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ABSTRACT

The objective of this research project is to build a machine learning

model to classify human interactions from a stream of video. Being

able to classify human interaction from videos is essential in the

development of robotic assistance systems, video annotation,

surveillance systems and many more applications. It is necessary that

the algorithm performing this task needs to be robust and only relies on

monocular vision systems.

In order to build a classifier capable of achieving this task, the

machine learning model needs to be able to learn spatial and temporal

patterns from the videos. A cascaded architecture of Convolutional

Neural Networks and Recurrent Neural Networks have been created to

achieve this task in this research. There have been investigations made

to identify the best spatial and temporal architectures that would give

the optimal result.
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ABSTRAK

Objektif dalam projek penyelidikan ini adalah untuk membina

sebuah model pembelajaran mesin bagi mengelaskan interaksi

manusia daripada aliran video. Berkebolehan untuk

mengklasifikasikan interaksi manusia daripada video adalah penting

dalam pembangunan sistem bantuan robotik, anotasi video, sistem

pengawasan dan banyak lagi aplikasi yang lain. Ia adalah penting

bahawa algorithma yang melaksanakan tugasan ini perlu kukuh dan

hanya bergantung kepada sistem penglihatan monokular.

Bagi membina sebuah pengelas yang dapat mencapai tugasan ini,

model pembelajaran mesin tersebut hendaklah mampu untuk

mempelajari corak-corak spatial dan temporal daripada video. Sebuah

senibina yang mengabungkan Convolutional Neural Networks dan

Recurrent Neural Networks telah dibina untuk mencapai matlamat

dalam kajian ini. Penyiasatan telah dibuat bagi mengenalpasti senibina

spatial dan temporal terbaik yang akan memberikan keputusan yang

optimum.Univ
ers
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CHAPTER 1: INTRODUCTION

This chapter discusses the motivation and background of this

research work, followed by a statement on what would constitute as

the objective or goal of this undertaking. A brief description about the

structure of the thesis is also included below.

1.1 Background

Human activity recognition is the task of identifying what a person is

doing. In case of more than one person, the task is often described as

human interaction detection. As human beings, we possess a level of

awareness that would let us effortlessly identify what someone is doing.

However, for teaching a machine to do the same is challenging to say

the least. In machine intelligence and robotics this task falls into the

class of sensing problems. There has been several research

approaches attempted at solving this problem (Aggarwal and Cai,

1999). For any system designed to do this task requires some form of

sensor to capture the raw information. Most widely used sensors have

been monocular vision, thermal imaging, depth vision systems,

accelerometers, gyroscope and other inertial sensors in general. The

ability to perform the task of human activity detection is crucial in the

future of several applications like smart homes, robotics, gaming,

virtual reality and so on. The recent developments in computation and

availability of massive datasets has made computer vision based

approaches along with machine learning algorithms the best route to

achieve the task of human activity recognition.
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1.2 Objective of the project

Human activity identification is a complex task due to several facts.

The variation of scenarios from which the classification has to be made

can be vast. The permutation of scenes will take into account, number

of human beings and other objects present in the scene, number of

participants in an activity, wide range of background sceneries,

different human activity or interactions required to be classified, and

the possibility of having more than one activity present in any given

frame, especially when the classification is done on a public

space. There is also the question of representing the spatio-temporal

relationship in the classification model.

Due to these challenges the scope of research is narrowed down and

the following assumptions are duly made:

1. At any given frame there will only be 2 people present in a frame.

Therefore the task is a human to human interaction detection problem,

limited to 2 agents.

2. The activities or interactions expected is limited to 5 classes. They

are hand-shaking, hugging, kicking, punching, and pushing.

With the above set scope, a lot of complexities can be overcome. It is

also worth noting that implementation of such a system can be scaled

to involve more participants and for much broader class of activities.

The set scope also makes it easier to collect and label data.
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With the scope is fixed, the objectives of the research can be defined

as follows:

1. To obtain a reliable labeled dataset of human to human interaction.

2. To identify acceptable performance criteria for a human interaction

detection system.

3. To design a machine learning model capable of learning

spatio-temporal relations.

4. To train and test the model with the labeled dataset and obtain the

acceptable performance.

1.3 Structure of the thesis

The thesis is divided into 5 chapters including this one. Chapter 2

goes into the literature review in the area of human activity detection

and also briefly discusses the background of algorithms used in this

research like CNNs, LSTM and so on. Chapter 3 discusses the

methodology of the research and implementation of the final model

and the path that lead to it. Chapter 4 briefly presents the important

results obtained from machine learning model. Chapter 5 concludes

the research and presents some future directions to explore in this

area.Univ
ers

ity
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CHAPTER 2: LITERATURE REVIEW

The usage of advanced computer vision and deep learning

algorithms to recognize and classify human movement and interaction

is an active area of research.

2.1 Complexities present in the task

The major challenges in designing a machine learning model for the

given scope is in the recognition of intra-class variations (Gao, 2011).

The same action is performed differently by different people. This can

be observed in the Figure 2.1. The activity performed in the image is a

kick and it is performed by three different human beings. Although the

task performed is the same, the pose is different in all three cases. The

level of leg raised is also different. The speed at which the action is

performed (which is only observable in a sequence) can also be very

different from person to person. Certain techniques like keyframe

extractions can be used to tackle the variations. It takes little effort for

a human being to recognize these activities, but to represent all

possible variation of any given task in a statistical model is clearly

challenging.

