USING ANALOGUES TO PREDICT
STUDENT’S PERFORMANCE AND
GENERATE ADVICE

By
CHONG LEE KIAN
WEK 990223

A THESIS PRESENTED TO THE FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY OF UNIVERSITY MALAYA IN PARTIAL
FULFILLMENT ()l"~ THE REQUIREMENT FOR HE DEGREE OF
BACHELOR OF COMPUTER SCIENCE

UNIVERSITY MALAYA
JANUARY 2002

ABSTRACT

This report provides an overview and technical report of what 1 did in my thesis.
The main objective of this project is to develop a system to predict student’s performance

and generate advice for all the computer science students in University Malaya.

Nowadays, student advising become more important because of the increasingly
amount of the computer science student problem in the Faculty Computer Science &
Information Technology (FCSIT). Students receive counseling help in planning their
academic schedules and in clarifying career goals throughout their few years in
University Malaya. Academic advisor and students work together to review academic
success to verify completion of study requirements, and to discuss student’s interest.
Therefore, it is essential for the academic advisor to have a system to assist them in the

administration work. The system will enhance the quality of work and reduce the

workload of the academic advisor, also as a lecturer,

The effectiveness of the advising task may be enhanced with the use of
procedures or tools that forecast the student’s future class performance. This project
presents a prototype intelligent system that uses case-based reasoning in order to forecast
a student’s performance. The system draws conclusion on the basis of similarities
between a student’s current class performance and the performance of other students that
attended the same class. Presented here are the problem domain, my approach for an
operational system, and the results achieved by the developed prototype system. Findings
of the prototype implementation indicate that the potential utility of this predictive
approach is high. Any educator may develop a similar system that is customized to the
structure of his/her own classes and be capable of assisting in advising students on their

class progress way before it is too late for the student.

ACKNOWLEDGEMENTS

The development of the student performance prediction and advisory system was

carried out with the advice, assistance and contributions from many individuals.

[would like to thank to my supervisor, Dr. Syed Malek Fakar Duani (Deputy
Dean (Academic)), for spending his valuable time to give guidance and advice to me in
developing the project. I would also like to convey my special thanks to my moderator,
Dr. Roziati Zainuddin (Head of Al Department) for taking precious time to listen my

presentation during VIVA and giving me some suggestions and guidelines about the
project.

Finally, many thanks to my fellow course mates, who were giving me an utmost

support during my final report development.

e

CONTENTS

ABSTRACT il
ACKNOELEDGEMENTS iii
CONTENTS [\
LIST OF FIGURES vii
LIST OF TABLES ix
CHAPTER 1 INTRODUCTION 1
1.1 Project Definition 1
1.2 Project Objectives 3
1.2.1 Purposes of Student’s Performance Assessment 3

1.22 Aims and Goals of Academic Advising 4

1.3 Project Scope 6
1.4 Expected Outcome 7
1.5 Facilities Required 8
1.6 Project Development Life Cycle 9
1.7 Project Schedule 12
CHAPTER2 LITERATURE REVIEW 15
2.1 The Concept of Advising 15
2.1.1 Advisory System 16

2.12 Measurement and Evaluation 17

2.1.3 Why Evaluate Student? 20

22 Artificial Intelligence 22
23 Overview of Case-Based Reasoning 24
23.1 Introduction 24

232 Whatls CBR? 26

233 Whatls A Case? 27

234 A History of CBR 28

235 CBR Cycle 29

236 Advantages and Disadvantages of CBR 35

237 Comparisons and Differences with CBR 38

CHAPTER3 METHODOLOGY
3.1 System and User Requirements
3.1.1 Functional Requirements
3.1.2 Non-Functional Requirements
3.2 Waterfall Model with Prototyping
3.3 Case-Based Reasoning Approach
3.3.1 Method Description
332 Feature-Based Retrieval
3131251 Nearest Neighbor Method

3322 Induction Method
333 Case Base

334 Matching
33.4.1 Assessing Similarity Between Cases
3342 Handling Missing Values

3.3.5 Suitability

3.4 Development Environment

3.4.1 Hardware Requirements

342 Software Requirements
3421 Operating System

3422 System Application Programming Language

CHAPTER 4 SYSTEM DESIGN
4.1 System Functionality Design
42 Effective Output Design
43 Effective Input Design
4.4 User Interface Design

CHAPTERS SYSTEM IMPLEMENTATION
5.1 Developing Environment
5.1.1 Hardware Tools
5.1.2 Software Tools
5.2 System Implementation
53 Interface Implementation
53.1 User Input Form
532 User Output Form

54 Prediction Implementation

39
39
49
41
43
46
46
48
48
49
51
54
55
55
57
59
59
59
59
60

61

67
69
71

73

73
74
75
76
76
77
78

5.5 Advice Generation Implementation

79
5.6 Internal Structure 80
CHAPTER 6 SYSTEM TESTING 83
6.1 Module/Unit Testing 83
6.2 Integration Testing 84
6.3 Function Testing 85
6.4 Other Testing 85
CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION 86
7.1 System Strength 86
7.2 System Limitations 87
7.3 Future Enhancement 88
7.4 Problems Encounter And Solution Taken 89
7.5 Knowledge Gained 90
7.6 Conclusion 91
APPENDIX A: SCREEN SHOTS 92
APPENDIX B: USER MANUAL 103
BIBLIOGRAPHY 115

vi

LIST OF FIGURES

Figure 1.1
Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure Al
Figure A2
Figure A3
Figure A4
Figure AS
Figure A6

Figure A7

Phases in System Development Life Cycle

Applying Al Concepts with a Computer

The Case-Based Reasoning Cycle

Waterfall Model with Prototyping

Case-Based Reasoning System

Nearest Neighbor Method in Feature-Based Retrieval
Induction Method in Feature-Based Retrieval
Context Level Diagrams For the Prediction & Advisory System
Structure Chart of Prediction & Advisory System
Data Flow Diagram For Prediction & Advisory System
Data Flow Diagram For the Prediction Module
Performance Result Output

Advice Page Output

Input Prototype For Student Information

Main Menu Screen

Splash Screen

Student Performance Predictor Wizard

Input Student Infor

Input Subject

Student Performance |

Student Performance 2

Summary of User Record

vii

29

43

46

49

50

65

66

67

68

70

70

74

Q2

93

94

95

96

97

08

Figure A8
Figure A9
Figure A10
Figure A1l
Figure Bl
Figure B2
Figure B3
Figure B4
Figure B5
Figure B6
Figure B7
Figure B8
Figure BY
Figure B10
Figure B11

Figure B12

Prediction Result

Prediction Result and Advice

Student Record (Read Only)

About Student Performance Predictor
Splash Screen

Desktop of Student Performance Predictor
Predictor Wizard

Input Student Information Form

Choose Subject Form

Student Performance (Part 1)

Student Performance (Part 2)

Summary Form

Message Box show the new record has been saved
Prediction Result

Login to View Record

Student Record (Read Only)

Vil

00

100

101

102

104

105

106

107

108

109

110

111

LIST OF TABLES

Table 1.1
Table 2.1
Table 3.1
Table 3.2
Table 3.3
Table 4.1

Table 5.1

Project Schedule

Comparisons Between CBR and Other Machine Learning Methods
Grade and Grade Point

Student Attributes and Their Possible Values

Comparing Between Library Cases and Input Case

Description of Symbols Used in DFD

Case’s non-indexing features and indexing features

14

52

53

56

64

78

CHAPTER 1 INTRODUCTION

CHAPTER 1
INTRODUCTION

This introductory chapter gives a description or purpose of the project and problem to be

solved. It introduces the project in a general view and the rationale of the project.

This chapter uncovers:
» Project Definition,
« Project Objectives,
« Project Scope,
« Expected Outcome,
e Project Development Life Cycle

o Project Schedule.

1.1 Project Definition

Academic advising is a developmental process, which assist students in the clarification

of their life or career goals and in the development of educational plans for the realization

of these goals.

Advising students on their class performance and motivating them in order to continue or
improve their performance is an integral part of every instruction. The advising tasks may
be enhanced with the use of methodologies or tools that forecast the student’s future class

performance. Predicting future class performance is a difficult process and every attempt

to antomate this task must overcome a number of challenges.

To address these challenges, it is essential to provide a computerized system for the

advisors in predicting student’s performance and generating academic advice to student.

CHAPTER 1 INTRODUCTION

Enhanced computer technology has made it possible to systematically store and retrieve
large amounts of student’s information. This technology has changed the task of
academic advising by making transcript and course requirement information readily
available to faculty and staff who advise students. Use of the computer eliminates much
of the clerical burden once held by advisors who had to transfer information to files by
hand. Computers also provide the opportunity to perform more complex tracking of
student progress and outcomes. The computer assisted advising practices outline the

types of data collected and how they are used, including the use of tracking to plan
interventions for at-risk students,

The Student Performance Predictor uses case-based techniques. Case-based Reasoning
(CBR) systems adapt old solutions to meet new demands, using old cases to explain new

situations, using old cases to critique new solutions, or reasoning from precedents to

interpret a new situation or create an equitable solution to a new problem.

Case-based reasoning (CBR) systems rely on various "knowledge containers," such as the
case-base and similarity criteria, that affect how well a system performs, Explicit or
implicit changes in the reasoning environment, task focus, and user base may influence
the fit of current knowledge state to task context, which can affect the quality and
efficiency of reasoning results. Over time, the knowledge containers may need to be

updated in order to maintain or improve performance in response to changes in task or
environment.

()

CHAPTER 1 INTRODUCTION

1.2 Project Objectives

The project objectives are divided into two main parts, the purpose of student’s

performance assessment and the aims and goals of academic advising.

1.2.1 Purposes of Student’s Performance Assessment

The student performance prediction system identifies five purposes. These five purposes
include:

o Monitoring student progress toward desired outcomes is a feature of most

assessments developed at any level of initiation.

» Holding schools and teachers accountable for student achievement — either
formally, through a system of rewards and sanctions, or informally, through such
mechanisms as reporting school and district performance averages in the media — is

a purpose shared by several of the performance assessment systems included in the

study.

o Certifying student skills and capabilities is a purpose of some performance

assessment systems.

o Achieving better alignment of curriculum, instruction, and assessment is the focus
of some national reform efforts and is sometimes an implicit goal of state-initiated

pcrformance assessment systems as well.

» Informing and influencing curriculum and instructional practice is the most
frequently cited purpose underlying assessment reform; it is assumed that the use of

performance assessments will necessarily promote shifts in pedagogy to emphasize

higher-order thinking and problem-solving skills.

CHAPTER 1 INTRODUCTION

1.2.2 Aims and Goals of Academic Advising

The faculty has approved a system for academic advising and articulated the following

aims and goals of effective academic counseling;

For students:

iil.

1v.

Vi.

vil.

Enable students to take greater responsibility for designing their programs of study.

Increase the degree of motivation with which students approach their academic
works.

Encourage and assist the student to explore and articulate interests or career goals.

Encourage the student to take a “reasoned, contemplative approach” to the problem

of designing a program of study.

Assist the student in designing a program within the liberal arts framework that is

coherent and purposeful and is clearly related to interests or career goals,

Ensure that the student has been fully informed about all available options and has
been encouraged to examine all these options, and that the course of study is

designed to meet the student’s individual goals.

Provide the student every reasonable opportunity to have an adviser who takes an

empathetic interest in him or her as an individual.

For academic advisers:

To provide advisers who are willing not merely to monitor the student’s academic

program, but also to speak personally with the student and explore his or her

changing interests and goals.

CHAPTER 1 INTRODUCTION
ii. To motivate faculty members to give high priority to advising.

iii, To provide a framework for discussion and exchange among advisers so that they

may learn and profit from each other’s experience,

iv. To motivate advisers to improve their advising and help them find concrete ways to

do so.

v. To ensure that advisers have current and detailed information about course offerings

and are aware of the full variety of options offered to students.

vi. To facilitate the accumulation of a body of collective interpretation to help advisers

make judgments in cases where administrative policy is not clear.

vii. To provide for evaluation of the performance of individual advisers and for

concrete suggestions about ways in which performance may be improved.

viii. To provide for evaluation of the advising system and for the discovery of

modifications that might improve its usefulness.

CHAPTER 1 INTRODUCTION

1.3 Project Scope

The function of this project is to develop a system to predict student’s performance based
on few factors such as frequencies of attending classes, commitment, class participation,

homework assignments, a series of laboratory assignments, projects, midterm tests and

final examination.

This system typically was developed for the Department of Artificial Intelligence,
Faculty of Computer Science & Information Technology (FCSIT). The major concern is

to predict the computer science students’ performance and generate academic advices

according to their performance.

The problem domain presented here are students’ performance. The system draws
conclusions on the basis of similarities between a student’s current class performance and

the performance of other students that taken the same subject course.
Basically the system has several scopes:

« Student information management

o Counseling record management

« Generation of various type of report and analysis for counselor’s reference

« Generation of academic advice on student’s performance

O

CHAPTER 1 INTRODUCTION

1.4 Expected Outcome

Education both enriches our lives and empowers us with the knowledge and skills we
needed to succeed. Professional counselors play a eritical role in maximizing educational
opportunities. Consequently, it is a great expectation that this project will produce a
complete prediction and advisory system for the Faculty of Computer Science &

Information Technology, University Malaya.

The outcome of this project is to efficiently help students to realize their potential

academically, personally and socially. Therefore, the outputs of this project are listed
below:

« Various type of information which is needed by computer science students
« Progress report for use by counselor or the students themselves
« Better student and counselor information management

« More effective and efficient work

CHAPTER 1 INTRODUCTION

1.5 Facilities Required

Hardware requirement;

The development of Student Performance Predictor requires a machine with

¢ Genuinelntel Pentium(r) 111 500 MHz Processor
« 256MB RAM
o 11 Gigabyte hard drive storage

e Mouse and keyboard

Software requirement:

Development of Student Performance Predictor is performed on the following platforms:

« Windows 98 operating system
« Microsoft Visual Basic 6.0

« Microsoft Notepad

CHAPTER 1 INTRODUCTION

1.6 Project Development Life Cycle

A development life cycle as shown in Figure 1.1, is used to develop an advisory system

that fulfills the needs of end users.

The development life cycle consists of six major phases, which are:

e Assessment

« Knowledge Acquisition
e Design

o Test

« Documentation

« Maintenance

Phase 1 Reformulations
Assessment
Requirements
Phase 2 . Explorations
Knowledge Acquisition
Knowledge l
Phase 3 Refinements

Design

Structure
Phase 4 E
Test

Evaluation

Phase 5

Documentation

Produc

Phase 6

Maintenance

Figure 1.1: Phases in System Development Life Cycle

CHAPTER1 INTRODUCTION
Phase 1 — Assessment

During the assessment phase, studies are conducted to determine the feasibility and
justification of the candidate problem. Following this study, the problem is further
examined to define the overall goals of the project. This effort specifies the important
features and scope of the project, and also establishes the needed resources including
project personnel. Sources of needed knowledge, including experts and various reports,

are also identified. After this initial phase of the project, the principal project

requirements are defined.

