

OPTIMIZING B-TREE SEARCH PERFORMANCE OF BIG
DATA SETS

MOHSEN MARJANI

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

OPTIMIZING B-TREE SEARCH PERFORMANCE

OF BIG DATA SETS

MOHSEN MARJANI

THESIS SUBMITTED IN FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: MOHSEN MARJANI

Registration/Matric No: WHA110067

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis (―Optimizing B-Tree

Search Performance of Big Data Sets‖):

Field of Study: Big Data (COMPUTER SCIENCE)

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that
the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (―UM‖), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed
any copyright whether intentionally or otherwise, I may be subject to legal
action or any other action as may be determined by UM.

Candidate‘s Signature Date:

Subscribed and solemnly declared before,

 Witness‘s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

Many applications continuously produce large amounts of various data every day,

which exceeds the limit of conventional data storage tools. Such data typically

includes a large amount of data with different formats that becomes very difficult to

query using traditional indexing technologies. Indexing is used for data retrieval to

improve efficiency and accuracy of the results of queries. However, current indexing

techniques have low efficiency and poor real-time performance in an actual query

when involving big data. Also, current indexing techniques are not supporting all

characteristics of big data and they have weaknesses when they have to index a

variety of data along with high velocity and volume. B-tree indexing technique is one

of the most popular techniques that is used by many database systems including the

one that can handle big datasets. Every time search process is running against

indexed data using B-tree technique, the process traverses all left child nodes of a

node to find lowers values or traverses the right side child nodes for finding bigger

values. Repetition of search tasks for later queries with same or overlap conditions

causes repeating same algorithmic traverse and consuming same resources including

time and computation power in order to retrieve the result of the search process. This

study proposes an optimized B-tree search method to improve the execution time of

the search tasks and to optimize the performance of the B-tree search process. In this

new method, every node has a new element storing a min-max summarization which

helps search process checks availability of the value inside the sub-tree of the node,

then start traversing it to find the location of the value. However, during every search

task, a history value is added to every traversed node to mark the history of last

search operation to be used for next search operation. The results of the experimental

Univ
ers

ity
 of

 M
ala

ya

iv

analysis show that our new proposed search method decreases the execution time of

the search tasks and it improves the search performance several times better than B-

tree search performance for same query and same dataset. Moreover, the history

value improves the performance of the later queries up to 52%. This research

contributes in optimizing data retrieval for big data sets and gives direction to

researchers towards a novel approach of indexing and searching big data in order to

improve query processing and search performance.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Banyak aplikasi secara berterusan menghasilkan sejumlah besar pelbagai data setiap

hari, yang melebihi had alat penyimpanan data konvensional. Data tersebut biasanya

termasuk sejumlah besar data dengan format yang berbeza yang menjadi sangat sukar

untuk pertanyaan menggunakan teknologi pengindeksan tradisional. Pengindeksan

digunakan untuk mendapatkan semula data untuk meningkatkan kecekapan dan

ketepatan hasil pertanyaan. Walau bagaimanapun, teknik pengindeksan semasa

mempunyai kecekapan yang rendah dan prestasi masa nyata yang lemah dalam

pertanyaan sebenar apabila melibatkan data yang besar. Juga, teknik pengindeksan

semasa tidak menyokong semua ciri-ciri data besar dan mereka mempunyai kelemahan

apabila perlu mengindeks pelbagai data bersama-sama dengan hadlaju tinggi dan jumlah

teknik pengindeksan B-pokok adalah salah satu teknik yang paling popular yang

digunakan oleh banyak sistem pangkalan data termasuk satu yang boleh mengendalikan

set data yang besar. Setiap kali proses carian berjalan terhadap data berindeks

menggunakan teknik B-pokok, proses merentasi semua nod anak di sebelah kiri untuk

mencari nilai-nilai yang lebih rendah atau merentasi nod anak di sebelah kanan untuk

mencari nilai-nilai yang lebih besar. Pengulangan tugas carian untuk pertanyaan

seterusnya dengan syarat yang sama atau bertindih menyebabkan pengulangan traverse

algoritma sama dan memakan sumber yang sama termasuk masa dan kuasa pengiraan

untuk mendapatkan hasil daripada proses carian. Kajian ini mencadangkan satu kaedah

carian B-pokok yang dioptimumkan untuk meningkatkan masa pelaksanaan tugas

mencari dan untuk mengoptimumkan prestasi proses pencarian B-pokok. Dalam kaedah

baru ini, setiap nod mempunyai elemen baru menyimpan satu rumusan min-max yang

membantu mencari sekiranya ada nilai dalam sub-pokok nod, kemudian mula

Univ
ers

ity
 of

 M
ala

ya

vi

merentasinya untuk mencari lokasi nilai tersebut. Walau bagaimanapun, semasa setiap

tugas carian, nilai sejarah ditambah kepada setiap nod dilalui untuk menandakan operasi

mencari terakhir yang digunakan untuk operasi mencari akan datang. Keputusan analisis

eksperimen menunjukan yang kaedah carian baru dicadangkan mengurangkan masa

pelaksanaan tugas carian dan ia meningkatkan prestasi carian berbanding prestasi carian

B-pokok untuk pertanyaan yang sama dan set data yang sama. Selain itu, nilai sejarah

meningkatkan prestasi pertanyaan terkemudian sehingga 52%. Kajian ini menyumbang

dalam mengoptimumkan semula data untuk set data yang besar dan memberikan arahan

kepada penyelidik ke arah pendekatan pengindeksan dan pencarian data besar yang

novel untuk meningkatkan pemprosesan pertanyaan dan prestasi pencarian.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

I wish to give my gratitude to the almighty Allah for giving me the opportunity to

complete the thesis. My sincere appreciation goes to my supervisors, Prof. Dr. Abdullah

Bin Gani and Dr. Fariza Hanum Binti Md Nasaruddin, Faculty of Computer Science

and Information Technology for taking their time to guide and thoroughly go through

each and every line of the thesis despite their tight schedules. I believed the constructive

comments of my supervisors have significantly improved the quality of the thesis which

could have not being so without their inputs.

Special thanks to my parents and family who supported me during this journey. The

words are not capable enough to represent my appreciations to them.

Last but not least, great thanks to all my friends especially Dr. Ibrahim Abaker Targio

Hashem who helped and supported me to fulfill all the requirements of my Ph.D.

journey.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

ABSTRACT .. III

ABSTRAK .. V

ACKNOWLEDGEMENTS .. VII

TABLE OF CONTENTS .. VIII

LIST OF FIGURES .. XII

LIST OF TABLES .. XV

LIST OF SYMBOLS AND ABBREVIATIONS ... XVII

LIST OF APPENDICES ... XVIII

CHAPTER 1: INTRODUCTION .. 1

1.1 Motivations .. 1

1.2 Statement of Problem .. 2

1.3 Statement of Objectives ... 3

1.4 Proposed Research Methodology .. 3

1.5 Layout of Thesis .. 6

CHAPTER 2: OVERVIEW OF BIG DATA INDEXING .. 10

2.1 Introduction.. 10

2.2 Big data .. 10

2.2.1 Sources of Big Data .. 12

2.2.2 Characteristic of Big Data ... 17

2.2.3 Big Data Trends .. 19

2.2.4 Big Data Challenge ... 19

2.3 Big Data Indexing .. 26

2.3.1 Big Data Indexing Taxonomy ... 28

2.3.1.1 Big Data Indexing Content Format 29

2.3.1.2 Big Data Indexing Structures 29

Univ
ers

ity
 of

 M
ala

ya

ix

2.3.1.3 Big Data Indexing Requirements 31

2.3.1.4 Data Retrieval .. 33

2.3.2 Big Data Indexing Evaluation Metrics .. 37

2.3.3 Analysis and Discussion of Current Indexing Techniques 37

2.4 B-tree Indexing Technique .. 42

2.4.1 History of B-tree ... 42

2.4.2 B-tree Mechanism ... 43

2.4.3 B-tree Main Operations ... 44

2.4.3.1 Insertion ... 44

2.4.3.2 Deletion ... 45

2.4.3.3 Search .. 46

2.4.4 Existing Modified B-tree Indexing Techniques 47

2.5 Conclusion ... 48

CHAPTER 3: PERFORMANCE ANALYSIS OF B-TREE INDEXING
TECHNIQUE ... 49

3.1 Introduction.. 49

3.2 Analysis of B-tree Indexing Technique ... 49

3.3 Query Processing Time Consumption Analysis .. 52

3.4 Retrieving Time Performance Evaluation ... 54

3.5 Execution Time Analysis and Discussion ... 65

3.6 Conclusion ... 69

CHAPTER 4: IMPROVED SEARCH METHOD FOR BIG DATA SETS 71

4.1 Introduction.. 71

4.2 Improved B-tree Technique ... 72

4.2.1 Index Generator ... 74

4.2.2 Summarization Updater .. 74

4.2.3 Data Storage .. 76

4.2.4 Backup Engine .. 79

Univ
ers

ity
 of

 M
ala

ya

x

4.2.5 History Updater ... 79

4.2.6 Search Query Engine... 80

4.3 IB-tree Indexing Structure ... 83

4.4 Data Retrieval Architecture ... 84

4.5 Simulation Engine ... 85

4.6 Search Operation Flow .. 86

4.7 Conclusion ... 87

CHAPTER 5: EVALUATION ... 89

5.1 Introduction.. 89

5.2 Evaluation of the Proposed Search Method .. 90

5.2.1 Performance Evaluation Testing Environment 90

5.2.1.1 Testing Environment ... 90

5.3 Datasets .. 91

5.4 Benchmark Description ... 93

5.4.1 Execution time .. 99

5.5 Conclusion ... 100

CHAPTER 6: RESULTS AND DISCUSSIONS .. 101

6.1 Introduction.. 101

6.2 Performance Evaluation Results .. 101

6.2.1 Execution Time ... 102

6.3 Discussion .. 118

6.4 Conclusion ... 119

CHAPTER 7: CONCLUSION ... 122

7.1 Introduction.. 122

Univ
ers

ity
 of

 M
ala

ya

xi

7.2 Aim and objectives of the study .. 122

7.3 Research Scope and Limitations .. 127

7.4 Significance and Contributions ... 127

7.5 Future Research Directions of the Study ... 131

REFERENCES .. 133

APPENDIX A….. .. 150

Univ
ers

ity
 of

 M
ala

ya

xii

LIST OF FIGURES

Figure ‎1.1: Proposed research methodology stages .. 5

Figure 1.2: Illustration of chapters and contents of this thesis .. 9

Figure 2.1: 3Vs of Big Data .. 18

Figure 2.2: Big data indexing taxonomy ... 28

Figure 2.3: Index mechanism in a data retrieval model .. 41

Figure 2.4: A B-tree structure with depth 4 .. 44

Figure 2.5: Example of a B-tree search operation... 46

Figure ‎3.1: A B-tree structure with keys from English alphabet 50

Figure 3.2: Query processing model for measuring response time 53

Figure 3.3: Response time for 20 times processing of Query 1 without using indexing 60

Figure 3.4: Response time for 20 times processing of Query 2 without using indexing 60

Figure 3.5: Response time for 20 times processing of Query 3 without using indexing 61

Figure 3.6: Response time for 20 times processing of Query 4 without using indexing 61

Figure 3.7: Visualization of the relation between response time for processing Query 1
without indexing and data volume .. 64

Figure 3.8: Visualization of the relation between response time for processing Query 2,
Query 3, and Query 4 without indexing and data volume .. 64

Figure 3.9: Visualization of the relation between response time for processing Query 1
with indexing and data volume ... 68

Figure 3.10: Visualization of the relation between response time for processing Query 2,
Query 3, and Query 4 with indexing and data volume ... 68

Figure 4.1: Improved big data retrieval system architecture... 72

Figure 4.2: A portion of a B-tree structure before running min-max summarization 75

Figure 4.3: A portion of a B-tree structure after running min-max summarization 75

Univ
ers

ity
 of

 M
ala

ya

xiii

Figure 4.4: flow of the process of reading data from dataset files 78

Figure 4.5: History updater stores/updates pointers as shortcuts for next search process
 ... 80

Figure 4.6: Flowchart of our modified B-tree search process ... 83

Figure 4.7: IB-tree indexing structure ... 84

Figure 4.8: Data retrieval architecture .. 85

Figure ‎4.9: Search process flow of the simulation system using B-tree search algorithm
 ... 86

Figure 4.10: Search operation flowchart ... 87

Figure 5.1: Benchmarking Model Scheme ... 94

Figure 6.1: Execution time for Query 1 with data size 1.064 GB 103

Figure 6.2: Execution time for Query 1 with data size 2.127 GB 104

Figure 6.3: Execution time for Query 1 with data size 17.018 GB 104

Figure 6.4: Execution time for Query 1 with data size 68.073 GB 105

Figure 6.5: Execution time for Query 1 with data size 1089.163 GB 105

Figure 6.6: Execution time for Query 1 based on all sizes of the datasets 106

Figure 6.7: Execution time for Query 2 with data size 1.064 GB 107

Figure 6.8: Execution time for Query 2 with data size 8.509 GB 108

Figure 6.9: Execution time for Query 2 with data size 17.018 GB 108

Figure 6.10: Execution time for Query 2 with data size 68.073 GB 109

Figure 6.11: Execution time for Query 2 with data size 1089.163 GB 109

Figure 6.12: Execution time for Query 2 based on all sizes of the datasets 110

Figure 6.13: Execution time for Query 3 with data size 1.064 GB 111

Figure 6.14: Execution time for Query 3 with data size 17.018 GB 112

Univ
ers

ity
 of

 M
ala

ya

xiv

Figure 6.15: Execution time for Query 3 with data size 68.073 GB 112

Figure 6.16: Execution time for Query 3 with data size 1089.163 GB 113

Figure 6.17: Execution time for processing Query 1 .. 119

Figure .1: Visualization of execution time for searching Query 1 when the size of data is
4.255GB .. 152

Figure .2: Visualization of execution time for searching Query 1 when the size of data is
8.509GB .. 152

Figure .3: Execution time for Query 2 with data size 2.127GB 153

Figure .4: Execution time for Query 2 with data size 4.255GB 153

Figure .5: Execution time for Query 3 with data size 2.127GB 154

Figure .6: Execution time for Query 3 with data size 4.255GB 154

Figure .7: Execution time for Query 3 with data size 8.509GB 155

Figure .8: Execution time for Query 4 with data size 2.127GB 155

Figure .9: Execution time for Query 4 with data size 4.255GB 156

Figure .10: Execution time for Query 4 with data size 8.509GB 156

Figure .11: Execution time for processing Query 1 using more datasets...................... 157

Figure ‎.12: Execution time for processing Query 2 using more datasets...................... 157

Figure .13: Execution time for processing Query 3 using more datasets...................... 158

Figure ‎.14: Execution time for processing Query 4 using more datasets...................... 158

Univ

ers
ity

 of
 M

ala
ya

xv

LIST OF TABLES

Table 1.1: Overview of chapters and contents reported in this thesis 8

Table 2.1: Data type categorization of five big data sources .. 17

Table 2.2: Some of the current indexing techniques versus big data indexing
requirements .. 40

Table 3.1: Queries for the experiments ... 54

Table 3.2: Response times for processing Query 1 without indexing (milliseconds) 54

Table 3.3: Response times for processing Query 2without indexing (milliseconds) 55

Table 3.4: Response times for processing Query 3 without indexing (milliseconds) 56

Table 3.5: Response times for processing Query 4 without indexing (milliseconds) 56

Table 3.6: Response times for processing Query 1 - using indexing (milliseconds) 57

Table ‎3.7: Response times for processing Query 2 – using indexing (milliseconds) 58

Table 3.8: Response times for processing Query 3 – using indexing (milliseconds) 58

Table 3.9: Response times for processing Query 4 – using indexing (milliseconds) 59

Table 3.10: Growth rate of query response time in contrast with data volume (without
indexing) ... 63

Table 3.11: Response time vs. data volume (without indexing) 63

Table 3.12: Growth rate of query response time in contrast with data volume (with
indexing) ... 66

Table 3.13: Response time vs. data volume (with indexing) .. 67

Table 5.1: Hardware specifications of the testing environment 91

Table 5.2: The datasets used in this research .. 92

Table 5.3: Queries used in the experiments .. 94

Table 5.4: Summarized report of the workloads for the dataset with size 1.064GB
(Milliseconds) ... 95

Univ
ers

ity
 of

 M
ala

ya

xvi

Table 5.5: Summarized report of the workloads for the dataset with size 2.127GB
(Milliseconds) ... 96

Table 5.6: Summarized report of the workloads for the dataset with size 4.255GB
(Milliseconds) ... 96

Table 5.7: Summarized report of the workloads for the dataset with size 8.509GB
(Milliseconds) ... 97

Table 5.8: Summarized report of the workloads for the dataset with size 17.018GB
(Milliseconds) ... 97

Table 5.9:Summarized report of the workloads for the dataset with size 68.073GB
(Milliseconds) ... 98

Table 5.10: Summarized report of the workloads for the dataset with size 1089.163GB
(Milliseconds) ... 98

Table .1:Summarized report of the workloads for the dataset with size 34.713GB
(Milliseconds) ... 150

Table .2:Summarized report of the workloads for the dataset with size 136.145GB
(Milliseconds) ... 150

Table .3:Summarized report of the workloads for the dataset with size 272.291GB
(Milliseconds) ... 151

Table .4:Summarized report of the workloads for the dataset with size 544.582GB
(Milliseconds) ... 151

Univ
ers

ity
 of

 M
ala

ya

xvii

LIST OF SYMBOLS AND ABBREVIATIONS

IT : Information Technology

IDC : International Data Corporation

DBMS : Database Management System

CPU : Central processing unit

IEEE : Institute of Electrical and Electronics Engineers

ACM : Association for Computing Machinery

IoT : Internet of things

GPS : Global Positioning System

M2M : Machine-to-Machine

RFID : Radio-frequency identification

DNA : Deoxyribonucleic acid

EMR : Electronic medical records

MGI : McKinsey Global Institute

SQL : Structured Query Language

SDS : Single document summarization

MDS : Multi-document summarization

QS : Query-oriented summarization

Univ
ers

ity
 of

 M
ala

ya

xviii

LIST OF APPENDICES

Appendix A. More Results And Figures Of Execution Time For Searching Queries .. 150

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

This chapter provides background information on the research work carried out in

this thesis. First, the background and motivation to undertake the research are presented.

Then, the statement of problem and objective of the research, and proposed

methodology are also presented. Finally, the outline of the thesis is highlighted.

The rest of this chapter is as follows. Section 1.1 presents the motivation of this

research. Section 1.2 states the identified research problem. Section 1.3 highlights the

aim and objectives of the research. The proposed methodology is described in Section

1.4. Finally, Section 1.5 gives a short description of the layout of this thesis.

1.1 Motivations

Every day many applications such as social media, health care, transactional, and

banking applications and also many devices such as sensor devices are producing big

amount of data with different formats such as text, image, audio, and video. Big Data

has become one of the buzzwords in Information Technology (IT) during the last couple

of years. Initially it was shaped by organizations which had to handle fast growth rates

of data like web data, data resulting from scientific or business simulations or other data

sources. Some of those companies‘ business models are fundamentally based on

indexing and using this large amount of data. The pressure to handle the growing data

amount on the web e.g. leads Google to develop the Google File System and

MapReduce (Dean & Ghemawat, 2010).

More than 2.5 quintillion bytes (exabytes) of data are generated every day (Zhou, et

al. 2013). 90% of the total data has been created just in the past few years alone. To

contain such a massive amount of data, storage continues to grow at an explosive rate

(52% per year) (Zikopoulos, et al. 2012). By the end of 2020, the size of the total

Univ
ers

ity
 of

 M
ala

ya

2

generated data will exceed 35 zettabytes (ZB), which has proven to be too conservative

(Reed, et al. 2012). Whether the term is remained big data or not, the Volume and

Variety of data, plus Velocity of producing data will always be growing and it is

required to index the data to speed up data retrieval along with accuracy of the retrieved

data.

Indexing technique plays a key role in data retrieval by allowing database systems to

store and retrieve data efficiently based on the users‘ queries. Just a few solutions have

found their respective places in a database system and still there is a big need for more

efficient and concise indexing structures (Bühlmann, 2013; Hellerstein, Naughton, &

Pfeffer, 1995; Idreos, Kersten, & Manegold, 2007; O'Neil & Quass, 1997; Sidirourgos,

2014).

1.2 Statement of Problem

Searching queries in B-tree based indexed data is consuming a lot of time, and

computing resources when comparing on keys stored at nodes of the B-tree. These

search comparisons are applied against the keys stored in the nodes of the sub-trees

under each non-leaf node, even the target is not in the range of the minimum and the

maximum values of the sub-trees. Searching for a key in a tree based index structure;

the search algorithm has to traverse the tree from root to leaf, making comparisons with

keys stored in the nodes of the tree and deciding, based on the comparison, to continue

searching in the left or right sub-trees. This process repeats every time even next queries

are same or have overlap with earlier queries.

For instance, as system searches for a key in a tree, the process traverses the tree

from root to leaves, making comparisons to keys stored in the nodes of the tree and

deciding, based on the comparison, to continue searching in the left or right sub-trees.

Univ
ers

ity
 of

 M
ala

ya

3

This process repeats every time even next queries are same or have overlap with earlier

queries. Therefore, repetitive queries are consuming same amount of time, energy,

memory, CPU power, and other resources. And also, the time and other resources that

are used for earlier queries are not used for later queries even though they are the same

or they have overlaps. In addition to rapidly growing volume of data, the response time

for data retrieval and needed resources such as memory, CPU power, and energy are

increasing.

1.3 Statement of Objectives

This research aims to optimize resource consumption in data retrieval for big data by

using query summarization concept and reusability approach. In order to achieve our

aim, we seek undertaking the following steps.

 To study the current big data indexing techniques and identify the key issues

with respect to B-tree search method.

 To investigate the problem of the current B-Tree search method.

 To propose a solution to optimize the performance of the B-Tree search method

for big data sets.

 To evaluate the performance of the proposed search method by validating it with

the performance of the B-tree search method.

1.4 Proposed Research Methodology

Our proposed methodology for this research work is based on six phases as follows.

The first phase is review stage in which we review literature and credible studies related

to big data and big data indexing structures and techniques to achieve insight into the

area of big data and the methods and technologies that are proposed by previous

researchers. In this phase, recent publications from online scholarly databases such as

Univ
ers

ity
 of

 M
ala

ya

4

ACM, IEEE, Elsevier and web of science are collected to have trustworthy of the

literature.

In the second phase, the investigation of the research carried out. We explore big

data indexing requirements and investigate big data indexing techniques to determine

significant shortcomings and weaknesses of the current indexing methods. A simulation

engine is created to simulate data retrieval process by applying different pre-defined

queries on different sizes of datasets and we monitor resource consumption and

particularly the response time of each attempt. Then we analyze the trend of the results

analytically in order to find out how the search method can be optimized for big data

sets and how earlier queries results can effect on later queries. At the end of this phase,

a benchmarking is used to validate the result of the analytical analysis and also

demonstrate the significance of our research problem.

The third phase is a proposal in which a search method based on B-tree search

method by using summarization concept and also reusability theory is proposed to

address our research problem. This proposal aims to optimize resource consumption in

data retrieval by using summarization techniques upon every query processing and

reusing the result of the earlier queries to reduce resource consumption specifically

execution time of the later queries.

To implement our proposed solution, we design and program a modified indexing

structure based on data structure B-tree which is a popular and default data structure

used in most of the current databases. To simulate data retrieval by using our

implemented model, a simulation is created to generate index structure and index the

stored data then to apply four different pre-defined queries on different sizes of a data

set and to record the results of resource consumption namely index creation time, index

Univ
ers

ity
 of

 M
ala

ya

5

size and queries response time. We repeat applying the queries on the data ten times and

record every response time.

Figure ‎1.1: Proposed research methodology stages

In the next phase, we evaluate our proposed model by using benchmarking and also

comparative study. Based on Sieve benchmark, we use ten benchmarks to run a

performance evaluation for our proposal. The sufficiency of this number of benchmarks

for evaluating the performance of computing systems by using Sieve benchmark is

already proven (Jain, 2008). For the comparative study, we demonstrate the

performance of our proposed model in comparison with the related model, specifically

with normal B-tree technique.

In the last phase, we validate the results of the performance evaluation stage via

analyzing and comparing the results of execution time of processing search tasks using

our proposed search method with the results of execution time of processing same

search tasks using normal B-tree search method.

Univ
ers

ity
 of

 M
ala

ya

6

In this study, the concept of reusability and query summarization were integrated

into indexing procedures by creating node base summary of data in order to reuse the

resources used for earlier queries and help to minimize the response time of later

queries. However, it will optimize data retrieval for big data and give direction to

researchers towards the novel approach of indexing for a verity of big data in order to

improve query processing.

1.5 Layout of Thesis

This thesis includes 7 chapters as it is illustrated in Figure 1.2. Also, a short

summarization of each chapter is presented in Table 1.1. The rest of this thesis is

organized as follows:

Chapter 2 reports a detailed review of the state-of-the-art research from literature and

provides the previous works that support this study and related big data indexing

concepts and techniques. Moreover, it identifies the open problem related to this

research. A comparison of the current indexing techniques based on the requirements of

big data indexing which are extracted from previous related works is given in the

following of this chapter. Also, B-tree and some of the B-tree search method are

highlighted. Furthermore, the chapter states some open research challenges and

highlights the problem which is addressed in this thesis.

In Chapter 3, the aim is to demonstrate the importance of the identified problem by

analyzing the results of benchmarking experiments. This chapter reports how our

investigation is conducted and what are the activities in establishing the essence of our

research problem. One of the most popular database systems is selected which is

capable of dealing with big datasets and using B-tree as default indexing technique for

indexing and searching large datasets. Then we apply four different queries on six

Univ
ers

ity
 of

 M
ala

ya

7

different sizes of a datasets starting for few megabytes to more than one terabyte and

repeat this process by a simulation engine for a number of times and analyze resource

consumption upon data retrieval mainly response time in order to monitor relation

between resource consumption of later queries and earlier queries. Then, we present our

findings which support identifying our research problem.

Chapter 4 explains our proposed solution to address the research problem. It reports

how our proposed method for solving the problem identified in chapter 3 is modeled.

The model which is in a form of simulation, clearly explains our approach. To support

our simulation model, we also present a comparative study to prove validity of our

solution.

Data collection and the activities to gather data is explained in chapter 5. We stress a

comprehensive explanation about what data is collected, how the data is collected and

also how the collected data is processed. Moreover, this chapter reports the

requirements of the simulation model and presents the results of the benchmarking

experiments in the form of several tables.

Chapter 6 elaborates the obtained results from data benchmarking experiments and

discusses and interprets the results to highlight the advantages and weaknesses of our

proposed solution. To clarify the meaning of the result, we illustrate our points by using

tables and graphs and direct the reader to our points by adding more explanations about

those diagrams and tables. In this chapter, the results of our evaluation on the

performance of our proposed model are presented. These results are collected based on

analyzing execution time of processing of four predefined queries with range of simple

to complex query using seven sizes of the selected datasets.

Univ
ers

ity
 of

 M
ala

ya

8

Table ‎1.1: Overview of chapters and contents reported in this thesis

Chapter Highlights Description

C
ha

pt
er

 1

In
tr

od
uc

tio
n

Big Data Overview
B-tree Search
Statement of Problem
Statement of Objectives
Research Methodology
Thesis Layout

To present an overview of big data
To introduce B-tree technique and its search method
To state the research problem identified for this thesis
To state the aim of the thesis and objectives to attain the aim
To state the steps taken to achieve the aim and objectives
To demonstrate the structure of contents presented in thesis

C
ha

pt
er

 2

L
ite

ra
tu

re

R
ev

ie
w

Big Data

Big Data Indexing

B-tree Indexing
Technique

To introduce big data and its related terms and characteristics

To introduce indexing techniques for big data and its
requirements
To introduce B-tree technique and its search method

C
ha

pt
er

 3

Pr
ob

le
m

A

na
ly

si
s

Analysis of the
identified issues

Analytical Verification
of the identified problem

To report how the investigation is conducted to establish the
research problem.

To verify the research problem by using analysis on the result
of applying queries on data set via running benchmarking
experiments using a simulation engine

C
ha

pt
er

 4

Pr
op

os
ed

 M
od

el
 Graphical Presentation

Modified Algorithm

System Design
Search Query

To schematically present our model developed for evaluating
our proposed method
To introduce the part of the algorithm that is changed in our
method
To discuss system design of the proposed method
To describe the process of searching query in the proposed
method

C
ha

pt
er

 5

E
va

lu
at

io
n

Datasets

Benchmarking
Modelling

To describe the datasets used in this study

To explain the requirement of the designed model for
evaluating the performance of the proposed model

C
ha

pt
er

 6

R
es

ul
t &

 D
is

cu
ss

io
n Evaluation Results

Validation Results

Discussions

To present the result of the performance evaluation of the
proposed model analytically and graphically

To report the results of proposed model validation
analytically and schematically

To discuss the findings of the evaluation and the validation

C
ha

pt
er

 7

C
on

cl
us

io
n

Research Aim and
Objectives
Scope and Limitations

Significance and
Contributions
Future Direction

To explain the aim and objectives of this research

To report scope and limitations of this study

To highlight contributions and importance of this research

To propose future direction of the research work

Univ
ers

ity
 of

 M
ala

ya

9

Figure ‎1.2: Illustration of chapters and contents of this thesis

Every search task is repeated 10 times and the execution time of every search

operation is captured. We also validate the result of evaluation by benchmarking

analysis. Finally, to show the validity of our proposed method, the benchmarking and

comparative analysis results are presented.

