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MOLECULAR CHARACTERISATION OF EXTENDED-SPECTRUM BETA-

LACTAMASE- AND CARBAPENEMASE- PRODUCING Pseudomonas 

aeruginosa FROM A TERTIARY HOSPITAL IN MALAYSIA 

ABSTRACT 

Pseudomonas aeruginosa infections are responsible for high morbidity and mortality 

rates globally. Increasing resistance towards β-lactams, especially carbapenems pose a 

serious therapeutic challenge. However, the multilocus sequence typing (MLST) of 

extended-spectrum beta lactamase (ESBL)- and carbapenemase-producing clinical P. 

aeruginosa have not been reported in Malaysia. In addition, few studies in Malaysia 

reported characterisation of P. aeruginosa from hospital environmental sources. The 

objectives of this study were to determine the antibiotic susceptibility profiles, resistance 

genes, pulsotypes and sequence types of clinical and environmental P. aeruginosa from 

a tertiary hospital in Malaysia. These characteristics were analysed by disk diffusion, 

minimum inhibitory concentration, PCR, pulsed-field gel electrophoresis (PFGE), and 

MLST for 199 non-replicate clinical strains and 29 environmental strains. The 29 

environmental strains were isolated from a total of 358 swab and fluid samples from 

healthcare workers’ hands, frequently touched surfaces, medical equipment, patients’ 

immediate surroundings, ward sinks and toilets and solutions or fluids of 12 selected 

wards. Less than 90% of the 199 clinical strains were susceptible towards the 

carbapenems and piperacillin-tazobactam, whilst ≥ 90% of the strains remained 

susceptible to all other classes of antimicrobial agents tested. All 29 environmental strains 

were susceptible to antibiotics tested. The 12 multidrug resistant strains displayed high 

level resistance to cephalosporins (48 to ≥ 256mg/L), and carbapenems (4 to 32 mg/L). 

Eleven clinical strains harboured the class 1 integron containing blaGES-13, blaVIM-2, blaVIM-

6, blaOXA-10, aacA(6’)-Ib, aacA(6’)-II, aadA6 and gcuD gene cassettes. The extra-integron 
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genes, blaGES-20, blaIMP-4, blaVIM-2, and blaVIM-11 were also found. The top three sources of 

clinical strains were sputum (25.6%), wound swab (16.6%), and tracheal aspirate 

(15.6%); the majority of which were isolated from patients in the medical wards (30.2%), 

surgical wards (16.6%), and the ICU (13.6%). Distribution of the environmental P. 

aeruginosa were mostly from moist and semi aqueous environments of handwashing 

sinks and toilets. The PFGE method subtyped the strains from the NICU into two major 

clusters and this finding agreed with the MLST data. This implies that there was an 

undetected outbreak of antibiotic susceptible P. aeruginosa clones at the time of 

sampling. Based on the PFGE analysis, strains were shown to be genetically 

heterogeneous with multiple subtypes of P. aeruginosa persisting in the different 

locations or wards in the hospital. The investigation of the genetic linkage for drug 

resistant international lineages is better mapped via MLST. The STs 235, 809, and 1076 

clonal clusters consisted of MDRPA clinical strains. P. aeruginosa ST111 and ST235 

strains were previously reported to be multidrug or extensively-drug resistant high-risk 

international clones found in France, Germany, Japan, Spain and Belgium. Overall, the 

Maximum Likelihood (ML) tree showed concordance in the clustering of clinical and 

environmental strains having the same STs, and PFGE clusters implying that both 

subtyping methods are useful for the investigation of the genetic relatedness P. 

aeruginosa lineages. This is the first report of the blaGES-13 and blaGES-20 ESBL-encoding 

gene variants and novel sequence types (STs 2329, 2335, 2337, 2338, 2339, 2340, and 

2341) of P. aeruginosa in Malaysia. 

Keywords: Antimicrobial resistance, MLST, PFGE, Pseudomonas aeruginosa, 

resistance genes. 
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PENCIRIAN MOLEKULAR STRAIN-STRAIN Pseudomonas aeruginosa YANG 

MENGHASILKAN EXTENDED-SPECTRUM BETA-LACTAMASE DAN 

CARBAPENEMASE DARIPADA SEBUAH HOSPITAL TERTIER DI 

MALAYSIA 

ABSTRAK 

Jangkitan Pseudomonas aeruginosa bertanggungjawab untuk kadar morbiditi dan 

kematian yang tinggi di seluruh dunia. Peningkatan kerintangan terhadap β-lactam, 

terutamanya carbapenem menimbulkan cabaran rawatan yang serius. Walau 

bagaimanapun, multilocus sequence typing (MLST) P. aeruginosa klinikal yang 

menghasilkan extended-spectrum beta-lactamase (ESBL) dan carbapenemase belum 

pernah dilaporkan di Malaysia. Selain itu, kajian dan pencirian P. aeruginosa dari sumber 

persekitaran dalam hospital di Malaysia jarang dilaporkan sebelum ini. Objektif kajian 

ini adalah untuk menentukan profil kerintangan antibiotik, gen rintangan, pulsotip dan 

sequence type P. aeruginosa klinikal dan persekitaran dari sebuah hospital tertier di 

Malaysia. Ciri-ciri ini dianalisa melalui disk diffusion, minimum inhibitory concentration, 

PCR, pulsed-field gel electrophoresis (PFGE), dan MLST untuk 199 strain klinikal dan 

29 strain persekitaran. Strain persekitaran (n = 29) telah diasingkan daripada sejumlah 

358 sampel swab dan cecair dari tangan kakitangan perubatan, permukaan wad yang 

kerap disentuh, peralatan perubatan, persekitaran sekeliling pesakit, sinki dan tandas wad, 

serta cecair dari 12 wad yang terpilih. Kurang daripada 90% daripada strain klinikal 

adalah sensitif kepada carbapenem dan piperacillin-tazobactam, manakala ≥ 90% 

daripada strain sensitif kepada semua kelas antibiotik yang diuji. Semua 29 strain 

persekitaran sensitif kepada antibiotik yang diuji. Strain multidrug (n = 12) MDRPA 

menunjukkan rintangan tahap tinggi kepada cephalosporins (48 hingga ≥ 256mg/L), dan 

carbapenem (4 hingga 32 mg/L). Sebelas strain klinikal membawa integron kelas 1 yang 

mengandungi kaset gen-gen blaGES-13, blaVIM-2, blaVIM-6, blaOXA-10, aacA(6’)-Ib, aacA(6’)-
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II, aadA6 dan gcuD. Gen luaran integron, blaGES-20, blaIMP-4, blaVIM-2, dan blaVIM-11 juga 

dijumpai. Tiga sumber utama strain klinikal adalah sputum (25.6%), swab luka (16.6%), 

dan aspirat trakea (15.6%); kebanyakannya diasingkan daripada pesakit di wad perubatan 

(30.2%), wad pembedahan (16.6%), dan ICU (13.6%). Pengagihan P. aeruginosa 

persekitaran didapati dari permukaan yang lembap dan separa berair seperti sinki dan 

tandas. Kaedah PFGE subtype strain dari NICU ke dalam dua kluster utama dan hasil ini 

dipersetujui dengan data MLST. Ini menunjukkan bahawa terdapat wabak P. aeruginosa 

yang sensitif antibiotik, yang tidak terkesan pada masa pensampelan. Berdasarkan 

analisis PFGE, terdapat pelbagai subtip P. aeruginosa yang heterogeneous secara genetik 

yang dipencilkan dari lokasi atau wad berlainan. Siasatan perkaitan genetik bagi 

keturunan strain antarabangsa yang rintang antibiotik lebih jelas dicoretkan melalui 

MLST. ST 235, 809, dan 1076 terdiri daripada strain klinikal MDRPA. P. aeruginosa 

ST111 dan ST235 sebelum ini dilaporkan sebagai klon antarabangsa yang berisiko tinggi 

dan rintang antibiotik di Perancis, Jerman, Jepun, Sepanyol dan Belgium. Secara 

keseluruhannya, pokok Maximum Likelihood (ML) menunjukkan keserasian antara 

klustering strain klinikal dan persekitaran yang mempunyai ST yang sama dengan kluster 

PFGE. Ini menunjukkan bahawa kedua-dua kaedah subtyping berguna untuk penyiasatan 

perkaitan genetik P. aeruginosa. Ini adalah laporan pertama varian ESBL blaGES-13 dan 

blaGES-20 dan ST baru (ST 2329, 2335, 2337, 2338, 2339, 2340, dan 2341) P. aeruginosa 

di Malaysia. 

Kata kunci: Kerintangan antibiotik; MLST; PFGE; Pseudomonas aeruginosa; gen 
rintangan
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CHAPTER 1: INTRODUCTION 

Pseudomonas aeruginosa, an ubiquitous aerobic Gram negative bacillus, is inherently 

resistant to many antimicrobial agents and tolerant to disinfectants (Deplano et al., 2005). 

It has been implicated in severe nosocomial infections such as bacteraemia, pneumonia, 

post-surgical infections and urinary tract infections among immunocompromised patients 

(United States of America, Centers for Disease Control and Prevention; Lister et al., 

2009). The extraordinary ability of the pathogen to acquire resistance to multiple classes 

of antimicrobial agents through mobile genetic elements or chromosomal mutations poses 

a serious therapeutic challenge in treating both community and nosocomial acquired 

infections (Glupczynski et al., 2010; Livermore, 2002). Infections associated with the 

drug resistant P. aeruginosa significantly increase surgical intervention rates, duration of 

hospitalization, treatment costs, and mortality and morbidity rates, thus adversely 

affecting overall patient outcomes (Lister et al., 2009).  

In the USA, an estimated 51,000 P. aeruginosa infections were reported every year 

and 13% of these were caused by multidrug resistant (MDRPA) strains (United States of 

America, Centers for Disease Control and Prevention). MDRPA are resistant to ≥ 1 

antimicrobial agent from ≥ 3 antimicrobial classes according to Magiorakos et al. (2012) 

and classified as a serious threat by the United States of America, Centers for Disease 

Control and Prevention. In Malaysia, the antimicrobial resistance rates and emergence of 

MDRPA-associated clinical infections were previously reported. Raja and Singh (2007) 

reported the resistance rates of P. aeruginosa to ceftazidime, cefepime, imipenem, and 

meropenem as 10.9%, 38.9%, 9.9 %, and 36.8%, respectively while Pathmanathan et al. 

(2009) reported 19.6%, 19.6%, 20.6%, and 22.7% resistance to the same antimicrobials. 

Incidences of MDRPA in Malaysian were varied at 5.7% in 2006, 69% in 2008, and 

19.6% in 2009 based on studies by Raja et al. (2007), Lim et al. (2009) and Pathmanathan 
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et al. (2009), respectively. Since then, there has been no update on the MDRPA 

incidences in Malaysia.  

