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ABSTRACT 

Searching for high-κ gate oxide has been an important task in the semiconductor 

industry for further downscaling. In this study, pure samarium (Sm) metal was first 

sputtered on germanium (Ge) substrate, and then proceeded to thermal oxidation for 15 

minutes at varying oxidation temperatures of 300°C, 400°C, 500°C, 600°C and 700°C. 

The oxidized samples were then characterized by means of X-ray diffraction 

spectroscopy (XRD) and Fourier transform infrared (FT-IR) spectroscopy. According to 

the XRD results, the intensity of Sm2O3 phase recorded the highest value at 500°C 

among the experimental oxidation temperatures, and the interfacial layer compound, 

Sm2Ge2O7 was observed to exhibit the highest peak intensity at 300°C and decreases as 

the oxidation temperature increases. On the other hand, the intensity of GeO2 phase was 

observed to increase with the oxidation temperature, and showed the highest value at 

700°C. Besides, a rapid increment in the amount of GeO2 phase grown was noticed 

starting from 600°C, and a relatively huge quantity of GeO2 is determined at 700°C. 

From Debye-Scherrer equation, the crystallite size first increases from 300°C and 

reaches a peak at 400°C, then decreases afterwards. Besides, the crystallite size and 

microstrain obtained through Williamson-Hall (W-H) analysis were observed to exhibit 

a decreasing trend from 600°C to 700°C for GeO2 phase. The FT-IR results give 

information on the existence of the Sm-O and Ge-O bonds in the resulting films. By 

peak matching approach, Sm-O bonds were detected in 300°C, 400°C, 500°C and 

600°C samples, showing the highest intensity at 500°C, while Ge-O bonds were also 

detected in all samples and read the highest intensity at 700°C. Both of the 

characterization analyses suggest that 500°C would be the optimum oxidation 

temperature to grow Sm2O3 on Ge substrate. 
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ABSTRAK 

 

 Pencarian lapisan oksida κ yang tinggi merupakan tugas yang penting dalam 

industri semikonduktor untuk pengurangan saiz yang selanjutnya. Dalam kajian ini, 

logam samarium (Sm) tulen mula-mula dipancarkan pada substrat germanium (Ge), dan 

kemudian meneruskan pengoksidaan haba selama 15 minit pada suhu pengoksidaan 

yang berbeza, iaitu 300°C, 400°C, 500°C, 600°C dan 700°C . Sampel yang teroksidasi 

telah dicirikan dengan cara spektroskopi difraksi sinar X (XRD) dan spektroskopi 

inframerah Fourier (FT-IR). Menurut keputusan XRD, intensiti fasa Sm2O3 

mencatatkan nilai tertinggi pada suhu 500°C di antara suhu pengoksidaan eksperimen 

dan sebatian lapisan interfacial, Sm2Ge2O7 diperhatikan menunjukkan keamatan puncak 

tertinggi pada suhu 300°C dan menunjukkan penurunan apabila suhu pengoksidaan 

dinaikan. Sebaliknya, intensiti fasa GeO2 diperhatikan meningkat dengan suhu 

pengoksidaan, dan menunjukkan nilai tertinggi pada 700°C. Selain itu, peningkatan 

pesat dalam jumlah fasa GeO2 yang dikembangkan diperhatikan bermula dari 600°C, 

dan kuantiti GeO2 yang agak besar ditemui pada 700°C. Saiz kristal bermula meningkat 

dari 300°C dan mencapai puncak pada 400°C, dan menurun selepas itu. Selain itu, saiz 

kristal dan ketegangan mikro yang diperoleh melalui analisis W-H diperhatikan 

menunjukkan aliran menurun dari 600°C hingga 700°C untuk fasa GeO2. Keputusan 

FT-IR memberikan maklumat mengenai kewujudan ikatan Sm-O dan Ge-O dalam 

filem-filem yang dihasilkan. Dengan pendekatan padanan puncak, ikatan Sm-O dikesan 

dalam 300°C, 400°C, 500°C dan 600°C, menunjukkan keamatan tertinggi pada 500°C, 

manakala ikatan Ge-O juga dikesan dalam semua sampel dan membaca intensiti 

tertinggi pada 700°C. Kedua-dua analisis pencirian menunjukkan bahawa 500°C adalah 

suhu pengoksidaan yang optimum untuk mengembangkan Sm2O3 pada substrat Ge. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

 In the era of advanced technologies, electronic semiconductor devices play a 

vital role in human daily life and they had become the relevant tools for the mankind to 

carry out their daily activities. Portable devices like smart phones and tablets, displays, 

detectors, and photonics devices require high end semiconductor technologies in order 

to work in a more efficient way. For the intention to have a more efficient electronic 

device, researchers are focusing on the performance aspects such as nano-scale size 

(Cui & Lieber, 2001; Matsui, 2005), low cost (Habas, Platt, van Hest, & Ginley, 2010), 

high speed (Liao et al., 2010; Mueller, Xia, & Avouris, 2010), low power consumption 

and energy efficient from year to year (Asghari & Krishnamoorthy, 2011; S. Kim et al., 

2012). These aspects are very important and compulsory when coming into the 

designing of integrated circuit (IC) so that devices with a higher performance can be 

produced. Moore’s law has predicted that the density of the components together with 

the performance of the IC doubles every two years, which means the scale of the 

components must be small enough so that more components can be located on the IC 

(Kish, 2002; Thompson & Parthasarathy, 2006). In today semiconductor industries, the 

complementary metal-oxide-semiconductor (CMOS) transistor technology has come to 

a nanoscale size of less than 30 nm as compared to the transistor size in 2002 which is 

around 100 nm (Kish, 2002; Levisse, Giraud, Noel, Moreau, & Portal, 2017). This 

indicates that as time goes by, the size of the transistor decreases, however there comes 

a limit for the size reduction of the transistor.    
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 The size of the transistor is highly depending on the dimension of the gate oxide 

layer, especially the thickness. The downscaling of the gate oxide has nearly comes to 

an end due to the excessive gate leakage current in ultrathin oxide (≤1 nm) (Bohr & 

Young, 2017; Chien-Hao et al., 2002). Through the ultrathin gate oxide, electrons can 

then pass through it by tunneling effect, causing a leakage current. Since the 

capacitance of CMOS is directly proportional to dielectric constant (κ) and inversely 

proportional to thickness, when the reduction of thickness has come to a plateau, the 

only way to increase the capacitance is by replacing a material that possesses a high 

value of κ. The native gate oxide growth on the silicon (Si) wafer, silicon dioxide (SiO2) 

was once widely used in the semiconductor industries because of its ability to grow 

natively on the Si substrate and therefore a low defect density interface can be 

produced, its high melting point (1713 
o
C), high resistivity (≥10

15 
Ω-cm), great 

dielectric strength (10
7 

V/cm) and large energy band gap (9 eV) (El-Kareh, 1995; Green 

et al., 1999). Apart from that, mass production is possible for SiO2 gate oxide and most 

importantly the cost of manufacturing is low. Nevertheless, SiO2 gate oxide shows a 

high leakage current characteristic due to severe electron tunneling when it is thin 

enough (≈1.2 nm) and has a κ-value of 3.9, which is considered a low-κ dielectric 

material (Bohr & Young, 2017; Green et al., 1999). Although there are numerous 

researches done to further downscaling the gate oxide thickness and to reduce the 

leakage current issues (J.-G. Lee, Kim, Seo, Cho, & Cha, 2016; Matsumoto et al., 2016; 

Sharma & Rana, 2015), selecting the high-κ materials has become a huge concern 

among the researchers in the semiconductor industry.  
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1.2 Problem statement 

 

 As the technology getting more and more advanced these days, electronic device 

utilization is essential and therefore the performance of the device must be very high. In 

order to have high performance device, IC with high density of electronic component, 

i.e. transistor must be implemented. To be able to do so, the dimension of the transistor 

has to be downscaled especially the reduction in gate oxide thickness, so that more 

components can be implemented to the circuit. While the gate oxide thickness is no 

longer can be reduced due to high leakage current in the oxide layer, a substitution of 

materials with high-κ value without further decreasing in thickness has to be done to 

replace the existing SiO2 gate oxide (D. Gilmer et al., 2002).  

