
DYNAMIC AND ADAPTIVE EXECUTION MODELS
FOR DATA STREAM MINING APPLICATIONS IN
MOBILE EDGE CLOUD COMPUTING SYSTEMS

MUHAMMAD HABIB UR REHMAN

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya



DYNAMIC AND ADAPTIVE EXECUTION MODELS
FOR DATA STREAM MINING APPLICATIONS IN
MOBILE EDGE CLOUD COMPUTING SYSTEMS

MUHAMMAD HABIB UR REHMAN

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya



UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Muhammad Habib ur Rehman 

Registration/Matrix No.: WHA130014

Name of Degree: Doctor of Philosophy

Title of Thesis: Dynamic and Adaptive Execution Models for Data Stream Mining Ap-

plications in Mobile Edge Cloud Computing Systems

Field of Study: Distributed Computing

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copy-
right whether intentionally or otherwise, I may be subject to legal action or any other
action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

ii

Univ
ers

ity
 of

 M
ala

ya



ABSTRACT

Mobile edge cloud computing (MECC) systems extend computational, networking,

and storage capabilities of centralized cloud computing systems through edge servers at

one-hop wireless distances from mobile devices. Mobile data stream mining (MDSM)

applications in MECC systems involve massive heterogeneity at application and plat-

form levels. At application level, the program components need to handle continuously

streaming data in order to perform knowledge discovery operations. At platform level,

the MDSM applications need to seamlessly switch the execution processes among mobile

devices, edge servers, and cloud computing servers. However, the execution of MDSM

applications in MECC systems becomes hard due to multiple factors. The critical fac-

tors of complexity at application level include data size and data rate of continuously

streaming data, the selection of data fusion and data preprocessing methods, the choice

of learning models, learning rates and learning modes, and the adoption of data mining

algorithms. Alternately, the platform level complexity increases due to mobility and lim-

ited availability of computational and battery power resources in mobile devices, high

coupling between application components, and dependency over Internet connections.

Considering the complexity factors, existing literature proposes static execution models

for MDSM applications. The execution models are based on either standalone mobile

devices, mobile-to-mobile, mobile-to-edge, or mobile-to-cloud communication models.

This thesis presents the novel architecture which utilizes far-edge mobile devices as a

primary execution platform for MDSM applications. At the secondary level, the archi-

tecture executes MDSM applications by enabling direct communication among nearer

mobile devices through local Wi-Fi routers without connecting to the Internet. At tertiary

level, the architecture enables far-edge to cloud communication in case of unavailability

of onboard computational and battery power resources and in the absence of any other

iii

Univ
ers

ity
 of

 M
ala

ya



mobile devices in the locality. This thesis also presents the dynamic and adaptive exe-

cution models in order to handle the complexity at application and platform levels. The

dynamic execution model facilitates the data-intensive MDSM applications having low

computational complexity. However, the adaptive execution model facilitates in seam-

less execution of MDSM applications having low data-intensity but high computational

complexities. Multiple evaluation methods were used in order to verify and validate the

performance of proposed architecture and execution models. The validation and verifi-

cation of the proposed architecture were performed using High-Level Petri Nets (HLPN)

and Z3 Solver. The simulation results revealed that all states in the HLPN model were

reachable and the overall design presented a workable solution. However, proposed archi-

tecture faced the state explosion problem wherein conventional static execution models

fail because the system may enter in multiple states of execution from a single state. The

proposed dynamic and adaptive execution models help address the issue of the state ex-

plosion problem. To this end, the proposed execution models were tested with multiple

MDSM applications mapping to a real-world use-case for activity detection using MECC

systems. The experimental evaluation was made in terms of battery power consumption,

memory utilization, makespan, accuracy, and the amount of data reduced in mobile de-

vices. The comparison showed that proposed dynamic and adaptive execution models

outperformed the static execution models in multiple aspects.

iv

Univ
ers

ity
 of

 M
ala

ya



ABSTRAK

Sistem MECC menambah baik sistem pengkomputeran, rangkaian, dan keupayaan

penyimpanan sistem pengkomputeran awan berpusat yang melalui pelayan sempadan pa-

da jarak satu-hop tanpa wayar dari peranti mudah alih. Aplikasi MDSM di dalam sistem

MECC melibatkan kepelbagaian yang banyak di peringkat aplikasi dan platform. Pada

peringkat aplikasi, komponen program perlu menguruskan aliran data secara berterus-

an dalam melaksanakan operasi penemuan pengetahuan. Pada peringkat platform pula,

aplikasi MDSM perlulah lancar dalam menukar proses pelaksanaan di antara peranti mu-

dah alih, pelayan sempadan, dan pelayan pengkomputeran awan. Walaubagaimanapun,

pelaksanaan aplikasi MDSM di dalam sistem MECC menjadi sukar disebabkan bebera-

pa faktor. Faktor kritikal yang rumit di tahap aplikasi merangkumi saiz data dan kadar

aliran data yang berterusan, pemilihan gabungan data dan kaedah-kaedah pemprosesan

awal data, pilihan model pembelajaran, kadar dan mod pembelajaran, dan penggunaan

algoritma perlombongan data. Kemudian, kerumitan di tahap platform meningkat kerana

mobiliti begitu juga penyediaan sumber pengkomputeran dan kuasa bateri dalam peranti

mudah alih yang terhad, gandingan tinggi antara komponen aplikasi, dan kebergantungan

kepada sambungan Internet. Berikutan itu, kajian yang sedia ada mencadangkan mo-

del pelaksanaan statik untuk aplikasi MDSM. Model-model pelaksanaan adalah sama

ada berdasarkan peranti mudah alih ‘standalone mobile devices’, mudah alih ke mudah

alih ‘mobile-to-mobile’, mudah alih ke sempadan ‘mobile-to-edge’, atau model komu-

nikasi mudah alih ke awan ‘mobile-to-cloud’. Tesis ini membentangkan arkitektur baru

yang menggunakan peranti mudah alih ‘far-edge’ sebagai platform pelaksanaan utama

untuk aplikasi MDSM. Di peringkat sekunder, pelaksanaan aplikasi MDSM adalah de-

ngan membenarkan komunikasi secara langsung antara peranti mudah alih yang terdekat

melalui router Wi-Fi tanpa penyambungan ke Internet. Pada peringkat tertier pula, ia

v

Univ
ers

ity
 of

 M
ala

ya



membenarkan ‘far-edge’ kepada komunikasi awan sekiranya kekurangan sumber peng-

komputeran dan sumber kuasa dan dalam ketiadaan mana-mana peranti mudah alih ber-

dekatan. Di samping itu, tesis ini membentangkan model pelaksanaan yang dinamik dan

adaptif untuk mengendalikan kerumitan di peringkat aplikasi dan platform. Model pe-

laksanaan dinamik ini memudahkan aplikasi data intensif MDSM mempunyai kerumitan

pengkomputeran yang minima. Walau bagaimanapun, model pelaksanaan adaptif di da-

lam aplikasi MDSM ini mempunyai data berintensiti rendah tetapi pengiraan berintensiti

tinggi. Pelbagai kaedah penilaian telah digunakan untuk mengukur dan mengesahkan

prestasi dan pelaksanaan model yang dicadangkan. Verifikasi dan pengesahan cadang-

an kajian dilakukan menggunakan High-Level Petri Nets (HLPN) dan Z3 Solver. Hasil

keputusan simulasi menunjukkan semua keadaan di dalam model HLPN adalah tercapai

dan reka bentuk keseluruhan menunjukkan solusi yang boleh diguna pakai. Walau ba-

gaimanapun, model yang dicadangkan menghadapi masalah dimana model pelaksanaan

statik konvensional gagal kerana sistem itu boleh memasuki dalam pelbagai keadaan pe-

laksanaan dari keadaan yang tunggal. Dengan model pelaksanaan dinamik dan adaptif

yang dicadangkan ini dapat membantu menangani isu masalah seperti itu. Untuk tujuan

ini, model pelaksanaan yang dicadangkan telah diuji dengan pelbagai aplikasi MDSM

disesuaikan dengan penggunaan kes dunia sebenar untuk mengesan aktiviti menggunak-

an sistem MECC. Penilaian eksperimen telah dibuat dari segi penggunaan kuasa bateri,

penggunaan memori, ‘makespan’, dan jumlah data yang dikurangkan dalam peranti mu-

dah alih. Perbandingan menunjukkan bahawa cadangan model pelaksanaan dinamik dan

adaptif mengatasi model pelaksanaan statik dari pelbagai aspek.

vi

Univ
ers

ity
 of

 M
ala

ya



ACKNOWLEDGEMENTS

Allah, the most beneficient, the most compassionate and merciful whose benevolence and

blessings enabled me to accomplish this task.

I would like to express heartfelt gratitude to my supervisors Dr. Liew Chee Sun and

Dr. Teh Ying Wah. Their vision, expertise, support, attention, and hard work guided me

to the successful completion of this thesis. I am thankful to their consistent efforts and

true desire to keep me on track.

I express my heartfelt gratitude to my parents (Hafiz Muhammad Ramzan and Naseem

Akhtar), family, and friends for their love, prayers, moral support, encouragements, and

sincere wishes for the completion of my work.

I am deeply indebted to Dr. Prem Prakash Jayaraman (Swinburne University of

Technology, Australia), Dr. Saif ur Rehman Malik (COMSATS Institute of IT, Islam-

abad), Dr. Atta ur Rehman Khan (King Saud University, KSA), and Miss Aisha Batool

(Iqra University, Islamabad) whose guidance, suggestions, and encouragements remained

continual source of inspiration for me throughout the course of study.

I am grateful to University of Malaya (UM) for providing me a tremendous op-

portunity, guidance, and continuous motivational, financial, and technical support. I am

thankful to CIIT for providing us a plateform to get this opportunity.

I am thankful to all the colleages at University of Malaya for their love, support, and

giving me a quality time in Malaysia. I wish them happiness and success throughout their

life.

Finally, I would like to dedicate this thesis to my beloved son "Muhammad Qasim

Salar" to whom I always look as a source of motivation.

vii

Univ
ers

ity
 of

 M
ala

ya



TABLE OF CONTENTS

Abstract iii

Abstrak v

Acknowledgements vii

Table of Contents viii

List of Figures xi

List of Tables xiii

List of Appendices xvi

CHAPTER 1: INTRODUCTION 1
1.1 Problem Statement 3
1.2 Mobile Edge Cloud Computing System 5
1.3 Objectives of Thesis and Research Methodology 7
1.4 Thesis Contributions 8
1.5 Thesis Outline 11

CHAPTER 2: EXECUTION MODELS FOR MDSM PLATFORMS 13
2.1 The Anatomy of MDSM Applications 13
2.2 Topological Settings of MDSM Platforms 15

2.2.1 Far-edge Mobile Devices 15
2.2.2 Far-edge to Far-edge Communication Model 17
2.2.3 Mobile Edge Servers 18
2.2.4 Immobile Edge Servers 20
2.2.5 Mobile Cloud Computing System 21

2.3 MDSM Execution Models 23
2.3.1 Model Type 23
2.3.2 Granularity of Data Processing 27
2.3.3 Model Behavior 29
2.3.4 Data Management and Adaptation Strategies 29
2.3.5 Application Partitioning 32
2.3.6 Computation Offloading 34
2.3.7 Data Transfer Strategies 37

2.4 Critical Factors of Complexity in MDSM Applications 38
2.5 Controlling Complexity at Platform Level 41

2.5.1 Scope Limitation 42
2.6 Summary 43

CHAPTER 3: DISTRIBUTED DATA STREAM MINING IN MECC
SYSTEMS 44

3.1 Problem Analysis 44

viii

Univ
ers

ity
 of

 M
ala

ya



3.1.1 Impact Analysis of Data Size and Data Rate 47
3.1.2 Impact Analysis of Early Data Fusion and Data Preprocessing 50
3.1.3 Impact Analysis of Learning Model Generation and Data Mining 54

3.2 UniMiner: A Framework for Heterogeneous Application Execution 57
3.2.1 Assumptions 59

3.3 Three-layer MECC Architecture for UniMiner 59
3.3.1 Components and Operations for LA 60

3.3.1.1 Data Acquisition and Data Adaptation 60
3.3.1.2 Knowledge Discovery 61
3.3.1.3 Knowledge Management 61
3.3.1.4 System Management 61
3.3.1.5 Visualization and Actuation 62

3.3.2 Components and Operations for CA 62
3.3.2.1 Discovering Mobile Edge Servers and

Communication Interfaces 63
3.3.2.2 Peer to Peer (P2P) Network Formation 63
3.3.2.3 Knowledge Discovery and Pattern Synchronization 63

3.3.3 Components and Operations for CLA 64
3.3.3.1 Service Discovery and Service Model 64

3.4 Formal Modeling, Analysis and Verification 65
3.4.1 High Level Petri Nets 65
3.4.2 SMT-Lib and Z3 Solver 66

3.5 Simulation Results and Discussion 71
3.6 Summary 74

CHAPTER 4: EXECUTION MODELS FOR MDSM APPLICATIONS
IN MECC SYSTEMS 75

4.1 Preliminaries 75
4.1.1 MDSM Application Architecture in MECC System 75
4.1.2 Multistage MDSM Application Execution in MECC Systems 76
4.1.3 MDMS Application State Transition Model 81
4.1.4 Data-intensive vs. Compute-intensive Applications 83

4.2 Dynamic Execution Model 85
4.2.1 Operations 85
4.2.2 Single-point Data Stream Management 86

4.2.2.1 Managing Data Tables 87
4.2.3 Single-point Opportunistic Data Stream Offloading 87

4.2.3.1 The Proposed Offloading Strategy 88
4.2.3.2 Dynamic Resource Estimation for Data Stream

Offloading 90
4.3 Adaptive Execution Model 92

4.3.1 Operations 92
4.3.2 Multi-point Data Stream Management 94
4.3.3 Multi-point Data Stream Offloading 96

4.3.3.1 Adaptive Resource Estimation 98
4.3.3.2 Rule-based Scheduling 98

4.4 Summary 99

ix

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 5: PERFORMANCE EVALUATION 100
5.1 Use-case Application for Mobile Activity Detection 100
5.2 Development and Experimental Setups 102

5.2.1 Development 102
5.2.2 Experimental Setup 103
5.2.3 Evaluation Metrics 105

5.3 Experiments 105
5.3.1 Static Application Execution using Far-edge Devices 106
5.3.2 Static Application Execution using F2F Communication Model 114
5.3.3 Static Application Execution using F2C Communication Model 120
5.3.4 Dynamic Application Execution using UniMiner 132
5.3.5 Adaptive Application Execution using UniMiner 141

5.4 Discussion 150
5.4.1 Lessons Learned 156
5.4.2 Qualitative Comparison of UniMiner 158

5.5 Summary 159

CHAPTER 6: CONCLUSION AND FUTURE RESEARCH DIRECTIONS 161
6.1 Achievements 161
6.2 Future Research Agenda 162

6.2.1 Future Research Work 162
6.2.2 Future Research Areas 165

6.3 Final Thoughts 168

References 171

Appendix 182

x

Univ
ers

ity
 of

 M
ala

ya



LIST OF FIGURES

Figure 1.1: MECC Architecture. 3
Figure 1.2: Reference MECC Architecture. 6
Figure 1.3: Research Methodology. 8

Figure 2.1: Multistage MDSM Applications. 14
Figure 2.2: MDSM Application Execution in Far-edge Mobile Devices. 15
Figure 2.3: MDSM Application Execution using F2F Communication Model. 17
Figure 2.4: MDSM Application Execution using Mobile Edge Servers. 19
Figure 2.5: MDSM Application Execution using Immobile Edge Servers. 21
Figure 2.6: MDSM Application Execution using Mobile Cloud Systems. 22
Figure 2.7: Factors Affecting Computational Complexity. 40

Figure 3.1: Early Data Fusion and Preprocessed Data Fusion Workflow. 51
Figure 3.2: UniMiner Framework for Distributed MDSM Application

Execution in MECC Systems. 58
Figure 3.3: UniMiner’s Component-based Architecture. 60
Figure 3.4: UniMiner HLPN Model. 68
Figure 3.5: PIPE+ Editor Screenshot of UniMiner. 72

Figure 4.1: Multistage Application Execution 77
Figure 4.2: State Transition Model of MDSM Applications. 82
Figure 4.3: Data-intensive vs. Compute-intensive MDSM Applications in

MECC systems. 84
Figure 4.4: Dynamic Application Execution Model. 86
Figure 4.5: Resource Estimation Method. 92
Figure 4.6: Adaptive Execution Model. 93
Figure 4.7: Multi-point Data Stream Management. 95

Figure 5.1: Mapping Online Activity Detection Application with Multistage
MDSM Application as Presented in Section 4.1.2 101

Figure 5.2: Power Consumption of D1 using App1, App2, App3. 107
Figure 5.3: Power Consumption of D2 and D3 using App1, App2, App3. 108
Figure 5.4: Standard Deviation in Power Consumption 110
Figure 5.5: Memory Consumption of D1 using App1, App2, App3. 110
Figure 5.6: Memory Consumption of D2 and D3 using App1, App2, App3. 111
Figure 5.7: Makespan of D1 using App1, App2, App3. 112
Figure 5.8: Makespan of D2 and D3 using App1, App2, App3. 112
Figure 5.9: Overall Accuracy of App1, App2, App3. 113
Figure 5.10: Average Power Consumption of App1, App2, App3. 115
Figure 5.11: Power Consumption Trends of App1, App2, App3. 116
Figure 5.12: Average Memory Consumption of App1, App2, App3. 117
Figure 5.13: Memory Consumption Trends of App1, App2, App3. 118
Figure 5.14: Average Makespan of App1, App2, App3. 119
Figure 5.15: Makespan Trends of App1, App2, App3. 119
Figure 5.16: Accuracy Trends using D1 and D2. 120
Figure 5.17: Average Power Consumption of App1, App2, App3. 121
Figure 5.18: Power Consumption Trends of App1, App2, App3. 122
Figure 5.19: Average Memory Consumption of App1, App2, App3. 123
Figure 5.20: Memory Consumption Trends of App1, App2, App3. 123

xi

Univ
ers

ity
 of

 M
ala

ya



Figure 5.21: Average Makespan of App1, App2, App3. 124
Figure 5.22: Makespan Trends of App1, App2, App3. 125
Figure 5.23: Accuracy Trends of App1, App2, App3. 126
Figure 5.24: Existing Systems and their Mappings with Static Execution Models. 132
Figure 5.25: Power Consumption using Dynamic Execution Model 134
Figure 5.26: Power Consumption Trends of D1 and D2. 134
Figure 5.27: Memory Consumption using Dynamic Execution Model 136
Figure 5.28: Memory Consumption Trends of D1 and D2. 136
Figure 5.29: Makespan using Dynamic Execution Model 137
Figure 5.30: Makespan Trends of D1 and D2. 137
Figure 5.31: Data Reduction using Dynamic Execution Model. 138
Figure 5.32: Accuracy Analysis using Dynamic Execution Model. 139
Figure 5.33: Power Consumption using Adaptive Execution Model 143
Figure 5.34: Power Consumption Trends at P1 and P2. 143
Figure 5.35: Memory Consumption using Adaptive Execution Model 145
Figure 5.36: Memory Consumption Trends at P1 and P2. 145
Figure 5.37: Makespan using Adaptive Execution Model 146
Figure 5.38: Makespan Trends at P1 and P2. 146
Figure 5.39: Data Reduction using Adaptive Execution Model. 147
Figure 5.40: Accuracy Analysis using Adaptive Execution Model. 147
Figure 5.41: Power Consumption Comparisons - Static vs. Dynamic 151
Figure 5.42: Memory Comparisons - Static vs. Dynamic 152
Figure 5.43: Makespan Comparisons - Static vs. Dynamic 153
Figure 5.44: Power Consumption Comparisons - Static vs. Dynamic vs. Adaptive 154
Figure 5.45: Memory Comparisons - Static vs. Dynamic vs. Adaptive 154
Figure 5.46: Makespan Comparisons - Static vs. Dynamic vs. Adaptive 155

Figure 6.1: Future Research Directions. 165

Figure A.1: Year-wise Publications (1992-2016). 182
Figure A.2: Year-wise Citations (1992-2016). 183
Figure A.3: Taxonomy of Heterogeneous MDSM Applications. 185
Figure A.4: Supervised and Unsupervised Learning Model Development Process. 192
Figure A.5: Semi-supervised Learning Model Development Process. 194

xii

Univ
ers

ity
 of

 M
ala

ya



LIST OF TABLES

Table 2.1: Execution Models for MDSM Applications. 28
Table 2.2: Adaptation Strategies. 31
Table 2.3: Application Partitioning Schemes. 33
Table 2.4: Computation Offloading Schemes. 36
Table 2.5: Data Transfer Methods. 38

Table 3.1: Selected Devices. 45
Table 3.2: Selected Algorithms. 46
Table 3.3: Performance Variation of Classification Algorithms with Respect to

Data Size. 48
Table 3.4: Performance Variation of Clustering Algorithms with Respect to

Data Size. 49
Table 3.5: Performance Variation of Frequent Pattern Mining Algorithms with

respect to Data Size. 50
Table 3.6: Performance Variation of Data Stream Mining Algorithms with

Respect to Early Data Fusion. 52
Table 3.7: Performance Variation of Data Stream Mining Algorithms with

Respect to Preprocessed Data Fusion. 53
Table 3.8: Impact of Learning Model Generation. 56
Table 3.9: Confusion Matrix for Device-based Learning Model. 56
Table 3.10: Confusion Matrix for Desktop-based Learning Model. 56
Table 3.11: Data Types for UniMiner HLPN. 67
Table 3.12: Places and Mappings. 68
Table 3.13: Forward Incidence Matrix. 72
Table 3.14: Backward Incidence Matrix. 73
Table 3.15: Simulation Results of UniMiner HLPN model. 74

Table 4.1: Multi-point Data management 95
Table 4.2: Selected Rules for Scheduling (Please refer Appendix B for a

complete list of rules). 99

Table 5.1: Devices and Data Collection Details. 104
Table 5.2: Selected Devices for Performance Evaluation at Phase 2. 104
Table 5.3: Battery Charge Depletion Time using Far-edge Devices. 109
Table 5.4: Impact of Data Rate on Memory Utilization in D1. 111
Table 5.5: Selected Mobile Edge Servers. 115
Table 5.6: Battery Charge Depletion Time using F2F Communication Model. 117
Table 5.7: Battery Charge Depletion Time using F2C Communication Model. 122
Table 5.8: Correlation Intervals and Level of Significance. 127
Table 5.9: Correlation Coefficients and Shared Variance for Static Execution

Models. 127
Table 5.10: Battery Charge Depletion Time using Dynamic Execution Model. 135
Table 5.11: Correlation Coefficients and Shared Variance in Dynamic Execution

model. 140
Table 5.12: Battery Charge Depletion Time using Adaptive Execution Model. 144
Table 5.13: Correlation Coefficients and Shared Variance of Adaptive

Execution Model. 149
Table 5.14: Qualitative Comparison of UniMiner. 158

xiii

Univ
ers

ity
 of

 M
ala

ya



Table A.1: Data Sources in MDSM Applications. 188
Table A.2: Data Acquisition Heterogeneity. 201
Table A.3: Data Fusion Heterogeneity. 203
Table A.4: Data Preprocessing Heterogeneity. 205
Table A.5: Data Stream Mining Heterogeneity. 210
Table A.6: Knowledge Management Heterogeneity. 212

xiv

Univ
ers

ity
 of

 M
ala

ya



xv

Univ
ers

ity
 of

 M
ala

ya



LIST OF APPENDICES

Appendix A: Heterogeneity in MDSM Applications 182

Appendix B: Rules for Scheduling 213

xvi

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 1: INTRODUCTION

Personal data mining (also known as Personal Analytics and Quantified-Self) is a rela-

tively new concept that is based on data mining techniques used for knowledge discovery

from users’ personal data to fulfill their personal needs (Ozzie et al., 2011). Personal data

mining applications help in analyzing personal data and create wealth of opportunities to

facilitate users in taking advantage from their personal knowledge patterns. Recently, a

rapid growth can be observed in the development of personal data mining technologies

and algorithms, as evidenced by quantified-self movement by Kevin Kelly and personal

analytics by Stephen Wolfram (Choe, Lee, Lee, Pratt, & Kientz, 2014). At present,

computational power and memory volume continues to be expanding, suggesting that

personal data mining would become more feasible in the near future and attract more

research attention (Gaber, Gama, Krishnaswamy, Gomes, & Stahl, 2014).

