DESIGN AND SIMULATION OF CAPACITIVE MEMS MICROPHONE FOR FULLY IMPLANTABLE COCHLEAR IMPLANTS

SOMANAATHAN MUTHUSAMY

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

2018

DESIGN AND SIMULATION OF CAPACITIVE MEMS MICROPHONE FOR FULLY IMPLANTABLE COCHLEAR IMPLANTS

SOMANAATHAN MUTHUSAMY

THESIS SUBMITTED IN FULFILMENT OF THE REQUIRMENTS FOR THE DEGREE OF MASTER OF MECHATRONIC ENGINEERING

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

2018

ORIGINAL LITERACY WORK DECLARATION

Name of Candidate: Somanaathan Muthusamy

(I.C/Passport No: Matric No: KGF160010

Name of Degree: Master of Mechatronic Engineering

Title of Thesis: Design and simulation of capacitive mems microphone for fully implantable cochlear implants

Field of Study: BIOMEMS

I do solemnly and sincerely declare that:

- 1) I am the sole author/writer of this Work;
- 2) This Work is original;
- 3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- 4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- 5) I hereby assign all and every right in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- 6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date:

Subscribed and solemnly declared before,

Witness's Signature

Date:

Name:

Designation

ABSTRACT

In this work we present the design, Taguchi optimization and simulation of an acoustic sensors array for detecting specific frequencies in a range and allowing their identification from a complex audio signal to develop an application for cochlear implants. The technological development of cochlear implants has enabled patients affected by severe to intense hearing loss to hear sounds and recognize speech in various degree. The sensitivity is obtained when a membrane resonates when stimulated by acoustic wave. In this research sensitivity and linearity of membrane has been improved to overcome the disability of hearing soft and loud sound. The different gap size between the membrane and backplates generates a capacitance change that can pass to an electronic circuit for output signal. The frequency of membrane increases when the spring constant of each membrane increase.

In this study, several structures have been studied to optimize the sensitivity and linearity. Based on the results, shortlisted the best performance structures for the Taguchi optimization and Eigen frequency analysis for designated number of arrays. Each array again simulated for identify the sensitivity, linearity and dimension. The best design is being verified from this methodology. This design produces high sensitivity 0.18pF/Pa, linearity 0.0011pF/µm and mechanical sensitivity 35.6µm/Pa compares to existing design. This innovative design can improve current commercial cochlear implant by hearing soft and loud sound without adjusting manually. The life quality of cochlear implant patient is improved by new high sensitive capacitive microphone.

ABSTRAK

Dalam karya ini, kami membentangkan reka bentuk, pengoptimuman dan simulasi Taguchi dan simulasi pelbagai sensor akustik untuk mengesan frekuensi tertentu dalam pelbagai dan membolehkan pengenalan mereka dari isyarat audio kompleks untuk membangunkan aplikasi untuk implan koklea. Perkembangan teknologi implan koklea telah membolehkan pesakit terjejas oleh pendengaran yang teruk dan kuat untuk mendengar suara dan mengiktiraf ucapan dalam pelbagai peringkat. Kepekaan diperoleh apabila membran bergema ketika dirangsang oleh gelombang akustik. Dalam kepekaan kajian dan linieriti membran telah diperbaiki untuk mengatasi kecacatan mendengar bunyi lembut dan kuat. Saiz jurang yang berlainan di antara membran dan backplate menghasilkan perubahan kapasitif yang boleh lulus ke litar elektronik untuk isyarat keluaran.

Dalam kajian ini, beberapa struktur telah dikaji untuk mengoptimumkan kepekaan dan linier. Berdasarkan hasilnya, disenarai pendek struktur kinerja terbaik untuk pengoptimalan Taguchi dan analisis kekerapan Eigen untuk bilangan baris yang ditetapkan. Setiap array sekali lagi disimulasikan untuk mengenal pasti kepekaan, linearity dan dimensi. Reka bentuk terbaik sedang disahkan dari metodologi ini. Reka bentuk ini menghasilkan kepekaan tinggi 0.18pF / Pa, linearity 0.0011pF / µm dan kepekaan mekanik 35.6µm / Pa berbanding dengan reka bentuk yang sedia ada. Reka bentuk yang inovatif ini dapat meningkatkan implan koklea komersial semasa dengan mendengar bunyi lembut dan kuat tanpa menyesuaikan secara manual. Kualiti hidup pesakit implan koklea diperbaiki oleh mikrofon kapasitif tinggi yang baru.

ACKNOWLEDGEMENT

First, I would like to express gratitude to my advisor, Prof Norhayati Soin. I have been amazingly fortunate to have a supervisor who has given me the freedom to explore things on my own, and with her patient guidance whenever my steps are faltering.

Throughout this journey of research, she has shared tremendous knowledge in the area Mems application. Her kindness and support have helped me a lot to overcome many critical situations throughout my project. It has been a magnificent pleasure to work under her as one of his research project students.

A special thanks to my family members for sharing their understandings and helping me in terms of my finance in my study. Their passionate belief in the education has encourage me to excel academically. Their strong values have formed who I am today and will continue to do so. I'm dedicating this success to my lovely Father and Mother Mr & Mrs Muthusamy Sarasuwathy for their continuous encouragements and motivation. I'm taking this opportunity to thank all my family members for their effort to make my dream comes true.

Lastly, I would like to thank to those who has helped me in research project directly or indirectly.

TABLE OF CONTENT

Abstract III
AbstrakIV
AcknowledgementV
Table of content
List of Figures IX
List of TablesXIII
List of Symbols And Abbreviation XIV
List of AppendicesXV
CHAPTER 1 INTRODUCTION 1
1.1 Overview
1.2 Objective of thesis
1.3 Scope of work
1.4 Organization of thesis
CHAPTER 2 LITERATURE REVIEW 4
2.1 Introduction to mems microphones
2.2 Previous study of cochelar implanted mems microphone
2.3 Study of capacitive mems microphone
2.3.1 Overview of mems capacitive microphone
2.3.2 Previous study of capacitive mems microphone for hearing aid 10

2.4 Summary	
CHAPTER 3 RESEARCH METHODOLOGY	
3.1 Introduction	
3.2 Project methodology	
3.3 Overall project flow chart	19
3.3.1 Identify the design specification	20
3.3.2 Structure selection and basic dimension of structure	
3.3.3 Comsol multiphysics 4.3a	
3.3.4 Taguchi optimization method using minitab	
3.3.5 Determination of suitable structure	
3.3.6 Analysis of sensitivity and linearity	
3.3.7 Analysis of eigenfrequency of each array	
3.3.8 Determination of suitable dimension of arrays	
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 Analysis of sensitivity and linearity of structures	39
4.1.1 Mems microphone structure 1	
4.1.2 Mems microphone structure 2	44
4.1.3 Mems microphone structure 3	49
4.1.4 Mems microphone structure 4	54
4.1.5 Mems microphone proposed structure	59
4.2 Determination of suitable structure ci	63
4.3 Analysis eigenfrequency of each array	65
4.3.1 Introduction	65
4.3.2 Taguchi method of array for geometric analysis	65
4.3.3 Eigen frequency analysis of each arrays	67
4.4 Analysis of sensitivity and linearity of each array	

4.5 Determination of suitable dimension of arrays	38
4.6 Summary capacitive microphone final design	39
CHAPTER 5 CONCLUSION AND FUTURE WORKS9)1
5.1 Conclusion)1
5.2 Future works) 2
REFERENCES)3
APPENDIXES)5
Appendix A: Table of calculation)5
Appendix B: Overall dimension of array9) 7
Appendix C: Reference journals	8

LIST OF FIGURES

Figure 2. 1 Classification of implantable sensor	5
Figure 2. 2 Proposed system for the sensing sound (Koyuncuoğlu et al., 2017)	6
Figure 2. 3 Diagram show the Top View arrangement of Microphone array	7
Figure 2. 4 Cross sectional view of microphone	7
Figure 2. 5 Different behaviors on membranes when stimulated by a mechanical force, (a	ı) 8
First oscillating mode, (b) third oscillating mode and (c) sixth oscillating mode	8
Figure 2. 6 Cross section view of corrugated membranes	10
Figure 2. 7 3D Detail view of corrugated microphone design	11
Figure 2. 8 Central deflection of corrugated and flat diaphragm with N=2, 5, 8	11
Figure 2. 9 Top and front view of the structure	12
Figure 2. 10 Maximum displacement curves with variable diameter	13
Figure 2. 11 Top view diaphragm layout mask (b) cross section view of the microphone.	15
Figure 2. 12 Center deflection versus sound pressure of a flat and spring supported	
diaphragm	15
Figure 3. 1 Overall project flow chart	19
Figure 3. 2 Show basic dimension of structures	21
Figure 3. 3 2D sketches from the Autodesk inventor 2017	22
Figure 3. 4 Selection of geometric parameter to the COMSOL model	23
Figure 3. 5 COMSOL live link interfaces	23
Figure 3. 6 Selection of material	24
Figure 3. 7 Boundary load condition	25
Figure 3. 8 Generating meshing	25
Figure 3. 9 Generating or computing the simulation	26

Figure 3. 10 Von Mises stress diagram	. 26
Figure 3. 11 Surface displacement y component field	. 27
Figure 3. 12 Generating new file	. 28
Figure 3. 13 Selection of level of design and the number of factors	. 28
Figure 3. 14 Select number of factors in available design tab	. 29
Figure 3. 15 Selecting the available design	. 29
Figure 3. 16 Modify the parameter and name accordingly	. 30
Figure 3. 17 Graph of Main effects Plots for means	. 31
Figure 4. 1 Structure of a central-post MEMS microphone.(Yang, 2010)	. 39
Figure 4. 2 Main effects plot for diameter and thickness	. 40
Figure 4. 3 Show the y displacement component of the structure	. 41
Figure 4. 4 Graph of Mechanical sensitivity vs Pressure	. 42
Figure 4. 5 Graph of capacitance vs pressure of optimized and non-optimized parameter	. 42
Figure 4. 6 Graph of Capacitance Vs Displacement for Non-Optimized membrane	. 43
Figure 4. 7 Graph of Capacitance Vs Displacement for Optimized membrane	. 43
Figure 4. 8 Main effect plot for means of significant parameter of corrugated diaphragm	. 44
Figure 4. 9 Show the y displacement corrugated membrane	. 45
Figure 4. 10 Graph of Mechanical sensitivity vs Pressure	. 46
Figure 4. 11 Graph of Capacitance Vs Displacement for Non-Optimized membrane	. 47
Figure 4. 12 Graph of Capacitance Vs Displacement for Optimized membrane	. 47
Figure 4. 13 Graph of Capacitance Vs Pressure of Optimized and Non Optimized	
membrane	. 48
Figure 4. 14 Main effects plot for means for spring supported microphone	. 49
Figure 4. 15 Show the z displacement spring supported membrane	. 50
Figure 4. 16 Graph of Mechanical sensitivity vs Pressure	. 51

Figure 4. 17 Graph of capacitance vs displacement for non-optimized parameter	52
Figure 4. 18 Graph of capacitance vs displacement for optimized parameter	52
Figure 4. 19 Graph of Capacitance vs Pressure of Non-optimized structure	53
Figure 4. 20 Graph of Capacitance vs Pressure of Non-Optimized structure	53
Figure 4. 21 Main effects plot for means for spring condenser microphone	55
Figure 4. 22 shows y displacement of spring supported membranes	56
Figure 4. 23 show Graph of Mechanical sensitivity vs Pressure	57
Figure 4. 24 Graph of capacitance vs displacement for non-optimized and optimized	
structure	57
Figure 4. 25 Graph of capacitance vs pressure of non-optimized and optimized structure	e. 58
Figure 4. 26 Proposed structure design dimension	59
Figure 4. 27 Main effects plot for means for proposed design	59
Figure 4. 28 shows y displacement of proposed design	60
Figure 4. 29 show the graph of mechanical sensitivity vs pressure	61
Figure 4. 30 Shows the graph of capacitance vs displacement	62
Figure 4. 31 Main effects plot for means of proposed design Eigen frequency	66
Figure 4. 32 Microphone array 1 Eigenfrequency @635Hz	68
Figure 4. 33 Microphone array 2 eigenfrequency @1000Hz	68
Figure 4. 34 Microphone array 3 eigenfrequency @1500Hz	69
Figure 4. 35 Microphone array 4 eigenfrequency @2000Hz	69
Figure 4. 36 Microphone array 5 eigenfrequency @2500Hz	70
Figure 4. 37 Microphone array 6 eigenfrequency @3000Hz	70
Figure 4. 38 Microphone array 7 eigenfrequency @3500Hz	71
Figure 4. 39 Microphone array 8 eigenfrequency @4000Hz	71
Figure 4. 40 Microphone array 9 eigenfrequency @4500Hz	72

Figure 4. 41 Microphone array 10 eigenfrequency @5030Hz	. 72
Figure 4. 42 Histogram of internal stress vs frequency	. 73
Figure 4. 43 The graph of spring constant vs frequency	. 74
Figure 4. 44 Shows y displacement of Array 1	. 76
Figure 4. 45 Shows y displacement of Array 2	. 76
Figure 4. 46 Shows y displacement of Array 3	. 77
Figure 4. 47 Shows y displacement of Array 4	. 77
Figure 4. 48 Shows y displacement of Array 5	. 78
Figure 4. 49 Shows y displacement of Array 6	78
Figure 4. 50 Shows y displacement of Array 7	. 79
Figure 4. 51 Shows y displacement of Array 8	. 79
Figure 4. 52 Shows y displacement of Array 9	. 80
Figure 4. 53 Shows y displacement of Array 10	. 80
Figure 4. 54 Graph of Capacitance Vs Displacement of Array 1	. 81
Figure 4. 55 Graph of Capacitance Vs Displacement of Array 2	. 81
Figure 4. 56 Graph of Capacitance Vs Displacement of Array 3	. 82
Figure 4. 57 Graph of Capacitance Vs Displacement of Array 4	. 82
Figure 4. 58 Graph of Capacitance Vs Displacement of Array 5	. 83
Figure 4. 59 Graph of Capacitance Vs Displacement of Array 6	. 83
Figure 4. 60 Graph of Capacitance Vs Displacement of Array 7	. 84
Figure 4. 61 Graph of Capacitance Vs Displacement of Array 8	. 84
Figure 4. 62 Graph of Capacitance Vs Displacement of Array 9	. 85
Figure 4. 63 Graph of Capacitance Vs Displacement of Array 10	. 85
Figure 4. 64 Graph of Mechanical Sensitivity Vs Pressure of all arrays	. 86
Figure 4. 65 Graph of Capacitance Vs Pressure of all Arrays	86

LIST OF TABLES

Table 3. 1 Design specification	. 20
Table 4. 1 Numerical value of Optimized Parameter	. 41
Table 4. 2 Show results of sensitivity of optimized and non-optimized parameter	. 41
Table 4. 3 Numerical value of Optimized Parameter	. 45
Table 4. 4 Show results of sensitivity of optimized and non-optimized parameter	. 46
Table 4. 5 Numerical value of optimized parameter	. 50
Table 4. 6 Show results of sensitivity of optimized and non-optimized parameter	. 51
Table 4. 7 Numerical value of optimized parameter	. 56
Table 4. 8 Show results of sensitivity of optimized and non-optimized parameter	. 56
Table 4. 9 Optimized parameter of the proposed Design	. 60
Table 4. 10 shows the results of sensitivity, capacitance and linearity	. 61
Table 4. 11 Table of Comparison	. 63
Table 4. 12 Taguchi optimization array matrix for proposed design	. 66
Table 4. 13 Spring constant value and frequency obtained	. 74
Table 4. 14 Detail technical specification of proposed design cochlear implants	. 88
Table 4. 15 Summary of final design characteristics	. 89
Table 4. 16 characteristics of microphone final design and existing design	. 89

LIST OF SYMBOLS AND ABBREVIATION

- CI Cochlear Implant
- HA Hearing Aids
- MEI Middle Ear Implant
- DOE Degree of Experiment
- RF Radio Frequency
- ω angular velocity (rad/s)
- m mass of membranes (kg)
- f frequency of membrane (Hz)
- K is spring constant (N/m)
- ΔX is deflection of membrane (m)

LIST OF APPENDICES

Appendix A: Table of Calculation

Appendix B: Overall dimension of Array

Appendix C: Reference Journals

University Malays

CHAPTER 1 INTRODUCTION

1.1 OVERVIEW

The cochlea is a key organ in the inner ear, which converts the mechanical waves of the incoming sound into electrical signals to the auditory nerves. Any damage in cochlea would result problems with the sensorineural connections in the inner ear and cause severe hearing loss. There are nearly 360 million people living with disabling hearing loss greater than 40 dB SPL (sound pressure level) as of 2015 (Koyuncuoğlu et al., 2017).

The technological development of cochlear implants has enabled patients affected by severe to intense hearing loss to hear sounds and recognize speech in various degrees. The inconsistency of hearing results in subjects with post-lingual deafness has been significant, and the most crucial causes predict a good outcome are a fleeting period of pre-implant hearing deprivation and some residual hearing.

This is the reason for cochlear implants prolonged to contribute to a larger population (Bittencourt et al., 2012). It has been concluded that cochlear implants give an improved performance in post-lingual deaf patients when compared to conventional hearing aids as verified by audiological tests. The silicon microphones were designed based on the principles of the piezoelectric, piezoresistive, and capacitive. These types of microphones had been successfully fabricated using silicon micromachining techniques. However, the capacitive microphones have been studied by many researchers due to its superior performances such as high sensitivity, low power consumption, low noise level, and high stability.

The frequency response of the microphone elaborates how the sensitivity varies with frequency, similarly, the linearity of the microphone describes how the magnitude of the microphone output varies with the amplitude of the incident pressure.

The dual back plate microphone has several advantages over the single-back plate structure. It has the potential for up to twice the sensitivity, a higher bias voltage further increasing the sensitivity, and increased linearity assuming comparable materials and geometry to a corresponding single-back plate microphone. In capacitive microphones, the vent resistance has the potential to dominate the low frequency noise, especially in high-sensitivity devices (Glucomentor, 2012). Noise contributions from the interface circuit also depend on the type of interface circuit chosen.

According to United States FDA (Food and Drug Administration) Medical devices reported disadvantage of hearing less soft and loud sound without changing sensitivity of cochlear implant. U.S. Department of Health and Human Services. U.S Food and Drug administration.[https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/Impl antsandProsthetics/CochlearImplants/ucm062843.htm]. Accessed 15 March 2018.

1.2 OBJECTIVE OF THESIS

The objective of this thesis is to improve sensitivity and linearity Capacitive MEMS microphone for fully implantable Cochlear Implants. The objective of this thesis in details is below.

- I. Improve the mechanical sensitivity of the capacitive memes microphone of each microphone by higher than 0.007μ m/Pa
- II. Improve capacitive sensitivity of mems microphone of each structure of arrays by higher than 0.17 pF/Pa
- III. improve linearity of the capacitive mems microphone of each structure of arrays by higher than 0.003 $pF/\mu m$

1.3 SCOPE OF WORK

The scope of this thesis to improve sensitivity and linearity Capacitive MEMS microphone for fully implantable Cochlear Implants is outlined as follows;

- I. Design and develop capacitive MEMS microphone to for fully implantable cochlear implants
- II. Conduct Taguchi optimization on existing hearing aids microphone without changing the diaphragm membrane features.
- III. Conduct structural simulation studies through COMSOL Simulation software on existing hearing aid's microphone without changing the diaphragm membrane features.
- IV. Perform the Eigen frequency analysis to structure for each arrays

1.4 ORGANIZATION OF THESIS

This thesis is organized in five chapters. In Chapter 1, the explanation for the project, which will be given in a general term, problem statements and objective of this project will be elaborated followed by the scopes of the project will be covered in this project.

