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ABSTRACT 

It is important to recognize an individual’s emotional state as it can be used in many 

disciplines and research in areas such as medicine and education. Human emotions can 

be recognized through the analysis of several modalities, which include speech, facial 

appearance, gestures, and human physiology. Among the different modalities of human 

emotion expression, the physiological data that can be gathered from people, especially 

the speech impaired people is probably the most reliable for human emotion recognition. 

The physiological modality has the advantage of being more robust against possible 

artifacts of human interpersonal hiding since they will be instantaneously managed by the 

human autonomic nervous system. 

The current automatic physiological-based emotion recognition systems call for 

improvement in two main respects which are applying a feature selection method for 

selecting an optimal feature subset and selecting a suitable classifier that maximizes the 

classification performance of the emotion recognition system. The main aim of this 

research is to improve the classification accuracy of physiological-based emotion 

recognition systems by proposing a feature-based dual-layer ensemble classification 

method. In addition, we analyse the accuracies of various classification methods with 

different physiological modalities and feature selection methods in order to understand 

the effect of each component on the overall performance of the emotion recognition 

system and recommend a system's design that can achieve the best classification accuracy 

for emotion recognition systems. 

The results show that for single classifiers, Support Vector Machine (SVM) achieved 

the best classification method to be used for developing emotion recognition system and 

there is no single type of modality that is suitable for all the classifiers. In addition, feature 

selection methods have positively contributed to the improvement of multi-classifier 

methods compared to single classifiers. Compared to the best single classifiers, the 
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proposed feature-based dual-layer ensemble classification method has improved the 

accuracy around 5% to 17%. The proposed classification method can be used or tested on 

other emotion databases or even on other medical diagnosis problems that use 

physiological data. 
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ABSTRAK 

Adalah penting untuk mengenali keadaan emosi individu kerana ia boleh digunakan 

dalam pelbagai disiplin dan penyelidikan seperti bidang perubatan dan pendidikan. Emosi 

manusia boleh dikenali melalui analisis beberapa modaliti termasuk ucapan, penampilan 

wajah, gerak isyarat, dan fisiologi manusia. Di  antara modaliti yang berbeza untuk 

ekspresi emosi manusia, data fisiologi yang boleh dikumpul daripada manusia, 

terutamanya individu dengan masalah pertuturan mungkin adalah yang paling  berkesan 

untuk pengecaman emosi manusia. Modaliti fisiologi mempunyai kelebihan untuk 

menjadi lebih kuat terhadap  artifak  interpersonal manusia yang bersembunyi kerana 

mereka akan serta-merta diuruskan oleh sistem saraf autonomi manusia. 

Sistem pengecaman emosi berasaskan fisiologi secara automatik masakini 

memerlukan penambahbaikan dalam dua perkara utama iaitu menggunakan kaedah 

pemilihan ciri untuk memilih subset ciri optimum dan memilih pengelas yang sesuai 

untuk memaksimumkan prestasi pengelasan sistem pengecaman emosi. Tujuan utama 

penyelidikan ini adalah untuk meningkatkan ketepatan penegelasan sistem pengecaman 

emosi berasaskan fisiologi dengan mencadangkan kaedah pengelasan ensemble lapisan 

dwi berasaskan ciri. Di samping itu, kami menganalisis ketepatan pelbagai kaedah 

pengelasan dengan kaedah modaliti fisiologi dan kaedah pemilihan ciri yang berbeza 

untuk memahami kesan setiap komponen terhadap prestasi keseluruhan sistem 

pengecaman emosi dan mencadangkan reka bentuk sistem yang boleh mencapai 

ketepatan pengelasan yang terbaik untuk sistem pengecaman emosi. 

Keputusan menunjukkan bahawa untuk pengelas tunggal, Mesin Vektor Sokongan 

(SVM) mencapai kaedah pengelasan yang terbaik untuk digunakan bagi membangunkan 

sistem pengecaman emosi dan tidak ada modaliti tunggal yang sesuai untuk semua 

pengelas. Di samping itu, kaedah pemilihan ciri telah memberi sumbangan positif kepada 

peningkatan kaedah multi-pengelasan berbanding pengelasan tunggal.  Berbanding 
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dengan pengelas tunggal yang terbaik, kaedah pengelasan ensemble dwi lapisan  

beasaskan ciri yang dicadangkan telah meningkatkan ketepatan sekitar 5% hingga 17%. 

Kaedah pengelasan yang dicadangkan boleh digunakan atau diuji pada pangkalan data 

emosi lain atau juga pada masalah diagnosis perubatan lain yang menggunakan data 

fisiologi. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

          As our environment is rapidly being influenced by technology, there has also 

been a correspondingly rapid growth of computer-based devices over the past decades. 

For this reason, effective ways of improving the interaction between human and computer 

have become the topics of interest among researchers. Being able to know and analyse an 

individual’s emotional experiences would certainly lead to the development of more 

effortless assistive technological devices, which known as digital companions (Wagner 

& Andre, 2005).  Affective computing technology, which aims to improve human-

machine interaction, employs various algorithms to build a robust and reliable 

classification models for recognizing human emotions. Emotion recognition is one of the 

key steps towards emotional intelligence in advanced human-machine interaction (Hrabal 

et al., 2012). Researchers have used different modalities, such as speech, facial 

expression, gesture, and physiological responses to recognize human emotional states. 

The physiological modality has the advantage of being more robust against possible 

artifacts of human interpersonal hiding, since they will be instantaneously managed by 

the human autonomous nervous system (ANS). In addition, physiological responses can 

be measured continuously and in some cases, especially in speech impaired or autistic 

people, are probably the only reliable way to recognize the human emotional state (Picard, 

Vyzas, & Healey, 2001). Physiological responses or physiological signals reflect the 

immediate change (increase or decrease) in one or more of the body systems in response 

to a stimulus, for examples, change in blood pressure, heart rate or skin and body 

temperature. These responses are commonly measured through the physiological signals 

using methods like ECG (to record heart rate response), SC sensors (to record skin 
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conductance response), etc. The information collected via these signal sensors go through 

feature extraction processes, where important features of each signal are extracted. For 

example, in ECG signals, heart rate variability is one of the important features to be 

extracted. Eventually, all the extracted features are fed into a machine-learning algorithm, 

called classifier, to assign or map the recorded data signals to their corresponding 

emotional states.     

1.2 Research Background  

This section describes some fundamental concepts related to this research including 

human physiological signals, human emotions and the main components of an automatic 

physiological-based emotion recognition system. 

1.2.1 Physiological Signals 

There are a number of physiological signals, which are often collected to provide 

details about an individual’s well-being, emotions, and so on. The following sub-sections 

discuss some of the physiological signals and sensors that are normally used for emotion 

recognition.  

Heart signal: The human heart is situated more towards the left side of the chest. 

Examination of its function through the electrocardiogram (ECG) provides a large 

amount of information about human feelings. Heart function is mainly measured based 

on the heart rate (HR), which is the number of electrical impulses caused by the 

depolarization and repolarization of the heart muscle (Khalili & Moradi, 2008). The 

electrical activities of the heart, shown as a form of waveforms, are generally produced 

by utilizing electrodes attached at various locations on the chest. Levenson et al. (1990) 

found that HR acceleration - when compared to a baseline HR - is higher for anger, 

sadness, and fear in contrast to happiness, disgust, and surprise. Heart rate (HR) and heart 

rate variability (HRV) are common measures that are extracted by the ECG electrical 
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sensors. On the other hand, the blood volume pulse (BVP) sensor, called 

photoplethysmography sensor, measures circulation of blood by applying infrared light 

to the head of a finger and measure the amount of light that is reflected. Therefore, 

physiological changes related to the heart's activities can be detected by both the BVP 

and ECG sensors (Haag, Goronzy, Schaich, & Williams, 2004) 

Body temperature: It is a valuable physiological signal, which is easy to measure using 

the skin temperature sensor (SKT). The temperature changes can reveal the differences 

in mood and emotions. The body temperature is measured by fixing a sensor on the 

fingers to detect the temperature signal and its changes. The sensor can also be used to 

detect the excitement level of a person (Khalili & Moradi, 2008).  

Muscle electrical activity: Muscle electrical activity signals are generated during muscle 

contraction and relaxation. Facial electromyogram (EMG) is used to recognize human 

emotional experiences by attaching electrodes to the skin of the face. It measures muscle 

response or electrical activity produced by a nerve stimulus on the muscle. For example, 

the frowns and smiles can be an important source of information for facial emotion 

recognition, can be detected by electrodes attached to muscles on the skin of the face 

(Bradley, Lang, Cacioppo, Tassinary, & Berntson, 2007).  

Human respiration function: This function enables the transfer of air into the lungs to 

help the diffusion of oxygen into the blood stream and let the waste gasses out. At the 

time of inhaling and exhaling (i.e., breathing), the lung inflates and deflates, respectively, 

while the diaphragm pushes up and falls down. The deepness and quickness of the 

respiration can indicate the status of an individual’s well-being and emotions. Respiration 

(RSP) sensors monitor accurately how deeply and quickly a person is breathing (Khalili 

& Moradi, 2008). A person's respiratory rate is the mean number of breaths he or she 

takes per minute. The breathing system is extremely complex and responsive to various 
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psychological events (Lorig, Cacioppo, Tassinary, & Berntson, 2007). For example,  if 

respiration rate will go up, it indicated quicker and shorter breaths - whenever an 

individual is in a fear state, whilst a rise in breathing rate with deeper breaths is observed 

when an individual is mad or angry (Khalili & Moradi, 2008). 

Skin conductance (SC): This is an index of the sympathetic nervous system (SNS) activity 

and emotional arousal (Lang, 1995; Levenson, 1992). Each time an individual feels stress 

and tense, the palms  get humid because of raised activity in the SNS, which can result in 

accelerated hydration in the sweat channels and on the outside of the skin where skin 

conductivity is increased and  can be measured through skin resistance to a small 

electrical current (Andreassi, 2007; Dawson, Schell, & Filion, 2007). Skin conductance 

(SC) sensors measure the electrical conductance of the skin and are usually put on the 

finger. Galvanic skin resistance (GSR) sensor is also utilized to measure the electrical 

conductance of the skin. 

Brain electrical activity signals: These can be very useful to provide information 

regarding a person’s behaviors and emotions. These signals can be recorded by 

electroencephalography (EEG) sensors, which are electrodes positioned on the scalp. 

Many researchers believe that by examining the difference in activity between both 

hemispheres of the brain, measured by EEG, different emotions can be identified 

(Cacioppo, 2004; Schiffer et al., 2007). In the past, EEG-based studies of emotional 

specificity have shown that asymmetric activity at the frontal site of both hemispheres of 

the brain, recorded through EEG (especially in the alpha (8–12 Hz) band), is associated 

with different emotions (Cacioppo, 2004; Lee & Hsieh, 2014; Schiffer et al., 2007). For 

instance, Ekman and Davidson (1993) discovered that voluntary facial expressions of 

smiles of satisfaction generate higher left frontal activity, while another study found a 

decrease in left frontal activity during the voluntary facial expressions of fear (Krumhansl, 

Univ
ers

ity
 of

 M
ala

ya



5 

1997). Figure 1.1 shows the location of the sensors on the human body as well as the 

associated physiological signals recorded by each type of sensor (Kim & André, 2008). 

 

Figure 1.1: Biosensors locations on the body and the associated waveforms: (a) 
ECG. (b) RSP. (c) SC. (d) EMG (Kim & André, 2008) 

 

1.2.2 Human Emotions  

In any study of the human emotion, it is crucial to determine the accurate definition 

for emotion. There is still no precise definition of emotion and it differs from one research 

disciplines to another. For example, psychology, affective neuroscience, etc., have 

different perspectives of emotion. Basically, emotion is a state of mind or feeling that 

arises naturally and is usually associated with physiological transforms. Unlike mood that 

may remain for a long time, emotions persist for only a few seconds or minutes (Wioleta, 

2013). 

Models of emotions: In the literature, some of the well-known theories of emotions and 

emotion models for different fields have been proposed (Chanel, Kronegg, Grandjean, & 

Pun, 2006). Two of the well-known model will be discussed below. One model divides 
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emotions into discrete groups which can be described by specific labels such as sadness, 

happiness, joy, etc. (Kim & André, 2008).  However, not every emotion could be 

characterized in this way since many types of emotions are combined, hence, it is difficult 

to categorize them into distinct groups. The famous American psychologist, Ekman  

(1957), was among the pioneer who methodically studied the human emotions, and 

proposed the discrete emotional model which consists of six common emotions - surprise, 

anger, disgust, happiness, sadness, and fear (Chanel et al., 2006). These basic emotions 

should have identical constructs across all human beings and cultures, and also distinctive 

universal features, for example, facial expressions and physiology. Emotions also have 

common characteristics - intuitive and momentary (Ekman & Cordaro, 2011). As 

opposed to the discrete emotion model, Russell (Russell & Barrett, 1999, 1980) stated 

that emotional experiences can be depicted in two-dimensional space of valence and 

arousal. The arousal dimension ranges from extremely activated (e.g., excited) to 

extremely deactivated (e.g., relaxed), and the valence dimension ranges from highly 

pleasant (positive) to highly unpleasant (negative). Therefore, an individual can easily 

indicate his/her feeling about generated emotion based on these scales (Figure 1.2). The 

emotions also can be generally evaluated as liking and disliking in a consistent manner 

by individuals (Hawknis, Mothersbaugh, & Mookerjee, 2011). For example, subjects’ 

liking and disliking can be used for music and video tagging (Koelstra et al., 2012). The 

Russel emotion model also has been adopted for this research to identify the emotional 

state of the subject based on their arousal and valence level instead of distinct emotions. Univ
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Figure 1.2: Two-dimensional model of emotion based on valence and arousal 
(Kim & André, 2008) 

 

1.2.3 Physiological Signal based Emotion Recognition 

  To create the physiological-based human emotional state recognition system, 

several key components need to be designed and developed. The recorded physiological 

data signals need to pass through these components. Figure 1.3 shows the main 

components of a physiological-based emotion recognition system. 

 

 

 

 

 

Figure 1.3: The main components of an automatic physiological-based emotion 
recognition system (Novak, Mihelj, & Munih, 2012) 
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 Collection of human physiological signals: 

For the development of the emotion recognition system, accumulating a high-quality 

database of physiological signals is important (Kim, Bang, & Kim, 2004). Generally, 

whether a physiological data is of good quality, it will be determined by specialists 

(Picard, Vyzas, & Healey, 2001). The physiological signals originate from the human 

activity of ANS, and so they cannot be simply induced by any conscious or intentional 

control. The emotions need to be naturally elicited on the subjects in order to acquire good 

quality data. There are several emotion elicitation methods that can be used, such as 

pictures, movie/film clips (Abadi et al., 2015; Koelstra et al., 2012), and music/sound 

clips (Kim & André, 2008). 

 

 Signal preprocessing: 

The raw physiological signals are usually affected by noises and other external 

interventions. On top of the noises, artifacts such as electrostatic devices as well as 

muscular movements can have an adverse effect on the raw signals (Kim et al., 2004). 

These noise and artifacts need to be eliminated from the raw physiological signal before 

further processing. Commonly, different types of Low-pass filters including Adaptive 

filters, Elliptic filters, Butterworth filters etc., are employed to pre-process the raw 

physiological signals (Chang, Zheng, & Wang, 2010; Katsis, Katertsidis, Ganiatsas, & 

Fotiadis, 2008).  

 Feature Extraction: 

After the signals are pre-processed, the statistical information or features need to be 

extracted from the signal can be used to recognize the emotional information. Various 

statistical, time domain, frequency domain and time-frequency domain features could be 

extracted from the different physiological signals. As an illustration, a total of 110 
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features were extracted in Kim et al. (2008), using four physiological signals: ECG, SC, 

EMG and RSP.  

 

 Feature Selection: 

All physiological signals features that are extracted might not be associated with 

emotion. Therefore, it is vital to select only the features that have a correlation between 

the different emotional states. Although feature selection is optional and some researchers 

designed emotion recognition system without this component, uncorrelated features 

reduce the performance of the classifiers (Kim & André, 2008). To select the relevant 

features for effective emotion classification, a variety of feature selection algorithms like 

filter-based feature selection methods (e.g. Relief, T-test (Jenke, Peer, & Buss, 2014)), 

wrapper category of feature selection methods (e.g. Sequential Forward Selection (SFS) 

(Kolodyazhniy, Kreibig, Gross, Roth, & Wilhelm, 2011), Sequential Backward Selection 

(SBS) (Giakoumis, Tzovaras, & Hassapis, 2013), Sequential Forward Selection Search 

(SFFS) (Khezri, Firoozabadi, & Sharafat, 2015) are used.  

 Classification: 

The selected relevant features will be utilized to train a classifier, so that it can classify 

the different emotional states using the selected features (Maaoui & Pruski, 2010). There 

are several classifiers including, Decision Tree (Chen, Hu, Moore, Zhang, & Ma, 2015), 

K-Nearest Neighbour (KNN) (Verma & Tiwary, 2014), Support Vector Machines (SVM) 

(Khezri et al., 2015), Artificial Neural Network (ANN) (Singh, Conjeti, & Banerjee, 

2013), and Linear Discriminant Analysis (LDA) (Jang, Park, Park, Kim, & Sohn, 2015), 

that are employed for emotion classification. 

In fact, all the components of physiological-based emotion recognition systems are 

essential and improving them can have a positive effect on the accuracy of emotion 
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classification. However, the focus of this research is on the two major components which 

are the feature selection and classification.   

1.3 Research Motivation 

Emotional state recognition systems based on physiological signals has many potential 

applications. Remarkably, it is revealed from past studies that numerous fields are using 

physiological signals for system development in a variety of context. The most applied 

domains are for example: 

a) Education: 

 An emotion-sensitive intelligent tutoring system can offer strategies and 

customized feedback to assist learners (Frasson & Chalfoun, 2010; Ghergulescu & 

Muntean, 2014; Malekzadeh, Mustafa, & Lahsasna, 2015).  

b) Healthcare science: 

 Various physiological disorders exist and are directly correlated with the one of 

the different class of emotions. Several studies have been conducted to recognize 

the initial phase of stress to avoid the human’s life going into the at-risk zone. As 

an example, in autistic spectrum disorder, since they are unable to use facial 

expressions and gestures to regulate social interactions, it is important to 

understand their emotions in order to teach them the social skills (Begeer, Koot, 

Rieffe, Meerum Terwogt, & Stegge, 2008; E. S. Kim et al., 2015; Uljarevic & 

Hamilton, 2013). The results of the researches (Bekele et al., 2016; Picard, 2009; 

Van Hecke et al., 2015) are some tools and algorithms that can help to identify the 

beginning of mental illness or aroused emotions. Therefore, emotion classification 

systems can play an important role in improving the health conditions of many 

people. 
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c)  Computer games: 

In this type of applications, the aim of using emotional state recognition systems 

is to track the emotional state of a game player and apply the system to adaptively 

modify the game in such a way to offer the player a lot more immersive experience, 

a greater gameplay (Kotsia, Patras, & Fotopoulos, 2012).  

d) Authentication system  

Different bio-signals (ECG, EEG and SC etc.) are combined and interpreted for 

generation of unique identification variables. These variables are unique and robust 

and sufficiently strong enough to be broken. This system could be considered in 

protecting very sensitive locations like defense and banking section etc. (Campisi 

& La Rocca, 2014; Pal, Gautam, & Singh, 2015). 

1.4 Problem Statement 

In physiological-based emotion recognition systems, training data sets are generally 

collected from multiple physiological modalities, which results in high dimensional data 

sets. This may cause some challenges including the computational complexity and the 

difficulty of convergence toward the optimal classification model. To overcome these 

difficulties, some studies apply various feature selection methods. Generally, these 

methods are not only aimed at reducing the computational cost but also at improving the 

overall performance of the recognition system. The literature shows that wrapper feature 

selection methods such as sequential forward selection (SFS) (Alpers, Wilhelm, & Roth, 

2005; Kolodyazhniy et al., 2011; Kukolja, Popović, Horvat, Kovač, & Ćosić, 2014; 

Yannakakis, Martínez, & Jhala, 2010) and sequential backward selection (SBS) 

(Giakoumis et al., 2013; James Kim & André, 2008; Kolodyazhniy et al., 2011) are 

frequently used as feature selection methods. These methods were criticized for being 

overly dependent on the classifier used as the selected features cannot be used with other 

classifiers (Wang, Zhou, Yi, & Kong, 2014). Another popular feature reduction method 
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called Principal component analysis (PCA)(Jolliffe, 1986) was applied to reduce the high 

dimension of the physiological data set and projected it into a lower dimension by 

generating a new subset of features. This method’s disadvantage is the lack of 

interpretability as the original set of features are replaced by a new set of features which 

cannot be used for interpretation and analysis (Singh, Conjeti, & Banerjee, 2013; Wei-

Long Zheng & Bao-Liang Lu, 2015). Feature ranking methods which known as filter 

methods (Brown et al., 2012) are a different category of feature selection that also have 

been used in designing of physiological-based emotion recognition (Clerico, Gupta, & 

Falk, 2015). The feature ranking methods do not have the limitation of the other feature 

selection techniques like PCA and wrapper methods. However, it is common that the 

researchers used one feature ranking method in their proposed systems which may result 

in sub-optimal solution because two different feature ranking methods are likely to 

produce two different ranking sets and presenting only one set given by a particular 

method can be misleading (Kuncheva, 2007). One solution can be using more than one 

feature ranking method to increase the chance to choose the optimal feature set. 

As to the emotion classification model, various single classification methods such as 

Support Vector Machine (SVM) (Cortes & Vapnik, 1995) and Artificial Neural Network 

(ANN) (Kohonen, 1982), have been used to develop emotion classification models for 

physiological emotion recognition systems. Beside single classifiers, ensemble 

classification methods are also known for their high classification ability compared to 

single classifiers, have been used in designing emotion recognition systems based on 

physiological signals (Bhatnagar, Bhardwaj, Sharma, & Haroon, 2014; Novak et al., 

2012). Ensemble methods (Rokach, 2010) known as multiple classifier systems,  combine 

a set of multiple classifiers’ decisions (i.e. prediction results), usually by using majority 

vote method, to obtain the final classification output of a given testing pattern. Ensemble 

classification models may be used naturally in physiological based emotion recognition 
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systems because of the combination of different modalities such as peripheral data and 

brain data (i.e. EEG) to predict the emotional state (Novak et al., 2012). There are also 

some studies (AlZoubi, Fossati, D’Mello, & Calvo, 2014; Colomer Granero et al., 2016; 

Vaid, Singh, & Kaur, 2015) that have employed some other kind of ensemble 

classification methods like boosting and bagging (Rokach, 2010) in their proposed 

emotion recognition system. However, there are other types of ensemble classification 

methods like stacking ensemble (Wolpert, 1992), which is also called dual-layer 

ensemble method, that has not been thoroughly investigated in the emotion recognition 

systems based on physiological signals. In fact, stacking-based ensemble methods have 

proved its performance in other fields of research, such as network intrusion detection 

(Syarif, Zaluska, Prugel-Bennett, & Wills, 2012) and software fault prediction (Hussain, 

Keung, Khan, & Bennin, 2015). The reason for not using more advanced ensemble 

classification methods like stacking, probably because these methods have not been 

included in most popular software packages (e.g. SPSS), while benchmark single 

classifiers like ANN or Linear Discriminant Analysis (LDA) (Fisher, 1936) or other well-

known ensemble classification methods like bagging are easily available in many 

software packages. In another word, more advanced ensemble methods are not widely 

accessible to be used by the researchers. 

 

1.5  Research Objectives 

       The main aim of this research is to propose a feature-based dual-layer ensemble 

classification method to improve the accuracy of the physiological-based emotion 

recognition systems. This method is the result of combining different feature ranking 

methods along with more than one classifiers. In order to achieve this goal, the following 

intermediate objectives are identified: 
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1. To identify most used feature selection, classification methods and its related 

issues in the design of existing physiological-based emotion recognition systems. 

2. To design and develop a feature-based dual-layer ensemble classification method 

to improve the accuracy rate of physiological-based emotion recognition system.  

3. To evaluate the classification accuracy of the proposed feature-based dual-

layer ensemble classification method by comparing with the benchmark 

classification methods using statistical analysis. 

1.6 Research Questions  

The following research questions are suggested as a guide for conducting this research at 

the different phases to accomplish the research objectives:  

1- What are the most utilized feature selection and classification methods in the 

design of the current emotion recognition systems based on the physiological 

signals? (Objective #1) 

2- What are the most prominent limitation and challenges of the current emotion 

recognition systems based on the physiological signals? (Objective #1) 

3- How can we design an improved classification method to enhance the 

classification accuracy rate of the existing emotion recognition systems? 

(Objective #2) 

4- How the classification accuracy rate of the emotion recognition systems is 

affected by using different data modalities? (Objective #3) 

5- How the classification accuracy rate of emotion recognition systems is affected 

by using the benchmark classification methods combined with feature selection 

methods as compared to the same classification methods without the feature 

selection methods? (Objective #3) 

6- Will the proposed classification have better classification accuracy as compared 

to other classification methods? (Objective #3) 
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7-  Can the proposed classification method achieve significant improvement over the 

other methods? How can we prove that statistically? (Objective #3) 

 

1.7 Research Scope 

This research is mainly focused on the development of a physiological-based emotion 

recognition system and specifically addressing the problem of improving the emotion 

classification accuracy by designing an ensemble-based classification method. In 

addition, the effect of some feature selection methods, as well as the impact of different 

modalities on the classification accuracy rate of some benchmark classification methods, 

are examined. For evaluation, we use a multimodal publicly available dataset. This data 

set has three modalities: (1) peripheral physiological signals including electro-cardiogram 

(ECG), electro-myogram (EMG), electro-oculogram (EOG), blood volume pulse (BVP), 

respiration amplitude (RSP), skin temperature and galvanic skin response (GSR), (2) 

electroencephalogram (EEG) and (3) the combination of peripheral physiological signals 

and EEG. A total of nine data sets were created using the following criteria: The first 

three data sets consist of peripheral physiological signal recordings with three different 

targets, namely, Valence, Arousal and Liking rated between 1 to 9. Arousal and valence 

are two key components of human emotion based on 2D Russell's emotional model. 

Liking is also considered as district emotion.  The second three data sets were extracted 

from EEG signal recordings and, as the previous three data sets, have the same three 

targets rated between 1 to 9. The last three datasets are formed by combining the three 

peripheral physiological data sets with the three EEG data sets. The recorded signals in 

the nine datasets are divided, based on the assigned rating scores of Arousal, Valence and 

liking by each subject, into two classes (binary classification): “low” if the score is less 

than 5 and “high” if it is five or more. The proposed method is evaluated using 
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classification accuracy rate and it is calculated using one-leave-out cross-validation1. To 

check the existence of any significance difference between the classification accuracy 

rate of the proposed classification method and other benchmark classifiers, we apply a 

statistical test2.  

1.8 Research Methodology 

In order to achieve the main objectives of this research, we have designed our research 

method based on the design science research (DSR) paradigm. Particularly, the Design 

Science Research Process Model (DSRM) proposed by (Peffers, Tuunanen, 

Rothenberger, & Chatterjee, 2007) is adopted to structure this research. We found 

DSRM process appropriate for our research, mainly because the key goal of a 

DSRM would be to deliver an artifact which has the characteristics of the research 

outcomes. In this research, the artifact is feature-based dual-layer ensemble 

classification method for physiological-based emotion recognition system. 

Figure 1.4 depicts the DSRM adopted for this research where it comprises of five 

activities as briefly described below. The full details of each activity are explained 

throughout the thesis. 

1. Problem identification and motivation: Having a defined problem that needs to be 

solved, is an early essential step in every research. A literature review (i.e. 

Narrative literature review), which describes and discusses the state of the 

science related to physiological-based emotion recognition systems from a 

theoretical and contextual point of view, is conducted to identify possible 

                                                

1 Please refer to section 3.8.2.1 for more details. 

2 Please refer to section 3.8.2.3 for more details. 
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problem/s in this field of research. The carried out literature review also assist us 

to propose our solution for the identified problem(s). 

2. Define the objectives for a solution: As soon as the problem and the significance 

of a solution have been stated, the requirements that a solution should meet are 

derived from the stated problem(s). The solution proposed for this research is to 

design an improved classification algorithm for physiological-based emotion 

recognition system, particularly, the proposed algorithm has to the ability to 

enhance the recognition accuracy of emotion recognition system by addressing 

the problems identified in the existing systems. 

3. Design and Development: This activity mainly focuses on creating the artifact. In 

this research, in order to create the proposed feature-based dual-layer ensemble 

classification method, some steps need to be considered, like database 

preparation, design emotion recognition system using benchmark classifiers and 

design feature-based multi-classifier methods. 

4. Evaluation: Measure how well the artifact supports a solution to the problem. In 

our research, a series of comparative analysis based on the classification 

accuracies are conducted to compare classification accuracy rate of different 

benchmark classification methods. At the last stage of evaluations, the Wilcoxon 

signed-rank test is applied to check if there is any significance difference between 

the classification accuracy rate of the proposed classification method and other 

benchmark classifiers. 

5. Communication: Once the research is completed, the process involved need to be 

documented and made available for knowledge sharing and discussion. In our 

research, all the research activities and processes are documented in form of a 

thesis. In addition, some major findings are submitted to related journals and 

conferences for possible publication. 
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Figure 1.4: The DSRM research method adopted for this research
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1.9 Thesis Outline 

The remaining of the thesis is organized as follows: 

Chapter 2 presents a set of basic concepts related to the human emotional state and the 

emotion recognition systems. That information is including Emotion Theories as well as 

different existing emotion models. An overview of different emotion detection modalities 

and the strategies for emotion elicitation are also presented. We also explain how 

information related to Human Nervous System (NS) can help to recognize human 

emotional states and how it can be collected. 

Additionally, this chapter mainly describes physiological-based emotion recognition 

systems and related components. The processes for creating an emotion recognition 

system which starts from physiological data preparation to emotion classification are 

discussed in details. The related works are also presented and they are mainly related to 

the components of physiological-based emotion recognition system that include feature 

selection techniques as well as classification methods. A summary of benchmark 

physiological-based emotional datasets is also provided. 

Chapter 3 describes the proposed method which consists of three main phases: feature 

selection that aims to select an optimal set of features using a different combination of 

feature ranking algorithms while the objective of the second phase is to construct single-

layer classification technique. The last phase combines the single-layer classification 

technique with another classification layer to create proposed feature-based dual-layer 

ensemble classification technique. 

Chapter 4 discusses the results obtained from applying the proposed method on the 

benchmark data sets. The results are compared with benchmark classification methods 

using a statistical method.  
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Chapter 5 concludes this thesis with highlights of contributions and main findings 

derived from this research. In addition, we propose some recommendations for future 

works. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

This chapter first addresses the scientific outlook on emotion, which explains several 

theories of emotion. The major theories that will be reviewed in this chapter are: James-

Lang theory and cognitive-appraisal theory; the notion of the universality of emotion and 

the discrete and dimensional models of emotions. This chapter also provides the relevant 

key point regarding the emotion recognition through different modalities like speech and 

facial modalities, as well as several including the psychophysiology of emotion as well 

as the rationale behind employing physiological measures for emotion identification.  

This chapter will also describe the obtainable physiological-based emotional datasets 

that were collected for research needs and its features. Furthermore, the approach 

associated with the development of an emotion recognition system will be clearly 

explained. Ultimately, at the final section, the relevant works to our study is going to be 

reviewed. 