 Germanium (Ge) had raised a discussion among researchers and they are putting 

more interests into Ge because of it possesses a high carrier mobility over Si. Moreover, 

Ge shows some other advantages as well, such as smaller band gap that enables the 

device to work at a lower voltage, thus less power is consumed. Although it has a 

smaller band gap than Si, it is still high enough to prevent the instabilities through 

thermionic emissions and band-to-band tunneling (Pillarisetty, 2011). However, the 

native oxide of Ge, germanium oxide (GeO2) has  poor electrical property which lead to 

a hardship in fabricating Ge MOSFET (Xie, Yu, Lai, Chan, & Zhu, 2008). Also, GeO2 

interface show a higher defect densities due to its lower stability as compared to SiO2 

(Afanas’ev et al., 2008). 

 To solve the problem above, there are several researches done by applying the 

technology of high-κ dielectric used in Si MOS field-effect transistor (MOSFET) on Ge 

substrate. Since Ge requires only a lower temperature to activate the dopants which is 

good for combining with high-κ materials, the technology can be applied well on the 

substrate (Houssa et al., 2007). The reason why applying high-κ materials on Ge is to 
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obtaining a low equivalent oxide thickness (EOT) and also a thermally stable 

passivation layer rather than Ge oxide (Kamata, 2008). Many high-κ materials have 

been investigate on Ge substrate such as aluminium oxide (Al2O3), zirconium oxide 

(ZrO2), hafnium oxide (HfO2), titanium oxide (TiO2), etc. However some of them show 

some undesirable results for the high-κ/Ge gate stack. HfO2 is unfavorable to be applied 

on Ge substrate due to its high leakage current (Jg) without an intentional interfacial 

layer such as germanium oxinitride (GeON)(Yoshiki, Yuuichi, Tsunehiro, & Akira, 

2005).  

 The emerging rare earth oxides (REO) have shown promising results on the 

high-κ/Ge gate stack. Lanthanum oxide (La2O3), cerium oxide (CeO2), gadolinium 

oxide (Gd2O3) and dysprosium oxide (Dy2O3) are used as the candidates for high-κ 

materials used on Ge substrate and the others REO are still being investigated on their 

performance when applying on Ge substrate (Afanas’ev et al., 2006; Dimoulas et al., 

2007; Jaeyeol et al., 2007; Mavrou et al., 2008; Rahman, Evangelou, Androulidakis, & 

Dimoulas, 2009). It is predicted that samarium oxide (Sm2O3) is suitable to be used as 

promising REO gate oxide on Ge substrate because of its high-κ properties, low leakage 

current at high electrical field, large band gap energy and low losses at low frequencies 

(Constantinescu, Ion, Galca, & Dinescu, 2012).  

In this research, Sm2O3 is grown on the Ge substrate by first sputtered the pure 

metal samarium (Sm) on the substrate and the stack then underwent thermal oxidation 

to develop Sm2O3/Ge gate stack. Since there are still no related researches on the effect 

of oxidation temperature on the growth of Sm2O3 on Ge substrate, hence the oxidation 

temperature will be investigated in this research and the optimum temperature for the 

growth of the thin film will be proposed after the characterization is done. 
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1.3 Objectives  

 

 The core objective of this research is to develop a layer of Sm2O3 on the Ge 

substrate by first sputtering of pure rare earth Sm metal on the substrate and then 

followed by thermal oxidation in the furnace with oxygen (O2) flow. Concurrently, the 

sub-objectives to be achieved of this research are as shown as below: 

1. To investigate the effect of oxidation temperature to the growth of Sm2O3 on Ge 

 substrate by varying the temperature for the thermal oxidation, and observe   

 which  temperature works the best for the optimum growth of the oxide layer. 

2. To characterize the Sm2O3 thin film growth on the Ge substrate at 300 °C,      

400 °C, 500 °C, 600 °C and 700 °C. 

 

1.4 Scope of study 

 

 In this research, Sm2O3 film is grown on Ge substrate by thermal oxidation. 

Before subjecting to thermal oxidation, pure Sm metal was first sputtered on the 

substrate. The Sm-sputtered-Ge substrate is proceeded to the furnace for thermal 

oxidation in fixed O2 gas flow (150 cc/min), pressure (1 atm) and oxidation time (t = 15 

minutes) to grow Sm2O3 thin film. By varying the parameter of oxidation temperature 

(T = 300°C, 400°C, 500°C, 600°C and 700°C), the properties of the oxide film layer is 

investigated (Goh, Haseeb, & Wong, 2016). The physical characterization is carried out 

by using X-ray diffraction (XRD) to observe the composition found in the samples and 

predict the thickness of the oxide layer formed. Furthermore, Fourier-transform infrared 

spectroscopy (FT-IR) is performed to obtain the transmittance spectra of the oxide thin 

film. 
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1.5 Outline 

 

 The outline of this research project is arranged in the systematic ways to provide 

a clear vision of the researched work. Chapter 1 mentions a general introduction about 

the background, current scenario and limitation of semiconductor technologies in the 

recent years, problem statement, objective and scope of study of this research. Chapter 2 

explains further the literature review on first a detailed introduction about 

CMOS/MOSFET and the limitation faced by existing SiO2, followed by Ge as substrate 

material, various high-κ materials and Sm2O3 as gate oxide. Then it proceeds to the 

deposition methods of the thin film and finally the effect of temperature on the 

deposition method (thermal oxidation). While in Chapter 3, a well-ordered methodology 

of this researched is shown and described in detailed. Chapter 4 presents the results, 

analysis and discussion of the samples that are thermally oxidized by varying the time 

parameter. In Chapter 5, the research project is concluded together with the limitation 

and future prospect of present research. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

  

 MOSFET IC technologies grows in a tremendous speed and thus more and more 

powerful electronic components like capacitors and transistors have to be implemented 

into the IC in order to cope up with those technologies and to produce a high efficiency 

and high performance electronic device. Based on Gordon Moore’s prediction, the 

components per chip increase by a factor of two every two years as shown in Fig 2.1 

(Alferov, 2013; Cheng & Jay Guo, 2004). However, the famous prediction is almost 

coming to an end, which means that the further downscaling of the components has 

reached a limit (Im et al., 2000; Pei, Bin, Zhiyin, & Sheng, 2011).  

