
FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAY A

Perpustalwn SKTM

SIMULATION OF QUANTUM
GROWING NETWORK

ONG BOON TEONG
WEK010223

Department of Artificial Intelligence

WXES3182

Session 2003/2004

Under the supervision of
Prof. Ir. Dr. Selvanathan Narainasamy

Moderator
Mr. Mohd. Nor Ridzuan bin Daud

A system development in partial fulfillment of the requirements of the degree of
Bachelor of Computer Science

University of Malaya

Univ
ers

ity
 of

 M
ala

ya

Abstract

Over the past 40 years there has been a dramatic miniaturization in computer

technology. If current trends continue, by the year 2020 the basic memory components

of a computer will be the size of individual atoms. At such scales, the current model of

computation, based on a mathematical idealization known as the Universal Turing

Machine, is simply invalid. A new field, called "quantum computing" is emerging that is

re-inventing the foundations of computer science and information theory in a way that is

consistent with quantum physics - the most accurate model of reality that is currently

known.

Remarkably this new theory predicts that quantum computers can perform tasks

exponentially faster than any conventional computer. Moreover, quantum effects allow

unprecedented tasks to be performed such as teleporting information, breaking

supposedly "unbreakable" codes, generating true random numbers, and communicating

with messages that betray the presence of eavesdropping. These capabilities are of

significant practical importance to banks and government agencies. lndeed, a quantum

scheme for sending and receiving ultra-secure messages has already been implemented

over a distance of 30km- far enough to wire the financial district of any major city.

Modem microprocessors have to be designed with quantum mechanics in mind

in order to ensure that they function correctly. In essence they use quantum effects to

ensure that their classical computations are upheld. W~at no current processor does is to

fully exploit quantum effects Recently, it took 1,600 computers communicating over the

Internet 8 months to solve the factorisation of a 129-digit number. Should it be possible

to build a microprocessor which fully exploits quantum mechanics then it may be

11

Univ
ers

ity
 of

 M
ala

ya

possible to carry out such factorisations in remarkably less time. The RSA algorithm, a

widely used encryption system, is safe only if such factorisations cannot be performed

quickly.

Although modem computers already exploit some quantum phenomena they do

not make use of the full repertoire of quantum phenomena that Nature provides.

Harnessing these phenomena will take computing technology to the very brink of what

is possible in this Universe.

Ill

Univ
ers

ity
 of

 M
ala

ya

Acknowledgement

I would like to thank Prof. Ir. Dr. Selvanathan for introducing me to the field of

quantum computation in the first place, suggesting an excellent project idea and then

explaining the basic and fundamental of the field in such clear terms. I would also like to

thanks him for his help and guidance throughout the course of the project.

The works of Paul Benioff, Richard Feynman, P W Shor, Lov K Grover, David

Deutsch, P A Zizzi, S Hameroff, R Penrose, Jacob West of Caltech, Michael A Nielsen,

Isaac L Chuang, and many others have provided the central research material for this

project. Without their constant research into this exciting field, projects such as this

would not be possible.

IV

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

Chapter 1: Introduction .. 1
1.1 Overview 1
1.2 Project Motivation 2
1.3 Project Objective 3
1.4 Project Scope and Expected Outcome .. .4

Chapter 2: Literature Review 5
2.1 Background to Quantum Computation ... 5

2.1.1 Quantum Theory 5
2.1.1 Introduction to Quantum Effects 7
2.1.2 Many-Worlds Formulation 11
2.1.3 Superposition Particles 13

2.2 Quantum Computing 15
2.2.1 What is a Quantum Computer? ... 15
2.2.2 Qubits 16
2.2.3 Superposition and Entanglement ... 18
2.2.4 Quantum Gates 20
2.2.5 Quantum Algorithms ... 21
2.2.6 Brief History of Quantum Computation 25
2.2. 7 Potential and Power of Quantum Computation 26
2.2.8 Obstacles and Researches 29

2.3 Review of Development Tools and Technologies 32
2.3.1 Java Programming Platform and Language 32

2.3.1.1 Java 2 Platform Standard Edition (J2SE)v1.4 32
2.3.1.2 Beginning of the Java Programming Language 33
2.3.1.3 Design Goals of the Java Programming Language 34
2.3.1.4 Java Foundation Classes (JFC) 35
2.3.1.5 Overview of Java 30 37

2.3.2 MATLAB (MATrix LABoratory) 38
2.3.2.1 Beginning ofMATlAB 39
2.3.2.2 What Is MA TlAB 39
2.3.2.3 The MATIAB System 40
2.3.2.4 MATLAB GUIDE (Graphical User Interface Development
Environment) 41

2.3.3 MATHEMATICA 43
2.3.3.1 Introduction to MATHEMATICA 43

Chapter 3: Methodology and Technique45
3.1 Methodology 45
3.2 Extreme Programming (XP) Model :46

3.2.1 XP Model as the Project Methodology 46
3.2.2 XP Model in Greater Details47

3.3 Techniques Used to Gather Information ... 51
Chapter 4: System Analysis , 54

4.1 Functional Requirement 54
4.1.1 Quantum Growing Network Simulation ... 55

v

Univ
ers

ity
 of

 M
ala

ya

4.2 Non-Functional Requirement ... 55
4.3 Hardware and Software Requirements .. .58

Chapter 5: System Design ... 60
5.1 Quantum Growing Network Simulation Design ... 60

5.1.1 Mathematical Equations (Vacuum and Virtual States) 60
5.1.2 Explanation on Quantum Growing Network 62

5.2 User Interface Design .. 64
Chapter 6: System Implementation ... 67

6.1 Development Environment 67
6.1.1 Hardware in the Development Environment 67
6.1.2 Software in the Development Environment.. 68

6.2 Development of the System ... 68
6.2.1 Object Oriented Programming (OOP) .. 68
6.2.2 System Coding 75

6.3 Coding Style .. 79
6.3.1 Formatting and Indenting Codes ... 79
6.3.2 Commenting Codes .. 79

Chapter 7: System Testing .. 81
7.1 Compiling and Executing .. 81
7.2 Debugging ... 81
7.3 Accuracy of Execution ... 82
7.4 Multiplatform Testing ... 83

Chapter 8: Conclusion and Future Work. ... 84
8.1 Problems Encountered .. 84
8.2 System Limitations and Future Enhancement .. 85

Bibliography and References .. 87
APPENDIX A: SOURCE CODE ... 88
APPENDIX 8: USER MANUAL ... 96

vi

Univ
ers

ity
 of

 M
ala

ya

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 3.1
Figure 3.2
Figure 3.3
Figure 5.1
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 81
Figure 82
Figure 83
Figure 84
Figure 85
Figure 86

Figure 87

Figure 88

Table of Figures

Young's Double Slits Experiment
A Quantum Theory Simple Experiment
A Quantum Theory Complex Experiment
Another Set of Quantum Theory Complex Experiment
Split into Two Universes
Interferences of Universes
Decoherence
Superposition
Summary of the Functions of X, Z and Hadamard Gates
Overview of Java 2 Platform vl.4
MA TIA8 GUI Layout Editor
Overview of XP Model
Iteration in XP Model
Development in XP Model
Quantum Growing Network
An Example of a Software Object
Interaction (Messaging) Between Objects
An Example of a Class with Methods
Different Objects from a Same Class with Instances
An Object and a Class
Formatted, Indented and Commented Code in JCreator
The JCreator Development Environment
Creating a New Java Source File in JCreator
Compilation in JCreator
Quantum Growing Network Simulation Program
The Simulation Program with the First Node
The Simulation Program Visualizing up to Node 10
Quantum Growing Network Applet Runs in Internet
Explorer
Quantum Growing Network Applet Runs in Netscape
Navigator

vii

7
8
9

10
13
14
15
17
21
32
42
47
48
50
63
70
72
73
74
75
76
99

100
101
102
103
104

106

106 Univ
ers

ity
 of

 M
ala

ya

Chapter 1: Introduction

1.1 Overview

Quantum computing is a field which falls under one the studies of natural

computing. Natural Computing is a general term referring to computing going on in

nature and computing inspired by nature. When complex phenomena are going on in

nature are viewed as computational processes, our understanding of these phenomena

and of the essence of computation is enhanced. In this way one gains valuable insights

into both natural sciences and computer science. Characteristic for man-designed

computing inspired by nature is the metaphorical use of concepts, principles and

mechanisms underlying natural systems.

Quantum computing is the area of study focused on developing computer

technology based on the principles of quantum theory, which explains the nature and

behavior of energy and matter on the quantum (atomic and subatomic) level.

Development of a quantum computer, if practical, would mark a leap forward in

computing capability far greater than that from the abacus to a modem supercomputer,

which performance gains in the billion-fold realm and beyond. The quantum computer,

following the laws of quantum physics, would gain enormous processing power through

the ability to be in multiple states, and to perform tasks using all permutations

simultaneous! y.

Current centers of research, which are doing extensive researches in quantum

computing, include International Business Machine (IBM), California Institute of

Technology (Caltech), Oxford University - Qubit, Stanford University, Massachusetts

fnstitute of Technology (MIT), Los Alamos National Library, and many more.

1

Univ
ers

ity
 of

 M
ala

ya

1.2 Project Motivation

In the twentieth century, as civilization advanced, information was added to the

list of resources such as materials, forces, and energies. Invention of computers meant

that information processing was possible outside the realm of the human brain.

Computer transformed from simple mechanical devices using gears and relays to

complex electronic circuits involving transistors and ICs (integrated circuits). With the

creation and advancement of Lithographic Techniques, fraction of a micron wide logic

gates and wires on silicon chips are invented and manufactured. Soon, logic gates and

parts will be shrunk so that they are only made of a handful of atoms. At this level,

quantum mechanics and theory have to be used and applied to supplement and replace

what we have now.

Basically, there are two main factors that motivate the study and research of

quantum computing. Firstly, some important computational problems may seem

permanently intractable. Their complexity grows exponentially with problem size. For

an example, factoring a large number (large number factorization is the main concept of

internet unbreakable codes). Secondly, to do all these heavy and complex computational

problems, supercomputers are needed but as described by Moore's Law, performance

improvements in classical computer circuits may be a approaching a limit. This is when

transistors will reach fundamental physical limits when they begin to approach the size

of atom, where quantum mechanics comes into picture.

The essential elements of quantum computing originated with Paul Benioff,

working at Argonne National Labs, in 1981. He theoriLed a classical computer operating

with some quantum mechanical principles. But it is generally accepted that David

2

Univ
ers

ity
 of

 M
ala

ya

Deutsch of Oxford University provided the critical impetus for quantum computing

research. In 1984, he was at a computation theory conference and began to wonder about

the possibility of designing a computer that was based exclusively on quantum rules,

then published his breakthrough paper a few months later. With this, the race began to

exploit his ideas.

This final year project is fundamentally motivated by the field of quantum

computing, and is specifically motivated by the interesting findings of quantum coherent

superposition which can lead to a massive parallel processing as described as a quantum

growing network. This study can be regarded as the first attempt toward a future model

for the quantum World Wide Web or rather, the fust real Intelligent Web, which mimics

the process of thoughts in human brain.

Apart from that, this project is also motivated by the study and research in the

area of quantum error correction, particularly the effect of decoherence on the quantum

states of an energy or matter.

1.3 Project Objective

The surface objectives of this project are as below:

• To study the emergence and impact of Quantum Computation and Quantum

Information Processing.

• To understand the concepts of Quantum Theory and Quantum Mechanics.

• To study the differences between classical computing with quantum

computing.

• To study the functions and operations of important Quantum Gates and

Circuits.

3

Univ
ers

ity
 of

 M
ala

ya

• To understand some of the major Quantum Algorithms.

Besides the surface objectives as mentioned above, this project is to meet a main

and specific objective. The objective is to conduct a deep study on quantum coherent

superposition which lead to the findings of Penrose-Hameroff Orch Model of

Consciousness and its relation with the quantum growing network. The implementation

of this project will meet the objective of simulating and visualizing the effect of virtual

quantum states on the speed of growth (related to massive parallel processing) of a

quantum network, bow they are operated by quantum logic gates (using Hadamard

gates) and transformed into qubits (information).

1.4 Project Scope and Expected Outcome

The scope of the project is basically revolving around understanding the quantum

growing network algorithm and code the algorithm using a chosen programming

language, which is the Java programming language with an object oriented approach.

The outcome of the project should be a standalone Java application which can

also be executed as a Java applet that graphically visualizes the quantum growing

network with nodes and links.

4

Univ
ers

ity
 of

 M
ala

ya

Chapter 2: Literature Review

2.1 Background to Quantum Computation

2.1.1 Quantum Theory

Quantum theory' s develo~ment began in 1900 with a presentation by Max

Planck to the German Physical Society 7 in which he introduced the idea that energy

exists in individual units (which he called "quanta"), as does matter. Further

developments by a number of scientists over the following 30 years lead to the modern

understanding of quantum theory.

The essential elements of Quantum Theory are:

• Energy, like matter, consists of discrete units, rather than solely as a

continuous wave.

• Elementary particles of both energy and matter, depending on the conditions,

may behave like either particles or waves.

• The movement of elementary particles is inherently random, and, thus,

unpredictable.

• The simultaneous measurement of two complementary values, such as the

position and momentum of an elementary particle7 is inescapably flawed; the

more precisely one value is measured, the more flawed will be the

measurement of the other value.

The development of Quantum Theory does not stop here. In further

developments, Neil Bohr proposed the Copenhagen interpretation of quantum theory,

which asserts that a particle is whatever it is measured to be (for example, a wave or a

5

Univ
ers

ity
 of

 M
ala

ya

particle) but that it cannot be assumed to have specific properties, or even to exist, until

it is measured. In short, Bohr was saying that objective reality does not exist. This

translates to a principle called superposition that claims that while we do not know what

the state of any object is, it is actually in all possible states simultaneously, as long as we

do not look to check.

To illustrate this theory, the famous and somewhat cruel analogy of

Schrodinger's Cat. First, have a living cat and place it in a thick lead box. At this stage,

there is no question that the cat is alive. We then throw in a vial of cyanide and seal the

box. We do not know if the cat is alive or if it has broken the cyanide capsule and died.

Since we do not know, the cat is both dead and alive, according to quantum law- in a

superposition of states. It is only when we break open the box and see what condition the

cat is in that the superposition is lost, and the cat must be either alive or dead.

The second interpretation of quantum theory is the mutiverse or many-worlds

theory. It holds that as soon as a potential exists for any object to be in any state, the

universe of that object transmutes into a series of parallel universes equal to the number

of possible states in which that the object can exist, with each universe containing a

unique single possible state of that object. Furthermore, there is a mechanism for

interaction between these universes that somehow permits all states to be accessible in

some way and for all possible states to be affected in some manner. Stephen Hawking

and late Richard Feynman are among the scientists who have expressed a preference for

the many-worlds theory.

Whichever argument one chooses, the principle that, in some way, one particle

can exist in numerous states opens up profound implications for computing.

6

Univ
ers

ity
 of

 M
ala

ya

2.1.1 Introduction to Quantum Effects

In Young's double slit experiment below (Figure 2.1) light coming from the light

source produces interference patterns on the screen S. If we were to consider that light is

a wave then the patterns can be explained by the interference of light travelling through

slits X and Y.

Screen

Figure 2.1: Young's Double Slits Experiment.

Since Young first performed his experiment in 1801 we have gained a far better

control over our light sources. We also now know that light is made of particles called

photons. We can arrange for a single photon to leave the emitter, pass through the slits

and hit the screen. What we see is that the photons strike certain areas of the screen more

often than other areas, and that that this is the reason for the light and dark fringes.

This raises some interesting questions. For instance, just why does a single

photon hit the screen more in some areas than in others? If light is made up of particles

then how can a single particle travelling through one of the slits X or Y produce an

interference pattern? As only one particle has been emitted from the light source surely

there is nothmg for the particle to interfere with.

One theory is that the photon is more I ikely to strike certain areas of the screen

because it has effectively travelled to the screen via every possible path, with some paths

7

Univ
ers

ity
 of

 M
ala

ya

interfering with others. This interference may be constructive or destructive and

accounts for why the photons never hit certain areas of the screen. The effects of

quantum interference are even more apparent in the results of a second experiment,

shown below.

Consider a beam of light being emitted from a laser and hitting a partially

reflective mirror, as shown in Figure 2.2. The mirror has been designed to reflect or

transmit light with equal probability, so 50% of the light will hit detector 1 and 50% will

hit detector 2.

Laser I Det~or
Figure 2.2: A Quantum Theory Simple Experiment.

Now consider an attempt to recombine the beam, as shown in Figure 2.3. The

paths are set up to be exactly equal in length. What we find is that 100% of the light hits

detector 1.

8

Univ
ers

ity
 of

 M
ala

ya

Laser

Detector
1

Figure 2.3: A Set of Quantum Theory Complex Experiment.