In Chapter 7, a conclusion of this thesis describes all efforts and activities to fulfill

the aim of our research briefly. This chapter explains how the objectives of this research

are done and what are the significance and contributions, strength and weaknesses of

our proposed solution.

Univ
ers

ity
 of

 M
ala

ya

10

CHAPTER 2: OVERVIEW OF BIG DATA INDEXING

2.1 Introduction

This chapter offers a review of big data including its characteristics, trends, and

challenges with respect to indexing and B-tree based indexing techniques. The main

goal is to describe and discuss about big data indexing based on the format of big data,

structures and requirements of big data indexing along with its evaluation metrics in

data retrieval. However some of the current indexing techniques are analyzed and

discussed based on the requirements of big data indexing. Finally, B-tree indexing

technique and its mechanism are discussed.

The remainder of the chapter is as follow: Section 2.2 introduces big data and

presenting the characteristics, trends, the source of big data and the existing challenges

from an indexing perspective. Section 2.3 provides the concept of big data indexing and

discusses the structures and requirements of indexing. Section 2.4 introduces B-tree

indexing technique and discusses the flow of its search method in data retrieval. Section

2.5 concludes the chapter.

2.2 Big data

As we enter the new era of big data, the continuous increase in computational

capacity has recently produced an overwhelming flow of data, thereby exceeding the

limit of conventional processing tools. The term ―big data‖ is mainly used to describe

volumes, variety, the velocity of the data (M. Chen, Mao, & Liu, 2014). Such data

typically include large amounts of unstructured data formats that are extremely difficult

to store, process, and analyze with traditional database technologies. According to

McKinsey Global Institute (MGI), big data refer to datasets whose size is beyond the

ability of typical database software tools to capture, store, manage, and analyze. This

Univ
ers

ity
 of

 M
ala

ya

11

definition is intentionally subjective and incorporates a moving definition of how big a

dataset needs to be in order to be considered big data. (James Manyika et al., 2011).

The MGI's definition for ‗big data‘ put its focus on the size and volume of the data.

Based on this notion, there is a misleading and ‗big data‘ is not a new problem.

Handling a large amount of data in a specific situation is an old existing topic of

database research and it directs us to the initiation of parallel database systems with

‗shared-nothing‘ architectures (DeWitt & Gray, 1992.). Hence, there must be more

about ‗big data‘ rather than just the size of data to be considered as ‗big data‘. Other

discussions in later publications widen the MGI's definition for ‗big data‘. For instance,

IDC‘s ‗The Digital Universe‘ study, has given following definition (Maier, Serebrenik,

& Vanderfeesten, 2013a):

IDC defines Big Data technologies as “a new generation of technologies and

architectures, designed to economically extract value from very large volumes of a wide

variety of data by enabling high-velocity capture, discovery, and/or analysis. There are

three main characteristics of Big Data: the data itself, the analytics of the data, and the

presentation of the results of the analytics”. (Gantz & Reinsel, 2012).

The above definition uses the 3V's model proposed by Doug Laney in 2001 (Laney,

2011). Although there is no term ‗big data‘ in Laney's model, but he highlighted an e-

commerce trend in which data management will be more difficult and important in

future by facing challenges of managing volume, velocity, and variety of data. In 3V's

model, data volume refers to the size of data, data velocity means the speed of

generating new data, and variety of data refers to different sources of data that can

produce structured, semi-structured, or unstructured data. On the other hand, in the

academic area, we cannot find such a reliable definition for ‗big data‘ except using the

exactly same definition as Laney's or a modified version of it. For example, ‗big data‘ is

Univ
ers

ity
 of

 M
ala

ya

12

defined as‖the amount of data just beyond the technology’s capability to store, manage

and process efficiently‖ in (Stephen Kaisler, Frank Armour, J. Alberto Espinosa, &

William Money, 2013b). This research described variety and velocity of data as

additional characteristics. Or Sam defined ‗big data‘ as ―too big, too fast, or too

hard‖(Madden, 2012). Obviously, ‗too big‘ refers to Volume of data, and ‗too fast‘

refers to velocity. Also ‗too hard‘ points to data that is hard to be fit into existing tools

and this meaning is very similar to variety of data (Maier et al., 2013a).

2.2.1 Sources of Big Data

Big data has the potential of using different data sources and it is uneasy to integrate

and combine in a unified format, which required for analyzing data. However, the rise

of social media from several years ago and also the rise of Internet of Things (IoT), and

other communication and telecommunication approaches, the public availability and

text-centric data sources are rapidly increasing. Data sources such as community pages,

blog posts, social networks messages and images, sensors‘ data, mobile phones and

GPS data (Marz & Warren, 2013) accompany the other data resources and make a

variety of data types with different formats and structures. For instance, some of the

companies need to integrate their transactional sales and customer master data with

sentiment analysis of social media sources in order to optimize their marketing

activities. Therefore, variety of data is caused by the general diversity of data sources

which is resulting in rapid growth of the volume of data as well as structural differences

among those sources (Maier, Serebrenik, & Vanderfeesten, 2013b). Big data sources are

classified into different categories to better understand their characteristics. (Soares,

2012)categorized resources of big data into five groups including, the web and social

media, machine-to-machine data, big transaction data, biometrics and human-generated

data as described below:

Univ
ers

ity
 of

 M
ala

ya

13

 (a) Web Data & Social Media: The web is a very diverse source of data and it is

valuable for analytics. As the user interest in using social media and web-based tools is

growing in recent years, the researcher's interest in social media analysis is increasing as

well by focusing on weblogs (Denecke & Nejdl, 2009). Analyzing social media data

from weblog communities is one research aspect (Hsu, King, Paradesi, Pydimarri, &

Weninger, 2006; Kumar, Novak, Raghavan, & Tomkins, 2005). Web resources such as

crawling of web pages, online articles, and blogs are initially developed for human

usage (Y. C. Jinchuan Chen, Xiaoyong Du, Cuiping Li, Jiaheng Lu, Suyun Zhao, and

Xuan Zhou., 2013).

Information, knowledge, content, public ideas and opinions can be directly extracted

from these web resources. But the point is the major part of these resources produces

semi-structured and unstructured data such as images and videos along with textual

data. Beside it, these resources mostly are connected to each other via hyperlinks and

also they may offer some categorization using tag clouds (Hassan-Montero & Herrero-

Solana, 2006; Kumarasamy, 2015; Maier et al., 2013a; Sinclair & Cardew-Hall, 2008).

In addition to web-based tools that are designed to serve human, there is another type

of web-based content and tools offering machine-readability (Knuth, Waitelonis, &

Sack, 2016). Applications can use machine-readable web-based content to access to

data and understand the mtovisa their semantics. These capabilities enable applications

to discover new information by integrating data from different sources, generating new

understandable metadata and publishing them into web pages using data formats from

the semantic web standard (Burgos, 2011; W3C, 2013). Whereas the type the data is

mostly graph-shape, it can be categorized in semi-structured data group (Maier et al.,

2013b).

Univ
ers

ity
 of

 M
ala

ya

14

The other type web data are semi-structure and captured from navigational activities

of users in the web. This type of data is gathered from click streams and logs (Gerken,

Bak, Jetter, Klinkhammer, & Reiterer, 2008; Kammenhuber, Luxenburger, Feldmann,

& Weikum, 2006) recorded by web applications and tools. The information extracted

from this kind of data reveals how users navigate and interact with the web. Thus, the

knowledge driven from this type data can benefit companies and firms to optimize their

services based on the user‘s behaviors.

By the rise of communicational and social media web-based services, another type of

web data is coming to the scene which is so called social media data or communications

data and captured from social media sites' interactions and activities in messaging

services. The data resulted in activities such messaging and status updates through these

tools and services typically include unstructured text and images. However, there is

another type data created by using social media sites and messaging services

representing the relationships and connections among users. This type of data is mostly

graph-shape and therefore it is categorized in the semi-structured data group and it is so-

called social graph data or social network data (Ko, Cheek, Shehab, & Sandhu, 2010).

As it is mentioned above, there are different types of data that can be categorized as

web data and social media data, but they might have several overlaps. Generally,it can

be claimed that any data resulted by doing web-based activities, messaging

communications and social media interactions which are mostly semi-structured and

unstructured, can be categorized into the web and social media data.

(b) Machine-to-Machine Data: Machine-to-Machine data include any data generated

or exchanged in a Machine-to-Machine (M2M) communication, which refers to

communication between electronic devices or systems via any wired or wireless

communication channel without human interposition. The main aim of this type of

Univ
ers

ity
 of

 M
ala

ya

15

communications is sharing information among those systems autonomously (Booysen,

Gilmore, Zeadally, & Van Rooyen, 2012; Niyato, Xiao, & Wang, 2011). This ability

helps to control remote and distributed mobile system autonomously (Booysen et al.,

2012). Hence, M2M communication especially the wireless type of it, is gaining much

more attention in both industry and academia and it is recently deployed in the eras such

as home networking, vehicular networking, smart grid, health care, etc. (Chan, 2011;

H.-C. Chen, Wu, Sun, & Feng, 2016; de Mattos & Gondim, 2016; Lu, Li, Liang, Shen,

& Lin, 2011; Yan Zhang et al., 2011).

M2M communications often are useful for a remote sensors system that needs to

transmit data to a data center or to a central system. The data is mostly related to

measurements of properties such as temperature or movements of physical objects.

These objects can be Radio-frequency identification (RFID) chips that automatically

identify and track attached tags to the objects by using electromagnetic fields (Zhu,

Khullar, & Chi, 2016) or they can be sensors or Global Positioning System (GPS)

receivers (Hoffman, Hoffman, Hoffman, & Doe, 2016).

For instance, to bring intelligence concept into human life environment, some

sensors can be embedded in smart meters and cars for technical diagnosis. But the

volume of data generated by this kind of systems can be huge. For example, the BMW

group predicts this volume of data that come from its cars using such a system can be

about one petabyte per day in 2017 (Sergey Melnik & Tolton, 2011). As it in mentioned

by some researchers (Ashton, 2009; de Mattos & Gondim, 2016; Paul & Rho, 2016;

Seo, Jeon, Lee, & Lee, 2016)(Alam, Nielsen, & Prasad, 2013), Internet of Things (IoT)

is one of the main approaches that are going to become a major stream technology uses

M2M technology and rapidly will produce large amount of data. The data generated by

M2M technology is typically semi-structured (Maier et al., 2013b).

Univ
ers

ity
 of

 M
ala

ya

16

(c) Transactional data: Every day, many transactions data are generated due to very

large number of deals, agreements, purchases, payments, etc. It can be a purchase item

via e-commerce systems, a payment transaction of a credit card, or a call detail captured

by a telecommunication company. A mush as the dimensions of a system grow up, the

transactional data become bigger as well to record those data and another amount of

operations conducted by the system (Jinchuan Chen et al., 2013).

Transactional data typically are structured or semi-structured. But sometimes big

transactional data can be unstructured data. For example, the data recorded by an

insurance agent about an accident can include some personal notes and description

about the accident, or in a health care transaction, a doctor may add some diagnosis

notes and treatment description to the data (Goswami & Chandra, 2015).

(d) Biometrics Data:Any human physiological or behavioral characteristics can be

considered as biometrics and it can be universal which every person should have it or it

can be uniquely for only one person (Jain, Bolle, & Pankanti, 2006). Biometrics data

generally describe biological organism of human or sometimes non-human individuals

to be used in identifying idiosyncratic anatomical, behavioral characteristics, traits, and

properties (Nagpal, Nagpal, & Malhotra, 2012).

In computer science, biometric authentication or biometric identification such as

fingerprints, and retinal scan can be used for access control (Wayman, Jain, Maltoni, &

Maio, 2005). However, it can be used for identifying individuals in under surveillance

groups (Hu, Tan, Wang, & Maybank, 2004). Deoxyribonucleic acid (DNA),

handwriting, and other behavioral characteristics can be analyzed as biometric

identification and related data can be in a textual format, image, video, etc. Therefore,

biometrics data can be structured, semi-structured, or unstructured. Scientific

Univ
ers

ity
 of

 M
ala

ya

17

applications use large amounts of biometric data for genomic analysis (Maier et al.,

2013b).

(d) Human-generated data: As it understandable from the title of this section, all

data generated by human are so called human-generated data such as emails, paper

documents, Electronic medical records (EMRs) which are excellent improvement over

paper records, physicians note, etc. (Cottle et al., 2013; Maier et al., 2013a; Soares,

2012). Whereas the data produced by human have diverse formats, human-generated

data can be structured, semi-structured, or unstructured. This type of data has clear

overlaps with another type of data such as web data and transaction data.

Table 2.1 gives a summary on the typical categorization of the five different sources

of big data based on their data structures.

Table ‎2.1: Data type categorization of five big data sources

Big Data Source Data Type Categories
Structured Semi-Structured Unstructured

Web Data & Social Media √ √
Machine-to-Machine Data √
Transactional Data √ √
Biometrics Data √ √ √
Human-generated data √ √ √

2.2.2 Characteristic of Big Data

The terms ―Volume‖, ―Variety‖ and ―Velocity‖ as shown in Figure 2.1 are originally

introduced by Gartner‘s Doug Laney 2001 to describe elements of big data challenges.

These three attributes shape the three ―Vs‖.

(1) Volume means a large amount of all types of data generated from different

sources and continue to expand. The benefit of gathering a large amount of data is a

way in which it can be used to create value through data analysis. Laurila et al. (2012),

provide a unique collection of data longitudinal from the smart mobile device in order

Univ
ers

ity
 of

 M
ala

ya

18

to be available to the research community. This initiative was called mobile data

challenge which motivated by Nokia. Whilst, the authors point out that collecting such

data requires a great deal of effort, as well as underlying investments even though,

mobile data challenging, addressed an interesting result similar to examinations of

predictability of human behavior patterns or away to share data based on human

mobility and visualization techniques for complex data.

(2) Variety refers to different types of data collected via sensors, Smartphones or

social networks, such as video, image, text, audio, data logs, etc., whether this data is in

structured or unstructured format. Most of the data generated through mobile apps are

unstructured data. For example text messages, online games, blogs, and social media

generate different types of unstructured data through mobile devices and sensors. On the

other hand, people on the internet also generate an extremely diverse set of structured

and unstructured data

Figure ‎2.1: 3Vs of Big Data

(3) Velocity refers to the speed of the data being transferred. The contents of the data

are constantly changing, through the absorption of complementary data collections,

through the introduction of previously data or legacy collections, and the form streamed

data arriving from multiple sources (Berman, 2013).

Univ
ers

ity
 of

 M
ala

ya

19

2.2.3 Big Data Trends

Many important future challenges in managing and analyzing big data arise from the

nature of big data as it has a large volume, diverse formats and high velocity (V.

Gopalkrishnan, D. Steier, H. Lewis, & Guszcza, 2012). Rapid growth of the volume of

data requires more infrastructures and faster technologies to store and analyse

generating data in order to extract useful information for decision making. Moreover,

current aging equipment and technologies which are still used by data centres and other

enterprises and companies that are dealing with large data sets, must be updated by new

hardware and technologies.

Many applications such as social-network-based recommenders, business process

optimizers, healthcare analyzers require efficient ability of analyzing big datasets. It is

predicted that the growth of the volume of generated data significantly will effect on the

cost and massiveness of storage technologies, required computational power for

processing data, and energy consumption as well. For instance, the traffic of data

between years 2002 to 2009 was grown 56 times and computation power was increased

16 times. In the other side, the size of data centers was enlarged by a rate of 173% per

year from year 1998 to year 2005. Based on these trends, within about 13 years,

computing power will increase about 1000 times. However, over the same period of

time, this is not expected that energy efficiency to gain a growth rate by a factor of more

than 25. These statistics show that an intense mismatch of about 40 times rise in the

energy consumption for data analytics processes will be generated. (Kambatla, Kollias,

Kumar, & Grama, 2014).

2.2.4 Big Data Challenge

Big data is passing through its early stage of growth. Since the present big data

methods and techniques are very less to solve the real big data challenges completely.

Univ
ers

ity
 of

 M
ala

ya

20

Big data in computational sciences has always been a critical issue (Wing, 2008), and is

still of increasing research interest (NTER & MILL, 2012). Researchers have not yet

unified around the essential landscapes of big data.

According to some researchers and practitioners, big data is the data that we are not

able to process using current technologies, methods, and theories. Consequently, the

world is becoming a helplessness age due to incalculable data being generated by

science, business, and society. Particularly the issue of data retrieval, as procedures and

standard tools are not designed to search large unstructured datasets. Once dealing with

huge datasets, organizations face teething troubles in being able to create, manage and

manipulate this rapid growing tsunami of information, big data exploding, growing 10X

each five years, replication system have security weaknesses, multiple copies equals

multiple everything, data governance and policy challenges for defining the data that

will be stored, analyzed, and accessed, along with determining its relevance. For

example, information such as entities and relationships can be extracted from textual

data by using some available technologies in eras of text mining, machine learning,

natural processing, and information extraction. But it is required to develop

technologies to extract images, videos, and other information from other non-text

formats of unstructured data (Divyakant Agrawal, Franklin, Labrinidis, & Kenneth

Ross, 2012).

A general challenge of data integration and required techniques is highlighted in a

long-lasting research endeavor regarding data integration (Rakesh Agrawal et al., 2009).

The challenge shows up when it is required to integrate different sources of textual data,

some extractors are used to make all textual data from those resources structured. They

need to be harmonized and converted to some schema or structure that are usable for

discovering connections among those textual data come from different sources. It is also

Univ
ers

ity
 of

 M
ala

ya

21

expected that text mining will typically be conducted by applying several specialized

extractors on the same text. Hence, managing and integrating different results of the

extractions from a certain data source need another technique (Rakesh Agrawal et al.,

2009).

Data integration and information extraction can be conducted in two points. The first

point is before analysis process where pre-processing tasks are running in which

unstructured data will be transformed into structured or semi-structured data, then

information extraction and data harmonization will be conducted and the results will be

stored in a graphical store or in an RDBMS. This method improves and optimizes the

runtime of the analysis process. In contrast, some information might be lost because the

information extractors that are used in pre-processing step only store the information

that they are built for. Therefore, there might be some valuable information that is not

extracted by those extractors' techniques (Maier et al., 2013b).

The second point is conducting information extraction and data harmonization at

runtime of the analysis process. This method is more flexible since it can use dedicated

extraction techniques befitting for the analysis process. The weak point of this method

is worse runtime performance rather than the first method. A solution can be using a

combination of both methods in which pre-processing task includes data integration and

information extraction. The result will be stored in a structured format and also the

original data are kept available and accessible at runtime of the analysis process just in

case if the extracted information is inadequate for any analysis task. The advantage of

this combined method is preventing both losing valuable data and also insufficient

extracted information. In contrast to this improvement, this combined approach causes

increasing required storage space (Maier et al., 2013b).

Univ
ers

ity
 of

 M
ala

ya

22

The other challenge appears in metadata creation process in data transformation and

information extraction processes when it is required to give some information to users

about the source of data and how it is reliable by tracing the source of data and get

metadata included it along with some information about the way that data are recorded,

the semantics of data, how it is manipulated in analysis process, the applied information

extractors, etc. (Maier et al., 2013b; Rakesh Agrawal et al., 2009). Some of these

challenges are discussed in the subsequent below.

(a) Optimal Architecture for Analytics Systems: Analytics systems should have an

optimal architecture in order to deal with historical data and real-time data

simultaneously. Although there are proposed solutions to address this challenge, yet

there is a need to have a better optimal architecture for analytics systems and tools. The

Lambda Architecture (N. Marz & Warren, 2013; Namiot, 2015) is one of the proposed

architectures to address this challenge. It facilitates simplified business processes and

increases the speed of business data integration. The Lambda Architecture approach

offers to create real-time processing applications on the top of MapReduce and Storm or

similar systems. This Architecture decomposes the problem of computing arbitrary

functions on arbitrary data in real-time into three layers including batch, serving, and

speed layers. It uses Hadoop (Olson, 2010) for supporting batch layer and Storm (Mera,

Batko, & Zezula, 2014) for supporting speed layer in one system and creates a

combined system. This combined system is scalable, extensible, robust, and fault

tolerant. It also provides capabilities of easy debugging ad hoc queries. Moreover, it

minimizes maintenance (Fan & Bifet, 2013).

Another architecture is a software architecture pattern called Kappa (Azim, 1988;

Shung et al., 1991) in which there two layers including serving layer and speed layer

rather than Lambda architecture with three layers. Therefore, Kappa architecture is a

Univ
ers

ity
 of

 M
ala

ya

http://storm.incubator.apache.org/

23

simplification of Lambda architecture (Nasir, 2016). It can use relational databases

such as SQL (Kriegel, 2011) or it can communicate with a key-value store such as

Cassandra (Lakshman & Malik, 2010). The Kappa architecture system stores data in an

unalterable log format that can be only appended. Then the system streams logged data

into a computational system and supply them to secondary stores for serving.

Zeta architecture (Alloui & Oquendo, 2002; He, Elnikety, Larus, & Yan, 2012) is

another solution that aims to be high-level enterprise architectural and to address this

challenge. Zeta architecture consists of seven pluggable components including a global

and dynamic resource management component at the center of the architecture to

manage other components which are consist of real-time data storage, pluggable

execution engine, container management system, distributed file system, solution

architecture, and enterprise applications. The Zeta architecture reduces costs of

applications deployment and maintenance. It brings simplifications into its system by

using a distributed file system. Also, it has less duplication and movement of data with

no data transformation required except in a case that it is specifically called (Franks,

2012; Scott, 2016).

(b) Statistical Significance: Accuracy of statistical results is another challenge in big

data science. As it is mentioned in (Efron, 2010) about Large Scale Inference, with vast

data sets and thousands of questions that need to be answered, the probability of

achieving wrong results is not low. There many types of research that highlighted the

significance of addressing statistical significance problem (Bühlmann, 2013; Franks,

2012; Ritter & Muñoz-Carpena, 2013; Whitaker, 2014).

(c) Distributed Mining: Performing real-time distributed mining on huge data

streams is a must for big data analytics (Yu Zhang, Sow, Turaga, & van der Schaar,

2014). Many data mining techniques are not trivial to paralyze(Benatallah et al., 2016;

Univ
ers

ity
 of

 M
ala

ya

24

Bhardwaj & Johari, 2015; Fan & Bifet, 2013; Lawal, Zakari, Shuaibu, & Bala; J. Singh,

2014). It is required to do theoretical and practical analysis researchers to develop new

distributed data mining techniques (Amma, 2016; Bhardwaj & Johari, 2015; Lawal et

al.; S. Mishra, Dhote, Prajapati, & Shukla, 2015; J. Singh, 2014). Proposing such

distributed mining methods raises another challenge such as real-time processing of

enormous amounts of diverse data, real-time adaptation to arriving data characteristics,

data access and communication limitation between distributed learners, etc. (Yu Zhang

et al., 2014).

(d) Time-Evolving Data: Big data tools especially data mining methods required to

be adopted with the probable evolvement of data over time and sometimes the changes

must be detected before running main data mining tasks. For instance, there are very

powerful data mining techniques in the field of data stream mining (Gama, 2010). There

are studies conducted to deal with time-evolving data (G. Chen & Luo, 2015; Faloutsos,

Kolda, & Sun, 2007; Golab, Prahladka, & Ozsu, 2006; Reddy & Raju, 2012). Time-

evolving data are generated in many areas such as in cancer research where to monitor

the efficiency of medications, genes must be measured at the different time frequently.

Or in the field of Computer Vision, video streams include time-indexed series of

images. However, in Network Security field, the behavior of users can be changed over

time. Thus, HTTP and HTTPS connections are recorded continually at different

timestamps. Therefore, dynamic techniques that can be adapted to the evolving nature

of data are needed to deal with such those scenarios (Vogt et al., 2015).

(e) Compression: The quantity of big data is huge and it is rapidly growing up. So,a

huge amount of space needed to store whole data. To address this challenge, two main

strategies are available. The first approach is to use compression methods. In this way,

they are not losing any part of data and it may take more time and less space. So, it can

Univ
ers

ity
 of

 M
ala

ya

25

be considered as time transformation to space.The second strategy is using sampling

methods in which they have to choose and keep only more representative data and lose

some information, but it saves more storage space in return (Fan & Bifet, 2013). For

instance, in one study (D. Feldman, M. Schmidt, & Sohler, 2013), Coresets which are

small sets that approximate the original data for a given problem, are used to reduce the

complexity of Big Data problems (Fan & Bifet, 2013).

(f) Visualization: Visualization is always a major task in big data analysis. Data

visualization provides quick identification of important patterns and interesting events

which are not easy to be recognized without data visualization (Tam & Song, 2016).

Finding user-friendly visualization of the large volume of data is not easy and new

frameworks and techniques are required to reveal the stories hidden inside the data (R.

Smolan & Erwitt, 2012). The new methods of big data visualization must improve

processing, analyze, and visualize of the enormous amount of complicated data

(Agrawal, Kadadi, Dai, & Andres, 2015). Visualization is effective for demonstrating

significant information in the huge volume of data and also for doing complex analyses

(Keim, Qu, & Ma, 2013).

(j) Hidden Big Data: Leveraging big data tools and technologies is not only

managing characteristics of big data such as volume, velocity, complexity,

heterogeneity, and variety. It is also about analyzing the data to discover hidden

information that is non-trivial and useful (Motta, Puccinelli, Reggiani, & Saccone,

2016). Generating a large amount of untagged and unstructured data in recent years

causes losing quantities of valuable data (Bhardwaj & Johari, 2015; Fan & Bifet, 2013;

Kaur, 2015; S. Mishra et al., 2015). According to a research about issues and challenges

of big data analysis (Bhardwaj & Johari, 2015), 97% of the potentially valuable data is

still untagged and even more is not analysed yet and if they do tag on digital universe

Univ
ers

ity
 of

 M
ala

ya

26

data generated till 2012, the useful data would be around 643 Exabytes which 23% of

the total data (Bhardwaj & Johari, 2015; J. Gantz & Reinsel., 2012).

(h) Timeliness: Analysis of big data must be faster and faster especially in some

urgent cases such as health care emergency conditions or in a suspected transaction of a

fake credit card before the worst result takes place. But the size of data sets that are

required to be processed is continuously growing up and processing time is increasing

as well. Doing full analysis on whole data in such cases is not feasible and wastes much

time. Therefore, it is required to do analysis on a small portion of new data and achieve

a partial result. So, it consumes lower computation resources and less time to develop

quick demonstration (Jaseena & David, 2014). In addition to achieving results as fast as

possible, the accuracy of the results is also very important. Designing an efficient

system to process a specific size of data and return the results is a major concern (Lawal

et al.). However, the speed here is not same as the meaning of Velocity as one of the

characteristics of big data (Lawal et al.; B. S. P. Mishra, Dehuri, & Kim, 2016;

Mohanty, Jagadeesh, & Srivatsa, 2013).

2.3 Big Data Indexing

The simplest definition of big data indexing is that process of converting a collection

of data into a format suitable for easy search and retrieval. Indexing is needed to

perform optimized retrieval process in big data which are massive and mostly complex

especially in scalable and distributed storage in environments such as cloud computing

(Chen et al., 2013). Because performing non-indexed explorations on a huge amount of

data is impractical and using proper indexing techniques according to the structure of

data would benefit us by optimizing the performance of query processing on big data

(Wang, Holub, Murphy, & O‘Sullivan, 2013). Hence, appropriate indexing techniques

ease accessing big data effectively.

Univ
ers

ity
 of

 M
ala

ya

27

Many indexing techniques are used by researchers to make big data retrieval faster

and accurate as well. For instance, using a file index technique on large text collections

can make event stream indexing efficient in cloud computing (Cambazoglu, Kayaaslan ,

Jonassen , & Aykanat, 2013), or to have optimized and fast searches in the cloud

environment, a semantic indexing based approach is highly recommended by some

researchers (Miguel Ángel Rodríguez-García, Rafael Valencia-García, Francisco

García-Sánchez, & J Javier Samper-Zapater, 2014b) and also R-tree indexing method

would help to provide multi-dimensional indexing in the cloud environment (Wang,

Wu, Li, & Ooi, 2010).

In fact, using indexing techniques facilitates to balance amount of consumed

resource such as computational power with the performance of data retrieval (Paul,

Chen, Bharanitharan, & Wang, 2013). Analysing big data with minimized cost and time

is strongly required in vital areas such as a complex clinical field. So, using data

indexing methods would reduce time consumption (Dijkman et al., 2013; Gani, Siddiqa,

Shamshirband, & Hanum, 2016). However, decreasing high costs need to be addressed

in developing indexing techniques. Moreover, any efficient data indexing proposal has

to satisfy all big data requirements (Chen et al., 2013) such as Volume, Velocity,

Variety, Veracity, Value, Variety, and Complexity (Gani et al., 2016). These

requirements are explained in Section 2.8.

Although there are many proposed indexing techniques described in the existing

literature, rarely we can find a state-of-the-art survey that investigates the consequences

and performance of those techniques. In fact, there is a need for having a guidance for

helping researchers to compare and select appropriate indexing technique in order to

solve indexing on Big Data issues (Gani et al., 2016). Therefore, comparative studies on

big data indexing are necessary.