 

 

Figure 2.1: Increasing of transistors per chip and clock speeds with respect to year by 

Moore’s law (Cheng & Jay Guo, 2004). 
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 The downscaling of MOSFET requires the reducing of oxide thickness in the 

transistor. As the thickness is reduced, the capacitance increases with respect to the 

formula given below: 

                   
      

 
       (Equation 2.1) 

 

where C is the oxide capacitance, κ is the oxide dielectric constant, ε0 is the absolute 

permittivity with a constant value (8.854 pF/m or pC/V.m), A is the area of the oxide 

layer and t is the oxide thickness (Wilk, Wallace, & Anthony, 2001; Zecheng et al., 

2015). From the equation above, since the area of the oxide cannot be increased due to 

downscaling, thickness reduction is preferable in order to increase the capacitance and 

performance of the transistor. Si wafer is widely used in the semiconductor industries 

and its native oxide, SiO2 is used as the gate oxide because of the ease of the growth of 

SiO2 on Si substrate by just thermal oxidation, and therefore a larger batch can be 

produced and thus a low production cost can be possible (Wilk et al., 2001). Moreover, 

the thermal oxide grown possessed a higher quality and therefore it has gained the 

popularity in semiconductor sectors (Usui et al., 2013). 

 

2.2 Silicon dioxide (SiO2)  

 

 Although there are advantages of SiO2 for being used for the past few decades, 

however, for further downscaling of the transistor, the performance of SiO2 as gate 

oxide has reached a limit due to its high leakage current (K. Kakushima et al., 2010). As 

the thickness decreases, especially when it is reduced to 1 nm, the gate tunneling in 

SiO2 is very severe and therefore inducing a high leakage current in the gate oxide 

(Salmani-Jelodar et al., 2016). This will cause a significant drop in the magnitude of 

capacitance as bias increases due to high gate tunneling current(Yang & Hu, 1999). 
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Given a gate bias of 1 V, the reduction of SiO2 gate oxide thickness from 3.0 nm to 1.0 

nm causes an increment in gate current density (Jg), from 1 x 10
-6

 A/cm
2
 to ≈1 x 10

4
 

A/cm
2 

as shown in Fig. 2.2 (Misra, Iwai, & Wong, 2005; Yeo, King, & Hu, 2002).  

 

 

Figure 2.2: Increase in tunneling current density as the oxide thickness decreases (Misra 

et al., 2005). 

 

 Gate oxide function is to insulate the gate terminal and the connecting channel 

of the source-drain terminals of the MOSFET as shown in Fig. 2.3. With high leakage 

current, it will definitely decreases the performance and often resulting in intolerable 

power consumption and causes malfunction to the electronic device (D. C. Gilmer et al., 

2002). Since that the thickness of gate oxide has to be reduced for further downscaling 

purpose, the alternative way to maintain the high capacitance is by substituting the 
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relatively low-κ SiO2 (κ = 3.9) to a higher permittivity κ candidates based on Eq. 2.1. 

As κ increases, the capacitance remains unchanged despite further decreasing of oxide 

thickness. When coming into design purposes of using high permittivity dielectrics than 

that of SiO2, equivalent oxide thickness (EOT) magnitude is much more relevant than 

dielectric film thickness, 

       
       

     
         (Equation 2.2) 

 

which is the new high-κ oxide layer thickness with κhigh-κ requires to achieve the same 

capacitance given SiO2 thickness, tSiO2 with κSiO2(Goh, 2017; He, Sun, Liu, & Zhang, 

2012). Therefore, there are a lot of experimental works focusing on selecting the right 

high-κ materials for MOSFET gate oxide, instead of SiO2. 

 

 

Figure 2.3: Schematic diagram of an n-p-n MOSFET transistor 
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2.3 Ge as substrate material 

 

 Although Si has been used for the substrate material due to the ease of high 

quality SiO2 by thermal growing for the past decades, however recently researchers are 

putting more emphasizes on the Ge substrate as it had been shown to possess more 

advantages than Si when coming to the MOSFET applications (Houssa et al., 2007). In 

fabrication of the high speed and high efficiency IC, the carrier mobility plays a vital 

role in manipulating the aspect. Ge shows the greatest advantage over Si in terms of its 

superior carrier mobility, especially the electron mobility. Houssa et al. mentioned that 

the high carrier mobility of Ge gives an allowance to the boosting of drive current of the 

transistors. Band gap of Ge is relatively lower than Si, which allows a lower power 

consumption since the power supply voltage, VDD can be further scaling (Houssa et al., 

2007; Kamata, 2008). Table 2.1 shows the comparison between Ge and Si in terms of 

carrier mobility and other important parameters.  

 Ge was once used in the semiconductor industry and getting replaced by Si due 

to its high thermodynamically unstable native oxide GeO2. Unlike Si, Ge does not have 

a stable native oxide to passivate its surface. During the operation temperature above 

450 °C, unstable GeO2 tends to form GeO and thermally desorbed from the oxide 

interface (Ogawa et al., 2015). The formation of GeO leads to high defect densities at 

GeO2/Ge interface. However, several buffer technologies have been discovered to 

actually suppress the growth of GeO2 layer, and Ge surface passivation such as NH3 gas 

treatment (Cheng & Jay Guo, 2004; Pei et al., 2011), S-passivation (Zecheng et al., 

2015), wet-NO treatment (L. Wang et al., 2015), CF4 treatment (Xie et al., 2008) and 

etc. With proper surface treatment, high-κ/Ge stack can be realized without any 

interfacial layers which enables the further scaling of gate EOT and effectively 

obtaining a higher mobility (Kamata, 2008; L. Wang et al., 2015). Also, the lower 
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dopant activation temperatures enables the ease of integrating with a high-κ materials 

(Ogawa et al., 2015).  

 

Table 2.1: Comparison between Ge and Si as substrate material (Kamata, 2008). 

 Ge Si 

Band gap (eV) 0.66 1.12 

Electron mobility, µe (cm
2
/V.s) 3900 1500 

Hole mobility, µh (cm
2
/V.s) 1900 450 

Lattice constant, a (Å) 5.65 5.43 

Melting point, Tm (°C) 937 1412 

 

2.4 Properties of a high-κ dielectric 

 

Several articles had pointed out various high-κ (κ > 10) materials to be applied 

on the MOSFET as gate dielectric as a means to provide a considerably thicker EOT 

dielectric to minimize leakage current and improve gate capacitance (Misra et al., 2005; 

Wilk et al., 2001). In order to be successfully implemented into the MOSFET 

application, high-κ materials must possessed the following criteria such as high 

permittivity, large band gap, high thermal stability and excellent surface quality (Chiu, 

Mondal, & Pan, 2012; Lu & Zhang, 2012). 

 

2.4.1 High permittivity, κ value 

 

High-κ value ensures the high capacitance with respect to reduction in oxide 

thickness.  However, the κ value cannot be extremely large because it may cause a large 

fringing field at the source and drain terminals.   
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2.4.2 Insulator property with larger band gap (Eg) 

 

The gate dielectric should have a larger band gap (Eg > 5 eV) since it required a 

larger band offset to hinder the Schottky emission of electron/hole of substrate-oxide 

interface. With a good band offset, the leakage current can be minimized. 

 

2.4.3 High thermal stability 

 

Gate dielectric with high thermal stability is strongly required in MOSFET 

application. During high temperature operations, formation of other layer like native 

oxide at the high-κ/substrate interface is not preferable since it will reduce the efficiency 

of the high-κ dielectric. Also with high thermal stability, the high-κ oxide material will 

not decompose easily under high temperature. 

