FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
Perpustakaan SKTM

SIMULATION OF QUANTUM
GROWING NETWORK

ONG BOON TEONG
WEK010223

Department of Artificial Intelligence

WXES3182

Session 2003/2004

Under the supervision of
Prof. Ir. Dr. Selvanathan Narainasamy

Moderator
Mr. Mohd. Nor Ridzuan bin Daud

A system development in partial fulfillment of the requirements of the degree of
Bachelor of Computer Science
University of Malaya

possible to carry out such factorisations in remarkably less time. The RSA algorithm, a
widely used encryption system, is safe only if such factorisations cannot be performed
quickly.

Although modern computers already exploit some quantum phenomena they do
not make use of the full repertoire of quantum phenomena that Nature provides.
Harnessing these phenomena will take computing technology to the very brink of what

is possible in this Universe.

Acknowledgement

I would like to thank Prof. Ir. Dr. Selvanathan for introducing me to the field of
quantum computation in the first place, suggesting an excellent project idea and then
explaining the basic and fundamental of the field in such clear terms. I would also like to
thanks him for his help and guidance throughout the course of the project.

The works of Paul Benioff, Richard Feynman, P W Shor, Lov K Grover, David
Deutsch, P A Zizzi, S Hameroff, R Penrose, Jacob West of Caltech, Michael A Nielsen,
Isaac L Chuang, and many others have provided the central research material for this

project. Without their constant research into this exciting field, projects such as this

would not be possible.

v

interfering with others. This interference may be constructive or destructive and
accounts for why the photons never hit certain areas of the screen. The effects of
quantum interference are even more apparent in the results of a second experiment,
shown below.

Consider a beam of light being emitted from a laser and hitting a partially
reflective mirror, as shown in Figure 2.2. The mirror has been designed to reflect or

transmit light with equal probability, so 50% of the light will hit detector 1 and 50% will

hit detector 2.

Detector

Detector
2

Figure 2.2: A Quantum Theory Simple Experiment.

Laser 5

Now consider an attempt to recombine the beam, as shown in Figure 2.3. The

paths are set up to be exactly equal in length. What we find is that 100% of the light hits

detector 1.

Detector
1

A

/ / : Pt

i

Figure 2.3: A Set of Quantum Theory Complex Experiment.

Now consider the same experiment with one of the paths blocked, as in Figure
2.4. What we now find is that 50% of the light hits detector 1 and 50% hits detector 2.
Again we can adjust the light source so that only 1 photon is emitted at a time and again
we find that this single photon behaves exactly as it would if it was a wave. In Figure 2.4
we know which path the electron has travelled as one of the paths is blocked. Yet how
does this single photon know that this blockage on a remote path exists and that, with

such a blockage, it must act differently when it reaches the second partially mirrored

surface?

decoherence, and it can be seen in Figure 2.7 with the y-axis representing a qualitative
measure of the distance between universes (that is to say how different they are).

Us

x<:31

Uy
Figure 2.7: Decoherence.

2.2 Quantum Computing

2.2.1 What is a Quantum Computer?

Current modern computer represents the culmination of years of technological
advancements beginning with the early ideas of Charles Babbage (1791-1871) and
eventual creation of the first computer by German engineer Konrad Zuse in 1941.
Surprisingly however, the high speed modern computer sitting in front of you is
fundamentally no different from its gargantuan 30 ton ancestors, which were equipped
with some 18000 vacuum tubes and 500 miles of wiring! Although computers have
become more compact and considerably faster in performing their task, the task remains

the same: to manipulate and interpret an encoding of binary bits into a useful

15

Chapter 3: Methodology and Technique

3.1 Methodology

The methodology adopted for the development process is important and crucial.
Improper or inappropriate choice of methodology for Information Technology and.
software projects can lead to failure. There are two major factors of a software
engineering project failure. The first problem is that too many design flaws are
discovered during engineering or development where it is all difficult, expensive, and
sometimes impossible to rectify and correct. The second problc;.m is that the scopes of
many projects seem to expand rampantly and are out of control as the time progresses.

