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ABSTRACT

The purpose of this thesis is to present a self-contained study of Riemannian warped prod-

uct submanifolds. This is accomplished in four major steps; proving existence, deriving

basic lemmas, constructing geometric inequalities and applying them to obtai some geo-

metric applications. The whole thesis is divided into nine chapters. The first two chapters

are a journey from the origins of this field to the recent results. Here, definitions, basic

formulas and open problems are included. It is well known that the existence problem is

central in the field of differential geometry, especially in warped product submanifolds.

This problem is investigated in the third and the fourth chapters. Moreover, a lot of key

results as preparatory lemmas for subsequent chapters can be found in these two chapters.

In the second section of chapter five, a benefit has been taken from Nash’s embedding

theorem to discuss geometrical situations the immersion may possess such as minimal-

ity, total geodesic and total umbilical submanifolds. The rest of this work is devoted to

establish basic simple relationships between intrinsic and extrinsic invariants. In a hope

to provide new solutions to the question asked by Chern (1968), about whether we can

find other necessary conditions for an isometric immersion to be minimal or not, Chen

(1993, 2002) has considered this problem in his research programs. In this thesis, and

following Chen (2002) and Chern (1968), we have hypothesized their open problems in

a more general way in the first chapter. As a result, a wider scope of research becomes

available. Therefore, new inequalities are constructed by means of new methods, where

equality cases are discussed in details.
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ABSTRAK

Tujuan karya ini adalah untuk membentangkan kajian serba lengkap mengenai submani-

fold produk meleding Riemann (Riemannian warped product submanifolds). Ini dicapai

dengan tiga langkah utama; membuktikan kewujudan, menghasilkan lema ciri (character-

istic lemmas) dan membina ketaksamaan geometri. Seluruh tesis ini dibahagikan kepada

tujuh bab. Bab pertama adalah perjalanan dari asal-usul bidang ini sehingga keputusan

terkini. Di sini, definisi, formula asas dan masalah terbuka dimasukkan. Adalah dike-

tahui umum bahawa masalah kewujudan adalah penting dalam bidang geometri kebezaan,

terutamanya di submanifold produk meleding. Masalah ini disiasat di bab-bab kedua dan

ketiga. Selain itu, banyak keputusan penting seperti lema persediaan dihasilkan untuk

kegunaan bab-bab seterusnya boleh didapati dalam bab-bab ini. Dalam bahagian per-

tama bab empat, manfaat yang telah diambil dari teorem penerapan Nash untuk membin-

cangkan keadaan geometri rendaman yang ada padanya seperti minimality, submanifold

geodesi seluruh dan umbilik seluruh. Seterusnya, hubungan asas yang mudah antara in-

varian intrinsik dan ekstrinsik dihasilkan. Ia adalah penting untuk menyatakan bahawa

Chen (1993, 2002) adalah pengasas arah penyelidikan, dengan harapan untuk menye-

diakan penyelesaian tambahan dan perlu untuk soalan yang ditanya oleh Chern (1968)

mengenai sama ada kita boleh mencari keadaan yang perlu lain untuk rendaman mini-

mum ataupun tidak. Dalam sekuel ini, dan mengikuti Chen (2002) dan Chern (1968),

kami telah membuat hipotesis masalah terbuka mereka dengan cara yang lebih umum

dalam bab pertama. Akibatnya, skop yang lebih luas penyelidikan disediakan. Oleh itu,

ketidaksamaan baru dibina dengan menggunakan kaedah baru, di mana semua kes kesak-

samaan dibincangkan.

iv

Univ
ers

ity
 of

 M
ala

ya



ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude to Allah (S. W. T.), for giving

me the courage to start this journey, and strength to complete it. There were difficult

times, and only with His help that I can pull myself up again to finish this work I have

started. All praise be to Allah who made me realize that, these difficult times were the

best thing that happened to me in my life. All my love and respect to my parents, who

always support me emotionally, physically and financially. It is their unconditional love

that motivates me to set higher targets.

The author wishes to take this opportunity to express his sincere appreciation to his

supervisors, Doctor Loo Tee How and Professor Bernardine R. Wong, whose without

their continuous patience and guidance throughout the study, the completion of this work

would have been immeasurably more difficult.

I am thankful too much to Professors Koji Matsumoto and Bang-Yen Chen for their

help.

Special thanks to my friends Mahmoud Ali and Saed Mousa for their kind support in

the difficult time.

Last but not the least, a thank you to my sisters and brothers for their warm feelings

and encouragement. I dedicate this work to Osama and Taghreed.

v

Univ
ers

ity
 of

 M
ala

ya



TABLE OF CONTENTS

TITLE PAGE i

ORIGINAL LITERARY WORK DECLARATION ii

ABSTRACT iii

ABSTRAK iv

ACKNOWLEDGEMENT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF SYMBOLS AND ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 MOTIVATIONS AND SCOPE OF THESIS . . . . . . . . . . . . . . . . 4

1.4 PROBLEMS OF STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 OBJECTIVES OF STUDY . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 LAYOUT OF THESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 2 LITERATURE REVIEW 16

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 RECENT SIGNIFICANT RESULTS . . . . . . . . . . . . . . . . . . . . 16

2.3 DEFINITIONS AND PRELIMINARIES . . . . . . . . . . . . . . . . . 19

2.3.1 RIEMANNIAN MANIFOLDS . . . . . . . . . . . . . . . . . . 19

2.3.2 WARPED PRODUCTS . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 RIEMANNIAN SUBMANIFOLDS . . . . . . . . . . . . . . . . 28

2.3.4 ALMOST HERMITIAN AND ALMOST CONTACT STRUC-

TURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 3 EXISTENCE AND NON-EXISTENCE OF WARPED

PRODUCT SUBMANIFOLDS 39

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi

Univ
ers

ity
 of

 M
ala

ya



3.2 WARPED PRODUCT SUBMANIFOLDS OF ALMOST HERMITIAN

MANIFOLDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 WARPED PRODUCT SUBMANIFOLDS OF ALMOST CONTACT

MANIFOLDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 4 WARPED PRODUCTS WITH A SLANT FACTOR 61

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 SEMI-SLANT WARPED PRODUCT SUBMANFOLDS . . . . . . . . . 61

4.3 HEMI-SLANT WARPED PRODUCT SUBMANIFOLDS . . . . . . . . 71

4.4 SPECIAL INEQUALITY FOR THE EXISTENCE OF WARPED PROD-

UCT SUBMANIFOLDS IN ALMOST CONTACT MANIFOLDS . . . . 77

CHAPTER 5 Di-MINIMALITY AND THE FIRST INEQUALITY OF h 81

5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Di-MINIMALITY OF WARPED PRODUCT SUBMANIFOLDS . . . . 82

5.3 MODIFIED INEQUALITIES IN ALMOST HERMITIAN MANIFOLDS 92

5.4 MODIFIED INEQUALITIES IN ALMOST CONTACT MANIFOLDS . 97

5.4.1 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

CHAPTER 6 Di-MINIMALITY FOR GENERAL SECOND INEQUALITY

OF h 107

6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 THE SECOND INEQUALITY OF h . . . . . . . . . . . . . . . . . . . . 108

6.3 A NEW METHOD FOR A GENERAL INEQUALITY OF h . . . . . . . 116

6.4 SPECIAL INEQUALITIES AND APPLICATIONS . . . . . . . . . . . . 121

6.4.1 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

CHAPTER 7 A GENERAL GEOMETRIC INEQUALITY OF RICCI CUR-

VATURE AND THE MEAN CURVATURE VECTOR FOR Di-MINIMAL WARPED

PRODUCT SUBMANIFOLDS 125

7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 SOME TECHNICAL LEMMAS . . . . . . . . . . . . . . . . . . . . . . 125

7.3 A GENERAL GEOMETRIC INEQUALITY OF Di-MINIMAL WARPED

PRODUCT SUBMANIFOLDS IN A RIEMANNIAN SPACE FORM . . 128

vii

Univ
ers

ity
 of

 M
ala

ya



7.3.1 A NECESSARY CONDITION FOR THE MINIMALITY OF WARPED

PRODUCT SUBMANIFOLDS . . . . . . . . . . . . . . . . . . 136

7.4 SOME EXTENSIONS OF THEOREM 7.3.1 . . . . . . . . . . . . . . . 137

7.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

CHAPTER 8 THE δ-INVARIANT INEQUALITIES OF WARPED

PRODUCT SUBMANIFOLDS 142

8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2 SOME TECHNICAL LEMMAS . . . . . . . . . . . . . . . . . . . . . . 142

8.3 THE δ-INVARIANT INEQUALITY FOR Di-MINIMAL WARPED PROD-

UCT SUBMANIFOLDS . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.4 THE δ-INVARIANT INEQUALITY FOR GENERAL WARPED PROD-

UCT SUBMANIFOLDS . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.5 ANOTHER TWO NECESSARY CONDITIONS FOR THE MINIMAL-

ITY OF WARPED PRODUCT SUBMANIFOLDS . . . . . . . . . . . . 159

CHAPTER 9 SOME CONCLUSIONS AND FURTHER RESEARCH

PROBLEMS 160

9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.2 SOME PROBLEMS WHICH ARE NOT SOLVED IN THIS THESIS . . 160

9.3 MORE NEW PROBLEMS THAT AROSE FROM RESULTS AND PROOFS

OF THIS THESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.4 OBSERVATIONS, PROBLEMS AND SUGGESTIONS FOR SOLVING

THESE PROBLEMS WHICH NATURALLY AROSE FROM THIS THE-

SIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.4.1 HEMI-SLANT WARPED PRODUCT SUBMANIFOLDS OF THE

TYPE Nθ ×f N⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.4.2 GENERALIZING RESULTS FROM Di-MINIMAL TO GEN-

ERAL WARPED PRODUCT SUBMANIFOLDS . . . . . . . . . 165

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

SUPPLEMENTARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

viii

Univ
ers

ity
 of

 M
ala

ya



LIST OF TABLES

Table 3.1: Existence and nonexistence of proper warped product submanifolds in Kaehler

and nearly Kaehler manifolds. ................................................................... 45

Table 3.2: ξ ln f and g(h(ξ, Z), FZ) for N1 ×f N2 in M̃2l+1, such that ξ is tangent to

N1 andZ is tangent toN2. .......................................................................... 52

Table 3.3: Existence and nonexistence of warped product submanifolds in almost contact

manifolds with ξ tangent to the first factor. ................................................... 57

Table 5.1: First inequality of h for CR-warped product submanifolds of type

NT×fN⊥. ..................................................................................................... 98

Table 5.2: First inequality of h for semi-slant warped product submanifolds of type

NT×fNθ. ..................................................................................................... 99

Table 5.3: An inequality of h for mixed totally geodesic hemi-slant warped product

submanifolds of typeNθ×fN⊥. ................................................................ 99

Table 6.1: The second inequality of h for CR-warped product submanifolds of type

NT×fN⊥ in some space forms. .................................................................. 108

Table 6.2: General second inequality of h for Di-minimal warped product submanifolds

satisfying g(PX,Z) = 0 ∀X ∈ TN1, Z ∈ TN2. ....................................... 115

Table 7.1: A general inequality for Di-minimal warped product submanifolds in terms of

Ricci curvature and the mean curvature vector. ............................................. 131

Table 7.2: A general inequality for Di-minimal warped product submanifolds in terms of

Ricci curvature and the mean curvature vector. ............................................. 132

Table 8.1: General inequalities involving the δ-invariant and the mean curvature vector

for Di-minimal warped product submanifolds satisfying g(PX,Z) = 0

∀X ∈ TN1, Z ∈ TN2. ............................................................................... 141

ix

Univ
ers

ity
 of

 M
ala

ya



LIST OF SYMBOLS AND ABBREVIATIONS

• ∇(f) ≡ Gradient of f.
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• F(M̃m) ≡ Algebra of smooth functions on M̃m.

• ζ ≡ Normal vector field belongs to the normal subbundle ν.

• ∇⊥Xζ ≡ Normal connection on the normal tangent bundle.

• K̃(X ∧ Y ) = K̃XY ≡ Sectional curvature of the plane spanned by the linearly

independent vectors X and Y.

• τ̃(TxM
n) and τ(TxM

n) ≡ Scalar curvatures of Mn at some x ∈Mn with respect

to M̃m and Mn, respectively.
∗Throughout this thesis, the vector fields X, Y are taken to be tangent to the first factor while the vector

fields Z, W are considered to be tangent to the second factor of warped product submanifolds, unless
otherwise stated.
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• Mn =f2 N1 ×f1 N2 ≡ Doubly warped product submanifold.

• g̃ and g ≡ Riemannian metric ∗ on the ambient manifold M̃m and the correspond-

ing induced metric on the Riemannian submanifold Mn, respectively.

• PX and FX ≡ Tangential and normal components of JX or φX , respectively.

• ~Hi ≡ Partial mean curvature vectors restricted to Ni for i = 1, 2.
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er.
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1≤i6=j≤n

hrij ≡ Summation of hrij , where i and j run from 1 to n such that i 6= j.
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CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

In this chapter, a brief outlook on this topic is given. At the beginning, the first appearance

of warped products in general relativity is mentioned. After that, the concept of warped

product manifolds is discussed from a mathematical viewpoint. Since it is the core of

this thesis, warped product submanifolds are developed gradually over four milestone

theorems; namely, Nash’s Ck embedding theorem (Nash, 1956), J. D. Moore’s theorem

in 1971 (Moore, 1971), S. Nölker’s work in 1996 (Nölker, 1996) and B. Y. Chen’s paper

in 2001, (Chen, 2001). Inspired by the last author, we address the problems of our study

and determine its objectives.

1.2 BACKGROUND

The field of warped product manifolds has its origin in the beginning of the last century

with the work of Albert Einstein in 1916 when the prominent geometric theory of grav-

itation was published (Einstein, 1960), which is nowadays known as the general theory

of relativity. Soon after the publication of Einstein’s theory of general relativity, Karl

Schwarzschild found the first exact solution, other than the trivial flat space solution, of

the Einstein field equations. It is interesting that the first solution was a warped product

spacetime (Letter from K Schwarzschild to A Einstein dated 22 December 1915). More

precisely, the Schwarzschild exterior spacetime and the Schwarzschild black hole are de-

fined as the following

Definition 1.2.1. (O’Neill, 1983). For m > 0 let PI and PII be the regions r > 2m and

0 < r < 2m in the tr-half-plane R1 × R+, each furnished with line element −hdt2 +

h−1dr2, where h(r) = 1− (2m/r). If S2 is the unit sphere, then the warped product N =

PI×r S2 is called Schwarzschild exterior spacetime and B = PII×S2 the Schwarzschild

black hole, both of mass m.

Henceforth, the notion of warped products has been playing some important roles in

the theory of general relativity as they have been providing the best mathematical models

of our universe for now. That is, the warped product scheme was successfully applied
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in general relativity and semi-Riemannian geometry in order to build basic cosmological

models for the universe. For instance, the Robertson-Walker spacetime, the Friedmann

cosmological models and the standard static spacetime are given as warped product man-

ifolds. For more cosmological applications, warped product manifolds provide excel-

lent setting to model spacetime near black holes or bodies with large gravitational force.

For example, the relativistic model of the Schwarzschild spacetime that describes the

outer space around a massive star or a black hole admits a warped product construction

(O’Neill, 1983).

In an attempt to construct manifolds of negative curvatures, R. L. Bishop and B.

O’Neill introduced the notion of warped product manifolds in 1969 (Bishop & O’Neill,

1996) by homothetically warping the product metric of a product manifold B × F on

the fibers p × F for each p ∈ B. This generalized product metric appeared in differen-

tial geometric studies in a natural way, making the studies of warped product manifolds

inevitable with intrinsic geometric point of view.

In 1954, one of the most important contributions in the field of Riemannian submani-

folds theory appeared, it is the well-known Nash first embedding theorem, C1 embedding

theorem, published by J. F. Nash (Nash, 1954).

Theorem 1.2.1. Let (M, g) be a Riemannian manifold and ϕ : Mm → Rn a short C∞-

embedding (or immersion) into Euclidean space Rn, where n ≥ m+1. Then, for arbitrary

ε > 0 there is an embedding (or immersion) ϕε : Mm → Rn which is

(i) in class C1;

(ii) isometric: for any two vectors X, Y ∈ TxM in the tangent space at x ∈M ,

g(X, Y ) = 〈dϕε(X), dϕε(Y )〉;

(iii) ε-close to ϕ:

|ϕ(x)− ϕε(x)| < ε ∀ x ∈M.

Two years later, a more technical theorem appeared (Nash, 1956). It is the Ck embed-

ding theorem.

2
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Theorem 1.2.2. Every compact Riemannian n-manifold can be isometrically embedded

in any small portion of a Euclidean N -space EN with N = 1
2
n(3n + 11). Every non-

compact Riemannian n-manifold can be isometrically embedded in any small portion of

a Euclidean m-space Em with m = 1
2
n(n+ 1)(3n+ 11).

During this work, when we refer to the Nash’s embedding theorem, we mean the Ck

embedding theorem of (Nash, 1956).

In view of Nash’s theorem, J. D. Moore proved, in 1971, that a Riemannian product

immersion does naturally exist whenever it is mixed totally geodesic (Moore, 1971). To

see this, suppose that M1, · · · ,Mk are Riemannian manifolds and that

ϕ : M1 × · · · ×Mk → EN

is an isometric immersion of the Riemannian product M1 × · · · ×Mk into Euclidean N -

space. J. D. Moore proved that if the second fundamental form h of ϕ has the property

that h(X, Y ) = 0 for X tangent to Mi and Y tangent to Mj , i 6= j, then ϕ is a product

immersion; that is, there exist isometric immersions ϕi : Mi → Emi , 1 ≤ i ≤ k, such

that

ϕ(x1, · · · , xk) = (ϕ1(x1), · · · , ϕk(xk)),

when xi ∈Mi for 1 ≤ i ≤ k.

The study of differential geometry of warped product submanifolds was intensified af-

ter 1996, when S. Nölker gave a warped product version of Moore’s result. LetM0, · · · ,Mk

be Riemannian manifolds, M = M0 × · · · ×Mk their product, and πi : M → Mi the

canonical projection. If ρ1, · · · , ρk : M0 → R+ are positive-valued functions, then

〈X, Y 〉 := 〈π0∗X, π0∗Y 〉+
k∑
i=1

(ρi ◦ π0)2〈πi∗X, πi∗Y 〉

defines a Riemannian metric on M , called a warped product metric. M endowed with

this metric is denoted by M0 ×ρ1 M1 × · · · ×ρk Mk.

A warped product immersion is defined as follows: Let M0×ρ1 M1× · · ·×ρkMk be a

warped product and let ϕi : Ni →Mi, i = 0, · · · , k, be isometric immersions, and define

fi := ρi ◦ ϕ0 : N0 → R+ for i = 1, · · · , k. Then the map

ϕ : N0 ×f1 N1 × · · · ×fk Nk →M0 ×ρ1 M1 × · · · ×ρk Mk

3
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given by ϕ(x0, · · · , xk) := (ϕ0(x0), ϕ1(x1), · · · , ϕk(xk)) is an isometric immersion,

which is called a warped product immersion.

S. Nölker extended Moore’s result by showing the natural existence of mixed totally

geodesic warped products submanifolds in Riemannian space forms M̃m(c) as the fol-

lowing.

Theorem 1.2.3. Let ϕ : N0×f1N1×· · ·×fkNk → M̃m(c) be an isometric immersion into

a Riemannian manifold of constant curvature c. If h is the second fundamental form of

ϕ and h(Xi, Xj) = 0, for all vector fields Xi and Xj , tangent to Ni and Nj respectively,

with i 6= j, then, locally, ϕ is a warped product immersion.

Ever since S. Nölker (Nölker, 1996) gave an explicit description of the warped product

representation of Euclidean spaces in 1996, there followed studies of warped product

spaces with extrinsic geometric point of views. In 2001, B.Y. Chen introduced the notion

of CR-warped product submanifolds in Kaehler manifolds (Chen, 2001). In this paper,

he first proved the nonexistence of warped products of the type N⊥×f NT . Reversing the

factors, he used a result of S. Hiepko (Hiepko, 1979) to give a characterization theorem

of the CR-warped product submanifolds of the type NT ×f N⊥ in Kaehler manifolds.

Since then, the studies of warped product submanifolds with extrinsic geometric point of

view were intensified (Chen, 2013). In this direction of research, the current work aims

to continue this sequel of studies.

1.3 MOTIVATIONS AND SCOPE OF THESIS

Three decades after the appearance of the celebrated Nash embedding theorem, its main

purpose was materialized by M. Gromov (Gromov, 1985). Here, Riemannian manifolds

could always be regarded as Riemannian submanifolds of Euclidean spaces. Inspired by

this fact, B. Y. Chen started one of his programs of research in order to study immersibil-

ity and non-immersibility of Riemannian warped products in Riemannian manifolds, spe-

cially in Riemannian space forms M̃m(c) (for example, see (Chen, 2001)-(Chen, 2013)).

As a result, he proposed many open problems in this topic (see next section). Recently,

a lot of solutions were provided to his problems by many geometers, even though, many

gaps still remain. Moreover, many generalizations can be done to save effort and time for
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potential research. Therefore, this gave us a motivation to fill these gapes and prove such

generalizations.

Given a 2m-dimensional almost complex manifold M̃2m, and a real n-dimensional

Riemannian manifold Mn isometrically immersed in M̃2m. It is known that the differ-

ential geometry of Mn depends on the behavior of the tangent bundle of Mn relative to

the action of the almost complex structure J . Accordingly, we have the following typi-

cal classes of submanifolds: CR-submanifolds (Bejancu, 1978), semi-slant submanifolds

(Papaghiuc, 1994) and generic submanifolds (Chen, 1981). Analogously, all these kinds

of submanifolds have been extended to the setting of almost contact manifolds, (Bejancu,

1986) and (Chen, 2013). Since these classes are the most interesting types of warped

product submanifolds, this motivated us to search for their common geometric property.

Fortunately, we proved that all of these submanifolds are Di-minimal warped product

submanifolds in both almost Hermitian and almost contact manifolds (see chapter five).

Consequently, we are going to impose the Di-minimality property in the hypothesis of

many theorems in this work. Therefore, this will enable us to obtain more general results

and will also guide us to establish some new methods for constructing inequalities which

were not possible by old techniques (see chapters six, seven and eight).

The concept of minimal submanifolds first appeared in the mid eighteenth century

with the work of Euler and Lagrange, even though it has very recently seen major ad-

vances that have solved many long standing open conjectures in the field. Thus, it is

convenient to study minimal submanifolds. Since our main focus is warped product sub-

manifolds, it becomes more convenient to study the concept of Di-minimality, because it

is the minimality special concept of such submanifolds.

The inevitable motivation was the one that asked by Chen to search for control of ex-

trinsic quantities in relation to intrinsic quantities of Riemannian manifolds. We discussed

this problem extensively in the next section. The significance of Riemannian invariants is

described by Chen as the following (Chen, 2008):

”Borrowing a term from biology, Riemannian invariants can be considered the DNA

of Riemannian manifolds. In particular, curvature invariants are the the most natural and

important Riemannian invariants due to their vast applications in other scientific studies.
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For instance, the magnitude of a force required to move an object at constant speed, ac-

cording to Newton’s laws, is a constant multiple of the curvature of the trajectory. The

motion of a body in a gravitational field is determined, according to Einstein’s general

theory of relativity, by the curvatures of the space time. All sorts of shapes, from soap

bubbles to red blood cells, seem to be determined by various curvatures (Osserman, 1990).

Classically, among extrinsic invariants, the shape operator and the squared mean curva-

ture are the most important ones. Among the main intrinsic invariants, sectional, Ricci

and scalar curvatures are the well-known ones.” For this, Chen constructed a lot of basic

inequalities in terms of intrinsic and extrinsic invariants (see (Chen, 2001)-(Chen, 2013)).

The current thesis aims to continue this sequel of inequalities, specially those which

are standing not proved for a long time. Several famous results in differential geometry,

such as isoperimetric inequality, Chern-Lashof’s inequality, and Gauss-Bonnet’s theorem

among others, can be regarded as results in this respect. For some recent progress in this

direction, see, for instance (Chen, 1999) and references therein.

It is well-known (Chen, 1993) that the following two conditions are necessary for the

immersion to be minimal in Euclidean space Em:

Condition 1: If ϕ : Mn → Em is a minimal immersion from a manifold of positive

dimension into a Euclidean m-space, then Mn is non-compact.

Condition 2: If ϕ : Mn → Em is a minimal immersion from a manifold of positive di-

mension into a Euclidean m-space, then the Ricci tensor of Mn is negative semi-definite.

In (Chen, 1993), and as an answer to the question asked by Chern in page 13 of (Chern,

1968), Chen gave another necessary condition; namely K(π) ≥ 1
2
τ(TxM

n), where K(π)

and τ(TxM
n) are, respectively, the sectional and the scalar curvatures of Mn, for every

plane section π ⊂ TxM
n, x ∈Mn.

In chapters seven and eight, we give three new necessary conditions for a warped

product immersion to be minimal.

1.4 PROBLEMS OF STUDY

This work considers some well-known open problems in differential geometry. Most of

these problems arose naturally during the works of B. Y. Chen (Chen, 2002), S. S. Chern

(Chern, 1968) and M. Gromov (Gromov, 1985). We also study these problems under a
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more general setting. In this sequel, problems of this work can be classified into four

major categories.

• Existence and Nonexistence Problems

Immersibility and non-immersibility of a Riemannian manifold in a Riemannian space

form M̃m(c) is one of the most fundamental problems in the theory of Riemannian sub-

manifolds. According to Theorem 1.2.2, every Riemannian manifold can be isometrically

immersed in some Euclidean spaces with sufficiently high codimension. Inspired by this

theorem, Chen proposed the following problem.

Problem 1.4.1. (Chen, 2002). ∀ N1 ×f N2
isometric immersion−→ Em or M̃m(c) =⇒ ???.

Taking the ambient manifold to be an almost Hermitian or an almost contact manifold,

many nonexistence results, characterization theorems and concrete examples of warped

product submanifolds are available, (see, for example (Al-Luhaibi et al., 2009), (Chen,

2001), (Chen, 2013), (Khan et al., 2008), (Khan & Khan, 2009), (Munteanu, 2005),

(Mustafa et al., 2013) and (Sahin, 2009)). Motivated by these results, we consider Prob-

lem 1.4.1 in a more general way by taking the ambient manifold M̃ to be an arbitrary

Riemannian manifold. Thus, for (singly) warped product submanifolds, we have

Problem 1.4.2. ∀ N1 ×f N2
isometric immersion−→ M̃m =⇒ ???

Or, more generally, for doubly warped product submanifolds, this problem becomes

Problem 1.4.3. ∀ f2N1 ×f1 N2
isometric immersion−→ M̃m =⇒ ???

Some partial solutions to these problems are given in chapters three and four. In

Kenmotsu manifolds we constructed several examples ensuring the existence of many

warped product submanifolds, another two examples are offered for Kaehler manifolds.

• Problems of Basic Characteristic Lemmas and Geometric Properties of the

Immersions

It is obvious that the warping function f is one of the most important elements of

warped product submanifolds. In fact, it is a particular intrinsic invariant of such subman-

ifolds. On the other hand, the second fundamental form h is the most significant invariant
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among extrinsic invariants. Therefore, geometers are interested in those relations contain-

ing f and h, which can be applied in different tasks (see, for example, references in this

survey (Chen, 2013)). However, a lot of gaps are still there. Because of this and of the

urgent need of more such results and geometric properties for later work, it is worth to

hypothesize the following problem.

Problem 1.4.4. Given an isometric immersion ϕ from a warped product submanifold

N1 ×f N2 into a Riemannian manifold M̃m. What are the relationships (equations) be-

tween the warping function and the second fundamental form of N1 ×f N2 ?

Now, let A and B be any geometric properties which can be imposed on a warped

product immersion ϕ. Since Di-minimal warped product submanifolds have a central role

in this work, we ask the following:

Problem 1.4.5. Given a Di-minimal isometric immersion ϕ from a warped product sub-

manifold N1 ×f N2 into a Riemannian manifold M̃m. Then

(i) What are the relationships (equations) between the warping function and the second

fundamental form of N1 ×f N2 ?

(ii) If ϕ possesses A, does ϕ admit B ?

Some special solutions for Problem 1.4.4 are thoroughly given in chapters three and

four, whereas the second section of chapter five provides some special solutions for Prob-

lem 1.4.5, especially Theorem 5.2.1 and Lemma 5.2.6, which are key results in this work.

• Constructing Inequalities in Terms of Intrinsic and Extrinsic Invariants

In (Chen, 2002), Chen had determined the goals of this direction of research saying

that: ”Based on Nash’s Theorem, one of my research programs is to search for control of

extrinsic quantities in relation to intrinsic quantities of Riemannian manifolds via Nash’s

Theorem and to search for their applications.” Therefore, he asked the following:

Problem 1.4.6. (Chen, 2002). LetN1×fN2 be an arbitrary warped product isometrically

immersed in Em (or in M̃m(c)) as a Riemannain submanifold. What are the relationships

between the warping function f and the extrinsic structure of N1 ×f N2?
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All inequalities of chapter five and section two of chapter six are solutions for this

problem. Some of these inequalities are given in a general way, where space form cases

can be derived easily.

For some technical reasons, very few inequalities like those of section two of chapter

six are established. This is because of the ’sensitive’ conditions which the Codazzi equa-

tion requires in order to carry out the calculations. However, such technical problem is

solved in section three of chapter six by using the Gauss equation. There, a new method

is established enabling us to construct enough second inequalities of h.

In chapter five, we proved that most of warped product submanifolds of interest belong

to the class of Di-minimal warped product submanifolds. Di-minimality arose naturally

and it is discussed extensively in chapter five. This leads us to propose the following

problem which is a special case from the above one.

Problem 1.4.7. Let N1 ×f N2 be a Di-minimal warped product isometrically immersed

in Em (or in M̃m(c)) as a Riemannain submanifold. What are the relationships between

the warping function f and the extrinsic structure of N1 ×f N2?

Chapter five and section three of chapter six present a special case solution to this

problem as the more general type of such inequalities. Moreover, the technical problems

of applying the Codazzi equation are solved by using the Gauss equation. By this, plenty

of second inequalities of h are provided for the above two problems.

The above two problems are asking about relations including an extrinsic invariant

and the warping function as the intrinsic invariant. In the following problems, we concern

with intrinsic invariants other than the warping function.

As mentioned before, extrinsic and intrinsic Riemannian invariants have vast applica-

tions in other fields of science, (Osserman, 1990). Classically, among extrinsic invariants,

the shape operator and the squared mean curvature are the most important ones. Among

the main intrinsic invariants, sectional, Ricci and scalar curvatures are the well-known

ones (Chen, 2008). This was quite enough for Chen to address the following problem.

Problem 1.4.8. (Chen, 1999). Establish simple relationships between the main extrinsic

invariants and the main intrinsic invariants of a submanifold.
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From the references of this thesis, we notice that Chen has established many inequal-

ities for Riemannian submanifolds as special case solutions to the above problem. Unfor-

tunately, very few inequalities satisfying the above problem for warped product subman-

ifolds are available. Henceforth, we hypothesize the following problem.

Problem 1.4.9. Establish simple relationships between the main extrinsic invariants and

the main intrinsic invariants (other than the warping function) of a warped product sub-

manifold.

The final section of chapter eight contains a general inequality for warped product

submanifolds which is a special case solution for this problem.

In particular, and restricted to Di-minimal warped product submanifolds, the above

problem is paraphrased as the following

Problem 1.4.10. Establish simple relationships between the main extrinsic invariants and

the main intrinsic invariants (other than the warping function) of a Di-minimal warped

product submanifold.

Chapter seven is devoted to construct an inequality in terms of Ricci curvature and

the mean curvature vector to provide a special solution to this problem. Another special

solution is the first inequality of chapter eight.

• Necessary Conditions for an Isometric Immersion to be Minimal

S. S. Chern asked in (Chern, 1968) to search for further necessary conditions on the Rie-

mannian metric of a submanifold Mn in order for Mn to admit an isometric minimal

immersion into Euclidean space. As mentioned in page six, Chen gave another necessary

condition, (Chen, 1993). Later on, he materialized this goal for warped product submani-

folds as the following.

Problem 1.4.11. (Chen, 2002). Given a warped productN1×fN2, what are the necessary

conditions for the warped product to admit a minimal isometric immersion in a Euclidean

m-space Em (or M̃m(c))?

We give a partial solution to this problem in chapter eight.

Analogously, we ask the following question for Di-minimal warped product.
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Problem 1.4.12. Given a Di-minimal warped product N1 ×f N2, what are the necessary

conditions for the warped product to admit a minimal isometric immersion in an arbitrary

Riemannian manifold M̃m?

Two new partial solutions for this problem are given in chapters seven and eight.

1.5 OBJECTIVES OF STUDY

In short, our objectives in this thesis are summarized as follows:

• To prove existence or nonexistence of warped product submanifolds into Rieman-

nian ambient manifolds. So, first we determine whether a warped product sub-

manifold exists or not in both almost Hermitian and almost contact manifolds. In

case it exists, we characterize its existence in simple characterization theorems, and

support this existence by solid examples. This is achieved in Chapter Three and

Chapter Four.

• To investigate the basic geometric properties of those warped product submanifolds

which do exist in both almost Hermitian and almost contact manifolds, in such a

way making it possible to do comparisons between considered structures specially

for almost contact manifolds, and to prove essential preparatory lemmas and the-

orems to fulfill the next goal. Moreover, we aim to discuss the main geometric

concepts that a warped product submanifold may possess or inherit, such as totally

geodesic, totally umbilical and minimal submanifolds. Some parts of this objective

is satisfied in Chapters Three and Four, while the core of this bojective is given in

Chapter Five.

• To establish simple relationships between intrinsic and extrinsic invariants for warp-

ed product submanifolds. This is accomplished by constructing basic inequalities

for such submanifolds involving extrinsic and intrinsic invariants. Moreover, the

rich geometry in the equality case is discussed ( see Chapters Five to Eight).

• To apply the inequalities in order to derive some geometric applications, specially

necessary conditions, for isometric immersions from warped product to Rieman-
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nian manifolds, to be minimal. Chapter Seven and Eight concern with this objec-

tive.
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1.6 LAYOUT OF THESIS

This thesis is organized as the following:

• Chapter 1

In this chapter, a brief outlook on this work is given. At the beginning, the appearance

of warped products in general relativity is mentioned. After that, the concept of warped

product manifolds is discussed from a mathematical point of view. We also address the

problems of our study and determine its objectives.

• Chapter 2

This chapter is divided into two sections, the first one presents some of the recent signif-

icant results in this field. The second section is for definitions and preliminaries. Here,

we describe Riemannian manifolds in a way coping with our purposes. So, we focus on

the Levi-Civita connection and the curvature tensor. This tensor will be gradually used to

define many intrinsic invariant necessary for this work, such as sectional, scalar and Ricci

curvatures.

On the other hand, the extrinsic geometry was explored via the second fundamen-

tal form of Riemannian submanifolds. For this, a background of submanifold theory is

demonstrated, including Gauss formula and equation, Weingarten formula and Codazzi

equation.

More significantly, warped products have been discussed form the manifold and the

submanifold theories. As a result, it becomes possible to investigate the intrinsic and the

extrinsic geometries of such structures.

Finally, we discusses almost Hermitian and almost contact manifolds as particular

classes of Riemannian manifolds.

• Chapters 3 and 4

These two chapters are devoted to present special solutions for Problems 1.4.1, 1.4.2,

1.4.3 and 1.4.4. Chapter 3 contains two sections, one relates to almost Hermitian mani-

folds and the other is for almost contact manifolds. In both sections, several existence and

nonexistence results are proved. Basic characteristic and geometric results for later work
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are given in both sections. Chapter 4 can be considered as slant version of Chapter 3. It

is divided into three main sections, the first is for semi-slant warped product submani-

folds, and the second is for hemi-slant warped product submanifolds. The final section of

chapter three presents a special inequality which turns out to be a fundamental existence

theorem. Results for both (singly) and doubly warped product submanifolds are presented

here, some of them are multi-task results which are helpful in later work. Two simple

characterization theorems are proved in these chapters. Moreover, we construct some

examples to ensure existence of different types of warped product submanifolds, and to

show that our characterization theorem of Chapter 4 is not vacuous, and the integrability

condition we imposed is not redundant. In each chapter, we include a table summarizing

the main existence and nonexistence results of warped product submanifolds of interest.

• Chapters 5

This chapter provides partial solutions for Problems 1.4.5, 1.4.6 and 1.4.7. It has three

main sections. The first section shows the existence of a wide class of warped product

submanifolds in Riemannian manifolds possessing the Di-minimality property; namely

CR, semi-slant and generic warped product submanifolds, of almost contact and almost

Hermitian manifolds of interest. In addition, a nontrivial example of hemi-slant warped

product submanifolds is constructed, showing that the Di-minimality property is wide

enough to be considered for further research. In addition, it presents two important results;

namely, Theorem 5.2.1 and Lemma 5.2.6, which are used widely to modify the equality

case of the first and the second inequalities of h. In the second and the third sections,

we consider the first inequality of h. At first, we modify the equality case of this type of

inequalities by satisfying the necessity and sufficiency conditions of the equality holding.

After that, many inequalities of different structures are established and modified for both

almost Hermitian and almost contact manifolds. Moreover, we prove inequalities for

semi-slant and hemi-slant warped product submanifolds and in different structures.

• Chapters 6

The current chapter provides some special answers for Problems 1.4.6 and 1.4.7. It con-

tains two main sections. In the first one, the second inequality of h is extended for contact
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CR-warped product submanifolds of Kenmotsu manifolds. In the second section, we es-

tablish a general inequality for Di-minimal warped product submanifolds of an arbitrary

Riemannian manifold, in terms of the second fundamental form and the warping function,

and by means of the Gauss equation. This inequality generalizes all inequalities of the

first section of this chapter. The table supplied in the third section contains special case

inequalities.

• Chapters 7

In this chapter, we prove a general inequality involving the Ricci curvature and the mean

curvature vector for warped product submanifolds in Riemannian manifolds. We organize

this chapter to include four sections. The first two are for the proof of this inequality. The

other sections discuss many extensions of the inequality with some applications derived.

This chapter provides new solutions for Problems 1.4.8, 1.4.10, 1.4.11 and 1.4.12.

• Chapters 8

In this chapter, we construct two inequalities containing the first Chen invariant and the

mean curvature vector for warped product submanifolds. In the first inequality, the Di-

minimality is imposed in hypothesis, while the second inequality is for arbitrary Reiman-

nian manifolds. Among others, applications and particular case inequalities are obtained.

Inequalities and their applications in this chapter provide solutions for Problems 1.4.8,

1.4.9, 1.4.10, 1.4.11 and 1.4.12.

• Chapters 9

This chapter presents some open problems of this field. It is reasonable to say that, most

of problems in this chapter are due to the current thesis, which arose naturally during the

work. In another line of thought, all problems of this chapter can also be considered as

conclusions of this thesis, as well as further research directions. It is expected that they

guide our programs of research for many years.
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CHAPTER 2: LITERATURE REVIEW

2.1 INTRODUCTION

The current chapter is organized to have two main sections. The first one presents some

significant contributions in this field, from which we get motivations to make some progress

in this topic. The second section is devoted to discuss preliminaries and concepts neces-

sary for this work, it is divided into four subsections. The first introduces the notion of

Riemannian manifolds. In the second, warped products are defined as Riemannian man-

ifolds. The basic equations, definitions and tools of submanifold theory are offered in

the third subsection, where warped products are considered as Riemannian submanifolds.

In the last subsection, ambient manifolds of interest are listed; namely, almost Hermitian

manifolds and almost contact manifolds.

2.2 RECENT SIGNIFICANT RESULTS

As we now know, our inequalities can be classified in two categories. The first one in-

cludes inequalities involving the second fundamental form h and the warping function,

while the other is for inequalities containing extrinsic and intrinsic invariants other than

the warping function.

For the first category, two basic inequalities were established by Chen, then extended

for some other settings. The first is for CR-warped product submanifolds of Kaehler

manifolds, while the other is for the same warped product but in complex space form.

From now on, we will call them the first inequality of h, and the second inequality of h,

respectively, which were given in the following theorems ∗

Theorem 2.2.1. (Chen, 2001). Let ϕ : Mn = NT ×f N⊥ −→ M̃2m be an isometric

immersion of a n-dimensional CR-warped product submanifold into an 2m-dimensional

Kaehler manifold M̃2m. Then, we have

(i) ||h||2 ≥ 2n2||∇ ln f ||2;

∗We note that, in (Chen, 2001) Theorem 2.2.1 was published to have four statements, in this work we
are interested in the first two statements, generalizing the first and modifying the second.
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(ii) If the equality in (i) holds, then NT , N⊥ and Mn are totally geodesic, totally um-

bilical and minimal submanifolds in M̃2m, respectively.

Combining special case inequalities in (Chen, 2003), we also have

Theorem 2.2.2. (Chen, 2003). Let Mn = NT ×f N⊥ be a CR-warped product submani-

fold in a complex space form M̃2m(cKa). Then, we have the following

1

2
||h||2 ≥ 2n1n2

cKa
4

+ n2||∇ ln f ||2 − n2 ∆(ln f).

In recent research programs, many geometers intend to develop the geometry of warp-

ed product submanifolds in case one of its factors is proper slant. In Kaehler manifolds,

B. Sahin proved that any semi-slant warped product submanifold is trivial (Sahin, 2006),

which obviously means that the purpose of generalizing the CR-warped product has al-

most failed. Never losing hope, Sahin himself succeeded recently to achieve this goal by

proving the existence of mixed totally geodesic hemi-slant warped product submanifolds

of the type Nθ ×f N⊥ in Kaehler manifolds (Sahin, 2009). Therefore, semi-slant and

hemi-slant warped product submanifolds are extensively investigated in this thesis, and

for both almost Hermitian and almost contact manifolds.

The following two theorems were firstly proved for Riemannian submanifolds in real

space forms by Chen in (Chen, 1993) and (Chen, 1999), they are known nowadays as the

Chen first inequality and Ricci-Chen inequality, respectively. Ever since Chen published

them, they have been extended for Riemannian submanifolds in various ambient mani-

folds (Chen, 2013). By contrast, they were not proved for warped product submanifold in

any ambient manifold. Thus, the last two chapters of this work are devoted to prove these

two theorems in the setting of warped product submanifolds.

The Chen first inequality was first proved in this form

Theorem 2.2.3. Let Mn be an n-dimensional (n ≥ 2) submanifold of a Riemannian

manifold M̃m(c) of constant sectional curvature c. Then

inf K ≥ 1

2

{
τ(TxM

n)− n2(n− 2)

n− 1
|| ~H||2 − (n+ 1)(n− 2)c

}
, (2.2.1)

where K and τ(TxM
n) are the sectional curvature and the scalar curvature of Mn, re-

spectively, x ∈Mn.
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Equality holds if and only if, with respect to suitable orthonormal frame fields e1, · · · ,

en, en+1, · · · , em, the shape operators of Mn in M̃m(c) take the following forms:

Aen+1 =



µ1 0 0 · · · 0

0 µ2 0 · · · 0

0 0 µ · · · 0

...
...

... . . . ...

0 0 0 0 µ


, µ = µ1 + µ2,

Aer =



hr11 hr12 0 · · · 0

hr12 −hr11 0 · · · 0

0 0 0 · · · 0

...
...

... . . . ...

0 0 0 0 0


, r = n+ 2, · · · ,m.

The Ricci-Chen inequality was given as follows

Theorem 2.2.4. Let ϕ : Mn −→ M̃m(c) be an isometric immersion of a Riemannian

n-manifold Mn into a Riemannian space form M̃m(c). Then

(i) For each unit tangent vector X ∈ TxMn, we have

|| ~H||2(x) ≥ 4

n2
{Ric(X)− (n− 1)c},

where || ~H||2 is the squared mean curvature and Ric(X) the Ricci curvature of Mn

at X .