Genotypic characterisation of Malaysian P. aeruginosa strains has also been 

previously reported. Lim et al. (2009) showed that the clinical strains from six public 

hospitals in six different states in Malaysia were diverse and heterogeneous. Besides that, 

high levels of broad spectrum antimicrobial resistance conferred by metallo-beta-

lactamase-encoding genes such as blaIMP-7, blaIMP-4, blaVIM-2, and blaVIM-11 as well as gene 

cassette-bearing class 1 and class 2 integrons were detected among Malaysian strains.(Ho 

et al., 2002; Khosravi et al., 2010; Khosravi et al., 2011; Lim et al., 2009). However, the 

multilocus sequence typing (MLST) of extended-spectrum beta-lactamase (ESBL)- and 

carbapenemase-producing clinical P. aeruginosa has not been reported in Malaysia. The 

data generated would be useful to elucidate the genotypes of the Malaysian drug resistant 

P. aeruginosa strains in relation to previously reported international drug resistant STs. 

The majority of reports from Malaysia were focused on clinical strains but there are 

few reports on environmental strains from hospital sources. It is important to know the 

exogenous sources of P. aeruginosa in the hospital and to characterize those isolated 

strains for better understanding of their antibiotic susceptibility profiles and genotypes. 

The combined data from the clinical and environmental strains would be useful to the 

hospital infection control teams in their on-going surveillance measures.  

1.1 Research objectives 

The aims of this study were: 

i. To determine the distribution and prevalence of clinical and environmental 

P. aeruginosa in a Malaysian tertiary care hospital. 

ii. To determine the antibiotic susceptibility profiles of P. aeruginosa from 

clinical specimens and environmental sources. 
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iii. To determine the presence of ESBL- and carbapenemase- encoding genes 

harboured by drug resistant P. aeruginosa. 

iv. To determine the genetic diversity of the clinical and environmental P. 

aeruginosa in the tertiary hospital by pulsed-field gel electrophoresis 

(PFGE) and multilocus sequence typing (MLST).   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Clinical significance of Pseudomonas aeruginosa 

P. aeruginosa has long been associated with infectious diseases in humans. The 

organism was first described by C. E. Sédillot who observed the bluish-green colour of 

surgical dressings, and was later described with greater detail by Fordos, Lucke, and 

Gessard in the 1800’s (Lister et al., 2009). The bacteria is a Gram negative, rod shaped, 

obligate aerobe, found in humans, animals, plants, soil, water and the inanimate objects. 

The ubiquitous and versatile nature of the bacteria is enabled by its auxotrophic 

characteristic and well-coordinated gene regulation and expression, requiring minimal 

nutrients for survival (Gooderham & Hancock, 2009; Kelsey, 2013).  

P. aeruginosa is responsible for a wide array of clinical manifestations in humans, 

ranging from asymptomatic carriage in the respiratory tract, urinary tract, and skin to fatal 

disease (Hauser & Rello, 2003). The bacterium is the main cause of chronic pulmonary 

infections and has been implicated in various infections such as bacteremia, ventilator-

associated pneumonia, urinary tract infections, burn wound infections, catheter-related 

infections and post-surgery wound infections (United States of America, Centers for 

Disease Control and Prevention; Keen et al., 2010). The pathogen is also frequently 

associated with cystic fibrosis (CF) lung disease and causes irreversible damage to the 

tissues in the lung of patients (Mathee et al., 1999). Moreover, the immunocompromised 

status of patients make them extremely susceptible to P. aeruginosa infections. 

(Gooderham & Hancock, 2009). The severity of the infection is determined by the type 

and condition of the infected or colonized host, the route of infection, and the presence 

of indwelling medical devices in a host (Hauser & Rello, 2003).  

The incidence of P. aeruginosa infections globally have been reported. A population 

based study conducted by Parkins et al. (2010) in a large Calgary health region showed 
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that the overall mortality rate associated with P. aeruginosa infection was 29.0% (n = 

284). Of that total, 45.0% were nosocomial acquisitions, 34.0% were healthcare-

associated community onsets, and 21.0% were community acquisitions (Parkins et al., 

2010). An estimated 400 deaths and 51,000 healthcare acquired infections attributed to 

P. aeruginosa were reported by the United States of America, Centers for Disease Control 

and Prevention (2013). A study conducted at a university hospital in Northern Thailand 

showed that the rate of ventilator-associated pneumonia caused by the pathogen was 

16.7% while the mortality rate was 16.0% (Chittawatanarat et al., 2014). Abu et al. (2016) 

reported 2.7% of blood cultures which were positive for P. aeruginosa among 

community-acquired bacteraemia in paediatric patients from a tertiary hospital in 

Malaysia. There is a lack of targeted studies to determine the mortality and morbidity 

rates due to P. aeruginosa infections from Malaysia which made it difficult to assess the 

true situation in this country.  

2.2 Environmental reservoirs of P. aeruginosa 

P. aeruginosa is ubiquitous and found to inhabit natural and man-made environments. 

The presence of P. aeruginosa in hospitals is of particular concern because of the inherent 

and acquired antimicrobial resistance of the pathogen which adversely affect patients’ 

outcomes. In addition, the presence of P. aeruginosa in intensive care units is a common 

and persistent problem in many different countries and one of the most frequently isolated 

pathogens in hospital outbreaks (Hauser & Rello, 2003). P. aeruginosa is successful in 

colonizing hospital environments because its nutritional requirements are very minimal 

and the large genome of the pathogen encoding for various virulence factors, resistance 

genes, and regulatory mechanisms is the key for survival in hospital environments 

(Gooderham & Hancock, 2009; Kipnis et al., 2006; Wolfgang et al., 2003). Previous 

reports showed that P. aeruginosa was cultured from the handwashing sinks of the ICU, 

mops, betadine, ventilators, indwelling catheters, aerosols, sink taps and water 
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distribution systems in the hospital (Hauser & Rello, 2003; Kelsey, 2013). Once the 

organism is established in biofilms in the hospital environment, complete eradication is 

difficult because of their highly robust and sturdy biophysical properties against chemical 

treatments (Kelsey, 2013; Lieleg et al., 2011).  

The presence of P. aeruginosa on fomites and inanimate objects in the hospital 

indicates that there is a potential for contamination of sterile medical goods and cross 

infections among patients resulting in nosocomial infections. Suraiya et al. (2008) 

reported that P. aeruginosa isolated from fentanyl, morphine and water used for 

medication dilution was the causative agent of an outbreak in an ICU of a tertiary teaching 

hospital in Malaysia. Sekiguchi et al. (2007) reported outbreaks of a multidrug resistant 

P. aeruginosa clone from community hospitals in Japan which were linked to urinary 

catheters. An outbreak of P. aeruginosa among patients which were associated with 

flexible bronchoscopes was reported by Mackie et al. (2003). Hence, the role of the 

hospital environment as a reservoir for P. aeruginosa nosocomial infections cannot be 

downplayed and warrants further investigation to inform and guide hospital infection 

control management.  

2.3 Emergence and development of P. aeruginosa antimicrobial resistance 

P. aeruginosa is intrinsically resistant to ampicillin, ampicillin-sulbactam, 

amoxicillin-clavulanate, cefotaxime, ceftriaxone, ertapenem, tetracyclines, trimethoprim, 

trimethoprim-sulfamethoxazole, chloramphenicol and fosfomycin (Patel et al., 2014). 

The intrinsic resistance of the organism is attributed to the derepression of chromosomal 

AmpC β-lactamase, up-regulation of the MexAB-OprM efflux pump system, mutations 

to topoisomerases II and IV, and loss of OprD porins (Livermore, 2002). However, 

acquired antimicrobial resistance is of greater concern because of the rapid dissemination 
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of resistance genes borne on mobile genetic elements such as plasmids or integrons 

(Livermore, 2002).  

An international expert group which proposed standardized definitions for acquired 

antimicrobial resistance defined multidrug resistance as an isolate which is non-

susceptible to at least one agent in ≥ 3 antimicrobial categories (Magiorakos et al., 2012). 

The United States of America, Centers for Disease Control and Prevention reported that 

multidrug resistant P. aeruginosa (MDRPA) is a serious threat attributing to an estimated 

6,700 infections a year in the US (United States of America, Centers for Disease Control 

and Prevention). The report further elaborates that about 13.0% of severe nosocomial 

infections were caused by MDRPA which means that many classes of antipseudomonal 

drugs of choice such as cephalosporins, aminoglycosides, fluoroquinolones and 

carbapenems are no longer effective.  

The first mention of acquired resistance among P. aeruginosa was in a treatment 

failure using imipenem by Quinn et al. (1986). Since then, numerous international reports 

of acquired resistance were published. For example, various P. aeruginosa beta-

lactamases classes and subtypes from Italy (Pagani et al., 2004), Korea (S. Lee et al., 

2005), China (Jiang et al., 2006), France (Brasme et al., 2007), and the UK (Woodford et 

al., 2008) were reported. In addition, various P. aeruginosa carbapenemases classes and 

subtypes from France (Naas et al., 1999), Malaysia (Ho et al., 2002), Greece (Pournaras 

et al., 2003), Columbia (Crespo et al., 2004), and Korea (Lee et al., 2013) were reported. 

The rapid development of scientific technologies such as DNA sequencing of specific 

resistance genes, opened the way for further characterisation of the resistance genes in P. 

aeruginosa.  

Univ
ers

ity
 of

 M
ala

ya



 

8 

2.4 Mechanisms and genes of resistance 

There are many mechanisms and resistance genes utilized by P. aeruginosa for 

adaptability and survivability. However, the extended-spectrum beta-lactamase (ESBL) 

and carbapenemase encoded genes were the main focus in this study as the enzymes 

produced by those genes inactivate the drugs of choice used for the treatment of invasive 

and severe P. aeruginosa infections in Malaysia (Pharmaceutical Services Division, 

2014). 

2.4.1 Extended-spectrum beta-lactamase 

The extended-spectrum beta-lactamase (ESBL) has been widely reported among the 

Enterobacteriaceae group since the early 1980s but was only reported in P. aeruginosa 

since 1993 (Weldhagen et al., 2003). The majority of the ESBLs belong to the Ambler 

class A scheme and confer resistance to narrow-spectrum penicillins, extended-spectrum 

cephalosporins, and aztreonam (Weldhagen et al., 2003). The hydrolyzing actions of the 

class A ESBLs utilizes an active site serine for the formation of an acyl enzyme (Bush & 

Jacoby, 2010). The TEM, SHV, CTX-M, PER, PSE, and GES enzymes are some 

examples of the ESBLs which have been previously described (Bush & Jacoby, 2010).  

In 1993, the first ESBL, PER-1, from P. aeruginosa isolated from a Turkish patient in 

France was characterized and reported (Naas et al., 1999; Weldhagen et al., 2003). 