2.2 Theories of Emotion 

With regards to the study of emotion-related topics, the vital question is what is right 

definition for emotion? There is still no precise definition of emotion and every research 

disciplines (e.g. psychology, affective neuroscience) has adopted different perspectives 

of emotions. Based on the survey done by (Calvo & D'Mello, 2010), there are six 

important theoretical views which have been used to investigate human emotions and 

their usability to affective computing research. These six theories take into account 

emotions as expressions, embodiments, solutions of cognitive appraisal, social 

constructs, outcomes of neural circuitry, or cognitive and social interpretations of 
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adjustments in core emotion. A summary of these theories regarding the present research 

will be explained below. 

2.2.1 James-Lange Theory 

The James-Lange theory of emotion was suggested by psychologist William James 

and physiologist Carl Lange separately in the middle of the 1880s. The James-Lange 

theory of emotion suggests that emotions are created due to physiological responses to 

the events. Based on their theory, emotion is equivalent to the range of physiological 

arousal caused by external events. The two scientists suggested that for someone to feel 

emotion, he/she must first experience bodily responses such as increased respiration, 

increased heart rate, or sweaty hands. Once this physiological response is recognized, 

then the person can say that he/she feels the emotion. This means that every emotion 

possesses a specific physiological pattern. Since physiological responses are instantly 

managed by the autonomic nervous system (ANS), it will be practical to anticipate 

patterns of ANS activity to be linked to specific emotional states (Regan & Atkins, 2007). 

This idea has inspired most of the emerging research on physiological-based emotion 

identification research.  

2.2.2 Cognitive Appraisal Theory  

Cognitive Appraisal is a theory of emotion that implicates people’s personal 

interpretations of an event in identifying their emotional reaction. An individual, in order 

to feel an emotion, must appraise an event (was the event a positive or negative 

occurrence) or a stimulus directly disturbing him. Throughout this process, an 

assessment of that event or stimulation takes place based on some factors such as 

relevance, ability to cope, consequences and opportunity (Lazarus, 1982; Scherer, 1999). 

The scientific studies provide evidence that the cognitive theory of emotion supports 

the idea that the brain is the main organ that is responsible for processing and evaluating 
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emotional events (Farquharson, 1942). Thus brain signals provide a possible source for 

evaluating emotional experience (Khosrowabadi, Quek, Wahab, & Ang, 2010), and this 

forms the basis for our research study in which we utilized EEG data for detecting of 

emotional states. 

2.2.3 Universality of Basic Emotions 

The concept of universality of emotions was initiated at the time of Darvin and his 

research (Darwin, 1965), where he considered emotions as an evolutionary product. This 

means that emotions are directly connected to the brain and not a learned skill. Ekman 

and other researchers (Ekman, 1992; Izard, 1992) have supported this point of view 

remarkably and suggested the existence of six basic emotions (e.g. joy, anger, fear, etc.) 

that are the building blocks for all other emotional experiences. These basic emotions 

should have identical constructs across human beings and cultures, and also distinctive 

universal features (Ekman & Cordaro, 2011). 

 According to Picard (1995), from an affective computing research outlook, common 

patterns are anticipated for universal emotions and these might possibly different for the 

derived emotions from the basic emotions. This links us to the next section where a 

discussion on different models of emotion is provided. 

2.3 Discrete and dimensional emotion models 

Research on emotion is widely known as the presence of a set of discrete emotional 

prototypes  (Ekman, 1992; Izard, 1992). These discrete emotions possess a unique profile 

in experience physiology and behavior (Mauss & Robinson, 2009). According to Mauss 

and his fellow researcher (Mauss & Robinson, 2009), they recommended around 20 

discrete emotional experiences which most frequently mentioned are fear, anger, sadness 

and joy.  As an alternative to the idea of discrete emotions, Russell (Russell & Barrett, 

1999, 1980) proposed that emotional experiences are most beneficial to be depicted in 

the two-dimensional space of valence and arousal. 
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The arousal dimension ranges from extremely activated (e.g. excited) to extremely 

deactivated (e.g. relaxed), and the valence dimension from highly pleasant (positive) to 

highly unpleasant (negative). Nevertheless, Barrett (Barrett, 1998) claimed that none of 

the mentioned models may well precisely present the subjective emotional state of the 

human.  

As such, Russell and Barrett (Russell & Barrett, 1999) attempted to merge both ideas 

together and suggested that discrete emotional experiences are associated in some way to 

these two dimensions, so they can vertically be arranged as a fuzzy hierarchy and  

horizontally (Figure 2.1).  

Figure 2.1: Emotional experiences described in two dimensions valence and arousal, 
accompanied by distribution of some discrete prototypes of emotions along the two 
dimensions (adopted from (Russell & Barrett, 1999, p.808)) 

As for physiological-based emotion recognition, relatively reliable recognition 

performance rate could be seen for both discrete (Kim et al., 2004; Wen et al., 2014) and 

dimensional (Horlings, Datcu, & Rothkrantz, 2008; Koelstra et al., 2012) models of 
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emotion. However, some researchers (Horlings et al., 2008; Kim, Bee, Wagner, & André, 

2004) found that predicting emotion categories based on dimensional valence/arousal 

modeling of emotion is more successful compared to predicting the intensity of emotion 

or in another word modeling discrete emotion. 

2.4 Emotion Detection Modalities 

In order to recognize human emotional state by computer systems, some modalities 

have been widely utilized. The most well-known modalities that have been utilized for 

this purpose are facial expression and vocal patterns. Additionally, body gestures and 

movements also have been employed (Zeng, Pantic, Roisman, & Huang, 2009). At the 

same time, with the improving capability of computer systems, and also the advances in 

communication capability of signal acquisition systems, new modalities similar to 

emotion recognition from physiological sensors are achievable. Enhanced wearable 

electronic devices could provide a more natural, non-obstructive means of acquiring this 

sort of physiological measures from people today (Picard et al., 2001). 

The capability of computers to receive a large amount of physiological data from 

individuals conveniently allows scientists the ability to analyze large amounts of 

physiological data to obtain and discover signal features that associate with the 

individuals’ emotional states. The significance of physiological data signals for human 

emotion recognition, is that it provides another possibility of recognizing human 

emotions aside from the conventionally available modalities of the tone of voice and 

facial and body gestures (Picard et al., 2001). 

In addition, using physiological data for emotion recognition is certainly essential for 

particular applications similar to deception identification or the applications that provide 

feedback to speech disable people or autistic people. Therefore, physiological-based 

emotion recognition will perhaps be the only reliable way to recognize their emotional 

state since those people are not fully capable of speaking or showing their facial emotion 

Univ
ers

ity
 of

 M
ala

ya



 

26 

 

respectively. Aside from that, physiological signals are continuously generated so it can 

be measured and monitored continuously, and since it is governed by the central and 

autonomic nervous systems (ANS), therefore it is difficult to pretend or manipulate them 

(Peter, Ebert, & Beikirch, 2009). This is definitely advantage compared with other 

modalities like voice or eye movement which their actions might be masked. 

Progresses in emotion recognition performance of computer systems using these 

single modalities make it easy for the researcher to take into consideration designing 

multimodal emotion recognition systems where these systems combine several 

modalities in a whole package to recognize the individual emotion (Lisetti & Nasoz, 

2002). Figure 2.2 depicts the framework of a multimodal emotion recognition system.  

Many researches have been carried out to design multimodal emotion recognition 

systems along with physiological measures using facial and voice features. Based on the 

review conducted by Tao and Tan (2005), the multimodal emotion recognition systems 

are capable of recognizing human emotional states with higher accuracy compared to sole 

modalities. 

For instance, Gunes, Piccardi, & Pantic (2008) developed a bimodal emotion 

identification system driven by facial expression features taken from 41 subjects’ videos 

and their physiological responses (ECG and EDA). They measured subjects’ sadness and 

amusement levels when subjects were watching emotionally reminiscent (evocative) 

movie clips. Their excremental results demonstrated that the integration of facial and 

physiological measures obtained better classification performance rate compared to using 

each modality separately.  
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Figure 2.2: The framework of a multimodal emotion recognition system 
(Tao & Tan, 2005) 

 

In Kim et al. (2004), they reported about a designed bi-modal emotion recognition 

system that utilizes speech and physiological measures. Subjects employ a computer 

gaming software which is capable of emotional interactions with players. According to 

their findings, they offered a two-channel emotion recognition system which they 

assumed would likely enhance the sole modality system as it might facilitate the handling 

of ambiguities. Their results imply that SC (Skin Conductance) as a physiological 

measure is an efficient signal of arousal and voice harmonics can help identify positive 

emotions with high arousal from the negative emotions with high arousal. 

Soleymani et al. (2012) have also designed a multimodal database for emotion 

recognition and implicit tagging. The multimodal data set was recorded based on face 

video, speech signals, eye gaze data, and physiological measures along with central 
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nervous system data. The multimodal information has been collected from 27 subjects 

while watching emotional videos. The reported results showed that the combination of 

modalities of eye gaze data features and central nervous system data features could 

achieve higher emotion recognition accuracy rate in comparison with other single 

modalities.  

2.5 Methods in Multimodal Emotion Recognition 

As we stated in the previous section, emotion recognition by using multiple sources 

and sensors (i.e. different modalities) can provide better emotion recognition accuracy 

rate compared to single modality emotion recognition systems. Thus, there is certainly a 

need for methods that integrate and synthesize information from these multimodal 

resources. This procedure is known as information fusion. There are various of fusion 

methods related to multimodal emotion recognition programs like feature level fusion 

and decision level fusion (Zeng et al., 2009). Feature level fusion is involved in the 

integration of extracted features from each modality into one combined feature vector. 

The risks with this method are that the features from different signals have different time 

frames, which might need more attention to synchronization of the extracted features. 

Another issue is the high dimensionality of the derived feature vectors, which influence 

the performance of emotion recognition system. On the contrary, in decision level fusion 

each modality is utilized to classify emotions individually, and the ultimate decision is 

achieved by merging the decisions of all the modalities according to some criteria such 

as averaging or voting. Still, formulating a supreme strategy for decision level fusion 

remains to be an open research issue (Kim & Andre, 2006). 

As stated in the research by Chanel et al. (2006), fusion offers better results in an 

emotion recognition related experiment that combined EEG and peripheral signals 

(peripheral signals are referred to physiological signals linked to ANS responses such as 

ECG, EMG, SC and RSP). Based on their results, some subjects had better scores with 
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peripheral signals as compared to with EEG and the opposite. In the same manner,  Kim 

& Andre (2006) discovered that employed feature-level fusion technique in their research 

given the best results using a combination of physiological signals together with speech 

modalities, stating that feature-level fusion is more suitable when merging modalities 

with similar aspects.  

2.6 Psychophysiology of Emotion 

Study of psychological phenomena (e.g. emotions, and moods) and human physiology 

is very important, in which understanding the main links between an emotional behavior 

and a particular physiological response is necessary to properly monitor and knowing 

how to identify emotions from physiological measures. This section gives a summary on 

the links between the emotional behavior and human physiology which is managed by 

human nervous system. In addition, the way emotions are generated and experienced, and 

type of the physiological responses that are linked with various emotions are presented. 

The human nervous system is split into two components the central nervous system 

(CNS) which comprises of the brain and spinal cord, as well as the peripheral nervous 

system. The peripheral nervous system then comes with the a) autonomic nervous system 

(ANS), and b) the somatic nervous system. The ANS is in charge of organizing the 

function of spontaneous bodily organs like the heart and glands, and smoothes out muscle 

systems of the human body and their reactions to the environment via increased heart rate 

and sweaty glands in the event of frightened circumstances or slow heart rate and 

respiration rate in the event of gloomy occasions. At the same time, the somatic nervous 

system manages skeletal voluntary muscles like facial muscles and biceps which are 
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under human control (Andreassi, 2007). The branches of the human nervous system are 

shown in Figure 2.3. 

 

Figure 2.3: Divisions of human nervous system (Andreassi, 2007) 

 

2.6.1 The Electroencephalogram (EEG) 

Based on the works by many researchers (e.g. Cacioppo, Tassinary, & Berntson, 2007; 

Lang & Bradley, 2010), the activity of central nervous system straightly can be monitored 

by EEG, thereby this is valuable in discovering the hemispheric specialization and 

lateralization of emotion. The human brain neurons are successfully concerned with 

natural stimuli from receptors such as eyes and ears, or perhaps by neural prompt caused 

by some other nerves.  

Hans Berger was a German psychiatrist who is known as the founder of 

electroencephalography (EEG) unveiled the initial result on human EEGs, where he 

recognized two wave patterns, a large regular wave (10-11 Hz) which he labeled alpha 
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waves, and a smaller irregular and faster wave which he labeled beta waves (20-30 Hz) 

(Andreassi, 2007; Pizzagalli, 2007).  

According to the researches, specific human conditions have been linked to the 

activation of specific frequency bands in specific brain regions. For instance, a state of 

“high awareness or excitation” (i.e. high level of arousal) is linked to higher beta 

frequencies, at the same time a state of relaxed is linked to alpha activity; Delta waves 

are slow and brain waves which are linked to deep sleep in ordinary people, whereas theta 

brain waves happen more often during states of pleasure and displeasure (Pizzagalli, 

2007). In addition, the state of engagement is linked with brain theta activity recorded 

from the frontal sites. Furthermore, the brain delta activity is linked to the state of 

sleepiness (Allanson & Fairclough, 2004; Fairclough, 2009). Figure 2.4 depicts the four 

main types of EEG brain waves, frequency level, and associated human state. 

There are some theories about the relationship between brain signals and emotion. 

Several researchers believe that by checking at the difference in activity of both 

hemispheres of the brain recorded by EEG, different emotions can be identified  

(Cacioppo, 2004; Schiffer et al., 2007). In the research done by (Chanel et al., 2006), they 

found that EEG can be employed to recognize arousal level of human emotion while EEG 

performance was better than other peripheral signals for arousal level recognition.  

There are more emotion recognition research studies that have proved the functionality 

and usefulness of EEG measurements to identify human emotional states including level 

of arousal, engagement and some basic emotions such as joy, anger, sadness, fear and 

relax (Chai et al., 2014; Heraz, Razaki, & Frasson, 2007; Horlings et al., 2008; Khalili & 

Moradi, 2008; Koelstra et al., 2012).  
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Figure 2.4: The four major types of EEG waves and associated human state 
(Adopted from (Webster & Clark, 2010)) 

2.6.2 Autonomic Nervous System (ANS) Measures and Its applicability for 

Emotion Recognition 

The ANS is generally engaged in the regulation of essential activities of the human 

body such as cardiovascular system and respiratory activities, temperature, blood 

pressure and some other features of emotional attitude. The main functionality of the ANS 

would be to maintain the human body in a well-balanced inner condition in a deal with 

internal or external situations that may affect its balance (Andreassi, 2007; Carlson, 

2012). 

In accordance with the composition and functionality of the ANS, it includes two 

components, which are a sympathetic nervous system (SNS) together with the 

parasympathetic nervous system (PNS) (Carlson, 2012). As the sympathetic component 

prepares the body for high levels of somatic task, which may come from an interaction 

with a stimulus in the environment and prepares the body for a state of troubles while the 
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parasympathetic helps to bring a state of rest and relaxation to the human body 

(Andreassi, 2007; Lorig et al., 2007). 

The SNS usually handles those tasks which are involved with urgent and stress 

conditions. These tasks may contain raised blood circulation to skeletal muscles, higher 

heart rate, outgoings of energy, expansion of eye pupils and increased sweating 

(Andreassi, 2007; Carlson, 2012). The reactions of the SNS to hazard situation are very 

adaptable since this improves survival. Alternatively, the tasks under PNS control consist 

of reduces in heart rate and blood pressure, activation of the digestive system, papillary 

constriction, resting and sleep (Andreassi, 2007). The tasks of the SNS and PNS probably 

have different functions. However, the tasks of the two systems are complementary in 

which allows an easy flow of body activities and behavior (Andreassi, 2007). 

The change raises in the activities of these two components of ANS system while 

facing different environment conditions and their reflections in form of physiological 

measures as well as regulating human body physiology during the transition from one 

emotion to another, one could be measured through physiological sensing. The goal is 

then to model these emotion changes making use of computerized systems that would 

allow the automatic discovery of these alterations (Barreto, Zhai, & Adjouadi, 2007). 

In many researches that have been carried out in the area of affective computing, to 

design automatic emotion identification systems, numerous physiological signals have 

been employed. The most essential ones are such as ECG, EMG, SC, RSP, ST, BVP and 

also EEG (AlZoubi et al., 2014; Barreto et al., 2007; Gunes et al., 2008; Haag et al., 2004; 

Hariharan & Adam, 2015; Hernandez, Paredes, Roseway, & Czerwinski, 2014; Khalili 

& Moradi, 2008; Koelstra et al., 2012; Picard et al., 2001; Soleymani, Lichtenauer, et al., 

2012; Wagner, Kim, & Andre, 2005). In the following sections, a short presentation about 

each of the physiological signals which have been utilized for designing emotion 

recognition system in our research is introduced. 
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2.6.2.1 Respiration (RSP) 

A person's respiratory rate is the mean number of breaths he or she take per minute. 

The normal respiration rate for an adult at rest is 12 to 20 breaths per minute. The 

breathing system is extremely complex and responsive to various psychological issues 

(Lorig et al., 2007). As an example, the respiration rate will rise whenever an individual 

is in a fear state which is also linked to quicker and shorter breaths, whilst becoming mad 

is linked to a rise in breathing rate with deeper breaths. Based on the research in (Allanson 

& Fairclough, 2004), using breathing patterns could indicate and differentiate between 

human emotional states such as calm against excitements states. As an example, the fast 

and deep breath represent excitement emotional states such as anger or fear and also joy, 

while quick short breathing can reveal anxious symptoms such as panic and fear 

(Philippot, Chapelle, & Blairy, 2002). Haag et al. (2004) also have mentioned that slow 

and deep breathing styles, which signify a relaxed resting state while slow and short 

breathing can reflect states of apathetic like depression or relaxed. Some other scientists 

like Lichtenstein et al. (2008), also shown that breathing styles that can be evaluated by 

RSP rate is noticeably dissimilar between happiness and fears, anger and sadness, 

satisfaction and happiness also sadness and happiness. 

2.6.2.2 Electrocardiogram (ECG) 

Electrocardiography (ECG or EKG) is the process of recording the electrical activity 

of the heart over a period of time using electrodes placed on an individual's body and it 

is usually measured based or beats per minute. Heart rate (HR) and heart rate 

variability (HRV) are common measures that would be extracted from ECG which 

are also an important physiological index for detecting different emotions. These two 

measures are comprised of details on the status of the ANS where both sympathetic and 

parasympathetic nervous system activities could be comprehended. Many researches 
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have been carried out by using HR and HRV related features in order to identify human 

emotional states. For instances, Levenson, Ekman, & Friesen (1990) found that HR 

acceleration rate compared to a baseline HR is higher for anger, sadness and fear in 

contrasted to happiness, disgust, and surprise. Furthermore, Cacioppo et al. (2007) 

discovered that anger, fear, and sadness were linked to more HR acceleration as compared 

with disgust, based on the meta-analysis that they performed on the impact of discrete 

emotions on physiological measures. 

Sometimes, HR responses might be confusing to be analyzed due to the influence of 

sympathetic and parasympathetic activity of ANS (Kreibig, 2010). As a solution, some 

researchers proposed that add-on of an additional component of cardiovascular measures 

like HRV will help to reduce this issue (Hagemann, Waldstein, & Thayer, 2003). To 

illustrate this, (Rainville et al., 2006; Wagner et al., 2005) demonstrated that HR, HRV, 

together with RSP related features could possibly differentiate between four fundamental 

emotions which were fear, anger, happiness, and sadness. 

2.6.2.3 Electromyogram (EMG) 

Electromyography (EMG) measures muscle response or electrical activity due to a 

nerve's stimulus of the muscle. The muscles on the skin of the human face are prominent 

means of information for facial expression emotion recognition like frowns and smiles 

(Bradley et al., 2007). Therefore, facial muscle electrical activity can be obtained using 

EMG (Andreassi, 2007). The muscle above the jaw which is named masseter and the 

muscle above the eyebrow which is named corrugator are mostly analyzed facial muscles 

that are considered in emotion recognition researches. The corrugator face muscle is more 

connected with aroused emotional states like anger and surprise, at the same time the 

masseter muscle is connected with both arousal and valence elements of human emotion 

(Lichtenstein et al.,2008). Based on the research done by (Lee, Shackman, Jackson, & 
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Davidson, 2009), they illustrated steady changes in electrical activity of corrugator 

muscle measured by facial EMG, in reaction to pleasant or unpleasant stimulation. 

2.6.2.4 Skin Conductivity (SC) 

Skin conductance (SC) is an index of sympathetic nervous system (SNS) activity and 

emotional arousal (Lang, 1995; Levenson et al., 1990). Each time an individual feel stress 

and tension, the palms will get humid because of raised activity in the SNS, which can 

result in accelerated hydration in the sweet channels and on the outside of the skin in 

which skin conductivity is increased and then can be measured through skin resistance to 

a small electrical current (Andreassi, 2007; Cacioppo et al., 2007). Cacioppo et al. (2007) 

research shown that SC, unlike some other ANS measures, provides a direct reflection of 

sympathetic triggering once facing stressful circumstances. In addition, according to the 

experiment performed by (Lichtenstein et al., 2008), SC could distinguish between fear 

and sad, fear and anger, happy and sad, and additionally, helps to separate between 

struggle and no struggle situations. SC was typically considered as an index of arousal, 

however, Lichtenstein’s research study revealed that the valence level may also be 

distinguished by this measure.  

2.7 Review on Physiological-based Emotion Recognition System 

In previous sections, the basic concepts related to the human emotional states, as well 

as the existing sensors for collecting the physiological data were discussed. This section 

reviews some of the prominent researches that have been performed in the area of 

physiological-based emotion recognition systems. This section discusses, the general 

process of creating automated physiological-based emotion recognition systems using 

human autonomic nervous system (ANS) responses and central nervous system responses 

(i.e. related to brain signals). We provide a review of the existing studies that worked on 

the development of physiological emotion recognition systems. The emphasis is on two 
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important phases, which are physiological data preparation for emotion classification (i.e. 

physiological data collection, feature extraction, normalization and dimension reduction) 

and different classification methods.  

Figure 2.5 depicts the general process for developing a physiological-based emotion 

recognition system. Each block shows a specific task that must be performed and its 

resulting output which is mentioned on the left side of the related block. For example, the 

output of recording physiological signals from a given human subject is the physiological 

signals of that subject.   

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5: The general process to create an automated physiological-based 

emotion recognition system (Novak, Mihelj, & Munih, 2012) 
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2.7.1 Physiological data preparation  

This section discusses the required steps that should be taken to acquire the final 

feature set that will be used for emotion classification in physiological-based emotion 

recognition system. The first step is to choose a suitable emotional model, in the second 

step, the recording of the raw physiological data from participants and labeling those raw 

data based on the selected emotional model. For the third step, the most useful features 

are extracted from the raw physiological signals, followed by normalization stage, which 

is optional; that is, it can be missed. The last stage, which also can be optional but 

especially important in building efficient emotion recognition systems, is the feature 

dimension reduction. Each of these steps is discussed in details in the following 

subsections. 

2.7.1.1 Emotion model selection 

The initial phase of developing a database for emotion recognition is to select a proper 

model that defines the participant’s emotional state. Using this model, the emotional 

states that can be identified from physiological signals are defined. As we explained in 

section 2.3, the most common emotional models are: categorical model and two-

dimensional arousal-valence model. The categorical model (i.e. district model) attempts 

to classify physiological data into one of the several basic emotions such as anger, 

sadness, surprise, happiness etc. (Ekman, 1992), while in the second model human 

emotional states are considered as multidimensional so that can be described with 

multiple variables. The most famous multidimensional emotion model is the arousal-

valence model proposed by (Russell, 1980). The valence, which is also called pleasure is 

known as positive opposed to negative emotional states (e.g. disgrace, boredom, and 

anger at one side opposed to excitement, relaxation, and calmness at another side), 

whereas arousal is described in relation to the mental awareness and physical activity 
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(e.g. sleep, idleness, boredom, and relaxation at the lower end opposed to alertness, strain, 

exercise, and focus at the upper end) (Mehrabian, 1996). The arousal-valence space can 

be separated into quadrants as low arousal/positive valence, low arousal/negative valence, 

high arousal/positive valence and high arousal/negative valence. This split normally 

performed for classification purposes.  

Selection of emotion model as the first step in emotion recognition research studies is 

very crucial because the emotion model influences every part of research study, from the 

experiment design to the data examination. It will be almost unfeasible to alter the models 

as soon as data signal collection has initiated. Though it may be possible, for instance, 

transform basic emotions to arousal-valence quadrants or the opposite way round 

(Christie & Friedman, 2004). 

2.7.1.2  Physiological data collection 

Collecting a high-quality physiological data signals as a data set is among the initial 

and very crucial steps for the development of emotion recognition systems (Novak, 

Mihelj, Ziherl, Olenšek, & Munih, 2011). This physiological data, after passing through 

some preprocess and feature extraction steps, are employed as training dataset. The 

physiological data, which can be collected through physiological sensors 

(electrocardiogram, skin conductance, etc.) are linked with stimulated emotional states 

like anger, fear, happiness, low stress etc. Ultimately, a supervised data classification 

technique is commonly used on this training dataset to allow the computers to learn the 

associations between physiological data and related emotional states as both the inputs 

and outputs. The learned association forms a model that later it is normally utilized to 

identify the emotional state linked to the physiological data that is not still identified. The 

steps of collecting physiological data sets are described in the following subsections. 
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(a) Emotion Elicitation 

To produce appropriate training dataset, the collected physiological data should 

properly represent the targeted emotional states that had been defined by the emotional 

model. Therefore, the targeted emotional states ought to be effectively provoked in the 

subjects to ensure that the training dataset consists of valuable physiological information 

related to the specific emotional states.  

      Physiological datasets that utilized in majority of studies were gained through the use 

of audio-visual emotion stimuli in lab settings in which individuals deliberately express 

preferred emotions while viewing picked pictures, watching movie clips or listening to 

music (Frantzidis et al., 2010; Koelstra et al., 2012; Rainville et al., 2006; Wei-Long 

Zheng, Bo-Nan Dong, & Bao-Liang Lu, 2014). Some studies (e.g. (G. Chanel, Rebetez, 

Bétrancourt, & Pun, 2011)) have also tried to create databases of natural emotional 

expressions, where the participants’ emotions spontaneously arise as a consequence of 

significant circumstances in a location that resembles the real world. As an example, in 

the study by (Scheirer, Fernandez, Klein, & Picard, 2002), in an effort to stimulate 

frustration emotional experience in subjects for their related physiological data recording, 

they asked them to play a computer game, in which the target was to finish a variety of 

graphic puzzles quickly and precisely to win a cash prize. However, determined by 

random intervals, the computer mouse respond faulty (i.e. once the person clicked to 

proceed to the subsequent puzzle, nothing happened for some secs). Frustration assumed 

to take place throughout a multi-second window after every unsuccessful mouse-click. 

Wilson & Russell (2003) attempted to induce different levels of mental workload and at 

the same time recording of physiological data related to seven air traffic controllers during 

a simulated air traffic control task. The participants were required to handle a series of 

aircraft requesting air traffic control services. Subjects were responsible for controlling 

Aircraft arriving and departing and overflights. Task difficulty was manipulated in three 
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conditions: volume, complexity, and overload to stimulate the different level of mental 

workload in subjects. The just experienced mental workload levels of the subjects were 

collected through subjects self-report using the NASA Task Load Index (NASA-TLX; 

(Hart & Staveland, 1988)) at the same time with physiological data recording using 

biosensors. As another natural emotion induction example, the physiology and the 

emotional response of participants while interacting with a tutoring system (AutoTutor) 

are collected. The type of provided feedback by the system (i.e., positive, neutral, 

negative) has the main effect on the aroused emotional responses of participants (Aghaei 

Pour, Hussain, AlZoubi, D’Mello, & Calvo, 2010). As another example of natural 

emotion elicitation is the research done by (Healey & Picard, 2005) that the stress 

emotional state has been induced in seventeen drivers while they were driving a car and 

experiencing a different level of stress. 

From the theoretical point of view and the researches performed by (Gross & 

Levenson, 1995), the first method of emotion induction is advantageous because it offers 

a well-structured database having all emotional states equivalently selected (supposing 

they have been effectively stimulated), whereas the 2nd method might be more 

conveniently attainable in utilized settings. However, several emotional states are special 

and hard to provoke. Consequently, the selection of the emotion induction will mainly 

depend on the objective of the research (Novak et al., 2012). 

Another vital task that is performed at the same time with emotional state induction 

step is labeling (i.e. define output) of the physiological data recorded from subjects in 

each session of data collection. The typical approaches for this purpose are self-report 

approaches (e.g.  Christie & Friedman, 2004; Haarmann, Boucsein, & Schaefer, 2009; 

Lisetti & Nasoz, 2004; Soleymani et al., 2012). The most desirable advantage of them is: 

being convenient to use and also being inexpensive. The self-report questionnaire better 

to be validated upfront, since certain strong points as well as weak points will be 
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identified. There are two widely used and well-validated samples of self-report 

questionnaires in psychophysiology that are the Self-Assessment Manikin (Bradley & 

Lang, 1949) and the NASA-TLX (Hart & Staveland, 1988). In Self-Assessment Manikin 

(Figure 2.6) individuals may put an X over a figure or on a point between any two figures 

which lead to a 9-point scale for the valence dimension (top panel) and arousal dimension 

(bottom panel). This was used successfully to measure emotional feedback in several 

situations including responses to pictures, sounds and other stimuli (Bradley & Lang, 

1994). 

On the other hand, in some studies, researchers have discovered that some subjects might 

be unmindful of their particular emotions, not able to state them, or are just reluctant to 

state them. In this specific circumstances, different techniques such as facial 

electromyography (Kreibig et al., 2007) or observation of the subject by expert (e.g.  

(Healey & Picard, 2005; Jones, Buhr, et al., 2014; Jones, Conture, & Walden, 2014; 

Katsis et al., 2008; Koenig et al., 2011; Liu, Conn, Sarkar, & Stone, 2008a; 

Schwerdtfeger, 2004) need to be considered to know what emotional state was stimulated 

in this type of subjects.  

Figure 2.6: Images used by Self-Assessment Manikin (SAM) method for the 
individual self-report emotional state. Self-evaluation scales for the dimensions of 

valence (top), arousal (bottom) (Adopted from Hettich et al., 2016). 
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Another valuable tool that was used by researchers (e.g. (D. Kim, Frank, & Kim, 

2014))  for measuring individual’s emotional experience is Facial Action Coding System 

(FACS). This tool has been proposed by Ekman and Friesen (1987), and it is useful for 

measuring any facial expression a human being can make. Movements of individual facial 

muscles are encoded by FACS from little different quick changes in facial style. In this 

system, a total of 46 anatomically-based action units (AU) for facial motions were 

defined. Every AU gives information about a noticeable change in the face, as an 

example, AU-12 is related to raising the exterior lip corners, and AU-9 wrinkles the nose. 

The system represents all possible motions of the face obvious to the naked eye. This 

system involves comprehensive training and qualification. The FACS has been very 

beneficial in researches of emotion, for instance, it is able to differentiate between 

genuine and deceitful smiles (Larsen & Fredrickson, 1999). 

