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BAYESIAN APPROACH TO ERRORS-IN-VARIABLES IN COUNT DATA

REGRESSION MODELS

ABSTRACT

In most practical applications, data sets are often contaminated with error or mismeasured

covariates. When these errors-in-variables or measurement errors are not corrected,

they will cause misleading statistical inferences and analysis. Therefore, we will focus

on addressing errors-in-variables problems in count data regression models, specifically

Poisson regression and negative binomial regression models. To remain useful in realistic

situations, we utilize the Bayesian approach where the variance is estimated instead

of assumed as known. We relax the distributional assumption of the exposure model by

intentionally misspecifying the model with a flexible distribution. Following this, we shall

also compare the performance between two different flexible distributions in modelling

the exposure, namely the flexible generalized skew-normal distribution and flexible skew-

generalized normal distribution. We also conduct simulation studies on synthetic data sets

using Markov Chain Monte Carlo simulation techniques to investigate the performance of

the flexible Bayesian approach. The results of our findings show that the flexible Bayesian

approach is able to estimate the values of the true regression parameters consistently and

accurately with a significant bias reduction.

Keywords: Count data regression, errors-in-variables, Bayesian, Markov chain Monte

Carlo.
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PENDEKATAN BAYESAN DALAMMODEL

RALAT-DALAM-PEMBOLEHUBAH DALAMMODEL REGRESI DATA

BILANG

ABSTRAK

Dalam kebanyakan aplikasi praktikal, set data sering terkontaminasi dengan ralat atau

kesilapan sukatan pada kovariat. Apabila ralat-dalam-pembolehubah atau ralat sukatan

tidak diperbetulkan, mereka akan menyebabkan kesimpulan dan analisis statistik yang

mengelirukan. Oleh itu, kami akan memberi tumpuan dalam menangani masalah ralat-

dalam-pembolehubah dalam model regresi data bilang, khususnya regresi Poisson dan

model regresi binomial negatif. Untuk terus berguna dalam situasi yang realistik,

kami menggunakan pendekatan Bayesan di mana varians dianggarkan dan bukannya

dianggap sebagai tercerap. Kami melonggarkan andaian taburan model tak bersandar

dengan menggantikannya dengan model fleksibel yang salah secara sengaja. Berikutan

ini, kami juga membandingkan prestasi dua taburan fleksibel yang berbeza dalam

memodelkan pembolehubah tak bersandar, iaitu taburan pencong-normal teritlak yang

fleksible dan taburan normal pencong-teritlak yang fleksibel. Kami juga menjalankan

kajian simulasi pada set data sintetik menggunakan teknik simulasi rantai Markov Monte

Carlo untuk menyiasat prestasi pendekatan Bayesan yang fleksibel. Hasil penemuan kami

menunjukkan bahawa pendekatan Bayesan yang fleksibel dapat menganggarkan nilai-

nilai parameter regresi sebenar secara konsisten dan jitu dengan pengurangan pincang

yang signifikan.

Kata Kunci: Regresi data bilang, ralat-dalam-pembolehubah, Bayesan, rantai Markov

Monte Carlo.
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CHAPTER 1: INTRODUCTION

1.1 Background of Study

Count data consist of non-negative integers that have many applications in various fields

of studies. Poisson regression model (PRM) is mostly used to model for this type of

data. However, PRM requires count data to have the property of equal mean and variance.

This property is referred to as equidispersion. Although some count data could fulfill

this property, realistically overdispersion may occur. So, as to model for count data with

overdispersion, negative binomial regression model (NBRM) is another model that is

regularly employed tomodel for overdispersed count data. In addition to this, the covariates

of these count data regressions are usually riddled with error. When the independent

variables of these count data models are contaminated with error, we use the term errors-

in-variables (EIVs) to describe it. EIV occurs when instead of observing the true values

of the independent variables, their incorrect proxy values which has EIV are instead

observed and taken as true. There are various reasons on why EIV emerges (e.g. human

blunder, machine error, expensive or impossible to measure exposure variables directly).

When EIV is ignored or not addressed, there will be serious drawbacks, especially when

estimating the parameters in a model that has this type of error contamination. By not

addressing EIVs, researchers may reach the wrong statistical conclusions as parameter

that is estimated in a non-corrected model will be biased.

To date, there is a significant amount of literature on methods to solve EIV problems.

Whilst most research has been carried out on EIV for other types of regression (i.e., logistic

regression), only a few have investigated EIV issues around count data regression models,

which shall be discussed in detail in Chapter 2. Approaches on handling EIV models

can be widely classified into two conceptual frameworks; Bayesian and frequentist (non-

Bayesian) approaches. Corrected score (Stefanski, 1989; Nakamura, 1990), structural
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quasi score (Carroll et al., 2006; Thamerus, 1998) and conditional score (Stefanski &

Carroll, 1987) are examples of non-Bayesian methods. As for Bayesian approach to EIV

problems, it was introduced byRichardson andGilks (1993) in the context of epidemiology

study. Dellaportas and Stephens (1995) and Mallick and Gelfand (1996) analysed EIV

models in the fully Bayesian framework for nonlinear regression models and generalized

linear models, respectively.

In the Bayesian paradigm, there will be a need to specify the distribution of the

independent variables, but since in EIV model the observed independent variables are

incorrect, then the specification of the distribution might lead to misspecification bias

(Richardson et al., 2002). Following this, most researchers explore the usage of functional

approaches where there is no specification of model; nevertheless in comparison to

Bayesian approaches, the former may lead to a loss in efficiency (Hossain & Gustafson,

2009). To reduce distributional assumptions, researchers in the Bayesian paradigm

consider flexible models where the exposure model is intentionally misspecified with a

flexiblemodel. Carroll et al. (1999) demonstrated the use ofmixtures of normals as flexible

exposure model for linear EIV models. Later, Richardson et al. (2002) extended the use of

mixtures of normals as misspecified exposure model to EIV logistic regression. However,

in these studies, they reported that the performance of the mixtures of normals model

deteriorated when the true exposure distribution is skewed and/or heavy-tailed. Huang et

al. (2006) implemented a second-order nonparametric density but they did not investigate

its robustness for exposure distribution with skewness and heavy-tailedness. Hossain

and Gustafson (2009) utilized flexible generalized skew-normal (FGSN) and flexible

generalized skew-t (FGST) as misspecified exposure distribution. They investigated the

robustness of both FGSN and FGST to model exposure distribution that exhibits different

levels of skewness and heavy-tailedness.

2
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1.2 Problem Statement

It is imperative to stress that the vast majority of investigations carried in Bayesian EIV

models focused on other types of regression models such as logistic regression and probit

regression; much less attention is given to correcting EIV in PRM and NBRM despite

their importance in modeling for count data. This is especially true for PRM in the

Bayesian paradigm and even more so for NBRM in general. To the best of our knowledge,

researches that were done on the subject of fixing EIV in NBRM are by El-Basyouny

and Sayed (2010) and Yang et al. (2013) where both papers addressed EIV in NBRM

using Bayesian approach and applied it to safety performance analysis. Nevertheless,

they assumed the true exposure distribution as known such that it follows either normal

or log-normal distributions. Thus, any departures from normality and log-normality may

lead to extra bias caused by exposure model misspecification.

Throughout the years, most EIV correction studies in count data regression models

have focused on the use of classical methods (non-Bayesian methods). However,

non-Bayesian methods faced problems such as inconsistent roots especially when the

distribution of EIV is non-normal. Furthermore, some of these methods also show

pathological behaviours and when the contamination level of EIV is high, multiple roots,

estimate-finding failure, as well as skewness, are also found. In addition to this, non-

Bayesian methods are unrealistic in general practices since in these methods, they often

assume the distribution of the variance of EIV as known.

In our research, we propose the use of flexible Bayesian approach which is the

Bayesian approach with flexible independent variables distribution. This type of approach

could offer compensations on the shortcomings of the non-Bayesian approach in solving

EIV problems mentioned in the previous paragraph as in the Bayesian paradigm, one does

not deal with estimating functions which therefore will not lead to any roots problem. In

3
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this study, the flexible Bayesian approach is introduced to count data regression models

with EIV, particularly the PRM and NBRM.

1.3 Objective of Research

The main objectives of this research are

1. To implement the Bayesian framework to EIV in count data regression models,

particularly the Poisson regression and negative binomial regression models.

2. To introduce the flexible parametric approach to account for different types of

true unobserved exposure distributions for the count data regression models with

EIV and compare the performance of two flexible distributions, i.e., flexible

generalized skew-normal (FGSN) and flexible skew generalized-normal (FSGN) as

an intentionally misspecified distribution of the unobserved independent variables

distribution.

3. To apply the Markov chain Monte Carlo sampling methods when estimating the

regression parameters of these EIV count data regression models while reducing

bias in parameter estimations caused by EIV.

4. To investigate the performance of the flexible Bayesian approach using simulation

studies.

1.4 Significance of Research

The significance and benefits of this research are

1. When most studies have been focused on using frequentist methods in the context

of count data models, we employ the Bayesian approach to correct bias due to EIV

in parameter estimations for count data models that have better efficiency according

to Hossain and Gustafson (2009).

4
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2. True exposure distribution is considered as unknown unlike existing researches in

EIV correction of PRM and NBRM.

3. We adapt the flexible parametric approach such that the exposure model is

misspecified with a flexible distribution, hence our approach remains robust against

any departures from normality in its true underlying exposure distribution.

4. Current non-Bayesian approaches to correcting EIV assume the variance of EIV

as known, but in this thesis, since the Bayesian approach is used, we spare the

assumption that the EIV variance is known and instead it is estimated aided with

validation data in order to achieve model identifiability.

1.5 Outline of Research

Our research applies the Bayesian method with an intentionally misspecified flexible

exposure distribution to correct EIV in count data regression models, namely the PRM

and NBRM. The outline of our research is as follows,

Chapter 2 of this thesis contains the literature review of this study where any existing

academic literature that is significantly related to our study is discussed. In the first part,

we discuss the development of count data regression models and their usage. Following

this, we examine all significant literature on EIVMs in any regression models. This

chapter also contains the different techniques used in correcting EIVs which is separated

into two; Non-Bayesian methods and Bayesian methods. Next, we also discuss on the

basic understanding of the Bayesian paradigm and a brief review of the Markov chain

Monte Carlo (MCMC) algorithm.

Chapter 3 presents the framework in which the Bayesian approach that is utilized to

address EIV in regression models. The formulation of the posterior distribution in the

presence of EIV is also presented here. This is followed by a discussion on the impact

5
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of misspecification of outcome and exposure models and how the implementation of an

intentionally misspecified flexible model can mitigate misspecification bias. We also

provide a brief introduction to the flexible models considered in our research.

Chapter 4 contains our implementation of the Bayesian approach to EIV in PRM. We

modify current flexible Bayesian approach in correcting EIVs to Poisson regression. This

chapter is separated into two main parts, that is when flexible generalized skew-normal

(FGSN) is used and when flexible skewed generalized-normal (FSGN) is used. The

prior distributions, posterior distributions and conditional posterior densities of all the

parameters in question are given in this chapter as well as the MCMC that is implemented.

The results of the simulation studies done for PRM outcome model are also given, the

first part of the results are when the error is normal and second part of results is when the

error is non-normal.

Chapter 5 focuses on our usage of Bayesian approach to EIV for NBRM. Similarly,

this chapter is made up of two parts; the first part is when FGSN is considered as the

intentionally misspecified exposure model and the next part is when FSGN is considered

as the intentionally misspecified exposure model. The prior distributions, posterior

distributions and conditional posterior densities of all the parameters in question are given

in this chapter as well as the MCMC that is implemented. The results of the simulation

studies are also presented here. The results are also separated into two parts, that is when

the distribution of error is normal and when the distribution of error is non-normal.

Chapter 6 discusses the overall results of the simulation studies conducted and explains

the main findings of our research.

Chapter 7 provides the concluding remarks as well as suggestions on extending the studies

done in this thesis.

6
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CHAPTER 2: LITERATURE REVIEW

2.1 Count Data Regression Models

Data with non-negative discrete count outcomes, denoted by Y , are usually referred to as

count data. Count data can be found in most if not all industries and fields of research,

which is why in this dissertation we shall focus on regressions that can be used to model

count data. To illustrate their wide implementation, we give examples of count data usages

found in literature. Schwalbach and Zimmermann (1991) used a data set on the number of

patents of German companies registered at the German patent office in 1982, then Dionne

et al. (1997) studied the frequency of airline accidents by a carrier in Canada on a quarterly

basis between 1974 and 1988. Kawanishi and Sunquist (2004) used photographic capture

data in Taman Negara National Park, Malaysia to provide a reliable density estimate of

tigers across 600-km2 study sites. Much recently, Ahmed et al. (2014) studied number of

traffic accidents occurrence and their causes. These examples are only a small fraction of

count data implementations in literature. To handle count data, there are various statistical

models that can be employed corresponding to the properties of the count data studied.

This is further discussed in the coming subsections. In our study, we shall focus more on

Poisson regression model (PRM) and negative binomial regression model (NBRM).

2.1.1 Poisson Regression Model

Generally, PRM is the most popular regression employed in modelling count data as its

main advantage is that it clearly recognizes non-negative integers as independent variables.

Poisson distribution originated from the work by Simeon Poisson (Poisson, 1837). Using

Poisson distribution as basis, the PRM is developed where explanatory variables Xi are

explicitly taken into account in its vital component, that is the mean parameter. Unlike

Poisson distribution, where its mean parameter is a non-negative constant, the PRM

specifies its mean parameter, µi, as a function such that, µi = exp(β0 + β1Xi) for
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i = 1, 2, . . . , n; or in simple vector form, µi = exp(X′i β) where β is the regression

parameters vector and Xi denotes the vector of exposure variables.

Note that, the exponential function ensures that the mean function of PRM remains

non-negative. For a discrete response, Yi = 0, 1, 2, . . . such that, Yi ∼ Poisson(µi) the

probability mass function (pmf) of PRM is given by,

f (Yi |µi) =
exp(−µi)µ

Yi
i

Yi!
. (2.1)

PRM has expected value

E(Yi |µi) = µi;

and variance

Var(Yi |µi) = µi .

As is clearly seen above, as E(Yi |µi) = Var(Yi |µi), PRM requests for equidispersion in

count data. Due to this restricted property of PRM, more flexible count data regression

models are developed to account for overdispersion (where the value of the variance

is larger than the value of mean) and underdispersion (where the value of the variance

is smaller than the value of mean). Following this, we will also consider the negative

binomial regression model which is another commonly used count data regression model

when dealing with extra variability.
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2.1.2 Negative Binomial Regression Model

As mentioned in the previous subsection, when count data shows evidence of

overdispersion, PRM is no longer appropriate and therefore, NBRM shall be used as

an alternative which allows the variance to be larger than the mean. Using NBRM,

Campbell et al. (2002) conducted a case-control study on a sample of women enrollees in

a metropolitan health maintenance organization to identify the significances of physically

and/or sexually abusedwomen, meanwhileMakary et al. (2010) used frailty in 594 patients

between 2005 and 2006 as a measure of predictor for surgical outcomes. NBRM was also

used by Lozano et al. (2013) to study data on causes of death across 187 countries from

the year 1980 to the year 2010.

The modelling of data with overdispersed counts using the NBRM is made possible

with the introduction of a dispersion parameter, r > 0. Introduced by Consul and

Jain (1973), using similar notations as in subsection 2.1.1 where, µi = exp(X′i β), let

Yi ∼ NB(r, µi), where its pmf is defined by,

f (Yi |µi) =
Γ(Yi + r)
Yi!Γ(r)

(
r

r + µi

)r (
µi

r + µi

)Yi
, (2.2)

such that, Γ(.) is the gamma function. NBRM has following mean and variance,

E(Yi |µi) = µi, and

Var(Yi |µi) = µi

(
1 +

µi

r

)
.

It is clear that since µi > 0, and the variance is the product of mean, µi, and positive

dispersion factor, 1 + (µi/r), thus NBRM can be used to model overdispersed count data.

As noted in Winkelmann (2008) when r approaches infinity, NBRM converges to PRM

with parameter µi.
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2.1.3 Overview of Other Count Data Regression Models

PRM and NBRM are the two most commonly utilized regression models to analyse count

data. However, there are other regression models that are developed to accommodate

different properties or problems that may arise when considering count data such as

inflated number of zero counts. For this, zero-inflated models are used to model the

zero counts by considering the binary and count processes separately, that is, the model

estimates zero counts using a different type of distribution than the non-zero counts.

According to Winkelmann (2008), there are two main reasons why addressing excess

zeros in count data is important. The first reason is that from an empirical point of

view the ratio of the number of zeros to the number of non-zeros is often too high to be

compatible with a standard underlying count data regression models. The second reason

is that zeros often reflect corner solution outcomes in economic choice models.

The zero-inflated Poisson (ZIP) model is a model that can be used to address

zero-inflation or non-occurrences in equidispersed count data. In literature, ZIP are

implemented in various applications, including manufacturing defects (Lambert, 1992),

road safety (Miaou, 1994) and health care utilizations (Gurmu, 1997).

Another model that can be used to model zero-inflated count data is the zero-

inflated negative binomial regression model. The zero-inflated negative binomial model

is an extension from zero-inflated Poisson but with the relaxation on the restriction for

equidispersion assumption. Its applications in literature include, modeling accident

frequencies (Shankar et al., 1997), consumption of cigarettes (Sheu et al., 2004) and

marijuana-related problems among college students (Simons et al., 2006).

2.2 Errors-in-Variables Model

The earliest literature that could be found to the best of our knowledge on the discussion

of error in measurement is by Pearson (1902). In the epidemiology field of studies, Wong
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et al. (1999) conducted research to eliminate bias caused by errors-in-variables (EIV) in

linear models. Fuller (2009) provided an extensive review on linear models with EIV and

its effects on causing bias in parameter estimations.

Meanwhile, for non-linear models which are measured with error, a comprehensive

account of literature are discussed in Carroll et al. (2006), where the authors discussed

various methods on estimating regression coefficients with bias reduction in non-linear

models with EIV.

There are many issues that may contribute to the situation in which the exposure

variables are measured with error. An instance of which has contributed to the rise of

measurement error is due to instrument/human error. To elaborate, in a self-reported

dietary intake study, participants are asked to report their intake which is inaccurate,

according to Schoeller (1990). This is because they depend on the recall method which

is prone to human error. Errors-in-variables may also arise when it is impossible or

expensive to measure the true exposure variables directly. Pridemore (2011) described an

investigation on the relationship between poverty and homicide rates. In their investigation,

there is no physical instrument that can measure the actual value of poverty. Therefore,

they take surrogate values that might indicate deprivation in place of the true poverty

values and consequently, biased regression parameters are estimated.