Cloud computing (CC) systems are defined as highly virtualized representation of

a collection of interconnected computing and storage nodes in parallel and distributed

systems (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). The CC systems were

traditionally designed as the utility computing model to meet the business needs of en-

terprises that required extra computational, networking, and storage services (Armbrust

et al., 2010). However with the advent of mobile technologies, CC systems evolved into

mobile cloud computing (MCC) systems whereby mobile devices harness CC resources

to meet the resource limitations in terms of memory, CPU, and battery power (Fernando,

Loke, & Rahayu, 2013). However, the multi-hop distances between mobile devices and

computing resources in CC and MCC communication models increase the makespan (i.e.

the time to process the data) in MCC applications (Satyanarayanan, Bahl, Caceres, &

Davies, 2009). In addition, the transmission of continuously streaming data in CC and

MCC systems increases the bandwidth utilization and data communication cost in MCC

1

Univ
ers

ity
 of

 M
ala

ya



communication model (A. R. Khan, Othman, Madani, & Khan, 2014) which further in-

creases network traffic inside CC systems (Ahmed et al., 2015).

The edge cloud computing (ECC) systems extend the computational, networking

and storage capabilities of CC systems to the edge of the Internet through edge servers

(see Figure 1.1) (Satyanarayanan et al., 2009). Edge servers reside at one-hop wire-

less distances from mobile devices, which include smartphones, wearable devices, In-

ternet of Things (IoTs) and wireless sensor networks, among many others (A. Ahmad

& Ahmad, 2016). The provision of edge servers in close proximity of mobile devices

reduces makespan in ECC applications (Satyanarayanan et al., 2009). In addition, mo-

bile devices consume minimum battery power because the sensed data is immediately

transferred to the edge servers for further processing (Fernando et al., 2013). Despite

the reduced makespan and energy efficiency, the ECC communication model is Internet-

dependent and always requires live Internet connection for data communication between

edge servers and cloud data centers (Bonomi, Milito, Zhu, & Addepalli, 2012). The

data communication between far-edge mobile devices and edge servers is performed us-

ing multiple communication protocols and interfaces such as Wi-Fi, Wi-Fi direct, Zigbee,

Bluetooth low energy, 4G/5G, message queue telemetry transport (MQTT), and advanced

message queuing protocol (AMQP), to name a few (Al-Fuqaha, Khreishah, Guizani,

Rayes, & Mohammadi, 2015).

The vision of ECC is still unclear, but some supporting architectures are emerg-

ing. Such architectures introduce different topological settings as well as different nota-

tions (Ha & Satyanarayanan, 2015; Shaukat, Ahmed, Anwar, & Xia, 2015). In academia,

edge servers are called cloudlets, which provide virtual cloud resources on the edge of a

communication network (Satyanarayanan et al., 2009). In industry, Cisco defined ECC

as Fog Computing, whereby gateway devices such as routers, switches and network ac-

cess points work as edge servers (Bonomi et al., 2012). Similarly, Microsoft introduced

2

Univ
ers

ity
 of

 M
ala

ya



Edge Servers

Mobile Devices

Cloud Computing System

Smart RouterCloudlet Micro CloudSmart SwtichApplication Server

Wired or Wireless Connection

Internet

Smartphone LaptopSmartwatch Mobile IoTs Tablet Smart Vehicles

Figure 1.1: MECC Architecture.

micro-data centers as edge servers based on single servers, racks of servers, or content de-

livery networks with additional computational capabilities (Bahl, 2015). Intel envisions

ECC whereby gateway devices are used as edge servers which filter and analyze the data

streams before transferring in cloud data centers (Al-Fuqaha et al., 2015). The European

Telecom Standards Institute deemed ECC as a standard architecture for the provision

of remote cloud services in edge servers to enable communication through radio access

networks over 3G/4G/5G data connections (Klas, 2015).

1.1 Problem Statement

Considering the traditional CC, MCC, and ECC systems, the execution of mobile data

stream mining (MDSM) applications (as defined later in Section 2.1) is a challenging

task due to continuously streaming data and the mobility of devices (Gaber, Gama, et

al., 2014). The MDSM applications fail when the devices leave the network coverage

3

Univ
ers

ity
 of

 M
ala

ya



area (Satyanarayanan, 2015). In addition, the cloud resource manager needs to ensure the

availability of virtual machines in close proximity of mobile devices in order to facilitate

in seamless application execution (Bittencourt, Lopes, Petri, & Rana, 2015). The virtual

machine migration introduces the resource management and high makespan overheads in

MDSM applications (Satyanarayanan et al., 2009). Moreover the continuous data transfer

in edge servers and cloud data centers increases the network traffic which results in high

cost of data communication in terms of energy consumption and bandwidth utilization in

CC systems. Using mobile devices as primary execution platform for MDSM applications

can help in addressing these issues. Mobile devices contain bounded resources in terms

of onboard memory and battery power. Existing studies present the adaptive execution

strategies and light-weight data mining algorithms in order to achieve energy and memory

efficiency in mobile devices (P. D. Haghighi et al., 2013). However, MDSM applications

are enforced to compromise on quality of knowledge patterns (P. D. Haghighi et al.,

2013). Considering the above mentioned issues and limitations in mobile devices, ECC,

MCC, and CC systems, a new architecture is envisioned in this thesis (Rehman, Liew,

Wah, Iqbal, & Jayaraman, 2016). The architecture utilizes mobile devices as primary

platform for seamless execution of MDSM applications. In case of resource limitations

the applications are executed at mobile edge servers at secondary level and at CC servers

at tertiary level.

The MDSM applications need to handle continuously streaming data but onboard

resource dynamics and mobility require efficient data management in order to ensure

maximum data availability. Using a transient data management scheme where the data

streams are temporarily stored in mobile devices helps address this issue. Considering

the anatomy of MDSM application (as presented in Section 2.1), the computational com-

plexities and resource utilizations of application components vary. Therefore sometimes

the MDSM applications need to handle high data rate but the computational complexity

4

Univ
ers

ity
 of

 M
ala

ya



remains low. Such situations make mobile devices a favorite platform for application

execution due to low latency and maximum data processing in mobile devices. Using a

dynamic execution model, which monitors the onboard resources in mobile devices and

resource utilization of MDSM applications, can help in maximum data processing in mo-

bile environments. The dynamic model performs cost benefit analysis and offloads data

streams to edge servers and CC servers, if necessary. Since the dynamic execution model

forcefully executes few application components in far-edge mobile devices. Therefore, it

needs to comprise on efficiency in terms of memory and battery power consumption when

the computational complexities of application components increase. Using an adaptive

execution model can help addressing this issue. The model can monitor and profile re-

source utilizations of multiple application components and run cost benefit analysis for

data stream offloading from each component.

1.2 Mobile Edge Cloud Computing System

Mobile edge cloud computing (MECC) Systems extend the cloud services on the edge of

the Internet through mobile and immobile edge servers that reside at one-hop wireless

distances from mobile devices. The MECC systems enable distributed MDSM applica-

tions by extending CC services in edge servers as well as applications are partitioned at

multiple levels (Ye, Ganti, Dimaghani, Grueneberg, & Calo, 2012). The MECC based

MDSM applications span over far-edge mobile devices, edge servers, and traditional CC

infrastructures (Ha et al., 2014).

Conventional immobile edge servers improve the battery lifetime of mobile devices

and minimizes makespan in mobile applications. However, a persistent connectivity

through Internet is required for mobile to edge and edge to cloud communication. There-

fore the envisioned MECC architecture utilizes nearer mobile devices as edge servers and

conventional CC systems for provision of cloud services (see Figure 1.2). The MECC

5

Univ
ers

ity
 of

 M
ala

ya



architecture enables mobile to edge communication using local communication channels

such as Bluetooth, Bluetooth Low Energy, Wi-Fi, and Wi-Fi direct. Although the avail-

ability of mobile devices is an issue however the nearer mobile devices can be opportunis-

tically used as mobile edge servers. The MECC architecture operates at three layers for:

1) local execution, whereby personal mobile devices are primarily used as application ex-

ecution platforms, 2) collaborative execution, whereby the mobile edge servers are used

as secondary level platforms for application execution, and 3) remote execution, whereby

at tertiary level, the CC servers execute applications.

Opportunities: The MECC systems provide scalable computing infrastructure which

can help in the deployment of highly distributed MDSM applications (Ye et al., 2012).

Far-edge mobile devices in MECC systems perform single-site and multiple-site compu-

tation offloading (Simoens et al., 2013). In addition, the unlimited computational and stor-

age support from traditional infrastructure based CC systems enable to deploy and dedi-

Servers

Data Center

Far-edge Mobile Device
1

CC Systems

3

M
o

b
ile Ed

ge
 Serve

rs

2

Figure 1.2: Reference MECC Architecture.

6

Univ
ers

ity
 of

 M
ala

ya



cate heterogeneous resources for edge servers (Ortiz, Huang, & Chakraborty, 2015). The

edge servers can further utilize the acquired resources for seamless application execution.

Edge servers also perform the resource-intensive computations to prolong battery life

time and minimize makespan in MDSM applications (Drolia et al., 2013). Furthermore,

the MDSM applications are geographically distributed to minimize the load-balancing

efforts in an infrastructure based cloud (Luan, Gao, Li, Xiang, & Sun, 2015).

Challenges: The MDSM applications need to address several issues in MECC sys-

tems. The mobility and resource constraints in far-edge mobile devices enforce in location-

aware predictive offloading of data streams and application components to minimize the

makespan which emerges due to live virtual machines migrations and application state

saving/resumption operations (Luan et al., 2015; Ha & Satyanarayanan, 2015). The high

dependency of far-edge mobile devices on the availability of Internet connections may

cause data loss as MDSM applications operate in online manner i.e. application compo-

nents are executed as in-memory operations. Efficiently managing the raw and interme-

diate data streams help in improving overall knowledge quality in MDSM applications.

1.3 Objectives of Thesis and Research Methodology

This thesis has been articulated around four research objectives:

• OB1: To conduct experimental studies for feasibility and performance analysis of

MDSM applications in far-edge mobile devices.

• OB2: To design, verify, validate, and develop a three-tier MECC architecture for

MDSM applications.

• OB3: To design and develop an execution model for proposed architecture in order

to dynamically execute MDSM applications in three-tier MECC architecture.

• OB4: To design and develop an execution model to enable MDSM applications for

7

Univ
ers

ity
 of

 M
ala

ya



Phase 1: Problem Establishment P1

Phase 2: Framework and Component Based Architecture P2

Phase 3: Dynamic and Adaptive Application Execution Models P3

Phase 4: Verified and Validated Solution P4

T4: Study existing relevant 
systems for gap analysis and 
articulation of key 
components

T5: Detailed design 
framework and three-tier 
architecture

T6: Validate, verify, and 
simulate architecture 
through HLPN, Z3 solver, 
Pipe+.

T7: Development of three 
layer architecture 

T8: Design and 
implementation of dynamic 
application execution model

T9: Design and 
implementation of adaptive 
application execution model

T10: Development of real 
world online mobile activity 
recognition application as a 
use-case  

T11: Performance 
evaluation of proposed 
execution models and 
quantitative comparison 
with static execution models

T12: Qualitative comparison 
with other relevant systems

T1: Feasibility analysis with 
six data Mining algorithms 

T2: Performance analysis 
with nine data mining 
algorithms 

T3: Literature review  

OB1

OB2

OB2
OB3

OB4

Figure 1.3: Research Methodology.

adaptive switching among far-edge mobile devices, mobile edge servers and CC

servers.

To meet the four objectives (i.e. OB1, OB2, OB3, and OB4) in this thesis, the

research was conducted in four phases (see Figure 1.3) whereby Task-1 to Task-3 (i.e.

T1, T2, and T3) were performed at first phase to establish and formulate the research

problem. At the second phase of this research, the tasks T4, T5, and T6 were performed to

design the framework and three-tier component based architecture for distributed MDSM

applications. At third phase, the tasks T7, T8, and T9 were performed to develop the

proposed MECC architecture, and dynamic and adaptive execution models for MDSM

applications. Finally, at forth phase, the tasks T10, T11, and T12 were performed to verify

and validate the proposed solutions and perform quantitative and qualitative comparison

with earlier static execution models for MDSM applications.

1.4 Thesis Contributions

The contributions of this thesis are:

1. A thorough literature review of MDSM applications and platforms have been per-

formed. To this end, different topological settings of MDSM platforms have been

8

Univ
ers

ity
 of

 M
ala

ya



discussed. In addition, the execution models have been evaluated in multiple per-

spectives including model type, model behavior, and granularity of data processing.

Moreover, a detailed review of data management and adaptation strategies, compu-

tation offloading methods, and data transfer and application partitioning schemes

has been performed. Finally, a detailed gap analysis has been presented in order to

find the research problem (Rehman, Liew, Wah, Shuja, & Daghighi, 2015; Rehman,

Sun, Wah, & Khan, 2017).

2. Considering the variations in computational capabilities and battery power resources

in far-edge mobile devices, a rigorous analysis of MDSM algorithms has been per-

formed. To this end, nine highly adopted algorithms were selected that were used

for classification, clustering, and association rule mining in previous studies. The

performance analysis was performed by varying size and speed of data streams. In

addition, the performance of mobile devices was assessed to find the resource con-

sumption for learning model generation, and early and late data fusion. The results

of data mining algorithms were also assessed to find the difference in device-based

and desktop-based generation of learning models (Rehman, Liew, & Wah, 2014a).

3. A component-based architecture for distributed MDSM applications in MECC sys-

tems has been proposed. The architecture is based on three layers of executions

namely, a) local analytics (LA) layer whereby the components for MDSM appli-

cations as well as supporting components for transient data management, resource

profiling, context collection, and data offloading run inside far-edge mobile devices,

b) collaborative analytics (CA) layer whereby data stream mining components exe-

cute at mobile edge servers. In addition the operational components for ad hoc net-

work formation, knowledge synchronization, and garbage collection run in mobile

edge servers, and c) cloud enabled analytics (CLA) layer whereby the CC servers

provide application clones of MDSM applications (Rehman, Liew, & Wah, 2014b).

9

Univ
ers

ity
 of

 M
ala

ya



4. A dynamic application execution model has been proposed whereby the applica-

tion components dynamically run in far-edge mobile devices, mobile edge servers,

and CC servers. The conventional online data stream mining process was modified

in order to enable dynamic application execution and handle continuously stream-

ing data. The model uses mobile devices as primary platform in order to execute

MDSM applications. The execution model runs certain application components,

such as the components for data acquisition, data adaptation, data preprocessing,

and data fusion, strictly inside mobile devices. However it dynamically offloads

the data stream in mobile edge servers and CC servers after performing cost benefit

analysis by considering current workloads, available and estimated computational,

memory, and energy resources, and device usage context information. The perfor-

mance analysis of execution model was performed by recruiting 12 graduate stu-

dents from University of Malaya, Malaysia. To this end, a real-time online mobile

activity detection application was developed and deployed on the students’ mobile

devices. The reported experimental outcomes were based on 15 days of experimen-

tation that resulted in around five million feature vectors, with each feature vector

representing a physical activity of a user. The results showed that dynamic exe-

cution model enabled maximum data processing in mobile devices which resulted

in energy and memory efficiency as well as reduced data transmission in MECC

systems (Rehman, Liew, et al., 2016).

5. An adaptive application execution model has been proposed in order to adaptively

switch execution behavior of MDSM applications in MECC systems. The model

enables multi-point transient data stream management and multi-point data stream

offloading schemes and enables resource profiling and context collection compo-

nents at each stage of application execution. The model enables resource profilers

and resource estimation components to profile the execution behavior of applica-

10

Univ
ers

ity
 of

 M
ala

ya



tion components at each stage of execution. The performance of adaptive execution

model was evaluated by continuously running mobile activity detection applica-

tions on users’ mobile phones. The reported results show that adaptive execution

model helped in reducing makespan almost by half of which was experienced in

dynamic execution model. In addition, the adaptive model outperformed the static

execution models in terms of battery power, memory and bandwidth consumption.

1.5 Thesis Outline

Chapter 2 discusses the state of the art execution models for MDSM applications. The

chapter is organized as follows. First of all, the chapter presents the anatomy of MDSM

applications. To familiarize with MDSM platforms, a detailed discussion on different

topological settings and associated opportunities and challenges is made. The review of

existing literature about execution models is analyzed and synthesized. The review is

made in terms of model types, granularity of data processing, and behavior of models.

In addition, existing MDSM platforms were reviewed in terms of data management and

adaptation strategies, application partitioning schemes, and computation offloading and

data transfer methods. In order to find the research problem and scope of the thesis, the

chapter discusses critical factors of complexity in MDSM applications and articulates the

research gap to control application complexities at platform level.

Chapter 3 is divided into two parts. In the fist part, a detailed feasibility and per-

formance analysis of selected data mining algorithms has been presented. To this end,

MDSM algorithms were assessed in terms of critical factors of complexity which were

articulated in Chapter 2. In the second part, a framework for distributed MDSM appli-

cations has been presented. In addition, the component-based three-tier architecture has

been presented with detailed discussion on operations performed at each layer. Finally,

formal verification, modeling and validation of proposed architecture has been performed.

11

Univ
ers

ity
 of

 M
ala

ya



At the end, the state explosion problem in proposed architecture has been discussed.

Chapter 4 presents the MDSM application architecture and state transition model.

In addition, the chapter highlights compute-intensive and data-intensive applications and

discusses the possibilities of application execution in MECC systems. This chapter also

presents the proposed dynamic and adaptive execution models that are based on single

point and multi-point data stream management and data stream offloading schemes.

Chapter 5 presents the performance evaluation of execution models. Firstly, the

chapter presents the performance results of MDSM applications with static execution

models in standalone far-edge mobile devices, and far-edge to far-edge (F2F) and far-

edge to cloud (F2C) settings. In addition, the chapter presents the correlation analysis of

memory utilization, makespan, and battery power consumption in static execution mod-

els. Secondly, the chapter presents performance evaluation of MDSM applications using

dynamic execution model followed by performance evaluation of application execution

using adaptive execution model. Furthermore, the chapter presents comparison of pro-

posed dynamic and adaptive execution models with static execution models and qualita-

tively compares existing MDSM platform with proposed UniMiner architecture.

Chapter 6 highlights the achievements of this research work. In addition, it presents

the future research agenda by highlighting the research issues and future research areas

for the applicability of this research work.

12

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 2: EXECUTION MODELS FOR MDSM PLATFORMS

"...the execution model specifies how application components are executed..."

Briam W. Kernighan and Dennis M. Ritchie (February 1978)

Chapter 2 outlines the anatomy of MDSM applications in Section 2.1 and presents a de-

tailed discussion of different topological settings for MDSM platforms in Section 2.2. In

Section 2.3, the chapter presents discussion on execution models in different perspectives

including model type, data processing granularity and model behavior. In addition, the

review of data management and adaptation strategies, application partitioning schemes,

computation offloading methods, and data transfer schemes is presented. Section 2.4

presents critical factors of complexity in MDSM applications when executed in far-edge

mobile devices. Section 2.5 presents the gap analysis of existing literature and perceived

solutions to control the complexity. Finally, the chapter is summarized in Section 2.6.

2.1 The Anatomy of MDSM Applications

The MDSM applications are based on multistage execution process whereby the data

streams are transformed from raw data into knowledge patterns. The MDSM application

components are executed at six stages (see Figure 2.1) whereby a huge amount of hetero-

geneity is present at each stage. The detailed taxonomy and literature review of methods

handling heterogeneity at these stages is presented in Appendix A for interested readers.

Following operations are performed at each stage:

• The application components at S1 collect data stream from data source(s) which

reside either onboard in far-edge mobile devices or off-board in external environ-

ments.

• The data fusion operations are performed by application components at S2 whereby

data streams from one are more data sources are integrated for data preparation.

13

Univ
ers

ity
 of

 M
ala

ya



S1. Data Acquisition

S2. Data Fusion

S3. Data 
Preprocessing

S4. Data Stream 
Mining

S5. Knowledge 
Integration

S6. Knowledge 
Visualization

Raw Data Knowledge Patterns

Figure 2.1: Multistage MDSM Applications.

• At S3, the data preprocessing components execute data filtration, noise removal,

feature extraction and reduction, and outliers detection methods.

• The data stream mining components at S4 enable learning models generation schemes

and execute model-based and model-less data mining algorithms.

• The discovered knowledge patterns are integrated, summarized, and stored by ap-

plication comportments at S5.

• Finally, at S6, the application components execute knowledge management and

visualization operations.