Phase 2 — Knowledge Acquisition

The objective of the knowledge acquisition phase is to acquire the knowledge on the
problem that is used to guide the development effort. This knowledge is used to provide

both insight into the problem and the material for the design of the expert system.

Phase 3 — Design

During the design phase, the overall structure and organization of the system’s
knowledge are defined. Methods are also defined for processing the knowledge. A
software tool is chosen that can represent and reason with the system’s knowledge in a
manner that is similar to the approach taken by the human expert. An initial prototype
system is built during the design phase. Its purpose is to provide a vehicle for obtaining a
better understanding of the problem. By first building a small system, and reviewing the
test results with the domain cxpért, insight is gained into additional system requirements.
The prototype also serves as the focal point for further interviews with the expert. System
design is inherently an iterative process where findings from system testing are used to

refine the system’s knowledge and structure.

10

CHAPTER 1 INTRODUCTION

Phase 4 — Testing

The testing phase is not a separate task, but rather a continual process throughout the
project. Following each interview with the domain expert, new knowledge is added to the
system. This is followed by additional testing where again the system’s knowledge may
be modified. The major objective of testing i1s to validate the overall structure of the
system and its knowledge. In addition, this phase studies the acceptability of the system
by the end-user. Throughout the testing, the designer works closely with both the domain
expert who serves to guide the growth of the knowledge and the end-user who provides

guidance to the development of the system’s interface.

Phase 5 - Documentation

The documentation phase addresses the need to compile all the project’s information into
a document that can meet the requirements of both the user and developer of the expert
system. Accommodating the user requires that the documentation meets requirements
found in most software projects. That is, it explains how to operate the system and
possibly provides a tutorial that step through the major operational features of the system.
In particular, the documentation must contain a knowledge directory that provides a well-
organized presentation of the system’s knowledge and problem solving procedures. It is

augmented throughout the project as new knowledge is obtained.

Phase 6 — Maintenance

After the system is deployed in the work environment, it will need to be periodically
maintained. The system’s knowledge may need to be refined or updated to meet current
needs. Major system requirement changes may also occur that would require a
reformulation of system specifications. Therefore, it 1s important that an effective

maintenance program be established for an expert system project.

CHAPTER 1 INTRODUCTION

1.7 Project Schedule

To achieve the project objectives, a project schedule was planned to manage the time and
task that must be accomplished within the development phases. The project schedule are

divided into nine major activities which are listed as below:

1. Research and literature review

ii. Identifying problems, opportunities and objectives
iii. Determining information requirements

v. Analyzing system requirements

\2 Designing the recommended system

Vi. Developing and documentation application

vii. Testing and maintaining system
viii. Implementing and evaluating system

IX. Writing report

Research and literature review on the prediction and advisory system is carried out,

Resources for the literature review included reference book, journals, Internet and ete,

In identifying problems, opportunities and objectives phase, problems in this project
were identify, opportunities where the situation that could be improved were recognized.
The objectives of the system were also determined. This phase was carried out together

with the literature review.

Determine information requirement is the next phase where the requirements of users
were determined. Several techniques were used to define information requirements

including interviewing. This phase was carried out wit the literature review.

Analyzing system needs phase will be carried out after the information requirements are
determined. One of the main activities of the prediction and advisory system is the data

flow through the system, so data flow diagram will be used.

CHAPTER 1 INTRODUCTION

During designing the recommended system, collected information will be used in order
to accomplish the logical design of the system. Part of the logical design of the system is

designing the user interface. The design phase also includes designing the database.

In the phase of developing and documenting application, student performance prediction
application and advisory application were developed. These application programs were
developed using Microsoft Visual Basic 6.0. The modular development was applied
where programming is broken into logical and manageable portions. During this phase,

documentation for application, including procedure manual was also developed.

In testing and maintaining system phase, the system will be tested. Testing will be

conducted includes unit testing, module testing, sub-system testing and system testing.

Implementing and evaluating system is the final phase to be carried out where the users

will be trained to use the system and the system will be evaluated.

Table 1.1 on the next page illustrates the project schedule from July 2001 to January
2002.

CHAPTER 1 INTRODUCTION

Activity

Research and Literature

Review

Identifying Problems,

Opportunities and Objectives

Determining Information

Requirements

July

Aug | Sept

Oct

Nov

Dec

Jan

Analyzing System

Requirements

Designing the Recommended

System

Developing and

Documentation Application

Testing and Maintaining

System

Implementing and Evaluating

System

Writing Report

Table 1.1: Project Schedule

14

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2
LITERATURE REVIEW

This chapter will discuss the meaning and overview of some areas covered in this project
g p

literally. The major area will be covered are:

« The Concept of Advising,
« Artificial Intelligence

e Overview of Case-based Reasoning,

2.1 The Concept of Advising

"Academic advising is a developmental process which assists students in the clarification
of their life/career goals and in the development of educational plans for the realization
of these goals. The advisor serves as a facilitator of communication, a coordinator of
learning experiences through course and career planning and academic progress review,
and an agent of referral to other campus agencies as necessary." (American College
Testing Program, 1984) [23]

[deally, advising is first a means of exploring careers and majors and then a method for
selecting courses and arranging schedules. As buddies in the process, students can learn
to discover options, frame questions, gather information, and make decisions, which can

increase their involvement in university and encourage them to persist to graduation.

Research on university students suggests that activities like advising could increase
students' involvement in their college or university experiences. This report focuses on

outcomes of advising in the context of research on contact between faculty and students,

students' involvement, and persistence, [4]

CHAPTER 2 LITERATURE REVIEW

2.1.1 Advisory System

Each student is assigned to a faculty adviser who has been chosen especially for this task
and who works with his or her advisee until the end of the sophomore year. Juniors and
seniors are assigned either to their major department chairs or to other members of the
department, if the chair determines such an assignment appropriate. Students should be
particularly careful when arranging their academic programs, for they must comply with
all graduation requirements and fulfill specific prerequisites. Faculty advisers are not

infallible, and students must remember that the final responsibility for meeting all of the

academic requirements rests with the individual student. [24]

Both adviser and student have a responsibility in counseling. It is essential that both take
the matter seriously if the student is to achieve a meaningful and successful program of
study. In the dialogue between adviser and student, the adviser serves in two capacities:
to interpret the university and its goals to the student, and to encourage the advisee to
gain understanding of his or her potential and how it may be developed. In a very
practical way, the adviser is a source of information for the advisee, explaining campus
rules and customs, giving clarification about special programs and requirements, and
more. The adviser will make this step as easy as possible for the student. The adviser

does, however, encourage student initiative as an important aspect of the individual’s
self- development.

In most elementary schools, students spend the better part of their day with one teacher.
That person gets to know the students extremely well, and usually gets to know the
students' parents fairly well, too. In this type of setting, the art or physical education
teacher naturally tells the 2nd grade teacher about an unusual incident in her class. When
a 2nd grader misbehaves on the playground or wins a music award, the regular classroom
teacher is informed. In secondary schools, most students have 4 to 8 teachers each day.

Guidance counselors typically have 125 to 350 students assigned to them and little

sustained contact with most students. [21]

16

CHAPTER 2 LITERATURE REVIEW

In an advisory system, the goal is to have one adult in a secondary school who sees each
student every day during a time similar to a traditional homeroom time. The adult 1s also
that student's advisor-—an element that differentiates advisory time from homeroom time.
Such issues as the role of the guidance counselor and the method by which a reasonable
ratio of students to staff can be achieved are addressed in later chapters. For now, what's

important is that an advisory system guarantees certain benefits to students in a secondary
school [21]:

« Each student is known well by one staff member.
o The staff member receives all important information on the student.
o The staff member knows the student's parents or guardians.

« Each student has one advocate in the school.

No student can get lost because she is quiet, or he doesn't stand out in any obvious way—
or because no particular adult thinks having a strong relationship with a student is her

responsibility. All secondary schools need an advisory system, and the larger the school,
the greater the need.

CHAPTER 2 LITERATURE REVIEW

2.1.2 Measurement and Evaluation

Measurement and evaluation are important in student’s performance prediction and

advising. The meaning of the two terms is explained below.

Measurement

Measurement as used by teacher is a process of collecting information about the
performance of a student or a class. It is a descriptive process, which describes student
performance or characteristic. Measurement often includes the assignment of a number to
express in quantitative terms the degree to which a student possesses a given
characteristic. For instance, a student’s ability is measured to write a program using C++,
and then his or her score, let say 80 of 100 points on a scoring sheet will be recorded. In
that case, a student’s performance has been measured and reported in numerical or
descriptive terms. Such quantification tends to increase objectivity of the description so

that it will have the same meaning from time to time and from person to person.

Measurement is not an end in itself. It does not imply judgments concerning the worth or

value of the behavior being measured.

One of the most common tools of measurement used by teachers is the paper and pencil
test. It measures many kinds of performance well. It is obviously not the only tool,
however. Scales, cameras, tally sheets, anecdotal records and many more tools are used

to collect information about (measure) student performance.

CHAPTER 2 LITERATURE REVIEW

Evaluation

When a teacher makes value judgments about students' performance, then she is doing
more than measuring, He is using measurement data to evaluate. Evaluation takes place
when a teacher determines which students have satisfactory completed a laboratory

project and which ones have not. Evaluation occurs when teacher compares a student’s

potential with his or her performance.

There was a comparison made in each example of evaluation above. The performance of
students in the computer science course was measured. That performance was then
compared to the minimum requirements for passing the class: those who met or exceeded
the requirements passed. Student's qualifications or behavior was compared with the
requirements, and some students were found eligible to participate in interschool
competition; the child's performance was measured and then compared with his potential.

Evaluation, then, is a process of comparing student's performance or characteristics
against a standard.

A student's performance may be compared with the performance of other students
(normative evaluation); or a student's performance may be compared with a
predetermined standard (criterion evaluation) as in the case of determining which
students are eligible for interschool competition. Deciding that a student’s spelling score
of 70% earns him or her an A (any score of 65 to 80 is an A in this teacher's class) is

another example of criterion evaluation because the teacher compared the student’s score

with the pre-set standard she had set for A's, B's, C's, etc.

Although evaluations in education do not necessarily involve measurements, the usual

purpose of measuring is to provide data that may be used in the evaluative process.

19

CHAPTER 2 LITERATURE REVIEW

2.1.3 Why Evaluate Student?

Lecturer has many reasons for evaluating students, They are classified as either primary

or secondary reasons.

Primary Reasons:
Primary reasons for evaluating pupils are those reasons, which are an essential part of a

lecturer’s main responsibility--helping students, improve in knowledge and skills,

feelings and attitudes; helping student learn.

1. Improving instructional materials
Lecturer need information regarding how effective teaching procedures, activities, the
textbook, and other materials are in teaching what needs to be learned. Evaluation can
provide this. If the teacher has the information and updates it frequently then he can

modify and plan instruction, which will be best for the students.

2 Improving student learning
Both lecturers and students need to know how students are doing. First, of course,
they should know what the goal is toward which the students are studying--what they
eventually need to know or to be able to do. If through evaluation lecturers and
students get feedback as to what students already know, have learned, or don't know

yet, then lecturers can direct students' study appropriately to learn the remaining

material.

3 Determining content mastery

Lecturer evaluates students to determine if and when they have mastered the subject

matter.

20

CHAPTER 2 LITERATURE REVIEW

4

(o

Establishing criteria or standards of performance for the course

Through evaluation a lecturer can better decide how much of the material to be taught
can be learned in the time available by the kind of students who usually enroll in the
class. With this information the lecturer can establish realistic criteria or standards for

the class,

Teaching
Evaluation activities, if appropriately planned and used, can be powerful learning
activities. Self-tests, for example, can communicate to students what the lecturer

thinks is important and can give students valuable practice in doing whatever they are

learning to do.

Secondary Reasons:

Secondary reasons for evaluating students are those reasons which are not central to the

lecturer's responsibility to help students learn but which are often met through evaluation.

The needs of others involved in education--parents of the students, administrators,

taxpayers, etc.--are met through evaluation, but for this course, these are secondary,

/

8o

Grading students

Parents, administrators, universities, and sometimes employees need evidence of
pupil progress. Whether progress is reported as a ranking in the class or as a score,
which represents how much of the subject has been acquired by the student,

evaluation provides the data for the report.

Placing students in special groups or ranking students for special purposes
Sometimes lecturers choose to group students according to their ability. Students are
selected for special experiences or honors, or contests. Evaluation is used to help

teachers make the decisions.

Conducting research on teaching methods or curriculum
Researchers often measure students' ability or growth or needs in order to make

decisions regarding which method is effective or which subjects should be taught.

21

CHAPTER 2 LITERATURE REVIEW

2.2 Artificial Intelligence

Artificial Intelligence (Al) is a field of study in computer science that pursues the goal of
making a computer reason in a manner similar to humans. The main goal of Al is to make
computers smarter by creating software that will allow a computer to mimic some of the

functions of the human brain in selected application [19].

Artificial intelligence gives computers added computing capability, allowing them to
exhibit more intelligent behavior. Intelligence, the ability of a human being to acquire
knowledge and apply it, means the capability of thinking and reasoning. To a limited
degree, artificial intelligence permits computes to accept knowledge from human input,

and then use that knowledge through simulated thought and reasoning process to solve

problems.

A key part of any Al application is knowledge, an understanding of some subject are
obtained through education and experience. A computer can acquire knowledge given to
it by human experts. The knowledge consists of facts, concepts, theories, procedures, and
relationships. Knowledge is also information that has been organized and analyzed to
make it understandable and applicable to problem solving or decision making. Most

knowledge bases are limited in that they typically focus on some specific subject area or

domain.

Once a knowledge base is built, Al techniques are used to give the computer thought and
reasoning capability. The computer will be able to think reason, and make inference and
judgments based on the facts and relationships contained in the knowledge base. It will

be able to look through the knowledge base and reach conclusion based on the content.

With a knowledge base and the ability to draw inference from it, the computer can now
be put to some practical use as a problem solver and decision maker. Figure 2.1 illustrates
the concept of a computer using Al in an application. By searching the knowledge base

for relevant facts and relationships, the computer can reach one or more alternative

22

CHAPTER 2

LITERATURE REVIEW

solutions to the given problem. The computer’ knowledge base and inferencing capability

augment those of the user.

INPUTS

(Questions,
Problems, etc)

COMPUTER
e
KNOWLEDGE INFERENCING
—Pp BASE CAPABILITY
——

>

—>

Figure 2.1: Applying Al Concepts with a Computer

OUTPUTS

(Answers,
Solutions, etc)

CHAPTER 2 LITERATURE REVIEW

2.3 Overview of Case-Based Reasoning

Case-based Reasoning (CBR) is a relatively problem solving technique that is attracting
increasing attention. CBR is used for the system to predict student’s performance. This

section will provide a comprehensive overview of CBR; including CBR definition, case
definition, CBR cycle, its advantages and disadvantages and its differences between the

other machine learning methods.