Carroll et al. (2006) gave two types of EIV classification such that for EIV, ε , where

ε is independent and identically distributed,

X∗ = X + ε, (2.3)

X = X∗ + ε . (2.4)

Note that, the true unobserved exposure is denoted by X , and its corresponding surrogate

exposure is denoted by X∗. Equation (2.3) refers to the classical EIV model meanwhile
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Equation (2.4) refers to Berkson or non-classical EIV model. Classical EIV model is

used to model the conditional distribution of the observed with error surrogate exposure

variables given the unobserved true exposure variables.

In classical EIV model as given in Equation (2.3), its true exposure, X , is unobserved

and instead its surrogate measures, X∗, are observed with contamination of error, ε . ε is

independent of outcome and true exposure variables. Althoughmany studies assumed that

ε is normally distributed, this is not always the case especially if the data exhibit skewness.

According to Verbeke and Lesaffre (1996) and Ghosh et al. (2007), the normal assumption

lacks robustness against departures from normality. Following this, Huang and Dagne

(2011) investigated the performance of skew-normal distribution in modeling both random

error and random effects under the non-linear mixed-effects model. In the same vein, Fu et

al. (2015) considered skew-normal and skew-t distributions for random errors and random

effects for zero-inflated Poisson with measurement error in its covariates.

As given in Equation (2.4), Berkson error model, X is equal to the sum ofits

corresponding surrogate, X∗ and measurement error. One example of Berkson error

is in most typical ecological experiments, where the amount of nutrients given to a certain

plant is recorded. However, the real value of nutrients uptake by the plant is unknown.

The stark difference between classical measurement error model and Berkson error

model is that in the former, ε is independent of X . Meanwhile, in the latter, its ε is

independent of X∗. These independence properties imply that for classical measurement

error, Var(X∗) > Var(X) and for Berkson error, Var(X) > Var(X∗).

For our study, we assume the EIV follows the classical model. This is because,

according to Carroll (1989), Berkson error suggests that there is little to no bias in log-

linear regression coefficients. In addition to this, most studies assume the variance of the

measurement error as known, however, in our study, we will estimate its value. We will

discuss this further in Chapters 4 and 5.
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There are many effects of EIV if not addressed. A comprehensive account discussing

the impact of EIV is provided by Carroll et al. (2006). If EIV is not corrected, one of

the consequences includes attenuation where the error causes bias to the slope estimate

in the direction of zero. Bias caused by EIV often leads to more serious problems.

As mentioned in Gustafson (2003), the regression relationship between outcome and

accurately measured covariates becomes distorted and will also produce biased regression

estimates if not addressed. In addition to this, the confidence limits of the regression

estimates would also be artificially narrow. According to Carroll et al. (2006), the effects

of EIV depend on the type of regression model; if the mismeasured variable is univariate,

then the magnitude of bias present in the measurement will be smaller in comparison to

the magnitude of bias in multivariate mismeasured variables. Nevertheless, bias in both

should be addressed in order to diverge from false statistical inferences.

2.3 Techniques to Correcting Errors-in-Variables Problem

There is a considerable amount of research done on methods of mitigating bias caused

by measurement error. Two broad classifications of addressing EIV model (EIVM)

are Bayesian and frequentist (non-Bayesian) approaches. In non-Bayesian (classical)

or frequentist paradigm, there is a number of estimators that can be employed to

reduce bias when estimating regression parameters in the presence of measurement error.

Meanwhile, in the Bayesian paradigm, a general and unified framework can be employed

to accommodate different types of models and scenarios.

2.3.1 Non-Bayesian Techniques to Correcting Errors-in-Variables Problem

In this section, we will discuss the basics of the frequentist methods and their strengths

and weaknesses which will show the reason why Bayesian should be the preferred method.

The structural quasi-score (SQS) is a method used to address measurement error

which was first proposed by Wedderburn (1976) in generalized linear model (GLM).
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Kukush et al. (2004) demonstrated the implementation of SQS to PRM. Instead of

depending on the whole distribution of outcome variable given the surrogate exposures,

SQS is only dependent on its conditional mean and variance. The SQS function for

Poisson regression is given by Carroll et al. (2006), subsequently the solution to the

function is solved using iteratively reweighted least square method. However, in terms of

bias-variance tradeoffs, other methods (e.g. regression calibration (RCAL) and Bayesian)

show better values in comparison with SQS method (Carroll & Stefanski, 1990). The

discussion for the usage of SQS for NBRM in the presence of EIV is presented in Yang

(2012). However, according to the author, adjusted MLE achieved higher efficiency than

SQS.

For PRM, two most prominent methods for reducing bias caused by measurement

error are conditional score and corrected score. The conditional score was first introduced

by Lindsay (1982). The unobserved true covariates are treated as unknown parameters

and their sufficient statistics are obtained. Conditional on the sufficient statistics, the

conditional score function is constructed from the mean and variance of the outcome

variables.

Meanwhile, corrected score was first developed by Stefanski (1989) and later,

Nakamura (1990) improved the score function with its implementation focused on Poisson

regression. The corrected score function is built on the basis that the expectation of the

corrected function is equal to the expectation of the usual score function conditional on

the unknown true exposure variables. By maximizing or finding the zero-crossing to

the derivatives of the corrected score function, one may solve the function and thus the

estimated parameters are obtained.

Conditional score performed better than corrected score when error distribution is

normal. On the other hand, when the error distribution is non-normal, conditional score

yields inconsistent roots. Nonetheless, the corrected score has not been widely adopted in
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practice due to its pathological behaviors. When the measurement error is high, corrected

score reveals multiple roots, estimate finding failure as well as skewness even when the

sample size is large. Therefore, Huang (2014) attempted to fix these behaviours in his

paper by imposing trend constraints on the score. Nevertheless, the corrected score is still

disadvantaged as it assumes that the parameters in the measurement error distribution as

known which is unrealistic in practice.

Regression calibration (RCAL) is one of the most straightforward approaches,

introduced by Carroll and Stefanski (1990). RCAL is also known as linear imputation

method. The RCAL method addresses the error by transforming the observed covariate

with the conditional mean of its estimated true covariate given its respective surrogate

covariate. It is obtained by imputing the estimated true covariate for each observation,

given the value of the surrogates. There are a few disadvantages of the RCAL method.

One of the disadvantages is that the surrogate values are only considered during the first

iteration of estimating the true covariates and on later estimating iterations, the imputed

values are used as the regressors in the outcome model which encourages the propagation

of uncertainty. Moreover, although RCAL yields consistent estimate for slope parameters,

the same could not be said for the intercept parameters.

Maximum likelihood estimator (MLE) is a non-Bayesian method which was first

implemented in the EIVM context by Fuller (2009) for linear models. In the same

vein, Carroll et al. (1993) suggested the use of maximum likelihood and least square to

covariates measured with error in generalized linear models which can be applied to PRM

and NBRM. However, the score function for MLE in PRM and NBRM are complicated

(Yang, 2012). Thus, Yang (2012) proposed an adjusted MLE which can be applied to

approximate the MLE for both PRM and NBRM in the presence of EIV.

Simulation extrapolation (SIMEX) is a straightforward and simple method for

reducing bias caused by errors-in-variables in count data regression models. The usage
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of SIMEX is first developed by Cook and Stefanski (1994) where the measurement error

variance is either estimated or assumed as known. The algorithm of SIMEX method is as

follows. Given the original dataset, independent measurement error is added to create a

new dataset. Using direct regression, the naive estimates are obtained in the new dataset.

Further measurement error is added and estimating the parameters are repeated a large

number of times. A smooth line or curve is then fitted to the mean of these estimated

parameters. Finally, SIMEX estimates with bias correction are obtained by finding back

the extrapolated estimates in the case where the measurement error variance is zero.

Whilst the advantage of SIMEX method in comparison to the Bayesian method is that it

can be simply implemented with no exposure distribution specification, it does not yield

good estimation especially when measurement error is high even when its sample size is

big. In addition to this, SIMEX also risks poor extrapolation bias (Küchenhoff & Carroll,

1997).

2.3.2 Bayesian Techniques to Correcting Errors-in-Variables Problem

In count data regression models, most of the research dealing with errors in covariates

implemented frequentist methods due to the complexity of integral imposed when using

Bayesian approach. However, over the last decade, the availability of Markov chain Monte

Carlo sampling has provided a path for the complex integrals problem in Bayesian method

to be dealt with implicitly and therefore, has greatly simplified the difficulties faced in the

Bayesian paradigm.

Bayesian treatment of errors-in-variables in epidemiology study was introduced by

Richardson and Gilks (1993) to the logistic regression model. Meanwhile, Dellaportas

and Stephens (1995) and Mallick and Gelfand (1996) used the Bayesian formulation for

EIV in nonlinear regression and GLM, respectively. The latter study featured Poisson

regression as an example.
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Up to now, much less attention has been given to address EIV using Bayesian

methods in PRM and NBRM compared to other types of regression despite its importance

in modeling count data. This is especially true for PRM in the Bayesian paradigm and even

more so for NBRM in general. To the best of our knowledge, studies that have focused

on fixing EIV in NBRM are El-Basyouny and Sayed (2010) and Yang et al. (2013). Both

papers dealt with errors in covariates in NBRM using Bayesian methods and applied them

to safety analysis which is important in road safety applications. It is important to note

that, in their studies, the normality and log-normality assumption were imposed on the

true exposure distribution. Thus any departures from normality and/or log-normality will

result in an added misspecification bias.

The frequentist methods in reducing bias caused when estimating count data

regression estimates show a few serious drawbacks. This can be easily avoided if one uses

the Bayesian approach instead. There are many advantages to using the Bayesian approach

compared to frequentist approaches. Following a study done by Gustafson (2003), our

study therefore uses Bayesian approach based on many grounds, such as,

1. larger gain in efficiency in comparison to frequentist approach,

2. parameters of the measurement error distribution is estimated instead of assumed

as known,

3. construction of likelihood based credible intervals that have coverage probabilities

closer to the minimal level and,

4. applicable to a wide range of problems with a unified framework.

However, the Bayesian approach is often attacked with the fact that it requires the

specification of exposure model and therefore will have the risk of model misspecification.

Thus, to counter this, many studies have proposed intentionallymisspecifying the exposure
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model with a flexible distribution. Themixture of normal distributions as flexible exposure

model were attempted by Carroll et al. (1999) in the linear regression model. Later,

mixtures of normal distribution were extended to be implemented in EIV logistic models

(Richardson et al., 2002). However, these authors reported that the performance of the

mixture of normals as flexible exposure model deteriorated in the case of skewed and

heavy-tailed true exposure distribution. Seeing these weaknesses, Hossain and Gustafson

(2009) studied skew-normal (SN) distribution and its more flexible variants, namely

the flexible generalized skew-normal (FGSN) and flexible generalized skew-t (FGST) as

exposure model in the case of logistic outcome regression model where problems such as

the detection of artifactual modes when using normal mixtures and semi-nonparametric

density are solved.

SN distribution which was introduced by Azzalini (1985) provides more flexibility

in modeling the unobserved exposures, however when the exposures have a heavy-

tailed distribution the performance is unsatisfactory. Similarly, for FGSN, the flexible

distribution showed adequate performance in correcting bias and had reasonable bias-

variance trade-off, but when the true unobserved quantities have heavy-tailedness property,

FGSN lacked robustness in capturing the shape of the distribution. Therefore, Hossain

and Gustafson (2009) advocated the usage of FGST. In our research, we focused on the

implementation of FGSN as the flexible model as FGST is considered redundant in the

case of count data outcome regression models which will be discussed in Section 3.3.2.

Subsequently, in addition to all the advantages listed above, another advantage of

the flexible Bayesian approach is that by misspecifying the true unobserved exposure

distributions as flexible, we are able to capture any skewness, heavy-tailedness, and

bimodality in the distribution of count data exposure covariates that are contaminated

with error. Finally, the approach is more appealing as it has a larger gain in efficiency

(Roeder et al., 1996) and general applicability (Richardson & Gilks, 1993).
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To the best of our knowledge, there is yet any study conducted in correcting EIV

in PRM and NBRM using the Bayesian approach with intentionally misspecified flexible

exposure distribution. Besides that, current frequentist approach in correcting EIV in both

PRM and NBRM assumes the variance of EIV as known. Using the flexible Bayesian

approach, the assumption of variance as unknown is allowed and could be estimated aided

with validation data.

2.4 Bayesian Inference

In this section, the basic ideas of the Bayesian approach are briefly discussed. We base

our explanation of the following subsections from Gilks et al. (1996) and Gelman et al.

(2014).

2.4.1 Likelihood Distribution

Let f (y |θ) be the density function of observable quantities, Y = y, that depends on a set

of parameters vector, θ, which is usually referred to as the likelihood function such that Y

only affects the posterior through f (Y |θ). In Bayesian inference, parameter θ is assumed

to be random with prior distribution π(θ). Bayesian inference follows the likelihood

principle which expresses that the inferences on the value of θ is found in the equivalence

class to which f (y |θ) belongs.

2.4.2 Prior Distribution

The prior distribution of θ characterizes the ‘prior beliefs’ or ‘prior information’ of θ,

π(θ), where θ could be a set of parameters vector or latent variable. Before choosing a

prior distribution, the distribution must be able to cover the range of all the possible values

of the unknown quantity. For example, if θ ∈ (0,∞), then the distribution of prior must

not have the range of (−∞,∞). Most applications prefer the usage of conjugate prior (if it

is available), but not all likelihood distribution will have its corresponding conjugate prior
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distribution. A conjugate prior is when the prior probability distribution has the same

family as the posterior distributions.

Informative prior could be used if conjugate prior is not available. Also known

as the subjective prior, informative prior is specified when there is a presence of prior

information. The information may come from either expert opinions or from previous

experiments and applications. If there is a lack of prior information, then non-informative

prior can be used. However, even though the prior information is available, an investigator

might also prefer to specify the prior distribution where such prior is referred to as

uninformative prior (also called as ‘flat’ prior). A reason for this is to ‘let the data speak

for themselves’. An example of uninformative prior is the normal distribution with large

variance, i.e., N(µ, 1002), or uniform distribution,U(0, 1). As an alternative, one may also

use diffuse priors (or weakly informative prior) where only a little information is included

in the prior but not enough to hugely to be able to influence the posterior.

To choose between the different types of prior is based on two major issues; the

‘deepness’ of information of θ that is chosen to be included and properties of posterior

density. Gelman (2006) and Gelman et al. (2014) provided thorough discussion on prior

distributions.

2.4.2.1 Posterior Density of Bayesian Model

Using Bayes theorem, the posterior distribution of θ is as follows,

f (θ |y) =
f (y |θ)π(θ)

f (y)
(2.5)

=
f (y |θ)π(θ)∫
f (y |θ)π(θ)dθ

(2.6)

∝ f (y |θ)π(θ). (2.7)

The general posterior distribution as shown in Equation (2.6), is not an analytically

20

Univ
ers

ity
 of

 M
ala

ya



and numerically tractable function, which is why before the introduction of Markov chain

Monte Carlo (MCMC) researchers refused to use the Bayesian approach in their studies.

However, with the introduction ofMarkov chainMonte Carlo algorithm, instead of solving

the complex Equation (2.6), its proportional and simpler counterpart, Equation (2.7) can

be used to generate approximate samples of the posterior distribution. Thus, the samples

can be utilized to approximate the desired summary of the posterior distribution (e.g.,

posterior mean, mode etc.).

2.4.3 Posterior Density of Bayesian Hierarchical Model

Bayesian hierarchical model is also known as the Bayesian multilevel model. There

are many reasons on why hierarchical models are important in the Bayesian paradigm.

According to Efron and Morris (1975) and Morris (1983), theoretically, hierarchical

models estimate the parameters of the prior distribution from the data rather than specifying

them manually which is a more objective approach. In the Bayesian hierarchical model,

the hyperparameter, φ, is assumed as unknown and therefore has its own prior distribution

which shall be labeled as π(φ) and is known as hyperprior. From this, the joint prior

distribution is given as,

π(θ, φ) = π(θ |φ)π(φ),

and now the posterior distribution is given as follows,

f (θ, φ |y) ∝ f (y |θ, φ)π(θ |φ)π(φ) (2.8)

= f (y |θ)π(θ |φ)π(φ), (2.9)

which the simplification of Equation (2.8) to Equation (2.9) holds as the data distribution,

f (θ, φ |y) depends only on θ and the hyperparameter φ affects y only through θ.
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Bayesian hierarchical models are able to accommodate very complicated structures from a

succession of relatively simple components, yielding better flexibility (Ntzoufras, 2011).

Other advantages include good performance as well as ease of computation. We shall

discuss this further in Chapter 4.

2.5 Markov chain Monte Carlo Algorithm

In this section, we briefly discuss on Markov chain Monte Carlo (MCMC) sampling. A

more detailed explanation is provided by Gilks et al. (1996). Markov chain, named after

Andrey Markov, is a random process where a memoryless transition from one state to

another state takes place and the transition probabilities for its next state only depend on

the current state and not on the previous states (Gilks et al., 1996). To illustrate this in

a mathematical notation, let X (t) be the random variable at state t and x(t) denotes the

observed value of X (t) at state t, such that,

P(X (t+1) = x |X (1) = x(1), X (2) = x(2), . . . , X (n) = x(n)) = P(X (t+1) = x |X (t) = x(t)).

Monte Carlo method (Metropolis & Ulam, 1949) is a method of drawing independent and

identically distributed samples from a target distribution. The distribution that is desired

can be approximated by the simulated samples and once the Markov chain converges to

the stationary distribution, the Markov chain will be able to estimate the quantities of

interest (e.g. posterior mean, posterior mode, etc). As mentioned before, Monte Carlo

can be used to solve integration problems. This is possible by the law of large numbers,

such that,

1
N

N∑
t=1

g(xi)
a.s.
−−−−→
N→∞

∫
X
g(x) f (x)dx,
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where xi is the ith sample from the target distribution, f (.), N is the total number of

draws and g(.) is a measureable function of X . Therefore, to reiterate, by the law of large

numbers, the integral estimate is unbiased and will converge to the value of the solved

integral.

Thus, MCMC is able to randomly sample from a probability distribution that is

too complex to simulate from directly. Before the introduction of MCMC, practitioners

have avoided the usage of Bayesian methods. The Metropolis algorithm, which was first

developed by Metropolis et al. (1953) is a MCMC method that can be used when the full

conditional posterior distribution does not take a known form. The Metropolis algorithm

is later modified by Hastings (1970) to not require symmetry in the proposal function

which is now known as the Metropolis-Hastings (MH) algorithm. Gibbs sampler, which

was first used by Geman and Geman (1984) for Bayesian image restoration, drew random

samples from the target posterior distribution without solving Equation (2.6), which may

consists of an integration that is computationally intractable.