Considering the anatomy of MDSM applications and the literature review in Appendix-

A it was found that MDSM application components need variable computational re-

sources to perform seamless knowledge discovery operations. A variety of MDSM plat-

forms were designed to provide required computational resources but the computing de-

vices and systems also involve massive heterogeneity (Abdallah, Gaber, Srinivasan, &

Krishnaswamy, 2015; Gaber, Stahl, & Gomes, 2014; P. D. Haghighi et al., 2013; Ja-

yaraman, Gomes, et al., 2014). Therefore, designing an efficient execution model is a

challenging task. To handle platform level heterogeneity, Section 2.2 defines different

MDSM platforms and highlights the opportunities and challenges. Section 2.3 presents

the literature review of execution models in different platforms.

14

Univ
ers

ity
 of

 M
ala

ya



2.2 Topological Settings of MDSM Platforms

The MDSM platforms were deployed in multiple topological settings (Abdallah et al.,

2015; Gaber, Stahl, & Gomes, 2014; P. D. Haghighi et al., 2013; Jayaraman, Gomes, et

al., 2014). The underlying communication models include multi-granularity computing

devices and systems including mobile devices, Internet and intranet based application

servers and cloud data centers to name a few (Jayaraman, Perera, Georgakopoulos, &

Zaslavsky, 2014; Kargupta et al., 2010).

2.2.1 Far-edge Mobile Devices

Far-edge mobile devices are defined as any portable system or device with wireless com-

munication interfaces and ability to produce or process data. Smartphones, wearable

sensors, wireless body sensor networks, smart vehicles, and mobile Internet of Things are

a few examples of far-edge mobile devices. Although modern far-edge mobile devices en-

able rich mobile streaming data applications such as virtual reality, computer vision, and

multimedia applications using cloud augmented computational resources (Satyanarayanan

et al., 2015) however the execution of heterogeneous MDSM applications inside far-

edge devices is a challenging task (Rehman et al., 2015). Far-edge mobile devices usu-

Data Stream

Knowledge

Light-weight 
algorithms

Figure 2.2: MDSM Application Execution in Far-edge Mobile Devices.

15

Univ
ers

ity
 of

 M
ala

ya



ally contain limited computational resources and battery power therefore MDSM ap-

plications consider these limitations for efficient process execution in mobile environ-

ments (Krishnaswamy, Gama, & Gaber, 2012). Data stream mining components, as

shown in Figure 2.2, are designed to be light-weight to unleash the maximum utiliza-

tion of onboard computational resources.

Opportunities: The deployment of MDSM applications in far-edge mobile devices

creates multifold opportunities. These applications help in reducing outgoing data streams

which in turn reduce network traffic as well as minimize cost of communication in terms

of bandwidth utilization and GSM data plans (Jayaraman, Perera, et al., 2014). In ad-

dition, the close proximity of data sources and computational components in far-edge

mobile devices lowers the makespan when compared with offloading raw data streams

in external environments such as application servers, cloud data centers, and computing

grids (Jayaraman, Gomes, et al., 2014). The privacy preservation and local knowledge

availability are additional benefits of the deployment of MDSM applications in far-edge

mobile devices (Arunkumar, Srivatsa, & Rajarajan, 2015). In summary, the knowledge

patterns acquired after onboard execution of MDSM applications enable local knowledge

availability, reduce dependency over external systems for data processing, and preserve

privacy of users’ personal data (Jayaraman, Perera, et al., 2014).

Challenges: The limited computational resources such as memory and CPU, and

battery power are the main bottlenecks in far-edge mobile devices (Krishnaswamy et al.,

2012). The challenge arises due to miniaturization of computational elements and the

constraints of small size, light-weight, and less heat dissipating devices. Although mod-

ern far-edge mobile devices come with sophisticated computational elements and enable

power saving functions however the deployment of heterogeneous MDSM applications is

still a challenging task (Gaber, Gama, et al., 2014). Existing MDSM platforms adapt the

execution behavior according to resource availability in terms of memory, battery power,

16

Univ
ers

ity
 of

 M
ala

ya



and CPU power and situation awareness which enforce light-weight execution and results

in compromising the quality of knowledge patterns (P. D. Haghighi et al., 2013).

2.2.2 Far-edge to Far-edge Communication Model

Far-edge to Far-edge (F2F) communication model is defined as a set of Far-edge de-

vices that can communicate among each other directly without any external controlling

mechanism. For example, F2F communication model facilitates in direct communica-

tion between smart watch like Samsung Gear and a Smartphone such as Samsung Galaxy

S5 (Samsung, 2014) (see Figure 2.3). Similarly multiple devices owned by a single user

such as wearable devices, smartphones, tablet PCs, and laptops can establish a direct con-

nection through Bluetooth, Zigbee, and Wi-Fi interfaces (Al-Fuqaha et al., 2015). The

F2F communication model is adequate for single-user multi-device settings where far-

edge devices can initiate point-to-point and group communication sessions to execute

MDSM applications collaboratively (Framework, 2015).

Opportunities: In F2F settings, the closer far-edge mobile devices can pool the com-

putational resources to augment the resource-constrained far-edge mobile devices with

maximum execution support within Personal Area Network (PAN) (L. Wang, Gu, Tao,

Data Stream

Knowledge

Light-weight 
algorithms

Offloading

Synchronization

Figure 2.3: MDSM Application Execution using F2F Communication Model.

17

Univ
ers

ity
 of

 M
ala

ya



& Lu, 2012; Rehman et al., 2015). In addition, the F2F settings enable to distribute

application logic among different far-edge mobile devices for seamless application exe-

cution (Li, Peng, Xiao, & Hua, 2015; L. Wang et al., 2012). For example, the far-edge

mobile devices with minute computational facilities perform data acquisition operations

and facilitate in data transfer operations in relatively high-power far-edge mobile devices.

The high-power far-edge mobile devices enable data stream mining operations and syn-

chronize the knowledge among other far-edge mobile devices in PAN (Gu, Wang, Wu,

Tao, & Lu, 2011).

Challenges: The distribution of application logic is a major challenge in F2F set-

tings (L. Wang et al., 2012). The MDSM applications need to be carefully designed to run

the resource-intensive components in relevantly high-power far-edge mobile devices in

order to avoid resource unavailability in low-power far-edge mobile devices (Min & Cho,

2011). The static application logic distribution in F2F settings may introduce high cou-

pling among several far-edge mobile devices which affect the resource provisioning from

other resource-constrained far-edge mobile devices; especially when a far-edge mobile

device executes resource-intensive components but do not possess sufficient resources at

a particular time (Braojos, Beretta, Constantin, Burg, & Atienza, 2014). Keeping track

record of mobility patterns for adaptive application execution could also become a chal-

lenging task in F2F settings because the far-edge mobile devices are assumed to be in

locality for seamless application execution.

2.2.3 Mobile Edge Servers

Mobile Edge server is defined as any mobile device or mobile system that resides at one-

hop wireless distance from far-edge mobile devices. A mobile edge server enables data

stream mining functionality by providing mobile services to thin and thick far-edge mo-

bile devices (Gaber, Stahl, & Gomes, 2014) (see Figure 2.4). The thin far-edge mobile

18

Univ
ers

ity
 of

 M
ala

ya



devices function as data acquisition and data transfer elements however thick far-edge

devices enable additional functionality of executing light-weight data stream mining al-

gorithms. Some examples of mobile edge servers include frequently co-located far-edge

devices such as personal mobile devices (i.e. wearable devices, smartphones, Tablet PCs,

and laptop computers), far-edge mobile devices owned by co-workers, family members,

and friends, and shared far-edge mobile devices such as appliances in smart home envi-

ronments, and office equipment in smart co-working spaces.

Opportunities: The co-location and co-movement of far-edge mobile devices and

mobile edge servers reduce dependency over large-scale centralized systems (Kargupta

et al., 2010). In addition, far-edge mobile devices can offload resource-intensive tasks

to mobile edge servers without Internet connections by utilizing local communication

channels (Gaber, Stahl, & Gomes, 2014). Mobile edge servers may owned and controlled

by different users therefore MDSM applications should be device-centric and mobile edge

servers should provide complete application clones to reduce the high coupling. An added

advantage of mobile edge servers is the elastic service availability where far-edge mobile

devices can offload data mining tasks in multiple mobile edge servers using device-centric

task scheduling schemes. The addition of location aware context features in MDSM can

enable mobile distributed intelligence where multiple far-edge mobile devices can sense

and log the data and act like both as standalone far-edge mobile devices and as mobile

Data Stream

Knowledge

Light-weight 
algorithms

offloading

Synchronization

Data Stream

Knowledge

Light-weight 
algorithms

offloading

Synchronization

Far-edge Device Mobile-edge Server Far-edge Device

Figure 2.4: MDSM Application Execution using Mobile Edge Servers.

19

Univ
ers

ity
 of

 M
ala

ya



edge servers.

Challenges: The resource constraints in mobile edge servers are still a challenge

which enforces the light-weight service provision to MDSM applications. In addition, the

mobility of devices may degrade the performance of MDSM applications. The privacy

preservation of users’ personal data is another challenge that mobile edge servers should

consider. Moreover, variety in operating systems of mobile edge servers, programming

environments, and communication interfaces requires extensive profiling of mobile edge

servers to provide optimal user experience.

2.2.4 Immobile Edge Servers

Immobile edge servers are defined as the physically static and resourceful computing

systems that reside at one-hop wireless distances from far-edge mobile devices. The im-

mobile edge servers include cloudlets, micro data centers, radio access network (RAN)

servers in GSM networks, application servers, and smart-routers in local area networks to

name a few (Bonomi et al., 2012; Satyanarayanan et al., 2015; Bahl, 2015; Ha & Satya-

narayanan, 2015). Similar to mobile edge servers, the communication model facilitates

thin/thick far-edge devices but physically bounded nature of immobile edge servers en-

force collaborative execution models between far-edge mobile devices and immobile edge

servers (Ferreira, Duarte, & Preguiça, 2010) (see Figure 2.5). The collaborative execution

model need to perform operational monitoring at far-edge mobile devices and immobile

edge servers for seamless execution of MDSM applications (Sherchan et al., 2012).

Opportunities: The deployment of MDSM applications at immobile edge servers

helps in prolonging battery lifetime of far-edge mobile devices (Satyanarayanan et al.,

2015). In addition the availability of high computational resources reduces the application

processing time hence minimizes the makespan (Bahl, 2015).

Challenges: Despite of enhanced application performance, the immobile edge servers

20

Univ
ers

ity
 of

 M
ala

ya



need to address few challenges such as profiling mobility of far-edge mobile devices to

maximize resource provisioning (A. Ahmad & Ahmad, 2016), enabling live virtual ma-

chine migration for seamless application execution (R. W. Ahmad et al., 2015), saving

and resuming application states to seamlessly switch among different networks (Ha &

Satyanarayanan, 2015), enabling application partitioning schemes to statically and dy-

namically partition MDSM applications in locally runnable components and offloadable

components (J. Liu et al., 2015), and performing cost-benefit analysis for the favorability

of offloading certain computations in immobile edge servers (M. A. Khan, 2015).

2.2.5 Mobile Cloud Computing System

Mobile cloud computing (MCC) systems are defined as the computing systems that pro-

vide heterogeneous computing, networking, and storage services to far-edge mobile de-

vices through large scale data centers. The application models for MCC based MDSM

applications involve thin and thick far-edge mobile devices (Altomare, Cesario, Comito,

Marozzo, & Talia, 2013) (see Figure 2.6). For example, far-edge devices directly upload

data stream in cloud data centers and data stream mining operations are performed in

cloud environments (Talia & Trunfio, 2010). Alternately, far-edge mobile devices per-

form data stream mining operations locally using onboard computational resources and

enable on-demand data offloading when required (Jayaraman, Gomes, et al., 2014).

Opportunities: The MCC systems offer many opportunities to augment MDSM ap-

Data Stream

Knowledge

offloading

Synchronization

Data Mining 
Servers

Data Stream

Knowledge

Light-weight 
algorithms

offloading

Synchronization

Far-edge DeviceFar-edge Device

Figure 2.5: MDSM Application Execution using Immobile Edge Servers.

21

Univ
ers

ity
 of

 M
ala

ya



Synchronization

Data Stream

Knowledge

Data Stream

Knowledge

Light-weight 
algorithms

offloading

Thick Far-edge Device

Thin Far-edge Device

Data Mining 
Services

Figure 2.6: MDSM Application Execution using Mobile Cloud Systems.

plications. The MCC systems ensure provisioning of highly available and hypothetically

unlimited computing, networking, and storage resources through large-scale data centers.

MCC systems enable multiple form of services namely Storage-as-a-Services (SaaS),

Application-as-a-Services (AaaS), Network-as-a-Services (NaaS), and a large plethora of

services at hardware, operating systems, and application levels (Fernando et al., 2013).

Challenges: Ranging from cluster level and data center level issues to operating sys-

tems, and application level issues, the MCC systems face many challenges for MDSM

applications. The dependency on the availability of Internet connections, high data rates

due to raw data transfer, increased makespan due to multi-hop distance between far-edge

mobile devices and cloud data centers, resource provisioning, on-demand load-balancing,

seamless application execution, adaptive and dynamic computation offloading, the de-

ployment of data stream mining services and updating learning models, and increasing

privacy concerns are a few challenges that MCC systems need to handle for the deploy-

ment of MDSM applications (Kumar, Liu, Lu, & Bhargava, 2013; Yuan & Herbert, 2014).

22

Univ
ers

ity
 of

 M
ala

ya



2.3 MDSM Execution Models

This section presents the review of highly relevant methods and schemes that are used to

address the execution model level issues. The execution models were studied in multi-

ple perspectives such as model type and behavior and the granularity of data processing.

In addition, existing studies were analyzed in terms of data management schemes, ap-

plication partitioning methods, adaptation strategies, and data transfer and computation

offloading schemes. Since the scope of this thesis is limited to MDSM application execu-

tion, therefore, the conventional large-scale stream execution models were not analyzed

and presented in this thesis. The discussion on conventional stream execution models

were presented and published in our previous study (Rehman et al., 2015) hence it is not

covered in the scope of this thesis. The studied execution models in this thesis enable the

stream executions in one of above mentioned topological settings. Literature review of

existing MDSM platforms is presented in terms of topological setting, model type, data

processing granularity, and model behavior in Table 2.1.

2.3.1 Model Type

Execution models for MDSM applications either remain standalone or distributed among

multiple devices and systems. The standalone execution models execute all application

components in a single device or systems (Krishnaswamy et al., 2009). Historically, the

standalone models were used with far-edge device based systems whereby all application

components from data acquisition stage to knowledge visualization stage are executed

using onboard computational and battery resources (J. B. Gomes, Krishnaswamy, Gaber,

Sousa, & Menasalvas, 2012a; Abdallah et al., 2015). The execution of MDSM applica-

tions in resource-constrained environments is a major bottleneck in the performance of

standalone models (Krishnaswamy et al., 2012; Gama, 2013). To address this challenge,

existing systems perform partial application execution in far-edge devices whereby cer-

23

Univ
ers

ity
 of

 M
ala

ya



tain computation and energy-intensive operations such as learning model generation are

performed in other devices and systems (Yuan & Herbert, 2014). The resultant models

are transferred in far-edge device for knowledge discovery. Alternatively, the MDSM

applications perform passive learning whereby one-time training is performed (Siirtola

& Roning, 2013), or the MDSM applications use active learning methods within limited

search spaces (Yuan & Herbert, 2014; Oneto, Ghio, Ridella, & Anguita, 2015). The chal-

lenge of resource limitation in far-edge mobile devices could be addressed by adjusting

few parameters in the data stream such as size of data, number of variables, and size

of results produced by data mining algorithms (Comito & Talia, 2013). The adaptation

strategies are another alternate to handle resource constraints whereby the MDSM ap-

plications adapt the execution behaviors according to onboard available resources. The

discussion on adaptation strategies is presented later in this section. Since standalone

execution models need to compromise on quality of knowledge which is reduced due to

parameter tuning and adaptation strategies (Krishnaswamy et al., 2009). The distributed

application execution using nearby far-edge mobile devices becomes a feasible choice.

The distributed execution models are either collaborative or non-collaborative. The

collaborative execution models involve multiple devices and systems to facilitate appli-

cation execution whereby application components exchange certain information about

underlying devices and platforms prior to data processing. To this end, existing systems,

such as Pocket Data Mining (PDM), use agent-oriented architecture to enable collabo-

rative execution model in distributed F2F environments (Gaber, Stahl, & Gomes, 2014).

The far-edge device sends mobile agent for data mining in other devices which collect the

information about available data sources and available implementations of data mining

algorithms in other mobile devices. The decision for collaboration is made by match-

ing the required data sources and resources. The agent-oriented architecture benefits by

enabling a decentralized execution model and reduced communication within the ad hoc

24

Univ
ers

ity
 of

 M
ala

ya



F2F network. However, continuous running of mobile agent leads to incremental data

communication and extra battery power consumption.

The addition of context-aware features enhances the performance of collaborative

execution models whereby the MDSM applications operating in same locality with simi-

lar contextual information can handle concept drift (i.e. detecting changes in data stream)

very effectively. The context aware collaborative execution model in F2F settings helps in

data reduction, communication efficiency and improved data mining results. In context of

collaborative execution model in F2F settings, a low level implementation of distributed

k-means clustering algorithms was made by researchers (Ortiz et al., 2015). The algo-

rithm was combined with contextual information and approximation techniques and the

implementation reduced the makespan from almost two hours to 657 seconds. However,

such implementations needs a lot of programming efforts to develop MDSM applications.

The collection of contextual information at cloud side helps in effective collaboration in

far-edge to cloud (F2C) settings (Sherchan et al., 2012). In such execution model, far-

edge devices collect contextual information and transmit to cloud servers which infer the

relevant contexts and suggest new configurations. The MDSM applications at far-edge

mobile devices reconfigure the behavior accordingly (Jayaraman et al., 2012). The cloud

based context awareness improves the performance of MDSM applications but the in-

creased dependency over persistent Internet connections is a major bottleneck in such

applications. The collaborative execution models in F2F and F2C settings were also used

for opportunistic sensing and light-weight data processing in far-edge mobile devices.

MOSDEN is an example of such platform whereby the remote servers delegate the sens-

ing and data processing tasks to far-edge mobile devices where light-weight MDSM ap-

plications perform the required tasks and the results are communicated back to MOSDEN

servers (Jayaraman, Perera, et al., 2014). However, these models also require persistent

Internet connections for seamless application execution.

25

Univ
ers

ity
 of

 M
ala

ya



Unlike collaborative execution models, the application components in non-collabor-

ative execution models just perform the knowledge discovery and data transfer processes

without consulting the remote devices and servers. For example, MobiSens performs data

acquisition and activity segmentations at far-edge mobile devices (Wu, Zhu, & Zhang,

2013). The collected data streams are transferred to remote severs in case the devices

are connected with Internet and being charged. The remote servers perform knowl-

edge discovery operations and resultant knowledge is used by remote applications de-

ployed on back-end server. Similarly, a service-oriented architecture was proposed by

researchers whereby far-edge mobile devices just perform data acquisition and transmit

the data stream to remote servers whereby the required data mining tasks are performed

and results are communicated back to far-edge mobile devices (Talia & Trunfio, 2010).

Such execution models have multiple issues including increasing bandwidth utilization

cost, extra energy consumption for data communication, requirement of persistent Inter-

net connectivity, and high-coupling between application components.

Irrespective of execution model, the training of learning models is a computationally

expensive task therefore it becomes very hard to train the learning models onboard in

far-edge mobile devices. CARA implements a cloud based learning module for MDSM

applications (Yuan & Herbert, 2014). The system works by downloading initial learning

model in far-edge mobile devices. The application components at far-edge device collect

and process data streams for knowledge discovery and assess the quality of knowledge

patterns. In case of newly found patterns, the results are communicated back to cloud

servers whereby the learning models are updated accordingly. Although this strategy

enables the execution model to address the issue of resource constraints however the cost

of data communication may drastically increase when MDSM applications are executed

with continuously evolving data streams (Yuan & Herbert, 2014).

26

Univ
ers

ity
 of

 M
ala

ya



2.3.2 Granularity of Data Processing

The data processing behavior in existing execution models vary due to massive hetero-

geneity at application and platform levels.

Considering resource limitations in far-edge mobile devices, the MDSM applica-

tion components are made light-weight by reducing the functionality of data process-

ing (Gaber, 2009; Krishnaswamy et al., 2009), or the amount of data is reduced (Comito

& Talia, 2013). The light-weight components with reduced functionality help in achieving

data processing goal using far-edge devices but the MDSM applications may compromise

on the quality of knowledge patterns (P. Haghighi, Gaber, Krishnaswamy, & Zaslavsky,

2007). On the other hand, data stream reduction may result in data loss which results

in loosing information fidelity (Comito & Talia, 2013). Alternatively, heavy-weight data

processing is performed using large-scale computing infrastructures such as LAN servers,

computing clusters, and large-scale data centers (Kargupta et al., 2010; Talia & Trunfio,

2010). During heavy-weight data processing, the application components provide maxi-

mum functionalities without considering underlying computational resources.

Alternately, the MDSM applications perform partial data processing in F2F and F2C

settings (Jayaraman, Gomes, et al., 2014; Ortiz et al., 2015). To this end, far-edge devices

execute light-weight application components for initial data processing and the resultant

data or knowledge patterns are aggregated in remote servers for further analysis and exe-

cutions. In few platforms, the partial data processing is performed by running only one or

two components in far-edge devices while rest of the executions are performed in remote

servers. For example, MobiSens performs data acquisition, aggregation, and filtration

in far-edge devices while rest of the application is executed in cloud servers (Wu et al.,

2013). Similarly, in collaborative F2F settings, the MDSM applications perform data ac-

27

Univ
ers

ity
 of

 M
ala

ya



Reference Topology Standalone Collaborative Distributed LW HW Partial Static Dynamic Adaptive

(Krishnaswamy et al., 2009) Far-edge Yes No No Yes No No No Yes Yes

(Kargupta et al., 2010) F2C No Yes Yes Yes Yes Yes Yes No No

(Gu et al., 2011) F2F No Yes Yes Yes Yes Yes Yes No No

(Sherchan et al., 2012) F2C No Yes Yes Yes No Yes No Yes Yes

(P. Liu, Chen, Tang, & Yue, 2012) Far-edge Yes No No No Yes No Yes No No

(Wu et al., 2013) F2C No Yes Yes Yes Yes No Yes No No

(Yuan & Herbert, 2014) F2C No Yes Yes No Yes No Yes No No

(Yang et al., 2014) Far-edge Yes No No No Yes No No Yes No

(Srinivasan et al., 2014) Far-edge Yes No No No Yes No Yes No No

(Gaber, Stahl, & Gomes, 2014) F2F No Yes Yes Yes No No No Yes Yes

(Jayaraman, Perera, et al., 2014) F2C Yes Yes Yes No Yes No Yes Yes No

(Jayaraman, Gomes, et al., 2014) F2C Yes Yes Yes Yes Yes No Yes Yes Yes

(Abdallah et al., 2015) Far-edge Yes No No Yes No No No Yes Yes

Table 2.1: Execution Models for MDSM Applications.