 

2.4.4 Excellent interface quality and film morphology 

 

For the high performance CMOS device, the oxide/substrate must possess a high 

quality and must be free from interfacial defects. It is desired to select a high-κ material 

that remains amorphous state since it can improve the electrical performance of the 

device by minimizing the defect state through self-interfacial bonding. 
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2.5 High-κ metal oxide and transition metal oxides (TMOs) 

 

 There are numbers of researches done to seek for the high-κ candidates to 

substitute SiO2, mostly are TMO (except Al2O3). When applied the high-κ TMO on Si 

substrate, unfortunately, there are several issues associates with the ionic high-κ oxides, 

which are mainly cause by the nature of TM-oxygen bond. TM oxidizes easily by 

transferring electrons from d and s-sub shell to oxygen 3s and 3p orbital, and the oxide 

film formed contains a large amount of oxygen voids that are easier to be partly 

crystallized, and thus leads to a higher trap density in the film (Misra et al., 2005). The 

information and further discussion on issues of TMO/Si are arranged and tabulated in 

Table 2.2.  

However, in high-κ/Ge stack, the issues found are mostly on the high interface 

state density (10
12 

- 10
13 

/ eV.cm2) and the diffusion of Ge into high-κ oxides due to the 

direct junction of high-κ/Ge (Shibayama et al., 2012). The most severe problem found 

in high-κ/Ge stack is the desorption of GeO at the interface as shown in Fig. 2.4, that 

causes the drop in surface quality and deteriorates the surface, and thus proposing a 

hard times in developing insulating TMO on the Ge substrate (S. K. Wang et al., 2010). 

HfO2 is the common TMO used in the high-κ/Ge stack; however it cannot be directly 

deposited on the Ge substrate, as it will degrade the electrical properties of the HfO2/Ge 

system (Ogawa et al., 2015). Ogawa et al. mentioned that the insertion of GeO2 into the 

HfO2/Ge stack is not enough to increase the performance of Ge-MOS stack, and 

proposed by introducing a thin layer of Al2O3 into the HfO2/GeO2/Ge stack, the Ge out-

diffusion is suppressed and the GeO desorption can be controlled (Ogawa et al., 2015).  

Another high-κ gate oxide material used to study high-κ/Ge stack would be ZrO2 

because it shows no increment in leakage current in ZrO2/Ge stack as compared to the 

HfO2/Ge (Yoshiki et al., 2005).  Yoshiki et al. also declared that the inter-diffusion of 
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Ge-rich interfacial layer into ZrO2 after annealing making the direct deposition of ZrO2 

on Ge possible (Yoshiki et al., 2005). Nevertheless, there are past papers that mentioned 

the direct deposition of ZrO2 on Ge by atomic layer deposition (ALD) had a large lattice 

mismatch with Ge and failed to obtain a high quality epitaxy over the whole film, and 

thus lower the electrical performance of the gate dielectric (H. Kim, Chui, Saraswat, & 

McIntyre, 2003). 

 

Table 2.2: Summary of the common high-κ metal oxide and TMOs (Goh, 2017; J 

Robertson, 2004; John Robertson & Wallace, 2015). 

Materials κ Band gap 

(eV) 

Band Offset 

with Si (eV) 

Issues 

Al2O3 9 8.8 2.8 Large interfacial trap density, large flat 

band voltage (VFB) shift, large fixed charge. 

 

ZrO2 25 5.8 1.5 Interfacial layer formed easily and high 

interface state density, lateral oxidation at 

the edge of gate, growth of microcrystal 

after heat treatment, fixed charges exist and 

large VFB shift, in addition, HfO2 has high 

concentration of oxygen vacancies causes a 

huge amount of trapped charges. 

 

HfO2 25 5.8 1.4 

TiO2 80 3.5 0 Zero conduction offsets with Si, low 

thermodynamic stability, and low 

crystallization temperatures limit MOSFET 

fabrication process temperatures. 

 

Ta2O5 22 4.4 0.35 Low conduction offsets with Si, low 

thermodynamic stability. 

 

Y2O3 15 6 2.3 Low crystallization temperatures, higher 

interface density than SiO2 and undesirable 

interfacial layers formed easily. 
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Figure 2.4: Schematic diagram of GeO desorption mechanism (S. K. Wang et al., 2010). 

 

2.6 Rare earth oxides (REOs) 

 

 As the most promising high-κ TMO, HfO2 and ZrO2 show a downside in the 

degradation of electrical properties of the gate oxide, the rare earth metal oxide (REO) 

had grown a huge popularity among the high-κ dielectric researchers. REO is explored 

and emerged as high-κ candidate, and believed to show better results in MOSFET 

application due to its superior intrinsic characteristics (Chin, Cheong, & Hassan, 2010). 

Rare earth elements, also known as lanthanides are relatively abundant in the earth 

crust, despite the name ―rare earth‖. Lanthanides consist of 15 elements from atomic 

number 57 to 71, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), 

promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), 

dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Th), ytterbium (Yb), and 

lutetium (Lu). Pm exhibits radioactive property and does not occur naturally. 

Lanthanide oxide (LnOx) exists in different stoichiometries (LnO, LnO2, Ln2O3) owing 
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to different oxidation states of rare earth metals (+2, +3, +4). Due to the non-insulating 

properties of lanthanide (II) oxides (LnO2), they are thus not suitable to be used as gate 

dielectric (Osten et al., 2008). 

 Lanthanide (III) oxides (Ln2O3) are given a large attention for the MOSFET 

application since they satisfied the required criteria for high-κ dielectric materials: high 

κ value, high band gap and band offset, thermodynamically and chemically stable, and 

high interface quality. Moreover, Ln2O3 shows good electrical properties and low 

density of interfacial states (Dit) when direct deposited on Ge substrate without any 

intermediate layer passivation (Mavrou et al., 2007). Fig. 2.5 shows the dielectric 

constant and band gap for various Ln2O3. From Fig. 2.5, the high-κ candidates can be 

narrowed down into 5 (Tm2O3, Ho2O3, Ee2O3, Sm2O3 and La2O3) after considering the κ 

value and band gap (κ > 12, Eg > 5 eV).  

 From the aspect of high permittivity, numerous works are done on La2O3/Si and 

La2O3/Ge since it has the largest κ value among the REO (≈ 19) and possessed a large 

band gap (> 5eV) (Chang, Endo, Kato, Takenaka, & Takagi, 2017; Kuniyuki 

Kakushima et al., 2010). While utilizing REO as gate dielectric, high hygroscopic 

property is always the concern which the REO tends to absorb moisture from the 

environment, forming hydrate (Ln2O3.H2O). The hydrate is then forming the hydroxide 

(Ln(OH)3) layer that causes the EOT to be increased and reduces the κ of the REO. The 

hygroscopic property of REO highly depends on its lattice energy and electronegativity. 

As the electronegativity decreases and the lattice energy increases, the moisture 

reactivity with REO increases, meaning that, La2O3 has the highest hygroscopic 

behavior while Lu2O3 has the lowest hygroscopic behavior, based on Fig. 2.6 (Goh, 

2017). 
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Figure 2.5: Dielectric constant and band gap of various lanthanide (III) oxides (Goh, 

2017). 