(b) Selection of number of subjects (Sample size) 

The number of subjects that should be included in a research study related to 

physiological recording for subject’s emotional state recognition is based on the type of 

validation strategy that is employed which can be subject-dependent or subject-

independent. In subject-dependent research studies, the quantity of subjects usually is 

immaterial considering that the emotional data classification is performed for every 

subject individually and it is just required to be sure that sufficient data is captured for 

every subject (e.g. Leon, Clarke, Callaghan, & Sepulveda, 2004; Picard et al., 2001; 

Wagner et al., 2005). That is why, subject-dependent researches commonly include either 

only one subject or a few subjects. This strategy is taken into account for a particular or 

small group of the people with a very short number of obtainable subjects like the study 

performed by (Liu, Conn, Sarkar, & Stone, 2008b) on 6 autistic children or physiological 

data recorded from only seven air traffic controllers in (Wilson & Russell, 2003). Having 
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small numbers of subjects also feasible in studies where the quantity of accessible 

subjects is somewhat limited. In particular, in the research carried out by (Novak et al., 

2011), physiological data of 11 patients that had been having motor rehabilitation were 

reordered to create a model for offering feedback. Researchers should be aware in these 

research studies by which several recordings from every subject are mostly essential. 

In contrast to subject-dependent validation strategy, subject-independent researches 

usually include more than 20 subjects in their experiments. As example, (Setz, Schumm, 

Lorenz, Arnrich, & Tröster, 2009), (G. Chanel et al., 2011), (Kapoor, Burleson, & Picard, 

2007) employed between 20 to 24 subjects, (Abadi et al., 2015), (Setz et al., 2010), 

(Nasoz, Lisetti, & Vasilakos, 2010), (Bailenson et al., 2008), (Ringeval, Sonderegger, 

Sauer, & Lalanne, 2013) employed between 30 to 46 subjects and (Arroyo-Palacios & 

Romano, 2010), (Tognetti, Garbarino, Bonanno, Matteucci, & Bonarini, 2010) employed 

more than 55 subjects in their researches. Having data sets that include many subjects, 

doesn’t mean that subject-dependent systems are not applicable to them. In such systems, 

subject dependent validation is also possible if enough recordings (i.e. multiple recording) 

could be collected from each subject. 

(c) Physiological-based Emotional Datasets 

A vital step toward developing an emotion recognition system is creating an 

emotional database. Latest advances in the area of automatic emotion identification have 

inspired the researchers for development of innovative data sets containing emotional 

expressions.  

Most of these data sets consist of speech, visual, or audio-visual data (Fanelli, Gall, 

Romsdorfer, Weise, & Van Gool, 2010; Grimm, Kroschel, & Narayanan, 2008; 

McKeown, Valstar, Cowie, Pantic, & Schröder, 2012; Pantic, Valstar, Rademaker, & 

Maat, 2005). The emotional data sets that have visual modalities includes, face and/or 

body gestures, while the audio modality contains acted or genuine emotional speech, 
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which can be in different languages. Despite the availability of several audio-visual 

emotional datasets that can be used for research purposes, there are quite a few publicly 

available physiological signal emotional datasets to be employed freely by researchers to 

evaluate their proposed methods for the problems related to emotion recognition systems. 

The lack of data sets might due to the cost and difficulty of collecting physiological data 

sets which usually involves the use of special equipment and presence of the participants. 

In this section, we review the publicly available physiological-based emotional datasets 

and describe their main characteristics. 

One of the earliest data sets is MIT dataset, which has been created by (Healey & 

Picard, 2005). This dataset recorded responses of 17 drivers while they were experiencing 

various level of stress by using an electrocardiogram (ECG), galvanic skin response 

(GSR) collected from drivers’ hands and feet, electromyogram (EMG) from the right 

trapezius, and also the respiration pattern. This dataset is publicly from Physionet website 

(www.physionet.org).  

Another large emotional dataset is HUMAINE (Douglas-Cowie et al., 2007)which is 

comprised of three natural and six persuaded reaction databases. The numbers of 

participants in each database are different and it ranges from 8 to 125 persons. The 

modalities that were recorded were various, from audio-visual to peripheral physiological 

signals. These databases had been created individually at separate sites and gathered 

under the HUMAINE project. 

The AuBT physiological dataset is another dataset, which includes only one subject 

and has been collected by (Wagner et al., 2005) from Augsburg University in Germany. 

They produced four basic emotions: Anger, Joy, Pleasure and Sadness using four 

different music songs. Four peripheral physiological signal channel including 

electromyogram (EMG), electrocardiogram (ECG), skin conductivity (SC) and 

respiration change (RSP) are used to record the physiological data while a subject was 
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listening to the music songs. For each emotion, 25 recordings were collected during 25 

days. Totally, they have recorded 100 signals.  

The DEAP is a multimodal publicly available dataset for analysis of human emotional 

state recently created by (Koelstra et al., 2012). It consists of central nervous system 

signals (i.e. electroencephalogram (EEG)) and peripheral physiological signals which 

includes electro-cardiogram (ECG), electro-myogram (EMG), electroocologram (EOG), 

blood volume pulse (BVP), respiration amplitude (RSP), skin temperature and galvanic 

skin response (GSR) of 32 subjects while watching 40 one minutes long music videos. 

Moreover, the face videos of 32 participants also were captured during experiments.  A 

total of 1280 recorded signal were collected according to spontaneous responses of 

participants to music videos. Each subject rated each video in terms of the levels of 

arousal, valence, like/dislike, dominance using a 9-point Likert scale.  

The MAHNOB-HCI dataset is also another advanced multimodal publicly available 

dataset for emotion recognition and implicit tagging developed by (Soleymani, 

Lichtenauer, et al., 2012). Like DEAP dataset, they have done synchronized recording of 

peripheral and central nervous system physiological signals in addition to face videos, 

audio signals, eye gaze data of 27 participants according to their response to emotional 

videos and images. They performed two separate experiments, the first experiment, which 

was called emotional reactions to videos, where they asked participants to watch 20 

emotional videos and report their experienced emotion based on emotional keywords, the 

level of arousal, valence, and dominance using nine points’ scales. SAM Mankins had 

been used to assist the self- assessment of valence, arousal, and dominance. In the second 

experiment, which was called implicit tagging, they presented 28 images and 14 short 

videos fro0m flicker (www.flicker.com) and ask the participants if they agree with the 

assigned tags. All the signals, videos and bodily responses of participants were recorded 

and stored in a database.  
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Recently, (Abadi et al., 2015) presented DECAF as a multimodal data set for emotion 

recognition from human’s physiological responses. They have done synchronized 

recording of peripheral physiological signals including horizontal Electrooculogram 

(hEOG), Electrocardiogram (ECG), and trapezius-Electromyogram (tEMG) as well as 

central nervous system physiological signals (i.e. brain signal) using 

Magnetoencephalogram (MEG) in addition to near-infra-red (NIR) facial videos of 30 

individuals while watching 36 movie clips and 40 one-minute music video segments 

(used in (Koelstra et al., 2012)).The creators of data sets claim that using 

Magnetoencephalogram (MEG) sensor instead of electroencephalogram (EEG) sensors 

for recording brain signals has the advantage of less physical contact with subject’s scalp 

and as a result allows for naturalistic emotional responses. In addition, as the advantage 

of DECAF to other data sets like DEAP or MAHNOB-HCI, it brings the possibility for 

performance comparison of emotion recognition system using MEG against EEG 

modalities as well as suitability comparison of using music-video versus movie clips for 

emotion induction and elicitation. Table 2.1 presents an overview of reviewed datasets 

and their characteristics. 

Table 2.1: An overview of reviewed physiological-based emotional datasets and 
their characteristics 

Dataset #Participants Natural / 

Stimulated 
Audio Visual Peripheral 

physiological 
EEG Eye 

gaze 

MIT 17 Natural No No Yes No No 

HUMAINE 8 to 125 Both Yes Yes Yes No No 

AuBT 1 Stimulated No No Yes No No 

DEAP 32 Stimulated No Yes Yes Yes No 

MAHNOB 27 Stimulated Yes Yes Yes Yes Yes 

DECAF 30 Stimulated No Yes Yes MEG No 
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2.7.1.3 Pre-processing 

In the time of physiological data collection, the raw physiological signals are usually 

polluted with noises and other external intrusions because of electrostatic devices and 

muscular movements that influence the raw signals (Kim et al., 2004). Therefore, to have 

clean data, noise and artifacts have to be eliminated from the raw physiological signal 

before sending to the next steps (i.e. feature extraction). The methods that are usually 

employed for preprocessing of raw ECG and EMG signals include different kinds of 

Low-pass filters such as Adaptive filters, Elliptic filters, Butterworth filters etc. In 

addition, to preprocess the raw GSR signals smoothing filters techniques also employed 

(Abadi et al., 2015; Chang et al., 2010; Katsis et al., 2008; Koelstra et al., 2012; G. Rigas, 

Katsis, Ganiatsas, & Fotiadis, 2007).  

2.7.1.4 Feature Extraction 

After the signals being pre-processed, the next important step is to extract statistical 

information that is called features from the signal which later can be employed to identify 

the emotional content of the signal. There are many types of features that can be 

categorized into statistical, time domain, frequency domain and time-frequency domain 

features that can be computed from the different physiological signals.  

Some Features can be extracted quite easily like features calculated from skin 

temperature which just consists of the mean, standard deviation and mean absolute 

derivative over a specific time frame, whereas extraction of other features like heart rate 

variability from the electrocardiogram consists of conscientious filtering, peak 

identification, interpolation, and power spectral density computation (Task-force, 1996)  

The outcome of feature extraction step is a vector comprised of a variety of 

physiological features computed from individual raw signals over a specific time frame. 

After that, this vector is going to be known as a ‘feature vector’. A matrix comprises of 

numerous feature vectors from various subjects or different periods of time can be called 
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a ‘data set’. Later, in data classification part, these feature vectors are employed to train 

and test the classification model. 

 Despite there is no agreement about which features need to be extracted from each 

physiological signal, there are certain features that are now relatively popular such as 

mean and standard values of a signal over a specific time frame, minimum and maximum 

values and mean absolute derivatives over a time period. Besides that, for some signals, 

specific features are needed to be extracted. For example, heart rate is mostly described 

by a variety of time and frequency- domain features of heart rate variability that were 

determined by European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology (1996) (Abadi et al., 2015; Soleymani, Lichtenauer, et al., 

2012). For EEG signals, power spectral features from theta, alpha, beta, and gammas 

bands are commonly extracted (Koelstra et al., 2012; Soleymani, Lichtenauer, et al., 

2012). Since listing here all possible physiological features is not feasible, the readers can 

refer to the complete list of physiological features that have been collected by (Kreibig et 

al., 2007) and (Kreibig, 2010). Likewise, computational procedures for the calculation of 

the following three features: electrocardiography, skin conductance and skin temperature 

have been explained in details in the studies done by (J Kim et al., 2004). In another study, 

(Pramila Rani, Sarkar, Smith, & Kirby, 2004) explained the way of extracting 

electrocardiography, skin conductance, and electromyography features. Almost all 

features can be computed over a sliding window, however, because of theoretical 

restrictions some demand for wider windows, for example, certain features of heart rate 

variability may not be calculated over a window less than 2 mins (Task-force, 1996). 

2.7.1.5 Normalization 

Psychophysiological data signals and their related extracted features are extremely 

influenced by person’s variability such as age, gender, time of the day along with matters. 

In features normalization, it is tried to decrease the impact of this variability before the 
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extracted data features be sent for data classification. For example, in a physiological 

research, different subjects may possibly express increased reactions than other ones or 

have diverse resting rates for psychophysiological features like resting heart rate of an 

individual (adult) can be in possibly be somewhere between 60 and 100 beats in minutes. 

This issue should be considered ahead of data classification. In addition, in feature 

extraction stage, various features are calculated in a variety of units, certain features 

receive bigger numerical values compared to others that can be troublesome for particular 

classifiers like a nearest-neighbor algorithm. To address these matters, using 

normalization process tries to lessen this consequence. There are three normalization 

strategies which are generally applied, nevertheless, it needs to be pointed out that not 

every psychophysiological research utilizes normalization process and sometimes the 

researchers do not state if it had been utilized (Novak et al., 2012). 

In the first strategy subject’s psychophysiological responses are recorded and the 

related features are extracted in which the subject is not put through stimuli or may be 

simply put through plain, calming stimuli (i.e. baseline or neutral situations). Then, the 

psychophysiological features from other situations once the subject is exposed to a 

serious task or different emotions stimuli are calculated and then these features can be 

normalized in different ways such as by subtracting from the baseline value (Jones, Buhr, 

et al., 2014; K. H. Kim et al., 2004; Stephens, Christie, & Friedman, 2010), dividing by 

the baseline value (Arroyo-Palacios & Romano, 2010; Zhai & Barreto, 2006b), 

subtracting the baseline value and dividing the result by the baseline value (Kukolja et 

al., 2014; Mohammad & Nishida, 2010; Nasoz, Alvarez, Lisetti, & Finkelstein, 2004) , 

or an aggregate of them useful for different features (Novak et al., 2010; Setz et al., 2010). 

The purpose of subtraction scheme using the baseline values is to decrease intersubject 

variability because of different baseline values belong to different subjects, at the same 
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time division can be somewhat designed for decreasing variability because of various 

response sizes. 

The second data normalization strategy starts like the first one, where the 

psychophysiological responses are recorded and related features are extracted in a 

baseline condition. Then, instead of subtracting or dividing the data features accumulated 

from exposing subjects to a serious task or different emotions stimuli, the baseline data 

features are added to the feature space as new features and create a feature vector. 

Therefore, the dimension of feature space becomes double. This strategy is also called 

the ‘baseline matrix’ which have been employed by some researchers like Picard et al. 

(2001) and  Broek et al. (2010).  

Another strategy for normalization simply converts the values of features to a certain 

range for example between 0 to 1 or 1 to -1. The specific range for each feature is 

calculated separately by, for example, subtracting each feature’s value from the mean 

value of all feature vectors and dividing the result by the standard deviation of all feature 

vectors. This procedure can be done for each subject independently or across all subjects. 

When performed for every subject independently, the aim is usually to decrease 

intersubject variability by adjusting every subject’s features values to a difference 

between their max and minimal rates. In case, it is performed across all subjects, the aim 

is to make sure that every psychophysiological feature includes the equivalent numerical 

scope. Applying this normalization approach should not have an impact on the outcomes 

of data classification only when it comes to employing classification algorithms just like 

k-nearest neighbors, which demand normalization. For example, Haag et al. (2004), 

Regan & Atkins (2007), Kulic & Croft (2007), Yannakakis & Hallam, (2008), Sakr  et 

al. (2010), (Soleymani, Lichtenauer, et al., 2012) and (Verma & Tiwary, 2014) have 

utilized this normalization strategy in their studies. 

Univ
ers

ity
 of

 M
ala

ya



 

52 

 

There is no common agreement among researchers on the effectiveness of data 

normalization on the improvement of data classification. For example, the third strategy 

of normalization, which was converting the feature’s values between certain ranges is a 

simple numerical resizing and should not have much impact on data classification, except 

for classification algorithms like k-nearest neighbors.  

Many researchers found that classification results can be improved because of 

employing normalization approaches. However, some studies also reported that the best 

results were obtained without employing a normalization approach. Broek et al. (2010) 

utilized the baseline matrix normalization approach and they claimed minimal 

improvement on the classification results while at the same study they performed data 

normalization by subtracting and dividing the baseline (i.e. first normalization approach) 

and they identified significant enhancement in the classification outputs. In a different 

study performed by Setz et al. (2010), the assessment of data classification using 

normalized and non-normalized data features were presented. They noticed that using 

non-normalized features give better classification results.  

2.7.1.6 Feature Dimension Reduction  

Once several physiological channels are used to collect physiological responses from 

human body, normally, many features are extracted from them. Therefore, the size of 

feature set (dimension) grows easily and quickly where it will be challenging for the 

classifier to discover patterns and similarities in data. In another side, some extracted 

features from different physiological channels may possibly not be correlated with the 

emotion or redundant. Therefore, it is vital to find and eliminate the extracted features 

that are redundant or might not help the classifier to discriminate between the various 

emotional states. This uncorrelated features can easily lessen the performance of the 

classifiers (Kim & André, 2008). 
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 For data classification purpose, a number of feature vectors, in another word, training 

data set plays an important role in data classification. If the size of the training dataset is 

too small or the number of feature vectors in training dataset less than number of features, 

overfitting issue may happen and the classification model obtained from a small dataset 

may not work well in the classification of the new data. Thus, reducing the number of 

features before classification task is advantageous (Liu & Motoda, 2008). 

Feature dimension reduction methods can be used to identify and remove irrelevant 

and redundant attributes from data that do not contribute to the accuracy of a predictive 

model or may in fact decrease the accuracy of the model. Fewer attributes is desirable 

because it reduces the complexity of the model (Liu & Motoda, 2008). The majority of 

features dimension reduction methods that have been found in the field of 

psychophysiology are typically classified into three groups. The first group is known as 

feature ranking methods which incorporates the methods that select individual features 

while ignoring the correlation between these features. The second group includes the 

methods which project the feature space into a lower dimensional space. The methods in 

the last group select individual features while taking account the correlation between 

these features. All aforementioned groups are described in more details in the following 

sections. 

(a) Feature Ranking Methods 

In the feature ranking methods, also known as filter-based feature selection methods  

(Brown et al., 2012), the most suitable features for data classification purpose are chosen 

based on the power of each individual feature (i.e. based on a certain predefined 

threshold) in providing information for data classification (Jensen & Qiang Shen, 2009). 

In field of physiological sciences, the most frequent solution to score particular 

features have been via analyses of variance, correlations and chi-square tests which are 

statistical approaches that are able to demonstrate statistically significant differences 
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between situations (e. g. between ‘sad’ and ‘angry’ emotions) or significant connections 

between individual parameters will be utilized in data classification. Exclusively those 

features that indicate statistically significant differences will be employed in data 

classification process (Novak et al., 2012). 

For example, Wagner et al. (2005) used Analysis of variance (ANOVA) test to select 

most impactful features, in which physiological features were scored depending on their 

p-value. Broek et al. (2010) and Chanel et al., (2011) also employed ANOVA test in 

which the features with a p-value below 0.001 and below 0.1 were selected, respectively. 

Pour et al. (2010) utilized chi-square test for feature selection and they selected 10 most 

relevant features. Liu et al. (2009), Rani et al. (2007) and Bailenson et al. (2008), used 

analysis of correlations of features with self-reported psychological variables to select 

significant features, only they selected those physiological features that obtained an 

absolute correlation coefficient for a minimum of 0.3.  Torres, Orozco, & Alvarez, (2013) 

used Recursive Feature Elimination (RFE) as feature ranking method for SVM classifier 

to reduce the dimension of the feature set that allows emotion classification. The 

minimum redundancy maximum relevance algorithm was used by Clerico, Gupta, & Falk 

(2015) as feature ranking method to rank features based on their importance and select 

subset of them (based on their rank) for EEG-based emotion recognition. 

The common practice is to use only one feature ranking method but this approach may 

result in sub-optimal solution because two different feature ranking methods are likely to 

produce two different ranking sets and presenting only one set given by a particular 

method can be misleading (Kuncheva, 2007). One solution can be using more than one 

feature ranking method to increase the chance to choose the optimal feature set.  

(b) Principal component analysis and Fisher’s projection 

Principal component analysis (PCA) (Jolliffe, 1986) is also a technique for features 

dimension reduction that converts the original features into a lower space of uncorrelated 
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features which are known as principal components. Considering that the principal 

components are uncorrelated to each other, thus, PCA comes with an improvement over 

techniques from the earlier section which neglect correlations between features(J. Wang 

et al., 2014). As instances, in the psychophysiological research studies performed by 

Wagner et al. (2005), Rainville et al.(2006), G. Rigas et al.(2007), Broek et al. (2010), 

Wang, Nie, & Lu (2014) and (Guo et al., 2016) PCA technique has been employed for 

features dimension reduction.  

Despite having certain advantages, this technique has got one drawback which is that 

the principal components (i.e. new features) do not guarantee to offer superior correlation 

with emotional states of the subjects than primary features (Novak et al., 2012).  

Fisher’s projection is another feature dimension reduction technique that aims to 

address the drawback of PCA technique which is also known as a supervised replacement 

for PCA. It projects the primary data into a lower-dimensional space at which distinct 

classes (e. g. anger, fear . . .) are much easier to linearly be distinguished. 

Fisher’s projection technique is basically known as a form of linear discriminant 

analysis (LDA) (Fisher, 1936) that is utilized for features dimension reduction purpose in 

place of the classification task. Researchers such as Picard et al. (2001), Healey and  

Picard (2005), Bonarini et al. (2008),  Gu et al.  (2010), and Kukolja et al. (2014) have 

utilized this method for feature reduction. Regarding a disadvantage of Fisher’s 

projection technique, as it converts the primary features into less number of new features 

which have the functionality to identify different classes linearly, thus, it is substantially 

less recommended to be applied with nonlinear classifiers including support vector 

machines and neural networks. In addition, these methods namely, PCA and Fisher 

projection cannot preserve the original domain information such as channels and 

frequency bands that are very important for understanding the brain and physiological 

responses (Singh et al., 2013; Wei-Long Zheng & Bao-Liang Lu, 2015). 
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(c) Wrapper methods 

Wrapper methods are dependent-classifier methods which search the space of feature 

subsets, using a specific measure like the training accuracy rate of a particular classifier 

to evaluate the utility for a candidate subset. Therefore, the performances of wrapper 

methods strongly depend on the given classifier. Sequential feature selection techniques 

(Kittler, 1978) are among famous wrapper methods. Wrapper methods have been applied 

for physiological-based emotion recognition systems to improve the system’s accuracy 

and reduce its complexity.   

(1) Sequential feature selection  

Sequential feature selection techniques which are also known as stepwise techniques 

that select each feature sequentially from the feature space. This technique is different 

from PCA and Fisher’s projection techniques that linearly convert the feature space. They 

are also different than feature ranking techniques since they will not disregard relations 

between features. 

The most common sequential feature selection technique is a sequential forward 

selection (SFS) that operates as is stated in the following. At the beginning, there are no 

any features in the selection. The SFS examines every feature to decide the one that 

perfectly can distinguish between different classes in the training dataset by utilizing 

some measures like the F-value of every feature. That feature is picked and included in 

the selection. Next steps, the remaining features are examined one by one to figure out 

the one perfectly can distinguish between classes after the additions of all the formerly 

selected features that were already considered. This process goes on till there are no other 

features that may provide further information for better classification, to ensure their 

enclosure to the selection, for example, the F-value of rest of features is below specific 

rate. Many researchers including Alpers et al. (2005), Wagner et al. (2005), (Yannakakis 

& Hallam, 2008), Yannakakis & Hallam (2008), Tognetti et al. (2010), Kolodyazhniy et 
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al. 2011), Muaremi et al. (2013), and Martinez et al. (2013) have used SFS as a feature 

selection technique for their psychophysiological related studies. 

Another alternative and similar technique is sequential backward selection (SBS) 

technique. While SFS is initiated with the empty selection and puts features in a sequence, 

SFS starts having all features in the selection and eliminates features in sequence based 

on which contributes the minimum to distinguish among classes. The procedure proceeds 

until the total score value of the remaining features reaches a certain threshold value. For 

example, the F-value of remaining features exceeds a specific rate. Research works like 

Kim & André (2008),  Giakoumis et al. (2011), Kolodyazhniy et al. (2011), and  

Giakoumis et al. (2013) have used SBS as a feature selection technique for their 

psychophysiological related studies. Kim and Andre (2008) claimed that SBS outpaced 

SFS. However, they did not provide quantitative outputs for SFS. 

   It is possible to combine SFS and SBS techniques and the resulting method is known 

as sequential floating forward selection (SFFS) or sometimes sequential forward–

backward selection. In the beginning, the selection is empty then features are added in 

consequent similar to SFS technique while in each step it also evaluates if any of existing 

features in the selection can be removed similar to SBS technique. The well-known 

criteria for including and excluding a feature to selection is based on F-value thresholds 

in which the feature with higher F-value will remain in the selection while the lower one 

is removed. Some researchers have employed SFFS technique to choose the most relevant 

features in Picard et al. (2001), Wilson & Russell (2003),  Gu et al. (2010), Chanel et al. 

(2011), Singh et al. (2013), Kukolja et al. (2014) and Khezri et al. (2015). 

There will be yet another potential for the composition of different feature selection 

techniques which can be using sequential feature selection techniques along with Fisher’s 

projection where sequential technique is needed at first to select a subset of prominent 

features then apply Fisher’s projection on the obtained subset. Picard et al. (2001) and 
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Kukolja et al. (2014) experimented the combination of the two techniques and revealed 

it can do better than using each technique on their own. Wagner et al. (2005) obtained 

better results by combining both approaches though not for all the classifiers. Lastly, a 

mixture of the two techniques was employed by Gu et al. (2010) but was not compared 

with the approaches separately.  

The limitation of sequential feature selection techniques is that these methods do not 

examine all possible subsets, so no guarantee of finding the optimal subset (Jain & 

Lazzerini, 1999). In addition, the performances of wrapper methods strongly depend on 

the given classifier because the selected subset of features is used to train a specific 

classifier and evaluate that selected subset according to the performance of the classifier 

(J. Wang et al., 2014). 

 

 (2) Other wrapper techniques 

Other wrapper techniques that were employed infrequently in psychophysiology, for 

example, are: Davies–Bouldin clustering used by Leon, Clarke, Callaghan, & Sepulveda 

(2007), the Simba algorithm used by Rigas et al. (2007) and genetic algorithms used by 

Tognetti et al. (2010). Consequently, using them in psychophysiology and related fields 

needed further researches before their appropriateness to be used in physiological 

computing and particularly affective computing. 

2.7.2 Classification 

After choosing the most relevant physiological features associated with the human 

emotional state, these features are used to train the classification model. Hence, later, the 

system will be able to classify different emotional states by using the provided features. 

There are several classifiers which have been utilized by many researchers for emotion 

classification including K-Nearest Neighbour (KNN), Support Vector Machines (SVM), 

Artificial Neural Network (ANN), Naïve Bayes classifier (NB), Regression Tree, 
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Bayesian Networks, Linear Discriminant and Analysis (LDA). In this section, we focus 

on the classification algorithms in the related research works that have been conducted in 

the area of human emotional state classification using human physiological data. 

Regarding the provided related works, in most cases, the comparison between different 

classification algorithms is not feasible because of the variation in experimental setups 

among these studies and the data sets for classification accuracy evaluation.  

2.7.2.1 Classification performance evaluation  

Measuring the performance of classification is an essential phase for evaluating any 

pattern recognition system. For physiological-based emotion recognition systems, the 

testing accuracy rate is the standard measure used for the assessment of these systems.  

As can be seen from Table 2.2 to Table 2.7, all the reported studies used the testing 

classification accuracy (5th column) to evaluate the performance of their proposed 

systems. The testing accuracy rate is defined as the proportion of correctly classified 

testing instances to the total number of testing instances (He & Garcia, 2009). 

 

2.7.2.2 Nearest Neighbors  

The k-nearest neighbor (kNN) algorithm is among the least difficult classification 

algorithms. In the case of classification of an unknown feature vector, the kNN algorithm 

normally calculates the Euclidean or Mahalanobis distance to each feature vector in the 

training dataset. Through this, the training vectors are ranked based on their distance to 

the new sample, finally, majority class of the k (where k>=1) nearest training vectors 

(neighbors) is utilized to classify the new feature vector. In another word, the 

determination of assigning a class to the new sample will be based on the class which is 

most common among k nearest neighbors. It is normally advised to normalize features 

values between 0 and 1 to ensure all of the features devote similarly to the distance 

computation. This classification algorithm has been utilized in quite many research 
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studies related to psychophysiology and this may due to its simplicity. Some well-known 

studies that have utilized this algorithm in their research are shown in Table 2.2. 
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 Table 2.2: Physiological-based emotion classification studies that used k-nearest classification algorithm 

Study Classification for No of subjects/Name 

of Database 

Feature selection / 
Feature reduction 

Accuracy Rate Signal Channels 

(Picard et al. 2001). 8 Basic Emotions 1 Sequential Floating 
Forward Search & 
Fisher Projection 

65% Peripheral Signals 

(C. Lisetti, Nasoz, 
LeRouge, Ozyer, & 
Alvarez, 2003) 

5 Basic Emotions 10 Not Mentioned 70% to 90% Peripheral Signals 

(Nasoz et al., 2004) 6 Basic Emotions 29 Not Mentioned 67% to 87% 

Ave:72% 

Peripheral Signals 

(Wagner et al., 2005) 4 Basic Emotions 1 -SFS 
-Fisher 
-SFS+Fisher 

79.55% to 90.91% Peripheral Signals 

(G. Rigas et al., 2007) 3 Basic Emotions 9 Principal Component 
Analysis (PCA) 

62.5% Peripheral Signals 

(Nasoz et al., 2010) 4 Basic Emotions 34 Not Mentioned 65% Peripheral Signals 
(Kolodyazhniy et al., 
2011) 

3 Basic Emotions 34 SFS 
SBS 

79.4% Peripheral Signals 

(Shen, Wang, & 
Shen, 2009) 

High/Low Arousal-
Valence (4 cases) 

1 Not Mentioned Peripheral:60.3 

Peripheral+EEG 
signals:75.2 

Peripheral Signals 
&EEG Univ
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Study Classification for No of subjects/Name 

of Database 

Feature selection / 
Feature reduction 

Accuracy Rate Signal Channels 

(Broek et al., 2010) High/Low Arousal-
Valence (4 cases) 

21 - ANOVA 

- PCA 

61.3% Peripheral Signals 

(Bonarini et al., 2008) 5 Stress levels 6 Fisher’s projection 88.1% Peripheral Signals 
(C. Liu, Agrawal, 
Sarkar, & Chen, 
2009) 

3 Anxiety levels 15 Not Mentioned 80.4% Peripheral Signals 

(Levillain, Orero, 
Rifqi, & Bouchon-
Meunier, 2010) 

2 Amusement levels 25 Not Mentioned 77% Peripheral Signals 

(Verma & Tiwary, 
2014) 

13 Emotions 32 (DEAP Dataset) Not Mentioned 57.74% Peripheral Signals 
&EEG 

(Chen et al., 2015) 2 levels of Arousal–
Valence 

32 (DEAP Dataset) ANOVA 66.45% EEG 

(Khezri et al., 2015) 6 Basic emotions 25 SFFS 80% Peripheral Signals 
&EEG 
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2.7.2.3 Naïve Bayes classifier 

A Bayesian network is known as a probabilistic model of random parameters and their 

conditional dependencies. Nevertheless, the naïve Bayes classifier is considered as a basic 

type of Bayesian network, which considers all of that parameters are independent of 

another.  

Throughout the training process, a probability model is generated that is utilized to 

evaluate the possibility that a feature vector is a member of a particular class. Then, a 

decision rule is employed to associate a class to the feature vector based on the probability 

model. The ‘maximum posteriori’ rule is the most popular rule employed to classify a 

feature vector based on the class with the maximum posterior probability. 

Considering that naïve Bayes classifier assumes independence between features, it will 

take a smaller sized set of training data in comparison to complicated techniques. 