28

Univ
ers

ity
 of

 M
ala

ya



quisition and feature extraction in far-edge devices and remaining components are exe-

cuted in remote servers. Partial data processing in far-edge mobile devices is a feasible

solutions but distributed application logic introduces high coupling among application

components. The MDSM applications may fail when the Internet connections are un-

available or the far-edge devices are roaming among multiple communication networks.

2.3.3 Model Behavior

The behavior of execution models differs in terms of static, dynamic, and adaptive oper-

ations. In static execution models, the application components run without considering

resource availabilities and execution workloads (P. Liu et al., 2012; Yuan & Herbert,

2014; Srinivasan et al., 2014). On the other hand, dynamic execution models consider

the execution workloads and search for required resources before application execu-

tion (Krishnaswamy et al., 2009; Abdallah et al., 2015). The adaptive execution mod-

els add the adaptation mechanism in application execution processes in order to perform

optimal application execution (Gaber, 2009; Jayaraman, Gomes, et al., 2014). Existing

platforms perform static executions in F2F and F2C settings. However, for application

execution in far-edge mobile devices, a few studies were proposed whereby the MDSM

applications dynamically and adaptively execute using onboard computational resources

by switching among light-weight and heavy-weight data processing.

2.3.4 Data Management and Adaptation Strategies

MDSM applications are bounded to operate on continuously streaming data; far-edge

devices need to consider available memory resources in order to efficiently execute ap-

plication components. To handle this issue, MDSM applications either temporarily store

the collected data stream using onboard storage and memory buffers or directly execute

data streams by optimizing the available resources using adaptation strategies (Kargupta

et al., 2010; Wu et al., 2013; Jayaraman, Perera, et al., 2014; Sherchan et al., 2012).

29

Univ
ers

ity
 of

 M
ala

ya



Although most of the existing execution models perform direct in-memory opera-

tions, few platforms use data management operations. For example MobiSens performs

data acquisition in local storage and transfers collected data streams to cloud data cen-

ters when the devices are connected through Wi-Fi and are in charging mode (Wu et

al., 2013). Similarly, CARDAP and MOSDEN performs data management by perform-

ing data reduction using light-weight application components in far-edge devices and

storing resultant patterns in local storage (Jayaraman, Perera, et al., 2014; Jayaraman,

Gomes, et al., 2014). The systems also enable query manager components which per-

form on-demand data offloading when requested by cloud servers. CAROMM performs

on-the-move mining whereby it uses light-weight adaptive clustering components over

data streams to detect changes in data streams (Sherchan et al., 2012). CAROMM up-

loads the data streams after observing significant changes. MineFleet is one of pioneer

MDSM platforms and it stores the data streams after performing data analysis (Kargupta

et al., 2010). MineFleet clients upload locally stored data streams to MineFleet servers

whenever the connectivity is available. Star, a recent framework, stores results of MDSM

applications and immediately discards raw data streams after processing (Abdallah et al.,

2015).

Table 2.2 presents a detailed literature review of proposed adaptation strategies. The

adaptations are made at system level to adapt the generic processing behavior of MDSM

applications (Pasricha, Donohoo, & Ohlsen, 2015). Alternately, the adaptation strategies

work at algorithm level by altering the execution behaviors of data stream mining algo-

rithms (Abdallah et al., 2015). The adaptations are made using multiple parameters such

as data rate, memory, CPU, context aware features, learning models, or any specific event.

The data rate based adaptive strategies work by monitoring the velocity of incoming and

outgoing data streams (P. D. Haghighi et al., 2013). The adaptive data stream mining

algorithms adjusts the execution behavior according to data rates. The memory and CPU

30

Univ
ers

ity
 of

 M
ala

ya



Reference Platform Algorithm Data Rate CPU Memory Context Learning Model Event

(Pasricha et al., 2015) Yes No No Yes No No Yes Yes

(Abdallah et al., 2015) No Yes No No No No Yes No

(P. D. Haghighi et al., 2013) Yes Yes Yes Yes Yes Yes No No

(Lu et al., 2012) No No No No No No Yes No

(Gaber, Stahl, & Gomes, 2014) No Yes Yes Yes Yes No No No

(Stahl et al., 2012) No Yes Yes Yes Yes No No No

(Jayaraman, Perera, et al., 2014) Yes Yes Yes Yes Yes No No No

(Eom, Figueiredo, Cai, Zhang, & Huang, 2015) No No No No No No Yes No

(Sherchan et al., 2012) Yes Yes Yes Yes Yes Yes No No

(Jayaraman, Gomes, et al., 2014) Yes Yes Yes Yes Yes Yes No No

(Yuan & Herbert, 2014) Yes No No No No No Yes No

(Kargupta et al., 2010) No Yes No No No No No No

Table 2.2: Adaptation Strategies.

31

Univ
ers

ity
 of

 M
ala

ya



based adaptation strategies works by profiling the computational requirements of data

stream mining algorithms and adjusting the execution behavior accordingly. The context-

aware adaptive strategies profile different situations and adjust the execution behavior of

MDSM platforms whenever a relevant situation is inferred (Sherchan et al., 2012). The

learning model based strategies consider the execution history of MDSM applications,

learn the execution patterns, and alter the execution behavior according to predicted set-

tings (Lu et al., 2012; Yuan & Herbert, 2014). Event based strategies work by adopting

the execution behavior of data stream mining algorithms accordingly when a specific

event occurs (Pasricha et al., 2015).

2.3.5 Application Partitioning

Distributed MDSM applications are partitioned to run in multiple devices and systems.

The application partitioning strategies are controlled by either far-edge devices, cloud

servers, or edge servers. MDSM applications are either partitioned dynamically at run-

time after assessing the resource requirements of the running processes or the application

are partitioned in fixed form where specific application components run at designated de-

vices and systems (Gaber, Stahl, & Gomes, 2014; Ortiz et al., 2015). Table 2.3 presents a

detailed literature review of application partitioning strategies in MDSM platforms. The

applications are partitioned either on the basis of data or computations (L. Wang et al.,

2012; Braojos et al., 2014). The data based application partitioning is performed by ex-

ecuting data parallel strategies where partial data streams are offloaded and executed in

various devices and systems. The computation based partitioning is performed by mea-

suring the computational requirement and granularity of data processing. In computation

based partitioning partial tasks are executed in various device and systems and application

partitioning is performed either offline or online. The offline partitioning is performed be-

fore or after the application execution however the online partitioning is performed during

32

Univ
ers

ity
 of

 M
ala

ya



Reference Device Cloud Server Edge Type Partitioning Mode Model Granularity Form

(L. Wang et al., 2012) Yes NA NA NA Offline Data-based Static Data Fixed

(Gaber, Stahl, & Gomes, 2014) Yes No No No Offline Data-based Static Data Fixed

(Ortiz et al., 2015) Yes No NA NA Offline Data-based Static Data Fixed

(Braojos et al., 2014) Yes No No No Offline Computation-based Static Learning Model Fixed

(Min & Cho, 2011) Yes No No No Offline Data-based Static Data Fixed

(Jayaraman, Perera, et al., 2014) Yes Yes Yes Yes Offline Data-based Dynamic Data Fixed

(Dou et al., 2011) Yes No No No NA Data-based Static Data Fixed

(Jayaraman, Gomes, et al., 2014) Yes Yes No No Offline Computation-based Static Application Fixed

(Lin, Choy, Pang, & Ng, 2013) No No Yes No Offline Data-based Static Data Fixed

(Yuan & Herbert, 2014) Yes Yes Yes NA Offline Data-based Static Data Fixed

(Hassan, Wei, & Chen, 2015) Yes No No No Online Method-based Dynamic Method Dynamic

(Talia & Trunfio, 2010) No No Yes No Offline Data-based No No No

(Yoon, 2013) Yes Yes NA NA Offline Data-based Static Method NA

Table 2.3: Application Partitioning Schemes.

33

Univ
ers

ity
 of

 M
ala

ya



the application execution process. Exiting literature still lacks the online schemes.

2.3.6 Computation Offloading

Existing computation offloading schemes are based on different communication mod-

els that vary in terms of client-server settings, virtual machine migration and mobile

agent configurations (M. A. Khan, 2015). In client-server based settings, offloading

components reside on the mobile device that offloads the computations after performing

collaborative cost-benefit analysis for computation offloading favorability. Cost-benefit

analysis is performed to label the local and remote computations for application parti-

tioning (J. Liu et al., 2015) and resource-hungry computational tasks are offloaded to

the nearest or designated surrogates (i.e. servers) in the cloud. The main concern with

computation offloading in server-based MCC settings is the requirement for pre-installed

mobile services in ad-hoc cloud environments. In virtual machine migration-based com-

munication models, the memory image of a central cloud server is migrated in cloudlets,

which lowers the communication cost as well as overall bandwidth utilization in highly-

dense MCC environments (Satyanarayanan et al., 2009). Live virtual machine migration

increases makespan in service provisioning (R. W. Ahmad et al., 2015). In addition,

the preservation and resumption of application states during migration is also a major

challenge (Satyanarayanan et al., 2009). In mobile agent communication models, the ap-

plication clones are migrated in cloud environments to augment the mobile devices with

cloud resources. However, mobile agent management and clone security are the main

issues in mobile agent-based MCC environments (M. A. Khan, 2015). Table 2.4 presents

the detailed literature review of computation offloading methodologies for MDSM plat-

forms.

Computation offloading schemes function with single-site and multiple-site surro-

gate settings (Abolfazli, Sanaei, Ahmed, Gani, & Buyya, 2014). In case of single-site

34

Univ
ers

ity
 of

 M
ala

ya



surrogates, the application components are offloaded to the same server in the MCC ar-

chitecture. However, this setting develops a tightly bounded relationship between mobile

applications and their corresponding surrogates. Therefore, the dynamic mobility in-

creases the makespan in distant mobile devices (Abolfazli et al., 2014). On the other hand,

multiple-site surrogates work in two ways. Either application clones are provided at mul-

tiple sites using live virtual machine migration methods or different program components

are executed at various surrogates. In addition, the virtual machine migration problem

also brings the parallelization challenge, which needs to be addressed in multiple-site

surrogates (Abolfazli et al., 2014). The programs should be effectively partitioned and

mapped into graph data structures that are further optimized for seamless application ex-

ecution in MCC environments. In addition, adaptive computation offloading schemes

consider program execution contexts and previous program instances and devise optimal

execution strategies accordingly. These schemes consider various parameters, including

network connections and bandwidths, workloads, architectural heterogeneity and task

deadlines. However, the decision of favorable offloading becomes complex due to vary-

ing bandwidth, resource availability and network dynamics (Abolfazli et al., 2014).

Computation offloading schemes in MCC environments are categorized as either

static or dynamic (Kumar et al., 2013). In static schemes, one-time cost-benefit analy-

sis is performed and offloading-favorable computations are offloaded in MCC environ-

ments. Dynamic computation offloading schemes initially perform cost-benefit analysis,

implement online profiling, tag the offloadable program components during application

execution, perform application partitioning for local and remote execution, and offload

the computation offloading-favorable components in MCC environments (Kumar et al.,

2013). Computation offloading is performed at different granularity levels. At the coarse-

grained level, entire applications are offloaded in cloud servers. The coarse-grained level

computation offloading is well-suited when cloud resources are available at one-hop

35

Univ
ers

ity
 of

 M
ala

ya



Reference Mode Type Parameters Offloading Devices Offloading Servers

(L. Wang et al., 2012) Offline Static NA Single Single

(Gaber, Stahl, & Gomes, 2014) Offline Static NA Single Multiple

(Ortiz et al., 2015) Online Static Makespan Multiple Multiple

(Stahl et al., 2012) Offline Static NA Single Multiple

(Jayaraman, Perera, et al., 2014) Both Dynamic Network Connection Multiple Multiple

(Eom et al., 2015) Online Dynamic Classifier Single Multiple

(Sherchan et al., 2012) Offline Static NA Multiple Single

(Jayaraman, Gomes, et al., 2014) Offline Static NA Multiple Single

(Hassan et al., 2015) Online Dynamic Multiple Single Multiple

(Talia & Trunfio, 2010) No No NA Multiple Multiple

(Yoon, 2013) Offline Static NA Multiple Single

Table 2.4: Computation Offloading Schemes.

36

Univ
ers

ity
 of

 M
ala

ya



distances from mobile devices. However, in case of cloudlets, live virtual machine mi-

gration may incur higher cost in terms of makespan. Alternately, the complete migration

of entire application states in edge servers increases local computation costs. At fine-

grained levels, computation offloading is performed at various application code levels,

including method, task, object, thread, class and program levels. These different granu-

larity levels increase the decision complexity of computation offloading. Optimal com-

putation offloading strategies involve multiple offloading objectives such as performance

enhancement, energy gain, reduced makespan, minimum bandwidth utilization cost.

2.3.7 Data Transfer Strategies

The MDSM applications transfer data streams among devices and systems in multiple

ways. The simplest data stream transfer strategies are based on transferring raw data

streams (Talia & Trunfio, 2010). The raw data streams are either stored onboard or di-

rectly collected from data sources. Sometimes MDSM applications perform initial data

processing and transfer the intermediate data to other systems and sometimes the data

stream mining algorithms are executed onboard in light-weight processing modes and re-

sultant knowledge patterns are transferred to other devices and systems for aggregation

and global knowledge view (Gaber, Stahl, & Gomes, 2014; Jayaraman, Perera, et al.,

2014; Jayaraman, Gomes, et al., 2014). Table 2.5 presents the detailed literature review

of data transfer methodologies for MDSM platforms.

The data streams are transferred in push-based, pull-based, on-demand, or oppor-

tunistic settings. In push-based strategies, the mobile devices simply transfer the data

stream to connected devices and systems (Gaber, Stahl, & Gomes, 2014). In pull-based

strategies, remote systems like cloud servers monitor the connections and periodically

collect the data stream from mobile devices (Jayaraman, Perera, et al., 2014). The on-

demand strategies work when the remote servers issue queries for data processing or

37

Univ
ers

ity
 of

 M
ala

ya



sensing to connected mobile devices which in turn perform the required operations and

communicate the results back to requesting server (Jayaraman, Gomes, et al., 2014). On-

demand data transfer strategies are useful for mobile crowd sensing applications. The

opportunistic data transfer strategies monitor the connected devices and systems and find

the feasible environment for pushing or pulling data streams among connected devices

and systems (Hassan et al., 2015). Smart data reduction is another approach for data

transfer where mobile devices perform the data stream mining operations and the results

are communicated only if there is a significant change in the data stream (Jayaraman,

Gomes, et al., 2014). Existing MDSM platforms primarily use push based data transfer

schemes that need persistent Internet connections for effective communication. There-

fore, efforts are needed to develop new strategies for pull based, on-demand, smart data

reduction, and opportunistic data transfer.

Reference Push Pull On-demand Opportunistic Smart DR
(L. Wang et al., 2012) Yes No No No No
(Gaber, Stahl, & Gomes, 2014) Yes No No No No
(Ortiz et al., 2015) Yes No No No No
(Stahl et al., 2012) Yes No No No No
(Jayaraman, Perera, et al., 2014) Yes Yes Yes No No
(Eom et al., 2015) Yes No No No No
(Sherchan et al., 2012) Yes No No No No
(Jayaraman, Gomes, et al., 2014) Yes No Yes No Yes
(Lin et al., 2013) Yes No No No No
(Hassan et al., 2015) Yes No No Yes No
(Talia & Trunfio, 2010) Yes No No No No
(Yoon, 2013) Yes No No No No

Table 2.5: Data Transfer Methods.

2.4 Critical Factors of Complexity in MDSM Applications

Referring to literature review in Appendix A, it was found that the complexity of MDSM

applications in far-edge devices is affected by six critical factors (see Figure 2.7). The

size of incoming data stream plays a vital role in application complexity and it affects the

computational complexities of other application components at subsequent stages. Dur-

38

Univ
ers

ity
 of

 M
ala

ya



ing executions in far-edge mobile devices, existing methods use light-weight algorithms

which do not consider the whole data stream therefore applications need to compromise

on the quality of knowledge patterns. Alternatively, high data size directly impacts the

performance of MDSM applications when executed with heavy-weight data stream min-

ing algorithms. Likewise high data rate in MDSM applications increases the computa-

tional complexity. Exiting MDSM applications work online by performing in-memory

operations with time constraints. The algorithms are executed as one-pass algorithms

with the condition that current data stream must be processed before the arrival of next

data stream. This condition impacts the performance of MDSM applications because dur-

ing one-time processing, the applications can not perform iterative data processing hence

produce inefficient results with historical data.

The choice of data fusion strategy helps in increasing or decreasing the computa-

tional complexity of MDSM applications. Early data fusion strategies produce redun-

dant, noisy, and anomalous data streams because MDSM applications collect data streams

without any filtration and/or preprocessing methods. On other hand, late and discrimina-

tory data fusion strategies produce high quality data streams hence requires less compu-

tations at later stages. The operational behaviors such as populating data structures, the

traversal methods, and nature of computational operations affect the computational com-

plexity of data preprocessing and data mining algorithms. The computational complexity

increases when the data stream mining algorithms are bounded to perform all operations

using onboard computational resources. Existing systems use light-weight algorithms,

that use shallow data structures to handle the computational complexity of data prepro-

cessing and mining algorithms. Efforts are needed to deploy heavy-weight data stream

mining algorithms with iterative processing behaviors and deep data structures in order

to maximize the performance of MDSM applications.

The complexity of MDSM applications also increases during learning phase. On-

39

Univ
ers

ity
 of

 M
ala

ya



D
at

a 
Si

ze

D
at

a 
ra

te

Ea
rl

y 
Fu

si
o

n

P
re

p
ro

ce
ss

in
g

Le
ar

ni
ng

 M
o

d
el

 
G

en
er

at
io

n

D
at

a 
M

in
in

g

C
o

m
p

le
xi

ty

high

low

Figure 2.7: Factors Affecting Computational Complexity.

line learning over large streaming data becomes computationally infeasible due to re-

source limitations and constraint of keeping whole data stream in memory. The behavior

of learning model such as supervised, unsupervised, and semi-supervised settings also

affect the computational complexity of MDSM applications. The supervised and semi-

supervised learning model initially uses labeled data stream hence learning algorithms are

trained within a confined feature space. On the other hand, during unsupervised learning

the leaning models need to be trained with high-dimensional complex data streams which

quickly hamper the computational resources in far-edge mobile devices. In essence, high

complexity in aforementioned critical factors impacts the MDSM applications as a whole.

Therefore, increase in computational complexity at any stage impacts the subsequent op-

erations in MDSM applications because the output data stream from one stage becomes

the input of application components at next stage.

40

Univ
ers

ity
 of

 M
ala

ya



2.5 Controlling Complexity at Platform Level

Ideally, MDSM applications should perform maximum computational operations near

the data sources in order to reduce makespan and bandwidth utilization cost. Existing

execution models either work as standalone execution platforms in far-edge devices or

distributed in F2F and F2C settings.

Due to resource limitations in far-edge mobile devices, the execution models support

light-weight and adaptive data processing however compromise on quality of knowledge

that is produced by MDSM applications. Alternately, when deployed in F2F settings,

execution models need to perform device discovery and ad hoc network formation oper-

ations. Existing models enable agent-oriented architectures for device discovery which

increase energy consumption due to roaming of multiple agents inside ad hoc network.

In F2C settings, far-edge mobile devices continuously upload the data streams in cloud

servers. This data communication increases bandwidth utilization cost in terms of energy

and financial cost in terms of data plans, if the devices are operating in GSM networks.

In addition, the MDSM applications require persistent Internet connections in order to

handle continuously streaming data. Considering these limitations, it is perceived that

using far-edge mobile devices as a primary platform for application execution with heavy

weight data processing can help in reducing dependencies over other far-edge mobile

devices and cloud servers. The execution model must support MDSM applications in

far-edge mobile devices, mobile edge servers, and CC servers.

The literature review also reveals that existing execution models mainly support

static application execution. In addition, the dynamic and adaptive strategies mainly work

at single far-edge device level. Existing literature still lacks the dynamic and adaptive

execution models which support MDSM applications in multiple devices and systems

especially in MECC settings. These dynamic and adaptive models need to enable ro-

41

Univ
ers

ity
 of

 M
ala

ya



bust application partitioning, computation offloading, data management, and data transfer

strategies to fully support computationally complex MDSM applications.

2.5.1 Scope Limitation

Literature review shows that there exists countless opportunities in different dimensions

to design and implement execution models for MDSM applications but the scope of this

thesis is limited as follows.

• The aim of this research is to provide energy and memory efficient execution mod-

els for MDSM applications in MECC environment. However the models should

be designed to minimize the dependency over cloud and Internet connections. In

addition, maximum data should be processed in far-edge mobile devices to reduce

the size of data stream which in turn minimize the cost of data communication.

• The focus of the research is on personal sensing devices to acquire and analyze the

personal data stream. Because the applications based on personal analytics help

in improving humane life in many aspects including life style, health, financial

matters, leisure, and entertainment to name a few. Therefore, issues relevant to

large-scale sensing and data processing systems were not considered in this thesis.

These issues include large-scale collaborative data processing using multiple far-

edge mobile devices, scalability, mobility, and parallel data stream offloading from

multiple far-edge mobile devices.

• There exists many topological settings within MECC systems but the research focus

is on device-centric and loosely coupled MECC communication model. The com-

munication model works in three settings such as based on far-edge mobile devices,

F2F communication where nearer peer far-edge mobile devices act as mobile edge

servers, and F2C communication where a traditional CC system provides cloud

42

Univ
ers

ity
 of

 M
ala

ya



services for MDSM applications. The whole application execution is controlled by

far-edge mobile devices.

• There are many kind of streaming data applications which could be deployed in

MECC systems. However, the main scope of this is on personal analytics, IoT sys-

tems, and MECC systems. Therefore, all use-case applications in the experimental

phase were designed relevant to mobile data stream mining operations. In addition,

the proposed architecture provides the components for MDSM application execu-

tion and the dynamic and adaptive execution models provide the functionalities to

cater the needs of MDSM applications.

2.6 Summary

The MDSM applications execute in multiple topological settings in multiple phases. Each

phase of MDSM applications need to handle heterogeneity which increases the computa-

tional complexity. MDSM applications are deployed in different computing devices and

systems with different form factors. This chapter reviewed different topological settings

for MDSM platforms and execution models. In addition, a thorough review of execution

models in terms of model type, model behavior, and granularity of data processing was

presented. The chapter also presented a thorough review of supporting functionalities of

execution models for data management, adaptive application execution, computation of-

floading, application partitioning, and data transfer among different devices and systems.