Figure 2.1 : The action of kicking performed by three

different individuals.
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2.1.1 Real world conditions

The other challenges are related to the real world. There could be

objects used by the agents in a scene (handbags, umbrellas) or present

in the scene (trees, tables, vehicles). This can occlude the subjects

involved or cause clutter in background. The lighting and weather

conditions can vary drastically too. The camera used for capturing the

data can vary. Since the model being considered for the task accounts

for spatio-temporal relations motion jitters, noise and frame rates can

also have influence on the model. The model will also perform poorly on

images captured on a moving camera since the model is trained on the

data from a stationary camera. It is essential to ensure that the model

performs accurately in all the above mentioned adversarial situations.

2.2 Conventional approaches in human activity detection

Three stages involved in most human activity detection systems are

object segmentation, feature extraction and representation, and

activity or interaction detection by classification algorithms (Ke et. al.,

2013). With the advent of massive labeled datasets and computing

power there are several end-to-end machine learning models which

relies mostly on artificial neural networks to do all of the

aforementioned tasks with minimal feature engineering required.

However, these approaches requires huge datasets and computational

power for training. They are also in several cases hard to interpret, and

modification of particular behaviors are hard to perform. For critical

tasks where human safety is important it is worth exploring the feature

engineering based approaches.
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2.2.1 Object Segmentation

Object segmentation as the name suggests segments the object of

interest that is human beings from the background or noise. There are

several parameters that needed to be considered while designing an

object segmentation system, mobility of the camera is one of them.

The camera can be moving or static. In a statically positioned camera,

the segmentation becomes easier as the background does not move. A

background model can be captured ahead of classification and used to

subtract it from the foreground. This method is simple to perform and

computationally less expensive. However, the resulting image is not

guaranteed to be exclusively the subject of interest, as there could be

other moving objects in the scene. Therefore the obtained object

segmentation mask could have background objects.

Object segmentation can be further improved by incorporating the

knowledge about the scene into the model. One of the methods that

could be used is to model the color distribution of the background

pixels as a Gaussian covariance matrix (Wren, 1995). With this

information the foreground information can be grouped together by

using this covariance matrix associated to that point. There can still be

unwanted information like shadows and glares present. Some

statistical assumptions can be made to overcome this. The

chronological changes in the background can be modeled and

represented as an image vector, which can be then used to subtract

that from the foreground (Seki et. al., 2000).
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There are several other methods used in static camera object

segmentation including Gaussian Mixture Model (GMM), which all

though computationally expensive can be used to describe very

complex background scenes (Yoon et. al., 2003). In case of moving

camera like pan-tilt surveillance cameras, drones, and other mobile

robots most of the above mentioned methods would not work. A

camera motion decomposition needs to be performed, which requires

sensors measuring the motion of the camera and lens arrangements.

This research does not use data from moving camera, but one of the

advantage of using a CNN is that the area of interest can be segmented

even without a complex motion model, given enough training data.

2.2.2 Feature extraction and representation

Once the object of interest has been segmented from the

background, now the features need to be extracted and represented.

The representation is crucial as it needs to account for the sequential

nature of the data. Since videos are captured typically between

25-30fps, many frames might not contain relevant information.

Space-time volumes (STV) captures the features from individual

frames (ie., spatial information) and stack it in sequence (temporal

information). In addition to STV, Discrete Fourier Transform (DFT) could

also be used to represent the data. DFTs are represented as a variation

of image intensities spatially (Kumari, & Mitra, 2011).

2.2.2.1 Keyframe extraction

Key frame capturing has been a popular choice for temporal data

classifications. The popularity of key frame extraction can be mainly
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attributed to its low computational cost involved in vision based

analysis. To reduce the number of images to be processed by the

model a key frame extraction algorithm can be used. Such an algorithm

will calculate the dissimilarity between consecutive image frames

(Chatzigiorgaki et. al., 2009). This type of algorithms assess the change

of information, like texture, color, and other geometrical aspects. If a

given frame has high dissimilarity then it is considered to be a key

frame. Unsupervised clustering methods have also been used to

analyze and extract keyframes (Li, & Hua, 2011).

2.2.2.2 Temporal templating

Representation of human activity using temporal templates is

another active area of research. In this case an action is considered as

motion over time. A naive implementation of temporal templates would

involve the assumption that the background is static and only the

subject of interest is in motion. There are several techniques

implemented to overcome this (Davis, & Bobick, 1997). Temporal

templating is done by generating a binary image commonly referred to

as a motion-energy image (MEI). This area of research is motivated by

the observation that human beings are capable of recognizing an

action from a low resolution representation with little to no information

about the 3 dimensional structure of the scene.

A MEI binary image is shown in Figure 2.2. The top row shows the

action in a sequence and the corresponding bottom row is a cumulative

binary image of all the pixels that has changed. The final image on the

bottom row is considered to have captured a robust spatial
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motion-distribution signal of the activity performed, in this case a

person sitting down. This image has not only captured the essence of

this particular action but also the direction or angle from which the

activity has been observed, ie.. the resulting MEI binary image can be

used to obtain both the action and the pose of the human beings. It is

also worth noting that the frames displayed in the top row are not

necessarily a continuous sequence captured by a camera (typical

between 30 to 60 fps), it could have been passed through a keyframe

extractor as discussed in the above section for computational

efficiency (Gao, 2011).

Exemplar based approaches are also found in human-activity

recognition. In these approaches a heuristic will be used to match a

given frame with an example from the training set (Gao, 2011).