Chapter 2 describes the fundamental of the cochlear implants and various capacitive microphones for hearing aids that can be used for cochlear implants

In Chapter 3, it describes the methodology for development of capacitive mems microphone of fully implanted cochlear implants

As for Chapter 4, the results that are obtained are discussed as well as both discussions and analysis for this project. The strength and weakness of this project are also discussed in this chapter. Finally, in Chapter 5, a conclusion is made for this project and recommendations for future works for this project will be the ending for this thesis.

CHAPTER 2 LITERATURE REVIEW

The purpose of this chapter is to review literature related to the capacitive mems microphone and shows some of the fundamental aspects of the fully implanted cochlear mems microphone. Further, in this chapter will have the recent development of mems microphones and it's contributing to comparison of structure. This will help to draw design specification of this proposed mems microphone structure.

2.1 INTRODUCTION TO MEMS MICROPHONES.

Hearing loss is among the most common disabling conditions in decades and affects about 5.3% of the world population(Lima, Moret, & Tabanez, 2015). Of this quota, 8.9% are children under 10 years of age, with an incidence of congenital hearing loss from 1.5 to 5.95 every 1000 births.

There are few forms of hearing loss can be treated using hearing devices, such as hearing aids (HAs), middle ear implants (MEIs) or cochlear implants (CIs). With few exemptions, these devices use one or more microphones, located in a behind-the-ear device or in the outer ear canal, to capture the sound field, which can be in turn processed and transmitted forward(Calero, Paul, Gesing, Alves, & Cordioli, 2018). In HAs, the sound is processed, amplified and sent into the ear canal using vibration-acoustic systems.

Cochlear implants CI are used by such patients to bypass the damaged hair cells or other components of cochlea and directly stimulate the nerve cells. The current state CI systems has several drawbacks such as frequent battery replacement requirement or risk of external components damage under water(Koyuncuoğlu et al., 2017). Fully implantable CI systems have the potential to eliminate many of the problems, but a reliable internal power source and an implantable acoustic sensor are the main bottlenecks. In these cases, the CI which uses an electrode array inserted into the cochlea to stimulate the auditory nerve fibers appears as an alternative. In currently available CIs, the sound signal is also picked up by microphones located(Calero et al., 2018). In a behind-the-ear unit and it is then processed and transmitted via radio frequency (RF) to a subcutaneous element surgically implanted on the temporal bone.

The table below shows the implantable sensor. This classification is based, primarily on the sensor positioning and considers the transduction mechanism such as capacitive, electromagnetic, optical, piezo resistive and piezoelectric(Calero et al., 2018). Finally, the classification accounts for the sensor type: microphone, accelerometer, and displacement sensor and force transducer.

Figure 2. 1 Classification of implantable sensor

2.2 PREVIOUS STUDY OF COCHELAR IMPLANTED MEMS MICROPHONE

In the cochlear implant the entire natural hearing mechanism is bypassed, although most parts of the hearing system are operational such as the eardrum and ossicles. An array of piezoelectric cantilever transducers is placed in the eardrum to provide the necessary signal for neural stimulation (Koyuncuoğlu et al., 2017). The author research is based on the Thin Film PZT Acoustic Sensor for Fully Implantable Cochlear Implants. The following Figure 2.2 shows the proposed system from the author.

Figure 2. 2 Proposed system for the sensing sound (Koyuncuoğlu et al., 2017)

The system designed in a way when an acoustic sound pressure impinges on the eardrum, the cantilever beam matched with exciting frequency starts to vibrate along with it. It's consist of 8-channel or array of multi-frequency structure, where each cantilever resonates to a selected frequency band in the cochlea. The results show the microphone arrays resonating at a specific frequency within the hearing band from 300Hz to 1600Hz, the transducer senses eardrum vibration and generates the required voltage output for the

stimulating circuitry. The high sensitivity of the microphone sensor, 391.9 mV/Pa @900 Hz. Furthermore, the cantilever beam length varies accordingly to the frequency of resonating.

Similarly, according to (Quiroz, Báez H.,, Mendoza, Alemán M., , & Villa, 2014). Developed acoustic sensors array of specific frequencies in a range and of complex audio signal. Designed an array of 14 microphones, its responding to a specific frequency from a defined range. The analyzed frequency range was selected from 512 Hz to 4.2 kHz where the intelligence information has in it. Figure 2.4 shows the arrangement of microphone arrays according to resonate frequency.

Figure 2. 3 Diagram show the Top View arrangement of Microphone array.

Figure 2. 4 Cross sectional view of microphone

It consists of 14 membranes of the array which having the same diameter, referring to the Figure 2.4, number of springs and its geometrical characteristics are depending on the specific frequency at which each microphone responds when stimulated by a complex audio signal. Figure 2.5 clearly shows the performance of microphone membrane at a different resonating frequency at specified number of spring.

Figure 2. 5 Different behaviors on membranes when stimulated by a mechanical force, (a)First oscillating mode, (b) third oscillating mode and (c) sixth oscillating mode.

2.3 STUDY OF CAPACITIVE MEMS MICROPHONE

The literature review in this section is more focusing on the capacitive mems microphone. Further, in this section several previous studies on the mems capacitive microphone will be reviewed and it's included the comparison structure that's selected for the optimization process in the chapter 4 results and discussion.

2.3.1 OVERVIEW OF MEMS CAPACITIVE MICROPHONE

Historically the first capacitive microphone was introduced in 1983 by Royer et al (Krishnapriya & Baiju, 2014). The MEMS microphone offers low power consumption, good sensitivity and are available in very small. The MEMS capacitive microphones are used in mobile phone applications, laptops and other consumer applications, medical application such as hearing aids, automotive and military applications.

Capacitive mems microphones diaphragm comes with several shapes mostly are in circular, square, rectangle and some other shapes with perforated holes(Chaithra, Nithya, & Nagaraja, 2017). Most of Its come back plates. The capacitive mems microphones diaphragm is generally flat in shape. The most crucial factor of capacitive mems microphone displacement of diaphragm and sensitivity. The sensitivity decreased if the air damping is not reduced. Therefore, the perforation in diaphragm controls the air damping in gap and increases the sensitivity of the microphone

2.3.2 PREVIOUS STUDY OF CAPACITIVE MEMS MICROPHONE FOR

HEARING AID

There are several microphone structures developed for a capacitive mems microphone for hearing aids. In this section 2.3.1 will elaborate the general finding of each structure and the sensitivity and linearity. The primary important given to these parameters due to achieve objective of the project.

i. TYPE OF DIAPHRAGM IN CAPACITIVE

According to analytical study shows that the mechanical sensitivity of diaphragm can be increased using corrugations this is because of reducing the effect of residual stress in corrugated diaphragm (Taybi & Ganji, 2013). Based on the understanding from the paper the mechanical sensitivity means ratio of deflection over pressure μ m/Pa. As the deflection of the microphone increases the sensitivity of microphone increases.

The following Figure 2.6 below shows the cross section of the corrugated diaphragm proposed by the author. The number of corrugation also plays a key role in the deflection of the microphone membrane.

Figure 2. 6 Cross section view of corrugated membranes

Figure 2. 7 3D Detail view of corrugated microphone design

The Behavior of a corrugated diaphragm is determined by the number of corrugations (N). The number corrugation gives significant effects on the sensitivity. As the number of corrugations increases, the central deflection also increases under the same load. The following Figure 2.8 shows the central deflection of circular corrugated diaphragms versus pressure for different number of corrugations.

Figure 2. 8 Central deflection of corrugated and flat diaphragm with N=2, 5, 8

Based on the Figure 2.8, comparison between the flat diagram and N=8 corrugated diaphragm the central deflection of the corrugated membrane shows high deflection to pressure under the same load.

Some structure analyses the sensitivity of structural based one thickness of microphone membranes (Yang, 2010). According to the finding the central post of the circular membranes is fixed. The deflection of the membranes is reacting at the circumference of the circle. The following Figure 2.9 shows the top view and front view of structure.

Figure 2. 9 Top and front view of the structure

The central-post novel MEMS microphone with free boundary condition have been designed to reduce the residual stress and improve the sensitivity of the membrane. The shorter release distance design is helpful to avoid the sticking between membrane and under-electrode to increase the process yield. It has been reported by the author the displacement of the membrane increases with the increasing membrane diameter to enhance sensitivity of the microphone. The membrane cannot be increased without any restriction as it may cause breakdown due to instability when the membrane deflection is 1/3 of the distance between the two electrodes.

Figure 2. 10 Maximum displacement curves with variable diameter.

Based on the above graph shown in the Figure 2.10. Its show the maximum displacement is achieve at 1.5µm. This gives clear indication the thickness of microphone membranes plays significant role in achieving the maximum sensitivity. However, the minimum thickness of membranes determined by the yield strength of membranes under boundary condition.

The Early MEMS microphone design utilizes a silicon-type with fully clamped flat diaphragm, so its deflection to the sound pressure is very small (in the order of several nanometers). Since mechanical sensitivity is proportional to the deflection of the diaphragm, a larger diaphragm deflection is highly desirable for a high sensitivity microphone (Mohamad, 2010).

Spring type diaphragm generally are restricting the movement of the top and bottom plate (Chaithra et al., 2017). Mechanical energy is generally stored by the spring. When a spring is compressed or stretched from its resting position, it exerts an opposing force approximately proportional to its change in length.

Based on the proposed structure by (Mohamad, 2010). The structure demonstrated in free moving diaphragm which is supported by a spring mechanism around its corner. The material property is significant in deflection of the diaphragm membrane. Due to that Polysilicon material was proposed to be used as the diaphragm material due to its low stiffness property and to prevent the extra deposition of conductive material on the diaphragm.

The maximum center deflection of a flat and spring supported diaphragm for a sound pressure between 0 dB SPL and 140 dB SPL (dB SPL – decibel about the sound pressure level, 0 dB SPL = $2x10^{-5}$ Pa). It's reported the spring supported diaphragm deflection is linearly proportional to the sound pressure decibel and its parallel with the flat diaphragm response, the sensitivity has been increased about 100 times. This also indicates that the spring supported diaphragm can be a suitable candidate to replace or enhance the existing flat diaphragm condenser MEMS microphone.

(a) Mask layout showing thin slits

(b) Cross section of diaphragm and perforated back plate

Figure 2. 11 Top view diaphragm layout mask (b) cross section view of the microphone

The above Figure 2.11 it's a proposed design of the author. As a result, the spring supported design in the graph below in Figure 2.12 shows the central deflection of the spring supported diaphragm greater than the flat diaphragm. Further to that the flat diaphragm response has a higher resonance frequency (about 109 kHz) due to the greater diaphragm stiffness compared to about 9.75 kHz resonance frequency of a spring supported diaphragm.

Center Deflection vs. Sound Pressure

Figure 2. 12 Center deflection versus sound pressure of a flat and spring supported

diaphragm

2.4 SUMMARY

Several type capacitive diaphragm is reviewed for cochlear implants and hearing aids. In cochlear implant microphone few number array has been developed to resonate at frequency from 400Hz to 5000Hz. The sensitivity varies in each arrays fully implantable cochlear implant microphone. The sensitivity decreases when frequency of each array increases. The sensitivity of each microphone array can be increase from the existing design. This will overcome the disadvantage of hearing less soft and loud sound without changing sensitivity of cochlear implant.

NO PAIN JOURN Thin Film PZ Fully Cock Design a Design a a	PARAMETER TOUDNAL ASSOCIATE	STREET BE OF	MECHANISM OF	DIMENSION OF		MICROPHONE	O TATE ALLONG O		
	ALL ASSULTATE	MICROPHONE	MICROPHONE	DIAPHARGM	DEFLECTION		LINEARITY	FREQUENCY	COMMENTS AND FINDINGS
	Thin Film PZI Acoustic Sensor for Fully Implantable Cochear Implants	Manana Ma	CANTILEVER SUPPORTE BEAM	BEAM LENGTH 0.8mm-3.4mm WIDTH 1mm PZT THK 1µm	NOT SPECIFIED	SILLICON & PZF	392 mV/Pa @ 900 Hz	300Hz-4800 Hz	Number of array used is 8. Beam length varies due to the frequency of exitation. Sensitivity varies according to the beam length.
	Design and simulation of a membranes-based acoustic sensors array for cochlear implant applications		SPRING SUPPORTED	DIAMETER IS 700µm THK 2.25 µm	NOT SPECIFIED	POLYSILLICON	0.17pF/Pa	500Hz - 4200Hz	Number of array used is 14. Layout dimension of array is 3.83mm x 3.83mm. frequency varies accordingly to munker of spring supported.
3 Design and 5 Micropho	Design and Simulation of MEMS Microphone for Hearing Aid Application	s	SPRING SUPPORTED	SUPPORTED 500µm X 500µm X 0.5 µm	0.13µm @ 1Pa	GOLD	17.4 pE/Pa	10 kHz - 43 kHz	Its profrated square hole microphone diaphragm. Flat frequency response from 10Hz to 10 kHz covering the audio frequency range.
4 Design and N of MEMS Cs	Design and Multiphysics Analysis of MEMS Capacitive Microphone		CURROGATED DIAPHRAGM (Thickness of 3µm, size of 0.5mm × 0.5mm and air gap of 1 µm.	0.7169µm @ 1KPa	WINIMATE	7E-10 m/Pa	1 NOT SPECIFIED	The corrugation and perforation in diaphragm reduces the residual stress and increases the mechanical sensitivity of diaphragm. Instead of perforate diack plate, holes have been made on the diaphragm.
Modelling a S Diaphragm M	Modelling and Optimisation of a Spring-Supported Diaphragm Capacitive MEMS Microphone	S manual contractions of the second s	SPRING SUPPORTED	4 mm X 4mm X 4µm	NOT SPECIFIED	POLYSILLICON	4.67 mV/Pa	10.2kHz	A 1 mm2 spring-supported diaphragm microphone is designed using several optimized performance parameters to give a – 3 dB operating handwidth of 10.2 kHz, a sensitivity of 4.67 mV/Pa
6 Analytical Elemen Advance d M M	Analytical Analysis and Finite Element Simulation of Advanced Membranes for Silicon Microphones		SPRING SUPPORTED	DIAMETER IS 100µm THK 0.4µm	NOT SPECIFIED	SILLICON	8.2 mV/Pa/V	78.3kHz	This advantages are particularly valid for few and narrow spring structures and result in higher rnicrophone sensitivity.
THE SENSI 01 01 01 01 01 01 01 01 01 01 01	THE SENSITIVITY ANALYSIS OF A MEMS MICROPHONE WITH DIFFERENT MEMBRANE DIAMETERS		CENTRAL SUPPORT	DIAMETER IS 370µm THK 0.4µm	0.07µm @ 1Pa	POLYSILLICON	0.84 Pf	1MHz t	Finding the relationship between the sensitivity and dimension of the diameter of the membrane. As the diameter of membrane increase sensitivity increase
The Effect Mechani Diaphra Capacit	The Effect of Corrugations on Mechanical Sensitivity of Diaphragm for MEMS Capacitive Microphone		CORRUGATED DESIGN	DIAMETER IS 500µm THK 2µm	3.5µm @ 500Pa	Diaphragm with Poisson's ratio of 0.22, Young's modulus of 160 GPa,	0.007µm/Pa	NOT SPECIFIED	Number of currogations is taken as 8. Mechanical sensitivity increases as the pressure and number of currogation increase
9 Design and Implantabl	Design and Fabrication of Fully Implantable MEMS Cochlea		ELECTRODE TYPE	2mm X 2mm TO 0.75mm X 0.75mm	NOT SPECIFIED	SIXNY diaphragm NOT SPECIFIED	NOT SPECIFIED	lkHz to 7kHz	The sound is detected by thin SiXNV diaphnagm due to resonant frequency and the displacement of the membrane caused by acoustic pressure. The displacement is detected employing piezonesistive electrodes (NiCr).
Spiral-Shape Cam Cam for Fully Ir	Spiral-Shaped Piezoek etric MEMS Cantilever Array for Fully Implantable Hearing Systems		SPIRAL CANTILEVER SUPPORTED MASS	2 mm X 2 mm X 12.5µm.	NOT SPECIFIED	SILLICON	NOT SPECIFIED	300Hz-700 Hz	The test array consisting of 16 cantilevers has been fabricated by standard bulk micromaching using a Si- on-Insulator (SOI) wafe and adminum titride (AIN) as a complementary metal-oxide-semiconductor (CMOS) and biocompatible piezoe lectric material.
Optimizatic C Acceler Inplants A	Optimization of MEMS Based Capacitive Accelerometer for Fully Implanable Hearing Aid Application		ACCELEROM ETER TYPE	Plate Thickness 25µm. Width of Finger 2µm. Finger overlap width 2µm Finger length 116µm	NOT SPECIFIED	SILLICON	2.617E-4 pF/µm	10KHz	Comb drive accelerometer consists of fixed fingers attached to the accele rometer frame and movable fingers fixed to the proof mass and suspended by springs . Any external acceleration causes the proof mass and movable fingers to move along the direction of body force, the fixed comb re mains stationary.

CHAPTER 3 RESEARCH METHODOLOGY

3.1 INTRODUCTION

This chapter provides the research plan of this study and describes the necessary steps for the research to achieve the objective. The research method is foundation as it layout approaches and measurement that, make sure the research will handle correctly. This chapter describes the steps in Simulation studies and Taguchi Optimization Method for the capacitive microphone for the fully implantable hearing device.

3.2 PROJECT METHODOLOGY

The main objective of this section is to outline a research method of this capacitive mems microphone. It presents and explains the list of steps taken to carry out this research from data collection through data analysis. This research presents five capacitive mems microphone structure and compared the performance of the microphone such as the sensitivity and linearity. To reduce complexity of the optimization and simulation studies the method has been separated into two parts. In first section the simulation analysis of the selected structures to optimized for maximum sensitivity and linearity.

Then evaluating structure, performance in producing highest sensitivity and linearity. The selected best outcome structure will go forward to the second section of the simulation studies for Eigen frequency analysis for the designated number of arrays. Then further evaluating the structure of each array for Eigen frequency, sensitivity and linearity of the overall cochlear implant structure.

3.3 OVERALL PROJECT FLOW CHART

Figure 3. 1 Overall project flow chart

3.3.1 IDENTIFY THE DESIGN SPECIFICATION

The Table 3.1 shows the existing design and proposed design specification for this research project. The design specification is derived from the literature review summary after analyzing performance on the sensitivity, linearity and frequency of response of each structure array. The analysis of simulation and optimization is focused to accomplish the proposed design specification.

	DE	SIGN SPECIFICATION	
ITEM	PARAMETERS	EXISTING DESIGN	PROPOSED DESIGN
1	Number of Array	8 (Koyuncuoğlu et al., 2017)	10
2	Overall array Dimension	3.3mm x 3.6mm	3.0mm x 3.0mm
3	Capacitive Sensitivity	0.17 pF/Pa (Quiroz, Báez H.,, Mendoza, Alemán M., , & Villa, 2014)	>0.17pF/Pa
4	Linearity	0.0002 pF/μm (Apoorva Dwivedi & Khanna, 2016)	>0.0002pF/µm
5	Mechanical Sensitivity	0.007μm/Pa (Taybi & Ganji, 2013)	>0.007µm/Pa
6	Frequency	300Hz - 4800 Hz (Koyuncuoğlu et al., 2017)	300Hz - 5000Hz
7	Material	Polysilicon	Polysilicon

Table 3. 1 Design specification
3.3.2 STRUCTURE SELECTION AND BASIC DIMENSION OF STRUCTURE

In this section four structure has been selected from literature review journals and a proposed structure to meet the objective of this thesis. The four structures have been selected randomly from the literature review summary table. The selected structure is from hearing device application. By this implementation of capacitive mems microphone for cochlear implants are feasible to develop. The basic dimension contributes vital part in optimization and the simulation studies for deflection of membrane and frequency analysis.