(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of (i) if

and only if X lies in the relative null space Nx at x.

(iii) The equality case of (i) holds identically for all unit tangent vectors at x if and only

if either x is a totally geodesic point or n = 2 and x is a totally umbilical point.

In fact, theorems of this section are some of the interesting results in this field, many

other results will be considered later. On one hand, the above results and other more are

either modified or generalized in the setting of warped product submanifolds. On the other

hand, new methods, inequalities and natural geometric properties are the most important

contributions of this thesis.
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2.3 DEFINITIONS AND PRELIMINARIES

Definitions, formulas and basic lemmas are explored briefly in this section. In the first

subsection, we introduce the notions of Riemannian manifolds, the Levi-Civita connec-

tion and the Riemannian curvature tensor. After that, we discuss the intrinsic geometry of

such manifolds. Meaning that, many intrinsic invariants are defined systematically, such

as sectional curvature, scalar curvature, Ricci curvature, Riemannian invariants and Chen

first invariant. Warped products are defined as Riemannian manifolds in the second sub-

section. The geometry of Riemannian submanifolds is discussed in the third subsection.

After that, warped products are treated as Riemannian submanifolds. The last subsection

is devoted for almost Hermitian and almost contact structures.

2.3.1 RIEMANNIAN MANIFOLDS

It is reasonable to embark on this section by the definition of differentiable manifolds (Do

Carmo, 1992).

Definition 2.3.1. A differentiable manifold of dimension m is a Hausdorff paracompact

topological space M̃m and a family of injective continuous mappings xα : Uα ⊂ Rm →

M̃m of open sets Uα of Rm into M̃m such that:

(i)
⋃
α xα(Uα) = M̃m.

(ii) For any pair α, β, with xα(Uα) ∩ xβ(Uβ) =W 6= φ, the sets x−1
α (W) and x−1

β (W)

are open sets in Rm and the mappings x−1
β ◦ xα are differentiable.

(iii) The family {(Uα,xα)} is maximal relative to the conditions (i) and (ii).

The pair (Uα,xα) (or the mapping xα) with x ∈ xα(Uα) is called a parametrization

(or system of coordinates) of M̃m at x; xα(Uα) is then called a coordinate neighborhood

at x. A family {(Uα,xα)} satisfying (i) and (ii) is called a differentiable structure on

M̃m.

Let M̃m be a C∞ real m-dimensional manifold ∗. A linear connection, ∇̃, on M̃m is

a mapping

∇̃ : Γ(TM̃m) × Γ(TM̃m) → Γ(TM̃m); (X, Y )→ ∇̃XY,

∗Throughout this work, we use the symbol ˜ for ambient manifolds, in order to be distinguished from
the terminology of submanifolds.
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satisfying the following conditions:

(i) ∇̃fX+YZ = f∇̃XZ + ∇̃YZ, (ii) ∇̃X(fY + Z) = f∇̃XY + (Xf)Y + ∇̃XZ,

for any f ∈ F(M̃m) and X, Y, Z ∈ Γ(TM̃m), where F(M̃m) and Γ(TM̃m) denote the

algebra of C∞ functions on M̃m and the module of C∞ sections of the tangent bundle

TM̃m, respectively, (Bejancu, 1978). Indeed, the choice of a linear connection is equiv-

alent to prescribing a way of differentiability on M̃m. Using ∇̃, the covariant derivative

of a (0, 2) tensor field G is defined by

∇̃X

(
G(Y, Z)

)
= (∇̃XG)(Y, Z) +G(∇XY, Z) +G(Y,∇XZ). (2.3.1)

Observe that covariant derivatives for Riemannian tensors of type (r, s) could be defined

by a similar manner as above, but this is enough for our purpose.

The torsion tensor T of a linear connection ∇̃ is a tensor field T of type (1, 2) defined

by

T (X, Y ) = ∇̃XY − ∇̃YX − [X, Y ],

for any X, Y ∈ Γ(TM̃m), where [X, Y ] is the Lie bracket of vector fields X and Y

defined by

[X, Y ](f) = X(Y f)− Y (Xf),

for any f ∈ F(M̃m). A torsion- free connection is a linear connection with vanishing

torsion tensor field.

A tensor field g̃ of type (0, 2) is said to be a Riemannian metric on M̃m if the following

conditions are fulfilled:

(i) g̃ is symmetric, i.e., g̃(X, Y ) = g̃(Y, X) for any X, Y ∈ Γ(TM̃m),

(ii) g̃ is positive definite, i.e., g̃(X, X) ≥ 0 for any X ∈ Γ(TM̃m) and g̃(X, X) = 0

if and only if X = 0.

If the manifold M̃m is further endowed with a Riemannian metric g̃, then it is called a

Riemannian manifold, (Bejancu, 1986) and (O’Neill, 1983).

A tensor field Ã of type (r, s) is said to be parallel with respect to the linear connec-

tion ∇̃ if we have

∇̃XÃ = 0, ∀ X ∈ Γ(TM̃m).
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A linear connection ∇̃ on M̃m is said to be a Riemannian connection if the Riemnnian

metric g̃ is parallel with respect to ∇̃, i.e., if we have

X(g̃(Y, Z)) = g̃(∇̃XY, Z) + g̃(Y, ∇̃XZ), (2.3.2)

for all X, Y, Z ∈ Γ(TM̃m).

On a Riemannian manifold M̃m there exists one and only one torsion-free Rieman-

nian connection ∇̃ called the Levi-Civita connection. More formally, this Riemannian

connection is characterized concretely by the well-known Kuzul formula; namely

2g̃(∇̃XY, Z) = X(g̃(Y, Z)) + Y (g̃(Z, X))− Z(g̃(X, Y ))

+ g̃([X, Y ], Z) + g̃([Z, X], Y )− g̃([Y, Z], X), (2.3.3)

for any X, Y, Z ∈ Γ(TM̃m).

The curvature tensor R̃ of ∇̃ is a tensor field of type (1, 3) given by

R̃(X, Y )Z = ∇̃X∇̃YZ − ∇̃Y ∇̃XZ − ∇̃[X, Y ]Z, (2.3.4)

and, the (0, 4) tensor field defined by

R̃(X, Y, Z, W ) = g̃(R̃(X, Y )Z, W ) (2.3.5)

is called the Riemannian curvature tensor, for any X, Y, Z, W ∈ Γ(TM̃m). It is well-

known that the Riemannian curvature tensor is a local isometry invariant.

One could use the preceding two equations to show that the Riemannian curvature

tensor R̃ admits the following well-known two skew-symmetric properties R̃(X,Z) =

−R̃(Z,X) and g(R̃(X,Z)Y,W ) = −g(R̃(X,Z)W,Y ). It also satisfies the first Bianchi

identity; namely

R̃(X,Z)Y + R̃(Z, Y )X + R̃(Y,X)Z = 0.

Consequently, these three properties together produce (O’Neill, 1983)

g̃(R̃(X,Z)Y,W ) = g̃(R̃(Y,W )X,Z). (2.3.6)

We point out that, these properties are useful to derive some relations between the warping

function and scalar curvature for warped product submanifolds in Riemannian manifolds,

as we will see in Chapter five.
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If we choose two linearly independent tangent vectors X, Y ∈ TxM̃m, then the sec-

tional curvature of the 2-plane π spanned byX and Y is given in terms of the Riemannian

curvature tensor R̃ by

K̃(X ∧ Y ) =
g̃(R̃(X, Y )Y,X)

g̃(X,X)g̃(Y, Y )− (g̃(X, Y ))2
. (2.3.7)

In case that the 2-plane π is spanned by orthogonal unit vectors X and Y from the tangent

space TxM̃m, x ∈ M̃m, the previous definition may be written as

K̃(π) = K̃M̃m(X ∧ Y ) = g̃(R̃(X, Y )Y, X). (2.3.8)

It is worth pointing out that, K̃(π) is independent of the choice of the orthonormal

basis {X, Y } of π, and it determines the Riemannian curvature tensor R̃ completely

(O’Neill, 1983). In addition, if K̃(π) is constant for all planes π in TxM̃m and for all

points x ∈ M̃m, say K̃(π) = c, then we call M̃m(c) a real space form. In fact, space

forms are regarded as the simplest important class of Riemannian manifolds. Denoting by

M̃m(c) a real space form of constant sectional curvature c, the curvature tensor of M̃m(c)

is expressed as

R̃(X, Y )Z = c(g̃(Y, Z)X − g̃(X, Z)Y ), (2.3.9)

for any X, Y, Z ∈ Γ(TM̃m(c)).

Next, consider a local field of orthonormal frames {e1, · · · , em} on M̃m. A global

(0, 2) tensor field defined by

S̃(X, Y ) =
m∑
j=1

{g̃(R̃(ej, X)Y, ej)}, X, Y ∈ TxM̃m (2.3.10)

is called the Ricci tensor field. If we fix a distinct integer from {1, · · · ,m}, let us say o,

then the Ricci curvature of eo, denoted R̃ic(eo), is given by

R̃ic(eo) =
m∑
j=1
j 6=o

K̃oj, (2.3.11)

where K̃oj = K̃(eo ∧ ej). From R̃ic(eo) = S̃(eo, eo) we observe that the Ricci curvatures

determine the Ricci tensor completely.

In this context, we shall define another important Riemannian intrinsic invariant called

the scalar curvature of M̃m, and denoted by τ̃(TxM̃
m), which, at some x in M̃m, is given
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by

τ̃(TxM̃
m) =

∑
1≤i<j≤m

K̃ij =
1

2

m∑
i=1

R̃ic(ei), (2.3.12)

where K̃ij = K̃(ei ∧ ej). It is clear that, the first equality in (2.3.12) is congruent to the

following equation which will be frequently used in subsequent chapters

2τ̃(TxM̃
m) =

∑
1≤i6=j≤m

K̃ij. (2.3.13)

In particular, for a 2-dimensional Riemannian manifold, the scalar curvature is its

Gaussian curvature. Some times the scalar curvature is defined as t̃ =
m∑
i=1

S̃(ei, ei);

thus t̃ = 2τ̃(TxM̃
m). However, throughout this work, scalar curvatures are defined as in

(2.3.12). Consequently, (2.3.11) together with (2.3.12) yield

R̃ic(eo) = τ̃(TxM̃
m)−

∑
1≤i<j≤m
i,j 6=o

K̃ij = τ̃(TxM̃
m)− 1

2

∑
1≤i6=j≤m
i,j 6=o

K̃ij. (2.3.14)

In general, for a k-plane Πk of TxM̃m, let {e1, · · · , ek} be an orthonormal basis of Πk.

Then for each fixed o ∈ {1, · · · , k} the k-Ricci curvature R̃icΠk(eo) of Πk at x is defined

by (Chen, 1999)

R̃icΠk(eo) =
k∑
j=1
j 6=o

K̃oj. (2.3.15)

Similarly, the scalar curvature τ̃(Πk) of the k-plane Πk is given by

τ̃(Πk) =
∑

1≤i<j≤k

K̃ij, (2.3.16)

where we should note that (see, for example (Bejancu, 1986) and (O’Neill, 1983))

2τ̃(Πk) =
k∑

1≤j 6=i≤k

K̃ij =
k∑
i=1

R̃icΠk(ei). (2.3.17)

Hence, for a fixed integer o ∈ {1, · · · , k} for k ≤ n, we have (see, for example (Chen,

1999) and (O’Neill, 1983))

R̃icΠk(eo) = τ̃(Πk)−
∑

1≤i<j≤k
i,j 6=o

K̃ij. (2.3.18)

For the subsequent chapters we introduce another two concepts of Riemannian invari-

ants. We first take an integer k such that, 2 ≤ k ≤ m, then the Riemannian invariant

(Chen, 2008), denoted by Θ, on a Riemannian m-manifold M̃m is defined by

Θk(x) = (
1

k − 1
) inf

Πk,eo
R̃icΠk(eo), x ∈ M̃m, (2.3.19)
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where Πk runs over all k-planes in TxM̃m and eo runs over all unit vectors in Πk. The

second invariant is called the Chen first invariant, which is defined as

δM̃m(x) = τ̃(TxM̃
m)− inf{K̃(π) : π ⊂ TxM̃

m, x ∈ M̃m, dimπ = 2}. (2.3.20)

The δ-invariants are ”very different in nature” from the ”classical” scalar and Ricci cur-

vatures. This is simply due to the fact that both scalar and Ricci curvatures are ”total

sum” of sectional curvatures on a Riemannian manifold. In contrast, all of the non-trivial

δ-invariants are obtained from the scalar curvature by throwing away a certain amount of

sectional curvatures, (Chen, 2008).

Next, we recall two important differential operators of a differentiable function ψ on

M̃m; namely the gradient ∇̃ψ and the Laplacian ∆ψ of ψ, which are defined, respectively,

as follows

g̃(∇̃ψ,X) = Xψ (2.3.21)

and

∆ψ =
m∑
i=1

((∇̃eiei)ψ − eieiψ), (2.3.22)

for any vector field X tangent to M̃m, where ∇̃ denotes the Levi-Civita connection on

M̃m. As a consequence, we have

||∇̃ψ||2 =
m∑
i=1

(
ei(ψ)

)2
. (2.3.23)

From the integration theory of manifolds, if M̃m is orientable compact, then we have∫
M̃m

∆fdV = 0, (2.3.24)

where dV denotes to the volume element of M̃m.

An n-dimensional distribution on a manifold M̃m is a mapping D defined on M̃m,

which assigns to each point x of M̃m an n-dimensional linear subspace Dx of TxM̃m.

A vector field X on M̃m belongs to D if we have Xx ∈ Dx for each x ∈ M̃m. When

this happens we write X ∈ Γ(D). The distribution is said to be differentiable if for any

x ∈ M̃m there exist n differentiable linearly independent vector fields Xi ∈ Γ(D) in a

neighborhood of x for i ∈ {i, · · · , n}. From now on, all distributions are supposed to

be differentiable of class C∞. The distribution D is said to be involutive if for all vector
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fields X, Y ∈ Γ(D) we have [X, Y ] ∈ Γ(D). A submanifold Mn of M̃m is said to be an

integral manifold of D if for every point x ∈ Mn, Dx coincides with the tangent space to

Mn at x. If there exists no integral manifold of D which contains Mn, then Mn is called

a maximal integral manifold or a leaf of D. The distribution D is said to be integrable if

for every x ∈ M̃m there exists an integral manifold of D containing x, (Bejancu, 1986).

2.3.2 WARPED PRODUCTS

In an attempt to construct manifolds of negative curvatures, R.L. Bishop and O’Neill

(Bishop & O’Neill, 1996) introduced the notion of warped product manifolds as follows:

Let N1 and N2 be two Riemannian manifolds with Riemannian metrics gN1 and gN2 ,

respectively, and f > 0 a C∞ function on N1. Consider the product manifold N1 × N2

with its projections π1 : N1 × N2 7→ N1 and π2 : N1 × N2 7→ N2. Then, the warped

product M̃m = N1×f N2 is the Riemannian manifold N1×N2 = (N1×N2, g̃) equipped

with a Riemannian structure such that g̃ = gN1 + f 2gN2 .

To relate the calculus of N1 × N2 to that of its factors the crucial notion of lifting is

introduced as follows. If f ∈ F(N1), the lift of f to N1×N2 is f̃ = f ◦π1 ∈ F(N1×N2).

If Xp ∈ Tp(N1) and q ∈ N2, then the lift X(p,q) of Xp to (p, q) is the unique vector in

T(p,q)(N1) such that dπ1(X(p,q)) = Xp. If X ∈ Γ(TN1) the lift of X to N1 × N2 is the

vector field X whose value at each (p, q) is the lift of Xp to (p, q). The set of all such

horizontal lifts X is denoted by L(N1). Functions, tangent vectors and vector fields on

N2 are lifted to N1 × N2 in the same way using the projection π2. Note that L(N1) and

symmetrically the vertical lifts L(N2) are vector subspaces of Γ
(
T (N1 ×N2)

)
, (O’Neill,

1983).

We recall the following two general results for warped products (O’Neill, 1983).

Proposition 2.3.1. On M̃m = N1 ×f N2, if X, Y ∈ L(N1) and Z, W ∈ L(N2), then

(i) ∇̃XY ∈ L(N1) is the lift of ∇̃XY on N1.

(ii) ∇̃XZ = ∇̃ZX = (Xf/f)Z.

(iii) (∇̃ZW )⊥ = hN2(Z,W ) = −
(
gN2(Z,W )/f

)
∇(f).

(iv) (∇̃ZW )T ∈ L(N2) is the lift of ∇N2
Z W on N2,
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where gN2 , hN2 and ∇N2 are, respectively, the induced Riemannian metric on N2, the

second fundamental form of N2 as a submanifold of M̃m and the induced Levi-Civita

connection on N2. ∗

It is obvious that, the above proposition leads to the following geometric conclusion.

Corollary 2.3.1. The leaves N1 × q of a warped product are totally geodesic; the fibers

p×N2 are totally umbilical.

Clearly, the totally geodesy of the leaves follows from (i), while (iii) implies that the

fibers are totally umbilical in M̃m. It is significant to say that, this corollary is one of the

key ingredients of this work. Since all our considered submanifolds are warped products.

Therefore, this corollary is of fundamental role in proofs and geoemtrical interpretations,

especially, in handling the equality cases of our inequalities.

A warped product manifold M̃m = N1 ×f N2 is said to be trivial if the warping

function f is constant. For a nontrivial warped product N1 ×f N2, we denote by D1 and

D2 the distributions given by the vectors tangent to leaves and fibers, respectively. Thus,

D1 is obtained from tangent vectors of N1 via the horizontal lift and D2 is obtained by

tangent vectors of N2 via the vertical lift.

In (O’Neill, 1983), warped product manifolds were discussed deeply from an intrinsic

geometrical viewpoint. For instance, sectional curvature, scalar curvature, Ricci curvature

were extensively investigated. As we discussed in the previous section, all these Rieman-

nian invariants are defined by means of the Riemannian curvature tensor R̃ of M̃m.

Given M̃m = N1 ×f N2, let N1R̃ and N2R̃ be the lefts to M̃m of the Riemannian

curvature tensors of N1 and N2. We recall the following central result

Proposition 2.3.2. (O’Neill, 1983). Let M̃m = N1 ×f N2 be a warped product with

Riemannian curvature tensor R̃. If X, Y, U ∈ L(N1) and Z, V, W ∈ L(N2), then

(1) R̃XYU ∈ L(N1) is the lift of N1R̃XYU on N1.

(2) R̃V XY = (Hf (X, Y )/f)V , where Hf is the Hessian of f .

(3) R̃XY V = R̃VWX = 0.

∗The operators ⊥, T and ∇(f) refer to the normal projection, the tangential projection and the gradient
of f , respectively.
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(4) R̃XVW = (g̃(V,W )/f)∇̃X(∇f).

(5) R̃VWZ = N2R̃VWZ − (||∇f ||2/f 2){g̃(V, Z)W − g̃(W,Z)V }.

As a generalization of (singly) warped product manifolds, we introduce now doubly

warped product manifolds (Bonanzinga & Matsumoto, 2004). A doubly warped product

of Riemannian manifolds (N1, gN1) and (N2, gN2) with warping functions f1 : N1 →

(0,∞) and f2 : N2 → (0,∞) is a product manifold N1 × N2 endowed with a metric

tensor

g = f 2
2 gN1 ⊕ f 2

1 gN1 .

More explicitly, if Xx, Yx ∈ T (N1 ×N2) then

g̃(Xx, Yx) = (f2 ◦ π2)2gN1

(
dπ2(Xx), dπ2(Yx)

)
+ (f1 ◦ π1)2gN2

(
dπ1(Xx), dπ1(Yx)

)
,

where π1 : N1 × N2 7→ N1 and π2 : N1 × N2 7→ N2 are the canonical projections. We

denote the doubly warped product of Riemannian manifolds (N1, gN1) and (N2, gN2) by

f2N1 ×f1 N2. If either f1 = 1 or f2 = 1, but not both, then f2N1 ×f1 N2 becomes (singly)

warped product of Riemannian manifolds N1 and N2. If f1 = f2 = 1, then we have

a product manifold. If neither f1 nor f2 is constant, then we have a proper (nontrivial)

doubly warped product manifold. In this case we have

∇̃XZ = X(ln f1)Z + Z(ln f2)X, (2.3.25)

for any X ∈ L(N1) and Z ∈ L(N2).

This was a short introduction about the concept and related results of warped product

manifolds. At the end of the next section, warped products will be discussed form the

submanifold theory point of view.

Now, let {e1, · · · , en1 , en1+1, · · · , em} be local fields of orthonormal frame of Γ(TM̃m)

such that n1, n2 and m are the dimensions of N1, N2 and M̃m, respectively. Then, for

any Riemannian warped product M̃m = N1 ×f N2, Proposition 2.3.2 (4) implies that

the sectional curvature and the warping function are related by (see, for example (Chen,

2002), (Chen, 2008) and (Chen, 2013))

n1∑
a=1

m∑
A=n1+1

K̃(ea ∧ eA) =
n2∆f

f
. (2.3.26)
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2.3.3 RIEMANNIAN SUBMANIFOLDS

At first, let us recall the following important two facts regarding Riemannian submani-

folds ∗, (Do Carmo, 1992).

Definition 2.3.2. Let Mn and M̃m be differentiable manifolds. A differentiable mapping

ϕ : Mn −→ M̃m is said to be an immersion if dϕx : TxM
n → Tϕ(x)M̃

m is injective

for all x ∈ Mn. If, in addition, ϕ is a homeomorphism onto ϕ(Mn) ⊂ M̃m, where

ϕ(Mn) has the subspace topology induced from M̃m, we say that ϕ is an embedding.

If Mn ⊂ M̃m and the inclusion i : Mn ⊂ M̃m is an embedding, we say that Mn is a

submanifold of M̃m.

It can be seen that if ϕ : Mn → M̃m is an immersion, then n ≤ m; the difference

m− n is called the codimension of the immersion ϕ.

For most local questions of geometry, it is the same to work with either immersions

or embeddings. This comes from the following proposition which shows that every im-

mersion is locally (in a certain sense) an embedding.

Proposition 2.3.3. Let ϕ : Mn −→ M̃m, n ≤ m, be an immersion of the differentiable

manifold Mn into the differentiable manifold M̃m. For every point x ∈ Mn, there exists

a neighborhood u of x such that the restriction ϕ|u → M̃m is an embedding.

Now, we turn our attention to the differential geometry of the submanifold theory.

First, let Mn be n-dimensional Riemannian manifold isometrically immersed in an m-

dimensional Riemannian manifold M̃m. Since we are dealing with a local study, then,

by Proposition 2.3.3, we may assume that Mn is embedded in M̃m. On this infinitesimal

scale, Definition 2.3.2 guarantees that Mn is a Riemannian submanifold of some nearby

points in M̃m with induced Riemannian metric g. Then, Gauss and Weingarten formulas

are, respectively, given by

∇̃XY = ∇XY + h(X, Y ) (2.3.27)

and

∇̃Xζ = −AζX +∇⊥Xζ (2.3.28)

∗From now on, warped products will be considered as Riemannian submanifolds; i.e., Mn = N1×fN2.
The proceeding notation, M̃m = N1 ×f N2, was for warped product manifolds.
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for all X, Y ∈ Γ(TMn) and ζ ∈ Γ(T⊥Mn), where ∇̃ and ∇ denote respectively the

Levi-Civita and the induced Levi-Civita connections on M̃m and Mn, and Γ(TMn) is the

module of differentiable sections of the vector bundle TMn. ∇⊥ is the normal connection

acting on the normal bundle T⊥Mn.

Here, g denotes the induced Riemannian metric from g̃ on Mn. For simplicity’s sake,

the inner products which are carried by g, g̃ or any other induced Riemannian metric are

performed via g. However, most of the inner products which will be applied in this thesis

are equipped with g, other situations are rarely considered.

Here, it is well-known that the second fundamental form h and the shape operator Aζ

of Mn are related by

g(AζX, Y ) = g(h(X, Y ), ζ) (2.3.29)

for all X, Y ∈ Γ(TMn) and ζ ∈ Γ(T⊥Mn), (Bejancu, 1986), (O’Neill, 1983). Analyt-

ically, we can use (2.3.1) to define the covariant derivative of h, ∇̃h, with respect to the

connection on TMn ⊕ T⊥Mn by

(∇̃Xh)(Y, Z) = ∇⊥X(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ). (2.3.30)

Geometrically, Mn is called a totally geodesic submanifold in M̃m if h vanishes identi-

cally. Particularly, the relative null space, Nx, of the submanifold Mn in the Riemannian

manifold M̃m is defined at a point x ∈Mn by (Chen, 1999) as

Nx = {X ∈ TxMn : h(X, Y ) = 0 ∀ Y ∈ TxMn}. (2.3.31)

In a different line of thought, and for any X ∈ Γ(TMn), ζ ∈ Γ(T⊥Mn) and a (1, 1)

tensor field ψ on M̃m, we write

ψX = PX + FX, (2.3.32)

and

ψN = tζ + fζ, (2.3.33)

where PX , tζ are the tangential components and FX , fζ are the normal components of

ψX and ψζ , respectively, (Chen, 1990). In the sake of following the common terminol-

ogy, the tensor field ψ is replaced by φ and J in almost contact and almost Hermitian
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manifolds, respectively. However, the covariant derivatives of the tensor fields ψ, P and

F are respectively defined as (Bejancu, 1986)

(∇̃Xψ)Y = ∇̃XψY − ψ∇̃XY, (2.3.34)

(∇̃XP )Y = ∇̃XPY − P ∇̃XY (2.3.35)

and

(∇̃XF )Y = ∇⊥XFY − F ∇̃XY. (2.3.36)

Likewise, we consider a local field of orthonormal frames ∗ {e1, · · · , en, en+1, · · · , em}

on M̃m, such that, restricted to Mn, {e1, · · · , en} are tangent to Mn and {en+1, · · · , em}

are normal to Mn. Then, the mean curvature vector ~H(x) is introduced as (Bejancu,

1986), (O’Neill, 1983)

~H(x) =
1

n

n∑
i=1

h(ei, ei), (2.3.37)

On one hand, we say that Mn is a minimal submanifold of M̃m if ~H = 0. On the

other hand, one may deduce that Mn is totally umbilical in M̃m if and only if h(X, Y ) =

g(X, Y ) ~H , for any X, Y ∈ Γ(TMn) (Chen, 2005). It is remarkable to note that the

scalar curvature τ(x) of Mn at x is identical with the scalar curvature of the tangent space

TxM
n of Mn at x; that is, τ(x) = τ(TxM

n) (Chen, 2002).

In general, take an orthonormal basis {e1, · · · , ek} for the k-plane Πk of TxMn. Then,

the scalar curvature τ(Πk) of Πk is given by (Chen, 1999)

τ(Πk) =
∑

1≤i<j≤k

K(ei ∧ ej). (2.3.38)

Geometrically, τ(Πk) is the scalar curvature of the image expx(Πk) of Πk at x under the

exponential map at x. In case Π2 is a 2-plane, then τ(Π2) is simply the sectional curvature

K(Π2) of Π2, (Chen, 2002).

In this series, the well-known equations of Gauss and Codazzi are, respectively, given

by

R(X, Y, Z,W ) = R̃(X, Y, Z,W )

+ g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )), (2.3.39)

∗Throughout this work, Mn = N1 ×f N2 denotes for the isometrically immersed warped product
submanifold in M̃m. The numbers m, n, n1, and n2 are the dimensions of M̃m, Mn, N1 and N2,
respectively.
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and

(R̃(X, Y )Z)⊥ = (∇̃Xh)(Y, Z)− (∇̃Y h)(X,Z), (2.3.40)

for any vectorsX, Y, Z, W ∈ Γ(TMn), where R̃ andR are the curvature tensors of M̃m

and Mn, respectively, while (R̃(X, Y )Z)⊥ denotes the normal component of R̃(X, Y )Z.

From now on, we refer to the coefficients of the second fundamental form h of Mn

with respect to the above local frame by the following notation

hrij = g(h(ei, ej), er), (2.3.41)

where i, j ∈ {1, ..., n}, and r ∈ {n+ 1, ...,m}. First, by making use of (2.3.41), (2.3.39)

and (2.3.8), we get the following

K(ei ∧ ej) = K̃(ei ∧ ej) +
m∑

r=n+1

(g(hrii er, h
r
jj er)− g(hrij er, h

r
ij er)). (2.3.42)

Equivalently,

K(ei ∧ ej) = K̃(ei ∧ ej) +
m∑

r=n+1

(hriih
r
jj − (hrij)

2), (2.3.43)

where K̃(ei∧ej) denotes the sectional curvature of the 2-plane spanned by ei and ej at x in

the ambient manifold M̃m. Secondly, by taking the summation in the above equation over

the orthonormal frame of the tangent space of Mn, and due to (2.3.12), we immediately

obtain

2τ(TxM
n) = 2τ̃(TxM

n) + n2|| ~H||2 − ||h||2, (2.3.44)

where

τ̃(TxM
n) =

∑
1≤i<j≤n

K̃(ei ∧ ej) (2.3.45)

denotes the scalar curvature of the n-plane TxMn in the ambient manifold M̃m.

For a warped product Mn = N1×fN2, let ϕ : Mn → M̃m be an isometric immersion

of N1 ×f N2 into an arbitrary Riemannian manifold M̃m. As usual, let h be the second

fundamental form of ϕ. We call the immersion ϕ mixed totally geodesic if h(X,Z) = 0

for any X in D1 and Z in D2, (see, for example (Bejancu, 1978) and (Chen, 2002)). In

particular, if we denote the restrictions of h to N1 and N2 respectively by h1 and h2, then

for i = 1 and 2, we call hi the partial second fundamental form of ϕ. Automatically, the
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partial mean curvature vectors ~H1 and ~H2 are defined by the following partial traces ∗

~H1 =
1

n1

n1∑
a=1

h(ea, ea), ~H2 =
1

n2

n1+n2∑
A=n1+1

h(eA, eA) (2.3.46)

for some orthonormal frame fields {e1, · · · , en1} and {en1+1, · · · , en1+n2} of D1 and D2,

respectively.

This motivation for the following definition may not be evident at this moment, but

it will emerge gradually as we prove its natural existence, then imposing it to have

profoundly general results, (see, for example (Bejancu, 1978), (Bejancu, 1986), (Chen,

2002), (Chen, 2005), (Kim et al., 2004) and (Mustafa et al., 2014 & 2015)).

Definition 2.3.3. An immersion ϕ : N1 ×f N2 −→ M̃m is called Di-totally geodesic if

the partial second fundamental form hi vanishes identically. If for allX, Y ∈ Di we have

h(X, Y ) = g(X, Y )K for some normal vector K, then ϕ is called Di-totally umbilical.

It is called Di-minimal if the partial mean curvature vector ~Hi vanishes, for i = 1 or 2.

2.3.4 ALMOST HERMITIAN AND ALMOST CONTACT STRUCTURES

Let M̃2m be a real C∞ manifold endowed with an almost complex structure J , i.e. J

is a tensor field of type (1,1) such that, at every point x ∈ M̃2m we have J2 = −I .

Then, the pair (M̃2m, J) is called an almost complex manifold (see, for example (Bejancu,

1986) and (Moroianu, 2007)). Observe that the differential geometry of M̃2m depends on

the behavior of the tangent bundle of M̃2m relative to the action of the almost complex

structure J . In addition, if the Nijenhuis tensor of J vanishes identically, we then call J a

complex structure on M̃2m, and (M̃2m, J) turns out to be a complex manifold, where the

Nijenhuis tensor is defined by

[J, J ](X, Y ) = [JX, JY ]− [X, Y ]− J [JX, Y ]− J [X, JY ], (2.3.47)

for any X, Y ∈ Γ(TM̃2m). In addition, if the almost complex manifold (M̃2m, J) is

furnished with a compatible Riemannian metric g̃, i.e., g̃(JX, JY ) = g̃(X, Y ) for any

X, Y ∈ Γ(TM̃2m), then (M̃2m, J, g̃) is called an almost Hermitian manifold.

∗Throughout this work, we use the following convention on the range of indices unless otherwise stated,
the indices i, j run from 1 to n, the lowercase letters a, b from 1 to n1, the uppercase letters A,B from n1

to n and r from n to m.
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As we have seen above, the vanishing of the Nijenhuis tensor on almost Hermitian

manifolds gives rise to a particular special class of almost Hermitian manifolds called

Hermitian manifolds. The Hermitian manifold (M̃2m, J, g̃) allows one to endow M̃2m

with an alternating 2-form w given by

w(X, Y ) = g̃(X, JY )

for any X, Y ∈ Γ(TM̃2m). This 2-form is called the associated Kaehler form. It is

always possible to retrieve g̃ from w, more formally

g̃(X, Y ) = w(JX, Y ).

Thus, g̃ now is called a Kaehler metric. In particular, (M̃2m, J, g̃) becomes a Kaehler

manifold if w is closed, i.e., dw = 0. Equivalently, we say that a Hermitian manifold

(M̃2m, J, g̃) is a Kaehlerian manifold if and only if the complex structure J is parallel

with respect to ∇̃, i.e., whenever the following condition is preserved

(∇̃XJ)Y = 0 (2.3.48)

for any X, Y ∈ Γ(TM̃2m). In particular, if a Kaehler manifold M̃2m has constant holo-

morphic sectional curvature cKa ∗, then it is called complex space form, M̃2m(cKa). It is

well-known that the Riemannian curvature tensor of a complex space form M̃2m(cKa) of

constant holomorphic sectional curvature cKa is given by (Chen, 2003)

R̃(X, Y ;Z,W ) =
cKa
4
{g̃(X,W )g̃(Y, Z)− g̃(X,Z)g̃(Y,W ) + g̃(JX,W )g̃(JY, Z)

−g̃(JX,Z)g̃(JY,W ) + 2g̃(X, JY )g̃(JZ,W )}, (2.3.49)

for any vector fields X, Y, Z, W ∈ Γ(TM̃2m(cKa)).

In this context, a Hermitian manifold (M̃2m, J, g̃) with the associated Kaehler 2-form

w is called a locally conformal Kaehler (l.c.K) manifold if there is a closed 1-form Ω,

globally defined on M̃2m, such that dw = Ω ∧ w, (Bonanzinga & Matsumoto, 2004).

The closed 1-form Ω is called the Lee form of the l.c.K manifold M̃2m. For a l.c.K
∗In this work, some notation is required to cope with various Riemannian curvature tensors used ex-

tensively; the constants c, cKa, cRK , cS , cKe and cc refer, respectively, to constant sectional curvatures
of Riemannian space form, complex space form, generalized complex space form, Sasakian space form,
Kenmotsu space form and cosymplectic space form.
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manifold (M̃2m, J, g̃) we define the Lee vector field λ = Ω], where ] means rising of

indices with respect to g̃; namely g̃(X,λ) = Ω(X), for all X ∈ Γ(TM̃2m). In the

language of covariant derivation, a Hermitian manifold is a l.c.K if and only if it obeys

the following tensorial relation

(∇̃XJ)Y = [ϑ(Y )X − Ω(Y )JX − g̃(X, Y )A− w(X, Y )λ] (2.3.50)

for any X, Y ∈ Γ(TM̃2m). Here ϑ = Ω ◦ J and A = −Jλ are the anti-Lee form and

the anti-Lee vector field, respectively. In terms of the Lee vector field λ, (2.3.50) can be

rewritten as

(∇̃XJ)Y = [g̃(λ, JV )X − g̃(λ, Y )JX + g̃(JX, Y )λ+ g̃(X, Y )Jλ]. (2.3.51)

In a natural way, it is possible to weaken the condition in (2.3.48) by

(∇̃XJ)Y + (∇̃Y J)X = 0 (2.3.52)

for each X, Y ∈ Γ(TM̃2m). Every almost Hermitian manifold satisfying the previous

condition is called nearly Kaehler manifold (Al-Luhaibi et al., 2009), (Bejancu, 1986).

More generally, there is a class of almost Hermitian manifolds which is finer than

nearly Kaehler manifolds, known as RK-manifolds, (Al-Luhaibi et al., 2009). More

precisely, anRK-manifold M̃2m is an almost Hermitian manifold for which the curvature

tensor R̃ is invariant under J , i.e.,

R̃(JX, JY ; JZ, JW ) = R̃(X, Y ;Z,W ),

for any vector fields X, Y, Z, W ∈ Γ(TM̃2m).

Particularly, an almost Hermitian manifold M̃2m is of pointwise constant type if for

any x ∈ M̃2m and X ∈ TxM̃2m

σ(X, Y ) = σ(X,Z),

where σ(X, Y ) = R̃(X, Y ; JX, JY )− R̃(X, Y ;X, Y ) with Y and Z being tangent vec-

tors at x, orthogonal to X and JX . The manifold M̃2m is said to be of constant type if

for any unit vectors X, Y ∈ Γ(TM̃2m) with g̃(X, Y ) = g̃(JX, Y ) = 0, σ(X, Y ) is a

constant function. It is proven that (see (Al-Luhaibi et al., 2009) and references therein)
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Theorem 2.3.1. Let M̃2m be an RK-manifold. Then M̃2m is of pointwise constant type

if and only if there exists a function γ on M̃2m such that

σ(X, Y ) = γ

(
g̃(X,X)g̃(Y, Y )−

(
g̃(X, Y )

)2 −
(
g̃(X, JY )

)2
)

for any X, Y ∈ Γ(TM̃2m). Moreover, M̃2m is of constant type if and only if the above

equality holds for a constant γ. In this case, γ is the constant type of M̃2m.

We end this discussion of almost Hermitian manifolds by the following notion. A

generalized complex space form is an RK-manifold of constant holomorphic sectional

curvature and of constant type, denoted by M̃2m(cRK , γ), with curvature tensor R̃ has the

following expression

R̃(X, Y ;Z,W ) =
cRK + 3γ

4
{g̃(X,W )g̃(Y, Z)− g̃(X,Z)g̃(Y,W )}

+
cRK − γ

4
{g̃(JX,W )g̃(JY, Z)− g̃(JX,Z)g̃(JY,W )+2g̃(X, JY )g̃(JZ,W )},

(2.3.53)

for any vector fields X, Y, Z, W ∈ Γ(TM̃2m(cRK)).

For an odd dimensional real C∞ manifold M̃2l+1, let φ, ξ, η and g̃ be respectively a

(1, 1) tensor field, a vector field, a 1-form and a Riemannian metric on M̃2l+1 satisfying

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1,

η(X) = g̃(X, ξ), g̃(φX, φY ) = g̃(X, Y )− η(X)η(Y ),

 (2.3.54)

for any X, Y ∈ Γ(TM̃2l+1). Then we call (M̃2l+1, φ, ξ, η, g̃) an almost contact met-

ric manifold and (φ, ξ, η, g̃) an almost contact metric structure on M̃2l+1, see (Bejancu,

1986), (Blair, 1971) and (Oubina, 1985).

A fundamental 2-form Φ is defined on M̃2l+1 by Φ(X, Y ) = g̃(φX, Y ). An almost

contact metric manifold M̃2l+1 is called a contact metric manifold if Φ = 1
2
dη. If the

almost contact metric manifold (M̃2l+1, φ, ξ, η, g̃) satisfies [φ, φ] + 2dη ⊗ ξ = 0, then

(M̃2l+1, φ, ξ, η, g̃) turns out to be a normal almost contact manifold, where the Nijenhuis

tensor is defined as

[φ, φ](X, Y ) = [φX, φY ] + φ2[X, Y ]− φ[X,φY ]− φ[φX, Y ] ∀ X, Y ∈ Γ(TM̃2l+1).

For our purpose, we will distinguish four classes of almost contact metric structures;

namely, Sasakian, Kenmotsu, cosymplectic and nearly trans-Sasakian structures. At first,
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an almost contact metric structure is is said to be Sasakian whenever it is both contact

metric and normal, equivalently (Sasaki, 1960)

(∇̃Xφ)Y = −g̃(X, Y )ξ + η(Y )X. (2.3.55)

A 2-plane π in TxM̃2l+1 of an almost metric manifold M̃2l+1 is called a φ-section

if π ⊥ ξ and φ(π) = π. Accordingly, we say that M̃2l+1 is of constant φ-sectional

curvature if the sectional curvature K̃(π) does not depend on the choice of the φ-section

π of TxM̃2l+1 and the choice of a point x ∈ M̃2l+1. Based on this preparatory concept, a

Sasakian manifold M̃2l+1 is said to be a Sasakian space form M̃2l+1(cS), if the φ-sectional

curvature is constant cS along M̃2l+1. Then the associated Riemannian curvature tensor

R̃ on M̃2l+1(cS) is given by (Bejancu, 1986)

R̃(X, Y ;Z,W ) =
cS + 3

4

{
g̃(X,W )g̃(Y, Z)− g̃(X,Z)g̃(Y,W )

}

−cS − 1

4

{
η(Z)

(
η(Y )g̃(X,W )− η(X)g̃(Y,W )

)
+

(
g̃(Y, Z)η(X)− g̃(X,Z)η(Y )

)
g̃(ξ,W )

−g̃(φX,W )g̃(φY, Z) + g̃(φX,Z)g̃(φY,W ) + 2g̃(φX, Y )g̃(φZ,W )

}
, (2.3.56)

for any X, Y, Z, W ∈ Γ(TM̃2l+1(cS)).

An almost contact metric manifold M̃2l+1 is called Kenmotsu manifold (Kenmotsu,

1972) if

(∇̃Xφ)Y = g̃(φX, Y )ξ − η(Y )φX. (2.3.57)

By analogy with Sasakian manifolds, a Kenmotsu manifold M̃2l+1 is said to be a Ken-

motsu space form M̃2l+1(cKe), if the φ-sectional curvature is constant cKe along M̃2l+1,

whose Riemannian curvature tensor R̃ on M̃2l+1(cKe) is characterized by (Kenmotsu,

1972)

R̃(X, Y ;Z,W ) =
cKe − 3

4

{
g̃(X,W )g̃(Y, Z)− g̃(X,Z)g̃(Y,W )

}

−cKe + 1

4

{
η(Z)

(
η(Y )g̃(X,W )− η(X)g̃(Y,W )

)
+

(
g̃(Y, Z)η(X)− g̃(X,Z)η(Y )

)
g̃(ξ,W )
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−g̃(φX,W )g̃(φY, Z) + g̃(φX,Z)g̃(φY,W ) + 2g̃(φX, Y )g̃(φZ,W )

}
, (2.3.58)

for any X, Y, Z, W ∈ Γ(TM̃2l+1(cKe)). We notice that Kenmotsu manifolds are normal

but not quasi-Sasakian and, hence, not Sasakian (Blair et al., 1976).