Subsequently, the VEB (from France, Kuwait, India, China and Thailand), PER (from 

France, Turkey, Italy and Belgium), SHV (from France, Poland, Greece, and Thailand), 

TEM (from France), GES (from France and South Africa), and IBC (from Greece) were 

characterized and described (Weldhagen et al., 2003). This implies that there is a global 

dissemination of ESBLs-encoding genes in P. aeruginosa. However, to date, there was 

only one report of ESBL-producing P. aeruginosa (OXA-10) from Malaysia by Lim et 

al. (2009).    
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2.4.2 Carbapenemase 

The carbapenemase enzymes, or also known as metalloenzymes, are classified as 

Ambler class B and hydrolyze beta-lactams by utilizing at least one active-site zinc ion 

(Bush & Jacoby, 2010). The members of the Amber class B isolated from P. aeruginosa 

include IMP, VIM, SPM, AIM, GIM, NDM, SIM and DIM (Bush & Jacoby, 2010; Poirel 

et al., 2011). These enzymes have poor hydrolytic active against monobactams, but are 

not inhibited by tazobactams and clavulanate (Bush & Jacoby, 2010).  

There are various reports of carbapenemase subtypes such as IMP-4 (Khosravi et al., 

2010), IMP-7 (Ho et al., 2002), IMP-9 (Lim et al., 2009), IMP-26 (Koh et al., 2010), 

VIM-1 (Giske et al., 2006), VIM-2 (Lee et al., 2002; Poirel et al., 2001; Pournaras et al., 

2003), VIM-4 (Pournaras et al., 2003), VIM-8 (Crespo et al., 2004), VIM-11 (Khosravi 

et al., 2010). The reports originated from countries such as France, Columbia, Singapore, 

Korea, Greece, Hungary, Italy, Sweden and Malaysia, which suggests a global 

dissemination of these resistance genes on mobile genetic elements via horizontal gene 

transfer (Davies & Davies, 2010; Poirel et al., 2009).  

2.4.3 Class 1 and 2 integrons 

Integrons are genetic elements that exist in the majority of Gram negative bacteria, 

which are popularly known for their roles in antimicrobial resistance gene dispersion, 

acquisition and expression (Gillings, 2014). The structure of all integrons consists of an 

integron integrase-encoding gene (IntI), an integron-associated recombinant site (attI), 

and an integron-associated promoter (Pc) (Deng et al., 2015; Gillings, 2014). The 

function of the integron integrase (IntI), a member of the tyrosine recombinase family, is 

to catalyse the recombination of an in-coming gene cassette to the integron-associated 

recombinant site (attI) (Deng et al., 2015; Gillings, 2014). The integron-associated 
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promoter (Pc) then expresses the exogenously acquired genes as part of the gene cassettes 

(Gillings, 2014). 

The most common mechanism of plasmid-mediated resistance gene transmission is 

the horizontal gene transfer mechanism (Davies & Davies, 2010). Integrons located on 

plasmids can be easily transferred via bacterial conjugation which result in rapid 

dispersion of the resistance genes among bacterial species (Davies & Davies, 2010). 

However, Stokes et al. (2012) recently reported that all the class 1 integron from clinical 

P. aeruginosa from two continents were located on chromosomes. Stokes et al. (2012) 

surmised that the chromosomally located integrons have the capability to be transmitted 

via horizontal gene transfer although the exact mechanism is still unclear. Therefore, the 

class 1 integron located on the chromosome in P. aeruginosa is the major form of the 

global spread of resistance genes rather than those located on the plasmids (Stokes et al., 

2012; Wright et al., 2015). 

The class 1 integron is the most commonly found and reported class of integron, 

followed by the class 2 integron among the Gram negative bacteria (Deng et al., 2015). 

Numerous studies described the class 1 integron in P. aeruginosa as gene cassettes which 

encoded for antimicrobial resistance. For example, Wright et al. (2015) reported 119 

strains with metallo beta-lactamase-encoding, blaIMP and blaVIM genes, contained in the 

class 1 integrons. Simultaneous detection of the blaIMP and blaVIM genes located in gene 

cassettes on the class 1 integron was also described by Toval et al. (2015). Khosravi et al. 

(2011) were the first to report their findings of the class 2 integrons in P. aeruginosa. 

However, the class 2 integrons found in their study did not contain any genes of resistance 

while four and 10 of the class 1 integrons contained the blaIMP and blaVIM genes, 

respectively (Khosravi et al., 2011). In addition, Lim et al. (2009) described one strain 

possessing the class 1 integron which contained the aacA4-blaIMP-9-catB8-blaOXA-10 gene 
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cassette, where the OXA-10 is an ESBL subtype. Hence, there are varied combinations 

of resistance genes located within an integron with some simultaneously bearing metallo 

beta-lactamase- and ESBL-encoding genes. 

2.5 Molecular subtyping of P. aeruginosa 

The main aim of pathogen typing is to determine the genetic relatedness of a pathogen 

species isolated from a particular epidemiological event. This investigation is usually 

triggered by a sudden increase of infections involving a particular pathogen, a particular 

group of infected patients or when there are distinctive but unusual antimicrobial 

susceptibility patterns (Singh et al., 2006).  

Subtyping is defined as characterisation below the species and sub-species levels and 

both phenotypic and genotypic methods are widely used on bacterial pathogens (Barrett 

et al., 2006). Commonly used phenotyping methods such as biotyping, serotyping, 

bacteriophage typing, bacteriocin typing, and antimicrobial resistance profiling have been 

used for comparison of phenotypic characteristics of strains in epidemiological 

investigations (Barrett et al., 2006; Singh et al., 2006).  

Over the past three decades, DNA-based molecular methodologies began to replace 

the phenotypic approach in epidemiological investigations because the molecular 

approach was better at determining the genetic basis of strain interrelationships (Singh et 

al., 2006). Molecular techniques such as plasmid profiling, restriction fragment length 

polymorphism (RFLP), pulsed-field gel electrophoresis (PFGE), multilocus sequence 

typing (MLST), enterobacterial repetitive intergenic consensus sequences (ERIC) PCR, 

repetitive extragenic palindromic sequences (REP) PCR, variable-number tandem repeat 

(VNTR) PCR, and so forth have been developed and utilized in many studies (Foxman 

& Riley, 2001; Sabat et al., 2013). For the purpose of this study, two standardized, highly 
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discriminative, and widely used molecular techniques, PFGE and MLST, were 

performed. 

2.5.1 Pulsed-field gel electrophoresis 

Of all the various types of DNA-based subtyping methods, PFGE was considered as 

the ‘gold standard’ for bacterial subtyping for several reasons. The macrorestriction 

analysis by PFGE was found have high discriminatory powers, broad applicability, high 

intra- and interlaboratory reproducibility, epidemiologic concordance, and the ability to 

separate large DNA fragments (1000 kbp) from small fragments (50 kbp) (Barrett et al., 

2006; Hunter et al., 2005; Stemper et al., 2011). Developed by Schwartz and Cantor, the 

method was improved by utilizing the contour-clamped homogeneous electric field 

(CHEF) system that alternates the switching of electrical currents at 120° angles to 

separate the large DNA fragments from the smaller fragments (Stemper et al., 2011). The 

protocols for PFGE are standardized as a result of the PulseNet (the National Molecular 

Subtyping Network for Foodborne Disease Surveillance) programme coordinated by the 

US CDC since 1996, for the subtyping of foodborne pathogens (Hunter et al., 2005; Sabat 

et al., 2013; Stemper et al., 2011). Apart from the foodborne bacterial pathogens, the 

PFGE protocols have also been slightly modified and used by many researchers  to 

subtype P. aeruginosa by using the SpeI restriction endonuclease (Glupczynski et al., 

2010; Johnson et al., 2007; Kidd et al., 2011; Lim et al., 2009; Pournaras et al., 2003; 

Ranellou et al., 2012; Spencker et al., 2000; Suraiya et al., 2008). 

However, there are several disadvantages of using the gel–based fingerprinting 

method such as Tris-dependent DNA degradation which can mislead into classifying 

strains as untypable (Evans et al., 1994; Koort et al., 2002; Römling & Tümmler, 2000). 

This problem is easily resolved by replacing the Tris electrophoresis buffer with 1X 

HEPES buffer or with the addition of 0.5μm Thiourea into the Tris buffer (Evans et al., 
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1994; Koort et al., 2002; Römling & Tümmler, 2000). Another common problem with 

PFGE is the occurrence of incomplete DNA restriction resulting in artifacts or ‘ghost 

bands’ leading to false conclusions about pulsed-field profiles relationships (Barrett et 

al., 2006). To resolve this problem, optimisation of the methodologies should be carried 

out followed by repeated restriction and analysis of the strain (Barrett et al., 2006). The 

occurrence of point mutations, insertions and deletions which can add or lose fragments 

relative to the strains that did not undergo such genetic alterations, also lead to 

misinterpretation of the relationships between the pulse-field patterns (Barrett et al., 

2006). To ensure that the right conclusions are obtained, the PFGE results must be 

interpreted within the proper context, taking into account epidemiologic and 

environmental investigations (Barrett et al., 2006).   

2.5.2 Multilocus sequence typing 

Multilocus sequence typing (MLST) was designed in 1998 primarily to overcome the 

problem of interlaboratory results portability which is faced by traditional molecular 

subtyping methods (Maiden et al., 1998). The MLST data is made freely available over 

the internet via the PubMLST database and other host databases to facilitate information 

sharing and standardized bacterial nomenclature (Maiden, 2006). Bacterial typing is 

performed by sequencing of seven housekeeping genes which are conserved and encode 

for proteins of fundamental metabolic functions (Maiden et al., 1998; Maiden, 2006). 

Arbitrary numbers are then assigned to the each of the MLST loci and the resulting allelic 

profile is assigned a sequence type number. For P. aeruginosa, the selected seven loci in 

the scheme are acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE (Curran et al., 2004). 