Detector
2

Now consider the same experiment with one of the paths blocked, as in Figure

2.4. What we now ftnd is that 50% of the light hits detector 1 and 50% hits detector 2.

Again we can adjust the light source so that only 1 photon is emitted at a time and again

we find that this single photon behaves exactly as it would if it was a wave. In Figure 2.4

we know which path the electron has travelled as one of the paths is blocked. Yet how

does this single photon know that this blockage on a remote path exists and that, with

such a blockage, it must act differently when it reaches the second partially mirrored

surface?

9

Univ
ers

ity
 of

 M
ala

ya

Laser

Detector
1

·Detector
2

Figure 2.4: Another Set of Quantum Theory Complex Experiment.

Again it seems that we must accept the result that at quanta level, particles do not

travel single paths, instead they travel to their destination by every possible path.

Although this seems counterintuitive this area of quantum physics predicts

measurements that agree with our observations to an astounding degree. For a more

comprehensive explanation of the basic theory of quantum mechanics read Richard

Feynman's excellent book, QED: The strange theory of light and matter.

If a photon travels to a destination via every possible path then can we use this

quantum behaviour to our advantage in computing? It is clear that the universe is

performing far more work in calculating the destination of a photon than one would

expect from a classical point of view. As our machines are based on classical ideas of

mathematics can this extra work by the quantum u,niverse be converted in to extra

computational power for our machines? The answer would appear to be a yes.

It was Benioff [1980, 1982a, 1982b) who showed that a machine whose

computations were performed according to the laws of quantum mechanics physics

10

Univ
ers

ity
 of

 M
ala

ya

would be at least as powerful as a classical Turing machine. It was Richard Feynman

[1982, 1986] who first postulated that a quantum mechanical system takes an

exponential amount of time to simulate on a classical machine. This then implies the

reverse - that some computations which take an exponential amount of time to run on a

classical machine can be computed in polynomial time by a quantum mc:hanical

system. It was David Deutsch [1985, 1989] who was the first person to seriously

investigate this possibility and define a Quantum Turing Machine.

2.1.2 Many-Worlds Formulation

In one formulation of quantum theory, the Many Worlds interpretation, there are

actually many copies of the universe which have certain probabilities of existing. In each

universe the photon travels to its destination along one path. The interference that we see

on the screen is due to the universes constructively and destructively interfering with one

another. The universes where the photon strikes a dark patch of the screen have little

possibility of existing while the universes with light patches have a reasonable chance of

existing.

The Many Worlds theory originated with Dr Hugh Everett, III, is supported by

some of the leading investigators in the field of quantum computation. The following in

an extract from the "Many Worlds" faq by Michael Clive Price, which is available

online.

11

Univ
ers

ity
 of

 M
ala

ya

"Political scientist" L David Raub reports a poll of 72 of the "leading cosmologists and

other quantum field theorists" about the "Many-Worlds Interpretation., and gives the

following response breakdown.

I) "Yes, I think MWI is true"

2) "No, I don't accept MWI"

58%

18%

3) "Maybe it's true but I'm not yet convinced" 13%

4) "I have no opinion one way or the other" 11%

Amongst the "Yes, I think MWI is true" crowd listed are Stephen Hawking and Nobel

Laureates Murray Gell-Mann and Richard Feynman Geli-Mann and Hawking

recorded reservations with the name "many-worlds", but not with the theory's content.

Nobel Laureate Steven Weinberg is also mentioned as a many-worlder, although the

suggestion is not when the poll was conducted, presumably before 1988 (when Feynman

died). The only "No, I don't accept MWI" named is Penrose.

The Many Worlds theory allows us a view of the behaviour of quantum

computation which some find easier to visualise. The theory does differ from other

quantum theories in its predicted results in certain areas. This opens up the possibility of

being able to disprove the theory one day. Deutsch [1985] describes one possible

experiment using an artificial intelligence computer built using quantum circuits. This

experiment is currently far beyond our technical expertise.

The theory implies that there are many copies of you in many different universes.

We are not aware of other copies because there can be no communication between the

universes. This is disconcerting to a number of people who do not like their individuality

to be impeached upon.

12

Univ
ers

ity
 of

 M
ala

ya

2.1.3 Superposition Particles

Imagine a hydrogen atom in its ground state. If we supply an amount of energy at

the correct frequency for a certain period of ~ime the atom will become excited. If we

supply the energy for only half of this period then the atom will be in a superpositioned

state - that is in some universes the atom will still be in a ground state and in other

universes it will be in an excited state. Note that the particle is not in some intermediate

state - it is definitely in one state or the other and measuring it wilJ tell you which state

the particle occupies in your universe. An otherwise identical copy of you in a different

universe will have performed exactly the same measurement and will have seen the

opposite result.

Again consider a particle in its ground state in universe X. Again we supply the

correct amount of energy so that the particle enters a superpositioned state. The universe

X will then split in to two universes: in universe Ul the particle is excited and in

universe U2 the particle is still in its ground state. In all other aspects these two

universes are absolutely identical. We can see this in Figure 2.5 where time increases

along the x -axis.

x<u,
u2

Figure 2.5: Split into Two Universes.

Each of these universes will have an amplitude attached to it. The amplitude is a

complex number that corresponds to the likelihood of that universe existing. What we

would term as being the probability of the universe existing is the magnitude squared of

this complex number, which obviously must lie on or between 0 and 1.

13

Univ
ers

ity
 of

 M
ala

ya

Now if we consider the above example again, what would happen if there was

another route for the universe Ul to be created, as in Figure 2.6. Here universe Y can

also split in to two universes, one of which is identical to Ul. It is obvious that the

probability of Ul occurring must now be affected as there are two paths leading to this

ui.;verse. This is not to say that the probability of Ul increases. The amplitude of Ul is

determined by the mathematical combination of the amplitudes of X and Y and of the

amplitudes of X leading to Ul and Y leading Ul. As amplitudes attached to these

universes and actions are complex and may well involve negative numbers the

probability of Ul existing may well be less in this example than it was in the previous

example. Hence the universe may well destructively interfere as well as constructively

so, and this is why we see dark fringes in Young's double slit experiment.

:<:u,
u2

Figure 2.6: Interference or Universes.

It is important to note that the universes must be absolutely identical for

interference to occur. Again consider a particle in a universe X which is then transferred

in to a superpositioned state in universes Ul and U2. Now we measure the particle. In

universe Ul you would see that the particle is excited and you and the particle would

enter universe U3, and in U2 you would see that it is in the ground state and enter

universe 04. By this process of measuring the state of billions of particles in your brain

have b~en affected. The difference between U3 and U4 would not be one particle, as

with the differences of U I and U2, but billions of particles. 03 and U4 would be so far

apart that there would never be any hope of the two universes becoming identical at

some point in the future. Thus they will never interfere again. We call this process

14

Univ
ers

ity
 of

 M
ala

ya

decoherence, an9 it can be seen in Figure 2.7 with the y-axis representing a qualitative

measure of the distance between universes (that is to say how different they are).

u.
Figure 2.7: Decoherence.

2.2 Quantum Computing

2.2.1 What is a Quantum Computer?

Current modem computer represents the culmination of years of technological

advancements beginning with the early ideas of Charles Babbage (1791-1871) and

eventual creation of the first computer by German engineer Konrad Zuse in 1941.

Surprisingly however, the high speed modern computer sitting in front of you is

fundamentally no different from its gargantuan 30 to~ ancestors, which were equipped

with some 18000 vacuum tubes and 500 miles of wiring! Although computers have

become more compact and considerably faster in performing their task, the task remains

the same: to manipulate and interpret an encoding of binary bits into a useful

15

Univ
ers

ity
 of

 M
ala

ya

computational result. A bit is a fundamental unit of information, classically represented

as a 0 or 1 in your digital computer. Each classical bit is physicaUy realized through a

macroscopic physical system, such as the magnetization on a hard disk or the charge on

a capacitor. A document, for example, comprised of n-characters stored on the hard

drive of a typical computer is accordingly described by a st.ing of 8n zeros and ones.

Herein lies a key difference between your classical computer and a quantum computer.

Where a classical computer obeys the well understood laws of classical physics, a

quantum computer is a device that harnesses physical phenomenon unique to quantum

mechanics (especially quantum interference) to realize a fundamentally new mode of

information processing.

In a quantum computer, the fundamental unit of information (called a quantum

bit or qubit), is not binary but rather more quaternary in nature. This qubit property

arises as a direct consequence of its adherence to the laws of quantum mechanics which

differ radically from the laws of classical physics. A qubit can exist not only in a state

corresponding to the logical state 0 or 1 as in a classical bit, but also in states

corresponding to a blend or superposition of these classical states. In other words, a

qubit can exist as a zero, a one, or simultaneously as both 0 and 1, with a numerical

coefficient representing the probability for each state. This may seem counterintuitive

because everyday phenomenon are governed by classical physics, not quantum

mechanics -- which takes over at the atomic level.

2.2.2 Qubits

We define a quantum bit (Qubit) as being a particle in the superposition of two

values, which we will denote IO> and II>. Here we use the ket notation I> to remind us

16

Univ
ers

ity
 of

 M
ala

ya

that we are dealing with quantum systems and not classical ones. For instance, we could

denote the excited state of a superpositioned particle as being ll> and the ground state as

being IO>.

Let's place a particle in to the superposition of two values, IO> and 11>. Again we

get two universes, each with an assigned amplitude. lf we were to then to place another

particle in a superposition of two values we'd then get four universes, as shown in

Figure 2.8. If we were to repeat this process then we would get eight universes, and so

on.

X

Figure 2.8: Superposition.

In fact for n superpositioned particles in two possible states we get 2n different

universes with every possible combination of the n particles values being observed. As

with classical machines we can call a collection of bits a register. However, the

difference is that a classical register can only hold one value. A quantum register of

length n bits can hold up to 2n values simultaneously with each value observed in an

otherwise identical universe. This quantum register could be used as the input to some

circuit. The circuit will then act simultaneously on these 2n different inputs, perform 2n

different calculations and output 2n superpositioned results. This is the source of the

exponential speed-up of quantum computers, and has also been dubbed parallel

17

Univ
ers

ity
 of

 M
ala

ya

processing on a serial machine. In essence, for the cost of building only one circuit we

can have the circuit perform an exponential number of calculations simultaneously.

The trick is to get all of these universes to interfere with each other in such a way

as to produce an output that is of some use to us. Consider the situation where we have

the functions in the 2n universes outputting a different value with equal probability. If

we were to perform a measurement on the output value the systems would decohere and

the value read would be a random value from the 2n outputs, which wouldn't really tell

us very much. What's required is to arrange for the universes to interfere with each other

with each other in such a way so that the output value(s) of interest have a much higher

probability of being observed and, conversely, those values which are not of interest

having a much smaller probability of being observed.

This leads to an interesting question. If we require that the output from a

quantum circuit interferes in such a way as to make certain outputs being made more

probable than others, then does this lead to a restriction on the type of class of problems

which quantum circuits could perform more efficiently than their classical counterparts?

Would it lead to a more efficient algorithm but with a less than exponential speed up?

This question is analogous to the question of whether parallel processing machines can

effectively speed up all problems or whether there are some inherently sequential

problems that refuse to yield to parallel techniques. The answer to this question on

quantum computation would appear to be yes, there is a limit to what quantum

computation can speed up.

2.2.3 Superposition and Entanglement

18

Univ
ers

ity
 of

 M
ala

ya

Think of a qubit as an electron in a magnetic field. The electron's spin may be

either in alignment with the field, which is known as a spin-up state, or opposite to the

field, which is known as a spin-down state. Changing the electron's spin from one state

to another is achieved by using a pulse of energy, such as from a laser- let's say that we

use 1 unit of laser energy. But what if we only use half a unit of laser energy and

completely isolate the particle from all external influences? According to quantum law,

the particle then enters a superposition of states, in which it behaves as if it were in both

states simultaneously. Each qubit utilized could take a superposition of both 0 and 1.

Thus, the number of computations that a quantum computer could undertake is 2n,

where n is the number of qubits used. A quantum computer comprised of 500 qubits

would have a potential to do 2500 calculations in a single step. This is an awesome

number - 2500 is infinitely more atoms than there are in the known universe (this is true

parallel processing - classical computers today, even so called parallel processors, still

only truly do one thing at a time: there are just two or more of them doing it). But how

will these particles interact with each other? They would do so via quantum

entanglement.

Particles (such as photons, electrons, or qubits) that have interacted at some point

retain a type of connection and can be entangled with each other in pairs, in a process

known as correlation. Knowing the spin state of one entangled particle - up or down -

allows one to know that the spin of its mate is in the opposite direction. Even more

amazing is the knowledge that, due to the phenomenon of superpostition, the measured

particle has no single spin direction before being measured, but is simultaneously in both

a spin-up and spin-down state. The spin state of the particle being measured is decided at

the time of measurement and communicated to the correlated particle, which

19

Univ
ers

ity
 of

 M
ala

ya

simultaneously assumes the opposite spin direction to that of the measured particle. This

is a real phenomenon (Einstein called it "spooky action at a distance"), the mechanism of

which cannot, as yet, be explained by any theory - it simply must be taken as given.

Quantum entanglement allows qubits that are separated by incredible distances to

interact with each other instantaneously (~tot limited to the speed of light). No matter

how great the distance between the correlated particles, they will remain entangled as

long as they are isolated.

Taken together, quantum superposition and entanglement create an enormously

enhanced computing power. Where a 2-bit register in an ordinary computer can store

only one of four binary configurations (00, 01, 10, or 11) at any given time, a 2-qubit

register in a quantum computer can store all four numbers simultaneously, because each

qubit represents two values. If more qubits are added, the increased capacity is expanded

exponentially.

2.2.4 Quantum Gates

Changes occurring to a quantum state can be described using the language of

quantum computation. Analogous to the way a classical computer is built from an

electrical circuit containing wires and logic gates, a quantum computer is built from a

quantum circuit containing wires and elementary quantum gates to carry around and

manipulate the quantum information.

Quantum NOT gate is a single qubit gate. It is analogous to classical NOT gate.

The NOT gate tS represented with X in a matrix form as X • [~ ~]· Operation on

NOT gate is as:

20

Univ
ers

ity
 of

 M
ala

ya

For any a I 0) + P II) • [;],we get x[;]- [~ ~][;]-[~] or PI 0) +a II).

To summarize, quantum NOT gate does the following transformation:

a I 0) + P ll) - P 11) + a I 0) .

Z gate is also a single qubit gate and is represnted with Z in a matrix form as

z • [1 0
]·The Z gate leaves I 0) unchanged but flips the sign ll) to -11). Another

0 -1

important and most useful single qubit gate is Hadamard gate. Hadamard gate is

represented with H in a matrix form asH • Jz [~ ~
1
]. It turns I 0) to Jz 0 0)+ II))

and 11) into Jz 0 0)-11)).

Figure below shows the summary of the functions of X, Z, and Hadamard gates:

a IO) + Pll) ----X ----P IO) +all)

a I 0) + P ll) - - - -Z - - - -a I 0) - P 11)

a I o) + p 11) ___ -H ___ -a I 0)+ ll) +pI o)-lt)
J2 .J2

Figur~ 2.9: Summary of the Functions of X. Z and Hadamard Gates.

Besides the mentioned and illustrated single qubit gates, there are also multiple

qubit gates such as controlled-NOT or CNOT gate, controlled-U gate, controlled-Z gate,

universal Toffoli gate, and Fredkin (controlled-swap) gate.

2.2.5 Quantum Algorithms

For certain problem solving, the quantum computer will never surpass traditional

computers. An example of this would be function evaluations such as multiplication.

21

Univ
ers

ity
 of

 M
ala

ya

However, there are many other areas of computation that they would be well suited

towards such as:

• Problem solving, for example factorizing.

• Proving that an input is true {though not necessarily providing the proof), for

example, proving that a number is composite.

• Providing true randomization as opposed to present day computers which

only provide pseudo random numbers.

• Undergoing an evolution that mimics a specified physical system e.g.

simulating the behavior of a hurricane.

• Possibly producing intelligent machines that can pass the Turing test.

Many of the special properties of quantum computers are similar to properties

that the mind has, e.g. correlating large amounts of different data very rapidly to useful

conclusions, without necessarily producing proof for this (intuition). This would seem to

suggest that there is a link between quantum computers and how the brain works,

possibly leading to an artificially intelligent computer.

Shor's Algorithm is an algorithm invented by Peter Shor in 1995. It is the so

called 'killer application' of quantum computers, due to its usefulness. It uses a quantum

computer to crack public keys, a very popular method of encrypting data. The basic

workings of public key encryption needed to be understood first before one can

understand how the algorithm works.

Public Key Encryption is the main method for sending encrypted data. It works

by using two keys one public and one private. The public key i~ used to encrypt the data,

while the private key is used to decrypt the data. The public key can be easily derived

22

Univ
ers

ity
 of

 M
ala

ya

from the private key but not visa versa. This system relies on the extreme difficulty of

factorising large numbers. An eavesdropper who knows your public key can in principle

calculate your private key as they are mathematically related but the difficulty of

computing the private key is the problem of factorizing large integers. For example,

multiplying 1234 by 3433 is easy to work out, but calculating the factors of 4236322 is

not so easy. The difficulty of factorizing grows rapidly with the size. It took 8 months

and 1600 Internet users to crack RSA 129. Encrypters thought that more digits could be

added as conventional computers increased in speed, i.e. it would take longer than the

age of the universe to calculate RSA 140. However, using a quantum computer, which is

running Shoe's algorithm, a key can be cracked in seconds. This is due to the algorithm

being able to parallel process on an unprecedented scale.