Figure 2.2: MEI (motion energy image) of a person sitting
down. 1st row is the captured images, 2nd row is the

corresponding MEI
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2.2.2.3 HOG Feature extraction

Histogram of Oriented Gradient (HOG) descriptors is a popular and

widely used method for feature representation in object detection

tasks. HOG descriptors are implemented by first dividing the image

into smaller units or ‘cells’. A histogram of gradient detection is

compiled for each cell. This is done by applying a filtering kernel like

sobel or edge detector. On this the magnitude and direction of the

gradient can be calculated.

The resulting matrix (as shown in Figure 2.3) for each such cell is

then binned to form a histogram (Dalal & Triggs, 2005). A drawback

with this method is in the choice of the cell size. Since the local

descriptors are obtained on a fixed scale the object of interests cannot

vary a lot in size.

Figure 2.3: HOG descriptor of an image patch. Corresponding
matrices of magnitude and direction to the right
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2.2.3 Classification algorithms

The data from video stream is first passed through a foreground

extractor and then a feature extraction algorithm is used to represent

the data. The feature representation now possesses both the spatial

and temporal elements of the video data. At this stage a classification

algorithm is required to identify the action or interaction present in the

scene. Thus, the task at hand is to look at the data (X) and classify it

into a label (y).

For this task model-based systems are effective over algorithms like

Dynamic Time warping (DTW). Model based algorithms can be

classified into discriminative and generative models. Generative

models classify a given data by attempting to simulate the process by

which the data sequence can be generated. Hidden Markov Models

(HMM) and Dynamic Bayesian Networks (DBN) are examples for

generative models. These models learn the joint probability distribution

P(X, y) from the labeled dataset. Whereas the discriminative models

learn the conditional probability or posterior distribution p(X | y).

Artificial Neural Networks (ANN), and Support Vector Machines (SVM)

fall in the category of discriminative algorithms. There are also other

algorithms like K-nearest neighbors (KNN) and Binary tree algorithms

used for classification (Ke, et. al., 2013).

2.3 End to End classification

The end to end or behavior cloning approaches are mostly

performed by supervised machine learning (ML) algorithms. These

require labeled datasets. This research makes use of existing ML
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algorithms to achieve the task of human activity recognition. The

building blocks of these classifiers are briefly discussed in the following

sections.

2.3.1 Artificial Neural Networks

In order to properly acknowledge the strengths of Artificial Neural

Networks (ANN) it is important to recognize what the traditional or

alternate algorithms offer. Statistical classifiers that use Bayesian

decision theory is required to have an underlying probability model.

The assumed model is then used to calculate the posterior probability

for the classification. Evidently the performance of these classifiers are

only as good as the underlying assumptions. The fidelity of these

assumptions depend on the algorithm developers understanding of the

dataset. This is where the advantages of Neural Networks comes is. An

ANN starts out as a placeholder model containing random parameters

waiting to be modified into a classifier. This modification is fully data

driven. It is not required to provide any underlying statistical

distributions or functions explicitly. ANNs are universal function

approximators, which means they can approximate any function with

some accuracy. ANNs are also nonlinear algorithms, therefore they are

capable of modeling complex real world relationships (Zhang, 2000).

A simple ANN for classifier is shown in the Figure 2.4. This is a fully

connected variant or a Multilayer perceptron (MLP). The cell in each

layer called a neuron, and the connecting lines are the weights.

Weights are the parameters that are trained to provide the desired

output. The first layer will be have neurons equal to the number of
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inputs and the last layer will have number of neurons corresponding to

the number of classes in the output, it could also be regression units.

The middle layers or hidden layers can grow length-wise or depth-wise,

these are considered to be hyperparameters, which means it is left to

the developer to decide. Generally the deeper the hidden layer, more

complex functions the model can represent. It would also mean a

bigger dataset would be required to train the model.

Figure 2.4: Multilayer perceptron with two hidden layers

2.3.1.1 Feed forward network

For the given input features X ∈ Rd, and the output classes y ∈

1,2,3,...m, the fully connected network can be represented as ƒ : X .

The input data is passed on to the first layer and the resulting product

with the weights W produces a linear combination. This linear

combination is then added with a bias b, this is allows a function to be

shifted from its position. The result is then send to an activation

function for a non-linear mapping. This output represents the complete
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operation of one layer, and commonly called as the activation of a layer

h. Then the activation h is passed on to the next layer and all the

previous steps are performed for all the layers till the output. The

activation for the last layer for a classifier is the softmax of the output

layer neurons.

h1(X) = activation(W1 X + b1 )

h2(h1(X)) = activation(W2 (h1(X)) + b2 )

Output = h3(h2(X)) = activation(W3 (h2(X)) + b3 )

2.3.1.2 Activation functions

The activation function is a nonlinear function. For this paper a ReLU

or linear rectified unit is used. For an input x it outputs x if x is positive

and 0 if x is negative. It is simple to program and proved to be efficient

in optimization and computationally less expensive (Xu, 2015). ReLU

function can be represented as in equation below.

f(x) = max(0, x)

Figure 2.5: Graph of ReLU activation function
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One downside of ReLU is that it outputs 0 for any negative value

regardless of the magnitude. An alternative for this is a leaky ReLU, or

Noisy ReLU. A leaky ReLU allows a small output proportional to the

input when the input is negative, rather than outputting 0. Leaky ReLU

can be represented as in equation below.

f(x) = x if x > 0

f(x) = 0.01x if x<=0

One other type of activation function is sigmoid, it is a special case of

logistic function where the input is squeezed between 0 and 1.

Although it is not used as an activation function in this research it is

used as a gate function. The sigmoid operation is performed using the

following equation.