Consequently, this may be viewed as an advantage for this technique. On the other hand, 

in several researches related to physiological emotion recognition, more complicated 

classification Bayesian networks have been utilized, which tend not to assume that 

features are independent. Some well-known studies that have utilized Naïve Bayes 

classifier in their research related to the physiological emotion recognition are shown in 

Table 2.3. 
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Table 2.3: Physiological-based emotion classification studies that used naïve Bayes classification algorithms 

Study Classification for No of 
subjects/Name of 

Database 

Feature selection / 

Feature reduction 

Accuracy Rate Signal Channels 

(Picard et al. 2001) 8 Basic Emotions 1 Sequential 
Floating Forward 
Search & Fisher 
Projection 

81.3% Peripheral Signals  

(Zhai & Barreto, 
2006a) 

2 Stress Level 32 Not Mentioned  78.7% Peripheral Signals & Eyes 
data 

(Muller, 2006) 4 class of Arousal-
Valence 

1 (AUBT) Not Mentioned  86% Peripheral Signals  

(Calvo, Brown, & 
Scheding, 2009) 

8 Basic Emotions 3 Not Mentioned  All sessions43.6% 

One session:66.3 

Peripheral Signals  

(George Rigas, 
Goletsis, Bougia, & 
Fotiadis, 2011) 

3 class of Fatigue 
and 2 class of 
Stress Level 

1 Feature Ranking 
(based on metric 
of discrimination 
power of a 
feature) 

Fatigue (74%) 

Stress (66%) 

Peripheral Signals &Face 
video 

(P. Rani & Sarkar, 
2005) 

3 levels of 5 basic 
emotions 

15 Feature Selection 
based on high 
correlation with 
particular emotion 

74.03% Peripheral Signals  
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Study Classification for No of 
subjects/Name of 

Database 

Feature selection / 

Feature reduction 

Accuracy Rate Signal Channels 

(Kapoor et al., 2007) 2 levels of 
Frustration  

24 

 

Not Mentioned  79 % Video camera, pressure-
sensitive mouse, skin 
conductance sensor, and 
pressure sensitive chair. 

(C. Liu et al., 2009) 3 Anxiety levels 15 Not Mentioned  80.6% Peripheral Signals  
(Calvo et al., 2009) 8 Basic emotions 3 Not Mentioned  -All 

sessions:64.3% 

-One 
session:81.3% 

Peripheral Signals  

(Koelstra et al., 2012) 2 levels of 
Arousal-Valence 
and liking 

32 (DEAP) Fisher’s linear 
discriminant 

Arousal-EEG 
(62%) 
Valence-EEG 
(57.6%) 
Arousal- 
Peripheral signals 
(57%) 
Valence- 
Peripheral signals 
(62.7%) 

Peripheral Signals &EEG 
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2.7.2.4 Discriminant Analysis 

Discriminant analysis techniques proposed by Fisher (1936) (e.g. linear discriminant 

analysis (LDA) or quadratic discriminant analysis (QDA)) are prominent classification 

techniques that discover liner composition of input features that are able to differentiate 

feature vectors into two or more classes perfectly.  This input features composition is 

hyperplane in n-dimensional (i.e. n is the number of input features) area which can 

identify between feature vectors of diverse classes. This technique is primarily useful for 

two class situations. However, it may be expanded to several class scenarios. The major 

drawback of the technique is that it just permits linear or quadratic connections between 

input and outputs, Therefore when there is solid nonlinear connections exist between the 

data, using other classification techniques are preferred. Due to the fact that using 

discriminant analysis techniques is convenient and visibly reveals the involvement of 

every feature to discrimination among classes, it has become widely used classification 

technique in physiological-based emotion recognition systems. The summary of some 

well-known studies that have utilized discriminant analysis techniques in their research 

related to physiological emotion recognition is listed in Table 2.4. 

2.7.2.5 Support vector machines 

Support vector machines (SVMs) (Cortes & Vapnik, 1995) are much like discriminant 

analysis techniques which operate based on creating hyperplanes in the n-dimensional 

area to divide feature vectors to diverse classes. But different criteria are applied to 

estimate these hyperplanes of the two techniques. Even though LDA works to maximize 

a discriminative projection, SVM creates a hyperplane where in both sides the distance 

between the hyperlane and nearest feature vectors is maximized. 

Due to characteristics of traditional SVMs and discriminant analysis techniques, the 

advantages and disadvantages are usually similar where both have been conveniently 

used in identifying the contribution of each input feature. Both are also linear classifiers 

Univ
ers

ity
 of

 M
ala

ya



 

67 

 

that could be a drawback of those techniques. To be able to prevent this constraint, SVMs 

can be extended utilizing kernels. The SVMs with nonlinear characteristics have brought 

on superior performance, therefore this has resulted in their common use in physiological 

computing. Table 2.5 presents some well-known examples of studies that have utilized 

this technique. 
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Table 2.4: Physiological-based emotion classification studies that used discriminant analysis classification algorithms 

Study Classification for No of 
subjects/Name 

of Database 

Feature selection / 

Feature reduction 

Accuracy Rate Signal Channels 

(C. Lisetti et al., 
2003) 

5 Basic Emotions 10 Not Mentioned  70%-90% Peripheral Signals 

(C. L. Lisetti & 
Nasoz, 2004) 

6 Basic Emotions 29 Fisher Projection 75% Peripheral Signals 

(Christie & 
Friedman, 2004) 

7 Basic Emotions 34 Not Mentioned  37.4% Peripheral Signals 

(Wagner et al., 
2005) 

4 Basic Emotions 1 SFS 92.05%  Peripheral Signals 
&EMG 

(Rainville et al., 
2006) 

4 Basic Emotions 43 Not Mentioned  49% Peripheral Signals 

(Kreibig et al., 
2007) 

3 Basic Emotions 28 Not Mentioned  69% Peripheral Signals 

(Kolodyazhniy et 
al., 2011) 

3 Basic Emotions 34 SFS and SBS Dep:77% 

Ind:73.5% 

Peripheral Signals 
&EMG 

(Guillaume 
Chanel, Kierkels, 
Soleymani, & 
Pun, 2009) 

3 areas of Arousal-
Valence space 

10 Not Mentioned  Peripheral 
Signals:51% 

EEG:70% 

Peripheral Signals 
&EEG 

(Healey & Picard, 
2005) 

3 levels of Stress 9 Not Mentioned  97.4% Peripheral Signals 
&EMG 
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Study Classification for No of 
subjects/Name 

of Database 

Feature selection / 

Feature reduction 

Accuracy Rate Signal Channels 

(Giakoumis et al., 
2011) 

2 levels of Boredom 19 Fisher Projection Dep:94.17% 

Ind:89.4% 

Peripheral Signals 

(Setz et al., 2010) Differentiate of Stress 
from Cognitive load 

33 Wrapper approach 82.8% Peripheral Signals 

(Alpers et al., 
2005) 

Phobic & non-phobic 38 Not Mentioned  95% Peripheral Signals 

(Setz et al., 2009) 4 or 5 Basic Emotions 20 Not Mentioned  4 Emotions:58.8% 

5 Emotions:49% 

Peripheral 
Signals& 
EMG&EOG 

(James Kim & 
André, 2008) 

4 areas of Arousal-
Valence space 

3 SBS Dep:95% 

Ind:70% 

Peripheral Signals 
&EMG 

(Giakoumis et al., 
2013) 

Low/high stress levels 24 SBS 94.96% SC and ECG 

(Jang et al., 2015) 3 Basic Emotions 217 Not Mentioned 74.9% Peripheral Signals 
(Jenke et al., 
2014) 

5 Basic emotions 16 mRMR, Relief  25.0 to 47.5 EEG 
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Table 2.5: Physiological-based emotion classification studies that used support vector machine classification algorithms 

Study Classification for No of 
subjects/Name of 

Database 

Feature selection / 

Feature reduction 

Accuracy Rate 

(%) 

Signal Channels 

(K. H. Kim et al., 
2004) 

3 or 4 Basic 
emotions 

50 No 3 classes:78.4 

4 classes:61.8 

Peripheral Signals 

(Katsis, Ganiatsas, 
& Fotiadis, 2006) 

5 Basic emotions 4 Not mentioned 86 Peripheral Signals 
&EMG 

(Katsis et al., 2008) 4 Basic emotions 10 Not mentioned 79.3 Peripheral Signals 
(Calvo et al., 2009) 8 Basic emotions 3 Not mentioned 85.7 Peripheral Signals 
(Pour, Hussain, 
AlZoubi, D’Mello, 
& Calvo, 2010) 

2 Basic emotions 16 chi-square 42-84 Peripheral Signals 

(Broek et al., 2010) 4 areas of 
Arousal-Valence 
space 

21 -ANOVA+PCA 60.7 Peripheral Signals 

(G. Chanel et al., 
2011) 

3 difficulty 
levels 

20 -ANOVA+ fast 
Correlation-based 
filter(FCBF)+SFFS 

56 Peripheral Signals 
&EEG 

(George Rigas et 
al., 2011) 

2 levels of stress 
and 3 levels 
fatigue  

1 DAUC (area under 
curve) feature 
ranking 

Stress:78 

Fatigue:85 

Peripheral Signals 

(Wu et al., 2010) 3 levels of 
Arousal 

18 SFS 96.5 Peripheral Signals 
&EEG 

(Setz et al., 2010) 2 levels of stress 
or cognitive load 

33 A wrapper method 81 Electrodermal 
activity (EDA) 
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Study Classification for No of 
subjects/Name of 

Database 

Feature selection / 

Feature reduction 

Accuracy Rate 

(%) 

Signal Channels 

(Soleymani, 
Lichtenauer, et al., 
2012) 

3 levels of 
Arousal and 
Valence 

27 ANOVA Arousal-EEG 
(52.4%) 
Valence-EEG 
(57%) 
Arousal- 
Peripheral signals 
(46.2%) 
Valence- 
Peripheral signals 
(45.5%) 

Peripheral Signals 
&EEG 

(X.-W. Wang et al., 
2014) 

2 levels (Positive 
and negative 
emotions) 

6 -PCA 
-LDA 
-Correlation-based 
feature selector 
(CFS). 

91.77 EEG 

(Abadi et al., 2015) 2 levels of 
Arousal and 
Valence 

30 Fisher Arousal-MEG 
(60%) 
Valence-MEG 
(61%) 
Arousal- 
Peripheral signals 
(55%) 
Valence- 
Peripheral signals 
(60%) 

Peripheral Signals 
&MEG 
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Study Classification for No of 
subjects/Name of 

Database 

Feature selection / 

Feature reduction 

Accuracy Rate 

(%) 

Signal Channels 

(Verma & Tiwary, 
2014) 

13 emotions 32 participants 
(DEAP 
dataset) 

Not Mentioned  81.45% Peripheral Signals 
&EEG 

(Kukolja et al., 
2014) 

5 Basic emotions 14 -SFFS+Fisher 
projection 

57.61% Peripheral Signals 

(Khezri et al., 
2015) 

6 Basic emotions 25 SFFS 84.7% Peripheral Signals 
&EEG 

(Wei-Long Zheng 
& Bao-Liang Lu, 
2015) 

4  profiles of 
EEG electrodes 
sets  

15 Not Mentioned  83.99% EEG 
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2.7.2.6 Classification Trees 

In classification trees, as a result of many branching of IF–THEN logical rules, a class 

is allocated to each feature vector. Because of branching composition, they are simply 

known as trees. An illustration of one psychophysiological classification tree rule could 

possibly be ‘‘if skin conductance feedback frequency is below five per minute, the subject 

is bored”. These rules are not determined manually, there are some algorithms that can 

assist to extract the rules from training data. These particular algorithms at every fresh 

node of tree, choose the most relevant feature which will be capable of discriminating 

between classes. 

Classification trees operate in the upfront path for classification of physiological 

feature vectors. Since the trees can be visualized graphically, these classifiers help the 

users to track the decision-making process quite easily. Furthermore, the process for 

constructing the tree may possibly work as kind of features dimension reduction 

technique because several trees constructing algorithms are involved with tree pruning. 

It avoids the tree turning into overly complicated and overfitting the data. 

Table 2.6 presents some well-known studies that have utilized classification trees in 

physiological or affective computing.  

2.7.2.7 Artificial neural networks 

The artificial neural networks (ANNs) are comprised of numerous interrelated 

elements which are usually knowns as neurons that function in parallel. Every neuron 

gets a variety of inputs and makes use of those to compute the ‘activation’ of the neurons. 

The output of each neuron is next given to the subsequent layer of neurons and this 

process continues until calculating the final output. This layered network that comprises 

of weighted sums and threshold is usually named dual-layer perceptron. As long as 

sufficient layers and neurons are being employed, the dual-layer perceptrons will be able 

to model the operations with high complication. There are other forms of ANNs that 
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combine more complex components in their composition. For example, once the output 

of a single layer of neurons is considered as inputs of each previous and subsequent layers, 

the complex network is created which have been known as a feedback network.  

ANNs are trained to accomplish a specific task by employing a training data set by 

changing the weights of the connections between various neurons. ANNs could be linear 

as well as non-linear methods and suitable for modeling highly complicated connections 

between features, that will be very efficient in affective /physiological computing. 

 Probably the main drawback of ANNs is a lack of transparency. ANNs will not give 

many details about the fundamental system to the users, once the network has been 

trained, it may not be obvious to see exactly how various variables (i.e. features) produce 

a specific output. Regardless of this drawback, ANNs have been commonly utilized for 

the classification purpose based on physiological data. Table 2.7 lists the summary of 

these studies. 
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Table 2.6: Physiological-based emotion classification studies that used classification tree algorithms 

Study Classification for No of subjects/Name 
of Database 

Feature selection / 

Feature reduction 

Accuracy Rate (%) Signal Channels 

(Pramila Rani, Liu, 
Sarkar, & Vanman, 
2006) 

3 levels of 5 basic 
emotions 

15 A person-specific 
correlated features 
(Statistical method) 

83.5% Peripheral Signals  

(G. Rigas et al., 
2007) 

3 Basic emotions 9 Simba algorithm 62.4% Peripheral Signals  

(Calvo et al., 2009) 8 Basic emotions 3 Not Mentioned 89% Peripheral Signals 
(C. Liu et al., 2009) 3 Anxiety levels 15 Not Mentioned  88.5% Peripheral Signals  
(Levillain et al., 
2010) 

2 Amusement levels 25 Not Mentioned  75.9% Peripheral Signals 

(Mohammad & 
Nishida, 2010) 

2 Classes of behavior 
naturalness 

44 ANOVA 79% Peripheral Signals 

(Plarre et al., 2011) 2 Classes of stress 21 Correlation-based 
feature selection 
algorithm (CFS) 

90.2% Peripheral Signals 

(Y.-H. Lee et al., 
2014) 

3 Classes of 
meditation 
experience 

10 Not Mentioned 79% EEG 

(Chen et al., 2015) 2 levels of Arousal 
and Valence 

32 
(DEAP 

Data Set) 

ANOVA 69.09% EEG 
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Table 2.7: Physiological-based emotion classification studies that used neural network classification algorithms 

Study Classification for No of subjects/Name 
of Database 

Feature selection / 

Feature reduction 

Accuracy Rate (%) Signal Channels 

(C. L. Lisetti & 
Nasoz, 2004) 

6 Basic Emotions 29 Fisher Projection 84% Peripheral Signals 

(Wagner et al., 2005) 4 Basic Emotions 1 Hybrid SFS and 
Fisher 

88.6%  Peripheral Signals  

(Muller, 2006) 4 classes of Arousal-
Valence 

1 (AUBT) Not Mentioned  81%-86% Peripheral Signals  

(Yannakakis & 
Hallam, 2008) 

2 classes of 
entertainment 
preferences 

72 nBest, SFS 79.8% (SFS) 

70.26% (nBest) 

Peripheral Signals  

(Calvo et al., 2009) 8 Basic Emotions 3 Not Mentioned  All sessions:97.8% 

One session:97.1% 

Peripheral Signals  

(Broek et al., 2010) 4 areas of Arousal-
Valence space 

21 ANOVA+PCA 56.2% Peripheral Signals 

(Arroyo-Palacios & 
Romano, 2010) 

4 areas of Arousal-
Valence space 

59 Not Mentioned 78.4% Peripheral Signals 

(Kolodyazhniy et al., 
2011) 

3 Basic Emotions 34 SFS 
 

77.5%  Peripheral Signals  

(Singh et al., 2013) 3 Levels of stress 20 Variance filter and 
combination of 
SFS&SBS(SFFS) 

89.23% Peripheral Signals 

(Kukolja et al., 2014) 5 Basic emotions 14 SFFS 60.30% Peripheral Signals Univ
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Study Classification for No of subjects/Name 
of Database 

Feature selection / 

Feature reduction 

Accuracy Rate (%) Signal Channels 

(Verma & Tiwary, 
2014) 

13 emotions 32 participants 
(DEAP 
dataset) 

Not Mentioned  74.37% Peripheral Signals 
&EEG 

(Chen et al., 2015) 2 levels of Arousal 
and Valence 

32 participants 
(DEAP 
dataset) 

ANOVA 65% EEG 
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2.7.2.8 Ensemble Classification 

In ensemble classification, multiple classifiers’ decisions (i.e. prediction results) are 

combined, usually by using majority vote method, to obtain the final classification output 

of a given testing pattern. The majority voting is a final decision rule that selects one of 

the several choices, based on the predicted classes with the highest votes (Lam & Suen, 

1997). The ensemble method is generally more accurate compared to single classifiers 

(Novak et al., 2012). One possible interpretation of this superiority is that errors made by 

each of the classifiers are not identical and if we combine multiple classifier outputs in an 

efficient manner, we may be able to correct some of these errors (Leo Breiman, 1996). 

Figure 2.7 depicts the main concept of an ensemble classifiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: The concept of an ensemble classification (Witten, Frank, & Hall, 
2011) 

Training Set 

Classifier #1 Classifier #2 Classifier #m 

   
Output#1 Output #m Output#2 

.  .  . 

Majority-Voting  

.  .  . 

Final Output 
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Ensemble classification techniques have not been utilized widely in affective 

computing and particularly in emotion recognition. However, since in most cases 

combination of different modalities such as peripheral data, brain data (i.e. EEG) and 

even speech signals are utilized for physiological based emotion recognition systems, 

ensemble classification may be used naturally. For example, classification outputs in 

emotion recognition systems can be obtained using data from different modalities 

separately and then these outputs are combined to get final classification output. This 

technique is also known as decision level fusion technique and has been employed for 

physiological-based emotion recognition by researchers like  (Jonghwa Kim, 2007), 

Chanel et al. (2009, 2011) and Soleymani, Pantic, & Pun (2012). The fusion technique 

can also be applied on sensors level in which the classification can be trained on features 

extracted from each sensor like ECG, SC or EMG individually and then combines their 

outputs to get the final classification decision. 

Another category of ensemble methods includes both Bagging and Boosting (Rokach, 

2010). These two methods create a set of classifiers by manipulating the training data set 

in order to generate different training sets and then train the classifiers on the generated 

training sets. The final classification results will be obtained through applying majority 

voting on the results of all classifiers. The researches have been performed by (Bailenson 

et al., 2008; Colomer Granero et al., 2016; Plarre et al., 2011; G. Rigas et al., 2007; 

Takahashi, Namikawa, & Hashimoto, 2012) are examples of using such ensemble 

classification method on physiological data. Table 2.8 depicts a summary of some 

prominent studies that have utilized different ensemble techniques in their research 

related to physiological emotion recognition. Reviewing these studies show that overall, 

all ensemble classifiers outperformed the single classifiers. In addition, using feature 
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selection methods along with an ensemble classification method has a positive impact on 

the final classification accuracy (Diao, Chao, Peng, Snooke, & Shen, 2014). Diao, Chao, 

Peng, Snooke, & Shen (2014) have also proposed a method that uses feature selection 

technique to support classifier ensemble reduction (CER), by transforming ensemble 

predictions into training samples, and treating classifiers as features. The aim was to 

reduce the amount of redundancy in a reconstructed classifier ensemble, to form a much 

reduced subset of classifiers that can still deliver the same classification results. Obtaining 

a reduced amount of classifiers will prevent a portion of run-time overheads, making the 

ensemble processing a lot quicker; low memory and storage demands. Eliminating 

redundant ensemble members using feature selection may also lead to enhanced diversity 

within the group, and maximize the prediction accuracy of the ensemble. 
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Table 2.8: Summary of studies utilized different ensemble techniques for physiological emotion recognition 

Study Classification 
for 

No of 
subjects/Name 

of Database 

Feature selection / 

Feature reduction 

Accuracy Rate Signal Channels 

(Plarre et al., 
2011) 

2 Classes of 
stress 

21 Correlation-based 
feature selection 
algorithm (CFS) 

SVM: 89.17% 
J48 Decision Tree: 87.67% 
J48 with Adaboost (ensemble 
classifier):90.17% 

Peripheral Signals 

(Kuncheva, 
Christy, Pierce, & 
Mansoor, 2011) 

2 Emotions 
(positive, 
negative) 

 

1 

Not Mentioned Average Accuracies: 
ANN:61.46% 
CART:63.27% 
SVM:60.80% 
Bagging: 66.69% 
RF3:65.6% 
Adaboost:65.96% 

EEG, GSR, and 
Pulse Reader 
(kind of heart 
signal) 

                                                 

3 Random Forest (RF) is kind of ensemble classifier Univ
ers

ity
 of

 M
ala

ya



 

 

 

82 

Study Classification 
for 

No of 
subjects/Name 

of Database 

Feature selection / 

Feature reduction 

Accuracy Rate Signal Channels 

(Takahashi et al., 
2012) 

2 Emotions 
(positive, 
negative) 

13 SFS Without FS4: 

SVMs Bagging:52% 
LDAs Bagging:45% 
MNNs5 Bagging:48.5% 
Decision Tree Bagging: 57% 
 
With FS: 
SVMs Bagging: 56% 
LDAs Bagging: 57% 
MNNs Bagging:50% 
Decision Tree Bagging:52% 
 

Peripheral Signals 

                                                 

4 FS=Feature Selection 

5 Multilayer neural networks (MNNs) Univ
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Study Classification 
for 

No of 
subjects/Name 

of Database 

Feature selection / 

Feature reduction 

Accuracy Rate Signal Channels 

(AlZoubi et al., 
2014) 

Low/high 
level of 
Arousal and 
Valence  

4 feature ranking 
(Chi-square) 

SVM with FS:  
53.25% (Valence) 
50.75% (Arousal) 
Winnow ensemble algorithm 
with FS: 
71.75% (Valence) 
72.25% (Arousal) 
 

Peripheral Signals 

(Vaid et al., 2015) 4 Emotions 
happy, sad 
exciting and 
hate  

32 

DEAP 

Not Mentioned Overall for classification of 
emotions (happy, sad, exciting, 
hate): 
RF: 98.1% 
ANN: 46.3% 
KNN:69.6% 
SVM:50.5% 
 

EEG 
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Study Classification 
for 

No of 
subjects/Name 

of Database 

Feature selection / 

Feature reduction 

Accuracy Rate Signal Channels 

(Colomer 
Granero et al., 
2016) 

3 Emotions 
(positive, 
negative and 
neutral) 

47 A wrapper method Naive Bayes, Logistic 
Regression, Multilayer 
Perceptron, Support Vector 
Machines, Random Forest and 
Bagging. 
The Best obtained Average 
Accuracies: 

EEG: 79.52% (RF, Bagging) 
RSP:69.84%(RF) 
HRV:79.95% (RF, Bagging) 
GSR:77.33% (RF) 
EEG+GSR+HRV:81.90% (RF, 
Bagging) 
(GSR+HRV)+FS:87.62% (RF) 
 

Peripheral Signals 
and EEG 
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(a) Dual-Layer Ensemble Classification (Stacking Ensemble Classification) 

In fact, there are two approaches for combining classification models (i.e. results of all 

classifiers). One of them uses voting in which the class predicted by a majority of the 

models is selected, another one is stacking where the predictions by each different model 

are given as input for a meta-layer classifier whose output is the final class (Wolpert, 

1992). In another word, by using the first layer, a meta-dataset containing a tuple related 

to each feature vector in the original dataset is created. The second layer uses the predicted 

classifications by the classifiers in the first layer (meta-dataset) as the input features for 

second layer classification. The target feature remains as in the original training set. A 

test instance is first classified by each of the base (first layer) classifiers and second layer 

classifier combines the different predictions into a final one. Consequently, the meta-

classifier predictions reflect the true performance of base-layer learning algorithms 

(Džeroski & Ženko, 2004; Rokach, 2010). 

The basic difference between stacking and voting is that in voting no learning takes 

place at the meta level, as the final classification is decided by the majority of votes casted 

by the first layer’s classifiers whereas in stacking learning takes place at the meta level. 

By using a second layer classification, this method tries to induce which classifiers are 

reliable and which are not (i.e. specify which classifier should be used to obtain a 

prediction (Zenko, Todorovski, & Dzeroski, 2001)). For example, if a classifier steadily 

misclassified instances from one region because of incorrectly learning the feature space 

of that region, the Meta classifier may be able to discover this problem. Therefore, 

utilizing the learned behaviors of other classifiers, it may enhance this kind of training 

problems (Zhu, 2010).  

Figure 2.8 depicts a general schematic of stacking ensemble classification method. 
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Figure 2.8: The concept of stacking ensemble classification (Witten et al., 2011) 

 

 It is claimed that stacking method is particularly more perfect for combining various 

types of classification models. The limitation of majority voting methods is that they are 

only able to capture linear relationships. While in stacking methods, the idea is that the 

meta-dataset provided to the Meta-learning algorithm (second layer classification) adjusts 

the errors in such a way that the classification of the combined model is optimized (Opitz 

& Maclin, 1999; Zhu, 2010). 

To the best knowledge of author, the stacking technique of combination results of 

classifiers in physiological-based emotion recognition is a relatively new and untried area. 

Table 2.9 shows a summary of some research studies that used stacking ensemble 

classification in other domains. The obtained results in the reviewed studies show that 

ensemble method can improve classification performance as compared to a single 

classifier. In addition, among ensemble methods stacking in some studies received better 

performance compared to other ensemble methods. However, the results it highly 

depends on the characteristics of the data used. It seems that feature selection methods 

have not been used widely in the reviewed studies related to the application of stacking 
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ensemble method, one possible idea can be the number of features used in these studies 

were limited where feature selection won’t bring much improvement to the results of 

ensemble method.  

In the case of having high dimensional data, like physiological data, the using of 

multiple feature selection methods will increase the diversity but within certain boundary 

allowed by feature sets found by these methods. In this case, the diversity created here is 

directed and more meaningful as the features found are more relevant, even if they are 

not similar among different methods, compared to the ones (i.e. feature subsets) created 

by methods like random subspace ensemble method (Leo Breiman, 2001; Rokach, 2010). 

This will be significant since the performance of the ensemble systems depend on the 

quality (accuracy and diversity) achieved by the individual components which will 

increase disagreement among these components that eventually enhance classification 

performance of ensemble system (Oliveira, Morita, & Sabourin, 2006; Optiz, 1999; 

Santana & Canuto, 2014). 

In ensemble systems, in the case of having high dimensional data, choosing the proper 

feature selection methods is crucial. The wrapper category of feature selection methods, 

as we mentioned earlier (Section 2.7.1.6), have the main limitation of being time-

consuming and highly depend on the classifier used. It is stated that the feature selection 

methods used in feature-based ensemble structure should be fast, simple, and robust. 

Hence, the filter-based category of feature selection methods such as feature ranking 

methods (explained in Section 2.7.1.6) tends to be a remarkable (and efficient) preference 

for selecting features in ensembles where the computational cost is of a great importance 

(Santana & Canuto, 2014). 
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Table 2.9: Summary of some research studies that employed stacking ensemble 
classification in other domains 

Author/ye
ar 

Domain Classificatio
n for 

Feature 
selection 
method  

Technique used & Results 

(G. Wang, 
Hao, Ma, 
& Jiang, 
2011) 

Credit 
Scoring 

 2 Classes 
(Risk and 
Non-Risk) -
(3 credit data 
sets) 

Not 
Mentioned 

Single classifiers: 
SVM (76.53%), ANN (75.28%), 
Decision Tree (DT) (78.11%), Logistic 
Regression Analysis (LRA) (78.26%) 
Ensemble methods: 
Boosting (DT):79.5%, Bagging 
(DT):80.76%, Stacking :80.38% 

(Syarif et 
al., 2012) 

Network 
Intrusion 
Detection 

4 categories 
of intrusion 
(NSL-KDD 
intrusion 
data set) 

Not 
Mentioned 

Single classifiers: 
NB: 55.77% 
J48 (decision tree): 63.97% 
JRip (rule induction): 63.69 
iBK (nearest neighbour):62.84% 
Ensemble methods: 
Bagging (64.51%), Boosting (37.60%)   
and Stacking (67.9%) 

(Chanamar
n, Tamee, 
& 
Sittidech, 
2016) 

Academic 
Achievement 
Prediction 

2 Classes of 
graduate or 
Not graduate 

Not 
Mentioned 

Single classifiers: 
SVM (86.86%), ANN (81.02%), 
Decision tree (86.57%) 
Ensemble classifier: 
Stacking:87.1% 

(Hussain 
et al., 
2015) 

Software 
Fault 
Prediction 

Fault 
proneness 
classes (12 
data sets) 

Not 
Mentioned 

Single Classifiers: NB, Logistic, J48, 
Votedperceptron and SMO 
Ensemble methods: Voting, Stacking, 
and Adaboost 
Results: Ensemble methods performed 
better than single classifiers, and 
among ensemble methods Stacking 
outperformed other selected ensemble 
methods. 

(Cárdenas-
Gallo et 
al., 2017) 

Predict 
geometry 
degradation 

3 different 
Geometric 
defect types 

Not 
Mentioned 

Single classifiers: 
Binary Logistic 
Regression(BLR):78.01% 
SVM:76.52% 
Ensemble classifiers: 
BLR Stacking: 78.88% 
SVM Stacking: 78.69% 
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This research work is also proposing an efficient combination of base and Meta level 

classifiers using a combination of feature selection methods for an emotion prediction 

from physiological data.   

 
2.7.3 Discussion on classification techniques  

As we described in previous sections, there are various classification algorithms which 

are commonly used in physiological-based emotion recognition systems. The task of 

choosing the most suitable classifier based on existing studies is difficult. Various results 

that have been obtained in different studies seemed to be confusing. For example, Nasoz 

et al. (2004) and Nasoz et al. (2010) showed that ANNs’ performance is better than kNN 

while in a different study, van den Broek et al. (2010) claimed opposite results. Or in 

another research study, Zhai and Barreto (2006) found that SVMs performed much better 

than the naïve Bayes classifier although Müller (2006) claimed the two classifiers 

obtained quite the same accuracy rate. The mixed results obtained in the previously cited 

studies may be due mainly to the use of different physiological data sets which can be 

different because of a lot of reasons including emotion stimuli, subject physical exertion, 

environment temperature range and inter-subject variations in physiology (Novak et al., 

2012).    

In addition, comparing classification accuracies using the same physiological data set 

can be valid only if the comparison used the same experimental setups which include for 

example applying the same cross-validation 6technique for estimating the classification 

accuracy rate and the same feature selection methods for feature reduction. 

                                                 

6 Please refer to section 3.8.2.1 for more details. 
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It was also found that in most of the studies, application of the feature selection method 

with a single classifier shows that this combination has a positive influence on the 

performance of emotion recognition system compared to using a classifier without a 

feature selection technique. For selecting a suitable classifier, another potential solution 

is employing ensemble classification strategies which are still underutilized in developing 

emotion recognition systems despite having encouraging results in other fields. 

In addition, for high dimensional data, like physiological data, the use of multiple 

feature selection methods in an ensemble classification system can enhance classification 

accuracy performance of ensemble system (Oliveira et al., 2006; Santana & Canuto, 

2014). By using several feature selection methods, the diversity of the ensemble method 

will increase through the generation of different but relevant feature subsets. The diversity 

created in this case is not as the same as in the case of random subspace where the feature 

sets are randomly selected. It is rather the result of the selection of different but relevant 

feature sets.  Compared to other feature selection method, filter-based feature selection 

methods are known to be simple and fast especially in high dimensional data problems 

where the computational cost is very important. (Santana & Canuto, 2014). 

 However, the feature-based ensemble classification strategy has not been thoroughly 

tested in physiological-based emotion recognition systems.  