There are three main stages to Shor's Algorithm as will be detailed below:

• Take a memory register and place it into a quantum superposition of states (if

you had a two bit register, it would be in the states 00, 01, 10, 11 at the same

time).

• A calculation is made on the register (and hence on each different value in

the register). First of all a random number x is chosen (between 0 and n).

Raise this number to the power in the register. Divide this number by n, and

place the remainder in a second register. The numbers in the second register

will start to repeat at a certain frequency (f).

• Plug into the formula (x.f/ 2) - 1. An example of this would be trying to

factorise 15 using x = 3. This would give powers of 3, 9, 27, 81, 243, 729 etc.

23

Univ
ers

ity
 of

 M
ala

ya

These have a repeating pattern of 3, 9, 12, 6, 3, 9 etc., giving the frequency as

four. Putting it in the formula gives (3 x 4) I 2- 1 = 5 which is a factor of 15.

Shor worked out that incorrect answers had a tendency to cancel themselves out

while correct ones reinforced each other. Thus an answer for the factors could be found.

This technique does not g.;t the correct answer all the time, however it is so quick to

implement, it can be run over and over again.

Lov Grover has written an algorithm, which is widely know as Grover's

Algorithm using quantum computers to search an unsorted database faster than a

conventional computer could. Normally a database with N entries would take N/2

number of searches to find the data needed, but using a quantum computer it takes root

N. For example, with a database holding 1 million entries instead of taking on average

500,000 searches it will only take 1000 searches (in this universe). With databases

getting larger and being integrated together more, this would mean a significant saving

in time.

Grover's algorithm has another very useful application, in the field of cracking

encrypted data. We are interested in the situation where a virtual database is so large that

it would not fit in the memories of all the world's computers. This allows a quantum

computer to crack another widely used system to protect data. This is the Data

Encryption Standard. DES relies on a 56 bit number which both participants must know

before hand. If an eavesdropper intercepts clear and ciphered text then his goal is to find

the key so that any future text can be decoded. An exhaustive search by conventional

means would make it necessary to search 2 to the power 55 keys before hitting the

correct one. This would take more than a year even if one billion keys were tried every

second. By comparison Grover's algorithm could find the DES enciphering key after

24

Univ
ers

ity
 of

 M
ala

ya

only 185 searches before hitting the correct one. For conventional DES, a method to stop

modern computers from cracking the code (i.e. if they got faster) would be simply to add

extra digits to the code which would increase the number of searches needed

exponentially. This does not happen similarly in a quantum computer crack.

Grover also stated that quantum computers would be talented statist.;ians,

excelling in fmding single numbers which depend collectively on lots of data e.g.

median age of a population.

2.2.6 Brief History of Quantum Computation

The idea of a computational device based on quantum mechanics was first

explored in the 1970's and early 1980's by physicists and computer scientists such as

Charles H. Bennett of the IBM Thomas J. Watson Research Center, Paul A. Benioff of

Argonne National Laboratory in Illinois, David Deutsch of the University of Oxford,

and the late Richard P. Feynman of the California Institute of Technology (Caltech).

The idea emerged when scientists were pondering the fundamental limits of

computation. They understood that if technology continued to abide by Moore's Law,

then the continually shrinking size of circuitry packed onto silicon chips would

eventually reach a point where individual elements would be no larger than a few atoms.

Here a problem arose because at the atomic scale the physical laws that govern the

behavior and properties of the circuit are inherently quantum mechanical in nature, not

classical. This then raised the question of whether a new kind of computer could be

devised based on the principles of quantum physics.

Feynman was among the first to attempt to provide an answer to this question by

producing an abstract model in 1982 that showed how a quantum system could be used

25

Univ
ers

ity
 of

 M
ala

ya

to do computations. He also explained how such a machine would be able to act as a

simulator for quantum physics. In other words, a physicist would have the ability to

carry out experiments in quantum physics inside a quantum mechanical computer.

Later, in 1985, Deutsch realized that Feynman's assertion could eventually lead

to a general purpose quantum computer and published a crucial theoretical paper

showing that any physical process, in principle, could be modeled perfectly by a

quantum computer. Thus, a quantum computer would have capabilities far beyond those

of any traditional classical computer. After Deutsch published this paper, the search

began to find interesting applications for such a machine.

Unfortunately, all that could be found were a few rather contrived mathematical

problems, until Shor circulated in 1994 a preprint of a paper in which he set out a

method for using quantum computers to crack an important problem in number theory,

namely factorization. He showed how an ensemble of mathematical operations,

designed specifically for a quantum computer, could be organized to enable a such a

machine to factor huge numbers extremely rapidly, much faster than is possible on

conventional computers. With this breakthrough, quantum computing transformed from

a mere academic curiosity directly into a national and world interest.

2.2.7 Potential and Power of Quantum Computation

In a traditional computer, information is encoded in a series of bits, and these bits

are manipulated via Boolean logic gates arranged in succession to produce an end result.

Similarly, a quantum computer manipulates qubits by executing a series of quantum

gates, each a unitary transformation acting on a single qubit or pair of qubits. In

applying these gates in succession, a quantum computer can perform a complicated

26

Univ
ers

ity
 of

 M
ala

ya

unitary transformation to a set of qubits in some initial state. The qubits can then be

measured, with this measurement serving as the final computational result.

This similarity in calculation between a classical and quantum computer affords

that in theory, a classical computer can accurately simulate a quantum computer. In

other words, a classical computer would be able to do anything a quantum computer can.

So why bother with quantum computers? Although a classical computer can

theoretically simulate a quantum computer, it is incredibly inefficient, so much so that a

classical computer is effectively incapable of performing many tasks that a quantum

computer could perform with ease.

The simulation of a quantum computer on a classical one is a computationally

hard problem because the correlations among quantum bits are qualitatively different

from correlations among classical bits, as first explained by John Bell. Take ~ for

example a system of only a few hundred qubits, this exists in a Hilbert space of

dimension -1090 that in simulation would require a classical computer to work with

exponentially large matrices (to perform calculations on each individual state, which is

also represented as a matrix), meaning it would take an exponentially longer time than

even a primitive quantum computer.

Richard Feyrunan was among the first to recognize the potential in quantum

superposition for solving such problems much much faster. For example, a system of

500 qubits, which is impossible to simulate classically, represents a quantum

superposition of as many as 2500 states. Each state would be classically equivalent to a

single list of 500 1 's and O's. Any quantum operation on that S) stem --a particular pulse

of radio waves, for instance, whose action might be to execute a controlled-NOT

operation on the lOOth and 10 Lst qubits would simultaneously operate on all 2500 states.

27

Univ
ers

ity
 of

 M
ala

ya

Hence with one fell swoop, one tick of the computer clock, a quantum operation could

compute not just on one machine state, as serial computers do, but on 2500 machine

states at once! Eventually, however, observing the system would cause it to collapse

into a single quantum state corresponding to a single answer, a single list of 500 l's and

.. O's, as dictated by the measurement axiom of quantum mechanics. The reason this is an

exciting result is because this answer, derived from the massive quantum parallelism

achieved through superposition, is the equivalent of performing the same operation on a

classical super computer with -10150 separate processors (which is of course

impossible).

Early investigators in this field were naturally excited by the potential of such

immense computing power, and soon after realizing its potential, the bunt was on to find

something interesting for a quantum computer to do. Peter Shor, a research and

computer scientist at AT&T's Bell Laboratories in New Jersey, provided such an

application by devising the first quantum computer algorithm. Shor's algorithm

harnesses the power: of quantum superposition to rapidly factor very large numbers (on

the order -10200 digits and greater) in a matter of seconds. The premier application of a

quantum computer capable of implementing this algorithm lies in the field of encryption,

where one common (and best) encryption code, known as RSA, relies heavily on the

difficulty of factoring very large composite numbers into their primes. A computer

which can do this easily is naturally of great interest to numerous government agencies

that use RSA -- previously considered to be "uncrackable" -- and anyone interested in

electronic and financial privacy.

Encryption, however, is only one application of a qu&ntum computer. In

addition, Shor has put together a toolbox of mathematical operations that can only be

28

Univ
ers

ity
 of

 M
ala

ya

performed on a quantum computer, many of which he used in his factorization

algorithm. Furthermore, Feynman asserted that a quantum computer could function as a

kind of simulator for quantum physics, potentially opening the doors to many

discoveries in the field. Currently the power and capability of a quantum computer is

primarily theoretical speculation; the advent of t!.e first fully functional quantum

computer will undoubtedly bring many new and exciting applications.

2.2.8 Obstacles and Researches

The field of quantum information processing has made numerous promising

advancements since its conception, including the building of two- and three-qubit

quantum computers capable of some simple arithmetic and data sorting. However, a few

potentially large obstacles still remain that prevent us from "just building one," or more

precisely, building a quantum computer that can rival today's modem digital computer.

Among these difficulties, error correction, decoherence, and hardware architecture are

probably the most formidable. Error correction is rather self explanatory, but what

errors need correction?

The answer is primarily those errors that arise as a direct result of decoherence,

or the tendency of a quantum computer to decay from a given quantum state into an

incoherent state as it interacts, or entangles, with the state of the environment. These

interactions between the environment and qubits are unavoidable, and induce the

breakdown of information stored in the quantum computer, and thus errors in

computation. Before any quantum computer will be capable of solving hard problems,

research must devise a way to maintain decoherence and other potential sources of error

at an acceptable level.

29

Univ
ers

ity
 of

 M
ala

ya

Thanks to the theory (and now reality) of quantum error correction, first

proposed in 1995 and continually developed since, small scale quantum computers have

been built and the prospects of large quantum computers are looking up. Probably the

most important idea in this field is the application of error correction in phase coherence

as a means to extract information and reduce error in a quantum system without actually

measuring that system. In 1998, researches at Los Alamos National Laboratory and

MIT led by Raymond Laflamme managed to spread a single bit of quantum information

(qubit) across three nuclear spins in each molecule of a liquid solution of alanine or

trichloroethylene molecules. They accomplished this using the techniques of nuclear

magnetic resonance (NMR). This experiment is significant because spreading out the

information actually made it harder to corrupt.

Quantum mechanics tells us that directly measuring the state of a qubit

invariably destroys the superposition of states in which it exists, forcing it to become

either a 0 or 1. The technique of spreading out the information allows researchers to

utilize the property of entanglement to study the interactions between states as an

indirect method for analyzing the quantum information. Rather than a direct

measurement, the group compared the spins to see if any new differences arose between

them without learning the information itself. This technique gave them the ability to

detect and fix errors in a qubit's phase coherence, and thus maintain a higher level of

coherence in the quantum system. This milestone has provided argument against

skeptics, and hope for believers. Currently, resea.rch in quantum error correction

continues with groups at Caltech (Preskill, Kimble), Microsoft, Los Alamos, and

elsewhere.

30

Univ
ers

ity
 of

 M
ala

ya

At this point, only a few of the benefits of quantum computation and quantum

computers are readily obvious, but before more possibilities are uncovered theory must

be put to the test. In order to do this, devices capable of quantum computation must be

constructed. Quantum computing hardware is, however, still in its infancy. As a result

of several significant experiments, nuclear magnetic resonance (NMR) has becorr...! the

most popular component in quantum hardware architecture. Only within the past year, a

group from Los Alamos National Laboratory and MIT constructed the first experimental

demonstrations of a quantum computer using nuclear magnetic resonance (NMR)

technology.

Currently, research is underway to discover methods for battling the destructive

effects of decoherence, to develop an optimal hardware architecture for designing and

building a quantum computer, and to further uncover quantum algorithms to utilize the

immense computing power available in these devices. Naturally this pursuit is

intimately related to quantum error correction codes and quantum algorithms, so a

number of groups are doing simultaneous research in a number of these fields. To date,

designs have involved ion traps, cavity quantum electrodynamics (QED), and NMR.

Though these devices have had mild success in performing interesting experiments, the

technologies each have serious limitations. Ion trap computers are limited in speed by

the vibration frequency of the modes in the trap. NMR devices have an exponential

attenuation of signal to noise as the number of qubits in a system increases. Cavity QED

is slightly more promising; however, it still has only been demonstrated with a few

qubits.

Seth Lloyd of MIT is currently a prominent researcher in quantum hardware.

The future of quantum computer hardware architecture is likely to be very different from

31

Univ
ers

ity
 of

 M
ala

ya

what we know today; however, the current research has helped to provide insight as to

what obstacles the future will hold for these devices.

2.3 Review of Development Tools and Technologies

2.3.1 Java Programming Platform and Language

2.3.1.1 Java 2 Platform Standard Edition (J2SE)v1.4

The Java 2 Platform, Standard Edition is at the core of Java technology, and

version 1.4 raises the Java platform to a higher standard. From client to server, from

desktop to supercomputer, improvements have been made to J2SE across the board.

With version 1.4, enterprises can now use Java technology to develop more demanding

business applications with less effort and in less time.

SOK
JRE

Java- 2 Platform, Standard Edition v 1.4

Integration
APis

Core
A Pis

Java
Virtual

Machine

Figure 2.10: Overview of Java 2 Platform vl.4.

32

Univ
ers

ity
 of

 M
ala

ya

Version 1.4 builds upon the current J2SE platform and provides even more

features for developers to build into their applications. More functionality in 1.4 means

developers can now spend less time writing custom code to accomplish what is now part

of the core J2SE platform. The result is faster application programming with more

c..>nsistency for enterprise development initiatives. New features in J2SE 1.4 also reduce

the developer's reliance on other technologies such as C or C++, PERL, or SSL and

DOM implementations in browsers. This allows developers to use a single technology to

develop, test, and deploy end-to-end enterprise applications and solutions. Most

anything you want to do, you can do in J2SE version 1.4.

Version 1.4 provides more ways for developers leverage existing systems

without changing their underlying platforms. Version 1.4 provides additional support for

industry standards technologies such as XML, DOM, SSL, Kerberos, LDAP and

CORBA to ensure operability across heterogeneous platforms, systems, and

environments. Additionally, developers and software vendors may now use a new

Endorsed Standards Override Mechanism in version 1.4 to provide newer versions of

endorsed standards, such as CORBA, as they become available.

2.3.1.2 Beginning of the Java Programming Language

The Java programming language is designed to meet the challenges of

application development in the context of heterogeneous, network-wide distributed

environments. Paramount among these challenges is secure delivery of applications that

consume the minimum of system resources, can run on any hardware and software

platform, and can be extended dynamically.

The Java programming language originated as part of a research project to

develop advanced software for a wide variety of network devices and embedded

33

Univ
ers

ity
 of

 M
ala

ya

systems. The goal was to develop a small, reliable, portable, distributed, real-time

operating platform. When the project started, C++ was the language of choice. But over

time the difficulties encountered with C++ grew to the point where the problems could

best be addressed by creating an entirely new language platform. Design and

architecture decisions drew from a variety of languages such as Eiffel, SmallTalk,

Objective C, and Cedar/Mesa. The result is a language platform that has proven ideal for

developing secure, distributed, network-based end-user applications in environments

ranging from network-embedded devices to the World-Wide Web and the desktop.

2.3.1.3 Design Goals of the Java Programming Language

The design requirements of the Java programming language are driven by the

nature of the computing environments in which software must be deployed. The massive

growth of the Internet and the World-Wide Web leads us to a completely new way of

looking at development and distribution of software. To live in the world of electronic

commerce and distribution, Java technology must enable the development of secure,

high performance, and highly robust applications on multiple platforms in

heterogeneous, distributed networks.

Operating on multiple platforms m heterogeneous networks invalidates the

traditional schemes of binary distribution, release, upgrade, patch, and so on. To survive

in this jungle, the Java programming language must be architecture neutral, portable, and

dynamically adaptable.

The system that emerged to meet these needs is simple, so it can be easily

programmed by most developers; familiar, so that current developers can easily learn the

Java programming language; object oriented, to take advantage of modem software

development methodologies and to fit into distributed client-server applications;

34

Univ
ers

ity
 of

 M
ala

ya

multithreaded, for high performance in applications that need to perform multiple

concurrent activities, such as multimedia; and interpreted, for maximum portability and

dynamic capabilities.

2.3.1.4 Java Foundation Classes (JFC)

The Java Foundation Classes (JFC) are a set of Java cla!)s libraries provided as

part of the Java platform to support building graphics user interface (GUI) and graphics

functionality for Java technology-based client applications ('•Java applications"). JFC

includes an extensive set of technologies that enable developers to create a rich,

interactive user experience for client applications that can run not only on Microsoft

Windows, but also on other increasingly popular platforms, such as Mac OSX and

Linux.

Features of the JFC are as listed below:

•

•

•

Abstract Window Toolkit (A WT): APls that enable programs to integrate

into the native desktop window system, including APls for Drag and Drop.