Univ
ers

ity
 of

 M
ala

ya

28

Based on the above description, indexing approach is required to speed up accessing

to big data which can be the format of records, objects, etc. Clearly, any indexing

technique must be able to support basic functions of the database system and efficient

enough in searching and querying the data.

2.3.1 Big Data Indexing Taxonomy

Big data indexing are classified into different categories to better understand the

taxonomy. Figure 2.2 shows the several categories of big data indexing. The

classification is important because of large-scale data in the unstructured format. Based

on the previous studies conducted by (Athanassoulis, Yan, & Idreos, 2016; Che, Safran,

& Peng, 2013; Gani et al., 2016; Y. Wu et al., 2015)(Delbru, Campinas, & Tummarello,

2012; Manolopoulos, Theodoridis, & Tsotras, 2009; Shang, Yang, Wang, Chan, & Hua,

2010; Zhu, Huang, Cheng, Cui, & Shen, 2013)(Wu, Shoshani ,& Stockinger, 2010) ,

the classification is based on four aspects: (i) content format, (ii) structures, (iii)

requirements, and (iv) data retrieval.

Big Data Indexing Taxonomy

Data RetrievalRequirementsStructures

Hash

Bitmap

Tree-based

Summarization

Reusability

Content Format

Structured

Unstructured

Semi-structured

Volume

Veriety

Velocity

Key-value Veracity

Variability

Value

Complexity

Figure ‎2.2: Big data indexing taxonomy

Univ
ers

ity
 of

 M
ala

ya

29

2.3.1.1 Big Data Indexing Content Format

Variety, as one of the major aspect of big data characterization, is resulted from the

growth of virtually unlimited different sources of data. This growth certainly leads to

the great heterogeneity of big data. Data from different sources naturally has a great

many different types and representation forms, and is significantly interconnected

incompatible data formats and inconsistently represented (Che et al., 2013).

(a) Structured data: Structured data are often managed using Structured Query

Language (SQL) – a programming language created for managing and querying data in

relational database management systems. It has the advantage of being easily entered,

queried, stored and analyzed. Examples of structured data include numbers, words, and

dates.

 (b) Semi-structured data: Semi-structured data has a logical flow and format to it

that can be understood, but the format is not user-friendly.

(c) Unstructured data: Unstructured data refer to data that does not follow a

specified format (e.g., text messages, location information, videos, and social media

data). Unstructured data is everywhere. In fact, most individuals and organizations

conduct their lives around unstructured data. However, most data is at semi-structured

formats.

2.3.1.2 Big Data Indexing Structures

This subsection describes the indexing structures and its importance to big data

below:

(a) Hash-Based: A hash-based indexing technique is designed to be search-efficient

in the context of high-dimensional data (Zhu et al., 2013). This technique is aimed to

perform faster search operation and obtain results by representing high-dimensional data

with compact binary code (Gani et al., 2016). The hashed-based technique is

Univ
ers

ity
 of

 M
ala

ya

30

recommended for approximate similarity searches in high-dimensional data. Hence,

many applications in the areas such as document analysis, image retrieval, and near

duplication detection use hash-based methods for indexing their data (Shang et al.,

2010).

(b) Tree-based index: Tree-based indexing method is useful for ordering entries by

using the concept of a tree which consists of root and nodes. Data entries can be inside

the leaves of the tree or even inside each node of the tree. Data entry can be actual data

or pairs of the search key and value. This data structure is good for range queries. There

are some indexing techniques such as B+-tree and R-tree that use the concept of the

tree-based data structure. B+-tree is recommended for single-dimensional range and the

R-tree is recommended for multi-dimensional ranges (Manolopoulos et al., 2009).

 (c) The bitmap Index: Bitmap index structure is the most efficient indexing method

for range queries on append-only data (Wu, Shoshani, & Stockinger, 2010). Bitmap

indexing technique uses bulk index data consists of sequences of bits to answer queries

by utilizing those sequences of bits in bitwise logical operations. Bitmap indexing has

been used in different analytics solutions such as Spark, Druid. As the result, bitmap

indexing makes query processing very fast. Moreover, bitmap indexing is flexible in

conducting Boolean operations in retrieving data (Y. Wu et al., 2015).

Many commercial and open database systems use bitmap indexing techniques. It

makes fast read performance in processing particular sorts of queries such as equality

and selective range queries. In contrast, update operation in bitmap indexing technique

is costly. The reason is that bitmap indexes are compressed to reduce the storage

consumption, and every time any update operation is applied, it required to decode and

encode a bitvector which causes expensive cost (Athanassoulis et al., 2016).

Univ
ers

ity
 of

 M
ala

ya

31

Therefore, bitmap indexing techniques are mostly recommended for read-only

systems such as data warehouses that require fast query processing and also require

joining larger dimension table to smaller dimension tables (Lemire, Kaser, & Aouiche,

2010). It is also not recommended for online transaction processing applications

(Lemire et al., 2010).

2.3.1.3 Big Data Indexing Requirements

Big data indexing requirements including Volume, Velocity, Variety, Veracity,

Variability, Value, and Complexity are discussed as following:

(a) Volume: The term ‗big data‘ specifically points to the word ‗big‘ referring to the

volume of data. The current size of generated data is in Petabytes and it is expected to

reach to Zettabytes in near future (Gani et al., 2016; Katal, Wazid, & Goudar, 2013).

The most obvious challenge in the big data area is how to manage and index the huge

volume of data (J. Chen et al., 2013).

(b) Velocity: Velocity refers to the speed of generating and updating data. The

second challenge with big data is handling data as fast as they created or updated (J.

Chen et al., 2013). Recent business technologies such as e-commerce need to deal with

the speed of data as well as the abundance of data (Gani et al., 2016; Stephen Kaisler,

Frank Armour, J Alberto Espinosa, & William Money, 2013a).

(c) Variety: Big data are continuously being produced in different formats such as

text, images, audio, etc. and they can be gathered from different sources such as social

media applications, Web pages, Web log files, health care applications, e-education

systems, digital documents, emails, sensor devices, mobile applications, etc. The way of

indexing and analyzing a variety of big data is the third challenge (C. P. Chen & Zhang,

2014; Gani et al., 2016; Kaisler et al., 2013a; Yang et al., 2014).

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/Fact_table
https://en.wikipedia.org/wiki/Dimension_table
https://en.wikipedia.org/wiki/Online_transaction_processing

32

(d) Veracity: The term ‗veracity‘ points to trustworthy and accuracy of big data.

Especially in the decision-making process, it is required to know up to what extent can

data be trusted, how much the data is accurate and not corrupted, and what is the source

of data. Achieving this knowledge about the data is not easy. This important issue

which is known as big data veracity (Gani et al., 2016; X. Wang, Luo, & Liu, 2015),

arises the fourth challenge in big data science.

(e) Variability: Inconsistencies and heterogeneities in big data flow cause another

challenge for dealing with big data. It is difficult to maintain data loads, especially in

some environments with high use rate and peaks in data loads in certain events such

social media. This challenge is so-called big data variability(Gani et al., 2016; Katal et

al., 2013).

(f) Value: The usefulness of big data in crucial business processes such decision

making is another challenge of big data that is called big data value. Knowing how

much is large data valuable and beneficial is an important issue as it is highlighted in

some literature that ‗the purpose of cloud computing is insight, not numbers‘ (Gani et

al., 2016; Kaisler et al., 2013a; LaValle, Lesser, Shockley, Hopkins, & Kruschwitz,

2011).

(g) Complexity: Complexity is the seventh challenge in big data management that

deal with the degree of interconnectedness and interdependencies in big data structures

(Gani et al., 2016; Kaisler et al., 2013a). Connecting, correlating relationships and

multiple data linkages of big data from different sources are very important and require

significant activities such as cleansing, matching, linking, transformation across

systems, etc. Without complexity in term of above activities, organizing big data is not

easy (Barbierato, Gribaudo, & Iacono, 2014; Gani et al., 2016).

Univ
ers

ity
 of

 M
ala

ya

33

Based on those seven challenges which are also entitled as characteristics of big data

or big data requirements, the effectiveness of big data indexing techniques can be

compared. Establishing big data requirements and developing a system require

identifying the characteristics of the indexing technique that is going to be used in the

system. The basic measures that present the efficiency of an indexing technique are

accuracy and timeliness (Gani et al., 2016).

Different indexing techniques are proposed to fulfill the requirements of big data.

But, just a few solutions have found their respective places in a database system and

still, there is a big need for more efficient and concise indexing structures (Idreos et al.,

2007; Sidirourgos, 2014). Based on a survey conducted on indexing techniques for big

data (Gani et al., 2016), different indexing methods have different advantages and

disadvantages and only can support some of the requirements of big data. Most of them

focus more on handling the volume and less on a variety of big data.

2.3.1.4 Data Retrieval

The rapid growth of data in recent years has raised a challenge of distributing

information from a vast plethora of data (Jamil & Ibrahim, 2009). Different types of

data are generated by data sources. For example, Web-based applications are rapidly

producing millions of documents embedding metadata in the type of semi-structured

data every day. This huge amount of data needs efficient search and retrieval tools to

explore this semi-structured data and retrieve exploitable and useful information for

human as well as for machines (Delbru et al., 2012).

Retrieving information without using any indexing methods means searching whole

data and when it comes to large volume of data will waste a lot of time and

computational power. In contrast, applying appropriate indexing technique on the data

Univ
ers

ity
 of

 M
ala

ya

34

before searching process facilitates information retrieval and decreases the cost. Figure

2.3 shows the location of index mechanism in a data retrieval model.

(a) Summarization: Nowadays, extracting useful information out of the massive

amount of data available in different data sources such as web-based and social media

applications is very attractive and interesting for business firms. Summarization is very

important approaches for gathering valuable information from numerous big data source

in different fields such as health care, e-education, Internet of Thing (IoT), signal data,

etc.

Different definitions for a summary have been given by researchers. Some

researchers pointed that it is a text extracted from one or more text which consists of

significant parts of the original texts and it should be equal to or less than half of the

content of original texts. (García-Hernández et al., 2009; Hovy & Lin, 1998; Rahman &

Borah, 2015; Subramaniam & Dalal, 2015). Providing relevant summarization from

original data sources according to the system's requirements or user's query is a major

challenge (Rahman & Borah, 2015). Moreover, the summarization must be updated for

every time that the original sources of data are updated.

The main aim of query-based summarization is providing proficient respond for

complex questions. Also, the student can use summarized format of past materials to

save their time with an efficient action or people can use summarization results to find

out whatever they have missed from important meeting or news.

Summarizations can be categorized based on different criteria. For instance, a

summarization that must present main findings of some original textual information

according to the requirements of a system or of a user in order to save time and other

cost and also probably to ease quick-decision making can be categorized as Query-

Univ
ers

ity
 of

 M
ala

ya

35

based summarization. Followings are summarization categories presented by some

researchers(Rahman & Borah, 2015; Tang, Yao, & Chen, 2009):

 Single document summarization (SDS): This approach creates a summary based on

only a single document. It is considered as a hard task (Rahman & Borah, 2015).

 Multi-document summarization (MDS): This approach aims to extract a summary

according to the content of multiple documents. The challenge here is about what

percentage of each document should be used.

 Query-oriented summarization (QS): This approach is also called as query-based

summarization and generates a summary according to a given query. Many text

mining application normally used this type of summarization. One of the challenges

here is about how to make the returned results digestible for the query applied.

Many studies have used summarization concept and proposed methods and

techniques to apply summarization on different media. For example, chat

summarization method (Jones, 2007; Uthus & Aha, 2011), Multi-Document text

summarization (Agarwal, Gvr, Reddy, & Rosé, 2011; Radev et al., 2004), decision

summarization (Bui, Frampton, Dowding, & Peters, 2009; Fernández et al., 2008; L.

Wang & Cardie, 2011), and abstractive summarization (Balaji, Geetha, & Parthasarathi,

2016; Sun, Wang, Ren, & Ji, 2016) are some of the proposed methods that used

summarization concept in order to optimized related processes. These methods are

aimed to retrieved information with optimized approaches. So, integrating

summarization approaches in data retrieval mechanism would optimize retrieval process

and would save the cost.

(b) Reusability: Reusability has been defined in different researches in different

fields. For instance, Singh and Chana pointed out that reusability in software

engineering means re-using different form of existing assets such as software

Univ
ers

ity
 of

 M
ala

ya

36

components, code, designs, and documentations in the process of developing software

products (S. Singh & Chana, 2012). This approach reduces the amount of code that

needs to be tested and analyzed and also makes the process of development faster and

the cost of the product lower. Hence, reusability offers high productivity and better

quality of software products along with facilitated maintainability (Ahmaro,

Abualkishik, & Yusoff, 2014; Goyal & Gupta, 2014; Sattar & Zhang, 2014).

Facilitating discovery of information is the main aim of most information retrieval

technologies and much knowledge work is required to find and re-use earlier extracted

information (Dumais et al., 2016). According to some studies reported that the rate of

revisiting web pages by users is about 58-81% (Dumais et al., 2016). However, many

studies reported overlaps and similarities among web searches and information retrieval

queries which caused overlapped or same results.

Stuff I‘ve Seen (SIS) is one of the solutions that integrated reusability approach in

data retrieval process (Dumais et al., 2016). This system is designed to use reusability

approach in information retrieval This system creates an index of viewed information

such as web pages, emails, documents, etc. Then the system uses rich text-based

indications according to the information that has been seen by the use. The results show

that finding information is easier by this system and it causes less use of search tools.

Based on the above explanation about Stuff I‘ve Seen (SIS), integrating reusability

approaches into the cycle of data retrieval would optimize retrieval processes and leads

information retrieval system to high performance, faster responsiveness, and lower cost.

So, it is attractive and interesting for researchers as well as business expert to work

more on this integration.

Univ
ers

ity
 of

 M
ala

ya

37

2.3.2 Big Data Indexing Evaluation Metrics

Different Metrics have been used in previous studies (Campbell, Santos, & Hindle,

2016; Gani et al., 2016; Qu, Zhang, Yao, & Zeng, 2016; Schäler et al., 2013; K. Wang

et al., 2014). Based on our investigation on previous literature, the important factors for

evaluating big data indexing techniques are as following:

 Index size: This is the size of storage space that is needed for storing index data

during implementation of the indexing process.

 Index Creation Time: This is the time taken to implement indexing

mechanism.

 Query Response Time: This is the time taken to apply queries and retrieve

results.

 Indexing Overhead: This increases the time required to perform indexing

before submitting the first query

 Index Traversing Time: This is the time taken to traverse the index structure

 Index Hit Ratio/Index Miss Ratio: This is fraction of queries served by Index,

Index Miss Ratio is vice versa

 Size Overhead: This is the size of overhead resulted when indexing is applied

 Search Performance: It is the percentage of difference in Search Time between

no indexed and indexed searches

The following section provides analysis and discussion on some of the current big

data indexing techniques.

2.3.3 Analysis and Discussion of Current Indexing Techniques

This section evaluates some of the current indexing techniques studied in (Gani et al.,

2016). The authors examined indexing methods to measure the amount of data volume

Univ
ers

ity
 of

 M
ala

ya

38

while maintaining its performance. They analyzed selected indexing methods based on

the performance of each technique in handling different types of data, various data

formations and also based on updating speeds. However, they used more measures such

as accuracy, the degree of interconnectedness, implication on decision-making, security,

and inconsistency for evaluation (Gani et al., 2016).

Our analysis of the indexing techniques is based on above study and other related

literature of different techniques and identified some of the facts. The strength of each

indexing technique detailed to ensure its viability for big data. Table 2.2 lists some of

the current indexing methods and presents which technique can address which big data

indexing requirements.

It is very clear in Table 2.2 that all of the called techniques support volume for big

data dataset (Sellis, Roussopoulos, & Faloutsos, 1987; Sellis, Roussopoulos N, &

Faloutsos, 1987; Weng & Chuang, 2011) except Lazy indexing and Support Vector

Machine. Lazy indexing technique cannot satisfy big data dataset in term of volume

(Stefan Richter, JorgeArnulfo, Quian´eRuiz, Stefan Schuh, & Dittrich, 2012). And also

the status of satisfaction of Support Vector Machine technique for volume is unknown

(Chakrabarti, Pathak, & Gupta, 2011).

The Table 2.2 shows that the techniques satisfy velocity in many cases such as Red-

Black Tree, Randomize Interval Labelling, Collaborative filtering, Graphic Query,

Bitmap, Geometric Hashing and Hierarchical Tree (Cheng, Ke, Fu, & Yu, 2011b; Dong,

2010; Kaushik, Umarani, Gupta, Gupta, & Gupta, 2013). Hashing, Semantic Indexing,

and Suffix Tree techniques cannot support velocity for the big dataset (Miguel Ángel

Rodríguez-García, Rafael Valencia-García, Francisco García-Sánchez, & J. Javier

Samper-Zapater, 2014a). The rest of called techniques have not been evaluated in

velocity term.

Univ
ers

ity
 of

 M
ala

ya

39

Hashing, Semantic Indexing, Collaborative Vector Technique, Collaborative learning

and Shortest Path techniques support variety based on previous related work (Fu &

Dong, 2010; Rodríguez-García et al., 2014a; Weng & Chuang, 2011). The rest of

techniques are not able to support variety for big data dataset.

In the matter of variability, the following techniques are supported for big data

dataset: R+- Tree, Semantic Indexing, Randomized Interval Labelling, Shortest Path

Tree, B-Tree, Bitmap and Geometric Hashing. The rest of the called techniques cannot

support variability for big data (Maier, Rattigan, & Jensen, 2011; Sellis, Roussopoulos,

et al., 1987; Wei L-Y, HsuY-T, PengW-C, & LeeW-C, 2013).

The figure shows that Red-Black Tree, Semantic Indexing, Lazy Indexing, Support

Vector Indexing, Shortest Path, B-Tree technique and Collaborative Semantic satisfy

value for big data dataset (Maier et al., 2011; Sheng-Cheng, Su, Chen, & Lin, 2013;

Weng & Chuang, 2011). In contrast, the bitmap technique cannot support value

(Gundema & Armaganb, 2006) and all the rest of technique have not been clarified that

support value or not.

Regards of complexity, just some of the techniques satisfy it for big data dataset.

According to the Table 2.2, the techniques are as following: Red- Black Tree, Inverted

Index, Randomized interval labeling, Graphic Query Tree, Bitmap, Geometric Hashing

and Hierarchical Tree (Cheng et al., 2011b; Sheng-Cheng et al., 2013).

Retrieving information without using any indexing methods means searching whole

data and when it comes to large volume of data will waste a lot of time and

computational power. In contrast, applying appropriate indexing technique on the data

before searching process facilitates information retrieval and decreases the cost. Figure

2.3 shows the location of index mechanism in a data retrieval model.

Univ
ers

ity
 of

 M
ala

ya

40

Table ‎2.2: Some of the current indexing techniques versus big data indexing
requirements

Indexing
Technique Authors

Big Data Indexing Requirements

V
olum

e

V
elocity

V
ariety

V
eracity

V
ariability

V
alue

C
om

plexity

SmallClient (Aisha, et al., 2016) Ye
s

Ye
s

Ye
s

N
A

N
A

N
A

N
A

R+-tree (L.-Y. Wei, Hsu, Peng, & Lee,
2014)

Ye
s

N
A No N

A
Ye
s

N
A

N
A

Red–Black tree (Yeh, Su, Chen, & Lin, 2013) Ye
s

Ye
s No Ye

s
N
A

Ye
s

Ye
s

Hashing (X. Zhu, Z. Huang, H. Cheng, J.
Cui, & H. T. Shen, 2013)

Ye
s No Ye

s No N
A

N
A

N
A

Inverted index (B. B. Cambazoglu, Kayaaslan,
Jonassen, & Aykanat, 2013)

Ye
s

N
A No N

A
N
A

N
A

Ye
s

Semantic Indexing
(Rodríguez-García et al., 2014b) Ye

s
N
A

Ye
s

Ye
s

Ye
s

Ye
s

N
A

(Done, Khatri, Done, & Draghici,
2010)

Ye
s No Ye

s
Ye
s

N
A

N
A

N
A

Support Vector
Machine

(Dittrich, Blunschi, & Salles,
2011)

N
A

N
A No Ye

s
N
A

Ye
s

N
A

Lazy Indexing (Richter, Quiané-Ruiz, Schuh, &
Dittrich, 2012) No N

A No Ye
s

N
A

Ye
s

N
A

Randomized
interval labeling (Yıldırım, Chaoji, & Zaki, 2012) Ye

s
Ye
s No Ye

s
Ye
s

N
A

Ye
s

Collaborative
filtering technique

(M.-F. Weng & Chuang, 2012) Ye
s

Ye
s

Ye
s

Ye
s

N
A

N
A

N
A

(Huang, Lu, Duan, & Zhao, 2012) N
A

N
A No Ye

s No Ye
s No

Collaborative
learning (Fu & Dong, 2012) Ye

s
N
A

Ye
s

N
A

N
A

N
A

N
A

Graph Query Tree (Cheng, Ke, Fu, & Yu, 2011a) Ye
s

Ye
s

N
A

N
A

N
A

N
A

Ye
s

Shortest Path Tree (M. Maier, M. Rattigan, & D.
Jensen, 2011)

Ye
s

N
A

Ye
s

Ye
s

Ye
s

Ye
s

N
A

B-Tree (Li, Yi, & Le, 2010) Ye
s

N
A

N
A

N
A

Ye
s

Ye
s

N
A

Bitmap (K. Wu, Shoshani, & Stockinger,
2010)

Ye
s

Ye
s No N

A
Ye
s No Ye

s

Geometric hashing (Mehrotra, Majhi, & Gupta, 2010) Ye
s

Ye
s No Ye

s
Ye
s

N
A

Ye
s

Collaborative
Semantic

(Leung & Chan, 2011) Ye
s

N
A No Ye

s
N
A

Ye
s

N
A

(Dieng-Kuntz et al., 2006) Ye
s

N
A No N

A
N
A

Ye
s

N
A

(Gacto, Alcalá, & Herrera, 2010) N
A

N
A

N
A

Ye
s

N
A

N
A

N
A

Fuzzy (Dittrich et al., 2011) Ye
s

Ye
s No No N

A
Ye
s

Ye
s

Univ
ers

ity
 of

 M
ala

ya

41

Manifold learning (Elleuch, Zarka, Ammar, &
Alimi, 2011)

Ye
s

Ye
s

Ye
s

Ye
s

N
A

N
A

Ye
s

Hierarchical Tree (Lazaridis, Axenopoulos,
Rafailidis, & Daras, 2013)

Ye
s

Ye
s No Ye

s
N
A

N
A

Ye
s

Suffix Tree (Russo, Navarro, & Oliveira,
2011)

Ye
s No N

A
N
A

N
A

N
A

N
A

Incremental
collaborative
filtering

(Komkhao, Lu, Li, & Halang,
2013)

Ye
s

N
A

N
A

Ye
s

N
A No N

A

Collaborative
annotation (Elleuch et al., 2011) Ye

s
N
A

N
A

Ye
s

N
A

N
A

N
A

Figure ‎2.3: Index mechanism in a data retrieval model

In this model, different types of data may need to be searched. So, proper index

structure must be applied on different types of data or their metadata if they exist. Then

the results of all search tasks require being integrated and returned to the user.

Various indexing techniques are proposed to make data retrieval faster (Boubekeur &

Azzoug, 2013; Kathuria, Datta, & Kaul, 2013; Ramakrishna & Rani, 2013; L. Wei &

Shen, 2016) in environments such as data centers and data warehouses but finding a

proper indexing technique for a particular query type is not easy (Jamil & Ibrahim,

2009).

Table 2.2: Continued

Univ
ers

ity
 of

 M
ala

ya

42

2.4 B-tree Indexing Technique

This section introduces B-tree indexing technique and discusses the flow of the

search method that is used in B-tree technique.

B-trees are indexing techniques that use tree-based data structure. The algorithm of

B-tree performs vigorous indexing, but when it requires to index online data stream, it

consumes huge computing resources (Gani et al., 2016). B-trees are balanced search

trees designed to work with a database based on nodes and many children. Moreover,

every modern Database Management System (DBMS) contains some variant of B-trees

plus other index structures for special applications.

B-trees generalize binary search trees in a natural manner. A common variant on a B-

tree, known as a B+-tree, stores all the satellite information in the leaves and stores only

keys and child pointers in the internal nodes, thus maximizing the branching factor of

the internal nodes. B+-tree is a dynamic index structure. For such data structure, all leaf

nodes are at the same height and it means the number of edges between the root node

and leaf nodes is always same. So, each node has either zero or two child. However, all

data are stored in the leaves of the tree. If any new insertion or deletion happens, B+-

tree reorganizes itself automatically and it is not required to reorganize the whole file

(Orsborn, 2007).

2.4.1 History of B-tree

In the late 1960s, different IT based research groups and institutions were trying to

develop a file system so called "access methods" to use in their machines. H. Chiat and

other developers at Sperry Univac Corporation implemented a system to perform insert

and search operations in which the process flow was similar to the process flow of same

operations in the B-tree method. However, B. Cole and other developers at Control Data

Corporation developed a similar system. Then, R. Bayer and E. McCreigh at Boeing

Univ
ers

ity
 of

 M
ala

ya

43

Scientific Research Labs introduced B-tree technique as an external indexing

mechanism in which the cost of the basic operations such as insertion, deletion, and

search was very low (Bayer, 1971; Beyer & McCreight, 1972; Comer, 1979).

There is no specific explanation about the origin of "B-tree" in the literature. There is

more than one term such as "Balanced tree", "Bushy tree", or "Broad tree" (Comer,

1979) which are reported by author that the "B-tree" might be named. In the same time,

the modern history of B-tree starts from Boeing Scientific Research Labs, some of the

researchers suggest that "B" comes for the word "Boeing". But, some believes that the

"B" stands for Bayer who was one of the main developers of B-tree mechanism at

Boeing Scientific Research Labs.

2.4.2 B-tree Mechanism

A tree based structure is an upside down tree in which the root of the tree is at the top

and the leaves are at the bottom. The last down level of nodes in a B-tree is so called the

leaf level. Every node is the leaf level is called leaf node and each leaf node does not

have any node bellow itself. All upper level nodes above the leaf level are so called

index nodes or directory nodes. The nodes between root node and leaf nodes are called

internal. The root node of B-tree structure is known as level 1 of the B-tree. Lower

levels below the root node have the larger number successively to the leaf level which is

the lowest level but it has the largest level number. This largest number for leaf level is

also called the depth of the B-tree. Figure 2.4 shows a B-tree structure with depth of 4.

Whereas the B-tree is a balanced tree, the lengths of all paths from the root node to a

leaf node are same. In a B-tree based structure, every node can contain some keys and

some pointers. The keys are the values of a specific attribute that the tree structure is

generated according to that attribute. Pointers are kind of a link to the location of the

record that contained the keys. A B-tree of degree d has a tree structure in which every

Univ
ers

ity
 of

 M
ala

ya

44

node can have up to 2d keys and 2d+1 pointers. Every node always must have at least

half of the maximum number of its keys. Based on (D. Comer, 1979), each node of a B-

tree structure with order d can contain up to 2d keys and 2d+1 pointers.

Figure ‎2.4: A B-tree structure with depth 4

In a B-tree of order m, the root node must have at least two children. Every node has

at most m children. However, every internal node has up to m/2 children and if an

internal node contains k children, it must have (k-1) ordered keys in which the first key

of the internal node is greater than the keys of the leftmost child and the last key of the

internal node is less than the keys of the rightmost child.

2.4.3 B-tree Main Operations

In this section, the main database operations including insertion, deletion and search

actions using B-tree indexing structure are described.

2.4.3.1 Insertion

The purpose of using insertion in B-Tree is to be implemented in a way that keeps

the tree perfectly balanced in the sense that all the leaf nodes of the tree are on the same

level of the tree (Graefe, 2016). B-tree insertion is a complicated process than normal

insertion process. The initial insertions begin at a leaf node. Then new element search

the tree to find the leaf node where the new element that required to be added. Before

Univ
ers

ity
 of

 M
ala

ya

45

new element inserts it, if the node contains fewer than the maximum number of

elements, then there is room for the new element. Insert the new element in the in the

node, keeping the node‘s element ordered. However, the node can split into two nodes if

the node is full. In the case, a single median is chosen from among the leaf‘s element

and the new element. Values less than the median are put in the new left node and

values greater than the median are put in the new right node, with the median acting as a

separation value (Comer, 1979). Suppose that a key k needs to be inserted in the sub-

tree rooted at y in a B-tree T. If y is a leaf, insert the key. If not, find a child in which

the key should go to and then make a recursive call with y set to the child.

2.4.3.2 Deletion

Deletion in B-tree is a set of operations to find the proper node based on the deleted

resides in a leaf or the key resides in a non-leaf node. Deletion of non-leaf demands that

the discovered key to be identify and then changed into the vacated position in order to

find the result efficiently. There are two popular strategies for deletion from a B-Tree.

First, is to locate and delete the item, and then restructure the tree to regain its

invariants. Second, a single pass down the tree is done, but before entering a node, the

tree needed to be restructured so that once the key to be deleted is encountered; it can be

deleted without triggering the need for any further restructuring (Comer, 1979).

Deletion can be preform in a multiple steps, for example, searching for the value to

delete, if the value is in a leaf node, it can simply be deleted from the node. Then if

underflow happens, the sibling will be checked to either transform a key or fuse the

siblings together. If deletion is preformed from the right child retrieve the max value of

left child if there is no underflow in left child.