Every system development process model includes system requirements such as
users, constraints (limitations), and resources as inputs and a fully developed system or
software as the outputs. There are many popular software process models such as:

* Waterfall Model.

* Waterfall Model with Prototyping.

* V Model.

* Prototyping.

* Operational Specification Model.

* Transformational Model.

* Phased Development Model.

* Incremental and Iterative Model.

* Spiral Model.

* Extreme Programming (XP) Model.

45

archives, are extremely useful and insightful, which have helped me a lot
in gaining knowledge and understanding regarding quantum computing
and the ways of simulating. aspects of quantum computing. All these
references have also revealed to me of the researches either done or still

in work in all quantirm computing research centers throughout the world.

53

Microsoft Windows XP Professional or Microsoft Windows 2000 has been
chosen as the development platform and the choice of operating system for this quantum
simulation program. The main reason is that most computers in campus and everywhere
are using the Microsoft’s operating system. Besides, it is more user friendly, reduces the
training required for using the system, cnd most importantly, Windows-based
applications are usually always easier to learn and use compared to other’s platform
applications in Unix or Linux.

The Application Development Tool needed to build and program the quantum
simulation system are MATLAB 6.0 or MATLAB 6.5 (Release 12 or 13), and Java 2
Platform Standard Edition (J2SE) v1.4. Open source Java Integrated Development
Environments (IDEs) like Netbeans and Eclipse, and commercial IDEs like Borland

JBuilder and JCreator might be used to speed up development and debugging.

59

UIV“C)I'ﬁH(f)|00000>®fIH(f)]000>®H|0)"sz"ir‘)l@Ullviﬂ)o@Uulvirr)-s
b e
and it can be summarized as: [1)®®|1)®*®|1) =/ 9).

In general, the N-qubits state at time #, can be written as: (6)
| NY = Un | virtys -1 @Un -1 | virtys - 2@ .. Us | virtyo ®Uo | virt) -1.

The quantum algorithm is illustrated by the following family of quantum
growing networks. The diagram below provides a schematic representation of each

quantum network, where H represents the Hadamard gate.

At time fp, we have a quantum network of size one:

|0)+11)
™ 10) H)

At time 1;, we have a quantum network of size four:

[0)}+[1)]
T
0) H bl -
(8) . |0}{§|1) .%(]0000)+ [0001)+ | 0010) +...|1111))
¢ | |0>‘!?1>
19— fad-"&"

And so on. In general, at time #,, the quantum growing network has size N = (n+1)2,

5.1.2 Explanation on Quantum Growing Network

62

-1 3

Figure 5.1: Quantum Growing Network.

The main function and design of this simulation system is to simulate the
quantum growing network as discussed in the section 5.1. The growing network is
further illustrated as in figure above. The growing tree will be the main visualization or
simulation of this system

The design of the system will take into account how the tree, or in this context
the quantum growing network, grows. At the starting time (the unphysical time ¢.;=0).
There is one node, call it -1. At each time step 1, a new node is added, which links to the
youngest and oldest nodes, and also carries 2n+1 free links. Thus, at the Planck time
to=tp, the new node 0 is added, which links to node -1 and carries one free link. At time

t;=2t,, the new node 1 is added, which links to node -1 and node 0, and carries three free

63

Every visual element that appears on the screen potentially competes for the
users’ attention. It provide an environment that is pleasant to use and contributes

to the users’ understanding of the information and simulation presented.

66

private int nextPositionFactor; //Position to draw the next node

VisualNetwork(int r) _//VisualNetwork constuctor

{
‘root = r; //Initialize(construct) all the variable

networkSize = 1;

node = new VisualNetworkNode(r);
positionFactor = 0;
nextPositionFactor = 0;

}

VisualNetwork newNextNode (int item)//Create new node branch and node
{ a

nextNode = new VisualNetwork(item);

nextNode.parent = this;

nextNode.node = new VisualNetworkNode (item) ;

return nextNode;

void setRoot (int r) //Set root value
{
root = r;

}

int getRoot() //Get root value
({

return root;
)

void setParent (VisualNetwork wkNetwork) //Set parent node reference

{
parent = wkNetwork;