Figure 3. 2 Show basic dimension of structures

3.3.3 COMSOL MULTIPHYSICS 4.3a

Following is the simulation steps of COMSOL Multiphysics and optimization of the microphone structure from the author Taybi, M., & Ganji, B. A. (2013). Geometric part has created using Autodesk inventor Professional 2017. Then transfer 3D CAD data using the Livelink feature of COMSOL Multiphysics.

Figure 3. 3 2D sketches from the Autodesk inventor 2017

Before building 2D sketches it's important to verify units in Micrometer μ m in document settings in the Autodesk inventor tool. Create 2D sketch and constraint it accordingly. Use suitable feature such as extrude, revolve, sweep and loaf to create 3D parts. Since above structure is in circular form, revolve feature is used to create the 3D model.

	0								
Comp 3 lid Bodies(1)	COMSOL Parameter Sel	lection			>				INDUT
w: Master igin			Franks	MarchaelMalar					
volution2 ketch1	Parameter Name	Unit	Equation	Nominal Value	Add To COMSOL Model				
l of Part	d7	micron	25 micron	25.000000					
	- d8	micron	10 micron	10.000000	y y	//			
	- d19	micron	5 micron	5.000000	×				
	- d20	micron	1.5 micron	1.500000			r		
	d23	micron	350 micron	350.000000					
	User Parameters								
								5	

Figure 3. 4 Selection of geometric parameter to the COMSOL model

To transfer the geometric parameter to COMSOL model, select the parameter selection in COMSOL Multiphysics in Autodesk inventor tap.

	optionsHelp 🛷 😨 🗊 🛄 🛓 🕶 🕲 🕲	the sharehouse of the set		
fodel Builder		Geometry Staterial Browser	- C d Graphics	
o ne ter ter ter		Build All		00 🚩 🗆 📾
FYP Comp 3 S	Structural Mechanics.mph (root)	- Units		
Global Del	finitions			
Paramet		Scale values when changing units		
🗸 🚺 Model 1 (r		Length unit:		
🗸 = Definiti		μm	✓	
	ndary System 1 (sys1)	Angular unit:		
> 🔛 View			200	
~ X Geomet	f Build All	F8 25		
Elvel B Form	* Import	nced	0	
> S Materia	LiveLink Interfaces	> * View LiveLink for AutoCAD		
Solid M	CAD Defeaturing	> * IveLink for Creo Parametric	-200	
> Mesh 1	CAD Repair	LiveLink for Inventor		
C Study 1	* Cap Faces	* LiveLink for Pro/ENGINEER	a ////////////////////////////////////	
Results	* D Block	LiveLink for SolidWorks LiveLink for SpaceClaim		
	* Cone	LiveLink for spaceciaim		
	* Cylinder		200	
	* Sphere			
	More Primitives	>		
	* Work Plane			
	* S Extrude			
	* Revolve			
	* Sweep			
	Boolean Operations	>	-200	
	Transforms	>		
	Conversions	>		
	* Split		z X	
	** Delete Entities			
	*% Object Selection		Š.	
			Messages 🕴 — Progress 💷 Log 📳 Results	
	Virtual Operations	>	Messages A Progress Cog I Results	
	Measurements		COMSOL 4.3.0.151	
	Insert Sequence from File		CONTROL TOWN OF	
	Export to File			
	 Delete Sequence 			
	Rename	F2		
	Properties		<	
	Dynamic Help	F1		201 MB 625 MB

Figure 3. 5 COMSOL live link interfaces

Open new documents in the COMSOL Multiphysics, select solid structural and add physics model. Right click on the geometric model, select the live link for inventor in the live link interfaces.

FYP Comp 3 Structural Mechanics.mph - COMSOL M	fultiphysics						- 0
ile Edit View Options Help							
IBC 😂 🥱 🧒 🖸 🖳 🛓 🖬							
Model Builder	° 🗆 🗣 Material 🗣 Material Browser						d Graphics
41 11 at 11 at 11 at 11 at 11 at 11						1	∞ ∞ 0 3 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FYP Comp 3 Structural Mechanics.mph (root)	Geometric Entity Selection						
Global Definitions							
Parameters	Geometric entity level: Domain					\sim	
V Model 1 (mod I)	Selection: All dom	ains				\sim	
Definitions	1					× +	
Boundary System 1 (sys1)						Qa -	
→ View 1 → A Geometry 1						līb 🤞	200
 Geometry 1 LiveLink for Inventor 1 (cad1) 							
Form Union (fin)							0
✓ Staterials							
> Sold [solid] (mat1)	 Override 						-200
Solid Mechanics (solid)	Material Properties						
> 🚳 Mesh 1	- Material Contents						a
> 😂 Study 1	Property	Marrie	Value	Unit	December 201		
> 🖬 Results	✓ Density	rho	rho(T[Property group Basic		200
	 ✓ Density ✓ Young's modulus 	E	E(T[1/		Young's modulus ar		
	 Young's modulus Poisson's ratio 	nu	E(1[1/		Young's modulus an		
	dL	dL.	dL(T[1_	1	Basic	ia	0
	CTE	CTE	CTE(T_	1.00	Basic		
	Thermal conductivity	k	k_soli				
	Resistivity	res	res so		Basic		
	Coefficient of thermal ex		alpha(Basic		-200
	Heat capacity at constan		C_soli_				
		ср	C_SOIL.	J/ (K	Dasic	~	
	 Appearance 						
							ý ý
							Messages 🖄 📼 Progress 💷 Log 💽 Results
							COMSOL 4.3.0.151
							247 MB 598 MB
O Type here to search	1 🗆 🦲		~		S	-	A A

Figure 3. 6 Selection of material

Select the Gold (Au) material from the material browser. COMSOL has already predetermined the material properties for the user.

15 FYP Comp 3 Structural Mechanics.mph - COMSOL Multip	physics		- o ×
File Edit View Options Help			
□			
	🕼 Boundary Load 🔰 Material Browser	Graphics	
			a 📾
v V FYP Comp 3 Structural Mechanics.mph (root)	Boundary Selection		Consol 10
✓	Advator Manual		MULTIPHUSICS 🐨
Parameters	Selection: Manual		
V Model 1 (mod1)	22 25		
Definitions	25 👍 🗕		
Boundary System 1 (sys1)	34 37		
> 🔛 View 1	37 46	-200 0	200
→ A Geometry 1	49	-200	8
LiveLink for Inventor 1 (cad1)			
Form Union (fin)	Override and Contribution		
✓ ♥ Materials	Equation		
> Sold [solid] (mat1)			200
 Solid Mechanics (solid) 			200
😂 Linear Elastic Material 1	Coordinate system:		
💷 Free 1			
Calification Initial Values 1	Global coordinate system ~		
Boundary Load 1	* Force		
Fixed Constraint 1			
> 🗐 Mesh 1	Load type:		
> 🥁 Study 1	Pressure ~		
> 🖬 Results	Pressure:		
	P 1 N/m ²		-200
		×	
		ý	
		Messages 😫 🗢 Progress 🖽 Log 🔚 Results	- D
		4	
		COMSOL 4.3.0.151	
			~
		4	>
		3	00 MB 610 MB
O Type here to search	J 🗆 🦻 📄 🔒 🗿 😪 🕅 其		8 ^ 🗠 🖮 🦪 d× 11:16 PM
	U 🖸 🔁 🖬 💼 🧧 🐋 💷 其		🗚 ^ 📥 🔚 🕼 🗘 5/2/2018 🔞

Figure 3. 7 Boundary load condition

Assign the boundary load by changing the load type to Pressure to 1Pa. Select the surface that experiencing pressure. Add fixed constraint and select the corner surface.

Figure 3. 8 Generating meshing

Select finer mesh size in predefined column.

Figure 3. 9 Generating or computing the simulation

Right click on the study pane and compute the simulation

/1 > 1 5 4 5 4 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
🖻 🗖 3D Plot Group 🗣 Material Browser	🔍 🗖 🍻 Graphics	
 ≫ [#] Plot	🛄 🔍 Q A 🛞 🕼 + 🖿 🗠 🔚 🚩 🗆 📾	
		0 • 1.739×10 ⁴
	COMSOL 4.3.0.151	

Figure 3. 10 Von Mises stress diagram

15 FYP Comp 3 Structural Mechanics.mph - COMSOL Multip	physics				-	o ×
File Edit View Options Help						
0000 900000 4. 8//1	6 0 to to to	11 11 1 1 11 11 11 11 11 11 11				
T Model Builder	3D Plot Group	Staterial Browser	- 0	d Graphics		
	Plot			Q Q A 🕀 🔸 🕶 🗠 🗠 💌 🗆 📾		
v 19 FYP Comp 3 Structural Mechanics.mph (root)	× Data			Surface: Displacement field, Y component	t Displacement field, Y component_(µm)	
> Global Definitions	* Data				MUTPH	See 🖗
 Model 1 (mod1) 	Data set:	Solution 1	~ 12		-200 ▲ 0	
Definitions						0
> 🗡 Geometry 1	> Title					Č.
> 🌻 Materials	- Plot Settings					
Solid Mechanics (solid)						-0.01
🗁 Linear Elastic Material 1	View:	Automatic	~ 13			
🕼 Free 1	Show hidden	objects				0
😂 Initial Values 1	Plot data se					
Boundary Load 1 Fixed Constraint 1	Color:	Black	~			-0.02
Mesh 1	Color:	Black	÷			
△ Size	Frame:	Material (X, Y, Z)	~			
Free Tetrahedral 1						HC.03
✓ [™] Study 1	Color Legend					
C Step 1: Stationary	-					
> In. Solver Configurations	Window Setti	ngs				40.04
v 🖸 Results						
> 👖 Data Sets						
55 Derived Values						-0,05
III Tables						
v 🔁 Stress (solid)						
> 🔄 Surface 1						-0.06 -200
> 🖬 Deflection						
Export Reports						
D8 Reports					0	-0.07
				2		
					▼ -0.0	3718
				Messages 🗵 🗢 Progress 🗉 Log 💽 Results		• •
				COMSOL 4.3.0.151		~
						~
						>
					579 MB 654 MB	
) 🤤 📄 🧰 🚺		5	😭 🥵 ^ 📥 🔚 🕼 🕁 12:39.	
- iype note to search	~			·	g × ∧ 🛎 🗎 (% 🗸 \$/3/20	018 3

Figure 3. 11 Surface displacement y component field

Based on the simulation results, outcomes in terms of the von Mises stress diagram where it will indicate the maximum yield stress of the structure as shown in Figure 3.10and also show the maximum deflection of the structure according to the x, y and z axis as its shown in the Figure 3.10.

There will similar steps of simulation studies will be undergoes again for analyzing Eigen frequency of the structure. Shortlisting one most influential structure for deflection and that structure will undergo further frequency analysis for number of arrays specified in design specification for the cochlear implants.

3.3.4 TAGUCHI OPTIMIZATION METHOD USING MINITAB

The following optimization method has been done by using the Minitab 18.0 version. This section will elaborate the steps on Taguchi optimization.

Sessi	on		ANOVA DOE			Screening +																						
	aguchi Respons	An	Control Ch Quality Too Reliability/S Multivariate	ls iurvival		Mixture		07, ,		20	1																	
	Nominal is		Time Series					te Taguchi D ie Custom Ti		an																		
	Level Di	23 1	Tables		1 H	mouny Dangit		yze Taguchi																				
1	1		Nonparami		•			ict Taguchi R																				
	2		Equivalence	e Tests Sample Size			-i hicu	cc ragocnin	600		1																	
	Delta	•	Power and	sample size																								
	Rank	3 3	3 3	3																								
	Respons																											
	Level	D23	D7	D8	D19	D20																						
	2 0.0 3 0.0	000662 0	0.001057 0.001874	0.001713 0.001139	0.001099 0.000875	0.002072 0.001222 0.000587																						
	2 0.0 3 0.0 Delta 0.0	000662 0 003126 0 003033 0	0.001057 0.001874 0.000924	0.001713 0.001139 0.000683	0.001099 0.000875 0.001033	0.002072 0.001222 0.000587 0.001485																						
	2 0.0 3 0.0	000662 0	0.001057 0.001874	0.001713 0.001139	0.001099 0.000875	0.002072 0.001222 0.000587 0.001485																						
	2 0.0 3 0.0 Delta 0.0 Rank	000662 0 003126 0 003033 0 1 C2	0.001057 0.001874 0.000924 4 C3	0.001713 0.001139 0.000683 5 C4	0.001099 0.000875 0.001033 3 C5	0.002072 0.001222 0.000587 0.001485 2 C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 D23	000662 0 003126 0 003033 0 1 C2 D7	0.001057 0.001874 0.000924 4 C3 D8	0.001713 0.001139 0.000683 5 C4 D19	0.001099 0.000875 0.001033 3 C5 D20	0.002072 0.001222 0.000587 0.001485 2 C6 Simulated Deflection m	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 D23 150	000662 0 003126 0 003033 0 1 C2	0.001057 0.001874 0.000924 4 C3	0.001713 0.001139 0.000683 5 C4	0.001099 0.000875 0.001033 3 C5	0.002072 0.001222 0.000587 0.001465 2 C6 Simulated Deflection m 0.0001445	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 D23	000662 0 003126 0 003033 0 1 C2 D7 15	0.001057 0.001874 0.000924 4 C3 D8 5	0.001713 0.001139 0.000683 5 C4 D19 5	0.001099 0.000875 0.001033 3 3 C5 D20 0.8	0.002072 0.001222 0.000587 0.001485 2 C6 Simulated Deflection m	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 023 150 150	000662 0 003126 0 003033 0 1 C2 D7 15 15	0.001057 0.001874 0.000924 4 C3 D8 5 5 5	0.001713 0.001139 0.000683 5 C4 D19 5 5	0.001099 0.000875 0.001033 3 C5 D20 0.0 1.0	0.002072 0.001222 0.001587 0.001485 2 C6 Simulated Deflection m 0.0001445 0.00010145	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	c22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 D23 150 150 150	000662 0 003126 0 003033 0 1 C2 D7 15 15 15	0.001057 0.001874 0.000924 4 C3 D8 5 5 5 5 5 10 10	0.001713 0.001139 0.000683 5 C4 D19 5 5 5	0.001099 0.000875 0.001033 3 C5 D20 0.8 1.0 1.5	0.002072 0.001222 0.001587 0.001485 2 C6 Simulated Deflection m 0.0001445 0.0001445 0.0001045	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 023 150 150 150 150 150	000662 003126 003033 1 C2 D7 15 15 15 20 20 20	0.001057 0.001874 0.000924 4 C3 D8 5 5 5 5 5 10 10 10	0.001713 0.001139 0.000683 5 C4 D19 5 5 5 5 10 10 10	0.001099 0.000875 0.001033 3 C5 D20 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5	0.002072 0.001222 0.000587 0.001485 2 Simulated Deflection m 0.0001445 0.0001145 0.0001145 0.0001145 0.0001280 0.0000751	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20		C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 D23 150 150 150 150 150 150 150	000662 0 003126 0 003033 0 1 003033 0 1 007 1 15 15 15 15 15 20 20 20 20 25	0.001057 0.001874 0.000924 4 C3 D8 5 5 5 5 5 10 10 10 10 10	0.001713 0.001139 0.000683 5 C4 D19 5 5 5 5 5 10 10 10 10	0.001099 0.00875 0.001033 3 C5 D20 1.0 1.5 0.8 1.0 1.5 0.8	0.002072 0.001222 0.000587 0.001485 2 Simulated Deflection m 0.001445 0.0001445 0.0001445 0.0001445 0.0001445 0.00001280 0.000072 0.000072 0.000072	C7	Cð	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 D23 150 150 150 150 150 150 150 150	000662 003326 0003033 000000000000000000	0.001057 0.001874 0.000924 4 C3 D8 5 5 5 5 5 10 10 10 10 10 15 15	0.001713 0.001139 0.000683 5 C4 D19 5 5 5 5 10 10 100 110 15 15	0.001099 0.000875 0.001033 3 C5 D20 1.0 1.5 0.8 1.0 1.5 0.8 1.0	0.002072 0.001222 0.000587 0.001485 2 C6 5 5 5 5 5 6 0.0001445 0.000151 0.0000531 0.000072 0.000072 0.0000551 0.000151 0.000151 0.000151	C7	Ca	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20		c22	C23	C24	C25	C26	C21	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 023 150 150 150 150 150 150 150 150 150 150 150	000662 003326 00333 0 003033 0 1 C2 D7 15 15 15 20 20 20 25 25 25	0.001057 0.001874 0.000924 4 C3 D8 5 5 5 5 5 5 10 10 10 10 10 15 15	0.001713 0.001139 0.000683 5 C4 D19 5 5 5 5 10 10 10 10 10 15 15	0.001099 0.000875 0.001033 3 C5 D20 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8	0.002072 0.001222 0.000587 0.001485 2 C6 Simulated Deflection m 0.000148 0.000104 0.000140 0.0000140 0.0000120 0.000072 0.0000272 0.0000272 0.0000272	C7	Cð	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20		C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 D23 150 150 150 150 150 150 150 150	000662 003126 000303 0126 000303 0126 000303 0126 000303 0126 000300 0003 0126 0003 0100 0003 0000 0000 0000 000000000	0.001057 0.001874 0.000924 4 C3 D8 5 5 5 5 5 5 5 10 10 10 10 15 15 15 15	0.001713 0.001139 0.000683 5 C4 D19 5 5 5 5 5 10 10 10 10 10 15 15 15	0.001099 0.000875 0.001033 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000072 000122 000122 0001485 2 c6 5 5 0001485 00001485 0.0001485 0.0001140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140	C7	Cð	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20		C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 C1 D23 150 150 150 150 150 150 150 150	000662 003126 0 003126 0 1 003033 0 1 0 0 0 0 0 20 20 20 20 20 20 20 20 20 20	0.001057 0.001874 4 C3 D8 5 5 5 5 5 5 5 5 5 10 100 100 105 15 15 100 100	0.001713 0.001139 0.000683 5 C4 D19 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 10 15 15 15	0.001099 0.000875 0.001033 3 C5 D20 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8	000072 000122 0.00057 0.001485 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	C7	Cð	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	220		C22	C23	C24	C25	C26	C21	C28
	2 0.0 3 0.0 Delta 0.0 Rank C1 D23 150 150 150 150 150 150 150 150	000662 003126 000303 0126 000303 0126 000303 0126 000303 0126 000300 0003 0126 0003 0003 0000 0000 0000 0000 00000000	0.001057 0.001874 0.000924 4 C3 D8 5 5 5 5 5 5 5 10 10 10 10 15 15 15 15	0.001713 0.001139 0.000683 5 C4 D19 5 5 5 5 5 10 10 10 10 10 15 15 15	0.001099 0.000875 0.001033 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000072 000122 000122 0001485 2 c6 5 5 0001485 00001485 0.0001485 0.0001140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140 0.0000140	C7	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	C20		C22	C23	24	C25	C26	C27	C28
	2 0.0 3 0.0 Delta 0.0 C1 D23 150 150 150 150 150 150 150 150	000662 003126 0 003126 0 1 000003 0 1 000003 0 1 0000003 0 1 0000000000	0.001057 0.001874 4 C3 D8 5 5 5 5 5 5 5 10 10 10 10 15 15 15 15 10 10 10 10	0.001713 0.001139 0.000633 5 C4 D19 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 10 15 15 15 15 15	0.001099 0.000875 0.0010875 0.0010875 0.0010875 0.0010875 0.00108 1.0 1.5 0.00 1.5 0.00 1.5 0.00 1.5 0.00 1.5	0.00072 0.001722 0.000185 2 Simulated Deflection m 0.000185 0.0001014 0.0001014 0.0001014 0.0000101 0.0000101 0.0000101 0.0000101 0.0000101 0.0000101 0.0000100 0.0000100 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000000 0.00000000	C7	Cð	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20		C22	C23	C24	C25	C26	C27	C28
	2 0.0 3 0.0 Defta 0.0 Total 0.0 150 150 150 150 150 150 150 15	000662 003126 000313 0003033 0003033 0003033 0003033 000000	0.001057 0.001874 0.000924 4 C3 D8 5 5 5 5 5 5 5 5 5 5 10 0 10 10 10 10 10 10 10 10 10 10 10 1	0.001713 0.001713 0.000683 5 C4 D19 5 5 5 5 5 5 5 5 5 5 5 10 0 10 10 10 10 10 15 15 5 5 5	0.001099 0.000875 0.001033 3 2000 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.000772 0.001322 0.000587 0.001485 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	C7	Ca	C9	C10	C11	C12	CIB	C14	CIS	C16	C17	C18	C19	20		C22	(23)	C24	C25	C26	C27	C28

Figure 3. 12 Generating new file

Create new file, click start in the top pane selects the Degree of Experiment (DOE) followed

by selecting the Taguchi and create Taguchi designs as shown in the Figure 3.12.