2.5.1 Metropolis-Hastings Algorithm

As discussed extensively in Gilks et al. (1996), for the MH algorithm, at current state,

t, the next state value, X (t+1), is chosen by sampling a candidate value, X (cand), from a

proposal distribution, q(.|X (t)), where the proposal distribution may depend on the current

value, X (t). The candidate value, X (cand), is accepted with probability α(X (cand) |X (t)),

such that

α(X (cand) |X (t)) = min
(
1,

f (X (cand))q(X (t) |X (cand))

f (X (t))q(X (cand) |X (t))

)
,

where f (.) is the target density. If the candidate value is accepted, then, let X (t+1) = X (cand).

If the candidate value is rejected, then, let X (t+1) = X (t).

Tierney (1994) introduced the usage of autoregressive chains when estimating

parameters using MH algorithm. According to the study conducted, these chains can
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be used to induce negative autocorrelation between successive elements of the chain by

letting

X (cand) = a + B(X (t) − a) + z,

and

q(X (t) |X (cand)) = q(X (cand) − a − B(X (t) − a)),

where a is a vector and B is a matrix such that both are conformable with X (t), q(.) is a

symmetric proposal distribution and z has q(.) its density. If B is set to be the negative

of identity matrix, −I , then the chains produced will be reflected about the point a thus,

the chains induced will have a negative autocorrelation. A simpler method of MH with

autoregressive chains is by generating a candidate step that is reflected around the current

value, X (t), about the point, a, to produce X (cand) = 2a − X (t). Now, the probablity of

acceptance is

α(X (cand) |X (t)) = min
(
1,

f (2a − X (t))
f (X (t))

)
,

where f (.) is the target density.

2.5.2 RandomWalk Metropolis Hastings Algorithm

As shown in detail by Gilks et al. (1996), in random walk Metropolis Hastings (RWMH)

algorithm, the proposal distribution is symmetric such that it is in the form of the following,

q(X (cand) |X (t)) = q(X (t) |X (cand)) = q(|X (cand) − X (t) |).
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Thus, the the acceptance probability is simplified just the ratio of the target densities,

α(X (cand) |X (t)) = min
(
1,

f (X (cand))

f (X (t))

)
.

The algorithm for the RWMH is the same as the MH algorithm, with the acceptance

probability shown above. In RWMH, the variance of the proposal distribution can be

tuned using tuning parameter to make the variance higher or lower. When the variance

of the proposal distribution increases, the acceptance rate decreases. When the variance

of the proposal distribution decreases, the acceptance rate increases. Therefore, tuning

parameter can be used to control the acceptance rate of a RWMH algorithm (Chib &

Greenberg, 1995). According to Roberts et al. (1997), the recommended acceptance rate

is in the range of 30% to 60%.

2.5.3 Gibbs Sampler

If X is n-dimensional, instead of updating the whole of X by block, it is more convenient

and computationally efficient to divide X into components, {X1, X2, . . . , Xn}, of possibly

differing dimensions and update these components one by one as proposed by Metropolis

et al. (1953). Let Xi be the ith component and, let X−i be the set of all components

except Xi, Gibbs sampling is a special case of single-component MH where the values are

sampled exactly from the conditional distributions as the conditional distributions are in a

closed form of known distributions. To clarify, the proposal density is the target density,

i.e.,

q(X (cand)
i |X (t)

−i ) = f (X (cand)
i |X (t)

−i ),

such that, f (X (cand)
i |X (t)

−i ) is the target density. The result of this, is that, the acceptance

probabilitywill always equal to one, i.e., theGibbs sampler candidates are always accepted.

The following shows that the acceptance probability is always equal to 1 for Gibbs
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sampling:

α(X (cand)
i , X (t)

−i |X
(t)
i , X (t)

−i )

= min
(
1,

q(X (t)i , X (t)
−i |X

(cand)
i , X (t)

−i ) f (X
(cand)
i , X (t)

−i )

q(X (cand)
i , X (t)

−i |X
(t)
i , X (t)

−i ) f (X
(t)
i , X (t)

−i )

)
= min

(
1,

f (X (t)i |X
(t)
−i ) f (X

(cand)
i , X (t)

−i )

f (X (cand)
i |X (t)

−i ) f (X
(t)
i , X (t)

−i )

)
= min

(
1,

f (X (t)i |X
(t)
i ) f (X

(cand)
i |X (t)

−i ) f (X
(t)
−i )

f (X (cand)
i |X (t)

−i ) f (X
(t)
i |X

(t)
−i ) f (X

(t)
−i )

)
= 1.

According to Banerjee et al. (2014), Gibbs sampler generates new values at each

iteration slower than the MH sampler. However, its convergence is much faster.
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CHAPTER 3: BAYESIAN FRAMEWORK TO CORRECTING
ERRORS-IN-VARIABLES IN REGRESSION MODELS

3.1 Conditional Independence Model for Errors-in-Variables Scenario

In this chapter, we shall discuss the framework where the Bayesian approach is utilized to

address EIV in regressionmodels. The Bayesian approach is constructed using conditional

independence model that was first introduced by Richardson and Gilks (1993). Based on

their paper, three submodels need to be specified. For i, . . . , n, let the outcome variable

be Yi, Xi as the true but unobserved covariate and X∗i is its corresponding surrogate of Xi

which is observed with error. Therefore, according to Richardson and Gilks (1993) the

three submodels are distinguished as the following,

1. Outcome model with density denoted by f (Yi |Xi, θO), which expresses the

relationship between outcome Y and X with parameter vector θO.

2. Measurement model with density denoted by f (X∗i |Xi, θM), which expresses the

relationship between the surrogate X∗ and true covariate X with parameter vector

θM .

3. Exposure model with density denoted by f (Xi |θE ), which describes the distribution

of true X with parameter vector θE .

From the three submodels, the joint distribution of our model in the presence of EIV

can be written as

f (Yi, X∗i , Xi |θO, θM, θE ) = f (Yi |Xi, θO) f (X∗i |Xi, θM) f (Xi |θE ). (3.1)

As seen in Equation (3.1), a distribution is specified for each of the submodels and

each involving their respective unknown parameters θO, θM and θE . Thus, Equation (3.1)

could be used in constructing the likelihood function of the unknown parameters, if the
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observed quantities is given by (X∗i ,Yi, Xi). Realistically, only S = (X∗,Y ) is observed,

therefore the density,

f (X∗,Y |θO, θM, θE ) =

∫
f (X∗i ,Yi, Xi |θO, θM, θE )dXi

=

∫
f (Yi |Xi, θO) f (X∗i |Xi,Yi, θM) f (Xi |θE )dXi,

(3.2)

is needed to form the likelihood function for our model. In some problems such as in

binary outcome variable, the integral shown above is intractable. Nonetheless, we can

evaluate the integral using Markov chain Monte Carlo (MCMC) methods. As mentioned

in Section 2.5, the strength of MCMC is that it has provided an easier path for evaluating

complex integrals problem in Bayesian paradigm. So, the integral in Equation (3.2) can

be dealt with implicitly and Equation (3.1) is evaluated instead.

In our study, we assume a non-differential EIV such that given the true exposure

variable, the surrogate exposure variable does not depend on the outcome variable, i.e.,

f (X∗i |Xi,Yi, θM) = f (X∗i |Xi, θM); EIV is differential if otherwise. Many problems can

plausibly be classified as having a non-differential error, especially when the Xi and X∗i

occur at a fixed point of time and Yi measured at a later time (Carroll et al., 2006).

In addition to this, to ensure parameter identifiability, additional data is needed for the

parameter θM of the measurement model. According to Richardson and Gilks (1993)

these additional data that help ensure identifiability in EIV analysis can be categorised as

the following,

1. Data from previous studies, such that Yi and X∗i are the variables and the parameter

θM is measurable.

2. Validation data in which the true exposure variable, Xi, is measured directly (also

known as ‘gold standard’ data).
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3. Replication data in which repeated measurements of X∗i are available.

The type of additional data used in EIV scenarios must be inspected upon its practicality.

If data from previous studies are used as additional data and parameter θM is known, then

one must investigate if the value of θM is transportable across different study populations.

In some cases, accurately measured Xi may also be available for a subset of the study

and is referred to as ‘validation sample’ or ‘gold-standard sample’. Greenland (1988) and

Spiegelman et al. (1994) studied the relationship between cost-information tradeoffs and

the size of the gold-standard sample to the main study sample. However, in reality, the

gold-standard data/sample are often unavailable or expensive. Thus, additional data with

replicated measures of X∗i is preferred in study applications. In our research, in order

to maintain realistic approaches to correcting EIV problems, we use replication data to

ensure parameter identifiability.

3.2 Formulation of Posterior Distribution in the Presence of Errors-in-Variables

Assume n study subjects with exposure and outcome variables independent of each other,

the joint distribution of all the relevant quantities is written as

f (Y, X, X∗, θ) =
n∏

i=1

{
f (Yi |Xi, θO) f (X∗i |Xi, θM) f (Xi |θE )

}
× π(θO, θM, θE ), (3.3)

such that X = (X1, X2, . . . , Xn), Y = (Y1,Y2, . . . ,Yn), X∗ = (X∗1, X∗2, . . . , X∗n ), θ denotes

the parameter vector of the model that contains θO, θM and θE and π(.) denotes the prior

distribution of the model parameters.

As given by Bayes theorem, the density of unobserved quantities, U = (X, θ), given

the density of observed quantity, S = (X∗,Y ), is proportional to the joint density of U and
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S. So, the posterior density is proportional to the joint density of U and S, such that

f (X, θ |X∗,Y ) ∝
n∏

i=1

{
f (Yi |Xi, θO) f (X∗i |Xi, θM) f (Xi |θE )

}
× π(θO, θM, θE ). (3.4)

To find the actual normalized posterior density of the unobserved quantities U , given the

observed quantities S, the integration of Equation (3.4) over U given fixed S must be

calculated. Solving the integration of Equation (3.4) is impossible unless it is in closed

form, which can only be achieved in EIV problems if the regression model is linear.

Nevertheless, as alluded in Section 3.1, MCMC does not need one to solve the normalized

integral of posterior density and therefore, Equation (3.4) is enough when we want to carry

out analysis on the model parameter θ (Gustafson, 2003). To elaborate, MCMC algorithm

can be implemented to draw samples from the distribution of the unobserved quantities

given the observed quantities. Furthermore, samples from the density f (X, θ |X∗,Y )

trivially lead to samples from density f (θ |X∗,Y ) upon ignoring the sampled X values, i.e.,

MCMC algorithm samples from the distribution of the unobserved parameters given all

the observed data. Therefore, all inferences on the model parameters and their respective

distributions can be obtained from theMCMC samples. This is the greatest computational

advantages of MCMC inference in scenarios involving mismeasurements, missing data or

censored data over maximum likelihood and other classical approaches.

In our study, priori independence is assumed and thus joint distribution of all our

priori can be written in the form,

π(θO, θM, θE ) = π(θO)π(θM)π(θE ).
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3.2.1 Posterior Distribution with Additional Data for Measurement Model

In this section, we construct the posterior density for EIV scenarioswhere themeasurement

model has additional data to ensure parameter identifiability. As mentioned in Section

3.1, there are three types of additional data (Richardson & Gilks, 1993); data available

from previous studies where θM can be measured, validation data and replication data.

θM usually are non-transportable across different studies especially when the independent

variables aremeasuredwith error, therefore realistically θM observed in data from previous

studies are very rarely considered. The posterior construction of this type of additional data

is trivial and will not be discussed here. Validation data in measurement error scenarios

refer to the availability of gold-standard measurements and they are usually expensive,

therefore to reduce cost, instead of observing the gold-standard measurements for the

entire study sample, only a subsample of the data is observed. Since the gold-standard

sample is not pragmatic in real life situations, in our study, repeated measurements of

surrogate exposures are used to extract extra information for identifiability. However,

for the sake of discussion, we shall construct a posterior density in the presence of the

gold-standard sample.

Validation Data

Let Xc denotes true and observed exposure Xc, and Xr denotes the true but unobserved

exposure X such that for the entire study sample, X = (Xc, Xr). Therefore, the posterior

density is of the form

f (Xr, θO, θM, θE |X
∗,Y, Xc)

∝

[ n∏
i=1

f (Yi |Xi, θO)

]
×

[ n∏
i=1

f (X∗i |Xi, θM)

]
×

[ n∏
i=1

f (Xi |θE )

]
× π(θO, θM, θE ).

(3.5)

Even though the right hand-side of Equation (3.5) does not differ from that of the posterior

density in the absence of validation sample, the MCMC algorithm for Equation (3.5) will
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provide a principled way to make simultaneous inferences about θO, θM and θE .

Replication Data

Replication data are validation data that for at least some study subjects X∗i , repeated

measurements are available. Let m denotes the number of replicated measurements and

assuming that replicated measurements of X∗i are conditionally independent given the true

value Xi, then the posterior density of the unobserved quantities, (X, θ) given observed

quantities, (X∗,Y ) takes the following form,

f (X,θO, θM, θE |X
∗,Y )

∝

n∏
i=1

f (Yi |Xi, θO)

n∏
i=1

m∏
j=1

f (X∗i j |Xi, θM)

n∏
i=1

f (Xi |θE ) × π(θO, θM, θE ).
(3.6)

Note that, X∗i j is the j th replicate of surrogate X∗i for the ith study subject.

3.3 Misspecification of Outcome and Exposure Models

Bayesian formulation requires the specification of models, in which the distributional

assumptions on outcome, Yi, and exposure, Xi, are important for parameter estimation.

Misspecification in the distribution of both exposure variables as well as outcome variables

may lead to serious bias in estimation (Richardson et al., 2002). In this section, we shall

discuss the misspecification of outcome and exposure models in EIV count data regression

models.

3.3.1 Misspecification of Outcome Model

Both PRM and NBRM are commonly used for modeling count data outcomes. It is

important to apply the correct regression models according to the characteristics of the

count data in question to avoid any outcome misspecification bias. PRM assumes the

equidispersion property where the mean shall be equal to the variance. If this property

is violated, it would be wise to use an alternative model, such as NBRM. However, note

32

Univ
ers

ity
 of

 M
ala

ya



that the violation of equidispersion may be caused by the presence of EIV. As shown

in Guo and Li (2002), in PRM where X is unobservable, when using its surrogate X∗

as proxy, equidispersion of mean, E(Y |X∗), and variance, var(Y |X∗), only holds when

E(Y |X∗) = 1 or when the conditional density of Y given X is almost everywhere zero. If

EIV is not the cause of overdispersion, then one must specify NBRM to model the count

data instead of PRM.

3.3.2 Misspecification of Exposure Model

The exposure model is unknownwhich is a subsequent result of the unobservable nature of

the true independent variable, X , and therefore is exposed to the risk of misspecification.

To avoid any distributional assumption, some researchers explore the use of functional

approaches where no model specification is required; however, this may lead to a loss in

efficiency in comparison to structural approaches (Huang, 2014).

To relaxmodeling assumptions, researchers that utilize structural approaches consider

using flexible parametric models which were first utilized by Carroll et al. (1999). Carroll

et al. (1999) demonstrated the use of mixtures of normals as flexible exposure model for

linear EIV models. Meanwhile, Richardson et al. (2002) extended the use of mixtures

of normals to EIV logistic model. However, these authors reported that the performance

of the flexible model deteriorated in the case of skewed and heavy-tailed true exposure

distributions. Huang et al. (2006) utilized second-order nonparametric density but

the study did not investigate its robustness for exposure distribution with skewness and

heavy-tailedness. Hossain and Gustafson (2009) implemented the flexible generalized

skew-elliptical class of distributions, specifically they utilized flexible generalized skew-

normal (FGSN) and flexible generalized skew-t (FGST) as the misspecified exposure

distribution. They investigated the robustness of both FGSN and FGST to model exposure

distribution that exhibited different levels of skewness and heavy-tailedness. In summary,
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they advocated the implementation of FGST as FGST showed better regression parameter

estimations in comparison to FGSN. In our study, we focus on the implementation of

FGSNwhich is described in detail in the next section. This is because FGST is considered

as redundant in the case of count data regression models. Our simulated estimate of the

degree of freedom parameter, v, of FGST is large and since FGST converges to FGSN

when v goes to infinity, the implementation of FGSN is adequate. Moreover, computation

time is decreased when using FGSN as there are fewer parameters that need to be updated

in the simulation algorithm.

It is important to note thatmost studies only investigated the use of flexible distribution

on models with logistic outcomes. Richardson et al. (2002), Huang et al. (2006)

and Hossain and Gustafson (2009) investigated the usage of flexible models to reduce

model misspecification sensitivity in logistic regression with EIV. A few other researchers

also attempted the flexible parametric model on other types of outcome distribution; for

example, Bolfarine and Lachos (2007) made use of skew-normal as the exposure model

for probit regression. To date, there is no study that utilizes flexible parametric exposure

model in the Bayesian paradigm for EIV in both PR and NBR models. Therefore, in

our study, we shall investigate the performance of the implementation of intentionally

misspecified flexible exposure model in reducing modeling assumptions.

(a) Flexible Distributions as Intentionally Misspecified Exposure Model

In this subsection, we discuss the flexible distributions that are considered in this

dissertation. In typical studies of correcting for EIV, the normal distribution is used

to model the true but unobserved exposures. However, if the distribution departed from

normality, it is obvious that an added misspecification bias will decrease the accuracy in

estimating the regression parameters. In our dissertation, we search for the most suitable

flexible distribution that can be used to model the exposure distribution for both PRM
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and NBRM. It is important to note that, the exposure model is intentionally misspecified

by a flexible model as realistically in EIV problems, the exposure distribution cannot be

observed. To our knowledge, there is yet literature that contributed to the implementation

of the Bayesian method with flexible exposure model for PRM and NBRM. Thus, we

consider using FGSN to model for the unobserved quantities. Furthermore, we also study

the performance of newer flexible models which are variants of the skew-normal (SN)

distribution (Azzalini, 1985) that have been developed over the years, namely the flexible

skew-generalized normal distribution (Nekoukhou et al., 2013) and the extended skew

generalized normal distribution (Choudhury & Matin, 2011).

(i) Flexible Generalized Skew-Normal Distribution

According to Hossain and Gustafson (2009), an alternative choice of flexible model that

can be used to handle both bimodality skewness and heavy-tailedness, and can offer a

computational advantage is the flexible generalized skew-normal (FGSN) distribution.