Univ
ers

ity
 of

 M
ala

ya

46

2.4.3.3 Search

To search a B-tree structure T of order m for finding a key K among the keys of the

nodes (keyi 0≤i<m) inside the B-tree structure, the B-tree search algorithm traverses the

nodes of the B-tree T from the root to the leaves and compares the key K with every key

(keyi 0≤i<m) of the traversed node. If K is equal to keyi, it returns pointeri (0≤i<m) as the

result which is the pointer that points to the location of the records of datasets in

physical storage that include key K. But if key K is less than keyi and greater than keyi-1

(if keyi-1 is existed) of the node, it traverses the left child of the node linked to the left

side of keyi and repeats the comparison process. However, if the target key K is greater

than a keyi and less than keyi+1 (if keyi+1 is existed) of the node, it traverses the right

child of the node that is linked to the right side of keyi and repeats the comparison

process. This process continues until the search algorithm finds the match key or there

are no more nodes to be traversed. In this case no match key with the target key K is

found and hence the result is empty. Figure 2.5 demonstrates an example of B-tree

search operation.

Figure ‎2.5: Example of a B-tree search operation

According to the nature of the B-tree search algorithm, the comparisons between the

target key K with the keys of the nodes of the B-tree structure regardless of availability

Univ
ers

ity
 of

 M
ala

ya

47

of the key K in the range of the minimum and maximum value of the keys of the nodes

inside the B-tree structure. It means, the search algorithm is not capable of avoiding

performing numbers of comparisons when the final result is empty. Hence, we can

conclude that the time and computing resources consumed for searching the B-tree in

the case that the key K is not in the range of keys of the nodes inside the B-tree are

wasted. While, checking availability of the target key K among the keys of the nodes

before traversing the B-tree structure, offers resource consumption optimization.

2.4.4 Existing Modified B-tree Indexing Techniques

B-Tree indexing technique is more adaptable to increasing the volume and variety of

data (Siddiqa, Karim, & Chang, 2016). Based on the standard B-tree indexing

technique, some modified indexing techniques are proposed. Current modifications of

B-tree indexing technique use flash memory optimization or main memory (Chi, Lee, &

Xie, 2014; Jin, Cho, & Chung, 2014; Siddiqa et al., 2016). SmallClient (Siddiqa et al.,

2016) is one of the recent work which proposes a block level indexing mechanism

based on the B-tree indexing technique to minimize indexing overhead and improve the

performance of search execution tasks with optimized aggregation of computing

performance.

FB+-tree is another work which tries to speed up building index structure for large

data storage systems using multi-level key ranges (Yu & Boyd, 2014). But, this work is

using B+-tree not B-tree. It is designed to be a main memory resident. Another study

proposed indexing techniques and uses B-tree indexing structure and summarization

concept. These summaries are not based on the values stored inside the nodes of the B-

tree structure. In fact, this work offers extracting statistical summaries such as quantiles,

frequent items, and various sketches of the records in the query (Yi, Wang, & Wei,

2014).

Univ
ers

ity
 of

 M
ala

ya

48

2.5 Conclusion

Several kinds of literature related to big data and big data indexing are reviewed.

Different structures of data namely structured, semi-structured, and unstructured data

along with related challenges are described. Then various sources of big data are

explained. Also, some of the challenges that researchers need to deal with in current

time and future are elaborated. After that, big data indexing and its role in big data area

followed by some of the main indexing structures were explained. We also discuss B-

tree based indexing techniques.

However, this study focused on big data requirements that are required to be handled

by indexing techniques. Some of the current indexing techniques are analyzed based on

previous studies and then we discussed the analysis. Moreover, we discuss data

retrieval, query summarization, and reusability concepts to investigate how we can

bring those concepts into big data indexing techniques in order to facilitate data retrieval

and enhance the performance of query processing in big data. Lastly, we described B-

tree indexing structure and main database operations.

 In next chapter, the problem that this study focuses on is analyzed. In fact, we

measure resource consumption during data retrieval and query processing via a database

system which uses B-tree indexing technique. We study the effect of increasing the

volume of data on consuming resources, particularly, the trend of time consumption

during data retrieval process. We also study the impact of processing earlier queries on

process of later queries especially when they have overlaps and similarities.

Univ
ers

ity
 of

 M
ala

ya

49

CHAPTER 3: PERFORMANCE ANALYSIS OF B-TREE INDEXING

TECHNIQUE

3.1 Introduction

This chapter aims to provide problem analysis of resource consumption in data

retrieval when querying a large amount of data, particularly with respect to the time

consumption of later queries in data retrieval. That is being said, using performance

analysis is derived from establishing the problem and identifying the time consumption

model. The problem analysis is carried out based on time consumption in data retrieval.

Some queries are applied against the data stored inside the database to retrieve desired

data from the datasets stored in MongoDB database (MongoDB, 2016) in two modes,

with and without using indexing method. Then, we used default indexing method of

MongoDB which uses a B-tree data structure. A simulation engine is developed to

apply and repeat queries. This simulation calculates and records the response time for

each search operation. The findings of the analysis are verified using initial

experimental analysis to measure the performance of the B-tree search method.

The remaining parts of this chapter are organized as follows. Section 3.2 presents an

analysis of the B-tree in indexing. Section 3.3 provides time consumption analysis of B-

tree method in indexing. Section 3.4 presents a retrieving time performance evaluation,

which describes the process flow of the time consumption that being used for simulation

engine to apply queries and measure the response time. Section 3.5 offers execution

time analysis and discussion. Section 3.6 concludes the chapter.

3.2 Analysis of B-tree Indexing Technique

Time consumption of B-tree in indexing is an essential part of this study since it is

the basics that the rest of the work and other algorithms proposed are based on. It is one

of the most widely accepted methods for analysis optimization problem in indexing. B-

Univ
ers

ity
 of

 M
ala

ya

50

tree is the default indexing technique in MongoDB (MongoDB, 2016), which is a

balanced search tree which is intended to work well on magnetic disks and other direct

access secondary storage devices (Cormen, 2009) with an acceptable minimization in

disk I/O operations. B-tree has the "branching factor" which ability to have multiple

children in every node.

The data structure of B-tree can be represented by as following:

 (1)

Where is donated to the number of keys of the B-tree. All leaves are at the same

depth in the tree. Also, we can use B-trees to implement many dynamic-set operations

in time O(lg n) (Cormen, 2009). Figure 3.1 illustrates a simple B-tree in which the keys

in each node are from English alphabet.

L

C G O R U

V WS TP QM NH J KE FA B

Figure ‎3.1: A B-tree structure with keys from English alphabet

As shown from the figure the each level represent a row of indexing strategies. Thus,

the tree can be formulated as follows:

 {∑ } ∑
 (2)

Where donated to nodes and donated to the number od descsions in B-tree,

which is based on comparisons with the [] keys of node . Thus, each nodes are

Univ
ers

ity
 of

 M
ala

ya

51

facing a multiway branching decsion in accordance with the number of children of the

node. In addition, searching key in B-tree takes a pointer to the node ,

which is the root of the subtree presented as following:

 [] (3)

Where is the B-tree search and is donated to the root of the tree. Figure 3.18 shows

sample code for B-Tree-Search algorithm 1.

Algorithm 1: B-tree-search procedure

Required

B-tree search

1. For

2. While []

3. Do

4. If [] []

5. Then return

6. If leaf []

7. Then return Null

8. Else DISK-READ []

9. Return B-tree-search []

If the search operation can find key in the B-tree the operation returns an orders

pair with form in which is the node that the key has been found in and

 is the index of the key.

 (4)

In this procedure, a recursion is used for doing comparisons between k and the keys

inside the B-tree and the nodes are encountered form a path starting from the root of the

B-tree downward to the leaves. Therefore, the number of disk pages accessed by B-tree-

search can be represented as following:

 (5)

Univ
ers

ity
 of

 M
ala

ya

52

Where is the height of the B-tree and is the number of keys in the B-tree.

Since [] , the time taken by the while loop as it is shown in Figure 3.18 in line

4 for doing comparisons among the keys within each node is , and the total CPU

time (Cormen, 2009) shown as:

 (6)

Based on the above explanations, repeating any number of this search operation to

find key in the B-tree , consumes same amount of time and other resources such as

computational power as the first search operation and there is no capability in B-tree

structure to help later search operations to benefit from earlier search operations.

3.3 Query Processing Time Consumption Analysis

To analysis time consumption for each query in data retrieval, a cost best model is

used to measure the time. Following the approach used in (Banker, 2011), the time

consumption for each query, which shown as follow:

 (7)

Where donated to stop time, which is the time taken from second check point at

the end of the processing the query and donated to start time, which is the time

taken from first check point at the beginning of the processing a query.

Some queries are applied against data stored inside the database to retrieve desired

data from the datasets stored in MongoDB databases in two times, with and without

using indexing method. Thus, for the first time, indexing techniques are not used and

just the four queries as they are listed in Table 3.1, are applied. Then, default indexing

method of MongoDB which uses a B-tree data structure is used (MongoDB, 2016). For

this purpose, four different query statements of different levels of complexity are used.

Univ
ers

ity
 of

 M
ala

ya

53

Firstly, each query statement is applied on each dataset without using indexing

technique. The simulation engine repeated each query transaction 20 times and returned

the results and related response time. The retrieval time for each query transaction was

calculated and recorded. The whole steps are repeated and in this time the dataset is

indexed inside the database using the shell environment that MongoDB provided for its

users and then the simulation is started again to repeat the whole steps and processes

that have been done in the first time. Figure 3.2 illustrates the query process model that

measures the response time.

Figure ‎3.2: Query processing model for measuring response time

The processes that are shown in Figure 3.2 start after functioning connecting the

simulation system to the database which is created by MongoDB system. However, the

datasets are stored into the MongoDB database before simulation engine runs those

functions.

The simulation engine captures the system time in millisecond and stores it in a

variable named startTime. This the first check point. Then, the system calls the

MongoDB java library and it uses appropriate java classes and functions to apply

appropriate query statement against dataset inside the database and receive the results.

Univ
ers

ity
 of

 M
ala

ya

54

Table ‎3.1: Queries for the experiments

Query Description
Query 1 Select all records in which attribute ―country‖ is equal to ―MY‖
Query 2 Select all records in which country is Malaysia and data. Humidity is greater than

80 and temperature is greater than 300
Query 3 Select all records in which country is Malaysia and data. Humidity is less than 50

and wind. Speed is greater than 3
Query 4 Select all records in which country is Malaysia and data. Humidity is greater than

90 and data. Pressure is greater than 1000

3.4 Retrieving Time Performance Evaluation

In this section, the process flow of the time consumption is described. This process is

used in simulation engine to apply queries and measure the response time. We also

declare how the engine calculates response time. Then, all the recorded results via

simulation engine are reported in different tables followed by some analysis and

discussions on the results.

Table ‎3.2: Response times for processing Query 1 without indexing (milliseconds)

No. 240 MB 740 MB 2.1 GB 51.75 GB 438.21 GB 1275.20 GB (1.245 TB)
1 93 7571 20646 508776 4308230 12233892
2 91 7784 20714 510452 4322420 12175173
3 92 7481 20496 505080 4276930 12542829
4 93 7329 19829 488643 4137746 12037903
5 91 7356 20277 499683 4231231 12309877
6 89 7406 21016 517894 4385439 12558513
7 89 7494 21599 532261 4507094 12322288
8 87 7326 20110 495568 4196382 12208494
9 88 7443 21139 520925 4411105 12833185

10 89 7389 20026 493498 4178854 12157499
11 88 7445 19968 492069 4166751 12122288
12 88 7501 20489 504908 4275469 12438579
13 89 7708 20136 496209 4201808 12224278
14 89 7486 20551 506435 4288407 12476219
15 89 7613 20972 516810 4376257 12331802
16 89 7334 21023 518067 4386899 12762763
17 91 7601 21086 519619 4400046 12501009
18 90 7705 20203 497860 4215789 12264953
19 90 7618 19633 483813 4096846 12418914
20 89 7579 20256 499166 4226848 12297128

Univ
ers

ity
 of

 M
ala

ya

55

Four queries with different complexities are used to evaluate the response time in

data retrieval and query processing while no indexing technique was used inside the

database. This process repeated 20 times and all response times are recorded. Table 3.2

lists the response times of applying Query 1 for twenty times without using indexing

technique.

However, the response times for processing Query 2, Query 3, and Query 4 without

using any indexing technique are presented in Table 3.3, Table 3.4, and Table 3.5

respectively.

Table ‎3.3: Response times for processing Query 2without indexing (milliseconds)

No. 240 MB 740 MB 2.1 GB 51.75 GB 438.21 GB 1275.20 GB (1.245 TB)
1 84 186 415 10227 85599 242941
2 83 187 417 10276 85016 243155
3 85 186 410 10104 84555 248905
4 87 178 423 10424 86268 256797
5 86 180 424 10449 88477 257404
6 83 181 409 10079 85347 248298
7 85 179 413 10178 86181 250726
8 84 182 412 10153 85973 250119
9 86 185 415 10227 86599 251941

10 84 184 411 10128 85764 249512
11 84 186 421 10375 87851 255583
12 84 179 400 10327 83469 242834
13 84 180 403 10218 84095 244656
14 85 186 424 10449 88477 257404
15 84 181 407 10030 84929 247084
16 85 184 421 10375 87851 255583
17 84 178 410 10104 85555 248905
18 84 180 409 10079 85347 248298
19 87 182 422 10399 88059 256190
20 83 178 405 9980 84512 245870

After running the simulation and applying queries on the datasets inside the database

without using any indexing technique, an index structure on the datasets is created by

using MongoDB system via its shell environment. MongoDB indexes use a B-tree data

Univ
ers

ity
 of

 M
ala

ya

56

structure(MongoDB, 2016). Table 3.6 shows the list of response times for processing

Query 1 when default indexing technique of the MongoDB system is used.

Table ‎3.4: Response times for processing Query 3 without indexing (milliseconds)

No. 240 MB 740 MB 2.1 GB 51.75 GB 438.21 GB 1275.20 GB (1.245 TB)
1 38 172 373 9192 79834 222443
2 37 180 388 9561 78965 233549
3 39 177 361 8896 75330 219158
4 37 183 363 8945 75748 221372
5 38 171 372 9167 77626 224836
6 38 181 373 9192 77834 223443
7 37 172 364 8970 75956 221979
8 38 178 367 9044 76582 222800
9 38 182 362 8921 75539 219765

10 38 178 358 8822 74704 217337
11 38 171 361 8896 75330 219158
12 39 180 363 8945 75748 220372
13 38 175 363 8945 75748 220372
14 38 172 362 8921 75539 219765
15 38 179 394 9709 80217 239192
16 38 182 374 9216 78043 227050
17 37 179 391 9635 80591 237371
18 38 177 385 9488 79339 233728
19 39 174 378 9315 78878 229478
20 38 180 371 9143 77417 225229

Table ‎3.5: Response times for processing Query 4 without indexing (milliseconds)

No. 240 MB 740 MB 2.1 GB 51.75 GB 438.21 GB 1275.20 GB (1.245 TB)
1 26 87 199 4904 41526 129810
2 26 89 218 5372 45490 129309
3 26 91 224 5520 46742 129423
4 27 83 213 5249 44447 129512
5 26 87 239 5890 49872 124563
6 25 84 204 5027 42569 125842
7 26 90 209 5150 43612 126881
8 26 87 210 5175 43821 127488
9 26 85 213 5249 44447 129309

10 26 87 212 5224 44238 128702
11 25 89 205 5052 42778 124453
12 26 93 222 5471 46325 126773
13 26 84 210 5175 43821 127488
14 26 87 217 5348 45282 125738
15 27 94 208 5126 43404 126274
16 26 88 204 5027 42569 123845

Univ
ers

ity
 of

 M
ala

ya

57

Table 3.5: Continued
17 28 87 215 5298 44864 124523
18 27 93 208 5126 43404 126274
19 27 94 210 5175 43821 127488
20 27 90 211 5200 44030 128095

Table 3.7 and Table 3.8 report the response times for processing Query 2, and Query

3 respectively. The results are for the time that default indexing technique in MongoDB

system is used and queries are applied via simulation engine.

Table ‎3.6: Response times for processing Query 1 - using indexing (milliseconds)

No. 240 MB 740 MB 2.1 GB 51.75 GB 438.21 GB 1275.20 GB (1.245 TB)
1 22 6463 19099 470654 3985416 11294730
2 31 6431 19151 471935 3996267 11626299
3 28 6380 20370 501975 4250637 11466336
4 31 6454 19036 469101 3972269 11556484
5 24 6415 18974 467574 3959332 11518844
6 24 6378 18669 460058 3895687 11333683
7 25 6209 18800 463286 3923023 11413211
8 23 6385 19110 470925 3987711 11301408
9 23 6390 18925 466366 3949107 11489097

10 22 6395 19636 483887 4097472 11420735
11 23 6305 18528 456583 3866264 11248084
12 23 6244 18546 457026 3870020 11259012
13 22 6421 18601 458382 3881497 11292401
14 23 6393 18766 462448 3915928 11392571
15 23 6297 18725 461438 3907373 11367680
16 23 6289 18469 455129 3853953 11212266
17 30 6143 18581 457889 3877324 11280260
18 29 6359 18898 465701 3943473 11472706
19 34 6566 18252 449781 3808671 11580528
20 26 6656 18439 454390 3847692 11494053

And finally, Table 3.9 that shows query processing response times for applying

Query 4 against the datasets that are indexed by using default indexing method of

MongoDB which is B-tree.

…………………………………………………………………………………………

………………………………………………………………………………….

Univ
ers

ity
 of

 M
ala

ya

58

Table ‎3.7: Response times for processing Query 2 – using indexing (milliseconds)

No. 240 MB 740 MB 2.1 GB 51.75 GB 438.21 GB 1275.20 GB (1.245 TB)
1 26 91 254 6259 53003 154200
2 29 87 293 7220 61141 157876
3 27 85 279 6875 58219 159377
4 22 85 298 7344 62184 150912
5 21 88 253 6235 52794 153593
6 24 86 251 6185 52377 152379
7 21 85 292 7196 60932 157269
8 21 87 299 7368 62393 161519
9 25 86 253 6235 52794 153593

10 21 87 252 6210 52585 152986
11 21 87 252 6210 52585 152986
12 21 90 252 6210 52585 152986
13 21 85 269 6629 56133 153306
14 23 86 290 7146 60515 156055
15 23 84 266 6555 55507 151485
16 26 85 261 6432 54463 158449
17 26 86 256 6309 53420 155414
18 22 87 258 6358 53837 156628
19 25 85 256 6309 53420 155414
20 26 84 266 6555 55507 151485

Table ‎3.8: Response times for processing Query 3 – using indexing (milliseconds)

No. 240 MB 740 MB 2.1 GB 51.75 GB 438.21 GB 1275.20 GB (1.245 TB)
1 15 81 359 8847 74913 207944
2 14 90 367 9044 76582 212800
3 14 87 351 8650 73244 213087
4 14 80 367 9044 76582 202800
5 14 80 355 8748 74078 215515
6 14 81 347 8551 72409 210659
7 14 81 350 8625 73035 212480
8 15 79 323 7960 67401 196089
9 15 81 325 8009 67818 197303

10 16 86 332 8181 69279 201552
11 15 80 314 7738 65523 200625
12 15 79 317 7812 66149 202446
13 15 81 327 8058 68236 198517
14 15 80 329 8108 68653 199731
15 15 88 330 8132 68862 200338
16 14 84 334 8231 69696 202767
17 14 80 361 8896 75330 209158
18 14 79 335 8255 69905 203374
19 14 80 345 8502 71992 209445
20 15 82 352 8674 73452 203694

Univ
ers

ity
 of

 M
ala

ya

59

Table ‎3.9: Response times for processing Query 4 – using indexing (milliseconds)

No. 240 MB 740 MB 2.1 GB 51.75 GB 438.21 GB 1275.20 GB (1.245 TB)
1 17 61 175 4310 36518 108240
2 17 60 173 4269 36100 105026
3 16 62 174 4288 36309 109633
4 16 60 173 4263 36100 105026
5 16 59 174 4288 36309 105633
6 16 60 173 4263 36100 115026
7 16 60 173 4263 36100 105026
8 17 60 172 4239 35891 104419
9 16 59 173 4263 36100 105026

10 16 60 173 4263 36100 105026
11 16 59 174 4288 36309 105633
12 16 60 173 4263 36100 109026
13 16 60 173 4263 36100 105026
14 16 59 173 4263 36100 105026
15 16 60 176 4337 36726 108847
16 16 58 176 4337 36726 106847
17 16 60 175 4313 36518 106240
18 16 59 174 4288 36309 109633
19 16 60 175 4313 36518 106240
20 17 62 174 4288 36309 105633

Based on the results recorded from the experiments in the condition that no indexing

technique is used, some visualization diagrams are created to have a clear understanding

of the performance of the database system in term of query processing speed when the

volume of the data is growing up. Moreover, by using these diagrams we can have a

better analysis of the time consumption as one of the resources used for data retrieval

process for big data. Figure 3.3 illustrates the performance of the MongoDB system for

processing Query 1 without using any indexing technique.

Also, visualization of the response times for processing Query 2, Query 3, and Query

4 without using any indexing technique are imaged in Figure 3.4, Figure 3.5, and Figure

3.6 respectively.

Univ
ers

ity
 of

 M
ala

ya

60

Figure ‎3.3: Response time for 20 times processing of Query 1 without using indexing

Figure ‎3.4: Response time for 20 times processing of Query 2 without using indexing

Univ
ers

ity
 of

 M
ala

ya

61

Figure ‎3.5: Response time for 20 times processing of Query 3 without using indexing

Figure ‎3.6: Response time for 20 times processing of Query 4 without using indexing

As it can be seen in Figure 3.4, Figure 3.5 and Figure 3.6, every time the simulation

engine processes every query, the response time is mostly same and there are no much

Univ
ers

ity
 of

 M
ala

ya

62

changes in the time that are consumed for processing the query to return the result.

However, when the volume of the data is growing up, although the response time for the

bigger dataset is increasing, but still the response times' trend for every dataset is linear

and the response times are almost same. It means, for each dataset with a specific

volume, same queries are applied twenty times, but the time consumption in data

retrieval is nearly same. Therefore, the resources, particularly the time that is consumed

for processing earlier queries are not reused for processing later queries to be faster and

processing later queries consumes same resources specifically the time which is the

metric that is used in this study. Therefore, no matter how similar are the queries, the

resources like time needed to process them are almost same and when it comes to big

data era, based on the above diagrams, it is shown that the data volume grows from 240

MB to 1.245 TB (1275.20 GB or 1305804.8 MB) and in contrast for processing Query

1, the average of response times increases from 89.71ms to 12360879ms. Based on the

Equation (3.2) in which VStart is the starting value and VEnd is the end value, the growth

rate of the data volume is about 543985.33% and the growth rate of response time is

about 13778608.06%.

 (8)

Table 3.10 presents more information about the growth rate of time consumption in

data retrieval of our predefined queries in contrast with the growth rate of data volume

on our experiments when no indexing technique is used before applying the queries.

As it is in Table 3.10, the growth rate of response time or consumed time for

processing Query 1 is about 25.3 times higher than the growth rate of data volume and it

means not only the time as one of the resources consumed for processing earlier queries

cannot be reused for the later queries even the queries are same (Query 1), but by

Univ
ers

ity
 of

 M
ala

ya

63

growth of the volume of data, the time needed for processing same queries is potentially

and strongly increasing.

Table ‎3.10: Growth rate of query response time in contrast with data volume (without
indexing)

Query

Data Volume
(MB)

Average of Response Time
(ms) Growth Rate

From To From To Data
Volume

Response
Time

Query 1 240 1305804.8 89.71 12360879 5439.85 137786.08
Query 2 240 1305804.8 84.63 250110 5439.85 2954.33
Query 3 240 1305804.8 38.04 224920 5439.85 5911.72
Query 4 240 1305804.8 26.25 127090 5439.85 4840.52

Table 3.11 provides more details about the relation between the growth of data

volume and response time needed for processing our predefined queries. Based on the

information gathered in this table, we can see as the size of the datasets growing up, the

average time consumed for processing the four queries are increasing strongly.

Table ‎3.11: Response time vs. data volume (without indexing)

Data Volume (MB)
Average Response Time (ms)

Query 1 Query 2 Query 3 Query 4
240 MB 89.71 84.63 38.04 26.25
740 MB 7508 182.1 177.15 88.45
2150 MB (2.1 GB) 20508 413.55 371.15 212.55
52992 MB (51.75 GB) 505387 10229 9146 5238
448727.04 MB (438.21 GB) 4279528 85996 77248 44353
1305804.8 MB (1.245 TB) 12360879 250110 224920 127090

To visualize how is the trend of time consumption in data retrieval in processing

Query 1 when the volume of data is growing up, Figure 3.9 is created based on the

information inside Table 3.11.

Based on figure 3.7, it is clear that when the volume of data is increasing, the time

consumption for processing Query 1 is increasing strongly. This behavior is same as the

relation between response time of processing Query 2, Query 3, and Query 4. Figure 3.8

illustrates this relationship.

Univ
ers

ity
 of

 M
ala

ya

64

Figure ‎3.7: Visualization of the relation between response time for processing Query 1
without indexing and data volume

Figure ‎3.8: Visualization of the relation between response time for processing Query 2,
Query 3, and Query 4 without indexing and data volume

As it is explained above, when no indexing technique is used for processing queries,

the response time which is the time that is consumed for processing the queries, is

almost same for all times that simulation engine applies same queries and the resources

particularly the time that is consumed for processing earlier queries do not have any

Univ
ers

ity
 of

 M
ala

ya

65

impact on the response time of later queries even for same queries. However, by the

growth of the size of datasets, the response time is increasing powerfully.

In the first experiments, no indexing technique is used. Now, to figure out what is the

impact of using indexing on the consumption of resources particularly on the time

consumption in data retrieval for processing our predefined queries, default indexing

technique of MongoDB is used inside the database and then all the above processes and

steps are repeated. The default indexing technique is B-tree which is the default

indexing technique in MongoDB(MongoDB, 2016).

3.5 Execution Time Analysis and Discussion

Base on the results recorded from the experiments in the condition that default

indexing technique (B-tree) of MongoDB system is used, some visualization diagrams

are created to have a clear understanding of the performance of the database system in

term of query processing speed and the trend of time consumption and one of the

resources that are used during query processing when the volume of the data is growing

up. Figure 3.8 illustrates the performance of the MongoDB system for processing Query

1 in the condition that default indexing technique (B-tree) of MongoDB system is used.

The response time is mostly same with a small variation for each time the simulation

engine processes every query, and there is no much change in time consumption for

processing the query to return the result. However, when the size of the dataset is

growing up, although the response time for the bigger dataset is increasing, but still the

response times' trend for every dataset has little variation and the response times are

almost same. In another word, same queries are applied twenty times against each

dataset with a specific volume, but the time consumption in data retrieval is nearly

same. Therefore, the resources, particularly the time that is consumed for processing

earlier queries, are not reused for processing later queries to be faster and processing

Univ
ers

ity
 of

 M
ala

ya

66

later queries consumes same time which is the metric that is used in our study. So, no

matter how much the queries are similar, the time as one of the resources needed to

process queries are almost same with a little variation and when it comes to big data era,

based on the above diagrams, it is shown that the data volume grows from 240 MB to

1.245 TB (= 1275.20 GB or 1305804.8 MB) and in contrast for processing Query 1, the

average of response times increases from 25.47ms to 11401019ms. Based on the

Equation (3.2) the growth rate of the data volume is about 543985.33% and the growth

rate of response time is about 44802898.30%.

Table 3.12 presents more information about the growth rate of time consumption in

data retrieval of our predefined queries in contrast with the growth rate of data volume

on our experiments when indexing technique (B-tree) is used before applying the

queries.

Table ‎3.12: Growth rate of query response time in contrast with data volume (with
indexing)

Query
Data Volume (MB) Average of Response

Time (ms) Growth Rate

From To From To Data
Volume

Response
Time

Query 1 240 1305804.8 25 11401019 5439.85 456039.76
Query 2 240 1305804.8 23 154896 5439.85 6733.61
Query 3 240 1305804.8 15 205016 5439.85 13666.73
Query 4 240 1305804.8 16 106812 5439.85 6674.75

Based on the Table 3.12, the growth rate of response time for Query 1 which is the

consumed for processing Query 1 is about 83.8 times higher than the growth rate of data

volume. Therefore, the time as one of the resources used for processing Query 1 in

earlier attempt cannot be reused for a later attempt for processing the same query

(Query 1). However, when the volume of data is growing up, time consumption for

processing Query 1 is strongly increasing. This behavior is same for other queries.

Table 3.13 provides more details about the relation between the growth of data volume

Univ
ers

ity
 of

 M
ala

ya

67

and response time needed for processing our predefined queries. Based on the

information gathered in this table, as the size of the datasets growing up, the average

time consumed for processing the four queries are robustly increasing.

Table ‎3.13: Response time vs. data volume (with indexing)

Data Volume (MB)
Average Response Time (ms)

Query 1 Query 2 Query 3 Query 4

240 MB 25 23 15 16

740 MB 6379 86 82 60

2150 MB (2.1 GB) 18879 268 341 174

52992 MB (51.75 GB) 465226 6592 8403 4283

448727.04 MB (438.21 GB) 3939456 55820 71157 36267

1305804.8 MB (1.245 TB) 11401019 154896 205016 106812

Figure 3.9 visualizes the trend of time consumption in data retrieval and processing

of Query 1 while the size of the dataset is growing up based on the information inside

Table 3.10.