Finally the chapter discussed the critical factors of complexity in MDSM applications and

studied the perceived solutions for application deployment. In the next chapter, detailed

feasibility and performance evaluation of far-edge devices is made to find the effect of

critical factors of complexity. In addition, a framework for distributed MDSM applica-

tions in MECC systems is proposed and a three layer component-based architecture is

proposed and formally verified using high level petri nets, SMT-Lib, and Z3 Solver.

43

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 3: DISTRIBUTED DATA STREAM MINING IN MECC SYSTEMS

"...in many applications data stream can be read only once or a small number of times

using limited computing and storage capabilities..."

ACM SIGMOD Record, Vol. 34, No. 2, (June 2005)

Chapter 2 presented the detailed literature review of topological settings and ex-

ecution models. This chapter presents the problem analysis of heterogeneous mobile

data stream mining (MDSM) applications in section 3.1. In section 3.2, a framework

for distributed MDSM applications in MECC systems is proposed. In addition, a three-

tier component-based architecture is proposed in this section. The formal verification

and validation of proposed architecture is made in section 3.4. Section 3.5 presents the

simulation results and discusses the perceived solutions for state explosion problem in

proposed architecture. Finally, the chapter is summarized in section 3.6.

3.1 Problem Analysis

The resource limitations in mobile devices enforce the development of adaptive and light-

weight data stream mining algorithms (Abdallah et al., 2015). Therefore, MDSM appli-

cations are bounded to compromise on the quality of knowledge patterns (Krishnaswamy

et al., 2009). The problem analysis is performed to find the feasibility and performance of

mobile devices as execution platforms for MDSM applications and uncover the resource

consumption trends in terms of complexity factors as discussed in chapter 2.

In order to perform problem analysis, the experimental setup was configured in het-

erogeneous settings. Three resource constrained mobile devices, as specified in Table 3.1,

were used. Since the selected devices offer different granularities of computational, mem-

ory, and battery resources therefore the experiments yielded more generalized results. The

literature review in Appendix-A revealed that research on MDSM applications mainly

44

Univ
ers

ity
 of

 M
ala

ya



Table 3.1: Selected Devices.

D1 D2 D3
Make Samsung Sony Samsung
Model GT-18552 Xperia Z3 Galaxy Tab S2
Operating System Android 4.1.2 Android 5.1.1 Android 5.1.1

Processor 1.2 GHz Quad Core 2.5 GHz Quad Core
1.9 GHz Quad
Core + 1.3 GHz
Quad Core

Memory 1 GB 3 GB 3 GB
Battery Power 2000 mAh 3100 mAh 4000 mAh

covers algorithms for: (a) frequent pattern mining in order to find itemsets and associa-

tion rules, (b) supervised classification to classify and predict the class variables, and (c)

unsupervised and semi-supervised clustering to find the similarities/dissimilarities among

data points in the data streams. The problem analysis is performed over nine data mining

algorithms as presented in Table 3.2. These algorithms were selected because of their

popularity and wide acceptance in existing literature (Agrawal & Srikant, 1994; Han, Pei,

Yin, & Mao, 2004; Bache & Lichman, 2013; Hartigan & Wong, 1979; Fisher, 1987;

Dempster, Laird, & Rubin, 1977; Quinlan, 2014; Lowd & Domingos, 2005).

Data stream mining algorithms work with variety of datasets, therefore, three dif-

ferent datasets were selected for each set of experiments. For frequent pattern mining

algorithms (i.e. Apriori (Agrawal & Srikant, 1994), AprioriTid (Agrawal & Srikant,

1994), and FP-Growth (Han et al., 2004)), the retail dataset from UCI Repository was

acquired (Bache & Lichman, 2013). Similarly, for clustering algorithms (i.e. k-means,

Cobweb, and Expectation-Maximization(Hartigan & Wong, 1979; Fisher, 1987; Demp-

ster et al., 1977)), weather dataset is downloaded from the same UCI repository. Finally,

for classification algorithms (i.e. J48 (Quinlan, 2014), naive Bayes (Lowd & Domingos,

2005), and Random Forest (Breiman, 2001)), a mobile application was developed to col-

lect the data streams from two mobile sensors that is accelerometer and GPS receiver.

However, experimental settings were re-configured for each set of experiments in order

45

Univ
ers

ity
 of

 M
ala

ya



Table 3.2: Selected Algorithms.

No. Algorithm Objective

1 Apriori
Apriori algorithm is based on a tree data structure and per-
forms knowledge discovery operations in order to find the
itemsets and association rules among data points.

2 AprioriTid

AprioriTid algorithm improves Apriori by enabling multi-
ple database scans in order to enhance the memory utiliza-
tion. However the algorithm is based on multiple passes and
it has iterative data processing behavior.

3 FP-Growth

FP-Growth algorithm handles the issue of increasing com-
putational cost of candidate generation in large itemsets
especially with long patterns. The algorithm is based on
frequent-pattern (FP) tree to store important information
about frequent patterns in compressed form.

4 J48
J48 algorithm uses decision-tree based data structures
whereby nonlinear traversals are performed to classify the
new instances.

5 Naive Bayes

Naive Bayes algorithm utilizes array-based data structures
where the prior, conditional, and posterior probabilities of
each class is calculated and the whole dataset is kept in
memory for prediction.

6 Random Forest
Random Forest algorithm is based on multiple trees where
each tree data structure maps a subspace from full dataset
and separate nonlinear traversals are performed in each tree.

7 k-means

k-means algorithm is used to partition the data streams of n
data points in the k clusters where n represents the whole
size of datasets and k represents the number of required
clusters. The cluster formation by k-means algorithm is
done using the closest distance between cluster centroid,
which is the mean value of all cluster data points, and the
new observation.

8 Cobweb

Cobweb is a classification based hierarchical clustering al-
gorithm that performs merge, split, insert, and object pass
operations in the populated trees in order to cluster the data
points.

9
Expectation-
Maximization
(EM)

The EM algorithm iteratively finds the maximum likelihood
or maximum a posteriori estimates of parameters in statis-
tical models. The EM models need unobserved latent vari-
ables in order to perform expectation and maximization op-
erations on newly coming data points.

46

Univ
ers

ity
 of

 M
ala

ya



to assess the performance of mobile devices at different stages of application execution.

The results in this section show the overall average resource consumption of MDSM al-

gorithms.

3.1.1 Impact Analysis of Data Size and Data Rate

In order to perform impact analysis of data size, a continuous data stream was generated

and given as input to data mining algorithms. The size of data stream was gradually incre-

mented with 100 KB in each iteration whereas size of input data was increased from 100

KB to the maximum size of data as 20 MB. Since the mobile devices offer heterogeneous

resources therefore the results of each algorithm on each device vary. However, the re-

sults show the average performance of mobile devices in terms of memory consumption,

battery power consumption, and makespan which were measured in terms of Megabytes

(MBs), milliwatts (mW), and milliseconds (ms), respectively.

For classification algorithms, as shown in Table 3.3, D1 outperformed in terms of

memory consumption however D2 and D3 performed well in terms of battery power con-

sumption and makespan. In addition, D1 processed data stream up to 7MB whereas D2

and D3 processed the whole input data streams. As D1 offered less memory as compared

to D2 and D3 therefore memory availability by mobile operating system lowered which in

turn affected the performance of MDSM applications. The comparison of results obtained

from D1 with the results of D2 and D3 shows that although D1 consumed low memory,

the average battery consumption and makespan increased between three to six times when

compared with D2 and D3. Overall, the average memory consumption for classification

algorithms in D1 remained 88.32 MB but it increased up to 221.28 MB and 160.10 MB

in D2 and D3, respectively. The average battery power consumption in D1 was 167 mW

but it decreased to 49 mW for D2 and 53 mW for D3. Similarly, the makespan of classi-

fication algorithms remained 48491 ms on average in D1 which lowered to 25468 ms in

47

Univ
ers

ity
 of

 M
ala

ya



Table 3.3: Performance Variation of Classification Algorithms with Respect to Data Size.

Data Size D1 D2 D3
Memory Power Makespan Memory Power Makespan Memory Power Makespan

0.1 MB 84.35 100 2366 181.66 14 490 168.33 6 616
0.2 MB 84.66 96 4045 192.00 12 672 242.67 21 893
0.3 MB 85.33 108 6273 176.00 12 884 160.00 26 1206
0.4 MB 86.00 134 7543 178.00 25 1130 139.00 25 1385
0.5 MB 86.66 149 9882 180.33 22 1394 141.33 28 1720
0.6 MB 86.66 158 15377 181.66 21 1612 89.67 34 2014
0.7 MB 88.00 181 14944 184.67 20 1836 83.00 37 2326
0.8 MB 87.67 208 15766 186.00 21 2094 99.00 41 2554
0.9 MB 88.33 216 17852 188.67 23 2350 88.00 37 2839
1 MB 88.66 215 20418 190.33 25 2591 105.33 29 3205
2 MB 89.00 171 39339 194.76 59 4291 120.47 45 4729
3 MB 91.67 189 107780 201.77 62 6971 107.47 74 7659
4 MB 79.67 207 151123 205.93 69 9955 111.00 103 10453
5 MB 88.33 180 150240 218.33 51 13141 114.53 62 13440
6 MB 98.47 197 164415 218.57 48 16175 124.23 61 20185
7 MB 98.33 220 76791 200.27 46 19808 132.67 71 23851
8 MB - - - 209.57 48 23108 133.43 42 22192
9 MB - - - 211.10 49 25927 144.73 69 25073
10 MB - - - 252.53 51 30205 149.83 49 28092
11 MB - - - 251.37 88 33630 162.90 48 31090
12 MB - - - 253.03 50 36372 166.13 70 34095
13 MB - - - 218.43 59 40262 197.13 71 36946
14 MB - - - 222.43 78 43848 214.00 52 39917
15 MB - - - 236.03 55 46071 221.80 53 42805
16 MB - - - 245.80 100 50231 220.90 61 47169
17 MB - - - 250.36 140 52642 195.13 88 50406
18 MB - - - 250.50 60 60461 213.93 106 53520
19 MB - - - 281.87 51 63972 213.30 59 56678
20 MB - - - 289.60 50 66915 225.93 60 60047

D2 and 24432 ms in D3.

Due to high computational complexity, the performance of clustering algorithm var-

ied. It was observed that D1 was unable to run any of the clustering algorithms and D2

and D3 were able to process the data streams up to 12 MB. Therefore results presented

in Table 3.4 are taken from D2 and D3. Although there is no significant difference be-

tween resource consumption on D2 and D3 but the devices consumed marginally higher

battery and increased makespan when compared the results of classification algorithms.

On average, D2 consumed 136.46 MB memory and 68 mW battery power with average

makespan of 940347 ms. Alternatively, D3 consumed 139.82 MB memory and 44 mW

battery power with average makespan of 1283248 ms. The results reveals that clustering

algorithms are not a good choice for MDSM applications in far-edge mobile devices.

The results of frequent pattern mining algorithms, as presented in Table 3.5, show

almost similar trends as classification algorithms. D1 was able to process the data stream

48

Univ
ers

ity
 of

 M
ala

ya



Table 3.4: Performance Variation of Clustering Algorithms with Respect to Data Size.

Data Size
D2 D3

Memory Power Makespan Memory Power Makespan
0.1 MB 151.7 64 125088 153.7 27 138134
0.2 MB 143.0 50 301863 111.0 36 325934
0.3 MB 114.3 81 457009 118.3 40 562060
0.4 MB 86.00 48 631014 86.00 41 915923
0.5 MB 88.33 44 868036 86.33 40 1233786
0.6 MB 92.00 53 1006378 93.66 50 1515825
0.7 MB 100.0 125 1197814 101.7 44 1848598
0.8 MB 124.7 41 1452788 126.7 34 2653098
0.9 MB 109.7 44 1604983 110.0 37 1141158
1 MB 118.3 86 127458 145.3 45 1548428
2 MB 130.6 77 305661 134.6 61 471341
3 MB 117.0 88 463260 115.7 46 779034
4 MB 116.6 56 640116 117.9 50 1053057
5 MB 128.1 54 879522 125.4 53 1277688
6 MB 143.2 45 1020949 139.9 41 1558471
7 MB 174.4 133 1215678 174.7 53 2313476
8 MB 165.1 62 1474313 164.4 59 749175
9 MB 168.9 59 1628064 166.9 51 1101005
10 MB 201.1 124 1224627 181.7 41 1496484
11 MB 208.3 48 1483479 238.3 41 2024897
12 MB 184.3 49 1639192 245.3 43 2240633

up to 3 MB of data size however D2 and D3 processed the whole input data stream. The

average memory consumption of D1 remained low as compared to D2 and D3 because of

low memory availability by mobile operating system. Similarly, battery power consump-

tion and makespan remained comparatively low in D2 and D3 because of high memory

availability. On average, D1 consumed 49.25 MB of memory and 52 mW of battery

power with makespan of 3375 ms. Alternatively, D2 consumed 131.58 MB memory, 114

mW battery power, and introduced makespan of 3540 ms. Similarly, D3 used 130 MB of

memory, 33 mW of battery power, and 3794 ms in terms of makespan.

In addition with size of data streams, data rate impacts the performance of MDSM

applications. The data rate is defined as the frequency of incoming data streams that

MDSM applications need to handle. Since large size data streams increase makespan,

waiting time for the next data streams increases. Therefore overall makespan increases

for data streams with high data rates. It was observed that available memory size impacts

49

Univ
ers

ity
 of

 M
ala

ya



Table 3.5: Performance Variation of Frequent Pattern Mining Algorithms with respect to
Data Size.

Data Size D1 D2 D3
Memory Power Makespan Memory Power Makespan Memory Power Makespan

0.1 MB 53.33 32 701 154.3 16 124 188.7 10 106
0.2 MB 54.66 34 924 121.7 15 182 147.0 11 162
0.3 MB 55.33 37 1286 94.33 14 234 152.3 10 248
0.4 MB 55.33 39 1759 98.33 5 299 156.3 11 302
0.5 MB 56.33 46 2178 100.3 6 370 154.7 12 424
0.6 MB 57.66 56 2616 97.67 7 468 74.00 13 425
0.7 MB 58.33 61 2946 92.67 8 535 66.67 15 493
0.8 MB 59.66 66 3443 100.3 11 559 63.67 16 593
0.9 MB 34.33 53 3889 98.67 12 630 66.33 16 672
1 MB 34.33 50 4773 100.7 13 684 67.67 17 690
2 MB 36.46 69 7195 119.1 41 1074 75.17 25 1092
3 MB 38.50 81 8783 124.2 30 1757 85.50 33 1787
4 MB - - - 136.0 36 2532 97.73 35 2561
5 MB - - - 143.6 34 3285 110.5 37 6806
6 MB - - - 122.5 603 3912 120.67 42 6207
7 MB - - - 130.63 523 4875 130.43 80 5233
8 MB - - - 140.3 66 5797 142.53 63 5837
9 MB - - - 153.4 44 6694 155.8 46 6583
10 MB - - - 163.3 415 7507 162.6 52 7639
11 MB - - - 177.3 460 8338 178.8 47 8428
12 MB - - - 186.7 122 9589 188.36 46 9233
13 MB - - - 165.0 88 10395 199.63 62 10049
14 MB - - - 205.7 45 11589 204.73 53 11698

the makespan. The comparison of results presented in Tables 3.3, 3.4, and 3.5, shows that

the average makespan of data mining algorithms in D1 remained higher as compared to

D2 and D3. Overall, the classification algorithms has lower makespan as compared to

clustering and frequent pattern mining algorithms. It was also observed that clustering

algorithms were not executed due to low memory availability in D1 and supported less

size of data stream in D2 and D3 as compared to classification and frequent pattern min-

ing algorithms. The performance of frequent pattern mining algorithms remained more

or less similar to classification algorithms but in a few cases the frequent pattern mining

algorithms consumed higher resources as compared to classification algorithms. The re-

sults show that data size and data rate significantly impact the performance of MDSM

applications hence need to be controlled for efficient application execution.

3.1.2 Impact Analysis of Early Data Fusion and Data Preprocessing

In order to find and compare the impact of early data fusion and preprocessed data fu-

sion approaches, the data streams were input in two different settings. In first setting, raw

50

Univ
ers

ity
 of

 M
ala

ya



data stream from accelerometer and GPS sensors was generated and sensor readings were

concatenated to give as input to data stream mining algorithms. In second setting, the raw

data stream was preprocessed using sliding windows and feature extraction based meth-

ods before inputting to data mining algorithms. The early and preprocessed data fusion

methodologies are presented in Figure 3.1. The preprocessed data fusion approach works

as follows. The mobile application collects 20 reading from accelerometer sensor every

second and creates a new window after every 4 seconds. However windows data over-

laps with previous window by 50% in order to minimize the data loss. The application

uses four statistical methods (i.e. mean, median, standard deviation, and variance) over

each window for feature extraction. The extracted features are appended with latest GPS

location coordinates and the new feature vector is given as input to data stream mining

algorithms. Table 3.6 presents the impact of early data fusion in D1, D2, and D3 whereas

Table 3.7 shows the impact of late data fusion after data preprocessing. The statistics

show that performance of each device varies with number of sensor readings wherein the

devices with fewer resources (e.g. D1) consume comparatively low resources as com-

pared to devices with higher resources such as D2 and D3.

The comparison shows that early data fusion increases memory consumption as com-

pared to late data fusion. The memory consumption increased because MDSM applica-

Accelerometer 
Data Stream

GPS Sensor Data 
Stream

Feature 
Extraction 
Methods

Data Fusion 
Methods

Data Stream 
Mining 

Algorithms

Input Features

Feature VectorsGPS Readings

Sliding 
Windowing 

Model

Early Data Fusion

Late Date Fusion

Accelerometer Readings

Figure 3.1: Early Data Fusion and Preprocessed Data Fusion Workflow.

51

Univ
ers

ity
 of

 M
ala

ya



Table 3.6: Performance Variation of Data Stream Mining Algorithms with Respect to
Early Data Fusion.

No. of Readings D1 D2 D3
Memory Power Makespan Memory Power Makespan Memory Power Makespan

2082 96.22 79 69 162.5 156 124 169.8 14 106
4164 93.88 71 58 152.2 132 182 166.7 23 162
6246 84.88 90 83 128.2 106 234 143.5 26 248
8328 75.77 87 62 120.7 100 299 127.1 26 302

10410 77.11 92 62 123.1 103 370 127.4 27 424
12492 79.00 100 70 127.7 104 468 85.77 33 425
14574 81.88 142 127 125.8 104 535 83.78 32 493
16656 90.67 117 70 137.1 113 559 94.44 30 593
18738 77.44 119 71 132.3 110 630 88.11 30 672
20820 80.55 137 103 136.4 113 683 106.1 30 690
41640 86.23 114 89 148.1 129 1074 110.1 44 1092
62460 78.38 127 101 147.6 129 1757 102.8 51 1787
83280 102.5 131 94 152.9 133 2532 108.9 63 2561
104100 113.3 117 85 163.3 143 3285 116.8 51 6806
124920 120.7 121 83 161.4 136 3912 128.2 48 6207
145740 134.2 176 92 164.4 144 4875 149.9 68 5233
166560 165.1 162 112 171.6 151 5797 146.7 55 5837
187380 168.1 159 109 177.82 162 6694 155.8 55 6582
208200 201.1 164 144 205.5 178 7507 164.7 47 7639
229020 208.3 148 98 212.3 189 8338 193.3 45 8428
249840 184.3 149 99 208.0 193 9590 199.9 53 9233
270660 - - - 191.73 172 10396 198.3 66 10049
291480 - - - 214.1 208 11588 209.3 52 11698
312300 - - - 236.0 221 46072 221.8 53 32805
333120 - - - 245.8 231 50232 220.9 61 37169
353940 - - - 250.4 235 52643 195.1 88 40406
374760 - - - 250.5 236 60462 213.9 106 43517
395580 - - - 281.9 267 63972 213.3 59 46678
416400 - - - 289.6 275 66915 225.9 60 50047
437220 - - - 289.1 274 64108 234.6 58 53481

tion need to store the data streams in memory buffer before sending for further processing.

On the other hand, late data fusion strategies immediately process the data streams there-

fore lower the memory consumption. However the data preprocessing algorithms (such

as feature extraction methods in this experiment) also use memory. Although in this

experiment feature extraction methods used only 3 MB of memory at maximum to pro-

cess any data window but computationally complex data preprocessing algorithms may

increase the cost of memory consumption. In terms of memory consumption, late data

fusion strategies are favorable in the case of data preprocessing algorithms with low com-

putational complexities. However, a trade-off between early data fusion and the choice of

data preprocessing algorithms is needed when the computational complexities of data pre-

processing methods increase. The comparison of power consumption results shows that

early data fusion consume more battery power (i.e. 213 mW on average) as compared to

preprocessed data fusion (i.e. 67 mW on average). For example, the feature extraction

52

Univ
ers

ity
 of

 M
ala

ya



Table 3.7: Performance Variation of Data Stream Mining Algorithms with Respect to
Preprocessed Data Fusion.

Number of Readings D1 D2 D3
Memory Power Makespan Memory Power Makespan Memory Power Makespan

2082 53.00 64 71 151.7 155 294 152.6 6 46285
4164 54.00 50 60 121.7 130 389 110.7 11 108996
6246 55.00 81 84 94.33 103 494 118.3 10 187838
8328 55.33 48 68 86.00 96 624 86.00 11 305870

10410 56.33 44 76 88.33 99 765 86.33 12 411976
12492 57.00 53 77 92.00 101 895 74.00 13 506088
14574 58.00 121 128 92.67 101 1017 66.67 15 617139
16656 59.00 41 79 100.3 110 1142 63.67 16 885414
18738 34.00 44 81 98.67 107 1278 66.33 16 381556
20820 34.33 85 109 100.7 110 1405 67.67 17 517441
41649 36.46 77 93 119.1 127 2294 75.16 25 159054
62460 38.50 88 105 117.0 126 3712 85.50 33 262826
83280 88.33 56 94 116.6 129 5297 97.73 35 355357
104100 98.47 54 85 128.1 140 6967 110.5 37 432645
124920 98.33 45 83 122.5 133 8523 120.67 41 528287
145740 94.00 133 113 130.6 140 10460 130.43 53 780853
166560 105.7 62 112 140.3 148 12236 133.43 42 259068
187380 108.9 59 109 153.4 160 13790 144.73 46 377553
208200 121.1 124 144 163.0 174 15966 149.83 41 510737
229020 128.3 48 98 177.3 186 17768 162.9 41 688138
249840 108.3 49 99 184.3 191 19404 166.1 43 761320
270660 - - - 165.0 169 23625 197.1 62 23947
291480 - - - 205.7 207 27718 204.7 52 25807
312300 - - - 206.0 221 46072 211.8 53 42804
333120 - - - 215.8 221 60232 210.9 61 47169
353940 - - - 220.3 225 62643 185.1 88 50406
374760 - - - 220.5 226 70462 203.9 106 53516
395580 - - - 251.9 257 73972 203.3 58 56678
416400 - - - 259.6 265 76915 205.9 60 60047
437220 - - - 259.1 264 74108 214.6 58 63481

methods consumed 23 mW on average. Some computation-intensive data preprocessing

operations, such as clustering based methods for outliers and anomaly detection, are not

suitable for mobile devices which limits the scope of late data fusion methods.