2.3.1.3 Backpropagation

In any machine learning models there are three essential steps. The

representation, evaluation and optimization of the model. As discussed

in the previous section the ANN is started out as a randomly initialized

tensors. The input data is feed-forwarded through the network to get

an output. The output is then compared with the label, this is the

evaluation step and there are several ways to do it, one would be to

measure the root mean square error (RMSE). Once the error is

calculated it is time to optimize the network, and for neural networks
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the most popular and effective choice of optimization is back

propagation (Hecht-Nielsen, 1992).

The back propagation algorithm calculates the gradient of the loss

function corresponding to each parameter using the chain rule. For

classification models the cross entropy loss can be used, as show in

equation below.

Loss (p, y) = -(y log(p) + (1 - y) log(1-p))

The gradient descent for each layer can be calculated as shown in

the following equation. Where ɳ is the learning rate, a relative small

scaling factor to overcome overshooting. W is the weight parameter

corresponding to that layer.

2.3.2 Overfitting

One of the challenges with an ANN is the issue of overfitting.

Whereby the model extracts the residual variations or noise from the

dataset, which would be irrelevant to the actual classification. This can

be detected by separating the dataset into training and test sets. If the

model performs well in training sets while underperforming

significantly in the test set it can be due to overfitting. It is worth noting

that if the model is underperforming in both the training and test sets,

then it is an underfitting problem, and this can be due to lack of data.

Performance is a relative metric and varies from problem to problem.

Univ
ers

ity
 of

 M
ala

ya



17

One way to overcome underfitting is to use a regularizer like L1 or L2

norm for all parameters. One other way that has been used effectively

is a Dropout layer. Dropout works by randomly dropping connections of

the Neural Network while training. This prevents the network from

co-adapting excessively (Srivastava, et.al., 2014). The Figure 2.6

shows dropout in action.

Figure 2.6: Dropout Neural Net Model. Left: A standard neural
net with 2 hidden layers. Right: An example of a thinned net
produced by applying dropout to the network on the left.
Crossed units have been dropped. (Srivastava et.al., 2014)

2.3.3 Convolutional neural networks

The effectiveness of ANNs in classification tasks has been

phenomenal, thanks to both the availability of large datasets, and high

performance parallel computing. Although ANNs offer a certain degree

of data agnostic performance, with modified architectures designed for

specific forms of data the performance can be even superior.

Convolutional Neural Networks (CNNs) are particularly developed to

take advantage of the spatial representation of information in images.

CNNs have been in use since the 1980s. In its earlier stage the
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performance has not been very promising. The discovery that the

detection of light in animal receptive fields are due to the cells in visual

cortex has been an inspiration for the CNN research (Hubel, & Wiesel,

1959). The seminal research of CNNs that led to an application was in

the 1990s by LeCun, et. al, the particular architecture was named

LeNet-5 and was used for handwriting recognition. In the mid-2000s

deeper CNN (DCNN) like AlexNet inspired by LeNet-5 has shown

significant improvements in classification process compared to

traditional methods t (Krizhevsky et al., 2012).

Figure 2.7: Architecture of LeNet-5 (LeCun et al., 1998)

In a regular neural network each input neuron is considered as

individual contributor of information and therefore the spatial

representation of the data is lost. Given a large dataset and complex

deep neural networks, this relation can be learned by the network, but

the lack of computation resources and labeled data makes it a difficult

task. With CNNs the main operations are convolutions, which are done

between the input of one layer and a kernel. This kernel is the

parameter being learned during training. There can been several

kernels deployed for each layer, and each kernel would learn a relevant

feature useful for classification, like vertical edges, colors, or even
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complex patterns. Each kernel is the size of a small patch of 2d space

and the same kernel is used as the operand for convolution throughout

the input, and it is done in a sliding manner as illustrated in the Figure

2.8. This offers the advantages of sparsity in connection and thus

decreased chance of overfitting, parameter sharing thus reducing the

required number of parameters to be learned, translational invariance

so the object can be in any part of the image, scale invariance so the

object can be of varying size, and some amount of translational

invariance so the object can be rotated up to some limit.

Figure 2.8: An example of a 2-d convolution operation

The feature value at location (i,j) in the kth feature map of lth layer,

zli,j,k is calculated as:

Zli,j,k = ( wlk )T xli,j + blk

2.3.4 Recurrent neural networks

CNNs are used to capture the spatial information about the position

and pose of the human beings in a given frame, but vanilla CNNs are

incapable of representing any form of temporal relations.
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Recurrent Neural Networks (RNNs) are suited for sequence models.

RNNs for each time step take into account the current input and the

previous one. For a simple RNN there are two parameters required to

be learned, the weight at the input neuron (Wxh) which represents the

influence of current state to the input and the recurrent neuron (Whh)

which represents the influence of the previous state to the current

state, and (Why) the influence of current state to the output. It can be

mathematically represented as in equations below. Where ht is the

current state, ht-1 is the previous state and yt is the output. All three

weight parameters are shared between all the inputs as shown in the

Figure 2.9. The training of this type of RNN is done using variants of

backpropagation through time algorithm (BPTT) (Werbos, 1990).

ht= activation( Whh ht-1 + Wxh+ xt )

yt = (Why ht)

Figure 2.9 : Recurrent Neural Network

There are several types of architecture in the RNNs depending on the

input and output size. For the application of human activity recognition

we consider an architecture where input size and output size are the

same (Tx = Ty), as shown in the Figure 2.9.
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2.3.4.1 Long short term memory (LSTM)

RNNs are versatile in its implementation, but one of the drawbacks is

that it only captures the short-term memory from the sequence. The

BPTT algorithm when training tends to either blow up or vanish

(exploding or vanishing gradient happens, when the timesteps are

separated widely, the networks parameters drops to extremely small

values or exponentially large values). Long Short Term Memory (LSTM)

networks are a type of RNN adept of learning long term information.