Figure 3.9 shows that by increasing the volume of data, the time that is consumed for

processing Query 1 is increasing powerfully. This behavior is same as the relation

between response time of processing Query 2, Query 3, and Query 4. Figure 3.10 shows

this relationship. Univ
ers

ity
 of

 M
ala

ya

68

Figure ‎3.9: Visualization of the relation between response time for processing Query 1
with indexing and data volume

Figure ‎3.10: Visualization of the relation between response time for processing Query
2, Query 3, and Query 4 with indexing and data volume

So, when the default indexing technique (B-tree) in MongoDB is used for processing

queries, the response time which is the time that is consumed for processing the queries,

Univ
ers

ity
 of

 M
ala

ya

69

becomes better than the time that no indexing technique is used. But every time the

same query is applied and the response time is almost same with earlier attempts that

simulation engine applies the same query and the resources, particularly the time that is

consumed for processing earlier queries, do not have any impact on the resources

consumption particularly on the response time of later queries. Moreover, by the

expansion of the volume of the datasets, the response time is increasing impressively.

3.6 Conclusion

In this chapter, an experimental analysis and a formal analysis are conducted in order

to verify the problem that this study focuses on. In the experimental analysis section the

performance of one of the current database systems is analyzed. This database system is

able to store and manipulate big datasets and also the effects of multiple applying same

and similar queries on the same dataset are studied to find out the capabilities of those

systems to reuse the resources such as the time and computational processes used for

earlier queries in order to improve data retrieval in later queries. Particularly, we used

time among the resources that are used in data retrieval as our measurement. In this

regard, our test environment, data collection method, datasets, and also requirements of

the experiments are described.

We developed a simulation engine to connect to the selected database system, apply

queries, calculate the response time and return it to the user. Four predefined queries

and 6 sizes of selected datasets are used. The result shows that the response time which

is the time consumed for processing the queries, is almost same for all times that

simulation engine applies same queries and the resources particularly the time

consumed for processing earlier queries do not decrease the required resources

particularly the required time for processing later queries even when the queries and the

Univ
ers

ity
 of

 M
ala

ya

70

datasets are exactly same.. However, the results show that by the growth of the size of

datasets, the response time of every query is increasing impressively.

Moreover, we analyzed B-tree structure formally and resulted that repeating any

number of this search operation to find key k in the B-tree T, consumes the same

amount of time and other resources such as computational power as the first search

operation and there is no capability in B-tree structure to help later search operations to

benefit from earlier search operations.

In the following chapter, a modification in B-tree search method is proposed to speed

up the search process and get benefit from earlier queries by adding new elements in the

nodes of the B-tree and store some metadata in each node. This metadata is reusable for

later queries and minimize the query execution time. Our proposed solution aims to use

summarization and reusability concepts inside B-tree structure to reduce resource

consumption particularly time consumption of processing queries.

Univ
ers

ity
 of

 M
ala

ya

71

CHAPTER 4: IMPROVED SEARCH METHOD FOR BIG DATA SETS

4.1 Introduction

This chapter describes in details the improved method for indexing big data using a

summarization technique and history value which offers reusability to be added to the

search algorithm in order to reduce the number of comparisons required to be done by

search algorithm to speed up the search process and address the problem of low

efficiency and poor performance of the current indexing techniques, which are used in

big data retrieval. The proposed search method is an extension of B-tree search method

with the same index structure and uses a Min-Max summarization technique to add a

summary of data stored inside the sub-trees under each node. Such approach helps to

optimize search process by reducing the number of comparisons required to be done to

find the result of the search. Moreover, this method helps later queries to benefit from

the results of earlier queries via a history object which is added to each node of the

indexing structure upon every search operation.

In this chapter, an improved indexing method based on B-tree structure is proposed

to optimize resource consumption in data retrieval for big data. Also, we focus on

efficiency of search execution time to improve the overall efficiency of big data

indexing procedure.

Section 4.2 elaborates an improved B-tree indexing technique which is an extension

of B-tree indexing technique. Also, the architecture of the system that is used for

running and evaluating our proposed search method is illustrated. In the following of

this section, the components of the system are described. Section 4.3 presents the

structure of the improved indexing technique. In Section 4.4, we explain the data

retrieval architecture and highlight the layer that our proposed search method is located.

Section 4.5 describes the simulation engine that is used for benchmarking experiments.

Univ
ers

ity
 of

 M
ala

ya

72

The process of search tasks in the proposed search method is detailed in Section 4.6 and

finally, Section 4.7 provides the summary of this chapter and also highlights some of

the advantages of the proposed method.

4.2 Improved B-tree Technique

Improved indexing technique is an extension of the B-tree indexing technique which

performs basic operations such as Insert, Update, Delete, and Search. The proposed

system to run and evaluate our proposed method consists of different components. The

idea is to add a new element to each node of the tree structure of the indexed data to

store the maximum and minimum value of the sub-tree under the node. In this approach,

we name this new element as meta-data of a node as it carries some information about

the data inside the sub-tree of the node.

Backup/Restore Engine

Index Generator

Index Files

Files Records Number

Load Backup

Update

Update

Json Records

Dataset file

Activity Log

Create Backup

History Updater

Summarization Updater Update

Search Query Query Strings Load query

Results

Update

Update

Figure ‎4.1: Improved big data retrieval system architecture

Univ
ers

ity
 of

 M
ala

ya

73

The objective of this research is to improve search process in big data based on B-

tree structure. Thus, to enhance the performance of the B-tree search, two techniques

have been used, first a min-max summarization technique which adds two values to

each non-leaf node to store minimum and maximum values of the sub-tree of the node.

The second technique is using the last history of the last search to get the benefit of

earlier queries for speeding up the next search processes and decreasing the execution

time of later queries.

In fact, the first technique which is a min-max summarization is running after index

data is ready and before processing the first query. Then during search process, the

modified search algorithm checks the result of the min-max summarization process to

reduce the number of comparisons. However, every time a query is processed by the

modified algorithm, the history updater updates the history value in meta-data of some

of the traversed nodes. When search process is traversing the B-tree structure, it checks

history value and if the current query is same as previous query or they have some

overlaps, it uses the stored pointer of every last right or last left traversed node by

previous query and jumps to that node and reduces the number of required comparisons

rather than previous query. This procedure is illustrated in Figure 4.5.

An improved data retrieval system with 6 main components including Index

Generator, Summarization Updater, Data Storage, Backup Engine, Search Query

Engine and History Updater is proposed. This System uses an improved B-tree indexing

technique in which we use our proposed search method to speed up the query

processing and reduce execution time of the search operations by using Summarization

Updater and History Updater to add and update metadata to the node of the structure of

the indexed data. However, this system can make a backup of the index data and store it

into a file into the physical storage and reuse for further search process in future. This

Univ
ers

ity
 of

 M
ala

ya

74

feature and also added metadata to the nodes provide reusability of the previous

indexing process and also search operations' results. Figure 4.1 illustrates the

architecture of our improved big data retrieval system. The descriptions of each

component are provided as following.

4.2.1 Index Generator

This engine is responsible to read files from Data Storage and generates index

structure based on the predefined attributes. However, it can load a backup of previous

index data and update it based on new dataset files instead of regenerating index

structure using the old datasets and indexing new dataset files.

4.2.2 Summarization Updater

Min-Max algorithm has been used widely in many areas such as Neural Network,

Video Processing, Smart Energy System, and sensor networks. In order to optimize the

search process of the B-tree technique, a min-max summarization technique is also used

after creating an index over attribute values and before the first time query processing .

By using this technique, two values will be added to each node of the B-tree. The first

value is representing the minimum value of the sub-trees of the node and the second one

is the maximum value of the sub-trees of the node. Figure 4.2 shows a portion of a B-

tree structure with the order of 3 before using summarization technique and Figure 4.2

illustrates how min-max summarization values are added to the nodes of the same

portion of the B-tree structure. Univ
ers

ity
 of

 M
ala

ya

75

Figure 4.2: A portion of a B-tree structure before running min-max summarization

Figure 4.3: A portion of a B-tree structure after running min-max summarization

The min and max values resulted from running min-max technique will be reused for

later queries. It means this summarization technique is running one time before first

search task and can be reused many times. If we assume ST1 is the first search task,

T(ST1) is the time needed for running ST1, tmin-max is the time required to run min-max

algorithm, and tQ1 is the time required for searching indexed data to find the results for

Query 1, then total consumed time for doing ST1 and processing Query 1 will be an

accumulation of tmin-max and tQ1.

Also, whereas min-max technique is not running for later queries, tmin-max = 0 and

T(ST1) is equal to the time used for processing next queries.

Univ
ers

ity
 of

 M
ala

ya

76

Based on the above explanations, the Summarization Updater is responsible of

adding a min-max summarization data into each node of the B-tree structure of the

index data. This metadata provides minimum and maximum values stored inside the

nodes of the sub-tress under every node and reduces the number of comparisons

operation of the search algorithm during data retrieval. It fact search algorithm checks

the availability of the key that is looking for inside the branch of the tree structure

before starting searching the branch‘s nodes.

4.2.3 Data Storage

To test our technique, a simulation engine is developed to read dataset files in which

every line is representing a record of a file based database. Every line includes semi-

structured data with json format. Before starting reading file and splitting every record,

the list of attributes that indexes must be created based on them is defined. For instance,

to create an index to search records to find a specific country, we can define an object

from a class with name BTree which using B-tree structure.

After the system is opening the file, it starts reading the file, line by line using a

while loop. If a line is not null, it calls a method with name ReadOneRecord to read a

record (line) as string and stores it into an object with name Record in order to split it

and extract main parts for indexing purposes.

However, the position of each record inside the file will be captured as a pointer of

the record to be used inside the index for linking the index and related records by calling

a method with name setStartPositionInFile.

Univ
ers

ity
 of

 M
ala

ya

77

Now the system creates an array list with name data and stores extracted parts inside

the array list.

 ;

Before starting indexing process for current record (line), the engine captures the

current time in Milliseconds.

Then, it starts Indexing process to add the record into the index structure using one of

the attributes of the record. For example, to create an index based on the attribute

"country".

After this process, the engine calculates the elapse time and adds it to the total elapse

time.

When the while loop is ended, the engine will show the total time consumed for

indexing whole datasets. Figure 4.4 presents the flow of the process of reading data

from dataset files.

Univ
ers

ity
 of

 M
ala

ya

78

Figure ‎4.4: flow of the process of reading data from dataset files

Univ
ers

ity
 of

 M
ala

ya

79

Algorithm 1: Improved B-tree indexing method

Required

Index attributes Country, Humidity, Pressure, Wind Speed, Day Temperature

10. While
11. Read $file;
12. If
13. Break;
14. Else, End if
15.
16. ArrayList [Data record
17. Set startTime in milliseconds
18. Set , Calculate elapsedTime , Print elapsedTime
19. End.

4.2.4 Backup Engine

This engine makes backup from the index data after indexing every dataset file is

finished. In fact, this engine makes a backup of the index data and stores it into a file

into the physical storage. This capability offers reusability of index data for further

search processes in the future and reduces the time of generating indexes by eliminating

re-indexing the dataset files that are indexed in the past.

4.2.5 History Updater

This function stores and updates an extra value inside a node. This new element is

actually a pointer that represents the last history of the search route map and it points to

a child node of the current node that during the last traverse of the branch which has that

child, the direction of the search path has been changed from left to the right or vice

versa. Therefore, in the next search query, if the search key is same, in the normal B-

tree search process, the search function traverse whole path that previous search task has

done. But, in our proposed method, the search function jumps from current node to one

of its child nodes using the history value stored in the node from last search operation.

Figure 4.5 illustrates how history updater stores and updates the history value inside

some of the traversed nodes during last search process. Blue dashed arrows show the

Univ
ers

ity
 of

 M
ala

ya

80

path of the search and green dotted arrows show how history values or pointers are

pointing the nodes to make shortcuts for next search process.

Figure ‎4.5: History updater stores/updates pointers as shortcuts for next search process

History Updater function is running during every search process and stores or

updates the history value HistoryValue and HistoryNode inside related node in order to

reduce the number of comparisons of the search algorithm in the next search tasks. In

the second search and later on, History Updater updates the history value.

4.2.6 Search Query Engine

The basic idea of the search process in a n-key B-tree is comparing the value that a

query is looking for with the value of every internal node x of the B-tree to make a

decision among an (n[x] + 1)-way branching decision in order to find out on which

branch of the sub-tree under the node x, the target value might be. B-tree search

algorithm directly generalized from the Tree search algorithm.

The search algorithm compares the target value k with every value keyi[x] inside the

node x, if it is equal (keyi[x] = k), the algorithm returns an ordered pair (x, i) in which x

is the node and i is the index of the related key. If the target value k is less than key0[x],

then the algorithm start traversing the left branch of the sub-tree at the left side of the

key0. If k is greater than key0[x], then the search algorithm repeats the above procedure

for the next key (keyn-1) of the node x. If there is no result found, the algorithm traverses

Univ
ers

ity
 of

 M
ala

ya

81

the most right branch of the sub-tree bellow the node x. The above process is repeating

for every internal node of the B-tree and if there is no result fount, the algorithm returns

null. Algorithm 2 presents a simple pseudo code of a normal B-tree search process

without our modifications in which we are looking for value k in a node x of a B-tree T

with order n.

Algorithm 2: Improved B-tree indexing method

1. Begin
2. Get node of the B-tree with order
3.
4. While [] ([])
5. Set
6. [] []
7. Return null
8. Set []
9. End.

Algorithm 2 of a B-tree search process without proposed modifications

As you can see in Figure 8, every time a search task is looking for a key in a node x,

if the key is not among the nodes‘ keys, it starts traversing branches of the sub-tree

regardless of knowing the value is inside the sub-tree of the node. The first part of our

modifications on the B-tree search shows its role here by adding a Min-Max

summarization to each node indicating that what are the minimum and maximum values

of the sub-tree of the node x before start first search task. Then, during search

procedure, before starting comparing the keys of the node x or traversing sub-tree of the

node x, it checks the min-max values and if key k is between these two values, it starts

searching the node x and its keys and sub-tree. But, if the key k is greater than the

maximum value, the search algorithm ignores that node with the whole sub-tree from

applying search procedure. Algorithm 3 shows the modified search algorithm using

min-max values added to the node x upon summarization process.

Univ
ers

ity
 of

 M
ala

ya

82

In addition to Min-Max summarization checking, our technique provides a history of

the last search in every index structure that has been created and used from previous

query processing. So, if the current query is same or has overlapped with the previous

query, the search algorithm will get benefit from history element s inside some of the

nodes inside the index structures that have been used by the previous search process.

For example, if the previous query was looking for every record that attributes

―Country‖ is Malaysia and humidity is 90, history element inside indexed data of the

country attribute can help for any other queries that are looking for ―Malaysia‖ as a

country name. Therefore, our modified search algorithm can get the benefit of history

element by jumping from a parent node to one of the child nodes that exactly has the

value ―Malaysia‖ or gives the next child that search process should jump in to find the

value ―Malaysia‖. Figure 4.6 images the flowchart of the modified search process.

Algorithm 3: Improved B-tree indexing method

1. Begin
2. Get node of the B-tree with order
3.
4. If ()
5. Set
6. [] []
7. Set
8. If [] []
9. Return Null
10. is a leaf node
11. Return Null
12. Else
13. Set []
14. End, else
15.
16.

Univ
ers

ity
 of

 M
ala

ya

83

Figure ‎4.6: Flowchart of our modified B-tree search process

4.3 IB-tree Indexing Structure

In a tree structure, every node consists of two elements. One element is carrying

attribute value representing a data record and the other element is storing a pointer that

links the data to the location of the data. A B-tree structure is a balanced search tree

which works well on disks or other direct-access secondary storage devices. The

Univ
ers

ity
 of

 M
ala

ya

84

proposed solution of this work is suggesting adding a new element to each node of the

tree structure of the index to reduce the number of comparisons that normally must be

done by search algorithm. In our proposed method, the metadata will be added to nodes

the tree structure of the index right before the first search task operates. Figure 4.7

demonstrates a modified and improved B-tree structure based on the proposed solution

of this research. We named this indexing structure IB-tree which stands for Improved

B-tree.

Figure 4.7: IB-tree indexing structure

4.4 Data Retrieval Architecture

Figure 4.8 shows a data retrieval architecture presenting the main layers and

components of a data retrieval system. It also highlighted the indexing layer in which

our proposed solution is located.

Univ
ers

ity
 of

 M
ala

ya

85

GUI

Search Query Result Integration

Index (/Indexing Technique)

Meta Data Structured Data Meta Data Unstructured
Data Meta Data Semi-Structured

Data

Figure ‎4.8: Data retrieval architecture

When the user wants search for information from big data. Firstly, the users submit

the query via graphic user interface that incorporates with search query engine. Then,

the query will be processed using improved B-tree indexing technique. The datasets can

be retrieved in a deferent format which content structure, unstructured or semi-

structured. The system also stored meta-data that can be used during the indexing

process.

4.5 Simulation Engine

The simulation engine is responsible for reading dataset files, splitting each line of

the file and extracting internal objects, creating index structure based on the predefined

attributes, running queries against indexed data, calculating the elapsed time to execute

search process over indexed data, and returning the elapsed time plus the result of the

search to the upper layer. Whereas index creation process for our proposed method is

same as B-tree search method, every time a search task is requested, simulation engine

calls required indexed data and applies queries using two search algorithms; B-tree

search algorithm and improved B-tree search algorithm. Figure 4.9 presents the flow of

the search process using our simulation engine when no modification is applied.

Univ
ers

ity
 of

 M
ala

ya

86

However, Figure 4.6 demonstrates the flow of the search process using our proposed

method.

Figure ‎4.9: Search process flow of the simulation system using B-tree search algorithm

4.6 Search Operation Flow

Every time the search operation is running to apply a query against data, it checks

every node's metadata first before going inside the branch of that node (if there is any).

If metadata has key value to help the system to figure out the result is inside that node

(as leaf node consist of data) or the branch (sub-tree) under the node (as parent node),

the system follow the value and do related process to retrieve the result from the node or

its branch (sub-tree), or ignore that node and its branch (sub-tree) and go back to the

parent node and check other child nodes/neighbors if there is not any helpful value

Univ
ers

ity
 of

 M
ala

ya

87

inside the metadata, the query process continue by searchingthat node and its branch

(sub-tree) to see the result is there or not. In this case, the system willupdate the

metadata of the node based on the result of the search.

Figure ‎4.10: Search operation flowchart

Query by query the metadata become more enriched and more useful for next query.

If the search is looking for data of specific time (or location or gender), maybe for the

first query, we search a branch (sub-tree) of a node that totally is not having data for that

specific time, but after system detects the data bellow each node is of which

date/location/gender or what is the minimum and maximum values of one attribute

under that node and its sub-tree, and updates the metadata, next time queries looking for

a data of another specific time, can read metadata of the parent node before go through

the branch (sub-tree). Figure 4.10 presents the flow of the search operation using the

proposed method.

4.7 Conclusion

In this chapter, the proposed method of this research is illustrated and its components

are described. The proposed method is an extension of B-tree structure and uses a Min-

Univ
ers

ity
 of

 M
ala

ya

88

Max summarization method to add a summary of data stored inside the sub-tree under

each node. Min-Max summarization checking, our technique provides a history of the

last search in every index structure that has been created and used from previous query

processing. So, if the current query is same or has overlapped with the previous query,

the search algorithm will get benefit from history element s inside some of the nodes

inside the index structures that have been used by the previous search process. Such

method helps to optimize search process by reducing the number of comparisons

required to be done to find the result of the search. In the next chapter, performance

evaluation methods are described. These methods are used for evaluating and validating

our proposed solution via benchmarking experiments in which different queries in term

of complexity and different datasets in term of volume are used.

Univ
ers

ity
 of

 M
ala

ya

89

CHAPTER 5: EVALUATION

5.1 Introduction

The objective of this chapter is to provide performance evaluation methods used to

evaluate and validate the proposed B-tree based search method. The purpose is to

improve the performance of execution time of data retrieval of big data sets. Thus, in

order to outline the importance of the proposed method as discussed in Chapter 4,

performance evaluation of the proposed search method is provided. Using

benchmarking experiments, we collected data of query execution time for searching

four predefined queries with the range of simple to complex queries. Every search task

is repeated 10 times. The sufficiency of this number of benchmarks for evaluating the

performance of computing systems by using Sieve benchmark is already proven (Jain,

2008). Sieve of eratosthenes benchmark (Sieve in brief) is an standard benchmark

which is widely used for evaluation performance of computing systems. Sieve algorithm

receives benchmark value N and generates all the prime numbers from 1 to N (Bukh &

Jain, 1992)

The evaluation results are validated using benchmarking analysis and comparative

study of the performance of our proposed search method in contrast to the performance

of the B-tree search method. Thus, first, the chapter provides a description of the

benchmarks that used for the evaluation of the proposed method. Second, the simulation

environment and the datasets used for the experiment are described in details. Finally,

the chapter investigates the performance of the proposed method. Moreover, a

comparative study is performed to demonstrate the performance of our proposed B-tree

based search method in comparison with related search method, particularly with

normal B-tree search method.

Univ
ers

ity
 of

 M
ala

ya

90

The chapter organized as follows. Section 5.2 explains the evaluation methodology of

the proposed B-tree based search method using Windows based Server environment.

Also, it reports the experimental environment used for the evaluation process. Section

5.3 describes the datasets that is used for performing the experiments. Section 5.4

provides benchmark description that is used for the evaluation of B-tree based search

method. At the end a conclusion of this chapter is reported in Section 5.5.

5.2 Evaluation of the Proposed Search Method

In this section, the evaluation methodology of the proposed B-tree is proposed based

search method using Windows based Server environment. Also, the experimental

environment used for the evaluation process is reported.

5.2.1 Performance Evaluation Testing Environment

This section determines the testing environment approach used for the performance

evaluation procedure. This environment is designed to index data and run searching

query process in two modes. In the first mode, normal B-tree search algorithm is used

and the taken time to execute searching the indexed data to find the results for the four

predefined queries from a simple to complex one is measured. In the second mode, our

proposed search method is used. This proposed search method uses a modified search

algorithm based on B-tree search algorithm and the consumed time for executing search

processes to apply the four queries against same indexed data is captured.

5.2.1.1 Testing Environment

We used a powerful Desktop Server Computer with 8 processers. Each processor is

an Intel(R) Xeon(R) Central Processing Unit (CPU) E5620 with capacity 2.40GHz. This

system uses 32 GB Random Access Memory (RAM), and 1.778 TB Hard Disk Drive

Univ
ers

ity
 of

 M
ala

ya

91

(H.D.D) to carry out the experimentation of both B-tree and the proposed search

methods. By choosing this Desktop Server Computer any corruption caused by network

overhead is eliminated, and communication costs or other factors such as transformation

and changing of the output are avoided. The Operating System (OS) of this server was a

Windows Server 2008 R2 Enterprise64-bit SP1. We used java programming language

and developed a simulation engine to read and index the datasets, and run search

operations to find the results for the four predefined queries with two search method

including normal B-tree search method and also the proposed B-tree based search

method. Table 5.1 listed the main hardware specifications of the testing environment.

Table‎5.1: Hardware specifications of the testing environment

Hardware Capacity Description
CPU 8 x 2.40GHz Each CPU is a Intel(R) Xeon(R) CPU E5620

RAM 8 x 4GB Each of ECC DDR3 1333MHz. Indexing and searching large
data needs more RAM to make the process faster.

H.D.D 1.778TB
DELL MD32xxi SCSI Disk Device (iSCSI). Indexing and
searching hundreds of Giga Bytes of data requires large storage
to store data and index files

VGA 60Hz Standard Monitor 1280x1024 Resolution video adapter and
monitor

5.3 Datasets

The study and knowledge of how weather evolves over time in some location or

country in the world can be beneficial for several purposes. Such knowledge or

information could be used for future predictions. For instance, knowledge of how

temperature changing effect on the tourists and precipitation aid in flood planning. The

use of terms like weather and climate are sometimes used interchangeable in different

situations. Their main difference is that weather prediction refers to a short period (e.g.

several days to one week); on the other hand, climate prediction involves the process of

predicting the future evolution for months, years, etc. Major data attributes included in

Univ
ers

ity
 of

 M
ala

ya

92

the collected weather from the National Oceanic and Atmospheric Administration

(NOAA) information include year, month, day, temperature, dew point, humidity,

Significant Weather, Wind Direction, pressure, Precipitation Snowfall, wind speed, etc.

In this research, seven datasets with different sizes starting from 1 GB to 1 TB are

used. The datasets are about historical weather data with an hour interval of 22632 cities

from different countries over the world. The format of data is in json format.

Table ‎5.2: The datasets used in this research

Dataset Size Description

Dataset 1 1.046 GB

Historical weather data with an hour interval of 22632
cities from different countries over the world

Dataset 2 2.127 GB

Dataset 3 4.255 GB

Dataset 4 8.509 GB

Dataset 5 17.018 GB

Dataset 6 68.073 GB

Dataset 7 1089.163 GB

To collect this data, an Application Programming Interface API provided by

OpenWeatherMap ("OWM API," 2015) is used. Through this API they provide

historical weather data for 22,632 cities. All services provided by OpenWeatherMap

such as maps, tiles, APIs and etc. are distributed under terms of the Creative Commons

Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) (C. Commons, 2013).

Data and database are open and licensed under Open Data Commons Open Database

License (ODbL) (O. D. Commons, 2013). Based on the terms and conditions of the data

Univ
ers

ity
 of

 M
ala

ya

93

provider, the products and data for non-commercial or commercial purposes can be

used. Table 5.2 provides some information about the datasets used in this study.

5.4 Benchmark Description

Our proposed search method is evaluated using benchmarking experiments for query

response time for searching four predefined queries with the range of simple to complex

queries. Ten benchmarks are used to run a performance evaluation for our proposal. The

sufficiency of this number of benchmarks for evaluating the performance of computing

systems by using Sieve benchmark is already proven (Jain, 2008).

A Desktop Server Computer with 8 processers is used. Each processor is an Intel(R)

Xeon(R) Central Processing Unit (CPU) E5620 with capacity 2.40GHz. 32 GB Random

Access Memory (RAM), and 1.778 TB Hard Disk Drive (H.D.D) are used to provide a

powerful experimentation environment. The Operating System of this computer is

Windows Server 2008 R2 Enterprise64-bit SP1 version 6.1. Java 1.8.0_111 is installed

on this machine to use as the programming language and also the NetBeans IDE 8.0.2

(Build 201411181905) as a powerful editor is used for coding, debugging, and running

the code.

In order to evaluate the proposed method, an indexing model is designed. This

indexing model consists of five main component including Index Creator to create index

structure based on some predefined attributes, Backup Engine to make backup of the

index files in order to provide ability of reusing previous index files, Summarization

Updater to add summarization to each node of the index structure as a kind of metadata,

History Updater to store the last search comparison result to be reused in next query,

Univ
ers

ity
 of

 M
ala

ya

94

and Query Processor to apply the four predefined queries against different sizes of the

datasets. Figure 5.1 illustrates a scheme of the benchmarking setup.

Figure ‎5.1: Benchmarking Model Scheme

To evaluate the performance of the proposed method in term of search execution

time, four different queries with the range of simple query to complex one are defined.

Table 5.3 listed these four queries with some description about each of them.

Table ‎5.3: Queries used in the experiments

Query Description
Query 1 Select all records in which attribute ―country‖ is equal to ―MY‖

Query 2 Select all records in which country is Malaysia and humidity is greater than 80
and temperature is greater than 300

Query 3 Select all records in which country is Malaysia and humidity less than 50 and
speed of wind greater than 3

Query 4 Select all records in which country is Malaysia and humidity is greater than 90
and pressure is greater than 1000

Two different execution modes are used. In the first execution mode that we call it as

mode A, after indexing a specific size of data, B-tree search method is used to perform

search operation to find the results for each predefined queries and every time search

execution time for processing each query and every specific size of data that we index

Univ
ers

ity
 of

 M
ala

ya

95

prior to executing the search tasks is captured. This procedure is repeated 10 times. In

the second mode which is called mode B in this chapter, same procedure is repeated

using the proposed search method instead of the B-tree search method.

Every search task is an operation of looking for results of a specific Query through a

specific size of data. Each search task is performed 10 times. This procedure must be

done in two modes including mode A in which search task is executed using B-tree

search method and mode B which it runs the search task using the proposed search

method. The elapsed time will be calculated based on the difference between the start

time and the end time of processing the search task. Table 5.4 presents a summarized

report of the workloads when the size of data is about 1.064GB.

Table 5.5 shows the summary report of the workloads for the dataset with size that is

used in the experiment. This result is obtained from the two methods B-tree method and

the improved that are implemented for data retrieval. As shown in the table the datasets

are 2.127GB of weather data collected.

