𝑓 obtained based on fitting for the 

certain sideband window was about 1.13. The 𝐴 and 𝐵 values improved to be 66.5 and 

0.99 respectively, after being fitted. 
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Figure 6.7: The mass distribution 𝒎(𝚲𝝅−) of all reconstructed 𝚵−with (a) full 
mass window (b) present of mass window.  
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6.4 Total Cross Section 

In high energy physics world, total cross section means the probability of how many 

interactions occur during the collision between those tiny particles. In this case, it is the 

collision between electron, 𝒆 and proton, 𝒑.  Usually, it is calculated by measuring the 

area under the graphs or histograms in the unit of area, namely barn. A barn is known as 

𝟏𝟎−𝟐𝟖𝒎𝟐(𝟏𝟎𝟎 𝒇𝒎𝟐). The total cross section, 𝝈 is defined as follows, 

 

𝜎 ≈
𝑁

𝐴.𝐿.𝐵𝑅
      (6.21) 

 

where 𝑁 is the total number of reconstructed Ξ− at true level, 𝐴 carries the acceptance, 𝐿 

is the integrated luminosity and 𝐵 is the branching ratio of the selected decay channel. 𝐴 

is determined by Monte Carlo as definition in Section 5.8, while 𝐵𝑅 gives the value of 

(99.89 ± 0.035) % following the decay channel Ξ− → Λ + 𝜋−. The total cross section 

inclusive Ξ− in HERA II data was found to be 13.98 ± 0.002 𝑝𝑏−1, while the cross 

section in HERA II MC 0.2 ± 0.0039 𝑝𝑏−1. HERA II data shows higher cross section 

compared to ARIADNE MC due to larger sample contains in data than Monte Carlo.    

 
Figure 6.8: The comparison of cross section all generated and reconstructed 𝚵− 
using ARIADNE Monte Carlo and HERA II data. 

Univ
ers

ity
 of

 M
ala

ya



 

88 

 

CHAPTER 7: CONCLUSION 

The analysis was carried out using HERA II data obtained from the ZEUS detector in 

the running time from 2002 up to 2007. The data consists of 355 million events with 

luminosity of 360 pb−1, at center of mass of  318 GeV.  

The matching procedure between generator level and reconstructed level has been 

done, and it was found that track efficiency to be 8 %. This is because of many 

Ξ− candidate falls and was not detected due to large 𝜂 track in the detector region. 

Based on this research study to find Ξ− in HERA II period, the particle was slightly 

possible to be found. From this analysis, the techniques of optimization cuts being used 

were crucial step because this could lessen the background. There are a few parameters 

being selected to under gone these cuts, as stated in Chapter 5. For the future works, 

more parameters can be used and tighter optimize cuts can be considered so that better 

signal peaks can be showed in HERA II data. In a nutshell, after going through 

optimization cuts, the total efficiency percentage were about 0.004% and 0.1961%  Ξ− 

candidates being found in MC and data respectively. 

Apart from that, the shutdown of detector operation in purpose of increasing 

luminosity, has resulted in a large amount of background beam gas events and 

synchrotron radiation.  Hence, to take useful physics data, some parts of the experiment 

needed to be modified because of the increasing multiple scattering process due to the 

additional material from the MVD. Thus, the peak of signal can hardly be seen in 

HERA II run.  Apparently, in finding the configuration of any high energy physics 

experiment, one should aim to get the most physics results with least present of 

background. This applies on how well the CTD operates. A direct test should be done to 

test the effectiveness of MVD following the luminosity upgrade.  
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