Since the development of the MLST scheme for P. aeruginosa  by Curran et al. (2004), 

many researchers such as Giske et al. (2006), Johnson et al. (2007), Lim et al. (2009), 

Kidd et al. (2011), and Liakopoulos et al. (2013) have utilized this methodology for 
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pathogen subtyping in epidemiological investigations. Furthermore, Giske et al. (2006), 

Johnson et al. (2007) and Kidd et al. (2011) have simultaneously analysed their P. 

aeruginosa strains with PFGE and have concurred that both methods have high 

discriminatory ability, but do not share 100% concordance because the methods differ in 

their analysis of genetic variations. The superiority of MLST over PFGE, is the 

determination of P. aeruginosa international lineages and high risk drug resistant clones 

such as ST111, ST235, ST274, ST357, and ST654 which cannot achieved by using PFGE 

(Fernández-Olmos et al., 2013; Liakopoulos et al., 2013; Wright et al., 2015).     
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CHAPTER 3: METHODOLOGY 

3.1 Pseudomonas aeruginosa strains collection 

3.1.1 Clinical strains collection and identification 

A retrospective study of clinical P. aeruginosa was conducted in a 562-bedded tertiary 

hospital in Selangor, Malaysia. From April to November 2014, one hundred and ninety-

nine consecutive and non-replicate P. aeruginosa strains were obtained from the 

microbiology laboratory of the hospital. The strains were identified by basic biochemical 

tests and API20NE (bioMérieux, France). In addition, the information of the strains 

background such as specimen type, site of infection, locations or wards in the hospital, 

and the dates of culture and sensitivity testing were recorded (Appendix A). These strains 

were inoculated into Luria-Bertani agar stabs and labelled with a PAC prefix followed by 

consecutive numbering. The strains were then transported to the research laboratory in 

the University of Malaya, Kuala Lumpur, for further investigation and cryo-preserved at 

-80ᵒC in 50% glycerol. All agar media, solutions and buffers used in this study are 

detailed in Appendix C. 

The strains were confirmed by PCR using primers PAL1, 5’-

ATGGAAATGCTGAAATTCGGC-3’ and PAL2, 5’-CTTCTTCAGCTCGA 

CGCGACG-3’, which targeted the oprL gene (De Vos et al., 1997). Extracted DNA from 

a simple boiling method (Alexopoulou et al., 2006) was used for PCR. Additional 

confirmation was performed using primers PA SS-F, 5’-

GGGGGATCTTCGGACCTCA-3’ and PA SS-R, 5’- TCCTTAGAGTGCCCACCCG-

3’, which targeted the 16S rDNA variable regions 2 (V2) and regions 8 (V8) (Spilker et 

al., 2004) respectively. These primers were found to be more specific in identifying and 

differentiating P. aeruginosa from other Pseudomonas species. P. aeruginosa ATCC 

27853 was used as the positive control while ultrapure H2O was used as the negative 

control. The primers used in this study (Integrated DNA Technologies, Singapore) are 
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detailed in Appendix D while the reagents used for PCR are the Promega Go Taq® Green 

Master Mix (Promega, USA).  

3.1.2 Environmental strains collection 

A total of 358 environmental samples were collected from the tertiary hospital 

including the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), surgical, 

medical, gynaecology, and haematology wards from January to February 2015. These 

locations were identified to be potential reservoirs of MDRPA strains. MDR is defined 

as resistant to ≥ 1 antibiotics from ≥ 3 antibiotic groups (Magiorakos et al., 2012). The 

samples were categorized into patients’ immediate surroundings (e.g., bed rails, food 

table surface, mattress surface, curtains), medical equipment (e.g., defibrillator handles, 

infusion pump keys, medication trolley surface), healthcare workers’ hands, sinks and 

drain surface from wards, toilets and pantry, frequently touched surfaces (e.g., laptop 

keys, light and fan switches, counter tops), and solutions or fluids (e.g., sterile NaCl 0.9% 

for drug dilution, povidone iodine, hand rub solutions). Samples taken from levelled and 

even surfaces were swabbed using Transwab with Amies Charcoal Medium (Medical 

Wire, UK), moistened with sterile 0.85% NaCl, at approximately 15 cm2 at right angles 

for 1 minute (Lerner et al., 2013). Uneven or protruding surfaces (e.g., bedrails, tubing, 

respirators) were swabbed generously to obtain a large surface area. Approximately 5 to 

10 ml of solutions or fluids were collected in 15 ml pre-sterilized centrifuge tubes 

(Axygen, USA) and sealed with parafilm. These were then labelled according to the 

sampling site and location (Appendix B) and placed in a chilled transport container for 

transportation to the research laboratory for immediate processing. 

The swab samples were directly inoculated onto CHROMagar Orientation (CAO), 

(BD, USA), and incubated overnight at 37°C. Solutions or fluids were centrifuged at 

10,000 X g for 10 min, then the pellets were inoculated on CAO and incubated overnight 
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at 37°C. Presumptive P. aeruginosa colonies (labelled with PPAE prefix), which are 

typically creamy, transparent greenish to yellowish rough-edged colonies, were isolated 

based on the CAO colour morphotypes differentiation guide (BD, USA) followed by the 

oxidase test to eliminate the oxidase negative isolates.  

Oxidase positive isolates were identified using API 20NE, (bioMérieux, France) and 

confirmed using PCR as previously described for the clinical strains. P. aeruginosa 

ATCC 27853 was used as the positive control while Escherichia coli ATCC 35218 was 

the negative control for the API 20NE tests. The PAE prefix was used to relabel the 

confirmed P. aeruginosa, and these were cryo-preserved at -80ᵒC in 50% glycerol. 

3.1.3 Antibiotic susceptibility testing 

3.1.3.1 Kirby Bauer method 

All P. aeruginosa strains were tested for susceptibility to amikacin (AMK), 

ceftazidime (CAZ), cefepime (FEP), ciprofloxacin (CIP), gentamicin (GEN), imipenem 

(IPM), meropenem (MEM), polymyxin B (PMB), and piperacillin/tazobactam (TZP), 

(BBL, BD, USA) according to CLSI Performance Standards for Antimicrobial 

Susceptibility Testing (Patel et al., 2014). P. aeruginosa ATCC 27853 and Escherichia 

coli ATCC 35218 were used as positive and negative controls, respectively.  

3.1.3.2 Minimum inhibitory concentration method 

The CAZ, FEP, IPM, and MEM minimum inhibitory concentration (MIC) E test strips 

(bioMérieux, France) were used to determine cephalosporin and carbapenem resistance 

levels among resistant strains. Performance and interpretation of the MIC results were 

also performed according to CLSI standards (Patel et al., 2014).  

Univ
ers

ity
 of

 M
ala

ya



 

18 

3.1.4 Detection of ESBL and carbapenem resistant genes 

The detection of selected ESBL (blaTEM, blaSHV, blaOXA-1 like, blaCTXM for 

phylogenetic group 1, 2 and 9, blaCTXM-8/-25, blaVEB, blaPER, and blaGES) and 

carbapenemase genes (blaIMP, blaVIM, blaSPM, blaKPC, blaNDM, blaAIM, blaGIM, and blaSIM) 

was performed on all strains using multiplex PCR with primers and conditions as 

previously described (Dallenne et al., 2010; Poirel et al., 2011). The amplicons were 

purified and submitted to a commercial company for sequencing to validate the results. 

The resulting nucleotide sequences were aligned to reference sequences in the NCBI 

BLAST-n database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

The positive control strains, Klebsiella pneumoniae strain KPC06 and K. 

pneumoniae ATCC BAA-1705, were used as reference for blaTEM, blaSHV, and blaCTXM-

1, and blaKPC respectively. PCR amplicons for blaGES, blaIMP, and blaVIM were sequenced 

to validate the products and the strains with these confirmed genes were used as positive 

controls in subsequent multiplex PCR tests. Ultrapure H2O was used as the negative 

control for all multiplex PCR runs. Positive controls were unavailable for blaOXA-1 like, 

blaCTXM phylogenetic group 2 and 9, blaCTXM-8/-25, blaVEB, blaPER, blaSPM, blaNDM, blaAIM, 

blaGIM, and blaSIM.. Therefore, negative results were treated with caution.  

3.1.5 Class 1 and 2 integron detection and gene cassette determination 

Strains which were resistant to any class of antimicrobial agents were subjected 

to PCR detection of class 1 and 2 integron-encoded integrases, intI1 and intI2, according 

to established protocols (Machado et al., 2005). The 5'CS/3'CS and attI2-orfX region 

primer pairs were used to amplify the integron variable region of the class 1 and class 2 

integrons, respectively (Machado et al., 2005). Subsequent sequencing of the integron 

variable region to confirm the presence and content of gene cassette insertions was also 

performed.  
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3.1.6 PFGE 

PFGE was conducted on all strains according to established protocols (Lim et al., 

2009) with minor modifications using CHEF MAPPER (Bio Rad, Hercules, CA). Briefly, 

SpeI-restricted DNA plugs were electrophoresed for 23 hours with pulse times of 1 s and 

40 s, at 6 Vcm-1. XbaI-digested Salmonella serotype Braenderup H9812 was used as the 

DNA size marker (Hunter et al., 2005). Both restriction enzymes used were from 

Promega, USA. For strains that could not be typed because of Tris-dependent DNA 

degradation, the electrophoresis was repeated with 1 X HEPES as the electrophoresis 

buffer (Koort et al., 2002). The gels were visualized in Gel Doc XR (Bio-Rad 

Laboratories, CA, USA) after staining with GelRed (Biotium, CA, USA). The reagents 

used for PFGE are detailed in Appendix C. The similarity indices of the PFGE 

fingerprints were calculated with Dice co-efficient at 1.0% optimization and 1.5% 

tolerance while clustering was done using unweighted pair group method with arithmetic 

mean (UPGMA) algorithm in the BioNumerics 7 software (Applied Maths, bioMérieux, 

Belgium).  

3.1.7 MLST 

Thirty-two clinical and six environmental strains were selected for MLST, based on 

the PFGE analyses: (i) indistinguishable pulsotypes (n = 10), (ii) pulsotypes with ≥85% 

genetic similarity (n = 6), (iii) pulsotypes with ≤85% genetic similarity (n = 4) and (iv) 

the MDRPA strains (n = 9). The primers and cycling conditions used were obtained from 

the MLST webpage (http://pubmlst.org/paeruginosa/) and published procedures (Curran 

et al., 2004). 

eBURST v3 (http://eburst.mlst.net/) analysis using the most stringent definition, 

where the sequence types (STs) were identical or shared at least 6/7 alleles, were used to 

detect clonal complexes or BURST groups (BG) among the STs in this study (n = 29) and 
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the P. aeruginosa PubMLST database (n = 5265, http://pubmlst.org/paeruginosa/) (Feil 

et al, 2004). The STs were then classified as BG founders, single locus variants (SLVs), 

double locus variants (DLVs), or singletons (Spratt et al., 2004)  

The nucleotide sequences of the STs were aligned to reference sequences from the P. 

aeruginosa PubMLST database using MUSCLE (MEGA7) (Kumar et al., 2016) and 

concatenated with Sequence Matrix 1.8. In order to estimate the distances between the 

sequences, the Maximum Likelihood (ML) method based on the Tamura-Nei model was 

utilized (Tamura & Nei, 1993). The tree topology was determined by neighbour-joining 

method and the final phylogenetic tree was rooted using Acinetobacter spp. as the 

outgroup (Hall & Barlow, 2006).  