 

Figure 2.6: Electronegativity and lattice energy of various lanthanide (III) oxides (Goh, 

2017). 
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2.7 Samarium (III) oxide (Sm2O3)  

 

 While La2O3 possessed the highest κ value but exhibits the highest hygroscopic 

behaviour, there is a need to seek for another REO, and Sm2O3 is the best alternative 

REO since it has a high κ value as well, after La2O3. Not only that, amorphous oxide of 

Sm shows superior electrical properties such as low leakage current, high oxide 

capacitance and also thermodynamically stable on Si (Päiväsaari, Putkonen, & Niinistö, 

2005). Moreover,  Päiväsaari et al. also stated that Sm2O3 has the lowest VFB shift and 

lowest leakage current density when comparing with another REO thin films of 50 nm 

deposited on Si by ALD method. When comparing La2O3/Si and Sm2O3/Si, again 

Sm2O3 shows the lowest leakage current(Chin et al., 2010).  Also to be mentioned, 

Sm2O3 possessed a lower hygroscopic behaviour as compare to La2O3 which makes 

Sm2O3 a suitable REO gate dielectric. Although there are still no published materials 

that mentioned about the performance of Sm2O3/Ge stack, but Sm2O3 is believed and 

predicted to be well implemented on Ge substrate and thermodynamically stable on Ge.  

 

2.8 Deposition method for REO thin film  

 

 There are two major types of REO thin film deposition method, which are 

chemical vapour deposition (CVD) and physical vapour deposition (PVD). Fig. 2.7 

illustrates the various methods under the two main categories of thin film deposition 

method (Toshiyuki, 2014). The ultimate structure and the electrical performance of the 

gate oxide highly depending on the deposition method of the thin film and therefore the 

research purpose has to be taken into consideration while choosing the deposition 

method for gate oxide fabrication (Chin et al., 2010).  
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Figure 2.7: Various types of vapor deposition method (Toshiyuki, 2014). 

 

2.8.1 Chemical vapour deposition (CVD) 

 

 CVD involves precursors and chemical reactions between gases and vapours 

during the deposition process. Plasma enhanced CVD (PECVD), metal organic CVD 

(MOCVD) and ALD are the most common CVD methods used in thin film fabrication 

process.  PECVD is the deposition method where a plasma of the reacting gases is 

generated, and the chemical reaction between the gases and the substrate takes place. 

PECVD method has the advantage that it only requires a low deposition temperature 

therefore defect formation, diffusion and metal layers degradation can be 

avoided(Ceiler, Kohl, & Bidstrup, 1995; W. G. Lee, Woo, Kim, Choi, & Oh, 1994).  In 

MOCVD, elements that will be deposited on the substrate are combined with complex 

organic gas molecules, and passed over the hot surface of the substrate to promote 

reaction. By using MOCVD, multi-layer stacks can be realizable with each of a precise 

controlled thickness, thus the electrical and optical performance of the oxide is likely to 

be controlled. Also the main advantages of MOCVD are again low operation 

temperature using metalorganic precursors, conformal surface coverage and able to fill 

the vias with no defects(Gross, Fleming, Cheung, & Heimbrook, 1991).  
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 ALD is widely used in the thin film deposition and it involves alternative 

pulsing and purging of two or more precursors gases and vapours, promotes 

chemisorption and surface reaction on the substrate in a sequential manner (Chin et al., 

2010; Leskelä & Ritala, 2002). The deposition of thin film is done with several cycles, 

as shown in Fig. 2.8, thus the growth stability and film thickness in each cycle can be 

easily controlled. Previous journal mentioned about the deposition of Sm2O3 via ALD 

method showed a good result in low leakage current (Päiväsaari et al., 2005). However, 

the presence of the unwanted contaiminants on the precursors and reactors caused a 

drawback in ALD method (Chin et al., 2010). 

 

Figure 2.8: Mechanism for one cycle of ALD (M Rosa, Lin, Pfeffer, Nielsen, & Dai, 

2018). 
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2.8.2 Physical vapour deposition (PVD) 

 

 PVD possesses various vaccum deposition methods that transform the 

solid/liquid target into gas state and finally deposited on the substrate as thin film. 

Sputtering (RF magnetron), evaporation method and pulsed laser deposition (PLD) are 

the common representatives for PVD method.  Evaporation method consists of  the 

traditional thermal evaporation and electron beam (E-beam) evaporation. Both 

evaporation methods share the same principle, the target material is heated up in a 

vacuum chamber, either by hot filament or E-beam, the gaseous target material is then 

evaporates and deposited on the substrate located at the top. The only difference 

between these two evaporation methods is in traditional thermal evaporation, heat is 

used to evaporate the target while bombardation of electrons causing the heating and 

evaporating of the target in E-beam evaporation, therefore thermal evaporation often 

requires a higher operating temperature which are sometimes not preferable in thin film 

deposition. PLD method utilizes the high energy pulsed laser beam to focus and strike 

on the desired target material, causing ablation of the target and being deposited on the 

substrate. As the parameter of the laser beam can be manipulated (pulse intensity, 

wavelength, etc.), the thin film deposition process can also be controlled (Chin et al., 

2010). Moreover, PLD method is simple, where stoichiometric deposition can be made 

possible by using multiple target at one time, and also multi-layer hetero-structures can 

be done by in-situ processing (Shan, Shin, Jang, & Yu, 2004).  Nevertheless, the highly 

forward directed laser plume during laser ablation process causes the thickness of thin 

film to be greatly non-uniform and the composition varies across the film has limit the 

use of PLD in thin film deposition (Chin et al., 2010). 

 Radio frequency (RF) magnetron sputtering is believed to be highly utilized in 

thin film studies and industries. In basic sputtering process, high voltage is applied on 
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the negative terminal (target material) and positive terminal (substrate). Due to the high 

voltage applied, the argon (Ar) gas in the chamber ionizes and forms plasma. The high 

energetic Ar
+
 ions are then bombarded to the target and causes the removal of the target 

material. The removed target material and some electrons are then accelerates to the 

substrate and deposited as thin film. While in RF magnetron sputtering, a strong 

magnetic field is generated around target area and cause the electrons to spiral along the 

magnetic field as shown in Fig. 2.9. Hence, it reduces the damage implied to the thin 

film on the substrate, maintain the stoichiometry and ensure an even thickness 

distribution of the thin film (Maurya, Sardarinejad, & Alameh, 2014). Also, this method 

is beneficial for deposition of non-metallic element such as oxide since non-conductive 

materials can be used as target materials. 

 

 

Figure 2.9: Schematic illustration of RF magnetron sputtering(Bosco, van den Beucken, 

Leeuwenburgh, & Jansen, 2012). 
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2.9 Thermal oxidation method 

 

 Thermal oxidation involves the flow of oxygen (O2) gas  to the substrate or 

metal-sputtered substrate and being heated up in a furnace as shown in Fig. 2.10. 

Thermal oxidation method exhibits several advantages: low operation cost, simple to 

perform and does not require high temperature or catalyst usage during thermal 

processing (Park, Kim, & Leem, 2015). Moreover, thermal oxidation has confirmed to 

be a simple ex-situ method to grow metal oxide films and enhance metal 

crystallinity(De Los Santos Valladares et al., 2014). While utilizing the thermal 

oxidation method, it is very important to recognize the parameters such as oxidation 

temperature, oxidation duration and O2 gas flow rate or gas ratio. According to Goh et 

al., Sm2O3 that grown on Si substrate by thermal oxidation method, at 700°C for 15 

minutes had shown a superior electrical performance and thicker Sm2O3 film grown 

with minimum thickness of interfacial layer and had smoother and uniform surface 

(Goh, 2017).  

 

Figure 2.10: Schematic diagram for thermal oxidation method(Goh, 2017). 
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CHAPTER 3: MATERIALS AND METHODOLOGY 

 

3.1 Introduction 

 

 This chapter will discuss in detailed on the materials and methodology used in 

this research project. The chapter is arranged in following sequence as shown: 

i. Materials  

ii. Procedures for thin film fabrication 

iii. Characterization methods  

 

3.2 Materials  

 

3.2.1 Substrate 

 

 The substrate used is Ge wafer supplied by Wafer World, Inc. The properties of 

the Ge wafer used are as shown in Table 3.1. 