LSTMs were introduced in late 90s (Hochreiter, 1997). There are also

other network designs capable of doing this, like Gated Recurrent Units

(GRU) introduced by Cho, et al. in 2014. LSTMs can effectively bridge

relations with sequences over 1000 steps (Gers, et.al., 1999). The

underlying principle is to implement an efficient gradient based

algorithm where the flow of error are forced to be constant, therefore

overcoming the exploding and vanishing gradients. To achieve this,

special units or gates are incorporated into the traditional RNN.

Figure 2.10 : LSTM unit with internal gates
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There are several variants of LSTM implementations, for this

research the original architecture introduced by Schmidhuber, et. al. in

1997 is used. In which for any given temporal state (the total number of

states/cells are equivalent to the total number of frames in a sequence

of video) there are three state variables that go into the network, the

input from the current frame (xt), the output from the previous

layer(ht-1) and the cell state(Ct). The cell state (Ct) keeps track of the

long term behavior that needs to be preserved for the prediction of

current layer and future layers. It can be information like the position of

a person’s hand from a previous frame. There are two gates dictating

the behavior of the cell state. These can be defined as follows:

1. Forget gate layer:

It decides what information in the cell state should be discarded. It is

implemented using a sigmoid gate (as explained in the section of

activation functions). The output of a sigmoid is between 0 and 1. 0

would imply complete removal of a state and 1 would mean complete

retention of a state. The inputs to it are current input data and previous

output. It is represented as the first gate from left in the Figure 2.10.

2. Input gate layer:

It decides what new information should be added to the cell state.

This takes place in two steps, first a sigmoid gate decides what states

needed to be updated. The second is a Candidate generator (Ĉt)
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implemented using a tanh activator. This candidate generator comes

up with a list a possible features that should be considered for future

predictions.

The forget gate layer and input gate layer updates the cell state (Ct).

The last gate is an output gate which generates the output (ht) for

the current state. An internal output is first generated from the current

input (xt) and previous output (ht-1). Then the internal output (ot) is

filtered using the cell state (Ct).
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CHAPTER 3: METHODOLOGY

3.1 Introduction

This chapter presents the research procedure undertaken in

developing the machine learning classifier for human activity

recognition. The first step in any supervised learning problem is to

collect a labeled dataset which is sufficiently large and contains

enough variation for practical learning purposes. The following section

provides a brief description of the dataset used for this research

3.2 Dataset

The labeled dataset used for this project is the “semantic description

of human activities” dataset (SDHA 2010) collected by Ryoo, et. al..

The motivation of the researchers on collecting this dataset was to

explore the classification of human interactions in a realistic setting.

The original dataset contains videos of six human-human interactions

as shown in the Figure 3.1. They are ‘pointing’, ‘pushing’, ‘hugging’,

‘kicking’, ‘punching’ and ‘hand-shaking’. For this research only 5

classes are used, class ‘pointing’ is omitted. The dataset uses different

participants, backgrounds and clothing conditions for better variety in

data. The camera is not fully static producing some videos, this causes

a bit of jitter and thus providing a more real life like situation. There are

also other agents in some frames like pedestrians walking by or a tree

branches causing a bit of occlusion.
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Figure 3.1 : Sample of interactions present in the SDHA
dataset (Ryoo, et.al., 2010).

3.2.1 Data format

The data is collected as video sequences. The labels of interaction

was provided separately. Each original video has a resolution of 720p X

480p, with 3 channels of RGB data. The video was recorded at 30fps.

There is 20 sequence of videos collected for each interaction class. An

interaction starts out with two people approaching from either sides of

the frame and performing an action like hand-shaking. The average

pixel height of the people in the frames are about 200 pixels (Ryoo, et.

al., 2010).

3.2.2 Data preprocessing

The original data was collected at a high resolution with 3 color

channels. In order to reduce the computational cost and to overcome

any bias in the dataset there was many preprocessing steps used. First

the video data was converted into image frames and stored in disk for

efficiency while trying different models. Ffmpeg suite was used for

converting video data into frames. A dense conversion of video to

frame would cause 30 frames to be captured from every second of

video, but after initial observation it was evident that the continuous

frames at this rate did not carry much information. A keyframe

extraction algorithm was initially attempted to get an optimal frame

rate conversion, but it proved to be less useful as it required
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optimization to perform well with different backgrounds. After some

trial a fixed conversion rate of 15 fps was chosen, as it seems to

achieve a balance between reduced computational cost and minimal

loss of temporal information. The first row of the image below shows a

conversion rate at 15fps (which was used for this research) and the

second row shows a conversion rate of 30fps. It is visible from the

image that at 30fps very few additional information is present in

consecutive frames.

Figure 3.2 : Top line represents frame conversion of images
at 15fps, and bottom line represents frame conversion at 30fps.

Once the frames were generated it was converted to grayscale as

the color information of the dress or background is not very relevant to

the classification task, and it also reduces the data to be processed by

one third. The next step in preprocessing frames is to apply a Gaussian

filter to blur the pixels slightly. This will help remove the noise in the

images. The kernel size chosen for the Gaussian blur operation is 5X5.

Then the image was reduced in scale for further computational

efficiency. The scaling factor was decided by trial and error on a

benchmark convolutional network model. Images of resolution below
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28X28 started to decrease performance significantly. So 32X32 and

64X64 pixel images were tried out in the model. The last step in

preprocessing is to normalize the pixel values between 0 and 1. This is

to help the neural network from exploding gradient issues while

training and to remove biases. The flow of image processing from video

to processed images is represented in the image below.