Figure 3. 13 Selection of level of design and the number of factors

The selection of level of design is depending on the number of variable on each factor to be experimented as shown Figure 3.13 Thus, very important in deciding number of factors and the level of design according to the particular membrane parameter to be tested to achieve the objective of optimizing.

aguch																											۲
Nominal i Level 0 1 2 3 Delta	ise Table is best (10 D23 D7	for Sign Log10(Yb) D8 D19	nal to No ar^2/s^2)) D20 - - - -	d Defle	ction m versus	J23, L	97, , I	D19, Di	20																		
Rank	3 3	3 3	3							Taguchi Designi	Available Desig	N			×												
	ise Table									An	alable Taguchi De	signs (with Num	nber of Factors	i)													
Level 0	D23	D7	DB	D19							2 level	Single-level		5 leve													
					0.001222					Designs L4	2-3 2-7	2 HEVEI	4 level	D REVE													
	0.003126	0.001874	0.001139	0.000875	0.000587					1.8																	
										1.9		2-4															
		0.000924		0.001033	0.001485					L12 L16	2-11 2-15	2-4															
Rank	0.003033	0.000924	0.000683	0.001033	0.001485					L12 L16 L16 L25			2-5	2.6												_	_
Rank C1	0.003033 1 C2	0.000924 4 C3	0.000683 5 C4	0.001033 3 CS	0.001485 2 C6	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32	2-15	2-13				C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	
Rank	0.003033	0.000924 4 C3 D8	0.000683 5 C4 D19	0.001033 3 CS	0.001485	C7	C8	C9	C10	L12 L16 L16 L25 L27	2-15	2-13				C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	
C1 D23	0.003033 1 C2 D7	0.000924 4 C3 D8 5	0.000683 5 C4 D19 5	0.001033 3 C5 D20	C6 Simulated Deflection m	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32	2-15	2-13			level	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	
C1 D23 150	C2 D7 15 15	0.000924 4 C3 D8 5 5	0.000683 5 C4 D19 5 5 5 5 5	0.001033 3 CS D20 0.8	C6 Simulated Deflection m 0.0001445	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	220	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150	0.003033 1 C2 D7 15 15 15 20	C3 C3 D8 5 5 5 10	0.000683 5 C4 D19 5 5 5 5 5 10	0.001033 3 C5 D20 0.8 1.0 1.5 0.8	0.001485 2 Simulated Deflection m 0.0001445 0.0001445 0.00001280	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	220	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150	0.003033 1 C2 D7 15 15 15 20 20	0.000924 4 C3 D8 5 5 5 10 10	0.000683 5 C4 D19 5 5 5 5 10 10	0.001033 3 D20 0.8 1.0 1.5 0.8 1.0	0.001485 2 Simulated Deflection m 0.0001445 0.000114 0.0000531 0.00001280 0.0000772	C7	C3	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	220	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150 150	0.003033 1 C2 D7 15 15 15 20 20 20	0.000924 4 C3 D8 5 5 5 5 10 10 10	0.000683 5 C4 D19 5 5 5 5 5 10 10 10	0.001033 3 CS D20 0.8 1.0 1.5 0.8 1.0 1.5	0.001485 2 Simulated Deflection m 0.0001445 0.0001445 0.0000311 0.00003280 0.0000772 0.0000372	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	220	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150 150 150 150	0.003033 1 C2 D7 15 15 15 20 20 20 20 25	0.000924 4 C3 D8 5 5 5 5 10 10 10 10 10	0.000683 5 C4 D19 5 5 5 5 5 10 10 10 10 15	0.001033 3 D20 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8	0.001485 2 Simulated Deflection m 0.0001445 0.00011445 0.0001311 0.0000731 0.0000751 0.0000751	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150 150 150 150	0.003033 1 C2 D7 15 15 15 20 20 20 20 25 25	0.000924 4 C3 D8 5 5 5 10 10 10 10 15 15	0.000683 5 C4 D19 5 5 5 5 10 10 10 10 10 15	0.001033 3 D20 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0	0.001485 2 Simulated Deflection m 0.0001415 0.0001014 0.0000101 0.0000772 0.0000772 0.0000772	C7	CS	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150 150 150 150 150	0.003033 1 07 15 15 20 20 20 20 25 25 25	0.000924 4 C3 D8 5 5 5 5 5 10 10 10 10 10 10 15 15	0.000583 5 C4 D19 5 5 5 5 10 10 10 10 10 15 15	0.001033 3 D20 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5	0.001485 2 Simulated Deflection m 0.0001445 0.0001445 0.00001280 0.00001280 0.00001280 0.0000151 0.0000151 0.00001640 0.00001640	C7	8	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	20	(21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150 150 150 150	0.003033 1 07 15 15 15 20 20 20 20 20 25 25	0.000924 4 C3 D8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.000683 5 C4 D19 5 5 5 5 5 5 5 5 5 10 10 10 10 10 15 15 15	0.001033 3 D20 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5	0.001485 2 Simulated Deflection m 0.0001415 0.0001014 0.0000101 0.0000772 0.0000772 0.0000772	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	220	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150 150 150 150 150 150	0.003033 1 07 15 15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	0.000924 4 0.000924 4 0.00 5 5 5 5 5 5 5 5 5 5 5 5 5 10 10 10 10 10 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	0.000683 5 C4 D19 5 5 5 5 5 5 5 10 10 10 10 10 10 15 15 15 15 15	0.001033 3 020 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 0.5 0.8	0.001485 2 Simulated Deflection m 0.0001445 0.0001014 0.00010120 0.00001120 0.0000120 0.0000140 0.0000460 0.0000460 0.0000560	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150 150 150 150 150 150	20003033 1 2007 15 15 15 15 20 20 20 20 20 25 25 25 25 15 15	0.000924 4 08 5 5 5 5 5 5 5 10 10 10 10 10 10 15 15 15 10 10 10 10 10	0.000683 5 C4 D19 5 5 5 5 5 5 5 10 10 10 10 10 10 10 15 15 15 15 15	0.001033 3 D20 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 0 1.5 0.8 1.0 0 1.5 0.8 1.0 0 1.5 0.8 1.5 0.5 0.8 1.5 0.5 0.8 1.5 0.5 0.8 1.5 0.5 0.8 1.5 0.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.0 1.5 0.8 1.5 0.8 1.5 0.0 1.5 0.8 1.5 0.5 0.8 1.5 0.5 0.8 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0.001485 2 Simulated Deflection m 0.0001415 0.00001310 0.00001280 0.00001280 0.00001280 0.00001280 0.0000140 0.0000316 0.0000386 0.0000280	C7	Cŝ	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150 150 150 150	20003033 1 2007 15 15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	0.000924 4 C3 D8 5 5 5 5 5 5 5 5 5 5 5 10 10 10 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	0.000683 5 C4 D19 5 5 5 5 10 10 10 10 10 10 15 15 15 15 5 5 5	0.001033 3 0.001033 3 0.00 0.8 0.8 0.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 0.8 0.8 0.8	0.001485 2 Simulated Deflection m 0.0001445 0.0001445 0.0000151 0.0000172 0.0000172 0.0000172 0.0000172 0.0000151 0.0000160 0.0000180 0.0000180 0.0000180 0.0000180	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	220	C21	C22	C23	C24	C25	C26	C27	C28	
Rank C1 D23 150 150 150 150 150 150 150 150 150 250 250 250 250	20003033 1 2007 15 15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	0.000924 4 0.000924 4 0.000 5 5 5 5 10 10 10 10 10 10 10 10 10 15 15 15 15	0.000683 5 C4 D19 5 5 5 5 5 5 5 5 10 10 10 10 10 10 15 15 15 5 5 5	0.001033 3 0.001033 3 0.00 0.8 0.8 0.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 1.0 1.5 0.8 0.8 0.8 0.8	0.001485 2 Simulated Deflection m 0.0001445 0.000131 0.000131 0.000031 0.0000772 0.0000316 0.0000970 0.0000986 0.0000386 0.0000386 0.0000386 0.0000386	C7	C8	C9	C10	L12 L16 L16 L25 L27 L32 ()) Single	2-15	2-13		Mixed 2-8	level	C18	C19	220	(21	C22	C23	C24	C25	C26	C27	C28	

Figure 3. 14 Select number of factors in available design tab

Figure 3. 15 Selecting the available design

sion	-		2+					ALL R I	0 \	• 0 0																			
sion																													
Level 1 2 3 Delta	0.0000 0.0006 0.0031 0.0030	0.0009 52 0.0010 26 0.0010 33 0.0009	D7 050 0.00 057 0.00 874 0.00 924 0.00	1713 0.0 1139 0.0 0683 0.0	01099 0 00875 0 01033 0	0.001222 0.000587 0.001485																							
Rank		1 aphs will b	4 e plotted	5 for SN rat	3 ios. All va	2 alues are m	issing.																						
aguch	hi De	sign																											
Design		-										Mos	dify Design	n			×												
Factors:		L27(3^5) 5 27											ification Modify facts	ors in inner a	may														
Runs:		27										C	Add signal f	factor	nay														
Columns	s of L27(3^13) arra	y: 1 2 3 4	5								_																	
Columns		3^13) arra	y: 1 2 3 4	5									Put modified	d design in a	new worksh	eet	-												
Workshe	eet 2 *** C1	C2	G	C4	C5	C6	C7	C8	0	C10	C11 (Put modified Help	d design in a r	new worksh Specify	cet Cance		C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29
Workshe	eet 2 ***			C4 D	E	1	C7	C8	C9	C10		:12		d design in a				_	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	
Workshe	eet 2 *** C1 A	C2 B 1	C3 C 1	C4 D 1	E	1	C7	C8	C9	C10	C11 C Modify Factor	:12		d design in a				C18	C19	C20	C21	C22	C23		C25	C26	C27	C28	
Workshe	eet 2 *** C1 A 1 1 1 1 1	C2 B 1 1 1 1 2	c3 c 1 1 1 2	C4 D 1 1 1 2	E	1 2 3 1	C7	C8	C9	C10	Modify Factor	ame	Help				Levels	×	C19	C20	C21	C22	C23		C25	C26	C27	C28	
Workshe + (// 1 2 3 4 5	cet 2 *** C1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C2 B 1 1 1 1 2 2	C3 C 1 1 1 2 2	C4 D 1 1 1 2 2	E	1 2 3 1 2	C7	C8	C9	C10	Modify Factor	12 075 13 13	Help 2 3 2 3		Specify		Levels 3 3	×	C19	C20	C21	C22	C23		C25	C26	C27	C28	
Workshe	eet 2 *** C1 A 1 1 1 1 1	C2 B 1 1 1 1 2	c3 c 1 1 1 2	C4 D 1 1 1 2 2 2 2 2	E	1 2 3 1	C7	C8	C9	C10	Modify Factor	212	Help		Specify		Levels	×	C19	C20	C21	C22	C23		C25	C26	C27	C28	
Vorkshe (/// // // // // // // // //	cet 2 *** C1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C2 B 1 1 1 2 2 2 2	C3 C 1 1 1 2 2 2 2	C4 D 1 1 1 2 2 2 2 3	E	1 2 3 1 2 3 3	C7	CB	C9	C10	Modify Factor	212 ors lame 12 13 13 13	Help 23 23 23		Specify		Levels	×	C19	C20	C21	C22	C23		C25	C26	C27	C28	
Uvorkshe	C1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C2 B 1 1 1 2 2 2 3 3 3 3 3 3	C3 C 1 1 1 2 2 2 2 3 3 3 3 3	C4 D 1 1 2 2 2 2 3 3 3 3 3	E	1 2 3 1 2 2 3 3 1 1 2 2 3 3	C7	C8	(9	C10	Modify Factor Factor B A A B B C C D D E E	212 ors lame 12 13 13 13	Help 2 3 2 3 2 3 2 3 2 3		Specify	Cance	Levels 3 3 3 3 3 3 3	×	C19	C20	C21	C22	C 23		C25	26	C27	C28	
Uvorkshe	cet 2 *** C1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	C2 B 1 1 1 2 2 2 3 3 3 3 1	c3 c 1 1 1 2 2 2 3 3 3 3 2	C4 D 1 1 2 2 2 3 3 3 3 3 3 3 3	E	1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1	C7	C8	(9	C10	Modify Factor	212 ors lame 12 13 13 13	Help 2 3 2 3 2 3 2 3 2 3		Specify		Levels 3 3 3 3 3	×	C19	C20	C21		C23		C25	C26	C27	C28	
Uverkshe + () 1 2 3 4 5 6 7 8 9 10 11 11	cet 2 *** C1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	C2 B 1 1 1 2 2 2 3 3 3 3 1 1	c3 c 1 1 1 2 2 2 3 3 3 3 2 2 2	C4 D 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	E	1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 3	C7	C8	C9	C10	Modify Factor Factor B A A B B C C D D E E	212 ors lame 12 13 13 13	Help 2 3 2 3 2 3 2 3 2 3		Specify	Cance	Levels 3 3 3 3 3 3 3	×	C19	C20	C21		C23		C25	C26	C27	C28	C29
Uverkshe + () 1 2 3 4 5 6 7 8 9 10 11 12 12	cet 2 **** C1 A 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2	C2 B 1 1 2 2 2 2 3 3 3 3 1 1 1 1	C3 C 1 1 1 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2	C4 D 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	E	1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1	C7	C8	C9	C10	Modify Factor Factor B A A B B C C D D E E	212 ors lame 12 13 13 13	Help 2 3 2 3 2 3 2 3 2 3		Specify	Cance	Levels 3 3 3 3 3 3 3	×	C19	C20	C21		C23		C25	C26	C27	C28	
Uverkshe + () 1 2 3 4 5 6 7 8 9 10 11 11	cet 2 *** C1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	C2 B 1 1 1 2 2 2 3 3 3 3 1 1	c3 c 1 1 1 2 2 2 3 3 3 3 2 2 2	C4 D 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 1		1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 1 2 3 3 1 1 1 2 3 3 1 1 1 2 3 3 1 1 1 2 3 3 1 1 1 2 3 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 1	C7	C8	C9	C10	Modify Factor Factor B A A B B C C D D E E	212 ors lame 12 13 13 13	Help 2 3 2 3 2 3 2 3 2 3		Specify	Cance	Levels 3 3 3 3 3 3 3	×	C19	C20	C21		C23		C25	C26	C27	C28	
Workshe C	Ct 2 Ct 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	C2 B 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 1 2	C3 C 1 1 1 2 2 2 2 3 3 3 3 2 2 2 2 3 3 3 3 3	C4 D 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 1 1 1 1		1 1 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 3 1 1 1 2 2 3 3 3 1 1 1 1	C7	CS	0	C10	Modify Factor	212 ors lame 12 13 13 13	Help 2 3 2 3 2 3 2 3 2 3		Specify	Cance	Levels 3 3 3 3 3 3 3	×	C19	220	C21		C 23		C25	C26	C27	C28	

Figure 3. 16 Modify the parameter and name accordingly

After selecting the number of orthogonal arrays according to the requirement as shown in Figure 3.14 and Figure 3.15. Number of orthogonal arrays indicate the number of experiment or runs required for the simulation. To edit or modify factors click on the start and the DOE pane to select modify factors name and level values according to the requirement of the experiment clearly shown in the Figure 3.16. Add deflection or displacement value from the simulation experiment in the column beside the factors manually. For example, in column C6 and name the column as deflection value. These will help us to diagnose result of optimization. The graph of the Main Effect Plot for Means as shown in the Figure 3.17 indicate the effect changes in selected parameters in related to deflection of the structure.

Figure 3. 17 Graph of Main effects Plots for means

The graph of main effect plot shown in Figure 3.17 can be obtained in under analyze Taguchi design tool pane located in DOE section.

As a summary of this section 3.2 its show the steps on COMSOL Simulation and Taguchi optimization using Minitab software. These are the steps being followed through the simulation and optimization process for every comparison structure. However the parameter analyzed will be different according to each structure.

3.3.5 DETERMINATION OF SUITABLE STRUCTURE

In this section the result of four selected structures on the sensitivity, linearity and Dimension of the structure of the optimized and non-optimized results are tabulated for analysis. The tabulation of data is very important to analyze which structure can get higher linearity and sensitivity for further Eigen frequency studies.

Furthermore, the tabulated data will be able to convey the result of an optimized structure in terms of sensitivity and linearity. The selection of structure is mostly relying on the mechanical sensitivity because it has ability to capture the sound far from the source. The highest mechanical sensitive structure will go for Eigen frequency analysis.

3.3.6 ANALYSIS OF SENSITIVITY AND LINEARITY

The analysis of sensitivity and linearity is primary important in this research. This is due to the objective of research is to improve sensitivity and linearity. The method of analysis and the equation of involved will be discussed in this section. This method will be utilized in chapter 4 result and discussion in section 4.1 and 4.4

The sensitivity of microphone is often represented in mechanical sensitivity and capacitive sensitivity. In this research both parameter will be discussed for better understanding of sensitivity. To extent the understanding of capacitive sensitivity. The understanding of capacitance is very important (Chaithra et al., 2017). The capacitance can be classified in static parallel capacitance and dynamic parallel capacitance. The static parallel capacitance will be employs when the membrane doesn't move. However the dynamic parallel capacitance will be more focusing on the dynamic parallel capacitance as the membrane disturbed by acoustic pressure

The capacitance represents as follows:

Capacitance (F) =
$$\frac{\epsilon A}{di-df}$$
 (3.1)

Capacitance (F) =
$$\frac{\varepsilon.A}{\Delta d}$$
 (3.2)

 \mathcal{E} is permittivity of the material between the parallel plates (free plate permittivity 8.85e-12 F/m). A plate surface area (m²).di distance between two parallel plate (m).df membrane deflection.

The capacitance sensitivity represents as follows:

Capacitive sensitivity
$$(F/Pa) = \frac{\text{capacitance}}{\text{Pressure}}$$
 (3.3)

The mechanical sensitivity is focusing on the deflection of membrane. The mechanical sensitivity is defined as how much the deflection changes per sound pressure applying on the diaphragm (Scheeper et al., 1994).