 

Table 3.1: Properties of Ge wafer used 

Properties Description 

Diameter 100.0 ± 0.5 mm 

Type n-Ge doped with antimony (Sb) 

Orientation (100) ± 5° 

Thickness 500 – 550 μm 

Surface single side polished 

Resistivity 0.005 – 0.02 Ω.cm 
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3.2.2 Chemicals used in dip-cleaning process 

 

 The chemicals used for dip-cleaning process are hydrofluoric acid (HF) solution 

with ratio of (1: 50 HF: H2O) and deionized (DI) water. 

 

3.2.3 Materials used in sputtering process 

 

 By using TF 450 PVD RF sputtering system, Sm metallic layer is sputtered on 

the sample by utilizing pure Sm metal (Kurt J. Lesker, USA, 99.99% purity) as the 

target material and Ar gas as sputtering gas.  

 

3.2.4 Materials used in thermal oxidation 

  

 The Sm-sputtered samples are place on the quartz boat before placing into the 

quartz tube inside the Carbolite CTF tube furnace. After that pure O2 gas is flow 

through the quartz tube for thermal oxidation to be taken place. 

 

3.3 Procedures for thin film fabrication 

 

3.3.1 Dip-cleaning of Ge substrate 

 

 The Ge wafer is cut into samples of 1 cm x 1 cm each, and underwent dip-

cleaning process for the preparation of impurity-free samples. First, two beakers 

containing one with HF acid solution and another one with DI water are prepared, then 
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a sample is immersed in HF acid solution and is taken out after about 10 seconds. After 

that, it is again immersed in DI water for another 10 seconds, removed and then wiped 

with clean paper towel. The whole dip cleaning process is then repeated for all the 

samples. 

 

3.3.2 Sputtering of Sm metal on Ge substrate 

 

 During the RF sputtering process, metallic Sm layer is sputtered on the samples 

from the Sm target with the flow of Ar gas at room temperature. The pressure in the 

chamber, power supply, and Ar gas flow rate are set to 3 x 10
-5

 mbar, 170 W and 25 

ml/minute, respectively for the whole sputtering process.  

 

3.3.3 Thermal oxidation of Sm2O3  

 

  First, the flow of O2 gas through the furnace is checked to ensure smooth flow 

without the flow of other gases and the O2 flow rate is set to 150 ml/minute. Then the 

furnace is set up and the temperature increment of the furnace is set to 10 °C/minute 

until the desired temperature for thermal oxidation. In this research project, the 

parameter to be varied is the oxidation temperature and the temperature variations are 

300 °C, 400 °C, 500 °C, 600 °C, and 700 °C. Once the temperature of the furnace 

reached the set temperature, the Sm-sputtered samples are placed carefully on the quartz 

boat and is put in the middle part of the quartz tube inside the furnace. After 15 minutes 

of thermal oxidation, the samples are let cool down to room temperature, then are 

carefully taken out and kept in dry container containing silica gel to prevent moisture 

absorption. After that, the samples of different oxidation temperature are proceeded 
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with the physical characterization. The whole procedure of the gate oxide thin film 

fabrication is illustrated in Fig. 3.1. 

 

Figure 3.1: Schematic diagram of procedures for Sm2O3 thin film fabrication. 

 

3.4 Characterization of Sm2O3 thin film 

 

3.4.1 X-ray diffraction (XRD) 

 

 XRD is a powerful technique to study the structural properties of a material, 

such as surface and morphology (Birkholz, Fewster, & Genzel, 2005). This technique is 
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widely used in thin film studies, especially to study the composition and crystallite size 

of the thin film developed. Generally XRD equipment consists of x-ray source and a 

detector, the X-ray is focused on the sample and scattered to be detected by the detector 

as shown in Fig. 3.2. The detector move in a circle around the sample and the position 

of it is recorded as 2θ. At each 2θ angle, the intensity of the scattered X-ray is recorded 

by the detector in the form of ―counts‖ or ―counts per second‖. The sample rotates to 

accurately reflect each wavelength and satisfied Bragg’s law: 

                    (Equation 3.1) 

 

For a crystal with d spacing (nm), when an X-ray beam with wavelength λ (nm) is 

directed to the crystal, reflection only occurs at a precise angle θ (°) for n ordered 

reflection that obeyed the Eq. 3.1. Therefore, through XRD analysis of an unknown 

composition in materials can be identified by the known lattice constant of the 

composition in the database. Eq. 3.2 shows the relationship between interplanar 

spacing, d with the lattice constant, a, where h, k, and l are the miller indices of a plane. 

       
 

√        
     (Equation 3.2) 

 

 

Figure 3.2: Basic working mechanism of XRD equipment. (Source: 

http://prism.mit.edu/xray/ accessed on May, 2018) 
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 Besides knowing the composition of the materials, the crystallite size (D) and 

microstrain (ε) of the materials due to crystal defects and dislocation can be known by 

analyzing the XRD peak broadening (β) (Goh, 2017). This is because the nanocrystallite 

size, non-uniform lattice strain and defects will cause peak broadening that can be 

quantified. The broadening caused by strain is due to non-uniform distributions of 

atoms with respect to their own lattice position while broadening caused by crystallite 

size is due to the incoherent diffraction of finite size components with each other 

(Bushroa, Rahbari, Masjuki, & Muhamad, 2012). Among the techniques to analyze the 

peak broadening, e.g. Fourier method, Warren-Averbach method, Rietveld refinement 

and etc., Williamson-Hall (W-H) method is mostly used owing to its simplicity.  

 Since crystallite size (D) and microstrain (ε) are mainly contributed to the peak 

broadening, crystallite size of Sm2O3 is estimated simply by the Scherrer equation in 

Eq. 3.3 from the Debye-Scherrer analysis and microstrain is estimated through strain-

induced broadening equation as in Eq. 3.4 (Goh, 2017; Maniammal, Madhu, & Biju, 

2017). 

           
  

      
                 (Equation 3.3) 

 

            
  

     
                (Equation 3.4) 

 

From the Scherrer equation, K is the constant of shape factor that varies from 0.9 to 

1.15, (in this case, K = 0.9), λ is the wavelength of x-ray used (nm), βD is the full width 

half maximum (FWHM) of the peak for D at diffraction angle θ. While in Eq. 3.4, βε is 

the FWHM of the peak for ε at peak position θ.  

According to W-H method, it is assumed that the two components of βD and βε 

are independent to each other, hence both components can be added up that yields: 

                 (Equation 3.5) 
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By substituting Eq. 3.3 and Eq. 3.4 into Eq. 3.5, the equation can be expressed as Eq. 

3.6 and can be further simplified as Eq. 3.7. 

      
  

     
             (Equation 3.6) 

 

            
  

 
                (Equation 3.7) 

  

 The oxidized Sm2O3 film is characterized using PANalytical Empyrean X-ray 

diffractometer (XRD) system in a scan ranging from 5° to 90° for 2θ, step size of 0.026 

and time per step of 0.75 second. Copper radiation (Cu-Kα) with wavelength (λ = 

0.15406 nm) is used as the X-ray source in the system. 