Java 2D: APls to enable advanced 2D graphics, im~giog, text and printing .

Swing GUI Components: APis that extend the A WT to provide a rich,

extensible GUl component library with a pluggable look and feel.

• Accessibility: APis and assistive technologies for ensuring an application is

accessible to users with disabilities and meets government requirements for

accessibility.

• Internationalization: All JFC technologies include support for creating

applications that can interact with users around the world using the user•s

35

Univ
ers

ity
 of

 M
ala

ya

own language and cultural conventions. This includes the Input Method

Framework API.

These five technolcrgies are designed to be used tog¢ther to enable developers to

build fully functional GUI client applications that run and integrate on any client

machine that supports J2SE, including Microsoft Windows, Solaris, Lmux, and Mac

osx.

Several new enhancements have been made to the Java Foundation

Classes/Swing APis in J2SE 1.4:

• New JFC/Swing features include support for spinners, scrollable tabbed

panes, and indeterminate progress bar controls.

• Swing component data can now be transferred between applications using

cut, copy, and paste functions in addition to full drag-and-drop support across

all Swing components.

• A new API for the long-term persistence of JavaBeans technology will allow

developers to create UI designs that are portable between different Integrated

Development Environments.

• To help applications adapt to different users and environments, a new

Preferences API provides a way to store, retrieve, and modify data from

applications.

• The new full-screen exclusive mode API supports high performance graphics

by suspending the windowing system so that drawing can be done directly to

the screen; a benefit to applications such as games.

36

Univ
ers

ity
 of

 M
ala

ya

2.3.1.5

• A redesigned focus architecture addresses many focus-related bugs caused by

platform inconsistencies and incompatibilities between A WT and Swing

components.

• Undecorated frames allow a Java application to tum off the creation of frame

decorations such as native title bars, system menus, borders, or other native

operating system dependent screen components.

• Other JFC improvements include an updated file chooser for Windows, a

new Auditory Feedback mechanism, higher quality font rendering, mouse

wheel support, Section 508 accessibility compliance, support for Macintosh

style menu bars, and a comprehensive new Print Service API.

Overview of Java 3D

It used to be that if one wanted to use Java to write a graphics program of any

consequence, one had to write a lot of libraries to support his application. Writing those

libraries required a good knowledge of computer graphics theory and mathematics. Not

only was Java far too slow at the time, but also one had to reinvent an uncomfortably

large amount of functionality before he could start writing an application.

Although it seems like yesterday, those days are long gone, and Java now

provides a wide variety of graphics programming APis in addition to acceptable

performance. Many graphics programming tasks are greatly simplified, but it is still not

very easy to do some things. In particular, working with 3-D graphics is no easy task.

The Java 3D API provides all the raw functionality one could hope for, but assembling

that functionality into a coherent program takes a good amount of work.

37

Univ
ers

ity
 of

 M
ala

ya

The Java 3D API is an optional package belonging to a broader set of APis

called the Java Media APis. As is the case with other Java API collections, all of the

individual APis were not designed together and appear to have been lumped together

after the fact. In particular, the Java 3D API appears to bear little relation to the Java 2D

API. In addition to the Java Media APis, Java 2D is also billed as belonging to the Java

Foundation Classes (JFC) with which it integrates more cleanly. Therefore, do not

expect that an understanding of Java 2D will help one much with Java 3D.

All 3-D graphics programs do not have the same requirements. Some require

real-time interactive navigation of a virtual world. Others require only object modeling

and rendering capabilities to generate static scenes. Yet others require specialized input

devices or stereoscopic vision. Java 3D tries to meet all of the various requirements a 3-

D program may impose. Therefore, it defines many classes and methods, many of which

one may not be interested in. Zeroing in on the essentials can be difficult, even with a

sample program or two and the Java 3D specification to guide.

Java 3D breaks down into two packages: javax.vecmath and javax.media.j3d. As

its name implies, javax.vecmath contains all of the classes concerned with manipulating

vectors and matrices. The javax.media.j3d package contains a big grab bag of everything

else and could have benefited from being subdivided into several subpackages. The Java

3D reference implementation also includes about 20 com.sun packages that implement

an assortment of utility and support functions. Many of the Java 3D demos use classes

from the com.sun packages, and they implement commonly required high-level

functionality, but they are not a formal part of the Java 3D API.

2.3.2 MATIAB (MATrix LABoratory)

38

Univ
ers

ity
 of

 M
ala

ya

2.3.2.1 Beginning of MATLAB

The founders of The Math Works recognized the need among engineers and

scientists for more powerful and productive computation environments beyond those

provided by languages such as Fortran and C. In response to that need, the founders

combined their expertise in mathematics, l.ogineering, and computer science to develop

MA TLAB, a high-performance technical computing environment. MATLAB combines

comprehensive math and graphics functions with a powerful high-level language.

2.3.2.2 What Is MATIAB

MA TLAB is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation. Typical uses

include:

•

•

•

•

•

•

•

Math and computation .

Algorithm development.

Data acquisition .

Modeling, simulation, and prototyping .

Data analysis, exploration, and visualization .

Scientific and engineering graphics .

Application development, including graphical user interface building .

MA TLAB is an interactive system whose basic data element is an array that does

not require dimensioning. This allows you to solve many technical computing problems,

especially those with matrix and vector formulations, in a fraction of the time it would

take to write a program in a scalar noninteractive language such as C or Fortran.

39

Univ
ers

ity
 of

 M
ala

ya

The name MATLAB stands for matrix laboratory. MA TLAB was originally

written to provide easy access to matrix software developed by the LINP ACK and

EISPACK projects. Today, MA TLAB engines incorporate the LAP ACK and BLAS

libraries, embedding the state of the art in software for matrix computation.

MA TlAB has evolved over a period of yea&S with input from many users. In

university environments, it is the standard instructional tool for introductory and

advanced courses in mathematics, engineering, and science. In industry, MATLAB is

the tool of choice for high-productivity research, development, and analysis.

MA TLAB features a family of add-on application-specific solutions called

toolboxes. Very important to most users of MA TLAB, toolboxes allow you to learn and

apply specialized technology. Toolboxes are comprehensive collections of MATLAB

functions (M-files) that extend the MATLAB environment to solve particular classes of

problems. Areas in which toolboxes are available include signal processing, control

systems, neural networks, fuzzy logic, wavelets, simulation, and many others.

2.3.2.3 The MATLAB System

The MA TLAB system consists of five main parts:

• Development Environment - This is the set of tools and facilities that help

you use MA TLAB functions and files. Many of these tools are graphical user

interfaces. It includes the MA TLAB desktop and Command Window, a

command history, an editor and debugger, and browsers for viewing help, the

workspace, files, and the search path.

• The MATLAB Mathematical Function Library - This is a vast collection of

computational algorithms ranging from elementary functions like sum, sine,

40

Univ
ers

ity
 of

 M
ala

ya

2.3.2.4

cosine, and complex arithmetic, to more sophisticated functions like matrix

inverse, matrix eigenvalues, Bessel functions, and fast Fourier transforms.

• The MATLAB Language - This is a high-level matrix/array language with

control flow statements, functions, data structures, input/output, and object­

oriented programming features. It allows both "programming in the small" to

rapidly create quick and dirty throw-away programs, and "programming in

the large" to create complete large and complex application programs.

• Graphics - MATLAB has extensive facilities for displaying vectors and

matrices as graphs, as well as annotating and printing these graphs. It

includes high-level functions for two-dimensional and three-dimensional data

visualization, image processing, animation, and presentation graphics. It also

includes low-level functions that allow you to fully customize the appearance

of graphics as well as to build complete graphical user interfaces on your

MA TLAB applications.

• The MATLAB Application Program Interface (API) - This is a library that

allows you to write C and Fortran programs that interact with MA TI.AB. It

includes facilities for calling routines from MATLAB (dynamic linking),

calling MA TLAB as a computational engine, and for reading and writing

MAT-files.

MATIAB GUIDE (Graphical User Interface Development

Environment)

41

Univ
ers

ity
 of

 M
ala

ya

GUIDE, the MA TLAB Graphical User Interface development environment,

provides a set of tools for creating GUis. These tools greatly simplify the process of

laying-out and programming a GUI.

When one opens a GUI in GUIDE, it is displayed in the Layout Editor, which is

the control panel for all of the GUIDE tools. The Layout Editor enables one to lay out a

GUI quickly and easily by dragging components, such as push buttons, pop-up menus,

or axes, from the component palette into the layout area. The following picture shows

the Layout Editor:

Alignment fool

Indo

redo

Component

Palette

Menu Editor

Select

GJ Push Button

•Toggle Button

f) Radio Button

9 Checkbox

jilT Edit Teld

s Popup Menu

~Axes

M-file &fitor Property lnspedor

Area

figure resize rob

Figure 2.11: MATLAB GUI Layout Editor.

Object Browser

Once one lays out his GUl and set each component's properties, using the tools

in the Layout Editor, he can program the GUf with the M-file Editor. Finally, when one

42

Univ
ers

ity
 of

 M
ala

ya

press the Run button on the toolbar, the functioning GUI appears outside the Layout

Editor window.

The list of GUIDE toolsets is as befow:

• Laying Out GUis - The Layout Editor which adds and arranges objects in the

figure winduw.

• Aligning Components in the Layout Editor - align objects with respect to

each other.

• Setting Component Properties - The Property Inspector which inspects and

sets property values.

• Viewing the Object Hierarchy - The Object Browser which observes a

hierarchical list of the Handle Graphics objects in the current MA TLAB

session.

• Creating Menus - The Menu Editor which creates a menu bar or a context

menu for any component in a layout.

• Setting the Tab Order - The Tab Order Editor which changes the order in

which components are selected by tabbing.

2.3.3 MATHEMATICA

2.3.3.1 Introduction to MA THEMA TICA

MA THEMA TICA is a versatile, powerful application package for doing

mathematics and publishing mathematical results. It runs on most popular workstation

operating systems, including Microsoft Windows, Apple Macintosh OS, Linux, and

other Unix-based systems.

43

Univ
ers

ity
 of

 M
ala

ya

MA THEMATICA is used by scientists and engineers in disciplines ranging from

astronomy to zoology; typical applications include computational number theory,

ecosystem modeling, financial derivatives pricing, quantum computation, statistical

analysis, and hundreds more.

The best way to understa .. d MA THEMA TICA is to see it in action. The sections

below describe three major categories of usage:

• User Tool: MATHEMATICA can be used to perform computations, either

numeric or symbolic. Results can be visualized using 2-D and 3-D graphics.

• Programming Tool: MATHEMATICA provides a rich set of programming

extensions to its end-user language. Programming can be done in procedural,

functional, or logic (rule-based) style, or a mixture of all three. For tasks

requiring interfaces to the external environment (such as extraction from a

relational database) MATHEMATICA provides MathLink, which allows

MA THEMA TICA programs to communicate with external programs written

inC, Java, or other languages.

• Publishing Tool: MATHEMATICA has extensive capabilities for formatting

graphics, text, and equations. Documents, called notebooks, can be exported

as PostScript, TeX, HTML, or a combination of HTML and MatbML

(Mathematical Markup Language).

44

Univ
ers

ity
 of

 M
ala

ya

Chapter 3: Methodology and Technique

3.1 Methodology

The methodology adopted for the development process is important and crucial.

Improper or inappropriate choice of methodology for Information Technology and

software projects can lead to failure. There are two major factors of a software

engineering project failure. The fust problem is that too many design flaws are

discovered during engineering or development where it is all difficult, expensive, and

sometimes impossible to rectify and correct. The second problem is that the scopes of

many projects seem to expand rampantly and are out of control as the time progresses.

Every system development process model includes system requirements such as

users, constraints {limitations), and resources as inputs and a fully developed system or

software as the outputs. There are many popular software process models such as:

• Waterfall Model.

• Waterfall Model with Prototyping.

• V Model.

• Prototyping.

• Operational Specification Model.

• Transformational Model.

•

•

•

•

Phased Development Model.

Incremental and Iterative Model.

Spiral Model.

Extreme Programming (XP) Model.

45

Univ
ers

ity
 of

 M
ala

ya

3.2 Extreme Programming (XP) Model

3.2.1 XP Model as the Project Methodology

The methodology employed to facilitate the design of the system for this project

•s based upon the Extreme Programming (XP) metaphor, developed by Kent Beck

(Beck, 1999). Extreme Programming is a lightweight methodology that is test centric,

and is based on an evolving design strategy. The methodology prescribes that functional

tests should be defined before any work on the program begins.

A functional test is one that tests whether the program fulfills the specifications.

In the case of a quantum computer simulator, the functional tests would be quantum

algorithms, and the test would be successful if the output of the program is correct. Unit,

or "programmer", tests would ensure that methods function as they should. All unit tests

should run successfully at all times, and the aim of the development process is to reach a

stage where the functional tests work at 100% correctness. This is done using an

iterative test, program, design cycle that continues until the project is complete.

Extreme Programming also defines and specifies documentation is developed

with the programming, but kept to the minimum until the end result is achieved. No

formal documentation is produced until the end of the project, and during the project the

only documentation is usually UML diagrams of the existing system design, and the

code comments.

Some aspects of the methodology have to be either ignored or adapted, as

Extreme Programming is designed to work with development teams of a size usually

greater than two people, working in conjunction with end users. In this instance the

project team consists of one individual and there is no immediate end user. Therefore it

46

Univ
ers

ity
 of

 M
ala

ya

is impossible to employ some portions of the methodology, such as pair programming,

and user involvement at all stages.

3.2.2 XP Model in Greater Details

Extreme Programming (XP) is actually a deliberate and disciplined approach to

sortware development. About six years old, it has already been proven at many

companies of all different sizes and industries world wide.

Extreme Programming Project

Test Scenarios

New User Story
ProJect Velocity User Stories

~ments

• System R l Release ,.....,.. _ __..;;......,
ArchitccturalMetaphor c case Plan ~=•

Spike " Planning~

Uncertain () Confident
Estimates Estimates

Spike '""""~~· 2\•)• J '~"' ... " w.u.
Figure 3.1: Overview of Extreme Programming (XP) Model

XP is successful because it stresses end-user or customer satisfaction. The

methodology is designed to deliver the software user needs when it is needed. XP

empowers developers to confidently respond to changing user requirements, even late in

the life cycle.

This methodology also emphasizes team work. Managers, customers, and

developers are all part of a team dedicated to delivering quality software (for instance in

this final year project, Dr. Selva the supervisor and l')'lanager as and me as the student

and developer). XP implements a simple, yet effective way to enable groupware style

development.

47

Univ
ers

ity
 of

 M
ala

ya

Iteration ~Zoom Out

New User Story,
Release Project Velocity

Plan ~ser Stories Unfinished Tasks lleam and

.~ ~ Communicate

Project I . ~ Iteration \ Fun~i~all~
Next Velocity teratton Plan I ~-------.Latest

Iteration Planning Development aug Fixe§- Version

' Day by Day

Bugs Ccop\-npoa ~ ~ u.. ... v. 'l!.<ll•

Figure 3.2: Iteration in XP Model.

XP improves a software project in four essential ways; communication,

simplicity, feedback, and courage. XP programmers communicate with end-users or

customers and fellow programmers. They keep their design simple and clean. They get

feedback by testing their software starting on day one. They deliver the system to the

customers as early as possible and implement changes as suggested. With this

foundation XP programmers are able to courageously respond to changing requirements

and technology.

XP is different. It is a lot like a jig saw puzzle. There are many small pieces.

Individually the pieces make no sense, but when combined together a complete picture

can be seen. This is a significant departure from traditional software development

methods and ushers in a change in the way we program.

Software which is engineered to be simple and elegant is no more valuable than

software that is complex and hard to maintain. Can this really be true? Extreme

Programming (XP) is based on the idea that this is not in fact true.

48

Univ
ers

ity
 of

 M
ala

ya

A typical project will spend about twenty times as much on people than on

hardware. That means a project spending 2 million dollars on programmers per year will

spend about 100 .thousand dollars on computer equipment each year. Let's say that we

are smart programmers and we find a way to save 20% of the hardware costs by some

very clever programming tricks. It will make the source code 'larder to understand and

maintain, but we are saving 20% or 20 thousand dollars per year, a big savings. Now

what if instead we wrote our programs such that they were easy to understand and

extend. We could expect to save no less than 10% of our people costs. That would come

to 200 thousand dollars, a much bigger savings.

Another important issue to users or customers is concerning bugs. XP

emphasizes not just testing, but testing well. Tests are automated and provide a safety

net for programmers and customers alike. Tests are created before the code is written,

while the code is written, and after the code is written. As bugs are found new tests are

added. A safety net of tight mesh is created. Bugs don't get through twice, and this is

something the customers will notice.

Iteration

Development

Unfinished
Tasks

Learn and
Communicate

Pair Prograrrming

~Zoom Out

Plan ~ r
Move People Around

Tasks Too Much
To Do CRC Cards

Stand Up Collective

New
Functionality

~It
Tests Passed

Meeting NextTask Code Ownership
~ or Failed___

Acceptance Test Acceptance -..........