The BGs and ML tree were assessed using 2000 bootstrap replicates and bootstrap 

percentages ≥70% were considered to be reliable (Hall, 2013).  
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CHAPTER 4: RESULTS 

4.1 Strains identification 

4.1.1 Biochemical testing results 

Biochemical identification using API 20NE identified all 199 clinical strains as P. 

aeruginosa (Figure 4.1). Out of the 358 environmental samples, 29 P. aeruginosa strains 

from 23 samples were also isolated and identified. Examples of the environmental 

samples cultured on CHROMagar Orientation media are shown in Figure 4.2. 

 

Figure 4.1: A representative photo of biochemical reactions for P. aeruginosa 
identification using an API 20NE test kit. Positive biochemical reactions are indicated 
with colour changes for the ADH (pink), URE (orange), and GEL (black) tests while the 
positive results for assimilation of substrates such as GLU, MAN, NAG, GNT, CAP, 
ADI, MLT, and CIT are visualized as opaque or turbid.  

 

 

Figure 4.2: Environmental isolates cultured on CHROMagar Orientation plates. 
Presumptive P. aeruginosa morphotypes are transparent, yellowish to greenish rough-
edged colonies (indicated by the red arrows). The other presumptive morphotypes such 
as Enterobacter spp. (deep blue with violet halos), Enterococcus spp. (small, blue-green 
to blue), and Escherichia coli (large, dark rose to pink) colonies are also seen.  

 

Univ
ers

ity
 of

 M
ala

ya



 

22 

4.1.2 Confirmation of strain identity by PCR  

All 199 clinical strains were confirmed to be P. aeruginosa by PCR using the PAL 

and PA SS primer pairs which yielded 504 bp and 956 bp products, respectively (Figure 

4.3). Of the 170 oxidase positive environmental strains, 40 were positive for the oprL 

gene and only 29 strains were positive for 16S rDNA variable regions 2 and 8 genes; 

implying that only 29 strains were confirmed to be P. aeruginosa while the rest were 

Pseudomonas spp. The results obtained using the PA SS primer pairs were concordant 

with the results from the API 20NE biochemical tests. Therefore, the final confirmation 

of the strains identities were based on the PCR using the PA SS primers which were more 

specific in the detection of true P. aeruginosa (Figure 4.4).  

 

Figure 4.3: Representative agarose gel photos of clinical P. aeruginosa confirmed by 
PCR using the (a) PAL primers and (b) PA SS primers. (a) Lane 1: 100bp DNA ladder 
(Promega). Lane 2: Positive control. Lanes 3 to 15: P. aeruginosa strains (strains ID are 
indicated in the photos). Lane 16: Negative control. Lane 17: 1000bp DNA ladder 
(Promega). (b) Lanes 1 and 17: 100bp DNA ladder (Promega). Lane 2: Positive control. 
Lane 3: Negative control. Lanes 4 to 15: P. aeruginosa strains (strains ID are indicated 
in the photos).  
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Figure 4.4: A montage of representative agarose gel photos of presumptive 
environmental P. aeruginosa analysed by PCR using the (c) PAL primers and confirmed 
using the (d & e) PA SS primers. Compared to the PAL primers, the PA SS primers were 
more specific in detecting true P. aeruginosa (missing bands are indicated by the red 
arrows in (d) and (e)). (c) Lanes 1 and 17: 100bp DNA ladder (Promega). Lane 2: Positive 
control. Lane 3: Negative control. Lanes 4 to 16: Presumptive P. aeruginosa strains 
(strains ID are indicated in the photos). (d) Lane 1: 100bp DNA ladder (Promega). Lane 
2: Positive control. Lane 3: Negative control. Lanes 4 to 6: Presumptive P. aeruginosa 
strains (strains ID are indicated in the photos). (e) Lanes 1 and 17: 100bp DNA ladder 
(Promega). Lane 2: Positive control. Lane 3: Negative control. Lanes 4 to 16: 
Presumptive P. aeruginosa strains (strains ID are indicated in the photos). 

4.2 Strain distribution and prevalence in the hospital 

The 199 clinical P. aeruginosa strains were isolated from various sources obtained 

from different locations in the hospital (Table 4.1). The top three sources of clinical 

strains were sputum (25.6%), wound swab (16.6%), and tracheal aspirate (15.6%); the 

majority of which were isolated from patients in the medical wards (30.2%), surgical 

wards (16.6%), and the ICU (13.6%). Sixty-one percent (n = 122) and 39% (n = 77) of 

the clinical strains were from male and female patients, respectively. The detailed strain 

background information are found in Appendix A. Table 4.2 shows the sources of the 29 

environmental P. aeruginosa strains from 10 different wards in the hospital. The majority 

of strains were isolated from sinks and drains located in the Surgical (31.0%), and 

Medical (24.1%) wards. The details of the environmental strains background are shown 

in Appendix B. 

(c) (d) (e) 
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Table 4.1: Specimen types and sources of clinical P. aeruginosa strains studied (Phoon et al., 2018). Reprinted permission granted by Mary Ann Liebert, 
Inc.  

Locations/wards 

Specimen types 

A
bscess

/ Pus 

B
lood 

B
one 

B
A

L/ 
N

PA
a 

C
atheter 

tip 

Eyes/ 
C

ornea 

Sputum
 

Throat 
sw

ab 

Tissue 

Tracheal 
aspirate 

U
rine 

W
ound 

sw
ab 

Total 

Intensive Care Units 
 

3 
  

1 
 

4 
  

18 
 

1 27 
Haematology 3 9 

 
1 

  
1 

 
2 2 1 2 21 

Emergency 
 

1 
   

1 
      

2 
Ophthalmology 

     
1 

      
1 

Obstetrics & Gynaecology 1 2 
    

1 
   

1 3 8 
Otorhinolaryngology 2 

           
2 

General Medicine 4 3 
    

37 1 
 

3 8 4 60 
Paediatrics 1 11 

 
1 

 
7 

  
1 4 

 
1 26 

Orthopaedics 2 
 

1 
   

1 
 

3 
 

2 10 19 
General Surgery 3 

    
1 7 

 
4 4 2 12 33 

              
Number of specimens 16 29 1 2 1 10 51 1 10 31 14 33 199 

aBAL/NPA = Bronchoalveolar lavage / nasopharyngeal aspirate  
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Table 4.2: Environmental sources of P. aeruginosa strains studied. 

 
 
 

Sources 

Wards 

 
Surgical 1 

 
Surgical 2 

 
Surgical 3 

 
G

ynaecology 

 
M

edical 1 

 
M

edical 2 

 
M

edical 3 

 
H

aem
atology 1 

 
H

aem
atology 2 

 
H

aem
atology 3 

N
um

ber of 
specim

ens 

Sink & drain 2 3 4 1 2 4 2 1 
 

1 20 
Counter top and around sink surfaces 1 

 
1 

    
1 4 

 
7 

Patient mattress surface 
    

2 
     

2 
Total  3 3 5 1 4 4 2 2 4 1 29 
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4.3 Antibiotic susceptibility profiles 

4.3.1 Kirby Bauer results  

The susceptibility rates for clinical P. aeruginosa tested against all the antimicrobial 

agents in this study ranged from 88.4% (piperacillin/tazobactam and imipenem) to 100% 

(polymyxin B). All the strains tested were susceptible towards polymyxin B. The 

antimicrobial agents with the highest resistance rates were imipenem and meropenem 

(11.6%, n = 23), followed by piperacillin/tazobactam (8.0%, n = 16) and ceftazidime 

(7.0%, n = 14). All the environmental strains were susceptible to the antibiotics tested 

except for one strain, PAE22, which was resistant to imipenem and meropenem. This 

strain was subjected to MIC testing for confirmation of the carbapenem resistance. The 

antibiograms of all strains are listed in Appendix E and the representative antibiotic 

susceptibility plates are shown in Figure 4.5. The antibiotic susceptibility rates for the 

clinical strains are summarised in Table 4.3. 

Among the 199 clinical strains, twelve MDRPA strains (6.0%) were isolated from ICU 

(n = 3), Surgical 1 (n = 1), Gynaecology (n = 2), Medical 1 (n = 3), Haematology 1 (n = 

1), and Haematology 3 (n = 2) wards. The strains which were intermediate or resistant to 

ceftazidime (n = 20), cefepime (n = 14), imipenem (n = 26), and/or meropenem (n = 35) 

were further analysed by MIC testing. 
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Figure 4.5: Representative photos of antibiotic susceptibility testing for P. aeruginosa 
on Mueller Hinton II plates using Kirby Bauer method.  

 

Table 4.3 Antibiotic susceptibility rates of clinical P. aeruginosa by Kirby Bauer method 
(Phoon et al., 2018). Reprinted permission granted by Mary Ann Liebert, Inc. 

Antimicrobial 
agentsa 

 

No. (%) of isolates 
Susceptible Intermediate  Resistant 

CAZ 180 (90.5) 5 (2.5) 14 (7.0) 
FEP 186 (93.5) 0 (0) 13 (6.5) 
TZP 176 (88.4) 7 (3.5) 16 (8.0) 
IPM  175 (88.4) 0 (0) 23 (11.6) 
MEM  173 (86.9) 3 (1.5) 23 (11.6) 
GEN  175 (93.1) 0 (0) 13 (6.9) 
AMK  190 (95.5) 1 (0.5) 8 (4.0) 
NET  187 (94.0) 0 (0) 12 (6.0) 
CIP  191 (96.0) 0 (0) 8 (4.0) 
PMB  197 (100) 0 (0) 0 (0) 

aCeftazidime (CAZ), Cefepime (FEP), Piperacillin/Tazobactam (TZP), Imipenem (IPM), 
Meropenem (MEM), Gentamicin (GEN), Amikacin (AMK), Netilmicin (NET), 
Ciprofloxacin (CIP), Polymyxin B (PMB) 

 

4.3.2 Minimum inhibitory concentration results 

Figure 4.6 shows the representative pictures of minimum inhibitory concentration 

(MIC) E test strips used in this study and Tables 4.4 and 4.5 summarize the MIC results 

for cephalosporins and carbapenems, respectively. Based on the MIC results, 13 of 20 

(65.0%) clinical strains tested were confirmed to be resistant to ceftazidime, while 12 of 

CAZ30 
AMC30 

AK30 

TZP110 

CN10 

IPM10 
FEP30 

PB300 

SXT25 
NET30 

MEM10

CIP5 
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14 strains (85.7%) were confirmed to be resistant to cefepime. Twenty three of 26 (88.5%) 

clinical strains tested strains were confirmed to be resistant to imipenem and 21 of 35 

strains (60%) were confirmed to be resistant to meropenem. However, the environmental 

strain, PAE22, which was resistant to imipenem and meropenem by disk diffusion had 

MIC values of 3.0 mg/L (intermediate) for imipenem and 2.0 mg/L (sensitive) for 

meropenem. Hence, strain PAE22 was considered as a non-resistant strain. 