 

3.4.2 Fourier-transform infrared (FTIR) spectroscopy  

  

 FTIR spectroscopy is used to identify the organic and inorganic components in 

unknown materials by using the infrared ranged light. It is a powerful tool for 

identifying the types of bonds of molecule by producing infrared absorption or emission 

spectrum and the wavelength of light absorbed characterizes the chemical bonding 

through the spectrum. As shown in Fig 3.3, the moving mirror produces a difference in 

optical path, light energy is absorbed or transmitted throughout the process and finally 

the transmitted part reached the detector. The detector is then Fourier-transforms the 

signal into frequency domain, which wavenumber is corresponds to optical path 

difference in time domain. Then, an infrared transmittance spectrum can be produced as 

transmittance-wavenumber plot (Smith, 2011). 
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In this research project, FT-IR analysis is done by using Bruker Tensor 27     

FT-IR spectroscope. The analysis is done with 32 scans per sample and attenuated total 

reflection (ATR) mode is employed. 

 

 

Figure 3.3: Simple illustration of FT-IR instrumentation (Source: http://nptel.ac.in 

accessed on May, 2018) 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Introduction 

  

 In Chapter 4, the results collected from (i) XRD and (ii) FT-IR analysis are 

evaluated based on the effect of thermal oxidation temperature to the growth of Sm2O3 

film. Then, the results analysis is followed by discussion on the physical properties of 

the Sm2O3 film grown on Ge substrate and the optimum temperature for the growth of 

the thin oxide film is predicted according to the discussion. 

 

4.2 XRD analysis 

 

 Fig. 4.1 shows the XRD patterns of the thermal oxidized samples for 300 °C, 

400 °C, 500 °C, 600 °C and 700 °C. The peak for interfacial disamarium germanium 

oxide, Sm2Ge2O7 is detected at 54.19° for 300 °C, 400 °C, 500 °C, 600 °C and 700 °C 

samples, are confirmed by ICSD reference code of 00-031-1208 (Fig 4.1, cyan dashed 

line). As the oxidation temperature increases, the intensity of the peak for the interfacial 

layer decreases. For 700°C sample, hexagonal GeO2, h-GeO2 peaks are found at 20.52°, 

25.95°, 35.93°, 37.94°, 39.37°, 41.81°, 44.96°, 48.66°, 53.39°, 56.24°, 58.81°, 61.67°, 

65.96°, 67.11°, 69.97°, 73.82°, 76.26°, 77.51°, 78.55° and 79.94° corresponding to 

(010), (011), (110), (102), (111), (020), (021), (112), (202), (210), (211), (113), (122), 

(031), (014), (302), (220), (114), (221) and (130), respectively (Fig. 4.1, black dotted 

lines). These peaks are confirmed by ICSD with reference code 98-005-9624 (Haines, 

Cambon, Philippot, Chapon, & Hull, 2002). For 600 °C sample, h-GeO2 peaks are 

observed at 20.52°, 25.95°, 53.39° and 65.96°, corresponding to (010), (011), (202) and 
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(122), respectively. Besides that, for 500 °C sample, a small intensity of h-GeO2 peak is 

found at 53.39° as plane (202) while for 400 °C sample, a relatively high peak of         

h-GeO2 is detected at the same plane. Last but not least, a peak that represents h-GeO2 

(202) is detected at 53.39° for 300 °C sample. From this, as the temperature increases, 

the peak of h-GeO2 increases owing to the diffusion of O2 gas into the substrate and 

formed the native oxide. On the other hand, cubic Sm2O3, c-Sm2O3 peak is observed at 

51.73° as plane (611) for 300 °C and 500 °C (Fig. 4.1, green dashed line). The peak is 

confirmed by ISCD with reference code of 01-076-0153. It is observed that from the 

XRD patterns, there exists only h-GeO2 and a small amount of Sm2Ge2O7 for the        

700 °C samples, and it is confirmed that there is no c-Sm2O3 present in the 700 °C 

samples. In other words, oxidation temperature of 700 °C is not suitable for the growth 

of Sm2O3 oxide layer on Ge substrate. Further exploration on the effect of the presence 

of Sm2Ge2O7 interfacial layer on the gate oxide’s effectiveness is required to strengthen 

the findings on this study. 
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Figure 4.1: XRD patterns for thermal oxidized samples at various temperatures. 

 

 Fig. 4.2 shows the intensity-temperature plot for h-GeO2 (011) and c-Sm2O3 

(611). For the case of h-GeO2 (011), the intensity is very low from 300 °C to 500 °C 

and slightly increased at 600 °C. At 700 °C, the plot shows a tremendous increase in 

intensity for h-GeO2 (011). From Fig. 4.2, as the temperature increases from 300 °C to 

700 °C, the intensity for  h-GeO2 (011) increases exponentially meaning that the 

crystallinity of h-GeO2 is increasing over temperature and implies that the growth of h-

GeO2 at plane (011) is the highest at 700 °C. While for c-Sm2O3, the plot shows a 

relatively high intensity at 300°C and 500°C, and a low intensity at 400 °C, 600 °C, and 

700 °C. After 500 °C, the intensity of c-Sm2O3 started to decrease and this may be 
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caused by the desorption of GeO, which causes defects in the form of scattered blisters 

on the film (Lei, Goh, Zainal Abidin, & Wong, 2017). Apart from that, Sm2Ge2O7 peak 

shows the highest intensity at 300 °C sample, and shows a huge decline at 400 °C, 

followed by 500 °C, 600 °C and 700 °C.  

  

 

Figure 4.2: Plot of intensities for GeO2 (011), Sm2O3 (611) and Sm2Ge2O7 at various 

temperatures. 

 

 By utilizing the Debye-Scherrer equation (Eq. 3.3), crystallite size of the 

particles can be determined. Fig. 4.3 shows the crytallite size of h-GeO2 for samples at 

various temperatures (300 °C to 700 °C). Based on the calculation, the crystallite size at 

300 °C is 9.68 nm, 27.45 nm at 400°C and 22.93 nm at 500°C. The average crystallite 
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size at 600 °C is 20.86 nm with a size distribution of 5.67 nm, while at 700 °C, the 

average crystallite size is 19.66 nm with a size distribution of 4.60 nm. From 300 °C to 

400 °C, the crystallite size of h-GeO2 increases sharply, while as the temperature 

continues to increase from 400 °C to 700 °C, the crystallite size for h-GeO2 reduces and 

a smaller size distribution indicates the homogeneous crystallite size (Goh et al., 2016). 

The average crystallite size of c-Sm2O3 cannot be calculated due to the inadequate 

information from the XRD data. For a more accurate way to determine crystallite size, 

transmission electron microscopy (TEM) should be carried out to observe and measure 

the crystallite size. Besides that, Williamson-Hall (W-H) analysis is done to estimate the 

crystallite size and the microstrain of the thin film. 

 

 

Figure 4.3: Crystallite size of h-GeO2 at various temperatures. 
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 For W-H analysis, Fig. 4.4 shows the W-H plot of the h-GeO2 for the thermal 

oxidized samples at 600 °C and 700 °C. For 300 °C to 500 °C samples, the analysis 

cannot be done due to the insufficient peaks of the h-GeO2. Also, the W-H analysis is 

not done for c-Sm2O3 and Sm2Ge2O7 as well owing to the same reason as mentioned 

above. In W-H analysis, the results are plotted in βhkl cosθ against 4 sinθ, where βhkl is 

the total broadening for crystallite size and microstrain. From Eq. 3.7, the equation can 

actually be expressed in straight line equation, which is as shown in Eq. 4.1, 

          (Equation 4.1) 

where y corresponds to βhkl cosθ, m is the gradient of the plot which is corresponding 

to microstrain (ε), x corresponds to 4 sinθ and c is the y-intercept which is 

corresponding to 
  

 
, therefore the microstrain (ε) and the crystallite size (D) of the thin 

film grown can be calculated through the W-H plot. From Fig.4.4, ε and D calculated 

from the plot for 600 °C and 700 °C samples, and the results are tabulated in Table 4.1. 