In the case of killing almost contact structure tensors, consider a normal almost contact

metric structure (φ, ξ, η, g̃) with both Φ and η are closed. Then, such (φ, ξ, η, g̃) is called

cosymplectic (Olszak, 1981). Explicitly, cosymplectic manifolds are characterized by

normality and the vanishing of Riemannian covariant derivative of φ, i.e.,

(∇̃Xφ)Y = 0. (2.3.59)

A cosymplectic manifold M̃2l+1 is said to be a cosymplectic space form M̃2l+1(cc), if

the φ-sectional curvature is constant cc along M̃2l+1 with Riemannian curvature tensor R̃

expressed by (see, for example (Blair, 1971) and (Blair et al., 1976))

R̃(X, Y ;Z,W ) =
cc
4

{
g̃(X,W )g̃(Y, Z)− g̃(X,Z)g̃(Y,W )

−η(Z)

(
η(Y )g̃(X,W )− η(X)g̃(Y,W )

)
−
(
g̃(Y, Z)η(X)− g̃(X,Z)η(Y )

)
g̃(ξ,W )

+g̃(φX,W )g̃(φY, Z)− g̃(φX,Z)g̃(φY,W )− 2g̃(φX, Y )g̃(φZ,W )

}
, (2.3.60)

for any X, Y, Z, W ∈ Γ(TM̃2l+1(cc)). Hereafter, we call the almost contact manifold

M̃2l+1 a nearly cosymplectic manifold if

(∇̃Xφ)Y + (∇̃Y φ)X = 0. (2.3.61)

Based on Gray-Hervella classification of almost Hermitian manifolds (Gray & Hervella,

1980), an almost contact metric structure (φ, ξ, η, g̃) on M̃2l+1 is called a trans-Sasakian

structure (Gherghe, 2000) if (M̃2l+1 × R, J, G̃) belongs to the class W4 of their classifi-

cation, where J is the almost complex structure on M̃2l+1 × R defined by

J(X, ad/dt) =

(
φX − aξ, η(X)d/dt

)
for all vector fields X on M̃2l+1 and smooth functions a on M̃2l+1 × R, where G̃ is the

product metric on M̃2l+1 × R. This may be expressed by the condition

(∇̃Xφ)Y = α

(
g̃(X, Y )ξ − η(Y )X

)
+ β

(
g̃(φX, Y )ξ − η(Y )φX

)
, (2.3.62)
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for some smooth functions α and β on M̃2l+1, and we say that the trans-Sasakian structure

is of type (α, β). From the above formula it follows that

∇̃Xξ = −αφX + β

(
X − η(X)ξ

)
.

Up to D. Chinea and C. Gonzalez classification of almost contact structures (Chinea &

Gonzalez, 1990), the class C6⊗C5 coincides with the class of trans-Sasakian structure of

type (α, β). Recently, J. C. Marrero proved that a trans-Sasakian manifold of dimension

≥5 is either α-Sasakian, β-Kenmotsu or a cosymplectic manifold, (Marrero, 1992).

In (Gherghe, 2000), C. Gherghe introduced nearly trans-Sasakian structure of type

(α, β). An almost contact metric structure (φ, ξ, η, g̃) on M̃2l+1 is called a nearly trans-

Sasakian structure (Mustafa et al., 2014 & 2015) if

(∇̃Xφ)Y + (∇̃Y φ)X = α

(
2g̃(X, Y )ξ − η(Y )X − η(X)Y

)

−β
(
η(Y )φX + η(X)φY

)
. (2.3.63)

Evidently, a nearly trans-Sasakian of type (α, β) is nearly-Sasakian, nearly Kenmotsu or

nearly cosymplectic according as β = 0, α=1; or α = 0, β=1; or α = β = 0, respectively.
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CHAPTER 3: EXISTENCE AND NON-EXISTENCE OF WARPED

PRODUCT SUBMANIFOLDS

3.1 INTRODUCTION

This chapter has two significant purposes. The first one is to provide special case solutions

for Problems 1.4.2 and 1.4.3, that is to see whether a warped product exists or not in

almost Hermitian and almost contact manifolds. In the existence case, we prove some

preparatory characteristic results which are necessary for subsequent chapters, and this

is the second purpose. Some new examples are given to assert the existence of some

important warped product manifolds.

For a submanifold Mn in an almost Hermitian manifold M̃2m ( resp. almost contact

manifold M̃2l+1), let PXY denote the tangential component and QXY the normal one of

(∇̃XJ)Y ( resp. (∇̃Xφ)Y ) in M̃2m ( resp. M̃2l+1), where X, Y ∈ Γ(TMn).

In order to make it a self-contained reference of warped product submanifolds for

immersibility and nonimmersibility problems, we hypothesize most of our statements in

the current and the next chapters for almost Hermitian and almost contact manifolds, and

for warped product submanifolds of type NT ×f N2, where NT and N are holomorphic

and Riemannian submanifolds. Meaning that, a lot of particular case results are included

in the theorems of the next two chapters.

3.2 WARPED PRODUCT SUBMANIFOLDS OF ALMOST HERMITIAN
MANIFOLDS

We begin by considering a warped product submanifold in almost Hermitian manifolds

such that one of the factors is holomorphic.

Theorem 3.2.1. Every warped product submanifoldMn = N×fNT in almost Hermitian

manifolds M̃2m possesses the following

(i) g(PXZ,W ) = 0;

(ii) g(PZX, JZ)− g(PJZX,Z) = −2(X ln f)||Z||2,

for every vector fields X ∈ Γ(TN) and Z, W ∈ Γ(TNT ) such that N and NT are

Riemannian and invariant submanifolds of M̃2m, respectively.
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Proof. Taking X and Z as in hypothesis, it is clear that

(∇̃XJ)Z = ∇̃XJZ − J∇̃XZ.

Since Z ∈ Γ(TNT ), Proposition 2.3.1 (ii) implies that ∇XJZ = J∇XZ = (X ln f)JZ.

Thus, making use of (2.3.27), we get

(∇̃XJ)Z = h(X, JZ)− Jh(X,Z).

Taking the inner product withW , we get (i). For the second part, and by taking advantage

of (2.3.27), (2.3.28) and Proposition 2.3.1 (ii), we can write

(∇̃ZJ)X + (∇̃XJ)Z = (PX ln f)Z + h(PX,Z)− AFXZ

+∇⊥ZFX − (X ln f)JZ − 2Jh(X,Z) + h(X, JZ).

Taking the inner product with JZ in the above equation gives

g(PZX + PXZ, JZ) = −g(h(Z, JZ), FX)− (X ln f)||Z||2.

If we substitute JZ for Z in the above equation, then we have

−g(PJZX + PXJZ, Z) = g(h(Z, JZ), FX)− (X ln f)||Z||2.

By these two equations, we get

g(PZX + PXZ, JZ)− g(PJZX + PXJZ, Z) = −2(X ln f)||Z||2.

Finally, we may apply statement (i) in the above equation to get (ii).

In particular, if we assume the ambient manifold M̃2m to be either Kaehler or nearly

Kaehler in the theorem above, the nonexistence of proper warped products of the type

N ×f NT immediately follows. Using (2.3.52) in statement (ii) gives

g(PXZ, JZ)− g(PXJZ, Z) = 2(X ln f)||Z||2,

if one applies statement (i) on the left hand side of the above equation, he automatically

gets X ln f = 0, for every X ∈ Γ(TN). Obviously, this conclusion is true for Kaehler

manifolds also. Hence, we can state the following
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Corollary 3.2.1. Warped product submanifolds with holomorphic second factor are Rie-

mannian products, in both Kaehler and nearly Kaehler manifolds.

It is worth pointing out that, the previous corollary generalizes many nonexistence

results in this field, (see, for example (Chen, 2001), (Khan & Khan, 2009) and (Sahin,

2006)).

By reversing the two factors of the warped product in Theorem 3.2.1, we present the

following corresponding theorem for doubly warped product submanifolds.

Theorem 3.2.2. Let Mn =f2 NT ×f1 N be a doubly warped product submanifold in an

almost Hermitian manifold M̃2m. Then,

g(PXZ, JX)− g(PJXZ,X) = −2(Z ln f2)||X||2,

for vector fields X ∈ Γ(TNT ) and Z ∈ Γ(TN), where N and NT are Riemannian and

invariant submanifolds of M̃2m, respectively.

Proof. TakingX and Z as in hypothesis. By (2.3.25), (2.3.27) and (2.3.28), it is straight-

forward to carry out the following calculations

(∇̃XJ)Z = (X ln f1)PZ + (PZ ln f2)X + h(X,PZ)− AFZX

+∇⊥XFZ − (X ln f1)JZ − (Z ln f2)JX − Jh(X,Z).

If we take the inner product with JX in the above equation, then

g(PXZ, JX) = −g(h(X, JX), FZ)− (Z ln f2)||X||2.

By replacing JX with X in the above equation we deduce that

−g(PJXZ,X) = g(h(X, JX), FZ)− (Z ln f2)||X||2.

Thus, the assertion follows from the above two equations.

The following corollary can be directly obtained from (2.3.48) and Theorem 3.2.2.

Corollary 3.2.2. A doubly warped product submanifold with holomorphic first factor is

trivial in Kaehler manifolds.
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Combining Corollaries 3.2.1 and 3.2.2 together, one can directly get the next promi-

nent result.

Corollary 3.2.3. In Kaehler manifolds, there is no proper doubly warped product sub-

manifold such that one of its factors is holomorphic.

For doubly warped product submanifolds with one of the factors holomorphic, we

have already had a negative answer from the preceding corollary. However, the situation

is not the same with (singly) warped product submanifolds of holomorphic first factor,

and thus we present one of the basic characteristic theorems for subsequent chapters.

Theorem 3.2.3. Let Mn = NT ×f N be a warped product in an almost Hermitian mani-

fold M̃2m. Then, the following hold:

(i) g(PXZ, Y ) = −g(h(X, Y ), FZ);

(ii) g(PZX,Z) = (JX ln f)||Z||2 + g(h(X,Z), FZ);

(iii) g(PZX, Y ) = 0;

(iv) g(PZX,W ) + g(PWX,Z) = 2(JX ln f)g(Z,W )

+ g(h(X,Z), FW ) + g(h(X,W ), FZ);

(v) g(PZX − PXZ,W )− g(PWX,Z) = 2(X ln f)g(Z, PW );

(vi) g(PXZ,W ) + g(PXW,Z) = 0;

(vii) g(QXX, Jζ) + g(QJXJX, Jζ) = −g(h(X,X), ζ)− g(h(JX, JX), ζ),

for any vector fields X, Y ∈ Γ(TNT ), Z, W ∈ Γ(TN) and ζ ∈ Γ(ν).

Proof. For X and Z as above, we have

(∇̃XJ)Z = ∇̃XJZ − J∇̃XZ. (3.2.1)

Equivalently,

(∇̃XJ)Z = ∇̃XPZ + ∇̃XFZ − J∇̃XZ. (3.2.2)
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Taking the inner product with Y in the above equation gives (i) immediately. Now, by

reversing the roles of X and Z in (3.2.1), it follows

(∇̃ZJ)X = ∇̃ZJX − J∇̃ZX. (3.2.3)

Taking the inner product with Z in the above equation implies (ii). Subtracting the

equation above from (3.2.2), taking into consideration that h is a symmetric form and

∇XZ = ∇ZX , we immediately get

(∇̃XJ)Z − (∇̃ZJ)X = ∇̃XPZ + ∇̃XFZ − ∇̃ZJX.

Taking the inner product with JY in the above equation yields

g(PXZ, JY )− g(PZX, JY ) = −g(h(X, JY ), FZ).

Replacing JY by Y in the above equation, gives

g(PZX, Y )− g(PXZ, Y ) = g(h(X, Y ), FZ).

Applying statement (i) in the above equation proves statement (iii).

Taking the inner product with W in (3.2.3), we will obtain

g(PZX,W ) = (JX ln f)g(Z,W ) + (X ln f)g(Z, PW ) + g(h(X,Z), FW ). (3.2.4)

By interchanging the rules of Z and W in the above equation, and due to the fact that

g(Z, PW ) is skew-symmetric with respect to Z and W , the following holds

g(PWX,Z) = (JX ln f)g(Z,W )− (X ln f)g(Z, PW ) + g(h(X,W ), FZ). (3.2.5)

If we add (3.2.4) and (3.2.5) together, then (iv) follows. While by subtracting (3.2.5)

from (3.2.4) we immediately reach

g(PZX,W )−g(PWX,Z) = 2(X ln f)g(Z, PW )+g(h(X,Z), FW )−g(h(X,W ), FZ).

(3.2.6)

Moreover, one can take the inner product in (3.2.2) with W to obtain

g(PXZ,W ) = g(h(X,Z), FW )− g(h(X,W ), FZ). (3.2.7)
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Hence, if we subtract (3.2.7) from (3.2.6), we get (v). On the other hand, by using the

polarization identity of Z and W in (v), we obtain

g(PWX − PXW,Z)− g(PZX,W ) = −2(X ln f)g(Z, PW ).

By using statement (v) and the above equation, statement (vi) follows directly.

For (vii), notice that

(∇̃XJ)X = ∇̃XJX − J∇̃XX.

First, we take the inner product in the above equation with Jζ to get

g(QXX, Jζ) = g(h(JX,X), Jζ)− g(h(X,X), ζ).

After that, we replace JX by X in the above equation to derive

g(QJXJX, Jζ) = −g(h(JX,X), Jζ)− g(h(JX, JX), ζ).

Hence (vii) can be obtained by adding the above two equations. This completes the

proof.

In (Bejancu, 1978), Bejancu initiated the study of the CR-submanifolds of almost

Hermitian manifolds by generalizing invariant (holomorphic) and anti-invariant (totally

real) submanifolds. He called a submanifold Mn of an almost Hermitian manifold M̃2m

a CR-submanifold if there exists on Mn a differentiable holomorphic distribution DT

whose orthogonal complementary distribution D⊥ is totally real. In other words, Mn is

said to be a CR-submanifold if it is endowed with a pair of orthogonal complementary

distributions (DT , D⊥), satisfying the following conditions:

(i) TMn = DT ⊕ D⊥

(ii) DT is a holomorphic distribution, i.e., JDT ⊆ TMn

(iii) D⊥ is a totally real distribution, i.e., JD⊥ ⊆ T⊥Mn.

Denote by ν the maximal J-invariant subbundle of the normal bundle T⊥Mn. Then it

is well-known that the normal bundle T⊥Mn admits the following decomposition

T⊥Mn = FD⊥ ⊕ ν. (3.2.8)
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In Kaehler manifolds M̃2m, the warped product NT ×f N⊥ is called a CR-warped

product submanifold, if the submanifolds NT and N⊥ are integral manifolds of DT and

D⊥, respectively. The following prominent nonexistence fact generalizes many nonexis-

tence results in Kaehler manifolds, (see, for example (Khan & Khan, 2009) and (Sahin,

2006)).

Corollary 3.2.4. In Kaehler manifolds, there is no warped product of typeNT ×fN other

than CR-warped products.

Proof. We want to show that N is a totally real submanifold when the first factor is holo-

morphic. Equivalently, it suffices to prove that PZ = 0 for every Z ∈ Γ(TN). Evidently,

using (2.3.48) in Theorem 3.2.3 (v), we deduce that X ln f = 0 or g(PZ,W ) = 0, for

arbitrary vector fields Z and W tangent to the second factor. This implies either NT ×f N

is a Riemannian product or PZ = 0 for every Z ∈ Γ(TN). Hence if the second factor is

not totally real submanifold, then NT ×f N is trivial.

In Kaehler manifolds, a characterization theorem for the CR-warped product sub-

manifold of the type NT ×f N⊥ is proved in (Chen, 2001). Here, we construct a concrete

example asserting the existence of such warped product submanifold.

Example 3.2.1. Let R6 be equipped with the canonical complex structure J , with its

Cartesian coordinates (x1, · · · , x6). Then a 3-dimensional submanifoldM3 of R6 is given

by

x1 = t cos θ, x2 = s cos θ, x5 = t sin θ, x6 = s sin θ, x3 = x4 = 0.

It is clear that M3 is well-defined with a tangent bundle TM3 spanned by Z1, Z2 and Z3,

such that

Z1 = cos θ
∂

∂x1

+ sin θ
∂

∂x5

, Z2 = cos θ
∂

∂x2

+ sin θ
∂

∂x6

,

Z3 = −t sin θ
∂

∂x1

− s sin θ
∂

∂x2

+ t cos θ
∂

∂x5

+ s cos θ
∂

∂x6

.

Therefore, DT = span {Z1, Z2}, and D⊥ = span {Z3} are holomorphic and totally real

distributions, respectively. Thus, M3 is a CR-submanifold of R6. Since it is not difficult

to see that DT is integrable, then we can denote the integral manifolds of DT and D⊥
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respectively by NT and N⊥. Based on the above tangent bundle, the metric tensor g of

M3 is expressed by

g = 2dt2 + 2ds2 + (t2 + s2)dθ2

= gNT + (t2 + s2)gN⊥ .

Obviously, g is a warped metric tensor on M3. Consequently, M3 is a CR-warped prod-

uct submanifold of type NT ×f N⊥ in R6, with warping function f =
√
t2 + s2. By means

of Gauss formula, we obtain that

h(Z1, Z1) = h(Z2, Z2) = 0.

This means that M is a DT -minimal warped product in R6.

The following result describes locally a relation of the coefficients of the second fun-

damental form.

Corollary 3.2.5. Let Mn = NT ×f N be a warped product submanifold in Kaehler or in

nearly Kaehler manifolds M̃2m. Then, we have

n2∑
A,B=1
A6=B

g(h(X, eA), FeB) = 0,

where e1, · · · , en2 form a local orthonormal frame fields of Γ(TN), and X is any vector

field tangent to the first factor.

Proof. Using (2.3.48) or (2.3.52) with parts (ii) and (v) of Theorem 3.2.3 gives

−2(JX ln f)g(Z,W ) = g(h(X,Z), FW ) + g(h(X,W ), FZ),

for X ∈ Γ(TNT ) and Z, W ∈ Γ(TN). Take any two distinct orthogonal unit vectors,

say ev and eu, from the above frame. Let Z = ev and W = eu in the above equation.

Then g(h(X, ev), Feu) = −g(h(X, eu), Fev), which gives the result.

It is reasonable to include the following key result at the end of this section, which

plays fascinating roles in subsequent chapters.

Proposition 3.2.1. Let Mn = NT ×f N be isometrically immersed in nearly Kaehler

manifolds. Then, the following are fulfilled:
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(i) g(h(X, Y ), FZ) = 0;

(ii) g(h(X,Z), FZ) = −(JX ln f)||Z||2;

(iii) g(h(X,X), ζ) + g(h(JX, JX), ζ) = 0;

(iv) g(h(X,Z), FW ) = 1
3
(X ln f)g(PZ,W )− (JX ln f)g(Z,W ),

where the vector fields X, Y are tangent to the first factor, Z and W are tangent to the

second factor and ζ is tangent to the normal subbundle ν.

Proof. In virtue of (2.3.52), the first statement follows directly by using parts (i) and (iii)

of Theorem 3.2.3. The second statement is obtained from Theorem3.2.3 (vi), (ii). The

third statement is clear from Theorem 3.2.3 (vii) and (2.3.52). For the last statement, we

substitute Z +W instead of Z in statement (ii) above, hence we get

g(h(X,Z), FW ) + g(h(X,W ), FZ) = −2(JX ln f)g(Z,W ), (3.2.9)

for X, Z and W as in the statement above.

Now, making use of (2.3.27), (2.3.28), (2.3.29), (2.3.52) and Proposition 2.3.1 (ii),

we carry out the following calculations

g(h(X,Z), FW ) = g(h(X,Z), JW ) = −g(Jh(X,Z),W ) = g(J(∇XZ − ∇̃XZ),W )

= (X ln f)g(PZ,W )− g(J∇̃XZ,W )

= (X ln f)g(PZ,W ) + g((∇̃XJ)Z,W )− g(∇̃XJZ,W )

= (X ln f)g(PZ,W )− g((∇̃ZJ)X,W )− g(∇̃XPZ,W )− g(∇̃XFZ,W )

= (X ln f)g(PZ,W )+g(J∇̃ZX)−g(∇̃ZJX,W )− (X ln f)g(PZ,W )+g(AFZX,W )

= g(J∇ZX,W ) + g(Jh(X,Z),W )− (JX ln f)g(Z,W ) + g(h(X,W ), FZ)

= (X ln f)g(PZ,W )−g(h(X,Z), FW )−(JX ln f)g(Z,W )+g(h(X,W ), FZ).

This gives

2g(h(X,Z), FW )− g(h(X,W ), FZ) = (X ln f)g(PZ,W )− (JX ln f)g(Z,W ).

(3.2.10)

Thus, combining (3.2.9) and (3.2.10) together gives statement (iv) directly, which

completes the proof.
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In what follows we summarize the immersibility and nonimmersibility cases of Kaehler

and nearly Kaehler manifolds according to the preceding results.

Warped Product Submanifold Kaehler Nearly Kaehler

N⊥ ×f NT X X
NT ×f N⊥ X X
Nθ ×f NT X X
NT ×f Nθ X ?
N ×f NT X X
NT ×f N X ?
N⊥ ×f Nθ X ?
Nθ ×f N⊥ X X

Table 3.1: Existence and nonexistence of proper warped product submanifolds in Kaehler
and nearly Kaehler manifolds.
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3.3 WARPED PRODUCT SUBMANIFOLDS OF ALMOST CONTACT
MANIFOLDS

It is still an open question whether or not a warped product admits isometric immer-

sions into certain Riemannian manifolds of interest. For instance, many articles have

been recently published in almost contact manifolds (see, for example (Khan et al., 2008)

and (Munteanu, 2005)). In fact, these papers and a lot others (see references in (Chen,

2013)) provide special case answers for Problems 1.4.2 and 1.4.3. The following theo-

rem generalizes all such nonexistence results as a final answer for doubly warped product

submanifolds in almost contact manifolds.

Theorem 3.3.1. In almost contact manifolds, there does not exist a proper doubly warped

product submanifoldMn =f2 N1×f1N2 such that the characteristic vector field ξ is either

tangent to N1 or N2.

Proof. Suppose ξ in Γ(TN2). Then for any X ∈ Γ(TN1), and by using (2.3.25), we

directly calculate

2X ln f1 = 2X ln f1g(ξ, ξ) = 2g(∇̃Xξ, ξ) = Xg(ξ, ξ) = X(1) = 0.

This means that f1 is constant. Similarly, it can be shown that f2 is constant when ξ is

tangent to the first factor. Hence, we conclude that a doubly warped product submanifold

of almost contact manifolds, in the sense of our hypothesis, is trivial, which completes

the proof.

Considering ξ as in the above hypothesis, this theorem can be simply paraphrased

by saying that: doubly warped product submanifolds in almost contact manifolds are but

trivial. With this fact, some results concerning inequalities for doubly warped product

submanifolds in Kenmotsu manifolds become trivial (see references in (Chen, 2013)).

As a special case of Theorem 3.3.1, we have the following theorem for (singly) warped

product submanifolds

Theorem 3.3.2. There is no warped product submanifolds in almost contact manifolds

such that the characteristic vector field ξ is tangent to the second factor.
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The above theorem answers some special cases of Problems 1.4.2 and 1.4.3. On one

hand, it generalizes all related nonexistence results of this topic (see, for example (Khan

et al., 2008), (Munteanu, 2005), (Mustafa et al., 2013), (Uddin et al., 2014) and (Mustafa

et al., 2014)). On the other hand, it guides us to restrict the choice of the factor that ξ

should be tangent to in warped product submanifolds of almost contact manifolds.

From now on, the characteristic vector field ξ is supposed to be tangent to the first

factor of all warped product submanifolds in almost contact manifolds. Henceforth, we

can follow an argument as in the proof of Theorem 3.2.1 to obtain a dual contact version

of Theorem 3.2.1.

Theorem 3.3.3. For each warped product submanifold N ×f NT of almost contact man-

ifolds such that ξ is tangent to the first factor, the following are true

(i) g(PXZ,W ) = 0;

(ii) g(PZX, JZ)− g(PJZX,Z) = −2(X ln f)||Z||2,

for every vector field X ∈ Γ(TN), and Z, W ∈ Γ(TNT ).

As a direct application of the preceding theorem, and by using (2.3.63), we state

the following remark, which generalizes a lot of nonexistence results in almost contact

manifolds (see, for example (Hesegawa & Mihai, 2003) and (Munteanu, 2005)). First, by

putting β = 0 in (2.3.63), we get the structural formula for nearly α-Sasakian manifolds;

that is,

(∇̃Xφ)Y + (∇̃Y φ)X = α

(
2g̃(X, Y )ξ − η(Y )X − η(X)Y

)
. (3.3.1)

Now, we show that the first term on the left hand side of statement (ii) above is zero.

From the above equation, we directly get

g(PZX, JZ) = −g(PXZ, JZ)− αη(X)g(Z, JZ).

In view of statement (i) of the above theorem, the right hand side of the above equation

vanishes identically. Similarly, we can show that g(PJZX,Z) = 0. Hence, statement (ii)

implies that X ln f = 0. This also holds for nearly cosyplectic manifolds, one can prove

that using similar analogy like above. Thus, we have the following
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Remark 3.3.1. Warped products of the type N ×f NT do not exist in nearly Sasakian and

nearly cosymplectic manifolds if ξ is tangent to the first factor, and so for Sasakian and

cosymplectic manifolds. However, the situation is different in Kenmotsu manifolds as we

will see in the following example and in the next chapter also.

A submanifold Mn of an almost contact metric manifold M̃2l+1 is said to be a contact

CR-submanifold if there exist on Mn differentiable distributions DT and D⊥, satisfying

the following

(i) TMn = DT ⊕ D⊥ ⊕ 〈ξ〉,

(ii) DT is an invariant distribution, i.e., φ(DT ) ⊆ DT ,

(iii) D⊥ is an anti-invariant distribution, i.e., φ(D⊥) ⊆ T⊥Mn.

In Sasakian manifolds, a concrete example of contact CR-warped product subman-

ifolds of the type NT ×f N⊥ can be found in (Munteanu, 2005). On the contrary, and

in view of Remark 3.3.1, we conclude that warped product submanifolds with second in-

variant factor are trivial in both Sasakian and cosymplectic manifolds when ξ is tangent to

the first factor. In particular, this implies that contact CR-warped product submanifolds

of the type N⊥ ×f NT reduces to be contact CR-products in Sasakian and cosymplectic

manifolds. By contrast, such warped product submanifolds do exist in Kenmotsu mani-

folds.

To assert the above claim, we provide a counter example that ensures such existence of

warped product submanifolds in Kenmotsu manifolds when the second factor is invariant.

Besides, we can get an insurance for the existence of contactCR-warped product subman-

ifolds in Kenmotsu manifolds, for both types; Mn = NT ×f N⊥ and Mn = N⊥ ×f NT ,

when ξ is tangent to the first factor.

Example 3.3.1. Let M̃9 = R ×et C4 be a Kenmotsu manifold, where R is the real line,

and C4 is a Kaehler manifold with Kaehlerian structure (G, J). Here, G and J are the

restrictions of g and φ to M̃9(p), respectively, for every p ∈ M̃9. Let (t, x1, · · · , x8) be

a local coordinates frame of M̃9 where t and (x1, · · · , x8) denote the local coordinates

of R and C4, respectively. It is well-known that the Riemannian metric tensor g and the
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vector field ξ are defined on M̃9 as follows (Kenmotsu, 1972):

g(t,x) =

1 0

0 e2tG(x)

 , ξ =

(
d

dt

)
.

Now, consider the three-dimensional submanifold M3 of C4 given by the equations

x1 = etv, x2 = etu, x3 = etv, x4 = etu, x5 = ets, x7 = ets, x6 = x8 = 0.

Observe that the tangent bundle TM3 is spanned by Z1, Z2 and Z3, where

Z1 = et
∂

∂x1

+ et
∂

∂x3

, Z2 = et
∂

∂x2

+ et
∂

∂x4

, Z3 = et
∂

∂x5

+ et
∂

∂x7

.

Further, we define the distributions DT =span{Z1, Z2}, and D⊥ =span{Z3}. It is ob-

vious that DT and D⊥ are holomorphic and totally real distributions on C4, respectively.

Hence, and taking into consideration φ(ξ) = 0, the distributions D⊥ ⊕ 〈ξ〉 and DT are

respectively anti-invariant and invariant distributions on M̃9. Thus, N4 = D⊥⊕〈ξ〉⊕DT

is a contact CR-submanifold in M̃9. In addition, it is easy to see that both D⊥ ⊕ 〈ξ〉 and

DT are integrable. If we denote by N⊥ and NT the integral manifolds of D⊥ ⊕ 〈ξ〉 and

DT , respectively, then the metric tensor g of N4 is

g = dt2 + e2tds2 + e2t(dv2 + du2) = gN⊥ + e2tgNT .

Therefor, N4 is a contact CR-warped product submanifold of M̃9 of the type N⊥ ×f NT

with warping function f = et. Moreover, it straight forward to figure out that

h(Z1, Z1) = h(Z2, Z2) = 0.

Hence, N4 is a D2-minimal warped product submanifold as expected, where D2 = DT ..

Likewise, by an analogous procedure to the above we can deduce that DT ⊕ 〈ξ〉 is

an invariant distribution on M̃9, and D⊥ is an anti-invariant. Also, it is not difficult to

show integrability of DT ⊕ 〈ξ〉. Denoting the integral manifolds of DT ⊕ 〈ξ〉 and D⊥ by

NT and N⊥, respectively, we find that N4 = NT ×et N⊥ is a non-trivial contact CR-

warped product in M̃9. By calculating the coefficients of h restricted to NT , we deduce

thatN4 = NT×etN⊥ is a D1-minimal warped product submanifold as it should be, where

D1 = DT .
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In this sequel, proper warped product submanifolds of types Nθ×f NT and NT ×f Nθ

do exist in Kenmotsu manifolds, when ξ is tangent to the first factor. Whereas, Remark

3.3.1 informs us that proper warped product submanifolds of type Nθ ×f NT do not exist

in both Sasakian and cosymplectic manifolds. Soon we show the nonexistence of NT ×f

Nθ in Sasakian and cosymplectic manifolds such that Nθ is proper slant. In Kenmotsu

manifolds, examples of warped product submanifolds of both types Nθ×f NT and NT ×f

Nθ will be constructed later, these examples are joined together in Example 4.2.1 which

is postponed to the next chapter.

Motivated by Theorem 3.2.3, we prove a dual contact version which will be used in

the rest of this work.

Theorem 3.3.4. Let Mn = NT ×f N be a warped product submanifold isometrically

immersed in an almost contact manifold M̃2l+1 such that ξ is tangent to the first factor.

Then, we have the following

(i) g(PXZ, Y ) = −g(h(X, Y ), FZ);

(ii) g(PZX,Z) = (φX ln f)||Z||2 + g(h(X,Z), FZ);

(iii) g(PZX, Y ) = 0;

(iv) g(PZX,W ) + g(PWX,Z) = 2(φX ln f)g(Z,W )

+ g(h(X,Z), FW ) + g(h(X,W ), FZ);

(v) g(PZX − PXZ,W )− g(PWX,Z) = 2(X ln f)g(Z, PW );

(vi) g(PXZ,W ) + g(PXW,Z) = 0;

(vii) g(QXX,φζ) + g(QφXφX, φζ) = −g(h(X,X), ζ)− g(h(φX, φX), ζ),

for arbitrary vector fields X, Y ∈ Γ(TNT ), Z, W ∈ Γ(TN) and ζ ∈ Γ(ν).

Proof. The assertion of statements (i), (ii), (iv), (v) and (vi) can be shown by following

similar analogue as that of Theorem 3.2.3. For statement (iii), suppose that X and Z are

taken as hypothesis. Then it is obvious that

(∇̃Xφ)Z = ∇̃XPZ + ∇̃XFZ − φ∇̃XZ. (3.3.2)
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Also, for X and Z we have

(∇̃Zφ)X = ∇̃ZφX − φ∇̃ZX. (3.3.3)

By subtracting (3.3.3) from (3.3.2), we obtain

(∇̃Xφ)Z − (∇̃Zφ)X = ∇̃XPZ + ∇̃XFZ − ∇̃ZφX.

Taking the inner product by φY in the above equation, gives

g(PXZ, φY )− g(PZX,φY ) = −g(h(X,φY ), FZ).

Replacing φY by Y yields

g(PZX, Y )− η(Y )g(PZX, ξ)− g(PXZ, Y ) + η(Y )g(PXZ, ξ) =

g(h(X, Y ), FZ)− η(Y )g(h(X, ξ), FZ).

By using (i) in the above equation we derive

g(PZX, Y ) = η(Y )g(PZX, ξ).

Since the right hand side of the above equation vanishes identically, we obtain (iii).

For (vii), if we take X = ξ in the above theorem, then statement (vii) holds directly.

Now, for an arbitrary vector field tangential to the first factor and perpendicular to ξ, say

X , we have

(∇̃Xφ)X = ∇̃XφX − φ∇̃XX.

First, take the inner product in the above equation with φζ to get

g(QXX,φζ) = g(h(φX,X), φζ)− g(h(X,X), ζ).

After that, we replace φX by X in the above equation to derive

g(QφXφX, φζ) = −g(h(φX,X), φζ)− g(h(φX, φX), ζ).

Hence (vii) can be obtained by adding the above two equations.

In virtue of Theorem 3.3.4 (v), we get the following decisive nonexistence result in

the setting of almost contact structures, which generalizes several nonexistence results in

this field (see references in (Chen, 2013).
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Corollary 3.3.1. In both of Sasakian and cosymplectic manifolds, there is no warped

product submanifolds with invariant first factor tangential to ξ, other than contact CR-

warped products.

In particular, this corollary implies the nonexistence of warped product submanifolds

of type NT ×f Nθ in Sasakian and cosymplectic manifolds such that Nθ is a proper slant.

On the contrary, this is not true for Kenmotsu manifolds as will be shown in Example

4.2.1.

Now, we prepare the following results for later use.

Theorem 3.3.5. Let Mn = N1 ×f N2 be a warped product submanifold isometrically

immersed in a nearly trans-Sasakian manifold M̃2l+1 such that ξ is tangent to N1. Then,

the following hold

(i) ξ ln f = β;

(ii) g(h(ξ, Z), FZ) = −α||Z||2,

for each vector field Z tangent to N2.

Proof. By (2.3.63), it is straightforward that

−φ∇̃Zξ + ∇̃ξφZ − φ∇̃ξZ = −αZ − βφZ. (3.3.4)

For (i), taking the inner product with φZ in the above equation, gives

−2 ξ ln f ||Z||2 + g(∇̃ξφZ, φZ) = −β||Z||2,

Equivalently,

−2 ξ ln f ||Z||2 +
1

2
ξ||Z||2 = −β||Z||2,

which implies

−2 ξ ln f ||Z||2 + g(∇̃ξZ,Z) = −β||Z||2.

Hence, statement (i) follows from the above equation.

Now, we take the inner product with Z in (3.3.4) to derive

g(∇̃ξφZ,Z) + 2 g(∇̃ξZ, φZ) = −α||Z||2.
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This can be written as

g(∇̃ξPZ,Z) + g(∇̃ξFZ,Z) + 2 g(∇̃ξZ, PZ) + 2 g(∇̃ξZ, FZ) = −α||Z||2.

Hence, by the Gauss formula and part (ii) of Proposition 2.3.1, we get

g(∇̃ξFZ,Z) + 2 g(∇̃ξZ, FZ) = −α||Z||2.

Consequently,

g(∇̃ξZ, FZ) = −α||Z||2.

Statement (ii) follows from the above equation by virtue of Gauss formula. This com-

pletes the proof.

In the spirit of the preceding theorem, It is easy, but important, to distinguish other

particular case structures which we contemplate to discuss later. For this, we present

the following table which will be useful for constructing first inequalities of h in almost

contact manifolds in Chapter Five.

M̃2l+1 ξ ln f = g(h(ξ, Z), FZ) =

Nearly trans-Sasakian β −α||Z||2
Nearly α-Sasakian 0 −α||Z||2

Sasakian 0 −||Z||2
Nearly β-Kenmotsu β 0

Kenmotsu 1 0
Nearly cosymplectic 0 0

Cosymplectic 0 0

Table 3.2: ξ ln f and g(h(ξ, Z), FZ) for N1 ×f N2 in M̃2l+1, such that ξ is tangent to N1

and Z is tangent to N2.

Now, assume that the warped product submanifold N1 ×f N2 in Theorem 3.3.5 is

mixed totally geodesic. Thus, from statement (ii) of the same theorem, we have

α||Z||2 = 0.

This implies that, either N2 is null, or α = 0; i.e., M̃2l+1 is not α-Sasakian. Therefore,

we get the following significant nonexistence result, which will be useful in inequalities

of mixed totally geodesic submanifolds in almost contact manifolds.
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Proposition 3.3.1. There is no mixed totally geodesic warped product submanifold in

nearly α-Sasakian manifolds.

In another line of thought, one can easily verify the following lemma.

Lemma 3.3.1. Let N1 ×f N2 be a warped product submanifold in almost contact mani-

folds M̃2l+1 such that ξ is tangent to the first factor. Then, g((∇̃ξφ)Z, φZ) = 0 for every

Z ∈ Γ(TN2).

As another important consequence of Theorem 3.3.4, we have the following proposi-

tion, which will be extensively used in subsequent chapters.

Proposition 3.3.2. For any warped product submanifoldMn = NT ×fN of nearly trans-

Sasakian manifolds with ξ tangent to the first factor, the followings are true

(1) g(h(X, Y ), FZ) = 0;

(2) g(h(X,X), ζ) + g(h(φX, φX), ζ) = 0;

(3) g(h(X,Z), FZ) + αη(X)||Z||2 = −(φX ln f)||Z||2,

where the vector fields X, Y are tangent to the first factor, Z is tangent to the second and

ζ is tangent to the normal subbundle ν.

Proof. Statement (1) follows from (i) and (iii) of Theorem 3.3.4, while (3) is a con-

sequence of (vi) and (ii) of the same theorem. For statement (2) we apply the nearly

trans-Sasakian structure for the vector fields X and ξ to obtain the following

2∇̃XφX = α

(
2g(X,X)ξ − 2η(X)X

)
− 2βη(X)φX.

Taking the inner product with ζ gives

g(h(X,φX), ζ) + g(φh(X,X)ζ) = 0.

Replacing X by φX gives

g(h(−X + η(X)ξ, φX), ζ) + g(φh(φX, φX)ζ) = 0.

By these two equations and the fact h(X, ξ) = 0, we obtain the result.
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By means of Propositions 3.3.1 and 3.3.2, one can easily show that a mixed totally

geodesic contact CR-warped product submanifold is indeed trivial in both Sasakian and

cosymplectic manifolds. Whereas such submanifolds do exist in Kenmotsu manifolds,

this is due to the fact ξ ln f = 1 for all warped product submanifolds of Kenmotsu mani-

folds when ξ is tangent to the first factor.

In the sequel, we prove necessary and sufficient conditions for a contact CR-submani-

fold to be locally contact CR-warped product in nearly trans-Sasakian manifolds. For

long time, mathematicians had have interest to find an analogue of the classical de Rham

theorem to warped products, a result was proved by S. Hiepko (Hiepko, 1979). First,

let us recall this result: Let H be a distribution in the tangent bundle of a Riemannian

manifold Mn and let H⊥ be its orthogonal complementary distribution. Assume that

the two distributions are both involutive and the integral manifolds of H (resp. H⊥) are

extrinsic spheres (resp. totally geodesic). Then, Mn is locally isometric to a warped

product N1 ×f N2. Moreover, if Mn is simply connected and complete, there exists a

global isometry ofMn with a warped product. Using this fundamental method we present

the following characterization theorem which has been recently published in (Mustafa et

al., 2013).

Theorem 3.3.6. Every contact CR-submanifold Mn of a nearly trans-Sasakian manifold

M̃2l+1 with an involutive distribution D⊥ is locally a contact CR-warped product, if and

only if the shape operator of Mn satisfies

AφWX = −(φXµ)W − αη(X)W, X ∈ DT ⊕ 〈ξ〉, W ∈ D⊥, (3.3.5)

for a smooth function µ on Mn, satisfying V (µ) = 0 for each V ∈ D⊥.

Proof. First, we will prove that the distribution DT ⊕ 〈ξ〉 is integrable and its leaf NT is

totally geodesic. By making use of (2.3.27) and (3.3.5), we obtain

g(φ∇̃YX,Z) = −g(∇̃YX,φZ) = −g(h(X, Y ), φZ) = 0.

Via (2.3.27) we get

g(P∇YX,Z)− g(h(X, Y ), φZ) = g(φ∇̃YX,Z) = 0.
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If we apply (3.3.5), we then deduce that

g(P∇YX,Z) = 0, ∀ X, Y ∈ DT ⊕ 〈ξ〉, ∀ Z ∈ D⊥.

Meaning that; DT ⊕ 〈ξ〉 is integrable and its leaf NT is totally geodesic in Mn.

Further, it is essential to show that N⊥ is totally umbilical; for this we apply (2.3.63)

to derive

g(∇̃ZW,φX) = −g(∇̃ZφX,W ) = −g(φ∇̃ZX,W )− g((∇̃Zφ)X,W ),

for each X ∈ Γ(TNT ) and Z,W ∈ Γ(TN⊥). By virtue of (2.3.27), the above equation

can be written as

g(∇̃ZW,φX) = −g(P∇ZX,W )− g(φh(X,Z),W )− g((∇̃Zφ)X,W ).

It follows that

g(∇̃ZW,φX) = −g(P∇ZX,W )− g(φh(X,Z),W )−
(
g((∇̃Zφ)X,W )

+g((∇̃Xφ)Z,W )

)
+ g((∇̃Xφ)Z,W ). (3.3.6)

In view of (2.3.63), we conclude that(
g((∇̃Zφ)X,W ) + g((∇̃Xφ)Z,W )

)
= −αη(X)g(W,Z). (3.3.7)

By using (2.3.27), (2.3.28) and (2.3.29), we obtain

g((∇̃Xφ)Z,W ) = g(∇̃XφZ,W )− g(φ∇̃XZ,W )

= −g(h(X,W ), φZ) + g(h(X,Z), φW )− g(P∇XZ,W ).

Since g(P∇XZ,W ) = 0, so by (3.3.5), it follows that

g((∇̃Xφ)Z,W ) = 0. (3.3.8)

It is clear that

g(P∇ZX,W ) = 0. (3.3.9)

Thus, by combining relations (3.3.6)-(3.3.9) together, we finally reach that

g(∇̃ZW,φX) = g(AφWX,Z) + αη(X)g(W,Z).
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Making use of (3.3.5), the above equation is simplified to

g(∇̃ZW,φX) = −(φXµ)g(W,Z).

Since the distribution D⊥ is assumed to be integrable, the second fundamental form h⊥ of

N⊥ as an immersed submanifold in Mn is explicitly given by the relation

g(h⊥(Z, Y ), φX) = g(∇̃ZW,φX).

By combining the last two equations together, it gives

g(h⊥(Z, Y ), φX) = −(φXµ)g(W,Z).

Meaning that; N⊥ is totally umbilical in Mn.

Notice that the above hypothesis asserts that V (µ) = 0, for each V ∈ D⊥, which

leads us to conclude that the mean curvature vector field of D⊥ is nonzero and parallel

along N⊥. In addition, it is assumed that the distribution D⊥ is also integrable, which

implies that it is an extrinsic sphere in Mn. Let NT and N⊥ be integral manifolds of the

distributions DT ⊕ 〈ξ〉 and D⊥, respectively. Then, by results obtained in (Hiepko, 1979),

Mn is locally a warped product NT ×µ N⊥ with µ as a warping function.

Since the converse is obvious from Theorem 3.3.4 or from Lemma 3.1 (iii) of (Mustafa

et al., 2013). This completes the proof.

Observe that the above theorem generalizes many related recent results, for example

contact CR-warped product of cosymplectic, Sasakian and Kenmotsu manifolds can be

characterized in a similar way as above (see, for example (Munteanu, 2005)).
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CHAPTER 4: WARPED PRODUCTS WITH A SLANT FACTOR

4.1 INTRODUCTION

Two well-known kinds of warped product submanifolds were defined in order to general-

ize CR-warped products. The first has a proper slant factor and a holomorphic one, while

the other contains a proper slant factor and a totally real one. The former is called semi-

slant warped product submanifold, whereas the latter is the hemi-slant warped product

submanifold.

