MODELING AND FORECASTING OF BURSA MALAYSIA COMPOSITE INDEX USING LINEAR TIME SERIES MODELS AND KALMAN FILTER

HAMZAH AROF

FACULTY OF BUSINESS & ACCOUNTANCY UNIVERSITY OF MALAYA

MARCH 2005
Modeling and Forecasting of Bursa Malaysia Composite Index Using Linear Time Series Models and Kalman Filter

Hamzah Arof

Doctor of Philosophy
Electrical Engineering
University of Wales
United Kingdom
1997

Submitted to the Graduate School of Business
Faculty of Business and Accountancy
University of Malaya, in partial fulfillment of the requirements for the Degree of Masters of Business Administration

March 2005
Abstract

In this study, attempts have been made to analyze, model and forecast the average monthly movement of Bursa Malaysia composite index (BMCI) using Box-Jenkins ARIMA models. First the daily closing values of BMCI were averaged for each month from January 2000 until December 2004. Altogether, there are 60 monthly averages in the times series. The data was differenced once to remove trend and thus obtain stationarity. Differencing the data nullifies the use of back operator and reduces the general ARIMA model to ARMA form. Next, three models with the lowest Akaike Information Criterion were selected and they were the AR(1,0), MA(0,1) and ARMA(1,1) models. Statistical parameters associated with these models were obtained by minimizing the least square errors. Based on the values of the estimated parameters, predicted values of the time series of each model were compared to the actual values. The average value of BMCI closing index for January 2005 was forecasted by the three models and compared against its true value. Finally, a completely different model was developed using Kalman filtering technique and its performance was compared to those of the three ARIMA models. Results suggest that the Kalman filtering method offers the best least square estimate of the BMCI time series. The performances of the three ARIMA models are nearly identical with the MA model showing a slight advantage over the AR and ARMA models. Statistical softwares that were used to derive the par
the ARIMA models is a public domain software known as R which was developed by several universities. Microsoft Excel was also used intermittently. The Kalman filter program was developed using C programming language.
Acknowledgements

I would like to convey my gratitude to my supervisor, Prof. Madya Dr. Fazilah Abdul Samad for her understanding and patience. I am also deeply indebted to those who helped, supported and encouraged me to complete this dissertation.
TABLE OF CONTENTS

CHAPTER 1 : INTRODUCTION

1.1 Introduction to Time Series Analysis .. 1

1.2 Objectives and Scope of Study .. 2

1.3 Organization of Report ... 2

CHAPTER 2 : LITERATURE REVIEW

2.1 Random Variable, Mean and Variance ... 4

2.2 Autocorrelation and Partial Autocorrelation 5

2.3 Normal Distribution .. 5

2.4 Linear Time Series Model Development 6

2.5 Kalman Filtering Model Development ... 9

2.6 Survey of Past Work .. 11

CHAPTER 3 : RESEARCH METHODOLOGY

3.1 Assumptions of ARIMA Model ... 18

3.2 AR and MA Models ... 19

3.3 ARMA Model ... 21

3.4 Statistical Tests ... 22

3.4.1 Adjusted R2 ... 22
LIST OF FIGURES

Figure 1 Monthly BMCI from January 2000 until December 2004 .. 30
Figure 2 Monthly BMCI after being differenced once ... 31
Figure 3 ACF plot of the differenced BMCI data ... 32
Figure 4 PACF plot of the differenced BMCI data ... 33
Figure 5 Predicted values of AR(1) versus real values .. 38
Figure 6 ACF plot of residuals for AR(1) .. 39
Figure 7 PACF plot of residuals for AR(1) .. 40
Figure 8 Predicted values of MA(1) versus real values ... 43
Figure 9 ACF plot of residuals for MA(1) .. 44
Figure 10 PACF plot of residuals for MA(1) .. 44
Figure 11 Predicted values of ARMA(1,1) versus real values ... 48
Figure 12 ACF plot of residuals for ARMA(1,1) ... 49
Figure 13 PACF plot of residuals for ARMA(1,1) ... 49
Figure 14 Predicted values of Kalman filter versus real values .. 54
Figure 15 ACF plot of residuals for Kalman filtering ... 55
Figure 16 PACF plot of residuals for Kalman filtering ... 56
LIST OF TABLES

Table 1 Summary of expected patterns in the ACF and PACF 31
Table 2 Values of the ACF and PACF coefficients 34
Table 3 AIC values of various ARMA(p,q) models 35