Table 4.1: ε and D for 600 °C and 700 °C samples 

Temperature 

(°C) 

y-intercept of 

W-H plot 

Gradient of    

W-H plot 
D = 

  

           
 

(nm) 

 

ε 

600 0.00319 0.00229 43.46 0.00229 

700 0.00453 0.00184 30.61 0.00184 

 

 As compared with the crystallite size calculated by the Debye-Scherrer equation, 

the results from the W-H plot show the same trend, which the crystallite size of h-GeO2 

decreases as the temperature increases from 600 °C to 700 °C. Also, the microstrain of 

h-GeO2 decreases as well as the temperature decreases. 
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Figure 4.4: W-H plot of h-GeO2 for thermal oxidized samples at 600 °C and 700 °C. 

 

4.3 FT-IR spectroscopy analysis 

 

 For FT-IR spectroscopy analysis, the results are plotted in a graph as shown in    

Fig. 4.5 and hence the chemical bonds involved in the thin film can be detected. The 

graph is plotted on transmittance with arbitrary unit against the wavenumber (cm
-1

) in 

the range of 400 cm
-1

 to 2000 cm
-1

. In this research project, the major interest is to focus 

on the growth of Sm2O3 and GeO2, therefore primary concerns are put on the Sm-O and 

Ge-O bonds. Based on previous findings, the FT-IR spectrum for pure Sm2O3 crystal 

shows significant peaks at 665 cm
-1

, 730 cm
-1

, 860 cm
-1

 and 975 cm
-1

, which describe 
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the stretching vibration of the Sm-O bond(Gao et al., 2003). Sone et al. stated that the 

modes for Sm-O are found at 419 cm
-1

, 475 cm
-1

, and 539 cm
-1 

(Sone, Manikandan, 

Gurib-Fakim, & Maaza, 2015). Besides that, Goh et al. mentioned that Sm-O bands can 

be found at the wavenumber 409 cm
-1

, 418 cm
-1

, 432 cm
-1

, 439 cm
-1

, 473 cm
-1

, 482 cm
-1

 

and 502 cm
-1 

(Goh et al., 2016). On the other hand, Ge-O vibration modes can be found 

at 518 cm
-1

, 589 cm
-1

, 903 cm
-1

, 927 cm
-1

 and 959 cm
-1 

(Lei et al., 2017).  

 From Fig. 4.5, for 300 °C sample, Sm-O peak is detected at 416 cm
-1

, Ge-O 

peaks are detected at 509 cm
-1

, 580 cm
-1

, 876 cm
-1

 and 960 cm
-1

. For 400 °C and 500 °C 

samples, Sm-O bands are found at 416 cm
-1

 and 444 cm
-1

 while Ge-O are detected at 

509 cm
-1

, 580 cm
-1

, 840 cm
-1

, 876 cm
-1

, 913 cm
-1

 and 960 cm
-1

. For 600 °C, small peaks 

of Sm-O can be observed at 416 cm
-1

 and 444 cm
-1

 as in 400 °C and 500 °C samples, 

whereas Ge-O shows bands at 580 cm
-1

, 840 cm
-1

, 913 cm
-1

 and 960 cm
-1

. Lastly for 

700 °C sample, the spectrum shows only the presence of Ge-O peaks in the range of 

500 to 1000 cm
-1 

with very high intensity.  

 From the results, it is clearly shown that at 400 °C, there shows no large peak in 

the range of 500 to 1000 cm
-1

 which corresponds to the Ge-O bond, meanwhile a 

relatively large peak is observed for the other samples and the peaks are shifted to the 

left as the temperature increases from 500 °C to 700 °C. The large peak of Ge-O is 

shifted to a smaller wavenumber side and increased in peak intensity owing to the 

growth in mass of GeO2 as the temperature increases. As the mass increases, the 

vibration frequency decreases and thus results in a smaller wavenumber and larger peak 

intensity. When comparing the 400 °C and 500 °C samples, the intensity of the peak for 

Sm-O is higher in 500 °C sample. Overall, as the temperature increases from 300 °C to 

700 °C, the intensity for the Ge-O peaks increases, and the intensity of Sm-O peaks 

increases from 300 °C to 500 °C, then decreases above 500 °C. As discussed in the 

XRD analysis, there shows no presence of Sm2O3 in the FT-IR analysis as well for     
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700 °C sample, meaning that 700 °C is not suitable to grow the thin Sm2O3 oxide film 

on Ge substrate. 

 

 

Figure 4.5: FT-IR spectrum of thermal oxidized samples for various temperatures. 
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CHAPTER 5: CONCLUSION AND FUTURE RECOMMENDATION 

 

5.1 Conclusion 

 

 In this entire research project, Sm2O3 film was successfully grown on Ge 

substrate by thermal oxidation process and the effect of oxidation temperature on the 

thin oxide film grown was studied. Then the physical properties of the thin oxide film 

were determined. Sm metal was sputtered onto the Ge substrate, and thermally oxidized 

at various temperatures, from 300°C to 700°C for 15 minutes. Characterization methods 

of XRD and FT-IR analysis were carried out to study the physical properties of the thin 

oxide film. From XRD analysis, GeO2 started to grow at 300°C, and grow intensively 

starting at 600°C. By calculating the crystallite size of GeO2 by Debye-Scherrer 

equation, it showed the smallest crystallite size at 300°C, and a sharp increase at 400°C, 

followed by a decreasing trend after 400°C to 700°C. After W-H analysis for GeO2 at 

600°C and 700°C, the results showed that the crystallite size and the microstrain of 

GeO2 decreases as the temperature increases from 600°C to 700°C. For Sm2O3 thin 

film, the intensity shows the highest value at 500°C. From FT-IR analysis, Sm-O 

bond(s) was found for 300°C, 400°C, 500°C and 600°C samples. Among them, 500°C 

sample shows the highest peak intensity for Sm-O bonds. For 700°C sample, Ge-O 

peaks showed a very high intensity and no Sm-O bond was detected for 700°C sample. 

Based on these two analysis, 500°C can be said to be the optimum oxidation 

temperature for the growth of Sm2O3 thin film on Ge substrate.  
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5.2 Future recommendation 

 

To further proceed with the thin film analysis, other characterization methods 

have to be done such as Raman spectroscopy to identify molecules and study chemical 

bonding, X-ray photoelectron spectroscopy (XPS) to analyze the surface chemistry and 

binding energy of electronic states, TEM to observe the surface roughness, to calculate 

the true crystallite size and the thickness of the thin film grow, and various electrical 

tests to test for the capacitance, breakdown current and breakdown electric field of the 

oxide film. By further undergoing the characterization processes as mentioned above, 

more information about the Sm2O3 thin film can be known. Last but not least, as a 

recommendation for future research, the thermal oxidation method of Sm2O3 on Ge 

substrate can be replaced by other deposition methods such as ALD since ALD method 

can produce a superior thin oxide film with a very low level of impurities.  
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