Genton and Loperfido (2005) developed this distribution under a class of distribution

called the flexible generalize skew-elliptical. Since FGSN can accommodate bimodality,

heavy-tailedness, and skewness, a higher degree of flexibility is offered when trying to

capture the distribution of unobserved quantities. A thorough discussion on FGSN is

provided in Ma and Genton (2004).

Let φ(.) denote the standard normal density and Φ(.) denote the standard normal

distribution functions, respectively, then let the distribution of a random variable X , be a

univariate FGSN with the density given as,

f (x) =
2
λ
φ

(
x − α
λ

)
Φ

[ H∑
h=1

ωh

(
x − α
λ

)2h−1]
, (3.7)

where α ∈ < is the location parameter, and ωh ∈ < and λ > 0 are the shape and scale
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parameters, respectively and h = 1, 2, . . . ,H, such that, K = 2H − 1 signifies the order of

the polynomial. FGSN is unimodal if K = 1 and if K = 3 FGSN may have at most two

modes (Ma & Genton, 2004). From Equation (3.7), it can be seen that

1. If ωh = 0 , for all h, then Equation (3.7) reduces to a normal distribution.

2. If ωh = 0 for h = 2, 3, . . . ,H, but ω1 , 0 then Equation (3.7) reduces to a SN

distribution.

A higher value of K will offer more flexibility, but efficiency is sacrificed. In our study,

we use K = 3 as according Ma and Genton (2004) this value of K would offer enough

flexibility to capture the properties of the unobserved exposure model.

(ii) Flexible Skew-Generalized Normal Distribution

Flexible skew-generalized normal (FSGN) distribution is developed by Nekoukhou et al.

(2013) that stems from a skew generalized-normal (SGN) introduced by Arellano-Valle

et al. (2004) which is the generalization of Azzalini’s SN distribution . The flexibility of

FSGN is introduced by adding more parameters to model for the modes in the distribution.

Let the distribution of a random variable X to be a univariate FSGN with the density

given as,

f (x) =
2
λ1
φ

(
x − α
λ1

)
Φ

(
ω1(x − α) + ω2(x − α)3/λ2

1√
λ2

1 + λ2(x − α)2

)
, x ∈ <, (3.8)

whereα ∈ < is the location parameter and λ1 > 0 is the scale parameter. Also,ω1, ω2 ∈ <

and λ2 ≥ 0 are constants. From Equation (3.8), it is clear that

1. If ωh = 0 for h = 1, 2 but λ2 , 0, then Equation (3.8) reduces to the a normal

distribution for all λ2 > 0 .
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2. If λ2 = ω2 = 0 but ω1 , 0, then Equation (3.8) reduces to a SN distribution for all

ω1 ∈ <.

3. If ω2 = 0, for all ω1 ∈ < and λ2 > 0, then Equation (3.8) reduces SGN distribution.

4. If λ2 = 0, for all ω1, ω2 ∈ <, then Equation (3.8) coincides with FGSN of K = 3.

FSGNdistribution ismore flexible thanFGSNas itmay be reduced to the latter distribution.
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CHAPTER 4: BAYESIAN APPROACH TO ERRORS-IN-VARIABLES IN
POISSON REGRESSION MODEL

4.1 Introduction

Estimating parameters of PRM often leads to bias as the data collected are prone to

EIV problems. There are many existing non-Bayesian methods proposed to address this

problem, however, most of them require the variance of the measurement error (ME)

distribution to be known. This rarely happens in practice and even with this assumption,

these existing estimators exhibit pathological behaviour, inconsistent root problems as

well as estimate-finding failure. Thus, we utilized the Bayesian approach to address EIV

PRM such that the variance parameter of the ME distribution is estimated instead.

We also intentionally misspecify the exposure model with a flexible distribution,

in order to relax distributional assumption and therefore decrease the impact of model

misspecification bias. Since most studies done in correcting bias in EIV for parameter

estimations often impose a normal assumption on the true exposure distribution, in our

study we conducted extensive simulation studies for different properties of underlying

exposure model (i.e, skewness, bimodality and heavy-tailedness). So, we shall study the

performance of two flexible distributions, flexible generalized skew-normal (FGSN) and

flexible skew-generalized normal (FSGN), in relaxing the distributional assumptions of

the exposure model. To the best of our knowledge, there is yet any study conducted

in correcting EIV in PRM using the Bayesian approach with intentionally misspecified

flexible exposure distribution.

As mentioned in Chapter 3, the underlying structure of the joint distribution is a

product of the probability density function (pdf) of the three different submodels which

was provided by Richardson and Gilks (1993). Thus, we shall specify the outcome model,

measurement model, and exposure model to apply the Bayesian approach to EIV in PRM.
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Throughout this chapter, we shall consider independent count data with outcome, Yi,

i = 1, . . . , n where n is the sample size and their corresponding accurately measured but

unobserved variables Xi. Let X∗i be their respective surrogate covariate that was measured

with error.

4.2 Poisson Regression Outcome Model

Suppose Yi follows a PRM distribution, such that its probability mass function (pmf) is

written as

f (Yi |Xi, θPRM) =
µYi

i exp(−µi)

Yi!
, (4.1)

where

µi = exp(β0 + β1Xi), (4.2)

such that, the vector of parameters, θPRM = (β0, β1), is our main inferential focus and the

main parameter vector that we want to estimate with accuracy in the presence of EIV.

4.3 Measurement Model

In this study, we choose normal distribution as the measurement model distribution as

the distribution shows robustness in modelling EIV even when the EIV distribution is

non-normal (refer to Section 4.7). Its pdf is given by,

f (X∗i j |Xi, θM) =

(
1

2πτ2

)1/2
exp

(
−

1
2τ2

(
X∗i j − Xi

)2
)
, (4.3)

such that θM = τ
2 and X∗i j signifies the j th replicated surrogate of ith observation of X∗

for j = 1, . . . ,m and X∗ is the observed surrogate of X . To ensure identifiability and in

order to successfully estimate the measurement error (ME) variance, τ2, additional data
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or error assessment data are necessary. There are several types of error assessment data

(as discussed in Chapter 3); however, to closely follow a realistic approach, the data are

available in forms of m replicated surrogates.

4.4 Bayesian Approach using Flexible Exposure Model

The third model required to form the joint distribution given by Richardson and Gilks

(1993) is the exposure model; therefore the specification of exposure model is required.

To obtain the adjusted estimated regression parameters in the presence of EIV

with flexible misspecification of exposure model, the true exposure Xi is generated

from different types of distribution according to their respective simulation settings.

However, we misspecify the exposure distribution as a flexible distribution to relax

modeling assumptions. Therefore, we investigate the performance of various misspecified

flexible exposure models, i.e., FGSN and FSGN in the Bayesian EIV model and test their

robustness in simulation studies using synthetic data sets.

4.4.1 Flexible exposure model − FGSN

We shall let Xi follow the FGSN distribution such that

f (Xi |θFGSN ) =
2
λ
φ

(
Xi − α

λ

)
Φ

[
ω1

(
Xi − α

λ

)
+ ω2

(
Xi − α

λ

)3]
, (4.4)

where θFGSN = (α, λ, ω1, ω2), Φ(.) is the standard normal distribution function and φ(.)

is the standard normal density. In our study, we use polynomial of order K = 3 following

Ma and Genton (2004), as polynomial of that particular order offers enough flexibility; a

higher number of K will offer more flexibility, however, efficiency will be sacrificed.
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4.4.2 Flexible Exposure Model − FSGN

We let Xi follow the FSGN distribution such that

f (Xi |θFSGN ) =
2
λ1
φ

(
Xi − α

λ1

)
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)
, (4.5)

where θFSGN = (α, λ1, λ2, ω1, ω2).

4.5 Joint Posterior Density

4.5.1 Flexible Bayesian Approach under FGSN exposure model

In this section, we use FGSN as the flexible exposure model. The samemodels are utilized

here for both outcome and measurement models stated in Sections 4.2 and 4.3.

Following Equation (3.6), the joint posterior density of all the relevant variables, can

be written as

f (X, θ |X∗,Y ) ∝
n∏

i=1
f (Yi |Xi, θPRM)

n∏
i=1

m∏
j=1

f (X∗i j |Xi, θM)

n∏
i=1

f (Xi |θFGSN ) × π(θ), (4.6)

where θ is the parameter vector of the model that contains θPRM, θM and θFGSN which

denote vectors of parameters for outcome, measurement and exposure model, respectively.

In the case of Poisson outcome model, we introduce latent variable, ηi = β0+ β1Xi to

ease computational complexity and achieve faster convergence rate (Asfaw Dagne, 1999).

By introducing ηi, we will show that β = (β0, β1)
′ can be updated using Gibbs sampling.

Let π(θ) denote the prior distribution for θ = (η, β, α, τ2, σ2, λ2, ω1, ω2) where

η = (η1, η2, . . . , ηn)
′ and β = (β0, β1)

′ is an unknown vector of parameters and the

main parameter vector that we want to estimate. Assuming priori independence, the joint
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distribution for all our priori is given by

π(η, β, τ2, σ2, α, λ2, ω1, ω2) =

{ n∏
i=1

π(ηi |β, σ
2)

}
π(β)π(α)π(τ2)π(σ2)π(λ2)π(ω1)π(ω2),

(4.7)

where β and σ2 are set to be the hyperparameters for hyperprior of ηi.

We assign an informative prior for the latent variables ηi introduced in PRM where it

follows normalwithmean and variance β0+β1Xi andσ2, respectively. The hyperparameter

β and location parameter α are set to have a flat prior with locally uniform distribution,

U(1) as suggested by Box and Tiao (2011). The prior distributions for ω1 and ω2 are

assigned to be a normal distribution with high variance as to ensure that the priori are

as close to non-informative as possible. The reasoning behind this is to let the data be

the main role in estimating these parameters. We set the distribution of prior for scale

parameters τ2 and λ2 to be IG(0.5, 0.5) where IG stands for inverse-Gamma distribution.

According to Gelman et al. (2014), the centre of IG(0.5, 0.5) is equal to one and thus, the

prior guesses for both τ2 and λ2 are one which shows that the prior has a unit information

for its variance components. This implies that the information relayed using the prior is

worth a single data point about the variance components and therefore the data will steer

the estimation of τ2 and λ2. Following this information, it is safe to say that IG(0.5, 0.5)

is a non-informative prior distribution. Similarly, the hyperprior for σ2 is also set to be

IG(0.5, 0.5).

Rewriting Equation (4.6) in a more detailed manner, we obtain the following joint
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posterior density:

f (X, θ |X∗,Y ) ∝
n∏

i=1

{[
exp(Yiηi) exp(− exp(ηi))

Yi!

] [ m∏
j=1

(
1
τ2

)1/2
exp

(
−

1
2τ2

(
X∗i j − Xi

)2
)]

×

[(
1
λ2

)1/2
exp

(
−

1
2λ2 (Xi − α)

2
)]
Φ

[(
ω1(Xi − α)

λ

)
+

(
ω2(Xi − α)

3

λ3

)]}
×

{ n∏
i=1

π(ηi |β, σ
2)

}
π(β)π(τ2)π(λ2)π(α)π(σ2)π(ω1)π(ω2),

(4.8)

Conditional Posterior Density

In this subsection, the conditional posterior density for each of the parameters studied is

now derived from Equation (4.8). The derivation of the conditional posterior density for

all the parameters are reparameterised into closed forms (if possible). We then estimate

each parameters using MCMC sampling method. Let us denote AC as the vector of all

model parameters except A.

MCMC Implementation

i. For ηi,

f (ηi |η
C
i ) ∝ exp

{
yiηi − exp(ηi) −

1
2σ2

[
ηi − (β0 + β1Xi)

]2}
We introduce ηi in PRM for parameter β as the parameter shows slow convergence

rate. It is clear from the conditional posterior that part of it is a normal distributionwith

mean β0 + β1Xi and variance σ2. This latent variable is updated by component using

random walk Metropolis-Hastings (RWMH) with autoregressive chain. Its proposal

distribution is univariate normal with the aforementioned mean and variance. The

algorithm for this type of RWMH is described in Section 2.5.1.
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ii. For β ,

f (β |βC) ∝ exp
(
−

1
2σ2 (η − Xβ)′(η − Xβ)

)
.

η = (η1, η2, . . . , ηn)
′ is n × 1 matrix and X is n × 2 matrix with the ith row equals to

(1, Xi). The conditional posterior of β follows normal distribution, which is possible

after the latent variable ηi is obtained. Applying linear transformation and completing

of squares on the above conditional posterior as suggested by Gelman et al. (2014),

starting with,

(η − Xβ)′(η − Xβ) = η′η − 2η′Xβ + β′X′Xβ (4.9)

and differentiating (4.9) with respect to β,

−2η′X + 2β′X′X = 0

β′X′X = η′X

β′ = η′X(X′X)−1

β = (X′X)−1X′η.

Now, since β = (X′X)−1X′η and var(η) = σ2 · In where In denotes identity matrix

of order n then,

var(β) = var((X′X)−1X′η)

= (X′X)−1X′var(η)[(X′X)−1X′]′

= σ2 · In(X
′X)−1X′X((X′X)−1)′

= σ2 · In(X
′X)−1.
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Thus, the conditional posterior density for β now follows a multivariate normal

distribution with mean (X′X)−1X′η and covariance matrix σ2(X′X)−1. Therefore,

β is updated using Gibbs sampling.

iii. For Xi,

f (Xi |XC
i ) ∝ exp

{
−

1
2σ2

X

(Xi − µX)
2

}{
Φ

(
ω1(Xi − α)

λ
+
ω2(Xi − α)

3

λ3

)}
,

where

σ2
X = τ

2σ2λ2/(mλ2σ2 + τ2σ2 + β2
1λ

2τ2),

µX = (mλ2σ2 X̄∗i + ατ
2σ2 + β1(ηi − β0)τ

2λ2)/(mλ2σ2 + τ2σ2 + τ2λ2β2
1),

X̄∗i =
∑m

j=1 X∗i j/m.

Note that the main part of this conditional posterior has a normal distribution, with

mean µX and variance σ2
X . Hence, Xi, i = 1, . . . , n are component-wise updated using

independent normal with mean µX and variance σ2
X as proposals via the Metropolis-

Hastings (MH) algorithm.

iv. For α,

f (α |αC) ∝ exp

{
−

n
2λ2 (α − X̄)2

}{
n∏

i=1
Φ

(
ω1(Xi − α)

λ
+
ω2(Xi − α)

3

λ3

)}
,

where the first component of the above conditional distribution is normal with mean

X̄ and variance λ2/n where X̄ =
∑n

i=1 Xi/n. To have good mixing and acceptance rate

when updating α, we use RWMH scheme with N(0, k2
αλ

2/n) as proposal distribution

where kα is the tuning parameter. We set kα = 0.75 so that the algorithm exhibits
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acceptance rate between 30% and 40%.

v. For ωh where h = 1, 2,

f (ωh |ω
C
h ) ∝

{
n∏

i=1
Φ

(
ω1(Xi − α)

λ
+
ω2(Xi − α)

3

λ3

)}
exp

{
−

ω2
h

2 × 100

}
.

These shape parameters both have N(0, k2
ω) as their proposal distributions and are

sampled using RWMH sampling method. For both parameters, we set the tuning

parameter, kω as 0.5 which yield acceptance rate between 30% and 40%.

vi. For τ2,

f (τ2 |τ2C ) ∝

(
1
τ2

) mn+1
2 +1

exp
[
−

n∑
i=1

m∑
j=1

(X∗i j − Xi)
2 + 1

2τ2

]
,

which is IG with shape and scale parameter (mn+1)/2 and
∑n

i=1
∑m

j=1 0.5(X∗i j −Xi)
2+

0.5, respectively. Therefore, to update τ2, the Gibbs sampler is used.

vii. For λ2,

f (λ2 |λ2C ) ∝

(
1
λ2

) n+1
2 +1

exp
[
−

0.5
λ2

( n∑
i=1
(Xi − α)

2 + 1
) ]

×

{
n∏

i=1
Φ

(
ω1(Xi − α)

λ
+
ω2(Xi − α)

3

λ3

)}
,

where the main part of the conditional posterior is IG with shape (n + 1)/2 and scale∑n
i=1 0.5(Xi − α)

2 + 0.5. Hence, we use MH algorithm to update this scale parameter

with proposal distribution IG((n + 1)/2,
∑n

i=1 0.5(Xi − α)
2 + 0.5).
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viii. For σ2,

f (σ2 |σ2C ) ∝

(
1
σ2

) n+1
2 +1

exp
[
−

1
2σ2 ((η − Xβ)′(η − Xβ) + 1)

]
,

which is IG with shape 0.5(n + 1) and scale 0.5(η − Xβ)′(η − Xβ) + 0.5. Thus, we

update σ2 using Gibbs sampler.

4.5.2 Flexible Bayesian Approach under FSGN Exposure Model

We also study the effectiveness of a newer flexible model, that is the FSGN distribution in

modeling the unobserved exposures. We shall use the same model for both the outcome

and measurement models specified in Sections 4.2 and 4.3; in this section, instead of

FGSN, we specify FSGN as the flexible exposure model.

Thus, when using FSGN as the exposure model, the joint posterior density following

Equation (3.6) is given by

f (X, θ |X∗,Y ) ∝
n∏

i=1
f (Yi |Xi, θPRM)

n∏
i=1

m∏
j=1

f (X∗i j |Xi, θM)

n∏
i=1

f (Xi |θFSGN ) × π(θ),

(4.10)

where θ is the parameter vector of the model that contains θPRM, θM and θFSGN which

denote vectors of parameters for outcome, measurement and FSGN exposure model

respectively.

Again, we introduce ηi = β0 + β1Xi as the latent variable as MCMC sampling

for parameter β shows slow convergence when updating using MH. Assuming priori
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independence, the joint distribution for all priori is given as

π(η, β,τ2, λ2
1, λ2, α, σ

2, ω1, ω2)

=

{ n∏
i=1

π(ηi |β, σ
2)

}
π(β)π(τ2)π(λ2

1)π(λ2)π(α)π(σ
2)π(ω1)π(ω2).

(4.11)

As in the case of FGSN exposure model, the same prior distributions are adopted

for ηi, β, σ
2, τ2, α and ωh for h = 1, 2. For scale parameter λ2

1 of FSGN distribution,

IG(0.5, 0.5) is used which follows the same reasoning as the parameters that are set to

have IG(0.5, 0.5) as their parameter distribution; that is to let the data be the commandeer of

the parameter estimation. As for λ2, we use half-normal distribution with scale parameter

1, centered around 0 as its prior distribution (Gelman, 2006). Half-normal distribution as

the prior for λ2 is appropriate as the distribution has a positive support.