The selection of data fusion methods impacts the makespan in MDSM applications.

During early data fusion, raw data streams are aggregated from multiple data sources and

the streams are immediately available for MDSM applications, therefore, the makespan

remains minimal. Considering the successful executions upto 249840 readings in all

three devices, average makespan during early data fusion in D1 was about 90 ms, in D2

the makespan increased upto 2830 ms, and in D3 the makespan increased upto 3120 ms.

On the other hand, for late data fusion, the preprocessing operations increase makespan

in MDSM applications. The average makespan in D1, D2, and D3 remained 93 ms, 5939

ms, and 432592 ms, respectively. It was observed that D1 maintained lowest makespan

because the device was not able to process whole data stream due to low computational

53

Univ
ers

ity
 of

 M
ala

ya



and battery power resources. It could also be confirmed from existing literature (see

Appendix-A) that preprocessed data streams are qualitatively better as it contain com-

paratively less noisy, anomalous, and missing data (Shoaib, Bosch, Incel, Scholten, &

Havinga, 2014). In addition, the sizes of data streams are reduced that minimize the

computational requirements at later stages in MDSM applications.

3.1.3 Impact Analysis of Learning Model Generation and Data Mining

As discussed in Chapter 2, the application components for learning model generation

and performing data mining operations play critical roles in MDSM applications. The

learning model generation is performed in training mode wherein the learning models are

produced using supervised, unsupervised, and semi-supervised learning schemes. There-

fore, the computational complexities of learnings algorithms vary significantly. On the

other hand, data mining operations such as classification, clustering, and frequent pattern

mining are performed in recognition mode wherein the data mining algorithms produce

knowledge patterns using learning models. Earlier discussion in section 3.1.1 showed

that clustering algorithms are not a feasible choice for mobile devices. On the other hand,

frequent pattern mining algorithms implicitly learn from input data streams and do not

require extra operations for learning model generation. The classification algorithms,

however, require learning models separately in order to perform classification and predic-

tion on input data streams. Considering these facts, the impact analysis of classification

algorithms in training and recognition mode was performed.

The experimental setting was configured in two ways. First the learning models

were trained in desktop PC environment wherein the labeled data streams were input into

three WEKA (Hall et al., 2009) classifiers namely J48, naive Bayes, and random forest

and the learning models were transferred in mobile devices to perform recognition. In

the second setting, the learning models were trained onboard in mobile devices. To this

54

Univ
ers

ity
 of

 M
ala

ya



end, a separate mobile application was developed in order to label the data streams and

train learning models. The training application performs data acquisition from onboard

accelerometers, creates 50% overlapping sliding windows, and computes four statistical

features (i.e. mean, standard deviation, variance, and magnitude) from each accelerome-

ter axis values in the sliding window. The application allowed the users to annotate five

physical activities (i.e. sitting, standing, walking, laying, and running) and the resultant

feature vectors were given as input to train the learning models. The trained models were

used by the same recognition application in mobile devices which was used for exper-

iments in section 3.1.1. The evaluation is performed in terms of resource consumption

(i.e. memory utilization, battery power consumption, and makespan) for learning model

generation in mobile devices (see Table 3.8). In addition, the accuracy of classifiers in

recognition mode is presented in confusion matrices for device-based (see Table 3.9) and

desktop-based learning models (see Table 3.10).

On-device learning increases the computational burden and battery power consump-

tion in mobile devices. Due to less memory availability in D1, learning model generation

consumes comparatively more battery power and model development time also increases.

However, D2 and D3 ensure comparatively more memory availability hence utilize less

power and takes less time to develop learning models. The analysis of statistics presented

in Table 3.8 shows that D1 utilized about 80% less memory as compared to D2 and D3

however it consumes about 58% extra battery power and model development time also

increased about 76%. The comparison shows that on-device learning is a feasible choice

as compared to desktop based learning as the developed model increases the accuracy

level of data mining algorithms.

The problem analysis shows that mobile devices are good choice for MDSM applica-

tions. However, critical factors such as high volume and data rate of mobile data streams,

the selection of early data fusion strategies, selection of preprocessing algorithms, learn-

55

Univ
ers

ity
 of

 M
ala

ya



Table 3.8: Impact of Learning Model Generation.

Data Size D1 D2 D3
Memory Power Makespan Memory Power Makespan Memory Power Makespan

0.1 MB 24.35 68 3356 121.32 27 390 128.15 15 524
0.2 MB 24.94 56 3916 132.00 25 589 222.56 31 697
0.3 MB 26.23 108 5994 105.00 19 792 121.71 16 884
0.4 MB 27.03 78 6929 114.03 28 832 103.13 29 1483
0.5 MB 24.32 86 8389 120.05 29 1496 101.91 26 1430
0.6 MB 28.56 88 12184 121.54 19 1513 109.33 33 1915
0.7 MB 24.10 125 13764 121.86 25 1579 114.02 35 2014
0.8 MB 27.59 124 13422 121.65 27 1991 108.02 39 2192
0.9 MB 28.76 128 14232 122.39 28 2093 108.94 29 2934
1 MB 28.87 132 16402 130.48 28 2960 114.35 28 3557
2 MB 29.10 129 28039 138.26 29 3528 112.23 39 4985
3 MB 31.65 139 59359 141.65 32 3952 117.36 34 5808
4 MB 29.87 153 69035 135.34 43 4649 131.37 46 6479
5 MB 24.94 159 70333 144.35 51 5141 134.44 42 7435
6 MB 26.92 161 79393 145.61 48 6186 134.24 51 8298
7 MB 27.13 170 76757 146.36 53 7730 142.65 61 9454
8 MB - - - 147.34 57 8108 143.44 63 10362
9 MB - - - 149.23 67 8925 144.54 73 15072
10 MB - - - 152.11 72 10530 145.77 71 18395

Table 3.9: Confusion Matrix for Device-based Learning Model.

Activities Walking Standing Sitting Laying Running Accuracy
Walking 8821 589 211 367 12 88%
Standing 1642 8144 112 93 9 81%
Sitting 584 246 9138 24 8 91%
Laying 891 10 138 8827 134 88%

Running 30 209 257 721 8783 88%
Overall Accuracy 87.2%

Table 3.10: Confusion Matrix for Desktop-based Learning Model.

Activities Walking Standing Sitting Laying Running Accuracy
Walking 8092 934 444 429 101 81%
Standing 1833 7631 294 151 91 76%
Sitting 893 357 8617 121 12 86%
Laying 923 516 122 8243 196 82%

Running 1358 414 271 58 7899 79%
Overall Accuracy 80.2%

ing model development and using on-device data mining algorithms, increase the memory

and battery power consumption and makespan in MDSM applications. Therefore, it is not

always feasible to use mobile devices as execution platform. Considering these limita-

tions, a new MECC architecture is perceived wherein mobile devices could be used as

primary platform for application execution. In case of resource scarcity, the execution

support from other mobile devices or cloud data centers is acquired for efficient applica-

tion execution in distributed settings.

56

Univ
ers

ity
 of

 M
ala

ya



3.2 UniMiner: A Framework for Heterogeneous Application Execution

Considering the problem analysis of MDSM applications in mobile devices and the need

of a new MECC architecture, this section presents a novel reference framework for exe-

cution of distributed MDSM applications in MECC systems. The framework, named as

UniMiner, enables three-tier execution model in MECC systems using far-edge mobile

devices, mobile edge servers, and CC servers. Figure 3.2 presents the detailed execution

workflow of MDSM applications using UniMiner. The framework enables multiple op-

erations at application level for data acquisition and adaptation, data preprocessing, and

data fusion. It facilitates platform level operations for transient data stream management,

and data stream offloading based on resource monitoring, context collection, and size of

unprocessed data. The UniMiner enables mobile-based data analytics in standalone and

collaborative settings and cloud based data analytics for remote data processing. In addi-

tion, UniMiner ensures knowledge availability in mobile devices and cloud platforms.

At the application level, the data acquisition operations are performed to collect the

data streams from onboard and off-board, and, sensory and non-sensory data sources. In

addition, the data adaptation operations enable to configure the data size and data rates

in MDSM applications in order to handle computational complexity at lateral stages of

application execution. The data preprocessing operations help in improving the quality

of acquired data streams by enabling multiple preprocessing operations that are used for

feature extraction, anomaly detection, outliers detection, handling inconsistencies, and

conversion of data stream from unstructured data to semi-structured and fully structured

data formats. UniMiner ensures data fusion strategies in order to collect and synthesize

the data streams from multiple data sources in MDSM applications.

At the platform level, UniMiner perform transient data stream management oper-

ations in order to enable robustness in MDSM applications by avoiding data loss and

57

Univ
ers

ity
 of

 M
ala

ya



UniMiner Application

UniMiner Platform

1.1 
Data Acquisition 
and Adaptation

1.2 
Data 

Preprocessing

1.3
Data Fusion

2.5
Data Tables

2.4
Transient Data 
Management

2.1
Resource 

Monitoring

2.2
Context 

Collection

2.3
Offloading

3.3
Local Analytics

3.2
Collaborative 

Analytics

3.1
Cloud-based 

Analytics

4.1
On-cloud 

Knowledge 
Management

4.2
On-Device 
Knowledge 

Management

Figure 3.2: UniMiner Framework for Distributed MDSM Application Execution in
MECC Systems.

storing data in transient data stores. The transient data stream management schemes are

enabled using data tables that stores the traces of stream executions for efficient data man-

agement. In case of resource scarcity in far-edge mobile devices, UniMiner enables data

stream offloading in mobile edge servers and cloud data centers. The offloading decision

is performed on the basis of resource monitoring information and contextual informa-

tion collected by UniMiner applications. In addition the amount of unprocessed data in

transient data stores is considered for offloading decisions.

UniMiner enables three layers of application execution. The local analytics layer

facilitates in onboard execution of application components. Conversely, the collaborative

analytics layer functions as a group of far-edge mobile devices in the same communica-

tion area that execute MDSM applications collaboratively. The cloud enabled analytics

58

Univ
ers

ity
 of

 M
ala

ya



layer facilitates with cloud-based service model wherein the cloud services are used to

augment mobile devices with unlimited computational power and storage space. The

UniMiner facilitates in knowledge availability in mobile and cloud environments. The

knowledge patterns are synchronized among mobile devices and cloud data centers by

ensuring local and cloud based knowledge availability.

3.2.1 Assumptions

Although UniMiner supports generic application execution; following assumptions are

made in this thesis.

• The framework is designed to enable device-centric MDSM applications whereby

the decision of processing in far-edge mobile devices, mobile edge servers, and CC

servers is performed solely in far-edge mobile devices.

• The mobile device can function as a client or a server but not both at the same time.

• The collaboration between client mobile devices and mobile edge servers is per-

formed only in the case wherein the mobile edge servers offer more computational

resources and battery power as compared to offloading client mobile device.

3.3 Three-layer MECC Architecture for UniMiner

This section proposes a component based MECC architecture for UniMiner. The UniMiner

enables three layers of execution for MDSM applications. (see Figure 3.3). These three

layers include local analytics layer (LA) for onboard execution, collaborative analytics

layer (CA) for execution of MDSM applications in mobile ad-hoc network, and cloud-

enabled analytics layer (CLA) for the provision of data stream mining services in cloud

computing systems. The architecture follows the component based development (CBD)

approach for future enhancements and interoperability with other mobile devices (wear-

able devices, WSNs, BSNs, and Laptops) and cloud computing systems.

59

Univ
ers

ity
 of

 M
ala

ya



UniMiner

Cloud Based Analytics (CLA)

Se
rv

ic
e 

D
is

co
ve

ry

Cloud Data Center

UniMiner Cloud 
Services

C
lo

u
d

 M
an

a
ge

m
en

t

D
at

a
 O

ff
lo

ad
in

g

Collaborative Analytics (CA)

Data Offloading

Device Discovery Peer Cloud Formation

Data (stream) Analytics

Knowledge Patterns

P
attern

 
Syn

ch
ron

ization

Knowledge Integration

Local Analytics (LA)

Visualization and Actuators

Knowledge Discovery

Data Preprocessing 

Data (stream) Analytics

Knowledge Patterns

Data Fusion

Transient Data Store (s)

System Management

Adaptation 
Engine

Context 
Management

Resource 
Monitor

Knowledge Management

Knowledge  
Store(s)

Knowledge Integration

D
at

a
 A

cq
u

is
it

io
n

 a
n

d
 A

d
ap

ta
ti

o
n

Data Sources 

Local Data 
Store

User 
Interaction

Application Logs

Sensor Data 

Device Logs

Figure 3.3: UniMiner’s Component-based Architecture.

3.3.1 Components and Operations for LA

At LA layer, the UniMiner provides five modules for a) data acquisition and data adapta-

tion, b) knowledge discovery, c) knowledge management, d) visualization and actuation,

and e) system management.

3.3.1.1 Data Acquisition and Data Adaptation

The UniMiner applications start execution and run as backend services in mobile devices.

Primarily, these applications perform the intelligent data collection depending upon appli-

cation requirements. The data collection strategy also varies in different applications. For

example, some of the applications (like environmental monitoring applications) may col-

lect continuous data streams and some of the applications may collect situation-based or

periodic data collection. The data acquisition and adaptation module provides function-

alities to execute various data collection strategies according to application requirements.

60

Univ
ers

ity
 of

 M
ala

ya



3.3.1.2 Knowledge Discovery

The knowledge discovery module supports execution of analytic components using on-

board computational resources in mobile devices. The module provides different com-

ponents for data preprocessing operations such as noise reduction, outliers detections,

handling missing values, and anomaly detection to name a few. In addition, the data

fusion components provide functionalities to aggregate data streams from multiple ho-

mogeneous and heterogeneous data sources such as onboard and off-board sensors, and

Internet enabled social media data streams. Moreover, the module provides components

for transient storage of fused data streams in mobile devices. Furthermore, the module

provides a library of different data stream mining algorithms in order to perform cluster-

ing, classification, and association rule mining operations.

3.3.1.3 Knowledge Management

The knowledge patterns generated by knowledge discovery module differ depending upon

the selected algorithms. The knowledge management module enables to integrate the rel-

evant knowledge patterns and produce a summarized and global view of overall informa-

tion. The knowledge integration is made in a way that all processed data could be effec-

tively represented and resultant data is stored in local data stores using light databases.

However, the challenge of tracking the processed and unprocessed data points introduces

the complexity in overall data management process. To address this issue, the UniMiner

works in the principles of data parallelism where each chunk of raw data is tracked from

data acquisition to integration of knowledge patterns. The data parallelization ensures

that each data chunk is processed at least one time.

3.3.1.4 System Management

The onboard resource dynamics and fast mobility create the issues of tracking device

locations and onboard available resources. The core components of system management

61

Univ
ers

ity
 of

 M
ala

ya



module are adaptation engine, context monitor, and resource monitor. These components

ensure the robustness of UniMiner architecture in different scenarios. The adaptation

engine ensures the execution of UniMiner components for MDSM applications in all

three layers. In addition, the resource monitor and context manager periodically monitor

available resources, locations (frequently visited locations), and device-usage behavior

(charging, idol) in order to support adaptation engine for seamless application execution.

3.3.1.5 Visualization and Actuation

The visualization module ensures the local knowledge availability by enabling on-screen

visualization. The studies show that local visualization is very beneficial for real-time

applications. However, due to resource-constraints and limited screen size, local knowl-

edge visualization do not support detailed knowledge view. The topic of visualization

needs a detailed and thorough study therefore it is not covered further in this thesis. The

actuation component is designed to ensure the interaction of mobile devices with external

environments which include remote cloud services and nearby peer devices. This module

ensures the future extensibility of UniMiner to other devices and systems.

3.3.2 Components and Operations for CA

The discovery of mobile edge servers and the available communication interfaces are key

requirements for ad-hoc cloud formation using far-edge mobile devices. The execution

of knowledge discovery processes collaboratively and synchronizing resultant knowledge

patterns is challenging in mobile ad-hoc cloud. The CA layer of UniMiner handles these

issues to ensure seamless and collaborative application execution. The components at

CA layer enable connectivity, communication, data processing, and synchronization op-

erations.

62

Univ
ers

ity
 of

 M
ala

ya



3.3.2.1 Discovering Mobile Edge Servers and Communication Interfaces

The device discovery modules handle two main issues. First, it discovers the far-edge mo-

bile devices that may function as mobile edge servers. The source device in the network

scans all connected communication interfaces and enlists all available mobile devices.

The adaptation engine in UniMiner maintains and periodically updates a list of mobile

devices in order to use them as mobile edge servers. The known devices are given prior-

ity over unknown devices. However, the list of known devices is maintained and updated

whenever a new device is connected. This approach helps to seamlessly adopt in new

and unknown environments for collaborative application execution. The second main

issue handled by UniMiner at this stage is to adapt and switch between different com-

munication interfaces. It ensures to seamlessly switch between different communications

interfaces while maintaining the proximity of devices. This strategy helps to ensure max-

imum collaboration considering co-movement between different communication areas

(i.e. Wi-Fi networks, public Internet facilities, and home-networks).

3.3.2.2 Peer to Peer (P2P) Network Formation

Once the mobile edge servers are found and the information about their communication

interfaces is collected, the UniMiner initiates P2P network formation process. The source

device broadcasts the peering request to all proximal mobile edge servers, which collect

the information about available onboard computational resources and send them back

to source device. The source device then performs the cost-benefit analysis in order to

decide the favorability of data offloading. In case of favorable data offloading, far-edge

mobile device offloads data stream to connected mobile edge servers.

3.3.2.3 Knowledge Discovery and Pattern Synchronization

Once offloading is completed, mobile edge servers execute the components using knowl-

edge discovery modules. However it depends upon the application design whether the

63

Univ
ers

ity
 of

 M
ala

ya



whole knowledge discovery process is executed at the mobile edge server or partial task

execution is performed. In case of complete execution, far-edge device offloads raw data

streams and mobile edge server executes complete knowledge discovery process from

preprocessing to data mining and summarization of patterns. In case of partial execution

far-edge device offloads only preprocessed data in order to lower the overall bandwidth

utilization in ad-hoc network. However, mobile edge server executes rest of the knowl-

edge discovery process and resultant patterns are synchronized with far-edge device. In

case, far-edge device could not receive the results from mobile edge server for a specified

time period, the data streams are offloaded to any other available mobile edge server. To

lessen the transient storage burden and to reserve the maximum computational power, the

garbage collection process is executed by UniMiner and mobile edge servers delete all

processed raw data streams periodically from RAM and device’s local storage. Similarly,

far-edge mobile device performs garbage collection periodically.

3.3.3 Components and Operations for CLA

The CLA layer represents the clone of mobile applications augmented with feature rich

data mining and knowledge management services. The key issues in CLA are the service

availability and orchestration of cloud services for knowledge discovery and knowledge

management.

3.3.3.1 Service Discovery and Service Model

The UniMiner maintains a service repository of available cloud services. The require-

ment of cloud services varies therefore service repository contains various services for

remote data reduction in cloud computing systems. The choice of service is solely de-

pendent upon the needs of MDSM applications however the UniMiner provides interface

to access all available services in the repository. The MDSM application offloads data

stream in cloud environment with request for required cloud services where cloud service

64

Univ
ers

ity
 of

 M
ala

ya



manager automatically runs the requested services and completes the task execution. The

UniMiner provides seven types of services which are designed for data uploading, data

preprocessing, data fusion, data mining, pattern summarization, knowledge management,

and pattern synchronization. The data uploading services help in handling offloaded data

streams. The raw data streams are uploaded in transient data stores in cloud comput-

ing systems. The data preprocessing, data fusion and data mining services are executed

in order to process raw data streams and uncover new knowledge patterns. The pattern

summarization and knowledge management services are used to integrate and summa-

rize knowledge patterns from both uploaded by mobile devices and produced by cloud

services. The summarized knowledge patterns are stored in permanent data stores inside

cloud computing systems. The pattern synchronization services transfer the knowledge

patterns for data aggregation in cloud data centers for future usage of knowledge patterns.

3.4 Formal Modeling, Analysis and Verification

The UniMiner architecture is formally modeled, analyzed, and verified using high level

petri nets (HLPN), satisfiability modulo theories library (SMT-Lib), and Z3 solver. The

basic introduction to HLPN, SMT-Lib, and Z3 solver is provided by researchers in (Diaz,

2013; De Moura & Bjørner, 2009, 2008) to aid readers’ understanding therefore further

discussion on the topic is not made in this thesis.

3.4.1 High Level Petri Nets

Petri Nets are used for graphical and mathematical modeling of a system and are applied

to a wide range of systems, such as distributed, parallel, concurrent, nondeterministic,

stochastic, and asynchronous. For the formal modeling of UniMiner, we used a variant

of conventional petri net called HLPN. The HLPN simulates a system and provides its

mathematical properties that are used to analyze the behavior of a system. HLPN is based

on 7-tuple model N = (P,T,F,ϕ,R,L,M0), where P denotes a set of places, T refers to the

65

Univ
ers

ity
 of

 M
ala

ya



set of transitions (such that P∩T = /0), F denotes flow relation (such that F ⊆ (P×T )∪

(T ×P)), ϕ maps places P to data types, R denotes a set of rules for transitions, and L is

a label on F and M0, which represents the initial marking. (P,T,F) provides information

about the structure of the net and (ϕ,R,L) provides the static semantics (information)

that does not change throughout the system. In HLPN, places can have tokens of multiple

types, which can be a cross product of two or more types. A few mapping examples

include ϕ(P1) = Boolean, ϕ(P2) = ID, ϕ(P3) = P(Integer), and ϕ(P1) =Char, where

P1, P2, and P3 are the places of HLPN.

3.4.2 SMT-Lib and Z3 Solver

SMT is used for verifying the satisfiability of formulae over theories under consideration.