 

 

Figure 4.6: Representative photos of minimum inhibitory concentration testing for P. 
aeruginosa using (a) ceftazidime, (b) cefepime, (c) imipenem and, (d) meropenem E 
test strips on Mueller Hinton II agar. 

 

(a) (b) 

(c) (d) 
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Table 4.4: Minimum inhibitory concentration results for cephalosporins, ceftazidime 
(CAZ) and cefepime (FEP).  

MIC 
(mg/L)a CAZ FEP 

 n % n % 
256 11 

65.0 

4  

85.7 
128 1 3 
96 0 1 
64 1 3 
48 0 1 
24 1 

25.0 
1 

7.1 16 4 0 
8 1 1 
1.5 1 10.0 0 7.1 
Total 20 100.0 14 100.0 

aMIC interpretive criteria for cephalosporins based on CLSI standards (Patel et al., 2014); 
Susceptible: ≤8, Intermediate: 16, Resistant: ≥32. 

 

Table 4.5: Minimum inhibitory concentration results for carbapenems, imipenem (IPM) 
and meropenem (MEM). 

MIC 
(mg/L)b IPM MEM 

 n % n % 
32 21 

88.5 

13 

60.0 16 2 0 
12 0 4 
8 0 4 
6 0 3.8 3 8.6 3 1 0 
2 0 

7.7 

2 

31.4 

1.5 0 1 
1 1 2 
0.75 0 1 
0.5 0 2 
0.38 1 1 
0.125 0 1 
0.094 0 1 
Total 26 100.0 35 100.0 

bMIC interpretive criteria for carbapenems based on CLSI standards (Patel et al., 2014); 
Susceptible: ≤2, Intermediate: 4, Resistant: ≥8 
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4.4 Resistance genes, class 1 and class 2 integrons  

4.4.1 ESBL and carbapenem resistance genes 

Of the 199 clinical strains, only two strains possessed the extra-integron Ambler class 

A ESBL gene, blaGES-20, while seven possessed the Ambler class B metallo-beta-

lactamase (MBL)/carbapenemase genes, blaIMP-4 (n = 3), blaVIM-2 (n = 2), and blaVIM-11 (n 

= 4). Two strains harboured both the blaVIM-2 and blaIMP-4. All these were MDRPA strains. 

The nucleotide sequences of the PCR amplicons were validated by DNA sequencing and 

the BLAST-N search results for nucleotide sequence data are shown in Appendix G to 

Appendix J. Table 4.6 summarises the genetic contents of the gene cassettes, extra-

integron ESBL- and carbapenemase-encoding genes, the resistant phenotypes, and MICs 

for cephalosporins and carbapenems. Representative agarose gel photos of PCR amplified 

products of blaGES, blaIMP and blaVIM are shown in Figure 4.7 and 4.8.  
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Table 4.6: Gene cassette contents of class 1 integrons, extra-integron resistance genes and resistant phenotypes of intI1-bearing clinical P. aeruginosa 
from a Malaysian tertiary hospital (Phoon et al., 2018). Reprinted permission granted by Mary Ann Liebert, Inc. 

Integron locus/ 
Accession number 

Gene cassette 
contents 

Amplicon 
size (bp) 

Extra-integron 
resistance genes 

Locus  Resistant phenotypea MIC (mg/L) No. of strains 
(Strain ID) 

GU169702 blaGES-13 1200 blaGES-20 CP022000 CAZ-FEP-TZP-IPM-
MEM-GEN- NET-CIP 

CAZ (>256), FEP (64,128), 
IPM (>32), MEM (>32) 

2 (PAC06, 
PAC08) 

KR337993 (5’CS) blaVIM-6  1200, 2600 blaVIM-11 NG_050338 CAZ-FEP-TZP-IPM-
MEM-GEN-AMK-NET 

CAZ (>256), FEP (64,256), 
IPM (16,>32), MEM (6,8) 

2 (PAC138, 
PAC148) KU839731 (3’CS) blaOXA-10- 

AAC(6')-Ib 
KR337993 (5’CS) blaVIM-6 2600 blaVIM-11 NG_050338 CAZ-FEP-TZP-IPM-

MEM-GEN-AMK-NET-
CIP 

CAZ (>256), FEP (>256), 
IPM (>32), MEM (>32) 

1 (PAC36) 
KX241477 (3’CS) blaOXA-10- 

aac(6')-II 
MF168946 blaVIM-2 1200, 2600 blaVIM-11 NG_050338    CAZ-FEP-TZP-IPM- 

GEN-AMK- NET 
CAZ (>256), FEP (48), IPM 
(>32), MEM (12) 

1 (PAC200) 

KY860572 aadA6-gcuD 1400 blaIMP-4 KX711879 CAZ-FEP-TZP-IPM- 
MEM-GEN-AMK-NET- 
CIP 

CAZ (>256), FEP 
(128,>256), IPM (>32), 
MEM (>32) 

2 (PAC45, 
PAC51) blaVIM-2 FR695889/ 

FR695890 
KY860572 aadA6-gcuD 1400 blaIMP-4 KX711879 CAZ-FEP-IPM-MEM-

GEN-NET-CIP 
CAZ (>256), FEP (>256), 
IPM (>32), MEM (>32) 

1 (PAC96) 

KY860572 aadA6-gcuD 1400 Not detected Not applicable GEN-AMK-NET-CIP N/Tb 1 (PAC99) 
KY860572 aadA6-gcuD 1400 Not detected Not applicable CAZ-FEP-TZP-IPM- 

MEM-GEN-AMK-NET- 
CIP 

CAZ (>256), FEP (128), 
IPM (>32), MEM (>32) 

1 (PAC17) 

 

aAntimicrobial agents: ceftazidime (CAZ), cefepime (FEP), piperacillin-tazobactam (TZP), imipenem (IPM), meropenem (MEM), gentamicin (GEN), 
amikacin (AMK), netilmicin (NET), and ciprofloxacin (CIP). 
bNot Tested Univ
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Figure 4.7: Representative agarose gel photo of PCR amplified blaGES products. Lane 1: 
100bp DNA ladder (Promega). Lane 2: Negative control. Lane 3: Internal amplification 
control. Lanes 4 to 11: P. aeruginosa strains (strains ID are indicated in the photos). 

  

 

 

Figure 4.8: Representative agarose gel photo of PCR amplified blaIMP and blaVIM 
products. Lanes 1 and 11: 100bp DNA ladder (Promega). Lane 2: Negative control. Lane 
3: Internal amplification control. Lanes 4 to 10: P. aeruginosa strains (strains ID are 
indicated in the photos). 
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4.4.2 Integron-borne gene cassettes 

Eleven (10 MDRPA and 1 non-MDRPA) strains harboured the intI1 integrase 

gene. However, none were positive for the intI2 integrase gene. None of the tested 

resistance genes and integrons were present in two MDRPA strains; PAC95 and PAC167.  

 Further analysis of the sequenced 5’CS and 3’CS variable region of the class 1 

integrons yielded eight different gene cassettes; blaGES-13, blaVIM-2, blaVIM-6, blaOXA-10, 

which confer resistance toward beta-lactams; aacA(6’)-Ib, aacA(6’)-II and aadA6 which 

confer resistance against aminoglycosides; and gcuD which encodes for a hypothetical 

protein of unknown function. Strains with high MIC levels for CAZ, FEP, IPM and MEM 

possessed the corresponding resistance genes except for PAC17, which was resistant to 

beta-lactams and fluoroquinolone but only harboured the aadA6-gcuD in the class 1 

integron gene cassette (Table 4.6). 

The intI1 and gene cassette BLAST-N analysis results of the nucleotide sequence data 

are shown in Appendix K and Appendix (L to P), respectively. Representative agarose 

gel photos of PCR amplified products of class 1 integron-encoded integrase, intI1, and 

the class 1 integrons are shown in Figures 4.9 and 4.10, respectively.  

 

Figure 4.9: Representative gel agarose photo of PCR amplified products for class 1 
integron-encoded integrase, intI1. Lanes 1 and 17: 100bp DNA ladder (Promega). Lane 
2: Negative control. Lanes 3 to 16: P. aeruginosa strains (strains ID are indicated in the 
photos). 
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Figure 4.10: Representative gel agarose photo of PCR amplified products for class 1 
integron. Lanes 1 and 12: 1000bp DNA ladder (Promega). Lanes 2 to 11: P. aeruginosa 
strains (strains ID are indicated in the photos). 

 

4.5 Genetic diversity of P. aeruginosa 

4.5.1 Genetic relatedness of clinical strains based on PFGE analyses 

PFGE analysis of the 199 SpeI-digested chromosomal DNA yielded 163 reproducible 

pulsed-field profiles (PFPs; F = 0.61 – 1.00) with 10 to 30 restriction fragments (Figure 

4.12) indicating that the strains were genetically diverse. Cluster analysis generated 52 

clusters (C1 to C52) at ≥85% similarity or three-band difference and 27 singletons (UP1 

to UP27). One untypeable strain (PAC 199) was excluded from the analysis. Three large 

clusters were observed in the hospital at ≥85% similarity. Two different clusters, C16 and 

C44, comprised of strains which originated from the NICU. Cluster C16, which was the 

largest cluster in the hospital, comprised of nine indistinguishable strains, while cluster 

C44 contained six indistinguishable strains. Clonal strains in C35 (n = 5) were isolated 

from Medical wards 1 and 3, and Haematology 3. A representative PFGE gel photo of 

SpeI-digested P. aeruginosa is shown in Figure 4.11.  
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Figure 4.11: A representative PFGE gel photo for SpeI-digested P. aeruginosa. Lanes 1, 
8 and 15: Salmonella serotype Braenderup H9812 DNA size marker. Lanes 2 to 7 and 9 
to 14: P. aeruginosa strains (strains ID are indicated in the photos). 
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Figure 4.12: Dendrogram for clinical strains of P. aeruginosa based on SpeI digestion. Specimen type: 
Below knee amputation (BKA); Diabetic foot ulcer (DFU); Internal jugular catheter (IJC); Left eye (LE), 
Osteomyelitis (OM). Locations: Coronary care unit (CCU); Day transplant ward (DT); Emergency 
department (EMER); First class ward 1 (F1); First class ward 2 (F2); Gynaecology ward (GYN); 
Haematology 1 ward (H1); Haematology 2 ward (H2); Haematology 3 ward (H3); High dependency ward 
(HDW); Intensive care unit (ICU); Medical 1 ward (M1); Medical 2 ward (M2); Medical 3 ward (M3); 
Medical outpatient department (MOPD); Neonatal intensive care unit (NICU); Ophthalmology department 
(OPTH); Orthopaedic ward (ORTH); Otorhinolaryngology department (ORL); Paediatric 1 ward (P1); 
Surgical 1 ward (S1); Surgical 2 ward (S3); Surgical 3 ward (S3). PFGE type is categorized as cluster (C) 
or unique profile (UP). 
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Figure 4.12, continued. 
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Figure 4.12, continued. 