2.3.1 Introduction

Expert or knowledge-based systems (KBS) are one of the success stories of Artificial
Intelligence (AI) research. The early KBS, and today’s systems, are based upon an
explicit model of the knowledge required to solve a problem - so called second-
generation systems using a deep causal model that enables a system to reason using first
principles. But whether the knowledge is shallow or deep an explicit model of the domain
must still be elicited and implemented often in the form of rules or perhaps more recently
as object models. However, despite the undoubted success of model-based KBS in many

sectors developers of these systems have met several problems [5]:

« Knowledge elicitation is a difficult process, often being referred to as the

knowledge elicitation bottleneck;

o Implementing KBS is a difficult process requiring special skills and often taking

many man years;

o Once implemented model-based KBS are often slow and are unable to access or

manage large volumes of information; and

¢ Once implemented they are difficult to maintain,

24

CHAPTER2 LITERATURE REVIEW

However, over the last few years an alternative reasoning paradigm and computational
problem solving method has increasingly attracted more and more attention. Case-based
reasoning (CBR) solves new problems by adapting previously successful solutions to
similar problems. CBR is attracting attention because it seems to directly address the

problems outlined above that model-based KBS is facing. Namely:

« CBR does not require an explicit domain model and so elicitation becomes a task

of gathering case histories;

« Implementation is reduced to identifying significant features that describe a case,

an easier task than creating an explicit model;

« By applying database techniques largely volumes of information can be managed;

« CBR systems can learn by acquiring new knowledge as cases thus making

maintenance easier.

CHAPTER 2 LITERATURE REVIEW

2.3.2 What Is CBR?
As the name implies, it is Reasoning, Based on Cases,

From Webster’s Dictionary [22]:
« Reasoning - The drawing of inferences or conclusions through the use of facts or
other intelligible information.
« Based - Grounded in known theory, knowledge or information.

e (Case - Similar set of related facts or information.

Case-based reasoning (CBR) is the act of developing solutions to unsolved problems
based on pre-existing solutions of a similar nature. In other words, CBR is an approach to
problem solving in which past solutions to problems are retrieved and adapted to solve
new problems. CBR system solve new problems by finding solved problems similar to
the current problem and adapting their solutions to the current problem, taking into
consideration any differences between the current and previously solved situations.
Because CBR system associates features of a problem, they are classified as associational

reasoning system [15].

CBR class systems use various techniques to match a problem description to a database
of previously experienced problems and known solutions. One may think of case-based
retrieval as a precedence-based or experience-based diagnosis — it assumes that the
reported problem occurred in the past, and that the solution to the problem has been
documented. From this perspective, a CBR system is a classification system — it classifies
the new problem in order to match it to existing cases. This is in contrast to technologies
such as model-based reasoning where an expert system can provide troubleshooting

guidance to problems that never experienced before [3].

CHAPTER 2 LITERATURE REVIEW

2.3.3 What Is A Case?

Cases, which represent specific knowledge tied to specific situations, represent
knowledge at an operational level; that is, they make explicit how a task was carried out
or how a piece of knowledge was applied or what particular strategies for accomplishing
a goal were used. In addition, they capture knowledge that might be too hard to capture in
a general model, allowing reasoning from specifics when general knowledge is not
available. Another advantage of cases is that they chunk together knowledge that belongs
together. A reasoner that uses cases is saved from having to compose a lot of
decontextualized pieces of knowledge with each other to solve a problem. The case

caches compositions of knowledge that have been made already.

Cases can come in many different shapes and sizes. They may cover a situation that
evolves over time, they may represent a snapshot, or they may cover any size time slice
in between those extremes. They may represent a problem-solving episode, associate a

situation description with an outcome, or do some combination.

A case records experiences that are different from what is expected. Not all differences
are important to record, however. Cases worthy of recording as cases teach a useful
lesson. Useful lesson are those that have the potential to help a reasoner achieve a goal or
set of goals more easily in the future or that warn about the possibility of a failure or

point out an unforeseen problem.

As a conclusion, a case 1s a contextualized piece of knowledge representing an
experience that teaches a lesson fundamental to achieving the goals of the reasoner. There
are two major parts to a case: the lesson(s) it teaches and the context in which it can teach
its lesson(s). The lessons it teaches comprise the case’s content; the contexts in which it
can teach those lessons are case’s indexes. Indexes record under what circumstances it is

appropriate to retrieve the case. [16]

CHAPTER 2 LITERATURE REVIEW

2.3.4 A History of CBR

CBR has grown, in part, out of the more general field of artificial intelligence. ALl is
distinct from general computing due to its base premise of attempting to solve a general-
purpose problem. Most computers and application code are designed to move and
manipulate numbers, “number crunchers”. On the other hand, the ultimate expression of
artificial intelligence is to develop computer code that mimics and can implement the
general mechanisms underlying human intelligence. In other words, develop a computer
program that generates solution(s) to new problems based on first principles of logic.
First principles are a logical discourse on topic matter that leads to a solution of the
problem, given in terms a knowledgeable human can understand. No a-priori knowledge

of the problem domain or other solutions of similar problems is required. [22]

During research into the human ability to solve problems, researchers realized that most
people derive solutions based on previous experience(s) with similar situations. It has
been observed that people even discuss problems and solutions in terms of previous
experiences. Thus, it appears obvious that, complete solutions derived solely from first
principles is fairly rare. Instead, most problem solvers approach new problems and their
associated solutions by relating both the problem and the solution to previous
experiences. Thus, they build a new solution from information gained from previous

experiences, coupled with some reasoning from first principles.

Expert Systems or Knowledge Based Systems (KBS) are a subset of CBR, and are based
on a more limited problem domain (domain knowledge). This has evolved in this manner
largely because a general problem solver was too broad based of a task to be

accomplished.

28

CHAPTER 2 LITERATURE REVIEW

2.3.4 A History of CBR

CBR has grown, in part, out of the more general field of artificial intelligence. AL 1s
distinct from general computing due to its base premise of attempting to solve a general-
purpose problem, Most computers and application code are designed to move and
manipulate numbers, “number crunchers”. On the other hand, the ultimate expression of
artificial intelligence is to develop computer code that mimics and can implement the
general mechanisms underlying human intelligence. In other words, develop a computer
program that generates solution(s) to new problems based on first principles of logic.
First principles are a logical discourse on topic matter that leads to a solution of the
problem, given in terms a knowledgeable human can understand. No a-priori knowledge

of the problem domain or other solutions of similar problems is required. [22]

During research into the human ability to solve problems, researchers realized that most
people derive solutions based on previous experience(s) with similar situations. It has
been observed that people even discuss problems and solutions in terms of previous
experiences. Thus, it appears obvious that, complete solutions derived solely from first
principles is fairly rare. Instead, most problem solvers approach new problems and their
associated solutions by relating both the problem and the solution to previous
experiences. Thus, they build a new solution from information gained from previous

experiences, coupled with some reasoning from first principles.

Expert Systems or Knowledge Based Systems (KBS) are a subset of CBR, and are based
on a more limited problem domain (domain knowledge). This has evolved in this manner

largely because a general problem solver was too broad based of a task to be

accomplished.

CHAPTER 2 LITERATURE REVIEW

2.3

5 CBR Cycle

The basic characteristic of a CBR system is its ability to represent and utilize a library of

cases that at least coarsely cover the problems that come up in a particular domain. The

processes involved in CBR can be represented by a schematic cycle in Figure 2.

I’roilem
RETRIEVE
REUSE
RETAIN
Case Base
 /
<

REVISE
Confirmed Proposed
Solution Solution

Figure 2.2: The Case-Based Reasoning Cycle

CBR is described as a cyclical process comprising the four REs [1]:

RETRIEVE the most similar case(s) comparing the case to the library of past cases;
REUSE the retrieved case(s) to attempt to solve the current problem;
REVISE the proposed solution if necessary, and

RETAIN the final solution as a part of a new case.

29

CHAPTER 2 LITERATURE REVIEW

A new problem is matched against cases in the case base and one or more sumilar cases
are retrieved, A solution suggested by the matching cases is then remsed and tested for
success. Unless the retrieved case is a close match the solution will probably have to be
revised producing a new case that can be retained. There are several different methods
for organizing, retrieving, adapting, utilizing and indexing the knowledge retained in past

cases. The following sections will outline how each process in the cycle can be handled.

Case Representation

A case is a conceptualized piece of knowledge representing an experience. It contains the
past lesson that is the content of the case and the context in which the lesson can be used.
Typically a case comprises [13]:
» the problenvsituation description that describes the state of the world at the time
the case occurred, and if appropriate, what problem needed solving at that time.
» the solution, which states the derived solution to that problem specified in the
problem description, or the reaction to its situation.

« the outcome that describes the state of the world after the case was carried out.

Cases, which comprise problems and their solutions, can be used to derive solutions to
new problems. Whereas cases comprising problems and outcomes can be used to
evaluate new situations. If, in addition, such cases contain solutions they can be used to
evaluate the outcome of proposed solutions and prevent potential problems. Cases can be
represented in a variety of forms using the full range of Al representational formalisms
including frames, objects, predicates, semantic nets and rules - the frame/object

representation currently being used by the majority of CBR software.

30

CHAPTER 2 LITERATURE REVIEW

Indexing

Case indexing involves assigning indexes to cases to facilitate their retrieval. Several

guidelines for choosing indexes for particular cases have been proposed by the CBR

researchers [9]. Indexes should:

be predictive
address the purposes the case will be used for
be abstract enough to make a case useful in a variety of future situations

be concrete enough to be easily recognized in future situations

Both manual and automated methods have been used to select indexes. Choosing indexes

manually involves deciding a case’s purpose with respect to the aims of the reasoner and

deciding under what circumstances the case will be useful.

There are some different automated indexing methods including:

Checklist-based indexing — Indexing cases by features and dimensions that tend to
be predictive across the entire domain i.e., descriptors of the case which are
responsible for solving it or which influence its outcome. In this method the
domain is analyzed and the dimensions that tend to be important are computed.
These are put in a checklist and all cases are indexed by their values along these
dimensions. For ¢example, MEDIATOR uses this method by indexing on type and
function of disputed objects and relationship between disputants, whilst CHEF
indexes on texture and taste. [10]

Difference-based indexing — differentiates cases from one another so that at
retrieval time, retrieval algorithms can choose best-matching cases from the case
library. During this process the system discovers which features of a case
differentiate it from other similar cases, choosing as indexes those features that
differentiate cases best. [11]

Similarity and explanation-based generalization methods - produces an
appropriate set of indexes for abstract cases created from cases that share some
common set of features, whilst the unshared features are used as indexes to the

original cases,

31

CHAPTER 2 LITERATURE REVIEW

o [Lxplanation-based indexing = determines relevant features for each case. This
method analyses each case to find which of their features are predictive ones.

Cases are then indexed by those features. |12]

Storage

Case storage is an important aspect in designing efficient CBR systems in that, it should
reflect the conceptual view of what is represented in the case and take into account the
indexes that characterize the case. The case-base should be organized into a manageable
structure that supports efficient search and retrieval methods. A balance has to be found
between storing methods that preserve the semantic richness of cases and their indexes
and methods that simplify the access and retrieval of relevant cases. These methods are
usually referred to as case memory models. The most influential case memory models are
the dynamic memory model of Schank and Kolodner. The premise is that remembering,

understanding, experiencing, and learning cannot be separated from each other. [14]

Retrieval
Given a description of a problem, a retrieval algorithm, using the indexes in the case-
memory, should retrieve the most similar cases to the current problem or situation. The

retrieval algorithm relies on the indexes and the organization of the memory to direct the

search to potentially useful cases.

The issue of choosing the best matching case has been addressed by research into
analogy. This approach involves using heuristics to constrain and direct the search.
Several algorithms have been implemented to retrieve appropriate cases. They can be

serial search, hierarchical search and simulated parallel search.

Case-based reasoning will be ready for large-scale problems only when retrieval
algorithms are efficient at handling thousands of cases. Unlike database searches that
target a specific value in a record, retrieval of cases from the case-base must be equipped
with heuristics that perform partial matches, since in general there is no existing case that

exactly matches the new case.

CHAPTER 2 LITERATURE REVIEW

Adaptation

Once a matching case is retrieved a CBR system should adapt the solution stored in the
retrieved case to the needs of the current case. Adaptation looks for prominent differences
between the retrieved case and the current case and then applies formulae or rules that
take those differences into account when suggesting a solution. In general, there are two
kinds of adaptation in CBR [7]:

o Structural adaptation, in which adaptation rules are, applied directly to the

solution stored in cases.

o Derivational adaptation, that reuses the algorithms, methods or rules that
generated the original solution to produce a new solution to the current problem.
In this method the planning sequence that constructed that original solution must
be stored in memory along with the solution as in MEDIATOR. Derivational
adaptation, sometimes referred to a reinstantiation, can only be used for cases that

are well understood.

An ideal set of adaptation rules must be strong enough to generate complete solutions
from scratch, and an efficient CBR system may need both structural adaptation rules to
adapt poorly understood solutions and derivational mechanisms to adapt solutions of

cases that are well understood.

Several techniques, ranging from simple to complex, have been used in CBR for

adaptation. These include:

o Null adaptation, a direct simple technique that applies whatever solution 1is
retrieved to the current problem without adapting it. Null adaptation is useful for
problems involving complex reasoning but with a simple solution. For example,
when someone applies for a bank loan, after answering numerous questions the

final answer is very simple: grant the loan, reject the loan, or refer the application.

33

CHAPTER 2 LITERATURE REVIEW

Parameter adjustment, a structural adaptation technique that compares specified
parameters of the retrieved and current case to modify the solution in an
appropriate direction. A specialized adjustment heuristics are applied to the old
solution to create a new one. JUDGE (Bain 1986) uses this technique to adapt an

old sentence for a crime to a new situation.

Abstraction and respecialization, a general structural adaptation technique that is
used in a basic way to achieve simple adaptations and in a complex way to
generate novel, creative solutions. The PLEXUS planning system uses this

technique.

Critic-based adaptation, in which a critic looks for combinations of features that
can cause a problem in a solution. Importantly, the critic is aware of repairs for
these problems. PERSUADER is a system, which uses all the techniques of

adaptation discussed above.

Reinstantiation is used to instantiate features of an old solution with new features.
For example, CHEF can reinstantiate chicken and snow peas in a Chinese recipe

with beef and broccoli thereby creating a new recipe.