This chapter can be thought of as a slant version of the previous chapter, so it inherits

some objectives and strategies from the previous one. In this chapter, relative geometric

properties for semi-slant and hemi-slant warped product submanifolds are shown, which

will be applied to explore different kinds of inequalities in the rest of this work. In ad-

dition, a lot of existence and nonexistence results of these warped product submanifolds

are proved. Examples of both kinds of semi-slant warped product submanifolds in Ken-

motsu manifolds are constructed in Example 4.2.1. More significantly, and for the sake

of existence, a special inequality is proved in terms of the gradient of ln f . As a result,

two general theorems asserting the existence of any warped product submanifold in both

nearly trans-Saskian and Kenmotsu manifolds when ξ is tangent to the first factor are

given.

4.2 SEMI-SLANT WARPED PRODUCT SUBMANFOLDS

The study of geometry of slant submanifolds was rapidly developed in the last two decades.

The theory of slant immersions in complex geometry was originated by B.Y. Chen in

(Chen, 1990) and (Chen, 1990) as a generalization of both holomorphic and totally real

submanifolds. The submanifold Mn of an almost Hermitian manifold is called slant

(Chen, 1990) if for all nonzero vectors X tangent to Mn, the angle between JX and

TxM
n is a constant θ, i.e., it does not depend on the choice of x ∈ Mn and X ∈ TxMn.

In fact, this notion has the advantage to explore many significant differential results for

any arbitrary angle in (0, π
2
), other than 0 and π

2
.

In a Kaehler manifold M̃2m, it is easy to see that Mn is a slant submanifold if and
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only if there exists a constant λ ∈ [0, 1] such that

P 2 = −λI. (4.2.1)

In addition, λ = cos2 θ (Chen, 1990). The following relations are straightforward conse-

quences of the above equation

g(PX,PY ) = cos2 θ g(X, Y ) (4.2.2)

and

g(FX,FY ) = sin2 θ g(X, Y ), (4.2.3)

for all X, Y ∈ Γ(TMn).

The study of semi-slant submanifolds was initiated by N. Papaghiuc as a general-

ization of CR-submanifolds (Papaghiuc, 1994). Given a Kaehlerian manifold M̃2m, ac-

cording to Papaghiuc, the submanifold Mn is called semi-slant if it is endowed with two

complementary orthogonal distributions DT and Dθ, where DT is holomorphic with re-

spect to J and Dθ is slant, i.e., the angle between JX and (Dθ)x is a constant θ for any

X ∈ (Dθ)x and x ∈Mn.

In this context, the nonexistence of warped product semi-slant submanifolds of the

type Mn = Nθ ×f NT was shown in Corollary 3.2.1. Reversing the two factors, we get

the following lemma, which can be obtained directly from Proposition 3.2.1 (iv) as a

special case lemma. However, we provide another proof of this result.

Lemma 4.2.1. Let Mn = NT ×f Nθ be a proper semi-slant submanifold of a nearly

Kaehler manifold M̃2m. Then, the following hold

(i) g(h(X,Z), FW ) = 1
3
(X ln f)g(PZ,W )− (JX ln f)g(Z,W );

(ii) g(h(X,PZ), FW ) = −1
3

cos2 θ(X ln f)g(Z,W )− (JX ln f)g(PZ,W );

(iii) g(h(X,Z), FPW ) = 1
3

cos2 θ(X ln f)g(Z,W )− (JX ln f)g(Z, PW );

(iv) g(h(X,PZ), FPW ) = −1
3

cos2 θ(X ln f)g(Z, PW )− cos2 θ(JX ln f)g(Z,W ),

for any Z,W ∈ Γ
(
TNθ

)
and X ∈ Γ

(
TNT

)
.
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Proof. From (2.3.52), we have

(JX ln f)Z + h(JX,Z)− (X ln f)JZ − Jh(X,Z) + (X ln f)PZ

+h(X,PZ)− AFZX +∇⊥XFZ − (X ln f)JZ − Jh(X,Z) = 0.

Taking the inner product with W in the above equation, gives

(JX ln f)g(Z,W )− (X ln f)g(PZ,W ) + 2g(h(X,Z), FW )− g(h(X,W ), FZ) = 0.

(4.2.4)

Reversing the roles of Z and W in the above equation, we deduce that

(JX ln f)g(Z,W ) + (X ln f)g(PZ,W ) + 2g(h(X,W ), FZ)− g(h(X,Z), FW ) = 0.

(4.2.5)

If we add (4.2.4) and (4.2.5) together, then we get

(JX ln f)g(Z,W ) = −1

2

(
g
(
h(X,Z), FW

)
+ g
(
h(X,W ), FZ

))
.

Subtracting (4.2.4) from (4.2.5) gives

(X ln f)g(PZ,W ) =
3

2

(
g
(
h(X,Z), FW

)
− g
(
h(X,W ), FZ

))
.

Combining the above two equations proves statement (i). While the rest follow directly

by this way. Substituting PZ in statement (i) instead of Z gives statement (ii). Replacing

W by PW in (i) proves (iii). Statement (iv) comes from putting PZ and PW in place

of Z and W , respectively in statement (i).

In 1996, Lotta (Lotta, 1996) extended the notion of slant submanifolds to the setting of

almost contact metric ambient manifolds. Let Mn be a submanifold of an almost contact

metric manifold, suppose the characteristic vector field ξ is tangent to the submanifold

Mn. Then the class of slant submanifolds in almost contact manifolds is defined as fol-

lows:

For each non zero vector X tangent to Mn at x for some point x ∈ Mn such that X

is not proportional to ξx, we denote by 0 ≤ ∠θ(X) ≤ π/2 the angle between φX and

TxM
n, where ∠θ(X) is called the slant angle. If the slant angle ∠θ(X) is a constant θ for

allX ∈ TxMn−〈ξx〉 and x ∈Mn, thenMn is said to be a slant submanifold. Obviously,
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if θ = 0, then Mn is invariant, and if θ = π/2, then Mn is an anti-invariant submanifold.

A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant

submanifold. For these submanifolds, we recall the following characterization (Cabrerizo

et al., 1999).

Theorem 4.2.1. Let Mn be a submanifold of an almost contact metric manifold M̃2l+1

such that ξ ∈ Γ(TMn). Then Mn is slant if and only if there exists a constant λ ∈ [0, 1]

such that

P 2 = λ(−I + η ⊗ ξ).

Furthermore, if θ is the slant angle, then λ = cos2 θ.

The following relations are straightforward consequences of the above theorem

g(PX,PY ) = cos2 θ(g(X, Y )− η(Y )η(X)) (4.2.6)

and

g(FX,FY ) = sin2 θ(g(X, Y )− η(Y )η(X)), (4.2.7)

for all X, Y ∈ TMn.

The notion of semi-slant submanifolds was defined in (Cabrerizo et al., 1999) as fol-

lows: A submanifold Mn of an almost contact manifold M̃2l+1 is said to be a semi-slant

submanifold if there exist two orthogonal distributions Dθ and DT satisfying

(i) TMn = Dθ ⊕ DT ⊕ 〈ξ〉;

(ii) Dθ is a slant distribution with slant angle θ 6= 0;

(iii) DT is an invariant i.e., φDT ⊆ TMn.

The following theorem will be applied frequently in subsequent chapters, so we state

and prove it in a more general way.

Theorem 4.2.2. Let Mn = NT ×f N be a warped product submanifold of a nearly

trans-Sasakian manifold M̃2l+1 such that NT and N are, respectively, holomorphic and

Riemannian submanifolds, where ξ is tangent to the first factor. Then, we have

g(h(X,Z), FW ) =
1

3

(
(X ln f)−βη(X)

)
g(PZ,W )−

(
(φX ln f)+αη(X)

)
g(Z,W ),

for any Z,W ∈ Γ
(
TN

)
and X ∈ Γ

(
TNT

)
.
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Proof. From (2.3.63) we have

(φX ln f)Z + h(φX,Z)− (X ln f)φZ − φh(X,Z) + (X ln f)PZ + h(X,PZ)

−AFZX +∇⊥XFZ − (X ln f)φZ − φh(X,Z) = −αη(X)Z − βη(X)φZ.

Taking the inner product with W in the above equation, we obtain

(φX ln f)g(Z,W )− (X ln f)g(PZ,W ) + 2g(h(X,Z), FW )− g(h(X,W ), FZ)

= −αη(X)g(Z,W )− βη(X)g(PZ,W ).

By the polarization of Z and W in the above equation, we deduce that

(φX ln f)g(Z,W ) + (X ln f)g(PZ,W ) + 2g(h(X,W ), FZ)− g(h(X,Z), FW )

= −αη(X)g(Z,W ) + βη(X)g(PZ,W ).

From the above two equations, we get

(φX ln f)g(Z,W ) = −1

2

(
g
(
h(X,Z), FW

)
+ g
(
h(X,W ), FZ

)
+ 2αη(X)g(Z,W )

)
and

(X ln f)g(PZ,W ) =
3

2

(
g
(
h(X,Z), FW

)
− g
(
h(X,W ), FZ

))
+ βη(X)g(PZ,W ).

Thus, the desired result follows form the above two equations. This completes the proof.

One particular case of Theorem 4.2.2 is the following lemma.

Lemma 4.2.2. Let Mn = NT ×f Nθ be a proper semi-slant submanifold of a nearly

trans-Sasakian manifold M̃2l+1 such that ξ is tangent to the first factor. Then, we have

g(h(X,Z), FW ) =
1

3

(
(X ln f)−βη(X)

)
g(PZ,W )−

(
(φX ln f)+αη(X)

)
g(Z,W ),

for any Z,W ∈ Γ
(
TNθ

)
and X ∈ Γ

(
TNT

)
.

Combining Lemma 4.2.2 with a result in (Mustafa et al., 2014), we reach the following

lemma which is a key result for a general inequality in the next chapter.

Lemma 4.2.3. Let Mn = NT ×f Nθ be a proper semi-slant submanifold of a nearly

trans-Sasakian manifold M̃2l+1 such that ξ is tangent to NT . Then the following hold:
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(i) ξlnf = β;

(ii) g(h(X, Y ), FZ) = 0;

(iii) g(h(ξ, Z), φW ) = −αg(Z,W );

(iv) g(h(X,Z), FW ) = 1
3

(
(X ln f)− βη(X)

)
g(PZ,W )

−
(

(φX ln f) + αη(X)

)
g(Z,W );

(v) g(h(X,PZ), FW ) = −1
3

cos2 θ

(
(X ln f)− βη(X)

)
g(Z,W )

−
(

(φX ln f) + αη(X)

)
g(PZ,W );

(vi) g(h(X,Z), FPW ) = 1
3

cos2 θ

(
(X ln f)− βη(X)

)
g(Z,W )

−
(

(φX ln f) + αη(X)

)
g(Z, PW );

(vii) g(h(X,PZ), FPW ) = −1
3

cos2 θ

(
(X ln f)− βη(X)

)
g(Z, PW )

− cos2 θ

(
(φX ln f) +αη(X)

)
g(Z,W ),

for any Z,W ∈ Γ(TNθ) and X ∈ Γ(TNT ).

Proof. The first three parts can be proved by the same way as in (Mustafa et al., 2014),

or the same as in the preceeding results of the previous chapter. Part (iv) is Lemma 4.2.2

itself. Whereas parts (v) and (vi) can be obtained from part (iv) by substituting PZ

instead of Z and PW instead of W , respectively. The last part follows also from part (iv)

by replacing Z and W by PZ and PW , respectively.

Remark 3.3.1 and Corollary 3.3.1 lead us to conclude that proper semi-slant warped

product submanifolds do not exist in both Sasakian and cosymplectic manifolds. Moti-

vated by the fact that ξ ln f = 1 for all warped product submanifolds of Kenmotsu man-

ifolds, where ξ is tangent to the first factor, we will prove the following characterization

theorem.

Theorem 4.2.3. LetMn be a semi-slant submanifold of a Kenmotsu manifold M̃2l+1 such

that the slant distribution is integrable. Then, Mn is locally a warped product of invariant

and slant submanifolds if and only if

AFWX = {(Xλ)− η(X)}PW − ((φX)λ)W, (4.2.8)
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for anyX ∈ Γ(DT⊕〈ξ〉),W ∈ Γ(Dθ), and for some function λ onMn satisfying Zλ = 0,

for every Z ∈ Γ(Dθ).

Proof. Since Dθ is assumed to be integrable, one can denote byNθ and hθ respectively for

the integral submanifold of Dθ, and the second fundamental form of Nθ in Mn. Firstly,

suppose that Mn is a semi-slant submanifold satisfying the hypothesis of the theorem.

Then for every Z, W ∈ Γ(Dθ), and X ∈ Γ(DT ⊕ 〈ξ〉), we have

g(hθ(Z,W ), φX) = g(∇ZW,φX) = −g(φ∇̃ZW,X) = g((∇̃Zφ)W,X)− g(∇̃ZφW,X)

= g(PZ,W )η(X)− g(∇̃ZPW,X)− g(∇̃XFW,X)

= g(PZ,W )η(X)− g(hθ(PW,Z), X) + g(h(X,X), FW ).

According to the hypothesis, the above equation reduces to

g(hθ(Z,W ), φX) = g(PZ,W )η(X)− g(hθ(PW,Z), X). (4.2.9)

Interchanging X with φX , and W with PW in the above equation, it gives

−g(hθ(Z, PW ), X) + η(X) g(hθ(Z, PW ), ξ) = cos2 θ g(hθ(W,Z), φX). (4.2.10)

Now, observe that

g(hθ(Z, PW ), ξ) = g(∇̃ZPW, ξ) = g(∇̃ZφW, ξ)− g(∇̃ZFW, ξ). (4.2.11)

Because h(ξ, Z) = 0 for any submanifold Mn of Kenmotsu manifolds M̃2l+1, where

ξ ∈ Γ(TMn), equation (4.2.11) is congruent to

g(hθ(Z, PW ), ξ) = g(∇̃ZφW, ξ). (4.2.12)

Making use of (2.3.57), we deduce that

g(hθ(Z, PW ), ξ) = g(φZ,W ). (4.2.13)

Hence, from (4.2.10) and (4.2.13), we have

−g(hθ(Z, PW ), X) + g(φZ,W )η(X) = cos2 θ g(hθ(W,Z), φX). (4.2.14)

Thus, by subtracting (4.2.14) from (4.2.9), we derive

sin2 θ g(hθ(W,Z), φX) = 0,
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because θ 6= 0, it is also true that

g(hθ(W,Z), φX) = 0. (4.2.15)

On the other hand, we have

g(hθ(W,Z), φX) = g(∇̃WZ, φX) = −g(φ∇̃WZ,X) = g((∇̃Wφ)Z,X)− g(∇̃WφZ,X)

= g(φW,Z)η(X)− g(∇̃WPZ,X)− g(∇̃WFZ,X)

= g(PW,Z)η(X)− g(hθ(W,PZ), X) + g(AFZW,X). (4.2.16)

Hence, from (4.2.15) and (4.2.16), we reach

g(hθ(W,PZ), X) = g(PW,Z)η(X) + g(AFZW,X).

If we replace Z by PZ in the above equation, then it automatically gives

− cos2 θ g(hθ(W,Z), X) = cos2 θ g(W,Z)η(X) + g(AFPZW,X).

By means of our hypothesis again, the above equation can be written as

− cos2 θ g(hθ(W,Z), X) = 2 cos2 θ g(W,Z)η(X)− cos2 θ(Xλ)g(Z,W )

− (φXλ)g(PZ,W ).

If we compare the symmetric and skew-symmetric terms in the above equation, taking

into consideration that Mn is a proper semi-slant submanifold, then it produces

g(hθ(W,Z), X) = (Xλ)g(Z,W )− 2g(W,Z)η(X).

The above equation can be written as

g(hθ(W,Z), X) = g(∇λ− 2ξ,X)g(Z,W ),

equivalently,

hθ(W,Z) = (∇λ− 2ξ)g(Z,W ),

for any Z, W ∈ Γ(Dθ), and X ∈ Γ(DT ⊕ 〈ξ〉).

The above relation shows that the leaves of Dθ are totally umbilical in Mn with the

mean curvature vector ∇λ. Moreover, the condition Zλ = 0 for any Z ∈ Γ(Dθ), implies
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that the leaves of Dθ are extrinsic spheres in Mn; that is, each integral submanifold Nθ of

Dθ is umbilical and its mean curvature vector field is non zero and parallel along Nθ.

To show the integrability of DT ⊕ 〈ξ〉, we first apply (4.2.8) for any X, Y ∈ Γ(DT ⊕

〈ξ〉) andW ∈ Γ(Dθ) to obtain that g(h(X,φY ), FW ) = g(h(Y, φX), FW ) = 0, (since it

is trivial from (2.3.54) for X = ξ). Consequently, we deduce that h(X,φY ) = h(Y, φX).

Equivalently, it follows from (2.3.36) that h(X,φY )−h(Y, φX) = (∇Y F )X−(∇XF )Y ,

which implies that [X, Y ] ∈ Γ(DT ⊕ 〈ξ〉) for all X, Y ∈ Γ(DT ⊕ 〈ξ〉). Hence DT ⊕ 〈ξ〉

is an integrable distribution.

One can easily deduce from (4.2.8) that g(h(X, Y ), FW ) = 0, which means that the

FDθ-component of h(X, Y ) vanishes identically, for the vector fields X, Y and W , so

by means of (2.3.57) again, we get

−F∇XY = fh(X, Y )− h(X,PY ).

Since ∇XY is a tangent vector field of Mn, φ∇XY /∈ Γ(ν), whereas the right hand

side of the above equation belongs to ν, hence F∇XY = 0, which implies that ∇XY ∈

Γ(DT ⊕ 〈ξ〉). Thus, each leaf of DT ⊕ 〈ξ〉 is totally geodesic.

Hence, by a result of (Hiepko, 1979),Mn is locally a warped productMn = NT×λNθ,

where NT and Nθ denote the integral submanifolds of the distributions DT ⊕ 〈ξ〉 and Dθ,

respectively, and λ is the warping function.

Conversely, let Mn = NT ×λ Nθ be a warped product submanifold in a Kenmotsu

manifold M̄2l+1. Then in view of (2.3.57), (2.3.27), (2.3.28) and Proposition 2.3.1 (ii),

we derive

(φX lnλ)W + h(φX,W )− (X lnλ)φW − φh(X,W ) = −η(X)φW, (4.2.17)

and

(X lnλ)φW + φh(X,W ) = −AFWX +∇⊥XFW

+ (X lnλ)PW + h(X,PW ), (4.2.18)

for any X ∈ Γ(DT ⊕ 〈ξ〉) and W ∈ Γ(Dθ). Then (4.2.8) follows immediately from

(4.2.17) and (4.2.18), which ends the proof.
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As mentioned above, in comparison of Sasakian and cosymplectic manifolds on one

side and Kenmotsu on the other side, proper semi-slant warped product submanifolds of

both types Mn = NT ×f Nθ and Mn = Nθ ×f NT do exist in Kenmotsu manifolds.

For an evidence of this natural existence, we then construct a couple of explicit exam-

ples of such warped product submanifolds, giving an evidence that our characterization

hypothesis is not vacuous, and the integrability condition imposed on the slant distribution

is not redundant.

Example 4.2.1. Similarly as Example 3.3.1, but considering the four-dimensional sub-

manifolds M4 of C4, given by the equations

x1 = et v, x2 = et u, x3 = et v, x4 = et u, x5 = cos θ1 e
t s, x6 = et r,

x7 = sin θ1 e
t s and x8 = 0, where θ1 ∈ (0, π

2
).

Therefore, the tangent bundle TM4 is spanned by

Z1 = et ∂
∂x1

+ et ∂
∂x3
, Z2 = et ∂

∂x2
+ et ∂

∂x4
,

Z3 = cos θ1e
t ∂
∂x5

+ sin θ1e
t ∂
∂x7
, Z4 = et ∂

∂x6
.

Define the distributions DT =span{Z1, Z2}, and Dθ =span{Z3, Z4}. Clearly DT is

a holomorphic distribution on C4, and Dθ is a slant with slant angle θ = θ1. Hence,

M4 = DT ⊕ Dθ is a semi-slant submanifold of C4. As same as the discussion of Example

3.3.1, we can show that M5 = NT ×f Nθ is a warped product semi-slant submanifold of

M̃2l+1 with warping function f = et, where NT and Nθ are the integral manifolds of the

distributions DT ⊕〈ξ〉 and Dθ, respectively. Moreover, using Gauss formula, it is possible

to show the D1-minimality of M5.

Analogously to Example 3.3.1, if we consider the distributions Dθ ⊕ 〈ξ〉 and DT , then

we immediately have another proper 5-dimensional semi-slant warped product submani-

fold of kind Nθ ×f NT , with a slant angle θ = θ1 and a warping function f = et, where

Nθ and NT are the leaves of Dθ ⊕ 〈ξ〉 and DT , respectively.

Notice that the arbitrary slant angle θ guarantees the existence of infinitely number

of semi-slant warped product submanifolds. This existence is a new impulse given to

semi-slant warped product submanifolds in almost contact manifolds.
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4.3 HEMI-SLANT WARPED PRODUCT SUBMANIFOLDS

In this section, we shall study hemi-slant warped product submanifolds in both almost

Hermitian and almost contact manifolds.

From Corollaries 3.2.1 and 3.2.4 we concluded there does not exist any warped prod-

uct submanifold in Kaehler manifolds such that one of the factors is proper slant while

the other is totally holomorphic. To come up with a slant generalization, B. Sahin (Sahin,

2009) considered warped product submanifolds such that one of the factors is totally

real, while the other is proper. These warped product submanifolds are called hemi-slant

warped product submanifolds.

The notion of hemi-slant submanifolds of almost Hermitian manifolds is defined as

follows (see, for example (Sahin, 2009) and (Bejanco, 1986)): A submanifold Mn of an

almost Hermitian manifold M̃2m is said to be a hemi-slant submanifold if there exist a

pair of orthogonal complementary distributions Dθ and D⊥, satisfying

(i) TMn = Dθ ⊕ D⊥;

(ii) Dθ is a proper slant distribution with slant angle θ 6= π/2;

(iii) D⊥ is totally real i.e., JD⊥ ⊆ T⊥Mn.

In view of the above definition, it is clear that every CR-warped product is a particular

hemi-slant with ∠θ = 0.

If ν is the maximal invariant subbundle of the normal bundle T⊥Mn of a hemi-slant

submanifold, then the normal bundle T⊥Mn admits the following decomposition

T⊥Mn = ν ⊕ FDθ ⊕ FD⊥. (4.3.1)

In the sequel, we first discuss the warped product hemi-slant submanifold of type

N⊥ ×f Nθ in almost Hermitian manifolds M̃2m, with a purpose to prove some character-

istic properties.

Theorem 4.3.1. Let N⊥×f Nθ be isometrically immersed into an almost Hermitian man-

ifold M̃2m. Then, we have

g(PXZ, PZ) + g(PZX,PZ) + g(QXZ, FZ)
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= g(h(X,Z), FPZ)− g(h(Z, PZ), FX)− cos2 θ(X ln f)||Z||2, (4.3.2)

for all vector fields X ∈ Γ(TN⊥), and Z ∈ Γ(TNθ).

Proof. Making use of (2.3.27), (2.3.28), (2.3.32) and (2.3.34), we obtain

(∇̃XJ)Z + (∇̃ZJ)X = (X ln f)PZ + h(X,PZ)− AFZX +∇⊥XFZ

−2(X ln f)JZ − 2Jh(X,Z)− AFXZ +∇⊥ZFX.

Taking the inner product with JZ in the above equation, gives

g(PXZ, PZ) + g(PZX,PZ) + g(QXZ, FZ) + g(QZX,FZ)

= −g(h(Z, PZ), FX) + cos2 θ(X ln f)||Z||2 − 2(X ln f)||Z||2

+g(∇⊥XFZ, FZ) + g(∇⊥ZFX,FZ). (4.3.3)

By similar techniques as above we conclude that

g(∇⊥XFZ, FZ) = g(∇̃XFZ, FZ) =
1

2
Xg(FZ, FZ) =

1

2
sin2 θXg(Z,Z)

= sin2 θg(∇̃XZ,Z) = sin2 θ(X ln f)||Z||2, (4.3.4)

and

g(∇⊥ZFX,FZ) = g(∇̃ZJX,FZ) = g((∇̃ZJ)X,FZ) + g(J∇̃ZX,FZ)

= g(QZX,FZ) + g(J∇̃ZX, JZ)− g(J∇̃ZX,PZ)

= g(QZX,FZ) + (X ln f)||Z||2 − cos2 θ(X ln f)||Z||2 + g(h(X,Z), FPZ). (4.3.5)

Hence, the assertion follows from combining (4.3.3), (4.3.4) and (4.3.5).

In Kaehler manifolds, we can use similar strategy as above to derive that

h(X,PZ)− AFZX +∇⊥XFZ − (X ln f)FZ − Jh(X,Z) = 0.

Taking the inner product with FZ in the above equation produces

g(h(X,PZ), FZ) = g(h(X,Z), FPZ).

Finally, by virtue of (2.3.48), Theorem 4.3.1 and the above equation, we directly reach
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Corollary 4.3.1. Warped product submanifolds of the type N⊥ ×f Nθ do not exist in

Kaehler manifolds.

With notation as above, one can verify that warped product submanifolds of the type

N⊥ ×f Nθ in nearly Kaehler manifolds admit

g(QXZ, FZ) = g(h(X,PZ), FZ)− g(h(X,Z), FPZ).

Fitting (2.3.52) and the above equation together in Theorem 4.3.1, we have

Corollary 4.3.2. There is no mixed totally geodesic warped product submanifold of the

type N⊥ ×f Nθ in nearly Kaehler manifolds.

From Corollary 4.3.1, we directly deduce that there is no proper warped product sub-

manifold of the type Mn = N⊥ ×f Nθ in Kaehler manifolds. On the contrary, warped

products of the type Nθ ×f N⊥ do exist in Kaehler manifolds. A concrete example of the

latter type is constructed in the next chapter, Example 5.2.1. For more other examples,

we refer to (Sahin, 2009).

Those examples show the natural existence of warped product submanifolds of type

Nθ ×f N⊥ in Kaehler manifolds. Therefore, it is interesting to investigate them in a more

general setting. Hence, we first state the following

Lemma 4.3.1. Let Nθ ×f N⊥ be isometrically immersed in a nearly Kaehler manifold

M̃2m. Then, the following hold

(i) g(h(Z,W ), FX) = (PX ln f)g(Z,W ) + g(h(X,Z), FW );

(ii) g(h(X, Y ), FZ) = 2g(h(X,Z), FY )− g(h(Y, Z), FX),

for arbitrary vector fields X, Y ∈ Γ(TNθ), and Z, W ∈ Γ(TN⊥).

Proof. By means of (2.3.52), it is possible to obtain the following

(PX ln f)Z + h(PX,Z)− AFXZ +∇⊥ZFX − 2(X ln f)FZ − 2Jh(X,Z)

−AFZX +∇⊥XFZ = 0. (4.3.6)

Taking the inner product with W , we have

(PX ln f)g(Z,W )− g(h(Z,W ), FX) + 2g(h(X,Z), FW )− g(h(X,W ), FZ) = 0.
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Changing the roles of Z and W in the above equation gives

(PX ln f)g(Z,W )− g(h(Z,W ), FX) + 2g(h(X,W ), FZ)− g(h(X,Z), FW ) = 0.

Combining the above two equations together, we deduce that

g(h(X,Z), FW ) = g(h(X,W ), FZ).

Hence, (i) follows from the preceding two equations. Statement (ii) follows by taking

the inner product with Y in (4.3.6), which finishes the proof.

Analogously, we are now going to discuss warped product hemi-slant submanifolds

of the type N⊥ ×f Nθ in almost contact manifolds M̃2l+1. Firstly, we have

Theorem 4.3.2. LetN⊥×fNθ be isometrically immersed into an almost contact manifold

M̃2l+1 such that ξ is tangent to the first factor. Then, we have

g(PXZ, PZ) + g(PZX,PZ) + g(QXZ, FZ)

= g(h(X,Z), FPZ)− g(h(Z, PZ), FX)− cos2 θ(X ln f)||Z||2, (4.3.7)

for all vector fields X ∈ Γ(TN⊥), and Z ∈ Γ(TNθ).

Proof. Making use of (2.3.27), (2.3.28), (2.3.32) and (2.3.34), we derive

(∇̃Xφ)Z + (∇̃Zφ)X = (X ln f)PZ + h(X,PZ)− AFZX +∇⊥XFZ

−2(X ln f)φZ − 2φh(X,Z)− AFXZ +∇⊥ZFX.

Taking the inner product with φZ in the above equation, gives

g(PXZ, PZ) + g(PZX,PZ) + g(QXZ, FZ) + g(QZX,FZ)

= −g(h(Z, PZ), FX) + cos2 θ(X ln f)||Z||2 − 2(X ln f)||Z||2

+g(∇⊥XFZ, FZ) + g(∇⊥ZFX,FZ). (4.3.8)

By similar techniques as above, it is easy to verify that

g(∇⊥XFZ, FZ) = g(∇̃XFZ, FZ) =
1

2
Xg(FZ, FZ) =

1

2
sin2 θXg(Z,Z)

= sin2 θg(∇̃XZ,Z) = sin2 θ(X ln f)||Z||2, (4.3.9)
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and

g(∇⊥ZFX,FZ) = g(∇̃ZφX,FZ) = g((∇̃Zφ)X,FZ) + g(φ∇̃ZX,FZ)

= g(QZX,FZ) + g(φ∇̃ZX,φZ)− g(φ∇̃ZX,PZ)

= g(QZX,FZ) + (X ln f)||Z||2 − cos2 θ(X ln f)||Z||2 + g(h(X,Z), FPZ). (4.3.10)

As a result, combining (4.3.8), (4.3.9) and (4.3.10) together proves the theorem.

Following similar strategy as in the above proof, it is easy to show that the following

equation

h(X,PZ)− AFZX +∇⊥XFZ − (X ln f)FZ − Jh(X,Z) = 0

is satisfied for both cosymplectic and Sasakian manifolds, whenever ξ is tangent to the

first factor.

Taking the inner product with FZ in the above equation, we get

g(h(X,PZ), FZ) = g(h(X,Z), FPZ).

Consequently, making use of (2.3.55), (2.3.59), Theorem 4.3.2 and the above equa-

tion, we get

Corollary 4.3.3. Warped product submanifolds of the type N⊥ ×f Nθ do not exist in

Sasakian and cosymplectic manifolds.

From Proposition 3.3.1, one can conclude that there is no mixed totally geodesic

warped product submanifold of the type N⊥ ×f Nθ in nearly Sasakian manifolds. By

the similar analogy as in Corollary 4.3.2, we can easily prove that such manifolds are

trivial in nearly cosymplectic manifolds. Therefore, we state the following

Corollary 4.3.4. There is no mixed totally geodesic warped product submanifold of the

type N⊥ ×f Nθ in nearly Sasakian and nearly cosymplectic manifolds.

Likewise, for warped product hemi-slant submanifolds of type Nθ ×f N⊥ in almost

contact manifolds, we state the following.

Lemma 4.3.2. Let Nθ×f N⊥ be isometrically immersed in a nearly trans-Sasakian man-

ifold M̃2l+1 such that ξ is tangent to the first factor. Then, we have
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(i) g(h(Z,W ), FX) = (PX ln f)g(Z,W ) + g(h(X,Z), FW )

+ αη(X)g(Z,W );

(ii) g(h(X, Y ), FZ) = 2g(h(X,Z), FY )− g(h(Y, Z), FX),

where X, Y ∈ Γ(TNθ), and Z, W ∈ Γ(TN⊥).

Proof. By means of (2.3.52), we get

(PX ln f)Z + h(PX,Z)− AFXZ +∇⊥ZFX − 2(X ln f)FZ − 2Jh(X,Z)

−AFZX +∇⊥XFZ = −αη(X)Z − βη(X)φZ. (4.3.11)

Taking the inner product with W , gives

(PX ln f)g(Z,W )− g(h(Z,W ), FX) + 2g(h(X,Z), FW )− g(h(X,W ), FZ) =

−αη(X)g(Z,W ).

Changing the roles of Z and W in the above equation gives

(PX ln f)g(Z,W )− g(h(Z,W ), FX) + 2g(h(X,W ), FZ)− g(h(X,Z), FW ) =

−αη(X)g(Z,W ).

In view of the above two equations, we deduce that

g(h(X,Z), FW ) = g(h(X,W ), FZ).

Hence, (i) follows from the preceding two equations, whereas statement (ii) follows by

taking the inner product with Y in (4.3.11).

In (Uddin et al., 2012), we studied hemi-slant warped product submanifolds in nearly

cosymplectic manifolds under the name of pseudo-slant. In the same paper, the following

results were obtained.

Theorem 4.3.3. Let Mn = N⊥ ×f Nθ be a warped product submanifold of a nearly

cosymplectic manifold M̃2l+1 such that ξ is tangent to the first factor. Then Mn is a

Riemannian product ofN⊥ andNθ if and only ifPXPX ∈ Γ(TNθ), for anyX ∈ Γ(TNθ),

whereNθ andN⊥ are proper slant and anti-invariant submanifolds of M̃2l+1, respectively.
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Theorem 4.3.4. Let Mn = Nθ ×f N⊥ be a warped product submanifold of a nearly

cosymplectic manifold M̃2l+1 such that ξ is tangent to the first factor. Then Mn is a

Riemannian product of Nθ and N⊥ if and only if

g(h(X,Z), FZ) = g(h(Z,Z), FX),

for any X ∈ Γ(TNθ) and Z ∈ Γ(TN⊥), where Nθ and N⊥ are proper slant and anti-

invariant submanifolds of M̃2l+1, respectively.

4.4 SPECIAL INEQUALITY FOR THE EXISTENCE OF WARPED PRODUCT
SUBMANIFOLDS IN ALMOST CONTACT MANIFOLDS

The following inequality is for existence purposes. Even though it differs from all other

inequalities of this thesis, it is one of the most important results. This is because it

proves that every warped product submanifold in nearly trans-Saskian manifold is indeed

a proper one when ξ is tangent to the first factor.

Theorem 4.4.1. Let Mn = N1 ×f N2 be a warped product submanifold of a nearly

trans-Sasakian manifold M̃2l+1 such that ξ is tangent to the first factor. Then, we have

(i) ||∇ ln f ||2 ≥ β2.

(ii) The equality of (i) holds identically if and only if X ln f = 0, for all X ∈ Γ(TN1)

such that X is orthogonal to ξ.

(iii) In particular, if N1 is an invariant submanifold, then the equality of (i) holds iden-

tically if and only if h(X,Z) ∈ ν for all X and Z tangent to the first and the second

factors, respectively, where X is orthogonal to ξ.

Proof. For some differentiable function, ψ, on M̃2l+1, we first recall (2.3.23) form chapter

two, that is;

||∇̃ψ||2 =
m∑
i=1

(
ei(ψ)

)2
. (4.4.1)

Since f and ln f act on N1, the above relation implies

||∇ ln f ||2 =

n1∑
a=1

(
ea(ln f)

)2
, (4.4.2)

where {e1 = ξ, · · · , en1} is a local orthonormal frame of Γ(TN1).
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In view of this adapted frame, we can expand (4.4.2) as follows

||∇ ln f ||2 = (ξ(ln f))2 +

n1∑
a=2

(
ea(ln f)

)2
. (4.4.3)

It is well-known that ξ ln f = β for warped product submanifolds as in the hypothesis,

(see Theorem 3.3.5 (i)). Using this fact to evaluate the first term on the right hand side of

(4.4.3), it automatically yields

||∇ ln f ||2 = β2 +

n1∑
a=2

(
ea(ln f)

)2
. (4.4.4)

Consequently, the inequality of statement (i) follows immediately from the above

relation.

For statement (ii), the inequality of (i) holds identically if and only if
n1∑
a=2

(
ea(ln f)

)2
= 0. (4.4.5)

It is obvious that the above equation provides a necessary and sufficient condition for

the equality sign of (i). This proves statement (ii).

Now, for the last statement let N1 to be an invariant submanifold in M̃2l+1. Then,

from Theorem 4.2.2, we have

g(h(X,Z), FW ) =
1

3

(
(X ln f)−βη(X)

)
g(PZ,W )−

(
(φX ln f)+αη(X)

)
g(Z,W ),

for any Z,W ∈ Γ
(
TN2

)
and X ∈ Γ

(
TN1

)
.

In view of (4.4.5), if the equality holds then the above equation becomes

g(h(X,Z), FW ) = 0.

This means that h(X,Z) ∈ ν for all X and Z tangent to the first and the second factors,

respectively, where X is orthogonal to ξ.

Conversely, if h(X,Z) ∈ ν for all X and Z as above, then we deduce that

1

3
(X ln f)g(PZ,W )− (φX ln f)g(Z,W ) = 0,

for any Z,W ∈ Γ
(
TN2

)
and X ∈ Γ

(
TN1

)
, X orthogonal to ξ.

Comparing the symmetric or the skew-symmetric terms of the above equation gives

X ln f = 0,

for all X ∈ Γ
(
TN1

)
, X orthogonal to ξ. Hence, the equality holds and completes the

proof.
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Even though we get a nice geometric description for a necessary and sufficient con-

dition for the equality case of (i) holding, the inequality of (i) itself is enough to get the

following prominent existence theorems in nearly trans-Sasakian and nearly β-Kenmotsu

manifolds.

Theorem 4.4.2. There exist proper warped product submanifolds, Mn = N1 ×f N2, in

nearly trans-Sasakian manifolds such that ξ ∈ Γ(TN1).

In particular,

Theorem 4.4.3. There exist proper warped product submanifolds, Mn = N1 ×f N2, in

nearly β-Kenmotsu manifolds such that ξ ∈ Γ(TN1).

Clearly, the above two theorems are direct consequences of the above inequality,

which is valid for general warped product submanifolds in nearly trans-Sasakian and then

in nearly β-Kenmotsu manifolds.

Taking an advantage of Theorem 3.3.2 of the previous chapter and the above two

theorems, we reach the following

Theorem 4.4.4. In nearly trans-Sasakian manifolds, there exist proper warped product

submanifolds if ξ is tangent to the first factor, whereas they are trivial if ξ is tangent to the

second.

Particularly,

Theorem 4.4.5. In nearly β-Kenmotsu manifolds, there exist proper warped product sub-

manifolds if ξ is tangent to the first factor, whereas they are trivial if ξ is tangent to the

second.

Based on the fact that addressed on Theorem 3.3.5 (i), we conclude that all warped

product submanifolds in nearly β-Kenmotsu and nearly trans-Sasakian manifolds do exist

whenever ξ is tangent to the first factor, which implies their existence in nearly Kenmotsu

and Kenmotsu manifolds also. This comes from ξ ln f = β in the nearly trans-Sasakian

and nearly β-Kenmotsu manifolds. These observations have been materialized in this

section via Theorems 4.4.1, 4.4.2, 4.4.3, 4.4.4 and 4.4.5. Thus, the following table actu-

ally contains those cases of existence and nonexistence problems of some almost contact

manifolds of interest.
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The abbreviations of manifolds are: Sas.≡ Sasakian, Ken.≡Kenmotsu, Cos.≡ cosym-

plectic, n.Sas.≡ nearly Sasakian, n.Ken≡ nearly Kenmotsu, n.cos.≡ nearly cosymplectic

and n.t.S.≡ nearly trans-Sasakian.

Type Sas. Ken. Cos. n.Sas. n.Ken. n.cos. n.t.S.
N⊥ ×f NT X X X X X X X
NT ×f N⊥ X X X X X X X
Nθ ×f NT X X X X X X X
NT ×f Nθ X X X ? X ? X
N ×f NT X X X X X X X
NT ×f N X X X ? X ? X
N⊥ ×f Nθ X X X ? X ? X
Nθ ×f N⊥ ? X ? ? X ? X

Table 4.1: Existence and nonexistence of warped product submanifolds in almost contact
manifolds with ξ tangent to the first factor.
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CHAPTER 5: Di-MINIMALITY AND THE FIRST INEQUALITY OF h

5.1 INTRODUCTION

Given a warped product submanifoldN1×fN2. We recall some relative terminology from

Chapter Two, as usual D1 and D2 denote the distributions given by the vectors tangent to

leaves and fibers, respectively. This means that D1 and D2 are respectively obtained from

tangent vectors of N1 and N2 via horizontal and vertical lifts, respectively. In the second

section of the current chapter, it is proven that Di-minimality is possessed by a wide class

of warped product submanifolds, some of these warped product submanifolds were shown

to have this geometric property in (Mustafa et al., 2014) and (Mustafa et al., 2015). After

that, some results concerning Di-minimal warped product submanifolds are obtained, to

be diversely applied in subsequent chapters; namely Theorem 5.2.1 and Lemma 5.2.6.

In Chapter Two, we called the inequality proved in (Chen, 2001) the first inequality

of h. In the third section of this chapter, we first use the results of the second section

to modify all inequalities of the first kind in both almost Hermitian and almost contact

manifolds. At the same time, we give new generalizations of many inequalities for CR,

semi-slant and hemi-slant warped product submanifolds.

It is worth pointing out that, the first inequality of hwas first initiated by Chen forCR-

warped product submanifolds in Kaehler manifolds (Chen, 2001). After many extensions

of such inequality in the setting of contact CR-warped product submanifolds of almost

contact manifolds (see, for example (Arsalan et al., 2005) and (Munteanu, 2005)), we

gave an inequality which is still the main general inequality of this kind till date (Mustafa

et al., 2013).

In the setting of semi-slant warped product submanifolds, we also initiated the study of

such type of inequalities for nearly cosymplectic manifolds (Uddin et al., 2014), then we

gave a more general one in (Mustafa et al.,2014). In hemi-slant warped product subman-

ifolds, a slightly different inequality was proved by Sahin in Kaehler manifolds (Sahin,

2009). We contemplate to modify and generalize these kinds of inequalities in this chap-

ter.
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5.2 Di-MINIMALITY OF WARPED PRODUCT SUBMANIFOLDS

In the sense of Definition 2.3.3, we are going to show the natural existence of Di-minimal

warped product submanifolds in both almost Hermitian and almost contact manifolds. In

these manifolds, Di-minimality is proved for both i = 1 and i = 2.

Firstly, in view of Proposition 3.2.1, we can directly derive

Corollary 5.2.1. Let Mn = NT ×f N⊥ be a CR-warped product submanifold into an

arbitrary Kaehler manifold M̃2m. Then, the following hold

(i) g(h(X,X), FZ) = 0;

(ii) g(h(X,X), ζ) = −g(h(JX, JX), ζ),

for all vector fields X, Z and ζ tangent to NT , N⊥ and ν, respectively.

Secondly, we provide the next key result which will be referred to frequently during

this section.

Lemma 5.2.1. Every CR-warped product submanifold of the type Mn = NT ×f N⊥ is a

D1-minimal warped product submanifold in Kaehler manifolds, where D1 = DT .

Proof. Consider the following local field of orthonormal frames of the Kaehler manifold

M̃2m: {e1, · · · , es, es+1 = Je1, · · · , en1 = e2s = Jes, en1+1 = e?1, · · · , en1+n2 = en =

e?q, en+1 = Je?1, · · · , en+n2 = Je?q, en+n2+1 = ē1, · · · , e2m = ē2l=γ} such that {e1, · · · ,

es, es+1 = Je1, · · · , en1 = e2s = Jes}, {en1+1 = e?1, · · · , en1+n2 = en = e?q}, {en+1 =

Je?1, · · · , en+n2 = Je?q} and {en+n2+1 = ē1, · · · , e2m = ē2l=γ} are the local fields of

orthonormal frames of Γ(TNT ), Γ(TN⊥), Γ(JTN⊥) and Γ(ν), respectively.

Using the terminology in (2.3.41), it is straightforward to have

2m∑
r=n+1

n1∑
a=1

hraa =
2m∑

r=n+1

(
hr11 + · · ·+ hrn1n1

)
.