4.5.2 PFGE analyses for environmental strains 

PFGE analysis of the 29 SpeI-digested chromosomal DNA yielded 19 to 28 restriction 

fragments with 26 reproducible pulsed-field profiles (PFPs; F = 0.72 – 1.00). These 

indicate that the strains were genetically diverse and the dendrogram is shown in Figure 

4.13. Cluster analysis generated 4 clusters (E1 to E4) at ≥85% similarity and 7 singletons 

(SN1 to SN7).  

Based on the PFGE dendrogram (≥85% similarity), all the strains (n = 7) from E1 

originated from the sinks, sink tap handles and counter top surfaces of the pantries in the 

H2, S1, and S3 wards. However, the strains in E4 (n = 8) were isolated from various 
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surfaces of the GYN, H2, M1, M2, S2, and S3 wards. This implies that the genetically 

related environmental P. aeruginosa were distributed across the wards on various 

fomites, from the fifth to the seventh floors of the hospital. 

  

Figure 4.13: Dendrogram for environmental strains of P. aeruginosa based on SpeI 
digestion. Specimen source: Counter top and around sink (CTAS), Handwashing sink and 
drain (HSD), Sink and drain (SD), Sink tap handle (STH). Locations: Gynaecology ward 
(GYN), Haematology 1 ward (H1), Haematology 2 ward (H2), Haematology 3 ward (H3), 
Medical 1 ward (M1), Medical 2 ward (M2), Medical 3 ward (M3), Surgical 1 ward (S1), 
Surgical 2 ward (S2), Surgical 3 ward (S3). PFGE type is categorized as cluster (C) or 
unique profile (UP). 
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Analysis by eBURST v3, detected 10 BURST groups or clonal complexes (Figure 4.14). 
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except for STs 2338 and 2341, which are SLVs of each other. Further BURST analysis 

of this dataset in comparison to the P. aeruginosa MLST database, revealed that the 

Malaysian P. aeruginosa strains with STs 111, 179, 207, 235, 274, 381, 446, 532, and 

2033 (n = 9) were international predicted founders while ST309 (n = 1) was a subgroup 

founder (Figure 4.15). The STs 266, 708, 1076, 2329, 2338, and 2341 (n = 6) were SLVs 

while STs 167, 274, 553, 809, 823, 1400, 1417, 1734, 2335, 2337, 2339, 2340, 2341 (n = 

13) were singletons. In addition, STs 2329, 2335, 2337, 2338, 2339, 2340, and 2341 (n = 

7) were determined to be the novel allelic profile strains among the studied strains. 

 
Table 4.7: Sequence types and allelic profiles of representative clinical and 
environmental P. aeruginosa strains  
 

Strain 
Label ST 

Allelic profile 
acsA aroE guaA mutL nuoD ppsA trpE 

PAC08 1076 5 4 57 62 1 1 26 
PAC10 1400 44 54 99 48 1 1 163 
PAC11 708 11 3 11 3 1 4 60 
PAC17 235 38 11 3 13 1 2 4 
PAC28 111 17 5 5 4 4 4 3 
PAC29 708 11 3 11 3 1 4 60 
PAC30 2329 134 8 57 27 1 6 3 
PAC35 266 16 5 11 72 44 7 52 
PAC36 1076 5 4 57 62 1 1 26 
PAC47 381 11 20 1 65 4 4 10 
PAC51 235 38 11 3 13 1 2 4 
PAC54 2335 9 4 11 3 8 7 8 
PAC60 2337 30 202 11 4 4 4 7 
PAC64 553 17 5 1 11 4 4 45 
PAC70 2338 16 5 1 54 58 7 19 
PAC90 1417 16 10 11 85 4 4 10 
PAC93 2339 11 5 11 5 1 6 2 
PAC95 2340 9 131 5 6 12 17 8 
PAC96 235 38 11 3 13 1 2 4 
PAC98 1417 16 10 11 85 4 4 10 
PAC103 266 16 5 11 72 44 7 52 
PAC106 708 11 3 11 3 1 4 60 
PAC107 708 11 3 11 3 1 4 60 
PAC108 2341 16 5 1 3 58 7 19 
PAC135 553 17 5 1 11 4 4 45 
PAC148 809 36 3 6 13 3 6 26 
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Table 4.7, continued. 
 

Strain 
Label ST 

Allelic profile 
acsA aroE guaA mutL nuoD ppsA trpE 

PAC165 381 11 20 1 65 4 4 10 
PAC167 532 5 4 5 5 5 20 4 
PAC172 207 47 4 5 33 1 6 40 
PAC191 274 23 5 11 7 1 12 7 
PAC199 2033 15 5 30 72 3 6 68 
PAC200 809 36 3 6 13 3 6 26 
PAE14 167 40 5 11 5 4 38 37 
PAE22 167 40 5 11 5 4 38 37 
PAE45 309 13 8 9 3 1 17 15 
PAE48 179 36 27 28 3 4 13 7 
PAE70 1734 11 10 6 11 4 4 7 
PAE88 446 18 4 5 3 1 17 13 
PAE117 823 32 13 24 13 1 6 25 

 
 

 

Figure 4.14: The eBURST v3 generated diagram of the Malaysian STs. The 10 BURST 
groups/clonal complexes are indicated in the red boxes. The novel allelic profiles are 
indicated in the blue boxes.  
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Figure 4.15: Composite image of the BURST groups displaying the lineages of Malaysian STs compared to the international STs from the P. aeruginosa 
PubMLST database. The BURST group founders are indicated by the blue arrows while the sub group founder is indicated by the yellow arrow. Univ
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4.5.3.2 Maximum likelihood analyses 

Figure 4.16 and Figure 4.17 illustrate the ML rooted tree integrated with STs, PFGE 

clusters, resistance genes, source, and location of the clinical and environmental P. 

aeruginosa strains, respectively. The nucleotide changes per site are indicated by the 0 to 

0.005 cladogram branch lengths (excluding the outgroup). From Figure 4.16, strains on 

the clades with ≥70% bootstrap probabilities had identical STs except ST381 (PAC47 

and PAC165) which were located on distant branches. In contrast, single locus variants, 

STs 2338 and 2341 which did not share identical STs, were positioned side by side with 

98% clade probability. From the ML analysis of the environmental strains (Figure 4.17), 

strains PAE14 and PAE22 had identical STs and shared 99% clade probabilities. 

However, strains PAE48 and PAE70 which did not have the same STs shared 78% clade 

probabilities.   

4.5.3.3 Combined analyses for MLST, PFGE, and resistance genes genotypes 

 Overall, based on the Maximum Likelihood (ML) trees (Figure 4.16 and 4.17), 

concordance was observed between the clustering of strains having the same STs or single 

locus variants with the PFGE clusters. For example, ST553 with C6, ST1417 with C35, 

ST266 with C48, ST708 with C16, ST809 with C17, ST2338/ST2341 with C44, and 

ST167 with E2. However, ST235 and ST1076 were further subtyped by PFGE. Two 

antibiotic susceptible clones detected from the NICU in the integrated analysis, were 

ST708 and single locus variants, STs 2338 and 2341.  

The MDRPA genotypes were observed among the strains of STs 235, 809, and 

1076 clonal complexes, however, these drug resistant strains were of diverse 

backgrounds. In our study, the multidrug resistant ST235 strains showed high level MIC 

values for ceftazidime, cefepime, imipenem, and meropenem (>256, >128, >32, and 32 

mg/L, respectively) due to the presence of the blaIMP-4 and blaVIM-2 extra integron 
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resistance genes. Besides that, the multidrug resistant characteristic for the strains of the 

ST809 could be attributed to the presence of the class 1 integron bearing the blaVIM-6-

blaOXA-10- AAC(6')-Ib and the blaVIM-2 gene cassette variants as well as the extra integron 

blaVIM-11. 

 On the other hand, different types of class 1 integron gene cassettes and extra 

integron resistance genes were detected for ST1076 MDRPA strains. Strain PAC08 

harboured the blaGES-13 gene cassette and blaGES-20 extra integron resistance gene while 

strain PAC36 harboured the gene cassette containing the blaVIM-6, blaOXA-10- aac(6')-II 

genes and the extra integron blaVIM-11. The high level of MICs in these two strains (>64 

mg/L for ceftazidime, and cefepime, and >32 for imipenem, and meropenem) could be 

due to the cumulative expression of their multiple resistance genes. However, there were 

no resistotypes among the environmental strains. 
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Figure 4.16: Bootstrap cladogram of clinical P. aeruginosa MLST sequence types (ST) based on 
Maximum Likelihood method (Tamura-Nei model) in comparison with PFGE clusters (PC). The 
bootstrap test (2000 replicates) percentage of associated taxa clustered together is shown next to 
the branches. aSequence type; bPFGE cluster; cResistance genes from class 1 integron gene 
cassettes (GC) and extra-integron (EI) genes detected by PCR and confirmed by nucleotide 
sequencing: (ND) Not Detected, (I) GC - blaGES-13, EI - blaGES-10, (II) GC - aadA6, EI - Not 
detected, (III) GC - blaVIM-6, EI - blaVIM-11, (IV) GC - aadA6-orfD, EI - blaIMP-4 and blaVIM-2, (V) 
GC - aadA6-orfD, EI - blaIMP-4, (VI) GC - blaVIM-6- blaOXA-10- aacA4, EI - blaVIM-11, and (VII) GC 
- blaVIM-2, EI - blaVIM-11; d Source & location: Tracheal aspirate (Tracheal asp.), Braochoalveolar 
lavage (BAL), Intensive care unit (ICU), Neonatal intensive care unit (NICU), Emergency unit 
(Emer), Surgical 1 (S1), Surgical 3 (S3), Gynaecology (Gyn), Medical 1 (M1), Medical 2 (M2), 
Medical 3 (M3), Haematology 1 (H1), Haematology 2 (H2) and Haematology 3 (H3) (Phoon et 
al., 2018). Reprinted permission granted by Mary Ann Liebert, Inc. 
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Figure 4.17: Bootstrap cladogram of environmental P. aeruginosa MLST sequence types 
(ST) based on Maximum Likelihood method (Tamura-Nei model) in comparison with 
PFGE clusters (PC).  The bootstrap test (2000 replicates) percentage of associated taxa 
clustered together is shown next to the branches. aSequence type; bPFGE cluster; cSource 
& location: Counter top and around sink surfaces (CTAS), Handwashing sink and drain 
(HSD), Patient’s mattress surface (PMS), Sink and drain (SD), Nurses’ station 1 (NS 1), 
Patients’ toilet (PT), Surgical 3 ward (S3), Medical 1 ward (M1), Medical 2 ward (M2), 
Medical 3 ward (M3), Haematology 1 ward (H1), Haematology 2 ward (H2) and 
Haematology 3 ward (H3).    
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CHAPTER 5: DISCUSSION 

The periodic investigation of antibiotic resistance profiles and the resistance genes 

among clinical P. aeruginosa strains Malaysia is useful to gauge the level of activity 

among commonly prescribed antipseudomonal drugs. In this hospital, the susceptibility 

of the strains towards carbapenems and piperacillin-tazobactam, were the lowest (≤ 90%), 

whilst ≥ 90% of the strains remained susceptible to all other classes of antimicrobial 

agents tested. This implies that therapeutic use of carbapenems and 

piperacillin/tazobactam could become limited. According to the hospital’s 2014 

Antibiotic Usage report (data not shown), piperacillin/tazobactam, meropenem, 

imipenem, cefepime, and ceftazidime were among the top 10 most frequently 

administered antibiotics in the wards. Antibiotic selection pressure resulted in the 

enhanced growth of antibiotic resistant variants (Davies & Davies, 2010). In a multicentre 

retrospective study by Micek et al. (2015), the initial inappropriate antibiotic prescription 

is significantly correlated (p < 0.001) to the incidence of MDRPA and P. aeruginosa-

pneumonia amongst hospitalized patients. Hence, the hospital’s continuous judicious 

antibiotic therapy and review of the annual antibiotic susceptibility profiles are 

fundamental to detect and prevent emerging MDRPA.  