Now, Equation (4.10) can be written as

f (X, θ |X∗,Y ) ∝
n∏

i=1

{[
exp(Yiηi) exp(− exp(ηi))

Yi!

] [ m∏
j=1

(
1
τ2

)1/2
exp

(
−

1
2τ2

(
X∗i j − Xi

)2
)]

×

[(
1
λ2

1

)1/2
exp

(
−

1
2λ2

1
(Xi − α)

2
)]
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}

×

{ n∏
i=1

π(ηi |β, σ
2)

}
π(β)π(σ2)π(τ2)π(λ2

1)π(λ2)π(α)π(ω1)π(ω2).

(4.12)

The conditional density of each of the parameters in question can now be obtained

from Equation (4.12). The details on the derivation and MCMC sampling methods are

discussed in the next subsection.

4.5.3 Conditional Posterior Density

We consider the conditional posterior density for all the parameters used in our

flexible Bayesian approach with FSGN as the exposure model and find the possible
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reparametrisation of the densities into closed forms. Note that, conditional posterior

densities for latent variable, ηi and parameters β, σ2 and τ2 have the same densities as

the ones in Subsection 4.5.1. Therefore, their implemented MCMC methods are also the

same for the aforementioned parameters. The conditional densities for α, λ2
1, λ2, ω1 and

ω2 are described and using MCMC sampling method, the estimation of these parameters

are also done in this subsection.

MCMC Implementation

i. For Xi,

f (Xi |XC
i ) ∝ exp

{
−

1
2σ2

X

(Xi − µX)
2

}{
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
,

such that,

σ2
X = τ

2σ2λ2
1/(mλ

2
1σ

2 + τ2σ2 + β2
1λ

2
1τ

2),

µX = (mλ2
1σ

2 X̄∗i + ατ
2σ2 + β1(ηi − β0)τ

2λ2
1)/(mλ

2
1σ

2 + τ2σ2 + τ2λ2
1β

2
1),

X̄∗i =
∑m

j=1 X∗i j/m.

Since the main part of the above conditional posterior has a normal distribution

of mean µX and variance σ2
X , then we shall use this as a proposal to update Xi

independently for i = 1, 2, . . . , n using MH algorithm.

ii. For α,

f (α |αC) ∝ exp

{
−

n
2λ2

1
(α − X̄)2

}{
n∏

i=1
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
,

where the first component of the conditional distribution is normal with mean and

variance X̄ =
∑n

i=1 Xi/n and λ2
1/n, respectively. To update the parameter α with
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good mixing and acceptance rate, we use RWMH with normal proposal distribution,

N(0, k2
αλ

2
1/n) where kα is the tuning parameter. We choose kα = 1 which so that the

acceptance rate is between 35% and 40%.

iii. For λ2
1,

f (λ2
1 |λ

2C
1 ) ∝

(
1
λ2

1

) n+1
2 +1

exp
[
−

0.5
λ2

1

( n∑
i=1
(Xi − α)

2 + 1
) ]

{
n∏

i=1
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
,

where the main part of the condtional posterior is IG. Utilizing MH algorithm, the

proposal distribution for λ2
1 is IG((n + 1)/2, 0.5(

∑n
i=1(Xi − α)

2 + 1).

iv. For λ2,

f (λ2 |λ
C
2 ) ∝ exp

(
−
λ2

2
2

){ n∏
i=1
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
,

such that λ2 > 0 and the first component on the right-handside of the conditional

posterior is the half-normal distribution. Thus, λ2 is updated using RWMHwithHalf-

Normal(0, k2
λ2
) as its proposal distribution and tuning parameter, kλ2 = 0.1, yields

acceptance rate between 10% and 30%.

v. For ωh where h = 1, 2,

f (ωh |ω
C
h ) ∝

{
n∏

i=1
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
exp

{
−

ω2
h

2 × 100

}
.

These shape parameters have independent N(0, k2
ω) as their proposal distribution and

are updated using RWMH sampling method. kω = 0.5 is chosen as the tuning

parameter which exhibits acceptance rate between 25% and 40%.
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4.6 Simulation Studies

In this section, we conduct extensive simulation studies to investigate the performance of

the proposed technique under various different true unobserved Xi distributions for the

count data regression outcomemodels discussed in Section 4.2. To thoroughly confirm the

robustness of the Bayesian approach with misspecified flexible exposure model, we check

its bias correction mechanism when the distribution of X shows evidence of departures

from normality, that is, skewness, bimodality, and heavy-tailedness in various simulation

settings. We also compare our findings against different levels of error contamination

denoted as R such that R = 0.25, 0.5 and 1.0 indicating low, medium and high magnitude

of error, respectively. Note that, R here is the ratio of ME variance to the variance of true

X , i.e., R = τ2/(var(X)).

4.6.1 Simulation Set-ups

Let Yi denote non-negative count integers; PRM are denoted by Yi ∼ Poisson(exp(β0 +

β1Xi)). The true regression parameters take values of (β0, β1) = (0.5, 1.0). As previously

stated, the surrogate X∗i j follows classicalMEmodel such that, X∗i j = Xi+ε j for j = 1, . . . ,m

where ε j ∼ N(0, τ2) and m denotes the number of repeated measurements. Later on, we

will also simulate ε j from non-normal distributions, namely skew-normal and skew-t

distributions. For the sake of simulating data that is similar to real life research situations,

the number of replicated surrogates is limited to m = 2. Values of τ2 are estimated instead

of assumed as known like many other studies done on EIV in count data models. The

following are the simulation set-ups for the distribution of synthetic data sets for true
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exposure distribution:

Simulation setting 1: Xi ∼ 0.5N(0.19, 0.082) + 0.2N(1.05, 0.22) + 0.3N(2, 0.482)

Simulation setting 2: Xi ∼ 0.5N(−2, 1) + 0.5N(2, 1)

Simulation setting 3: Xi ∼ Gamma(2, 2−1)

Simulation setting 4: Xi ∼ LN(0, 1)

Simulation settings 1 and 2 follow similar configuration as Richardson et al. (Richardson

et al., 2002). The first configuration follows an asymmetric mixture of normal

which corresponds to a skewed true exposure distribution. τ2 = 0.25 signifies low

ME. Meanwhile, τ2 = 0.556 and τ2 = 1.11 correspond to medium and high error

contamination, respectively. Simulation setting 2 represents symmetric but bimodal

mixture of normal. To generate low, medium and highME contamination in the casewhere

the true exposure has a bimodal distribution, let τ2 = 0.75, 1.49 and 2.94, respectively.

To generate true exposure distribution with high skewness and heavy tail, we consider

simulation setting 3 where Xi is generated from Gamma with shape and scale parameter

of 2. τ2 = 2, 4 and 8 will generate low to high error contamination for this simulation

setting.

Finally, in simulation setting 4, true exposure is generated from log-normal

distribution to study the effectiveness of the proposed flexible model to capture skewness

and even heavier tail relative to simulation setting 3 in the exposures of count data

regression. We set the ME variance to be τ2 = 1.1675, 2.335 and 4.67 for low, medium

and high ME, respectively. Under each simulation setting, 50 data sets are generated for

two different sample sizes (n = 50, 100).
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4.7 Results

In this section, the performance of our proposed flexible Bayesian approach to correct

EIV in PRM are presented for each simulation settings discussed in Section 4.6 under two

flexible distributions, i.e., FGSN and FSGN. For each of the 50 data sets, we run MCMC

chains of length 300, 000 and the first 100, 000 MCMC iterations are discarded. For each

data set, we compute the posterior estimates of each of the model parameters with sample

size 200, 000 which is the remainder of the MCMC iterations after burn-in. The mean of

these posterior estimates is taken as our model parameter estimates for each data set. The

convergence of the chains are diagnosed by constructing trace plots, and the plots show

that our simulation study has good mixing and have achieved convergence with the given

iteration length. Example of the trace plots for our parameter estimates, β̂0 and β̂1 from a

randomly selected dataset and simulation study are presented in Figure 4.1.

Table 4.1 contains the results of various analyses for FGSN exposure model while,

Table 4.2 contains the results for FSGN exposure model with labels:

1. M as the mean of the model parameter estimates obtained based on the 50 different

data sets, ∑50
t=1 β̂

(t)
k

50
for k = 0, 1;

2. B as bias with respect to the mean of the true covariate values of the 50 data sets,

∑50
t=1(| β̂

(t)
k − βk |)

50
;

3. MSE as mean squared error of the mean estimates,

∑50
t=1(β̂

(t)
k − βk)

2

50
.

53

Univ
ers

ity
 of

 M
ala

ya



Table 4.1: Accuracy and sensitivity of estimated parameters, β0 and β1 under
different true and unobserved distributions of X Poisson regression model with
FGSN as misspecified exposure model

Sample size n = 50
R = 0.25 R = 0.5 R = 1

Simulation setting Parameter Naive Flexible Naive Flexible Naive Flexible Benchmark

1

β0

M 0.70519 0.31260 0.85549 0.33742 1.04232 0.35440 0.53171
B 0.20519 0.18740 0.35549 0.16258 0.54232 0.14560 0.03171

MSE 0.06877 0.07676 0.15480 0.07661 0.32303 0.08634 0.02186

β1

M 0.84786 1.04355 0.72825 1.01214 0.57743 0.98768 0.98292
B 0.15214 0.04355 0.27175 0.01214 0.42257 0.01232 0.01708

MSE 0.03277 0.01695 0.08454 0.02229 0.18908 0.03713 0.00620

2

β0

M 0.97564 0.51338 1.19514 0.51631 1.43278 0.60145 0.51605
B 0.47564 0.01338 0.69689 0.01631 0.93278 0.10145 0.01605

MSE 0.27722 0.04078 0.53430 0.05722 0.90996 0.09056 0.03027

β1

M 0.77464 0.97630 0.66106 0.97612 0.53003 0.95171 0.99408
B 0.22536 0.02370 0.33894 0.02388 0.46997 0.04829 0.00592

MSE 0.06169 0.00921 0.12560 0.01458 0.22989 0.02365 0.00437

3

β0

M 0.49727 0.46975 0.26295 0.44434 1.91242 0.32435 0.50125
B 0.00273 0.03025 0.23705 0.05566 1.41242 0.17565 0.00125

MSE 7.44074 0.07140 26.7085 0.14898 16.1708 0.41036 0.00023

β1

M 0.99619 0.99696 0.99972 0.99998 0.82313 1.02473 0.99980
B 0.00381 0.00304 0.00028 0.00002 0.17687 0.02473 0.00020

MSE 0.07038 0.00292 0.23499 0.00612 0.15807 0.01671 2.23e-6

4

β0

M 0.14322 0.41165 0.56923 0.40196 0.69690 0.36098 0.49864
B 0.35678 0.08835 0.06923 0.09804 0.19690 0.13902 0.00136

MSE 11.8566 0.03353 1.90997 0.05993 3.83394 0.12809 0.00279

β1

M 0.98455 0.99754 0.91333 0.99517 0.85350 1.01420 1.00220
B 0.01545 0.00246 0.08667 0.00483 0.14650 0.01420 0.00220

MSE 0.13688 0.00424 0.05664 0.00889 0.10391 0.01927 0.00016
Sample size n = 100

R = 0.25 R = 0.5 R = 1

Simulation setting Parameter Naive Flexible Naive Flexible Naive Flexible Benchmark

1

β0

M 0.67436 0.48483 0.82081 0.51815 1.00180 0.55411 0.49799
B 0.17436 0.01517 0.32081 0.01815 0.50180 0.05411 0.00201

MSE 0.03920 0.01013 0.11450 0.01299 0.26571 0.01984 0.00803

β1

M 0.85970 0.97135 0.74449 0.93699 0.36957 0.91118 0.99901
B 0.14030 0.02865 0.25551 0.06301 0.63043 0.08882 0.00099

MSE 0.02309 0.00541 0.06957 0.01067 0.66862 0.01103 0.00278

2

β0

M 0.96523 0.47569 1.19689 0.45695 1.44294 0.42036 0.49679
B 0.46523 0.02431 0.69689 0.04305 0.94294 0.07964 0.00321

MSE 0.24201 0.01779 0.52145 0.02795 0.93603 0.05141 0.00866

β1

M 0.78208 1.00591 0.66665 1.02926 0.53498 1.09507 0.99966
B 0.21792 0.00591 0.33335 0.02926 0.46502 0.09507 0.00034

MSE 0.05254 0.004533 0.11808 0.010219 0.225018 0.03237 0.000973

3

β0

M 0.96253 0.51677 0.89460 0.52493 -1.32639 0.49710 0.49929
B 0.46253 0.01677 0.39460 0.02493 1.82639 0.00290 0.00071

MSE 9.21236 0.02860 24.22310 0.05602 394.31439 0.11380 0.00005

β1

M 0.94979 0.99035 0.94093 0.98762 1.07001 0.99369 1.00005
B 0.05021 0.00965 0.05907 0.01238 0.07001 0.00631 0.00005

MSE 0.06516 0.00159 0.16105 0.00312 1.99271 0.00625 0.0000003

4

β0

M 0.54943 0.45419 0.64043 0.45594 0.63387 0.42702 0.50781
B 0.04943 0.04581 0.14043 0.04406 0.13387 0.07298 0.00781

MSE 3.69577 0.02795 4.11726 0.04596 7.47841 0.09137 0.00141

β1

M 0.96577 0.99674 0.93503 0.99668 0.89668 1.02188 0.99930
B 0.03423 0.00326 0.06497 0.00332 0.10332 0.02188 0.00070

MSE 0.039523 0.005321 0.055759 0.010717 0.108898 0.02443 2.22e-05
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Table 4.2: Accuracy and sensitivity of estimated parameters, β0 and β1 under
different true and unobserved distributions of X for Poisson regression model with
FSGN as misspecified exposure model

Sample size n = 50
R = 0.25 R = 0.5 R = 1

Simulation setting Parameter Naive Flexible Naive Flexible Naive Flexible Benchmark

1

β0

M 0.70519 0.48850 0.85549 0.51497 1.04232 0.53904 0.53171
B 0.20519 0.01150 0.35549 0.01497 0.54232 0.03904 0.03171

MSE 0.06877 0.06877 0.15480 0.03714 0.32303 0.04881 0.02186

β1

M 0.84786 0.97271 0.72825 0.94794 0.57743 0.92383 0.98292
B 0.15214 0.02729 0.27175 0.05206 0.42257 0.07617 0.01708

MSE 0.03277 0.03277 0.08454 0.01949 0.18908 0.03174 0.00620

2

β0

M 0.97564 0.50587 1.19514 0.50468 1.43278 0.48038 0.51605
B 0.47564 0.00587 0.69689 0.00468 0.93278 0.01962 0.01605

MSE 0.27722 0.04063 0.53430 0.04874 0.90996 0.06465 0.03027

β1

M 0.77464 0.97875 0.66106 0.98216 0.53003 1.00596 0.99408
B 0.22536 0.02125 0.33894 0.01784 0.46997 0.00596 0.00592

MSE 0.06169 0.00769 0.12560 0.01204 0.22989 0.02364 0.00437

3

β0

M 0.49727 0.51279 0.26295 0.50127 1.91242 0.41281 0.50125
B 0.00273 0.01279 0.23705 0.00127 1.41242 0.08719 0.00125

MSE 7.44074 0.07302 26.7085 0.15161 16.1708 0.32193 0.00023

β1

M 0.99619 0.99143 0.99972 0.99288 0.82313 1.01339 0.99980
B 0.00381 0.00857 0.00028 0.00712 0.17687 0.01339 0.00020

MSE 0.07038 0.01749 0.23499 0.02503 0.15807 0.02771 2.23e-6

4

β0

M 0.14322 0.41364 0.56923 0.40559 0.69690 0.37327 0.49864
B 0.35678 0.08636 0.06923 0.09441 0.19690 0.12673 0.00136

MSE 11.8566 0.04720 1.90997 0.06488 3.83394 0.12661 0.00279

β1

M 0.98455 0.99748 0.91333 0.99356 0.85350 1.00620 1.00220
B 0.01545 0.00252 0.08667 0.00644 0.14650 0.00620 0.00220

MSE 0.13688 0.01760 0.05664 0.018619 0.10391 0.02477 0.00016
Sample size n = 100

R = 0.25 R = 0.5 R = 1

Simulation setting Parameter Naive Flexible Naive Flexible Naive Flexible Benchmark

1

β0

M 0.67436 0.48475 0.82081 0.51549 1.00180 0.54884 0.49799
B 0.17436 0.01525 0.32081 0.01549 0.50180 0.04884 0.00201

MSE 0.03920 0.01026 0.11450 0.01276 0.26571 0.02008 0.00803

β1

M 0.85970 0.97146 0.74449 0.93873 0.60215 0.90109 0.99901
B 0.14030 0.02854 0.25551 0.06127 0.39785 0.09891 0.00099

MSE 0.02309 0.00549 0.06957 0.01073 0.16275 0.02041 0.00278

2

β0

M 0.96523 0.51688 1.19689 0.54484 1.44294 0.52276 0.49679
B 0.46523 0.01688 0.69689 0.04484 0.94294 0.02276 0.00321

MSE 0.24201 0.01720 0.52145 0.01763 0.93603 0.04047 0.00866

β1

M 0.78208 0.96978 0.66665 0.95076 0.53498 0.96525 0.99966
B 0.21792 0.03022 0.33335 0.04924 0.46502 0.03475 0.00034

MSE 0.05254 0.00488 0.11808 0.00517 0.225018 0.01015 0.000973

3

β0

M 0.96253 0.51442 0.89460 0.51978 -1.32639 0.49203 0.49929
B 0.46253 0.01442 0.39460 0.01978 1.82639 0.00797 0.00071

MSE 9.21236 0.02869 24.22310 0.05677 394.31439 0.11628 0.00005

β1

M 0.94979 0.99085 0.94093 0.98762 1.07001 0.99464 1.00005
B 0.05021 0.00915 0.05907 0.01129 0.07001 0.00536 0.00005

MSE 0.06516 0.00159 0.00315 0.00312 1.99271 0.00639 0.0000003

4

β0

M 0.54943 0.42863 0.64043 0.43064 0.63387 0.42045 0.50781
B 0.04943 0.07137 0.14043 0.06936 0.13387 0.07955 0.00781

MSE 3.69577 0.01964 4.11726 0.02740 7.47841 0.04899 0.00141

β1

M 0.96577 1.00375 0.93503 0.99887 0.89668 1.00417 0.99930
B 0.03423 0.00375 0.06497 0.00113 0.10332 0.00417 0.00070

MSE 0.039523 0.00298 0.05576 0.00531 0.108898 0.01060 2.22e-05
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Figure 4.1: Trace plots for estimated regression parameters, β̂0 and β̂1 in one of the
simulation studies

The MSE and bias values depicted in the tables are to demonstrate the bias-variance

tradeoff where low values in both bias and MSE are indicators for a good performance in

estimating the parameters (Geman et al., 1992). The posterior summaries of our approach

after ME correction is labelled as flexible. To highlight the performance of our model, we

also present the naive and benchmark estimates. Regression parameters estimates for each

data set drawn from a naive analysis are obtained when direct regression are applied on

the mean between m surrogates, X̄∗i =
∑m=2

j=1 Xi j/m, are taken to be as precisely measured.