)

VisualNetwork getParent() //Get parent node reference

{
return parent;

)

void setNextNode (VisualNetwork wkNetwork)//Set next node reference

{
nextNode = wkNetwork:;

}

VisualNetwork getNextNode () //Get next node reference

{
return nextNode;

void setPositionFactor(int i) //Set position to draw itself

{
positionFactor += i;

}

void resetPositionFactor(int i) //Reset the position

{
positionFactor = i;

int getPositionFactor() //Get position

{
return positionFactor;

}

89

//Construct a canvas for the nwtwork to be painted

class GraphCanvas extends Canvas

{
VisualNetwork mainNetwork, currentNetwork;

private int count;

//Java 2D paint function to paint nodes and network on the canvas
public void paint (Graphics g)
{

Rectangle r = bounds(});

VisualNetwork wkNetwork = currentNetwork:

if(currentNetwork-nulll
{

return;
}

if (wkNetwork.getParent ()==null) //Start of the network
{

wkNetwork.drawNode (260, €0, g); //Draw the first node (node -1)
}

if (wkNetwork.getNextNode () !=null) //1f next node is inserted
{

//Move to the next node and draw itself

paintNode (wkNetwork.getNextNode (), 20, 440, g}:

//Position and draw upcoming nodes
void paintNode (VisualNetwork nt, int x, int y, Graphics g)
{

//Set the position and draw itself

nt.drawNode (x+nt.getPositionFactor()-20, y, g):

//Continue the positioniong and drawing as long as next node is
available

if (nt.getNextNode () !=null)

{

paintNode ((VisualNetwork)nt.getNextNode (),

x+nt.getPositionFactor(), y-30, g):

}

)

public void insert(int node) //Inserting method
{
if (mainNetwork==null) //Inserting a new network, begin the
network
mainNetwork = new VisualNetwork (node);
currentNetwork = mainNetwork;
count=node;
else //If a network already exists
mainNetwork.insert (node):
count=node;

repaint ()

92

public void clear() //Clear the network and its nodes

{

mainNetwork = currentNetwork = null;

repaint () ;
}

}
//End of class GraphCanvas

//Class GraphControls
//Construct controls or buttons of the program and managed the action performed

on each button

class GraphControls extends Panel

{
GraphCanvas canvas;

public GraphControls(GraphCanvas canvas)//Construct 3 buttons

{
this.canvas = canvas;

add (new Button("Visualize")); //Visualize button
add (new Button("Next")): //Next button
add (new Button("Clear")); //Clear button

NodeValue = 0;
}

public boolean action(Event ev, Object arg)//Manage action on each

button
{

if (ev.target instanceof Button)

(
String label = (String)arg;

if (label.equals("Visualize"™))//Visualize button is clicked

{
canvas.insert (getRootValue()):

}

else if(label.equals("Next"))

{
canvas.insert (getNodeValue()):;//Next button is

clicked
setNodeValue () ;

}

else if (label.equals("Clear")) //Clear button is clicked

{
canvas.clear();
resetNextNodeValue () ;
setNodeValuel() ;

}

return true;

t
return false;

public static int getRootValue() //Get root value

{
return RootValue;

}

93

public int getNodeValue() //Get node value
{
return NodeValue;

}

i public void setNodeValue() //Set node value
{ -
NodeValue = nextNodeValue;
nextNodeValue++;
}

void resetNextNodeValue() //Reset node value

{
nextNodeValue = 0;

}

public int getNextNodeValue () //Get next node value

{
return nextNodeValue;

}

private static int RootValue = -1;//Initialize all the variables
private int NodeValue;
private int nextNodeValue = 0;

}
//End of class GraphControls

//Class quantumnetwork
//Construct an application window or an applet and its layout

public class quantumnetwork extends Applet

{
GraphControls controls;