In view of (3.2.8), the right hand side summation can be decomposed as

2m∑
r=n+1

n1∑
a=1

hraa =

2m−γ∑
r=n+1

(
hr11 + · · ·+ hrn1n1

)
+

2m∑
r=n+1+q

(
hr11 + · · ·+ hrn1n1

)
.
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Taking into account part (i) of Corollary 5.2.1, the first summation on the right hand

side of the above equation vanishes, whereas we expand the other summation in view of

the above orthonormal frames to get

2m∑
r=n+1

n1∑
a=1

hraa =
2m∑

r=n+1+q

(
hr11 + · · ·+ hrss + hrs+1s+1 + · · ·+ hr2s2s

)
.

Equivalently,

2m∑
r=n+1

n1∑
a=1

hraa =
2m∑

r=n+1+q

(
g(h(e1, e1), er) + · · ·+ g(h(es, es), er)

+ g(h(Je1, Je1), er) + · · ·+ g(h(Jes, Jes), er)

)
.

Now, if we apply part (ii) of Corollary 5.2.1 on the above equation, then it automati-

cally gives

2m∑
r=n+1

n1∑
a=1

hraa =
2m∑

r=n+1+q

(
g(h(e1, e1), er) + · · ·+ g(h(es, es), er)

− g(h(e1, e1), er)− · · · − g(h(es, es), er)

)
= 0.

Clearly, this proves the vanishing of the coefficients hraa under summation, for a ∈

{1, · · · , n1} and r ∈ {n + 1, · · · , 2m}. Therefore, the partial mean curvature vector

~H defined in (2.3.46) does vanish. Hence, in the sense of Definition 2.3.3, we get the

assertion.

Remark 5.2.1. Putting D1 = DT , then by following the above scheme typically one can

show that warped product submanifolds of types Mn = NT ×f N⊥, Mn = NT ×f Nθ and

Mn = NT ×f N are D1-minimal in nearly Kaehelr and in l.c.K. manifolds when the Lee

vector field λ is tangent to Mn.

Now, we will show the existence of D2-minimal warped product submanifolds in al-

most Hermitian manifolds. For this, we consider locally conformal Kaehler, l.c.K., man-

ifolds to be the ambient manifolds M̃2m. Firstly, we have:

Lemma 5.2.2. LetMn = N×fNT be a warped product submanifold in a l.c.K.manifold

M̃2m such that the Lee vector field λ is tangent to Mn, where NT and N are holomorphic

and Riemannian submanifolds of M̃2m. Then we have
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(i) g(h(X,X), FZ) = 0;

(ii) g(h(X,X), ζ) + g(h(JX, JX), ζ) = 0,

where X , Z and ζ are vector fields on NT , N and ν, respectively.

Proof. In view of (2.3.51), we directly obtain

(PZ ln f)X + h(PZ,X)− AFZX +∇⊥XFZ

− (Z ln f)JX − Jh(X,Z) = g(λ, PZ)X − g(λ, Z)JX.

Taking the inner product with X and JX respectively on the above equation, yields

(PZ ln f)||X||2 − g(h(X,X), FZ) = g(λ, PZ)||X||2

and

Z ln f = g(λ, Z).

From the above two equations we get (i). For the other part, observe that (2.3.51) gives

(∇̃XJ)X = g(λ, JX)X − g(λ,X)JX + Jλ||X||2.

Taking the inner product with Jζ produces

g(h(JX,X), Jζ)− g(h(X,X), ζ) = 0.

Interchanging the roles of X and JX in the above equation, we obtain

−g(h(JX,X), Jζ)− g(h(JX, JX), ζ) = 0.

Combining the above two equations, (ii) immediately follows.

As a result, if we follow an analogous argument as in the proof of Lemma 5.2.1,

then we can show that Mn = N ×f NT is a D2-minimal warped product submanifold in

l.c.K. manifolds, where D2 = DT . Moreover, similar discussion like above can show the

existence of other kinds of D2-minimal warped product submanifolds in l.c.K.manifolds.

Remark 5.2.2. Warped products of types Mn = N ×f NT , Mn = N⊥ ×f NT and

Mn = Nθ ×f NT are D2-minimal warped product submanifolds in l.c.K. manifolds,

where D2 = DT .
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Now, we turn our attention to almost contact manifolds, we are going to explain the

natural existence of Di-minimal warped product submanifolds in almost contact mani-

folds, for both i = 1 and i = 2. Observe that all almost contact manifolds considered in

this thesis satisfy (∇̃ξφ)ξ = 0. Hence, it is convenient to state

Lemma 5.2.3. Let Mn be a submanifold tangent to the characteristic vector field ξ in an

almost contact manifold M̃2l+1. If (∇̃ξφ)ξ = 0 on M̃2l+1, then h(ξ, ξ) = 0.

In the third section of Chapter Three, contact CR-warped product submanifolds were

introduced. Beginning with Sasakian manifolds, we consider a contact CR-warped prod-

uct submanifold of type Mn = NT ×f N⊥.

Corollary 5.2.2. Let Mn = NT ×f N⊥ be a contact CR-warped product submanifold in

a Sasakian manifold M̃2l+1 such that ξ is tangent to the first factor. Then, the following

hold

(i) h(X, ξ) = 0;

(ii) g(h(X,X), FZ) = 0;

(iii) g(h(X,X), ζ) = −g(h(φX, φX), ζ),

for every X ∈ Γ(TNT ), Z ∈ Γ(TN⊥) and ζ ∈ Γ(ν).

Proof. From (2.3.55) we obtain

X − η(X)ξ = −φ∇Xξ − φh(X, ξ).

Applying φ on the above equation, taking into consideration η(∇Xξ) = 0, then it yields

φX = ∇Xξ + h(X, ξ).

By comparing the tangential and normal terms in the above equation we get (i). (ii)

is well-known (see, for example (Mihai, 2004), (Munteanu, 2005) and (Mustafa et al.,

2013)). For the last part, take an arbitrary ζ ∈ Γ(ν), then by making use of (2.3.55) and

(2.3.27), we obtain

∇XφX + h(φX,X)− φ∇XX − φh(X,X) = −g(X,X)ξ + η(X)X,
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taking the inner product with φζ in the above equation, we deduce

g(h(φX,X), φζ)− g(h(X,X), ζ) = 0, (5.2.1)

interchanging X with φX in (5.2.1), gives

g(h(φX, φX), ζ) = g(h(φ(φX), φX), φζ) = g(∇̃φXφ(φX), φζ)

= −g(∇̃φXX,φζ) + g(∇̃φX(η(X)ξ), φζ)

= −g(h(X,φX), φζ) + η(X)g(∇̃φXξ, φζ)

= −g(h(X,φX), φζ) + η(X)g(h(φX, ξ), φζ).

Making use of statement (i) in the above equation, we conclude that

g(h(φX, φX), ζ) = −g(h(X,φX), φζ). (5.2.2)

From (5.2.1) and (5.2.2), we obtain statement (iii).

In view of the above Lemma, and taking into account Lemma 5.2.3, it is straightfor-

ward to apply the same procedure as in the proof of Lemma 5.2.1 to verify the following

Lemma 5.2.4. Let Mn = NT ×f N⊥ be a contact CR-warped product submanifold in

Sasakian manifolds M̃2l+1 such that ξ is tangent to NT . Then, Mn is D1-minimal warped

product, where D1 = DT ⊕ 〈ξ〉.

For Kenmotsu manifolds, some parts of the next two results can be found in (Mustafa

et al., 2015). By an analogous proof of Lemma 5.2.2, it is easy to show the following

Corollary 5.2.3. For the warped products Mn = NT ×f N and Mn = N ×f NT in

Kenmotsu manifolds, where NT and N are respectively invariant and Reimannian sub-

manifolds of M̃2l+1 such that the characteristic vector field ξ is tangent to the first factor,

the following hold

(i) g(h(X, Y ), FZ) = 0;

(ii) g(h(X,X), ζ) = −g(h(φX, φX), ζ),

where X, Y are tangent to NT , Z is tangent to N and ζ ∈ Γ(ν).
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Semi-slant warped product submanifolds were defined and extensively discussed in

chapter four. Moreover, examples and a characterization theorem were given for warped

product submanifolds of types NT ×f Nθ and Nθ ×f NT in Kenmotsu manifolds, such

that ξ is tangent to the first factor. In view of the above corollary and Lemma 5.2.3, we

have the next result.

Lemma 5.2.5. Let D1 = DT . Then, the warped products NT ×f N⊥, NT ×f Nθ and

NT ×fN are D1-minimal in Kenmotsu manifolds M̃2l+1. WhileN⊥×fNT , Nθ×fNT and

N×fNT are D2-minimal in M̃2l+1, where D2 = DT . In both categories, the characteristic

vector field ξ is assumed to be tangential to the first factor, where NT , N⊥, Nθ and N are

invariant, anti-invariant, slant and Riemannian submanifolds of M̃2l+1.

In general, we have the following result for nearly trans-Sasakian manifolds, where a

special case of this result had been proven in (Mustafa et al.,2014).

Remark 5.2.3. By similar discussion as above and putting D1 = DT , we can prove

that any warped product of the type NT ×f N is D1-minimal in nearly trans-Sasakian

manifolds. By the contrary, reversing the two factors of such warped products gives D2-

minimal warped products, where ξ is tangent to the first factor in both cases.

Typically as warped product submanifolds of types NT ×f N and N ×f NT , Di-

minimality can be proved for generic warped product submanifolds. This is left to the

reader.

Remark 5.2.4. Generic warped product submanifolds are Di-minimal in almost Hermi-

tian and almost contact manifolds considered in this thesis, where i refers to the holomor-

phic distribution.

From all the above results, we notice that Di-minimality is possessed by CR, semi-

slant and generic warped product submanifolds ∗, in both almost Hermitian and almost

contact manifolds of interest. In the following example, we construct a hemi-slant warped

∗The notion of generic submanifolds were introduced in both almost Hermitian and almost contact
manifolds (see, for example (Bejancu, 1986), (Khan & Khan, 2009) and references of (Chen, 2013)). In this
thesis, we will not consider generic warped product submanifolds. This is to avoid confusion in terminology,
and because of limited time and space also. Anyway, corresponding results to generic warped product
submanifolds are identical to those of warped product submanifolds of types NT ×f N and N ×f NT ,
where N is a Riemannian submanifold.
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product submanifold which is D1-minimal warped product submanifold. This means that,

the class of Di-minimal warped product submanifold is wide enough to be considered in

further research.

Example 5.2.1. Consider a submanifold M3 in R8 given by the equations

x1 = u, x2 = v, x6 = u sinϑ, x8 = u cosϑ, xi = 0, i = 3, 4, 5, 7,

where ϑ ∈ (0, π
2
), u 6= 0 and v 6= 0. Then, the tangent bundle TM3 is spanned by

Z1 =
∂

∂x1

+ sinϑ
∂

∂x6

+ cosϑ
∂

∂x8

, Z2 =
∂

∂x2

, Z3 = u cosϑ
∂

∂x6

− u sinϑ
∂

∂x8

.

Then, it is easy to see that Dθ = span{Z1, Z2} is a slant distribution with slant angle

θ = π
4
. It is also easy to show that D⊥ = span{Z3} is an anti-invariant distribution.

Consequently, M3 turns out to be hemi-slant submanifold. Moreover, one can directly

check integrability of Dθ, so this permits us to denote the integral manifolds of Dθ and D⊥

by Nθ and N⊥, respectively. Therefor, the metric tensor of M3 is computed by

g = 2du2 + dv2 + u2dϑ2.

Equivalently,

g = gNθ + u2gN⊥ .

As a result, M3 is a warped product hemi-slant submanifold of R8 with warping func-

tion f = u. Then using the Gauss formula, we have

h(Z1, Z1) = h(Z2, Z2) = 0.

hence, M3 is a D1-minimal warped product submanifolds in R8.

Moreover, by easy computation we obtain h(Z1, Z2) = 0. Hence, Nθ is totally

geodesic in R8. Also,

h(Z3, Z3) = −u
2

(
− ∂

∂x1

+ sinϑ
∂

∂x6

+ cosϑ
∂

∂x8

)
.

Therefore, N⊥ is totally umbilical in R8. However, M3 is neither totally geodesic nor

totally umbilical in R8.
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Now, let us recall the following significant key result for warped product submanifolds

Mn = N1 ×f N2 from Chapter Two. It is clear that Proposition 2.3.2 (4) implies that the

sectional curvature and the warping function are related by

n1∑
a=1

n∑
A=n1+1

K(ea ∧ eA) =
n2∆f

f
, (5.2.3)

where {e1, · · · , en1 , en1+1, · · · , en} are local fields of orthonormal frame of Γ(TMn) such

that n1, n2 and n are the dimensions of N1, N2 and Mn, respectively. It is clear that ea ∈

{e1, · · · , en1}, and eA ∈ {en1+1, · · · , en}. We point out that (5.2.3) is a key ingredient of

this work, which has also been used frequently in proving inequalities like that in (Chen,

2002).

Once and for all, we are going to prove two basic results which are frequently used in

all coming sections, especially in dealing with the equality case of inequalities to come.

The next theorem is a direct consequence of Theorem 6.3.1 in the next chapter. However,

we prove it here in a different way.

Theorem 5.2.1. Let ϕ be Di-minimal isometric immersion, for i = 1 or 2, from a warped

product Mn = N1 ×f N2 into any Riemannian manifold M̃m. Then

||h(D1,D2)||2 = τ̃(TxM
n)− τ̃(TxN1)− τ̃(TxN2)− n2 ∆(f)

f
,

where D1 and D2 are the distributions of the first and the second factors of N1 ×f N2,

respectively.

Proof. In virtue of the Gauss equation, we have

n2|| ~H||2 = ||h||2 + 2τ(TxM
n)− 2τ̃(TxM

n). (5.2.4)

Now, let {e1, · · · , en1 , en1+1, · · · , en = en1+n2} and {en+1, · · · , em} be the local fields

of orthonormal frames of Γ(TMn) and Γ(T⊥Mn), respectively, where {e1, · · · , en1} and

{en1+1, · · · , en = en1+n2} are the frames of Γ(TN1) and Γ(TN2), respectively. Then, and

without loss of generality, choose en+1 to be in the direction of the mean curvature vector

~H .

Now, from (2.3.45), we have

τ
(
TxM

n
)

=
∑

1≤i<j≤n

Kij =

n1∑
a=1

n∑
A=n1+1

KaA+
∑

1≤a<b≤n1

Kab+
∑

n1+1≤A<B≤n

KAB. (5.2.5)
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Via (5.2.3) and (2.3.45), the above equation is congruent to

τ
(
TxM

n
)

=
n2∆f

f
+ τ
(
TxN1

)
+ τ
(
TxN2

)
. (5.2.6)

In view of (2.3.43), it is common to have

τ
(
TxN1

)
=

m∑
r=n+1

∑
1≤a<b≤n1

(
hraah

r
bb −

(
hrab
)2
)

+ τ̃
(
TxN1

)
, (5.2.7)

and

τ
(
TxN2

)
=

m∑
r=n+1

∑
n1+1≤A<B≤n

(
hrAAh

r
BB −

(
hrAB

)2
)

+ τ̃
(
TxN2

)
. (5.2.8)

By (5.2.4)-(5.2.8), one directly obtains

( n∑
i=1

hn+1
ii

)2

=
m∑

r=n+1

n∑
i=1

(hrii)
2 +

m∑
r=n+1

n∑
i,j=1
i6=j

(hrij)
2 +

2n2∆f

f

+2
m∑

r=n+1

∑
1≤a<b≤n1

(
hraah

r
bb − (hrab)

2

)
+ 2

m∑
r=n+1

∑
n1+1≤A<B≤n

(
hrAAh

r
BB − (hrAB)2

)

+2

(
τ̃(TxN1) + τ̃(TxN2)− τ̃(TxM

n)

)
.

By rearranging the right hand side terms in an appropriate manner, we can obtain( n∑
i=1

hn+1
ii

)2

=
m∑

r=n+1

n1∑
a=1

(hraa)
2 + 2

m∑
r=n+1

∑
1≤a<b≤n1

hraah
r
bb

+
m∑

r=n+1

n∑
A=n1+1

(hrAA)2 + 2
m∑

r=n+1

∑
n1+1≤A<B≤n

hrAAh
r
BB

+
m∑

r=n+1

n∑
i,j=1
i6=j

(hrij)
2 − 2

m∑
r=n+1

∑
1≤a<b≤n1

(hrab)
2 − 2

m∑
r=n+1

∑
n1+1≤A<B≤n

(hrAB)2

+
2n2∆f

f
+ 2

(
τ̃(TxN1) + τ̃(TxN2)− τ̃(TxM

n)

)
. (5.2.9)

If ϕ is D1-minimal, then it follows

m∑
r=n+1

n1∑
a=1

(hraa)
2 + 2

m∑
r=n+1

∑
1≤a<b≤n1

hraah
r
bb = 0,

m∑
r=n+1

n∑
A=n1+1

(hrAA)2 + 2
m∑

r=n+1

∑
n1+1≤A<B≤n

hrAAh
r
BB =

( n∑
i=1

hn+1
ii

)2
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and
m∑

r=n+1

n∑
i,j=1
i6=j

(hrij)
2 − 2

m∑
r=n+1

∑
1≤a<b≤n1

(hrab)
2 − 2

m∑
r=n+1

∑
n1+1≤A<B≤n

(hrAB)2

= 2
m∑

r=n+1

n1∑
a=1

n∑
A=n1+1

(hraA)2.

By substituting the above three equations in (5.2.9), we immediately reach

2
m∑

r=n+1

n1∑
a=1

n∑
A=n1+1

(hraA)2 = −2n2∆f

f
− 2

(
τ̃(TxN1) + τ̃(TxN2)− τ̃(TxM

n)

)
.

Analogously, we get the same result when ϕ is D2-minimal. This gives the assertion.

The second key result is

Lemma 5.2.6. Let ϕ be a D2-minimal isometric immersion of a warped product subman-

ifold Mn = N1 ×f N2 into any Riemannian manifold M̃m. If N2 is totally umbilical in

M̃m, then ϕ is D2-totally geodesic.

Proof. Let ȟ and ĥ denote the second fundamental forms of N2 in Mn and M̃m, respec-

tively. Then for every vector fields Z and W tangent to N2 we have

h(Z,W ) = ĥ(Z,W )− ȟ(Z,W ).

Notice that, Corollary 2.3.1 and the above hypothesis guarantee that N2 is totally umbil-

ical in both Mn and M̃m. From this fact and part (iii) of Proposition 2.3.1, the above

equation takes the form

h(Z,W ) = g(Z,W )(Ψ +∇(ln f)), (5.2.10)

for some vector field Ψ ∈ Γ(TM̃m) such that Ψ is normal to Γ(TN2).

Considering the local field of orthonormal frames as in the above proof. Then, taking

the summation over the orthonormal frame fields of Γ(TN2) in the above equation, we

get
n∑

A,B=n1+1

h(eA, eB) =
n∑

A,B=n1+1

g(eA, eB)(Ψ +∇(ln f)).

Taking into account D2-minimality of ϕ, the left hand side of the above equation vanishes

and we get

0 = n2 (Ψ +∇(ln f)).
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Since N2 is not empty, we obtain

Ψ = −∇(ln f).

Making use of the above equation in (5.2.10), we obtain

h(Z,W ) = 0,

for every vector fields Z,W ∈ Γ(TN2). Meaning that; ϕ is D2-totally geodesic. This

completes the proof.

5.3 MODIFIED INEQUALITIES IN ALMOST HERMITIAN MANIFOLDS

In 2001, B.Y. Chen established an interesting basic inequality (Chen, 2001), for CR-

warped product submanifolds in Kaehler manifolds; that is,

Theorem 5.3.1. (Chen, 2001). Let ϕ : Mn = NT ×f N⊥ −→ M̃2m be an isometric

immersion of an n-dimensional CR-warped product submanifold into a Kaehler manifold

M̃2m. Then, we have

(i) ||h||2 ≥ 2n2||∇ ln f ||2.

(ii) If the equality in (i) holds, then NT , N⊥ and Mn are totally geodesic, totally um-

bilical and minimal submanifolds in M̃2m, respectively.

In this chapter, a modification for the equality case of the above theorem will be

proved. In fact, this modification can be carried out on all first inequalities of h in both

almost Hermitian and almost contact manifolds. For this, we are going to prove a general

result for warped product manifolds which also provides us with a strong link between

all inequalities of the next chapter and Theorem 6.3.1. To this end, consider the warped

product manifold Mn = N1 ×f N2. Then, for any unit vectors X and Z tangent to N1

and N2 respectively, we use (2.3.4), (2.3.6) and (2.3.7) to write

K(X ∧ Z) = g(R(Z,X)X,Z) = (∇XX) ln fg(Z,Z)− g(∇X((X ln f)Z), Z)

= (∇XX) ln fg(Z,Z)− g(∇X(X ln f)Z + (X ln f)∇XZ,Z)

= (∇XX) ln f −X(X ln f)− (X ln f)2.
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Taking the summation over orthonormal frame fields yields

n∑
A=n1+1

n1∑
a=1

K(ea ∧ eA) =
n∑

A=n1+1

n1∑
a=1

(
(∇eaea) ln f − ea(ea ln f)− (ea ln f)2

)
.

Applying (2.3.21) and (2.3.22) on the above equation results in

n1∑
a=1

n∑
A=n1+1

K(ea ∧ eA) = n2{∆ ln f − ||∇ ln f ||2}. (5.3.1)

Consequently, joining (5.2.3) and (5.3.1), it turns out that

∆f

f
= ∆ ln f − ||∇ ln f ||2. (5.3.2)

Now, we present the following modification of Theorem 5.3.1, where we ascertain the

necessary and sufficient conditions for the equality case. The proof of this theorem will

be referred to several times in the rest of this work.

Theorem 5.3.2. Let ϕ : Mn = NT ×f N⊥ −→ M̃2m be an isometric immersion of an

n-dimensional CR-warped product submanifold into a Kaehler manifold M̃2m. Then, we

have

(i) ||h||2 ≥ 2n2||∇ ln f ||2.

(ii) The equality in (i) holds if and only ifNT ,N⊥,Mn are respectively totally geodesic,

totally umbilical, minimal submanifolds in M̃2m, and

n2 ∆(ln f) = τ̃(TxM
n)− τ̃(TxNT )− τ̃(TxN⊥). (5.3.3)

Proof. (i) was proved in (Chen, 2001). For (ii), by Lemma 5.2.1 we know thatNT×fN⊥

is D1-minimal in Kaehler manifolds, then from Theorem 5.2.1 we have

||h(DT ,D⊥)||2 = τ̃(TxM
n)− τ̃(TxNT )− τ̃(TxN⊥)− n2 ∆(f)

f
,

which is equivalent to

||h(DT ,D⊥)FD⊥||2 + ||h(DT ,D⊥)ν ||2 = τ̃(TxM
n)− τ̃(TxNT )− τ̃(TxN⊥)− n2 ∆(f)

f
.

In view of Proposition 3.2.1 (iv), notice that PZ = 0 for CR-warped product sub-

manifolds of the type NT ×f N⊥, it is easy to show that (see, for example (Chen, 2003))

||h(DT ,D⊥)FD⊥||2 = n2||∇ ln f ||2. (5.3.4)
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Combining the above two equations, and making use of (5.3.2), we obtain

||h(DT ,D⊥)ν ||2 = τ̃(TxM
n)− τ̃(TxNT )− τ̃(TxN⊥)− n2 ∆(ln f). (5.3.5)

Now, for the sufficiency, assume that the equality holds in (i); i.e.,

||h||2 = 2n2 ||∇ ln f ||2.

By the linearity of the Hermitian metric, the squared norm of the second fundamental

form can be expanded as follows

||h||2 =

||h(DT ,DT )||2 + 2 ||h(DT ,D⊥)||2 + ||h(D⊥,D⊥)||2 =

||h(DT ,DT )||2 + 2 ||h(DT ,D⊥)FD⊥||2 + 2 ||h(DT ,D⊥)ν ||2 + ||h(D⊥,D⊥)||2.

= 2n2 ||∇ ln f ||2.

It follows from (5.3.4) and the above equation that

||h(DT ,DT )||2 + 2 ||h(DT ,D⊥)ν ||2 + ||h(D⊥,D⊥)||2 = 0.

Then, as in (Chen, 2001), we can show that NT , N⊥ and Mn are respectively to-

tally geodesic, totally umbilical and minimal submanifolds in M̃2m. Moreover, the above

equation also implies

||h(DT ,D⊥)ν ||2 = 0.

The above equation and (5.3.5) give

n2∆ ln f = τ̃(TxM
n)− τ̃(TxNT )− τ̃(TxN⊥). (5.3.6)

Conversely, assume that NT ×f N⊥ is a minimal warped product submanifold in

Kaehler manifolds M̃2m, where NT and N⊥ are respectively totally geodesic and totally

umbilical submanifolds in M̃2m, and

n2 ∆(ln f) = τ̃(TxM
n)− τ̃(TxNT )− τ̃(TxN⊥). (5.3.7)

In view of (5.3.5) and the above equation, we deduce that

||h(DT ,D⊥)ν ||2 = 0. (5.3.8)
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Since NT is totally geodesic in both Mn and M̃2m, it implies

h(DT ,DT ) = 0. (5.3.9)

By Lemma 5.2.1, it is proved that Mn is always D1-minimal in M̃2m. Since Mn

is assumed to be a minimal submanifold in M̃2m, Mn is also D2-minimal in M̃2m. By

the assumption, N⊥ is totally umbilical in M̃2m, then the hypothesis of Lemma 5.2.6 is

satisfied. Hence, it implies that Mn is D2-totally geodesic in M̃2m, which means

h(D⊥,D⊥) = 0. (5.3.10)

Therefore, the equality in (ii) holds by (5.3.8)-(5.3.10). This completes the proof.

Now, let M̃2m be an almost Hermitian manifold and Mn = Nθ×N⊥ be mixed totally

geodesic hemi-slant submanifold of M̃2m. If dimNθ = 2s = n1 and dimN⊥ = n2, then

n = 2s + n2. Suppose {e1, · · · , es, es+1 = sec θPe1, · · · , e2s = sec θPes = en1} is

a local orthonormal frame for Dθ, and {en1+1, · · · , en1+n2 = en} is a local orthonormal

frame of D⊥. Then, the local orthonormal frames of FDθ and FD⊥ subbundles are respec-

tively {en+1 = ē1 = csc θFe1, · · · , ēs = csc θFes, ēs+1 = csc θ sec θFPe1, · · · , ē2s =

csc θ sec θFPes = e4s+n2} and {e4s+n2+1 = ē2s+1, · · · , e4s+2n2 = ē2s+n2}. We note

here that, the normal subbundle ν is null because the submanifold Mn is mixed totally

geodesic.

B. Sahin constructed a basic simple inequality for warped product hemi-slant subman-

ifolds in Kaehler manifolds (Sahin, 2009), which contains the squared norm of the second

fundamental form and the gradient of ln f . Here, we extend this inequality to the setting

of nearly Kaehler manifolds.

Theorem 5.3.3. Let Mn = Nθ × fN⊥ be a mixed totally geodesic hemi-slant warped

product submanifold into a nearly Kaehler manifold M̃2m such thatNθ andN⊥ are proper

slant and totally real submanifolds of dimensions 2s = n1 and n2, respectively. Then

(i) The second fundamental form of Mn satisfies the following inequality

||h||2 ≥ n2 cot2 θ||∇(ln f)||2.

(ii) If the equality in (i) holds, then Nθ is totally geodesic submanifold in M̃2m.
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Proof. Since Mn is mixed totally geodesic, the second fundamental form can be written

as

||h||2 = ||h(Dθ,Dθ)||2 + ||h(D⊥,D⊥)||2.

By the linearity of the Hermitian metric, the above formula is identical to

||h||2 = ||h(Dθ,Dθ)FDθ ||2 + ||h(Dθ,Dθ)FD⊥||2 + ||h(D⊥,D⊥)FDθ ||2 + ||h(D⊥,D⊥)FD⊥||2.

The above equation implies

||h||2 ≥ ||h(Dθ,Dθ)FD⊥||2 + ||h(D⊥,D⊥)FDθ ||2.

In view of Lemma 4.3.1 (ii), taking in consideration the condition of mixed totally

geodesy in our hypothesis, the first term on the right hand side of the above inequality

vanishes identically. Hence, the above inequality becomes

||h||2 ≥ ||h(D⊥,D⊥)FDθ ||2.

Thus, this can be written as

||h||2 ≥
n1∑
a=1

n∑
A,B=n1+1

g
(
h(eA, eB), Fea

)2
=

2s∑
r=1

n∑
A,B=n1+1

g
(
h(eA, eB), ēr

)2
.

In virtue of the adapted frame of FDθ, the above inequality may be expressed as

||h||2 ≥ csc2 θ

s∑
a=1

n∑
A,B=n1+1

g
(
h(eA, eB), Fea

)2

+ sec2 θ csc2 θ

s∑
a=1

n∑
A,B=n1+1

g
(
h(eA, eB), FPea

)2
.

Evaluating the right hand side from Lemma 4.3.1 (i), taking into consideration that

our warped product submanifold is mixed totally geodesic, so we get

||h||2 ≥ csc2 θ

s∑
a=1

n∑
A,B=n1+1

(
Pea ln f

)2
g(eA, eB)2

+ sec2 θ csc2 θ cos4 θ

s∑
a=1

n∑
A,B=n1+1

(
ea ln f

)2
g(eA, eB)2.

This directly gives

||h||2 ≥ csc2 θ cos2 θ

s∑
a=1

n∑
A,B=n1+1

(
sec θ Pea ln f

)2
g(eA, eB)2
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+ csc2 θ cos2 θ
s∑

a=1

n∑
A,B=n1+1

(
ea ln f

)2
g(eA, eB)2.

Equivalently

||h||2 ≥ cot2 θ
2s∑
a=1

n∑
A,B=n1+1

(
ea ln f

)2
g(eA, eB)2.

Making use of (2.3.21), the inequality of (i) follows immediately.

For statement (ii), notice that the inequality of statement (i) has been obtained by

computing ||h(D⊥,D⊥)FDθ ||2. Therefore, if the equality in (i) holds, then

||h(Dθ,Dθ)FDθ ||2 = ||h(Dθ,Dθ)FD⊥||2 = ||h(D⊥,D⊥)FD⊥||2 = 0.

Now, since the ν subbundle is null for mixed totally geodesic hemi-slant warped prod-

uct submanifolds, the conditions

||h(Dθ,Dθ)FDθ ||2 = ||h(Dθ,Dθ)FD⊥||2 = 0

imply that

h(Dθ,Dθ) = 0. (5.3.11)

From Corollary 2.3.1, we know that Nθ is totally geodesic in Mn. Thus, Corollary

2.3.1 and (5.3.11) prove that Nθ is totally geodesic submanifold in M̃2m.

5.4 MODIFIED INEQUALITIES IN ALMOST CONTACT MANIFOLDS

Recently, we proved an inequality that generalizes all first inequalities of h in almost

contact manifolds (Theorem 4.1, (Mustafa et al., 2013)).

Theorem 5.4.1. (Mustafa et al., 2013). Let Mn = NT × fN⊥ be a contact CR-warped

product submanifold of a nearly trans-Sasakian manifold such that ξ is tangent to the first

factor, where NT and N⊥ are invariant and anti-invariant submanifolds, of dimensins n1

and n2, respectively. Then, we have

(i) ||h||2 ≥ 2n2[||∇ ln f ||2 + α2 − β2].

(ii) If the equality in (i) holds, then NT , N⊥ and Mn are respectively totally geodesic,

totally umbilical and minimal submanifolds in M̃2l+1.
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Putting β = 0 in the above theorem, a special case of the inequality in α-Sasakian and

nearly α-Sasakian is obtained

||h||2 ≥ 2n2[||∇ ln f ||2 + α2].

Taking α = 1, the inequality of Sasakian manifolds in (Hesegawa & Mihai, 2003) and

(Munteanu, 2005) follows immediately with equality sign typically as in the above theo-

rem.

Similarly, for β-Kenmotsu and nearly β-Kenmotsu manifolds, we derive the following

inequality from the above theorem

||h||2 ≥ 2n2[||∇ ln f ||2 − β2], (5.4.1)

which gives the first inequality of Kenmotsu in (Arsalan et al., 2005).

Analogously, if we take both functions α and β to be zeros, we can successfully use

Theorem 5.4.1 to obtain similar inequalities for cosymplectic and nearly cosymplectic

manifolds; that is

||h||2 ≥ 2n2||∇ ln f ||2.

It is straightforward to follow analogous scheme as that in the proof of Theorem 5.3.2

to get the following modification for the Theorem 5.4.1.

Theorem 5.4.2. Let Mn = NT × fN⊥ be a contact CR-warped product submanifold of

a nearly trans-Sasakian manifold such that ξ is tangent to the first factor, where NT and

N⊥ are invariant and anti-invariant submanifolds, of dimensions n1 = 2s + 1 and n2,

respectively. Then, we have

(i) ||h||2 ≥ 2n2[||∇ ln f ||2 + α2 − β2].

(ii) The equality sign in (i) holds identically if and only if NT , N⊥ and Mn are re-

spectively totally geodesic, totally umbilical and minimal submanifolds in M̃2l+1,

and

n2[∆(ln f) + α2 − β2] = τ̃(TxM
n)− τ̃(TxNT )− τ̃(TxN⊥). (5.4.2)

It is worth pointing out that, particular case inequalities for Sasakian, Kenmotsu and

cosymplectics can easily be derived from the above inequality. This can be achieved
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typically as we did for Theorem 5.4.1. These inequalities are valid for the nearly structures

of Sasakian, Kenmotsu and cosymplectic also.

As an answer to Problem 1.4.8, we established a geometric inequality for semi-slant

warped product submanifolds in nearly trans-Sasakian manifolds (Mustafa et al.,2014). In

fact the next two theorems are extensions of Theorems 5.4.1 and 5.4.2, respectively. For

this, the local orthonormal frame of the contact semi-slant submanifolds is constructed

in the following way: Let M̃2l+1 be an almost contact manifold and Mn = NT × Nθ be

a semi-slant submanifold of M̃2l+1 such that the characteristic vector field ξ is tangent

to NT . If dimNT = 2s + 1 = n1 and dimNθ = 2q = n2, then n = 2s + 1 + 2q =

n1 + n2. Suppose {eo = ξ, e1, · · · , es, es+1 = φe1, · · · , e2s = φes} is a local orthonormal

frame of DT and {en1+1 = e?1, · · · , e?q, e?q+1 = sec θPe?1, · · · , e?2q = sec θPe?q = en} is a

local orthonormal frame for Dθ. Then the local orthonormal frames in the normal bundle

T⊥Mn of FDθ and the invariant normal subbundle ν are respectively {en+1 = ē1 =

csc θFe?1, · · · , ēq = csc θFe?q, ēq+1 = csc θ sec θFPe?1, · · · , ē2q = csc θ sec θFPe?q =

en+2q} and {en+2q+1 = ē2q+1, · · · , e2l+1 = ē2(q+γ)}. It is obvious that the dimensions of

FDθ and ν are 2q and 2γ, respectively. This comes from the fact that the dimension of

slant and invariant submanifolds is always even.

If ν is the maximal invariant subbundle of the normal bundle T⊥Mn, then in the case

of semi-slant submanifold, the normal bundle T⊥Mn has the following decomposition

T⊥Mn = FDθ ⊕ ν. (5.4.3)

Now, we are going to state and prove the following inequality.

Theorem 5.4.3. Let Mn = NT × fNθ be a semi-slant warped product submanifold into

a nearly trans-Sasakian manifold M̃2l+1 such that NT and Nθ are invariant and proper

slant submanifolds of dimensions 2s+1 and 2q respectively, where ξ is tangent to the first

factor. Then,

(i) The second fundamental form of Mn satisfies the following inequality

||h||2 ≥ 2n2{(
1

9
cot2 θ + csc2 θ)[||∇ ln f ||2 − β2] + α2}.

(ii) If the equality in (i) holds, then NT , Nθ and Mn are totally geodesic, totally umbil-

ical and minimal in M̃2l+1, respectively.
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Proof. In view of the above adapted frame, and the definition of the second fundamental

form, it is straightforward to get the following expansion

||h||2 =
2m+1∑
r=n+1

n∑
i,j=1

g(h(ei, ej), er)
2

=

2q∑
r=1

n∑
i,j=1

g(h(ei, ej), ēr)
2 +

2(q+γ)∑
r=2q+1

n∑
i,j=1

g(h(ei, ej), ēr)
2

≥
2q∑
r=1

n∑
i,j=1

g(h(ei, ej), ēr)
2

=

2q∑
r=1

2s+1∑
a,b=1

g(h(ea, eb), ēr)
2 + 2

2q∑
r=1

2s+1∑
a=1

2q∑
A=1

g(h(ea, e
?
A), ēr)

2

+

2q∑
r=1

2q∑
D,B=1

g(h(e?D, e
?
B), ēr)

2.

In view of Lemma 4.2.3 (ii), the first term in the right hand side of the last equality is

identically zero, so let us compute the next term

2

2q∑
r=1

2s+1∑
a=1

2q∑
A=1

g(h(ea, e
?
A), ēr)

2 = 2

2q∑
r=1

2s∑
a=1

2q∑
A=1

g(h(ea, e
?
A), ēr)

2

+ 2

2q∑
r=1

2q∑
A=1

g(h(ξ, e?A), ēr)
2.

By Lemma 4.2.3 (iii), we can evaluate the second term in the right hand side of the

above relation, while applying the local orthonormal frame to the first term, the above

expression takes the following form

2

2q∑
r=1

2s∑
a=1

2q∑
A=1

g(h(ea, e
?
A), ēr)

2 = 2 csc2 θ

q∑
A,B=1

2s∑
a=1

g(h(ea, e
?
A), Fe?B)2

+ 2 csc2 θ sec2 θ

q∑
A,B=1

2s∑
a=1

g(h(ea, P e
?
A), Fe?B)2

+ 2 csc2 θ sec2 θ

q∑
A,B=1

2s∑
a=1

g(h(ea, e
?
A), FPe?B)2

+ 2 csc2 θ sec4 θ

q∑
A,B=1

2s∑
a=1

g(h(ea, P e
?
A), FPe?B)2

+ 2
n∑

A,B=2s+1

(−αg(e?A, e
?
B))2.
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Now, the first four inner products on the right hand side can be evaluated by means of

the last four parts of Lemma 4.2.3. Hence, we get

2

2q∑
r=1

2s∑
a=1

2q∑
A=1

g(h(ea, e
?
A), ēr)

2

= 2 csc2 θ

q∑
A,B=1

2s∑
a=1

(
1

3
{(ea ln f)− βη(ea)}g(Pe?A, e

?
B)

−{(φea ln f) + αη(ea)}g(e?A, e
?
B)

)2

+ 2 csc2 θ sec2 θ

q∑
A,B=1

2s∑
a=1

(
1

3
cos2 θ{(ea ln f)− βη(ea)}g(e?A, e

?
B)

−{(φea ln f) + αη(ea)}g(Pe?A, e
?
B)

)2

+ 2 csc2 θ sec2 θ

q∑
A,B=1

2s∑
a=1

(
1

3
cos2 θ{(ea ln f)− βη(ea)}g(e?A, e

?
B)

−{(φea ln f) + αη(ea)}g(e?A, P e
?
B)

)2

+2 csc2 θ sec4 θ

q∑
A,B=1

2s∑
a=1

(
−1

3
cos2 θ{(ea ln f)−βη(ea)}g(e?A, P e

?
B)

− cos2 θ{(φea ln f) + αη(ea)}g(e?A, e
?
B)

)2

+ 4qα2.

On one hand, all terms which have η(ea) cancel. This is because all orthonormal

vector fields from the set {e1, · · · , e2s} are orthogonal to ξ. On the other hand, the terms

which contain g(Pe?A, e
?
B) also vanish, since in view of the local fields of orthonormal

frame of Γ(TNθ), we know that every Pe?A and e?B are orthogonal, where A,B run over

{e?1, · · · , e?q}. Consequently, the above equation descends to

2

2q∑
r=1

2s∑
a=1

2q∑
A=1

g(h(ea, e
?
A), ēr)

2 = 2 csc2 θ

q∑
A=1

2s∑
a=1

(−(φea ln f)||e?A||2)2

+ 2 csc2 θ sec2 θ

q∑
A=1

2s∑
a=1

(
1

3
cos2 θ(ea ln f)||e?A||2)2

+ 2 csc2 θ sec2 θ

q∑
A=1

2s∑
a=1

(
1

3
cos2 θ(ea ln f)||e?A||2)2
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+ 2 csc2 θ sec4 θ

q∑
A=1

2s∑
a=1

(− cos2 θ(φea ln f)||e?A||2)2

+4qα2.

Observe that a runs from 1 to 2s, thus in order to fulfill the formula of ||∇ ln f ||2 ob-

tained in (2.3.23), we should add the term (ξ ln f)2 with appropriate coefficients. Hence,

adding and subtracting such terms, taking into account Lemma 4.2.3 (i), by straightfor-

ward computations, we can reach

||h||2 ≥ 2n2{(
1

9
cot2 θ + csc2 θ)[||∇ ln f ||2 − β2] + α2}.

For part (ii), one can refer to the proof of the inequality in (Mustafa et al., 2013), or

similar inequalities in this field.

It is trivial to get the inequality in (Uddin et al., 2014) from the above one. Moreover,

many other inequalities of the same type can be derived from this inequality, specially in

Kenmotsu manifolds.

Now, we will modify the above theorem by figuring out the necessary and sufficient

conditions of the equality case. Thus, we have

Theorem 5.4.4. Let Mn = NT × fNθ be a semi-slant warped product submanifold into

a nearly trans-Sasakian manifold M̃2l+1 such that NT and Nθ are invariant and proper

slant submanifolds of dimensions n1 and n2 respectively, where ξ is tangent to the first

factor. Then,

(i) The second fundamental form of Mn satisfies the following inequality

||h||2 ≥ 2n2{(
1

9
cot2 θ + csc2 θ)[||∇ ln f ||2 − β2] + α2}.

(ii) The equality in (i) holds if and only if NT , Nθ and Mn are totally geodesic, totally

umbilical and minimal in M̃2l+1, respectively, and

n2[∆(ln f) + α2 − β2] = τ̃(TxM
n)− τ̃(TxNT )− τ̃(TxN⊥). (5.4.4)

Proof. Statement (i) was proved in Theorem 5.4.3. For (ii), the proof is as similar as

Theorem 5.3.2.
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We notice that, the above theorem is a natural generalization of Theorem 5.4.2, since

it is valid for any proper semi-slant warped product submanifold. Hence if we let θ to be

π
2
, then Theorem 5.4.2 follows directly.

At the end of this section, we present a contact extension of Theorem 5.3.3.

Theorem 5.4.5. Let Mn = Nθ × fN⊥ be a mixed totally geodesic hemi-slant warped

product submanifold into a nearly trans-Sasakian manifold M̃2l+1 such that Nθ and N⊥

are proper slant and totally real submanifolds of dimensions n1 and n2, respectively.

Then,

(i) The second fundamental form of Mn satisfies the following inequality

||h||2 ≥ n2 cot2 θ{||∇(ln f)||2 − β2}.

(ii) If the equality in (i) holds, then Nθ is totally geodesic submanifold in M̃2l+1.