2.8 Concluding Marks 

After discussing and reviewing several topics related to physiological-based emotion 

recognition systems in this chapter, we would like to highlight some important concluding 

remarks in the following points:  

1- The main data modalities which have been used in physiological-based 

emotion recognition systems are: (1) peripheral physiological data mainly 
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includes ECG, EMG, SC, ST and RSP and (2) EEG physiological data (brain 

data). 

2- Different feature dimension reduction techniques have been used in 

physiological-based emotion recognition systems. Commonly used methods 

are Wrapper methods which include SFS, SBS, SFFS. These methods, 

however, are time-consuming and overly specific to the classifier used. 

Another category includes PCA and Fisher’s projection technique. The main 

limitations of these techniques are: they do not guarantee to offer superior 

correlation with emotional states of the subjects than primary features and (2) 

the new features do not have the physical meaning which results in a lack of 

the system’s interpretation. Feature ranking techniques are fast but the use of 

only one feature ranking method, as it is commonly used, may result in a sub-

optimal solution. One solution can be using more than one feature ranking 

method to increase the chance to choose the optimal feature set (Kuncheva, 

2007). 

3- Conventional comparisons of classification accuracies between existing studies 

is difficult because physiological data may be influenced by a lot of issues 

including emotion stimuli, subject physical exertion, etc. In addition, 

comparing classification accuracies using the same physiological data set can 

be valid only if the comparison used the same experimental setups which 

include for example applying the same cross-validation technique for 

estimating the classification accuracy rate and the same feature selection 

methods for feature reduction.   
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4- According to the review provided in previous sections, it is advisable to the 

researchers to apply a variety of classifiers along with feature reduction 

techniques to decide the one is the best suited solution for their data and 

condition (Novak et al., 2012). 

5- The literature review showed that LDA, CART, ANN, SVM are widely used 

to develop physiological-based emotion recognition systems.  

6- Ensemble classification strategies have been underutilized in physiological-

based emotion recognition systems despite having encouraging results in other 

fields. The main advantage of these techniques is their ability to achieve better 

results than benchmark single classifiers. The main idea is that the errors made 

by each of the classifiers are not identical and combining several classifier 

outputs in an efficient manner may correct some of these errors (Leo Breiman, 

1996).  

7- Utilizing feature selection methods for ensembles has demonstrated to be a 

helpful strategy for ensemble methods development because of its ability to 

provide more robust and diverse feature subsets that make the classifiers of the 

ensemble disagree on challenging instances in which eventually increases 

classification accuracy of ensemble method (Oliveira et al., 2006; Santana & 

Canuto, 2014). 

8- In physiological-based emotion recognition systems where a high dimensional 

data set is usually involved, filter-based feature selection methods are preferred 

because of being simple and fast (Santana & Canuto, 2014). 
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CHAPTER 3: THE PROPOSED CLASSIFICATION METHOD 

This chapter describes the proposed classification method used to recognize human 

emotional states based on physiological signals. The chapter includes three main sections.  

The first section summarizes the findings of the literature review related to the limitations 

of existing methods that used to design the physiological-based emotion recognition 

systems. Then, section 3.2 explains the main steps involved in the design & development 

of the proposed physiological-based emotion recognition systems. These steps are 

described in section 3.3 to 3.6 and include data set selection and preparation, designing 

benchmark emotion recognition system using single classifiers, designing feature-based 

multi-classifier methods, which involve the use of multiple classifiers created by feature 

selection methods, and the proposed feature-based dual-layer ensemble classification 

methods, which involve the use of multiple classifiers created by feature selection 

methods embedded in dual-layer classification structure. The last section (3.7) of this 

chapter explains the evaluation activity adopted for this research which details in 

section 3.8 the experimental setups applied during the experiments and finally by 

describing experiment 1, 2 and 3 in sections 3.9, 3.10  and 3.11, respectively. 

3.1 The main finding of literature review 

As we discussed in conclusion section of chapter 2, the existing emotional state 

recognition systems based on physiological data have some limitations which affect their 

classification accuracy. The main limitations can be generally attributed to the feature 

selection method used for feature reduction and the classification algorithm applied in the 

recognition process. In the feature selection step, several studies have applied wrapper 

methods which are time-consuming especially for high dimensional data set and overly 
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specific to the classifier used. In addition, PCA and Fisher’s projection methods, which 

are widely used to reduce the feature dimension, are lacking the interpretability as the 

new features produced by these methods do not have any physical meaning which 

prevents performing some analysis like identifying the most important features related to 

specific emotion. Feature ranking methods are fast but the common practice is to select 

one feature ranking method to rank the features according to their relevance to the 

emotion states. In fact, using only one method may result in sub-optimal solution because 

two different feature ranking methods are likely to produce two different ranking sets and 

presenting only one set given by a particular method can be misleading (Kuncheva, 2007). 

For classification methods, the common approach is to use one of the single classifiers 

but as it can be seen from the literature review, ensemble methods which are known for 

their classification ability have not been fully investigated in physiological-based emotion 

recognition systems probably because most of the ensemble methods, except for standard 

ones like Bagging and Adaboost, are not available in the software packages used by 

researchers.  

To address the above-mentioned issues in the existing physiological-based emotion 

recognition systems, a feature-based dual-layer ensemble classification method was 

proposed. This method is designed based on stacking ensemble strategy where the first 

layer, which is also called base-layer, is where the classifiers are created from features 

generated by different feature ranking methods. These methods are known for being fast 

and do not suffer from some limitations such as classifier-dependency like in the case of 

wrapper methods or the lack for interpretability like in the case of feature projection 

methods (Saeys, Abeel, & Van de Peer, 2008; Santana & Canuto, 2014). In the second 

layer, the outputs of the first layer become the training data of the second layer, which is 
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also known as the meta-layer, are used to build the final classification model. Using 

several feature ranking methods together will prevent generating a sub-optimal subset of 

features. Furthermore, using multiple feature ranking methods will provide more accurate 

and diverse feature subsets in the ensemble classification method. This is important 

because the performance of the ensemble systems depend on accuracy and diversity 

achieved by the individual components of ensemble that will rise disagreement among 

these components on challenging instances which ultimately will increase the 

classification accuracy of the ensemble method (Guan, Yuan, Lee, Najeebullah, & Rasel, 

2014; Santana & Canuto, 2014). As to the accuracy of the proposed method, the 

assumption is that proposed method will increase the classification accuracy rates because 

the features of the second layer, which are the outputs of the first layer (0 or 1), are 

relatively similar which makes the task of approximating the relation between the features 

and their respective classes easier for the classifier comparing to the features of the first 

layer. Our proposed classification method is described in more details in section 3.6. 

3.2 Steps involved in the design and development of a physiological-based 

emotion recognition system 

 Design & Development of the physiological-based emotion recognition system is the 

third activity of research methodology presented in section 1.8. This activity, as 

summarized in Figure 3.1, involves four main steps and they are described in sections 3.3 

to 3.6, namely, data base selection and preparation for producing data sets containing 

physiological data features, then designing the emotion recognition system using 

benchmark classifiers that produce a complete benchmark system of emotion recognition. 

This is followed with the designing of feature-based multi-classifier methods which 

produce an emotion recognition system augmented with feature selection ability. The last 
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step is designing of the proposed classification algorithm (feature-based dual-layer 

ensemble classifier) which produces an emotion recognition system augmented with the 

proposed feature-based dual-layer ensemble classification method. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The steps followed to design and develop the proposed feature-based 
dual-layer ensemble classification method 

 

 

Design & 

Development 

 Data set Selection & Preparation  
                      (Section 3.3) 
 Feature extraction 
 Create nine sub datasets out of 

original dataset  
 

 Design emotion recognition system 
using benchmark classifiers  
               (Sections 3.4) 

 ANN, LDA, CART, SVM 
 

 Design feature-based multi- 
classifier methods (Using 10 
feature selection methods) 
          (Sections 3.5) 

 Design the proposed 
Feature-based Dual-Layer 
Ensemble Classification 
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3.3 Data set selection and preparation 

Accumulating reliable physiological data signals as a data set is among the 

early and vital steps for the development of emotion recognition systems (Novak et al., 

2011). In this research, the preference is on the usage of a comprehensive and standard 

data set that has been recorded in a proper manner and it was also used by other 

researchers to test their proposed emotion recognition systems. The detail information of 

this data set is explained in the next section. 

3.3.1 General description 

The DEAP physiological data set (Koelstra et al., 2012) which is a multimodal 

publicly available data set for analysis of human emotional state was used in this research. 

This data set was selected because of the following reasons: (1) it's publicly available, (2) 

it comprises of peripheral physiological data as well as brain physiological data, (3) it has 

enough number of participants for emotion recording and (4) highly cited by other 

researchers. This dataset consisted of electroencephalogram (EEG) and peripheral 

physiological signals which include electro-cardiogram (ECG), electro-myogram (EMG), 

electroocologram (EOG), blood volume pulse (BVP), respiration amplitude (RSP), skin 

temperature and galvanic skin response (GSR) of 32 subjects while watching 40, one 

minutes long music videos. A total of 1280 recorded signal was collected and each subject 

rated each video in terms of the levels of arousal, valence, like/dislike, dominance using 

a 9-point Likert scale. Self-assessment manikins (SAM) (Bradley & Lang, 1994) were 

utilized to visualize the scales. For liking scale, thumbs up/down were used (see 

Figure 3.2).  
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Figure 3.2: The SAM used to rank the emotion dimension of valence (top), 
arousal (second) and dominance (third) of subjects. Thumbs up/down (last) to 

scale liking (Koelstra et al., 2012) 

The stimuli for making this dataset were selected to induce emotions in the four 

quadrants of the valence-arousal space. The subject emotions are classified based on Low-

Arousal Low-Valence (LALV), Low-Arousal-High-Valence (LAHV), High Arousal-

Low-Valence (HALV), and High-Arousal-High-Valence (HAHV). The rating value five 

and more is considered as high and less than five is low. A total of nine datasets has been 

created using Peripheral, EEG, and the combination of Peripheral and EEG data and used 

for binary classification tasks for arousal, valence, and liking based on “High” and “Low” 

ranking. Figure 3.3 shows the distribution of DEAP recorded signals for subject 1 in the 

Arousal-Valence space. Regarding scatter plot of Arousal-Valence space, the 40 selected 

music videos were quite successful to stimulate different emotions for subject1. 

Unhappy/Sad 
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Submissive 
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Happy/Joyful 
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Figure 3.3: Distribution of emotion ranking for 40 videos by subject1 based on 
two-dimensional (valence–arousal) emotion model 

 

In this research, we utilized the “Pre-processed version” of the data provided in 

MATLAB format for data analysis and feature extraction. The data set belongs to each 

subject was stored in a 3d array of size 40 (videos)×40(32 EEG channels and 8 peripheral 

physiological sensors) × 8046(63second long, sample rate 128Hz). In addition, we apply 

some pre-processing steps such as lowpass, highpass filtering and normalization on each 

signal and finally, the features such as mean, median, SD, maxima, minima and etc. can 

be calculated for each physiological signal. 

3.3.2 Features extracted from physiological Signals  

In a physiological-based emotion recognition system, signal processing techniques are 

commonly utilized to extract relevant features from physiological data signals. In this 
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study, we used two commonly types of features, namely, peripheral and EEG features. 

These two types of features were proposed by the creator of DEAP dataset (Koelstra et 

al., 2012) and the code used to extract them from the provided data signals was written in 

MATLAB. Some samples of code which used for feature extraction are provided in 

Appendix A (Figure A. 1 and Figure A. 2). In addition, the extracted features were 

normalized by converting the values of features to range between 0 to 1, by subtracting 

each feature’s value from the mean value of all feature vectors and dividing the result by 

the standard deviation of all feature vectors. This process will help to decrease inter-

subject variability by adjusting every subject’s features values to a difference between 

their max and minimal rates. 

3.3.2.1 Peripheral features 

Peripheral features include the following set of features. 

(a)  Electrocardiogram (ECG) 

The ECG signal commonly can be recorded from the left and right wrists or from other 

areas like the chest. The ECG signal measures the activity of heart contractions or beats. 

The measurement of heart rate (HR) or the speed at which the heart is beating is usually 

expressed in beats-per-minute (bpm) which is normally between 60-100 beats per minute. 

ECG features extracted in this study are: Average and standard deviation of Herat 

Rate(HR), Energy Ratio between frequency bands [0.04-0.15] Hz, spectral power in the 

bands[0.1-0.2] Hz,[0.2-0.3]Hz,[0.3-0.4]Hz (Koelstra et al.,2012). 

(b)  Electromyogram (EMG) 

The EMG signal is used to measure the frequency of muscle tension and contraction. 

The most common muscles that are involved in physiological emotion recognition 
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research belong to the human head and the facial part which are the masseter (the muscle 

above the jaw), the Trapezius (neck), the corrugator (the muscle above the eyebrow) and 

the zygomatic (cheek). As an example, the activity of Zygomaticus is monitored since 

this muscle is triggered when the person smiles or laughs. Most of the power in the 

spectrum of an EMG during muscle contraction is in the frequency range between 4 and 

40Hz (koelstra et al., 2012). 

EMG features extracted in this are: Average and variance of the signal, Median, 

Interquartile range, the energy of the signal (koelstra et al., 2012). 

(c) Electrooculography (EOG) 

This signal is used to measure rate of eye blinking which is related to anxiety in 

emotion recognition system. Eye blinking easily can be identified by peaks in the signal. 

The EOG features used in this study are: Average and variance of the signal, Median, 

Interquartile range, the energy of the signal (koelstra et al., 2012). 

(d) Skin Conductivity (SC) or Galvanic Skin Response (GSR) 

Skin Conductance is also known as Galvanic Skin Response (GSR). SC is a measure 

of the skin resistance (conductance) of a small electrical current. It is measured by placing 

two electrodes normally at the tips of index and middle fingers of the hand. SC also can 

be measured from palm, forearm and the soles of the feet. As soon as a person feels stress 

and nervous tension, the surface of the skin including the palms becomes moist. This 

cause increase in skin conductivity (decrease in skin resistance), and the skin can then be 

seen as a variable resistor.  

The SC features used in this study are: Average of signal, Median of signal, Average 

of derivative, Average of derivative for negative values, Average rising time of the signal, 
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Proportion of negative derivatives values, Number of local minima, zero crossing rate of 

Skin conductance slow response (SCSR in [0,2.4]Hz), zero crossing rate of Skin 

conductance very slow response (SCVSR in [0,0.2]Hz,10 spectral power in band [0-

2.4]Hz, Mean of peaks magnitude for SCSR and SCVSR (koelstra et al., 2012). 

(e)  Respiration (RSP) 

Respiration measures how fast and deep a person is breathing as he or she breathe in 

and breathe out air in their lungs. The rate and depth of this activity can be measured with 

a chest band sensor around the chest. The respiratory rate can be measured based on a 

number of breaths per minute (Lorig et al., 2007).  

The RSP features used in this study are: Average and standard deviation of signal, 

Average of derivative, Band energy ratio, Total power of the signal, Average distance 

between local minima, range of greatest breath, breathing rate, breathing rhythm,10 

spectral power values in [0-2.4] Hz bands, Average and Median peak to peak time 

(koelstra et al., 2012). 

(f) Skin temperature (ST) 

It is a valuable physiological signal which is easy to measure using the skin 

temperature sensor (SKT). The temperature change can reveal differences in mood and 

emotions. The body temperature is measured by fixing the sensor on the fingers to detect 

the temperature signal and its change. The sensor can also be used to detect the excitement 

level of a person (Khalili & Moradi, 2008).  

The ST features used in this study are: Average, Average of derivative, Median, 

Interquartile range, spectral power values in the bands [0-0.1] Hz and [0.1-0.2]Hz 

(koelstra et al., 2012). 
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3.3.2.2 Electroencephalogram (EEG) features 

The EEG signal is measured by placing electrodes on the scalp (head surface) 

according to the 10-20 international system. It measures the electrical activity of the 

neurons of the brain in the form of oscillatory activity. The EEG has a high temporal 

resolution in milliseconds since it can measure brain electrical activity directly from the 

scalp (Andreassi, 2007; Lorig et al., 2007).  

EEG features extracted in this study are: Theta, slow alpha, alpha, beta and gamma 

Spectral power for each electrode, the spectral power asymmetry between 14 pairs of 

electrodes in the four bands of alpha, beta, theta and gamma (koelstra et al., 2012). 

Table 3.1 depicts a list of 216 features extracted from EEG signal and 78 extracted 

features for peripheral physiological signals including GSR, ECG, ST, EMG and EOG. 
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Table 3.1: Features extracted from EEG and peripheral physiological signals 

Signal #Channels Extracted Features #Extracted features 

GSR 1 

Average of signal, Median of signal, Average of derivative, Average of derivative 

for negative values, Average rising time of the signal, Proportion of negative 

derivatives values, Number of local minima, zero crossing rate of Skin conductance 

slow response (SCSR in [0,2.4] Hz), zero crossing rate of Skin conductance very slow 

response (SCVSR in [0,0.2] Hz,10 spectral power in band [0-2.4]Hz, Mean of peaks 

magnitude for SCSR and SCVSR  

 

21 

ECG 1 

Average and standard deviation of Herat Rate(HR), Energy Ratio between 

frequency bands [0.04-0.15] Hz, spectral power in the bands[0.1-0.2]Hz,[0.2-

0.3]Hz,[0.3-0.4]Hz 

6 
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Signal #Channels Extracted Features #Extracted features 

RSP 1 

Average and standard deviation of signal, Average of derivative, Band energy ratio, 

Total power of the signal, Average distance between local minima, range of greatest 

breath, breathing rate, breathing rhythm,10 spectral power values in [0-2.4] Hz bands, 

Average and Median peak to peak time 

21 

ST 1 
Average, Average of derivative, Median, Interquartile range, spectral power values 

in the bands [0-0.1]Hz and  [0.1-0.2]Hz 
6 

EMG and EOG 4 Average and variance of signal, Median, Interquartile range, energy of the signal 24 (6×4) 

EEG 32 

Theta, slow alpha, alpha, beta and gamma Spectral power for each electrode, The 

spectral power asymmetry between 14 pairs of electrodes in the four bands of alpha, 

beta, theta, and gamma. 

216 (32×5+14×4) 
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3.4 Design emotion recognition system using benchmark classifiers 

After physiological data features extracted as explained in section 3.3.2, then, we 

design our benchmark emotion recognition system. In designing this system four different 

single type classifiers are used. Thus, this section briefly presents the single classifiers 

that were utilized in this research as the benchmark classifiers. These methods will also 

be utilized for designing the feature-based multi-classifier methods as well as the 

proposed feature-based dual-layer ensemble classification methods. More details 

regarding each single classifier can be found in chapter 2.  

3.4.1  LDA 

Linear Discriminant Analysis (LDA) is a well-known classification method originally 

developed in 1936 by R. A. Fisher (1936) and has been used effectively in a wide variety 

of problems.  

The main objective of LDA is to separate data samples to distinct groups which are 

called classes. LDA transforms the data to a different space, normally with lower 

dimension, which maximizes the between-class separability while minimising their 

within-class variability. (McLachlan, 2004). 

LDA is commonly used in machine learning problems like pattern recognition, face 

recognition, feature extraction and data dimensionality reduction. It is a simple and 

mathematically robust method where usually generates models whose accuracy is similar 

to complicated methods (Miguel & Guerreiro, 2008). 

3.4.2 CART 

Classification and Regression Trees (CART) developed by Breiman, Freidman, 

Olshen, Stone (1984) is a classification method which uses past data to build decision tree 
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classification model and then use it to classify new data sample. CART algorithm will 

search for all possible features and all possible values in the data set to discover the best 

split question which later is named as splitting rule that splits the data into two parts with 

maximum homogeneity. This process is then repeated for each of the resulting data 

segments (Timofeev, 2004). 

CART is a powerful and frequently-used classification algorithm, which can deal with 

incomplete data, multiple types of features (floats, unnumerated sets) for both input 

features, and predicted features, and the trees it produces often contain rules which are 

easily readable (Lewis et al., 2000). 

3.4.3 ANN  

Artificial neural networks (Kohonen, 1982) or neural networks are usually considered 

as a simulation of the information-processing in the nervous system. Early work in this 

field was inspired by studying systems of neurons and learning rules derived from 

biological models (Depenau, 1995).  

There are different kinds of neural networks, but the commonly used neural network 

for classification is a feed-forward network with a simple perceptron and its extension the 

multi-layer perceptron. ANNs have been extensively used to model classification and 

regression problems in different fields. The input layer represents the features while the 

output layer is usually used for the classes. The hidden layer is used to approximate the 

input-output relation. In our study, we used Multilayer Perceptron, a frequently -used 

ANN model (Depenau, 1995). A classic multi-layer feed-forward network is shown in 

Figure 3.4. 
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Figure 3.4: A graphical representation of a typical feedforward neural network 

3.4.4 SVM 

A support vector machine (SVM) is a powerful machine learning algorithm originated 

from statistical learning theory and first introduced by Vapnik (1998). It has been used 

successfully in a wide variety of problems. SVM map the input space into a very high 

dimensional feature space and then tries to find a linear separation between classes in the 

transformed version of the feature space (Webb, 2002). SVMs detect those samples of 

each class that determines the boundary of classes in the feature space. These samples are 

considered to be the most informative samples and are called support vectors. 

SVM can employ a small training set for creating generalizable nonlinear classifiers 

which are main advantages of this classifier in high-dimensional feature space. In the case 

of having large training sets, SVM chooses a small set of support vectors that are required 

for designing the classifier. It can significantly decrease the computational cost of testing 

(A. K. Jain, Murty, & Flynn, 1999). Therefore, this method is popular because of its high 

level of generalizability and its capability to handle high dimensional input data relative 

to neural networks and decision trees (Theodoridis & Koutroumbas, 2006). 
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Because of above mentioned advantages of SVM, it is one of most popular 

classification technique in affective computing. SVM classifiers propose competitive 

performance results for emotion recognition compared to other classification techniques.  

3.5 Design the Feature-based Multi-Classifier methods  

It is useful to investigate the effect of using different feature selection techniques on 

the classification accuracy of the emotion recognition system, in which their results will 

be also used for comparison purpose in Chapter 4.  The feature-based multi-classifier 

methods are a set of classifiers created by training sets whose features are selected using 

10 different feature selection methods and whose decisions are taking by a majority vote 

method. Figure 3.5 displays the way in which this method is working. First, one of 10 

feature selection methods, which is feature selection1 for example, is applied to the 

original training data to rank the features from 1 to n where n is the number of features in 

the original training data set. The number of features n is divided by 9 to produce 9 feature 

subsets of equal number. This number is selected based on the total number of features. 

It could be another number but it should be moderate and around 10, which is good 

enough to prevent excessive computational cost, however still sufficiently good to 

produce all the possible essential features subsets. 

For example, the peripheral physiological data set has 78 input features; which means 

we can get 9 parts with 8 features for each. The first training data is created by taking the 

top 8×1 or 8 features only while the second training data set is obtained by choosing the 

top 8×2 or 16 features and so on until the last, or the 9th training data set that includes the 

top 8×9 or 72 features. Each of the nine training sets is used to train one classifier 

algorithm, for example, we used ANN to create ANN1 using training data1, ANN2 using 

training data2 and so on until ANN9 using training data 9. The next step that follows 
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creating 9 ANN classifiers is to use them to produce their testing classification outputs 

which are used to get the final output using majority vote method7. To create another 

feature-based multi-classifier using the same ANN classifier, another feature selection 

method, for example, feature selection method2, is used. In this way, we can create 10 

feature-based ANN classifiers using 10 different feature selection methods. The same 

thing is followed for the other 3 classifiers, namely, LDA, CART, and SVM.  

 

 

 

 

 

 

 

 

 

 

          Figure 3.5: The method for creating feature-based multi-classifier method 

                                                 

7 majority vote method is explained in section 3.5.2 
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3.5.1 Feature selection methods 

The 10 selected feature selection methods, which fall under the feature ranking 

category of feature selection methods (Section 2.7.1.6), are among the most commonly 

used methods in the literature. In, (Brown et al., 2012), the authors conducted a 

comprehensive study about their performances and characteristics. The objective of using 

different feature selection methods to create different training sets is to increase the 

diversity among the classifiers, which is a key feature in improving the performance of 

multi-classifiers systems. In addition, two different feature selection methods may give 

two different feature sets. Thus, presenting only one feature set can be misleading and 

may produce suboptimal results (Kuncheva, 2007). The 10 feature selection methods used 

in this study are briefly explained in the following subsection. 

(a) T-test  

The t-test is a filter-based feature ranking approach which is traditionally used to 

compare two normally distributed samples or populations. T-test (Student, 1908) method 

defines the score of an attribute as the ratio of the difference between its mean values for 

each of the two classes and the standard deviation, the latter considers the standard 

deviation values of the feature for every class and the cardinality of each. Finally, the 

weight of each feature is thus given by its computed absolute score (I.-H. Lee, 

Lushington, & Visvanathan, 2011).  

(b)  Fisher score 

Fisher score is one of the most widely used supervised feature selection methods (i.e. 

the training data are labeled and determines feature relevance by evaluating feature’s 

correlation with the class). The output of this algorithm is a list of ranked features based 
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on their computed feature weight/score under the Fisher criterion. Specified class labels 

y = {y1,…, yn}, Fisher Score (Duda, Hart, & Stork, 2001)selects features that assign 

similar values to the samples from the same class and assign different values to samples 

from different classes. The evaluation criterion used in Fisher Score can be formulated as 

below: 

SCF(f𝑖) =
∑ 𝑛𝑗(𝜇𝑖,𝑗 − 𝜇𝑖)2𝑐

𝑗=1

∑ 𝑛𝑗𝜎𝑖,𝑗
2𝑐

𝑗=1

 (3.1) 

         

where 𝜇𝑖 is the mean of the feature 𝑓𝑖, 𝑛𝑗  is the number of samples in the jth class, and 

 𝜇𝑖,𝑗 and 𝜎𝑖,𝑗 are the mean and the variance of 𝑓𝑖 on class j, respectively.  

Fisher Score is very effective feature selection algorithm, which has been widely 

utilized in many real applications (Zhao et al., 2010). 

(c)  Relief  

It was introduced by Kira & Rendell (1992). This method is feature grading algorithm. 

The objective of this method is a quality estimation of features to differentiate samples 

that are near to each other in a dataset.  

Original Relief only can handle boolean concept problems, but extensions have been 

developed to work in classification problems and in regression.  

(d)  Mutual Information Maximisation (MIM) 

This method was proposed in (Lewis, 1992). It gives a score for each feature 

independently of others and finally, based on their mutual information, ranks the features. 

This method is commonly used in the literature to rank the features. Top features are 

usually selected for analysis or used as an input for the next algorithm (G. Brown et al., 
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2012).    

(e) Conditional Mutual Info Maximisation (CMIM) 

This method searches for the most discriminative features by finding the optimal trade-

off between relevancy and redundancy in the features (Fleuret, 2004). In this case, the 

feature is selected if it only maximizes the mutual information of the features while adds 

additional information to the already selected feature set.  

(f) Joint Mutual Information (JMI) 

This method was proposed by (Yang & Moody, 1999) to reduce the redundancy by 

increase the complimentary information between features (G. Brown et al., 2012). 

(g)  Double Input Symmetrical Relevance (DISR) 

To reduce the redundancy, (Meyer & Bontempi, 2006)  used symmetric relevance 

criterion which promotes the concept of complementary information between the 

features. This criterion measures the symmetrical relevance on all combination of two 

features (Meyer & Bontempi, 2006). 

(h) Interaction Capping (ICAP) 

This method which was proposed by (Jakulin, 2005)  use interaction gain measure to 

detect the relevant features. In this method, any feature even if it is not relevant to the 

class by its own, it can be relevant when combined with another feature.   

(i)  Conditional redundancy (Condred) 

It was proposed in (G. Brown et al., 2012) for a comparison purpose.  
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(j) Conditional Informative Feature Extraction (CIFE) 

This method which was proposed by (D. Lin & Tang, 2006) aims to maximize the 

class-relevant information by reducing the class-relevant redundancies among features 

(D. Lin & Tang, 2006). 

3.5.2 Majority vote method  

When classification outputs are produced by a set of classifiers, we can get the final 

output using Majority vote method by taking the output which receives the highest number 

of votes from these classifiers. In other words, the final output is the most frequently 

predicted class by the set of classifiers.  

For examples, we have five classifiers used to predict classes 1 and 2 and which 

produced the following outputs: 1, 2, 1, 1, 2. By applying majority vote method, we can 

see that class 1 received three votes against two for class 2; which means 1 is final or the 

winner output (or class).   

3.6  Design the proposed Feature-based Dual-Layer Ensemble Classification 

Method  

This section explains the design of the proposed classification method to improve the 

classification accuracy performance of an emotion recognition system. As we mentioned 

in section 3.1, in the proposed feature-based dual-layer ensemble classification method 

(FDLEC), the concept of stacking ensemble (details in Section 2.7.2.8(a)) is adopted. In 

the first layer, the 10 feature selection methods (i.e. feature ranking methods) (detail in 

section 3.5.1) are used to generate several training data sets with different features subset 

sizes. Using different feature selection methods will help us to generate more diverse and 

higher quality subsets of features that lead to the creation of more accurate and diverse 
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set of classifiers in the first layer of our method which makes the classifiers of the 

ensemble disagree on challenging instances (Guan et al., 2014; Oliveira et al., 2006; 

Santana & Canuto, 2014).  In addition, combining various feature ranking methods 

instead of using one method will prevent generating a sub-optimal subset of features 

(Kuncheva, 2007).  Our selection of the 10 feature ranking methods is guided mainly by 

two criteria: the first one is to choose the frequently cited feature ranking methods in the 

literature and which proved their performance in other field of studies (Brown et al., 2012) 

and the second criterion is to select 10 methods or close to 10 which is modest enough to 

avoid any high computational cost but probably good enough to generate all the possible 

relevant features that can be missed if one or few methods are used. In addition, producing 

different feature sets improves the diversity of the ensemble method while ensures the 

quality of the selected feature sets.  

The feature ranking methods that have been employed in our proposed methods fall 

under the filter-based category. The advantage of this type of methods compared to 

wrapper-based methods is being fast and independent from any particular classifier which 

makes them more suitable to be utilized in designing a feature-based ensemble 

classification method (Saeys et al., 2008; Santana & Canuto, 2014). In addition, the single 

classifiers chose to be used in our proposed method- LDA, ANN, SVM and CART- are 

among the well-known single classifiers that have been utilized widely in the area of 

physiological-based emotion recognition systems.  

In the second layer (meta-layer), the prediction output of each classifier in the first 

layer is combined together to create a meta-dataset. The outputs of the first layer are 

composed of zeros and ones which indicate the predicted class for each instance. The 

second layer uses these outputs as the input features. The target feature of the second layer 
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remains the same as in the original training set. The second layer of our proposed 

classifier combines different predictions into a final one. By using a second layer 

classification, this method tries to induce which classifiers are reliable and which are not. 

For example, if a classifier steadily misclassified instances from one region because of 

incorrectly learning the feature space of that region, the Meta classifier may be able to 

discover this problem. Therefore, utilizing the learned behaviors of other classifiers may 

enhance this kind of training problems (Zhu, 2010). 