Figure 3.3 : Sequence of steps in image preprocessing.

Figure 3.4 : Sample of images from each step of
preprocessing stages.

3.2.3 Statistical distribution of data

For multiclass prediction problem it is important to have a balanced

dataset. An imbalanced dataset will lead to a scenario where one class

could have more observations and thus could lead to a biased model.

As mentioned earlier for each class there is 20 instances of interaction

in the dataset. Therefore in terms of sequences the data is balanced.

But the time taken to perform each action can be different and

therefore the duration of each instance can be varying. A simple frame
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count was implemented to identify if there was an imbalance in data.

As shown in the Figure 3.5 the frames for each class is evenly

distributed.

Figure 3.5 : Data distribution of images belonging to each
class.

3.2.4 Data augmentation

For neural network models in order to represent complex relations

multiple hidden layers are often implemented. This will cause the

parameters to be learned to increase rapidly, which means more data

would generally be required to train the model. However, collecting

data can be costly and time consuming. One method to overcome this

is by augmenting the existing data. This can also help overcome the

bias issues (Perez & Wang, 2017), as the network will get acquainted to

more complex scenarios, like if the agents are occluded and are not

fully visible, or in scenarios where the weather or lighting conditions

are different. For this research the following image augmentation

techniques were used: horizontal flip, rotation, Gaussian noise,
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contrast variation, and random geometric occlusions. The factor by

which each of the augmentations were used in the training was based

on previous research in this area (Thoma, 2017). A sample of each of

the aforementioned augmentation process is shown in the Figure 3.6.

Figure 3.6 : Sample images undergone data augmentation.
From top to bottom contrast adjusted, horizontal flip, rotated,

Gaussian noise, and random occlusion.

3.3 Machine learning model

Once the dataset preprocessing and augmentation is done the next

stage in the research was to develop the neural network model. The
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model developed needs to be able to capture both spatial and temporal

elements in order to do the classification. Several architectures were

tried before arriving at the final model.

3.3.1 Performance criterion

Since this is a classification problem with 5 classes, by simply

choosing from a random prediction would yield 20% accuracy. If the

statistical distribution of the data is considered, as discussed in the

section 3.2.3, the most represented data point in the dataset is class 2

(hug), which has over 1470 instances (image frames extracted). The

total number of image frames used in the training and testing process

is about 5700 images. Thus, if the most represented class is chosen the

accuracy will be over 25%. While the objective of the research is to

achieve a model that is useful in real world scenarios, the

aforementioned statistics are considered as a benchmark criteria. Any

model below 30% is no better than random prediction. With this criteria

in consideration several network architectures were sieved out. One of

the architecture which did not meet this criteria was a single layer

LSTM network with 100 cells (the input to which was a flattened vector

of size 1024 of the preprocessed input image). This proved a fully

dense temporal network was not good at learning the problem, which

lead to the exploration of a cascaded approach, where each frames in a

sequence will be spatially reduced to a lower dimension using a

convnet, and this reduced or encoded representation of the complete

sequence will be used to train a recurrent network. In order to encode

or reduce the spatial information meaningfully two separate networks
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were considered. A fully-convolutional autoencoder network and a

deep convolutional network followed by fully connected layers.

3.3.2 Spatial Network

As mentioned in the section 3.3.1, two spatially aware networks were

built to identify which showed better performance in classification. The

architecture and intended use of both the FCN and CNN are described

in this section.

3.3.2.1 Fully Convolutional Network (FCN)

A Fully Convolutional Network (FCN) as the name suggests does not

have any dense layers, it is convolutional operation from start to end.

The output of the network is the same dimension as the input. There

are two parts in the network the encoder and the decoder, where the

encoder and decoder meets is the latent layer, which is generally a

much smaller vector compared to the input size (Long, et. al., 2015).

This can be thought of as a compression engine. The label is same as

the input during training. Such a network is shown in the Figure 3.7.
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Figure 3.7 : An autoencoder network (Hinton & Salakhutdinov,
2006)

In this research an FCN network with 6 convolutional layers was

trained, where 3 initial layers reduced the input of size (28 x 28) to a

160 sized vector. A sample of input and output images from the trained

FCN is shown in Figure 3.8.

Figure 3.8 : Top line: inputs to FCN network. Bottom line:
output of FCN network to corresponding input.
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The corresponding activation of 160 values in the latent space is

re-sized into a (4 X 40) vector and displayed in the Figure 3.9.

Figure 3.9 : Output of latent layer of the FCN network. The
input to which is shown in Figure 3.8

The model was trained for 1000 epochs. The training and testing

data was split with a ratio close to 7:3. The model was built and trained

in Keras. The intention to build this FCN model was to extract the data

from the latent layer, which is a vector of 160 activations and use it to

train a recurrent network capable of capturing the temporal pattern

and produce a classification of the respective human activity

performed.

3.3.2.2 Convolutional Neural Network (CNN)

The architecture for the convolutional neural network is as shown in

the Table 3.1. The model was built and trained using TensorFlow. The

model was trained for 250 epochs. The training and testing data was

split with a ratio close to 7:3.
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Table 3.1: CNN architecture

Layer
Name

Layer Description Input
Shape

Output
Shape

Activation

Conv_1 Convolutional Layer
with 6 filters

32X32X1 28X28X6 ReLU

Dropout_c1 Dropout layer, 0.5
probability

Max_pool_1 Max pooling layer
Kernel (2X2)
Strides (2X2)

28X28X6 14X14X6

Conv_2 Convolutional Layer
with 16 filters

14X14X6 10X10X16 ReLU

Dropout_c2 Dropout layer, 0.5
probability

Max_pool_2 Max pooling layer
Kernel (2X2)
Strides (2X2)

10X10X16 5X5X16

Flatten 5X5X16 400

Fc_1 Fully connected layer 400 120 ReLU

Dropout_fc1 Dropout layer, 0.5
probability

Fc_2 Fully connected layer 120 84 ReLU

Dropout_fc2 Dropout layer, 0.5
probability

Fc_3 Fully connected and
final layer.