Proof. Let M̃2l+1 be an almost contact manifold and Mn = Nθ × N⊥ be mixed to-

tally geodesic hemi-slant submanifold of M̃2l+1 such that ξ is tangent to the first fac-

tor. If dimNθ = 2s + 1 = n1 and dimN⊥ = n2, then n = 2s + 1 + n2. Suppose

{e0 = ξ, e1, · · · , es, es+1 = sec θPe1, · · · , e2s = sec θPes = en1} is a local orthonormal

frame for Dθ, and {en1+1, · · ·

, en1+n2 = en} is a local orthonormal frame of D⊥. Then, the local orthonormal frames of

FDθ and FD⊥ are respectively {en+1 = ē1 = csc θFe1, · · · , ēs = csc θFes,

ēs+1 = csc θ sec θFPe1, · · · , ē2s = csc θ sec θFPes = e4s+1+n2} and {e4s+n2+2 =

ē2s+1, · · · , e4s+2n2+1 = ē2s+n2}. It is not difficult to show that, the normal subbundle

ν is empty because the submanifold Mn is mixed totally geodesic.

Since Mn is mixed totally geodesic, the second fundamental form can be written as

||h||2 = ||h(Dθ,Dθ)||2 + ||h(D⊥,D⊥)||2.

The above formula can be extended to the following form

||h||2 = ||h(Dθ,Dθ)FDθ ||2 + ||h(Dθ,Dθ)FD⊥||2 + ||h(D⊥,D⊥)FDθ ||2 + ||h(D⊥,D⊥)FD⊥||2.

The above equation implies

||h||2 ≥ ||h(Dθ,Dθ)FD⊥||2 + ||h(D⊥,D⊥)FDθ ||2.
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Making use of Lemma 4.3.2 (ii), and notice that our warped product submanifold is

mixed totally geodesic, then the first term on the right hand side of the above inequality

vanishes identically. Hence, the above inequality descends to

||h||2 ≥ ||h(D⊥,D⊥)FDθ ||2.

Thus, this can be written as

||h||2 ≥
n1∑
a=1

n∑
A,B=n1+1

g
(
h(eA, eB), Fea

)2
=

2s∑
r=1

n∑
A,B=n1+1

g
(
h(eA, eB), ēr

)2
.

In virtue of the adapted frame of FDθ, the above inequality may be expressed as

||h||2 ≥ csc2 θ

s∑
a=1

n∑
A,B=n1+1

g
(
h(eA, eB), Fea

)2

+ sec2 θ csc2 θ
s∑

a=1

n∑
A,B=n1+1

g
(
h(eA, eB), FPea

)2
.

Evaluating the right hand side from Lemma 4.3.2 (i), taking into consideration that

our warped product submanifold is mixed totally geodesic, so we get

||h||2 ≥ csc2 θ
s∑

a=1

n∑
A,B=n1+1

(
(Pea ln f) + αη(ea)

)2
g(eA, eB)2

+ sec2 θ csc2 θ cos4 θ
s∑

a=1

n∑
A,B=n1+1

(
ea ln f

)2
g(eA, eB)2.

Since all vector fields ea, where a ∈ {1, · · · , 2s}, are orthogonal to ξ, the above

inequality takes the form

||h||2 ≥ csc2 θ cos2 θ
s∑

a=1

n∑
A,B=n1+1

(
sec θ Pea ln f

)2
g(eA, eB)2

+ csc2 θ cos2 θ
s∑

a=1

n∑
A,B=n1+1

(
ea ln f

)2
g(eA, eB)2.

Equivalently

||h||2 ≥ cot2 θ

2s∑
a=1

n∑
A,B=n1+1

(
ea ln f

)2
g(eA, eB)2.

From Theorem 3.3.5 (i), we know that ξ ln f = β for any warped product submanifold

in nearly trans-Sasakian manifold. Thus, adding and subtracting (ξ ln f)2 with appropri-

ate coefficients from the above inequality, we obtain (i) immediately, while (ii) follows

exactly as same as that of Theorem 5.3.3.
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Observe that the function α does not appear in the above inequality. This is coherent

with Proposition 3.3.1 which says that: mixed totally geodesic warped product subman-

ifolds do not exist in α-Sasakian manifolds. Therefore, the above inequality is not valid

for Sasakian manifolds also.

5.4.1 CONCLUSION

In what follows we present three tables of inequalities. The first two summarize all first

inequalities of h for CR-warped product and semi-slant warped product submanifolds,

respectively, whereas the third table presents another type of inequalities for hemi-slant

submanifolds in both almost Hermitian and almost contact manifolds.

Firstly, the first inequalities of h for CR-warped product submanifolds are summa-

rized in the following table:

Manifold Inequality

Kaehler |h||2 ≥
(

2n2||∇(ln f)||2
)

Nearly Kaehler |h||2 ≥
(

2n2||∇(ln f)||2
)

Nearly trans-Sasakian ||h||2 ≥ 2n2

(
||∇ ln f ||2 + α2 − β2

)
Nearly α-Sasakian ||h||2 ≥ 2n2

(
||∇(ln f)||2 + α2

)
Sasakian ||h||2 ≥ 2n2

(
||∇(ln f)||2 + 1

)
Nearly β-Kenmotsu ||h||2 ≥ 2n2

(
||∇ ln f ||2 − β2

)
Kenmotsu ||h||2 ≥ 2n2

(
||∇ ln f ||2 − 1

)
Nearly cosymplectic ||h||2 ≥

(
2n2||∇(ln f)||2

)
Cosymplectic ||h||2 ≥

(
2n2||∇(ln f)||2

)
Table 5.1: First inequality of h for CR-warped product submanifolds of type NT ×f N⊥.

Next, the first inequalities of h for semi-slant warped product submanifolds of type

NT ×f Nθ and the inequality of mixed totally geodesic hemi-slant warped product sub-

manifolds of the type Nθ ×f N⊥ are, respectively, summarized in the following tables:
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Manifold Inequality

Nearly Kaehler |h||2 ≥ 2n2

(
1
9

cot2 θ + csc2 θ

)
||∇ ln f ||2

Nearly trans-Sasakian ||h||2 ≥ 2n2

{(
1
9

cot2 θ + csc2 θ
)[
||∇ ln f ||2 − β2

]
+ α2

}
Nearly α-Sasakian ||h||2 ≥ 2n2

{(
1
9

cot2 θ + csc2 θ
)
||∇ ln f ||2 + α2

}
Nearly β-Kenmotsu ||h||2 ≥ 2n2

(
1
9

cot2 θ + csc2 θ

)[
||∇ ln f ||2 − β2

]
Kenmotsu ||h||2 ≥ 2n2

(
1
9

cot2 θ + csc2 θ

)[
||∇ ln f ||2 − 1

]
Nearly cosymplectic ||h||2 ≥ 2n2

(
1
9

cot2 θ + csc2 θ

)
||∇ ln f ||2

Table 5.2: First inequality of h for semi-slant warped product submanifolds of typeNT×f
Nθ.

Manifold Inequality

Kaehler |h||2 ≥
(
n2 cot2 θ||∇(ln f)||2

)
Nearly Kaehler |h||2 ≥

(
n2 cot2 θ||∇(ln f)||2

)
Nearly trans-Sasakian ||h||2 ≥ n2 cot2 θ

{
||∇(ln f)||2 − β2

}
Nearly β-Kenmotsu ||h||2 ≥ n2 cot2 θ

{
||∇(ln f)||2 − β2

}
Kenmotsu ||h||2 ≥ n2 cot2 θ

{
||∇(ln f)||2 − 1

}
Nearly cosymplectic ||h||2 ≥

(
n2 cot2 θ||∇(ln f)||2

)
Cosymplectic ||h||2 ≥

(
n2 cot2 θ||∇(ln f)||2

)
Table 5.3: An inequality of h for mixed totally geodesic hemi-slant warped product sub-
manifolds of type Nθ ×f N⊥.
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CHAPTER 6: Di-MINIMALITY FOR GENERAL SECOND INEQUALITY

OF h

6.1 INTRODUCTION

In the previous chapter we proved several kinds of inequalities in terms of h. Since

those inequalities come from computing the FD⊥-component of h(DT ,D⊥), they were

classified under the first inequality of h category. In the current chapter, we intend to

construct another two inequalities of h by computing both components of h(DT ,D⊥);

FD⊥-component and ν-component. To distinguish them from the first category, we call

the inequalities of this chapter the second inequalities of h.

It is worth pointing out that, the second inequality of hwas first proved forCR-warped

product submanifolds in complex space forms (Chen, 2003). After that, it was extended

to contact CR-warped product submanifolds in Sasakian space forms (Munteanu, 2005).

In spite of proving that these two inequalities are optimal inequalities, which is done

by concrete examples satisfying the equality cases and characterization theorems, the

equality case was, surprisingly, not discussed in both papers. Even though the direction of

sufficiency was clear, the direction of necessity was not. This is because of Di-minimality

which was not proved at that time. Since we showed that warped product submanifolds

of these two papers are D1-minimal, it becomes possible to discuss the equality case in

both directions.

Inspired by (Chen, 2003) and (Munteanu, 2005), we first extend the second inequality

of h for Kenmotsu space forms by means of Codazzi equation in the second section.

Another more general proof of this inequality is presented in the next section using the

Gauss equation, where the inequality of Kenmotsu manifolds becomes a special case of

this general inequality. This makes the two methods more precise and coherent.

In the third section, a general inequality of h is established for any Di-minimal warped

product submanifold Mn = N1 ×f N2 isometrically immersed in an arbitrary Rieman-

nian manifold M̃m. This inequality generalizes all inequalities in the second section of

this chapter. Moreover, this inequality provides us with enough new inequalities which

we, and other geometers, couldn’t prove by Chen’s method in (Chen, 2003). In Table 6.2,
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we list some of these inequalities, and we show how to derive them there. By the same

way, this inequality can be derived for any Di-minimal warped product submanifold. For

example, similar inequalities may be derived for any nearly structure in both almost Her-

mitian and almost contact ambient manifolds, and for CR, semi-slant and generic warped

product submanifolds.

6.2 THE SECOND INEQUALITY OF h

By means of Codazzi equation, Chen proved the following inequality ofCR-warped prod-

uct submanifolds in a complex space form (Chen, 2003). As mentioned before, Chen

provided an example showing that this inequality is optimal (Chen, 2008). More over,

warped product submanifolds satisfying the equality case were completely characterized

in (Chen, 2003).

On contrast, the equality case was not discussed. This is because the direction of

necessity had been not clear yet. This because of Di-minimality which was not proved at

that time. Since we showed that CR-warped product submanifolds of the type NT ×f N⊥

are D1-minimal, it becomes possible to discuss the equality case in both directions. Here,

we figure out necessary and sufficient conditions for the equality case.

Theorem 6.2.1. LetMn = NT×fN⊥ be aCR-warped product submanifold in a complex

space form M̃2m(cKa). Then, the following hold

(i) 1
2
||h||2 ≥ n1n2

cKa
4

+ n2||∇ ln f ||2 − n2 ∆(ln f).

(ii) The equality sign in (i) holds if and only if NT , N⊥ and Mn are totally geodesic,

totally umbilical and minimal submanifolds in M̃2m(cKa), respectively.

Proof. (i) was proved in (Chen, 2003). For (ii), if we first put PZ = 0 in Proposition

3.2.1 (iv), then it can be proved, as in (Chen, 2003), that

||h(DT ,D⊥)FD⊥||2 = n2||∇ ln f ||2. (6.2.1)

Moreover, it is explicitly shown in (Chen, 2003), by a method derived via Codazzi

equation, that

||h(DT ,D⊥)ν ||2 = n1n2
cKa
4
− n2 ∆(ln f). (6.2.2)
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Combining (6.2.1) and (6.2.2) together, it obviously yields

||h(DT ,D⊥)||2 = n1n2
cKa
4
− n2 ∆(ln f) + n2||∇ ln f ||2. (6.2.3)

Now, it is straightforward to expand ||h||2 as

||h||2 = ||h(DT ,DT )||2 + 2 ||h(DT ,D⊥)||2 + ||h(D⊥,D⊥)||2. (6.2.4)

Now, for the sufficiency, assume that the equality holds in (i); i.e.,

1

2
||h||2 = n1n2

cKa
4

+ n2||∇ ln f ||2 − n2 ∆(ln f). (6.2.5)

From (6.2.3)-(6.2.5), it automatically gives

||h(DT ,DT )||2 = ||h(D⊥,D⊥)||2 = 0.

Therefore, as in (Chen, 2001), we can show that NT , N⊥ and Mn are respectively

totally geodesic, totally umbilical and minimal submanifolds in M̃2m(cKa).

Conversely, assume that NT ×f N⊥ is a minimal warped product submanifold in

Kaehler manifolds M̃2m(cKa), where NT and N⊥ are respectively totally geodesic and

totally umbilical submanifolds in M̃2m(cKa).

From the above assumption and Corollary 2.3.1, we conclude thatNT is totally geodesic

in both Mn and M̃2m(cKa). This implies

h(DT ,DT ) = 0. (6.2.6)

By Lemma 5.2.1, it is proved that Mn is always D1-minimal in M̃2m(cKa). Since

Mn is assumed to be a minimal submanifold in M̃2m(cKa), Mn is also D2-minimal in

M̃2m(cKa). By the assumption, N⊥ is totally umbilical in M̃2m(cKa), then the hypoth-

esis of Lemma 5.2.6 is satisfied. Hence, it implies that Mn is D2-totally geodesic in

M̃2m(cKa), which means

h(D⊥,D⊥) = 0. (6.2.7)

Therefore, the equality in (ii) holds by (6.2.6) and (6.2.7). This completes the proof.

In the sequel, M.I. Munteanu proved a similar inequality for contactCR-warped prod-

ucts in Sasakian space forms (see Theorem 3.3 in (Munteanu, 2005)). Moreover, a solid
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example constructed there shows that the next inequality is sharp inequality. However, he

did not discuss necessary conditions for the equality case of this inequality. Fortunately,

necessary and sufficient conditions for the equality case can be easily demonstrated by

using Lemma 5.2.6. This is because contact CR-warped product submanifold of type

NT ×f N⊥ is D1-minimal. Hence, statement (ii) of the next theorem is proved in the

same way as (ii) of the previous theorem.

Theorem 6.2.2. Let Mn = NT ×f N⊥ be a contact CR-warped product of a Sasakian

space form M̃2l+1(cS) and let h = 2s + 1 = dimNT and n2 = dimN⊥. Then, the

following hold

(i) ||h||2 ≥ 2n2

(
||∇ ln f ||2 −∆ ln f + cS+3

2
s+ 1

)
.

(ii) The equality sign in (i) holds if and only if NT , N⊥ and Mn are totally geodesic,

totally umbilical and minimal submanifolds in M̃2l+1(cS), respectively.

Now, we are going to extend the above inequality for contact CR-warped products

in Kenmotsu space forms. It is worth pointing out that, our next theorem corrects the

statement and the proof of the second inequality of (Arsalan et al., 2005). Also, another

proof of this inequality is provided in the next section where the following inequality

becomes a special case of Theorem 6.3.1.

For this end, we present some preparatory lemmas which were not proved and con-

sidered in (Arsalan et al., 2005). Errors of their statement and proof are due to neglecting

these lemmas.

We point out that, the missing terms in (Arsalan et al., 2005) come from not consider-

ing Lemmas 6.2.1 and 6.2.4, while Lemmas 6.2.2 and 6.2.3 show where the ν-component

of h comes from.

Lemma 6.2.1. Let Mn = NT ×f N⊥ be a contact CR-warped product submanifold of a

Kenmotsu manifold M̃2l+1. Then, we have

(i) ∇XφX = φ∇XX;

(ii) g(∇XX, ξ) = −||X||2,

where X ∈ Γ(TNT ) and orthogonal to ξ.
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Proof. Given any X ∈ Γ(TNT ) orthogonal to ξ. One may use (2.3.27) and (2.3.57) to

derive

∇XφX + h(φX,X) = ∇̃XφX = φ∇̃XX + (∇̃Xφ)X = φ∇XX + φh(X,X).

Hence, we have

∇XφX + h(φX,X) = φ∇XX + φh(X,X).

Taking the inner product with φZ in the above equation, and taking in consideration

Corollary 5.2.3 (i), one can deduce that φ∇XX ∈ Γ(TNT ). Again, from Corollary

5.2.3 (i), we know that φh(X,X) ∈ Γ(ν). Hence, comparing tangential and normal

components of the above equation, it yields ∇XφX = φ∇XX, which is statement (i).

On the other hand, with straightforward computations we have

−φX = (∇̃Xφ)ξ = −φ∇̃Xξ = −φ∇Xξ − φh(X, ξ).

Taking the inner product with φX in the above equation directly gives g(∇XX, ξ) =

−||X||2. This is statement (ii) which completes the proof.

The next couple of lemmas show that ||hν(X,Z)||2 = g(φh(X,Z), h(φX,Z)).

Lemma 6.2.2. Let Mn = NT ×f N⊥ be a contact CR-warped product submanifold of a

Kenmotsu manifold M̃2l+1. Then, we have

AφζφX = AζX,

whereX ∈ Γ(TNT ) and orthogonal to ξ. The normal vector field ζ belongs to the normal

subbundle ν.

Proof. Taking X as in the above proof. Then, for any U ∈ Γ(TMn), we can use (2.3.57)

and (2.3.27) to show that

g(φU,X)ξ = (∇̃Uφ)X = ∇̃UφX−φ∇̃UX = ∇UφX+h(φX,U)−φ∇UX−φh(X,U).

By taking the inner product with ζ ∈ Γ(ν) in the above equation, and taking into account

(2.3.29), we deduce that

AφζφX = AζX.

This gives the assertion.
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Hence, in virtue of the preceding lemma, we get the following one

Lemma 6.2.3. Let Mn = NT ×f N⊥ be a contact CR-warped product submanifold of a

Kenmotsu manifold M̃2l+1. Then, we have

||hν(X,Z)||2 = g(φh(X,Z), h(φX,Z)),

where X and Z are tangent to the first and the second factors, respectively. Here, X is

orthogonal to ξ and hν denotes the ν-component of h.

Proof. In view of Lemma 6.2.2, it is possible to write

Aφhν(X,Z)φX = Ahν(X,Z)X. (6.2.8)

Also, the norm of the ν-component of h can be written as

||hν(X,Z)||2 = g(hν(X,Z), h(X,Z)) = g(Ahν(X,Z)X,Z).

Making use of (6.2.8) in the above equation, it follows

||hν(X,Z)||2 = g(φh(X,Z)− φhFD⊥(X,Z), h(φX,Z)). (6.2.9)

We know that φhFD⊥(X,Z) ∈ D⊥. Consequently, the above equation takes the form

||hν(X,Z)||2 = g(φh(X,Z), h(φX,Z)).

This is the desired result.

Finally, we have

Lemma 6.2.4. Let Mn = NT ×f N⊥ be a contact CR-warped product submanifold of a

Kenmotsu manifold M̃2l+1. Then, we have

φ∇φXX = ∇φXφX + ||X||2ξ,

where X is tangent to the first factor and orthogonal to ξ.

Proof. We use (2.3.27), (2.3.34) and (2.3.57) to show that

∇φXφX + h(φX, φX) = ∇̃φXφX = φ∇̃φXX + (∇̃φXφ)X
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= φ∇φXX + φh(X,φX)− ||X||2ξ.

Comparing tangential and normal components in the above equation, as φh(X,φX) is

normal in view of Corollary 5.2.3 (i), we deduce that

φ∇φXX = ∇φXφX + ||X||2ξ.

Based on the above lemmas, and inspired by proofs in (Chen, 2003) and (Munteanu,

2005), we present the main theorem of this section:

Theorem 6.2.3. Let Mn = NT ×f N⊥ be a contact CR-warped product submanifold of

Kenmotsu space forms M̃2l+1(cKe). Then, we have

(i) ||h||2 ≥ 2n2

{
||∇ ln f ||2 −∆(ln f) + cKe−3

2
s− 1

}
.

(ii) The equality sign in (i) holds if and only if NT , N⊥ and Mn are totally geodesic,

totally umbilical and minimal submanifolds in M̃2l+1(cKe), respectively.

Proof. Given any X ∈ Γ(TNT ) orthogonal to ξ, and Z ∈ Γ(TN⊥). By using (2.3.27),

(2.3.57) and Lemma 6.2.1 (i) we obtain

T1 = g(h(∇XφX,Z), φZ) = g(∇̃Z∇XφX, φZ) = g(∇̃Zφ∇XX,φZ)

= g(φ∇̃Z∇XX,φZ) + g((∇̃Zφ)∇XX,φZ) = (∇XX(ln f))||Z||2 − η(∇XX)||Z||2.

Via Lemma 6.2.1 (ii) the above equation takes the form

T1 =

(
(∇XX(ln f)) + ||X||2

)
||Z||2.

First, notice that X is orthogonal with ξ, if we set α = 0 in Proposition (3.3.2) (3),

then by (2.3.2) and (2.3.27) one can derive the following

T3 = −g(∇⊥Xh(φX,Z), FZ) = −X
(

(X ln f)g(Z,Z)

)
+ g(h(φX,Z), ∇̃XφZ)

= −(X2 ln f)g(Z,Z)− 2(X ln f)2g(Z,Z) + g(h(φX,Z), φ∇XZ)

+g(h(φX,Z), φh(X,Z))

= −(X2 ln f)g(Z,Z)− 2(X ln f)2g(Z,Z) + (X ln f) g(h(φX,Z), φZ)
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+g(h(φX,Z), φh(X,Z))

= −(X2 ln f)g(Z,Z)− (X ln f)2g(Z,Z) + g(h(φX,Z), φh(X,Z)). (6.2.10)

Applying Lemma 6.2.3 on the last term in the right hand side of (6.2.10), we then

reach

T3 = −g(∇⊥Xh(φX,Z), FZ) = −(X2 ln f)g(Z,Z)− (X ln f)2g(Z,Z) + ||hv(X,Z)||2.

Similarly,

T4 = g(∇⊥φXh(X,Z), FZ) = −((φX)2 ln f)g(Z,Z)−(φX ln f)2g(Z,Z)+||hv(X,Z)||2.

Putting α = 0 in statement (3) of Proposition 3.3.2, then it is not difficult to prove

T5 = g(h(φX,∇XZ), FZ) = (X ln f)2g(Z,Z) (6.2.11)

and

T6 = −g(h(X,∇φXZ), FZ) = (φX ln f)2g(Z,Z). (6.2.12)

Finally, we can use (2.3.27) and (2.3.57) to compute

T2 = −g(h(∇φXX,Z), φZ) = −g(∇̃Z∇φXX,φZ) = g(φ∇̃Z∇φXX,Z)

= g(∇̃Zφ∇φXX,Z)− g((∇̃Zφ)∇φXX,Z) = (φ∇φXX(ln f))||Z||2. (6.2.13)

By combining Lemma 6.2.4 with (6.2.13), it gives

T2 = ((φ∇φXX(ln f))||Z||2 = (∇φXφX(ln f))||Z||2 + ||X||2||Z||2(ξ ln f)

=

(
(∇φXφX(ln f)) + ||X||2

)
||Z||2.

Now, from (2.3.58) we have

R̃(X,φX,Z, φZ) =
cKe + 1

2
g(X,X)g(Z,Z). (6.2.14)

Also, in virtue of (2.3.30) and (2.3.40), we obtain

R̃(X,φX,Z, φZ) = −g(∇⊥Xh(φX,Z)− h(∇XφX,Z)− h(φX,∇XZ), FZ)

+g(∇⊥φXh(X,Z)− h(∇φXX,Z)− h(X,∇φXZ), FZ). (6.2.15)
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Thus, substituting Ti for i = 1, · · · , 6 in the above equation gives

R̃(X,φX,Z, φZ) = 2||hv(X,Z)||2 − (X2 ln f)||Z||2 + ((∇XX) ln f)||Z||2

−((φX)2 ln f)||Z||2 + ((∇φXφX) ln f)||Z||2 + 2||X||2||Z||2.

Equivalently,

2||hv(X,Z)||2 =

(
cKe + 1

2
||X||2 + (X2 ln f)− ((∇XX) ln f)

+ ((φX)2 ln f)− ((∇φXφX) ln f)− 2||X||2
)
||Z||2.

Now, let {e0 = ξ, e1, · · · , es, es+1 = φe1, · · · , e2s = φes, en1+1 = e?1, · · · , en = e?q}

be local fields of orthonormal frame of Γ(TMn). Putting X = ea and Z = eA in the

above equation, and take the summation over this adapted frame. Then, we get

n1∑
a=1

n∑
A=n1+1

2||hv(ea, eA)||2 =

n1∑
a=1

n∑
A=n1+1

2

(
cKe + 1

2
||ea||2 + (e2

a ln f)− ((∇eaea) ln f)

+ ((φea)
2 ln f)− ((∇φeaφea) ln f)− 2||ea||2

)
||eA||2.

As h(ξ, Z) = 0 and ξ ln f = 1, we apply (2.3.22) to get

||hν(DT ,D⊥)||2 = 2n2

{
cKe − 3

2
s−∆(ln f)

}
. (6.2.16)

From (5.4.1), the first inequality of h for nearly β-Kenmotsu is derived from a more

general setting. This inequality is valid also for β-Kenmotsu manifolds. Thus, putting

β = 1 in (5.4.1), the first inequality of h for Kenmotsu manifolds follows; namely,

||h||2 ≥ 2n2

{
||∇ ln f ||2 − 1

}
. (6.2.17)

From the proof of Theorem 4.1 in (Mustafa et al., 2013), we know that the above inequal-

ity comes from calculating the FD⊥-component of h and putting α = 0, β = 1. More

precisely,

||hFD⊥(DT ,D⊥)||2 = 2n2

{
||∇ ln f ||2 − 1

}
. (6.2.18)

Consequently, combining (6.2.16) and (6.2.18) together gives statement (i) immedi-

ately. Statement (ii) can be proved in the same way as that of Theorem 6.2.1. The proof

is complete.
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Following the same procedure as above, but in a simpler way, the second inequality

of h can be derived for contact CR-warped product submanifolds of type NT ×f N⊥ of

cosymplectic space forms M̃2l+1(cc). The verification is left to the reader.

Theorem 6.2.4. Let Mn = NT ×f N⊥ be a contact CR-warped product submanifold of

cosymplectic space forms M̃2l+1(cc). Then, we have

(i) ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + (n1 − 1) cc

4

)
.

(ii) The equality sign in (i) holds if and only if NT , N⊥ and Mn are totally geodesic,

totally umbilical and minimal submanifolds in M̃2l+1(cc), respectively.

We point out that, all inequalities of this section are obtained as particular cases from

a more general inequality in the next section. For this, it will be enough to calculate the

scalar curvature from the corresponding curvature tensor formula.

The following table summarizes the second inequality of the CR-warped products in

some space forms.

Manifold Inequality

complex space form ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + n1

cKa
4

)
Sasakian space form ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + cS+3

2
s+ 1

)
Kenmotsu space form ||h||2 ≥ 2n2

(
||∇ ln f ||2 −∆(ln f) + cKe−3

2
s− 1

)
cosymplectic space form ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + (n1 − 1) cc

4

)
Table 6.1: The second inequality of h forCR-warped product submanifolds of typeNT×f
N⊥ in some space forms.

6.3 A NEW METHOD FOR A GENERAL INEQUALITY OF h

By making use of the Gauss equation, we construct a new general inequality for Di-

minimal warped product submanifolds in arbitrary Riemannian manifolds. This inequal-

ity generalizes all inequalities of the previous section.

The following direct, but significant, result is another key lemma for this section which

will also be frequently used in subsequent chapters.
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Lemma 6.3.1. Let ϕ : Mn = N1 ×f N2 −→ M̃m be an isometric immersion of an

n-dimensional warped product submanifold Mn into a Riemannian manifold M̃m. Then,

we have

τ
(
TxM

n
)

=
n2∆f

f
+

m∑
r=n+1

{ ∑
1≤a<b≤n1

(
hraah

r
bb −

(
hrab
)2
)

+
∑

n1+1≤A<B≤n

(
hrAAh

r
BB−

(
hrAB

)2
)}

+ τ̃
(
TxN1

)
+ τ̃
(
TxN2

)
,

(6.3.1)

where n1, n2, n and m are the dimensions of N1, N2, M
n and M̃m, respectively.

Proof. From (2.3.45), we have

τ
(
TxM

n
)

=
∑

1≤i<j≤n

Kij =

n1∑
a=1

n∑
A=n1+1

KaA+
∑

1≤a<b≤n1

Kab+
∑

n1+1≤A<B≤n

KAB. (6.3.2)

Via (5.2.3) and (2.3.45), the above equation is congruent to

τ
(
TxM

n
)

=
n2∆f

f
+ τ
(
TxN1

)
+ τ
(
TxN2

)
. (6.3.3)

In view of (2.3.43), it is common to have

τ
(
TxN1

)
=

m∑
r=n+1

∑
1≤a<b≤n1

(
hraah

r
bb −

(
hrab
)2
)

+ τ̃
(
TxN1

)
, (6.3.4)

and

τ
(
TxN2

)
=

m∑
r=n+1

∑
n1+1≤A<B≤n

(
hrAAh

r
BB −

(
hrAB

)2
)

+ τ̃
(
TxN2

)
. (6.3.5)

By joining (6.3.3), (6.3.4) and (6.3.5) together, we get the result.

From now on, we should be familiar with the following two formulas of the mean

curvature vector, according to Di-minimality property. From Definition 2.3.3 we can

distinguish two cases, if ϕ is D1-minimal isometric immersion of Mn = N1 ×f N2 into

any Riemannian manifold M̃m, then following our adapted orthonormal frame, we derive

the following formula of the squared norm of the mean curvature vector of Mn

|| ~H||2 =
1

n2

m∑
r=n+1

(hrn1+1n1+1 + ...+ hrnn)2. (6.3.6)

Similarly, for a D2-minimal isometric immersion ϕ, we have

|| ~H||2 =
1

n2

m∑
r=n+1

(hr11 + ...+ hrn1n1
)2. (6.3.7)
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Now, we present the main theorem of this chapter.

Theorem 6.3.1. For i = 1 or 2, let ϕ : Mn = N1 ×f N2 −→ M̃m be a Di-minimal

isometric immersion of a warped product submanifold Mn into a Riemannian manifold

M̃m. Then, we have

(i) 1
2
||h||2 ≥ τ̃(TxM

n)− τ̃(TxN1)− τ̃(TxN2)− n2∆f
f
.

(ii) The equality in (i) holds identically if and only if N1, N2 and Mn are totally

geodesic, totally umbilical and minimal submanifolds in M̃m, respectively.

Proof. Via (2.3.44), we first have

||h||2 = −2τ(TxM
n) + 2τ̃(TxM

n) + n2|| ~H||2.

In view of Lemma 6.3.1, the above equation takes the following form

||h||2 = 2τ̃(TxM
n)− 2τ̃(TxN1)− 2τ̃(TxN2)− 2

n2∆f

f
+ n2|| ~H||2

−2

(
m∑

r=n+1

∑
1≤a<b≤n1

(
hraah

r
bb − (hrab)

2
))

− 2

(
m∑

r=n+1

∑
n1+1≤A<B≤n

(
hrAAh

r
BB − (hrAB)2

))
.

This is equivalent to

||h||2 = 2τ̃(TxM
n)− 2τ̃(TxN1)− 2τ̃(TxN2)− 2

n2∆f

f
+ n2|| ~H||2

−

(
m∑

r=n+1

∑
1≤a6=b≤n1

(
hraah

r
bb − (hrab)

2
))

−

(
m∑

r=n+1

∑
n1+1≤A6=B≤n

(
hrAAh

r
BB − (hrAB)2

))
. (6.3.8)

There are two natural ways to proceed our proof, corresponding to whether one con-

siders the immersed warped product as D1-minimal or instead as D2-minimal. Accord-

ingly, we distinguish two cases:

Case (1): If i = 1; that is, ϕ is D1-minimal immersion, then

−

(
m∑

r=n+1

∑
1≤a6=b≤n1

(
hraah

r
bb − (hrab)

2
))

=

118

Univ
ers

ity
 of

 M
ala

ya



m∑
r=n+1

∑
1≤a6=b≤n1

(hrab)
2 −

m∑
r=n+1

∑
1≤a6=b≤n1

hraah
r
bb =

︷ ︸︸ ︷
m∑

r=n+1

∑
1≤a6=b≤n1

(hrab)
2 +

(
m∑

r=n+1

(
(hr11)2 + · · ·+ (hrn1n1

)2
))

︷ ︸︸ ︷
−

(
m∑

r=n+1

(
(hr11)2 + · · ·+ (hrn1n1

)2
))
−

m∑
r=n+1

∑
1≤a6=b≤n1

hraah
r
bb .

By means of the binomial theorem, we deduce that︷ ︸︸ ︷
m∑

r=n+1

∑
1≤a6=b≤n1

(hrab)
2 +

(
m∑

r=n+1

(
(hr11)2 + · · ·+ (hrn1n1

)2
))

=
m∑

r=n+1

n1∑
a,b=1

(hrab)
2,

and ︷ ︸︸ ︷
−

(
m∑

r=n+1

(
(hr11)2 + · · ·+ (hrn1n1

)2
))
−

m∑
r=n+1

∑
1≤a6=b≤n1

hraah
r
bb =

−
m∑

r=n+1

(hr11 + · · ·+ hrn1n1
)2.

Next, by combining the last three equations together we obtain

−

(
m∑

r=n+1

∑
1≤a6=b≤n1

(
hraah

r
bb − (hrab)

2
))

=
m∑

r=n+1

n1∑
a,b=1

(hrab)
2 −

m∑
r=n+1

(hr11 + · · ·+ hrn1n1
)2.

(6.3.9)

By Definition 2.3.3, the second term in the right hand side vanishes whenever ϕ is

D1-minimal, consequently (6.3.9) reduces to

−

(
m∑

r=n+1

∑
1≤a6=b≤n1

(
hraah

r
bb − (hrab)

2
))

=
m∑

r=n+1

n1∑
a,b=1

(hrab)
2. (6.3.10)

Combining (6.3.10) and (6.3.8), it yields to

||h||2 = 2τ̃(TxM
n)− 2τ̃(TxN1)− 2τ̃(TxN2)− 2

n2∆f

f
+ n2|| ~H||2

+
m∑

r=n+1

n1∑
a,b=1

(hrab)
2

−

(
m∑

r=n+1

∑
n1+1≤A6=B≤n

(
hrAAh

r
BB − (hrAB)2

))
.

Equivalently,

||h||2 ≥ 2τ̃(TxM
n)− 2τ̃(TxN1)− 2τ̃(TxN2)− 2

n2∆f

f
+ n2|| ~H||2
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−

(
m∑

r=n+1

∑
n1+1≤A6=B≤n

(
hrAAh

r
BB − (hrAB)2

))
.

Again, by adding and subtracting similar term technique, the above inequality be-

comes

||h||2 ≥ 2τ̃(TxM
n)− 2τ̃(TxN1)− 2τ̃(TxN2)− 2

n2∆f

f
+ n2|| ~H||2

−
m∑

r=n+1

(
(hrn1+1n1+1)2 + · · ·+ (hrnn)2 +

∑
n1+1≤A6=B≤n

hrAAh
r
BB

)

+
m∑

r=n+1

(
(hrn1+1n1+1)2 + · · ·+ (hrnn)2 +

∑
n1+1≤A6=B≤n

(hrAB)2

)
.

Applying the binomial theorem on the last two terms of the above equation, we derive

that

||h||2 ≥ 2τ̃(TxM
n)− 2τ̃(TxN1)− 2τ̃(TxN2)− 2

n2∆f

f
+ n2|| ~H||2

−
m∑

r=n+1

(hrn1+1n1+1 + · · ·+ hrnn)2

+
m∑

r=n+1

n∑
A,B=n1+1

(hrAB)2.

Hence, we reach

||h||2 ≥ 2τ̃(TxM
n)− 2τ̃(TxN1)− 2τ̃(TxN2)− 2

n2∆f

f
+ n2|| ~H||2

−
m∑

r=n+1

(hrn1+1n1+1 + · · ·+ hrnn)2.

In view of (6.3.6), we know that the last term in the right hand side of the above in-

equality is equal to−n2|| ~H||2 for D1-minimal warped product submanifolds. By this fact,

the inequality of statement (i) follows immediately from the above inequality. Analo-

gously, but using (6.3.7) instead of (6.3.6), we get same inequality for D2-minimal warped

product submanifolds.

Now, the equality sign of the inequality in (i) holds if and only if

(a) h(D1,D1) = 0, (b) h(D2,D2) = 0.

Hence, we need to show that (a) and (b) hold if and only ifN1,N2 andMn are respectively

totally geodesic, totally umbilical and minimal submanifolds in M̃m.
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First, assume that (a) and (b) are satisfied. SinceMn = N1×fN2 is a warped product,

Corollary 2.3.1 asserts that N1 and N2 are totally geodesic and totally umbilical in Mn,

respectively. Therefore, part (a) above implies that the first factor is a totally geodesic

submanifold in M̃m. The second factor is totally umbilical in M̃m because of part (b).

Moreover, (b) and (a) together imply that Mn is minimal in M̃m.

For the converse, (a) is clear. To obtain (b), we first notice that minimality and D1-

minimality of Mn in M̃m yield to D2-minimality of Mn in M̃m. Hence, Lemma 5.2.6

proves (b) for either i = 1, or i = 2.

The first direct and important consequence of Theorem 6.3.1 is the following:

As we promised in Chapter Five, Theorem 5.2.1 has two proofs, one was given in

Chapter Five, while the other proof is obtained via the next remark.

Remark 6.3.1. An important consequence of Theorem 6.3.1 is Theorem 5.2.1. Because

statement (ii) of Theorem 6.3.1 informs us that, the equality sign of statement (i) holds

identically if and only if ||h||2 reduces to the form ||h(D1,D2)||2, which gives Theorem

5.2.1 immediately.

6.4 SPECIAL INEQUALITIES AND APPLICATIONS

The purpose of this section is to derive some particular case inequalities from Theorem

6.3.1. A lot of second inequalities of h can be simply obtained form this theorem. For this,

all what we need is to compute the following expression via the corresponding curvature

tensor formula

2

(
τ̃(TxM

n)− τ̃(TxN1)− τ̃(TxN2)

)
.

As the first example, we embark on this process by considering CR-warped product

submanifolds of type NT ×f N⊥ in complex space forms. Since the ambient manifold

M̃m of Theorem 6.3.1 is an arbitrary Riemannian manifold, we can consider M̃m to be a

Kaehler manifold. Hence, for every CR-warped product Mn = NT ×f N⊥ in a complex

space form M̃2m(cKa), we just use the curvature tensor of complex space forms (2.3.49)

to compute the following

2

(
τ̃(TxM

n)−τ̃(TxN1)−τ̃(TxN2)

)
=
cKa
4

(
n(n−1)+3n1−n1(n1−1)−3n1−n2(n2−1)

)
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=
cKan1n2

2
.

Substituting the above expression in Theorem 6.3.1, taking into account Lemma 5.2.1 and

(5.3.2). Theorem 6.2.1 can be obtained as a special case.

Remark 6.4.1. Inequalities of Theorems 4.1, 5.1 and 6.1 in (Chen, 2003) are special

cases of Theorem 6.3.1, where the ambient manifold is a complex Euclidean, a complex

projective and a complex hyperbolic space, respectively.

In general, we have now a clear procedure of deriving any space form second inequal-

ity of h which is applicable for any Di-minimal warped product submanifold in arbitrary

Riemannian manifolds. For instance, the following shows the direction of deriving a spe-

cial case from a more general case in Kaehler manifolds:

Theorem 6.3.1 =⇒ Theorem 6.2.1=⇒ Theorems in the above remark.

In the sequel, Theorem 6.3.1 can be applied to get an important consequence in gener-

alized complex space forms. More precisely, for both CR and semi-slant warped product

submanifolds in generalized complex space forms Theorem 6.3.1 implies

1

2
||h||2 ≥ 2n1n2

cRK + 3γ

4
− n2∆f

f
.

We notice that, it was difficult to prove the above inequality by old methods. More-

over, this inequality generalizes all inequalities in the previous remark. However, this is

just to show how Theorem 6.3.1 works for deriving any second inequality of h for any

Di-minimal warped product submanifold in almost Hermitian manifolds. This will be

clear from the next table which provides the second inequalities of h for any Di-minimal

warped product submanifold in complex and generalized complex space forms.

In almost contact counter part, Theorems 6.2.2, 6.2.3 and 6.2.4 in the previous section

are direct consequences of Theorem 6.3.1. Thus, if the ambient manifold is a Sasakian

space form and the immersion is a contact CR-warped product, then we may use (2.3.56)

to evaluate τ̃(TxM
n), τ̃(TxNT ) and τ̃(TxN⊥) in Theorem 6.3.1 (i). Further using (5.3.2),

we obtain

||h||2 ≥
{

2n2

(
||∇(ln f)||2−∆(ln f)

)
+
cS + 3

4
n(n−1)− cS − 1

4

(
2(n−1)−3(n1−1)

)

−n1(n1 − 1)
cS + 3

4
− (n1 − 1)

cS − 1

4
− n2(n2 − 1)

cS + 3

4

}
.
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Simple calculations on the integer coefficient of cS gives

||h||2 ≥ 2n2

{
||∇(ln f)||2 −∆(ln f) +

cS + 3

4
n1 −

cS − 1

4

}
.

Straightforward calculations on the above inequality shows that it is identical to that in

Theorem 6.2.2.

Similarly, it is direct to follow the above procedure to derive the inequality of Theorem

6.2.3 for contact CR-warped product of type NT ×f N⊥ in Kenmotsu space forms. Using

(2.3.58), we directly obtain

||h||2 ≥ 2n2

{
||∇(ln f)||2 −∆(ln f) +

cKe − 3

4
n1 −

cKe + 1

4

}
.

Simple calculations show that the above inequality is congruent to

||h||2 ≥ 2n2

{
cKe − 3

2
s−∆ ln f + ||∇ ln f ||2 − 1

}
.

It is clear that the above inequality is identical to that in Theorem 6.2.3. This makes the

two methods of proving this inequality coherent and precise. On the contrary, comparing

the above inequality with the second one in (Arsalan et al., 2005) shows the differences.

Although it looks as a small difference, but, as we saw in section two of the current

chapter, it needs deep results to fix the errors. For this, one can compare the proofs of

Theorem 6.2.3 and that of the second inequality in (Arsalan et al., 2005).

By following similar arguments as above, we list more particular case of inequalities

for different kinds of ambient manifolds in the final section of this chapter by

As another application of Theorem 6.3.1, we have

Corollary 6.4.1. Let Mn = N1 ×f N2 be a Di-minimal warped product in a Riemannian

manifold M̃m and supposeN1 is compact. Denote by dv1 and vol(N1) the volume element

and the volume on N1. Let λ1 be the first non zero eigenvalue of the Laplacian on N1.

Then

1

2

∫
N1

||h||2dv1 ≥ n1

(
τ̃(TxM)− τ̃(TxN1)− τ̃(TxN2)

)
vol(N1) + n1λ1

∫
N1

(ln f)2dv1.

Proof. From the minimum principle we have∫
N1

||∇ ln f ||2dv1 ≥ λ1

∫
N1

(ln f)2dv1.

Now we have to integrate on N1 the inequality of Theorem 6.3.1 which is satisfied by the

norm of h, and then we obtain immediately the result.
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6.4.1 CONCLUSION

Now, we give some extensions of our main inequality of this chapter for different kinds of

space forms of interest. Using the abbreviation, g. c. s. f. ≡ generalized complex space

form, then we have

Manifold Inequality

Real Space Form ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + n1c

)
Complex Space Form ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + n1

cKa
4

)
g. c. s. f. ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + n1

cRK+3γ
4

)
Sasakian Space Form ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + cS+3

2
s+ 1

)
Kenmotsu Space Form ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + cKe−3

2
s− 1

)
Cosymplectic Space Form ||h||2 ≥ 2n2

(
||∇(ln f)||2 −∆(ln f) + (n1 − 1) cc

4

)
Table 6.2: General second inequality of h for Di-minimal warped product submanifolds
satisfying g(PX,Z) = 0 ∀ X ∈ TN1, Z ∈ TN2.