//Initiate the applet or the application window
public void init()
{
setLayout (new BorderLayout()):
//Set the application background color
setBackground (Color.white) ;
GraphCanvas c= new GraphCanvas();//Construct canvas
//Place canvas that is to be painted, on the center of the
windows
add ("Center", c);
//Place buttons on the bottom of the windows
add ("South", controls= new GraphControls(c));

public void start() //Start the application

controls.enable();

public void stop() //Stop the application

controls.disablel() ;

public static void main(String args([]) //Main function

{
//Construct an application frame

94

Frame f= new Frame("Quantum Growing Network");
//Reference to the class
quantumnetwork QuantumNetworkApp= new quantumnetwork():

QuantumNetworkApp.init():; //Begin the application
QuantumNetworkApp.start();

f.add("Center”™, Quantumuetworﬁhpp}: -
f.resize (1000,700);//Set the size of application window or applet
f.show();

}

}
//End of class quantumnetwork

/***t*t'tt***ttk******i’***“*i‘*t**"*ti*i**t*t***l****ii*t******************.**gp

i v o ——— —

titt*itt*&ttitttttitt*ftii***’l‘*tiii****ﬁ**tii*iiii*it*ittﬁt*tt**l‘ttttt*tt**t**/

95

[T Y O e QRS P OSSR R e SRR e

Bl T Jewch Yew Prowct Dukd Jook Confgure teb L e e e s =

AFHI th\ D eRM mpu”.__,‘.
_Iatanag! ® a.uut.mum.ka s epine-iilam .

e

T Tty

ﬂn|ﬁm|wm|

h 8 0

Java Fin HTML File Tast Fie

Locason
£ Prog am Fiex o Scitwars .|

!"igure B2: Cneaung a New Java Source File in JCreator.

When the source is ready and is saved, you can start to compile it. Click on the
“Build” tab on the top of the window and then “Compile File”. Wait a while until the
compilation message appears on the bottom of the IDE window as shown at Figure

below:

100

v et L P HETWRTH. i b T T A S S AR R o Y

Croatr - Jousntum, | Il CAPROGFA~ DI, . ot S Bl :
ng Network Simulation Program.

Figure B4: Quantum Gro

The window of the simulation system contains 3 buttons, the “Visualize”,
“Next”, and “Clear” buttons. The background color of the system is set to white as

shown above.

Using the Simulation Program

After the simulation program is executed, you may wonder how to visualize and
understand the quantum growing network. Click on the “Visualize” button to start

visualization. Node -1 will appear as shown below:

102

Lﬂ*iﬂf’l.‘.’.’ﬂ.&!}m“ﬂ“:ftﬂf’&h. T e, % s T A i o bt LR T Bk L Fa

|

‘Figure BS: The Simulation Program with the First Node.

The network will grow to the next node when the “Next” button is clicked.
Continue on clicking the “Next” button until the network grows to node 10 (the
simulation program is only suitable to view up to node 10). The “Clear” button is to
clear the network off from the canvas or screen to begin visualization again.

In the visualization, you will notice green lines connecting a particular node to
the previous node and node -1. These green lines or links are actually denoting the
virtual stated as described by Zizzi.

Meanwhile, there are blue lines or links branching out from a particular node but
the number of lines from different nodes is different. These denote free links as
mentioned by Zizzi. For node n, there are 2n+1 free links. Close the command prompt

window to disable and shut down the program.

103

loaded. Basic HTML knowledge is required to do so. To embed the applet into the web

page, the <applet> tag is used.
Below is a source HTML file example of how to embed the applet:

<html>
<head>

<title>Quantum Growing Network</title>
</head>

<body>

<applet code="quantumnetwork.class" width="950" height="580">
</applet>

</body>
</html>

The applet tag is bolded, and is placed in the <body> of an HTML page. Code
identifies the main Java class that is compiled. You need to place all the compiled Java
class files in the same directory as the HTML page you created in your local host or your
web server. Remember that there are five Java class files once the source code is
compiled, namely quantumnetwork.class, GraphControls.class, GraphCanvas.class,
VisualNetwork.class, and VisualNetworkNode.class.

An online applet of the Quantum Growing Network is now placed and loaded
into a website, which can be accessed and started at
http://www.geocities.com/bt3on9/thesis.htm .

The 2 figures below show how the applet looks like when it is started in Internet

Explorer and Netscape Navigator respectively:

105