The proposed classification method composes -as depicted in Figure 3.6 - of double 

layers: 

- The first layer  

     The first layer generates 90 classification outputs predicted by one type of 

classification method like SVM for each testing pattern. In fact, this 90-outputs vector is 

obtained by converting 10×9 matrix of outputs generated by the same classifier trained 

on 90 different training data sets where these data sets are obtained by taking 9 different 

feature subset sizes (represent the columns) from the original feature set using 10 different 

feature selection methods (represent the rows). We can say that we applied the same 

method as in feature-based multi-classifier method (details in section 3.5) except for one 

thing, in this method we have 90 outputs instead of 9 outputs because all the feature 

selection methods are combined. The first layer of this method is described in form of 

pseudocode in Figure 3.7 

- The second layer 

The second layer of training can be summarized as follows: since we apply leave-one-

out cross-validation (details in Section 3.8.2.1) method to divide the training and testing 

sets and as we have 40 examples (explained in Section 3.3.1) for each subject, we will 
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get new data set of 40 examples with 90 features for each example. This data is again 

used to train another classifier using the same method that is leave-one-out cross-

validation. Different combinations of classifiers are used in the first and second layer. 

Since we have 4 classifiers (Sections 3.4.1 to 3.4.4), this results in 16 different 

combinations. The best combination is chosen as the recommended method to be used 

for the emotion state recognition system.  The pseudocode related to the second layer of 

this method is described in Figure 3.8. 
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Figure 3.6: Concept of the proposed feature-based dual-layer ensemble classification method 
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Figure 3.7: The pseudocode related to the first layer of the proposed dual-layer 
classification method 

 

 

% AllFeatures are the features of the original training data set 

% OriginalTrainData is the original training data 

% TestingData is the testing data set 

For v=1 to 40 %  40 is the number of data sets per subject (or videos watched by each subject (leave-one out 
method)) 

For SelectMethod =1 to 10   %  

  FeatureRanked=   GetRanking(SelectMethod);  % rank the n features of the original training data  

                                                                                   % from top to bottom using SelectMethod which is  

                                                                                   % one of 10 feature selection methods  

                                                           

      For k =1 to 9        %  

          Subset= FeatureRanked (1:8×k) ; % Get the top 8×k features for each iteration 

          NuTrainingData= OriginalTrainData(Subset)  ; % get the new training set using the selected Subset 

         SVMModel = TrainSVM(NuTrainingData); % Train SVM using the new training data set 

         TestOutput=Predict(SVMModel, TestingData);  

         AllOutput(SelectMethod,k)= TestOutput   ;  % get 10×9 outputs matrix of the first layer created by 9 

                                                          % different subsets ranked using 10 different feature selection methods   

      End For k   

End For SelectMethod 

    Outputvector=convert(AllOutput); % convert 10×9 matrix into 90 outputs vector 

 

NewDataset(v, 10×9)= Outputvector;  

End for v 
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Figure 3.8: The pseudocode related to the second layer of the proposed dual-
layer classification method 

 

As an example, Figure 3.9 shows a sequence of activities that has been followed by an 

input data to generate final output using the proposed dual-layer ensemble classification 

method, as an example, in case of having peripheral data modality as input, there will be 

40 feature vectors with total of 78 features for each subject (matrix of 40×78). Using the 

proposed method, the first layer will generate a new set of data with an equal number of 

rows and 90 features that its values will be 0 or 1 which are results of binary classification 

of 90 classifiers in the first layer (matrix of 40×90). The second layer will use the new set 

of data and train a single classifier. The output of the classification model will be a matrix 

of 40×1. It shows the final classification output (i.e. 0 or 1) assigned to each feature 

vector. Each feature vector is related to physiological data of a person while he/she 

watching a particular movie (details in Section 3.3.1). Receiving 0 as output, means the 

proposed system could recognize the emotion of the person watching the video as a low 

level of arousal, valence or liking (more details in Section 2.3). Receiving 1 means the 

proposed system recognizes the high level of arousal, valence or liking recognized by the 

system. 

 

%Second Layer% 

MetaDataSet=NewDataset 

For v=1 to 40  % 40 is the number of data sets per subject (or videos watched by each subject (leave-one out method)) 

 CARTModel = TrainCART ( TrainingData(MetaDataSet)); % Train CART using the new training meta-data set 

 TestOutput=Predict (CARTModel,TestingDataSet(MetaDataset)); 

End for v 
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Figure 3.9: A sequence of activities for proposed dual-layer ensemble 
classification methods. 
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3.7 Evaluation  

Evaluation is the fourth activity of the research methodology presented in section 1.8. 

This activity, as summarized in Figure 3.10, involves three  main steps and they are 

described in sections 3.9 to 3.11, namely, comparative analysis of classification accuracy 

rates (CARs) of benchmark classifiers that describes experimental works related to  the 

evaluation of each benchmark classifier on different modalities, followed by comparative 

analysis of classification CARs  of feature-based multi-classifier methods that describes 

experimental works involved the  evaluation of feature-based multi-classifier methods on 

different modalities as well as their comparison with benchmark classifiers. The last step 

is the comparative analysis of all the methods including the proposed feature-based dual-

layer ensemble classification method using a statistical test. Before the details of each 

experiment are provided, the experimental setups (section 3.8) used in this study mainly 

related to the configuration of parameter specifications of classifiers and feature selection 

methods as well as the method for classification performance evaluation, are explained. 
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Figure 3.10: The steps followed to evaluate the proposed feature-based dual-
layer ensemble classification method 

 

3.8 Experimental setups 

This section mainly describes the programming environment, software packages and 

its related configurations that have been used for developing the proposed methods. 
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3.8.1 Parameter specifications of the classification methods and feature selection 

methods 

All the computer programs were written using MATLAB software version 14. This 

software is a well-known programming environment widely used by developers and 

researchers. This software is organized in specialized toolboxes that cover many domains 

ranging from engineering to finance. In our study, we used various toolboxes including: 

Statistics toolbox which used to build LDA, CART classification models and Neural 

network toolbox which employed to build ANN models. Another toolbox called libsvm 

and developed by Chih-Chung Chang and Chih-Jen Lin was used to create SVM 

classification model. This toolbox can be downloaded from the link below 

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/). In addition, MATLAB code for Random 

Forest, which is one the benchmark classifier used in this study for comparison purpose, 

was downloaded from https://code.google.com/p/randomforest-matlab/.   

For feature selection methods, 7 out of 10 feature selection methods were obtained 

from FEAST toolbox which can be downloaded from 

https://github.com/Craigacp/FEAST/. In addition, the three other methods namely, 

Fisher, t-test, and Relief were developed by Arizona state university and are available for 

downloading from the following link (http://featureselection.asu.edu/software.php). 

In this study, we used the default parameter values provided by MATLAB and other 

toolboxes developed by the third party. For ANN model, we used the following equation 

to calculate the number of neurons in the hidden layer: 

The number of neurons in hidden layer = (the number of features +the number of 

classes)/2. 

Univ
ers

ity
 of

 M
ala

ya

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://code.google.com/p/randomforest-matlab/
https://github.com/Craigacp/FEAST/
http://featureselection.asu.edu/software.php


 

 

125 

 

 

In addition, the data modalities used for the experiments are: single data modalities 

where we used peripheral and EEG features separately and multimodality which is a 

combination of both peripheral and EEG features. 

3.8.2 Classification Performance Evaluation 

This section provides the information related to the method used in this research for 

calculation of classification accuracy rates. It also explains the methods followed to 

compare different classifiers’ performances on different data sets. 

3.8.2.1  Testing classification accuracy rate calculation 

In this study, following the creators of DEAP data sets Koelstra et al. (2012), we use 

leave-one-out cross-validation method to divide the data into training and testing data 

sets. In this method, only one example is used for testing while the remaining are used 

for training the classification model. We assume that our system is a dependent system 

which means that new users cannot use the system without prior training. In this case, the 

classification accuracy is calculated per subject and the final or average testing accuracy 

rate is averaged over the accuracies of all the subjects. To explain more, for each subject, 

we have 40 examples or videos, 39 of them are used for training while only one is used 

for testing. The process is repeated 40 times until all the 40 examples are used as a testing 

data set in of the 40 iterations. In this case, we have 40 testing accuracies for one subject 

and average testing for this subject is averaged over the 40 iterations. We used the same 

procedure for all the 32 subjects and the average accuracy is obtained by averaging the 

accuracies of the 32 subjects.  

Classification accuracy rate is calculated as follows: 
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Classification accuracy rate (%) = 100× (the number of correctly testing examples / 

the total number of testing examples)  

Since the total number of testing examples is 1, classification accuracy rate for each 

iteration is either 100% or 0%. Assuming that for one of the subjects, 30 out of 40 

iterations, the classification rate is 100% while it is 0% in the 10 remaining iterations. In 

such case, the average classification rate for this subject is calculated as follows: 

Average classification accuracy rate (%) = (30×100 + 10×0)/40= 75%. 

Assuming also that 50% of the subjects or 16 of them got 75% and other half got 50%. 

Now, the average classification rate = (16×75+16×50)/32= 62.5% 

In this case, 62.5% represents the average classification accuracy for all the subjects 

and it is the final testing accuracy rate.  

3.8.2.2 Average Rank 

Since we have various classifiers applied to different data sets, each classifier produce 

different classification accuracy results on the different data set. In this case, to measure 

the overall performance of a classifier using different data sets, the ranking method 

proposed by Friedman’s M statistic (Neave & Worthington, 1992) is used (Brazdil & 

Soares, 2000). In this method, each classifier receives a rank based on the measured 

accuracy rates on each data set where the classifier with highest accuracy rate on a data 

set is assigned rank 1 and the classifier with second highest accuracy rate assigned rank 

2 and so on. If two classifiers achieved the equal accuracy rates, then the rank is divided 

between them. For example, if we have accuracies of 50%, 60%, 62%, 62%, 67% for five 

different classifiers on a data set, their ranking score would be 5, 4, 2.5, and 2.5,1 

respectively. To calculate the final ranking of a classifier on different data sets, the 
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different rank scores of that classifier on different data sets are averaged. Therefore, 

lowest average ranking score means the best classifier. For example, assuming that A, B, 

and C are three different classifiers that were tested on two data sets X and Y. Table 3.2 

shows the measured accuracy rates of the three classifiers on the two data sets and 

associated ranks. In this example, classifier C is recognized as an overall best classifier 

with the lowest average rank of 1.5. 

Table 3.2: Ranking and average rank calculated for three different classifiers on 
two data sets based on their classification accuracies. 

Classifier/Data set X Rank Y Rank Average Rank 

A 56% 3 68% 1 4/2=2 

B 58% 2 57% 3 5/2=2.5 

C 68% 1 60% 2 3/2=1.5 

 

3.8.2.3 Statistical test 

To check whether there exists any significant difference between our proposed 

classification method and other methods we applied Wilcoxon ranks test (Wilcoxon, 

1945). It is one of the safe and robust non-parametric tests for statistical comparisons of 

classifiers which works for comparison of two classifiers on multiple datasets. It ranks 

the differences in performances of two classifiers for each data set. The Wilcoxon ranks 

test will try to reject the null-hypothesis that both algorithms perform equally well 

(Demšar, 2006). 

Assume that there are two classifiers that should be tested on N datasets, 𝑑𝑖  is 

calculated as the difference between the accuracy performance rates of the two classifiers 

on i-th out of N data sets. The calculated differences are ranked according to their absolute 

values; In case of ties, the average ranks are assigned. Let 𝑅+ be the sum of ranks for the 
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datasets on which the second algorithm outperformed the first while 𝑅−  is the sum of 

ranks where the first algorithm performs better than second one (opposite). Ranks of 𝑑𝑖 

=0 are split equally among the sums; if there is an odd number of them, one is ignored: 

 

0 0

1(d ) (d )
2

i i

i i
d d

R rank rank

 

    (3.2) 

0 0

1(d ) (d )
2

i i

i i
d d

R rank rank

 

    (3.3) 

 

Later T = min (R+, R −) will be the minimum value among 𝑅+ and 𝑅−. Then the exact 

critical values for T for N (i.e. number of data sets) up to 25 can be found in general 

statistics books (i.e. Table of exact critical values for the Wilcoxon’s test). As an example, 

with a confidence level of α = 0.05 and N = 14 datasets, the difference between the 

classifiers is significant if T is equal or less than 21 (i.e. critical value). Therefore, the 

null-hypothesis is rejected. For a larger number of data sets, the statistics: 

1- ( 1)
4

1 ( 1)(2 1)
24

T N N
z

N N N





 

  

 

(3.4) 

 

is distributed approximately normally. For a confidence level of α = 0.05, the null 

hypothesis can be rejected if z is smaller than −1.96 (Demšar, 2006). 

Univ
ers

ity
 of

 M
ala

ya



 

 

129 

 

 

3.9 Experiment 1: Comparative analysis of CARs8 of Benchmark classifiers 

The objective of the first set of experiments is mainly to obtain the benchmark testing 

classification accuracy results (or simply classification accuracy rates) (details in 

Section 3.8.2.1) using four benchmark classifiers, namely, LDA, ANN, CART and SVM 

on nine different data sets (details in Section 3.4). Three data sets containing physiological 

data modalities, the other three containing EEG data modalities and the rest of data sets 

containing multi-modality data, which is a combination of both peripheral and EEG data 

modalities.  All data sets are used for binary classification tasks for arousal, valence, and 

liking based on “High” and “Low” ranking (details in Section 3.3). The classifiers’ 

parameter specifications are explained in Section 3.8.1. 

In addition, we are interested in investigating how the use of different data modalities- 

single modalities and multi-modality data- may affect the classification accuracy of the 

emotion recognition system. To compare the overall performance of different benchmark 

classifiers, the average rank score (details in Section 3.8.2.2) of each classifier over 

different modalities is calculated. 

3.10 Experiment 2: Comparative analysis of CARs of Feature-based Multi-

classifier methods 

The objective of conducting the second set of experiments using feature-based Multi-

classifier (details in Section 3.5) is to investigate the effect of using different feature 

selection techniques on the classification accuracy rate of the emotion recognition system. 

The testing classification accuracy results (details in Section 3.8.2.1) are used to evaluate 

the performance of Feature-based Multi-classifier methods on nine different data sets. All 

                                                 

8 CARs=Classification Accuracy Rates 
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the benchmark classifiers used in experiment 1 also used in this experiment. The 

classifiers’ settings are as the same as experiment 1, explained in Section 3.8.1. More 

details about the 10 feature selection methods used can be found in sections  3.5.1 

and  3.8.1. 

The data modalities used for this set of experiments are as the same as experiment 1 

which includes single modalities and multimodality data and all data sets used for binary 

classification tasks for arousal, valence, and liking based on “High” and “Low” ranking 

(details in Section 3.3). To compare the overall performance measurement of different 

feature-based multi-classifier, the average rank score of each classifier over different 

modalities (data modalities) is calculated (details in Section 3.8.2.2). In addition, to 

compare between results obtained by benchmark classifiers (experiment 1) and feature-

based multi-classifier (experiment 2), the testing classification accuracy rates of these two 

methods are calculated based on valence, arousal, and liking and its averaged for each 

modality.   

3.11 Experiment 3: Comparative analysis of CARs of Feature-based Dual-layer 

ensemble classifiers 

The goal of the third set of experiments is mainly to evaluate accuracy performance of 

the proposed feature-based dual-layer ensemble classification method (Section 3.6). All 

different combination of LDA, ANN, CART, and SVM (details in Section 3.4) as first 

and second layer classification methods are implemented in such a way that all 

classification methods used for the first layer will be the same type. For example, one of 

proposal designs includes 90 SVM classifiers at the first layer. The classifiers’ settings 

for the first and second layers are the same as experiment 1 and all the feature selection 

methods (details in Section 3.5.1&3.8.1) which were employed in experiment 2 are used 

in this experiment. In addition, Random Forest is considered as one of the benchmark 
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ensemble classifier used in this study for comparison purpose.  Random forest (Leo 

Breiman, 2001)  is a well-known ensemble learning method for classification. It works 

by creating several decision tree classifiers in the training phase and the final output is 

decided using majority vote method (details in Section 3.5.2). This method is included 

for comparison purpose as it is considered as one of the most efficient ensemble methods 

in the literature (Amaratunga, Cabrera, & Shkedy, 2014; Robnik-Šikonja, 2004).  

The testing classification accuracy results (details in Section 3.8.2.1) are used to 

evaluate the performance of our proposed feature-based dual-layer ensemble classifiers 

on nine data sets.  The data modalities used for this set of experiments are the same as 

experiment 1 and 2 which include single modalities and multi-modality data. All data sets 

used for binary classification tasks for arousal, valence, and liking based on “High” and 

“Low” ranking (details in Section 3.3). To compare overall performance measurement of 

different feature-based dual-layer ensemble classifiers, the average rank score of each 

classifier over different modalities is calculated. In addition, to compare  between the 

results of benchmark classifiers (experiment 1), feature-based multi-classifier 

(experiment 2), and feature-based dual-layer ensemble classifiers (experiment 3) the 

classification accuracy rates of these three methods are calculated based on valence, 

arousal and liking and averaged for each modality.   

Furthermore, in order to check whether the classification accuracy rate of the proposed 

feature-based dual-layer ensemble classifier is significantly better than the best classifiers 

of experiment 1, experiment 2, and experiment 3, the statistical Wilcoxon ranks test is 

used (more details in Section 3.8.2.3). 
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3.12  Summary 

In this chapter, we described the steps conducted for third and fourth activities of the 

proposed research methodology (details in Section 1.8) which are Design & Development 

as well as Evaluation. In this chapter, we mainly described the main characteristics of the 

data sets, benchmark classification methods, feature-based multi-classifier methods as 

well as the proposed feature-based dual-layer ensemble classification method, used in this 

study. In addition, we provided the experimental settings used in developing our proposed 

system and conducting our experimental work. The leave-one-out cross-validation 

method used to divide the data set into training and testing data sets was also described. 

In addition, the Wilcoxon ranks test method used for the purpose of comparing the 

proposed classification method with other methods also was explained.   
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CHAPTER 4: RESULTS AND DISCUSSIONS 

 

This chapter presents the emotion classification performance of the proposed method 

and the comparisons with benchmark methods. The chapter is divided into four parts. The 

first part reports the results of the four benchmark classifiers (details in Section 3.4) on 

the nine data sets related to DEAP. These classifiers, which have been frequently used for 

classification problems including in the field of emotion recognition, are: ANN, CART, 

LDA, and SVM. The second part of this chapter presents the effect of using feature 

selection methods on the performance of the four classifiers by testing of feature-based 

multi-classifier methods (details in Section 3.5). The objective of the first two parts (one 

and two) is to obtain benchmark results that can be compared with results of the proposed 

feature-based dual-layer ensemble classification method (details in Section 3.6) presented 

in the third part. In the fourth and final part, a statistical comparison using Wilcoxon rank 

test is conducted between the proposed method and the benchmark methods to evaluate 

the performance of our proposed method and identify the existence of any significant 

improvement made by our method compared to the benchmark methods. 

- Experiment 1: 

4.1 The results of benchmark classification methods  

     For overall performance measurement of different benchmark classifiers, the average 

rank score of each classifier over different modalities (See Table 4.1) is calculated. As 

stated in section 3.8.2.2 about the average rank method, the classifier with the lowest 

average ranking score is the best classifier. Therefore, we notice from Table 4.1 and 

Figure 4.1 that SVM achieved the best results followed narrowly by LDA and then ANN. 

CART received the lowest accuracy among the single classifiers. In addition, Table 4.2 
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to Table 4.4 and its corresponding figures (Figure 4.2 to Figure 4.4) depict the average 

accuracy rates of four benchmark classification methods for valence, arousal and liking 

targets, using different modalities, in which SVM performed well on liking and arousal, 

while it is the worst classifier that can be used for recognizing the valence for all 

modalities. Though SVM is a stable and powerful classifier, it could not be consistent in 

all the emotional states recognition. This may reveal one drawback of using single 

classifier for emotion recognition state which is the consistency. The alternatives to SVM 

can be LDA and ANN, as they achieved comparable results in most cases. CART is 

generally the worst among the four classifiers. 

 

Table 4.1: Average ranking score of four benchmark classification methods for 
valence, arousal and liking targets 

 

      

 

Modality Datasets  Target SVM ANN LDA CART 

Peripheral data 
Peri-Valence 4 2 1 3 
Peri-Arousal 1 4 3 2 
Peri-Liking 1 2 3 4 

EEG Data 
EEG-Valence 4 2 1 3 
EEG-Arousal 1 2 3 4 
EEG-Liking 1 2 4 3 

 peripheral & EEG data 

(EEG+Peri)-
Valence 4 2 1 3 
(EEG+Peri)-
Arousal 1 4 2 3 
(EEG+Peri)-
Liking 1 3 2 4 

Average Ranking Score 2 2.555556 2.222222222 3.222222 Univ
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Figure 4.1: Average ranking score of four benchmark classification methods 

 

 

Figure 4.2: Average accuracy rates of four benchmark classification methods 
for valence, arousal and liking targets using peripheral modality 
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Table 4.2: Average accuracy rates of four benchmark classification methods for 
valence, arousal and liking targets using peripheral modality 

Method Peri-Valence Peri-Arousal Peri-Liking 
SVM 54.2188 64.6875 63.125 
ANN 57.96875 58.28125 60.46875 
LDA 58.98438 58.75 60 

CART 56.5625 58.82813 57.65625 
 

 

  
Figure 4.3: Average accuracy rates of four benchmark classification methods 

for valence, arousal and liking targets using EEG modality 
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Table 4.3:  Average accuracy rates of four benchmark classification methods for 
valence, arousal and liking targets using EEG modality 

 

 

Figure 4.4: Average accuracy rates of four benchmark classification methods 
for valence, arousal and liking targets using (Peripheral+EEG) modalities 

 

Table 4.4: Average accuracy rates of four benchmark classification methods for 
valence, arousal and liking targets using (Peripheral+EEG) modalities 

Method (Peri+EEG) 
Valence 

(Peri+EEG) 
Arousal 

(Peri+EEG) 
Liking 

SVM 53.125 62.1875 64.92188 
ANN 59.9219 54.2188 59.53125 
LDA 65.0781 59.4531 61.64063 

CART 58.9063 58.2031 59.375 
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Method EEG-Valence EEG-Arousal EEG-Liking 
SVM 52.8906 62.5781 65.1563 
ANN 58.9063 59.5313 61.5625 
LDA 63.8281 57.1094 60 

CART 58.4375 56.7969 60.0781 
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4.1.1 Classification accuracy rates of the four benchmark classifiers based on the 

modality used 

In order to study the effect of each modality on the performance of different benchmark 

classifiers, the classification accuracy rate of each classifier using different modalities for 

arousal, valence and liking recognition is ranked (See Table 4.6 to Table 4.9). Though 

Figure 4.5 shows that in overall using (Peripheral+EEG) data modality achieved the best 

results followed by EEG modality, the results in Table 4.5, which summarizes Table 4.6 

to Table 4.9, and its corresponding Figure 4.6 indicate that there is no single type of 

modality that is suitable for all the classifiers. Specifically, SVM achieved the best results 

when it uses Peripheral modality while EEG is more suitable for ANN. The combination 

of the two modalities (Peripheral + EEG) enables LDA and CART to achieve their best 

accuracies. For a classification method, which has an internal mechanism for feature 

selection like CART, combining the two modalities can be better because it enables to 

select the relevant features from different modalities which result in more information 

about to the emotional state. 

 

Table 4.5: Average ranking score of each modality using four benchmark 
classifiers  

Modality/Classification 
technique SVM ANN LDA CART 

Peripheral Modality 1.6667 2.3333 2.333333 2.333333 
EEG Modality 2 1.3333 2.333333 2 
(Peripheral+EEG) Modalities   2.3333 2.3333 1 1.666667 
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Figure 4.5: Average ranking score of each modality using four benchmark 
classifiers 

Figure 4.6: Average ranking score of each modality using four benchmark 
classifiers 
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Table 4.6: Average ranking score of each modality using SVM 

Classification Method SVM Total Average 
Score Modality Dataset V9 A L 

Peripheral Modality 1 1 3 1.666666667 
EEG Modality 3 2 1 2 
(Peripheral+EEG) Modalities  2 3 2 2.333333333 

 

Table 4.7: Average ranking score of each modality using ANN 

Classification Method ANN Total Average 
Score Modality Dataset V A L 

Peripheral Modality 3 2 2 2.333333333 
EEG Modality 2 1 1 1.333333333 
(Peripheral+EEG) Modalities   1 3 3 2.333333333 

 

 

Table 4.8: Average ranking score of each modality using LDA 

Classification Method LDA Total Average 
Score Modality Dataset V A L 

Peripheral Modality 3 2 2 2.333333333 
EEG Modality 2 3 2 2.333333333 
(Peripheral+EEG) Modalities  1 1 1 1 

 

Table 4.9: Average ranking score of each modality using CART 

Classification Method CART Total Average 
Score Modality Dataset V A L 

Peripheral Modality 3 1 3 2.333333333 
EEG Modality 2 3 1 2 
(Peripheral+EEG) Modalities   1 2 2 1.666666667 

 

                                                 

9 V: Valence, A: Arousal, L: Liking 
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4.1.2 Results obtained by the classifiers based on given modality 

“Suppose we have four classifiers and only one modality, and the question is which 

classifier is better to use with that modality?” 

The average ranking score of the four benchmark classifiers for valence, arousal 

and liking recognition using three different modalities are calculated as shown in 

Table 4.10. According to this results, SVM seems the best classifier to use for Peripheral 

modality. For EEG, the best classifier is shared by SVM and ANN while LDA is the 

suitable classifier to use when EEG and Peripheral modalities are combined.  

 

Table 4.10: Average ranking score of the four classifiers for each modality 

 

 “Which of the modalities is better to use when we intend to recognize a certain emotional 

state?” 

The Table 4.11 to Table 4.13 show the average ranking scores of the three different 

modalities for valence, arousal, and liking recognition. It can be seen that combining the 

two modalities is better to employ if the objective is to recognize valence while arousal 

and liking are best recognized by using peripheral and EEG modalities, respectively. 

Modality Datasets  Target SVM ANN LDA CART 

Peripheral data 
Peri-Valence 4 2 1 3 
Peri-Arousal 1 4 3 2 
Peri-Liking 1 2 3 4 

  2 2.66 2.33 3 

EEG Data 
EEG-Valence 4 2 1 3 
EEG-Arousal 1 2 3 4 
EEG-Liking 1 2 4 3 

  2 2 2.66 3.33 

 Peripheral & 
EEG data 

(Peri+EEG)-
Valence 4 2 1 3 
(Peri+EEG)-
Arousal 1 4 2 3 
(Peri+EEG)-
Liking 1 3 2 4 

Average Ranking Score 2 3 1.66 3.33 Univ
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Table 4.11: Average ranking score of the three modalities for Valence 
recognition 

Modality/Classification 
technique SVM ANN LDA CART 

Avg. 
Ranking 

Score 
Peripheral Modality 1 3 3 3 2.5 
EEG Modality 3 2 2 2 2.25 
(Peripheral+EEG) Modalities   2 1 1 1 1.25 

 

Table 4.12: Average ranking score of the three modalities for Arousal 
recognition 

Modality/Classification technique SVM ANN LDA CART 
Avg. 

Ranking 
Score 

Peripheral Modality 1 2 2 1 1.5 
EEG Modality 2 1 3 3 2.25 
(Peripheral+EEG) Modalities   3 3 1 2 2.25 

 

Table 4.13: Average ranking score of the three modalities for Liking recognition 

Modality/Classification technique SVM ANN LDA CART 
Avg. 

Ranking 
Score 

Peripheral Modality 3 2 2 3 2.5 
EEG Modality 1 1 2 1 1.25 
(Peripheral+EEG) Modalities   2 3 1 2 2 
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- Experiment 2: 

4.2 Results obtained after applying feature-based multi-classifier methods 

This section presents and discusses the results of applying feature-based multi-

classifier methods (see Section 3.5) using different data modalities. Table 4.14 to 

Table 4.16 and their corresponding Figures (Figure 4.7 to Figure 4.9) show average 

testing rates of the best feature-based multi-classifier methods for valence, arousal, and 

liking using different data modalities. From the results, it can be observed that there is no 

single feature selection method that is suitable for all the feature-based multi-classifier 

methods and all modalities. There are, however, some feature selection methods which 

frequently achieved the best results such as Fisher which obtained the highest accuracy 

in 11 out of 36 cases followed by relief and Condred where each has five cases in which 

they achieved the best accuracy.  Specifically, Fisher worked relatively well with ANN 

(6 out of 9 cases) and somewhat with SVM (4 out 9 cases). In addition, Icap and Relief 

can be suitable feature selection methods to be used with CART. The detail results of 

using each feature selection method in feature-based multi-classifier methods for valence, 

arousal and liking recognition using different data modalities are presented in Appendix 

B. 
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Table 4.14: Average testing rates of the best feature-based multi-classifier 
methods for Peripheral modality 

 

 

                  

 

Figure 4.7: Average testing rates of the best feature-based multi-classifier 
methods for Peripheral modality 

 

Table 4.15: Average testing rates of the best feature-based multi-classifier 
methods for EEG modality  
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CART ANN LDA SVM

Recognition 
of/Classifier CART ANN LDA SVM 

Valence 60.0781(Icap) 62.42(Mim) 60.9375(Mim) 55.9375(Fisher) 
Arousal 59.60938 (Relief) 63.4375 (Fisher) 60.3125 (Icap) 64.76563 (Fisher) 
Liking 63.59375 (Cife) 64.21875(Fisher) 62.42188 (Jmi) 63.82813(t-test) 

Recognition 
of/Classifier CART ANN LDA SVM 

Valence 60.78 (Condred) 66.3281(Fisher) 64.4531(Relief) 53.6719(Disr) 
Arousal 60.625 (Condred) 63.9844(Relief) 59.375 (T-Test) 62.9688(Fisher) 
Liking 58.5156 (Cmim) 66.1719 (Jmi) 62.4219 (Relief) 66.6406 (t-test) 
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   Figure 4.8: Average testing rates of the best feature-based multi-classifier 
methods for EEG modality 

 

Table 4.16: Average testing rates of the best feature-based multi-classifier 
methods for (Peripheral+EEG) modalities 

 

      

       Figure 4.9: Average testing rates of the best feature-based multi-classifier 
methods for (Peripheral+EEG) modalities 
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4.2.1 Comparison between single classifiers and feature-based multi-classifier 

using different modalities 

To compare between results of benchmark single classifiers and feature-based multi-

classifier, the classification accuracy rates of these two methods are calculated for 

different emotions and averaged for each modality. In this case, recognition accuracies of 

valence, arousal, and liking are not separately calculated but averaged. For feature-based 

multi-classifier, the accuracy is averaged for all the feature selection methods used in this 

study.   

The comparison results are depicted in Figure 4.10 to Figure 4.12. It can be seen that 

feature selection methods have positively contributed to the improvement of multi-

classifier methods compared to single classifiers using single modalities and 

multimodality data. In addition, ANNs is the classifier that benefited the most after 

applying the feature selection method gaining between 7.56% and 13.45%, and followed 

by CART between 2.63% to 5.91%.  

SVM gained the least among the classifiers between 1.37% to 1.52% behind LDA 

which gained between 2.01% and 3.34%.  ANNs and CART could gain this much of 

accuracy because of their instability which enables them to generate more diverse 

classifiers and thus more accurate ensemble classifier. This result confirms previous 

findings which stated that CART and ANNs are unstable classifiers and thus are suitable 

for ensemble methods (Kuncheva, 2014). 
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The instability in CART is due to the fact that small changes in the training sets can 

produce very different trained classifiers (Kuncheva, 2014) while the source of instability 

for ANN is due to the randomness of the initial weight values in the training phase of 

ANNs. This behavior in addition to the fast training time has made CART the preferred 

base classifier for many ensemble methods including Bagging (Breiman, 1996), and 

Addaboost (Freund & Schapire, 1997).    