This table is of particular value because of the wide class it contains. It provides a

sample of inequalities for Di-minimal warped product submanifolds N1 ×f N2 in differ-

ent kinds of space forms, satisfying g(PX,Z) = 0 ∀ X ∈ TN1, Z ∈ TN2. Notice

that the condition g(PX,Z) = 0 holds for CR, semi-slant, hemi-slant warped product

submanifolds and for any warped product submanifold with a holomorphic factor in both

almost Hermitian and almost contact manifolds.
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CHAPTER 7: A GENERAL GEOMETRIC INEQUALITY OF RICCI CUR-

VATURE AND THE MEAN CURVATURE VECTOR FOR Di-

MINIMAL WARPED PRODUCT SUBMANIFOLDS

7.1 INTRODUCTION

In this chapter, we first establish a basic general inequality for Di- minimal warped prod-

uct submanifolds in Riemannian space forms. This inequality involves the Ricci curva-

ture, the mean curvature vector and the warping function. Afterwards, the equality cases

are discussed.

In the other section, some extensions are discussed, by deriving many special case

inequalities for different kinds of space forms. This was achieved by taking a middle

step from the proof of Theorem 7.3.1 which is valid for an arbitrary Riemannian ambient

manifold. Then following almost similar argument like that in the preceding chapter, we

calculate some terms by tensor curvature formulas of different space forms.

Many applications are derived from the main theorem of this chapter, the most impor-

tant one was separately stated in a short section, since it is one of our goals of this thesis.

In general, this chapter provides a lot of special answers for several problems discussed

in chapter one.

7.2 SOME TECHNICAL LEMMAS

This section presents some results which are useful for the next section. As we will see,

these results are simplifications for some terms which appear in the proof of the next

section. The first two lemmas are for D1-minimal warped product submanifolds, whereas

the last lemma is for an arbitrary warped product submanifold.

Firstly, we have

Lemma 7.2.1. Let ϕ : Mn = N1 ×f N2 −→ M̃m be a D1-minimal isometric immersion

of an n-dimensional warped product submanifold Mn into a Riemannian manifold M̃m.

Then,
m∑

r=n+1

n1∑
b=2

hr11h
r
bb = −

m∑
r=n+1

(
hr11

)2
, (7.2.1)
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and
m∑

r=n+1

n1∑
a=2

n∑
A=n1+1

hraah
r
AA = −

m∑
r=n+1

n∑
A=n1+1

hr11h
r
AA, (7.2.2)

where n1, n2, n and m are the dimensions of N1, N2, M
n and M̃m, respectively.

Proof. For a D1-minimal warped product submanifold Mn of M̃m, we can carry out the

following simplifications
m∑

r=n+1

n1∑
b=2

hr11h
r
bb =

m∑
r=n+1

hr11

(
g
(
h(e2, e2), er

)
+ · · ·+ g

(
h(en1 , en1), er

))

=
m∑

r=n+1

hr11

(
g
(
h(e1, e1), er

)
+ · · ·+ g

(
h(en1 , en1), er

)
− g
(
h(e1, e1), er

))

= −
m∑

r=n+1

(
hr11

)2
. (7.2.3)

This gives (7.2.1). By the same procedure, (7.2.2) follows directly, whenever Mn is

a D1-minimal, which completes the proof

Secondly, we state the following

Lemma 7.2.2. Let ϕ : Mn = N1 ×f N2 −→ M̃m be a D1-minimal isometric immersion

of an n-dimensional warped product submanifold Mn into a Riemannian manifold M̃m.

Then, we have

1

2

m∑
r=n+1

(
2hr11 −

(
hrn1+1n1+1 + · · ·+ hrnn

))2

=

2
m∑

r=n+1

(hr11)2 +
1

2
n2|| ~H||2 − 2

m∑
r=n+1

n∑
A=n1+1

hr11h
r
AA, (7.2.4)

where n1, n2, n and m are the dimensions of N1, N2, M
n and M̃m, respectively.

Proof. Since Mn is D1-minimal, it is obvious that

1

2

m∑
r=n+1

(
2hr11 −

(
hrn1+1n1+1 + · · ·+ hrnn

))2

= 2
m∑

r=n+1

(hr11)2 +
1

2

m∑
r=n+1

(
hrn1+1n1+1 + · · ·+ hrnn

)2

− 2
m∑

r=n+1

hr11

(
hrn1+1n1+1 + · · ·+ hrnn

)
,

= 2
m∑

r=n+1

(hr11)2 +
1

2
n2|| ~H||2 − 2

m∑
r=n+1

n∑
A=n1+1

hr11h
r
AA. (7.2.5)
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Finally, we prove the following general lemma.

Lemma 7.2.3. Let ϕ : Mn = N1 ×f N2 −→ M̃m be an isometric immersion of an

n-dimensional warped product submanifold Mn into a Riemannian manifold M̃m. Then,

we have

m∑
r=n+1

{
1

2

((
hrn1+1n1+1 + · · ·+ hrnn

)
− 2hrnn

)2

+
n−1∑

B=n+1

hrnnh
r
BB

}

=
m∑

r=n+1

{
1

2

(
hrn1+1n1+1 + · · ·+ hrnn

)2
+
(
hrnn
)2 −

n∑
A=n1+1

hrnnh
r
AA

}
, (7.2.6)

where n1, n2, n and m are the dimensions of N1, N2, M
n and M̃m, respectively.

Proof. By simple calculation, we deduce that

1

2

m∑
r=n+1

((
hrn1+1n1+1 + · · ·+ hrnn

)
− 2hrnn

)2

+
m∑

r=n+1

n−1∑
B=n+1

hrnnh
r
BB

=
m∑

r=n+1

{
1

2

(
hrn1+1n1+1 + · · ·+ hrnn

)2
+ 2
(
hrnn
)2 −

n∑
A=n1+1

hrnnh
r
AA

−
n∑

A=n1+1

hrnnh
r
AA +

n−1∑
B=n1+1

hrnnh
r
BB

}
, (7.2.7)

and

m∑
r=n+1

{ n∑
A=n1+1

−hrnnhrAA +
n−1∑

B=n1+1

hrnnh
r
BB

}

=
m∑

r=n+1

{
−hrnn

(
hrn1+1n1+1 + · · ·+hrnn

)
+hrnn

(
hrn1+1n1+1 + · · ·+hrn−1n−1

)}

=
m∑

r=n+1

(
hrnn
(
−hrn1+1n1+1−· · ·−hrn−1n−1−hrnn+hrn1+1n1+1 + · · ·+hrn−1n−1

))

= −
m∑

r=n+1

(
hrnn
)2
. (7.2.8)

From (7.2.8) and (7.2.7), we get the assertion.
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7.3 A GENERAL GEOMETRIC INEQUALITY OF Di-MINIMAL WARPED
PRODUCT SUBMANIFOLDS IN A RIEMANNIAN SPACE FORM

The current section is devoted to provide one of the most important theorems in this work.

It is remarkable to say that, most of the Riemannian invariants are used throughout the

next proof. As a result, we gain a very rich geometry in equality cases. Therefore, geomet-

ric concepts like totally geodesic, mixed totally geodesic, Di-totally geodesic, minimal,

Di-minimal, totally umbilical and Di-totally umbilical submanifolds are included in the

equality discussion. Hence, the inequality is a geometric one and so special for warped

product submanifolds.

The natural existence of Di-minimal warped products, for i = 1, 2, was shown in both

almost Hermitian and almost contact manifolds in chapter five. For this large class of

warped product submanifolds we provide the main theorem in this work.

Theorem 7.3.1. Let ϕ : Mn = N1 ×f N2 −→ M̃m(c), for i = 1 or i = 2, be a Di-

minimal isometric immersion of an n-dimensional warped product submanifold Mn into

a Riemannian space form M̃m(c). Then the following hold:

(1) For each unit vector eo ∈ TxMn, we have the following inequality

1

4

(
n1 + n2

)2|| ~H||2 ≥ Ric(eo) +
n2 ∆f

f
− c
(
n1 + n2 + n1n2 − 1

)
(7.3.1)

where n1, n2 are the dimensions of N1 and N2, respectively.

(2) If ~H(x) = 0, then at each x ∈ Mn there is a unit tangent vector eo satisfies the

equality case of (7.3.1) if and only if Mn is mixed totally geodesic and eo lies in the

relative null space Nx at x.

(3) If Mn is D1-minimal, then

(a) the equality case of (7.3.1) holds identically for all unit tangent vectors to N1

at each x ∈ Mn if and only if Mn is mixed totally geodesic and D1-totally

geodesic warped product submanifold in M̃m(c),

(b) the equality case of (7.3.1) holds identically for all unit tangent vectors to N2

at each x ∈ Mn if and only if Mn is mixed totally geodesic and either a D2-
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totally geodesic warped product submanifold, or Mn is a D2-totally umbilical

warped product submanifold in M̃m(c) with dimN2 = 2,

(c) the equality case of (7.3.1) holds identically for all unit tangent vectors to Mn

at each x ∈ Mn if and only if either Mn is a totally geodesic submanifold,

or Mn is a mixed totally geodesic, totally umbilical and D1-totally geodesic

warped product submanifold with dimN2 = 2.

For the D2-minimal case, (3) holds analogously.

Proof. First of all, let us assume Mn to be a D1-minimal warped product submanifold,

for the D2-minimal case, we can apply similar scheme to the following proof. If we start

from (2.3.44), then we have

n2|| ~H||2 = 2τ(TxM
n) + ||h||2 − 2τ̃(TxM

n). (7.3.2)

Let {e1, · · · , en1 , en1+1, · · · , en, en+1, · · · , em} to be a local orthonormal frame fields

of Γ(TM̃m(c)) such that {e1, · · · , en1} are tangent toN1, and {en1+1, · · · , en} are tangent

toN2. Hence, {en+1, · · · , em} are normal toMn. By similar technique as in (Chen, 1999),

but for arbitrary unit tangent vector eo ∈ {e1, · · · , en}, and for arbitrary Riemannian

manifold ∗, we can expand (7.3.2) as the following

n2‖ ~H‖2 = 2τ(TxM
n)+

m∑
r=n+1

((
hroo
)2

+
(
hr11+· · ·+hrnn−hroo

)2
+2

∑
1≤i<j≤n

(
hrij
)2
)

− 2
m∑

r=n+1

∑
1≤i<j≤n
i,j 6=o

hriih
r
jj − 2τ̃

(
TxM

n
)

= 2τ(TxM
n) +

1

2

m∑
r=n+1

((
hr11 + · · ·+ hrnn

)2
+
(
2hroo − (hr11 + · · ·+ hrnn)

)2
)

+ 2
m∑

r=n+1

∑
1≤i<j≤n

(hrij)
2 − 2

m∑
r=n+1

∑
1≤i<j≤n
i,j 6=o

hriih
r
jj − 2τ̃

(
TxM

n
)
. (7.3.3)

First, because of D1-minimality, the above equation becomes

n2|| ~H||2 = 2τ(TxM
n) +

1

2

m∑
r=n+1

((
hrn1+1n1+1 + · · ·+ hrnn

)2

∗At this stage of proof, we use arbitrary tangent vector eo in order to distinguish the factor that eo is
tangent to. For the sake of generalization, our proof is valid also for an arbitrary Riemannian manifold.
This is useful to derive all inequalities of the same kind from equation (7.3.3), as we will see sooner.
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+
(
2hroo − (hrn1+1n1+1 + · · ·+ hrnn)

)2
)

+
m∑

r=n+1

∑
1≤i<j≤n

(hrij)
2 −

m∑
r=n+1

∑
1≤i<j≤n
i,j 6=o

hriih
r
jj − 2τ̃

(
TxM

n
)

+
m∑

r=n+1

∑
1≤i<j≤n
i,j 6=o

(hrij)
2 −

m∑
r=n+1

∑
1≤i<j≤n
i,j 6=o

hriih
r
jj +

m∑
r=n+1

n∑
j=1
j 6=o

(hroj)
2. (7.3.4)

By using (2.3.43), one may write

m∑
r=n+1

∑
1≤i<j≤n
i,j 6=o

(hrij)
2 −

m∑
r=n+1

∑
1≤i<j≤n
i,j 6=o

hriih
r
jj =

∑
1≤i<j≤n
i,j 6=o

K̃ij −
∑

1≤i<j≤n
i,j 6=o

Kij. (7.3.5)

By Definition 2.3.3, and due to D1-minimality, we also have

m∑
r=n+1

(
hrn1+1n1+1 + · · ·+ hrnn

)2
= n2|| ~H||2. (7.3.6)

From (7.3.4)-(7.3.6), one will get the following

1

2
n2|| ~H||2 = 2τ(TxM

n) +
1

2

m∑
r=n+1

(
2hroo − (hrn1+1n1+1 + · · ·+ hrnn)

)2

+
m∑

r=n+1

∑
1≤i<j≤n

(hrij)
2 −

m∑
r=n+1

∑
1≤i<j≤n
i, j 6=o

hriih
r
jj −

∑
1≤i<j≤n
i,j 6=o

Kij +
m∑

r=n+1

n∑
j=1
j 6=o

(hroj)
2

−2τ̃
(
TxM

n
)

+
∑

1≤i<j≤n
i,j 6=o

K̃ij. (7.3.7)

Now, by applying Lemma 6.3.1 in (7.3.7), we directly obtain

1

2
n2|| ~H||2 = τ(TxM

n) +
1

2

m∑
r=n+1

(
2hroo −

(
hrn1+1n1+1 + · · ·+ hrnn

))2

+
m∑

r=n+1

{ ∑
1≤i<j≤n

(
hrij
)2 −

∑
1≤i<j≤n
i,j 6=o

hriih
r
jj

}
−

∑
1≤i<j≤n
i,j 6=o

Kij +
m∑

r=n+1

n∑
j=1
j 6=o

(
hroj
)2

−2τ̃
(
TxM

n
)

+
∑

1≤i<j≤n
i,j 6=o

K̃ij +
n2∆f

f
+

m∑
r=n+1

{ ∑
1≤a<b≤n1

(
hraah

r
bb −

(
hrab
)2
)

+
∑

n1+1≤A<B≤n

(
hrAAh

r
BB −

(
hrAB

)2
)}

+ τ̃
(
TxN1

)
+ τ̃
(
TxN2

)
. (7.3.8)

For the sake of simplicity, we put

$ =
n2∆f

f
− 2τ̃

(
TxM

n
)

+
∑

1≤i<j≤n
i,j 6=o

K̃ij + τ̃
(
TxN1

)
+ τ̃
(
TxN2

)
. (7.3.9)
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So that, equation (7.3.8) takes the form

1

2
n2|| ~H||2 = $+τ(TxM

n)−
∑

1≤i<j≤n
i,j 6=o

Kij+
1

2

m∑
r=n+1

(
2hroo−

(
hrn1+1n1+1+· · ·+hrnn

))2

+
m∑

r=n+1

{ ∑
1≤i<j≤n

(
hrij
)2 −

∑
1≤i<j≤n
i,j 6=o

hriih
r
jj

}
+

m∑
r=n+1

n∑
j=1
j 6=o

(
hroj
)2

+
m∑

r=n+1

{ ∑
1≤a<b≤n1

(
hraah

r
bb −

(
hrab
)2
)

+
∑

n1+1≤A<B≤n

(
hrAAh

r
BB −

(
hrAB

)2
)}

. (7.3.10)

According to the choice of the unit tangent vector eo, we know that it is either tangent

to the first factor, or to the second, hence we distinguish the two cases:

Case (i): If eo is tangent to N1, then we fix a unit tangent vector from e1, · · · , en1 to be eo,

without loss of generality let eo = e1. Hence, from (2.3.11) and (7.3.10) one can deduce

that

1

2
n2‖ ~H‖2 ≥ Ric(e1) +$1 +

1

2

m∑
r=n+1

(
2hr11 −

(
hrn1+1n1+1 + · · ·+ hrnn

))2

+
m∑

r=n+1

{ ∑
1≤i<j≤n

(hrij)
2 −

( ∑
1≤a<b≤n1

(hrab)
2 +

∑
n1+1≤A<B≤n

(
hrAB

)2
)}

+
m∑

r=n+1

{ ∑
1≤a<b≤n1

hraah
r
bb +

m∑
r=n+1

∑
n1+1≤A<B≤n

hrAAh
r
BB −

∑
2≤i<j≤n

hriih
r
jj

}
, (7.3.11)

where $1 = $ for o = 1.

Straightforward computations lead to

m∑
r=n+1

{ ∑
1≤i<j≤n

(hrij)
2 −

( ∑
1≤a<b≤n1

(hrab)
2 +

∑
n1+1≤A<B≤n

(
hrAB

)2
)}

=
m∑

r=n+1

n1∑
a=1

n∑
A=n1+1

(
hraA
)2
, (7.3.12)

and

m∑
r=n+1

{ ∑
1≤a<b≤n1

hraah
r
bb +

m∑
r=n+1

∑
n1+1≤A<B≤n

hrAAh
r
BB −

∑
2≤i<j≤n

hriih
r
jj

}

=
m∑

r=n+1

{ n1∑
b=2

hr11h
r
bb −

n1∑
a=2

n∑
A=n1+1

hraah
r
AA

}
. (7.3.13)

From (7.3.11)-(7.3.13), it implies

1

2
n2‖ ~H‖2 ≥ Ric(e1) +$1 +

1

2

m∑
r=n+1

(
2hr11 −

(
hrn1+1n1+1 + · · ·+ hrnn

))2
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+
m∑

r=n+1

{ n1∑
a=1

n∑
A=n1+1

(
hraA
)2

+

n1∑
b=2

hr11h
r
bb −

n1∑
a=2

n∑
A=n1+1

hraah
r
AA

}
. (7.3.14)

If we use equations (7.2.1) and (7.2.2) of Lemma (7.2.1) to evaluate the last two terms

of the right hand side in (7.3.14), then the above inequality descends to the following form

1

2
n2|| ~H||2 ≥ Ric(e1) +$1 +

1

2

m∑
r=n+1

(
2hr11 −

(
hrn1+1n1+1 + · · ·+ hrnn

))2

−
m∑

r=n+1

(
hr11

)2
+

m∑
r=n+1

n∑
A=n1+1

hr11h
r
AA. (7.3.15)

In virtue of Lemma 7.2.2, the inequality in (7.3.15) yields

1

2
n2|| ~H||2 ≥ Ric(e1)+$1+

m∑
r=n+1

{(
hr11

)2−
n∑

A=n1+1

hr11h
r
AA+

1

4

(
hrn1+1n1+1+· · ·+hrnn

)2
}

+
1

4

m∑
r=n+1

(
hrn1+1n1+1 + · · ·+ hrnn

)2
. (7.3.16)

As discussed above, and in view of our hypothesis, the last term of the right hand

side in the above inequality equals 1
4
n2|| ~H||2. Therefor, by straightforward computations,

taking into account (7.3.9) and (2.3.9), we finally reach

1

4
n2|| ~H||2 ≥ Ric(e1)+

m∑
r=n+1

(
hr11−

1

2

(
hrn1+1n1+1+· · ·+hrnn

))2

+
n2 ∆ f

f
−c
(
n1n2+n−1

)
,

which gives (7.3.1) immediately.

Case (ii): If eo is tangent to N2, then we fix a unit tangent vector from en1+1, · · · , en

to be eo, say eo = en. Then from (2.3.11) and (7.3.10), we derive

1

2
n2‖ ~H‖2 ≥ Ric(en) +$n +

1

2

m∑
r=n+1

(
2hrnn −

(
hrn1+1n1+1 + · · ·+ hrnn

))2

+
m∑

r=n+1

{ ∑
1≤i<j≤n

(hrij)
2 −

( ∑
1≤a<b≤n1

(hrab)
2 +

∑
n1+1≤A<B≤n

(
hrAB

)2
)}

+
m∑

r=n+1

{ ∑
1≤a<b≤n1

hraah
r
bb +

m∑
r=n+1

∑
n1+1≤A<B≤n

hrAAh
r
BB −

∑
1≤i<j≤n−1

hriih
r
jj

}
, (7.3.17)

where $n = $ for o = n.

By similar analogue to case (i), we obtain

1

2
n2‖ ~H‖2 ≥ Ric(en) +$n +

1

2

m∑
r=n+1

(
2hrnn −

(
hrn1+1n1+1 + · · ·+ hrnn

))2

+
m∑

r=n+1

{ n1∑
a=1

n∑
A=n1+1

(
hraA
)2

+
n−1∑

B=n+1

hrnnh
r
BB −

n1∑
a=1

n−1∑
A=n1+1

hraah
r
AA

}
. (7.3.18)
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Since Mn is a D1-minimal warped product submanifold, we have
m∑

r=n+1

n1∑
a=1

n−1∑
A=n1+1

hraah
r
AA = 0. (7.3.19)

Hence, in view of (7.3.19), the inequality in (7.3.18) reduces to this form

1

2
n2‖ ~H‖2 ≥ Ric(en) +$n +

1

2

m∑
r=n+1

(
2hrnn −

(
hrn1+1n1+1 + · · ·+ hrnn

))2

+
m∑

r=n+1

{ n1∑
a=1

n∑
A=n1+1

(
hraA
)2

+
n−1∑

B=n+1

hrnnh
r
BB

}
. (7.3.20)

In view of Lemma 7.2.3, the inequality of (7.3.20) takes the following form

1

2
n2|| ~H||2 ≥ Ric(en)+$n+

m∑
r=n+1

{(
hrnn
)2−

n∑
A=n1+1

hrnnh
r
AA+

1

4

(
hrn1+1n1+1+· · ·+hrnn

)2
}

+
1

4

m∑
r=n+1

(
hrn1+1n1+1 + · · ·+ hrnn

)2
. (7.3.21)

Similar strategy as in the proof of case (i) leads to

1

4
n2|| ~H||2 ≥ Ric(en)+

m∑
r=n+1

(
hrnn−

1

2

(
hrn1+1n1+1+· · ·+hrnn

))2

+
n2∆f

f
−c
(
n1n2+n−1

)
,

which directly gives (7.3.1).

Analogously, it is straightforward to derive a typical inequality as in (7.3.1) by follow-

ing similar procedure as in case (i), when Mn is a D2-minimal warped product submani-

fold. Therefore, for i = 1 and 2 the inequality in (7.3.1) holds for a Di-minimal isometric

immersion. Since eo is an arbitrary unit tangent vector toMn at x, (7.3.1) follows directly.

Now, we are going to discuss the equality cases of this inequality. Firstly, let us

recall the notion of the relative null space,Nx, of the submanifold Mn in the Riemannian

manifold M̃m at a point x ∈Mn, which was defined in (Chen, 1999). That is,

Nx = {X ∈ TxMn : h(X, Y ) = 0 ∀ Y ∈ TxMn}. (7.3.22)

For o ∈ {1, · · · , n}, a unit tangent vector eo to Mn at x satisfies the equality sign of

(7.3.1) identically if and only if the following three conditions hold
n1∑
a=1

n∑
A=n1+1

(hraA)2 = 0;

n∑
j=1
j 6=o

(hroj)
2 = 0;

2hroo = hrn1+1n1+1 + · · ·+ hrnn,


(7.3.23)
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where r ∈ {n+ 1, · · · ,m}. The mixed totally geodesy follows from the first condition in

(7.3.23), whereas minimality and the other two conditions imply that eo lies in the relative

null space Nx. Since the converse is trivial, this proves statement (2).

For a D1-minimal warped product submanifold, the equality sign of (7.3.1) holds iden-

tically for all unit tangent vectors to N1 at x if and only if

n1∑
a=1

n∑
A=n1+1

(hraA)2 = 0;

n∑
j=1

n1∑
a=1

(j 6=a)

(hraj)
2 = 0;

2hraa = hrn1+1n1+1 + · · ·+ hrnn,


(7.3.24)

where a ∈ {1, · · · , n1} and r ∈ {n + 1, · · · ,m}. Since M is D1-minimal, the third

condition above implies

hraa = 0, ∀a ∈ {1, · · · , n1}.

Joining the above equation with the second condition in (7.3.24), we can show that Mn is

D1-totally geodesic warped product in M̃m(c), while mixed totally geodesy follows from

the first condition of (7.3.24), which proves (a) in statement (3).

For a D1-minimal warped product submanifold, the equality sign of (7.3.1) holds iden-

tically for all unit tangent vectors to N2 at x if and only if the following are satisfied

n1∑
a=1

n∑
A=n1+1

(hraA)2 = 0;

n∑
j=1

n∑
A=n1+1

(j 6=A)

(hrAj)
2 = 0;

2hrAA = hrn1+1n1+1 + · · ·+ hrnn,


(7.3.25)

where A ∈ {n1 + 1, · · · , n} and r ∈ {n+ 1, · · · ,m}.

The first condition above always means thatMn is mixed totally geodesic submanifold

of M̃m(c).

From the third condition above two possibilities arise, either

hrAA = 0, ∀A ∈ {n1 + 1, · · · , n}, r ∈ {n+ 1, · · · ,m}, (7.3.26)

or, dimN2 = 2.
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If (7.3.26) holds, then in view of the second condition in (7.3.25), we conclude that

Mn is a D2-totally geodesic warped product submanifold in M̃m(c). This is the first

situation of part (b) of statement (3) of the theorem.

For the other situation, assume that Mn is not D2-totally geodesic warped product

submanifold in M̃m(c) and dimN2 = 2. Therefore, from the second condition of (7.3.25)

again, we conclude that Mn is a D2-totally umbilical warped product submanifold in

M̃m(c), which is the second situation of this part. Thus, this proves this part completely.

To show (c), we first combine (7.3.24) and (7.3.25) together. Thus, we can use parts

(a) and (b) of (3).

For the first situation of this part, assume firstly that dimN2 6= 2. Because parts (a)

and (b) of statement (3) respectively imply that Mn is D1-totally geodesic and D2-totally

geodesic submanifold in M̃m(c). Hence, Mn is a totally geodesic submanifold in M̃m(c).

For the other situation, assume that the first situation does not hold. As a result,

parts (a) and (b) directly give that Mn is mixed totally geodesic and D1-totally geodesic

submanifold in M̃m(c) with dimN2 = 2.

To show that Mn is a totally umbilical submanifold in M̃m(c), it is enough to know

that Mn is D2-totally umbilical warped product submanifold in M̃m(c) from (b), and it is

D1-totally geodesic from (a). Hence, this gives the assertion of part (c).

Following similar procedure as above, the equality cases can be proved whenever Mn

is a D2minimal warped product submanifold in M̃m(c). Hence, the proof is completed.

Now, we are going to discuss some applications and generalizations that the above

theorem and proof give. We point out that, this kind of inequalities was proved for Rie-

mannian space forms (Chen, 1999). On one hand, neither Chen nor others proved such

inequality for warped product submanifolds. This was enough to motivate us for carrying

out the preceding long proof. On the other hand, so many ”extensions” of the original

inequality that Chen proved in (Chen, 1999) were published, (see, for example references

of (Chen, 2008)). In fact, all these inequalities, including the original one, are direct
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consequences of the next inequality

n2

4
‖ ~H‖2 ≥ Ric(eo) +

∑
1≤i<j≤n
i,j 6=o

K̃ij − τ̃
(
TxM

n
)
. (7.3.27)

One can easily figure out that the above inequality comes from (7.3.3). To obtain

all inequalities of the same kind, it is enough to use the corresponding curvature tensor

formula to calculate ∑
1≤i<j≤n
i,j 6=o

K̃ij − τ̃
(
TxM

n
)
.

The above technique enables us to derive any inequality of this kind, hence the proof

above is a multi-task proof. Another significant application of this proof comes in the

next few lines.

In the second section of (Yoon, 2006), this kind of inequalities were proved for differ-

ent classes of submanifolds; invariant, anti-invariant, slant, bi-slant and semi-slant sub-

manifolds of cosymplectic manifolds, but not for warped products also. Some of these

results can be obtained from (7.3.27). For semi-slant and bi-slant submanifolds, take f to

be constant, then one should follow similar procedure as we will explain in section four.

7.3.1 A NECESSARY CONDITION FOR THE MINIMALITY OF WARPED PROD-
UCT SUBMANIFOLDS

As a first answer of Problems 1.4.11 and 1.4.12, we apply the inequality of Theorem 7.3.1

to give a necessary condition for a warped product to be Di-minimal (for both i = 1, 2)

in a Euclidean m-space Em. It is obvious that assuming Di-minimality for both i = 1, 2

implies the minimality of Mn in Em.

Corollary 7.3.1. If ϕ : Mn = N1 ×f N2 −→ Em is a Di-minimal isometric immersion

(for both i = 1, 2), from a warped product submanifold Mn into a Euclidean m-space,

then

Ric(eo) ≤ −
n2 ∆f

f
, (7.3.28)

for each unit vector eo ∈ TxMn, where n2 is the dimension of N2.

In view of (2.3.10) and (2.3.11), one can conclude that the Ricci curvatures determine

the Ricci tensor completely. Taking the warping function, f , to be constant. Then, it will
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be clear that this corollary is coherent with the second condition stated in chapter one;

namely,

Condition 2: If ϕ : Mn → Em is a minimal immersion from a manifold of positive di-

mension into a Euclidean m-space, then the Ricci tensor of Mn is negative semi-definite.

7.4 SOME EXTENSIONS OF THEOREM 7.3.1

In this section, we discuss some extensions of Theorem 7.3.1 to ambient spaces with other

geometric structures.

For any Di-minimal warped product submanifold we use (7.3.16) to derive the in-

equality when the unit vector eo is tangent to the first factor, and (7.3.21) when it is

tangent to the second. Thus, all what we need is to use the specific form of the curvature

tensor to evaluate the expressions

$1 −
n2∆f

f
= −2τ̃(TxM

n) +
∑

2≤i<j≤n

K̃ij + τ̃(TxN1) + τ̃(TxN2) (7.4.1)

for the first case, and

$n −
n2∆f

f
= −2τ̃(TxM

n) +
∑

1≤i<j≤n−1

K̃ij + τ̃(TxN1) + τ̃(TxN2) (7.4.2)

for the second.

Firstly, let Mn = Nθ ×f N⊥ be a Dθ-minimal warped product submanifold in a com-

plex space form M̃2m(cKa). Then, we have

1

4
n2|| ~H||2 ≥ Ric(eo) +

n2 ∆f

f
− cKa

4
[n1n2 + n− 1 +

3

2
cos2 θ], (7.4.3)

when the unit vector eo ∈ TxNθ, and

1

4
n2|| ~H||2 ≥ Ric(eo) +

n2 ∆f

f
− cKa

4
[n1n2 + n− 1], (7.4.4)

when it is tangent to N⊥, whereas the equality case is the same as that in the Theorem

7.3.1.

To see how we can get the above two inequalities, one just needs to use the tensor

formula of complex space form (2.3.49). Therefore, using (2.3.49) we compute (7.4.1).

As a result, the inequality in (7.4.3) follows directly. That is;

−cKa
4

[n(n− 1) + 3 cos2 θn1] +
cKa
8

[(n− 1)(n− 2) + 3 cos2 θ(n1 − 1)]
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+
cKa
8

[n1(n1 − 1) + 3 cos2 θn1] +
cKa
8

[n2(n2 − 1)] = −cKa
4

[n1n2 + n− 1 +
3

2
cos2 θ].

Similarly, in the second case, we obtain

−cKa
4

[n(n− 1) + 3 cos2 θn1] +
cKa
8

[(n− 1)(n− 2) + 3 cos2 θn1]

+
cKa
8

[n1(n1 − 1) + 3 cos2 θn1] +
cKa
8

[n2(n2 − 1)] = −cKa
4

[n1n2 + n− 1].

For Kenmotsu ambient space, it is easy to derive this inequalities for the warped prod-

ucts NT ×f N⊥, NT ×f NT and NT ×f Nθ in a Kenmotsu space form where ξ is tangent to

the first factor. For example, we will compute them for the last warped product, then the

others are similar. For each unit vector eo ∈ TxMn orthogonal to ξ, we have the following

1

4
n2H2 ≥ Ric(eo) +

n2∆f

f
− (cKe − 3)

4
[n+ n1n2 − 1] +

(cKe + 1)

4
[n2 −

1

2
],

in case eo is tangent to NT , and

1

4
n2H2 ≥ Ric(eo) +

n2∆f

f
− (cKe − 3)

4
[n+ n1n2 − 1]

+
(cKe + 1)

4
[n2 + 1− 3

2
cos2 θ],

for the other case.

Analogously, for other particular cases, (7.3.16) and (7.3.21) are useful to obtain this

inequalities for any Di-minimal warped product submanifold. For example, in generalized

complex space forms, we have

1

4
n2|| ~H||2 ≥ Ric(eo) +

n2∆f

f
− cRK

4
[n1n2 + n+

1

2
]

for the first case, and

1

4
n2|| ~H||2 ≥ Ric(eo) +

n2∆f

f
− cRK

4
[n1n2 + n− 1]

for the second.

A lot of other important inequalities can be obtained from Theorem 7.3.1, for instance

NT ×fN⊥ as a D1-minimal andN⊥×fNT as a D2-minimal warped product submanifolds

in l.c.K manifolds, semi-slant and generic warped products in l.c.K also. We leave these

examples and others in cosymplectic manifolds for the reader.

Chen obtained some estimates of the squared mean curvature for isometrically im-

mersed submanifolds in some spaces (Chen, 1999). Here, we apply Theorem 7.3.1 to

generalize those estimates for warped product submanifolds.
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Corollary 7.4.1. Let ϕ : Mn = N1 ×f N2 −→ M̃m(c) be a Di-minimal isometric im-

mersion of an n-dimensional warped product submanifold Mn into a Riemannian space

form M̃m(c). Then

|| ~H(x)||2 ≥ (
4

(n1 + n2)2
){max

eo
Ric(eo) +

n2 ∆f

f
− c[n1 + n2 + n1n2 − 1]},

for any unit tangent vectors eo at x.

Corollary 7.4.2. Let ϕ : Mn = N1 ×f N2 −→ M̃m(c) be a Di-minimal isometric im-

mersion of an n-dimensional warped product submanifold Mn into a Riemannian space

form M̃m(c). Then, for any integer k, 2 ≤ k ≤ n, we have

|| ~H(x)||2 ≥ (
4

(n1 + n2)2
){((n− 1)Θk(x)

k − 1
) +

n2 ∆f

f
− c[n1 + n2 + n1n2 − 1]},

where Θk is the Riemannian invariant on Mn introduced in (2.3.19).

7.5 CONCLUSION

In the next two tables, we list most of cases under consideration that can be proved by

applying similar procedure as above. In the second column, two inequalities are given for

every ambient manifold, the upper is for case (i), and the lower one is for case (ii); i. e.,

eo ∈ TxN1 and eo ∈ TxN2, respectively. It is significant to say that, the inequality of case

(i) coincides with that of case (ii) in real space forms.

For simplicity’s sake, put I = n2

4
|| ~H||2 ≥ Ric(eo) + n2∆f

f
. Here, R. S. F ≡ real space

form, C. S. F. ≡ complex space form, G. C. S. F. ≡ generalized complex space form,

Sas. S. F. ≡ Sasakian space form, Co. S. F. ≡ cosymplectic space form and Ke. S. F. ≡

Kenmotsu space form.
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Manifold Inequality

Di-minimal n2

4
|| ~H||2 ≥ Ric(eo) + n2∆f

f
− c[n1n2 + n− 1]

R. S. F.

NT ×f N⊥ I − cKa
4

(
n+ n1n2 + 1

2

)
C. S. F. I − cKa

4

(
n+ n1n2 − 1

)
NT ×f N⊥ I − cRK+3γ

4

(
n+ n1n2 − 1

)
− cRK−γ

4

(
3
2

)
G. C. S. F. I − cRK+3γ

4

(
n+ n1n2 − 1

)
NT ×f N⊥ I − cS+3

4

(
n+ n1n2 − 1

)
+ cS−1

4

(
n2 − 1

2

)
Sas. S. F. I − cS+3

4

(
n+ n1n2 − 1

)
+ cS−1

4

(
n2

)
NT ×f N⊥ I − cc

4

(
n1 + n1n2 − 1

2

)
Co. S. F. I − cc

4

(
n1 + n1n2 − 1

)
NT ×f Nθ I − cRK+3γ

4

(
n+ n1n2 − 1

)
− cRK−γ

4

(
3
2

)
G. C. S. F. I − cRK+3γ

4

(
n+ n1n2 − 1

)
− cRK−γ

4

(
3
2

cos2 θ

)
NT ×f N⊥ I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 − 1

2

)
Ke. S. F. I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2

)
N⊥ ×f NT I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 + 1

)
Ke. S. F. I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 − 3

2

)
Table 7.1: A general inequality for Di-minimal warped product submanifolds in terms of
Ricci curvature and the mean curvature vector.
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Manifold Inequality

NT ×f Nθ I − cKe−3
4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 − 1

2

)
Ke. S. F. I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 − 3

2
cos2 θ

)
Nθ ×f NT I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 − 3

2
cos2 θ

)
Ke. S. F. I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 − 3

2

)
N⊥ ×f Nθ I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 + 1

)
Ke. S. F. I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 − 3

2
cos2 θ

)
Nθ ×f N⊥ I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2 + (1− 3

2
cos2 θ)

)
Ke. S. F. I − cKe−3

4

(
n+ n1n2 − 1

)
+ cKe+1

4

(
n2

)
Nθ ×f N⊥ I − cS+3

4

(
n+ n1n2 − 1

)
+ cS−1

4

(
n2 + (1− 3

2
cos2 θ)

)
Sas. S. F. I − cS+3

4

(
n+ n1n2 − 1

)
+ cS−1

4

(
n2

)
Nθ ×f N⊥ I − cc

4

(
n1 + n1n2 − 2 + 3

2
cos2 θ

)
Co. S. F. I − cc

4

(
n1 + n1n2 − 1

)
Nθ ×f N⊥ I − cKa

4

(
n+ n1n2 − 1 + 3

2
cos2 θ

)
C. S. F. I − cKa

4

(
n+ n1n2 − 1

)
Nθ ×f N⊥ I − cRK+3γ

4

(
n+ n1n2 − 1

)
− cRK−γ

4

(
3
2

cos2 θ)

)
G. C. S. F. I − cRK+3γ

4

(
n+ n1n2 − 1

)
N⊥ ×f Nθ I − cRK+3γ

4

(
n+ n1n2 − 1

)
G. C. S. F. I − cRK+3γ

4

(
n+ n1n2 − 1

)
− cRK−γ

4

(
3
2

cos2 θ

)
Table 7.2: A general inequality for Di-minimal warped product submanifolds in terms of
Ricci curvature and the mean curvature vector.
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CHAPTER 8: THE δ-INVARIANT INEQUALITIES OF WARPED

PRODUCT SUBMANIFOLDS

8.1 INTRODUCTION

In (Chen, 1993), Chen initiated a significant inequality in terms of the intrinsic invariant

δ-invariant. This celebrated inequality drew attention of several authors (Chen, 2008).

Motivated by the result of Chen, we construct two new general inequalities in terms of

δ-invariants, but this time for warped product submanifolds of Riemannian manifolds.

We recall the following algebraic lemma:

Lemma 8.1.1. Let α1, α2, · · · , αn, β be (n+ 1) (n ≥ 2) real numbers such that

(
n∑
i=1

αi)
2 = (n− 1)(

n∑
i=1

α2
i + β).

Then 2α1α2 ≥ β, with equality holds if and only if α1 + α2 = α3 = · · · = αn.

Also, we recall the following definition of the Chen first invariant, which was defined

in Chapter Two as

δM̃m(x) = τ̃(TxM̃
m)− inf{K̃(π) : π ⊂ TxM̃

m, x ∈ M̃m, dimπ = 2}. (8.1.1)

8.2 SOME TECHNICAL LEMMAS

For simplicity’s sake, we present three computational lemmas in this section. Once they

are verified, the proofs of inequalities in the next two sections become straightforward.

The following result is useful in proofs of the next two inequalities.

Lemma 8.2.1. Let ϕ : Mn = N1 ×f N2 −→ M̃m be an isometric immersion of an

n-dimensional warped product submanifold Mn into a Riemannian manifold M̃m. Then,

we have

1

2

n∑
i,j=1
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=1

(hrij)
2 +

m∑
r=n+2

hr11h
r
22 −

m∑
r=n+1

(hr12)2 =

1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 +

1

2

m∑
r=n+2

(hr11 +hr22)2 +
m∑

r=n+1

n∑
j=3

(
(hr1j)

2 +(hr2j)
2

)
,

(8.2.1)

where n and m are the dimensions of Mn and M̃m, respectively.
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Proof. If we start from the left hand side of (8.2.1), then the first two terms can be re-

spectively expanded in this way

1

2

n∑
i,j=1
i6=j

(hn+1
ij )2 =

1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 +

n∑
j=3

(hn+1
1j )2 + (hn+1

12 )2 +
n∑
j=3

(hn+1
2j )2, (8.2.2)

and

1

2

m∑
r=n+2

n∑
i,j=1

(hrij)
2 =

1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 +

m∑
r=n+2

n∑
j=3

(hr1j)
2 +

m∑
r=n+2

n∑
j=3

(hr2j)
2

+
m∑

r=n+2

(hr12)2 +
1

2

m∑
r=n+2

(
(hr11)2 + (hr22)2

)
. (8.2.3)

Using equations (8.2.2) and (8.2.3) to substitute the first two terms on the left hand

side of (8.2.1), taking into consideration the following relations
m∑

r=n+2

hr11h
r
22 +

1

2

m∑
r=n+2

(
(hr11)2 + (hr22)2

)
=

1

2

m∑
r=n+2

(hr11 + hr22)2,

n∑
j=3

(hn+1
1j )2 +

m∑
r=n+2

n∑
j=3

(hr1j)
2 +

n∑
j=3

(hn+1
2j )2 +

m∑
r=n+2

n∑
j=3

(hr2j)
2

=
m∑

r=n+1

n∑
j=3

(
(hr1j)

2 + (hr2j)
2

)
and

(hn+1
12 )2 +

m∑
r=n+2

(hr12)2 =
m∑

r=n+1

(hr12)2,

the right hand side of (8.2.1) follows immediately, and completes the proof.

For the first inequality of this chapter, we prove the following computational lemma.

Lemma 8.2.2. Let ϕ : Mn = N1 ×f N2 −→ M̃m be an isometric immersion of an

n-dimensional warped product submanifold Mn into a Riemannian manifold M̃m. Then,

the following holds

1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 +

m∑
r=n+1

n∑
j=3

(
(hr1j)

2 + (hr2j)
2

)
=

1

2

n1∑
a,b=3
a6=b

(hn+1
ab )2 +

1

2

n∑
A,B=n1+1

A6=B

(hn+1
AB )2 +

1

2

m∑
r=n+2

n1∑
a,b=3

(hrab)
2 +

1

2

m∑
r=n+2

n∑
A,B=n1+1

(hrAB)2

+
m∑

r=n+1

n1∑
a=3

(
(hr1a)

2 + (hr2a)
2

)
+

m∑
r=n+1

n1∑
a=1

n∑
A=n1+1

(hraA)2, (8.2.4)

where n1, n and m are the dimensions of N1, M
n and M̃m, respectively.
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Proof. It is not difficult to expand the following expressions as

1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 =

1

2

n1∑
a,b=3
a6=b

(hn+1
ab )2 +

1

2

n∑
A,B=n1+1

A6=B

(hn+1
AB )2 +

n1∑
a=3

n∑
A=n1+1

(hn+1
aA )2, (8.2.5)

and
1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 =

1

2

m∑
r=n+2

n1∑
a,b=3

(hrab)
2 +

1

2

m∑
r=n+2

n∑
A,B=n1+1

(hrAB)2

+
m∑

r=n+2

n1∑
a=3

n∑
A=n1+1

(hraA)2. (8.2.6)

If we use the above two equations to substitute the first two terms in the left hand side

of (8.2.4), taking into account the following equation

m∑
r=n+1

n∑
j=3

(
(hr1j)

2 + (hr2j)
2

)
+

n1∑
a=3

n∑
A=n1+1

(hn+1
aA )2 +

m∑
r=n+2

n1∑
a=3

n∑
A=n1+1

(hraA)2 =

m∑
r=n+1

n1∑
a=3

(
(hr1a)

2 + (hr2a)
2

)
+

m∑
r=n+1

n1∑
a=1

n∑
A=n1+1

(hraA)2,

then the right hand side of (8.2.4) automatically follows.