Test Passed Bug Fixes Day by Day (.""'"""' l<•-• J ,,...,,.,n "dl•

Figure 3.3: Development in XP Model.

49

Univ
ers

ity
 of

 M
ala

ya

Another thing that is distinguishable with other methodologies is the attitude XP

programmers have towards changing requirements. XP enables programmers to embrace

change. Too often a user or customer will see a real opportunity for making a system

useful after it has been delivered. XP short cuts this by getting user or customer feed

back early while there is still time to change functionality or improve 1....>er acceptance.

Much of what went into XP was a re-evaluation of the way software was created.

The quality of the source code is much more important than one might realize. Just

because users can't see the source code doesn't mean programmers shouldn't put the

effort into creating something they can be proud of.

Extreme Programming (XP) was created in response to problem domains whose

requirements change. Users or customers may not have a firm idea of what the system

should do. Developers may have a system whose functionality is expected to change

every few months. In many software environments dynamically changing requirements

is the only constant. This is when XP will succeed while other methodologies do not.

XP was also set up to address the problems of project risk. If users or customers

need a new system by a specific date the risk is high. If that system is a new challenge

for a software group the risk is even greater. If that system is a new challenge to the

entire software industry the risk is greater even still. The XP practices are set up to

mitigate the risk and increase the likelihood of success.

XP is set up for small groups of programmers. Programmers can be ordinary. XP

does not need programmers with a Ph.D. to use XP. But one cannot use XP on a project

with a huge staff. We should note that on projects with dynamic requirements or high

risk you may find that a small team of XP programmers will be more effective than a

large team anyway.

50

Univ
ers

ity
 of

 M
ala

ya

XP requires an extended development team. The XP team includes not only the

developers, but the managers and customers as well, all working together elbow to

elbow. Asking questions, negotiating scope and schedules, and creating functional tests

require more than just the developers be involved in producing the software.

Another requirement is testability. You must be able to create automated unit and

functional tests. While some domains will be disqualified by this requirement, you may

be surprised how many are not. You do need to apply a little testing ingenuity in some

domains. You may need to change your system design to be easier to test. XP adopts the

principle where there is a will there is a way to test.

The last thing on the list is productivity. XP projects unanimously report greater

programmer productivity when compared to other projects within the same corporate

environment. But this was never a goal of the XP methodology. The real goal has always

been to deliver the software that is needed when it is needed. If this is what is important

to your project it may be time to try XP.

3.3 Techniques Used to Gather Information

Before the system is designed, just like any other system, big or small, simple or

complex, appropriate techniques must be used to seek, discover, and determine all the

requirements. Among the major techniques applied and employed to gather information

regarding this project are as below:

1. Internet

· Internet and the World Wide Web (WWW) are the main sources of

information regardless of field of studies. For this project, surfing and

research of related information on the internet about this project is a must

51

Univ
ers

ity
 of

 M
ala

ya

and most important as there is not much information resource or

reference about quantum computation (computing) in the library or

bookshops. Mining of data, information, and knowledge on the internet,

is inevitably most crucial and productive.

2. Presentation and Discussion with Supervisor

Dr. Selvanathan is indeed a helpful and contributive supervisor. He has

been such an instrumental force in explaining and guiding me through all

the basics, fundamentals, complexities, and mathematics of quantum

computing. Besides that, he has been kind and benevolent; to understand

and solve my difficulty and incapability in certain complicated matters.

3. Studies on Existing Systems

Surveying and studying on existing systems have helped me to improve

my system design and have better insights and understanding of my

system requirements. In attempting to know how other systems work,

their functionalities, and their processes, I have a clearer picture how

actually and exactly my system is going to perform and work out. As

such, I am enlightened of the limitations and scope of my system and

also, how and where can I improve my system to make it a better and

proper one.

4. Written Material

Written materials could refer to related books, magazines, journals,

previous theses, research papers or abstracts and articles available in

electronic form (online) or in the form of hardcopy. All these materials,

especially papers in the LANL and Oxford Quantum Computing Center

52

Univ
ers

ity
 of

 M
ala

ya

archives, are extremely useful and insightful, which have helped me a lot

in gaining knowledge and understanding regarding quantum computing

and the ways of simulating aspects of quantum computing. All these

references have also revealed to me of the researches either done or still

in work in all quanh•rn computing research centers throughout the world.

53

Univ
ers

ity
 of

 M
ala

ya

Chapter 4: System Analysis

A requirement is a feature of a system, or a description of something a system is

capable of doing in order to fulfill its purposes. Requirements give a detailed

explanation not only the flow of information to and from a system and, the

transformation and processing of data by the system, but also the constraints on the

system's performance and capabilities. Specifying requirements serves three main

objectives:

• Allow developers or programmers to explain their understanding of how

users want a system to work and function.

• Tell and instruct designers what functionalities and characteristics a resultant

system is to have.

• Tell the developers what to demonstrate to convince the users that a

particular system being delivered or developed is indeed as what was needed

or ordered.

4.1 Functional Requirement

Functional requirement specifies a function that a system or a system's

component must be able to perform. These are software requirements that define

behaviors of a system, that is, the fundamental process or transformation that software

and hardware components of the system perform on inputs to produce expected outputs.

As for this simulation system, there main subsystem functional requirement that

will contribute and form the whole simulation system is the Quantum Growing Network

Simulation.

54

Univ
ers

ity
 of

 M
ala

ya

There is another main functional module, which is the Graphical User Interface

(GUI) system. The GUI must provide users an easy mean or platform of viewing,

editing, and inpu~ting data besides editing the system's configuration, inputting the

user's details and changing the settings for simulation and visualization.

4.1.1 Quantum Growing Network Simulation

The features and requirements of the Quantum Growing Network Simulation

System are as:

• Simulating and visualizing the growing tree.

• Simulating and modeling the relations between quantum vacuum states and

virtual states.

• Simulating how quantum virtual states affect the growth and its growing

speed.

4.2 Non-Functional Requirement

Non-functional requirement does not describe what a system or software will do

or process, but HOW it does. For example, software performance requirements, some

external interface requirements, software design constraints, and software quality

attributes. Non-functional requirements are difficult to test; they are usually, or most of

the time, evaluated subjectively. Non-functional requirements have been recognized and

acknowledged as a vital and crucial determinant to the success of many software

projects.

For this simulation project, the following requirements have been set:

1. Clarity and Simplicity

55

Univ
ers

ity
 of

 M
ala

ya

The simulation, 3D visualization and modeling must be clear and simple.

Though it is to simulate rather complicated numeric and mathematical

processes or equations, the simulation should be clear and sharp, and

simple in order for the users to understand what is being simulated when

the system is functioning. This is essential to making sure that users can

see the ideas and effects of quantum states in a pictorial or graphical way,

and not in complex and complicated text or mathematical way.

2. Maintainability

System maintenance always requires more effort and time if the system is

not well planned and designed at the beginning. System maintenance is a

must for this simulation system, just like any other systems, as it allows

certain changes or modifications to be made over the system. Some

changes may be like adding the effect of visualization and showing in

more details the simulation process.

3. Efficiency

Efficiency is the ability of a process procedure to be called or accessed

unlimitedly to produce similar performance outcomes at an acceptable or

credible speed. In this simulation system, efficiency comes into picture as

how fast the system can process the mathematical notations and

equations, and then start to simulate what is require. It is also regarding

how well and fast the system can handle and load the 3D visualization.

4. Flexibility

56

Univ
ers

ity
 of

 M
ala

ya

The simulation is a flexible system as it is a standalone system and can be

actually executed over many Microsoft and Unix/Linux operating

systems.

5. User Friendliness

In this simulation system, the user interface design aims to fulfill three

golden rules of user friendliness, which are:

• Place User in Control

This will define interaction modes in a way that does not force a user

into unnecessary or undesired actions or situations. Besides, it also

provides flexible interaction, for instance, via mouse movement and

keyboard commands.

• Reduce the user's memory load

One of the principles that enable an interface to reduce the user's

memory load is by reducing demand on short term memory. The

interface should be designed to reduce and minimize the memory

needed to load and execute the system.

• Make the interface consistent

The interface design should conform to consistent fashion where all

visual information must be organized according to a design standard

that is maintained throughout all screen displays. Apart from that,

input mechanisms are restricted · to limited sets that are used

consistently throughout the application.

• Accuracy and Correctness

57

Univ
ers

ity
 of

 M
ala

ya

Accuracy means how close or near an output produced by a system to

a desired or perfect output as calculated mathematically or according

to theory. Correctness is the degree to which the software performs its

required functions. To ensure that this simulation system meets its

requirements, it wi'! be reviewed from time to time together with Dr.

Selva. This is important to assure the quality and maturity of the

system, and to ensure that the users will comprehend and get the

knowledge correctly and not misunderstand what the system is

simulating.

4.3 Hardware and Software Requirements

Hardware includes any physical (that can be touched) device or peripheral that is

connected to a computer and is controlled by the computer's microprocessor. In this

quantum simulation system, no special or specific high-end hardware is required or

needed. It just requires an ffiM-compatible personal computer (PC), which is powerful

enough to support Microsoft's operating systems, Java Development Toolkit (Java 2

SDK vl.4), and MA TLAB R12/Rl3. Nevertheless, a PC with at least an Intel or AMD

1.0 GHz processor and 256 MB of RAM, is very much desired and recommended.

Software is a general term for the various kinds of programs used to operate

computers and related devices. Software is often divided into system software and

application software. System software is usually operating systems that support

application software. Meanwhile, application software is programs that do work users

are directly interested in.

58

Univ
ers

ity
 of

 M
ala

ya

Microsoft Windows XP Professional or Microsoft Windows 2000 has been

chosen as the development platform and the choice of operating system for this quantum

simulation program. The main reason is that most computers in campus and everywhere

are using the Microsoft's operating system. Besides, it is more user friendly, reduces the

training required for using the system, :...nd most importantly, Windows-based

applications are usually always easier to learn and use compared to other's platform

applications in Unix or Linux.

The Application Development Tool needed to build and program the quantum

simulation system are MATLAB 6.0 or MATLAB 6.5 (Release 12 or 13), and Java 2

Platform Standard Edition (J2SE) vl.4. Open source Java Integrated Development

Environments (IDEs) like Netbeans and Eclipse, and commercial IDEs like Borland

JBuilder and JCreator might be used to speed up development and debugging.

59

Univ
ers

ity
 of

 M
ala

ya

Chapter 5: System Design

5.1 Quantum Growing Network Simulation Design

5.1.1 Mathematical Equations (Vacuum and Virtual States)

The initial state or input of a quantum register is generally taken to be n string

where all qubits are "cooled" in the basis state I 0). This is called the vacuum state of the

quantum register: I 0000000 ... 0) .

In a quantum growing network, the vacuum state grows at each time step, by an

amount of 2n+3 states I 0). Let Had(j) represents the Hadamard gate acting on bit j, and:

N - (n+l)2

(1) U = u Had(j). Let indicate with v,. the number of virtual states at time t,: (2)

vn • 2n + 3. Also, we shall indicate with I virt), and I vac), the virtual states and the

v-2n+3

vacuum states respectively. Also, let us define (3) Un • lJHad(j) with n=0,1,2, ...
J-

The N qubits at time t,. are given by the application of the operator in equation

(1) to the vacuum: (4) IN)- U I vac) ... At each time step tn. the virtual state I virt),. -•

occurring at time t,..J is transformed into v=2n+3 qubits by the operator U,. in equation

(3): (5) Un I virt), - • -1 i)0
v. The operator U, will be interpreted as the nodes "n" of the

growing quantum network.

At the "unphysical" time t 1 (N=O), it is, by definition: I vac) _, - 1, and U - t - 1

(the node "-1" is the only inactive node). From equation (2) we get V - t •1, then the

virtual state is: I virt) - • -=1 0) .

60

Univ
ers

ity
 of

 M
ala

ya

At time to=tp, (N=l), we have: I vac)o ... 1 0). That means that the virtual state at

time t.1, turned into a vacuum state at time to: I vac)o -1 virt)- 1 •I 0). At node "0", the

virtual state I virt) - 1 -1 0) (which in this case coincides with the vacuum state

1 vac)o ... 1 0)) is operated on by the operator Uo and transformed into one qubit:

Uo I 0) ... Had I 0) -1 i).

From equation (2), we get:vo=3, then we have: I virt)o -1 000). At time t1=2tp,

(N=4), we have: I vac)t -1 0000). From equation (2) we get: VJ=5, then we have:

1 virt)1 -1 00000) . I vac)1 can be written as: I vac)t -1 virt)o® I vac)o -1 virt)o® I virt) -1.

At node "1", the virtual state I virt)o is operated on by the operator U1 and

transformed into 3 qubits: Uti virt)o,.. H(l)H(2)H(3) I 000) ==l i)@3
. The 4 qubits at time

t1 are given by the application of the operator U to the vacuum state:

4 - -

u I vac)t =a H(j) I 0000) -=14)0 4 - 14)' which can also be written as:

3

U I vac)t • u H(j) I OOO)®H I 0) • Uti virt)o®Uo I virt) - I -J i)®3® I i).

At time t2=Jtp, (N=9), we have: I vac)2 -1 000000000). Also, it is: v2=7, thus we

get: I virt)2 =I 0000000).

At node "2" the virtual state I virt)t -1 00000) is operated on by the operator U2

and transformed into 5 qubits: U2l virr), = H(1)H(2)H(3)H(4)H(5) I 0000) -1 i)05 . The

9 qubits at time tz are given by the application of the operator U to the vacuum state:

9 - -

u I vac):! =a H(j) I 000000000) =ll)M =19) ' which can also be written as:

61

Univ
ers

ity
 of

 M
ala

ya

5 3

U I vac)2 • u H(j) I 00000) ® U H(j) I 000) ®HI 0) = U2l virt)t ®Uti virt)o®Uo I virt) _1

and it can be summarized as: I i)®5® I i)®J® I i) -19).

In general, the N-qubits state at time tn can be written as: (6)

IN)= Un I virt)n - 1 ®Un -tl virt)n - 2® .. lh I virt)o®Uo I virt) - 1.

The quantum algorithm is illustrated by the following family of quantum

growing networks. The diagram below provides a schematic representation of each

quantum network, where H represents the Hadamard gate.

At time t0, we have a quantum network of size one:

(7) IO) __ H __ IO)+Il)
.J2

At time t1, we have a quantum network of size four:

IO) H
I O)+ It)

J2
IO) H I o)+ It)

.J2 1
(8) IO)+ II) 40 0000)+ I 0001)+ 1 oo1o) + ... 11111))

IO) H
.fi

IO) H I o}+ 11)
.fi

And so on. In general, at time tn, the quantum growing network has sizeN = (n+l/.

5.1.2 Explanation on Quantum Growing Network

62

Univ
ers

ity
 of

 M
ala

ya

~I •

Figure 5.1: Quantum Growing Network.

The main function and design of this simulation system is to simulate the

quantum growing network as discussed in the section 5.1. The growing network is

further illustrated as in figure above. The growing tree will be the main visualization or

simulation of this system

The design of the system will take into account how the tree, or in this context

the quantum growing network, grows. At the starting time {the unphysical time t_1=0).

There is one node, call it -1. At each time step tn, a new node is added, which links to the

youngest and oldest nodes, and also carries 2n+ 1 free links. Thus, at the Planck time

to=tp, the new node 0 is added, which links to node -1 and carries one free link. At time

t1=2tp, the new node 1 is added, which links to node -l and node 0, and carries three free

63

Univ
ers

ity
 of

 M
ala

ya

Links. At time t2=3tp, the new node 2 is added, which links to node -1 and node 1, and

carries five free links. At time t3=4tp, the new node 3 is added, which links to nodes -1

and 2, and carries seven free links, and so pn. Refer to above figure.

In general, at time tn, there are:

1. N* = n+2 nodes, but only n+l of them are active, in the sense that they havP

outgoing free links (node -1 has got no outgoing free link).

2. N = (n+li free links coming out from n+l active nodes.

3. 2n+llinks connecting pairs of nodes.

4. n loops.

TheN free links are qubits (available quantum information), the 2n+l connecting links

are virtual states, carrying information among loops, the n+ 1 active nodes are quantum

logic gates operating on virtual states and transforming them into qubits. In fact, notice

that the number of free outgoing links at node n is 2n+ 1, which is also the number of

virtual states (connecting links) in the loops from node -1 to node n.

5.2 User Interface Design

User interface design concerns how effectively users can use a system and how

well they enjoy using it. A good interface makes it easy for users to tell the computer

what they want to do, for the computer to request information from the users, and for the

computer to present understandable information and visualization. Clear communication

between the users and the computer is the working premise or platform of good user

interface (UI) design.

For this quantum simulation system, the user interface aims for the following

design principles:-

64

Univ
ers

ity
 of

 M
ala

ya

1. Clear.

A clear interface helps prevent user errors, make important information obvious,

and contributes to ease of learning and use.

2. Consistent.

A consistent interface allows users to apply previously learned knowledge to new

tasks. Effective applications are both consistent within themselves and consistent

with another.