Figure 4.10: Average classification accuracies for each classifier on valence, 
arousal, and liking using Peripheral modality 
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 Figure 4.11: Average classification accuracies for each classifier on valence, 
arousal, and liking using EEG modality 

 

Figure 4.12: Average classification accuracies for each classifier on valence, 
arousal, and liking using (Peripheral+EEG) modalities 
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4.2.2 Comparison between different feature subset sizes in terms of accuracy 

As it was explained in details in section 3.5, the feature set that belongs to each 

modality is divided into nine different feature subset sizes using different feature selection 

methods. The average accuracy rate for each subset in Table 4.17 is the result of averaging 

different accuracy rates achieved by the combination of different feature selection 

methods of the four proposed single classifiers for valence, arousal, and liking recognition 

using three different modalities. 

The average ranking score of each feature subset is calculated based on the 

classification accuracy rates provided in Table 4.17 and it is visualized as in Figure 4.13. 

Based on the results shown in Figure 4.13 and its corresponding Table 4.17, it is observed 

that most of the best classification results were achieved by using either the first or second 

ranked feature subsets10. This is probably because the first and second feature subsets 

include the most discriminative and relevant features for valence, arousal and liking 

recognition. The results also indicate that using a subset of the features is more accurate 

than using all features. In addition, choosing a subset of features has also a positive effect 

on the computational cost because using 10% to 20% of the feature set for emotion 

classification is more computationally efficient than using all the features. Thus, the use 

of feature selection methods has a positive impact on both the accuracy and computational 

cost.  

                                                 

10 FST1 and FST2 represent the first and second subsets of the ranked features 
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Figure 4.13: Average accuracy ranking scores of Liking, Arousal and Valence 
using different subset sizes 

Table 4.17: Average accuracy rates of Liking, Arousal, and Valence using 
different subset sizes 

Dataset FSt1 FSt2 FSt3 FSt4 FSt5 FSt6 FSt7 FSt8 FSt9 All 
features 

Peri-
Valence 58.723 57.883 57.258 57.555 57.006 57.363 57.197 56.574 56.266 56.934 

Peri-
Arousal 59.305 59.693 59.100 59.537 59.980 59.646 59.219 59.635 59.736 60.137 

Peripheral-
Liking 61.842 61.285 61.111 60.549 60.277 61.836 60.555 59.869 59.342 60.313 

EEG-
Valence 59.793 60.191 58.645 58.160 58.395 58.398 57.580 58.305 58.854 58.516 

EEG-
Arousal 59.816 60.006 59.455 59.336 59.828 58.875 59.082 59.180 59.125 59.004 

EEG-
Liking 62.064 62.672 60.668 60.902 61.992 60.861 60.980 60.762 61.238 61.699 

Peri+EEG- 
Valence 61.029 59.842 58.469 58.100 58.125 58.756 58.389 59.004 59.209 59.258 

Peri+EEG- 
Arousal 59.984 60.316 59.443 59.590 59.744 59.719 58.797 58.664 59.838 58.516 

Peri+EEG- 
Liking 62.154 62.152 61.807 61.336 61.434 61.875 60.859 61.674 62.207 61.367 
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- Experiment 3: 

4.3 The results of proposed classification method: Feature-Based Dual-layer 

Ensemble Classification Method 

The results of the three best feature-based dual-layer ensemble classification 

methods (FDLEC) for valence, arousal and liking recognition using different modalities 

are shown in Table 4.18 while Figure 4.14 depicts the highest accuracies that could be 

achieved employing these FDLEC methods. The results show that the best FDLEC 

method is SVM+CART followed by SVM+SVM and then CART+CART.  

Table 4.19 and its corresponding Figure 4.15 also shown average ranking scores 

calculated for each tested FDLEC method according to the classification accuracies 

results for valence, arousal and liking recognition using different modalities provided in 

Table 4.20 to Table 4.22 and its related Figure 4.16 to Figure 4.18, respectively. 

Table 4.18 and Figure 4.14 show that FDLEC(SVM+CART) method dominates the 

results by achieving the best accuracy rate in 7 data sets out of 9. FDLEC(CART+CART) 

achieved the best results in 2 data sets out of 9. FDLEC(SVM+SVM) did not get the best 

results in any of the data sets despite it is ranked second in overall ranks (see Table 4.19) 

before FDLEC (CART+CART). One possible interpretation of this result is that SVM 

which achieved the best single classifier could maintain its dominant position while other 

classifiers especially ANN apparently could not gain much accuracy in the first layer to 

outperform SVM. In addition, in the second layer and since we have binary features (zeros 

and ones), CART seems more efficient than other classification algorithms in handling 

this type of feature variables (categorical variable).   
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Table 4.18: Average accuracy rates of the three best feature-based dual-layer 
ensemble classification method 

 

 

 

Figure 4.14: The best accuracy rates among the feature-based dual-layer 
ensemble classification methods 
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Modality Datasets  Target FDLEC 
CART+CART 

FDLEC 
SVM+CART 

FDLEC 
SVM+SVM 

Peripheral data 
Peri-Valence 62.0313 69.22 67.34 
Peri-Arousal 66.2675 70.78 67.58 
Peri-Liking 65 72.89 69.45 

EEG Data 
EEG-Valence 66.4844 68.20 66.56 
EEG-Arousal 65.7031 66.09 65.78 
EEG-Liking 70.7969 67.97 66.33 

 Peripheral & EEG data 

(Peri+EEG)-
Valence 69.375 66.56 66.72 
(Peri+EEG)-
Arousal 67.7344 68.36 66.17 
(Peri+EEG)-
Liking 71.0156 71.64 68.75 
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Figure 4.15: Average ranking scores of the feature-based dual-layer ensemble 
classification methods over the three modalities 

Table 4.19: Average ranking scores of the feature-based dual-layer ensemble 
classification methods over the three modalities 

Dataset Peripheral data EEG Data 
 Peripheral & 

EEG data 
Method 
Ranking 

Score Method/Target V A L V A L V A L 
FDLEC CART+CART 10.5 6 11 4 3 1 1 2 2 4.500 
FDLEC CART+ANN 8 4 7 11.5 8 4 13 3 10 7.611 
FDLEC CART+LDA 5 10 8 11.5 10 13 7 9 16 9.944 
FDLEC CART+SVM 7 3 2 10 6 2 3 4 9 5.111 
FDLEC ANN+CART 16 16 15 16 15 15 15 16 13 15.222 
FDLEC ANN+ANN 15 13 9 15 13 14 16 13 15 13.667 
FDLEC ANN+LDA 4 5 5 5.5 11 3 9 7 6.5 6.222 
FDLEC ANN+SVM 10.5 7 13 8.5 7 8.5 8 5 6.5 8.222 
FDLEC LDA+CART 14 12 10 8.5 4 12 10 11 11 10.278 
FDLEC LDA+ANN 13 14 16 14 12 10 12 12 12 12.778 
FDLEC LDA+LDA 12 15 14 7 16 16 6 14 14 12.667 
FDLEC LDA+SVM 9 8 12 13 5 6 14 10 3 8.889 
FDLEC SVM+CART 1 1 1 1 1 7 5 1 1 2.111 
FDLEC SVM+ANN 3 11 4 5.5 14 11 11 15 8 9.167 
FDLEC SVM+LDA 6 9 6 2 9 5 2 8 5 5.778 
FDLEC SVM+SVM 2 2 3 3 2 8.5 4 6 4 3.833 
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Figure 4.16: Testing accuracy rates of feature-based dual-layer ensemble 
classification methods on Valence, Arousal and liking with peripheral modality 

 

Table 4.20: Testing accuracy rates of feature-based dual-layer ensemble 
classification methods on Valence, Arousal and liking with peripheral modality 

Method/Target Peri-Valence Peri-Arousal Peri-Liking 
FDLEC CART+CART 62.0313 66.2675 65 
FDLEC CART+ANN 62.9677 67.1875 67.253 
FDLEC CART+LDA 66.1719 64.5313 66.3281 
FDLEC CART+SVM 63.4375 67.3438 71.093 
FDLEC ANN+CART 58.4375 58.6719 62.1875 
FDLEC ANN+ANN 59.2969 60.3906 65.4688 
FDLEC ANN+LDA 66.5625 66.4063 68.4375 
FDLEC ANN+SVM 62.0313 65.8594 63.9063 
FDLEC LDA+CART 59.9219 63.0469 65.2344 
FDLEC LDA+ANN 60.3125 60.2344 61.875 
FDLEC LDA+LDA 61.0156 60 62.4219 
FDLEC LDA+SVM 62.8906 65.7031 64.5313 
FDLEC SVM+CART 69.2188 70.7813 72.8906 
FDLEC SVM+ANN 67.313 64.375 69.1406 
FDLEC SVM+LDA 65.5469 65.3125 68.2031 
FDLEC SVM+SVM 67.3438 67.5781 69.4531 
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Figure 4.17: Testing accuracy rates of feature-based dual-layer ensemble 
classification methods on Valence, Arousal and liking with EEG modality 

Table 4.21: Testing accuracy rates of feature-based dual-layer ensemble 
classification methods on Valence, Arousal and liking with EEG modality 

Method/Target EEG-Valence EEG-Arousal EEG-Liking 
FDLEC  CART+CART 66.4844 65.7031 70.7969 
FDLEC  CART+ANN 62.8115 64.6094 68.6719 
FDLEC  CART+LDA 62.8115 62.3438 62.3438 
FDLEC  CART+SVM 63.5156 65.0781 70.7813 
FDLEC  ANN+CART 58.0469 58.9063 61.3281 
FDLEC  ANN+ANN 58.9844 59.6094 62.1875 
FDLEC  ANN+LDA 66.25 62.1094 69.1406 
FDLEC  ANN+SVM 64.1406 64.8438 66.3281 
FDLEC  LDA+CART 64.1406 65.4688 63.9063 
FDLEC  LDA+ANN 60.1563 61.1719 65.4688 
FDLEC  LDA+LDA 65.9375 56.5625 59.5313 
FDLEC  LDA+SVM 62.6563 65.3906 68.2813 
FDLEC  SVM+CART 68.2031 66.0938 67.9688 
FDLEC  SVM+ANN 66.25 59.375 64.1406 
FDLEC  SVM+LDA 67.2656 64.5313 68.5938 
FDLEC  SVM+SVM 66.5625 65.7813 66.3281 
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Figure 4.18: Testing accuracy rates of feature-based dual-layer ensemble 
classification methods on Valence, Arousal and liking with (Peripheral+EEG) 

modalities 

 

Table 4.22: Testing accuracy rates of feature-based dual-layer ensemble 
classification methods on Valence, Arousal and liking with (Peripheral+EEG) 

modalities 

Method/Target (Peri+EEG) Valence (Peri+EEG) Arousal (Peri+EEG) Liking 
FDLEC  CART+CART 69.375 67.7344 71.0156 
FDLEC  CART+ANN 63.7 67.5 66.4844 
FDLEC  CART+LDA 66.0938 65 60.8594 
FDLEC  CART+SVM 67.8906 66.3281 67.3438 
FDLEC  ANN+CART 61.875 58.2031 62.9687 
FDLEC  ANN+ANN 60.0781 62.0313 62.0313 
FDLEC  ANN+LDA 65.8594 65.4688 67.9688 
FDLEC  ANN+SVM 65.9375 66.25 67.9688 
FDLEC  LDA+CART 65.2344 63.125 64.375 
FDLEC  LDA+ANN 64.0625 62.5 63.0469 
FDLEC  LDA+LDA 66.25 60.2344 62.2656 
FDLEC  LDA+SVM 63.5938 64.1406 69.375 
FDLEC  SVM+CART 66.5635 68.3594 71.6406 
FDLEC  SVM+ANN 64.4531 60.1563 67.8906 
FDLEC  SVM+LDA 69.2969 65.3125 68.5156 
FDLEC  SVM+SVM 66.7188 66.1719 68.75 
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- Experiment 3(cont.): 

4.4 Comparison between feature-based dual-layer ensemble classification 

methods and other classifiers 

Table 4.23 and Figure 4.19 show the average ranking results of the best classifiers 

taken from three different categories. The first category which represents single classifiers 

includes four classifiers, namely, CART, ANN, LDA, and SVM. The second category is 

represented by five feature-based multi-classifier methods that received the best results. 

These methods are: ANN+fisher, ANN+jmi, ANN+mim and SVM+fisher. The last 

category includes the following three best feature-based dual-layer ensemble 

classification (FDLEC) methods: CART+CART, SVM+CART, and SVM+SVM. 

Random Forest (RF) which is a well-known ensemble classifier is also included for 

comparison purpose.  

The results show that the three FDLEC methods achieved the best results followed by 

Random Forest, and then feature-based multi-classifier methods. The single classifiers 

received the lowest accuracy rates compared to other methods. In addition, FDLEC 

(SVM+CART) is the best method among all the compared methods.  

As we expected and based on the finding from literature review, the results also 

illustrated that using feature selection method generally has a positive effect on the 

classification accuracy rate of the recognition system compared to the approach of not 

using a feature selection method. In addition, the results proved that the proposed FDLEC 

method, which works based on a combination of first and second layer classifiers 

(stacking ensemble strategy) for an emotion prediction has obtained better classification 

accuracy rate compared to the use of a single feature selection in our tested feature-based 

multi-classifier methods. This result could be expected since the physiological data 

considered as high dimensional data and using multiple feature ranking methods in the 
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first layer (base level) of the proposed ensemble classification technique provided more 

diverse feature subsets and thus more accurate classification  models in the first layer, and 

by using  stacking ensemble strategy, the ensemble classifier can further learn, in the 

second layer, the behavior of first-layer classification methods and so  it can successfully 

recognize which classifiers of the first layer are reliable to be used for final prediction 

result (Santana & Canuto, 2014).   Eventually, the proposed ensemble method provided 

better classification accuracy compared to using feature-based multi-classifier methods 

that employed single feature selection method.  

To compare the proposed FDLEC method with another kind of ensemble algorithms, 

the Random Forest (RF) method which is one of the most successful and powerful 

ensemble methods that works based on a bagging algorithm and exhibited performance 

comparable to the level of boosting (Robnik-Šikonja, 2004), was selected. The obtained 

results showed that the proposed FDLEC method could also outperform the RF.  
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Table 4.23: Average ranking scores of the best classifiers taken from three different categories 

Dataset Peripheral data EEG Data  Peripheral & EEG data Average Method 
Ranking Score Method/Target V A L V A L V A L 

CART 56.56 58.83 57.66 58.44 56.80 60.08 58.91 58.20 59.38 11.556 

ANN 57.97 58.28 60.47 58.91 59.53 61.56 59.92 54.22 59.53 10.889 

LDA 58.98 58.75 60.00 63.83 57.11 60.00 65.08 59.45 61.64 10.111 

SVM 54.22 64.69 63.13 52.89 62.58 65.16 53.13 62.19 64.92 8.944 

RF 62.34 63.59 65.00 65.00 62.19 65.39 67.03 63.60 66.09 5.500 

ANN+Fisher 62.11 63.44 64.22 66.33 62.50 66.02 66.56 65.00 65.47 5.667 

ANN+Jmi 60.47 63.28 63.75 63.59 63.59 66.17 64.61 61.95 64.14 7.278 

ANN+mim 62.42 62.42 62.66 63.28 63.59 64.69 64.77 63.75 63.75 7.500 

SVM+fisher 55.94 64.77 62.66 53.20 62.97 66.56 53.20 63.75 64.84 7.778 

SVM+t-test 53.44 62.58 63.83 49.38 62.66 66.64 51.56 61.88 64.92 8.944 

  FDLEC 
CART+CART 62.03 66.268 65 66.48 65.7 70.8 69.38 67.73 71.02 2.722 

  FDLEC 
SVM+CART 69.22 70.78 72.89 68.20 66.09 67.97 66.56 68.36 71.64 1.444 

  FDLEC 
SVM+SVM 67.34 67.58 69.45 66.56 65.78 66.33 66.72 66.17 68.75 2.667 
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Figure 4.19: Average ranking scores of the best classifiers taken from three 
different categories 

To evaluate the improvement made by using the proposed method, we plot Figure 4.20 

to Figure 4.22 that represent the best accuracy recognition of valence, arousal, and liking 

achieved by different classification methods using peripheral, EEG and 

(Peripheral+EEG) modalities, respectively.                                                                                                                                      

Compared to the best single classifiers, feature-based dual-layer ensemble classification 

methods have improved the accuracy between 5.62% and 17.36%.  
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Figure 4.20: The best testing accuracy rates of each of the three categories for 
peripheral modality 

 

 

 

 

Figure 4.21: The best testing accuracy rates of each of the three categories for 
EEG modality 
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Figure 4.22: The best testing accuracy rates of each of the three categories for 
(Peripheral +EEG) modalities 
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4.4.1 Physiological modalities performance comparison for emotional state 

recognition 

To check which of the modalities is probably better to use to detect a certain 

emotional state, an average ranking score of the three modalities for valence, arousal and 

liking recognition using classification accuracy rates of the best performed classifiers 

from previous experiments are calculated. The Table 4.24 to Table 4.26 shows the 

average ranking scores that were calculated. These results confirmed the early conclusion 

from benchmark experiments (see Section 4.1.2) that combining the two modalities is 

better to employ if the objective is to recognize valence while arousal and liking are best 

recognized by using peripheral and EEG modalities, respectively. 
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Table 4.24: Average ranking score of the three modalities for valence recognition 

Modality/Classification 
technique CART ANN LDA SVM RF ANN+Fisher ANN+Jmi ANN+mim SVM+fisher SVM+t-test FDLEC 

CART+CART 
FDLEC 

SVM+CART 
FDLEC 

SVM+SVM 

Avg. 
Ranking 

Score 

Peripheral 
Modality 3 3 3 1 3 3 3 3 1 1 3 1 1 2.23 

EEG Modality 2 2 2 3 2 2 2 2 2.5 3 2 2 3 2.27 
(Peripheral+EEG) 
Modalities  1 1 1 2 1 1 1 1 2.5 2 1 3 2 1.5 

 

 

Table 4.25: Average ranking score of the three modalities for arousal recognition 

Modality/Classification 
technique CART ANN LDA SVM RF ANN+Fisher ANN+Jmi ANN+mim SVM+fisher SVM+t-test FDLEC 

CART+CART 
FDLEC 

SVM+CART 
FDLEC 

SVM+SVM 

Avg. 
Ranking 

Score 

Peripheral 
Modality 1 2 2 1 2 2 2 3 1 2 2 1 1 1.7 

EEG Modality 3 1 3 2 3 3 1 2 3 1 3 3 3 2.39 
(Peripheral+EEG) 
Modalities   2 3 1 3 1 1 3 1 2 3 1 2 2 1.93 
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Table 4.26: Average ranking score of the three modalities for liking recognition 

Modality/Classification 
technique CART ANN LDA SVM RF ANN+Fisher ANN+Jmi ANN+mim SVM+fisher SVM+t-test FDEC 

CART+CART 
FDEC 

SVM+CART 
FDEC 

SVM+SVM 

Avg. 
Ranking 

Score 
Peripheral Modality 3 2 2.5 3 3 3 3 3 3 3 3 1 1 2.58 
EEG Modality 1 1 2.5 1 2 1 1 1 1 1 2 3 3 1.58 
(EEG+Periphera) 
Modalities  2 3 1 2 1 2 2 2 2 2 1 2 2 1.85 
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- Experiment 3(cont.): 

4.5 Comparison between classifiers using Statistical method 

In this section, we check whether the difference in classification accuracy rates 

between the proposed method, FDLEC (SVM+CART), which achieved the best average 

ranks and some classifiers which received the best results, is statistically significant or 

not. These classifiers which we call them “selected classifiers” include the following 

methods: 

- The four benchmark single classifiers (see Section 4.1). 

- The four best feature-based multi-classifier methods (see Section 4.2) 

- The three best feature-based dual-layer ensemble classification methods including 

the FDLEC (SVM+CART) (see Section 4.3).  

- Random Forest as a benchmark ensemble classifier. 

 Based on the recommendation made by (Demsar, 2006), we apply Wilcoxon signed 

ranks test (see Section 3.8.2.3) separately between the proposed method, FDLEC 

(SVM+CART) and each of the selected classifiers.  

Based on the table of exact critical values for the Wilcoxon’s test, for a confidence 

level of α = 0.05 and N = 9 data sets, the difference between the classifiers is significant 

if T = min (R+, R −) is equal or less than 6. Table 4.27 depicts the calculated values for 

R+, R − and T. 𝑅+ is the sum of ranks for the datasets where the second algorithm 

outperformed the first and 𝑅−  is the sum of ranks where the first algorithm performs 

better than second one. To compare the performance of the selected algorithms with that 

of our proposed method, 9 data sets are used. The first algorithm is our proposed FDLEC 

(SVM+CART) and the second algorithms are each selected benchmark classifiers as 

shown in Table 4.27.  It can be seen that, the value of T is either 0 or 1 and so less than 

6, which means the null hypothesis is rejected for all the selected classifiers. We can say 
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also that the p-value of all comparison was less than 0.05 and thus FDLEC (SVM+CART) 

is significantly better than all the selected classifiers.   

Table 4.27: Results obtained by Wilcoxon test for feature-based dual-layer 
(SVM+CART) algorithm 

Versus Classification Method R+ R − Exact P-
value T 

CART 45 0 0.003906 0 
ANN 45 0 0.003906 0 
LDA 45 0 0.003906 0 
SVM 45 0 0.003906 0 
RF 44 1 0.007812 1 
ANN+Fisher 36 0 0.007812 0 
ANN+Jmi 45 0 0.003906 0 
ANN+mim 45 0 0.003906 0 
SVM+fisher 45 0 0.003906 0 
SVM+t-test 45 0 0.003906 0 
FDLEC CART+CART 44 1 0.007812 1 
FDLEC SVM+SVM 44 1 0.007812 1 

 

4.6 Comparison between existing works 

As it was mentioned in conclusion section of chapter 2, making a comparison between 

classification accuracy rates of different studies associated with physiological-based 

emotion recognition systems is not an easy task. One of the main reasons behind this 

difficulty is that different studies usually apply their own specific experimental setups 

like the selection of the type of the extracted features from the signals (e.g. frequency-

based features, time-based features and etc.) and the calculation method of a particular 

feature. In this study, since the values of each feature was not provided by the developers 

of DEAP dataset, we develop our own code to calculate these features. Therefore, the 

comparison of accuracy rates obtained by the present study with similar studies may not 

be fair. But we prefer to include this comparison, which compares our results with the 

studies that use the same data set, as it can be useful for this area of research.  
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The comparison of various studies that used the same data set is given in Table 4.28 

and its related Figure 4.23-26. Most of the studies have only used EEG data modality in 

their experiments. The developer of  DEAP data set, (Koelstra et al., 2012), reported 

62.00%, 57.60% and 55.4% (for arousal, valence and liking, respectively) accuracies 

using EEG modality and 57%, 62.7% and 59.1% (for arousal, valence and liking, 

respectively) using peripheral modality using Gaussian Bayes classifier. Since, our 

research study has tried to follow the same experimental setups and calculate the same 

physiological features as proposed by Koelstra et al. (2012), comparing results of their 

methods to that of our proposed method for arousal, valence and liking recognition (EEG: 

66.09%, 68.20% and 68% for arousal, valence, and liking, respectively) and (Peripheral: 

70.78%, 69.22% and 72.89% for arousal, valence and liking, respectively) proves the 

soundness and efficiency of our proposed system. 

The achieved classification accuracy rates reported by (Naser & Saha, 2013) is 66.20% 

and 64.30%, (Clerico et al., 2015) is 66% and 61%, (Y. Liu & Sourina, 2012) is 76.51% 

and 50.80% for arousal and valence recognition, respectively. Liking recognition was 

tested by (Naser & Saha, 2013) and (Clerico et al., 2015) with accuracy rates of 70.2% 

and 62%, respectively. Regarding Liu and Sourina (2012), it was found that the reported 

high accuracy of 76.51% for arousal recognition, this is due to the combination of arousal 

and dominance dimensions together rather than considering arousal dimension only. 

Based on the reviewed similar studies, it is shown that the performance of our proposed 

feature-based dual-layer ensemble classification method is good and competitive with 

similar studies. Based on Table 4.28, Figure 4.23, 4.24 and 4.25 depict the comparison of 

accuracy rates obtained by present study and three similar studies that used the same data 

set for Arousal, Valence and Liking recognition using EEG modality respectively. The 

comparison of accuracy rates of present study and a benchmark study for Arousal, 

Valence and Liking recognition using peripheral modality is also shown in Figure 4.26. 

Univ
ers

ity
 of

 M
ala

ya



 

169 

 

Table 4.28: Accuracy rates comparison of five similar studies 

 

Study Modality/Type 
of extracted 

features 

Feature 
Selection 

Classifier Accuracy Rates 

(Koelstra 
et al., 
2012) 

Peripheral and 
EEG 

  

Fisher’s linear 

discriminant 

Gaussian 

Naïve Bayes 

EEG: 
Arousal (62%) 
Valence (57.6%) 
Liking (55.4%) 
 
Peripheral: 
Arousal (57%) 
Valence (62.7%) 
Liking (59.1%) 

(Naser & 
Saha, 
2013) 

EEG 

 

Singular value 
decomposition 
(SVD), QR 
factorization 
with column 
pivoting 
(QRcp) and 
F-ratio based 
method 

SVM EEG: 
Arousal (66.2%) 
Valence (64.3%) 
Liking (70.2%) 

(Liu & 
Sourina, 
2012) 

EEG 

  

- SVM EEG: 
Arousal (76.51%) 
Valence (50.8%) 
 

(Clerico et 

al., 2015) 

EEG 

 

Minimum 
redundancy 
maximum 
relevance 
algorithm 

SVM EEG: 
Arousal (66%) 
Valence (61%) 
Liking (62%) 

Present 
Study 

Peripheral, 
EEG and 
combination 
of EEG& 
Peripheral 
 
 

Combination 
of 10 feature 
ranking 
methods 

Feature-based 
Dual-layer 
ensemble 
classification 
method 

FDLEC 
(SVM+CART) 

EEG: 
Arousal (66.09%) 
Valence (68.20%) 
Liking (68%) 
 
Peripheral: 
Arousal (70.78%) 
Valence (69.22%) 
Liking (72.89%) 
 
Combination: 
Arousal (68.36%) 
Valence (66.56%) 
Liking (71.64%) 
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Figure 4.23: The comparison of testing accuracy rates of the present study and 
three other similar studies for Arousal recognition using EEG modality 

 

 

Figure 4.24: The comparison of testing accuracy rates of the present study and 
four other similar studies for Valence recognition using EEG modality 
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Figure 4.25: The comparison of testing accuracy rates of the present study and 
four other similar studies for Liking recognition using EEG modality 

 

 

Figure 4.26: The comparison of testing accuracy rates of the present study and a 
benchmark study for Arousal, Valence and Liking recognition using Peripheral 

modality 
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4.7 Conclusion 

This chapter reported the results of the proposed method and compare it with other 

benchmark classification methods. In addition, several analyses were conducted to study 

the effect of using a specific type of modality on the performance of the emotion 

recognition system. Furthermore, the benefits of using feature selection methods on the 

overall classification accuracy of the emotion recognition system were examined. Finally, 

the statistical test showed that the proposed method is significantly better than the 

benchmark classifiers considered in this study.  
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CHAPTER 5: CONCLUSIONS 

The main objective of this research is to propose a classification method to improve 

the performance accuracy of physiological-based emotion recognition system. This 

chapter summarizes the overall work carried out by this research. First, the research 

objectives defined in chapter 1 are revisited. Second, the research contributions are 

presented. Third, some limitations of this research are discussed and finally, the 

recommendations for future direction are provided. 

5.1 Research objectives revisited  

This section revisits the accomplishments of the research objectives defined in this 

research 

5.1.1 Research objective 1  

The first objective is to identify most used feature selection and classification 

methods and its related issues in designing the existing physiological-based emotion 

recognition systems. This objective is achieved with the analysis of literature in Chapter 

2. There are two research questions that need to be answered for this objective. They are: 

RQ1: What are the most utilized feature selection and classification methods in 

the design of the current emotion recognition systems based on the physiological 

signals?  

 

       RQ2: What are the most prominent limitation and challenges of the current 

emotion recognition systems based on the physiological signals?  

The RQ1 is answered in Chapter 2 based on the analysis of findings from Table 2.2 to 

Table 2.8. There are varieties of feature dimension reduction techniques that have been 

used in physiological-based emotion recognition systems. Some of the commonly used 
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methods are wrapper feature selection methods such as SFS, SBS, SFFS. PCA, and 

Fisher’s projection techniques, as well as filter-based feature section methods like feature 

ranking methods. The most utilized single classifiers used by researchers to develop 

physiological-based emotion recognition systems are: LDA, CART, ANN, and SVM. In 

some studies, also the well-known types of ensemble classification methods like bagging 

and boosting are applied. 

For RQ2, as we explained in details in Section 2.7.1.6, the feature dimension reduction 

methods used in designing emotion recognition system has the following issues. First of 

all, the limitation of wrapper feature selection methods is being time-consuming and 

overly specific to the classifier used. The main limitations of PCA and Fisher’s projection 

techniques are, including, (1) they do not guarantee to offer superior correlation with 

emotional states of the subjects than primary features and (2) the new set of features do 

not have physical meaning, which results in the lack of the system’s interpretation. 

Feature ranking techniques as feature selection methods, are fast, but the use of only one 

feature ranking method, as it is commonly used, may result in a sub-optimal solution. One 

suggested solution is to use more than one feature ranking method to increase the chance 

to choose the optimal feature set. Ensemble classification methods which have 

encouraging results in other fields, have been underutilized in physiological-based 

emotion recognition systems despite. The main advantage of these techniques is their 

ability to achieve better results than benchmark single classifiers. 

5.1.2 Research objective 2 

The second objective is to design and develop a feature-based dual-layer ensemble 

classification method to improve the accuracy rate of physiological-based emotion 

recognition system. The related research question designed for this objective is: 
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RQ3: How can we design an improved classification method to enhance the 

classification accuracy rate of the existing emotion recognition systems? 

Based on the limitation identified through the literature review of the existing emotion 

recognition systems based on physiological signals (objective #1), we found that 

proposing a classification technique based on a combination of feature ranking methods 

and using them in stacking ensemble classification strategies can enhance classification 

accuracy of physiological-based emotion classification system. Utilizing feature selection 

methods for ensembles has demonstrated to be a helpful strategy for ensemble 

development, because of its ability to provide more robust and diverse feature subsets that 

eventually increases the classification accuracy of the ensemble method. The feature 

ranking methods used in our proposed methods all are filter-based feature selection 

methods. The advantage of this types of feature selection methods is fast and classifier-

independent. Thus, they impose less computational cost to the system, which makes them 

more suitable to be utilized in the proposed method. Additionally, the feature ranking 

selected are among the best performing feature ranking methods that have proved their 

performance in another field of studies (Brown et al., 2012). The single classifiers chosen 

to be used in our proposed method are LDA, ANN, SVM, and CART, which are among 

the well-known single classifiers that have been employed in most of the physiological-

based emotion recognition systems. 

5.1.3 Research objective 3 

The third objective is to evaluate the classification accuracy of the proposed dual-

layer ensemble classification method by comparing with the benchmark classification 

methods using statistical analysis. To evaluate achievement of this objective, four 

research questions are defined: 
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RQ4: How the classification accuracy rate of emotion recognition systems is 

affected by using different data modalities?  

RQ5: How the classification accuracy rate of emotion recognition systems is 

affected by using benchmark classification methods combined with feature 

selection methods as compared to the same classification methods without the 

feature selection methods?  

RQ6: Will the proposed classification have better classification accuracy as 

compared to other classification methods?  