The mechanical sensitivity represents as follows:

Mechanical Sensitivity
$$\left(\frac{m}{Pa}\right) = \frac{\text{deflection of membrane}}{\text{Pressure}}$$
 (3.4)

The linearity of the microphone can be limited by the microphone, amplifier, or both. Capacitive devices are inherently nonlinear due to the nonlinear relationship between capacitance and gap size. As diaphragm deflection increases, distortion increases so THD at a specific SPL can be decreased by increasing the diaphragm stiffness.

Normally linearity is often discussed through graph of capacitance versus displacement. In this research, similarly it will be represented through the graph capacitance versus displacement.

The measurement of gradient between two consecutive points will able to provide understanding on the linearity. In simple words the slope of capacitance must constant at every displacement.

The linearity can be express as follows:

 $linearity (F/m) = \frac{\Delta Capacitance}{\Delta Displacement}$

(3.5)

3.3.7 ANALYSIS OF EIGENFREQUENCY OF EACH ARRAY

This section will be discussed the methodology in obtaining theoretical value of frequency for comparison with simulated value and also discussed limitation of using higher number of arrays. The Number of membranes of the array must be arranged the accordingly with geometric and frequency parameter. Example, as shown in diagram of Figure 2.2.2.

In this research only ten number of linear arrays is processed. All though higher number of arrays can produced a very high quality signal but it has given significant disadvantages on the cost, size of microphone is bulky (Zwyssig, Lincoln, & Renals, 2010) and as the number of signals increases, the complexity of the electronics to acquire and process the data will grow as well(Papež & Vlček, 2015).

Normally the size of membrane will be same in all the arrays but the number of support each structure will be varies in order to achieve the different desired frequency (Quiroz, Báez H.,, Mendoza, Alemán M., , & Villa, 2014).

However in this research the size of each array membrane will be different in size in order to reduce the space. Similar work has been done from (Koyuncuoğlu et al., 2017) the frequency is been set to resonate at different beam length.

The following is derived expression to obtain theoretical value frequency, assuming each microphone array are producing simple harmonic motion (SHM) when in contact with acoustic wave. According to Hooke's law the determination of spring constant (K N/m) value is important in identifying the frequency of resonance Determination of spring constant (K) value of membrane.

Force = *Pressure* (*acoustic*) * *Contact Area*

According Hooke's Law

Force = $k * \Delta X$

K is spring constant (N/m)

 ΔX is deflection of membrane (m)

The equation of spring constant can be write in terms:

$$k = \frac{Pressure (acoustic) * Contact Area}{\Delta X}$$
(3.6)

To calculate theoretical value of resonance frequency. Simple harmonic motion (SHM) of a single spring system considered

$$\omega = \sqrt{(k/m)} \tag{3.7}$$

$$\omega = 2\pi f$$

$$f = \sqrt{\frac{k}{4 * m * \pi^2}} \tag{3.9}$$

 ω angular velocity (rad/s)

m mass of membranes (kg)

f frequency of membrane (Hz)

(3.8)

The following equation is derived for proposed structure. This equation shows relationship of structural parameter to the Eigen frequency and spring constant.

$$\Delta X = \frac{Pressure. Area \left[((D61 - D71))/2 \right]^3}{2. E. D64. D69^3}$$
(3.10)

$$k = \frac{Pressure (acoustic) * Contact Area}{\Delta X}$$

$$k = \frac{Pressure (acoustic) * Contact Area}{\frac{Pressure (acoustic) * Contact Area [((D61 - D71))/2]^3}{2 * E * D64 * D69^3}}$$
(3.11)

$$k = \frac{2 * E * D64 * D69^3}{\left[((D61 - D71))/2\right]^3}$$
(3.12)

$$f = \sqrt{\frac{k}{4 * m * \pi^2}} \tag{3.13}$$

$$f = \sqrt{\left(\frac{\frac{2*E*D64*D69^3}{\left[\left((D61-D71)\right)/2\right]^3}}{4*m*\pi^2}\right)}$$
(3.14)

3.3.8 DETERMINATION OF SUITABLE DIMENSION OF ARRAYS

This section will finalize result of mechanical sensitivity, capacitance, capacitive sensitivity, spring constant, and linearity of each arrays of cochlear implant. Along with this the key parameter dimension of each array will be tabulated. This section will bring end to this research project.

university

CHAPTER 4 RESULTS AND DISCUSSION

4.1 ANALYSIS OF SENSITIVITY AND LINEARITY OF STRUCTURES

This chapter comprises the analysis of the results. The findings of the research as in mechanical sensitivity and linearity is compared with previous findings. The purpose of this chapter is to discuss the performance of each structure by optimizing parameter. There are four structures has chosen to improve the performance by Taguchi method of optimization.

Based on previous chapter, the methodology of the simulation modeling and Taguchi optimization has been explained to achieve the results. The performance of each structure will be discussed in detail as in-terms of mechanical sensitivity, capacitance and linearity.

4.1.1 MEMS MICROPHONE STRUCTURE 1

The first optimized structure in this section is from the (Yang, 2010). In his paper It has been clearly analyzed the effect of sensitivity in various diameter and thickness of microphone membranes. The structure is supported in the central position and the deflection of the membrane is acting on the circumference of the circle.

Figure 4. 1 Structure of a central-post MEMS microphone. (Yang, 2010)

The above picture is depicted from the journal article. The journal has analyzed with several membrane thickness from 1.7 μ m, 1.6 μ m, 1.5 μ m with the diameter ranges from 300mm to 450mm. Based on the outcome the highest mechanical sensitivity 0.007 μ m/Pa recorded at 1.5 μ m membranes thickness with the diameter of 450mm.

In this research, to improve sensitivity and linearity Taguchi optimization method is used to optimize the parameter such as diameter and thickness. The material used for the membranes is polysilicon. In this optimization material property retains the same. Based on the Taguchi optimization Degree of Experiment (DOE) the mean effect plot of graph shows as below.

Figure 4. 2 Main effects plot for diameter and thickness

The graph of mean effect plot show that the deflection of microphone membranes greatly influences the diameter at 500mm and thickness of 0.8μ m.

The following discussion are containing of table and graphs for that's shows out come from the optimization process for comparison purpose.

Parameter	Non Optimized	Optimized
Diameter mm	450	500
Thickness µm	1.5	0.8

Table 4. 1 Numerical value of Optimized Parameter

	I I I I I I I I I I I I I I I I I I I	p 🗢 Material Browser	- 0)(d Graphics		
del Builder	✓ Plot					
FYP Comp 2 Structural mechanics.mph (root)			-	Surface: Total displacement Displa	cement field. Y component (um)	
Global Definitions	* Data					MULTIPHNSICS
Parameters	Data set:	Solution 1	~ 13			▲ 0.0622
Model 1 (mod1)						
Definitions	> Title					0.06
Geometry 1				/	-200	0.06
LiveLink for Inventor 1 (cad1)	 Plot Setting 	js				
新 Form Union (fin)	View:	Automatic	× 13			
Materials						0.05
Polysilicon (mat 1)	Show hidd					0.05
Solid Mechanics (solid)	Plot data	set edges				
Linear Elastic Material 1	Color:	Black	~			
Free 1	2.31011					- 0.04
Initial Values 1	Frame:	Material (X, Y, Z)	~			00.
@ Boundary Load 1						
Fixed Constraint 1	+ Color Leger	b			~	
Mesh 1	-					- 0.03
Study 1	Window Set	ttings				
Step 1: Stationary						
Solver Configurations						
Results						0.02
Data Sets						
55 Derived Values						0
Tables						
Stress (solid)						0.01
SD Plot Group 2				Y		
Sector Content of Cont						
Reports						
ug Reports				z ×	200	• o
						▼ 0
				🖸 Messages 📼 Progress 💷 Log 📳 Results 😫		
				x y z Value		
				-124.8989 4.25 -169.10 0.01069		
					906 MB 973 MB	
					300 MB 373 MB	

Figure 4. 3 Show the y displacement component of the structure

Pressure	Non-Optimized	Optimized	Non-Optimized	Optimized
rressure	Deflection	Deflection	Sensitivity	Sensitivity
1	0.006	0.066	0.0058	0.066
2	0.012	0.131	0.0058	0.066
3	0.017	0.195	0.0058	0.065
4	0.023	0.258	0.0058	0.065
5	0.029	0.319	0.0058	0.064
6	0.035	0.387	0.0058	0.065
7	0.040	0.453	0.0058	0.065
8	0.046	0.491	0.0058	0.061
9	0.052	0.544	0.0058	0.060
10	0.058	0.593	0.0058	0.059

Table 4. 2 Show results of sensitivity of optimized and non-optimized parameter

Figure 4. 4 Graph of Mechanical sensitivity vs Pressure

The above the graph shows the sensitivity of structure has been improved by changing the diameter 450mm increased to 500mm and thickness from 1.5μ m reduced to 0.8μ m as a result of the changes the mechanical sensitivity has increased to from 0.0058μ m/Pa to 0.066μ m/Pa. The improvement almost to 11.37 times from the Non-optimized parameter.

Figure 4. 5 Graph of capacitance vs pressure of optimized and non-optimized parameter

Figure 4. 6 Graph of Capacitance Vs Displacement for Non-Optimized membrane

Figure 4. 7 Graph of Capacitance Vs Displacement for Optimized membrane

Based on the above graph the capacitance vs deflection of Non-optimized membranes its show that the maximum value of capacitance is 0.5122μ F and the maximum capacitance of the optimized value is 0.6466μ F. The capacitance has increased almost 1.26 times of Nonoptimized parameter. The graph of capacitance vs displacement clearly indicating the linearity of optimized microphone membranes greatly increased its 0.3 pF/ μ m compare non optimized structure which is 0.2 pF/ μ m

4.1.2 MEMS MICROPHONE STRUCTURE 2

The second comparison structure that will be discussed in this section is from author (Taybi & Ganji, 2013). Its reported microphone corrugated diaphragm is reduced the effect of residual stress in diaphragm. The mechanical sensitivity of the diaphragm and deflection of corrugated diaphragm have little dependence on residual stress and strongly depend on the number and height of the corrugation. Based on the author diaphragm radius of 0.5mm, diaphragm thickness of 2µm and for corrugated diaphragm. The mechanical sensitivity achieved is for 3 corrugated diaphragms is 0.002µm/Pa.

In this research, to improve sensitivity and linearity Taguchi optimization method is used to optimize the parameter such as diameter and thickness, height of corrugation and the width of corrugation. The material used for the membranes is polysilicon. In this optimization material property retains the same. Based on the Taguchi optimization Degree of Experiment (DOE) the mean effect plot of graph shows as below.

Figure 4. 8 Main effect plot for means of significant parameter of corrugated diaphragm

The graph of mean effect plot show that the deflection of microphone corrugated membranes greatly influences the diameter at 350µm, thickness of 0.8µm, the height of corrugation $5\mu m$ and the width of corrugation

Parameter	Non Optimized	Optimized
D23	500	350
D7	7	25
D8	10	10
D19	3	5
D20	2	0.8

The following discussion consists of table and graph shows result of the optimization.

Model Builder	" 🗆 🛅 3D Plot Group	🐚 🗿 🛅 🛅 🗁 🖶 🥩 🐵		Graphics	
	Plot	· material browser			
	Data Data set: Title	Solution 1		Surface: Displacement field, Y component Displa	acement field, Y component (µm)
 A Geometry 1 Materials (solid) Calicae Elastic Material 1 Tere 1 Boundary Load 1 Elastic Material 1 Fixed Constraint 1 Stop 1: Stationary Solver Configurations Calicae Elastic Materials Data Sets Data Sets Data Sets Detraction Statice 1 Detraction Substace 1 	 Plot Settings View: Show hidde Plot data s Color: Frame: Color Lagend Window Sett 	et edges Black Material (X, Y, Z)	v (b)		
Eport Reports	6			Messager Progress Log Results :1	0 0 ▼-7.1843
					601 MB 959 MB

Figure 4. 9 Show the y displacement corrugated membrane

Pressure	Non Optimized	Optimized	Non Optimized	Optimized
Pressure	Deflection	Deflection	Sensitivity	Sensitivity
1	0.002	0.01	0.002	0.007
2	0.004	0.01	0.002	0.007
3	0.006	0.02	0.002	0.007
4	0.008	0.03	0.002	0.007
5	0.010	0.04	0.002	0.007
6	0.013	0.04	0.002	0.007
7	0.015	0.05	0.002	0.007
8	0.017	0.06	0.002	0.007
9	0.019	0.06	0.002	0.007
10	0.021	0.07	0.002	0.007

Table 4. 4 Show results of sensitivity of optimized and non-optimized parameter

Figure 4. 10 Graph of Mechanical sensitivity vs Pressure

The above the graph shows the sensitivity of structure has been improved by changing the parameter as shown Table 4.3. The mechanical sensitivity has increased to from 0.002 μ m/Pa to 0.007 μ m/Pa. The improvement almost to 3.5 times from the Non-optimized parameter.

Figure 4. 11 Graph of Capacitance Vs Displacement for Non-Optimized membrane

Figure 4. 12 Graph of Capacitance Vs Displacement for Optimized membrane

Based on the above graph the capacitance vs displacement the clearly show the optimized microphone perform nonlinear behavior and non-optimized membranes linearity is better than optimized structure. The linearity achieved from the non-optimized structure is $0.3 \text{ pF}/\mu\text{m}$.

Figure 4. 13 Graph of Capacitance Vs Pressure of Optimized and Non Optimized membrane

Non-optimized membranes its show that the value of capacitance is 0.028pF and the capacitance of the optimized value is 0.018pF at 1pa. However, due to optimized structure performs nonlinear behavior the capacitance of optimized structure is higher at 10 Pa which is 0.061pF and non-optimized structure capacitance at 10 Pa is 0.035 pF.

4.1.3 MEMS MICROPHONE STRUCTURE 3

The third comparison structure that will be discussed in this section is from author (Füldner, Dehé, & Lerch, 2005). Its reported mechanical compliance of a spring membrane is inversely proportional to its thickness and its intrinsic stress, spring membranes can be modeled like membranes with full suspension in combination with a design-dependent numerical constant.

Based on the author diaphragm radius of $100\mu m$, diaphragm thickness of $1\mu m$ and for corrugated diaphragm. The mechanical sensitivity achieved by the author is for 4 corner supported spring diaphragms is $0.001\mu m/Pa$.

To improve sensitivity and linearity in this research Taguchi optimization method is used to optimize the parameter such as diameter, thickness, width of support and length of support. The material used for the membranes is polysilicon. In this optimization material property retains the same. Based on the Taguchi optimization Degree of Experiment (DOE) the mean effect plot of graph shows as below.

Figure 4. 14 Main effects plot for means for spring supported microphone

The graph of mean effect plot show that the deflection of microphone membranes in Figure 4.3.1 greatly influences the D2 width or diameter at 500µm, thickness of (D16 THK) 0.8µm, D13 Leg support or length of support 250µm and D14 leg width or Spring support width at 20µm. Greatly influences the deflection of the spring diaphragm and noticing that the internal yield stress is are lower than the material yield strength. In this case material which has been used is Polysilicon.

The following discussion are containing of table and graphs for that's shows out come from the optimization process for comparison purpose.

Parameter	Non Optimized	Optimized	
D2	100	500	
D13	NS 50	250	
D14	NS 10	20	
D16	1	0.8	

Table 4. 5 Numerical value of optimized parameter

Figure 4. 15 Show the z displacement spring supported membrane

Pressure	Non Optimized	Optimized	Non Optimized	Optimized
Pressure	Deflection	Deflection	Sensitivity	Sensitivity
1	0.001	1.14	0.001	1.141
2	0.002	2.28	0.001	1.141
3	0.003	3.42	0.001	1.141
4	0.003	4.56	0.001	1.141
5	0.004	5.71	0.001	1.141
6	0.005	6.85	0.001	1.141
7	0.006	7.99	0.001	1.141
8	0.007	9.13	0.001	1.141
9	0.008	10.27	0.001	1.141
10	0.009	11.41	0.001	1.141

Table 4. 6 Show results of sensitivity of optimized and non-optimized parameter

Figure 4. 16 Graph of Mechanical sensitivity vs Pressure

The above the graph in Figure 4.3.3 shows the sensitivity of structure has been improved by changing the diameter 100 μ m increased to 500 μ m and thickness from 1 μ m reduced to 0.8 μ m, increasing the leg support to 250 μ m and reducing the support width to 20 μ m because of the changes the sensitivity has increased to from 0.001 μ m/Pa to 1.14 μ m/Pa. The improvement almost to 1140 times from the Non-optimized parameter.

Figure 4. 17 Graph of capacitance vs displacement for non-optimized parameter

Figure 4. 18 Graph of capacitance vs displacement for optimized parameter

Based on the above graph the capacitance vs displacement of Non-optimized structure and optimized structure show the nonlinear relationship. The linearity of this structure not achieved.

Figure 4. 19 Graph of Capacitance vs Pressure of Non-optimized structure

Figure 4. 20Graph of Capacitance vs Pressure of Non-Optimized structure

Based on the above graph Figure 4.19and Figure 4.20 clearly shows that non linear relationship between pressure and capacitance for optimized structure and non-optimized structure. However, the capacitance sensitivity has been reduced to from 0.783pF/pa to 0.000158pF/Pa From non-optimized to optimized structure

4.1.4 MEMS MICROPHONE STRUCTURE 4

The fourth optimized structure in this section is from the (Mohamad, Iovenitti, & Vinay, 2007) . In his paper It has been clearly analyzed the effect of sensitivity in various diameter and thickness of microphone membranes. The microphone with spring supported diaphragm to further improve condenser microphone performance in terms of sensitivity and frequency response.

It's reported in his work the spring-based condenser microphone design has higher value of mechanical sensitivity compared to the existing edge clamped flat diaphragm condenser MEMS microphone. The spring supported diaphragm is shown to have a flat frequency response up to 7 kHz and more stable under the variations of the diaphragm residual stress.

To improve sensitivity and linearity in this research Taguchi optimization method is used to optimize the parameter such as diameter, thickness, width of support and length of support. The material used for the membranes is polysilicon. In this optimization material property retains the same. Based on the Taguchi optimization Degree of Experiment (DOE) the mean effect plot of graph shows as below.

Figure 4. 21 Main effects plot for means for spring condenser microphone

The graph of mean effect plot show that the deflection of condenser spring supported microphone membranes in Figure 4.21. Its influences deflection, the D0 width or diameter at 550µm, thickness of membrane D2 0.8µm, D4 slot hole width 10µm, D16 width of Spring support at 35µm and the space between spring D18 50µm. Its influences the deflection of the spring diaphragm and noticing that the internal yield stress is are lower than the material yield strength. In this case material which has been used is Polysilicon.