Derivational replay is the process of using the method of deriving an old solution
or solution piece to derive a solution in the new situation. For example,

BOGART, which replays stored design, plans to solve problems.
Model-guided repair uses a causal model to guide adaptation as in CELIA, which
is used for diagnosis and learning in auto mechanics, and KRITIK used in the

design of physical devices.

Case-based substitution uses cases to suggest solution adaptation as in ACBARR

a system for robot navigation,

34

CHAPTER 2 LITERATURE REVIEW

2.3.6 Advantages and Disadvantages of CBR

Case-based reasoning is applicable to a wide range of real-world situations, ranging from

knowledge-rich situations in which construction of solutions is complex to knowledge-

poor situations in which cases provide the only available knowledge.

Case-based reasoning has several advantages [8,17]:

Case-based reasoning allows the reasoner to propose solutions to problem quickly,
avoiding the time necessary to derive those answers from scratch.

Although the CBR has to evaluate proposed solutions, as any reasoner does, it gets
a head start on solving problems because it can generate proposals easily. There is
considerable advantage in not having to redo time-consuming computations and
inferences. This advantage is helpful for almost all reasoning tasks, including

problem solving, planning, explanation and diagnosis.

A case-based system can be easily be made to learn.

In CBR, problem-solving efforts are cached to save future work. Learning is, in
effect, a natural consequence of problem-solving efforts. Case-based systems can be
engineered to add to their capabilities or adapt to small changes in their

environments by continuing to collect cases and insert them into the case library

after the system is fielded.

When using case-based reasoning to solve problems, solutions can be justified by
the cases they are derived from.

The cases used to solve a problem provide grist for both justifying derived solutions
and analyzing their probable outcomes. In a domain where it is difficult to evaluate
solutions objectively, CBR has the advantage of providing illustrations of the

effects of particular solutions and kinds of solutions.

35

CHAPTER 2 LITERATURE REVIEW

Case-based reasoners can easily be designed to anticipate potential problems as a
natural part of their reasoning.

Unsuccessful experiences with past solutions can be used in case-based systems to
anticipate possible problems that might result from solving a problem a certain way.
In general, this capability adds efficiency, allowing solutions to be partially
debugged before they are carried out. In some domains, anticipating problems that

might arise when carrying out a solution plan is critical.

Cases help a reasoner to focus its reasoning on important parts of a problem by
pointing out what features of a problem are the important ones.

What was important in previous situations will tend to be important in new ones.
Thus, if in a previous case, some set of features was implicated in a failure, the
reasoner focuses on those features to ensure that the failure will not be repeated.
Similarly, if some features are implicated in a success, the reasoner knows to focus
on those features. Such focus plays a role in both problem-solving and interpretive
CBR.

Case-based reasoning provides a way for humans and computers lo interact (o
solve problems.

CBR is inspired by human behavior. However, when we look at the processes
involved in CBR, we see that some are easier for people, while others are easier or
more appropriate for computer. People, for example, are good at creative adaptation
but poor at remembering the full range of applicable cases, either because they tend
to be biased in their remembering or because, as novices, they have not yet had the
experiences they need to solve some problem. Computers can augment the memory
limitations of people, providing for them the cases they would otherwise not
remember. CBR provides a way of using the best qualities of both human and

computer for solving problems.

36

CHAPTER 2 LITERATURE REVIEW

Knowledge acquisition for a case-based system is natural.

Communication between system and domain experts can use concrete examples
rather than piecemeal rules. Experts find it difficult to report the knowledge they
use to solve problems. They are, however, quite at home reporting their experiences
and discussing the ways in which cases are different from one another. Their
experiences can be coded as cases. The differences they talk about help with both

indexing cases and recording knowledge that adaptation heuristic can use.

There are also disadvantages in using cases to reason:

A case-based reasoner might be tempted to use old cases blindly, relying too

heavily on previous experience without validating it in the new situation.

A case-based reasoner might allow cases to bias him or her or it too much in

solving a new problem.

Often people, especially novices, are not reminded of the most appropriate sets of

cases when they are reasoning (Gick and Holyoak 1980; Gentner 1989).

37

CHAPTER 2 LITERATURE REVIEW

2.3.7 Comparisons and Differences with CBR

Table 2.1 depicts a comparison between CBR and the machine learning methods. [2]

Resistance Suitable
Machine Learning Against Explains Reasoning .
For Small o Adaptive
Method Data QOutput D Capability
! atasets
Outliners
Case-Based Reasoning Yes Yes Partially Yes Yes
Neural Nets No No No No No
Fuzzy Logic Partially Yes Yes Yes No
Analogy Yes Yes Partially Yes Yes
Rule-Based Yes Yes Yes - Partially No
Regression Tree Yes Yes Partially Partially No
Hybrid System Partially No Partially Partially No

Table 2.1: Comparisons Between CBR and Other Machine Learning Methods

The Differences Between CBR and Knowledge-Based System (KBS)

Knowledge-based systems use rules to guide their decision processes. Typically a
knowledge engineer works with a domain expert to derive the heuristics that, the expert
uses when solving a problem. Whereas, case based reasoning ‘looks” for similarities
between the current needs and previous examples of similar problems and their attendant
solutions. Rule base programming is currently very popular and well developed. Most
‘experts’ will expound on the rules they use to solve either everyday or very difficult and
detailed problems. However research into human problem solving has determined that in
almost all cases the ‘rules’ used by experts have been in part derived from a cause and

effect relationship derived from previous experiences - cases. [22]

In short, the most significant difference between CBR and KBS problem solving
techniques is that in the KBS paradigm, the rules are more concrete and tangible.
Whereas in CBR the solution methodology is a process of comparison and evaluation of

current needs with existing situations.

38

CHAPTER2 LITERATURE REVIEW
2.3.7 Comparisons and Differences with CBR

Table 2.1 depicts a comparison between CBR and the machine learning methods. [2]

Resistance Suitable
Machine Learning Against Explains Reasoning /
For Small T Adaptive
Method Data Output D Capability
p atasets
Outliners
Case-Based Reasoning Yes Yes Partially Yes Yes
Neural Nets No No No No No
Fuzzy Logic Partially Yes Yes Yes No
Analogy Yes Yes Partially Yes Yes
Rule-Based Yes Yes Yes - Partially No
Regression Tree Yes Yes Partially Partially No
Hybrid System Partially No Partially Partially No

Table 2.1: Comparisons Between CBR and Other Machine Learning Methods

The Differences Between CBR and Knowledge-Based System (KBS)

Knowledge-based systems use rules to guide their decision processes. Typically a
knowledge engineer works with a domain expert to derive the heuristics that, the expert
uses when solving a problem. Whereas, case based reasoning ‘looks’ for similarities
between the current needs and previous examples of similar problems and their attendant
solutions. Rule base programming is currently very popular and well developed. Most
‘experts” will expound on the rules they use to solve either everyday or very difficult and
detailed problems. However research into human problem solving has determined that in
almost all cases the ‘rules’ used by experts have been in part derived from a cause and

effect relationship derived from previous experiences - cases. [22]

In short, the most significant difference between CBR and KBS problem solving
techniques is that in the KBS paradigm, the rules are more concrete and tangible.
Whereas in CBR the solution methodology is a process of comparison and evaluation of

current needs with existing situations,

38

CHAPTER 3 METHODOLOGY

CHAPTER 3
METHODOLOGY

This chapter will cover the following section:
o The System and User Requirement
« Waterfall Model with Prototyping
« Case-Based Reasoning Approach

e Development Environment

3.1 System and User Requirements

The system requirement needs to be drawn out to provide a guideline when developing a
system. A requirement is a feature of the system or a description of the system is capable

of doing in order to fulfill the system purpose.

There are two types of requirement:
« Functional requirement

« Non-functional requirement
3.1.1 Functional Requirements

Functional requirement is a description of an interaction between the system and its
environment. It also describes how the system should behave when given a certain
stimulus. Functional requirements are frequently identified in terms of inputs, outputs,

processes, and stored data that are needed to satisfy the system improvement objectives.

Functional requirements must be analyze such that they can be verified and

communicated to both students and lecturer or academic adviser or counselor.

39

CHAPTER 3 METHODOLOGY

The functional requirements for the proposed system are stated below:
i. General User Section
This section is responsible to communicate with user in getting information from
user to progress the student’s performance prediction, and displays the outcome to

the user,

« Display module

This is a front-end design, which is responsible to the interaction between the

user and the system. It consists the following forms:

v" Input Form
The purpose of the input form is to enable the user to input the student
data such as student name, matric number, IC number, class attendance,
assignments, and etc. These data will be combined to enable the agent
section for prediction and generate advices.

v" Output Page
This page shows the prediction result about the student performance.

v" Advice Page
This page generates some useful advice to the student based on his or her

academic performance.

ii. Agent Section
There are two important parts in the agent section, which play major role in back-

end of the system.

o Prediction Module
This module purposely assist user in decision-making by predicting the

student performance where student information and related data are required.
e Advice Generation Module

This module generates advices about the student performance based on the

factors that determine the student’s performance.

40

CHAPTER 3 METHODOLOGY

3.1.2 Non-Functional Requirements

A non-functional requirement is a description of other features, characteristics, and

attributes of the system as well as any constraints on the system that may limit the

boundaries of the proposed solution to the problem. These constraints usually narrow the

selection of language, platform or implementation technique and tool.

Below are the non-functional requirements of the system:

iL.

i,

.

Maintainability

Maintainability is the degree to which the system can be cost-effectively made to
perform its functions in a possibly changing operating environment. The system are
easy to modify and test in updating process to meet the new request, correcting

errors, or move to a different computer system.

Reliability
The degree in which the system operates in a user-acceptable manner when used in
the environment for which it was designed, which does not produce dangerous,

costly failure or destructive error when it is applied in a reasonable manner,

Efficiency
Implementation of the system corresponds to the most cost-effective computing
resource utilization, where process that can be called or accessed in an unlimited

number of times to produce similar outcomes at a creditable pace or speed.
Control and Security

Control requirements represent the environment in which the system must operate,

as well as the type and degree of security that must be provided.

41

CHAPTER 3 METHODOLOGY

V.

Vi.

Vil.

i,

User-friendly Environment

The design of the system and its interface should be user friendly and easy
understanding by all level of the users. The users may be non-technical personnel
who would not be able to comprehend complex system. So, the system should use
the graphical user interface (GUI) approach in order to provide a better
understanding of how to use the system and better communication between the

system and users.

Generally, the design of all the interfaces should conform to the following

criterions:
« Consistent, in terms of screen design and error messages displayed.

o High degree of understandability and avoid memorization of events and

commands.

Simplicity
Forms and screens are kept properly uncluttered in a manner that focuses the user

attention.

Attractive Interface
It is important to design an attractive user interface that will appeal to the users.
Using images, highlights and variation of colours can make a whole lot of

difference in making the system more fun to use.

Understandability

Coding method used, allow other programmer to understand the logic of the

program flow.

Expandability
The system should be able to be extended to accommodate more functionality in the

future.

CHAPTER 3 METHODOLOGY

3.2 Waterfall Model with Prototyping

—»| Analysis |
A l
—p| Design
/ § 1
Coding
A l
Testing
' L

Prototyping |¢] Implementation

-

T Operation &
Maintenance

Figure 3.1: Waterfall Model with Prototyping

Combination of the Waterfall model and prototype approach [20] will be used to develop
this project. The Waterfall model with prototyping is chosen because the strengths of
each can be achieved on a single project. This model is actually the classic waterfall
model combined with the prototyping approach in its early stages as shown in Figure 3.1

above.

In the proposed development strategy, the waterfall model will serve as the base for the
development because the steps of this model are very similar to the generic steps of
software development process that are applicable to all software engineering paradigms.
It also provides a template into which methods for analysis, design, coding, testing and
maintenance can be placed. Prototyping will be involved in the early stages of the
waterfall model where there is a need for experimentation and learning before
commitment of any resources to develop the full-scale system. Prototyping will not be
involved in the later stages of the development because its major drawback in increasing
the opportunities to produce negative effects on structural factors such as performance,

design quality and maintainability if not carry out properly.

43

CHAPTER 3 METHODOLOGY

In the case of the proposed project, an idea solution might be one that combined rapid
results (from prototyping) with stability (from the waterfall model). The stability of the
classic waterfall model is very much needed in this project. The main reason for the
incorporation of prototyping into the waterfall model is to rapidly elicit and experiment
with user interface requirements and usability factors. Prototyping approach is also ideal
in the sense that the developer has neither complete information/understanding nor

experience in developing this type of system.

The waterfall model with prototyping approach that will be adapted in the proposed

project encompasses the activities at system analysis, system design, coding, testing and

implementation. Each activity is discussed below.

Analysis

This is the phase where the study of the current system is done and the definition of
requirements for the new system is made. The system analysis phase is concemed with
the data gathering and data analysis. Data will be collected form the system user. Data
Flow Diagram (DFD) is used to analyze the collected data because it enables the
information domain and functional domain to be modeled at the same time. DFD also be
used to graphically show the data flow through the system. The most important outcome

from this phase will be an accurate system requirement specification.

Design

In the system design phase, the requirements that were produced in the previous phase
are translated into a representation of the system. This phase will be concerned with the
user interface design and system design. The user interface will be built using Visual
Basic 6.0. In system design, structure chart will be involved in structuring the system’s

modules and flow chart might be used to depict the design of procedural details.

44

CHAPTER 3 METHODOLOGY

Coding

The coding phase translates and implements the detail design representation of the system
into programming realization, Visual Basic 6.0 is used in coding the information and

functional domain as well as the control of the proposed system.

Testing

Testing will be a critical step in assuring the quality of the developed system and will
represent the ultimate review of specification, design and coding. First, unit testing will
be performed to verify each program module. Next, integration testing is performed to
integrate unit-tested program modules and conduct tests that uncover errors associated
with the interfacing of those modules. Validation test succeeds when the system functions

in the manner that is reasonably expected.

Implementation

The finally stage of the development will be system implementation. The system will be
implemented on its target software and hardware requirement. The whole system will be

revise to uncover the necessity to add further enhancements.

Operation and Maintenance

Maintenance process should be an ongoing activity in real development. Monitoring a
necessary adjustment continue so that the system produces the expected results.
However, system enhancements and maintenance will only be carried out in the proposed

project if time constraint allowed.

45

CHAPTER3 METHODOLOGY

3.3 Case-Based Reasoning Approach

3.3.1 Method Description

Input from User

A
S No
xac
" Matching? — P Adaptation

SOLUTION

+
R

Figure 3.2: Case-Based Reasoning System

CBR (Case-Based Reasoning) is a retrospective system, which replicates the natural way
of solving problems by humans. Several past cases of student’s performance from case

library are retrospected and compared in order to find an identical case.

If a matching case is found then the suggested solution will be used for the new solution
to the current student’s performance. This means when the new student’s performance is
presented to the system, the reasoner searches its case library, looking for the library
student that his or her class performance is most similar with the class performance of the
new student, and finally predicts that the final grade of the given to the student in case
library will be the final grade to be assigned to the new student after the completion of

the class.