Meanwhile, in the benchmark analysis, we assume that the unobserved true values Xi

as known and similarly, apply direct regression to estimate the regression parameters.
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Figure 4.2: Kernel density estimates for settings 1-4 in the case of misspecified FGSN
exposure model for EIV in PRM: true exposure Xi (solid curve); estimated Xi under
flexible Bayesian approach (dashed curve); mean proxy X̄∗i (dotted curve).

This is to illustrate how closely our approach performs in terms of bias correction and

efficiency in comparison with the ideal (benchmark) situation and how in the absence of

bias correction, non-credible estimated values will be reached.

To clearly visualize the effects of our EIV correction using the Bayesian approach,

we plot the posterior kernel densities of estimated Xi, that have been corrected for ME

using the flexible Bayesian approach from a randomly selected data with FGSN and FSGN

exposure model, respectively, as shown in Figures 4.2 and 4.3. As a comparison, we also

construct the kernel densities of their corresponding true exposure variables Xi and mean
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Figure 4.3: Kernel density estimates for settings 1-4 in the case of misspecified FSGN
exposure model for EIV in PRM: true exposure Xi (solid curve); estimated Xi under
flexible Bayesian approach (dashed curve); mean proxy X̄∗i (dotted curve).

proxy X̄∗i . The randomly selected data set has sample size n = 100 and R = 1.0 level

of ME contamination. This comparison is to further highlight the performance of our

model and also to illustrate the ability of the flexible Bayesian approach with the usage of

FGSN and FSGN as the misspecified exposure model to capture the shape of the unknown

exposure distribution in each simulation configurations.

The discussion of the results are separated into two subsections; Subsection 4.7.1

discusses the results when using FGSN exposure model, meanwhile Subsection 4.7.2

discusses the results when using FSGN exposure model.
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4.7.1 Using FGSN Exposure Model

The results presented in Table 4.1 demonstrate that the flexible Bayesian approach with

misspecified exposure model using FGSN distribution does very well in attenuating bias

when estimating the unknown true regression parameters under distributions that exhibit

skewness, bimodality, heavy-tailedness and even in the case of both skewed and heavy-

tailed exposures; their values follow closely to the values of the benchmark estimates. The

naive estimates under every simulation settings and sample sizes have significantly heavy

bias and do poorly in terms of estimating the correct values of β0 and β1. Under certain

simulation settings, when comparing in terms of ME contamination level, R, the larger R

may yield smaller mean bias. This is most probably due to simulation error.

When estimating parameters using MCMC, a good measure of performance would

be the bias-variance tradeoff where the two sources of error; bias and variance need to

be minimized. In Table 4.1 under sample size n = 50, we see that for the 3rd simulation

setting in the case of FGSN exposure model, the mean bias of naive β0 estimate for

R = 0.25 is smaller than the mean bias of our flexible β0. However, not surprisingly

naive estimate reports substantially high MSE value which implies that using the naive

approach yield highly inconsistent values between the 50 data sets and therefore performs

very poorly in terms of bias-variance trade-off. In this case, even though our approach

shows slightly bigger bias than that of the naive estimates, the MSE values suggest that

our proposed approach still yields better performance as higher flexibility may sacrifice

accuracy according to Ma and Genton (2004).

As shown in Figure 4.2, we see that in each setting: skewed (setting 1), bimodal

(setting 2) and skewness paired with heavy-tailedness (settings 3 and 4), the kernel density

of our corrected Xi follows closely to the kernel density shape of true Xi distribution.

Meanwhile, X̄∗i gives a very blurred kernel density shape under every simulation setting.
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4.7.2 Using FSGN Exposure Model

Similar results are reported for when the exposure model is misspecified using FSGN as

shown in Table 4.2. There is also a significant difference between the naive estimates and

the flexible estimates such that the latter have closer values to the benchmark estimates.

This show that using FSGN, the approach is also successful in estimating the values of the

unknown true regression distributions at every simulation settings. Here, we also see that

in certain simulation settings, the mean bias of flexible β0 estimate for smaller R is larger

than that of the bigger R which is also may be the result from simulation error. The low

MSEs also imply that the flexible Bayesian approach with FSGN as its exposure model

has a good bias-variance tradeoff despite the model being more flexible than FGSN.

Figure 4.3 shows that under each setting, the kernel density of our corrected Xi

follows closely to the kernel density shape of true Xi distribution. Meanwhile, X̄∗i gives a

very blurred kernel density shape under every simulation setting.

4.7.3 Comparing the Performance between FGSN and FSGN as the Misspecified
Exposure Model for EIV PRM.

Using the same exact simulation settings and the same exact number of iterations and

burn-ins, the results of parameter regression estimates, β0 and β1, with adjustment to bias

report similar results under both FGSN and FSGN exposure model as represented in Table

4.1 and Table 4.2 where both perform well in reducing bias caused by EIV. However, we

shall compare the performance of FGSN and FSGN as the misspecified exposure model

to find which of the two flexible models yield better bias reduction.

To paint a clearer picture the difference of performance between FGSN and FSGN,

we provide a visual comparison. In Figures 4.4 to 4.7, the kernel densities of estimated β0

and β1 with R = 1.0 and n = 100 under each simulation setting for FGSN and FSGN are

compared. We let the solid curve to depict the kernel density of benchmark estimates, the

dashed curve to depict the kernel density plot of estimates under FGSN exposure model
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Figure 4.4: Kernel density of estimated regression parameters under simulation
setting 1 - Skewed mixture of normal distribution: Benchmark (solid curve); FGSN
(dashed curve); FSGN (long-dashed curve).

Figure 4.5: Kernel density of estimated regression parameters under simulation
setting 2 - Bimodal mixture of normal distribution: Benchmark (solid curve); FGSN
(dashed curve); FSGN (long-dashed curve).

and the long-dashed curve to depict the kernel density plot of estimates under FSGN

exposure model.

Figure 4.4 depicts the parameter estimates under simulation settings 1 for when

the true exposures are generated from the skewed mixture of normal distribution. In this
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Figure 4.6: Kernel density of estimated regression parameters under simulation
setting 3 - Gamma distribution: Benchmark (solid curve); FGSN (dashed curve);
FSGN (long-dashed curve).

Figure 4.7: Kernel density of estimated regression parameters under simulation
setting 4 - Log-normal distribution: Benchmark (solid curve); FGSN (dashed curve);
FSGN (long-dashed curve).

setting, the kernel density plot estimates, β0 and β1 for FGSN and FSGNmodels have very

similar kernel densities such that both of the densities are almost perfectly overlappingwith

each other. Therefore, both flexible exposure models have almost the same performance

in correcting bias for skewed true exposures.
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Almost the same result is reported in kernel density estimate plots for simulation

setting 2 where the true exposures are generated from the bimodal mixture of normal

distribution. As shown in Figure 4.5, the flexible models FGSN and FSGN have similar

shapes such that none actually showed that it has a significantly better performance than

the other.

As for the kernel densities depicted in Figure 4.6 for both parameters β0 and β1,

FGSN exposure model shows better performance than that of FSGN exposure model. As

can clearly be seen in the figure, FGSN model tracks better kernel density shape of the

benchmark estimates than the corresponding kernel density estimates of FSGN model.

The position of the peak under FGSN model is much closer to the true value of β0 and β1

and the spread of the kernel densities also follows much closer to the benchmark estimates

than under the FSGN model for sample size n = 100. However, for n = 50 if we compare

the values given in the tables above, for simulation setting 3, FSGN shows a slightly better

performance; but the difference in bias and MSE between the two models does not really

have a profound difference.

In Figure 4.7, the true exposures are generated from simulation setting 4 which is a

log-normal distribution that has a heavy-tail. In the figure shown in this simulation setting

for parameter β0, FGSN exposure model shows better performance than its corresponding

FSGN exposure model. As can be seen in the kernel density plots, the peak for FGSN

model is much closer to the true value, 0.5 in comparison to the peak of FSGN exposure

model. As for the spread, in our observation, both flexible exposure models do not report

any significant difference in their kernel density plots. For kernel density plot estimates

of the parameter β1, the performance of both FGSN and FSGN models are very similar

although one can argue that the peak of the kernel density plot for FGSN model is closer

to the true value, 1.0, than the kernel density plot of FSGN model.

Therefore, from the findings shown in Table 4.1 and Table 4.2, as well as the
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comparison between the kernel density plots of FGSN and FSGN misspecified exposure

model for the 4 simulation settings, our approach when using both models show similar

performance. However, FGSN should be the preferred flexible model as it shows more

efficiency than the FSGN model. This is because the extra parameter in FSGN makes for

a slower and longer MCMC simulation time. Although FSGN offers more flexibility than

FGSN, its performance, however, showed no significant increase. Therefore, for Poisson

regression outcome model, we advocate the usage of FGSN as the misspecified exposure

model.

4.7.4 Non-normal Distribution of EIV

Now, to test for the robustness of normal distribution as the measurement model, we

generate the ME, ε j , from two types non-normal distributions, the skew-normal (SN) and

skew-t (ST) distribution. In technical terms, the first non-normal error is generated from

ε j ∼ SN(0, 1) and the second non-normal error is generated from ε j ∼ ST(0, 1). Also,

Xi is generated from skewed mixture of normal and the contamination of error is taken

as R = 1 indicates a high and substantial ME. Since FGSN is the preferred model as

discussed earlier, we use FGSN as the misspecified flexible exposure model.

Table 4.3: Estimated values of β0 and β1 of EIV PRM where EIV is generated from
skew-normal and skew-t distributions.

Distribution of EIV Parameter Naive Flexible Benchmark

Skew-normal

β0

M 0.98672 0.54489 0.49799
B 0.48873 0.04690 0.00201

MSE 0.24804 0.01666 0.00820

β1

M 0.63134 0.93795 0.99901
B 0.36767 0.06107 0.00099

MSE 0.13783 0.01462 0.0028

Skew-t

β0

M 1.14211 0.54443 0.49799
B 0.64412 0.04644 0.00201

MSE 0.43381 0.02427 0.00820

β1

M 0.50778 0.92632 0.99901
B 0.49123 0.07269 0.00099

MSE 0.24864 0.02222 0.0028
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The results are shown in Table 4.3. As depicted in the table, even when EIV departed

from normality, normal distribution as the measurement model still provides robustness

and there is no deterioration in bias correction for the Poisson regression outcome model.

So, even though there are some studies that suggested the use of flexible distribution not

only for the exposure model but also the measurement model, we, however, considered it

as redundant following from the results of our simulation studies.
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CHAPTER 5: BAYESIAN APPROACH TO ERRORS-IN-VARIABLES IN
NEGATIVE BINOMIAL REGRESSION MODEL

5.1 Introduction

In the previous chapter, we have discussed and investigated the flexible Bayesian method

to correct errors-in-variables (EIV) in Poisson regression. Although Poisson is the most

popular model for count data, sometimes the data are overdispersed in which Poisson

regression may no longer be used to model the data. In a count data set where the variance

is larger than the mean, negative binomial regression model (NBRM) should be employed

to model it. In current studies, there were no usage of flexible distributions such that the

exposure model assumes a flexible distribution. Therefore, in this chapter we propose the

usage of Bayesian approach to address bias caused by EIV in an overdispersed count data

regression model, that is NBRM. By intentionally misspecifying the flexible models as the

exposure model, we are able to implement a general framework even when the non-normal

distribution used in every simulation settings are different (i.e, skewness, bimodality and

heavy-tailedness).

5.2 Negative Binomial Regression Outcome Model

Using similar notations as in the previous chapter, we denote the outcome variable as Yi,

the true but unobserved exposure variable as Xi and its corresponding observed with error

exposure variable as X∗i . NBRM denoted by Yi ∼ NB(r, exp(β0 + β1Xi)) has a dispersion

parameter r > 0 and mean parameter exp(β0 + β1Xi). Thus, we shall specify the outcome

model as NBRM with the following pmf,

f (Yi |Xi, θNBRM) =
Γ(Yi + r)
Yi!Γ(r)

(
r

r + exp(β0 + β1Xi)

)r ( exp(β0 + β1Xi)

r + exp(β0 + β1Xi)

)Yi
, (5.1)
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where θNBRM = (β0, β1, r) and it follows that

E(Yi |θNBRM) = exp(β0 + β1Xi), and

Var(Yi |θNBRM) = exp(β0 + β1Xi)

(
1 +

exp(β0 + β1Xi)

r

)
.

It is clear that since exp(β0 + β1Xi) > 0, then overdispersed count data can be modelled

by NBRM.

5.3 Measurement Model

In this chapter, we also specify a normal distribution as the measurement model. The

extensive simulation studies conducted in the previous chapter suggest that normal

distribution is robust enough to be specified as the measurement model distribution even

when the distribution of ME has departures from normality. So, the pdf is given by

f (X∗i j |Xi, θM) =

(
1

2πτ2

)1/2
exp

(
−

1
2τ2

(
X∗i j − Xi

)2
)
, (5.2)

such that θM = τ
2 and X∗i j signifies the j th replicated surrogate of ith observation of X∗

for i = 1, . . . , n and j = 1, . . . ,m.

5.4 Bayesian Approach using Flexible Exposure Model

In the next section, we shall describe the usage of flexible Bayesian approach to correct

EIV in NBRM with the exposure model misspecified with a flexible model. Again, even

though the distribution of the true exposures Xi is generated according to its simulation

setting, we will intentionally misspecify the exposure model with FGSN distribution such

that, Xi |θFGSN ∼ FGSN(α, λ2, ω1, ω2). The pdf of the FGSN is the same as the one given

in Section 4.4.

Besides that, we shall also thoroughly describe our study on correcting EIV in
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NBRM with FSGN as its misspecified model. In technical terms, we set Xi |θFSGN ∼

FSGN(α, λ2
1, λ2, ω1, ω2) such that its pdf is given in Section 4.4.2.

5.5 Joint Posterior Density

5.5.1 Flexible Bayesian Approach under FGSN exposure model

With NBRM as the outcome model, normal distribution as the measurement model and

FGSN as the misspecified exposure model, we can now construct the joint posterior which

is the product of these three submodels. Using Richardson and Gilks (1993) framework

of the Bayesian approach to correct EIV, we can write the joint posterior density as,

f (X, θ |X∗,Y ) ∝
n∏

i=1
f (Yi |Xi, θNBRM)

n∏
i=1

m∏
j=1

f (X∗i j |Xi, θM)

n∏
i=1

f (Xi |θFGSN ) × π(θ).

(5.3)

Let θ be the parameter vector of the model that contains θNBRM, θM and θFGSN which

denote vectors of parameters for outcome, measurement and FGSN exposure model,

respectively.

Unlike when the outcome model is PRM, in the case of NBRM we do not have

to introduce a latent variable as it already have a quite fast convergence rate and low

bias for the parameter β as observed in our simulation studies. Using similar notations,

we let π(θ) represent the prior distribution of our parameter vector, where θ contains

β, r, τ2, α, λ2, ω1, ω2 such that β = (β0, β1)
′ is the main parameter vector that we want to

estimate. We assume priori independence and thus, the joint distribution for all of the

priori is given as,

π(θ) = π(β)π(r)π(τ2)π(α)π(λ2)π(ω1)π(ω2).

We assign a weakly informative prior for the parameter β such that it follows a normal

68

Univ
ers

ity
 of

 M
ala

ya



distribution with high variance, N(0, 102 · I2) where I2 denotes identity matrix of order

2. The parameter r , which is the dispersion parameter of NBRM, needs to maintain its

positive support. So, taking this into account, we set its prior distribution as IG(0.5, 0.5).

As alluded in Section 4.5.1, the reasonwhy IG is chosenwith its shape and scale parameter

are both 0.5 is to ensure that the prior that we use is as close to non-informative as possible.

This is because, without enough knowledge on the values of r , it is unreasonable to set

a prior that will have an influence on its construction. In other words, we want the data

to take the main role in the posterior distribution. As for the parameter α, we assign

a common choice of flat prior distribution, that is, one (Box & Tiao, 2011). The prior

distribution for parameters λ2 and τ2 is also IG(0.5, 0.5), recommended by Gelman et

al. (2014). The choice of prior follows the same logic as when we assign the same prior

distribution to r , which is to stay as close to non-informative as possible (Gelman et al.,

2014). For parameters ω1, ω2 we let both of their prior distributions to be N(0, 102).

We rewrite Equation (5.3) and the posterior density is now written as the following,

f (X, θ |X∗,Y ) ∝
n∏

i=1

Γ(Yi + r)
Yi!Γ(r)

(
r

r + exp(β0 + β1Xi)

)r ( exp(β0 + β1Xi)

r + exp(β0 + β1Xi)

)Yi

×

[ m∏
j=1

(
1
τ2

)1/2
exp

(
−

1
2τ2

(
X∗i j − Xi

)2
)]

×

[(
1
λ2

)1/2
exp

(
−

1
2λ2 (Xi − α)

)]
Φ

[(
ω1(Xi − α)

λ

)
+

(
ω2(Xi − α)

3

λ3

)]
× π(β)π(r)π(τ2)π(α)π(λ2)π(ω1)π(ω2),

(5.4)

where Φ(.) is the standard normal distribution function.

Conditional Posterior Density

In the this subsection, we shall use Equation (5.4) to derive the conditional posterior

density for each of the parameters in our model. The conditional posterior density of
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the parameters are then reparametrised into closed forms (if possible). Using MCMC

sampling method, we shall estimate the parameters. Let AC be the complement of the

parameter A.

MCMC Implementation

i. For β,

f (β |βC) ∝

n∏
i=1

{
[exp(β0 + β1Xi)]

Yi (exp(β0 + β1Xi) + r)−(r+Yi)
}
×

1∏
k=0

exp
(
−

β2
k

2 × 102
)
.