The following discussion are containing of table and graphs for that's shows out come from the optimization process for comparison purpose

Parameter	Non Optimized	Optimized
D0	765	550
D2	1.5	0.8
D4	15	10
D16	35	35
D18	100	50

Table 4. 7 Numerical value of optimized parameter

File Edit View Options Help					
T Model Builder		Material Browser		d Graphics	
	Plot	wiaterial browser			
 FYP Comp 5 Structural Mechanics.mph (root) 			-	Surface: Total displacement Displacement field, Y component Displacem	ent field Y component (um)
 Global Definitions 	- Data			bundeer rotar alapatet ment bisplaten ment, i component bisplatet	MULTIPHUSICS
P Parameters	Data set:	Solution 1	~ 15		▲ 0.0517
Wodel 1 (mod1)					
> E Definitions	> Title				0.05
✓ ≯ Geometry 1	- Plot Settings				-200
LiveLink for Inventor 1 (cad1)					
 Form Union (fin) Materials 	View:	Automatic	~ 15		
 Materials Solid Mechanics (solid) 	Show hidde				- 0.04
 Solid Wechanics (Solid) Linear Elastic Material 1 	Plot data s	et edges			0.04
Free 1	Color:	Black	~		
🕒 Initial Values 1					
Boundary Load 1	Frame:	Material (X, Y, Z)	~		0.03
Fixed Constraint 1					
v 🗐 Mesh 1	Color Legend	4			100
A Warning 1	Window Sett	tings			
▲ Warning 2 ✓ 🛎 Study 1					
C Step 1: Stationary					0.022
 Solver Configurations 					-200
Solver 1					
High Compile Equations: Stationary					
> *** Dependent Variables 1					0.01
> Kationary Solver 1				200	
v 🖸 Results				y 200	
Data Sets Derived Values					
Tables				z T	o
> Stress (solid)					▼ 0
> 🚺 Deflection				🖾 Messages 📼 Progress 🔝 Log 📳 Results 🛤	
10 Export				🌐 🖽 🔺 🗙 🐂 🖬 🕼 🖙 🖩 👻	
Reports					
					875 MB 1001 MB

Figure 4. 22 shows y displacement of spring supported membranes

Pressure	Non Optimized	Optimized	Non Optimized	Optimized
Pressure	Deflection	Deflection	Sensitivity	Sensitivity
1	0.0509	0.0518	0.0509	0.0518
2	0.1019	0.1036	0.0510	0.0518
3	0.1528	0.1554	0.0509	0.0518
4	0.2037	0.2071	0.0509	0.0518
5	0.2546	0.2589	0.0509	0.0518
6	0.3056	0.3107	0.0509	0.0518
7	0.3565	0.3625	0.0509	0.0518
8	0.4076	0.4143	0.0510	0.0518
9	0.4584	0.4661	0.0509	0.0518
10	0.5093	0.5179	0.0509	0.0518

Table 4. 8 Show results of sensitivity of optimized and non-optimized parameter

Figure 4. 23 show Graph of Mechanical sensitivity vs Pressure

The above the graph in Figure 4.23 shows the sensitivity of structure has been improved by changing the width of square membrane from 765 μ m reduced down 550 μ m and thickness from 1.5 μ m reduced to 0.8 μ m, maintaining the spring width 35 μ m as a result of the sensitivity has increased to from 0.0508 μ m/Pa to 0.0518 μ m/Pa. Even though the sensitivity only improved slightly but the surface area almost 52.5% has been reduced. The sensitivity improvement almost to 1.02 times from the Non-optimized parameter.

Figure 4. 24 Graph of capacitance vs displacement for non-optimized and optimized

structure

Figure 4. 25 Graph of capacitance vs pressure of non-optimized and optimized structure

The above graph figure 4.25 describes the capacitance vs capacitance of Nonoptimized and optimized membranes. Its show that the maximum value of capacitance for non-optimized structure is 0.00266pF and the maximum capacitance of the optimized value is 0.00125pF. The capacitance has successfully reduced almost 2.12 times of Non-optimized parameter.

Figure 4.24 shows the graph of capacitance vs displacement its clearly indicating the linearity of optimized and non-optimized microphone membranes. The linearity of optimized structure is reduced compared to Non-optimized structure this is due to the sized of the structure is been reduced thus gives significant impact in linearity. However the achieved linearity based on optimized structure is 0.0008 pF/µm

4.1.5 MEMS MICROPHONE PROPOSED STRUCTURE

As a last structure to be optimized and analyze before to the comparison table. Proposing a new structure like existing structure. It's a spring-based cantilever support structure. The Figure 4.26 show the structure dimension for the further understanding.

Figure 4. 26 Proposed structure design dimension

Figure 4. 27 Main effects plot for means for proposed design

The graph of mean effect plot show that the deflection of condenser spring supported microphone membranes in Figure 4.27. Its greatly influences the D65 width at 500µm and D61 the length of diaphragm 500µm, thickness of membrane represents in D69 and its 0.8µm, D64 separation space between support and diaphragm 15µm, D71 distance of between support at 60µm. The parameter selected influences the deflection of the spring diaphragm and noticing that the internal yield stress is are lower than the material yield strength. In this case material which has been used is Polysilicon.

The following discussion are containing of table and graphs for that's shows outcome from the optimization process for comparison purpose

Parameter	Optimized
D65	500
D61	500
D69	0.8
D64	10
D71	60

Table 4. 9 Optimized parameter of the proposed Design

Figure 4. 28 shows y displacement of proposed design

Pressure	Optimized	Optimized	Optimized	Optimized
Pressure	Deflection	Sensitivity	Capacitance pF	Linearity
1	1.228	1.228	0.001764	0.001437
2	2.455	1.228	0.000882	0.000359
3	3.683	1.228	0.000588	0.000160
4	4.911	1.228	0.000441	0.000090
5	6.139	1.228	0.000353	0.000057
6	7.366	1.228	0.000294	0.000040
7	8.594	1.228	0.000252	0.000029
8	9.822	1.228	0.000220	0.000022
9	11.049	1.228	0.000196	0.000018
10	12.277	1.228	0.000176	0.000014

Table 4. 10 shows the results of sensitivity, capacitance and linearity

Figure 4. 29 show the graph of mechanical sensitivity vs pressure

The above the graph in Figure 4.29 shows the sensitivity of structure has which is 1.228µm/Pa. The parameter has been optimized to get best outcome from the structure.

Figure 4. 30 Shows the graph of capacitance vs displacement

The above graph describes the capacitance vs displacement of optimized membranes. Its show that the maximum value of capacitance is 0.003pF. The other fact of graph of capacitance vs displacement its clearly indicating the linearity of its doesn't achieve linearity due to the nonlinear behavior of the structure.

4.2 DETERMINATION OF SUITABLE STRUCTURE CI

As a continuation from the above section 4.1 Analysis of Sensitivity and linearity. This section presents tabulation of results from the above section 4.1 as in terms of important parameter to proceed for next phase of analysis which is of eigen frequency and sensitivity and linearity analysis for determination of suitable dimension of each array. Referring to section 3.3.5 its clearly stated the selection criteria is based on the mechanical sensitivity of structure.

	RESULTS OF ANALYSIS OF LINEARITY AND SENSITIVITY								
	Structure Figures	$\overbrace{(j,j)}^{(j,j)} = \overbrace{(j,j)}^{(j,j)} = \overbrace{(j,j)}^{($	Figer 2. Compared displays	X	Stepon ara L-Aurel spring Sits Disphages				
No	Specification	Structure 1	Structure 2	Structure 3	Structure 4	Proposed Design			
1	Mechanical Sensitivity µm/Pa	0.06600	0.00700	1.14100	0.05180	1.22770			
2	Capacitive Sensitivity pF/Pa	0.00060	0.01853	0.00016	0.00125	0.00018			
3	linearity pF/µm	0.00030	Non Linear	Non Linear	0.00080	Non Linear			
4	Capacitance pF	0.00060	0.01850	0.00016	0.00125	0.00018			
5	Deflection (a) 1 Pa µm	0.06600	0.00700	1.14100	0.05180	1.22770			

Table 4. 11 Table of Comparison

Table 4.11 shows the Comparison of the results of mechanical sensitivity, capacitive sensitivity, Linearity, Capacitance and deflection of membrane @ 1Pa. The highest mechanical sensitivity and the deflection is from the proposed design.

Even though the four other structure can optimize but proposed design shows good performances in-terms of listed specification in above Figure 4.11 Table of comparison. However, the structure 3 requires large area to resonate at lowest frequency which is 500Hz for about 10 arrays with different frequency unable to achieve with smallest arrays. In this research our focus is to produce smallest microphone array as well as highest mechanical sensitivity. The suitable structure which can proceed for further analysis is proposed design. As the objective of this research is to improve sensitivity and linearity for cochlear implants. Based on this proposed design can proceed for further Eigen frequency analysis for 10 number of arrays and identifies the geometric dimension suitable for implementation of structures.

4.3 ANALYSIS EIGENFREQUENCY OF EACH ARRAY

4.3.1 INTRODUCTION

In this section the proposed structure will go further optimization to get the dimensional relationship with required frequency. As stated in our targeted design specification in Table 3.1 the overall 10 arrays layout required arranged in 3x3mm² or even lesser. This is will lead to reduction in space. Our targeted frequency range to be achieve is from 500Hz to 5000Hz.

Estimated increment of frequency between each array is approximately 500Hz. After this Eigen frequency analysis each structure will go for structural analysis to get sensitivity and linearity of the structure as respect to each structure dimension. The final sensitivity and linearity will be based on analysis of each array.

4.3.2 TAGUCHI METHOD OF ARRAY FOR GEOMETRIC ANALYSIS

Referring on the section 4.1.5 the proposed design is exhibits highest deflection and lowest capacitance. In this section will again modify the structure accordingly to meets frequency required by the cochlear implant which is targeted from 500Hz to 5000Hz. To obtain and understand structure behavior Taguchi method used to identify the correlation between stated dimensional parameter and frequency.

The Table 4.12 and Figure 4.31 below show the analysis of dimensional parameter and simulated frequency response.

	DOE OPTIMIZATION BY TAGUCHI METHODFOR PROPOSED DESIGN FOR FREQUENCY						
D61	D64	D65	D71	Simulated Frequency Hz			
800	15	250	100	2304			
800	20	300	250	3502			
800	25	350	400	5426			
800	30	400	550	6720			
1000	15	300	400	2361			
1000	20	250	550	4042			
1000	25	400	100	1378			
1000	30	350	250	2153			
1200	15	350	550	1712			
1200	20	400	400	1354			
1200	25	250	250	1504			
1200	30	300	100	1911			
1350	15	400	250	679			
1350	20	350	100	688			
1350	25	300	550	1631			
1350	30	250	400	1564			

Table 4. 12 Taguchi optimization array matrix for proposed design

Figure 4. 31 Main effects plot for means of proposed design Eigen frequency

Based on the analysis, D71 is the separation between two cantilever spring type support it's clearly show that, the smaller separation between both support its resulted in lowest frequency and highest separation distance resulted in largest frequency. D65 is the width of diaphragm as it is doesn't make much contribution in resulting the high and low frequency. D64 is the space between the structure and support, its show the greater the space larger the distance, width of spring support is also 1/2 D64. To reduce the complication of the analysis the width of spring kept fixed. The length of diaphragm is indicated by the D61. Its resulting in smaller the length diaphragm larger the frequency and vice versa

4.3.3 EIGEN FREQUENCY ANALYSIS OF EACH ARRAYS

To achieve targeted design specification based on the Table 3.1. There is a limitation on the size of layout arrays in this research our objective is to achieve 10 number of arrays in 3.00mm of layout width. Each microphone diaphragm arrays are equally shared the width of layout. Thus, resulted in $300\mu m$ (D65). The other dimensional parameter is adjusted to accordingly for frequency specified.

The following below figures 4.32 to 4.41 show results of Eigen frequency studies of each arrays from COMSOL Multiphysics 4.3a. The frequency analyzed between 500 Hz to 5000Hz.

Figure 4. 32 Microphone array 1 Eigenfrequency @635Hz

Figure 4. 33 Microphone array 2 eigenfrequency @1000Hz

Figure 4. 34 Microphone array 3 eigenfrequency @1500Hz

Figure 4. 35 Microphone array 4 eigenfrequency @2000Hz

Figure 4. 36 Microphone array 5 eigenfrequency @2500Hz

Figure 4. 37 Microphone array 6 eigenfrequency @3000Hz

Figure 4. 38 Microphone array 7 eigenfrequency @3500Hz

Figure 4. 39 Microphone array 8 eigenfrequency @4000Hz

Figure 4. 40 Microphone array 9 eigenfrequency @4500Hz

Figure 4. 41 Microphone array 10 eigenfrequency @5030Hz

The internal stress of each arrays is important to analyze due to safety measurement on yield stress of structure. The yield stress of the structure must be lower than yield strength of polysilicon. The Figure 4.42 shows the histogram of internal stress of each array in relation to response frequency. Based on the histogram, it's been shows the structure which has higher internal stress has ability to resonance at lower frequency.

The internal stress of structure is higher in Array 1 @ 635 Hz this is because the separation between the support D71 is smaller and length of structure is D61 is larger compare other arrays this results in spring support length is longer.

Figure 4. 42 Histogram of internal stress vs frequency

Below the Figure 4.43 The graph of spring constant vs frequency indicating the spring constant relationship between frequency. As a result, its clearly shows that lower spring constant value will able to resonate at lowest frequency. In this research the lowest spring constant (K N/m) achieved at 635Hz about 0.012 N/m. The highest spring constant (K N/m) achieved at 5034Hz about 0.351 N/m

	SPRING CONSTANT VALUE OF EACH ARRAY AT RESPECTED FREQUENCY							
ARRAYS	K (N/m)	THEORITICAL FREQUENCY	SIMULATED FREQUENCY	ERROR PERCENTAGE				
1	0.012	622	635	2.1				
2	0.032	1073	1091	1.6				
3	0.057	1515	1560	2.9				
4	0.083	1953	2000	2.4				
5	0.127	2490	2550	2.3				
6	0.152	2837	3015	5.9				
7	0.197	3319	3573	7.1				
8	0.236	3731	4012	7.0				
9	0.281	4234	4518	6.3				
10	0.351	4710	5034	6.4				

Table 4. 13 Spring constant value and frequency obtained

Figure 4. 43 The graph of spring constant vs frequency

4.4 ANALYSIS OF SENSITIVITY AND LINEARITY OF EACH ARRAY

The following below Figures 4.44 to 4.53 show results of structural studies of each array from COMSOL Multiphysics 4.3a. The deflection of membrane analyzed from arrays 1 to array 10. The dimension of each arrays is based on the outcome of the Eigen frequency of each arrays.

Since the Eigen frequency analysis outcome are between the targeted frequencies based on section 3.3.2. The below following figure 4.44 to 4.53 are the result of y axis displacement of each array structure at 60dB which is 0.02Pa based on normal conversion.

Followed by the result of each arrays Y axis displacement. Figure 4.54 to 4.63 will show the graph of Capacitance Vs Displacement of each array for a better understanding of linearity achieved by each array, Figure 4.64 and Figure 4.65 will show the graph of mechanical sensitivity Vs Pressure of all the arrays and the graph of capacitance Vs pressure of all the arrays which has been developed.

Figure 4. 44 Shows y displacement of Array 1

Figure 4. 45 Shows y displacement of Array 2

Figure 4. 46 Shows y displacement of Array 3

Figure 4. 47 Shows y displacement of Array 4

Figure 4. 48 Shows y displacement of Array 5

Figure 4. 49 Shows y displacement of Array 6

Figure 4. 50 Shows y displacement of Array 7

Figure 4. 51 Shows y displacement of Array 8

Figure 4. 52 Shows y displacement of Array 9

Figure 4. 53 Shows y displacement of Array 10

Figure 4. 54 Graph of Capacitance Vs Displacement of Array 1

Figure 4. 55 Graph of Capacitance Vs Displacement of Array 2

Figure 4. 56 Graph of Capacitance Vs Displacement of Array 3

Figure 4. 57 Graph of Capacitance Vs Displacement of Array 4

Figure 4. 58 Graph of Capacitance Vs Displacement of Array 5

Figure 4. 59 Graph of Capacitance Vs Displacement of Array 6

Figure 4. 60 Graph of Capacitance Vs Displacement of Array 7

Figure 4. 61 Graph of Capacitance Vs Displacement of Array 8

Figure 4. 62 Graph of Capacitance Vs Displacement of Array 9

Figure 4. 63 Graph of Capacitance Vs Displacement of Array 10

Figure 4. 64 Graph of Mechanical Sensitivity Vs Pressure of all arrays

Figure 4. 65 Graph of Capacitance Vs Pressure of all Arrays

The Figure 4.54 to 4.63 shows the graph of capacitance vs displacement of each arrays. Based on the graph capacitance vs displacement linearity of each array can be concluded. Array 2 to 10 are showing a very good linearity from the graph. The slope of the graph is constant in every consecutive points. Array 1 showing a slight nonlinear behavior. This is due nonlinear relationship between gap size and capacitance, however in this research it can be accept due to advantages on higher mechanical sensitivity.

The Figure 4.64 shows the graph of Mechanical sensitivity and Pressure. The mechanical sensitivity shows a good relationship with frequency. The deflection of Array 1 is higher compare to other structure, it is due to the length of supported cantilever spring. The deflection of each structure determined by the length of spring support (Koyuncuoğlu et al., 2017). The mechanical sensitivity directly dependent on the deflection of the structure. This clearly show relationship of Eigen frequency and mechanical sensitivity. Lowest frequency is achieved in highest mechanical sensitivity and the highest frequency is achieved in the lowest mechanical sensitivity (Quiroz, Báez H.,, Mendoza, Alemán M., , & Villa, 2014). The capacitance of each structure decreases when frequency increases. This because the acoustic pressure wave contact area of each structure decreases as the frequency need to resonate at higher value. The Figure 4.65 show the Graph of Capacitance Vs Pressure of all Arrays. The capacitance and pressure increase linearly based on the graph. The graph also indicates the capacitive sensitivity of each arrays. The capacitive sensitivity decreases as the frequency of the resonance decreases. The following section 4.5 will able show the tabulated results of each arrays.

4.5 DETERMINATION OF SUITABLE DIMENSION OF ARRAYS

After the analysis of Eigen frequency and the analysis of sensitivity and linearity of the proposed design from section 4.3 and 4.4. The final outcome from the both analysis is the dimension of each arrays, spring constant of each array, sensitivity and the linearity of each arrays is shown in Table 4.14. The maxing deflection of each array cannot be more than 2.4 as it will hit back plate electrode and could damage electrode. The yield stress of each structure must need to be lesser than yield strength of polysilicon 3.0 GPa. Based on the structural simulation the maximum yield stress achieved by array is 6.32MPa which is lower than yield strength of polysilicon material. This will avoid the membrane from its plastic deformation. It's compulsory the structure or each array to return to its original state upon releasing the acoustic pressure.

	TECHNICAL SPECIFICATION OF COCHLEAR IMPLANT ARRAYS									
PARAMETER	ARRAY 1	ARRAY 2	ARRAY 3	ARRAY 4	ARRAY 5	ARRAY 6	ARRAY 7	ARRAY 8	ARRAY 9	ARRAY 10
D61 µm	1500	1375	1300	1150	1075	950	900	875	820	800
D64 µm	20	20	30	30	30	20	20	25	30	20
D65 µm	300	300	300	300	300	300	300	300	300	300
D69 µm	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
D71 µm	150	400	400	350	375	375	375	350	295	375
Air Gap µm						2.4				
Surface Area µm ²	426900	378200	340800	300300	281550	259700	245700	233375	215550	217700
Frequency Hz	635	1091	1560	2000	2550	3015	3573	4012	4551	5034
Mechanical Sensitivity µm/Pa	< 35.6	11.95	6	3.61	2.22	1.71	1.25	0.99	0.77	0.62
Capacitance pF	0.0018	0.0014	0.0013	0.0011	0.0010	0.000965	0.0009	0.0009	0.0009	0.0009
Capacitive Sensitivity pF/Pa	0.18	0.14	0.13	0.11	0.10	0.10	0.09	0.09	0.09	0.09
Deflection µm	0.3560	0.1200	0.0600	0.0361	0.0222	0.0171	0.0125	0.0099	0.0077	0.0062
Linearity pF/µm	NA	0.00110	0.00070	0.00060	0.00050	0.00040	0.00040	0.00040	0.00040	0.00040

Table 4. 14 Detail technical specification of proposed design cochlear implants

The overall array dimension of array is attached in Appendix C

Final Design Cha	Final Design Characteristics				
Description	Value				
Membrane thickness	0.8µm				
Width of membrane	300µm				
Length of membrane	800~1500μm				
Air Gap	2.4µm				
Capacitance	0.0018pF				
Capacitive Sensitivity	0.18 pF/Pa				
Mechanical Sensitivity	35.6 µm/Pa				
Linearity	0.0011 pF/µm				
Frequency Range	635~5000 Hz				
Number of Arrays	10				
Material	Polysilicon				

4.6 SUMMARY CAPACITIVE MICROPHONE FINAL DESIGN

Table 4. 15 Summary of final design characteristics

The table 4.15 shows the characteristics of final design as described previously in Section 3.3.4 the Taguchi method is shown good contribution in finding the best quality of my final proposed design.