Table ‎5.4: Summarized report of the workloads for the dataset with size 1.064GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

0.37 0.053 199 141 364 174 354 140
0.37 0.005 197 53 365 152 347 116
0.37 0.004 206 64 361 150 340 115
0.37 0.003 222 59 369 141 336 114
0.36 0.004 234 53 363 132 345 115
0.36 0.003 246 61 359 149 343 113
0.37 0.003 236 55 356 135 337 116
0.37 0.004 244 80 360 148 341 113
0.37 0.003 243 70 364 133 340 113
0.36 0.004 239 84 363 145 350 115

Univ
ers

ity
 of

 M
ala

ya

96

Table ‎5.5: Summarized report of the workloads for the dataset with size 2.127GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

1.33 0.048 1417 264 2262 351 2165 627
1.23 0.005 1435 249 2255 336 2172 403
1.27 0.004 1552 236 2246 332 2172 264
1.20 0.003 1496 232 2280 317 2163 253
1.26 0.004 1509 190 2254 315 2177 237
1.20 0.003 1587 176 2245 290 2151 217
1.56 0.004 1617 173 2240 271 2184 219
1.40 0.004 1572 165 2222 261 2195 187
1.31 0.003 1545 172 2254 265 2210 263
1.44 0.003 1531 161 2261 244 2178 271

Table ‎5.6: Summarized report of the workloads for the dataset with size 4.255GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

1.71 0.033 6221 437 9565 640 8009 514
1.73 0.005 6213 406 9560 562 7992 452
1.69 0.007 6215 312 9529 546 7994 437
1.73 0.004 6827 327 9552 546 7984 406
1.60 0.004 6186 359 9579 484 7998 421
1.61 0.004 6186 343 9591 514 7963 359
1.61 0.005 6209 281 9571 484 7990 343
1.66 0.004 6206 296 9560 483 7990 359
1.63 0.004 6201 265 9568 577 7983 390
1.70 0.003 6205 297 9573 578 8019 359

In Table 5.6 the summary report of the workloads for the dataset with size that is

used in the experiment. This result is obtained from the two methods B-tree method and

the improved that are implemented for data retrieval. As shown in the table the datasets

are 4.255GB of weather data collected.

Univ
ers

ity
 of

 M
ala

ya

97

Table ‎5.7: Summarized report of the workloads for the dataset with size 8.509GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

1.92 0.048 26420 811 41236 1264 36867 1092
1.86 0.005 25444 655 41237 1107 36803 827
1.94 0.004 26491 608 41181 1123 36868 851
1.87 0.004 25383 656 41034 1124 36812 842
1.92 0.004 26935 748 40991 1120 36862 858
1.80 0.003 26920 624 40985 1185 36926 827
1.91 0.003 26931 640 41007 1139 36849 889
1.82 0.006 26915 562 40946 1030 36882 827
1.85 0.003 26937 608 40925 1076 36849 952
1.83 0.003 26942 624 40926 1014 36794 920

Table ‎5.8: Summarized report of the workloads for the dataset with size 17.018GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

2.70 0.060 118711 1529 165763 2605 154182 3767
2.63 0.007 118787 1279 165496 2434 154270 2278
2.88 0.006 118726 1389 165807 2449 154198 1638
2.69 0.004 112738 1341 165655 2590 154139 1622
2.66 0.003 119084 1264 167662 2340 154340 1810
2.62 0.004 119108 1373 165779 2542 154331 1622
2.67 0.004 119139 1357 165750 2418 154235 1607
2.53 0.003 119102 1388 165922 2528 154133 1685
2.69 0.003 119071 1233 165800 2277 154268 1622
2.76 0.003 119109 1466 165762 2452 154191 1623

In Table 5.7 the summary report of the workloads for the dataset with size that is

used in the experiment. This result is obtained from the two methods B-tree method and

the improved that are implemented for data retrieval. As shown in the table the datasets

are 8.509GB of weather data collected. In Table 5.8 the summary report of the

workloads for the dataset with size that is used in the experiment. This result is obtained

Univ
ers

ity
 of

 M
ala

ya

98

from the two methods B-tree method and the improved that are implemented for data

retrieval. As shown in the table the datasets is 17.018GB of weather data collected.

Table ‎5.9:Summarized report of the workloads for the dataset with size 68.073GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

4.13 0.066 2165329 4129 3240627 17526 3811579 31803
4.11 0.008 2266765 3454 3235407 16378 3813754 19230
4.07 0.007 2165613 3751 3241487 16479 3811975 13828
4.21 0.004 2130396 3621 3238516 17428 3810516 13692
4.16 0.003 2250315 3413 3277752 15746 3815485 15280
4.53 0.004 2250769 3707 3240940 17105 3815262 13692
4.30 0.004 2251354 3664 3240373 16271 3812889 13566
3.65 0.003 2250655 3748 3243735 17011 3810368 14224
4.15 0.003 2250069 3329 3241350 15322 3813705 13692
4.38 0.003 2250788 3959 3240607 16499 3811801 13701

Table ‎5.10: Summarized report of the workloads for the dataset with size 1089.163GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

11.69 0.08 1037893
853

8906 2535564
479

5006298 5107298
720

9561356

11.84 0.009 1038538
968

7450 2531480
360

4678527 5110213
732

5781395

11.57 0.008 1038021
178

8091 2536237
517

4707359 5107828
723

4157122

10.02 0.005 1056959
986

7811 2533912
476

4978383 5105874
340

4116516

11.93 0.004 1010827
077

7363 2564612
197

4497844 5112532
491

4593646

10.83 0.005 1011030
797

7998 2535809
220

4886119 5112234
365

4116516

11.38 0.005 1011293
936

7904 2535365
626

4647772 5109054
352

4078447

10.95 0.004 1010979
867

8085 2537996
594

4859209 5105675
589

4276405

10.81 0.004 1010716
728

7182 2536130
442

4376748 5110147
482

4116516

11.44 0.004 1011039
286

8539 2535549
182

4713125 5107596
847

4119054

Univ
ers

ity
 of

 M
ala

ya

99

In Table 5.9 the summary report of the workloads for the dataset with size 68.073GB

that is used in the experiment. Table 5.10 is reporting the execution times for searching

the predefined queries against a dataset with size 1089.163GB. This result is obtained

from the two methods B-tree method and the improved that are implemented for data

retrieval.

For more reports of execution time for searching the predefined queries against

datasets with sizes of 34.713 GB, 136.145 GB, 272.291 GB, and 544.582 GB (see

Appendix A).

5.4.1 Execution time

In order to perform mapping of the query in big data to the size of data in execution,

a matrix is required. There are two ways to obtain the result of execution time, which

are the measurement of the size of particular query or the number of recorded to be

summarized. In the meantime, statistical analysis defines a number of primitive types.

The analysis, determine the performances of the nodes in the cluster, which is the used

to produce the execution time estimate. Execution time is chosen for this research to

measure the response time for each of the datasets basic task. The response time is

mostly same with a small variation for each time the simulation engine processes every

query, and there is no much change in time consumption for processing the query to

return the result. However, when the size of the dataset is growing up, although the

response time for the bigger dataset is increasing, but still the response times' trend for

every dataset has little variation and the response times are almost same. In another

word, same queries are applied twenty times against each dataset with a specific

volume, but the time consumption in data retrieval is nearly same. Therefore, the

resources, particularly the time that is consumed for processing earlier queries, are not

Univ
ers

ity
 of

 M
ala

ya

100

reused for processing later queries to be faster and processing later queries consumes

same time which is the metric that is use in our study. For validating the derived

execution time models, the second split of the dataset consists of workloads and

corresponding execution times is used and the result of measured execution time with

the predicted execution time out of the regression model is compared.

5.5 Conclusion

This chapter provides a description of the performance evaluation procedure in terms

of execution time and data size using two parts which are benchmarking and

comparative study. Moreover, it provides an overview of the datasets used for this

research focused on data generation process for execution time. Also this chapter

presents some discussions about the experiment procedure based on a powerful Desktop

Server Computer with 8 processers to carry out the experimentation of the proposed

search method.

Following chapter presents the results of the evaluation the benchmarking

experiments using the proposed B-tree based search method for searching different sizes

of the data sets based on the execution time, a number of executions and the size of the

data. The evaluation results are validated using experimental analysis and comparison.

The objective of the next chapter is to evaluating the performance of the proposed

improved B-tree method by comparing with current B-tree search method. Univ
ers

ity
 of

 M
ala

ya

101

CHAPTER 6: RESULTS AND DISCUSSIONS

6.1 Introduction

This chapter presents the evaluation results of the experiment research of the

proposed B-tree based search method for searching different sizes of the data sets based

on the execution time, a number of executions and the size of the data. The evaluation

results are validated using experimental analysis and comparison. The chapter is

fulfilling the objective of evaluating the performance of the proposed improved B-tree

method by comparing with current B-tree search method.

The remainder of this chapter is as follows. Section 6.2 presents the results of the

performance experiments and reports execution time and the number of the executions

as well as the size of the datasets. Section 6.3 discusses the result of benchmarking

analysis and the comparative study. Section 6.4 presents a conclusion for this chapter.

6.2 Performance Evaluation Results

In this section, the performance of the evaluation results that obtained from the

experiments using the benchmarks is presented. The first results obtained by preforming

a number of executions on different sizes of large datasets to capture the execution time

of each one. This number of execution times is executed on the bases of four queries

depends on the complexity of the query preformed during the experiments. The reason

to conduct such experiments shows the performance of each query using the proposed

improved B-tree search method. The performance analysis is accomplished to evaluate

the proposed method based on the execution time and the number of execution

preformed for each query.

Univ
ers

ity
 of

 M
ala

ya

102

6.2.1 Execution Time

This section presents temporal outcomes of executing the four queries as are listed in

Table 5.3. The results are obtained from executing the queries in two modes. The first

mode is using B-tree search method and the second mode is using the proposed search

method. Execution time data are collected via benchmarking analysis. The results are

reported using several tables in Chapter 5 and an impressive number of charts and

figures is presented in this section to elaborate the performance of our proposed search

method in comparison with the performance of the B-tree search method. Figure 6.1

demonstrates the execution time of processing Query 1 against a dataset with size

1.064GB. As it is explained in Chapter 5, Table 5.3, Query 1 is looking for all records

in which country is Malaysia. This is a simple query because it is looking for equality of

the attribute ―country‖ and Malaysia. However, as the datasets of this research are about

the historical weather data for 22,632 cities from different countries over the world, the

number of unique values for the attribute ―country‖ is limited to the number of countries

over the world and it means the height of the tree-based index of this attribute is very

low and searching the index of countries‘ values is very fast.

As it is illustrated in Figure 6.1, the execution time for processing Query 1 via the

proposed search method is so much lower than the execution time for processing Query

1 via B-tree search method. This figure shows that using our proposed search method

for processing a simple query against a not very large dataset with size 1.064GB is more

justifiable than using B-tree search method. This improvement is obtained by using a

min-max summarization technique in our proposed search method which adds some

information as a kind of metadata to every node of the tree structure of the index and

Univ
ers

ity
 of

 M
ala

ya

103

help search algorithm to check the availability of the target key inside the sub-trees of

the node before starting comparison operation through those sub-trees‘ nodes.

Figure ‎6.1: Execution time for Query 1 with data size 1.064 GB

Moreover, the trend of the execution time for processing Query 1 when the proposed

search method is used, shows that the average execution time of the later search

operations after the first one is 14.45 time better than the execution time of the first

search task. The reason for this improvement is using history data as the second meta

data of the nodes. This history data is added to the nodes after first time query

processing. As it is elaborated in Section 4.2.5, in second time applying same query, the

search algorithm uses the history data and reduce the number of comparisons by

jumping from a node with match history value to the last node of the every traversed

path to the left or to the right side branches. Therefore, the modified search algorithm

reduces the execution time of the later queries which are same with the first query by

reducing the number of comparisons. Hence, the later search operations can get benefit

from the first search operation and reduce the execution time.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

104

Figure ‎6.2: Execution time for Query 1 with data size 2.127 GB

Figure ‎6.3: Execution time for Query 1 with data size 17.018 GB

Figure 6.2, Figure 6.3, Figure 6.4, and Figure 6.5 present comparable diagrams

related to the behavior of the execution time for processing Query 1 when the datasets

are 2.127GB, 17.018GB, 68.073GB, and 1089.163GB respectively.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

105

Figure ‎6.4: Execution time for Query 1 with data size 68.073 GB

Figure ‎6.5: Execution time for Query 1 with data size 1089.163 GB

Based on the trend of the execution time for executing Query 1 against different sizes

of the datasets, the performance of the proposed search method for processing a simple

query like Query 1 is much better than the performance of the B-tree search technique

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

106

for processing same query is same datasets. In fact, according to the results of the

benchmarking, this performance up to 353.4 times is improved. Figure 6.2 images the

difference of execution time for processing Query 1 against all the datasets when using

B-tree search method and the proposed method. For more figures (see Appendix A).

Figure ‎6.6: Execution time for Query 1 based on all sizes of the datasets

In the second round of the benchmarking experiments, Query 2 is used which is more

complex in comparison with Query 1. Based on Table 5.3 in Chapter 5, Query 2 is

looking for any record in which the value of attribute ―Country‖ is equal to ―Malaysia‖,

the value of attribute ―Humidity‖ is greater than 80, and the value of attribute

―Temperature‖ is greater than 300. This query is looking for equality and also a range of

values. So, it uses a join clause to find the records that are fulfilling its conditions.

Based on the results of benchmarking experiments reported in Chapter 5, Figure 6.6

0

2

4

6

8

10

12

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Dataset Size(s) (GB)

B-tree Search
Method
Proposed Search
Method

Univ
ers

ity
 of

 M
ala

ya

107

compares the execution time of processing Query 2 by using B-tree search method and

the proposed search method when the size of the dataset is 1.064GB.

Figure ‎6.7: Execution time for Query 2 with data size 1.064 GB

As it is shown in Figure 6.7, the execution time for processing the Query 2

significantly is reduced when the B-tree search method is replaced with the proposed

search method when the size of the dataset is 1.064GB. The values of the results show

that the average of the performance of the proposed search method for processing Query

2 when the size of the dataset is about 1GB is 3.15 times better than the average of the

performance of the B-tree search method. However, same as our finding about the

impact of adding history value as a metadata to the nodes of the tree structure of the

index, the first time of processing Query 2 using the proposed method inherits an

advantage of using history metadata for the second and next times of processing same

query to reduce the execution time significantly. The results of the experiments show

that the execution time of processing the Query 2 via the proposed method up to 53% is

reduced.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

108

Figure ‎6.8: Execution time for Query 2 with data size 8.509 GB

Figure ‎6.9: Execution time for Query 2 with data size 17.018 GB

Figure 6.8, Figure 6.9, Figure 6.10, and Figure 6.11 illustrate comparative charts based on

execution time values extracted from the experiments which show the difference of the

impact of the proposed search method in contrast to the impact of the B-tree search

method while looking for the results of Query 2 in four datasets with sizes of 8.509GB,

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8 9 10E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

109

17.018GB, 68.073GB, and 1089.163 GB respectively. For more figures (see Appendix

A).

Figure ‎6.10: Execution time for Query 2 with data size 68.073 GB

Figure ‎6.11: Execution time for Query 2 with data size 1089.163 GB

0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

00000

200000000

400000000

600000000

800000000

1000000000

1200000000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

110

According to the results of the execution time to apply Query 2 on different sizes of

the datasets, when the dataset is growing up to 68GB, the average of the performance of

the proposed search method for processing a complex query like Query 2 is increasing

up to 377 times better than the average of the performance of the B-tree search method

when processing the same query against same datasets. But, when the size of data reach

to 1TB, the performance of the proposed search method is so much better than B-tree

search method for processing Query 2 and we can mark B-tree search method as out of

a performance in comparison with the proposed method. Figure 6.12 presents the

difference of the performance of the proposed search method with the performance of

the B-tree search method. This diagram shows that when the volume of the data is

growing up, the B-tree search execution time for Query 2 is rapidly increasing. In

contrast, the execution time of processing Query 2 via the proposed search method is

growing with a gentle slope.

Figure ‎6.12: Execution time for Query 2 based on all sizes of the datasets

0

200000000

400000000

600000000

800000000

1000000000

1200000000

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Dataset Size(s) (GB)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

111

Figure 6.13 illustrate the result of Query 3 based on 1.064GB data sets. As it is

explained in Table 5.3 in Chapter 5, Query 3 is looking for any record in which attribute

―Country‖ is equal to ―Malaysia‖, attribute ―Humidity‖ is less than 50, and attribute

―Wind Speed‖ is greater than 3.As it can be seen from the figure the execution time of

the proposed search method is outperforming the normal search method using same

datasets size. The average time of the execution using our proposed method is 2.48

times better compared to the normal B-tree method in terms of the performance.

Though, adding history value as a metadata to the nodes of the tree structure of the

index is impacting the overall execution time during the process of query 3. As the

result, the next query of the datasets utilized the results of metadata obtained by the first

query when processing a large amount of data. The result of experiments indicted that

the execution time of the processing of Query 3 using proposed algorithm is reduced by

18%.

Figure ‎6.13: Execution time for Query 3 with data size 1.064 GB

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

112

Figure ‎6.14: Execution time for Query 3 with data size 17.018 GB

Figure ‎6.15: Execution time for Query 3 with data size 68.073 GB

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

113

Figure ‎6.16: Execution time for Query 3 with data size 1089.163 GB

The results of the experiments using datasets 17.018GB (Figure 6.14), 68.073GB

(Figure 6.15), and 1089.163 GB (Figure 6.16) have shown that the execution time of the

proposed B-tree search method provides better performance compared to normal

execution time.

Based on the benchmarking experiments for processing Query 3 against different

sizes of datasets from 1.064GB to 1089.163, the average performance of the proposed

search method is up to 534 times better than the average performance of B-tree search

method for processing the same query on same sizes of data. Figure 6.17 shows the

difference of the average performance of B-tree search method with the average

performance of the proposed search method upon processing Query3.

00000

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

114

Figure ‎6.17: Average execution time for processing Query 3

In the last round of the benchmarking experiments, it processes Query 4 by using B-tree

search method and also the proposed search method. Query 4 is looking for the records

of data in which attribute ―Country‖ is equal to ―Malaysia‖, attribute ―Humidity‖ is

greater than 90, and attribute ―Pressure‖ is greater than 1000. Hence, this query is

categorized as a complex query. For more figures (see Appendix A).

Figure 6.18 show the result of Query 4 based on 1.064GB data sets. As it can be

seen from the Figure 6.18, the execution time of the proposed search method is

outperforming the normal search method using same datasets size. The average time of

the execution using our proposed method is 2.93 times better compared to the normal B-

tree method in terms of the performance. Though, adding history value as a metadata to

the nodes of the tree structure of the index is impacting the overall execution time

during the process of query 4. As the result, the next query of the datasets utilized the

results of metadata obtained by the first query when processing a large amount of data.

0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Dataset Size(s) (GB)

B-tree Method

Univ
ers

ity
 of

 M
ala

ya

115

The result of experiments indicted that the execution time of the processing of Query 4

using proposed algorithm is reduced by 18%.

Figure ‎6.18: Execution time for Query 4 with data size 1.064 GB

As shown in Figure 6.19, Figure 6.20, and Figure 6.21, the results are respectively

similar due to added history value as a metadata to the nodes of the tree structure of the

index during the execution of the first query. The result of an experiment using,

17.018GB, 68.073GB, and 1089.163 GB have shown that the execution time of the

proposed B-tree search method provides better performance compared to normal

execution time. For more figures (see Appendix A).

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

116

Figure ‎6.19: Execution time for Query 4 with data size 17.018 GB

Figure ‎6.20: Execution time for Query 4 with data size 68.073 GB

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

117

Figure ‎6.21: Execution time for Query 4 with data size 1089.163 GB

Figure ‎6.22: Average execution time of processing Query 4

As an overall analysis on the performance of the proposed search method and B-tree

search method for executing Query 4, the outcomes of the benchmarking experiments

shows that when the size of data grows up from 1GB to 68GB, the performance of the

proposed search method is 201 times better than the performance of the B-tree search

00000

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Dataset Size(s) (GB)

B-tree Method

Univ
ers

ity
 of

 M
ala

ya

118

method for searching the same query with using the same dataset. But, when the size of

datasets exceeds 1 TB, the performance of the proposed method is 4394 times better

than the B-tree search method and the B-tree search method is totally out of a

performance in this comparison. Figure 6.22 images this significant efficiency of using

the proposed search method rather than the B-tree search method.

6.3 Discussion

Based on the above analysis of the trend of the execution time for processing the four

predefined queries with the range of simple query to complex one, it is clear that the

performance of the proposed search method is much better than the performance of the

B-tree search method for all types of the queries. However, by the raise of the size of

the datasets, the superiority of the performance of the proposed search method over the

performance B-tree search method strongly increases. Figure 6.23 is an example of

visualizing the efficiency of the proposed search method over the performance of the B-

tree search method especially when the size of data is growing up.

Figure ‎6.23: Comparison of average execution time of processing Query 1

0

2

4

6

8

10

12

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Dataset Size(s)

B-tree Search
Method
Proposed Search
Method

Univ
ers

ity
 of

 M
ala

ya

119

Moreover, using history value as a part of metadata of the nodes inside the tree

structure of the indexed data, speeds up the execution process of later queries by using

the results of comparisons in the search algorithm of the earlier queries. This advantage

provides reusability of the computation processes of search operations for later search

tasks. For instance, Figure 6.24 clearly demonstrates the trend of the execution time of

processing Query 1 after the first search operation that strongly decreasing.

Figure ‎6.17: Execution time for processing Query 1

Additionally, as it is illustrated in Figure 4.1 in Chapter 4, storing the data about the

index structures inside the physical storage gives the opportunity of reusing the whole

index data for further actions.

6.4 Conclusion

This chapter reports the results of evaluating the performance of our proposed search

method which were extracted using benchmarking experiments. Several charts and

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

1.064 GB
2.127 GB
4.255 GB
8.509 GB
17.018 GB
68.073 GB
1089.163 GB

Univ
ers

ity
 of

 M
ala

ya

120

tables are used to illustrate and demonstrate the outcomes of the performance evaluation

of the proposed search method. Whereas the proposed method is developed based on the

B-tree search method, a comparative study of the performance of both methods is

conducted in order to declare justifiability of using proposed method instead of the B-

tree search method. Section 6.1 presents the result of the benchmarking experiments.

The significance of time-efficiency of the proposed method is demonstrated via analysis

of the results of benchmarking experiments in which different sizes of datasets are used

and four predefined queries from the range of simple query to complex one are

processed multiple times using both B-tree search method and our proposed search

method.

The proposed search method is remarkably effective for searching big data sets.

Using the proposed search method strongly reduces the execution time of processing

both simple and complex queries when the size of data is from few Gigabytes to tens of

Gigabytes in contrast with the execution time for processing same query and searching

same data and size of data via B-tree search method. However, when the size of data

grows up toward Terabyte and exceeds more than Terabyte, B-tree search method is

completely out of performance in comparison with the performance of our proposed

solution. Additionally, adding history value to the node of the tree-based structure of the

data provides reusability of earlier comparisons result of the search algorithm to be

reused in later search operations.

 The trend of the execution time for processing a simple or complex query from 18%

for searching low size datasets and up to more than 90% for searching larger size of

datasets via our proposed search method is reduced. Moreover, analyzing the results of

the benchmarking experiments shows that the average execution time of the later search

Univ
ers

ity
 of

 M
ala

ya

121

operations for processing simple queries is up to 14.45 times better than the average of

the execution time of the earlier search task. Finally, the history value improves the

performance of the later search processes on big data sets up to 52%.

Next chapter concludes this thesis by highlighting aim and adjectives of this research

along with the major contributions of the thesis. It also outlines the potential

opportunities to further improve or extend the work presented in the thesis. To this end,

this thesis stands as a substantial effort to optimize resource consumption in data

retrieval for big data by using query summarization concept and reusability approach.

Particularly, this research focuses on optimizing B-tree search performance for big

datasets.

Univ
ers

ity
 of

 M
ala

ya

122

CHAPTER 7: CONCLUSION

7.1 Introduction

This chapter concludes the major contributions of the thesis. It also outlines the

potential opportunities to further improve or extend the work presented in the thesis. To

this end, this thesis stands as a substantial effort to optimize resource consumption in

data retrieval in big data by using query summarization concept and reusability

approach. Particularly, this research focuses on optimizing B-tree search performance

for big data sets.

The rest of this chapter presents the outlines as follow. Section 7.2 reports the efforts

that are taken to obtain the aim and objectives of this research. Research scope and

limitations of this study are reported in Section 7.3. Section 7.5 highlights the

significance and contributions of this work. Future works and directions of this study

are elaborated in Section 7.5.

7.2 Aim and objectives of the study

In this thesis, we aimed to achieve an optimized B-tree search method to improve the

execution time of search tasks and to improve the performance of the B-tree search

process by using query summarization concept and reusability approach. The following

presents our verification of the accomplishment of the aim of this thesis via describing

the fulfillment of the objectives of this study.

a. Study the current big data indexing techniques and identify the key issues

with respect to tree-based indexing techniques.

This objective is accomplished via reviewing the state-of-the-art research from

literature and provides the previous works that support this study and related big data

Univ
ers

ity
 of

 M
ala

ya

123

indexing concepts and techniques. Moreover, it identifies the open problem related to

this research. A comparison of the current indexing techniques based on the

requirements of big data indexing which are extracted from previous related works is

given in the following of this Chapter and demonstrated in Table 2.2. Furthermore,

Chapter 2 states some open research challenges and highlights the problem which is

addressed in this thesis.

However, we focused on big data requirements that are required to be handled by

indexing techniques. Some of the current indexing techniques are analyzed based on

previous studies and then we discussed the analysis in the Section 2.3.3 of Chapter 2.

Moreover, B-tree indexing technique and its mechanism are discussed in Section 2.4 of

Chapter 2. Some of the basic database operations using B-tree indexing technique are

explained. Also, the B-tree search method and the flow of its search algorithm are

described. At the end, the weakness of the B-tree search method based on the flow of its

search algorithm is elaborated.

b. Investigate the problem of the current B-Tree search method.

This study investigated the problem of the search algorithm in B-tree indexing

technique as the identified problem of this research. In Chapter 3 of this thesis, it is

reported how our investigation is conducted and what are the activities in establishing

the essence of our research problem. A quantitative analysis based on the time

consumption of search process in one of the database systems named Mongo DB

(Chodorow, 2013) in which B-tree indexing technique is the default indexing technique

is conducted. Time consumption of B-tree in indexing is an essential part of this study

since it is the basic that the rest of the work and other algorithms proposed are based on.

Univ
ers

ity
 of

 M
ala

ya

124

It is one of the most widely accepted methods for analysis optimization problem in

indexing. To do time consumption analysis for each query in data retrieval, a cost best

model is used to measure the time. Following the approach used in (Banker, 2011).

(Chodorow, 2013)

To run our experiments, a simulation engine is created using java programming

language. This simulation engine can connect to the database system and apply queries

against the datasets inside the database by calling proper libraries, classes, and function.

Six different sizes of datasets starting from 240 MB to 1.2 TB are used for searching

four predefined simple and complex queries. The search process is repeated 2o times for

each query. Based on the results reported in Chapter 3, it is shown that the response

time which is the consumed time for processing the queries, always is almost same and

the resources particularly the consumed time for processing earlier queries do not have

any impact on the response time of later queries even for same queries. However, the

results show that by the growth of the size of datasets, the response time of every query

is increasing impressively.

Moreover, we analyzed B-tree structure formally and resulted that repeating any

number of a search operation to find a key in B-tree based indexed data is consuming

the same amount of time and computing resources to perform comparisons on keys

stored at nodes of the B-tree. These search comparisons are applying against the keys

stored in the nodes of the sub-trees under each non-leaf node, even the target is not in

the range of the minimum and the maximum values of the sub-trees. Upon searching for

a key in a tree based index structure, the search algorithm traverses the tree from root to

leaf, makes comparisons with keys stored in the nodes of the tree and based on the

comparisons‘ results decides to continue searching in the left or right sub-trees. This

Univ
ers

ity
 of

 M
ala

ya

125

process repeats every time even next queries are same or have overlap with earlier

queries.

c. Propose a solution to optimize the performance of the B-Tree search

method for big data sets.

In this research, a modified indexing structure based on B-tree data structure which is

a popular and default data structure used in most of the current databases is proposed,

designed, and implemented. Section 4.2 presents details of a modified indexing

technique using the modified indexing structure. However, Section 4.5 describe a data

retrieval simulation created using java programming language, in which, an index

creator engine calls the datasets and starts creating indexes based on some of the

predefined attributes according to four predefined queries in order to speed up the

search process while is looking for the results of those queries. This engine stores the

indexes data into some files to provide the reusability of the index data in future. It

means, any time it requires to search more datasets in addition to the previous datasets,

the index creator engine is able to load whatever index data is created in the past and

then it starts indexing new datasets and adding related indexed data to the previously

indexed data.

Also, Every time a backup engine creates a backup of the index files to keep a last

copy of the indexed data after indexing every dataset file which consists of semi-

structured data in the form of JSON format. We also used a min-max algorithm to add

some metadata to each node of the tree to prevent non-necessary comparisons during

the search process.

Univ
ers

ity
 of

 M
ala

ya

126

Moreover, a history updater is developed which is responsible for adding some

information about the last applied search into the visited nodes to provided reusability

feature for later queries in the case of having similarity and overlap with earlier queries.

The flow of the search process is demonstrated in Section 4.6. Finally, a query engine is

created to search the indexed data to find ant results for the four predefined queries.

This engine captures the response time for ever search process in two modes; (1) using

normal B-tree search method, (2) using our proposed B-tree based search method. This

engine repeats the search process for a given number of times. Figure 4.1 illustrated

how above components are connected and interact.

d. Evaluate the performance of the proposed search method by validating it

with the performance of the B-tree search method.