SMT-Lib provides a common input platform and benchmarking framework that helps in

the evaluation of the systems. The usage of SMT is common in many fields including

deductive software verification. This thesis adopts Z3 solver with SMT-Lib that is a the-

orem prover developed at Microsoft Research. Z3 is an automated satisfiability checker

that determines whether the set of formulas are satisfiable in the built-in theories of SMT-

Lib. HLPN model for UniMiner framework is shown in Figure 3.4. We identify data

types, places, and mapping of data types to places. Data types and their mappings are

shown in Tables 3.11 and 3.12, respectively. In Figure 3.4, the rectangular black boxes

represent transitions and belong to set T , and circles represent places and belong to set P.

For each data collection phase, the Data_Sources information is initialized and the

data collection is started. The time series buffered data stream is created using T _Stamp,

temporary file name (F_Name) and system generated data sources’ ID (DS_ID). UniMiner

generates all unique IDs in the system at the time of application deployment. Therefore,

these IDs remain constant until the application is installed on a device. When the collected

data files reach a maximum threshold (i.e. file size given by application developer), the

66

Univ
ers

ity
 of

 M
ala

ya



Table 3.11: Data Types for UniMiner HLPN.

Types Descriptions
T_Stamp A DateTime type representing date and time
F_Name A string type representing unprocessed data file name
DS_ID A string type representing name of data source
Chunk_ID A string type representing data chunk code generated by sys-

tem
Flag_Status An integer type representing status of data chunks (unpro-

cessed, processed, processing)
Location A string type representing the name and GPS coordinates of

a location
Charging A Boolean type representing the charging status of mobile

device
Locked A Boolean type representing the lock status of mobile device
Calling A Boolean type representing the call status of mobile device
Internet A Boolean type representing the availability status of active

Internet interfaces
Dev_ID A string type representing the device_id based on IMEI of

mobile
Mem An integer type representing maximum memory in mobile

device
Storage An integer type representing maximum storage in mobile de-

vice
App_ID A string type representing application_id in the mobile de-

vice
Avlb_Loc_Storage An integer type representing available local storage in mo-

bile device
Avlb_SD_Card An integer type representing available storage on SD-card in

mobile device
Wi-Fi A string type representing availability and connectivity sta-

tus through Wi-Fi
GSM A string type representing availability and connectivity sta-

tus through GSM
BT A string type representing availability and connectivity sta-

tus through Bluetooth
BL A string type representing availability and connectivity sta-

tus through Blue Tooth Low Energy
Exec_Mode A string type representing current execution mode of the sys-

tem
Pattern_Attributes A string type representing multiple attributes of extracted

patterns (type of patterns, number of patterns, quality of pat-
terns)

67

Univ
ers

ity
 of

 M
ala

ya



Table 3.12: Places and Mappings.

Places Mappings
φ (Data_Sources) ρ(T_Stamp × F_Name × DS_ID)
φ (Loc_Data) ρ(T_Stamp × F_Name × DS_ID)
φ (Data_Tab) ρ(Chunk_ID × Flag_Status × DS_ID × F_Name)
φ (Up_Data) ρ(Chunk_ID × Flag_Status × DS_ID)
φ (Context_Info) ρ(T_Stamp × Location × Charging × Calling × Internet ×

Locked)
φ (Conn) ρ(Dev_ID ×Mem × Storage)
φ (Local_Res) ρ(T_Stamp ×Mem × Avlb_Loc_Storage × Avlb_SD_Card ×

Wifi × GSM × BT × BL)
φ (Est_Res) ρ(App_ID ×Mem × Storage)
φ (Exec_Mode) ρ(Exec_Mode)
φ (Disc_Pattern) ρ(Chunk_ID × Pattern_Attributes)
φ (Intr_Pattern) ρ(Chunk_ID × Pattern_Attributes)
φ (Loc_Pattern) ρ(Chunk_ID × Pattern_Attributes)
φ (Cloud_Str) ρ(Chunk_ID × DS_ID × Pattern_Attributes)

data file is stored on the onboard storage. In addition, a Flag_Status is maintained for

each data file (called data chunk). The Flag_Status shows the current processing status

of any data chunk (i.e. 0 for unprocessed, 1 for under-processing, and -1 for processed).

This is done at transition T 1 and the transition is mapped to the following rule (see Equa-

Data 
Sources

Loc 
Data

Data 
Tab

Up Data

Cloud 
Str

Loc 
Pattern

Intr 
Pattern

Disc 
Pattern

Context 
Info

Conn

Loc Res

Est Res

Exec 
Mode

A3

A2

A4

A0
A7

A30

T0

T1

T12

T5

A23

T6 A25

T7

A27

T8

A21

T4

T3

A17

A31

A15

A16

T13

T14

T10

T11

T2

Figure 3.4: UniMiner HLPN Model.

68

Univ
ers

ity
 of

 M
ala

ya



tion 3.1).

Once the sufficient data is collected, T 2 gathers data from Loc_Data and corre-

sponding attributes (Chunk_ID, DS_ID, and Flag_Status) from Data_Tab and updates

Flag_Status to “under-processed” (i.e., 1). In addition, T 1 periodically cleans processed

data from Loc_Data and updates Data_Tab accordingly. The data controlling rule at T 2

is mapped as follows (see Equation 3.2).

R(T 1) = ∀a1 ∈ A1•a1[1] 6= NULL∧a1[2] 6= NULL∧a1[3] 6= NULL∧

∀a3 ∈ A3•a3[1] := a1[1]∧a3[2] := a1[2]∧a3[3] := a1[3]∧

∀a2 ∈ A2•∃a2[1] := dist(a1[2])∧a2[2] := a1[3]∧a2[4] := a1[2]∧

∀a4 ∈ A4∧A3′ = A3∪ (a3[1],a3[2],a3[3])∧A2′ = A2∪ (a2[1],a2[2],a2[3],a2[4])∧

(3.1)

R(T 2) = ∀a5 ∈ A5,∀a6 ∈ A6•a5[4] = a6[2]∧a5[3] = 0∧

∀a7 ∈ A7•a7[1] := a5[1]∧a7[2] := a5[3]∧a7[3] := a5[2]∧

A7′ = A7∪ (a7[1],a7[2],a7[3])∧a5[3] := 1∧A5′ = A5∪ (a5[1],a5[2],a5[3],a5[4])∧

(3.2)

After the establishment of amount and type of data to be processed, T 3 collects

Context_In f o, Conn, Loc_Res, Est_Res related information and executes Rule_Engine

which runs execution rules and switches between all three execution modes (i.e., LA, CA,

or CLA). The rule for selection of execution mode is mapped at T 3 (see Equation 3.3).

69

Univ
ers

ity
 of

 M
ala

ya



R(T 3) = ∀a8 ∈ A8,∀a9 ∈ A9,∀a10 ∈ A10,∀a11 ∈ A11,∀a12 ∈ A12,∀a13 ∈ A13,

•a13[1] = LA−Mode∧a12[2]> a11[2]∧∀a12[3]> a11[3]+a11[4]∧

a13 :=CA−Mode∧∀a18 ∈ A18 | a10[1] = a12[1]∧

a12[2]> a18[3]∧a12[3]> a18[4]∧a13 :=CLA−ModeA13′ = A13∪ (a13)

(3.3)

T 4 collects Exec_Mode status and in case of LA and CA, data mining tasks are ini-

tiated locally. For LA, all data mining tasks are executed using onboard local resources.

However, in case of CA, data mining tasks are offloaded to mobile edge servers, where

each mobile edge server acts as a standalone data mining platform. In addition, T 4 col-

lects U p_Data and schedules the data mining tasks accordingly. The Exec_Mode at T 4

is mapped using the following rule (see Equation 3.4).

R(T 4) = ∀a19 ∈ A19,∀a20 ∈ A20,∀a21 ∈ A21•a21[1] := a19[1]∧

a21[2] := Data−Mining(a19[1])∧A21′ = A21∪ (a21[1],a21[2])

(3.4)

Once the data mining tasks are executed successfully, the Disc_Pattern are evaluated at

T 5 and is mapped as follows (see Equation 3.5).

R(T 5) = ∀a22 ∈ A22,∀a23 ∈ A23•a23[1] := a22[1]∧a23[2] := a22[2]∧

A23′ = A23∪ (a23[1],a23[2])

(3.5)

After refinement of Disc_Patterns into Intr_Patterns, the relevant patterns are summa-

rized and merged at T6 using Equation 3.6.

70

Univ
ers

ity
 of

 M
ala

ya



R(T 6) = ∀a24 ∈ A24,∀a25 ∈ A25•a25[1] := a24[1]∧a25[2] := a24[2]∧

A25′ = A25∪ (a25[1],a25[2])

(3.6)

T 7 synchronizes Loc_Patterns with cloud data stores (Cloud_Str). In addition, the

Flag_Status of successfully executed Chunk_ID is updated to “processed” (i.e., -1). The

synchronization at T 7 is mapped using Equation 3.7. Consequently, whenever the Internet

connection is available and neither of LA, CA, or CLA is enabled and there are some

unsynchronized data patterns (UPs), then UPs are synchronized with their respective

counterparts in the cloud. However, data patterns need to be stored in different directories

on far-edge mobile devices to classify synchronized and unsynchronized versions.

R(T 7) = ∀a26 ∈ A26,∀a27 ∈ A27,∀a28 ∈ A28•a27[2] := a26[2]∧

a28[1] = a26[1]∧a28[3] =−1∧a27[1] := a26[1]∧

A27′ = A27∪ (a27[1],a27[2],a27[3])

A28′ = A28∪ (a28[1],a28[2],a28[3],a28[4])

(3.7)

Lastly, in case of CLA, raw data stream is uploaded to CloudStr using following rule (see

Equation 3.8).

R(T 8) = ∀a29 ∈ A29,∀a30 ∈ A30•a30[1] := a29[1]∧A30′ = A30

∪(a30[1],a30[2],a30[3])

(3.8)

3.5 Simulation Results and Discussion

The formal verification of HLPN (using Z3 solver) determines that UniMiner is com-

pletely workable and executes according to specified properties. UniMiner was also eval-

71

Univ
ers

ity
 of

 M
ala

ya



Figure 3.5: PIPE+ Editor Screenshot of UniMiner.

uated using PiPE+ editor (Bonet, Lladó, Puijaner, & Knottenbelt, 2007) which provides

graphical interface to develop and analyze HLPN for bounded model checking (BMC)

(see Figure 3.5). The traversal paths in HLPN are given in forward and backward inci-

dence matrices generated using PiPE+ (see Tables 3.13, 3.14). The results show that

all places in the UniMiner are reachable when moving forward (see Table 3.13). Simi-

larly, all places, except ϕ(Cloud_Str), are reachable in reverse order (see Table 3.14). The

ϕ(Cloud_Str) is made irreversible to eliminate the loop in the data processing cycle.

BMC handles state space explosion problem by executing limited number of states.

Therefore, BMC is applied over finite set of transitions (M) using a linear temporal logic

Table 3.13: Forward Incidence Matrix.

Places T0 T1 T10 T11 T6 T5 T4 T12 T2 T7 T8 T3 T13 T14 T19
φ (Data_Sources) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
φ (Loc_Data) 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
φ (Exec_Mode) 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
φ (Loc_Pattern) 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
φ (Intr_Pattern) 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
φ (Disc_Pattern) 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
φ (Data_Tab) 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0
φ (Up_Data) 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0
φ (Cloud_Str) 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
φ (Context_Info) 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
φ (Conn.) 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
φ (Loc_Res) 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
φ (Est_Res) 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

72

Univ
ers

ity
 of

 M
ala

ya



Table 3.14: Backward Incidence Matrix.

Places T0 T1 T10 T11 T6 T5 T4 T12 T2 T7 T8 T3 T13 T14 T19
φ (Data_Sources) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
φ (Loc_Data) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
φ (Exec_Mode) 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
φ (Loc_Pattern) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
φ (Intr_Pattern) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
φ (Disc_Pattern) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
φ (Data_Tab) 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
φ (Up_Data) 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
φ (Cloud_Str) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
φ (Context_Info) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
φ (Conn.) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
φ (Loc_Res) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
φ (Est_Res) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

(LTL) formula ( f ) and given upper bound value ’k’. BMC determines an execution path

of length ’k’ that satisfies LTL formula. For BMC, first of all a logic formula ϕk is

constructed from M, f , and k and verified using constraint solver. If an ’ f ’ is satisfied

over a path of maximum length ’k’ in Mk then ϕk is said to be satisfiable. In existential

BMC, it is very hard to find the upper bound for ’k’,therefore, negated safety property is

used for validation. The negation of safety property determines the safety of the mode

as long as f is not satisfiable. The HLPN model was translated to logic formulas (as

discussed in subsection 3.4.2) and evaluated its satisfiability. The tokens are distributed

in different places in various markings on each state of HLPN.

In general, during safety (reachability) analysis PiPE+ generated 3072 states and

38592 arcs creating a space explosion problem when ϕ(Data_Sources) and ϕ(Exec_Mode)

are enabled with one token on each place. The simulation results (see Table 3.15) shows

that all places are reachable and satisfies the safety property. The minimum thresholds,

where all places are reachable are 36 firings with 5 replications. Alternately, maximum

threshold is 10000 firings with 15 replications. The simulation results with minimum

and maximum thresholds are presented in terms of average number of tokens produced

at each place and acceptable margin of error during each execution cycle. Consequently,

the argument is established that proposed UniMiner architecture is completely workable

and all places are reachable using specified rules.

73

Univ
ers

ity
 of

 M
ala

ya



Table 3.15: Simulation Results of UniMiner HLPN model.

Places Minimum Threshold Maximum Threshold
Avg. No. of Tokens 95% Conf. Avg. No. of Tokens 95% Conf.

φ (Data_Sources) 3.5135 1.7770 334.8233 18.1603
φ (Loc_Data) 2.9189 0.6936 354.3783 27.6568
φ (Exec_Mode) 4.2703 0.6006 684.8284 38.9546
φ (Loc_Pattern) 2.1892 1.2426 342.7440 20.0734
φ (Intr_Pattern) 1.72973 1.15794 675.6431 41.8029
φ (Disc_Pattern) 2.4054 1.1550 340.9338 20.8442
φ (Data_Tab) 0.4595 2.18681 323.2102 31.7452
φ (Up_Data) 1.0270 1.4271 332.9073 32.9875
φ (Cloud_Str) 1.5405 0.4962 305.2618 28.0542
φ (Context_Info) 0.9729 1.0296 320.1321 30.2847
φ (Conn.) 1.0270 0 1.0001 0
φ (Loc_Res) 0.5405 0.7352 339.9139 31.5361
φ (Est_Res) 0.3514 0.5164 327.8112 25.2031

Considering thees results, UniMiner needs to address state-explosion problem in or-

der to control the application execution process. The state explosion problem is addressed

by proposing data stream management and opportunistic data stream offloading schemes.

3.6 Summary

Chapter 3 presented problem analysis to adapt mobile devices as execution platform for

MDSM applications. However, experimental evaluation revealed that it is not always

feasible to utilize far-edge mobile devices as standalone execution platform for MDSM

applications. Considering this limitation, a novel framework for distributed MDSM ap-

plications was proposed in this chapter. The framework supports MDSM applications

at three levels. Primarily, far-edge mobile devices are used as execution platform but the

framework supports application execution using mobile edge servers and CC servers. The

proposed framework was formally modeled and analyzed using HLPN and Z3 solvers and

simulated through PiPE+ editor. The simulation results show that UniMiner needs to ad-

dress the state explosion problem for seamless application execution in MECC systems.

Chapter 4 presents the solutions to address state explosion problem using dynamic and

adaptive execution models for MDSM applications in MECC systems.

74

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 4: EXECUTION MODELS FOR MDSM APPLICATIONS IN MECC
SYSTEMS

"...distributed system is a model in which components on networked computers

communicate and coordinate their actions by passing messages..."

Coulouris, George; Jean Dollimore; Tim Kindberg; Gordon Blair (2011)

Chapter 3 presented a thorough discussion on performance analysis of mobile data

stream mining (MDSM) applications when executed strictly in far-edge mobile devices.

In addition a three-tier computing architecture was proposed for distributed MDSM ap-

plications. The proposed three-tier architecture ensures the provision of computing re-

sources near far-edge devices in order to minimize the makespan and bandwidth utiliza-

tion, and reduces the dependency over persistent Internet connections. However, the for-

mal analysis shows that the proposed architecture has the state explosion problem wherein

the MDSM application can enter in any state of execution without centralized control.

Chapter 4 presents the problem of data-intensive and compute-intensive MDSM applica-

tions and presents two execution models in order to handle state explosion problem for

seamless application execution in mobile edge cloud computing (MECC) systems.

4.1 Preliminaries

This section presents the discussion on MDSM application architecture. In addition, it

presents the preliminary discussions on MDSM application’s state transition model, and

discusses the data-intensive and compute intensive MDSM applications.

4.1.1 MDSM Application Architecture in MECC System

The MDSM applications are based on different application components and their mutual

interactions. The MDSM application and its components are defined as follows.

• Definition 1: An MDSM application in MECC system is defined as a program or

75

Univ
ers

ity
 of

 M
ala

ya



a set of programs that perform predefined analytic operations using MECC archi-

tecture. The MDSM application in MECC system maintains the distributed logic

among far-edge mobile devices, mobile edge servers, and CC systems.

• Definition 2: An MDSM application consists of one or several components where

each component performs specific operations. The distribution of application com-

ponents solely depends upon the application model and required functionality of

MDSM applications.

4.1.2 Multistage MDSM Application Execution in MECC Systems

Considering the complexity and heterogeneity in MECC systems, the MDSM applica-

tion execution process is redefined in this thesis. The MDSM applications are based on

multistage execution process (see Figure 4.1) where the nature of data stream and ana-

lytics operations change at every stage. This multi-stage execution process is defined as

follows.

• S1: Data Stream Acquisition, The data stream acquisition components provide

functionality to acquire data streams from one or more data sources. Formally, data

stream, DS, is an infinite set of data tuples, T di, continuously collected by MDSM

applications (see equation 4.1). Depending upon the number of data sources and

nature of MDSM application, the number of attributes in each T di varies. However

the DS contains raw data points and requires further processing before learning

model generation and performing data mining operations.

DS =



T d1

T d2

T d3

...


(4.1)

76

Univ
ers

ity
 of

 M
ala

ya



Application Logic

d1

1

d2

a1

a2

2

p1

p2

3

f

4

m1

m2

5

i

6

k

7Stages:

Figure 4.1: Multistage Application Execution

Property 1: The number of data sources and nature of each MDSM application may

vary therefore the number of attributes in each T di varies accordingly.

Example 1: An MDSM application that help in activity detection collects data

streams from onboard accelerometer in Smartphone. The application collect three

data points i.e. x-axis, y-axis, and z-axis for each reading. However, the MDSM

application which provides additional features of users’ locations collects five data

points i.e. x-axis, y-axis, z-axis, latitude, and magnitude.

• S2: Data Rate Adaptation, The data rate in each MDSM application vary according

to the functionality. Therefore, the functions performed by data rate adaptation

components vary accordingly.

Example 1: The data rate adaptation strategy for location based activity detection

vary when the MDSM application detect indoor activities such as sleeping, sitting,

and standing as compared with outdoor activities such as running and driving. Since

the indoor locations are not supposed to be changed quickly therefore low data

rate is more adequate as compared to high data rate. Conversely, high data rate in

outdoor locations can help in detecting users’ activities at numerous places.

77

Univ
ers

ity
 of

 M
ala

ya



• S3: Data Preprocessing, The data preprocessing components enable to improve the

quality of data stream by handling missing values, removing noise, and detecting

anomalies and outliers. Formally, the selection of preprocessing algorithms varies

according to four properties of DS.

Property 1: The data type of attributes, Ab, varies therefore the selection of prepro-

cessing operations vary accordingly.

Example 1: The Ab in transactional data streams of e-commerce applications have

’integer’ and ’floating-point’ data types for product code and price, respectively

(Rehman et al., 2014a). Similarly, the data types of Ab in sensor data streams of

mobile activity detection applications are ’floating-point’ and ’date-time’ (Shoaib et

al., 2014). In e-commerce applications the data preprocessing components mainly

find missing values and detect outliers and anomalous transactions however in mo-

bile activity detection it perform preprocessing using feature extraction and noise

reduction methods.

Property 2: The nature of Ab in DS is mainly dependent upon the data rate of

incoming data streams. Therefore MDSM applications perform different kinds of

preprocessing operations.

Example 2: The data stream applications need to perform sketching and sam-

pling operations in order to handle high data rates (i.e. number of Td per sec-

ond) (Cormode & Muthukrishnan, 2004; Cormode, Garofalakis, Haas, & Jermaine,

2012). On the other hand, the applications with low data rate perform in-memory

preprocessing operations (Gama, 2013). Similarly, the MDSM applications which

involve constant data rate adopt different preprocessing operations as compared

with data streams having variable and uncertain data rates (Chen & Chen, 2014).

78

Univ
ers

ity
 of

 M
ala

ya



Property 3: The sparsity of attributes Ab in DS varies according to the number of

Ab in the DS therefore the selection of preprocessing operations vary accordingly.

Example 3: The number of Ab in DS may vary from single attribute to hundreds

or thousands of attributes. The preprocessing operations for a few attributes may

require statical features extraction based methods however for highly sparse data

streams the MDSM applications use complex dimension reduction algorithms (Amini,

Wah, & Saboohi, 2014; Guan, Wang, Duan, & Ji, 2015).

Property 4: The density of attributes Ab in DS varies according to the number of

missing values therefore the selection of preprocessing operations vary accordingly.

Example 4: The missing values of Ab in DS are represented by the number of un-

populated instances of each Td . Therefore the preprocessing components to handle

density in DS varies accordingly (Cameron, Cuzzocrea, Jiang, & Leung, 2013).

• S4: Data Stream Fusion, The fusion of data streams from multiple data sources

results in information rich data stream representing multiple facets of each data

tuple. Formally, a fused data stream, D, contains time-stamp information, T Sa,

and, b, number of attributes, Ab, derived from each data source. The data sources in

mobile environments produce multi-format information; therefore, all preprocessed

information is concatenated using data fusion methods represented by join operator

./ (see equation 4.1).

D =



T d1

T d2

...

T da


= ./



T S1 A1,1 A1,2 · · · A1,b

T S2 A2,1 A2,2 · · · A2,b

...
...

... . . . ...

T Sa Aa,1 Aa,2 · · · Aa,b


(4.2)

79

Univ
ers

ity
 of

 M
ala

ya



The complexity in D increases when T da also incorporates semi-structured data

(e.g. Tweets, and Facebook posts) and unstructured data (e.g. device log files and

audio/video recordings using onboard cameras) from multiple data sources.