3. Simple.

The best interface designs are simple. Simple designs are easy to learn and to use

and give the interface a consistent look. A design requires a good balance of

maximizing functionality and maintaining simplicity through progressive

disclosure of information.

4. User-Controlled.

The users, not the computer, initiate and control all actions.

5. Direct.

Users must be able to see the visible cause-and-effect relationships between the

actions they take and the objects on the screen. This allows users to feel that they

are in charge of the computer's activities.

6. Provide Feedback.

Keep the users informed and provide immediate feedback. Also, ensure that the

feedback is appropriate to the task.

7. Aesthetic.

65

Univ
ers

ity
 of

 M
ala

ya

..

Every visual element that appears on the screen potentially competes for the

users' attention. It provide an environment that is pleasant to use and contributes

to the users' understanding of the information and simulation presented .

66

Univ
ers

ity
 of

 M
ala

ya

Chapter 6: System Implementation

System implementation is the material realization phase of the system

development. The conceptual and technical designs from the system analysis phase are

interpreted as well as modeled to become the physical working system itself.

The following subchapters will explain the development environment as well as

the development of the system itself, some system coding and the coding style and

approach and object oriented technique applied in the Quantum Growing Network

Simulation.

6.1 Development Environment

Development environment has a momentous influence on the development of a

system. System development can be paced up significantly by utilizing the appropriate

software and hardware. The following sections discuss the hardware and software tools

used to develop and document the Quantum Growing Network Simulation.

6.1.1 Hardware in the Development Environment

The hardware configured for the development environment is the underlying

element of the whole system. The hardware used in the system implementation phase

plays an important role in realizing the final system architecture.

The hardware configuration of the development environment is as below:

• Intel Pentium IV Processor 1.8GHz.

• Memory- 256MB PC2100 of DDR Ram.

• Storage-4GB of Hard disk space is reserved.

67

Univ
ers

ity
 of

 M
ala

ya

• Other standard desktop PC component.

6.1.2 Software in the Development Environment

Hardware and software form a tightly coupled cohesion that operates in unison to

performed programmed tasks. Without software, the fastest, biggest or the most

powerful computer will also be inoperative and idling in the corner.

The software tools utilized in the development environment are listed as follow:

• Operating System - Microsoft Windows XP Professional Service Pack 1.

• Web browsers- Internet Explorer 6.0, Netscape Navigator 6.1.

• Java 2 Development Kit with Java Run Time (JDK 1.4.2).

• Xinox Software's JCreator LE v2.50.

• TextPad

• Documentation - Microsoft Office XP.

6.2 Development of the System

Development of the Quantum Growing Network Simulation system began with

acquisition of knowledge and experience with the Java programming language. The

following subchapters will detail the explanation of object oriented programming (OOP)

approach, classes that are defined and created for the simulation system and other related

coding parts of the entire simulation program or system.

6.2.1 Object Oriented Programming (OOP)

To be able to use Java as the programming language to code or to develop a

program or a system, one needs to gain an understanding of the concepts of object

oriented. Understanding of what an object is, what a class is, how objects and classes are

related, how objects communicate by using messages is much needed.

68

Univ
ers

ity
 of

 M
ala

ya

In definition, an object is a software bundle of related variables and methods.

"Objects" is a key to understanding object-oriented technology. One can look around

now and see many examples of real-world objects: a car, a bicycle, a desk, a television

set, a computer. These real-world objects share two characteristics: They all have state

and behavior. For example, cars have state (brand, color, size) and behavior

(accelerating, braking). Bicycles have state (current gear, current pedal cadence, two

wheels, number of gears) and behavior (braking, accelerating, slowing down, changing

gears).

Software objects are modeled after real-world objects in that they too have state

and behavior. A software object maintains its state in one or more variables. A variable

is an item of data named by an identifier. A software object implements its behavior

with methods. A method is a function (subroutine) associated with an object.

One can represent real-world objects by using software objects. You might want

to represent real-world dogs as software objects in an animation program or a real-world

bicycle as a software object in the program that controls an electronic exercise bike. You

can also use software objects to model abstract concepts. For example, an event is a

common object used in GUI window systems to represent the action of a user pressing a

mouse button or a key on the keyboard.

Everything that the software object knows (state) and can do (behavior) is

expressed by the variables and the methods within that object. A software object that

modeled a real-world bicycle would have variables that indicated the bicycle's current

state: its speed is 10 mph, its pedal cadence is 90 rpm, and its current gear is the 5th

gear. These variables are formally known as instance variables because they contain the

69

Univ
ers

ity
 of

 M
ala

ya

state for a particular bicycle object, and in object-oriented terminology, a particular

object is called an instance.

The following figure illustrates a bicycle modeled as a software object:

10 mph

04\---+-- 90 rpm

5th gear

Figure 6.1: An Example of a Software Object.

In addition to its variables, the software bicycle would also have methods to

brake, change the pedal cadence, and change gears. (The bike would not have a method

for changing the speed of the bicycle, as the bike's speed is just a side effect of what gear

it's in, how fast the rider is pedaling, whether the brakes are on, and how steep the hill

is.) These methods are formally known as instance methods because they inspect or

change the state of a particular bicycle instance.

The object diagrams show that the object's variables make up the center, or

nucleus, of the object. Methods surround and hide the object's nucleus from other

objects in the program. Packaging an object's variables within the protective custody of

its methods is called encapsulation This conceptual picture of an object-a nucleus of

variables packaged within a protective membrane of methods-is an ideal representation

of an object and is the ideal that designers of object-oriented systems strive for.

However, it's not the whole story. Often, for practical reasons, an object may wish to

expose some of its variables or hide some of its methods. In the Java programming

language, an object can specify one of four access levels for each of its variables and

methods. The access level determines which other objects and classes can access that

70

Univ
ers

ity
 of

 M
ala

ya

variable or method. Variable and method access in Java is covered in Controlling Access

to Members of a Class. Encapsulating related variables and methods into a neat software

bundle is a simple yet powerful idea that provides two primary benefits to software

developers:

• Modularity: The source code for an object can be written and maintained

independently of the source code for other objects. Also, an object can be

easily passed around in the system. One can give a bicycle to someone else,

and it will still work.

• Information hiding: An object has a public interface that other objects can

use to communicate with it. The object can maintain private information and

methods that can be changed at any time without affecting the other objects

that depend on it. One does not need to understand the gear mechanism on

his bike to use it.

A single object alone is generally not very useful. Instead, an object usually

appears as a component of a larger program or application that contains many other

objects. Through the interaction of these objects, programmers achieve higher-order

functionality and more complex behavior. A bicycle hanging from a hook in the garage

is just a bunch of titanium alloy and rubber; by itself, the bicycle is incapable of any

activity. The bicycle is useful only when another object (cyclist) interacts with it (pedal).

Software objects interact and communicate with each other by sending messages

to each other. When object A wants object B to perform one of B's methods, object A

sends a message to object B.

71

..

Univ
ers

ity
 of

 M
ala

ya

Sometimes, the receiving object needs more information so that it knows exactly

what to do; for example, when one wants to change gears on a bicycle, he has to indicate

which gear he wants. This information is passed along with the message as parameters.

The next figure shows the three components that comprise a message:

• The object to which the message is addressed (Bicycle).

• The name of the method to perform (changeGears).

• Any parameters needed by the method (lowerGear).

YourBicycle

Figure 6.2: Interaction (Messaging) Between Objects.

These three components are enough information for the receiving object to

perform the desired method. No other information or context is required.

Messages provide two important benefits:

• An object's behavior is expressed through its methods, so (aside from direct

variable access) message passing supports all possible interactions between

objects.

• Objects don't need to be in the same process or even on the same machine to

send and receive messages back and forth to each other.

A class is a blueprint or prototype that defines the variables and the methods

common to all objects of a certain kind. In the real world, one often have many objects

of the same kind. For example, a bicycle is just one of many bicycles in the world. Using

object-oriented terminology, we say thal a bicycle object is an instance of the class of

72

Univ
ers

ity
 of

 M
ala

ya

objects known as bicycles. Bicycles have some state (current gear, current cadence, two

wheels) and behavior (change gears, brake) in common. However, each bicycle's state is

independent of and can be different from that of other bicycles.

When building bicycles, manufacturers take advantage of the fact that bicycles

share ~..haracteristics, building many bicycles from the same blueprint. It would be very

inefficient to produce a new blueprint for every individual bicycle manufactured.

In object-oriented software, it's also possible to have many objects of the same

kind that share characteristics: rectangles, employee records, video clips, and so on. Like

the bicycle manufacturers, one can take advantage of the fact that objects of the same

kind are similar and he can create a blueprint for those objects. A software blueprint for

objects is called a class.

The class for bicycle example would declare the instance variables necessary to

contain the current gear, the current cadence, and so on, for each bicycle object. The

class would also declare and provide implementations for the instance methods that

allow the rider to change gears, brake, and change the pedaling cadence, as shown in the

next figure:

urrentCadence

currentCear

Figure 6.3: An Example of a Class with Methods.

After creating the bicycle class, one can create any number of bicycle objects

from the class. When one creates an instance of a class, the system allocates enough

73

Univ
ers

ity
 of

 M
ala

ya

memory for the object and all its instance variables. Each instance gets its own copy of

aU the instance variables defrned in the class.

currentCadence = 60 currentCadence = 90

currentCear = 5 currentCear = 2

HyBike YourBike

Figure 6.4: Different Objects from a Same Class with Instances.

In addition to instance variables, classes can define class variables. A class

variable contains information that is shared by all instances of the class. For example,

suppose that all bicycles had the same number of gears. In this case, defining an instance

variable to hold the number of gears is inefficient; each instance would have its own

copy of the variable, but the value would be the same for every instance. In such

situations, one can define a class variable that contains the number of gears. All

instances share this variable. If one object changes the variable, it changes for all other

objects of that type. A class can also declare class methods. One can invoke a class

method directly from the class, whereas he must invoke instance methods on a particular

instance.

74

Univ
ers

ity
 of

 M
ala

ya

Bike

Class

YourBike

currentCadence • 90

numbtrOfC~ars= 18

currentCear = 2

lns1ance of a Class

Figure 6.5: An Object and a Class.

One would probably notice that the illustrations of objects and classes look very

similar. And indeed, the difference between classes and objects is often the source of

some confusion. In the real world, it's obvious that classes are not themselves the objects

they describe: A blueprint of a bicycle is not a bicycle. However, it's a little more

difficult to differentiate classes and objects in software. This is partially because

software objects are merely electronic models of real-world objects or abstract concepts

in the first place. But it's also because the term "object" is sometimes used to refer to

both classes and instances.

In the figures, the class is not shaded, because it represents a blueprint of an

object rather than an object itself. In comparison, an object is shaded, indicating that the

object exists and that one can use it.

6.2.2 System Coding

After researches and studies have been done, a decision was made to code the

simulation system using the Java programming language, and to be able to run the

simulation as a standalone wtndows application and as an applet which can be executed

75

Univ
ers

ity
 of

 M
ala

ya

using any Java-enabled web browsers. The coding phase was done using the Xinox

Software's JCreator Light Edition (LE) v2.50 integrated development environment.

The Quantum Growing Network Simulation system utilizes two Java 2 Platform

packages. These two packages are java.awt and java.applet.

Package java.awt contains all of the classes for creating user interfaces and for

painting graphics and images. A user interface object such as a button or a scrollbar is

called, in A WT terminology, a component. The Component class is the root of all A WT

components.

Some components fire events when a user interacts with the components. The

A WI'Event class and its subclasses are used to represent the events that A wr

components can fire.

A container is a component that can contain components and other containers. A

container can also have a layout manager that controls the visual placement of

components in the container. The A WT package contains several layout manager classes

and an interface for building your own layout manager.

Package java.applet provides the classes necessary to create an applet and the

classes an applet uses to communicate with its applet context.

The applet framework involves two entities: the applet and the applet context. An

applet is an embeddable window with a few extra methods that the applet context can

use to initialize, start, and stop the applet.

The applet context is an application that is responsible for loading and running

applets. For example, the applet context could be a Web browser or an applet

development environment.

76

Univ
ers

ity
 of

 M
ala

ya

After deciding of the packages and Java built-in classes that can be used for the

simulation system, it was time to decide on the entities or classes that can represent the

Quantum Growing Network, and also its final outcome or deliverable, which is the

visual of the quantum growing network. The result is to be able to visualize a network

with nodes, virtual states linking nodes together, and free links bran~hing out from

active nodes and the algorithm of how the network grows (according to the description

in Chapter 5).

The coding of this Java simulation system, after its final enhancement and

refinement, is divided into five classes:

• Public class quantumnetwork, which extends Applet.

• Class GraphCanvas, which extends Canvas.

• Class GraphControls, which extends Panel.

• Class VisualNetwork.

• Class VisualNetworkNode, which extends Rectangle.

Public class quantumnetwork is the start class of the applet, in a sense it contains

the main method, and the Java file is named after it. The main method will setup the

application frame and start running the application. It also calls the initO method of the

applet, to construct the layout and settings regarding the layout. Classes GraphCanvas

and GraphControls are also started to be called from this class.

Class GraphControls which extends Panel is the class which constructs and

manages the event performed on the three buttons of the simulation system. The three

buttons are the "Visualize", "Next", and "Clear". The panel is responsible for

communication between the user and the canvas GraphCanvas. When there is a request

77

Univ
ers

ity
 of

 M
ala

ya

from user, the panel redirect request to the canvas, and the canvas will call the

corresponding functions in the class (network) VisualNetwork and display result over

there.

Classs GraphCanvas contains the important paintQ method. This method allows

the network to be painted or in other word, visualized on the canvas of the system. Class

VisualNetwork is actually the main working class of the entire simulation system. It is

the class that actually constructs, manages and represents the whole network that is

visualized on the canvas.

The network VisualNetwork is composed by different variables and objects. It

includes:

• Root- stores the value of the root of the network.

• networkSize - stores the value of the size of the network.

• Perent- stores a reference to the parent (previous) node.

• NextNode- stores a reference to the next node.

• node - stored the graphical object of a particular node.

• positionFactor - stores the relative center position of a node. The actual

position of a node is equal to this position factor + the center position of the

parent node.

• nextPositionFactor - stores the next node's relative center position. So the

actual position of the next node is equal to this next position factor + the

position factor of a node.

Class VisuaiNetwork is defined as the manager of the quantum growing network

being visualized. It constructs and takes care of the objects and variables related to the

78

Univ
ers

ity
 of

 M
ala

ya

network. It also manages the positioning of the nodes accordingly and tidily and draw

related arcs which represent the virtual states and free links according to algorithm.

Class VisualNetworkNode which extends Rectangle, constructs and draws a ·

node onto the network. It sets out the color and label of each node.

Refer to APPENDICES A and B for full source code and screenshots of the

Quantum Growing Network Simulation system.

6.3 Coding Style

6.3.1 Formatting and Indenting Codes

Formatting and indenting codes is constantly associated to good coding practice.

A code that is written without proper formatting or indenting will function or what as

well as a formatted code. However, this can make exceptionally difficult to see where an

error is coming from. Indentation principally makes the structure of the code stand out

and easier to be read. This eventually will help in detecting and removing the common

programming errors.

JCreator provides user a good formatting and indenting facility where user is

associated to format and indent codes automatically in the environment while coding a

Java source.

6.3.2 Commenting Codes

Comment is not part of the program code and it does not command any program

execution. However, comments will slow down the program execution because the

compiler has to read and then skip tbe comment lines each time.

In spite of such shortcoming, comments are still applied a<; part of common

practice in documenting the system's coding. And indeed it is a good and recommended

79

Univ
ers

ity
 of

 M
ala

ya

practice. Commenting will help the author or the reader of the code to understand what

and why the coding was written. In addition, this also makes it easier for others

especially collaborating programmers to understand the coding.

Comments are usually included before or at the side of each block of the code

describing it purposes. In the Java progr<L.uning language, the// is used as the prefix of

a single line comment while I* and *I are used as prefix and postfiX of a multiple lines

comment.