The environmental P. aeruginosa in this study were found to be susceptible to all 

antimicrobial agents tested. This implies that there were no environmental reservoirs of 

drug resistant P. aeruginosa found in various locations in the hospital at the time of 

sampling. A study conducted by Crespo et al. (2004), recovered imipenem-resistant 

strains from the sinks (n = 9) and stethoscope (n = 1) in the ICU and sinks (n = 3) in the 

NICU. Two studies reported recovering P. aeruginosa from bronchoscopes (Mackie et 

al., 2003) and from fentanyl, morphine and water for medication dilution (Suraiya et al., 

2008) which were implicated in outbreaks among hospitalized patients. This study was 
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conducted randomly and therefore no assumption of links could be determined between 

the clinical and environmental strains. Future investigations with a more targeted 

approach is warranted.  

In this study, the majority of the clinical P. aeruginosa strains were isolated from 

respiratory specimens from patients in the medical wards. Based on clinical reports 

(unpublished data), patients from these medical wards had underlying diseases such as 

diabetes mellitus (DM), chronic obstructive pulmonary disease (COPD) and cancers 

which predisposed them to opportunistic P. aeruginosa infections. Results from an 

international study involving 12 hospitals from five countries showed that patients with 

DM or COPD co-morbidities were significantly (p < 0.05) more likely to have MDRPA 

infections (Micek et al., 2015). Our study concurred with these findings. The 

environmental P. aeruginosa strains in this study were mostly isolated from moist and 

semi aqueous environments such as handwashing sinks, tap handles, and pantry counter 

tops around the sink. This finding concurred with previous studies which showed that P. 

aeruginosa are commonly found in water systems and taps of healthcare facilities 

(Kelsey, 2013). The persistence of P. aeruginosa in the environment of the hospital is due 

to the biofilm forming ability of the bacteria which are highly robust and can withstand 

chemical treatments (Lieleg et al., 2011).  

The high levels of resistance to beta-lactam antibiotics such as the cephalosporins 

and carbapenems were mediated by the blaOXA, blaVIM and blaIMP genes detected in our 

study. Our data concurred with findings by other Malaysian studies (Khosravi et al., 2010, 

2011; Lim et al., 2009) and previously published reports by Toval et al. (2015), Hansen 

et al. (2014), and Farshadzadeh et al. (2014). The IMP-4, VIM-2, and VIM-11 subtypes 

of P. aeruginosa identified in this study were similar to Khosravi et al.’s study (2010). 

However, to the best of our knowledge, this is the first report of the Ambler class A ESBL 
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gene, blaGES (blaGES-13 and blaGES-20 variants) detected in Malaysia. The blaGES-bearing P. 

aeruginosa was first detected in Evgenidion General Hospital, Athens (2007-2008) and 

subsequently reported in studies from Turkey (2014) and Brazil (2012) (Iraz et al., 2014; 

Kotsakis et al., 2010; Polotto et al., 2012). No resistance genes were detected from two 

MDRPA strains (PAC95 and PAC167). Meanwhile, the PAC17 strain, which only 

harboured the aadA6-gcuD was resistant to beta-lactams and fluoroquinolone. 

Cephalosporin resistance may occur as a result of acquired beta-lactamases, total 

derepression of chromosomal AmpC or upregulation in efflux systems while carbapenem 

resistance is often due to loss of OprD porins, upregulation of efflux pump mechanisms 

or acquisition of beta-lactamases (Livermore, 2002). A cumulative combination of 

several other resistance mechanisms give rise to multidrug resistance. However, other 

mechanisms and genes of resistance were not exhaustively investigated in this study; 

hence future work on the MDRPA strains is warranted.  

Two different subtyping tools were used to analyse the genetic relatedness of the 

strains in this study. The PFGE method subtyped the strains from the NICU into two 

major clusters and this finding agreed with the MLST data. This implies that there was 

an undetected outbreak of antibiotic susceptible P. aeruginosa clones at the time of 

sampling. PFGE subtyped the 199 clinical strains into 52 clusters (≥85% similarity) and 

27 singletons and the 29 environmental strains into four clusters and seven singletons. 

This indicates that the strains were genetically heterogeneous and that there were multiple 

subtypes of P. aeruginosa circulating in the different locations or wards in the hospital. 

While there is a concordance between the strains clustered by PFGE and MLST, there 

were also exceptions. For example, ST235 and ST1076 which were further subtyped by 

PFGE. Johnson et al. (2007) reported that PFGE was more discriminatory than MLST 

(Simpson’s D value, 0.999 and 0.975, respectively) for subtyping P. aeruginosa, which 

could explain the occurrence of the discordant results. In addition, another study reported 
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occasional overdiscrimination for some STs by PFGE and that the two typing methods 

are highly unlikely to have 100% concordance due to the basic differences in approach to 

molecular genotyping (Kidd et al., 2011). 

PFGE genotyping is reliable, reproducible and advantageous for local outbreak 

investigations. However, it is limited because clustering of the strains cannot be linked to 

international lineages. The investigation of the genetic linkage for drug resistant 

international lineages is better mapped via MLST. P. aeruginosa ST111 and ST235 

strains were previously reported to be multidrug or extensively-drug resistant high-risk 

international clones found in France, Germany, Japan, Spain and Belgium (Hansen et al., 

2014; Hong et al., 2015). The ST235 strains in our study were also multidrug resistant 

with high MIC values for ceftazidime, cefepime, imipenem, and meropenem (>256, >128, 

>32, and 32 mg/L, respectively). However, the ST111 strain in this study was susceptible 

towards all antibiotics tested. ST235 strains harbouring blaVIM-2, blaIMP-1, and blaIMP-7 

were reported from a Singaporean study (Koh et al., 2010). Furthermore, blaVIM-2-

carrying-ST235 was widely distributed in a study involving six Asian countries while 

ST111 was not detected (Kim et al., 2013). Hence, the occurrence of the ST235 among 

Malaysian P. aeruginosa is indicative of a global dissemination of the drug resistant 

clone. A 2013 Spanish study showed that the ST809 strains isolated from cystic fibrosis 

patients were non-MDRPA (Fernández-Olmos et al., 2013). This report differs from our 

findings on MDRPA ST809 lineage which harboured metallo-beta-lactamase encoding 

genes. The ST1076 in this study is unique because one of the MDRPA strains possesses 

the ESBL-encoding blaGES while the other possesses the blaVIM-6 MBL and blaOXA-10 

ESBL genes concurrently. These characteristics also differed from the recently reported 

ST1076 from South Korea which did not harbour any MBL-encoding genes (Lee et al., 

2013).  
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The STs 179, 309 and 446 among the environmental P. aeruginosa in this study were 

also previously reported. In Spain, researchers at a university hospital reported 

characterizing ST179 as one of the 21 STs of persistent isolates from cystic fibrosis 

patients (Fernández-Olmos et al., 2013). ST309 and ST446 were genotyped by 

researchers from South Korea and were identified as metallo-β-lactamase-producing and 

multidrug resistant P. aeruginosa, respectively (Hong et al., 2015; Lee et al., 2013). 

However, in our study, these strains were all susceptible to all classes of antimicrobials 

tested. Future on-going surveillance of hospital environmental fomites and sources are 

warranted to monitor these STs to detect emergence of antimicrobial resistance which 

pose a serious nosocomial infection risk. 

There are several limitations in this study. The sampling of clinical and environmental 

P. aeruginosa were not performed in parallel to establish the potential nosocomial 

infection link between the strains found in the hospital environment to the clinical strains 

isolated from patients. A more targeted study of nosocomial infections caused by 

exogenous sources of P. aeruginosa is warranted for future investigations. Furthermore, 

the study of the P. aeruginosa resistance mechanisms was not exhaustive and thus could 

not explain the multidrug resistance exhibited in two of the strains in this study, PAC95 

and PAC167. Hence, further testing is required to determine other mechanisms of drug 

resistance in these strains.  
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CHAPTER 6: CONCLUSION 

 From this study, the highest numbers of isolated clinical P. aeruginosa were from 

respiratory specimens of patients with co-morbidities while the environmental P. 

aeruginosa were from handwashing sinks in the wards. The antimicrobial susceptibility 

profiles of all the P. aeruginosa strains in this tertiary hospital showed that the majority 

of the strains were susceptible to most of the antimicrobial agents tested. However, the 

presence of MDRPA strains is still a cause for concern because of the high level 

cephalosporin and carbapenem resistance mediated by the blaGES, blaOXA, blaVIM and 

blaIMP resistance genes which can be easily disseminated via the class 1 integron. PFGE 

subtyping of all the strains showed that DNA fingerprints were heterogeneous and 

diverse. The two major clusters from the NICU subtyped by PFGE and MLST implied 

that there was an undetected outbreak of antibiotic susceptible P. aeruginosa clones 

within the sampling duration. By utilizing the MLST subtyping method, a high risk 

MDRPA clone was identified in this study. The clonal spread of the international high 

risk clone ST235 in Malaysia requires future close monitoring. To the best of our 

knowledge, this is the first report of the blaGES-13 and blaGES-20 ESBL-encoding gene 

variants and novel sequence types (STs 2329, 2335, 2337, 2338, 2339, 2340, and 2341) 

of P. aeruginosa in Malaysia. 
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