46

CHAPTER 3 METHODOLOGY

If the matching is not exact but partially matched, then the solution can be obtained by
adjusting the old solution, It needs to be emphasized here that the reasoning process to be
modeled is to help users to predict the most appropriate final grade according to the class
performance of the student, Figure 3.2 depicts the case-based system. The values of the
new case are instantiated interactively from the user’s local information. The user enters

the key features of the new case as an input to the case-based system.

CBR (Case-based reasoning) suggests a model of reasoning that incorporates problem
solving, understanding and learning and integrates all with memory processes. The given
task represents building of consequent solution (prediction) based on previous cases. The
task asks for specific system that omits some of basic features of CBR and puts emphasis
on its other features again. For instance, new solutions are never stored to case memory,
there are no big demands on memory organization and indexing as memory consists only
of hundreds of examples. On the contrary, it emphasizes requirements on case similarity
metric, finding optimum attribute weights and adaptation of old solutions (final grade

values) to a new student.

CHAPTER 3 METHODOLOGY

3.3.2 Feature-Based Retrieval

Feature-based retrieval is used to retrieve cases from the case base using heuristics that

rely on the distribution of cases.

Feature-based retrieval does not rely on the textual content of the cases. Instead, each
case is associated with qualitative and quantitative parameters called features or
attributes. Features define the important facts about each case and the specific feature-
values are used in the classification and the computation of similarity between the case

base and the reported problem.

There are two methods used in feature-based retrieval that are nearest neighbor method
and induction method. These two methods are helpful in prediction of student

performance.

3.3.2.1 Nearest Neighbor Method

Nearest neighbor class algorithms were used in CBR from its inception. The algorithm
computes the similarity between the features of new case and all the cases to determine
the cases that resemble the problem based on its known features. As in hand-guided

classifications, the system uses questions to narrow the list of possible solutions based on

their discriminating capabilities.

However, the internal representation and the authoring process are different. Cases are
displayed based on the feature-values of the reported symptom. Questions provide
information about features and are selected based on their ability to query the user for the
most discriminating features, thereby reducing the number of candidate cases most
efficiently. In theory, this approach increases the reusability of questions and lowers
maintenance because the number of discriminating features is significantly smaller than

the number of cases.,

CHAPTER 3 METHODOLOGY

Svymptom

Question

Case

bl R4

Feature

Figure 3.3: Nearest Neighbor Method in Feature-Based Retrieval

Adding a new case requires only definition of its known feature-values, as relevancy to
the symptom is determined by similarity calculations. When new questions are authored,

it is only required to define the feature(s) they are acquiring from the user.

3.3.232 Induction Method

Induction is a technology that generalizes from a collection of sample cases to solve new
problems. These cases, often referred to as training cases, can be actual historical data or

synthetic cases built for this purpose.

Induction, like nearest neighbor, uses case features. It uses a “greedy search™ strategy
based on information gain calculations to choose the most discriminating features and
devise an effective decision tree. In fact, pure induction methods use the training cases to
formulate the search tree and “forget” about the case base at runtime. It uses the decision
tree to query the user for features and uses the case base only to propose possible

solutions.

49

CHAPTER 3 METHODOLOGY

Figure 3.4 Induction Method in Feature-Based Retrieval

While in many ways a nearest neighbor and an induction system appear very similar,
differences exist in several areas. Most importantly, inductive systems are most efficient
in presenting the best questions and candidate cases to the user, potentially reaching their
goal in the least number of steps. For similar reasons, maintenance of large case bases is

easier.

In general, inductive systems tend to be faster, especially in large case bases, because of
the off-line classification that was completed prior to the runtime stage. On the other
hand, nearest-neighbor methods have higher immunity to "noisy" and erroneous data and

can handle missing values better.

50

CHAPTER 3 METHODOLOGY

_w

Figure 3.4: Induction Method in Feature-Based Retrieval

While in many ways a nearest neighbor and an induction system appear very similar,
differences exist in several areas. Most importantly, inductive systems are most efficient
in presenting the best questions and candidate cases to the user, potentially reaching their
goal in the least number of steps. For similar reasons, maintenance of large case bases is

easier.

In general, inductive systems tend to be faster, especially in large case bases, because of
the off-line classification that was completed prior to the runtime stage. On the other
hand, nearest-neighbor methods have higher immunity to "noisy" and erroneous data and

can handle missing values better.

50

CHAPTER 3 METHODOLOGY

3.3.3 Case Base

The subjects in this study consisted of over 2000 students that already registered the
Bachelor of Computer Science and Bachelor of Information Technology in Faculty of

Computer Science & Information Technology.

There are four major courses in Bachelor of Computer Science:
« Artificial Intelligence (Al)
e Management Information System (MIS)
¢ Networking (NT)
¢ Software Engineering (SE)

For the Bachelor of Information Technology, there are three major courses that are:
o Information System (IS)
e Management (M)
¢ Multimedia (MM)

The case base consists of students’ performance and his or her final grade for the specific
subject. Each student constituted a case that contained the following attributes:

« Matric number

« Student name

¢ [C number

« Session

e Semester

e Subject

o Class attendance

« Eight tutorials

o Two assignments

« Two midterm test

« Four survey answers

« Student’s final grade for the subject

51

CHAPTER 3 METHODOLOGY

All cases that included all of the student information comprised the space of hibrary cases.

This system task is to search an appropriate value for the final grade field of an input
case. Therefore this field is considered the solution data for a particular case in this

domain.

The possible data values for the solution data are the characters A, A-, B+, B, B-, C+, C,
C-, D+, D, F that represent grade levels. Table 3.1 depicts grade levels and the grade
point for each grade. A is the highest possible grade. D, D+ and C- are the failure grades
but it can be redeemed if the student has achieved at least 2.0 CGPA (Comparative Grade
Point Average) for the semester. F is the failure grade that cannot be redeemed. The other
grade levels such as I, K, P, PA, NP, S, U, R and W are not taken in GPA (Grade Point

Average) calculation.

Grade Grade Point

A 4.0

A- 3.7

B+ 3.3

B 3.0

B- 2.7 Pass Grade

C+ 2.3

C 2.0 Fail Grade that can be

C- 17 r‘cdcemcd if CGPA>2.0

X 3 for the semester

D+ 1.5

D 1.0 Fail Grade that cannot be
S 0 ; redeemed

lable 3.1: Grade and Grade Point

CHAPTER 3 METHODOLOGY

The possible values for the midterm test fields are integers that range between 0 and 10.
The possible value for each assignment field is an integer that ranges between 0 and 10,
and the possible value for the tutorial i1s an integer that ranges between 0 and 10. The
possible value for the class attendance is a character string, which is excellent, good, fair

or poor.

The possible values for the student attributes that determine the final grade for the

semester are displayed in Table 3.2.

Attributes Value Type Value Range
Class Attendance String Excellent; Good; Fair; Poor.

Tutorial Integer 0 10 (%)
Assignment 1 (by group) Integer 0 ~10 (%)
Assignment 2 (by individual) Integer 0 ~10 (%)
Midterm Test | Integer 0 ~10 (%)
Midterm Test 2 Integer 0 10 (%)

Revision (it oeeals String Less than | hour, 1-2 hours, 2-3 hours,

3-4 hours, More than 4 hours

Very poor; Poor; Fairly well; Well;

Understanding in Lecture String
Very well.
. ‘ Very poor; Poor; Fairly well; Well;
Understanding of Content String
Very well.
. , , No; Yes, 1-2 hours; Yes, 2-3 hours;
Study Group, Discussion String

Yes, More than 3 hours.

Table 3.2: Student Attributes and Their Possible Values

53

CHAPTER 3 METHODOLOGY

3.3.4 Matching
There are two matching methodologies were used to test the system’s predictive power.

Based on the first method in order to establish the similarity between a certain input case
and a library case, the prediction system compared corresponding features one at a time.
For example, the first laboratory assignment of the input case with the first laboratory
assignment of the library case, the second laboratory assignment of the input case with

the second one of the library and so on.

Since each laboratory assignment was equally weighted, instead of comparing
corresponding assignment values, the second matching mechanism compared the mean

assignment values between a certain input case and a library case.

This system was evaluated for predictability and matching confidence. Predictability is
defined as the measure of prediction system’s ability to correctly predict the solution data
in a set of input cases. A correct prediction is a letter grade that agrees with the grade that
eventually was assigned to the student by his or her instructor at the end of the semester.
For example, for a given input case where the correct solution data is the letter grade “A”
if the prediction system retrieved five library cases as being most similar cases and if four
of them indicate that the final grade is an “A” and the final grade of the other one is a

“B”, then the system” prediction rate is 80%.

Matching confidence is a measure that is directly related to the degree of similarity
between an input case and the most similar library case. It represents the degree of
similarity as a percentage after taking in consideration that each index feature is weighted
in terms of how important the feature is in establishing similarity between two cases. In
general, the matching confidence indicates how “certain™ is the prediction system in

offering a prediction for a particular input case.

54

CHAPTER 3 METHODOLOGY

3.3.4.1 Assessing Similarity Between Cases

At the heart of a cased-based reasoning (CBR) system 1s the computation similarity
between a new case - the user’s input - and previous cases stored in a case library. Cases
are associated with qualitative and quantitative parameters called features or attributes.
The CBR algorithm calculates the similarity between cases based on feature-value pairs

between the new input case and each historical case.
A similarity measure should have the following attributes:

o Reflective: a case is similar to itself

o Symmetric: If A is similar to B, then B is similar to A

A similarity measure is not always transitive: If A is similar to B and B is similar to C, it
cannot be asserted that A is similar to C. This is because the features defining the
similarities between A and B can be different from these in B and C. For example, a
white Ford Escort is similar to a white Dakota truck (they are both white vehicles), and a
white Dakota is similar to a red Dakota (they are both Dakota trucks). However, a Ford

Escort is not similar to a Dakota.

3.3.42 Handling Missing Values

This CBR system able to retrieve cases effectively when some of the feature values are
missing as a result of values that was not collected in the past or when the user does not

supply them during consultation.

Consider two library cases Case; and Case; and a new problem description Case,, that

input from the user, which is represented in Table 3.3.

CHAPTER3 METHODOLOGY
Case, Case,
Featyre-values Zaafurecvalies

Class attendance * Excellent
Homework assignment | = 18
Homework assignment 2 = 19

Laboratory assignment | =8

Class attendance = Good
Homework assignment 1 = 18
Laboratory assignment 2 = 7
Project = 26

Midterm Test = 17

B —

Case,

Class attendance = Excellent
Homework assignment 1 = 18
Laboratory assignment 2 =7
Laboratory assignment 4 = 10

Midterm Test= 17

Laboratory assignment 2 = 7
Laboratory assignment 3 = 10
Laboratory assignment 4 = 10
Laboratory assignment 5 =9
Project = 26

Midterm Test= 17

Table 3.3: Comparing Between Library Cases and Input Case

From Table 3.3, although Case; matches all the features of the new case, Case,, whereas
Case, matches only three of them, system will identify Case; as a better match, because
they calculate similarity based primarily on the percentage of matching features. Case,
matches 4 of 10 features of Case,, receiving a score of 0.40 (4/10), whereas the match
with Case; will receive a higher score of 0.60 (3/5). In a way, Case; is preferred because
of the small number questions answered by the user. The algorithm must include
provisions to compensate for absent values and artificially lower the score of cases with a

higher number of absent values.

56

CHAPTER 3 METHODOLOGY

3.3.5 Suitability

Some of the characteristics of a domain that indicate that a CBR approach might be

suitable for this system include:

o records of previously solved problems exist;
o historical cases are viewed as an asset which ought to be preserved;
o remembering previous experiences is useful;

o experience is at least as valuable as textbook knowledge.

When using case-based reasoning, the need for knowledge acquisition can be limited to
establishing how to characterise cases. Case-based reasoning allows the case-base to be
developed incrementally, while maintenance of the case library is relatively easy and can

be carried out by domain experts.

Mentioned in Chapter 2, knowledge-based systems (KBS) use rules in problem solving
and decision process. However KBS seem not a suitable method for this system. This

approach has several major problems:

o Knowledge elicitation is difficult
This problem was recognized as soon as KBS were built and was often attributed to

the knowledge elicitation bottleneck.

o KBS can be very complex and can take long time to develop
This problem is familiar to any KBS developer and has partially been responsible
for the increasing interest in KBS development methodologies and of knowledge

modeling languages and ontologies.
o KBS are frequently slow
o KBS are ofien poor at managing large volumes of information

o Once developed they are difficult to maintain.

57

CHAPTER3 METHODOLOGY

Hence, there is a strong case for CBR since it has several potential advantages over KBS:

CBR systems can be built without passing through the knowledge elicitation

bottleneck since elicitation becomes a simpler task of acquiring past cases.
CBR systems can be built where a model does not exist.

Implementation becomes a simpler task of identifying relevant case features, and
moreover a system can be rolled out with only a partial case-base. Indeed, using
CBR a system need never be complete since it will be continually growing. This
removes one of the bugbears of KBS - how to tell when a knowledge base is

complete.

CBR systems can propose a solution quickly by avoiding the need to infer an

answer from first principles each time.

Individual or generalized cases can be used to provide explanation that are
perhaps more satisfactory than explanations generated by chains of rules,

important in many domains with legal implications.
CBR systems can learn by acquiring new cases making maintenance easier.

Finally, by acquiring new episodic cases CBR systems can grow to reflect their
organization’s experience. If a rule-based KBS were delivered to six companies
and used for six months, after that time each system would be identical, assuming
no maintenance had taken place. If six identical CBR systems were used in a
similar way after six months there could be six different systems as each could

have acquired different episodic cases.

58

CHAPTER 3 METHODOLOGY

3.4 Development Environment

The development environment of the system consists of two major parts that are

hardware and software requirement of the system.

3.4.1 Hardware Requirements

The following hardware requirements are needed for the system operation:

o Genuinelntel Pentium(r) 111 500 MHz Processor
e 256 MB RAM
o 11 GB hard drive storage

o Keyboard and mouse

3.4.2 Software Requirements

A few software products will be used to develop the system. These software products are
divided into two categories, which are Operating System and System Application

Program.

3.4.2.1 Operating System

Microsoft Windows 98

Microsoft Windows 98 is used for the proposed system. Windows 98 is a powerful

operating system that all of the users are very familiar with it. Windows is easier to use,

more reliable, and faster than ever,

59

CHAPTER 3 METHODOLOGY

3.4.2.2 System Application Programming Language

Microsoft Visual Basic 6.0

Microsoft Visual Basic 6.0 is used as a programming language in this system.

Visual Basic is a powerful programming language. The Visual Basic language facilitates
a structured and disciplined approach to computer design. This language is an extremely
rich programming environment. It is not just a language. It is an Integrated Development

Environment (IDE) in which you can develop, run, test and debug your application.