Figure below shows the formatted, indented and commented code in the JCreator

development environment:

, _,

-. ~.-~

~--•e (w, y) ; /lll~re U11e ~tode t9 Ur• c:oz.c•ct ,ot~JU04
IIOCN.U .. (root.4' G); //Arid c~l t:J..,• V.utt4..lltetwo.ctlfode &o d.l:.v J.t•&J.t u • •""*•
11:(cbu ... lt•cettt.U ,_llu-1.1~ IIU U•• oode !ru PUMC, --~~~g J~ .&: .a• a., c Ute ! aoct•
I

tl(~hu ... U'ar-t u ... ta..t II '• - 1) lfl~ucuv co •od• 0
(

o .. Mt<.ter(Cotoc.Qreta); I/1Jr~W • v&••• .t.JH c•,c•••.at..a•v 4 •.tzu•..: •c•c•
v.ttr~tM(•, 'J+2.0, a-po•tctoa16C'to.C+40, y+$0,1 //L1.oe oo:tnc.: tJ:tJ .:.wz.reztt aode

J
O'·••t<eJAc(Cotoc:-.qr-HD): I.I"D~.., • gre•~t llfte c••~Uellueg a .,t.rcv«.J .ac•c•
o.t~rwt.t,_.t•+lO, v- zas, t.Sl: IILUJ• c:oN:•cu"" t:vrruc ttod• to ltOde - 1

ll•cl t.&og tM C<;:&.~:eC::t ..OI.tat oL Lzee .Luv,&U.Je ~~~c eec:lt cOUuut aoc:IC
~oc (tee tceeLta.D-&.oott • lJ 1rHL1.alut-oo, <• l•tb1 L (I +lJ trul.U.UL.oop++)
(

Q ... tc..a..c CCol(U:.bl'\le) 1 1/IJc.- • lklw• Js.o• c•~c .. ••&.A.IJif • tee• J..ta.t
0 ~(•+20, y+-40, a+ZG-l.LabPotlltSoa, y+l20fl / / aJu• JA.ae N"Mc:.lL.aMO" OMC

11U.k•1t loo - 20; /l't»~C~M U•• ••at tc•• Jo1U

CJ]flc~ Q ~.,_..,... MP p; fiE
Figure 6.6: Fonnatted, Indented and Commented Code In JCreator.

80

Univ
ers

ity
 of

 M
ala

ya

Chapter 7: System Testing

System testing is a crucial phase in the development of the Quantum Growing

Network Simulation system, as it tells whether the coding of the system is successfully

implemented, whether the executing system visualizes the growing network accurately

and according to the algorithm and whether the code needed to be modified, enhanced,

deleted, added or debugged to visualize an accurate or better growing network.

7.1 Compiling and Executing

Once the coding of the system is completed, where all the classes designed are

fully coded, the Java source code needs to be compiled to see whether there are any bugs

or errors in the coding.

If the Java application can be successfully compiled without any error, then the

testing phase can proceed to executing the application.

Otherwise, if the Java application is compiled with error(s), the testing phase

needs to jump to the debugging phase, before it is recompiled again.

7.2 Debugging

Once the application is compiled with error(s), the error message(s) need to be

scrutinized to identify where the errors have occurred in the source code. The errors

might caused by syntax mistakes, such as the left out of semi-colons, curly braces and

other symbols used in the Java programming language. Some errors might also caused

by logical errors such as errors in referencing, errors in calling methods, or errors in

passing arguments.

81

Univ
ers

ity
 of

 M
ala

ya

The process of debugging is to check on those mistakes and correct them. It iss a

process of eliminating errors or bugs from the source code in order for the system to

compile successfully.

The compiling-debugging process is an iterative process, which is very common

and normal in system programming. Only a successfully compiled piece of source code

is able to proceed to the execution process in the testing.

Some commercial Integrated Development Environments come with debugging

module which will pace and greatly help the debugging process tremendously.

7.3 Accuracy of Execution

After the source code has all the errors eliminated and compiled successfully, it

will then be executed or in other words run. The target of the execution process is to

allow users to use the system or interact with the system through the system interface.

In the context of this Quantum Growing Network Simulation system, the

compiled source is executed to check and verify the correctness and accuracy of the

interface, the response of the system in handling user's click on one of the buttons,

whether the growing network can be painted (visualized) on the screen (canvas),

whether the nodes and links can appear and whether all the components of the network

appear in a tidy arrangement or position and according to the algorithm.

If the system does not visualize properly according to the algorithm or response

to user's click. the testing phase will go back to the debugging-compiling-executing

process until the growing network is able to work and visualizes accurately according to

the algorithm.

82

Univ
ers

ity
 of

 M
ala

ya

If the system does visualize the growing network according to the algorithm, but

not in an orderly manner, the code needs to be debugged in order to position the nodes,

the links and the entire network tidily on the screen (canvas).

Some other modifications other than what were mentioned above, that can be

done here would include setting or modifying the colors of the background, the nodes

and the links, and also the setting of layout and panel.

7.4 Multiplatform Testing

The Java programming language is a multiplatfonn language. This means the

same piece of Java source code can be executed in any Windows, UNIX, Linux, and

Apple operating systems as long as the appropriate Java Development Kit is installed.

After the Quantum Growing Network Simulation system is successfully executed

m the development environment, which is the Windows environment, and perfonns

accurately, as a Java application, it is then executed in the UNIX platfonn.

The testing was conducted on the Silicon Graphics' Tezro machine, which is

running the Irix operating system (a distribution of UNIX), and the result was the same

as how it executes in the Microsoft Windows environment.

This simulation program also utilizes the java.applet packages which will enable

the Java application to run on any Java-enabled web browsers (as long as the Java Run

Time is available in the operating system which runs the browser). Tests were

successfully conducted on the Internet Explorer, Netscape, Opera and Mozilla browsers.

Applet of the Quantum Growing Network Simulation runs and perfonns nonnally and

accurately as how it would perfonn if it is executed as a Java application.

83

Univ
ers

ity
 of

 M
ala

ya

Chapter 8: Conclusion and Future Work

Overall I would classify this fmal year project as a success and insightful. I have

set out everything that I planned to achieve and in certain areas, such as accuracy and

clear and intuitive visualization, I have actually exceeded my expectations.

Through this project, I have gained a lot of knowledge and exposure regarding

the findings, researches and the coming of a new era in human life, and more

specifically the computing world. Quantum computing or quantum computation is an

interesting, challenging and brain-quenching altogether.

Nevertheless, the outcomes will greatly bring a tremendous revolution to the

working and daily lifestyle of mankind. Processing of tasks, whether they are now done

automatically (electronically) or manually, will definitely see a huge advancement and

leap in speed and accuracy once quantum algorithms can be successfully implemented.

Apart from that, once a quantum computer is realized to put into operation,

surely, a bigger picture of multi-simultaneous-parallel processing wiU be seen,

something which will never be achieved using even the most powerful super computer

which runs using silicon chips.

Despite of all its great and "mystic" promises and anticipation, there are still a lot

of works, endeavors, struggles and barriers to break and go through to bring the theories

and hypotheses into real applications, which laymen can see and use.

8.1 Problems Encountered

The success of the Quantum Growing Network Simulation system does not come

without problems and constraints. Much effort had been placed into understanding,

84

Univ
ers

ity
 of

 M
ala

ya

eradicating, and solving problems encountered through the whole course of the system

development.

The first and foremost problem faced in the system development was to

understanding the algorithm or the working process of a quantum growing network as

proposed by Zizzi. Withot ~ doubt, the mathematics to describe how a quantum growing

network initiates and grow, is complicated and much time needs to be spent in getting a

deep idea and understanding of it.

Besides that, I have no prior knowledge in the Java programming language

before the implementation of the system started. I needed to get a deep detailed idea of

object oriented programming in Java before coming out with the architectural basis

design of the Quantum Growing Network Simulation system.

Objects of the system were to be identified and verified of their applicability and

flexibility to be coded. Once the coding of the system started, I encountered a lot of

syntax and logical flow errors, which consequently, forced me to spend a huge amount

of time in debugging, referring to documentation and even seeking help from experts in

forums.

Last but not least, after the final code was successfully compiled and executed, I

was taken aback by the non-aligned and jumbled up arrangement of nodes, links and

finally the entire network. Works to align and position nodes properly and tidily to better

visualize the algorithm of the quantum growing network were carried out.

8.2 System Limitations and Future E'nhancement

85

Univ
ers

ity
 of

 M
ala

ya

Although the Quantum Growing Network Simulation system project is rated,

overall, as a success, it still comes with a number of limitations, and there are still a lot

of areas which can be further enhanced.

The system was developed utilizing the Java Abstract Windows Toolkit (A WI)

and did not make use of the newer and recommended version of Java Swing ex.l!nsion

package for its design and layout. Therefore, the future work on the simulation system

can actually use Java Swing instead of Java AWT alone.

Besides that, the system is only suitable to visualize the growing network up to

node 9 or node 10. Nodes after node 10 will not be visualized on the canvas due to the

limit of the canvas size.

Future enhancement for this constraint, by using Java Swing, is to place a

vertical and a horizontal scroll bars on the drawing panel. This will enable the user to

scroll left and right, up and down to see the later nodes being visualized.

Besides placing scroll bars, a 30 background can be created on the drawing

panel to enable the growing network painted on the panel to rotate on the planar, with

mouse events over it.

Last but not least, the completed system is just a visualization or simulation

system, it will be a great achievement in human history to be able to put the quantum

growing network algorithm into real world application, such as web search and system

folder tree search. Again, all these are just brilliant ideas, there are much more effort,

research and development to be funded and carried out to see the reality.

86

Univ
ers

ity
 of

 M
ala

ya

Bibliography and References

1. Zizzi, P.A. The Early Universe as a Quantum Growing Network. Padova,
Italy: Univeristy of Padova, Department of Astronomy, 2001. See
http://arxiv.org/abs/gr-qc/0103002

2. Nielsen Michael A. and Chuang Isaac L. Quantum Computation and
Quantum Information. Cambridge, United Kingdom: Cambridge University
Press, 2000.

3. Williams, Collin P. and Clearwater, Scott H. Explorations in Quantum
Computing. Santa Clara, California: TELOS, 1998.

4. Sommerville, Ian. Software Engineering 6th Edition. Harlow, United
Kingdom: Addison Wesley, 2001.

5. Horstmann, CayS. and Cornell, Gary. Core Java 2 Volume !-Fundamentals.
Palo Alto, California: Sun Microsystems Press, Prentice Hall, 2003.

6. Sun's Java Resources. http://java.sun.com.

7. ArXiv e-Print Homepage (Cornell University Archive): http://arxiv.org.

8. Los Alamos National Library: http://xxx.lanl.gov.

9. Oxford University Centre for Quantum Computation: http://www.qubit.org.

10. California Institute of Technology (Caltech) Institute for Quantum
Information Center: http://www.iqi.caltech.edu .

11. Extreme Programming Model Homepage:
http://www .extremeprogramming.org .

12. MathWorks' MATLAB:
http://www .mathworks.com/access/helpdesk/help/techdoc/matlab.shtml .

13. MATHEMATICA Homepage: http://documents.wolfram.com.

14. Source code resources: h!!!Ulwww.sourceforge.net.

15. Quantum Computing at the Department of Computing, Imperial College,
London: http://www.doc.ic.ac.uk/-ids!quantum computing.html .

16. Quantum Computer Simulators Hompage:
http://www .dcs.ex.ac.uk/-jwallace/simtable.htm .

87

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A: SOURCE CODE

/***•······························

BEGIN OF FILE "quantumnetwork.java"

Faculty of Computer Science and Information Technology
University of Malaya (UM), Kuala Lumpur

WXES 3182 - Final Year Project
Simulation of Quantum Growing Network

Student Name: ONG BOON TEONG
Matric No: WEK 010223
NRIC No: 810920-08-5209
Supervisor: Prof.Ir.Dr.Selvanathan•.•.......•........•.•..........•.....•.....••........ ,

//Importing and using Java classes*/
import java.awt.*;
import java.applet.*;

//Class Visual NetworkNode
//Contruct, draw, and represent a network node

class VisualNetworkNode extends Rectangle
I

I

//Contruct a rectangle to draw a node (boundaries of a node)
VisualNetworkNode(int nl
(

super (0, 0, 40, 40);

void draw(int i , Graphics g)
I

//Draw the node

g.setColor(Color.yellow); //Set the colour of a node
g.fillOval(x, y, width, height);

g.setColor(Color.b1ack); //Set the colour of a node outline
g.drawOval(x, y, width, height);

//Fill a node with an appropriate integer
int textWidth
g.getFontMetrics().stringWidth(String.valueOf(i));
g.drawString(String.valueOf(i), x+(width/2-textWidth/2), y+25);

//End of class VisualNetworkNode

//Class VisualNetwork
//Represent and maintain the whole visualized network

class VisualNetwork
(

private int root, networkSize; //Root value and the size of the
network

private VisualNetwork parent;
private VisualNetwork nextNode;
private VisualNetworkNode node;
private int positionFactor;

//Parent node reference
//Child or next node reference
//Graphical representation of the node
//Position to draw itself

88

Univ
ers

ity
 of

 M
ala

ya

private int nextPositionFactor; //Position to draw the next node

VisualNetwork(int r)
{

//VisualNetwork constuctor

root = r; //Initialize(construct) all the variable
networkSize • l;
node= new VisualNetworkNode(r);
positionFactor • 0;
nextPositionFactor = 0;

VisualNetwork newNextNode(int item)//Create new node branch and node
(

nextNode • new VisualNetwork(item);
nextNode.parent • this;
nextNode.node • new VisualNetworkNode(item);
return nextNode;

void setRoot{int r) //Set root value
(

root = r;

int getRoot{) //Get root value
(

return root;

void setParent(VisualNetwork wkNetwork) //Set parent node reference
(

parent - wkNetwork;

VisualNetwork getParent() //Get parent node reference
{

return parent;

void setNextNode(VisualNetwork wkNetwork)//Set next node reference
(

nextNode • wkNetwork;

VisualNetwork getNextNode()
{

return nextNode;

void setPositionFactor(int i)
{

positionFactor +- i;

vo1d resetPositionFactor(int iJ
I

positionFactor • i;

//Get next node reference

//Set position to draw itself

//Reset the position

1nt g~tPositionFactor(J
(

//Get position

return positionFactor;

89

Univ
ers

ity
 of

 M
ala

ya

root

//Set position for next node to draw itself
void secNextPositionFactor(int i)
I

nextPositionFactor += i;

void resetNextPositionFactor{int i)//Reset next node position
(

nextPositionFactor = i;

int getNextPositionFactor(l
I

//Get nexc node position

return nextPositionFactor;

//Check whether passing argument =node value
boolean notEqualitem(int item)
(

return root !• item? true false;

void insert(int item)
I

//Inserting a node

VisualNetwork wkNetwork = this;
int oldNetworkSize = networkSize;

//If the network already exists and current node is not the same as its

while(wkNetwork!snull && wkNetwork.notEqualitem(item))
{

//If current node value is larger than its root value
if(item > wkNetwork.getRoot(ll
{

//If next node is not avaiable yet
if(wkNetwork.getNextNode()••nulll
{

//Construct the next node
wkNetwork.newNextNQde(item);
//Increment the network size
networkSize++;

//Move network reference to the next node
wkNetwork = wkNetwork.getNextNode();

//If next node added successfully
if(networkSize > oldNetworkSize)
I

//Position the next node accordingly
nodesinsertPositioning(wkNetwork);

void drawNode(int x, int y, Graphics g) //Graphically draw the node

node.move(x, yl;//Move the node to the correct position
node.draw(root, g);//And call class VisualNetworkNode to draw

1tself as a node

//It the node has parent, meaning if it is not the -1 node

90

Univ
ers

ity
 of

 M
ala

ya

if(this.getParent() !=null)
{

if(this.getParent() .getRoot() !•-1)//Referring to node 0
{

//Draw a green line representing a virtual state
g.setColor(Color.green);
//Line connecting current node to the previous node
g.drawLine(x, y+20, x-positionractor+40, y+SO);

//Draw a green line representing a virtual st .te
g.setColor(Color.green);
//Line connecting current node to node -1
g.drawLine(x+20, y, 285, 95);

//Distance between free links of a node
int linksPosition = 100;

//setting the correct amount of free links available for each
different node

for(int freeLinksLoop = 1; freeLinksLoop <=
2*this.getRoot()+l; freeLinksLoop++)

{
//Draw a blue line representing a free link
g.setColor(Color.blue);
//Blue line branching out from a current node
g.drawLine(x+20, y+40, x+20-linksPosition, y+l20);

linksPosition -= 20;//Position the next free link

//Positioning related nodes after a node is inserted
void nodesinsertPositioning(VisualNetwork nt)
(

VisualNetwork wkNetwork • nt; //To check all nodes are
positioned correctly

or());

)

wkNetwork.setPositionFactor(BO+wkNetwork.getParent() .getNextPositionFact

while(wkNetwork.getParent() !=null)
{

if(wkNetwork.getRoot() < wkNetwork.getParent() .getRoot())
{

if(wkNetwork.getParent() .getNextNode() !•null)
(.

wkNetwork.getParent() .getNextNode() .setPositionFactor(80);
)
wkNetwork.getParent() .setNextPositionFactor(BO);

wkNetwork • wkNetwork.getParent();

//End o f c lass VisualNetwork

//Clas s GraphCanvas

91

Univ
ers

ity
 of

 M
ala

ya

//Construct a canvas for the nwtwork to be painted

class GraphCanvas extends Canvas
{

VisualNetwork mainNetwork, currentNetwork;
private int count;

//Java 20 paint function to paint nodes and network on the canvas
public void paint(Graphics g)
{

Rectangle r • bounds();
VisualNetwork wkNetwork

if(currentNetwork•enull)
{

return;

currentNetwork;

if(wkNetwork.getParent()=-null) //Start of the network
{

wkNetwork.drawNode(260, 60, g); //Draw the first node {node -1)

if(wkNetwork.getNextNode() !=null) //If next node is inserted
{

//Move to the next node and draw itself
paintNode(wkNetwork.getNextNode(), 20, 440, g);