84 6 None

This particular architecture was finalized after couple trials with

hyperparameters. The dropout layers were added to reduce the model

from overfitting. The intention to build this CNN model was to fully

train it on individual frames of human activity and the ground truth

(which class the image was obtained from) and once trained, extract
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the activation of layer Fc_2, which has an output vector of size 84 and

use it as input to the recurrent neural network for final classification of

respective human activity.

3.3.3 Temporal Network

The two networks trained previously, i.e. the CNN and FCN network

only analyze individual frames and therefore only possessed spatial

information. In order to classify a video, temporal information is

essential. The network chosen for this purpose is a “Long Short Term

Memory” or LSTM network. The network consisted of one LSTM layer

with 100 cells followed by 4 fully connected hidden layers. The network

architecture is as shown in the Table 3.2.

Table 3.2: LSTM architecture

Layer name Layer description Output shape Activation

LSTM cell LSTM layer with 100 cells 100

Fc_1 Fully connected layer 2000 ReLU

Dropout Dropout; probability 0.2

Fc_2 Fully connected layer 1000 ReLU

Dropout Dropout; probability 0.2

Fc_3 Fully connected layer 100 ReLU

Dropout Dropout; probability 0.2

Fc_4 Fully connected layer 6 Softmax
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In order to train the LSTM network in Keras the input data needs to

be arranged into a vector where the first dimension is total training

samples, second dimension is the number of timesteps in a sequence,

and the third dimension is the number of features for each time-steps.

It can be represented as [samples, time-steps, features]. One of the

challenges with this arrangement is that the number of time-step in

each sequence of incoming video needs to be fixed. The number of

time steps is equal to the number of frames in a video, which can be

varying with video length. One way to overcome this issue was to fix

the number of timesteps regardless of the video length. When the

video length exceeds the prefixed timesteps the inference in RNN will

be split into multiple overlapping stages. When the number of frames is

less than the prefixed time-steps the difference in time-steps will be

filled with vectors of zeros. Training the model will learn that zero does

not carry any information.

3.3.4 Spatio-Temporal Network

Now that two different spatial networks and one temporal network is

built, it is time to combine them and train to obtain the final

classification.

3.3.4.1 FCN-LSTM architecture

In this arrangement each incoming frames of a sequence will be first

passed through the FCN network which will encode the incoming image

into a 160 (4X4X10) sized flat vector, this is shown in the Figure 3.10.

Univ
ers

ity
 of

 M
ala

ya



37

Figure 3.10 : FCN-LSTM architecture

For each video sequences first the inference for all frames in that

sequence will be obtained. This will be a vector of size [frame number X

160]. Since there can be varying number of frames in each video it is

padded with zeros to obtain a fixed number of frames for all inputs to

the recurrent network. After analyzing the distribution of frames in

training size this fixed time-step or frame numbers was chosen to be

100. This is because the longest video in the training set only produced

93 frames. After training, the models performance was not satisfactory.

The overall performance of the model was about 70% accuracy on the

whole dataset, but with the test set (which contained 40% of the whole

dataset) the accuracy was 30%, which means the model was mostly

overfitting.

3.3.4.2 CNN-LSTM architecture

In this setup each incoming frames went through the CNN and the

activation of the second to last fully-connected layer (Fc_2) was

calculated. This was a vector of 84 activations. The rest of the network
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is similar to the FCN and LSTM network as discussed in the Section

3.3.4.1. The same operation of padding as discussed in Section 3.3.4.1

to obtain the fixed number of frames for all input videos was also

performed in this architecture. The model was trained for 25 epochs.

The accuracy of the model was above 97% on the test set. The model

had performed with high accuracy. The loss and accuracy of this model

is included in the Chapter 4 : Results.

3.4 End to end inference

As the performance of the cascaded CNN and LSTM network was

superior it was chosen for the building the end to end inference

network. The end to end inference network take a video file as input

and produces the final prediction as shown in Figure 3.10. The pipeline

is visualized in the image below. The downward arrows connecting

LSTM network shows the temporal relation.

Figure 3.11 : Complete pipeline of the CNN-LSTM human
interaction recognition architecture.
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CHAPTER 4: RESULTS

This chapter presents the results obtained from the machine

learning models, the hyperparameters chosen, and the systems used

for the development environment to obtain the results.

The coding for the project was mostly done using Python, and the

frameworks used for building and training the neural network model

was TensorFlow. TensorFlow was chosen because of the availability of

several helper regularly used helper functions and its ability to train in

parallel on a GPU. It was essential that the model be trained using a

GPU because a lot of prototypes were tried out and the training process

was extremely slow without parallel execution. The TensorFlow version

used was 1.3+.