For updating β in NBR outcomemodel and FGSN exposuremodel, since the posterior

distribution does not follow any known distribution, we propose β to be sampled

using RWMH sampling method with normal distribution as its proposal distribution,

N(0, k2
β) such that kβ is the tuning parameter. We choose kβ = 0.02 such that the

tuning parameter will yield acceptance rate between 25% and 30%.

ii. For Xi,

f (Xi |XC
i ) ∝

{
[exp(β0 + β1Xi)]

Yi (exp(β0 + β1Xi) + r)−(r+Yi)
}

exp

{
−

1
2σ2

X

(Xi − µX)
2

}{
Φ

(
ω1(Xi − α)

λ
+
ω2(Xi − α)

3

λ3

)}
,

where the first component of the conditional posterior follows normal distribution

with mean µX = (ατ
2 + mλ2 X̄)/(τ2 + mλ2) and variance σ2

X = λ2τ2/(τ2 + mλ2).

Hence, we update Xi by component using MH algorithm with univariate normal

proposal distribution of mean µX and variance σ2
X .
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iii. For α,

f (α |αC) ∝ exp

{
−

n
2λ2 (α − X̄)2

}{
n∏

i=1
Φ

(
ω1(Xi − α)

λ
+
ω2(Xi − α)

3

λ3

)}
,

where the first component of the conditional posterior distribution is a normal

distribution with mean X̄ and variance λ2/n. In our simulation studies, we use

RWMH scheme to update α with tuning parameter kα where kα = 1, and the proposal

distribution is N(0, k2
αλ

2/n). The choice of tuning parameter will give us acceptance

rate between 25% and 40%.

iv. For ωh where h = 1, 2,

f (ωh |ω
C
h ) ∝

{
n∏

i=1
Φ

(
ω1(Xi − α)

λ
+
ω2(Xi − α)

3

λ3

)}
exp

{
−

ω2
h

2 × 100

}
.

Forωh where h = 1, 2, we sample using RWMHmethod with N(0, k2
ω) as the proposal

distribution and we set the tuning parameter kω as 0.09 which will yield acceptance

rate between 25% and 30%.

v. For τ2,

f (τ2 |τ2C ) ∝

(
1
τ2

) mn+1
2 +1

exp
[
−

n∑
i=1

m∑
j=1

(X∗i j − Xi)
2 + 1

2τ2

]
,

is a closed form distribution, namely IG with shape and scale parameter (mn + 1)/2

and
∑n

i=1
∑m

j=1 0.5(X∗i j − Xi)
2 + 0.5, respectively. Therefore, we use Gibbs sampler to

update τ2.
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vi. For λ2,

f (λ2 |λ2C )

∝

(
1
λ2

) n+1
2 +1

exp
[
−

0.5
λ2

( n∑
i=1
(Xi − α)

2 +
) ] { n∏

i=1
Φ

(
ω1(Xi − α)

λ
+
ω2(Xi − α)

3

λ3

)}
,

where as we can see above, the first component of the conditional posterior is

IG with shape (n + 1)/2 and scale
∑n

i=1 0.5(Xi − α)
2 + 0.5. Hence for both

count data regression models, using MH algorithm, λ2, we use proposal from

IG((n + 1)/2,
∑n

i=1 0.5(Xi − α)
2 + 0.5).

vii. For r ,

f (r |rC) ∝

(
rr

Γ(r)

)n

exp(−0.5r)
n∏

i=1

[
Γ(Yi + r)(exp(β0 + β1Xi) + r)−(r+Yi)

]
.

Since the conditional posterior for r , as shown above, does not follow any known

distribution, we apply the MH algorithm and use the exponential distribution with

rate 0.5 as the proposal distribution.

5.5.2 Flexible Bayesian Approach under FSGN Exposure Model

Using NBRM as the outcome model, normal distribution as the measurement model and

FSGN as the intentionally misspecified exposure model, we construct the joint posterior

density of EIV NBRMwhich is the product of all the three models mentioned before. The
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joint posterior density may be observed as the following,

f (X, θ |X∗, bmY ) ∝
n∏

i=1
f (Yi |Xi, θNBRM)

n∏
i=1

m∏
j=1

f (X∗i j |Xi, θM)

n∏
i=1

f (Xi |θFSGN ) × π(θ).

(5.5)

where θ is the parameter vector of the model that contains θNBRM, θM and θFSGN which

denote vectors of parameters for outcome, measurement and FSGN exposure model,

respectively.

Letting the prior distribution denoted as π(θ) be independent and θ =

(β, r, τ2, λ2
1, λ2, ω1, ω2), the joint distribution of all the priori on the parameters considered

is,

π(θ) = π(β)π(r)π(τ2)π(α)π(λ2
1)π(λ

2)π(ω1)π(ω2).

We set the prior for parameters β, ω1 and ω2 to be a normal distribution with mean 0 and

variance, 102. Meanwhile, α has a flat prior distribution. Since r has a positive support,

we let its prior to be exponential with rate one. Following Gelman et al. (2014) where

for the scale parameters, IG is proposed as prior, the prior distribution for λ2
1 and τ2

both follow IG(0.5, 0.5). As for the scale parameter λ2, its prior distribution is given by

half-normal with variance one (Gelman, 2006).
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We rewrite Equation (5.5) as the following:

f (X, θ |X∗,Y ) ∝
n∏

i=1

{
Γ(Yi + r)
Yi!Γ(r)

(
r

r + exp(β0 + β1Xi)

)r ( exp(β0 + β1Xi)

r + exp(β0 + β1Xi)

)Yi

×

[ m∏
j=1

(
1
τ2

)1/2
exp

(
−

1
2τ2

(
X∗i j − Xi

)2
)]

×

[(
1
λ2

1

)1/2
exp

(
−

1
2λ2

1
(Xi − α)

)]
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}

× π(β)π(τ2)π(λ2
1)π(λ2)π(α)π(σ

2)π(ω1)π(ω2),

(5.6)

We construct the conditional posterior density of all the parameters in the model from

Equation (5.6). If possible, we shall provide the conditional distributions in closed form.

5.5.3 Conditional Posterior Density

In the case of NBR outcomemodel, under the FSGN exposure model, the parameters β, τ2

and r has the same posterior conditional densities as the ones in Subsection 5.5.1 under

the FGSN exposure model. Therefore, in this section, we will elaborate on the conditional

posterior density derived from Equation (5.6) and the MCMC methods used to update

the parameters α, λ2
1, λ2, ω1, ω2 which have different condtional posterior densities than in

Subsection 5.5.1.

MCMC Implementation

i. For Xi,

f (Xi |XC
i ) ∝ exp

{
[exp(β0 + β1Xi)]

Yi (exp(β0 + β1Xi) + r)−(r+Yi)
}

{
−

1
2σ2

X

(Xi − µX)
2

}{
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
,

such that,
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σ2
X = τ

2λ2
1/(τ

2 + mλ2
1),

µX = (ατ
2 + mX̄∗i λ

2
1)/(τ

2 + mλ2
1),

X̄∗i =
∑m

j=1 X∗i j/m.

Using proposal normal distribution of mean µX and variance σ2
X , we update Xi

independently for i = 1, 2, . . . , n using MH algorithm.

ii. For α,

f (α |αC) ∝ exp

{
−

n
2λ2

1
(α − X̄)2

}{
n∏

i=1
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
,

where the first component of the above conditional distribution is normal with mean

and variance X̄ and λ2
1/n, respectively. So, the parameter α is updated using RWMH

N(0, k2
αλ

2
1/n) where kα is the tuning parameter and we set kα =

√
0.8 so that the

algorithm has acceptance rate between 25% and 40%.

iii. For λ2
1,

f (λ2
1 |λ

2C
1 )

∝

(
1
λ2

1

) n+1
2 +1

exp
[
−

0.5
λ2

1

( n∑
i=1
(Xi − α)

2 +
) ] { n∏

i=1
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
,

where the first component of the condtional posterior is IG, thus we choose to use

MH algorithm to update this parameter such that, λ2
1 is sampled using the proposal

distribution, IG((n + 1)/2, 0.5(
∑n

i=1(Xi − α)
2 + 1).

iv. For λ2

f (λ2 |λ
C
2 ) ∝ exp

(
−
λ2

2
2

){ n∏
i=1
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
,
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such that λ2 > 0 and the first component on the right-handside of the conditional

posterior is half- normal distribution which is constructed from the half-normal

prior distribution specified earlier. Thus, λ2 is updated using RWMH with Half-

Normal(0, kλ2) as its proposal distribution and we let the tuning parameter be kλ2 = 1

which yields acceptance rate between 25% and 30%.

v. For ωh where h = 1, 2,

f (ωh |ω
C
h ) ∝

{
n∏

i=1
Φ

(
ω1(Xi − α) + ω2(Xi − α)

3/λ2
1√

λ2
1 + λ2(Xi − α)2

)}
exp

{
−

ω2
h

2 × 100

}
.

So, we propose ω1 and ω2 to be updated from independent N(0, k2
ω) using RWMH

sampling method. To have acceptance rate between 25% and 40%, we set kω to be

0.5.

5.6 Simulation Studies

The same simulation studies conducted in the parameter estimation for EIV PRM are

carried out here in order to examine the performance of our approach when the outcome

is NBRM where the true values (β0, β1) = (0.5, 1.0), X∗i j = Xi + ε j for j = 1, . . . ,m,

and ε j ∼ N(0, τ2) is the distribution of EIV. For the sake of simulating data that is

similar to real life research situations, the number of replicated surrogates is limited to

m = 2. We also will simulate EIV using non-normal distribution, which will be discussed

in detail later in Subsection 5.7.4 Similarly, in this chapter R also denotes the level of

error contamination such that R = 0.25 signifies low EIV, R = 0.5 signifies medium EIV,

meanwhile R = 1.0 signifies high EIV. However, now the outcome variable,Yi is generated

from Yi ∼ NB(r, exp(β0 + β1Xi)) and r is set to be 1.0, which indicates a high dispersion
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happening in the count data. We again consider the four simulation settings,

Simulation setting 1: Xi ∼ 0.5N(0.19, 0.082) + 0.2N(1.05, 0.22) + 0.3N(2, 0.482)

Simulation setting 2: Xi ∼ 0.5N(−2, 1) + 0.5N(2, 1)

Simulation setting 3: Xi ∼ Gamma(2, 2−1)

Simulation setting 4: Xi ∼ LN(0, 1)

Simulation setting 1 represents true exposure Xi distribution that is a skewed mixture

of normal meanwhile simulation setting 2 represents a distribution that is a bimodal

mixture of normal. Xi that are simulated from simulation setting 3 will have a skewed

distribution and heavy-tailedness. Finally, we also study the case in which Xi is generated

from log-normal distribution in simulation setting 4 and hence will have both skewness

and heavy-tailedness. The difference between simulation setting 3 and 4 is that the latter

will have an even heavier tail in its distributional shape. 50 datasets are generated under

each simulation setting and the sample sizes used are n = 50 and n = 100.

5.7 Results

We present the results of our simulation studies and the performance of our flexible

Bayesian approach to correct EIV in NBRM in this section. For both flexible distributions

that are studied, FGSN and FSGN, we run MCMC chains of length 300, 000 and 100, 000

length of burn-ins. For each of the 50 data sets, we shall have posterior estimates of

each of the model parameters with sample size 200, 000 which is the remainder of the

MCMC iterations after burn-in. The mean of these posterior estimates is taken as our

model parameter estimates in each data set. To confirm the convergence of these MCMC

chains, we construct trace plots and based on the visual, we see that these chains have

good mixing and have achieved convergence with the given iteration length. See Figure
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5.1 for traceplots of β0 and β1 estimates from a randomly selected simulation study.

Figure 5.1: Trace plots for estimated β0 and β1 in one of the simulation studies

The results of various analysis for NBRoutcomemodel is shown in Tables 5.1 and 5.2,

where the former contains the results for FGSN misspecified exposure model, meanwhile

the latter contains the result for FSGN misspecified exposure model. We shall use the

same criteria as explained in Section 4.7. To provide visualisations of the performance of

the flexible Bayesian approach in correcting EIV for NBRM, we plot the kernel posterior

densities of the adjusted Xi against its corresponding true exposures, Xi and mean proxy

X̄∗i from a randomly selected dataset with R = 1.0 and n = 100, as given in Figures 5.2

and 5.3.
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In this chapter, we also separate the results into two subsections; Subsection 5.7.1

presents the results when using FGSN exposure model, and Subsection 5.7.2 presents the

results when using FSGN exposure model.

Similarly as in the previous chapter, we also compare the performance of the two

flexible models by constructing their kernel posterior densities of estimated β0 and β1 and

choose the best of the two (where the better flexible model shall have kernel posterior

densities that have shapes which will closely follow to the benchmark kernel densities

shape). This is discussed and shown in Section 5.7.3. After choosing the preferred flexible

model, we use it to find the performance of our approach when the EIV distribution is

non-normal.

5.7.1 Using FGSN Exposure Model

In Table 5.1, FGSN as the flexible misspecified exposure model does well in attenuating

bias caused by EIV in NBRM, such that our flexible estimations of parameters β0 and β1

has better values than that of the naive estimates. There is a significant decrease in bias

and the flexible Bayesian approach shows good bias-variance trade-off as seen in the MSE

values. We also would argue that the values of the flexible estimates follow closely to their

corresponding benchmark estimates.

As depicted in Figure 5.2, under every setting, the kernel densities of our corrected

Xi closely follow the shapes of the kernel densities of their respective unknown but true

exposure. Under simulation setting 1, where the shape is skewed, the skewness and tail of

our corrected exposure kernel density is similar to that of the true exposure kernel density

under FGSN exposure model. The two peaks for simulation setting 2, where the true

exposures are generated from the bimodal mixture of normal are clearly shown Figure

5.2, such that the usage of misspecified exposure FGSN has clear bimodal shape and

adequately follow the benchmark (true) kernel density shape. For simulation settings 3
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Table 5.1: Accuracy and sensitivity of estimated parameters, β0 and β1 under
different true and unobserved distributions of X for negative binomial regression
model with FGSN as misspecified exposure model

Sample size n = 50
R = 0.25 R = 0.5 R = 1

Simulation setting Parameter Naive Flexible Naive Flexible Naive Flexible Benchmark

1

β0

M 0.68213 0.47880 0.83455 0.40340 1.02503 0.23577 0.52233
B 0.18213 0.02120 0.33455 0.09660 0.52503 0.26423 0.02233

MSE 0.09505 0.07884 0.17542 0.12858 0.35081 0.28688 0.06837

β1

M 0.85842 1.04731 0.73488 1.11389 0.57964 1.27784 0.98915
B 0.14158 0.04731 0.26512 0.11389 0.42036 0.27784 0.01085

MSE 0.04774 0.04277 0.09385 0.07747 0.19966 0.20264 0.03216

2

β0

M 0.66790 0.42713 0.83158 0.37680 1.06919 0.30528 0.46091
B 0.16790 0.07287 0.33158 0.12320 0.56919 0.19472 0.03909

MSE 0.15002 0.15867 0.25319 0.22264 0.50836 0.27689 0.09477

β1

M 0.93987 1.06880 0.86459 1.11399 0.74497 1.19951 1.02752
B 0.06013 0.06880 0.13541 0.11399 0.25503 0.19951 0.02752

MSE 0.01696 0.02544 0.03275 0.04502 0.08145 0.12964 0.01212

3

β0

M 1.32666 0.42409 1.91196 0.29135 2.79529 0.07632 0.56901
B 0.82666 0.07591 1.41196 0.20865 2.29529 0.42368 0.06901

MSE 0.87072 0.19463 2.25498 0.39505 5.63384 1.11944 0.06787

β1

M 0.88832 1.01816 0.82078 1.04937 0.75124 1.10956 0.98107
B 0.11168 0.01816 0.17922 0.04937 0.24876 0.10956 0.01893

MSE 0.02211 0.00824 0.04712 0.01771 0.11720 0.05753 0.00311

4

β0

M 0.86229 0.40966 1.13186 0.33512 1.51641 0.14351 0.48305
B 0.36229 0.09034 0.63186 0.16488 1.01641 0.35649 0.01695

MSE 0.22097 0.12807 0.5112 0.2278 1.19051 0.61547 0.0563

β1

M 0.88197 1.06187 0.81130 1.11847 0.73504 1.25062 1.00255
B 0.11803 0.06187 0.18870 0.11847 0.26496 0.25062 0.00255

MSE 0.02977 0.02524 0.05844 0.05741 0.10786 0.20184 0.00651
Sample size n = 100

R = 0.25 R = 0.5 R = 1

Simulation setting Parameter Naive Flexible Naive Flexible Naive Flexible Benchmark

1

β0

M 0.65768 0.47461 0.81472 0.43998 1.01402 0.27497 0.49121
B 0.15768 0.02539 0.31472 0.06002 0.51402 0.22503 0.00879

MSE 0.05746 0.04416 0.13473 0.07228 0.30439 0.20866 0.02936

β1

M 0.86337 1.02045 0.74295 1.05469 0.58961 1.21028 0.98647
B 0.13663 0.02045 0.25705 0.05469 0.41039 0.21028 0.01353

MSE 0.03884 0.02542 0.08744 0.04287 0.19054 0.15646 0.01738

2

β0

M 0.65969 0.47731 0.81822 0.49507 1.05603 0.50448 0.43531
B 0.15969 0.02269 0.31822 0.00493 0.55603 0.00448 0.06469

MSE 0.05637 0.03736 0.14026 0.04244 0.36381 0.05583 0.03225

β1

M 0.93116 1.01195 0.86468 1.01149 0.75507 1.02612 1.01665
B 0.06884 0.01195 0.13532 0.01149 0.24493 0.02612 0.01665

MSE 0.01050 0.00764 0.02562 0.00962 0.07030 0.02256 0.00615

3

β0

M 1.25485 0.44826 1.88449 0.35972 4.24647 0.20287 0.51224
B 0.75485 0.05174 1.38449 0.14028 3.74647 0.29713 0.01224

MSE 0.68772 0.13687 2.20742 0.24426 56.8338 0.54457 0.05173

β1

M 0.91205 1.01225 0.84895 1.02594 0.76438 1.05299 1.00160
B 0.08795 0.01225 0.15105 0.02594 0.23562 0.05299 0.00160

MSE 0.01219 0.00424 0.02904 0.00761 2.11603 0.01762 0.00146

4

β0

M 0.99346 0.44236 1.13939 0.40007 1.53714 0.30854 0.50449
B 0.49346 0.05764 0.63939 0.09993 1.03714 0.19146 0.00449

MSE 0.18288 0.07516 0.49320 0.12497 1.21163 0.20921 0.03074

β1

M 0.89234 1.02914 0.82815 1.05487 0.75814 1.10663 0.98804
B 0.10766 0.02914 0.17185 0.05487 0.24186 0.10663 0.01196

MSE 0.02180 0.01125 0.04857 0.01965 0.09200 0.03939 0.00440
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Figure 5.2: Kernel density estimates for settings 1-4 in the case of misspecified FGSN
exposuremodel for EIV in NBRM: true exposure Xi (solid curve); estimated Xi under
flexible Bayesian approach (dashed curve); mean proxy X̄∗i (dotted curve).

and 4, where there exist heavy-tailedness for both of the simulation settings, our corrected

Xi still manage to have better kernel density shapes in comparison to the non-adjusted

exposure kernel density X̄∗i . On the other hand, the kernel densities of X̄∗i have blurry

shapes under every simulation settings which further prove that if EIV is not corrected,

wrong statistical analysis and conclusions might be made.