//Position and draw upcoming nodes
void paintNode(VisualNetwork nt, int x, int y, Graphics g)
(

available

//Set the position and draw itself
nt.drawNode(x+nt.getPositionFactor()-20, y, g);

//Continue the positioniong and drawing as long as next node is

if(nt.getNextNode() !anull)
(

paintNode((VisualNetwork)nt.getNextNode(), ·
x+nt.getPositionFactor(), y-30, g);

}

public void insert(int node)
(

//Inserting method

network
if(mainNetwork••null) //Inserting a new network, begin the

mainNetwork - new VisualNetwork (node);
currentNetwork = mainNetwork;
count•node;

else //If a network already exists
{

mainNetwork.insert(node);
count-node;

repaint();

92

Univ
ers

ity
 of

 M
ala

ya

)

public void clear() //Clear the network and its nodes
(

mainNetwork • currentNetwork - null;

repaint();

//End of class GrapbCanvas

//Class GraphControls
//Construct controls or buttons of the program and managed the action performed
on each button

class GraphControls extends Panel
{

GraphCanvas canvas;

public GraphControls(GraphCanvas canvas)//Construct 3 buttons
{

this.canvas - canvas;
add (new Button ("Visualize")); I /Visualize button
add(new Button("Next")); //Next button
add(new Button("Clear")); //Clear button

NodeValue • 0;

public boolean action(Event ev , Object arg)//Manage action on each
button

clicked

if(ev.target instanceof Button)
(

String label - (String)arg;

if(label.equals("Visualize"))//Visualize button is clicked
{

canvas.insert(getRootValue());

else if(label.equals("Next" ll
{

canvas.insert(getNodeValue());//Next button is

setNodeValue(J;

else if (label. equals ("Clear" l)
{

canvas.clear();
resetNextNodeValue();
setNodeValue();

return true;

return false;

//Clear button is clicked

public static int getRootValue() //Get root valu~
(

return RootValue;

93

Univ
ers

ity
 of

 M
ala

ya

)

public int getNodeValue() //Get node value
{

return NodeValue;

public void setNodeValue() //Set node value
{

NodeValue • nextNodeValue;
nextNodeValue++;

void resetNextNodeValue() //Reset node value
(

nextNodeValue • 0;

public int getNextNodeValue()
(

return nextNodeValue;

//Get next node value

private static int RootValue ~ -!;//Initialize all the variables
private int NodeValue;
private int nextNodeValue = 0;

//End of class GraphControls

//Class quantumnetwork
//Construct an application window or an applet and its layout

public class quantumnetwork extends Applet
{

GraphControls controls;

//Initiate the applet or the application window
public void init()
{

windows

setLayout (new BorderLayout {)) ;
//Set the application background color
setBackground(Color.white);
GraphCanvas c• new GraphCanvas();//Construct canvas
//Place canvas that is to be painted, on the center of the

add("Center", c);
//Place buttons on the bottom of the windows
add("South", controls- new GraphControls(c));

public void start() //Start the application
I

controls.enable();

public void stop() //Stop the application
{

controls .disable () ;

public static void main(String args()) //Main function
(

//Construct an application frame

94

Univ
ers

ity
 of

 M
ala

ya

}

Frame f• new Frame("Quantum Growing Network");
//Reference to the class
quantumnetwork QuantumNetworkApp• new quantumnetwork();

QuantumNetworkApp.init(); //Begin the application
QuantumNetworkApp.start();

f.add("Center", QuantumNetworkApp);
f.resize(l000,700);//Set the size of application window or applet
f. show();

//End of class quantumnetwork

/***** ******************************* **

END OF FILE "quantumnetwork.java"

··!

95

Univ
ers

ity
 of

 M
ala

ya

APPENDIX B: USER MANUAL

Preparation

Before you can begin using the Quantum Growing Network Simulation system,

there are a few preparations to make. First and foremost, you need to make sure that

Java Software Development Kit (JDK) is installed in your operating system.

At the time of the development of this system, the version of Java 2 Standard

Edition (J2SE) Development Kit that was used is 1.4.2_02. Newer versions of the

development kit may have been developed and are usually backward compatible with

older versions. In other words, the Quantum Growing Network Simulation system

should be able to run in newer JDK versions although it is developed using the 1.4.2_02

version.

To get the J2SE Development Kit installation fLle, you can go to Suo's Java

website at http://java.sun.com and look for downloads link for J2SE or you can go

straight to the download site at http://java.sun.com/j2se/1.4.2/download.html (still

available at time of development). Besides the installation file, you can also download

the Java documentation and the free NetBeans Java Integrated Development

Environment (IDE).

Make sure you download the correct JDK according to the operating system you

are using. Otherwise, the development kit would not set up properly and yield

installation errors.

Although a Java source code file can be created using any text editor, for

example the Windows Notepad, as long as it is saved with a filename bearing the

extension .java, it is recommended to create it using an IDE; be it a commercial or non-

96

Univ
ers

ity
 of

 M
ala

ya

commercial one. This is because an IDE provides facilities such as code formatting and

indenting, code syntax completion, colors for different syntax of the code, and even a

debugger which will definitely pace up the development and debugging· phases. In

addition it also provides a better visual to view and look at the coding and classes

created on the project tree pane of the IDE, and greatly help in compiling and executing

the code without having to go through complex and much troublesome command line

compiling and executing.

This simulation system was developed under the JCreator Light Edition (LE)

v2.50 IDE produced by Xinox Software. The Light Edition is a freeware available for

downloads at http://www.jcreator.com . Other non-commercial IDEs such as NetBeans

and Eclipse and commercial ones like Borland JBuilder can also be used.

Installation of Tools

After having downloaded all the appropriate required installation files, the JDK

and JCreator, you can begin installing them into your operating system. The installation

files .might also be bundled and zipped together with other files such as the

documentation files and the installation guide files.

Extract the files into a destination folder. Open the folder and read the guide and

documents files available before you start installing the particular tool by double

clicking on the executable installation file.

Follow the on-screen instructions, read the agreements and agree to them to

proceed with the next steps of installation until all the installations are completed and

finished.

97

Univ
ers

ity
 of

 M
ala

ya

It is recommended to install the tools to the default folders as would have

appeared on the screen during the installation process. Changing the destination folders

might cause some problems with path setting of the Java environment later on.

After you have finished with the installation of the tools, run the JCreator IDE

for the first time. When you rur. it for the first time, the program will ask whether you

want to associate any files with JCreator. Choose to associate Java file to JCreator, so by

default any Java file will open in JCreator whenever an user clicks to open it.

Compiling and Executing

Once you have installed and setup all the tools and IDE to run the Quantum

Growing Network Simulation system, you can actually start using it.

Nevertheless, before using, you need to get the Java file created, then compiled

and executed to visualize the quantum growing network. To do so, you will have to open

the Java source file (named quantumnetwork.java) in JCreator. Once the file is opened in

JCreator, the source code of the system will appear on the right window pane while the

tree of classes and methods on the left window pane as shown below:

98

Univ
ers

ity
 of

 M
ala

ya

uu 2&22&2!! I I " 15 !
I!) r;. ~ ~dl)!ow ~ DAd 1"'* t~ ~ .,...

~ r$ g " ~ e I :j c:: ,.. ~\ ' " • I'A :P :w r. I
IQ:,8o g II 21! !: ~-.-t ~ ~ .. ~ A ~ ~ ..-1 .,11 , ~ 01 ~ --~ # · Li 1121 121 _..__.__ __ _ r. a..oN 1~ $-n..tOZI J>«o(.,li.Oz.$olP4JI.tlJU
s -c: ~~ !! .. -., / J

U DIC ll•t IJ0~-4~,

•-(;"tnodo 1? 1/~I:Cutfl"""' ... Jltfl J••• cluu••l .,_(Gt.,.. Ill ._rc)<OYa.aPC.•;
\...-r-- 19 .IIOPOr< ''""a.applec.•:

J::==t II' ~~
., - II' 2Z 1/CJu• v .. u.o.l l'•t-dl'od•

1 ~ -.,1 ~-*'CGI"'C"'ClClll 2') 1/C.J•tzucc, dz«*', •.ad cepcuet.l'(• DOCWQU .ooct•

·"~ ... ("""' u •~(f'*'C.,.~ zs clue Vl••.l.MettJOctcNode ••t•DCU Rect•ovl•
·ootHt-IMO

1

U l
• ...,...VIMO 2? ytna]Jietwu-(lDC nJ
........... 0 1e I ·---o zo;~ ·----(. ._ ., ___
.,_..... ., ___

'-=-..:.­
•hlO

''0
3\
n

i
,,
>4
)S , .

...... 10. o. 40, •o1:

V010 *• UDt 1 .. Cc•pbtca: 0'1
I

cr.•elC..,.W'(Colo~ . yello••: / /Sec th• c:oJoauo or 4 eod•
o.tJ.l..l.llwal.(a,. '" e1.<ltb,. hetObt.J:

• -l'lma()....,
• utO •-o

31 O•NlCet..r(Coloc.bl..,l<j: / /Set C<>J""" ot: a aod• ... u ...

~ ·- [J .~t v . V...,&l.ta# '· •ictu •• belOht.): j

ue l!.l___..J
.~---IJ ·--- --- -- -

it qs

- - -

1.1>314--cdtl o;;,-, DOS

,. *df @l--.u-..... ":=1 fl-•·-=Tf.lx,--..... u."

Figure 81: The JCreator Development Environment.

~
J

If you do not have the softcopy of the Java source file (quantumnetwork.java),

you can actually click open the JCreator IDE, then click on the "File" and "New" tabs

subsequently on the top left side of the IDE windows. Choose "Files" tab and then click

on the Java file icon, key in the correct Java filename (quantumnetwork, remember it is

case sensitive) and save it into a location and click "OK". On the right pane of the

windows now you can type the source code (refer APPENDIX A). Save the file after

you have completed typing.

Figure below shows how the IDE window looks like when you want to create a

new Java source file:

99

Univ
ers

ity
 of

 M
ala

ya

far"""--fl

Figure 82: Creating a New Java Source File in JCreator.

When the source is ready and is saved, you can start to compile it. Click on the

"Build" tab on the top of the window and then "Compile File". Wait a while until the

compilation message appears on the bottom of the IDE window as shown at Figure

below:

100

Univ
ers

ity
 of

 M
ala

ya

@1i!7M#Yftl!ffil!...f,14 .. mM!2! ¥ 3 a a I I 2 4 5 a I I§! 4 a 4 &1St !fSD£1
I!) f'o {dt $oW> :t- e.,.a ~ Iooll torl'9n ~ ~

~~'"' ;;, e :..(: .-4 ~ 1 " ·~~~~r:~·
15 18 a; g II If: ~ -/("' .;, ..t .It ./l ./i ./f ,;, ~ [) ~ ~ ~i I 121 121

,.,_
o= oqc;,~ •-o
·-~-) .,.K(Gt..nuG)

·......-~ ,,..__..
·-~ .,

~ ., Groe>I'I".AIIValo
· Gr~(Gt411f1 ·-lt' :ot>t
·~--o
·~-o • ootA«~~Yilll 0
·-VIlll0

·~--· ·-.,_ ..
~~~-­.,_ .. 

~ II: .,..,..__.. •--o ·-<RmG(l-) 
•U<O •-o ·-

U lf.UC llo 1 •JOUO..(II-6209 
14 S~.trJu.r: l>roL.Z.t.IU.Seh·-•tl>m 
1$ •••••••••-•••••••••-•••••••••••••••••••••••••••••••••A•4•11"•••••••••••••••4••••J 

17 //lap4~cu.g &eN: &&aJ.Gg J•v• cJ.a•u•/ 
Ul u.port Jeve.a~. •: 
19 ~ore Jwa.a~pl•c. • ; 

20 

..2 1/::Ju• VJ•&Ia.J lfettttocklfod• 
1'3 1/C.Jatruec., dzwv, •od ~ep~o:~c • .aocw.c.t Docfe 
l4 
2.$ cl ... • Vt•\talH•t.aC'tNode ••c•ocb l'cctuaol• 
261 
27 Vt.-...l.MetwerUoC. (U'c. n) 1/CotJtr:u;t • .c•ccDg.l• co <U•• • Doc:te (ltouadu.l .. o~ • ttodeJ 
211 c 
2:9 •vHt (0, 0# 40.,. 40,: 
31) 

Y01d •rw (lac 1, Oc•pb1C'S 0') 

' o.eet(e~rCCOloc.yetlo•J; //Set Ut4 colouc o't • nod• 
o.11.1J.I'w&l. t•_. '" •t<lcb, belObt): 

o ... tCU..r (Coloc.blectu: //Set UJ• coJOM.C o-r • aCid• oa,c.l.a•• 
o.c:r--.al.cx, ,, eicte:b, beigbt): 

J 

After completing the compilation process, then you can proceed to the execution 

process. ln order to execute and run the simulation program, click on the ''Build" tab one 

more time and choose "Execute File". A command prompt window will appear together 

with the simulation program window. The starting of the Quantum Growing Network 

simulation system is as below: 

101 

Univ
ers

ity
 of

 M
ala

ya



The window of the simulation system contains 3 buttons, the "Visualize", 

"Next", and "Clear" buttons. The background color of the system is set to white as 

shown above. 

Using the Si"mulation Program 

After the simulation program is executed, you may wonder how to visualize and 

understand the quantum growing network. Click on the "Visualize" button to start 

visualization. Node -1 will appear as shown below: 

102 

Univ
ers

ity
 of

 M
ala

ya



0 

lti!itJiiil~~ 
l'ffit?cii ,...s=-~"'-'--=~J--~'"""x;--= ...... ~.(-~-.-,~1!)--~ .... I @)-•· .. ) -~ . M@4¥*•*~ S<lt'" 

Figure 85: The Simulation Program with the First Node. 

The network will grow to the next node when the "Next" button is clicked. 

Continue on clicking the "Next" button until the network grows to node 10 (the 

simulation program is only suitable to view up to node 10). The ''Clear" button is to 

clear the network off from the canvas or screen to begin visualization again. 

In the visualization, you will notice green lines connecting a particular node to 

the previous node and node -1. These green lines or links are actually denoting the 

virtual stated as described by Zizzi. 

Meanwhile, there are blue lines or links branching out from a particular node but 

the number of lines from different nodes is different. These denote free links as 

mentioned by Zizzi. For node n, there are 2n+ 1 free links. Close the command prompt 

window to disable and shut down the program. 

103 

Univ
ers

ity
 of

 M
ala

ya



Below is a figure showing how it looks when the quantum growing network 

grows to node 10: 

~~.!.m'1n;e.Ctr.~ .... ~ .. · .. , ..... , ... - ...... .,.-... 'L~-........... --_ ... _ ........ • , ............ -- ......... L.. ...... -i~- ~ .... x 

Running as an Appleton Web Browsers 

There is a need sometimes to be able to run the simulation online using a web 

browser. In order to run the Quantum Growing Network Simulation program as an 

applet, the web browser must be Java-enabled and tbe operating system must have the 

Java Runtime Environment (JRE) installed (usually the JRE comes bundled together 

with the Standard JDK). 

Firstly, to execute the applet, you need to compile the source file (Java source 

code) into class files. Then, you will have to create a web page where the applet will be 

104 

Univ
ers

ity
 of

 M
ala

ya



loaded. Basic HTML knowledge is required to do so. To embed the applet into the web 

page, the <applet> tag is used. 

<html> 
<head> 

Below is a source HTML file example of how to embed.the applet: 

<title>Quantum Growing Network</title> 

</head> 

<body> 

<applet code="quantumnetwork.class" width="950" height="580"> 
</applet> 

</body> 
</html> 

The applet tag is bolded, and is placed in the <body> of an IITML page. Code 

identifies the main Java class that is compiled. You need to place all the compiled Java 

class files in the same directory as the HTML page you created in your local host or your 

web server. Remember that there are five Java class ftles once the source code is 

compiled, namely quantumnetwork.class, GraphControls.class, GraphCanvas.class, 

VisualNetwork.class, and VisualNetworkNode.class. 

An online applet of the Quantum Growing Network is now placed and loaded 

into a website, which can be accessed and started at 

http://www .geocities.com/bt3on9/thesis.htm . 

The 2 figures below show how the applet looks like when it is started in Internet 

Explorer and Netscape Navigator respectively: 

105 

Univ
ers

ity
 of

 M
ala

ya



'". 
~- ~ ,. a - 0 
- -- r. K4""' 

.! ? ! a a a~'t3f:f 

"""'*-.... .., 
-.,- ,-1-,,-,-W..., Sl.x:.- ·r- .. """·- *SWRM + * 

--,.;;--==~;;..._1:) ... 4!:1 ... 

~ .• ~::.,.~FZJilt\1-~ j,.U • .,""' 

Figure 88: Quantum Growing Network Applet Runs In Netscape Navigator. 

106 

.. 

Univ
ers

ity
 of

 M
ala

ya