J									
	DESIGN SPECIFICATION								
ITEM	PARAMETERS	EXISTING DESIGN	PROPOSED DESIGN	FINAL DESIGN					
1	Number of Array	8 (Koyuncuoğlu et al., 2017)	10	10					
2	Overall array Dimension	3.3mm x 3.6mm	3.0mm x 3.0mm	3.01mm x 1.5mm					
3	Capacitive Sensitivity	0.17 pF/Pa (Quiroz, Báez H.,, Mendoza, Alemán M., , & Villa, 2014)	>0.17pF/Pa	0.18pF/Pa					
4	Linearity	0.0002 pF/μm (Apoorva Dwivedi & Khanna, 2016)	>0.0002pF/µm	0.0011pF/µm					
5	Mechanical Sensitivity	0.007µm/Ра (Taybi & Ganji, 2013)	>0.007µm/Pa	35.5 µm/Pa					
6	Frequency	300Hz - 4800 Hz (Koyuncuoğlu et al., 2017)	300Hz - 5000Hz	635Hz - 5000Hz					
7	Material	Polysilicon	Polysilicon	Polysilicon					

Table 4. 16 characteristics of microphone final design and existing design

Compared to existing design the number of arrays is increased to 10 arrays and each array has an increment of 500Hz. The range of frequency is from 500~5000Hz within human hearing range. The overall array layout dimension is reduced; thus, the capacitive cochlear implant is smaller. The capacitive sensitivity has improved to 0.18 pF/Pa, mechanical sensitivity is 35.5μ m/Pa and the final linearity is obtained is 0.0011 pF/ μ m.

CHAPTER 5 CONCLUSION AND FUTURE WORKS

5.1 CONCLUSION

The objective of this project is successfully achieved, the development capacitive mems microphone for fully implantable of cochlear implants is developed. This innovative design offers a better capacitance, capacitive sensitivity, linearity, mechanical sensitivity and resonance frequency range is between human capabilities hearing range.

The current existing design offer 8 number of arrays with the overall dimension of 3.3mm X 3.6mm. The frequency range developed is 300~5000Hz. In this research it has been improved to 3.01mm X 1.5mm of overall dimension and the frequency range is from 630Hz to 5000Hz with 10 number of arrays. The existing capacitive sensitivity for hearing aids capacitive microphone is 0.17pF/Pa and the linearity is 0.0002 pF/µm. In this research using Taguchi method of optimization the capacitive sensitivity improved to 0.18pF/Pa and the linearity is improved to 0.0011pF/µm for fully implanted cochlear implants. The achievement of high sensitivity and linearity compare to existing design is overcomes the disadvantages of hearing less soft and loud sound. This improvement will also contribute to reduction in preamplifier gain needs less preamplifier gain before the analog-to digital and has ability to capture from far sound source.

5.2 FUTURE WORKS

Here some future work for this fully implanted capacitive microphone for cochlear implants are listed below based on the output of this work:

- Extent the study for analyze quality factor
- Extent the study for analyze output voltage of each arrays
- Performs vibrational test to at the fixed acceleration 9.81m/s² to verify the response frequency.
- Build up physical model to experiment model response and simulation analysis in terms of output voltage and frequency of response

REFERENCES

- Bittencourt, A. G., Ikari, L. S., Adelina, A., Della, G., Bento, R. F., Tsuji, R. K., ... Neto, D. B. (2012). Conventional Hearing Aids. *Brazilian Journal of Otorhinolaryngology*, 78(2), 124–127. https://doi.org/10.1590/S1808-86942012000200019
- Calero, D., Paul, S., Gesing, A., Alves, F., & Cordioli, J. A. (2018). A technical review and evaluation of implantable sensors for hearing devices. *BioMedical Engineering Online*, 17(1), 1–26. https://doi.org/10.1186/s12938-018-0454-z
- Chaithra, S., Nithya, G., & Nagaraja, V. S. (2017). Design and Simulation of MEMS Microphone for Hearing Aid Application, (1), 12–15.
- Füldner, M., Dehé, A., & Lerch, R. (2005). Analytical analysis and finite element simulation of advanced membranes for silicon microphones. *IEEE Sensors Journal*, 5(5), 857–862. https://doi.org/10.1109/JSEN.2004.841449

Glucomentor, S. D. (2012). Technical documentation, 1. https://doi.org/10.1016/0010-4485(83)90104-5

- Koyuncuoğlu, A., İlik, B., Chamanian, S., Uluşan, H., Ashrafi, P., Işık, D., & Külah, H. (2017). Bulk PZT Cantilever Based MEMS Acoustic Transducer for Cochlear Implant Applications. *Proceedings*, 1(4), 584. https://doi.org/10.3390/proceedings1040584
- Krishnapriya, N. J., & Baiju, M. R. (2014). Design and Multiphysics Analysis of MEMS Capacitive Microphone. COMSOL Conference.
- Lima, A. De, Moret, M., & Tabanez, L. (2015). the Implications of the Cochlear Implant for Development of Language Skills :, (2), 1643–1655.
- Mohamad, N. (2010). Modelling and Optimisation of a Spring-Supported Diaphragm Capacitive MEMS Microphone. *Engineering*, 2(10), 762–770. https://doi.org/10.4236/engineering.2010.210098
- Mohamad, N., Iovenitti, P., & Vinay, T. (2007). High sensitivity capacitive MEMS microphone with spring supported diaphragm, *6800*, 68001T. https://doi.org/10.1117/12.758987

Papež, M., & Vlček, K. (2015). Enhanced MVDR Beamforming for MEMS Microphone Array, 2, 42-46.

- Quiroz, G., B??ez, H., Mendoza, S., Alem??n, M., & Villa, L. (2014). Design and simulation of a membranes-based acoustic sensors array for cochlear implant applications. *Superficies Y Vacio*, 27(1), 24–29.
- Taybi, M., & Ganji, B. A. (2013). International Journal of Engineering The Effect of Corrugations on Mechanical Sensitivity of Diaphragm for MEMS Capacitive Microphone, 26(11), 1323–1330. https://doi.org/10.5829/idosi.ije.2013.26.11b.07
- Yang, C. T. (2010). The sensitivity analysis of a mems microphone with different membrane diameters. Journal of Marine Science and Technology, 18(6), 790–796.
- Zwyssig, E., Lincoln, M., & Renals, S. (2010). A digital microphone array for distant speech recognition. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 33812, 5106–5109. https://doi.org/10.1109/ICASSP.2010.5495040
- U.S Food and Drug Administration

[https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/Cochlear Implants/ucm062843.htm]. Accessed 15 March 2018.

APPENDIXES

Appendix A: Table of Calculation

	АККА	Y 1 @ 635Hz		Contraction	
Pressure	Deflection	Displacment	Sensitivity	Capacitanc e pF	Linearity
0.01	0.356	2.044	35.60	0.001848	
0.02	0.712	1.688	35.60	0.002238	-0.001
0.03	1.068	1.332	35.60	0.002836	-0.001
0.04	1.424	0.976	35.60	0.003871	-0.002
0.05	1.779	0.621	35.59	0.006087	-0.006
0.06	2.136	0.264	35.60	0.014295	-0.023
0.07	2.492	-0.092	35.60	-0.041111	0.155
0.08	2.848	-0.448	35.60	-0.008435	-0.091
0.09	3.205	-0.805	35.61	-0.004696	-0.010
0.1	3.560 CLD STRESS OF ST	-1.160	35.60	-0.003258	-0.004
			NII a (a) 0.11 a		
		Y 2 @ 1091Hz		Capacitanc	
Pressure	Deflection	Displacement	Sensitivity	e pF	Linearity
0.01	0.120	2.381	11.95	0.001406	
0.02	0.239	2.261	11.95	0.001480	-0.000
0.03	0.359	2.142	11.95	0.001563	-0.000
0.04	0.478	2.022	11.95	0.001655	-0.000
0.05	0.598	1.903	11.95	0.001759	-0.000
0.06	0.717	1.783	11.95	0.001877	-0.001
0.07	0.837	1.664	11.95	0.002012	-0.001
0.08	0.956	1.544	11.95	0.002168	-0.001
0.09	1.076	1.425	11.95	0.002350	-0.001
0.1	1.193	1.307	11.93	0.002561	-0.001
YII	ELD STRESS OF ST	RUCTURE 4.2	MPa @ 0.1Pa		
	ARRA	Y 3 @ 1560Hz			
Pressure	Deflection	Displacement	Sensitivity	Capacitanc e pF	Linearity
0.01	0.060	2.340	6.00	0.001289	
0.02	0.120	2.280	6.00	0.001323	-0.000
0.03	0.180	2.220	6.00	0.001359	-0.000
0.04	0.240	2.160	6.00	0.001396	-0.000
0.05	0.300	2.100	6.00	0.001436	-0.000
0.06	0.360	2.040	6.00	0.001478	-0.000
0.07	0.420	1.980	6.00	0.001523	-0.000
0.08	0.480	1.920	6.00	0.001571	-0.000
0.09	0.540	1.860	6.00	0.001622	-0.000
0.1	0.606	1.794	6.06	0.001681	-0.000
YII	ELD STRESS OF ST	RUCTURE 2.6	MPa @ 0.1Pa		
		Y 4 @ 2000Hz			
Pressure		Y 4 @ 2000Hz Displacement	Sensitivity	Capacitanc e pF	Linearity
Pressure 0.01	ARRA Deflection 0.036	Displacement 2.364	3.61	e pF 0.001124	
Pressure	ARRA Deflection	Displacement - 2.364 - 2.328 - 2.328		e pF	-0.0004
Pressure 0.01 0.02 0.03	ARRA Deflection 0.036 0.072 0.108	Displacement 2.364 2.328 2.292	3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160	-0.0004
Pressure 0.01 0.02 0.03 0.04	ARRA Deflection 0.036 0.072 0.108 0.144	Displacement 2.364 2.328 2.292 2.256	3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178	-0.0004 -0.0005 -0.0005
Pressure 0.01 0.02 0.03 0.04 0.05	ARRA Deflection 0.036 0.072 0.108 0.144 0.181	Displacement 2.364 2.328 2.292 2.256 2.220	3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178 0.001197	-0.0004 -0.0005 -0.0005 -0.0005
Pressure 0.01 0.02 0.03 0.04 0.05 0.06	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217	Displacement 2.364 2.328 2.292 2.256 2.220 2.183	3.61 3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178 0.001197 0.001217	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005
Pressure 0.01 0.02 0.03 0.04 0.05	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253	Displacement 2.364 2.328 2.292 2.256 2.220	3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178 0.001197 0.001217 0.001238	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005
Pressure 0.01 0.02 0.03 0.04 0.05 0.06	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111	3.61 3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178 0.001197 0.001217 0.001238 0.001259	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178 0.001197 0.001217 0.001238	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178 0.001197 0.001217 0.001238 0.001259	Linearity -0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178 0.001217 0.001238 0.001259 0.001281	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.00114 0.001160 0.001178 0.001277 0.001237 0.001259 0.001259 0.001281 0.001303	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 RUCTURE 1.8	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178 0.001217 0.001238 0.001259 0.001281	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 YII	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 CRUCTURE 1.8 Y 5 @ 2550Hz	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61	e pF 0.001124 0.001142 0.001160 0.001178 0.001277 0.001287 0.001281 0.001303 Capacitanc	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 YII Pressure 0.01	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA Deflection 0.022	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 CRUCTURE 1.8 Y 5 @ 2550Hz Displacement 2.378	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 MPa @ 0.1Pa Sensitivity 2.22	e pF 0.001124 0.001142 0.001142 0.001177 0.001277 0.001238 0.001259 0.001281 0.001303 Capacitanc e pF 0.001048	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006 -0.0006
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 YII Pressure 0.01 0.02	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA Deflection 0.022 0.044	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 TRUCTURE 1.8 Y 5 @ 2550Hz Displacement -	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 MPa @ 0.1Pa Sensitivity 2.22 2.22	e pF 0.001124 0.00114 0.001160 0.001178 0.001217 0.001238 0.001259 0.001281 0.001303 Capacitanc e pF 0.001048 0.001048	-0.0002 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006 -0.0006 -0.0006
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 YII Pressure 0.01 0.02 0.03	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA Deflection 0.022 0.044 0.067	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 RUCTURE 1.8 Y 5 @ 2550Hz Displacement 2.378 2.356	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 MPa @ 0.1Pa Sensitivity 2.22 2.22 2.22	e pF 0.001124 0.001142 0.001160 0.001178 0.001277 0.001239 0.001259 0.001281 0.001303 Capacitanc e pF 0.001048 0.001058 0.001058	-0.000/ -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 YII Pressure 0.01 0.02 0.03 0.04	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA Deflection 0.022 0.044 0.067 0.089	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 IRUCTURE 1.8 Y 5 @ 2550Hz Displacement 2.378 2.356 2.333	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 MPa @ 0.1Pa Sensitivity 2.22 2.22	e pF 0.001124 0.001142 0.001160 0.001178 0.001277 0.001237 0.001281 0.001281 0.001303 Capacitanc e pF 0.001048 0.001058 0.001068 0.001078	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006 -0.0006 -0.0006 -0.0006 -0.0006 -0.0006 -0.0006
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 YII Pressure 0.01 0.02 0.03 0.04 0.05	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA Deflection 0.022 0.044 0.067 0.089 0.111	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 TRUCTURE 1.8 V 5 @ 2550Hz Displacement 2.378 2.356 2.333 2.311 2.289	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 MPa @ 0.1Pa Sensitivity 2.22 2.22 2.22 2.22 2.22	e pF 0.001124 0.001142 0.001160 0.001178 0.001277 0.001239 0.001259 0.001281 0.001303 Capacitanc e pF 0.001048 0.001058 0.001058	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006 -0.0006 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Y11 Pressure 0.01 0.02 0.03 0.04 0.05 0.04 0.05 0.06	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA Deflection 0.022 0.044 0.067 0.089 0.111 0.133	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 TUCTURE 1.8 V 5 @ 2550Hz Displacement 2.378 2.356 2.333 2.311 2.289 2.267	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22	e pF 0.001124 0.001142 0.001178 0.001177 0.001277 0.001238 0.001281 0.001281 0.001303 Capacitanc e pF 0.001048 0.001058 0.001089 0.001089 0.001099	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006 -0.0006 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 VII Pressure 0.01 0.02 0.03 0.04 0.05 0.04 0.05 0.06 0.07	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA Deflection 0.022 0.044 0.067 0.089 0.111 0.133 0.156	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 TUCTURE 1.8 Y 5 @ 2550Hz Displacement 2.378 2.356 2.333 2.311 2.289 2.267 2.244	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22	e pF 0.001124 0.00114 0.001160 0.001177 0.001217 0.001237 0.001259 0.001259 0.001259 0.001259 0.001259 0.001259 0.001048 0	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006 -0.0006 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 VII Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA Deflection 0.022 0.044 0.067 0.089 0.111 0.133 0.156 0.178	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 IRUCTURE 1.8 Y 5 @ 2550Hz Displacement 2.378 2.356 2.333 2.311 2.289 2.267 2.244 2.222	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 MPa @ 0.1Pa Sensitivity 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22	e pF 0.001124 0.001142 0.001160 0.001178 0.001277 0.001239 0.001259 0.001281 0.001303 Capacitanc e pF 0.001048 0.001058 0.001058 0.001058 0.001089 0.001100 0.001110 0.001121	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006 -0.0006 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004
Pressure 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 VII Pressure 0.01 0.02 0.03 0.04 0.05 0.04 0.05 0.06 0.07	ARRA Deflection 0.036 0.072 0.108 0.144 0.181 0.217 0.253 0.289 0.325 0.361 ELD STRESS OF ST ARRA Deflection 0.022 0.044 0.067 0.089 0.111 0.133 0.156	Displacement 2.364 2.328 2.292 2.256 2.220 2.183 2.147 2.111 2.075 2.039 TUCTURE 1.8 Y 5 @ 2550Hz Displacement 2.378 2.356 2.333 2.311 2.289 2.267 2.244	3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22	e pF 0.001124 0.00114 0.001160 0.001177 0.001217 0.001237 0.001259 0.001259 0.001259 0.001259 0.001259 0.001259 0.001048 0	-0.0004 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006 -0.0006 -0.0006 -0.0006 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004

	ARRA	Y 6 @ 3015Hz			
Pressure	Deflection	displacement	Sensitivity	Capacitanc	Linearity
0.01	0.017	2.383	1.71	e pF 0.000965	
0.02	0.034	2.366	1.71	0.000903	-0.00041
0.03	0.051	2.349	1.71	0.000979	-0.00041
0.04	0.068	2.332	1.71	0.000986	-0.00042
0.05	0.085	2.315	1.71	0.000993	-0.00043
0.06	0.103	2.297	1.71	0.001000	-0.00043
0.07	0.120	2.280	1.71	0.001008	-0.00044
0.08	0.137	2.263	1.71	0.001016	-0.00045
0.09	0.154	2.246	1.71	0.001023	-0.00045
0.1	0.171	2.229	1.71	0.001031	-0.00046
YIEL	D STRESS OF ST	RUCTURE 1.85	MPa @ 0.1Pa		
	ARRA	Y 7 @ 3573Hz			
			Sensitivity	Capacitanc	
Pressure	Deflection	Displacement		e pF	Linearity
0.01	0.013	2.388	1.25	0.000911	
0.02	0.025	2.375	1.25	0.000916	-0.00038
0.03	0.038	2.363	1.25	0.000920	-0.00039
0.04	0.050	2.350	1.25	0.000925	-0.00039
0.05	0.063	2.338	1.25	0.000930	-0.00040
0.06	0.075	2.325	1.25	0.000935	-0.00040
0.07	0.088	2.313	1.25	0.000940	-0.00040
0.08	0.100	2.300	1.25	0.000945	-0.00041
0.09	0.113	2.288	1.25	0.000951	-0.00041
0.1 VIEI	0.125	2.275	1.25	0.000956	-0.00042
YIEL	D STRESS OF ST	KUCTUKE 1.54	wira (a) 0.1Pa		
	ARRA	Y 8 @ 4012Hz			
Pressure	Deflection	displacement	Sensitivity	Capacitanc	Linearity
	0.010	2 200	0.99	e pF 0.000864	
0.01 0.02	0.010	2.390 2.380	0.99	0.000864	-0.00036
0.02	0.020	2.370	0.99	0.000808	-0.00037
0.04	0.040	2.360	0.99	0.000875	-0.00037
0.05	0.049	2.351	0.99	0.000879	-0.00037
0.06	0.059	2.341	0.99	0.000882	-0.00038
0.07	0.069	2.331	0.99	0.000886	-0.00038
0.08	0.079	2.321	0.99	0.000890	-0.00038
0.09	0.089	2.311	0.99	0.000894	-0.00039
0.1	0.099	2.301	0.99	0.000898	-0.00039
YIEL	D STRESS OF ST	RUCTURE 1.05	MPa @ 0.1Pa		
	ARRA	Y 9 @ 4518Hz			
Pressure	Deflection	displacement	Sensitivity	Capacitanc	Linearity
0.01	0.008	2.392	0.77	e pF 0.000863	-
0.02	0.015	2.385	0.77	0.000866	-0.00036
0.03	0.023	2.377	0.77	0.000869	-0.00036
0.04	0.031	2.369	0.77	0.000872	-0.00037
0.05	0.038	2.362	0.77	0.000875	-0.00037
0.06	0.046	2.354	0.77	0.000877	-0.00037
0.07	0.054	2.346	0.77	0.000880	-0.00037
0.08	0.061	2.339	0.77	0.000883	-0.00038
0.09	0.069	2.331	0.77	0.000886	-0.00038
0.1	0.077	2.323	0.77	0.000889	-0.00038
YIELI) STRESS OF STI	RUCTURE 0.885	5 MPa @ 0.1Pa		
	ARRAY	/ 10 @ 5034Hz			
Pressure	Deflection	displacement	Sensitivity	Capacitanc	Linearity
				e pF	
0.01	0.006	2.394	0.62	0.000863	0.00000
0.02	0.012	2.388	0.62	0.000865	-0.00036
	0.019	2.381	0.62	0.000867	-0.00036
0.03	0.025	2.375 2.369	0.62	0.000870	-0.00037
0.04	0.021	2.309	0.62	0.000872	-0.00037
0.04 0.05	0.031		0.20	0.000044	
0.04 0.05 0.06	0.037	2.363	0.62	0.000874	-0.00037
0.04 0.05 0.06 0.07	0.037 0.043	2.363 2.357	0.62	0.000876	-0.00037
0.04 0.05 0.06 0.07 0.08	0.037 0.043 0.050	2.363	0.62 0.62	0.000876 0.000879	-0.00037 -0.00037
0.04 0.05 0.06 0.07	0.037 0.043	2.363 2.357 2.350	0.62	0.000876	-0.00037

Appendix B: Overall dimension of Array

Analytical Analysis and Finite Element Simulation of Advanced Membranes for Silicon Microphones

Marc Füldner, Alfons Dehé, and Reinhard Lerch, Member, IEEE

Abstract-In this paper, advanced membrane designs are simulated in order to improve the sensitivity of micromachined silicon condenser microphones. Analytical analyzes and finite element simulations have been carried out to derive algebraic expressions for the mechanical compliance of corrugated membranes and membranes supported at spring elements. It is shown that the compliance of both types of membranes can be modeled with the help of an enhanced theory of circular membranes. For spring membranes, a numerically derived and design dependent constant takes into account the reduced suspension. The mechanical stress in corrugated membranes is calculated using a geometrical model and is confirmed by finite element simulations. A very good agreement between theory and experimental results is demonstrated for spring membranes of different shape and for membranes with varying number of corrugations. In a silicon microphone application, a high electro-acoustical sensitivity up to 8.2 mV/Pa/V is achieved with a membrane diameter of only 1 mm.