The CNN and FCN models was trained on an Amazon Web Services

(AWS) computing instance for faster performance. The system

specification are as follows:

Processor :Intel Xeon E5-2686 v4 (Broadwell)

GPU : NVIDIA Tesla M60 / 8 GB GDDR5

OS : Ubuntu 16.04

The LSTM network was trained on the local machine. The inference

routine was also tested on the same local machine. The specs of which

are as follows:

Processor : Intel® Core™ i7-7700HQ CPU @ 2.80GHz × 8

Memory : 8GB
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GPU : GeForce GTX 1050 Ti/ 4 GB GDDR5

OS : Ubuntu 16.04 / 64-bit

4.1 CNN performance

The convolutional neural network trained for the network used 2

layers of convolution and max pooling followed by 3 fully connected

layers. The final model was trained for 250 epochs with a train test split

of 7:3. The accuracy on the test data was 98.5% and the accuracy on

training set reached 99.4%. The model plateaued in performance at

about 200 epochs. The accuracy on test set is shown in Figure 4.1. The

learning rate used was 0.001, and the optimizer chosen was Adam.

Adam is a variant of stochastic gradient descent and has been

empirically proven to perform better than many other stochastic

optimization methods (Kingma & Ba, 2014).

Figure 4.1 : CNN model accuracy on test set
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An instance of prediction from test set is shown in the Figure 4.2

along with the output of the softmax layer.

Figure 4.2 : CNN model prediction on random test sample.

4.2 FCN performance

The fully-convolutional autoencoder network had three convolutional

layers each followed by a max pooling layer, which lead to the latent

layer of vector size 160. The latent layer was followed by the decoder

layer which had three convolutional layers each followed by an

upsampling operation (Wang et. al., 2017). The train test split was 7:3

and the optimizer used was Adam. The network was trained for 1000

epochs. Figure 4.3 shows the training accuracy and loss of the model

on test and train data.
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Figure 4.3 : FCN model accuracy and loss on train and test set

Figure 4.4 and Figure 4.5 shows the comparison in performance

between the same model trained for 1000 epochs and 100 epochs.

Figure 4.4 : FCN input and output after 1000 epochs
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Figure 4.5 : FCN input and output after 100 epochs

4.3 LSTM performance

The last stem in the research was to train the LSTM network. In order

to train the LSTM network the input data is the encoded vector from the

spatial models. The output is the predicted class. Since there was two

spatial models: FCN and CNN the LSTM network was trained on both.

The difference in performance is evident. The CNN followed by LSTM

showed superior performance. The optimizer used in both cases were

Adam, and train test split was of the ration 6:4. Both networks were

trained for 25 epochs. The loss and accuracy from the first few epochs

of CNN followed by LSTM is shown in Figure 4.6. The model performed

close to 99% in test data.
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Figure 4.6 : CNN-LSTM loss and accuracy on train and test set
in first few epochs

The accuracy and loss on the FCN followed by LSTM layer is shown in

Figure 4.7. It is visible from the accuracy of the test set that the model

is not learning anything about the data, it stays constant even after 25

epochs of training. At best the performance of the model on test set

was about 35% which is not so much better than random prediction.
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Figure 4.7 : FCN-LSTM loss and accuracy on train and test set

4.4 Summary

In conclusion the CNN-LSTM network has shown good performance

and it is evident from the testing that it is due to the fact that the CNN

network was trained on the human activity dataset, which has lead the

spatial network to learn features pertaining to the classification task.

FCN being an autoencoder network, was trained to compress the input

into a latent space and then reproduce an output which is very close to
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the input image. Following this analysis it can be deduced that the

FCN-LSTM network’s lack of accuracy is due to the fact that the spatial

part of the network was not trained on the human activity dataset and

therefore did not learn the features relating to the task of human

activity classification.
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CHAPTER 5: CONCLUSION

This research has developed and tested several machine learning

models on a human interaction dataset. The CNN-LSTM model has

successfully learned the classification problem. This was verified by

doing an inference on a test set which was never used during training.

By increasing the size of the dataset to include more interactions and

agents this model can be further scaled for a more general human

interaction detection task.

In Chapter 2, the complexities of the tasks involved in human activity

recognition was discussed, and it is evident that a feature engineering

based approach would not do a good job due to edge cases and the

amount of possible interactions and the settings in which these

interactions take place can be vastly different. The importance of

developing a robust technique for classification was also discussed.

5.1 Future work

There are mainly two areas in which the research can be further

developed. They are discussed in this section.

5.1.1 Human pose estimation in spatial layer

The performance of the CNN-LSTM model was due to the fact that it

was able to both analyze and include the spatial and temporal nature of

the problem at hand. If there was an abundant source of labeled

data and computational resources available, perhaps it would have

been possible to design a plain and massive deep neural network to

perform the classification. However, since that is not the case it is
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important to explore innovative methods to build models which have

features capable of representing the underlying statistical variance of

the classification problem. For example the CNN is very good at

analyzing spatial information, the weights are shared between all the

patches of an image for any given kernel. This provides the advantage

of spatial awareness, while being easy to train. Similar efforts can be

made to identify novel methods in analyzing human activity. The

human posture is a feature that is shared among all the input images in

the human activity recognition dataset (Boulay, et. al, 2003). By

including human pose estimation into the spatial layer the model could

learn more useful features from the same amount of data.

5.1.2 Human recognition and boundary detection

The current model assumes the input only has one human to human

interaction happening and it is not fully scale invariant, that is even if

there is only one human to human interaction present but if the action

space is only consuming a smaller area of the entire frame the model

might not perform well. This is because of the fact that there was on

average a 50% - 60% space occupancy of for every interaction

recorded in the dataset. This can be overcome by using a bounding box

or pixel wise semantic segmentation before running the inference of

the data on the final model. SSD like networks are really fast at doing

this (Liu, et. al., 2016) and by using transfer learning the model can be

trained to do that with minimal modifications.
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