The programmer has the ability to create Graphical User Interfaces (GUIs) by pointing
and clicking with the mouse. Visual programming eliminates the need for the
programmer to write code that generates a form, code to create a control on a form, code
that set the property settings for the selected control, code to change foreground and

background colours, etc.

All these codes are provided as part of the project. The programmer does not need to be
an expert Windows programmer to create functional Windows programs. The
programmer creates a GUI and writes code to describe what happens when the user
interacts (click, press a key, double-click, etc.) with the GUI. These notifications are
called events, which are passed into the program by Microsoft Windows operating
system. So the programmer just needs to know the basic principles of developing

applications with visual tools and event programming.

60

CHAPTER4 SYSTEM DESIGN

CHAPTER 4
SYSTEM DESIGN

System design is a transformation of the specification of requirements, first into a
detailed logical/conceptual specification and secondly into a detailed physical/technical

specification.

Design is the creative process of transforming the problem into a solution. Conceptual
design tells the user exactly what the system will do. Technical design allows system

builder to understand the actual hardware and software needed to solve the user’s

problem.

A design specification describes the features of the system, the components or elements

of the system and their appearance to users.

The system design of the system of predicting and advising on student’s performance has
considered the following design issues:;

i. System Functionality Design

ii. Effective Output Design

iil. Effective Input Design

iv. User Interface Design

Ol

CHAPTER4 SYSTEM DESIGN

4.1 System Functionality Design

System functionality design is based on the system requirements stated in Chapter 3. It
translates the system requirements into system functionality. The design focuses on the

system structure design and data flow design.

Data Flow Diagram (DFD) is a graphical representation of data process throughout the
system. The diagrams provide an overview of system inputs, processes and outputs,

which correspond to the general system in the project [6].

The following section shows the data flow diagrams in this project. The symbols used

were explained in the Table 4.1.

| Symbols | v Slsaling

Entity
Any object or event which data is collected. Entity may

be a person, place or thing,

Data flow
e [t shows movement of data with head of the arrow
pointing toward the data’s destination.

Process
It denotes a change or transformation of data. It is the

work being performed by the system.

7 Data Store
E This represents a data source and it may represent a
‘ manual store or a computerized file.

Table 4.1: Description of Symbols Used in DFID

62

CHAPTER4 SYSTEM DESIGN

Student Detail
t > TS

Assignment Scores
>

! Midterm Exuminulion‘; Student ' Rt‘sulsl

User

Lsex N Class Attendance > Performance
Proiect > Predictor Ad\'ici
| Commitment .
[P .

Iigure 4.1: Context Level Diagram For Student Performance Predictor

Figure 4.1 represents the context level diagram for the system. User is asked to input the
student detail, assignment scores, midterm examinations, project, class attendance and
commitment into the system. After the preprocessing of the data input, the systems then

produces the student performance result and generate advices to the user.

The proposed system is developed using top down modular approach. This system is

divided into three major modules, which are

« Display Module
o Prediction Module

e Advice Generation Module

Display Module
This module is a user interface that consist of two main screen:
i. User input screen
This input screen let the user to input student information and details about the
student class attendance, homework assignments, a series of laboratory

assignments, project, midterm examination, final examination and commitment.

63

CHAPTER4 SYSTEM DESIGN

it. Qutput screen

There are two pages for the output screen that are performance result page and
advice page. The predicted final grade of the subject for the student will be
presented on the performance result page together with a summary about the

student detail and his or her performance result. The advice page shows the user an

advice about the student performance.

Prediction Module

The function of this module is to predict the final grade for the student, which are
determined through homework assignments, project, midterm examinations, a series of
laboratory assignments, class attendance, commitment and a final examination. The

prediction process is performed using case-based techniques, which is stated in chapter 3.

Advice Generation Module

This module will generate advices about the student performance based on the factors

that determine the student’s performance.

Prediction & Advisory

System
| :
e ; Advice
Display P;:d:]ct;(m ! Generation
Module oduie ﬂ Module
User Input
Screen
Output
Screen

Figure 4.2: Structure Chart of Student Performance Predictor

64

CHAPTER4 SYSTEM DESIGN

Data flow diagram for the whole system is illustrated in Figure 4.3 and data flow diagram

for the prediction module is shown in Figure 4.4,

Predicted Grade & Advice

User Input

Advice
Generation
Module

L

User Input

Predicted Advice
Grade
o T
Predicted s
Grade &
New Student
Data
m Student
Cases Student Data User Input

D1 User Input

Figure 4.3: Data Flow Diagram I'or Student Performance Predictor

65

CHAPTER4 SYSTEM DESIGN

| a1 b L
Student Data Preprocess
Data o
Preprocessing Prp:glcton
cess
User Input
y N GECE
v
Prediction
Result
Predicted Prediction
Grade Result
v v
- Advice
Ly Generation
Madie Module

Figure 4.4: Data Flow Diagram For the Prediction Module

66

CHAPTER 4 SYSTEM DESIGN
4.2 Effective Output Design

Outputs present information to system users. Outputs are the most visible component of a
working information system. Users are reliant on output in order to accomplish their task
and they often judge the merit of the system sorely by its output. As such, they are often

the basis for the users’ and management’s final assessment of the system’s value.

The objectives for the design of system output are:

i. choose effective output method
ii. assure purposeful output

iii. assure timeliness

iv. make meaningful to user

v. Provide appropriate quality

vi. Provide appropriate distribution

When designing output for the system, he required information needed by the users
should be presented in a formal and attractive manner, either in display form or hardcopy.
The required information, plus some additional information must be presented in the
same format, regardless of report required, showing that a systematic approach was taken

in designing the output.
For this project, the outputs consist of the result of performance prediction and the

academic advices page of the student. F igure 4.5 and Figure 4.6 illustrate the prototype of

performance result page and the prototype of advice page.

67

CHAPTER 4

SYSTEM DESIGN

PERFORMANCE RESULT PAGE

s o mw mS S WM) NN S NB SO EES WISl IE LWL

! 1
| i
, Student detail is displayed here i
: ‘
. I
: I
N 15 0 5 i A i B B O S B B s, B s =
o m e m e m e mm i mm i m o .
i !
: Student’s performance result, :
I 2
: including predicted final grade !
: _ :
! is presented here :
I .
i !
R A S e S e e B R S e R S e [
Figure 4.5: Performance Result Quiput
ADVICE PAGE

N R AT A A ;

! I

| |

! _ 3 h i

i Academic advices about the student performance is ;

i displayed here :

! ;

5 |

! |

: .

Figure 4.6: Advice Page Output

68

CHAPTER 4 SYSTEM DESIGN
4.3 Effective Input Design

The quality of system input determines the quality of system output. Input design serves
an important goal — capture and get the data into a format suitable for the computer.
Consequently, it is vital that input forms and screens be designed with this critical

relationship in mind.

The objectives for the design of system input are:

i. Ease ofuse

ii. Effectiveness

11. Accuracy

iv. Simplicity ‘
v. Consistency ;

vi. Attractiveness

The design of inputs for the system usually should be simple for the user to unddrstand.

The interaction between the user and the system should be kept simple, easy and

straightforward.

[n this system, the user can input the required information either by clicking the mouse or
by using the keyboard. When the user is required to input data by using keyboard, the tab
function is used to move the focus point from one field to another field as a guide for the
user in.entering data. When the user enter the wrong data, either the wrong format or
exceeding the required length of characters, an error message will be displayed to inform

the user to correct the error.

The input prototype of student information input is shown in Figure 4.7,

069

CHAPTER 4 SYSTEM DESIGN

STUDENT INFORMATION
ENTRY

)

I

' Student profile, including course, department, student
I

i name, matric number, are input here.

1

AR I L U R R R R R R R R R R i i

" e s s s Wm S Mm e mm S M e Mm A S Em S Mm S S S e

Student information, including class attendance,
homework assignments, laboratory assignments,

midterm tests, project, and commitment are inpuf here.

" e e e s e e Em e s wm S N O MM e W S W NS mm e mlAm S em s em e em e

Figure 4.7: Input Prototype I'or Student Information
g /s Vi !

70

CHAPTER 4 SYSTEM DESIGN

4.4 User Interface Design

In the two previous sections, we addressed output and input design. In this section, output
and input design will be integrated info an overall user interface that establishes the
layout and the dialogue between the system users and the computer, The dialogue
determines everything from starting the system, to setting options and preferences, to
getting help. The presentation of the outputs of information to the user and the input of

new data to the system is also part of the interface.

For this project, Microsoft Visual Basic is used to construct prototypes to design the user
interface. The system uses WIMP interfaces (Windows, Icons, Menus, Pointing) where it

is Windows-oriented and point and click interface is involved.

The benefits of using WIMP interface:

« Many interactive tasks are available through a pull down menu scheme or combo box.

Such interfaces enable users to perform control and dialogue task in a facile manner;

« The use of graphical icons, pull down menus, buttons and combo boxes reduce the

amount of typing.

Figure 4.8 illustrates the main menu screen of the system. This main menu screen is basic
constructed by the window. A window is a rectangular, boarder area. A title is displayed
at the top of the window. There are some user interface controls within the window.
Label 1 shows the faculty name, label 2 shows a statement to welcome the user and ask
the user to select the options. Image | and image 2 show the UM logo and FSKTM logo

respectively. There are three buttons to allow the user to click by using mouse.

71

CHAPTER 4 SYSTEM DESIGN

Title

Frediction & Advisory System

Image |

Label 1

Faculty Of Computer Science
& Information Technology

Welocme to Prediction & Advisory System.

Please select one of the option below

Im

age 2

Tl [4bel 2

Input Data |¢— Button |
View <4— Button2 |
Close 4 Button 3

Figure 4.8: Main Menu Screen Design

CHAPTER 5 SYSTEM IMPLEMENTATION

CHAPTER 5
SYSTEM IMPLEMENTATION

System implementation i a process that converts the system requirements and system
design into program codes. This chapter will discuss the steps and the methods taken to

implement the system that was design earlier in the previous chapter.

5.1 Developing Environment

The developing environment for a system is the tool that used to develop the system. It
has certain impact on the development process of good software system. The suitability
of hardware and software chosen is very important because it will not only help to
expedite the system development but also determine the success of the project. There are
two types of tools used for developing the system, which are hardware tools and software

tools that listed in the following part.

5.1.1 Hardware Tools

The hardware tools that used to develop the system are listed as below:
« Pentium III processor 500 MHz
« 256 MBRAM
« 11 GB Hard Drive Storage
« Mouse
« Keyboard

This configuration is enough to run the system.

73

CHAPTER 5 SYSTEM IMPLEMENTATION

5.1.2 Software Tools

The software that has been implemented in the standalone system are stated below:

o Windows 98 or Windows 2000

This operating system is the system requirement that needed to run the program

o Microsoft Visual Basic 6.0
This is the main software for the system development and the interface design. It
is used to code the system and design the interface of the program. Visual Basic
offers an easy-to-use interface and language, therefore allowing the most novices

of users to easily create programs to run on Windows platforms.
e Microsoft Notepad

This is required to store the data of every single student record including student

information, class performance and final grade.

74

CHAPTER 5 SYSTEM IMPLEMENTATION

5.2 System Implementation

System implementation i8 a process that comprises of system design structure to a
computer readable system. The system will be evolved from scratch design to a run able

application.

The implementation of this system includes three types of implementation:
(1) The first type is the interface implementation, which is the implementation of

the front-end of the system.

(ii) Meanwhile, the second type of implementation is the prediction

implementation in the system, which operates as the back-end of the system.
(iii) The third type is the result and advice generation implementation, which
generates some advice about the partial student performance that user has

inputted.

These implementations will be explained in the following sections.

75

CHAPTER 5 SYSTEM IMPLEMENTATION

5.3 Interface Implementation

A few criteria have been taken into account to develop a good interface. Some of the
criteria are simple, user-friendly, interactive and so on. The interface that was created has
fulfilled these criteria. The screen shots of the real interfaces of Student Performance
Predictor can be found in Appendix A. The method for implementing the interface is

described as below:

5.3.1 User Input Form

The user input form is to let the user or student to input their related information and their
past performance to enable the system to predict the final grade of the subject and
generate advices. There are three sections need the user to input their information, which

are student information form, subject form and student performance form.

Student Information Form

In this form, all the student information like student name, register number, IC number

and gender are entered.

Subject Form

In this form. the user is allow to select which subject does he or she want to predict

Student Performance Form

In this form, the student performance is entered. The student performance includes
tutorial 1-8, assignment 1, assignment 2, midterm test I, midterm test 2 and class
attendance. Additionally, four questions also will be asked to evaluate the performance of

the student before the final exam,

76

CHAPTER 5 SYSTEM IMPLEMENTATION

5.3.2 User Output Form

The user output form display the predicted final grade and some advices about the past

performance that user has inputted. This form consists of result form and advice form.

Result Form

The result form display the predicted final grade of the subject and the number of cases
that compared with the new case. It also displays the three cases that most similar with
the new case that the student input. The similarity degree for each case is displayed to

show the similarity between the library case and the new case.

Advice Form
The academic advice is generated and display in the advice form. This advice is a guide

for the student before going for the final exam.

17

CHAPTER 5 SYSTEM IMPLEMENTATION

5.4 Prediction Implementation

Sequential file processing is used in the prediction implementation. Files are used for

permanent retention of large amounts of data. Data in files is said to be persistent.

Each file presents a student record, which called as a case. Each case contained 16
features, divided by two types of features sets, which are indexing features and non-
indexing features. Indexing feature is an index of a case that acts like index to a book in a
library. A case’s index is combination of its important descriptors, the ones that
distinguish it from another cases. The first three features are used to identify the student
information and the following two features are used to identify the particular subject
course that a certain student took. These five features are non-indexing features. The
remaining eleven features denote the partially known partial class performance of the

same student. Two tables below show the non-indexing features and indexing features.

Non-Indexing Features Indexing Features
Matric Number Class Attendance
Student Name Tutorial

IC Number Assignment 1 (by group)
Session Assignment 2 (by individual)
Semester Midterm Test |

Midterm Test 2
Revision (hour per week)
Understanding in Lecture
Understanding of Content

Discussion Made (hour per week)

Grade

Table 5.1: Case’s non-indexing features and indexing features

78

CHAPTER 5 SYSTEM IMPLEMENTATION

Given the partially known partial class performance, 1.e.,, given a test case a test case,
Student Performance Predictor’s task is to predict the student’s final grade for the
particular subject that the student took. This was done by using the case library that is
already exist in order to search the cases that are most similar to the test case. Similarity
was determined by comparison of corresponding indexing features. Corresponding
indexing features with identical numerical values receive a similarity count of 1 while
corresponding features that the absolutely value of their difference is greater than or
equal to 15% receive a similarity count of 0. If the difference is less than 15% then the
similarity count is a numerical value between 0 and 1. For the corresponding features
with identical non-numerical (string) values, it receives a similarity count of 1, other than
that receives a similarity count of 0. The sum of the similarity counts for each feature
constitutes the degree of similarity between two cases. Therefore the maximum possible
match value between two cases is equal to the number of case features that is 10.0

(100.0%).