Finally, this lemma is necessary for the final inequality of this work.

Lemma 8.2.3. Let ϕ : Mn = N1 ×f N2 −→ M̃m be an isometric immersion of an

n-dimensional warped product submanifold Mn into a Riemannian manifold M̃m. Then,

the following equation holds

1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 +

1

2

n∑
A=n1+1

(hn+1
AA )2 =

1

2

m∑
r=n+2

n1∑
a,b=3

(hrab)
2 +

m∑
r=n+2

n1∑
a=3

n∑
A=n1+1

(hraA)2 +
1

2

n1∑
a,b=3
a6=b

(hn+1
ab )2

+

n1∑
a=3

n∑
A=n1+1

(hn+1
aA )2 +

1

2

m∑
r=n+1

n∑
A,B=n1+1

(hrAB)2,

where n1, n and m are the dimensions of N1, M
n and M̃m, respectively.

Proof. First, observe that

1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 =

1

2

n1∑
a,b=3
a6=b

(hn+1
ab )2 +

n1∑
a=3

n∑
A=n1+1

(hn+1
aA )2 +

1

2

n∑
A,B=n1+1

A6=B

(hn+1
AB )2,
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and
1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 =

1

2

m∑
r=n+2

n1∑
a,b=3

(hrab)
2

+
m∑

r=n+2

n1∑
a=3

n∑
A=n1+1

(hraA)2 +
1

2

m∑
r=n+2

n∑
A,B=n1+1

(hrAB)2.

By the preceding couple of equations, with help of the following two

1

2

n∑
A=n1+1

(hn+1
AA )2 +

1

2

n∑
A,B=n1+1

A6=B

(hn+1
AB )2 =

1

2

n∑
A,B=n1+1

(hn+1
AB )2

and

1

2

n∑
A,B=n1+1

(hn+1
AB )2 +

1

2

m∑
r=n+2

n∑
A,B=n1+1

(hrAB)2 =
1

2

m∑
r=n+1

n∑
A,B=n1+1

(hrAB)2,

the assertion follows directly.

8.3 THE δ-INVARIANT INEQUALITY FOR Di-MINIMAL WARPED PRODUCT
SUBMANIFOLDS

For the class of Di-minimal warped product submanifolds, we establish the following

relationship

Theorem 8.3.1. For i = 1 or 2, let ϕ : Mn = N1 ×f N2 −→ M̃m(c) be a Di-minimal

isometric immersion of a warped product submanifold Mn, for n ≥ 2, into a Riemannian

space form M̃m(c). Then, for each point x ∈Mn and each plane π ⊂ TxM
n, we have

δMn(x)− n2 ∆f

f
≤ n2(n− 2)

2(n− 1)
|| ~H||2 − (n1n2 + 1− 1

2
n2 +

1

2
n)c. (8.3.1)

Equality in (8.3.1) holds at x ∈ Mn if and only if there exists an orthonormal basis

{e1, · · · , en} of TxMn and an orthonormal basis {en+1, · · · , em} of T⊥x M
n such that (a)

π = Span{e1, e2} and (b) the shape operators take the following forms:
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If r = n+ 1, then

Aen+1 =



µ1 hn+1
12 013 01n1 hn+1

1n1+1 · · · · · · · · · hn+1
1n

hn+1
21 µ2 023

...
... . . . . . . . . . ...

031 032 µ 0
... . . . . . . . . . ...

0n11 · · · 0 µ hn+1
n1n1+1 · · · · · · · · · hn+1

n1n

hn+1
n1+11 · · · · · · hn+1

n1+1n1

. . . 0 · · · · · · 0n1+1n

... . . . . . . ... 0
. . . 0 · · · ...

... . . . . . . ...
... 0

. . . · · · ...
... . . . . . . ...

...
... 0

. . . 0

hn+1
n1 · · · · · · hn+1

nn1
0nn1+1 0 · · · 0 µ



,

µ = µ1 + µ2.

If r ∈ {n+ 2, · · · ,m}, then

Aer =



hr11 hr12 013 01n1 hr1n1+1 · · · · · · · · · hr1n

hr12 −hr11 023
...

... . . . . . . . . . ...

031 032 033
...

... . . . . . . . . . ...

0n11 · · · · · · 0n1n1 hrn1n1+1 · · · · · · · · · hrn1n

hrn1+11 · · · · · · hrn1+1n1

. . . 0 0 · · · 0n1+1n

... . . . . . . ... 0
. . . 0 · · · ...

... . . . . . . ... 0 0
. . . · · · ...

... . . . . . . ...
...

... 0
. . . 0

hrn1 · · · · · · hrnn1
0nn1+1 0 · · · 0 0nn



.

Proof. Let x ∈Mn and π ⊂ TxM
n a 2-plane. We choose an orthonormal basis {e1, · · · ,

en1 , en1+1, · · · , en} of TxMn, where n1 + n2 = n, and {en+1, · · · , em} is an orthonormal

basis of T⊥x M
n, such that π = Span{e1, e2} and the normal vector en+1 is in the direction

of the mean curvature vector ~H , hence en+1 =
~H

|| ~H||
.

In virtue of (2.3.56) and (2.3.44), we obtain

n2|| ~H||2 = 2τ(TxM
n) + ||h||2 − n(n− 1)c. (8.3.2)

The above equation may be written as( n∑
i=1

hn+1
ii

)2

= 2τ(TxM
n) + ||h||2 − n(n− 1)c. (8.3.3)
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Now, if we put

Ξ = 2τ(TxM
n)− n2(n− 2)

n− 1
|| ~H||2 − n(n− 1)c, (8.3.4)

then from (8.3.3) and (8.3.4), we have

n2|| ~H||2 = (n− 1)
(
Ξ + ||h||2

)
. (8.3.5)

Moreover, it is obvious that

||h||2 =
n∑
i=1

(hn+1
ii )2 +

∑
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2. (8.3.6)

Thus, combining (8.3.5) and (8.3.6) together, we get( n∑
i=1

hn+1
ii

)2

= (n− 1)

(
Ξ +

n∑
i=1

(hn+1
ii )2 +

∑
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2

)
. (8.3.7)

Applying Lemma 8.1.1 on the above relation for

αi = hn+1
ii , ∀ i ∈ {1, · · · , n}

and

β = Ξ +
∑
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2,

we derive

hn+1
11 hn+1

22 ≥ 1

2

(
Ξ +

∑
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2

)
. (8.3.8)

In virtue of (2.3.9) and (2.3.44), it is possible to write

K(π) = c+
m∑

r=n+1

(
hr11h

r
22 − (hr12)2

)
. (8.3.9)

Equivalently,

K(π) = c+
m∑

r=n+2

hr11h
r
22 −

m∑
r=n+1

(hr12)2 + hn+1
11 hn+1

22 . (8.3.10)

From (8.3.8) and (8.3.10), we obtain

K(π) ≥ c+
1

2
Ξ +

m∑
r=n+2

hr11h
r
22 −

m∑
r=n+1

(hr12)2

+
1

2

n∑
i,j=1
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=1

(hrij)
2. (8.3.11)
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By means of Lemma 8.2.1, it is clear that the above inequality is congruent to

K(π) ≥ c+
1

2
Ξ +

1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2

+
1

2

m∑
r=n+2

(hr11 + hr22)2 +
m∑

r=n+1

n∑
j=3

(
(hr1j)

2 + (hr2j)
2

)
. (8.3.12)

A help may be taken from Lemma 8.2.2, to show that the above inequality is identical

to

K(π) ≥ c+
1

2
Ξ +

1

2

n1∑
a,b=3
a6=b

(hn+1
ab )2 +

1

2

n∑
A,B=n1+1

A6=B

(hn+1
AB )2

+
1

2

m∑
r=n+2

n1∑
a,b=3

(hrab)
2 +

1

2

m∑
r=n+2

n∑
A,B=n1+1

(hrAB)2 +
1

2

m∑
r=n+2

(hr11 + hr22)2

+
m∑

r=n+1

n1∑
a=3

(
(hr1a)

2 + (hr2a)
2

)
+

m∑
r=n+1

n1∑
a=1

n∑
A=n1+1

(hraA)2.

In virtue of Theorem 5.2.1, the last term of the right hand side in the above equation

can be evaluated to obtain

K(π) ≥ c+
1

2
Ξ + n1n2 c−

n2 ∆(f)

f
.

Hence, the above inequality takes the following form via (8.3.4)

K(π) ≥ τ(TxM
n)− n2(n− 2)

2(n− 1)
|| ~H||2 − n2 ∆f

f
+ (n1n2 + 1− 1

2
n2 +

1

2
n)c,

which gives the inequality directly.

The equality sign of (8.3.1) holds at a point x ∈ Mn if and only if all equalities of

the inequalities of the above proof hold. Form the above proof, we see that this occurs

if and only if some conditions are satisfied. These conditions can be classified into two

categories.

Firstly, if r = n+ 1, then we have

hn+1
11 + hn+1

22 = hn+1
33 = · · · = hn+1

nn ,

and
n1∑

a,b=3
a6=b

(
hn+1
ab

)2
=

n∑
A,B=n1+1

A6=B

(
hn+1
AB

)2
= hn+1

1a = hn+1
2a = 0,
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where a ∈ {3, · · · , n1}. This implies

Aen+1 =



µ1 hn+1
12 013 01n1 hn+1

1n1+1 · · · · · · · · · hn+1
1n

hn+1
21 µ2 023

...
... . . . . . . . . . ...

031 032 µ 0
... . . . . . . . . . ...

0n11 · · · 0 µ hn+1
n1n1+1 · · · · · · · · · hn+1

n1n

hn+1
n1+11 · · · · · · hn+1

n1+1n1

. . . 0 · · · · · · 0n1+1n

... . . . . . . ... 0
. . . 0 · · · ...

... . . . . . . ...
... 0

. . . · · · ...
... . . . . . . ...

...
... 0

. . . 0

hn+1
n1 · · · · · · hn+1

nn1
0nn1+1 0 · · · 0 µ



,

µ = µ1 + µ2.

Secondly, if r ∈ {n+ 2, · · · ,m}, then we have the following
n1∑

a,b=3

(
hrab
)2

=
n∑

A,B=n1+1

(
hrAB

)2
= hr1a = hr2a = hr11 + hr22 = 0,∀ a ∈ {3, · · · , n1}.

Equivalently,

Aer =



hr11 hr12 013 01n1 hr1n1+1 · · · · · · · · · hr1n

hr12 −hr11 023
...

... . . . . . . . . . ...

031 032 033
...

... . . . . . . . . . ...

0n11 · · · · · · 0n1n1 hrn1n1+1 · · · · · · · · · hrn1n

hrn1+11 · · · · · · hrn1+1n1

. . . 0 0 · · · 0n1+1n

... . . . . . . ... 0
. . . 0 · · · ...

... . . . . . . ... 0 0
. . . · · · ...

... . . . . . . ...
...

... 0
. . . 0

hrn1 · · · · · · hrnn1
0nn1+1 0 · · · 0 0nn



.

At the end of this section, we provide a table which includes some of almost Hermitian

and almost contact manifolds of interest. Following almost similar techniques of previous

chapters, the next table can be verified. For simplicity’s sakes, we set

I = δMn(x)− n2 ∆f

f
≤ n2(n− 2)

2(n− 1)
|| ~H||2, (8.3.13)

then we have
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Manifold Inequality

R. S. F. I + 1
2
c

(
n2

1 + n2
2 − n− 2

)
C. S. F. I + 1

2
cKa

4

(
n2

1 + n2
2 − n− 2

)
G. C. S. F. I + 1

2
cRK+3γ

4

(
n2

1 + n2
2 − n− 2

)
Sas. S. F. I + 1

2
cS+3

4

(
n2

1 + n2
2 − n− 2

)
+ 3

2
cS−1

4

(
−2n1 + 2

)
Ken. S. F. I + 1

2
cKe−3

4

(
n2

1 + n2
2 − n− 2

)
+ 3

2
cKe+1

4

(
−2n1 + 2

)
Co. S. F. I + 1

2
cc
4

(
n2

1 + n2
2 − n− 2

)
+ 3

2
cc
4

(
−2n1 + 2

)
Table 8.1: General inequalities involving the δ-invariant and the mean curvature vector
for Di-minimal warped product submanifolds satisfying g(PX,Z) = 0 ∀X ∈ TN1, Z ∈
TN2.

8.4 THE δ-INVARIANT INEQUALITY FOR GENERAL WARPED PRODUCT
SUBMANIFOLDS

In the previous section, we proved an inequality in terms of δ-invariant for Di-minimal

warped product submanifolds. Here, we present another inequality in a more general

setting, it is for general warped product submanifolds.

Theorem 8.4.1. Let ϕ : Mn = N1 ×f N2 −→ M̃m(c) be an isometric immersion of a

warped product submanifold Mn into a Riemannian space form M̃m(c). Then, for each

point x ∈Mn and each plane section πi ⊂ TxN
ni
i , ni ≥ 2, for i = 1, 2, we have:

(i) if π1 ⊂ TxN1, then

δNn1
1

(x) ≤ n2

2
|| ~H||2 − n2∆f

f
+

1

2
n1(n1 + 2n2 − 1)c− c; (8.4.1)

(ii) if π2 ⊂ TxN2, then

δNn2
2

(x) ≤ n2

2
|| ~H||2 − n2∆f

f
+

1

2
n2(n2 + 2n1 − 1)c− c. (8.4.2)

Equalities of the above two inequalities hold at x ∈ Mn if and only if there exists an

orthonormal basis {e1, · · · , en} of TxMn and an orthonormal basis {en+1, · · · , em} of

T⊥x M
n such that (a) π = Span{e1, e2} and (b) the shape operators take the following

forms:
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( ì) If π1 ⊂ TxN1, then for r = n+ 1, we have

Aen+1 =



µ1 hn+1
12 0 · · · 01n1 01n1+1 · · · 01n

hn+1
21 µ2 0 · · · ...

... · · · ...

0 0 µ · · · ...
... · · · ...

...
...

... . . . ...
... · · · ...

0n11 0 0 · · · µ 0n1n1+1 · · · 0n1n

0n1+11 · · · · · · · · · 0n1+1n1 hn+1
n1+1n1+1 · · · hn+1

n1+1n

... . . . . . . . . . ...
... . . . ...

0n1 · · · · · · · · · 0nn1 hn+1
nn1+1 · · · hn+1

nn



,

µ = µ1 + µ2.

If r ∈ {n+ 2, · · · ,m}, then we have

Aer =



hr11 hr12 0 · · · 01n1 01n1+1 · · · 01n

hr21 −hr11 0 · · · ...
... · · · ...

0 0 033 · · ·
...

... · · · ...
...

...
... · · · ...

... · · · ...

0n11 0 0 · · · 0n1n1 0n1n1+1 · · · 0n1n

0n1+11 · · · · · · · · · 0n1+1n1 hrn1+1n1+1 · · · hrn1+1n

... . . . . . . . . . ...
... . . . ...

0n1 · · · · · · · · · 0nn1 hrnn1+1 · · · hrnn



.

(ìi) If π2 ⊂ TxN2, then for r = n+ 1, we have

Aen+1 =

hn+1
11 · · · · · · hn+1

1n1
01n1+1 · · · · · · · · · 01n

... . . . ...
... . . . . . . . . . ...

... . . . ...
... . . . . . . . . . ...

hn+1
n11 · · · · · · hn+1

n1n1
0n1n1+1 · · · · · · · · · 0n1n

0n1+11 · · · · · · 0n1+1n1 µ1 hn+1
n1+1n1+2 0 · · · 0n1+1n

... . . . . . . ... hn+1
n1+2n1+1 µ2 0 · · · ...

... . . . . . . ... 0 0 µ · · · ...

... . . . . . . ...
...

... 0
. . . 0

0n1 · · · · · · 0nn1 0nn1+1 0 · · · 0 µ



,
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where µ = µ1 + µ2.

If r ∈ {n+ 2, · · · ,m}, then we have

Aer =

hr11 · · · · · · hr1n1
01n1+1 · · · · · · · · · 01n

... . . . ...
... . . . . . . . . . ...

... . . . ...
... . . . . . . . . . ...

hrn11 · · · · · · hrn1n1
0n1n1+1 · · · · · · · · · 0n1n

0n1+11 · · · · · · 0n1+1n1 hrn1+1n1+1 hrn1+1n1+2 0 · · · 0n1+1n

... . . . . . . ... hrn1+2n1+1 −hrn1+1n1+1 0 · · · ...

... . . . . . . ... 0 0 0 · · · ...

... . . . . . . ...
...

... 0
. . . 0

0n1 · · · · · · 0nn1 0nn1+1 0 · · · 0 0



.

(ìii) If the equality of (i) or (ii) holds, then N1 ×f N2 is mixed totally geodesic in

M̃m(c). Moreover, N1×f N2 is both D1-minimal and D2-minimal. Thus, N1×f N2

is a minimal warped product submanifold in M̃m(c).

Proof. For x ∈ Mn, let π1 ⊂ TxN1 be a 2-plane. We choose an orthonormal basis

{e1, · · · , en1 , en1+1, · · · , en} of TxMn, where {e1, · · · , en1} is an orthonormal basis for

TxN1 and {en1 , en1+1, · · · , en} is for TxN2. Hence, {en+1, · · · , em} is an orthonormal

basis of T⊥x M
n. First, put π1 = Span{e1, e2} such that the normal vector en+1 is in the

direction of the mean curvature vector ~H . By (2.3.39) and (2.3.9) we have

n2|| ~H||2 = 2τ(TxM
n) + ||h||2 − n(n− 1)c. (8.4.3)

Equivalently,( n1∑
a=1

hn+1
aa

)2

= 2τ(TxM
n)+||h||2−n(n−1)c−

( n∑
A=n1+1

hn+1
AA

)2

−2

n1∑
a=1

n∑
A=n1+1

hn+1
aa hn+1

AA .

Putting

Υ1 = 2τ(TxM
n)− n1 − 2

n1 − 1

( n1∑
a=1

hn+1
aa

)2

−
( n∑
A=n1+1

hn+1
AA

)2

− 2

n1∑
a=1

n∑
A=n1+1

hn+1
aa hn+1

AA − n(n− 1)c. (8.4.4)
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Thus, from the above two equations we may write( n1∑
a=1

hn+1
aa

)2

= (n1 − 1)

(
Υ1 + ||h||2

)
, (8.4.5)

i.e., ( n1∑
a=1

hn+1
aa

)2

= (n1 − 1)

(
Υ1 +

n1∑
a=1

(hn+1
aa )2 +

n∑
A=n1+1

(hn+1
AA )2

+
n∑

i,j=1
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2

)
. (8.4.6)

Applying Lemma 8.1.1 on the above equation for

αa = hn+1
aa , ∀ a ∈ {1, · · · , n1}

and

β = Υ1 +
n∑

A=n1+1

(hn+1
AA )2 +

n∑
i,j=1
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2,

then we derive

hn+1
11 hn+1

22 ≥ 1

2

(
Υ1 +

n∑
A=n1+1

(hn+1
AA )2 +

n∑
i,j=1
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2

)
. (8.4.7)

From (2.3.9) and (2.3.39) we also have

K(π1) = c+
m∑

r=n+1

(
hr11h

r
22 − (hr12)2

)
.

Therefore, by combining the above two relations together, we get

K(π1) ≥ c+
1

2
Υ1 +

1

2

n∑
A=n1+1

(hn+1
AA )2 +

m∑
r=n+2

hr11h
r
22 −

m∑
r=n+1

(hr12)2

+
1

2

n∑
i,j=1
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=1

(hrij)
2.

From Lemma 8.2.1, it is obvious that the above inequality is identical to

K(π1) ≥ c+
1

2
Υ1 +

1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2

+
1

2

m∑
r=n+2

(hr11 + hr22)2 +
m∑

r=n+1

n∑
j=3

(
(hr1j)

2 + (hr2j)
2

)
+

1

2

n∑
A=n1+1

(hn+1
AA )2.
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Hence, the above inequality yields to

K(π1) ≥ c+
1

2
Υ1 +

1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 +

1

2

n∑
A=n1+1

(hn+1
AA )2. (8.4.8)

By (8.4.4) and the above equation, we obtain

K(π1) ≥ c+ τ(TxM
n) +

1

2(n1 − 1)

( n1∑
a=1

hn+1
aa

)2

− n2

2
|| ~H||2 − 1

2
n(n− 1)c

+
1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 +

1

2

n∑
A=n1+1

(hn+1
AA )2.

Making use of (6.3.3), we get

τ1(TxN1)−K(π1) ≤ n2

2
|| ~H||2 − n2∆f

f
+ (

n2

2
− n

2
− 1)c− τ2(TxN2)

−1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 − 1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 − 1

2

n∑
A=n1+1

(hn+1
AA )2. (8.4.9)

Applying the Gauss equation on τ2(TxN2), gives

−τ2(TxN2) = −τ̃2(TxN2) +
1

2

m∑
r=n+1

n∑
A,B=n1+1

(hrAB)2− 1

2

m∑
r=n+1

(hrn1+1n1+1 + · · ·+hrnn)2.

(8.4.10)

In view of the above two relations, we can write

τ1(TxN1)−K(π1) ≤ n2

2
|| ~H||2 − n2∆f

f
+ (

n2

2
− n

2
− 1)c− τ̃2(TxN2)

−1

2

n∑
i,j=3
i6=j

(hn+1
ij )2 − 1

2

m∑
r=n+2

n∑
i,j=3

(hrij)
2 − 1

2

n∑
A=n1+1

(hn+1
AA )2 +

1

2

m∑
r=n+1

n∑
A,B=n1+1

(hrAB)2.

(8.4.11)

Lemma 8.2.3 is useful to show that (8.4.11) is equivalent to the following

τ1(TxN1)−K(π1) ≤ n2

2
|| ~H||2 − n2∆f

f
+ (

n2

2
− n

2
− 1)c− τ̃2(TxN2)

−1

2

m∑
r=n+2

n1∑
a,b=3

(hrab)
2 −

m∑
r=n+2

n1∑
a=3

n∑
A=n1+1

(hraA)2

−1

2

n1∑
a,b=3
a6=b

(hn+1
ab )2 −

n1∑
a=3

n∑
A=n1+1

(hn+1
aA )2. (8.4.12)

Hence, the inequality in (i) follows directly from the above one.
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If π2 ⊂ TxN2, then put π2 = Span{en1+1, en1+2}. Now, following similar analogy

like the first case, we can write( n∑
A=n1+1

hn+1
AA

)2

= 2τ(TxM
n)+||h||2−n(n−1)c−

( n1∑
a=1

hn+1
aa

)2

−2

n1∑
a=1

n∑
A=n1+1

hn+1
aa hn+1

AA .

Putting

Υ2 = 2τ(TxM
n)− n2 − 2

n2 − 1

( n∑
A=n1+1

hn+1
AA

)2

−
( n1∑
a=1

hn+1
aa

)2

− 2

n1∑
a=1

n∑
A=n1+1

hn+1
aa hn+1

AA − n(n− 1)c. (8.4.13)

Thus, from the above two equations we may write( n∑
A=n1+1

hn+1
AA

)2

= (n2 − 1)

(
Υ2 + ||h||2

)
, (8.4.14)

i.e., ( n∑
A=n1+1

hn+1
AA

)2

= (n2 − 1)

(
Υ2 +

n1∑
a=1

(hn+1
aa )2 +

n∑
A=n1+1

(hn+1
AA )2

+
n∑

i,j=1
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2

)
. (8.4.15)

Applying Lemma 8.1.1 on the above equation for

αa = hn+1
AA , ∀ a ∈ {n1 + 1, · · · , n}

and

β = Υ2 +

n1∑
a=1

(hn+1
aa )2 +

n∑
i,j=1
i6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2,

then we derive

hn+1
n1+1n1+1h

n+1
n1+2n1+2 ≥

1

2

(
Υ2+

n1∑
a=1

(hn+1
aa )2+

n∑
i,j=1
i6=j

(hn+1
ij )2+

m∑
r=n+2

n∑
i,j=1

(hrij)
2

)
. (8.4.16)

From (2.3.9) and (2.3.39) we also have

K(π2) = c+
m∑

r=n+1

(
hrn1+1n1+1h

r
n1+2n1+2 − (hrn1+1n1+2)2

)
.

Therefore, by combining the above two relations we reach

K(π2) ≥ c+
m∑

r=n+2

hrn1+1n1+1h
r
n1+2n1+2 −

m∑
r=n+1

(hrn1+1n1+2)2 +
1

2
Υ2
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+
1

2

n1∑
a=1

(hn+1
aa )2 +

1

2

n∑
i,j=1
i6=j

(hn+1
ij )2 +

1

2

m∑
r=n+2

n∑
i,j=1

(hrij)
2.

Now, following similar procedure as the first case, the inequality of statement (ii)

follows immediately.

For the equality case, we also distinguish two cases based on whether the 2-plane πi

is tangent to the first factor or to the second. In statement (̀i), we consider π1 ⊂ TxN1,

then the equality holds if and only if all equalities of (8.4.7), (8.4.8), (8.4.9), (8.4.10)

and (8.4.12) hold. One can see that these equalities hold if and only if the following

conditions are satisfied, respectively.

(i) hn+1
11 + hn+1

22 = hn+1
33 = · · · = hn+1

n1n1
,

(ii)
m∑

r=n+2

(hr11 + hr22)2 +
m∑

r=n+1

n∑
j=3

(
(hr1j)

2 + (hr2j)
2

)
= 0,

(iii)
( n1∑
a=1

hn+1
aa

)2

=
m∑

r=n+1

(hrn1+1n1+1 + · · ·+ hrnn)2 = 0,

(iv)
m∑

r=n+2

n1∑
a,b=3

(hrab)
2 +

m∑
r=n+2

n1∑
a=3

n∑
A=n1+1

(hraA)2

+

n1∑
a,b=3
a6=b

(hn+1
ab )2 +

n1∑
a=3

n∑
A=n1+1

(hn+1
aA )2 = 0.

From condition (iii), it is clear that N1 ×f N2 is both D1-minimal and D2-minimal

warped product submanifold in M̃m(c). This implies thatN1×fN2 is minimal in M̃m(c).

Now, we are going to classify the other conditions in two categories, according to the

normal vector field r. Firstly, if r = n+ 1, then we have

hn+1
11 + hn+1

22 = hn+1
33 = · · · = hn+1

n1n1
,

and
n∑
j=3

hn+1
1j =

n∑
j=3

hn+1
2j =

n1∑
a,b=3
a6=b

hn+1
ab =

n1∑
a=3

n∑
A=n1+1

hn+1
aA = 0.
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Equivalently,

Aen+1 =



µ1 hn+1
12 0 · · · 01n1 01n1+1 · · · 01n

hn+1
21 µ2 0 · · · ...

... · · · ...

0 0 µ · · · ...
... · · · ...

...
...

... . . . ...
... · · · ...

0n11 0 0 · · · µ 0n1n1+1 · · · 0n1n

0n1+11 · · · · · · · · · 0n1+1n1 hn+1
n1+1n1+1 · · · hn+1

n1+1n

... . . . . . . . . . ...
... . . . ...

0n1 · · · · · · · · · 0nn1 hn+1
nn1+1 · · · hn+1

nn



,

µ = µ1 + µ2.

Secondly, if r ∈ {n+ 2, · · · ,m}, then the conditions above imply

hr11 + hr22 =
n∑
j=3

hr1j =
n∑
j=3

hr2j =

n1∑
a,b=3

hrab =

n1∑
a=3

n∑
A=n1+1

hraA = 0.

Equivalently,

Aer =



hr11 hr12 0 · · · 01n1 01n1+1 · · · 01n

hr21 −hr11 0 · · · ...
... · · · ...

0 0 033 · · ·
...

... · · · ...
...

...
... · · · ...

... · · · ...

0n11 0 0 · · · 0n1n1 0n1n1+1 · · · 0n1n

0n1+11 · · · · · · · · · 0n1+1n1 hrn1+1n1+1 · · · hrn1+1n

... . . . . . . . . . ...
... . . . ...

0n1 · · · · · · · · · 0nn1 hrnn1+1 · · · hrnn



.

Obviously, the above two matrices show that N1 ×f N2 is mixed totally geodesic

submanifold in M̃m(c).
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Analogously, the equality sign in (ìi) holds if and only if the following are satisfied

Aen+1 =



hn+1
11 · · · · · · hn+1

1n1
01n1+1 · · · · · · · · · 01n

... . . . ...
... . . . . . . . . . ...

... . . . ...
... . . . . . . . . . ...

hn+1
n11 · · · · · · hn+1

n1n1
0n1n1+1 · · · · · · · · · 0n1n

0n1+11 · · · · · · 0n1+1n1 µ1 hn+1
n1+1n1+2 0 · · · 0n1+1n

... . . . . . . ... hn+1
n1+2n1+1 µ2 0 · · · ...

... . . . . . . ... 0 0 µ · · · ...

... . . . . . . ...
...

... 0
. . . 0

0n1 · · · · · · 0nn1 0nn1+1 0 · · · 0 µ



,

where µ = µ1 + µ2.

Also,

Aer =



hr11 · · · · · · hr1n1
01n1+1 · · · · · · · · · 01n

... . . . ...
... . . . . . . . . . ...

... . . . ...
... . . . . . . . . . ...

hrn11 · · · · · · hrn1n1
0n1n1+1 · · · · · · · · · 0n1n

0n1+11 · · · · · · 0n1+1n1 hrn1+1n1+1 hrn1+1n1+2 0 · · · 0n1+1n

... . . . . . . ... hrn1+2n1+1 −hrn1+1n1+1 0 · · · ...

... . . . . . . ... 0 0 0 · · · ...

... . . . . . . ...
...

... 0
. . . 0

0n1 · · · · · · 0nn1 0nn1+1 0 · · · 0 0



.

Clearly, N1 ×f N2 is mixed totally geodesic in M̃m(c). Also, it is not difficult to

show that N1 ×f N2 is both D1-minimal and D2-minimal, which implies the minimality

of N1 ×f N2 in M̃m(c).

At the end of this section, we leave the following remark to the reader, since it can be

verified by the same techniques as in previous tables.

Remark 8.4.1. Extensions of the preceding inequality for any Di-minimal warped product

submanifold in space forms can be obtained by following similar techniques as in the

previous four tables.
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8.5 ANOTHER TWO NECESSARY CONDITIONS FOR THE MINIMALITY
OF WARPED PRODUCT SUBMANIFOLDS

In the previous chapter, we have found a necessary condition for a warped product sub-

manifold to be Di-minimal (for both i = 1, 2) in a Euclidean m-space Em (see Corollary

7.3.1). As a second answer of Problems 1.4.11 and 1.4.12, we apply Theorem 8.3.1 to

give a necessary condition for a warped product to be Di-minimal (for both i = 1, 2) in a

Euclidean m-space Em.

Corollary 8.5.1. If ϕ : Mn = N1 ×f N2 −→ Em is a Di-minimal isometric immersion

for both i = 1, 2, from a warped product submanifoldMn into a Euclideanm-space, then

δMn(x) ≤ n2 ∆f

f
, (8.5.1)

where δMn(x) is the Chen first invariant and n2 is the dimension of N2.

Finally, and more generally, Theorem 8.4.1 guarantees the following necessary con-

dition for any warped product submanifold to be minimal in Euclidean spaces.

Corollary 8.5.2. If ϕ : Mn = N1×fN2 −→ Em is a minimal isometric immersion from a

warped product submanifold Mn into a Euclidean m-space, then for each point x ∈ Mn

and each plane section π ⊂ TxM
n, we have:

(i) if π1 ⊂ TxN1, then

δNn1
1

(x) ≤ −n2∆f

f
; (8.5.2)

(ii) if π2 ⊂ TxN2, then

δNn2
2

(x) ≤ −n2∆f

f
. (8.5.3)
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CHAPTER 9: SOME CONCLUSIONS AND FURTHER RESEARCH

PROBLEMS

9.1 INTRODUCTION

This chapter is mainly devoted to present some open problems related to this thesis. We

organize this chapter to have three main sections. The first section offers those problems

which could not be solved by this work. We should notice that most of these problems

are special cases of those stated in Chapter One of this thesis.

The other two sections provide new open problems in this field. It is fair to say, that

all problems of these two sections are due to the current thesis. However, all problems of

this chapter can also be, in some sense, considered as conclusions as we will soon see. At

the very least, they could guide our programs of research for many years.

9.2 SOME PROBLEMS WHICH ARE NOT SOLVED IN THIS THESIS

Taking a quick look at the existence and nonexistence tables of Chapter Three, one can

conclude that many of warped product submanifolds are not proved whether they exist

or not. We refer to this situation by ?. Since neither a positive nor a negative answer is

obtained, it is reasonable to ask the following questions:

Problem 9.2.1. Do proper warped product submanifolds of types NT ×f Nθ, NT ×f N

and N⊥ ×f Nθ exist in nearly Kaehler manifolds?

Analogously,

Problem 9.2.2. Do proper warped product submanifolds of types NT ×f Nθ, NT ×f N

and N⊥ ×f Nθ exist in nearly Sasakian and nearly cosymplectic manifolds?

For the next problem, we believe that warped product hemi-slant submanifolds of the

type Nθ ×f N⊥ exists in Sasakian and cosymplectic manifolds. However, it is not proved

yet. Thus, it is interesting to state

Problem 9.2.3. Does a proper warped product submanifold of the type Nθ ×f N⊥ exist

in Sasakian, cosymplectic, nearly Sasakian and nearly cosymplectic manifolds?
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For non-Kaehler nearly Kaehler manifolds, many well-known examples were given

by famous geometers for CR-submanifolds (see, for example (Bejancu, 1986)). On the

contrary, solid examples can not be found in the literature of warped product submanifolds

in nearly Kaehler manifolds. Thus, we have the following problem

Problem 9.2.4. Construct concrete examples for CR-warped product submanifolds of

non-Kaehler nearly Kaehler manifolds?

Likewise

Remark 9.2.1. The last problem can be analogously stated for all warped product sub-

manifolds of the first three problems of this section.

As we mentioned ealier in thesis, the hope of extending the second inequality of h for

warped product submanifolds, other than CR-warped product submanifolds, had com-

pletely failed when we used a method based on Codazzi equation (Chen, 2003). That is,

the second inequality of hwas not proved for semi-slant, generic ∗, Di-minimal hemi-slant

or any Di-minimal warped product submanifold other than CR-warped product subman-

ifolds. However, and via the Gauss equation, this hope has been completely achieved in

Chapter Six of the current work (see Theorem 6.3.1).

Analogously, the first inequality have been proved firstly for CR-warped product sub-

manifolds in Kaehler manifolds by Chen (Chen, 2001). Soon it was extended to most

structures of interest (see references in (Chen, 2013)). Recently, the most general version

of this inequality is proved in almost contact manifolds (Mustafa et al., 2013). After that,

the first inequality of h has been proved for a semi-slant setting which can be considered

a new impulse given for warped product semi-slant submanifolds (Uddin et al., 2014).

Moreover, the most general version of such inequalities is given in (Mustafa et al.,2014).

Now, based on our results of Chapter Five, CR, semi-slant and generic warped prod-

uct submanifolds are Di-minimal warped product submanifolds in all almost contact and

almost Hermitian manifolds of interest of this thesis. In this work, we show that CR and
∗As mentioned in the margins of chapter five, generic submanifolds were defined for both almost Her-

mitian and almost contact manifolds. To avoid confusion, we did not give the definition of generic subman-
ifolds. For simplicity’s sake, we consider warped product of types NT ×f N and N ×f NT , where N is a
Riemannian submanifold.
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semi-slant do possess the first inequality of h in most structures of interest, while we are

not sure about generic warped product submanifolds structure. Hence we ask

Problem 9.2.5. Does a generic warped product submanifold of nearly Kaehler and nearly

trans-Sasakian manifolds have the first inequality of h?

Hint: preparatory lemmas are proven in Chapter Three for a general case, i. e., N ×f

NT , the reader can easily prove that these lemmas are true for the generic case also. Some

problems related to the local field of orthonormal frame may be encountered. So, all what

you need is to consider such problems in the adapted frame.

One of our future goals is to prove or to extend the inequality constructed by Chen in

(Chen, 1999), from Riemannain submanifolds to warped product submanifolds. Hence

we ask:

Problem 9.2.6. For warped product submanifolds, can we prove similar inequalities like

Theorem 1 of section 3 in (Chen, 1999)?

It should be known that, the term ”similar inequality” means simple inequality in-

volving similar extrinsic and intrinsic invariants, with equality case discussed completely.

Otherwise, it will not be similar inequality.

9.3 MORE NEW PROBLEMS THAT AROSE FROM RESULTS AND PROOFS
OF THIS THESIS

As mentioned in Chapter Six, Chen and Munteanu have constructed many examples to

show that the first and the second inequalities of h are optimal and sharp inequalities in

Kaehler and Sasakian manifolds, (see (Chen, 2001), (Munteanu, 2005), (Chen, 2003) and

(Chen, 2008)). Since it is a considerable geometrical contribution, we are now working in

this direction. Of course it is not easy to construct examples satisfying equalities of some

inequalities of this work, such as inequalities of chapter seven and eight, but it may be

easier to achieve it for the general second inequality of h in Chapter Six, Theorem 6.3.1.

Therefore, it is remarkable to ask the following

Problem 9.3.1. Are the inequalities of Chapters Six, Seven and Eight optimal inequali-

ties?
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In another line of thought, few, but significant, applications are derived in this thesis

by applying the constructed inequalities, especially in Chapters Six, Seven and Eight.

Those applications are special case solutions for Problems 1.4.11 and 1.4.12. However,

it is still possible to derive more applications from these inequalities. This direction is

suitable for postgraduate students in this field.

Problem 9.3.2. Can we give other new special case answers for Problems 1.4.11 and

1.4.12?

Next, we offer a third interesting direction of this field; that is, discussing space form

cases in more details. It is clear that we provide some new special case solutions for

Problems 2.3.1, 2.3.29 and 2.3.32. Anyway, more space form solutions should be derived.

Moreover, most of our results are for general cases, so they can be useful if discussed for

space form cases. For this, we take this direction into account in our potential research.

Problem 9.3.3. Carry out comparisons between different space form cases based on gen-

eral theorems of this thesis.

For the above three open directions of research, we recommend researches, specially

postgraduate students to include these problems into their research programs, because

they are easy, important and straightforward.

On the contrary, other directions seem to be more complicated. For example, it is not

an easy task to classify warped products that satisfy equality cases of our inequalities. For

those who are interested and qualified to prove such classifications, plenty of inequalities

are constructed in this thesis. Hence, it is a challenging and fruitful topic for research.

Problem 9.3.4. Classify warped product submanifolds that satisfy the equality cases of

inequalities of this thesis.

Hint: Following B. Y. Chen in his classifications may be helpful and interesting (see

(Chen, 2001), (Chen, 2003), (Chen, 2008) and (Chen, 2013)).

The above four directions of research can be thought of to be a continuation of the

work started by this thesis.
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9.4 OBSERVATIONS, PROBLEMS AND SUGGESTIONS FOR SOLVING
THESE PROBLEMS WHICH NATURALLY AROSE FROM THIS THESIS

Finally, we consider two important issues of this field. The first one relates to hemi-slant

warped product submanifolds, while the other concerns of some generalizations from Di-

minimal to general warped product submanifolds.

9.4.1 HEMI-SLANT WARPED PRODUCT SUBMANIFOLDS OF THE TYPE Nθ ×f N⊥

It is well-known that CR-structures are very important from a mathematical point of view

and also in physics, specially in general relativity, (Bejancu, 1986). In warped product

submanifolds, semi-slant warped product submanifolds failed to generalize CR-warped

product submanifolds in Kaehlerian, Sasakian and cosymplectic manifolds (see chapter

three of this thesis). By contrast, we have succeeded to generalize both types of CR-

warped product submanifolds of Kenmotsu manifolds and for both types of semi-slant

warped product submanifolds also, this was achieved by giving examples for these four

types (see chapters three and four).

However, warped product semi-slant submanifolds failed to generalize CR-warped

product submanifolds in the most important manifolds of the current thesis ∗, the Kaehle-

rian and the Sasakian cases. Fortunately, hemi-slant warped product submanifolds suc-

cessfully generalizes CR-warped product sbmanifolds in Kaehler, we expect that to be

true in Sasakian also. Based on our results and proofs, we believe that hemi-slant warped

product submanifolds are the ”strongest” warped product submanifolds other than the

general case, taking into consideration that bi-slant warped products are not defined until

the moment, this is because of the fact that g(PX,Z) 6= 0, where X and Z are tangent to

the first and the second factors respectively.

In Chapter Five, two significant observations related to hemi-slant warped product

submanifolds should be mentioned. These observations relate to the first and the second

inequalities of h.

Observation 1: We notice that the second inequality of h holds for Di-minimal hemi-

slant warped product submanifolds, but not for the general case.

∗We note that these two facts were recently proved in Kaehler and Sasakian manifolds. In the current
thesis we give another proof of such facts. Moreover, we totally solved the confusion caused by Kenmotsu
manifolds by asserting the existence of both types of CR-warped product submanifolds and semi-slant also.
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Observation 2: This observation comes form comparisons between different kinds

of warped product submanifolds. The first inequality of h for hemi-slant warped product

submanifolds could not been proved in both almost Hermitian and almost contact mani-

folds in a natural way. Thus, we extended another inequality of h, but for mixed totally

geodesic hemi-slant warped product submanifolds. Therefore, this inequality which was

first proved by Sahin does not generalize the first inequality of h for CR-warped product

sbmanifolds, in Kaehler manifolds for example.

Thus, we conclude that

Conclusion: From the above two observations, we conclude that the known proce-

dures that used by all geometers in this field are not suitable for hemi-slant warped product

submanifolds, because it is ”stronger” than other kinds of warped products.

Hence, we address the following problem

Problem 9.4.1. Find new methods to prove the first and the second inequalities of h for

general hemi-slant warped product submanifolds.

9.4.2 GENERALIZING RESULTS FROM Di-MINIMAL TO GENERAL WARPED PROD-
UCT SUBMANIFOLDS

In this work, new special case solutions were found for all problems addressed in chapter

one. In particular, Theorems 6.3.1, 7.3.1 and 8.3.1 were proved for Di-minimal warped

product submanifolds. So, we have

Problem 9.4.2. Can ”similar inequalities” be proved for arbitrary warped product sub-

manifolds which are not Di-minimal submanifolds?

We explained the meaning of ”similar inequalities” above. Moreover, by intuition we

guess the answer of the above problem is yes for Theorem 7.3.1 and no for Theorem 6.3.1,

while it is still not obvious for Theorem 8.3.1.

In fact, the above negative answer for Theorem 6.3.1 can be easily proved, that was

given by my supervisor Dr. Loo Tee How. That is, by considering the the partial mean

curvatures of N1 and N2, we see that some inner products of these curvatures do not

cancel. Therefore, either an assumption is imposed or a a little bit different inequality

may appear.
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Nevertheless, one can clearly discover that Theorem 6.3.1, and thus second inequality

of h, is valid only for Di-minimal warped product submanifolds and it is the final version

of such inequalities. Moreover, one can see that slant angles does not appear in the final

form of this inequality. For this, one can refer to the hemi-slant case in the second table

of chapter five. For further research, one can define the notion of bi-slant warped product

submanifolds, to see whether this inequality remains the same or gets a new shape.
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