To fulfill this objective, the proposed model is evaluated using benchmarking and

also using comparative study. Based on Sieve benchmark, ten benchmarks are used to

run a performance evaluation for our proposal. The sufficiency of this number of

benchmarks for evaluating the performance of computing systems by using Sieve

benchmark is already proven (Jain, 2008). For the comparative study, the performance

of our proposed model in comparison with the related model, specifically with the

performance of search method of normal B-tree technique is demonstrated.

The results of the performance evaluation stage are validated and discussed by

analyzing and comparing the results of the proposed search method with the results of

the normal B-tree search method.

Univ
ers

ity
 of

 M
ala

ya

127

7.3 Research Scope and Limitations

The scope of this research mainly consists of to two parts: (1) analyzing the problem

of the search process of B-tree indexing technique and (2) proposing an improved

search method for optimizing B-Tree search performance of big data sets. The study in

this thesis has limitations from bellow aspects:

 This research concentrates on improving search process of B-tree indexing

technique for big datasets. Therefore, other processes and other indexing

techniques are not considered in this study.

 The main evaluation metric used in this research is the time consumed for

processing queries against large datasets, Search Performance which is the

difference in Search Time between no indexed and indexed searches, and also

comparing the complexity of the search algorithm of B-tree indexing technique

with the complexity of the proposed search algorithm for B-tree indexing

technique. Hence, other evaluation metrics are not in used in this study.

 This work used semi-structured data as the datasets for analyzing the problem

that this study focused on and also for testing and evaluating the performance of

our proposed search method. So, other types of data are not used in this research.

7.4 Significance and Contributions

In this study, the concept of reusability and query summarization were integrated into

indexing procedures by creating node base summary of data in order to decrease the

search execution time and also reuse the resources used for earlier queries and help to

minimize the response time of later queries. This research proposed and implemented an

optimize data retrieval system for big data which offers a new search method to the

industries and institutions who need a faster data retrieval process and also it gives

Univ
ers

ity
 of

 M
ala

ya

128

direction to researchers towards a novel approach of indexing diverse types of big data

in order to improve query processing and ease data retrieval. The contributions and

achievements of this research are briefly described as follows.

Big data indexing taxonomy: As the first contribution of this research, a big data

indexing taxonomy is designed based on a classification using four main categories

including (i) content format, (ii) structures, (iii) requirements, and (iv) data retrieval.

This taxonomy gives a better understanding of areas that are big data indexing concept

is dealing with. However, it reports the requirements of big data indexing based on the

state-of-the-art existing related literature. Also sufficient elaboration of each category

and its subcategories are provided as well. This contribution is presented in Chapter 2.

Comparative analysis of some of the big data indexing techniques based of the

requirements of the big data indexing: This analysis of the indexing techniques is

based on the current indexing techniques studied in (Gani et al., 2016) and some of the

other indexing techniques studied in other related literature. The strength of each

indexing technique detailed to ensure its viability for big data. Figures Table 2.2 of

Chapter 2 lists some of the current indexing methods and presents which technique can

address which big data indexing requirements.

Java based simulation query engine: A simulation engine is developed to connect to

MongoDB database (MongoDB, 2016) and process queries. The MongoDB database

system (MongoDB, 2016) is a database system that can deal with big data sets. The

simulation calculates and records the response time for each search operation.

Explanations and related figures are provided in Chapter 3.

Univ
ers

ity
 of

 M
ala

ya

129

Impact of raising the volume of data on data retrieval response time using B-tree

indexing technique: This research contributed to the body of knowledge by identifying

and analyzing the impact of raising the volume of data on the response time of

processing using B-tree indexing technique via an experimental analysis. The trend of

response time in big data retrieval using B-tree indexing technique is investigated and

demonstrated. However, the impact of processing earlier queries on processing later

queries when the queries and datasets are same is identified. Chapter 3 details more

about this achievement.

Improved big data retrieval system: We proposed an improved big data retrieval

system with 6 main components including Storage, Index Generator, Summarization

Updater, Backup Engine, Search Query Engine and History Updater. Figure 4.1 in

Chapter 4 illustrates this system. This System uses an improved B-tree indexing

technique in which it uses our proposed search method to speed up the query processing

and reduce execution time of the search operations by using Summarization Updater

and History Updater to add and update metadata to the node of the structure of the

indexed data. However, this system can make a backup of the index data and store it

into a file into the physical storage and reuse for further search process in future. This

feature and also added metadata to the nodes provide reusability of the previous

indexing process and also search operations' results.

Implemented proposed big data retrieval system: Based on our proposed system for

big data retrieval, we implemented an application which offers all components of the

proposed system. This program of this system is written by java and this system is used

for experimental tasks. The detail of this implementation is reported in Chapter 4.

Univ
ers

ity
 of

 M
ala

ya

130

Optimized B-tree based search method: An optimized search method based on B-

tree search method is proposed and it is used it in B-tree indexing technique instead of

its default search method. This method reduces the execution time of processing queries

by using an added metadata to the nodes of the B-tree indexing structure in which

minimum and maximum values of the branch of the node plus a history value of the last

search operation help the search algorithm of the proposed method to reduce the number

of comparisons for finding the key of conditions of queries. Section 4.2.6 in Chapter 4

gives more information and illustration about this method. This method significantly

improves the performance of the search process in comparison with the normal search

method of the B-tree indexing technique.

Improved B-tree (IB-tree) indexing structure: Based on our idea for having an

optimized B-tree search method, we proposed a new structure of an improved B-tree

indexing technique. In this structure, a new element to every node of the B-tree index

structure is added and it is named as metadata. This metadata will be check and update

every time the search algorithm traverse the tree of the nodes in order to reduce the

number of comparisons especially when the size of data is growing up. The elaboration

and the demonstration of this structure are presented in Chapter 4.

Proposed search method evaluation and validation: We contributed to the body of

the knowledge by evaluating and validating the performance of our proposed search

method to demonstrate its significance, reliability and also the validity of its

functionality. Chapter 5 describes the details of the system and used data to evaluate and

validate our proposed solution. However, Chapter 6 the performance evaluation results

and validation outcomes are reported in Chapter 6. The results show that our new

proposed search method decreases the execution time of the search tasks and it

Univ
ers

ity
 of

 M
ala

ya

131

improves the search performance rather than B-tree search performance for same query

and same dataset. Also, using this search method improves the performance of the later

queries up to 52% by adding history of earlier queries to metadata of the nodes.

7.5 Future Research Directions of the Study

This work proposed an improved search method for the B-tree indexing technique

with minimizing the query response time. However, our proposed method does not

consider computation overhead issues. Therefore, improving this method in term of

computation and other resource consumption is the future work of this research.

Moreover, a min-max summarization technique is used to add a meta-data to each

node of the B-tree structure in order to improve the search algorithm. The second future

work of this research is using other summarization techniques and comparing the

performances of the improved search method while using different summarization

techniques.

Also, enriching history data as another meta-data inside the nodes of the B-tree

indexing technique is the third future work of this study in order to optimize search

performance of the B-tree indexing technique for big datasets.

This study aimed to optimize the search performance of the standard B-tree for big

data sets. As it is highlighted in Section 4.2, the proposed solution of this work is an

extension of the standard B-tree and only the search algorithm of the standard B-tree is

modified and it is shown in Chapter 6 that the performance of the proposed B-tree

search method in term of execution time is better than the performance of the standard

B-tree search method. Therefore, conducting a comparative study among all other

Univ
ers

ity
 of

 M
ala

ya

132

modified B-tree and also our proposed solution can be another future research direction

of this study.

Finally, this research gives direction to researchers towards a novel approach of

indexing diverse types of big data in order to improve query processing and ease data

retrieval. This study used semi-structured data as a dataset for analyzing the problem

and also for testing and evaluating the proposed method. The forth future work of this

research is using the proposed method to index and search structured and unstructured

data.

Univ
ers

ity
 of

 M
ala

ya

133

REFERENCES

 Agarwal, N., Gvr, K., Reddy, R. S., & Rosé, C. P. (2011). Towards multi-document
summarization of scientific articles: making interesting comparisons with
SciSumm. Paper presented at the Proceedings of the Workshop on Automatic
Summarization for Different Genres, Media, and Languages (pp. 8-15).

Agrawal, R., Kadadi, A., Dai, X., & Andres, F. (2015). Challenges and opportunities
with big data visualization. Paper presented at the Proceedings of the 7th
International Conference on Management of computational and collective
intElligence in Digital EcoSystems (pp. 169-173).

Ahmaro, I. Y., Abualkishik, A. M., & Yusoff, M. Z. M. (2014). Taxonomy, Definition,
Approaches, Benefits, Reusability Levels, Factors and Adaption of Software
Reusability: A Review of the Research Literature. Journal of Applied Sciences,
14(20), 2396.

Alam, M., Nielsen, R. H., & Prasad, N. R. (2013). The evolution of M2M into IoT.
Paper presented at the Communications and Networking (BlackSeaCom), 2013
First International Black Sea Conference on (pp. 112-115).

Alloui, I., & Oquendo, F. (2002). Supporting decentralised software-intensive processes
using zeta component-based architecture description language. Enterprise
Information Systems III, 3, 97.

Amma, N. B. (2016). Big Data Mining Effective Big Data Management and
Opportunities for Implementation (pp. 53-59): IGI Global.

Ashton, K. (2009). That ‗internet of things‘ thing. RFiD Journal, 22(7), 97-114.

Athanassoulis, M., Yan, Z., & Idreos, S. (2016). UpBit: Scalable In-Memory Updatable
Bitmap Indexing. Paper presented at the ACM SIGMOD International
Conference on Management of Data (pp. 1319-1332).

Azim, S. K. (1988). Application of silicon compilation techniques to a robot controller
design (pp. 267).

 Balaji, J., Geetha, T., & Parthasarathi, R. (2016). Abstractive summarization: A hybrid
approach for the compression of semantic graphs. International Journal on
Semantic Web and Information Systems (IJSWIS), 12(2), 76-99.

Banker, K. (2011). MongoDB in action: Manning Publications Co (pp. 312).

Barbierato, E., Gribaudo, M., & Iacono, M. (2014). Performance evaluation of NoSQL
big-data applications using multi-formalism models. Future Generation
Computer Systems, 37, 345-353.

Univ
ers

ity
 of

 M
ala

ya

134

Bayer, R. (1971, November). Binary B-trees for virtual memory. In Proceedings of the
1971 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access
and Control (pp. 219-235). ACM.

Bayer, R., & McCreight, E. (2002). Organization and maintenance of large ordered
indexes. In Software pioneers (pp. 245-262). Springer Berlin Heidelberg.

Benatallah, B., Sakr, S., Grigori, D., Motahari-Nezhad, H. R., Barukh, M. C., Gater, A.,
& Ryu, S. H. (2016). Tools, Use Cases, and Discussions Process Analytics (pp.
135-150): Springer.

Berman, J. J. (2013). Introduction Principles of Big Data (pp. xix-xxvi). Boston:
Morgan Kaufmann.

Bhardwaj, V., & Johari, R. (2015). Big data analysis: Issues and challenges. Paper
presented at the Electrical, Electronics, Signals, Communication and
Optimization (EESCO), 2015 International Conference . ISBN 978-1-4799-
7676-8, IEEE.

Booysen, M. J., Gilmore, J. S., Zeadally, S., & Van Rooyen, G.-J. (2012). Machine-to-
machine (M2M) communications in vehicular networks. available at
www.itiis.org.

Boubekeur, F., & Azzoug, W. (2013). Concept-based indexing in text information
retrieval. arXiv preprint arXiv:1303.1703.

Bühlmann, P. (2013). Statistical significance in high-dimensional linear models.
Bernoulli, 19(4), 1212-1242.

Bui, T. H., Frampton, M., Dowding, J., & Peters, S. (2009). Extracting decisions from
multi-party dialogue using directed graphical models and semantic similarity.
Paper presented at the Proceedings of the SIGDIAL 2009 Conference: The 10th
Annual Meeting of the Special Interest Group on Discourse and Dialogue.

Bukh, P. N. D., & Jain, R. (1992). The art of computer systems performance analysis,
techniques for experimental design, measurement, simulation and modeling:
JSTOR, Vol. 22, No. 4, pp. 113-115.

Burgos, J. L. M. (2011). Semantic Web Standards. SNET Computer Engineering.
Retrieved from http://www.pdffiller.com/948565-semantic-web-standards_
burgos-Semantic-Web-Standards---SNET-Various-Fillable-Forms-snet-tu-berlin

Cambazoglu, Kayaaslan , Jonassen , & Aykanat. (2013). A term-based inverted index
partitioning model for efficient distributed query processing. . ACM Trans Web,
7(3), 1-23. doi:doi:10.1145/2516633.2516637

Cambazoglu, B. B., Kayaaslan, E., Jonassen, S., & Aykanat, C. (2013). A term-based
inverted index partitioning model for efficient distributed query processing.
ACM Transactions on the Web (TWEB), 7(3), 15.

Univ
ers

ity
 of

 M
ala

ya

135

Campbell, J. C., Santos, E. A., & Hindle, A. (2016). The unreasonable effectiveness of
traditional information retrieval in crash report deduplication. Paper presented at
the Proceedings of the 13th International Workshop on Mining Software
Repositories. (pp. 269-280). ACM.

Chakrabarti, S., Pathak, A., & Gupta, M. (2011). Index design and query processing for
graph conductance search. The VLDB Journal, 20, 445–470.

Chan, C.-Y. (2011). Connected vehicles in a connected world. Paper presented at the
VLSI Design, Automation and Test (VLSI-DAT), 2011 International
Symposium on. (pp. 1-4). IEEE.

Che, D., Safran, M., & Peng, Z. (2013). From Big Data to Big Data Mining: Challenges,
Issues, and Opportunities. In B. Hong, X. Meng, L. Chen, W. Winiwarter, & W.
Song (Eds.), Database Systems for Advanced Applications (Vol. 7827, pp. 1-
15): Springer Berlin Heidelberg.

Chen, Chen, Du, C, L., Lu, Zhao, & Zhou. (2013). Big data challenge: a data
management perspective. Front Comput Sci, 7(2), 157–164.
doi:doi:10.1007/s11704-013-3903-7

Chen, C. P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques
and technologies: A survey on Big Data. Information Sciences, 275, 314-347.

Chen, G., & Luo, W. (2015). Clustering Time-Evolving Data Using an Efficient
Differential Evolution. Paper presented at the International Conference in
Swarm Intelligence. (pp. 326-338). Springer International Publishing.

Chen, H.-C., Wu, C.-L., Sun, J.-S., & Feng, H.-M. (2016). Carrier Current Line Systems
Technologies in M2M Architecture for Wireless Communication. Journal of
Sensors, vol. 2016, Article ID 2652310, 10 pages, 2016.
doi:10.1155/2016/2652310 .

Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., & Zhou, X. (2013). Big data
challenge: a data management perspective. Frontiers of Computer Science, 7(2),
157-164.

Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and
Applications, 19(2), 171-209.

Cheng, J., Ke, Y., Fu, A. W.-C., & Yu, J. X. (2011a). Fast Graph Query Processing with
a Low-Cost Index. he VLDB Journal, 20(4), 521-539.

Cheng, J., Ke, Y., Fu, A. W.-C., & Yu, J. X. (2011b). Fast graph query processing with
a low-cost index. The VLDB Journal, 20(4), 521-539.

Chodorow, K. (2013). MongoDB: the definitive guide: " O'Reilly Media, Inc.".

Univ
ers

ity
 of

 M
ala

ya

136

Comer, D. (1979). Ubiquitous B-tree. ACM Computing Surveys (CSUR), 11(2), 121-
137

Cormen, T. H. (2009). Introduction to algorithms: (Vol. 6). Cambridge: MIT press .

Cottle, M., Hoover, W., Kanwal, S., Kohn, M., Strome, T., & Treister, N. (2013).
Transforming Health Care Through Big Data Strategies for leveraging big data
in the health care industry. Institute for Health Technology Transformation,
http://ihealthtran. com/big-data-in-healthcare.

Commons, C. (2013). Creative commons attribution-sharealike 4.0 international (cc by-
sa 4.0). Zugriff au f http://creativecommons.org/licenses/by-sa/4.0/(Zuletzt
abgerufen: 02.2015).

Commons, O. D. (2013). Open Database License (ODbL). Retrieved from
https://opendatacommons.org/licenses/odbl/

Cormen, T. H. (2009). Introduction to algorithms: MIT press. Retrieved from
http://cs.slu.edu/~goldwasser/courses/loyola/comp363/2003_Spring/handouts/co
urse-info.pdf

Cottle, M., Hoover, W., Kanwal, S., Kohn, M., Strome, T., & Treister, N. (2013).
Transforming Health Care Through Big Data Strategies for leveraging big data
in the health care industry. Institute for Health Technology Transformation,
http://ihealthtran.com/big-data-in-healthcare.

D. Feldman, M. Schmidt, & Sohler, C. (2013). Turning big data into tiny data:
Constant-size coresets for k-means, pca and projective clustering. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (pp. 1434-1453). Society for Industrial and Applied Mathematics.

de Mattos, W. D., & Gondim, P. R. (2016). M-Health Solutions Using 5G Networks
and M2M Communications. IT Professional, 18(3), 24-29.

Dean, J., & Ghemawat, S. (2010). MapReduce: A Flexible Data Processing Tool.
Communications of the ACM, 53(1), 72-77.

Delbru, R., Campinas, S., & Tummarello, G. (2012). Searching web data: An entity
retrieval and high-performance indexing model. Web Semantics: Science,
Services and Agents on the World Wide Web, 10, 33-58.

Denecke, K., & Nejdl, W. (2009). How valuable is medical social media data? Content
analysis of the medical web. Information Sciences, 179(12), 1870-1880.

DeWitt, D., & Gray, J. (1992.). Parallel Database Systems: The Future of High
Performance Database Systems. Communications of the ACM, 35(6), 85–98.

Dieng-Kuntz, R., Minier, D., Růžička, M., Corby, F., Corby, O., & Alamarguy, L.
(2006). Building and using a medical ontology for knowledge management and

Univ
ers

ity
 of

 M
ala

ya

http://ihealthtran/
http://ihealthtran/

137

cooperative work in a health care network. Computers in Biology and Medicine,
36(7), 871-892.

Dijkman, R. M., van Dongen, B. F., Dumas, M., García-Bañuelos, L., Kunze, M.,
Leopold, H., . . . Weske, M. (2013). A short survey on process model similarity
Seminal Contributions to Information Systems Engineering (pp. 421-427):
Springer.

Dittrich, J., Blunschi, L., & Salles, M. A. V. (2011). MOVIES: indexing moving objects
by shooting index images. Geoinformatica, 15(4), 727-767.

Divyakant Agrawal, P. B., Elisa Bertino, Susan Davidson, Umeshwar Dayal, Michael,
Franklin, J. G., Laura Haas, Alon Halevy, Jiawei Han, H. V. Jagadish,
Alexandros, Labrinidis, S. M., Yannis Papakonstantinou, Jignesh M. Patel,
Raghu Ramakrishnan,, & Kenneth Ross, C. S., Dan Suciu, Shiv Vaithyanathan,
and Jennifer Widom. (2012). Challenges and Opportunities with Big Data: A
community white paper developed by leading researchers across the United
States. Whitepaper, Computing Community Consortium.

Done, B., Khatri, P., Done, A., & Draghici, S. (2010). Predicting novel human gene
ontology annotations using semantic analysis. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 7(1), 91-99.

Dong, W. (2010). Collaborative Indexing and Knowledge Exploration: A Social
Learning Model. INTELLIGENT SYSTEMS, IEEE.

Dumais, S., Cutrell, E., Cadiz, J. J., Jancke, G., Sarin, R., & Robbins, D. C. (2016).
Stuff I've seen: a system for personal information retrieval and re-use. Paper
presented at the ACM SIGIR Forum. (Vol. 49, No. 2, pp. 28-35). ACM

Efron, B. (2010). Large-Scale Inference: Empirical Bayes Meth- ods for Estimation,
Testing, and Prediction. Institute of Mathematical Statistics Monographs: Vol. 1.
Cambridge University Press .

Elleuch, N., Zarka, M., Ammar, A. B., & Alimi, A. M. (2011). A fuzzy ontology: based
framework for reasoning in visual video content analysis and indexing. Paper
presented at the Proceedings of the Eleventh International Workshop on
Multimedia Data Mining. (p. 1). ACM

Faloutsos, C., Kolda, T. G., & Sun, J. (2007). Mining large time-evolving data using
matrix and tensor tools. Paper presented at the ICDM Conference.
Conference (Vol. 565)

Fan, W., & Bifet, A. (2013). Mining big data: current status, and forecast to the future.
ACM sIGKDD Explorations Newsletter, 14(2), 1-5.

Fernández, R., Frampton, M., Dowding, J., Adukuzhiyil, A., Ehlen, P., & Peters, S.
(2008). Identifying relevant phrases to summarize decisions in spoken meetings.
Paper presented at the INTERSPEECH. (pp. 78-81)

Univ
ers

ity
 of

 M
ala

ya

138

Franks, B. (2012). Taming the big data tidal wave: Finding opportunities in huge data
streams with advanced analytics (Vol. 49): John Wiley & Sons.

Fu, W.-T., & Dong, W. (2010). Collaborative Indexing and Knowledge Exploration: A
Social Learning Model. Intelligent System, 27(1), 39-46 IEEE.

Fu, W.-T., & Dong, W. (2012). Collaborative indexing and knowledge exploration: A
social learning model. IEEE Intelligent Systems, 27(1), 39-46.

Gacto, M. J., Alcalá, R., & Herrera, F. (2010). Integration of an index to preserve the
semantic interpretability in the multiobjective evolutionary rule selection and
tuning of linguistic fuzzy systems. IEEE Transactions on Fuzzy Systems, 18(3),
515-531.

Gama, J. (2010). Knowledge Discovery from Data Streams Chapman & Hall/Crc Data
Mining and Knowledge Discovery. CRC Press, Boca Raton, FL, 2010. xx+237
pp. ISBN: 978-1-4398-2611-9

Gani, A., Siddiqa, A., Shamshirband, S., & Hanum, F. (2016). A survey on indexing
techniques for big data: taxonomy and performance evaluation. Knowledge and
Information Systems, 46(2), 241-284.

Gantz, J., & Reinsel, D. (2012a). THE DIGITAL UNIVERSE IN 2020: Big Data,
Bigger Digital Shadows, and Biggest Growth in the Far East. Study report,. IDC
iView: IDC Analyze the future 2007.2012 (2012): 1-16.

Gantz, J., & Reinsel, D. (2012b). The Digital Universe In 2020: Big Data, Bigger
Digital Shadows, and Biggest Growth in the Far East. Study report, IDC iView:
IDC Analyze the future 2007.2012 (2012): 1-16.

García-Hernández, R. A., Ledeneva, Y., Mendoza, G. M., Dominguez, Á. H., Chavez,
J., Gelbukh, A., & Fabela, J. L. T. (2009). Comparing commercial tools and
state-of-the-art methods for generating text summaries. Paper presented at the
Artificial Intelligence, 2009. MICAI 2009. Eighth Mexican International
Conference on. (pp. 92-96). IEEE

Gerken, J., Bak, P., Jetter, C., Klinkhammer, D., & Reiterer, H. (2008). How to use
interaction logs effectively for usability evaluation.. In: CHI 2008 Workshop
BELIV ' 08 : Beyond time and errors - novel evaLuation methods for
Information Visualization, Apr 2008. BELIV, Apr

Golab, L., Prahladka, P., & Ozsu, M. T. (2006). Indexing time-evolving data with
variable lifetimes. Paper presented at the 18th International Conference on
Scientific and Statistical Database Management (SSDBM'06).

Gopalkrishnan, V., Steier, D., Lewis, H., & Guszcza, J. (2012, August). Big data, big
business: bridging the gap. In Proceedings of the 1st International Workshop on
Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems,
Programming Models and Applications (pp. 7-11). ACM.

Univ
ers

ity
 of

 M
ala

ya

139

Goswami, B., & Chandra, P. K. (2015). The Evolution Of Big Data As A Research And
Development. International Journal of Scientific Research and Engineering
Studies (IJSRES), 2(3).

Goyal, N., & Gupta, D. (2014). Reusability Calculation of Object Oriented Software
Model by Analyzing CK Metric. International Journal of Advanced Research in
Computer Engineering & Technology, 3(7), 2466-2470.

Graefe, G. (2016). B-Tree Locking Encyclopedia of Database Systems (pp. 1-6):
Springer.

Gundema, & Armaganb. (2006). Efficient storage of healthcare data in XML-based
smart cards. computer methods and programs in biomedicine, 8 (1), 26–40.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U.
(2015). The rise of ―big data‖ on cloud computing: Review and open research
issues. Information Systems, 47, 98-115.

Hassan-Montero, Y., & Herrero-Solana, V. (2006). Improving tag-clouds as visual
information retrieval interfaces. Paper presented at the International conference
on multidisciplinary information sciences and technologies. (pp. 25-28).

He, Y., Elnikety, S., Larus, J., & Yan, C. (2012). Zeta: Scheduling interactive services
with partial execution. Paper presented at the Proceedings of the Third ACM
Symposium on Cloud Computing. (p. 12). ACM

Hellerstein, J. M., Naughton, J. F., & Pfeffer, A. (1995). Generalized search trees for
database systems (pp. 562-573) September.

Hoffman, M., Hoffman, J., Hoffman, A., & Doe, D. (2016). Personal security and
tracking system: Google Patents. U.S. Patent No. 5,742,233. Washington, DC:
U.S. Patent and Trademark Office. Hovy, E., & Lin, C.-Y. (1998). Automated
text summarization and the SUMMARIST system. Paper presented at the
Proceedings of a workshop on held at Baltimore, Maryland: October 13-15,
1998.

Hsu, W. H., King, A. L., Paradesi, M. S., Pydimarri, T., & Weninger, T. (2006).
Collaborative and Structural Recommendation of Friends using Weblog-based
Social Network Analysis. Paper presented at the AAAI Spring Symposium:
Computational Approaches to Analyzing Weblogs. (Vol. 6, pp. 55-60).

Hu, W., Tan, T., Wang, L., & Maybank, S. (2004). A survey on visual surveillance of
object motion and behaviors. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 34(3), 334-352.

Huang, Z., Lu, X., Duan, H., & Zhao, C. (2012). Collaboration-based medical
knowledge recommendation. Artificial intelligence in medicine, 55(1), 13-24.

Univ
ers

ity
 of

 M
ala

ya

140

Idreos, S., Kersten, M. L., & Manegold, S. (2007). Database Cracking. Paper presented
at the CIDR. (Vol. 7, pp. 68-78).

J. Gantz, & Reinsel., D. (2012). The Digital Universe in 2020: Big Data, Bigger Digital
Shadows, and Biggest Growth in the Far East. IDC iView: IDC Analyze the
future, 2007(2012), 1-16

Jain, A., Bolle, R., & Pankanti, S. (2006). Biometrics: personal identification in
networked society (Vol. 479): Springer Science & Business Media.

Jamil, S., & Ibrahim, R. (2009). Performance analysis of indexing techniques in Data
warehousing. Paper presented at the Emerging Technologies, 2009. ICET 2009.
International Conference on. (pp. 57-61). IEEE

Jaseena, K., & David, J. M. (2014). Issues, Challenges, and Solutions: Big Data Mining.
NeTCoM, CSIT, GRAPH-HOC, SPTM–2014, 131-140.

Jin, R., Cho, H. J., & Chung, T. S. (2014, January). A group round robin based b-tree
index storage scheme for flash memory devices. In Proceedings of the 8th
International Conference on Ubiquitous Information Management and
Communication (p. 29). ACM..

Jinchuan Chen, Y. C., Xiaoyong Du, Cuiping Li, Jiaheng Lu, Suyun Zhao, and Xuan
Zhou. (2013). Big data challenge: a data management perspective. . Frontiers of
Computer Science, 7(2), 157–164. doi:10.1007/s11704-013-3903-7

Jones, K. S. (2007). Automatic summarising: The state of the art. Information
Processing & Management, 43(6), 1449-1481.

Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013a). Big data: issues and
challenges moving forward. Paper presented at the System Sciences (HICSS),
2013 46th Hawaii International Conference on (pp. 995-1004). IEEE.

Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013b). Big Data: Issues and
Challenges Moving Forward. In Proceedings of the 46th Hawaii International
Conference on System Sciences, HICSS ‘13,, 995–1004.

Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics.
Journal of Parallel and Distributed Computing, 74(7), 2561-2573.

Kammenhuber, N., Luxenburger, J., Feldmann, A., & Weikum, G. (2006). Web search
clickstreams. Paper presented at the Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement (pp. 245-250). ACM..

Katal, A., Wazid, M., & Goudar, R. (2013). Big data: issues, challenges, tools and good
practices. Paper presented at the Contemporary Computing (IC3), 2013 Sixth
International Conference on (pp. 404-409). IEEE..

Univ
ers

ity
 of

 M
ala

ya

141

Kathuria, C., Datta, G., & Kaul, V. (2013). Context Indexing in Search Engine Using
Binary Search Tree. International Journal on Computer Science and
Engineering, 5(6), 514.

Kaur, P. D. (2015). A survey on Big Data storage strategies. Paper presented at the
Green Computing and Internet of Things (ICGCIoT), 2015 International
Conference on. (pp. 280-284). IEEE.

Kaushik, V. D., Umarani, J., Gupta, A. K., Gupta, A. K., & Gupta, P. (2013). An
efficient indexing scheme for face database using modified geometric hashing.
Neurocomputing, 116, 208–221.