After comparisons between test case and all library cases, Student Performance Predictor
will select the three library cases that most similar with the test case. It is done by
selecting the three library cases with the highest similarity degree. Then an average of
final grade is calculated by taking the average of the final grades of the three library

cases. The average of final grade then put into the test case as a predicted final grade.

5.5 Advice Generation Implementation

In this section, advice will be generated to the user or student after the result of the
prediction has been produced. The advice will be generated according to the past

performance of the student and the predicted final grade,

79

CHAPTER 5

SYSTEM IMPLEMENTATION

5.6 Internal Structure

The following sections show the internal structures of some important forms in the

system code. Several main procedures will be discussed for each form.

MDIMain MDI Form

Procedures

Actions

MainToolbar_ButtonClick

Do the particular event when a button on toolbar 1s clicked.

mnuAbout_Click

Display program info, version number and copyright.

mnuExit_Click

Terminate the program.

mnuPrediction_Click

Start student performance prediction.

mnuShowWizard_Click

Show or unload wizard form at startup.

mnuToolBar_Click

Show or not show the main toolbar.

mnuViewRecord_Click

Open an existing student record.

mnuWizard_Click

Show wizard.

Timer_Timer

Display the splash screen at regular interval.

frmAbout Form

Procedures Actions
cmdSysInfo_Click Try to get system info and program path\name from registry.
emdOK_Click Close About form.

frmEditPerformancell Form

Procedures Actions
emdUpdate_Click Update the survey unswér.
frmInputPerformance Form

Procedures Actions

emdBack_Click

Go back to the previous form,

emdCancel_Click
miNex Clik

cmd()l\ (Iick

U pdalc the record.

Cancel prediction session.

e —

Continue the performance prcdlul(m

80

———ed

CHAPTERS5 SYSTEM IMPLEMENTATION

frmInputStudentInfo Form

Procedures ~Actions
emdCancel_Click Cancel prediction session,
emdNext_Click Continue the performance prediction.
emdOK_Click Update the record.
‘emdSearch_Click Search the student record. il
mskMatricNo_LostFocus Convert the contents of the matric number to uppercase letter.
txtStudentName_LostFocus | Convert the contents of the student name to uppercase letter.

frmInputSubject Form

Procedures Actions
cboSubjectCode_Click Select a subject.
cmdBack_Click Go back to the previous form.
cmdCancel_Click Cancel prediction session.
cmdNext_Click Continue the performance prediction.
emdOK_Click Update the record.

frmLogin Form

" Procedures AT o e e
ecmdCancel_Click Cancel the login to view record.
emdOK_Click Enter and view record if the specific record exists.

frmResult Form

Procedures Actions
Display three most simtiar cases and calculate the average of
form_Load :
& final grade.
emdViewAdvice_Click View an advice about the student performance.

81

CHAPTER 5

frmSummary Form

Procedures

SYSTEM IMPLEMENTATION

Actions

emdCancel_Click

Cancel current prediction session.

cmdEditPerformancel _Click

Edit student performance.

cmdEditPerformance2_Click

‘emdEditStudentInfo_Click

Edit student performance.

Edit student information.

cmdEditSubject_Click

Edit subject criteria.

emdFinish_Click

Process the prediction and save the student record.

IstQuestion_Click

Display the specific survey question and answer.

IstSummary_Click

Display the specific criteria of the student.

frmSurvey Form

Procedures

Actions

emdCancel_Click

Cancel current prediction session.

emdNext_Click

Continue the performance prediction.

frmViewStudentRecord Form

Procedures

cmdClose_Click

| Close the form.

Actions

IstSubjectCode_Click

Display the performance and final grade of the selected subject,

frmWizard Form

Procedures

Actions

chkLoadWizard_Click

Save whether or not this form should be displayed at startup.

cmdAbout_Click

Display program info, version number and copyright.

emdCloseWizard_Click

Close wizard,

cmdExit_Click

Terminate the program.

emdStartPrediction_Click

Start student performance prediction.

Open an existing student record,

cemdView_Click

82

CHAPTER 6 SYSTEM TESTING

CHAPTER 6
SYSTEM TESTING

Software testing refers to verification and validation of the program to solve the problem.
Verification involves ensuring that the characteristics of a good design are incorporated
into the program and the system is actually operates in the way it is expected to be. On
the other hand, validation is used to test the execution of the program and system meets

the requirements.

The major focus of testing is to find the faults within the program that are not realized at
the time of coding. A test is successful only when a fault is discovered or when a failure
has been encountered. Testing actually involves the iteration of the process of fault

identification and fault correction or removal.

In developing large system, testing usually involves several stages. These stages are
module or unit testing, integration testing, function testing, performance testing
acceptance testing and installation testing. Each of these stages will be discussed

individually.

6.1 Module/Unit Testing

The module testing is a way to verify that the small unit function properly with the types
of input expected from the design. It has been carried out under a controlled environment
where a predetermined set of data has been provided to the modules. In other words, this
kind of testing is used to observe what input and its related output actions as well as the

data produced.

83

CHAPTER 6 SYSTEM TESTING

In module testing, each of the sub-modules is tested separately. After that, each of the
modules will be tested in turn for the creation of the user interface, the mput data
handling and output to data files, reset and exit from the modules to make sure those
modules do exactly what it were designed to perform. Test cases have been developed to

show that the input is properly converted to the desired output,

6.2 Integration Testing

After the collections of modules have been tested, the next step is to ensure that the
interface among the components are defined and handled properly. Thus, integration
testing will be performed to achieve this. Integration testing is the process of verifying
that the system modules work together as described in the system and program

specification.

[n this stage, all the individual sub-modules and modules are integrated and tested to
ensure that the interfaces between the sub-modules and modules, modules and the main
program are handled properly. Here, all the small modules that are tested are isolated first

before they are combined into a functional program in the system and tested together.

For this system, the testing approach that has been applied in the integration testing is the
bottom-up integration. Each component at the lowest level of the system hierarchy is
tested individually first. Here, each of the sub-modules is tested individually first, then
the modules in which comprise of sub-modules are tested in turn. Finally, after the
integration of the modules into a functional program, the main program is tested to ensure

that the system performs its works correctly.

84

CHAPTER 6 SYSTEM TESTING

6.3 Function Testing

After the integration testing is conducted, the function testing should be carried out to
assure that the system has the desired functionality. The function test will evaluate the
system to determine if the functions described in the requirement specification are

actually performed by the integrated system.

6.4 Other Testing

The remaining testing should be carried out after the functional testing are performance

test, acceptance test and installation test.

Performance test compares the integrated components with the non-functional system
requirements such as security, accuracy, speed and reliability. Acceptance test is ran by
the users of the system to assure them that the system they wanted was the system that
was built for them. The installation test allows users to exercise the system functions and

document additional problem that result from being at the actual site.

85

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

CHAPTER 7

SYSTEM EVALUATION AND CONCLUSION

In this final chapter, the whole system will be evaluated in a few areas. It covers the

system strength and the limitation of the system. A few of suggestion will be also stated

to enhance the system in the future. There is a thorough discussion of the problems

encountered and knowledge gained during developing the project. Finally, the conclusion

of the system will be made.

7.1

System Strength

The advantages and value-added functionalities of Student Performance Predictor are

listed as below:

iL.

iil.

Simple Interface
The interfaces of this system are quite simple in design and also user-friendly to

the user. This simple design let the user to input their data more easily.

Transparent to user
The system is transparent by enabling the user to see the working memory and

its prediction output as the prediction session progresses. This provides reliable

to the user.

Intelligent Searching

This system perform an intelligent search in the case library to select the most
similar cases with the new case that user entered. After the searching, the
system will display the data of the most similar cases to the user in order the

user can see the similarity between the new case and the cases that displayed.

86

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

7.2 System Limitations

System limitations are the shortcomings of Student Performance Predictor. The following

lists the limitations of the system:

iL.

iv.

Generated advice nol strong enough
Does not provide further and strong advice and explanation about the student
petformance. The advice that generated by Student Performance Predictor is fully

dependent of the partial performance of the student and the predicted final grade.

Limited scope
The scope of Student Performance Predictor is limited to the AI student. The

system cannot be used to predict final grades of other subjects.

Inflexible prediction
The prediction of a final grade is fully depending to the past cases in the case
library and no adaptation is made during prediction progress. This will produce

some “incorrect” output.

Lack of control in Visual Basic

Visual Basic is a revolutionary software development tool that offers an easy-to use
interface and language, therefore allowing the most novices of users to easily cerate
programs to run a Windows platform. These features also translate to making
Visual Basic a quick prototyping tool for more experienced programmers. The
drawbacks to this situation are that Microsoft had to restrict access to lower level
functions of the windows kernel (as compared to other visual studio tools such as

Visual C++).

Many of the required functions of this program had to written explicitly as declared
functions and calls to the windows kernel library to access lower level functions
because they were not provided in Visual Basic. This was especially true when the

program had to capture specific keystrokes and key combinations on the MDI form,

87

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

7.3

Future Enhancement

Student Performance Predictor would be a complete system if the limitations mentioned

earlier were to be rectified. As such, future candidate enhancements for the system

include:

Strong advice generation
Generation of an advice should be dependent on the relation between the retrieved
and current case, that is from the past performance and the current performance

generate a good advice.

Expand to all the computer science and IT students

This system can be expanded to all computer science and IT students. A powerful
database is needed to store all the subjects, student and lecturer information, In
addition, this kind of database is easier to manipulate existing data such as adding,

deleting and modifying.

Enhance the prediction by implement adaptation
A structural adaptation technique is needed for the prediction. It compares
specified parameters of the retrieved and current case to modify the solution in an

appropriate direction.

88

CHAPTER 7

SYSTEM EVALUATION AND CONCLUSION

7.4 Problems Encountered And Solutions Taken

There are a lot of problems encountered during the development of the entire course of

the project, either non-technical problem or technical problem. Some of the problems

encountered have the solutions. The following parts are the problems encountered and the

solution during development of the project.

e Problem:

o Solution:

e Problem:

o Solution:

e Problem:

o Solution:

e Problem:

o Solution:

e Problem:

o Solution:

Unsure of the type of interface design of Student Performance Predictor
Observed other system such as Adobe Photoshop 6.0 to get an idea of

interface design

Lack of experience in the programming language Visual Basic.
Do some trials and errors on the coding to make it work and referred to

some reference book.

Difficulty in evaluating student performance in Student Performance
Predictor.

Observed websites to obtain some information about student performance

evaluation and assessment.

Confusion during coding because of complexity of the inference engine of
Student Performance Predictor.

Proper documentation and comments in the code were added. Use of

pseudo-codes.

System failures encountered during incremental testing,

Extensive debugging process and immediate rectification.

89

CHAPTER7 SYSTEM EVALUATION AND CONCLUSION

1L

Knowledge Gained

[have gained a lot of useful knowledge as well as experience in various aspects during

developing the project. The knowledge gained is listed as below:

Knowledge of using Microsoft Visual Basic 6.0.

It brings me a lot of improvement in programming skill, especially in Visual
Basic. I discovered that to develop a systematic and organized program, some
practices have to be considered. Firstly, design and draw a program structure
before doing the actual coding. It makes the programming task easier and
systematic. Secondly, design a good and attractive interface that makes the
program be user-friendly to the users. Thirdly, list down all the relevant
procedures of the program, then code the program systematically. Lastly,
document the program and prepare a user manual to help users in using the

program.

Knowledge of Case-based Reasoning

Case-based reasoning is a intelligent technique to solve new problem by finding
solved problems similar to the current problem and adapting their solutions to the
current problem, taking into consideration any differences between the current

and previously solved situations.

Knowledge of applying sequential file processing

Sequential file processing is one of the most important methods to develop
Student Performance Predictor. It introduces me the data hierarchy from bits, to
bytes, to fields, to records, to files. I learned how to store data sequentially in a

file and how to read data sequentially from a file.

90

CHAPTER 7 SYSTEM EVALUATION AND CONCLUSION

7.6 Conclusion

Throughout the whole development of Student Performance Predictor, from its
initial requirements gathering phase to the final system-testing phase, no major obstacles

were encountered.

Based on the belief that analogues may provide a way to predict results grounded
on what has been true in the past, I develop a prototype intelligent system that uses case-
based reasoning in order to forecast a student’s performance in academic. Case-based
reasoning technique provides a faster solution in the prediction of student performance.
The system draws conclusions on the basis of similarities between a student’s current
partial class performance and the performance of other students that took the same
subject course. The reasoner maintains a library of cases and operates within the

traditional case-based reasoning phrases of input, matching, retrieval and storage.

As a conclusion, Student Performance Predictor was successfully developed
according to the initial system scope and requirements definition. It is not only that all
requirements and functionalities were implemented into the system; other value-added

features were also included to make the system more usable, transparent and efficient.

91

APPENDIX A

APPENDIX A: SCREEN SHOTS

Shown below are several screen shots of actual interface of Student Performance

Predictor.

Licensed to

Faculty of Computer Science and Information Technology,
University Malaya

Student Performance Predictor

Q
Artifictal Intelligence
FCSIT UM
Win 98/2000
Version 1.0.0

Warning: This computer program is protected by copyright lav and international treaties

Iigure Al: Splash Screen

APPENDIX A

_ Welcome to Student Performance Predictor, This program /s used to
 predict the final grade of a subject that depends on the partial
performance of & student, It 4/50 generates an achice for a guideline for

the student.

Please select an option) —1

Figure A2: Student Performance Predictor Wizard

93

APPENDIX A

Figure A3: Input Student Info

94

APPENDIX A

Figure A4: Input Subject

95§

APPENDIX A

www ...r,f"n!a! f""‘ B o | -lslx|
Ih o Mol jetfing Lislp { g ,

Figure AS: Student Performance |

96

APPENDIX A

Figure A6: Student Performance 2

97

APPENDIX A

Figure A7: Summary of User Record

98

APPENDIX A

Wel
Wi Fauly wol
l:«mm:m 00,23 howrs
. i

Figure A8: Prediction Result

99

APPENDIX A

oE"

%-,,._

£
i

N
-

Figure A9: Prediction Result-and Advice

100

APPENDIX A

SRR ER T

Figure A10: Student Record+Read only)

101

APPENDIX A

1 Abour Ssudens Gerformance ®vodicior

Student Performance Predictor

o Version 100
S

T ey
Technology,

Intell Information
et 523

N —

Malaya to precict the Al

Figure A11: About Student Performance Predictor

102

APPENDIX B

APPENDIX B: USER MANUAL

System Requirements

The minimum system requirements:

v

v
v
v

Pentium based PC (or equivalent) running at 200MHz

32 MB RAM (minimum 128 MB for Window NT or 2000)

Window 98

SVGA display capable of displaying 800x600 resolutions in 8-bit colour

The optimal configurations to run Student Performance Predictor:

v

v
v
v

Pentium III based PC (or equivalent)

64 MB RAM

Window 98

SVGA display running at 1024x768 resolutions in 32-bit colour (8 MB VRAM
required)

Mouse and keyboard

[nstallation

How to install: Run “Setup.exe” file in the installer CD.