Index Terms—Corrugated membrane, finite element method (FEM), modeling, silicon microphone, spring membrane.

I. INTRODUCTION

T ODAY, in most microphone applications like mobile phones, camcorders, or personal digital assistants, mass-produced electret condenser microphones (ECMs) are installed. In a condenser microphone, sound causes the capacitance built of a flexible membrane and a rigid backplate separated by a small air gap to vary. Recent ECMs use fluorinated ethylene-propylene (FEP) as material for the electret foil, which is applied to the back electrode. Because of the limited temperature resistance of FEP foils, ECMs are soldered by hand [1].

In contrast to standard ECMs, silicon microphones fabricated with techniques from IC processing fulfil the temperature requirements of automated assembly lines. Therefore, the costs of placing a silicon microphone packaged as surface mounted device on a printed circuit board are strongly reduced compared to the assembling costs of standard ECMs.

Most silicon microphones also base on capacitive sensing because of its superior performance compared to piezoelectric or piezoresistive detection principles [2]. Due to the complexity of

Manuscript received November 5, 2003; revised July 1, 2004. This work was supported by BMBF under Grant 16SV1273. The associate editor coordinating the review of this paper and approving it for publication was Prof. Fahrettin Degertekin.

M. Füldner and A. Dehé are with the Infineon Technologies AG, 81730 Munich, Germany (c-mail: marc.fueldner@infineon.com; alfons.dehe@infineon.com).

R. Lerch is with the Department of Sensor Technology, University of Erlangen, 91052 Erlangen, Germany (e-mail: reinhard.lerch@lse.oci.uni-erlangen.de).

Digital Object Identifier 10.1109/JSEN.2004.841449

coupled acoustical, mechanical, and electrical components, simplifications have to be introduced to describe the microphone behavior. A common approach is the reduced-order network modeling with linear lumped elements [3]. In this technique, mass, stiffness, and damping are represented by electric inductors, capacitors, and resistors. In the field of microphones, network modeling has been extensively used [4]–[7]. Defining the mechanical compliance C (in meters per Pascal) of a membrane by the ratio of average deflection to the applied sound pressure, as a first approximation, the electro-acoustical sensitivity S (in volts per Pascal) of a condenser microphone is given by

$$S \approx \frac{U_0}{x_0} \cdot C$$
 (1)

where U_0 is the bias voltage and x_0 the air gap height of the microphone capacitor. Thus, a precise description of the membrane compliance depending on the geometrical design and state of stress is essential for the optimization of condenser microphones. In the case of a circular membrane, the mechanical compliance $C_{\rm circular}$ is well known and can be approximately calculated by the theory of plates and shells [8]

$$C_{\text{circular}} \approx \frac{R^2}{8 \cdot t \cdot \sigma_0} \cdot \left(\frac{2 \cdot E \cdot t^2}{(1 - \nu^2) \cdot \sigma_0 \cdot R^2} + 1 \right)^{-1}$$
 (2)

where R is the radius and t the thickness of the membrane. σ_0 , E, and ν are the intrinsic stress, modulus of elasticity, and Poissons ratio of the membrane material.

However, the application of novel membrane structures for improved microphone sensitivity presented in Section II of this paper requires more complex analytical and numerical analyses. Besides the conventional circular design, membranes clamped at narrow spring structures with reduced restoring force, and corrugated membranes for stress relaxation have been fabricated. So far, only little effort has been spent on the simulation of these type of microphone membranes.

Kovács and Stoffel [9], [10] have presented the fabrication and finite element simulation of membranes with free-standing structures (mechanical springs) realized by slots in the membranes. Unfortunately, results from numerical simulations are only applicable to specific designs. To keep the advantages of the network modeling technique with fast analyses and optimization of the microphone system, in Section III, an expression for the mechanical compliance of spring membranes is derived from detailed finite element simulations.

Extensive parameter studies of membranes with corrugations have been performed by Ying et al. [11]. As mentioned here, an algebraic description which is valid over a large range of design parameters is desirable for network modeling. An expression

1530-437X/\$20.00 @ 2005 IEEE

Modelling and Optimisation of a Spring-Supported Diaphragm Capacitive MEMS Microphone

Norizan Mohamad¹, Pio Iovenitti¹, Thurai Vinay²

¹Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Australia ²School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia E-mail: norizan@utem.edu.my Received June 9, 2010; revised September 6, 2010; accepted September 21, 2010

Abstract

Audio applications such as mobile communication and hearing aid devices demand a small size but high performance, stable and low cost microphone to reproduce a high quality sound. Capacitive microphone can be designed to fulfill such requirements with some trade-offs between sensitivity, operating frequency range, and noise level mainly due to the effect of device structure dimensions and viscous damping. Smaller microphone size and air gap will gradually decrease its sensitivity and increase the viscous damping. The aim of this research was to develop a mathematical model of a spring-supported diaphragm capacitive MEMS microphone as well as an approach to optimize a microphone's performance. Because of the complex shapes in this latest type of diaphragm design trend, analytical modelling has not been previously attempted. A novel diaphragm design is proposed that offers increased mechanical sensitivity of a capacitive microphone by reducing its diaphragm stiffness. A lumped element model of the spring-supported diaphragm microphone is developed to analyze the complex relations between the microphone performance factors and to find the optimum dimensions based on the design requirements. It is shown analytically that the spring dimensions of the spring-supported diaphragm do not have large effects on the microphone performance com pared to the diaphragm and backplate size, diaphragm thickness, and air-gap distance. A 1 mm² spring-supported diaphragm microphone is designed using several optimized performance parameters to give a -3 dB operating bandwidth of 10.2 kHz, a sensitivity of 4.67 mV/Pa (-46.5 dB ref. 1 V/Pa at 1 kHz using a bias voltage of 3 V), a pull-in voltage of 13 V, and a thermal noise of -22 dBA SPL.

Keywords: Capacitive Microphone, Spring-Supported Diaphragm, Microphone Modelling

1. Introduction

The silicon capacitive microphone has been studied and shown to potentially replace the existing and widely used piezoelectric microphone due to its high sensitivity, long term stability and ability to withstand a high temperature soldering process [1,2]. This type of microphone has been designed to use various diaphragm materials including silicon nitride, polysilicon, aluminum, and polyimide [3-6]. A different diaphragm material was chosen to suit the intended application based on the required dimension, sensitivity, and operating frequency range. Open-circuit sensitivity of a capacitive microphone can be increased by applying a higher bias voltage or reducing the diaphragm stiffness. Since many small size audio applications prefer a low voltage operation, the microphone sensitivity needs to be increased by reducing the

Copyright © 2010 SciRes.

diaphragm stiffness alone. The diaphragm stiffness can be reduced by using a low stress material, perforated diaphragm or as a combination with corrugated or spring type diaphragm [4,6-12]. However, the reduction in diaphragm stiffness will cause the reduction in its operating frequency range and pull-in voltage. Moreover, the desired smaller device size and capacitor air-gap thickness will increase the thin film air damping effect which will decrease its open-circuit sensitivity further. Due to the trade-offs relation between these performance factors, the optimization of the microphone parameters is always required depending on the design requirements.

Previous research has been carried out using various spring type diaphragm to increase the sensitivity of a capacitive MEMS microphone. Kim *et al.* [11] has demonstrated the use of a flexure hinge diaphragm to achieve 0.2 m diaphragm centre deflection with a flat frequency

ENG

International Journal of Engineering

Journal Homepage: www.ije.ir

The Effect of Corrugations on Mechanical Sensitivity of Diaphragm for MEMS Capacitive Microphone

M. Taybi, B. A. Ganji*

Electrical & Computer Engineering Department, Babol University of Technology, Babol, Iran

PAPER INFO

Keywords:

Residual Stress Mechanical Sensitivity Diaphragm Displacement

Corrugated Diaphragm

ABSTRACT

Paper history: Received 11 June 2012 Recivede in revised form 12 February 2013 Accepted 28 February 2013 In this paper the effect of corrugations on mechanical sensitivity of diaphragm for MEMS capacitive microphone is investigated. Analytical analyses have been carried out to derive mathematic expression for mechanical sensitivity and displacement of corrugated displaragm with residual stress. It is shown that the mechanical sensitivity and displacement of displaragm can be modeled using thin plate theory. The mechanical stress of corrugated displaragm is calculated using mathematical model and its relationship with residual stress is expressed. The analytical results show that the mechanical sensitivity of displaragm can be increased using corrugations, because of reducing the effect of residual stress in corrugated displaragm.

doi: 10.5829/idosLije.2013.26.11b.07

1. INTRODUCTION

Microphone is a transducer that converts acoustic energy to electrical energy. It is widely used in voice communications, hearing aids, noise and vibration control and biomedical application [1-3]. During the past years, the capacitive microphone has been the most attractive research topic in micro-electromechanical systems (MEMS), because it has superior characteristics such as high sensitivity and low noise level compared with piezoelectric and piezoresistive microphones [4, 5]. Till now, most of MEMS capacitive microphones were developed using flat diaphragm to sense acoustic wave, because it is easy to fabricate [6].

The capacitive microphones generally consist of a diaphragm which vibrates by impinging of acoustic wave pressure, a back plate and air gap. In its simplest form, a flat diaphragm is stretched over a conductive back plate and supported by post so that there is a gap between the diaphragm and the back plate. The high residual stress diaphragm may give undesirable effects such as higher actuation voltage, film buckling and diaphragm cracking. The mechanical sensitivity of diaphragm is limited by residual stress of deposited layer. The residual stress can be controlled by the parameters of the deposition process [7]. Since the control of thin film stress during the fabrication process is rather difficult, therefore making shallow corrugations in diaphragm can reduce the effect of residual stress and subsequently increase the mechanical sensitivity of diaphragm. In this paper, we investigate the effect of corrugations on mechanical sensitivity and diaphragm deflection for using it for the first time in MEMS capacitive microphone.

2. MODELING OF MECHANICAL SENSITIVITY

The center deflection (y) of a flat circular diaphragm with clamped edges and without residual stress, due to a homogeneous pressure (P) can be calculated from [8]:

$$\frac{PR^4}{Eb^4} = \frac{5.33}{1-v^2} (\frac{y}{b}) + \frac{2.83}{1-v^2} (\frac{y}{b})^3 \qquad (1)$$

where E, v, R and h are Young's modulus, Poisson's ratio, radius and thickness of diaphragm, respectively. It is illustrated from Equation (1) that if $(y/b) \le 1$ the cubic term of displacement can be neglected, thus the relation between center deflection and applied pressure is linear. For large values of (y/b) the relation is nonlinear. For large value of initial tension, the deflection of a flat circular diaphragm can be represented by [8]:

Corresponding Author Email: <u>baganii@nit.ac.ir</u> (B. A. Ganji)

THE SENSITIVITY ANALYSIS OF A MEMS MICROPHONE WITH DIFFERENT MEMBRANE DIAMETERS

Cheng-Ta Yang*

Key words: MEMS microphone, sensitivity, diameter, coupling.

ABSTRACT

In MEMS capacitive microphone design, it is very critical to get highest yielding rate and sensitivity as the two major factors dominate structure design of microphone. The centralpost MEMS microphone is introduced in this paper to differentiate from traditional fixed membrane boundary microphone since the construction is simple and only few masks are required in the process so that the yielding can be greatly enhanced. Thus, it is necessary to find the relationship between the sensitivity and dimension of the diameter of the membrane. The main research steps described in this paper include using CoventorWarer to develop one analysis model of MEMS microphone with coupled electro-mechanic system and analyzing the relationship between the sensitivity and the dimension of the diameter of the membrane.

I. INTRODUCTION

In recent years, micro electro mechanical systems (MEMS) technology is widely applied to design MEMS microphones. In 1992, Scheeper et al. [10] developed a novel capacitive microphone as shown in Fig. 1 and this design has been becoming a classical structure however larger residual stress was often introduced by fixed boundary. In 2000, Torkkeli et al. [11] developed a higher sensitivity microphone using low stress polysilicon fixed boundary membrane with 1 mm² area but still have larger residual stress introduced by fixed boundary. In sensing mechanism, a capacitive microphone has higher sensitivity, stability and signal to noise ratio than piezoresistor and piezoelectric types [2]. For membrane material on MEMS capacitive microphone, metal, polysilicon, and Si₃N₄ etc. are all applicable [8]. The successful application is to use polysilicon as membrane material on MEMS capacitive microphone due to lower coefficient of thermal expansion on polysilicon.

In 2008, Ganjia *et al.* [6] developed a new microphone by reducing acoustical resistance with perforated Al (aluminum) diaphragm to improve the sensitivity of microphone as shown in Fig. 2.

CoventorWare based on the finite element method is a well known software tool for efficient development in MEMS fields [4]. The capacitance of relative humidity (RH) sensor [7] as well as calibration data of the pressure sensor [5] is simulated by this software. Besides, the torsional varactor and capacitive ultrasonic transducers are simulated by this software [9, 12].

II. SIMULATION METHOD

Comparison between the CoventorWare and Theoretical Models of Cantilever Beam with Rectangular Section

A theoretical model of a cantilever beam with rectangular section is expressed as

Fig. 2. Cross-sectional view of the microphone using a perforated aluminum diaphragm [6].

Paper submitted 07/30/09; revised 01/25/10; accepted 02/02/10. Author for correspondence: Cheng-Ta Yang (e-mail: albert.yang@mail.nkmu.edu.tw).
*Department of Marine Engineering, National Kaohsiung Marine University, Kaohsiung, Tatwan, R.O.C.

Proceedings Thin Film PZT Acoustic Sensor for Fully Implantable Cochlear Implants ⁺

Bedirhan İlik ^{1,2}, Aziz Koyuncuoğlu ², Hasan Uluşan ¹, Salar Chamanian ¹, Dilek Işık ², Özlem Şardan-Sukas ² and Haluk Külah ^{1,2,*}

- ¹ Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey; bedirhan@metu.edu.tr (B.İ.); hulusan@mems.metu.edu.tr (H.U.); schamanian@mems.metu.edu.tr (S.C.)
- ² MEMS Research and Application Center, Middle East Technical University, Ankara, Turkey; akoyuncuoglu@mems.metu.edu.tr (A.K.); disik@mems.metu.edu.tr (D.I.); osukas@mems.metu.edu.tr (Ö. Ş.-S.)
- * Correspondence: kulah@metu.edu.tr; Tel.: +90-312-210-2345
- † Presented at the Eurosensors 2017 Conference, Paris, France, 3-6 September 2017.

Published: 22 August 2017

Abstract: This paper presents design and fabrication of a MEMS-based thin film piezoelectric transducer to be placed on an eardrum for fully-implantable cochlear implant (FICI) applications. Resonating at a specific frequency within the hearing band, the transducer senses eardrum vibration and generates the required voltage output for the stimulating circuitry. Moreover, high sensitivity of the sensor, 391.9 mV/Pa @900 Hz, decreases the required power for neural stimulation. The transducer provides highest voltage output in the literature (200 mVpp @100 dB SPL) to our knowledge. A multi-frequency piezoelectric sensor, covering the daily acoustic band, is designed based on the test results and validated through FEA. The implemented system provides mechanical filtering, and mimics the natural operation of the cochlea. Herewith, the proposed sensor overcomes the challenges in FICI operations and demonstrates proof-of-concept for next generation FICIs.

Keywords: cochlear implant; acoustic sensor; MEMS vibration-based transducers; thin film PZT

1. Introduction

The cochlea, the eardrum, and the ossicles together form one of the most elaborated structures in mammalians. They provide frequency selectivity and sound perception, which makes ear the best acoustic sensor in the nature. According to the World Health Organization (WHO), approximately 15% of the world's adult population has some degree of hearing loss. In total, there are 360 million people living with disabling hearing loss greater than 40 dB SPL as of 2015, 32 million of which are children [1]. Amount of hearing loss can be classified as mild, moderate, severe or profound. For mild-to-moderate damage a hearing aid can be used to restore the hearing loss by sound amplification. Whereas, Cochlear Implants (CIs) can be utilized for treatment of severe-to-profound hearing loss. CIs recover hearing to a certain extend by directly stimulating the auditory nerves via electrodes. However, current state of the commercial CIs has some drawbacks such as high cost and the need for frequent battery charging/replacement preventing patients' continuous access to sound. Another disadvantage of CIs is that wearing external components causes patients to feel stigmatized. Also, there is a risk of damage especially when exposed to water (shower, pool). In this study, we present a novel method utilizing a multi-frequency thin film piezoelectric transducer that eliminates main bottlenecks of CIs. The transducer consists of several cantilever beams each of which resonates at a specific frequency within the hearing band that covers the daily acoustic band. The design of the transducer is accomplished considering volume and mass limitations. Finally, achieved results, generated signals on the piezoelectric transducers, will be shaped by interface electronics to stimulate the auditory neurons at cochlea.

Proceedings 2017, 1, 366; doi:10.3390/proceedings1040366

www.mdpi.com/journal/proceedings