Keim, D., Qu, H., & Ma, K.-L. (2013). Big-data visualization. IEEE Computer Graphics
and Applications, 33(4), 20-21.

Knuth, M., Waitelonis, J., & Sack, H. (2016). I am a Machine, let me understand Web
Media! Paper presented at the International Conference on Web Engineering.
(pp. 467-475). Springer International Publishing.

Ko, M. N., Cheek, G. P., Shehab, M., & Sandhu, R. (2010). Social-networks connect
services. Computer, 43(8), 37-43.

Komkhao, M., Lu, J., Li, Z., & Halang, W. A. (2013). Incremental collaborative
filtering based on Mahalanobis distance and fuzzy membership for
recommender systems. International Journal of General Systems, 42(1), 41-66.

Kriegel, A. (2011). Discovering SQL: a hands-on guide for beginners: John Wiley &
Sons.

Kumar, R., Novak, J., Raghavan, P., & Tomkins, A. (2005). On the bursty evolution of
blogspace. World Wide Web, 8(2), 159-178.

Kumarasamy, M. (2015). An Analysis Of Big Data Discovery And Collaboration.
International Journal Of Advanced Computer Technology, Volume 4,Number 6

Lakshman, A., & Malik, P. (2010). Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2), 35-40.

Laney, D. (2011). 3D Data Management: Controlling Data Volume, Velocity and
Variety. Technical report, META Group, Inc (now Gartner, Inc.).

Laurila, J. K., Gatica-Perez, D., Aad, I., Blom, J., Bornet, O., Do, T.-M.-T., . . .
Miettinen, M. (2012). The mobile data challenge: Big data for mobile computing
research. Paper presented at the Proceedings of the Workshop on the Nokia
Mobile Data Challenge, in Conjunction with the 10th International Conference
on Pervasive Computing.

Univ
ers

ity
 of

 M
ala

ya

142

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big
data, analytics and the path from insights to value. MIT Sloan Management
Review, 52(2), 21.

Lawal, Z. K., Zakari, R. Y., Shuaibu, M. Z., & Bala, A. A review: Issues and
Challenges in Big Data from Analytic and Storage perspectives. ISSN:2319-
7242Volume –5 Issue -03 March, 2016Page No.15947-15961

Lazaridis, M., Axenopoulos, A., Rafailidis, D., & Daras, P. (2013). Multimedia search
and retrieval using multimodal annotation propagation and indexing techniques.
Signal Processing: Image Communication, 28(4), 351-367.

Lemire, D., Kaser, O., & Aouiche, K. (2010). Sorting improves word-aligned bitmap
indexes Data & Knowledge Engineering, 69(1), 3-28.

Leung, C., & Chan, W. (2011). Semantic music information retrieval using
collaborative indexing and filtering Computer and information sciences (pp.
345-350): Springer.

Li, F., Yi, K., & Le, W. (2010). Top-k queries on temporal data. The VLDB Journal—
The International Journal on Very Large Data Bases, 19(5), 715-733.

Lu, R., Li, X., Liang, X., Shen, X., & Lin, X. (2011). GRS: The green, reliability, and
security of emerging machine to machine communications. IEEE
Communications Magazine, 49(4), 28-35.

Madden, S. (2012). From Databases to Big Data. iEEE Internet Computing, 16(3), :4–6.

Maier, M., Rattigan, M., & Jensen, D. (2011). Indexing network structure with shortest-
path trees. ACM Transactions on Knowledge Discovery from Data (TKDD),
5(3), 15.

Maier, M., Serebrenik, A., & Vanderfeesten, I. (2013a). Towards a big data reference
architecture. EINDHOVEN UNIVERSITY MS thesis.

Maier, M., Serebrenik, A., & Vanderfeesten, I. (2013b). Towards a big data reference
architecture: University of Eindhoven.

Manolopoulos, Y., Theodoridis, Y., & Tsotras, J. V. (2009). Tree-based Indexing. In L.
Liu & M. T. ÖZsu (Eds.), Encyclopedia of Database Systems (pp. 3172-3173).
Boston, MA: Springer US.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H.
(2011). Big data: The next frontier for innovation, competition, and productivity,
The McKinsey Global Institute. Available at
http://www.citeulike.org/group/18242/article/9341321.

Univ
ers

ity
 of

 M
ala

ya

143

Marz, N., & Warren, J. (2013). Big Data - Principles and best practices of scalable
realtime data systems. Manning Publications Co. Greenwich, CT, USA ©2015
ISBN:1617290343 9781617290343.

Mehrotra, H., Majhi, B., & Gupta, P. (2010). Robust iris indexing scheme using
geometric hashing of SIFT keypoints. Journal of Network and Computer
Applications, 33(3), 300-313.

Mera, D., Batko, M., & Zezula, P. (2014). Towards fast multimedia feature extraction:
Hadoop or storm. Paper presented at the Multimedia (ISM), 2014 IEEE
International Symposium on. (pp. 106-109). IEEE

Mishra, B. S. P., Dehuri, S., & Kim, E. (2016). Techniques and Environments for Big
Data Analysis: Parallel, Cloud, and Grid Computing (Vol. 17): Springer.

Mishra, S., Dhote, V., Prajapati, G., & Shukla, J. (2015). Challenges in Big Data
Application: A Review. International Journal of Computer Applications,
121(19).

Mohanty, S., Jagadeesh, M., & Srivatsa, H. (2013). Big data imperatives: Enterprise
‗Big Data‘warehouse,‗BI‘implementations and analytics: Apress.

MongoDB. (2016). Indexes - MongoDB Manual 3.2. Retrieved from
https://docs.mongodb.com/manual/indexes/

Motta, G., Puccinelli, R., Reggiani, L., & Saccone, M. (2016). Extracting Value from
Grey Literature: processes and technologies for aggregating and analyzing the
hidden ―big data‖ treasure of organizations. Grey Journal (TGJ), 12(1).

Nagpal, R., Nagpal, P., & Malhotra, S. (2012). Biometric techniques and facial
expression recognition-A Review. Journal of Global Research in Computer
Science, 3(11).

Namiot, D. (2015). On Big Data Stream Processing. International Journal of Open
Information Technologies, 3(8), 48-51.

Nasir, M. A. U. (2016). Fault Tolerance for Stream Processing Engines. arXiv preprint
arXiv:1605.00928.

Niyato, D., Xiao, L., & Wang, P. (2011). Machine-to-machine communications for
home energy management system in smart grid. IEEE Communications
Magazine, 49(4), 53-59.

NTER, U., & MILL, E. (2012). Agencies rally to tackle big data. Science, 336(6077),
22-22.

O'Neil, P., & Quass, D. (1997, June). Improved query performance with variant
indexes. In ACM Sigmod Record (Vol. 26, No. 2, pp. 38-49). ACM.

Univ
ers

ity
 of

 M
ala

ya

https://docs.mongodb.com/manual/indexes/

144

Olson, M. (2010). Hadoop: Scalable, flexible data storage and analysis. IQT Quart, 1(3),
14-18.

Orsborn, K. (2007). database technology 1dl124. Uppsala University,Uppsala, Sweden
Retrieved from http://user.it.uu.se/~udbl/dbt-sommar07/alt.
http://www.it.uu.se/edu/course/homepage/dbdesign/st07

OWM API, (2015). Open Weather Map. Retrieved from http://openweathermap.org/.

P. Zikopoulos, C. Eaton, D. d., T. Deutsch, & Lapis, G. (2011). IBM Understanding Big
Data: Analyt- ics for Enterprise Class Hadoop and Streaming Data. McGraw-
Hill Companies,Incorporated. ISBN:0071790535 9780071790536

Paul, A., Chen, B.-W., Bharanitharan, K., & Wang, J.-F. (2013). Video search and
indexing with reinforcement agent for interactive multimedia services. ACM
Trans. Embed. Comput. Syst., 12(2), 1-16. doi:10.1145/2423636.2423643

Paul, A., & Rho, S. (2016). Probabilistic model for M2M in IoT networking and
communication. Telecommunication Systems, 62(1), 59-66.

Qu, P., Zhang, J., Yao, C., & Zeng, W. (2016). Identifying long tail term from large
scale candidate pairs for big data oriented patent analysis. Concurrency and
Computation: Practice and Experience. 28(15), 4194-4208.

R. Smolan, & Erwitt, J. (2012). The Human Face of Big Data. Sterling Publishing
Company Incorporated. Vol. 351, Issue 6274, pp. 673. DOI:
10.1126/science.aaf3194

Radev, D. R., Allison, T., Blair-Goldensohn, S., Blitzer, J., Celebi, A., Dimitrov, S., . . .
Liu, D. (2004). MEAD-A Platform for Multidocument Multilingual Text
Summarization. Paper presented at the LREC.

Rahman, N., & Borah, B. (2015). A survey on existing extractive techniques for query-
based text summarization. Paper presented at the Advanced Computing and
Communication (ISACC), 2015 International Symposium on (pp. 98-102).
IEEE..

Rakesh Agrawal, A. A., Philip A. Bernstein, Eric A. Brewer, Michael J. Carey,, Surajit
Chaudhuri, A. D., Daniela Florescu, Michael J. Franklin, Hector Garcia-Molina,,
Johannes Gehrke, L. G., Laura M. Haas, Alon Y. Halevy, Joseph M.
Hellerstein,, Yannis E. Ioannidis, H. F. K., Donald Kossmann, Samuel Madden,
Roger Magoulas,, Beng Chin Ooi, T. O. R., Raghu Ramakrishnan, Sunita
Sarawagi, Michael Stonebraker,, & Alexander S. Szalay, a. G. W. (2009). The
Claremont Report on Database Research.. 52(6), 56-65.

Ramakrishna, K., & Rani, D. B. P. (2013). Study of Indexing Techniques to Improve
the Performance of Information Retrieval in Telugu Language. International
Journal of Emerging Technology and Advanced Engineering, ISSN, 2250-2459.

Univ
ers

ity
 of

 M
ala

ya

145

Reddy, H. V., & Raju, S. V. (2012). A study in employing rough set based approach for
clustering on categorical time-evolving data. IOSR Journal of Computer
Engineering (IOSRJCE), 3(5), 44-51.

Richter, S., Quiané-Ruiz, J.-A., Schuh, S., & Dittrich, J. (2012). Towards zero-overhead
adaptive indexing in Hadoop. arXiv preprint arXiv:1212.3480.

Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological
models: Statistical significance for reducing subjectivity in goodness-of-fit
assessments. Journal of Hydrology, 480, 33-45.

Rodríguez-García, M. Á., Valencia-García, R., García-Sánchez, F., & Samper-Zapater,
J. J. (2014a). Creating a semantically-enhanced cloud services environment
through ontology evolution. Future Generation Computer Systems, 32, 295-306.

Rodríguez-García, M. Á., Valencia-García, R., García-Sánchez, F., & Samper-Zapater,
J. J. (2014b). Creating a semantically-enhanced cloud services environment
through ontology evolution. Future Generation Computer Systems, 32, 295–306.

Russo, L., Navarro, G., & Oliveira, A. L. (2011). Fully compressed suffix trees. ACM
Transactions on Algorithms (TALG), 7(4), 53.

Sattar, A., & Zhang, H. (2014). Component based Software Development using
Reusability Measurement. Software Engineering and Technology, 6(6), 174-
178.

Schäler, M., Grebhahn, A., Schröter, R., Schulze, S., Köppen, V., & Saake, G. (2013).
QuEval: beyond high-dimensional indexing à la carte. Proceedings of the VLDB
Endowment, 6(14), 1654-1665.

Scott, J. (2016). Zeta – Enterprise Architecture | MapR. Retrieved from
https://www.mapr.com/solutions/zeta-enterprise-architecture.

Sellis, Roussopoulos, & Faloutsos. (1987). The R+-Tree: A dynamic index for multi-
dimensional objects. In VLDB. Proceedings of the 13th VLDB Conference,
Brighton 1.

Seo, D., Jeon, Y.-B., Lee, S.-H., & Lee, K.-H. (2016). Cloud computing for ubiquitous
computing on M2M and IoT environment mobile application. Cluster
Computing, 19(2), 1001-1013.

Sergey Melnik, A. G., Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt, &
Tolton, a. T. V. (2011). Dremel: Interactive Analysis of Web-Scale Datasets. .
Communications of the ACM, 54(6), 114–123.

Shang, Yang, Wang, Chan, & Hua. (2010). Real-time large scale near-duplicate web
video retrieval. In: Proceedings of the international conference on multimedia.,
531–540.

Univ
ers

ity
 of

 M
ala

ya

https://www.mapr.com/solutions/zeta-enterprise-architecture

146

Sheng-Cheng, Su, M.-Y., Chen, H.-H., & Lin, C.-Y. (2013). An efficient and secure
approach for a cloud collaborative editing. Journal of Network and Computer
Applications, 36(1632), 1641.

Shung, C. B., Jain, R., Rimey, K., Wang, E., Srivastava, M. B., Richards, B. C., . . .
Hilfinger, P. N. (1991). An integrated CAD system for algorithm-specific IC
design. IEEE transactions on computer-aided design of integrated circuits and
systems, 10(4), 447-463.

Siddiqa, A., Karim, A., & Chang, V. (2016). SmallClient for big data: an indexing
framework towards fast data retrieval. Cluster Computing, 1-16.

Sidirourgos, E. (2014). Space efficient indexes for the big data era.

Sinclair, J., & Cardew-Hall, M. (2008). The folksonomy tag cloud: when is it useful?
Journal of Information Science, 34(1), 15-29.

Singh, J. (2014). Big data analytic and mining with machine learning algorithm. Int J
Inform Comput Technol, 4(1), 33-40.

Singh, S., & Chana, I. (2012). Enabling reusability in agile software development. arXiv
preprint arXiv:1210.2506.

Soares, S. (2012). Big Data Governance - An Emerging Imperative. MC Press Online,
LLC, 10-12,143-209.

Stefan Richter, JorgeArnulfo, Quian´eRuiz, Stefan Schuh, & Dittrich, J. (2012).
Towards ZeroOverhead Adaptive Indexing in Hadoop. arXiv preprint
arXiv:1212.3480.

Subramaniam, M., & Dalal, V. (2015). Test Model for Rich Semantic Graph
Representation for Hindi Text using Abstractive Method. International Research
Journal of Engineering and Technology(IRJET). ISSN: 2395-0072, Volume: 02
Issue: 02.

Sun, R., Wang, Z., Ren, Y., & Ji, D. (2016). Query-Biased Multi-document Abstractive
Summarization via Submodular Maximization Using Event Guidance. Paper
presented at the International Conference on Web-Age Information
Management. (pp. 310-322). Springer International Publishing.

Tam, N. T., & Song, I. (2016). Big Data Visualization Information Science and
Applications (ICISA) 2016 (pp. 399-408): Springer.

Tang, J., Yao, L., & Chen, D. (2009). Multi-topic Based Query-Oriented
Summarization. Paper presented at the SDM. (pp. 1148-1159). Society for
Industrial and Applied Mathematics.

Uthus, D. C., & Aha, D. W. (2011). Plans toward automated chat summarization. Paper
presented at the Proceedings of the Workshop on Automatic Summarization for

Univ
ers

ity
 of

 M
ala

ya

147

Different Genres, Media, and Languages. (pp. 1-7). Association for
Computational Linguistics.

Vogt, J. E., Kloft, M., Stark, S., Raman, S. S., Prabhakaran, S., Roth, V., & Rätsch, G.
(2015). Probabilistic clustering of time-evolving distance data. Machine
Learning, 100(2-3), 635-654.

W3C. (2013, 2013-06-19). W3C Semantic Web Activity. Retrieved from
https://www.w3.org/2001/sw/

Wang, Holub, Murphy, & O‘Sullivan. (2013). High volumes of event stream indexing
and efficient multi-keyword searching for cloud monitoring. Future Gener
Comput Syst, 29(8), 1943–1962.

Wang, Wu, Li, & Ooi. (2010). Indexing multi-dimensional data in a cloud system.
ACM, 591-602. doi:ACM SIGMOD international conference on management of
data. (pp. 591-602). ACM.

Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., & Raicu, I. (2014). Optimizing load
balancing and data-locality with data-aware scheduling. Paper presented at the
Big Data (Big Data), 2014 IEEE International Conference. (pp. 119-128). IEEE

Wang, L., & Cardie, C. (2011). Summarizing decisions in spoken meetings. Paper
presented at the Proceedings of the Workshop on Automatic Summarization for
Different Genres, Media, and Languages. (pp. 16-24). Association for
Computational Linguistics.

Wang, X., Luo, X., & Liu, H. (2015). Measuring the veracity of web event via
uncertainty. Journal of Systems and Software, 102, 226-236.

Wayman, J., Jain, A., Maltoni, D., & Maio, D. (2005). An introduction to biometric
authentication systems: Springer. Biometric Systems, 1-20.

Wei L-Y, HsuY-T, PengW-C, & LeeW-C. (2013). Indexing spatial data in cloud data
managements. . Pervasive Mobile Comput, 1–14.
doi:10.1016/j.pmcj.2013.07.001

Wei, L.-Y., Hsu, Y.-T., Peng, W.-C., & Lee, W.-C. (2014). Indexing spatial data in
cloud data managements. Pervasive and Mobile Computing, 15, 48-61.

Wei, L., & Shen, J. (2016). Method and system for document indexing and data
querying: Google Patents. U.S. Patent No. 9,275,128. Washington, DC: U.S.
Patent and Trademark Office

Weng, & Chuang. (2011). Collaborative Video Re-indexing via Matrix Factorization.
ACM Trans. Multimedia Comput.Communications. (TOMM), 8(2), 23.

Univ
ers

ity
 of

 M
ala

ya

https://www.w3.org/2001/sw/

148

Weng, M.-F., & Chuang, Y.-Y. (2012). Collaborative video reindexing via matrix
factorization. ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM), 8(2), 23.

Whitaker, S. (2014). Big Data versus a Survey. Whitaker, Stephan, Big Data versus a
Survey (December 29, 2014). FRB of Cleveland Working Paper No. 14-40.
Available at SSRN: https://ssrn.com/abstract=2543571.

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881), 3717-3725.

Wu, K., Shoshani, A., & Stockinger, K. (2010). Analyses of multi-level and multi-
component compressed bitmap indexes. ACM Transactions on Database
Systems (TODS), 35(1), 2.

Wu, Y., Chen, Z., Wen, Y., Cao, J., Zheng, W., & Ma, G. (2015). A general analytical
model for spatial and temporal performance of bitmap index compression
algorithms in Big Data. Paper presented at the 2015 24th International
Conference on Computer Communication and Networks (ICCCN). Las Vegas,
NV, 2015, pp. 1-10. doi: 10.1109/ICCCN.2015.7288362

Yang, C., Zhang, X., Zhong, C., Liu, C., Pei, J., Ramamohanarao, K., & Chen, J.
(2014). A spatiotemporal compression based approach for efficient big data
processing on cloud. Journal of Computer and System Sciences, 80(8), 1563-
1583.

Yeh, S.-C., Su, M.-Y., Chen, H.-H., & Lin, C.-Y. (2013). An efficient and secure
approach for a cloud collaborative editing. Journal of Network and Computer
Applications, 36(6), 1632-1641.

Yi, K., Wang, L., & Wei, Z. (2014). Indexing for summary queries: Theory and
practice. ACM Transactions on Database Systems (TODS), 39(1), 2.

Yıldırım, H., Chaoji, V., & Zaki, M. J. (2012). GRAIL: a scalable index for reachability
queries in very large graphs. The VLDB Journal—The International Journal on
Very Large Data Bases, 21(4), 509-534.

Yu, C., & Boyd, J. (2014, April). FB+-tree: Indexing based on key ranges.
In Networking, Sensing and Control (ICNSC), 2014 IEEE 11th International
Conference on (pp. 438-444). IEEE.

Zhang, Y., Sow, D., Turaga, D., & van der Schaar, M. (2014). A fast online learning
algorithm for distributed mining of bigdata. ACM SIGMETRICS Performance
Evaluation Review, 41(4), 90-93.

Zhang, Y., Yu, R., Xie, S., Yao, W., Xiao, Y., & Guizani, M. (2011). Home M2M
networks: architectures, standards, and QoS improvement. IEEE
Communications Magazine, 49(4), 44-52.

Univ
ers

ity
 of

 M
ala

ya

149

Zhu, Huang, Cheng, Cui, & Shen. (2013). Sparse hashing for fast multimedia search.
ACM Trans Inf Syst, 31(2), 1-24. doi:10.1145/2457465.2457469

Zhu, J., Khullar, S., & Chi, W. (2016). Item Loss Prevention Backpack, Available at
https://pdfs.semanticscholar.org/f1fb/78ca4003bda2e38a2de7c4d416102f04fb96
.pdf.

Zhu, X., Huang, Z., Cheng, H., Cui, J., & Shen, H. T. (2013). Sparse hashing for fast
multimedia search. ACM Transactions on Information Systems (TOIS), 31(2), 9.

Univ
ers

ity
 of

 M
ala

ya

150

APPENDIX A.

MORE RESULTS AND FIGURES OF EXECUTION TIME FOR SEARCHING

QUERIES

Table ‎7.1:Summarized report of the workloads for the dataset with size 34.713GB

(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

4.99 0.063 425019 2656 711366 6257 804648 12014
3.35 0.007 425346 2221 710220 5847 805107 7264
4.94 0.006 425084 2412 711555 5883 804731 5223
3.42 0.004 485415 2329 710903 6222 804424 5172
3.39 0.003 512739 2195 719516 5622 805472 5772
2.06 0.004 512842 2385 711435 6107 805426 5172
1.87 0.004 512976 2357 711310 5809 804925 5125
2.97 0.003 512816 2411 712049 6073 804392 5373
4.19 0.003 512683 2141 711525 5470 805097 5172
2.75 0.003 512846 2546 711362 5891 804695 5176

Table ‎7.2:Summarized report of the workloads for the dataset with size 136.145GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

7.47 0.069 8344631 5746 15670942 57233 22672589 128918

5.01 0.008 8351056 4807 15645700 53485 22685529 77952

7.39 0.007 8345899 5220 15675101 53815 22674941 56051

5.12 0.005 9530417 5040 15660732 56913 22666265 55504

5.07 0.003 10066883 4750 15850470 51420 22695823 61937

3.09 0.005 10068912 5160 15672454 55859 22694499 55504

2.80 0.005 10071532 5100 15669713 53134 22680382 54991

4.44 0.003 10068404 5216 15685973 55551 22665383 57660

6.27 0.003 10065784 4634 15674440 50036 22685235 55504

4.11 0.003 10068996 5509 15670847 53881 804695 5176

Univ
ers

ity
 of

 M
ala

ya

151

Table ‎7.3:Summarized report of the workloads for the dataset with size 272.291GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

8.81 0.073 38050756 7159 80443579 217908 122412035 433809

5.91 0.008 38080053 5989 80314006 203641 122481902 262308

8.72 0.007 38056539 6504 80464932 204896 122424738 188613

6.05 0.005 43457833 6279 80391168 216693 122377895 186771

5.98 0.004 45904066 5919 81365150 195776 122537478 208418

3.64 0.005 45913318 6429 80451344 212677 122530332 186771

3.30 0.005 45925267 6354 80437271 202302 122454114 185043

5.24 0.004 45911005 6499 80520741 211505 122373131 194025

7.40 0.004 45899055 5773 80461535 190505 122480314 186771

4.86 0.004 45913703 6864 80443094 205147 122419180 186886

Table ‎7.4:Summarized report of the workloads for the dataset with size 544.582GB
(Milliseconds)

Query 1 (MS) Query 2 (MS) Query 3 (MS) Query 4 (MS)
B-tree

Method
Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

B-tree
Method

Proposed
Method

10.22 0.076 176857676 7985 438346868 967305 829935379 2235308

9.86 0.009 176993843 6680 437640808 903974 830409068 1351607

10.11 0.008 176884551 7254 438463222 909545 830021505 971876

9.01 0.005 201989451 7003 438061271 961912 829703918 962382

10.93 0.004 213359397 6601 443368620 869063 830785867 1073929

9.22 0.005 213402397 7171 438389179 944085 830737421 962382

9.83 0.005 213457939 7087 438312490 898032 830220669 953482

10.07 0.004 213391647 7249 438767331 938885 829671621 999762

9.58 0.004 213336106 6439 438444711 845665 830398303 962382

10.63 0.004 213404189 7656 438344223 910659 829983825 962976

 Univ
ers

ity
 of

 M
ala

ya

152

Figure .1: Visualization of execution time for searching Query 1 when the size of data
is 4.255GB

Figure .2: Visualization of execution time for searching Query 1 when the size of data
is 8.509GB

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method

Proposed Method

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method

Proposed Method

Univ
ers

ity
 of

 M
ala

ya

153

Figure .3: Execution time for Query 2 with data size 2.127GB

Figure .4: Execution time for Query 2 with data size 4.255GB

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method

Proposed Method

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method

Proposed Method

Univ
ers

ity
 of

 M
ala

ya

154

Figure .5: Execution time for Query 3 with data size 2.127GB

Figure .6: Execution time for Query 3 with data size 4.255GB

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method

Proposed Method

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method

Proposed Method

Univ
ers

ity
 of

 M
ala

ya

155

Figure .7: Execution time for Query 3 with data size 8.509GB

Figure .8: Execution time for Query 4 with data size 2.127GB

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method

Proposed Method

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method

Proposed Method

Univ
ers

ity
 of

 M
ala

ya

156

Figure .9: Execution time for Query 4 with data size 4.255GB

Figure .10: Execution time for Query 4 with data size 8.509GB

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method

Proposed Method

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

B-tree Method
Proposed Method

Univ
ers

ity
 of

 M
ala

ya

157

Figure ‎7.11: Execution time for processing Query 1 using more datasets

Figure ‎7.12: Execution time for processing Query 2 using more datasets

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Number of Execution(s)

1.064 GB
2.127 GB
4.255 GB
8.509 GB
17.018 GB
34.713 GB
68.073 GB
136.145 GB
272.291 GB
544.582 GB
1089.163 GB

0

200000000

400000000

600000000

800000000

1000000000

1200000000

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Dataset Size(s) (GB)

B-tree Search Method

Proposed Search
Method

Univ
ers

ity
 of

 M
ala

ya

158

Figure .13: Execution time for processing Query 3 using more datasets

Figure ‎7.14: Execution time for processing Query 4 using more datasets

0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Dataset Size(s) (GB)

B-tree Search Method

Proposed Search
Method

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
d)

Dataset Size(s) (GB)

B-tree Search Method

Proposed Search Method

Univ
ers

ity
 of

 M
ala

ya

	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	List of appendices
	CHAPTER 1: Introduction
	1.1 Motivations
	1.2 Statement of Problem
	1.3 Statement of Objectives
	1.4 Proposed Research Methodology
	1.5 Layout of Thesis

	CHAPTER 2: Overview of Big Data Indexing
	2.1 Introduction
	2.2 Big data
	2.2.1 Sources of Big Data
	2.2.2 Characteristic of Big Data
	2.2.3 Big Data Trends
	2.2.4 Big Data Challenge

	2.3 Big Data Indexing
	2.3.1 Big Data Indexing Taxonomy
	2.3.1.1 Big Data Indexing Content Format
	2.3.1.2 Big Data Indexing Structures
	2.3.1.3 Big Data Indexing Requirements
	2.3.1.4 Data Retrieval

	2.3.2 Big Data Indexing Evaluation Metrics
	2.3.3 Analysis and Discussion of Current Indexing Techniques

	2.4 B-tree Indexing Technique
	2.4.1 History of B-tree
	2.4.2 B-tree Mechanism
	2.4.3 B-tree Main Operations
	2.4.3.1 Insertion
	2.4.3.2 Deletion
	2.4.3.3 Search

	2.4.4 Existing Modified B-tree Indexing Techniques

	2.5 Conclusion

	CHAPTER 3: Performance Analysis of B-tree Indexing Technique
	3.1 Introduction
	3.2 Analysis of B-tree Indexing Technique
	3.3 Query Processing Time Consumption Analysis
	3.4 Retrieving Time Performance Evaluation
	3.5 Execution Time Analysis and Discussion
	3.6 Conclusion

	CHAPTER 4: Improved Search Method for Big Data Sets
	4.1 Introduction
	4.2 Improved B-tree Technique
	4.2.1 Index Generator
	4.2.2 Summarization Updater
	4.2.3 Data Storage
	4.2.4 Backup Engine
	4.2.5 History Updater
	4.2.6 Search Query Engine

	4.3 IB-tree Indexing Structure
	4.4 Data Retrieval Architecture
	4.5 Simulation Engine
	4.6 Search Operation Flow
	4.7 Conclusion

	CHAPTER 5: Evaluation
	5.1 Introduction
	5.2 Evaluation of the Proposed Search Method
	5.2.1 Performance Evaluation Testing Environment
	5.2.1.1 Testing Environment

	5.3 Datasets
	5.4 Benchmark Description
	5.4.1 Execution time

	5.5 Conclusion

	CHAPTER 6: Results and discussions
	6.1 Introduction
	6.2 Performance Evaluation Results
	6.2.1 Execution Time

	6.3 Discussion
	6.4 Conclusion

	CHAPTER 7: CONCLUSION
	7.1 Introduction
	7.2 Aim and objectives of the study
	7.3 Research Scope and Limitations
	7.4 Significance and Contributions
	7.5 Future Research Directions of the Study

	References
	Appendix A. More results and figures of execution time for searching queries