5.7.2 Using FSGN Exposure Model

The results presented in Table 5.2 show that the Bayesian approach with FSGN as the

flexible exposure model is found to adjust the bias adequately in estimating the NBRM
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Table 5.2: Accuracy and sensitivity of estimated parameters, β0 and β1 under
different true and unobserved distributions of X for negative binomial regression
model with FSGN as misspecified exposure model

Sample size n = 50
R = 0.25 R = 0.5 R = 1

Simulation setting Parameter Naive Flexible Naive Flexible Naive Flexible Benchmark

1

β0

M 0.68213 0.47567 0.83455 0.38623 1.02503 0.17000 0.52233
B 0.18213 0.02433 0.33455 0.11377 0.52503 0.33000 0.02233

MSE 0.09505 0.10153 0.17542 0.16408 0.35081 0.41854 0.06837

β1

M 0.85842 1.04707 0.73488 1.12527 0.57964 1.32311 0.98915
B 0.14158 0.04707 0.26512 0.12527 0.42036 0.32311 0.01085

MSE 0.04774 0.06708 0.09385 0.09915 0.19966 0.23859 0.03216

2

β0

M 0.66790 0.42217 0.83158 0.39964 1.06919 0.27270 0.46091
B 0.16790 0.07783 0.33158 0.10036 0.56919 0.22730 0.03909

MSE 0.15002 0.17010 0.25319 0.21606 0.50836 0.37255 0.09477

β1

M 0.93987 1.07228 0.86459 1.10234 0.74497 1.21679 1.02752
B 0.06013 0.07228 0.13541 0.10234 0.25503 0.21679 0.02752

MSE 0.01696 0.04773 0.03275 0.06676 0.08145 0.16603 0.01212

3

β0

M 1.32666 0.47609 1.91196 0.40720 2.79529 0.21735 0.56901
B 0.82666 0.02391 1.41196 0.09280 2.29529 0.28265 0.06901

MSE 0.87072 0.21444 2.25498 0.37837 5.63384 0.91939 0.06787

β1

M 0.88832 1.01354 1.03299 1.04937 0.75124 1.07921 0.98107
B 0.11168 0.01354 0.03299 0.04937 0.24876 0.07921 0.01893

MSE 0.02211 0.04073 0.04712 0.03948 0.11720 0.04453 0.00311

4

β0

M 0.86229 0.42150 1.13186 0.28712 1.51641 0.08506 0.48305
B 0.36229 0.07850 0.63186 0.21288 1.01641 0.41494 0.01695

MSE 0.22097 0.14984 0.5112 0.34589 1.19051 1.04609 0.0563

β1

M 0.88197 1.07227 0.81130 1.14372 0.73504 1.22925 1.00255
B 0.11803 0.07227 0.18870 0.14372 0.26496 0.22925 0.00255

MSE 0.02977 0.06515 0.05844 0.14374 0.10786 0.34020 0.00651
Sample size n = 100

R = 0.25 R = 0.5 R = 1

Simulation setting Parameter Naive Flexible Naive Flexible Naive Flexible Benchmark

1

β0

M 0.65768 0.47461 0.81472 0.43998 1.01402 0.27497 0.49121
B 0.15768 0.02539 0.31472 0.06002 0.51402 0.22503 0.00879

MSE 0.05746 0.04416 0.13473 0.07228 0.30439 0.20866 0.02936

β1

M 0.86337 1.02045 0.74295 1.05469 0.58961 1.21028 0.98647
B 0.13663 0.02045 0.25705 0.05469 0.41039 0.21028 0.01353

MSE 0.03884 0.02542 0.08744 0.04287 0.19054 0.15646 0.01738

2

β0

M 0.65969 0.47731 0.81822 0.49507 1.05603 0.50448 0.43531
B 0.15969 0.02269 0.31822 0.00493 0.55603 0.00448 0.06469

MSE 0.05637 0.03736 0.14026 0.04244 0.36381 0.05583 0.03225

β1

M 0.93116 1.01195 0.86468 1.01149 0.75507 1.02612 1.01665
B 0.06884 0.01195 0.13532 0.01149 0.24493 0.02612 0.01665

MSE 0.01050 0.00764 0.02562 0.00962 0.07030 0.02256 0.00615

3

β0

M 1.25485 0.44826 1.88449 0.35972 4.24647 0.20287 0.51224
B 0.75485 0.05174 1.38449 0.14028 3.74647 0.29713 0.01224

MSE 0.68772 0.13687 2.20742 0.24426 56.8338 0.54457 0.05173

β1

M 0.91205 1.01225 0.84895 1.02594 0.76438 1.05299 1.00160
B 0.08795 0.01225 0.15105 0.02594 0.23562 0.05299 0.00160

MSE 0.01219 0.00424 0.02904 0.00761 2.11603 0.01762 0.00146

4

β0

M 0.99346 0.44236 1.13939 0.40007 1.53714 0.30854 0.50449
B 0.49346 0.05764 0.63939 0.09993 1.03714 0.19146 0.00449

MSE 0.18288 0.07516 0.49320 0.12497 1.21163 0.20921 0.03074

β1

M 0.89234 1.02914 0.82815 1.05487 0.75814 1.10663 0.98804
B 0.10766 0.02914 0.17185 0.05487 0.24186 0.10663 0.01196

MSE 0.02180 0.01125 0.04857 0.01965 0.09200 0.03939 0.00440

82

Univ
ers

ity
 of

 M
ala

ya



Figure 5.3: Kernel density estimates for settings 1-4 in the case of misspecified FSGN
exposuremodel for EIV in NBRM: true exposure Xi (solid curve); estimated Xi under
flexible Bayesian approach (dashed curve); mean proxy X̄∗i (dotted curve).

parameter estimates in every simulation settings and follow closely to the benchmark

estimate values. This is including the MSE and bias of the flexible parameter estimates

even when the error contamination is substantial. Meanwhile, the parameter estimates

under non-corrected estimates, i.e., the naive estimates have poor values in each simulation

settings for all the error contamination levels.

Figure 5.3 shows that the kernel densities of our corrected exposure Xi for FSGN

misspecified exposure models have shapes that closely follow the shapes of the kernel

densities of unknown but true exposure Xi under simulation settings 1-4. Under simulation
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setting 1, where the shape is skewed, there is a deterioration in the shape of the kernel

density but do note that it still has a better shape than its corresponding X̄∗i kernel density.

The kernel density of the corrected exposure in simulation setting 2, has clear bimodal

shape and adequately follows the benchmark kernel density shape. Under simulation

settings 3 and 4, where there exist heavy-tailedness for both of the simulation settings, our

corrected Xi still manage to have better kernel density shapes in comparison to the non-

adjusted exposure kernel density X̄∗i . Under every simulation setting, the kernel densities

of X̄∗i have blurry shapes under every simulation settings which further prove that if EIV

is not corrected, wrong statistical analysis and conclusions might be made.

5.7.3 Comparing the Performance between FGSN and FSGN as the Misspecified
Exposure Model for EIV NBRM.

In general, the results shown in the tables provide proof that the Bayesian approach with

FGSN and FSGN as the misspecified exposure model are robust in estimating the values

of NBRM parameter estimates in the presence of EIV. The approach shows good bias

correction under different error contamination levels as well as under different simulation

settings. In addition to this, the low values of their MSEs also imply that the flexible

Bayesian approach has adequate bias-variance trade-offs in comparison to benchmark

estimates. Even when the true exposure distribution has departures from normality, the

approach shows no deterioration in performance and still strikes better result than that of

the naive estimates where no bias correction is done. Therefore, in comparison with the

naive estimates, our approach using both FGSN and FSGN, shows superior performance

in terms of accuracy and consistency.

Now, to cross-compare the robustness of FGSN and FSGN as the misspecified

exposure model, we provide the kernel empirical density plots of β0 and β1 for every

simulation settings in Figures 5.4 to 5.7. The solid curve represents the benchmark

estimates, dashed curve is the estimates under FGSN model and long-dashed curve
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Figure 5.4: Kernel density of estimated regression parameters, β̄0 and β̄1 under
simulation setting 1: Benchmark (solid curve); FGSN (dashed curve); FSGN (long-
dashed curve).

Figure 5.5: Kernel density of estimated regression parameters, β̄0 and β̄1 under
simulation setting 2: Benchmark (solid curve); FGSN (dashed curve); FSGN (long-
dashed curve).

represents the estimates under FSGN exposure model. They are all plotted estimates

of β0 and β1 from simulation studies with R = 1.0 EIV contamination ratio and sample

size of n = 100.

In Figure 5.4 which follows simulation setting 1, the kernel density estimates for β0
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Figure 5.6: Kernel density of estimated regression parameters, β̄0 and β̄1 under
simulation setting 3: Benchmark (solid curve); FGSN (dashed curve); FSGN (long-
dashed curve).

Figure 5.7: Kernel density of estimated regression parameters, β̄0 and β̄1 under
simulation setting 4: Benchmark (solid curve); FGSN (dashed curve); FSGN (long-
dashed curve).

has no significant difference between FGSN and FSGN. However, for β1 kernel density

estimates, FSGN is shown to have departed quite far away than the benchmark estimates,

and therefore we can say that FGSN performs better parameter estimation for EIV NBRM

under skewed true exposure distribution. As for when the true exposures follow the
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distribution stated in simulation setting 2, not much difference can be seen between the

performance of FGSN and FSGN as the misspecified exposure model although one could

argue that the peak of the FGSN kernel empirical estimates is better than the peak for

FSGN exposure model. Again, under simulation setting 3, Figure 5.6 suggests that there is

no significant difference between the usage of FGSN and FSGN. On the other hand, when

true exposures are generated from simulation setting 4, FGSN shows greater performance

than FSGN such that its plots are better for both β0 and β1 when compared to FSGN. This

can clearly be seen by the peaks of the two kernel empirical estimates.

Thus, from the observations above, we choose FGSN as the misspecified exposure

model as it shows better performance than FSGN. We shall continue our research on the

correction of EIV when the errors are non-normal using FGSN.

5.7.4 Non-normal Distribution of EIV

As mentioned before, we now conduct a study where the distribution of EIV is no

longer normal. Here, the measurement error, ε is generated from SN(0, 1) and ST(0, 1),

meanwhile true exposures Xi are generated from skewedmixture of normalwith substantial

EIV (R = 1.0). Since we chose FGSN as the better flexible distribution in the previous

subsection, here we shall only use FGSN as the misspecified exposure model.

The results are provided in Table 5.3. According to the results of our simulation

studies, when using the normal distribution as the measurement model, even when the

distributions of EIV are non-normal, the choice of our model still show robustness.

Following this, we reach the conclusion that to specify a flexible model also on the

measurement model is redundant and unnecessary. It might even reduce the effectiveness

of our model as when using flexible models excessively, efficiency is sacrificed (Ma &

Genton, 2004).
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Table 5.3: Estimated values of β0 and β1 of EIV NBRMwhere EIV is generated from
skew-normal and skew-t distributions.

Distribution of EIV Parameter Naive Flexible Benchmark

Skew-normal

β0

M 0.98897 0.34248 0.48536
B 0.48897 0.15752 0.01464

MSE 0.27572 0.14453 0.02812

β1

M 0.58843 1.12313 0.98901
B 0.41157 0.12313 0.01099

MSE 0.18679 0.11375 0.01602

Skew-t

β0

M 1.13862 0.16015 0.48536
B 0.63862 0.33985 0.01464

MSE 0.46186 0.32586 0.02812

β1

M 0.47338 1.29900 0.98901
B 0.52662 0.29900 0.01099

MSE 0.29911 0.24265 0.01602
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CHAPTER 6: DISCUSSION

6.1 Bayesian Approach to Errors-in-Variables in Poisson Regression Model

From the simulation studies done, it is reported that the use of flexible Bayesian approach

results in a significant bias reduction caused by EIV when estimating the regression

parameters of PRM in comparison to when the EIV is not addressed. The results are

shown in Tables 4.1 and 4.2. In addition to that, the proposed approach also has very

low MSEs which implies that we have a good bias-variance tradeoff. We consider two

different flexible distributions, which are FGSN and FSGN. The latter distribution offers

more flexibility than that of the preceding one. However, FGSN still showsmore significant

bias reduction than FSGNespeciallywhen the ratio of error contamination R is large. From

the kernel density plots of the exposures, we can see more clearly that for both flexible

models, there are not much difference in bias reduction and bias-variance tradeoffs.

FSGN has an extra parameter which offers more flexibility but in return, deteriorates

in terms of efficiency as the computation time for FSGN in comparison to FGSN is much

longer. We also investigated the use of the extended skew generalized-normal model

as the misspecified exposure model, but similarly, as FSGN, the performance shows a

little deterioration as it is more flexible and has even more extra parameters. The same

simulation studies are conducted for FGST, since the degree of freedom for FGST that is

estimated in EIV PRM is large, FGST converges to FGSN. Therefore, the implementation

of FGSN is adequate. In addition to this, since FGST hasmore parameters, its computation

time is significantly more than FGSN.

To summarize, in our study for estimating biased parameters of EIV PRM, FGSN

should be the preferred flexible exposure model.

Using the advocated model, FGSN, we also study the case where EIV is generated

from SN and ST distributions. The justification behind this is to investigate if the normal
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distribution which we specified as the measurement model shows robustness in estimating

the parameters accurately when EIV distributions are non-normal. From our simulation

studies, the normal distribution is adequate and to specify a flexible distribution also in

the measurement model would be redundant.

6.2 Bayesian Approach to Errors-in-Variables in Negative Binomial Regression
Model

In our search for literature on studies done in correcting EIV in NBRM, we came across

very few of them. Current studies on EIV correction in NBRMused the Bayesian approach

but the exposure model distribution is considered as known and is either normal or log-

normal. After acknowledging this observation, we use the Bayesian approach to correct

bias in parameter estimations caused by EIV when the exposures have departures from

normality. By intentionally misspecifying the flexible models as the exposure model, we

are able to implement a general framework even when the non-normal distribution used in

every simulation setting is different (i.e., skewed, bimodal and heavy-tailed distributions).

Results from simulation settings 1 to 4 as shown in Tables 5.1 and 5.2, report that

our approach successfully reduces bias caused by EIV when estimating the regression

parameters of NBRM. The values of the flexible MSEs also suggest that the approach

has a good bias-variance trade-off in comparison to the values of MSE reported in naive

estimates. Both FGSN and FSGN flexible models show good bias attenuation, however

again in this chapter, FGSN is preferred. The reasoning is the same as in Chapter 4,

such that although FSGN offers more flexibility, the difference in performances between

the two flexible models is not significant. Since FSGN has more parameters, then the

MCMC algorithms will take a longer time than that of when FGSN is utilized. Here,

we also investigated extended skew generalized-normal distribution but similarly, the bias

reduction deteriorated when this distribution is implemented, not to mention that the

flexible distribution also has more parameters to be estimated, and thus is computationally
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more expensive. Therefore, FGSN still holds to be the superior misspecified flexible

model.

Therefore, using FGSN we study the effects of our approach when EIV distributions

are non-normal. We then see that normal distribution as the measurement model is

adequate and there is no need to specify another flexible distribution for the measurement

model.

As a summary, the flexible Bayesian approach is advocated as the method to reduce

bias in estimating parameters for EIV NBRM.
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CHAPTER 7: CONCLUDING REMARKS AND FUTURE RESEARCH

7.1 Concluding Remarks

The research in this thesis focuses on reducing the impact of bias caused by EIV when

estimating count data regression parameters. While existing researches main focus is on

addressing EIV in logistic regression, we study on mitigating the impact of bias caused

by EIV in count data regression models, namely the PRM and NBRM. Utilizing the

framework provided by Richardson and Gilks (1993), we adapted the Bayesian approach

to count for EIVs in these two models. To reduce the sensitivity of the estimates to

potential misspecification bias, we demonstrate the usage of flexible distributions, FGSN

and FSGN in modeling for the distribution of the true exposures. Extensive simulation

studies are carried out to illustrate that the flexible Bayesian approach is robust to exposure

modelmisspecificationwhile estimating the PRMandNBRM regression parameters in the

presence of EIV. The regression parameters are estimated with a wide implementation of

the MCMC algorithms. The advantages of the flexible Bayesian approach in comparison

to competing methods in EIV count data regression models are that the Bayesian approach

provides more efficiency (Hossain & Gustafson, 2009) as well as the fact that we consider

the true exposure distribution as unknown and has departures from normality which is

more realistic and applicable in practice. Besides that, existing methods also assume the

EIV variance as known, in this thesis however it is estimated and considered as unknown.

In our research, we looked into estimating parameters in EIV PRM and NBRM

using Bayesian approach and found the best flexible models between FGSN and FSGN

to minimize model misspecification bias. From the results reported in this thesis using

simulation studies, the flexible Bayesian approach works well in eliminating EIV bias

adequately while providing consistent and accurate regression parameter estimates. This

is shown in Tables 4.1 and 4.2 for PRM and Tables 5.1 and 5.2 for NBRM as there is
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a significant bias reduction from the naive parameter estimates and flexible parameter

estimates. This is also shown when the MSEs for naive estimates are much larger than

that of the flexible estimates. Following this, we also compare the performance between

FGSN and FSGN as the intentionally misspecified exposure model. Under Poisson

regression outcome model, FGSN and FSGN shows similar performance in terms of EIV

bias reduction. The distinction between the two, however is that, FSGN has slower and

longer MCMC simulation time due to its extra parameter. Thus, for Poisson regression

outcome model, the usage of FGSN is advocated. As for negative binomial outcome

model, FGSN shows better performance than FSGN which could be seen clearly from the

kernel empirical density plots of the parameter estimates in Figures 5.4 - 5.7.

7.2 Future Research

Following are suggestions for further research in this area:

1. adapt the flexible Bayesian approach to other count data regression models such as

zero-inflated Poisson regression model.

2. adapt the flexible Bayesian approach to panel count data or longitudinal count data.

3. extend to the case where there are more than one covariate vectors that are measured

with error.

4. extend to the case where the replicates of surrogate exposures are correlated with

each other.
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