Uninstalling

To uninstall Student Performance Predictor follow these steps:

o

L

Click on the Start menu
Choose Programs
Select Student Performance Predictor

Click on the Uninstall Icon

103

APPENDIX B

Splash Screen
This is the first screen when the user starts the program Student Performance Predicior.
This splash screen displays the faculty, university, program title, version number, logo

and copyright. It appears for a few seconds before a desktop of the program turns up.

Licensed to

Faculty of Computer Sclence and Information Technology,
University Malaya

Student Performance Predictor

O
Artificial Intelligence
FCSIT UM
Win 98/2000
Version 1.0.0

Warning: This computer program is protected by copyright law and international treaties.

Figure Bl: Splash Screen

Desktop

The desktop of Student Performance Predictor mimics an actual desktop where work is
done. All modules in Student Performance Predictor are loaded into the desktop using
either the buttons on the wizard, the desktop own menu bar or the icon buttons on the

toolbar.

Toolbar
Start performance prediction,
Open an existing student record.

)
B
Al it the program.
L1)

Display program information, version number and copyright,

104

APPENDIX B

Welcome to Student Performance Predictor, This program 15 used to
predict the final grade of a subject that depends on the partial
performance of a student, It also generates an advice for a guideline for
the student,

Please seloct an option

Figure B2: Desktop of Student Performance Predictor

Menu Bar

Click [Exit] to exit the program.

v N

Tick [Show Wizard] to display wizard on the desktop.
Tick [Show Toolbar] to show toolbar on the desktop.

~

Click [Start Prediction] to Start performance prediction.

Click [View Record] to open an existing student record.

- Tick [Show Wizard at Startup] to show Predictor wizard at

startup of program.

Tick [About Predictor...] to display the about form.

105

APPENDIX B

Wizard

dredictor Wizard

Welcome to Student Performance Predictor. This program is used to
predict the final grade of a subject that depends on the partial
performance of a student. /t also generates an advice for a guideline for
the student.

Please select an option

Start Prediction |

View Record

About Predictor

-

Close Wizard

Exit Program

[V Show Wizard at Startup

Figure B3: Predictor Wizard

There are five buttons on the Predictor wizard. If you want to start your performance
prediction, click [Start Prediction]. You can click [View Record] to open an existing

student record.

Click [About Predictor] to show the program information, version number and copyright
(see Appendix A). You can close the Predictor wizard by clicking [Close Wizard]. Click
[Exit Program] to terminate the program. Tick the check box on the left bottom corner

will show the Predictor wizard at startup of the program.

106

APPENDIX B

Start Student Performance Prediction Module

Input Student Information

Fredictor - l In{;ul Student Info] 1 ,. - :'u h ' i,;_;.' :"_‘J

Plaase enter your matric number and click button [!] to search the record. Click Next to continue

the performance prediction. Click Cancel to quit the current prediction.

~Studentinfo—————— LU O RO ol

Matiic No [wEKsa0223 A

Student Name IKEN

IC No |780415-14-5501

Figure B4: Input Student Information Form

When you start performance prediction, an Input Student Info form will be displayed.

You are asked to input your matric number, student name and IC number,
You can click button [!] to search your existing information. If no information available,

then you have to input your name and IC number. Then click [Next] to continue student

performance prediction. Click [Cancel] if you want to quit the current prediction session.

107

APPENDIX B

Choose Subject

Fredictor - | Chooze Subject

Please select a subject, Click Next to continue the performance prediction. Click Cancel to quit
the current prediction.

~Subiect TS0 O e el S L Aol ry LiaE

Session |20m/2001 .l Semester |1 .I

SubjectCode |wAES 3101 ~ CiedtHow [3
Subject | Expert System ‘

<< Back I

Figure BS: Choose Subject FForm

|7 oot |

After entering student information, a Choose Subject form will be shown to ask you to

choose a subject you want the system predict.

Select session and semester that the subject you took. Click [Next] to continue student
performance prediction. You can click [Back] to reenter your information in the previous

form. Click [Cancel] to quit the current prediction session.

108

APPENDIX B

Enter Student Performance (Part 1)

Predictor - | Student Pertormance 1

Fill in studert performance of the selected subject.

-

WAESI101 Expert System

(Class attendance is important to show
the class participation of a student. It is &
major factor contributing to academic
achievement,

Excellent : Attendance = 100%

Good ; Attendance >= 80%

Fair : Attendance = 60%

Tutorial refers to assigned work that
student asked to complete before the
due date. It provides a further source of
valuable student leaming information.

Wiitten assignments are ongoing student
activities that provide information on
student progress. The purpose of group
assignment is to evaluate the group
work. The purpose of individual
assignment is to assess the quality of
individual work,

Tests are important pait of the Predictor's
repertoire of assessment techniques. It
assess student knowledge of subject
matter, processes, skills and attitudes.

Assignment (by individual) r“‘j /10

Midterm Test 1 [6 =4 /10
Midterm Test 2 [8 =710

s

Midioim Tastl NN i e

Alt‘m. S S PSS WS ESRA AT
Class Attendance ((: Egm (‘: ;:‘
Tutorial ,
Tutorial 1 - 8 5 =710
~Assignments - i == -
Assignment (by goup) [T = /10

Total-

Figure B6: Student Performance (Part 1)

A Student Performance (Part 1) form will be pop up after choosing subject. This form
allows you to enter your partial performance in the subject course you just selected.
There is an explanation for each criterion of performance. After finish entering, click

[Next] to continue student performance prediction. Click [Back] to reselect subject in the

previous form and click [Cancel] if you want to quit the current prediction session.

109

APPENDIX B

Enter Student Performance (Part 2)

Predictor - [Student Performance Form 2 R ix

Please answer the following questions. Click Next to continue the performance prediction.

au"im 1 S P O SRR T ook RS
How many hours per week are you spending to make revision for this subject WAES3101?
(" Less than 1 hour & 1-2hous " 2-3hours 3-4hous (‘MWM‘ {
ek |
~Qustion 22—
How well do you understand in every lecture? ;
Very poot Very well
- Qustion 3 : e e L : st
How far do you understand the whole contents of }
th's Stb’ed? [0 F ' 1
Very poor Very well
~Qustion 4 =i
Have you organized a study group for this subject? If yes, how many hours per week do you do group
discussion?
+ Yes | No
: 4)
1-2 2-3 More than 3
hours hours hours

Figure B7: Student Performance (Part 2)

A Student Performance (Part 2) form will be pop up after Student Performance (Part 1).
This form asks you to answer four simple questions that related to your performance
before the final exam. In question 1, select how many hour per week you make revision.
In question 2 and question 3, select understanding degree by dragging the slider to a
specific value. In question 4, select Yes if you have organized a study group for the
subject course, or else select No. After answering all the questions, click [Next] to

continue or click [Cancel] to quit the current prediction session.

110

APPENDIX B

Summary of record

Predictor - | Summary Form |

Student Info Please check the following details you have entered. If all the details
Subject are correct, press Finish button to implement the stadent parformance
prediction. Press Edit button to change the details.

Performance |l

Performance |

Tutorial 1 -8 (8]710
Assignment 1 [8 |710
Assignment 2 [7)10
Class Attendance |
Midterm Test 1 l'_T‘_“m »
Midterm Test 2 7110 m

Finish | Cancel

Figure BS: Summary Form

After answering question, a Summary form will be shown to allow you to view back the
data you have entered. Click [Edit] to change your data. If all are settle, click [Finish] to
start process prediction of final grade and save the new record. A message box will be

pop up to inform you that the new record has been saved.

-~

Figure B9: Message Box show the new record has been saved

1

APPENDIX B

Prediction Result

B >rediction Result Py x|
The following displays three cases that are rost similar with the new case that you just entered. The stadent
information of each case are not displayed due to confidential reason,

Row Name Case 1 Case 2 Case 3
Session P20 1 [200072001 200172002
Semester 1 2 1
Class Attendance Good Fair Good
luotid 1- a(by | 180 8 10

ssignment (by group 6 7
Assignment (by individual) 9 3 8
Midterm Test 1 6 6 6
Midterm Test 2 8 7 3
Revision [per week) 2-3 hours 1-2 hours 1-2 hours
Understanding in Lecture Well Well Poor
Understanding of Content Fairly well Faidy wel Fairly wel
Study Group, Discussion Make (per week]) | |Yes,2-3 hours No Yes,1-2 hours
Final Grade A B C+

Stlarity Degge : [— [— [—
723% 606% 567 %
Total library case used for comparison : ,':w‘c".':mhm xdey for compasison with the
It is calculated by taking the avetage of the simarity
; ; i degrees of thiee ibrary cases [Case 1,23) that
Average of final grade e ey i Kol]
Advice »»

Figure B10: Prediction Result

Finally, a Prediction Result form will be shown to display the result of prediction. The
data of three most similar cases are displayed and the similarity degree shows the

similarity with the your record (as a new case). Click [Advice>>] to see advice about

your performance.

APPENDIX B

View Student Record

Login

Flease enter your matric number.

Matiic No {wekag223

Figure B11: Login to View Record

To view your record, click [View Record] on wizard or menu bar. A Login for will be

displayed to ask you to enter your matric number. Click [OK] to see your record.
Student Record

A Student Record form will be displayed to let you see all the data about specific subject

course. This record is not allowed to edit or delete. Click [Close] to close the form.

13

APPENDIX B

v.';m:{nm Record (Rgad Only)

Matric No I WEK990223

Student Name | KEN
IC Number [780415 145501
 Sidank Flboond el B L i Ll B
Expert System [
SubjectCode [————e - &4
W 0 (ECZIEC S R
WS 221 Cots Ao L
b e Assignment 1 (by group) (e J/10 =
Assignment 2 (by individual) AL '
Midterm Test 1 |I] /10 4
Midterm Test 2 (8]/10 - -
Revision (per week) [2hous”] © |
Understanding in Lecture wel e
”% Understanding of Content | Farpwel |

Discussion made (per week) [Yes23hows |

o o

Figure BI12: Student Record (Read Only)

114

BIBLIOGRAPHY

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

AIAL (1997). Case-Based Reasoning. Retrieved August 19, 2001 from the World Wide Web:

http://www.aiai.ed.ac.uk/links/cbr. html

Dan. Snell, Bournemouth University. (1997). Machine Learning Methods. Retrieved August 19,
2001 from the World Wide Web: http://www ecfc.u-net. com/cost/compare. htm

Diagnostic Strategies. (1998). CBR Taxonomy. Retrieved August 19, 2001 from the World Wide

Web: http://www.diagnosticstrategies.com/papers/C BR%20taxonomy. htm
Frost, Susan H. (1991). Academic Advising for Student Success: A System of Shared Responsibility.
Retrieved July 25, 2001 from the World Wide Web:

http://www.ed.gov/databases/ERIC_Digests/ed340274 html

lan Watson & Fahir Marir. (1994). Case-Based Reasoning: A Review. Retrieved August 20, 2001

from the World Wide Web: http://www.scpm salford.ac.uk/ai-cbr-mirror/classroom/cbr-review htm

K.E. Kendall and J.E. Kendal. (1995). System Analysis and Design 3" ed. (pp. 230-265, 580).

London: Prentice Hall.

Kolodner, J.L. (1993). Adaptation Methods and Strategies. /n Case-Based Reasoning (pp. 393-437).

Morgan Kaufmann,

Kolodner, J.L. (1993). Building A Case-Based Reasaner. In Case-Based Reasoning (pp. 529-537).

Morgan Kaufmann.

Kolodner, J.L. (1993). Indexing Vocabulary, /n Case-Based Reasoning (pp. 197-202). Morgan

Kaufmann.

Kolodner, J.L. (1993). Methods For Index Selection. /n Case-Based Reasoning (pp. 257-258).

Morgan Kaufmann,

115

(11]

(12]

(13]

(14]

[15]

[16]

(17]

[18]

(19]

(20]

[22]

Kolodner, J.L. (1993). Methods For Index Selection, /n Case-Based Reasoming (pp. 200). Morgan

Kaufmann,

Kolodner, J.L. (1993). Methods For Index Selection, /n Case-Based Reasoning (pp. 268-270).
Morgan Kaufmann,

Kolodner, J.L. (1993). Representing Cases. In Case-Based Reasoning (pp. 146-160). Morgan

Kaufmann.

Kolodner, J.L. (1993). The Cognitive Model. In Case-Based Reasoning (pp. 99-105). Morgan
Kaufmann.

Kolodner, J.L. (1993). What Is Case-Based Reasoning?. In Case-Based Reasoning (pp. 3-6). Morgan
Kaufmann.

Kolodner, J.L. (1993). What Is Case-Based Reasoning?. In Case-Based Reasoning (pp. 8-14).
Morgan Kaufmann.

Kolodner, J.L. (1993). What Is Case-Based Reasoning?. In Case-Based Reasoning (pp. 25-27).
Morgan Kaufmann,

Kuan Lee Huat. (1999/2000). School Counseling Unit Administration System (COUNSAS).
Unpublished degree’s thesis, University of Malaya, Kuala Lumpur.

Louis E. Frenzel, Jr. (1987). Making Computers More Useful by Making Them Smarter. /n Crash
Course in Artificial Intelligence and Expert Systems (pp. 1-3). USA: Howard W. Sams & Co.

Pfleeger, S.L., “Software Engineering Theory ‘und Practice”, Washington, Prentice-Hall

International, 1998, page 48-51, 57, 135-144, 192-195, 244-254, 401-408.

Mark F. Goldberg. (1998). How to Design an Advisory System for a Secondary School. Retrieved
July 25, 2001 from the World Wide Web:

http://www.ascd, org/readingroom/books/goldberg98book. html

Mark McVea. (1994). CBR - Case Based Reasoning. Retrieved August 20, 2001 from the World

Wide Web: http//abe. www.ecn purdue edu/~engelb/abeS65/cbr. htm

116

(23] Railsback, Gary & Colby, Anita, (1988), Improving Academic at the Community College. Retrieved
July 25, 2001 from the World Wide Web;

http://www.ed gov/databases/ERIC_Digests/ed320647 huml

(24] Washington College. The Advisory System. Retrieved July 25, 2001 from the World Wide Web:
http://advising. washcoll.edu/body/sys_intro/stud_peer. html

117