RQ7: Can the proposed classification method achieve significant improvement 

over the other methods? How can we prove that statistically?  

The answers for RQ4 are summarized in the following points: 

 There is no single type of modality that is suitable for all the classifiers. 

 SVM achieved the best results when it uses Peripheral modality while EEG is 

more suitable for ANN. The combination of the two modalities (Peripheral + 

EEG) enables LDA and CART to achieve their best accuracies. 

 Combining the two modalities, namely, peripheral and EEG, is better to 

employ if the objective is to recognize valence, while arousal and liking are 

best recognized by using peripheral and EEG modalities, respectively. 

 SVM seems to be the best classifier to use for Peripheral modality. For EEG, 

the best classifier is shared by SVM and ANN while LDA is the suitable 

classifier to be used when EEG and Peripheral modalities are combined. 

The answers for RQ5 are summarized in the following points: 

 For single classifiers, SVM achieved the best classification method to be used 

for developing emotion recognition system.  Another alternative to SVM can 
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be LDA and ANN, which achieved comparable results in most cases. CART is 

generally the worst among the four classifiers. 

 While SVM performed well on liking and arousal, it is the worst classifier for 

recognizing the valence for all modalities. Despite being a stable and powerful 

classifier, SVM could not be consistent in all the emotional states recognition. 

This may reveal one drawback of using single classifier for automatic human 

emotion recognition system, which is the consistency 

 There is no single feature selection method which is suitable for all the feature-

based multi-classifier methods and all modalities. 

 There are some feature selection methods, which frequently achieved the best 

results such as Fisher, Relief, and Condred. 

 Fisher method worked relatively well with ANN (6 out of 9 cases) and 

somewhat with SVM (4 out 9 cases). In addition, Icap and Relief can be 

suitable feature selection candidates to be used with CART. 

 Feature selection methods have positively contributed to the improvement of 

multi-classifier methods compared to single classifiers. 

 ANNs which is benefited the most after applying feature selection method 

gaining between 4.45% and 7.79% followed by CART between 1.54% to 

3.41%. SVM gained the least among the classifiers between 0.83% to 0.91% 

behind LDA which gained between 1.25% and 1.98%.   

 The result confirms previous findings, which stated that CART and ANNs are 

unstable classifiers, and thus are suitable for ensemble methods. 

 Feature selection methods have a positive impact on both the accuracy and 

computational cost. 

The answers for RQ6 are summarized in the following points: 
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 The best feature-based dual-layer ensemble classification (FDLEC) methods 

are based on SVM+CART, followed by SVM+SVM, and then CART +CART. 

 FDLEC method based on SVM+CART method dominates the results by 

achieving the best accuracy rate in 7 data sets out of 9 while FDLEC (CART 

+CART) achieved the best results in 2 data sets out of 9. 

 FDLEC (SVM+CART) method is the best method among all the compared 

methods. 

 Compared to the best single classifiers, the proposed feature-based dual-layer 

ensemble classification methods have improved the accuracy between 5.62% 

and 17.36%.  

The answer for RQ7: 

 Based on the Wilcoxon signed ranks test, FDLEC (SVM+CART) is 

significantly better than all the selected classifiers.   

5.2 Research Contribution 

The current study contributes to the fields of emotion recognition by proposing an 

improved classification method that can be used for enhancing the quality of emotion 

recognition system based on physiological signals. The main contributions of this study 

can be summarized in the following points: 

 Analyse the accuracies of various classification methods with different 

modalities and feature selection methods in order to understand the effect of 

each component on the overall performance of the emotion recognition 

system. 

 Analyse the performance of the emotion recognition system using different 

single and feature-based multi-classifier methods. 
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 Propose a design for a classification method called feature-based dual-layer 

ensemble classification (FDLEC) method that combines 10 different feature 

ranking techniques and used dual-layer ensemble classification model to 

improve the classification prediction.  

5.3 Research Limitation 

 Difficulties in comparison of classification accuracies between existing studies 

and this research: 

The comparison between accuracy results obtained by our proposed 

classification method and the results achieved by other researchers in the 

literature is somewhat challenging. Physiological data can be influenced by 

many variables such as emotion stimuli, subject physical exertion, environment 

temperature range and inter-subject variations in physiology. In addition, 

comparing classification accuracies using the same physiological data set can 

be valid only if the comparison used the same experimental setups, which 

includes, for example applying the same cross-validation technique for 

estimating the classification accuracy rate, and the same feature selection 

methods for feature reduction as well as having the same extracted features’ 

values are expected. 

 Human error in feature extraction process: 

  Normally, in the existing physiological data sets for emotion recognition, the 

creators of data sets either do not provide exact name of extracted features or, 

do not provide its feature extraction code or calculated values. Thus, this 

requires each researcher to develop their own code for feature extraction from 

physiological data. Although this research has considered all the necessary 
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steps to calculate accurate values for different features, it is not guaranteed that 

human errors have been eradicated. 

 

5.4 Suggestions for future works 

Here are some possible ways to extend and improve this work: 

- The proposed classification method can be used or tested on other emotion 

databases or even on other medical diagnosis problems that use physiological data. 

In fact, there are some other physiological data sets for emotion recognition like 

MAHNOB or DECAF that the proposed feature-based dual-layer ensemble 

classification method can be tested on them to study and compare the emotion 

recognition accuracy performance. There are also some medical applications that 

employ subject physiological data to detect level of physiological impairment, so 

the proposed method also can be applied to detect different level of impairment.  

- Other feature ranking methods reviewed in the literature can be used in addition to 

the 10 feature ranking methods selected in this study. The new method of feature 

ranking can be added to the existing set of feature ranking methods, so it will be 

11 feature ranking methods in the proposed feature-based dual layer ensemble 

classification method or a new method can be replaced with one or more existing 

feature ranking methods in our proposed method to test their efficiency in 

maximizing the accuracy of physiological-based emotion recognition system. 

- The proposed classification method can be tested on other pattern recognition 

problems to evaluate its efficiency and possible use. For this purpose, standard 

data sets from other field of research can be selected and test the proposed 

classification method on those data sets to study  the efficiency of our proposed 

method using other kind of data except physiological data. 
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APPENDIX A: THE SAMPLES OF CODE USED FOR FEATURE EXTRACTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 1: The MATLAB code developed for EEG signal feature extraction 

 

 

 

 

clc 
clear all 
close all 

 

for m=1:32  %Subjects 

     
if m<10 
loadfile=strcat('D:\emotion 

databses\data_preprocessed_matlab_DEAP\s0',int2str(m),'.mat');  
else 
loadfile=strcat('D:\emotion 

databses\data_preprocessed_matlab_DEAP\s',int2str(m),'.mat');  
end 

  
DEAP = load(loadfile); 
for n=1:40 %#Viedos 
    for nn=1:32 %EEG channels 

         
        R1(1,:)=DEAP.data(n,nn,:); 

         
        % plot(R1) 

         
        %% 
        fs=128;   % Sample rate 
        L=8;    % Order of Filter 
        fl=1;    % low cut_off frequency 
        fh1=60;   % high cut_off frequency 
        L2=20; 
        f2=48; 
        fh2=52; 
        d1 = fdesign.bandpass('N,F3dB1,F3dB2',L,fl,fh1,fs); 
        Hd1 = design(d1,'butter'); 
        filted_data = filter(Hd1,R1);    %bandpass filter (EEG 

frequency rang) 
        d2 = fdesign.bandstop('N,F3dB1,F3dB2',L2,f2,fh2,fs); 
        Hd2 = design(d2,'butter'); 
        EEG_data=filter(Hd2, filted_data);   %bandstop filter (notch) 

         
      %  hold on, plot(EEG_data,'r') 

         
        wlen=ceil(fs*1.024); 
        nfft=wlen; 
        h=ceil(0.75*wlen); 
        [stft1, f, t] = stft(R1, wlen, h, nfft, fs); 
        a_stft1=abs(stft1); 
        %         figure, surf(t,f,a_stft1) 
        dd_stft1(n,nn,:,:)=a_stft1(:,:); 
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Figure A. 1: The MATLAB code developed for EEG signal feature extraction (contd) 

 

s_theta=5; 
        e_theta=9; 
        psd_theta1(n,nn)=sum(sum 

(dd_stft1(n,nn,s_theta:e_theta,:))/(f(e_theta)-f(s_theta))); 

         

         
        s_alpha=9; 
        e_alpha=13; 
        psd_alpha1(n,nn)=sum(sum 

(dd_stft1(n,nn,s_alpha:e_alpha,:))/(f(e_alpha)-f(s_alpha))); 

         

         
        s_alpha_slow=9; 
        e_alpha_slow=11; 
        psd_slwalpha1(n,nn)=sum(sum 

(dd_stft1(n,nn,s_alpha_slow:e_alpha_slow,:))/(f(e_alpha_slow)-

f(s_alpha_slow))); 

         

         
        s_beta= 13; 
        e_beta= 32; 
        psd_beta1(n,nn)=sum(sum 

(dd_stft1(n,nn,s_beta:e_beta,:))/(f(e_beta)-f(s_beta))); 

         

         
        s_gamma= 32; 
        e_gamma= 64; 
        psd_gamma1(n,nn)=sum(sum 

(dd_stft1(n,nn,s_gamma:e_gamma,:))/(f(e_gamma)-f(s_gamma))); 

         
    end 
end 

  
%% 
d=0; 
e=[1:12 14 15 30:-1:19 18 17]; 
for i=1:40 
    for b=1:14 

                          
% power assymetry (subtracting) 
psd_theta2(i,b)=sum(sum (dd_stft1(i,e(b),s_theta:e_theta,:)-

dd_stft1(i,e(b+14),s_theta:e_theta,:))/(f(e_theta)-f(s_theta))); 
psd_alpha2(i,b)=sum(sum (dd_stft1(i,e(b),s_alpha:e_alpha,:)-

dd_stft1(i,e(b+14),s_alpha:e_alpha,:))/(f(e_alpha)-f(s_alpha))); 
psd_beta2(i,b)=sum(sum (dd_stft1(i,e(b),s_beta:e_beta,:)-

dd_stft1(i,e(b+14),s_beta:e_beta,:))/(f(e_beta)-f(s_beta))); 
psd_gamma2(i,b)=sum(sum (dd_stft1(i,e(b),s_gamma:e_gamma,:)-

dd_stft1(i,e(b+14),s_gamma:e_gamma,:))/(f(e_gamma)-f(s_gamma))); 

  
 end  
end 
temp_feature_table = 

cat(2,psd_alpha1,psd_alpha2,psd_alpha3,psd_slwalpha1,psd_beta1,psd_beta

2,psd_beta3,psd_gamma1,psd_gamma2,psd_gamma3,psd_theta1,psd_theta2,psd_

theta3);          
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Figure A. 2: The MATLAB code developed for GSR signal feature extraction 

 

function [M1, 

MD,Mean_neg_dev,pnsd,number_localmin,spectral_p,scsr,mean_peak_SCSR,scv

sr,mean_peak_SCVSR,GSR_power1,GSR_power2,GSR_power3,GSR_power4,GSR_powe

r5,GSR_power6,GSR_power7,GSR_power8,GSR_power9,GSR_power10,GSR_Totalpow

er] = GSR_feats(x) 
DEAP = load(x); 
y(: ,: )=DEAP.data(: ,37,:  ) ; 
x1=0;  
x2=1; 
for i=1:size(y,1) 
Average_number=50;    %number of data for averaging 
% if your data is so noisy, you can increase Average_number 
y1(i,:)=(smooth(y(i,:),Average_number))';  
end 
M=mean(y1,2);          %Average-method1 
for i=1:size(y1,1)    %Moshtagh 
D(i,:)=diff(y1(i,:)); 
end 
for i=1:size(y1,1)    %Average or mean  
M1(i,1)=mean(y1(i,:)); 
GSR_Median(i,1)=median(y1(i,:)); %not compulsory 
GSR_IntR(i,1) = iqr(y1(i,:));    %not compulsory 
end 
MD=mean(D,2);     %Average Moshtagh 
D1=diff(y1,1,2); %mohasebe moshtagh-ravesh jadid 
p=D<0; % make flag for negative values in derivaive (D) 
for i=1:size(y1,1)    %count of of negative samples based on flag 

(0/1)in p array 
nsd(i,1)=sum(p(i,:));  
end 
for i=1:40   %calculation of proportion of negative samplesin 

derivative vs all samples 
pnsd(i,1)=nsd(i,1)/8063; 
end 
     %calculation for average of derivative for negative   samples  
Sum_neg_dev=0 
for i=1:size(D,1) 
    for j=1:size(D,2) 
if D(i,j)<0 
    Sum_neg_dev=D(i,j)+Sum_neg_dev; 
end 
    end 
    Mean_neg_dev(i,1)=Sum_neg_dev/nsd(i); %average of derivative for 

negative   samples  
    Sum_neg_dev=0; 
end 
% calculate localminimum 
for  i=1:40  
for j=1:8062  
   if (y1(i,j)>y1(i,j+1))&& (y1(i,j+1)<=y1(i,j+2)) 
      localmin(x2,1)=i; %save vector number 1...40  
      localmin(x2,2)=(j+1); %add position of localminumum 
      localmin(x2,3)=(y1(i,j+1)); %add value of each local minimum 
      x1=x1+1;  
      x2=x2+1; 
       end 
end 
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Figure A. 3: The MATLAB code developed for GSR signal feature extraction (contd) 

 

number_localmin(i,1)=x1;  %save numbers of localminimum for each vector 
x1=0; 
end 

  
%calculate spectral power in band [0-2.4] 
fs=128; 
wlen=ceil(fs*1.024/4); 
nfft=wlen; 
h=ceil(0.75*wlen); 
for k=1:40 
   all_A2=y1(k,:); 
   [stft1, f1, t1] = stft(all_A2, wlen, h, nfft, fs);  %all_A2=your 

data 
   a_stft1=abs(stft1); 
   f = fs/2*linspace(0,1,nfft/2+1); 
   t=0:30/length(t1):30-1/length(t1); 
    ss=sum(a_stft1,2); 
    ss1=0; 
    for i=1:size(ss,1)-1 
      if (ss(i+1)<= 10*ss(i)) 
          last=i+1; 
          break 
      end 
      end 
       for t=1:last 
     ss1=ss(t)+ss1; 
       end 
      ss2=ss1+(ss(last)+ss(last+1))/2; 
      ss2=ss2/2.5; 
      spectral_p(k,1)=ss2; 
      ss1=0;ss2=0;  
end 
%***Calculate power with fft 
fs=128;   % Sample rate 
time=63; 
T = 1/fs;                     % Sample time 
Le = length(y1(1,:));         % Length of signal 
tt = (0:Le-1)*T;                % Time vector 

  
for i=1:size(y1,1) 
NFFT = 2^nextpow2(Le); % Next power of 2 from length of y 
Y = fft(y1(i,:),NFFT)/2; 
ff = fs/2*linspace(0,1,NFFT/2+1); 
%Plot single-sided amplitude spectrum. 
absY(i,:)=2*abs(Y(1:NFFT/2+1)); 

       
end          
  %***Calculate 10 spectral power in the bands[0-2.4]HZ 
for i=1:size(y1,1) 
GSR_power1(i,1)=sum (absY(i,1:16)); %where between f= 0 & 0.24...check 

f vector 
GSR_power2(i,1)=sum (absY(i,17:32));%where between f= 0.24& 

0.48...check f vector 
GSR_power3(i,1)=sum (absY(i,33:47)); 
GSR_power4(i,1)=sum (absY(i,48:63)); 
GSR_power5(i,1)=sum (absY(i,64:78)); 
GSR_power6(i,1)=sum (absY(i,79:93)); 
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   Figure A. 4: The MATLAB code developed for GSR signal feature extraction (contd) 

 

GSR_power7(i,1)=sum (absY(i,94:109)); 
GSR_power8(i,1)=sum (absY(i,110:124)); 
GSR_power9(i,1)=sum (absY(i,125:139)); 
GSR_power10(i,1)=sum (absY(i,140:155)); 
GSR_Totalpower(i,1)=sum (absY(i,155)); %Calculate spectral power in the 

bands[0-2.4]HZ 
end     
  %**** calculation of zero crossing rate of skin conductance Slow 

Response(SCSR)**** 
        %make butter filter on time-based vector 
         fs=128;   % Sample rate 
         L=8;    % Order of Filter 
         fl=0.00001;    % low cut_off frequency 
         fh1=0.2;   % high cut_off frequency 
         d1 = fdesign.bandpass('N,F3dB1,F3dB2',L,fl,fh1,fs); 
         Hd1 = design(d1,'butter'); 
         for i=1:40  
         filted_data(i,:) = filter(Hd1,y1(i,:));  %make butter filter 

on the orginal time based vectors 
         p1(i,:)=filted_data(i,:)<0; %% make flag for negative values 

in signalvectors (y) 
         z=0; 
     % calculation of zero crossing rate of skin conductance 
         for j=1:size(p1,2)-1 
          if (p1(i,j)~=p1(i,j+1))  
           z=z+1; 
           crs_scsr(z,1)=i; 
           crs_scsr(z,2)=j+1;%save position of zero crossing 
           crs_scsr(z,3)=filted_data(j+1); %save related value of zero 

crossing 
          end 
         end 
          scsr(i,1)=z;     %save zero crossing rate of skin conductance 

slow response(SCSR 0-0.08) 
         end  
    %****calculate mean of peaks magnitude SCSR***  

     
      for i=1:40 
      [pks1,locs1] = findpeaks(filted_data(i,:)); 
      mean_peak_SCSR(i,1)=sum(pks1(1,:))/size(pks1,2); 
     plot(filted_data (i,:),'--r') 
     hold on, plot(locs1,pks1,'b*') 
    end 
%**** calculation of zero crossing rate of skin conductance Very Slow 

Response(SCVSR)**** 
        %make butter filter on time-based vector 
         fs=128;   % Sample rate 
         L=8;    % Order of Filter 
         fl=0.00001;    % low cut_off frequency 
         fh1=0.08;   % high cut_off frequency 
         d1 = fdesign.bandpass('N,F3dB1,F3dB2',L,fl,fh1,fs); 
         Hd1 = design(d1,'butter'); 
         for i=1:40 
         filted_data1(i,:) = filter(Hd1,y1(i,:));  %make butter filter 

on the orginal time based vectors 
         p2(i,:)=filted_data1(i,:)<0; %% make flag for negative values 

in signalvectors (y) 
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   Figure A. 5: The MATLAB code developed for GSR signal feature extraction (contd) 

 
         % calculation of zero crossing rate of skin conductance 
         for j=1:size(p2,2)-1 
          if (p2(i,j)~=p2(i,j+1))  
           z=z+1; 
           crs_scvsr(z,1)=i; 
           crs_scvsr(z,2)=j+1;%save position of zero crossing 
           crs_scvsr(z,3)=filted_data1(j+1); %save related value of 

zero crossing 
          end 
         end 
          scvsr(i,1)=z;     %save zero crossing rate of skin 

conductance very slow response(SCSR 0-0.08) 
         end  

          
    %****calculate mean of peaks magnitude SCVSR***  

     
    x1=1; 
    w=1; 

     
    for i=1:40 
      [pks,locs] = findpeaks(filted_data1(i,:)); 
      mean_peak_SCVSR(i,1)=sum(pks(1,:))/size(pks,2); 
 %    plot(filted_data1 (i,:),'--r') 
  %   hold on, plot(locs,pks,'b*') 
    end   

  
    Mean_neg_dev(isnan(Mean_neg_dev(:,:)))=0; %to remove Nan Values 
    mean_peak_SCSR(isnan(mean_peak_SCSR(:,:)))=0; %to remove Nan Values  
    mean_peak_SCVSR(isnan(mean_peak_SCVSR(:,:)))=0;  %to remove Nan 

Values 

 
end 

 

Univ
ers

ity
 of

 M
ala

ya



 

207 

 

APPENDIX B: CLASSIFICATION ACCURACY RESULTS OF VALENCE, 

AROUSAL, AND LINKING RECOGNITION USING DIFFERENT FEATURE 

SUBSET SIZES 

Table B. 1: Valence classification accuracies using different feature subset sizes 
and CART classifiers on peripheral modality 

 FS Method11 
Numbers of features in each feature subset Majority 

Vote  8 16 24 32 40 48 56 64 72 
1-Jmi 59.61 59.30 58.52 59.61 58.52 58.52 58.83 58.52 58.05 58.91 
2-Cmim 58.91 60.16 58.20 58.05 58.05 58.05 58.05 58.05 58.05 58.05 
3-Disr 56.95 58.91 58.75 58.75 58.13 58.67 58.36 58.59 58.44 58.05 
4-Mim 57.50 57.42 59.84 58.83 58.59 58.52 58.98 58.75 58.52 59.45 
5-Cife 57.19 57.50 57.42 56.88 56.64 55.78 56.48 56.25 56.33 57.03 
6-Icap 58.20 59.06 59.61 58.52 59.84 59.45 57.89 56.48 56.41 60.08 
7-Condred 55.78 56.80 59.30 58.52 59.69 59.06 59.06 58.52 57.81 59.06 
8-Relief 57.89 58.28 58.98 58.05 57.34 57.81 57.66 57.89 57.11 58.28 
9-Fisher  59.69 57.97 57.73 58.83 59.06 58.91 58.05 57.27 56.64 59.06 
10-T-test 58.20 56.09 56.72 56.72 57.11 55.86 55.63 54.53 53.75 57.34 

 

Table B. 2: Average testing accuracy rates of the feature-based multi-classifier 
methods for valence recognition using different classifiers on peripheral modality 

 

 

                                                 

11 FS: Feature Selection 

 

FS Method CART ANN LDA SVM 
1-Jmi 58.9063 60.47 60.3125 55.3125 
2-Cmim 58.0469 58.59 59.2969 54.2969 
3-Disr 58.0469 61.64 60.2344 55.7031 
4-Mim 59.4531 62.42 60.9375 55.5469 
5-Cife 57.0313 61.02 60.5469 54.2188 
6-Icap 60.0781 59.38 59.6094 54.6094 
7-Condred 59.0625 60.00 60.1563 55.1563 
8-Relief 58.2812 60.39 59.375 54.375 
9-Fisher  59.0625 62.11 59.2188 55.9375 
10-T-test 57.3438 55.23 58.0469 53.4375 Univ
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Table B. 3: Average testing accuracy rates of the feature-based multi-classifier 
methods for arousal recognition using different classifiers on peripheral modality 

FS Method CART ANN LDA SVM 
1-Jmi 58.90625 63.28125 58.75 64.0625 
2-Cmim 57.26563 60 56.64063 63.51563 
3-Disr 57.73438 61.71875 59.21875 64.21875 
4-Mim 58.125 62.42188 59.0625 64.375 
5-Cife 59.45313 62.89063 58.59375 64.21875 
6-Icap 57.5 62.1875 60.3125 63.98438 
7-Condred 58.4375 61.5625 59.0625 64.0625 
8-Relief 59.60938 62.8125 58.4375 64.21875 
9-Fisher  58.4375 63.4375 59.84375 64.76563 
10-T-test 54.45313 61.5625 57.5 62.57813 

 

 

Table B. 4: Average testing accuracy rates of the feature-based multi-classifier 
methods for liking recognition using different classifiers on peripheral modality 

FS Method CART ANN LDA SVM 
1-Jmi 61.71875 63.75 62.42188 63.04688 
2-Cmim 62.57813 62.57813 59.45313 63.04688 
3-Disr 60.54688 62.42188 61.875 62.89063 
4-Mim 60.85938 62.65625 61.79688 63.04688 
5-Cife 63.59375 63.51563 61.64063 62.5 
6-Icap 60.54688 62.5 61.25 62.96875 
7-Condred 62.26563 63.51563 61.79688 62.96875 
8-Relief 60.07813 61.25 61.01563 63.125 
9-Fisher  58.35938 64.21875 60.70313 62.65625 
10-T-test 57.03125 62.65625 60.625 63.82813 
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Table B. 5: Valence classification accuracies using different feature subset sizes 
and CART classifiers on EEG modality 

  
FS Method 

Numbers of features in each feature set Majority 
Vote  24 48 72 96 120 144 168 192 216 

1-Jmi 58.52 59.22 59.84 58.67 58.05 58.98 57.81 58.13 59.84 60.16 
2-Cmim 59.38 59.77 59.77 59.77 59.77 59.77 59.77 59.77 59.77 59.77 
3-Disr 58.05 58.59 60.00 58.36 58.20 59.38 57.73 58.20 59.69 59.84 
4-Mim 57.19 59.53 59.84 58.52 57.50 58.91 57.97 58.36 59.69 60.31 
5-Cife 57.73 57.11 60.70 59.69 60.39 60.63 57.97 58.67 60.16 60.63 
6-Icap 59.06 58.52 60.78 59.22 58.67 59.53 58.75 58.83 59.38 59.61 
7-Condred 60.23 59.69 59.84 59.22 58.05 59.53 58.05 58.44 60.08 60.78 
8-Relief 59.14 60.78 60.31 59.22 58.75 58.98 58.52 59.45 58.98 59.53 
9-Fisher  60.00 58.83 57.89 59.53 58.91 59.84 59.45 59.92 60.00 60.08 
10-T-test 60.16 60.08 58.20 57.58 57.89 60.39 61.17 61.72 60.23 58.98 

 

 

Table B. 6: Average testing accuracy rates of the feature-based multi-classifier 
methods for valence recognition using different classifiers on EEG modality 

 

 

 

 

 

FS Method CART ANN LDA SVM 
1-Jmi 60.16 63.5938 62.1875 53.4375 
2-Cmim 59.77 63.125 58.4375 50.0781 
3-Disr 59.84 63.6719 62.3438 53.6719 
4-Mim 60.31 63.2813 62.1875 53.4375 
5-Cife 60.63 65.4688 62.9688 52.8125 
6-Icap 59.61 62.1875 63.5938 51.25 
7-Condred 60.78 63.9063 61.5625 53.5156 
8-Relief 59.53 63.5938 64.4531 52.1094 
9-Fisher  60.08 66.3281 64.375 53.2031 
10-T-test 58.98 65.1563 63.2813 49.375 
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Table B. 7: Average testing accuracy rates of the feature-based multi-classifier 
methods for arousal recognition using different classifiers on EEG modality 

FS Method CART ANN LDA SVM 
1-Jmi 59.9219 63.5938 57.4219 62.1875 
2-Cmim 58.4375 61.0938 52.0313 62.3438 
3-Disr 60.3125 62.0313 57.0313 62.4219 
4-Mim 59.6094 63.5938 57.3438 62.1875 
5-Cife 59.7656 62.3438 57.8125 62.5781 
6-Icap 58.3594 62.9688 57.6563 62.6563 
7-Condred 60.625 63.125 57.2656 62.2656 
8-Relief 57.3438 63.9844 56.4063 62.5 
9-Fisher  58.5156 62.5 57.6563 62.9688 
10-T-test 57.8125 62.5 59.375 62.6563 

 

 

Table B. 8: Average testing accuracy rates of the feature-based multi-classifier 
methods for liking recognition using different classifiers on EEG modality 

 

 

 

 

FS Method CART ANN LDA SVM 
1-Jmi 57.3438 66.1719 61.7969 66.0938 
2-Cmim 58.5156 64.0625 57.5 65 
3-Disr 57.8125 64.7656 61.7969 66.1719 
4-Mim 57.5781 64.6875 61.7969 66.1719 
5-Cife 58.2813 65.625 62.3438 66.0156 
6-Icap 58.2031 65.0781 61.875 65.9375 
7-Condred 56.3281 65.7813 61.9531 66.25 
8-Relief 55.8594 63.9844 62.4219 65.0781 
9-Fisher  57.2656 66.0156 61.875 66.5625 
10-T-test 56.25 65.9375 61.9531 66.6406 Univ
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Table B. 9: Valence classification accuracies using different feature subset sizes 
and CART classifiers on (Peripheral+EEG) modalities 

  
FS Method 

 Numbers of features in each feature subset Majority 
Vote   32 64 96 128 160 192 224 256 288 

1-Jmi  57.97 57.27 55.94 54.30 57.34 57.89 58.75 58.13 58.13 58.67 
2-Cmim  59.14 59.30 59.77 60.23 60.23 60.23 60.23 60.23 60.23 60.23 
3-Disr  57.03 55.78 54.06 55.47 56.02 58.28 58.59 58.20 58.59 57.73 
4-Mim  58.13 57.19 56.33 53.91 57.19 58.36 59.30 58.28 58.36 58.05 
5-Cife  58.28 56.80 55.86 57.66 57.89 59.22 58.20 57.81 59.06 59.69 
6-Icap  60.16 59.14 59.77 58.44 58.36 57.58 57.27 57.89 57.73 59.22 
7-Condred  59.53 57.27 56.48 55.08 58.59 59.45 59.14 58.44 58.44 59.45 
8-Relief  54.77 57.97 60.70 60.70 60.39 59.84 59.38 60.39 59.53 61.02 
9-Fisher   62.27 58.28 56.72 57.81 57.73 58.67 58.52 59.22 59.77 58.44 
10-T-test  59.22 61.02 61.09 59.77 60.00 59.30 58.59 59.22 59.53 60.39 

 

 

 Table B. 10: Average testing accuracy rates of the feature-based multi-classifier 
methods for valence recognition using different classifiers on (Peripheral+EEG) 

modalities 

 

 

 

 

 

 

 

 

FS Method CART ANN LDA SVM 
1-Jmi 58.67 64.6094 65.3125 53.8281 
2-Cmim 60.23 64.9219 61.4844 53.5938 
3-Disr 57.73 63.8281 65 53.8281 
4-Mim 58.05 64.7656 65.0781 53.9063 
5-Cife 59.69 62.6563 65.7813 53.2031 
6-Icap 59.22 63.8281 64.9219 50.4688 
7-Condred 59.45 64.0625 65.0781 53.9844 
8-Relief 61.02 64.2969 65.1563 52.1094 
9-Fisher  58.44 66.5625 65.7813 53.2031 
10-T-test 60.39 63.3594 64.6094 51.5625 Univ
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Table B. 11: Average testing accuracy rates of the feature-based multi-classifier 
methods for arousal recognition using different classifiers on (Peripheral+EEG) 

modalities 

FS Method CART ANN LDA SVM 
1-Jmi 58.6719 61.9531 60.7813 63.2031 
2-Cmim 54.6094 60.7031 54.6875 63.0469 
3-Disr 58.6719 62.1094 60.9375 63.4375 
4-Mim 57.6563 63.75 61.0156 63.0469 
5-Cife 58.75 62.3438 61.0938 62.3438 
6-Icap 59.5313 61.5625 58.9063 62.5 
7-Condred 58.125 61.875 61.1719 63.125 
8-Relief 57.3438 62.5781 57.9688 61.9531 
9-Fisher  58.75 65 60.7813 63.75 
10-T-test 56.7188 63.0469 60.4688 61.875 

 

 

Table B. 12: Average testing accuracy rates of the feature-based multi-classifier 
methods for liking recognition using different classifiers on (Peripheral+EEG) 

modalities  

FS Method CART ANN LDA SVM 
1-Jmi 60.8594 64.1406 62.4219 63.9844 
2-Cmim 60.4688 62.8125 58.5938 63.8281 
3-Disr 61.3281 64.0625 62.7344 63.9063 
4-Mim 61.1719 63.75 62.8125 63.9063 
5-Cife 61.875 62.9688 62.9688 64.0625 
6-Icap 61.9531 62.8906 62.8125 64.9219 
7-Condred 60 63.5156 62.9688 63.9063 
8-Relief 61.5625 63.5156 61.6406 65.2344 
9-Fisher  59.8438 65.4688 61.7188 64.8438 
10-T-test 61.7969 63.9063 62.8906 64.9219 
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