• S5: Data Mining, The data stream mining operations are performed for online and

offline knowledge discovery using different model-based and model-less data min-

ing algorithms. Formally, the online data stream mining algorithms are defined as

the in-memory operations (Cameron et al., 2013). The online algorithms collect the

data stream and perform run-time operations using available onboard memory and

computational resources and discard the data streams immediately after processing.

The online algorithms usually work as one-pass data mining algorithms whereby

no iterative data processing is allowed. Alternatively, the offline data mining algo-

rithms perform data collection and data processing operations in batch mode. On

the contrary, the offline algorithms are not memory-bounded therefore it involve

iterative data processing (Larose, 2014).

• S6: Knowledge Integration, The uncovered knowledge patterns are summarized

and integrated for further utilization using knowledge integration components (Shi,

Zhang, Tian, & Li, 2015). Formally, the knowledge patterns such as clusters, pre-

dicted classes, itemsets, and association rules are summarized for a holistic view of

whole knowledge discovery processes. For example, at each iteration, the cluster-

ing algorithms reshape the cluster structures; the classification algorithms update

the summary of predictions, and the association rule mining algorithms update the

association rules among different itemsets. The summarized knowledge patterns

are integrated and utilized by MDSM applications. The knowledge integration in-

volves homogeneous (i.e. within the same class of algorithms) and heterogeneous

(i.e.with different classes of algorithms) approaches.

80

Univ
ers

ity
 of

 M
ala

ya



• S7: Knowledge Management, The knowledge management components store and

provide integrated knowledge patterns for further utilization by MDSM applica-

tions. Formally, knowledge management components provide functionality to store

knowledge patterns in mobile devices, mobile edge servers, and CC servers. How-

ever, the knowledge management strategies differ in MDSM applications. For ex-

ample, the MDSM applications that deal with personal data and facilitate individual

users may store knowledge patterns using onboard storage. This strategy ensures

makespan-minimal knowledge availability and reduced dependency over Internet

connections. Alternatively, MDSM applications that perform knowledge discovery

operation on DS acquired from multiple users may use mobile edge servers and

cloud computing (CC) servers as knowledge stores.

4.1.3 MDMS Application State Transition Model

The maintenance of execution status of different program components define the exe-

cution states. The MDSM application components preserve one state at a particular in-

stance of time (see Figure 4.2). The state is either "Null", "Running", "Paused", "Termi-

nated", or "Contextualized". The application states are changed by "pause", "resume",

and "stop" commands invoked after some predefined operations such as input data collec-

tion, task completion by a program component, resource availability in far-edge devices,

and changes in contextual information.

Normally, during multistage application execution, the state transition model main-

tains "Null", "Running", "Paused", and "Terminated" states. The "Contextualized" state

is invoked to find the adequate execution mode depending upon the resource availability

and resource requirements, availability of nearer far-edge mobile devices as edge servers,

and availability of Internet connections to communicate with CC servers. The system

management components for resource monitoring, context collection, and adaptation en-

81

Univ
ers

ity
 of

 M
ala

ya



NULL

PAUSED

TERMINATED

CONTEXTUALIZED

RUNNING

start

pause

pause

resume

pause

resume

stop

stop

Figure 4.2: State Transition Model of MDSM Applications.

gine run only when the MDSM application enters in "Contextualized" state. In addition,

the configuration of components vary in different MDSM application execution models.

The resource monitoring and contextual information is collected using onboard applica-

tion components named as resource profiler and context profiler. The adaptation engine

enables to execute MDSM applications seamlessly in MECC systems.

1. Resource profiling: The resource profiler component enables to periodically mon-

itor and profile onboard computational and battery power resources in far-edge mo-

bile devices. The resource profiler provides information about memory, CPU, and

energy utilization of currently executing MECC application. In addition, resource

profiler monitors the currently available resources in mobile device. The infor-

mation provided by resource profiler is further utilized by adaptation engine to

perform the cost-benefit analysis and assess the feasibility of offloading decisions.

2. Context collection: Mobile devices move in different communication areas there-

fore the communication interfaces frequently change among Wi-Fi and GSM In-

ternet connections. In addition, mobile users have different device usage behaviors

82

Univ
ers

ity
 of

 M
ala

ya



such as timings and places of charging far-edge mobile devices, calling and de-

vice usage, running specific applications at specific times such as mobile activity

detection application during exercises and ambulatory activities, and blood glu-

cose monitoring after breakfast. Similarly, other contextual information can help in

efficient application execution. For example, maintaining a list of frequently avail-

able far-edge mobile devices in user proximity, or Wi-Fi routers in home, office,

Gym, and other frequently visited locations may help in predicting the availability

of mobile edge servers that could be opportunistically utilized, when required. The

context profiler component enables to maintain such contextual informations which

are further utilized by adaptation engine for lateral executions.

3. Adaptation Engine: The adaptation engine performs cost-benefit analysis over de-

vice capability and current resources. It also enables rule-based scheduling strate-

gies to execute MDSM applications using dynamic and adaptive execution models.

4.1.4 Data-intensive vs. Compute-intensive Applications

In MECC systems, MDSM applications address multiple issues relevant to, 1) applica-

tion and platform level heterogeneity, 2) critical factors of complexity, 3) variations in

data-intensities, and 4) computational complexities of application components. Consid-

ering the above mentioned issues, MDSM applications are categorized into four groups as

shown in Figure 4.3. As confirmed by the empirical results in Chapter 3, the MDSM ap-

plications with low data-intensity and low computational complexity seamlessly execute

in far-edge mobile devices. Alternatively, high data-intensity applications with high com-

putational complexities run in edge cloud computing systems. However, other MDSM

applications need to be dynamically and adaptively executed in MECC systems.

In order to execute high data-intensity applications having low computational com-

plexities, the dynamic execution model is proposed in this thesis. The model is perceived

83

Univ
ers

ity
 of

 M
ala

ya



Low Data Intensity + 
Low Compute Intensity

High Data Intensity + 
High Compute Intensity

High Data Intensity + 
Low Compute Intensity

Low Data Intensity + 
High Compute IntensityMobile Device

Dynamic+MECC

Adaptive+MECC

ECC

D
at

ta
-i

n
te

n
si

ti
y

Compute-intensity
Low

High

High

Figure 4.3: Data-intensive vs. Compute-intensive MDSM Applications in MECC sys-
tems.

to be dynamic because it enables the opportunistic execution of MDSM applications in

MECC systems whereby MDSM applications dynamically switch among far-edge de-

vices, mobile edge servers, and CC servers. Alternatively, the adaptive execution model

is proposed to execute MDSM applications with low data-intensity but high compute-

intensity. The model is said to be adaptive because the MDSM applications switch the

execution behavior from multiple points whereby application components at each point

have different compute-intensities. Due to variable computational complexities, MDSM

applications on far-edge mobile devices with low computational capabilities and minimal

battery power switch to mobile edge servers or CC servers at early stages of executions.

On the other hand, the MDSM applications with high computational resources and suffi-

cient battery power execute maximum components using onboard resources and switch to

mobile edge servers or CC servers at later stages of application execution. This strategy

helps far-edge devices to adapt the execution behavior according to underlying resources.

84

Univ
ers

ity
 of

 M
ala

ya



4.2 Dynamic Execution Model

The main objective of dynamic execution model is to perform maximum data processing

in mobile environments when MDSM application components have low computational

complexity and do not require unbounded memory, CPU, and battery power resources.

4.2.1 Operations

As witnessed in Chapter 3, low intensity MDSM applications work with low data rate and

minimal data size therefore the data preprocessing, data fusion, learning model genera-

tion, and data mining operations do not significantly impact the performance of far-edge

mobile devices. The dynamic execution model partially executes MDSM applications in

far-edge mobile devices and rest of the application components either run in far-edge mo-

bile devices, mobile edge servers, or CC servers (see Figure 4.4). The data acquisition,

data preprocessing, data adaptation, and data fusion components of MDSM applications

are executed strictly inside far-edge mobile devices. The applications generate interme-

diate data files after performing data fusion operations and temporarily save in onboard

local storage. In order to manage the data files, the execution model enables transient

data stream management scheme. In addition, the model uses an opportunistic offload-

ing scheme to decide whether the remaining application components for data mining,

knowledge integration, and knowledge management should be executed in far-edge mo-

bile devices, mobile edge servers, or CC servers.

The dynamic execution model has following constraints. The application compo-

nents for data acquisition, data adaptation, data preprocessing, and data fusion must not

be computationally complex. In addition, mobile edge servers must have more com-

putational (CPU, Memory) and current battery power as compared to offloading far-edge

mobile device. Finally, the collaborating far-edge mobile devices and mobile edge servers

must be in the same communication area.

85

Univ
ers

ity
 of

 M
ala

ya



4.2.2 Single-point Data Stream Management

After performing data fusion operations in far-edge mobile devices, the model facilitates

transient data stream management. The scheme facilitates in temporarily storing data

streams so that the proposed opportunistic offloading scheme can help in finding ade-

quate execution environment such as far-edge mobile device, mobile edge servers, or

CC servers. Since the execution model enables device-centric data processing wherein

far-edge mobile device controls the application execution process therefore data streams

collected by single far-edge mobile device do not quickly hampers onboard storage re-

sources. Hence transient data stream management is performed separately at each far-

edge mobile device.

Definition 1: Fi is a data file containing ’i’ number of data tuples, where i > 0, and

Fi is bounded by maximum number of data tuples set by the application designer.

Example 1: From definition 1, Fi is the data file that contains preprocessed data

after performing data fusion operations, for example for an activity detection application,

Fi contains feature vectors that are obtained after performing statistical feature extraction

methods and fusing the resultant features values with GPS coordinates. The application

designer sets the maximum number of data tuples that can be stored in any Fi. However,

Fi is randomly generated to dynamically utilize the onboard mobile device resources.

D1 = {Td1,1, Td1,2, Td1,3, ...Td1,n}

Local 
Storage

Data Acquisition
Data Tables

collaborative remote

Data Preprocessing

D2 = {Td2,1, Td2,2, Td2,3, ...Td1,n}

D3 = {Td3,1, Td3,2, Td3,3, ...Td3,n}

D4 = {Td4,1, Td4,2, Td4,3, ...Td4,n}

D5 = {Td5,1, Td5,2, Td5,3, ...Tdm,n}

Data Files

A1

A2

A3

A4

A5

Data 
Adaptors

Data 
Fusion

Data 
Sources

Data Stream 
Offloading

Figure 4.4: Dynamic Application Execution Model.

86

Univ
ers

ity
 of

 M
ala

ya



4.2.2.1 Managing Data Tables

The application identifier, Aid , that is derived from process id of running application, data

store identifier, DSid , which is derived from application manifest, and time stamp T Sa are

used to generate file identifier, fid , for each Fi. The preprocessed data files are stored in

onboard local data stores with a system generated fid . In addition, the system maintains

a data table entry with two attributes for fid and status, S fid ,. A hash function, h( fid),

is used to access Fid whenever required and updates the corresponding (S fid ) with 0 for

unprocessed, 1 for under-processing, and -1 for processed Fi. Once the Fi are successfully

processed the h( fid) function updates the data tables and deletes corresponding files from

transient data stores using u( fi) function.

4.2.3 Single-point Opportunistic Data Stream Offloading

Data stream offloading in MECC systems becomes complex when considering multiple

objectives like energy efficiency, performance enhancement, data reduction, and band-

width utilization cost. In addition, the offloading decision becomes more complex due

to mobile devices joining/leaving different networks, limited resource constraints and dy-

namically changing available communication interfaces when users move among differ-

ent communication areas. In view of the data stream offloading complexity, a rule-based

scheduling strategy is hereby proposed to switch between far-edge mobile devices, mobile

edge servers, and CC servers. The scheduling process functions on the basis of contextual

information (i.e. current location, communication interfaces and available nearer edge

servers), available resources (i.e. memory, storage and battery), unprocessed data, and

estimated resource consumption (i.e. memory, battery and CPU) of MDSM application

required for the current data. Once the input parameters are established, the rule-based

scheduling is invoked for opportunistic data stream offloading. The successful execution

of a rule defines the execution mode and the environment for offloading is enabled.

87

Univ
ers

ity
 of

 M
ala

ya



4.2.3.1 The Proposed Offloading Strategy

The data stream offloading strategy, as presented in Algorithm 1, is invoked whenever

an unprocessed Fi is created by MDSM applications and saved in transient data stores.

The offloading algorithm collects contextual information about the device usage (Pidle,

Plock), and charging status Dch (see line 2). Due to personal nature of data streams and

the requirement for efficient utilization of onboard computational resources, the algo-

rithm halts the execution if device is being used for calling, or user is interacting with

the device. However, execution resumes if the user is interacting with MDSM applica-

tion UAi, the nature of UAi is real-time, or the device is locked or being charged. Once

execution starts, the offloading algorithm calculates the file size SFi and estimates the

resource-consumption (see line 7) of CPU cycles Cr, memory Mr, and battery Br for lat-

eral processing of data mining algorithms Adm. The acquired information is compared

with available resources (Ca, Ma, Ba) and offloading algorithm sets the execution envi-

ronment for data processing.

The MDSM application switches to mobile edge server if onboard resources are in-

sufficient. The algorithm scans all communication interfaces CIn (see line 23) and returns

list of connected mobile edge servers (CDn). Familiar mobile edge servers (CD f ) are

ranked on the basis of familiarity, and information is collected about available resources

(Ccd , Mcd , Bcd) at CDn . Cost-benefit analysis is performed on the far-edge mobile device

(see line 26-27) and in case of feasible offloading, mobile device and mobile edge server

exchange information about communication interfaces (ECmw, ECbt , ECble). Far-edge

device offloads Fi at each active interface and most energy efficient interfaces are paired

for lateral communication (see line 29-32). Meanwhile, algorithm monitors the execution

by setting a timer. If results are not received before the timer expires, Fi is rescheduled.

Finally, the results are synchronized and Fi are deleted from mobile edge server.

88

Univ
ers

ity
 of

 M
ala

ya



Algorithm 1: Opportunistic Data Stream Offloading

Global: List_res_consumed[100]
Input: Fi

1. for all Fi repeat 2 to 45
2. CollectContext(), getCurrentPower()
3. if (!Plock && !Pidle && UAi.status 6= real− time) || (Pidle && !Dch && CP≤ 10%)
4. WaitandCollectData()
5. else
6. SFi = SizeO f (Fi)
7. estimateResources(SFi,List_res_consumed[])
8. calculateAvailableResources()
9. consumed_resources[4] = null
10. if (Ca > Tavg[].Cr && Ma > Tavg[].Mr && Ba > Tavg[].Br && SFi < Tavg.FileSize)
11. execute local f ull
12. consumed_res[4] = SFi,Bused ,Cused ,Mused
13. update( List_res_consumed[100], consumed_res[])
14. else if (Ca > Tmax[].Cr && Ma > Tmax[].Mr && Ba > Tmax[].Br && SFi < Tmax.FileSize)
15. execute local f ull
16. consumed_res[4] = SFi,Bused ,Cused ,Mused
17. update( List_res_consumed[100], consumed_res[])
18. else if (UAi == ‘realtime′)
19. execute localadaptive
20. consumed_res[4] = SFi,Bused ,Cused ,Mused
21. update( List_res_consumed[100], consumed_res[])
22. else
23. scan (CIn[])
24. FindandRank(CDn,CD f )
25. CollectResourceIn f ormation(CDn[]);
26. if ((Fi.count > 0) && (Ccd >Cr && Mcd > Mr && Bcd > Br

27. && (CDidle ||CDch ||CDlock ||CDUAi)))
28. Scan(ECmw,ECbt ,ECble,CDn)
29. for all CIn

30. Offload (Fi,CIn)
31. EC[] = calcEnergyConsump(CIn)
32. SortandPrioritize(EC[])
33. Time = Tavg[].Time;
34. while (((Fi.count > 0) && (Ccd >Cr && Mcd > Mr && Bcd > Br &&
35. (CDidle ||CDch ||CDlock ||CDUAi == True))))
36. StartTimer(Time)
37. Send (Fi,CIn)
38. if(time > 0)
39. Synchronize(Pi)
40. Garbage(Fi)
41. else if (WiFi 6= null || GSM 6= null)
42. prioritize(CIw f ,CIgsm)
43. offload (Fi,Ai)
44. DiscoverandRunServices (Fi,Ai)
45. Synchronize(Pi, localStorage,CloudDatabase)

89

Univ
ers

ity
 of

 M
ala

ya



The MDSM application switches the execution to CC servers in case of resource

unavailability in mobile device (Ca, Ma, Ba), and mobile edge servers (Ccd , Mcd , Bcd).

The algorithm offloads Fi and Adm in CC server where relevant services are discovered by

cloud resource manager and the knowledge discovery process is completed. Finally, the

results (Px) are synchronized between far-edge mobile device and CC data stores.

The proposed data stream offloading strategy ensures complete process execution

in MECC environments. However, data stream offloading is disabled when a real-time

application is working in resource-critical (e.g. battery ≤10%) situations and there is no

mobile edge server or Internet-enabled communication interface. In this situation, the

algorithm facilitates to work in low processing mode (localadaptive) (see line 18-21) by

disabling some resource-sucking communication interfaces (e.g. GSM data connection)

and onboard sensors. Alternately, the applications with tolerable makespan only work in

data collection mode to acquire maximum data before complete battery charge depletion.

This strategy helps to reduce data loss and the data stream offloading is enabled whenever

the MDSM application is activated after device restarts.

4.2.3.2 Dynamic Resource Estimation for Data Stream Offloading

The resource estimation function enables to set the threshold for switching among far-

edge mobile devices, mobile edge servers and CC servers. Although it is easy to estimate

the resource consumption of Fi having maximum file size set by application designer

but this approach is not feasible because of varying data rates. For example, some ap-

plications generate less data in size and require minimum resources hence these appli-

cations can easily run in resource minimal far-edge devices. In addition, the resource

consumption varies according to internal data structures and computational methods of

application components. The dynamic threshold estimation scheme, implemented us-

ing estimateResources(), helps establish the switching points for dynamic execution of

90

Univ
ers

ity
 of

 M
ala

ya



MECC applications (see Figure 4.5). The data stream offloading algorithm calculates the

resource consumption (Bused,Cused,Mused) after every successful execution in far-edge

device. It calls update function to update the list of executions for threshold estimation.

The scheme computes two thresholds for average Tavg and maximum Tmax resource

consumption (see eq. 4.3, eq. 4.4, eq. 4.5, and 4.6). The Tavg and Tmax are computed for

last 100 successful executions of data mining components in far-edge device. The Tavg is

computed on the basis of average file size, memory consumption, CPU consumption, and

battery power consumption. Similarly the Tmax is computed to show the maximum of file

size and its corresponding resource utilization in previous 100 executions.

List



e1

e2

...

e100


=



SF1 B1 C1 M1

SF2 B2 C2 M2

...
...

...
...

SF100 B100 C100 M100


(4.3)

Tavg[] = {
∑

100
t=1 SFt

100
,
∑

100
t=1 Bt

100
,
∑

100
t=1Ct

100
,
∑

100
t=1 Mt

100
} (4.4)

mSF = max100
t=1(SFt) (4.5)

Tmax[] = {mSF,B(mSF),C(mSF),M(mSF)} (4.6)

Assumptions are made because an MDSM application working on certain data stream

may easily change its execution behavior, but for uncertain data streams, Tmax sets the

switching points. Data stream offloading is enabled when the file size lies between the

Tavg and Tmax. However, Fi is processed for one time and in case of memory or CPU

91

Univ
ers

ity
 of

 M
ala

ya



e1…e20…e40...e60…e80…e100

Tavg

Tmax

LA

offloading

Figure 4.5: Resource Estimation Method.

exceptions, the Fi is offloaded in mobile edge server or CC servers. Otherwise, for file

size less than or equal to the average file size the Tavg is considered as switching point.

This approach helps in maximum resource utilization in far-edge device and enables data

stream offloading only when the algorithm encounters a critical state like resource limi-

tations to process the current Fi.

4.3 Adaptive Execution Model

The main objective of adaptive execution model is to facilitate low data-intensity and high

compute-intensive MDSM applications. Unlike dynamic execution model that bounds

the size of incoming data stream to a user-specified threshold, the adaptive execution

model facilitates data stream management and offloading from multiple points during

application execution. Therefore, the application designer do not need to worry about file

size threshold rather the application components adaptively execute in MECC system.

4.3.1 Operations

The adaptive execution model as shown in Figure 4.6 separates the application logic and

platform level logic. This approach helps in achieving generality at component level in

MDSM applications. In addition, the separation of application logic lowers high cou-

pling among application components and platform level components hence this approach

helps in extendability of execution model in future. The adaptive execution model runs

the multi-stage MDSM applications at foreground and platform level components per-

form resource monitoring, context collection, and resource estimation at each application

92

Univ
ers

ity
 of

 M
ala

ya



System Logic

Resource Profilers 
(Components)

Application Logic

Resource 
Profiler (P4)

Resource 
Profiler (P1)

d1Stage 1 d2

a1 a2Stage 2

p1 p2Stage 3

fStage 4

m1 m2Stage 5

iStage 6

kStage 7

Resource 
Profiler (P3)

Device Profilers 

Resource 
Profiler 

Context 
Profiler

Resource Estimators 
(Components)

Resource 
Estimator (P1)

Resource 
Estimator (P3)

Resource 
Estimator (P4)

Adaptation Engine

Rule Base

Figure 4.6: Adaptive Execution Model.

component at the back-end. Upon arrival of data stream at each component, the appli-

cation switches from "Running" to "Contextualized" state in order to find the adequacy

of far-edge device as execution platform. During contextualized state, execution model

performs resource monitoring (to find current resource availability) and estimates the

resource consumption. In case of resource availability, application components run in

far-edge device otherwise execution model collects contextual information and runs rule-

based scheduling strategy using adaptation engine component and performs data stream

management and offloading operations accordingly.

Adaptive execution model performs component level adaptations whereby it per-

forms resource profiling (in terms of battery, memory, and CPU power) of each appli-

cation component. In addition, resource estimation function finds estimated resource

consumption for each component. The model uses estimated resources and currently

available resources for cost-benefit analysis to perform data stream offloading operations.

93

Univ
ers

ity
 of

 M
ala

ya



The component level adaptations in execution model benefits in multiple ways.

1. It enables fine-grained adaptive execution of each component.

2. The MDSM application do not need external intervention by application designers.

3. The model adapts the execution behavior easily at different far-edge mobile devices

therefore MDSM applications can run using any resource constrained far-edge mo-

bile device. In case of high resource availability, MDSM application components

run in far-edge device otherwise switch to mobile edge server or CC servers.

4.3.2 Multi-point Data Stream Management

In multi-staged application execution, the nature of data stream changes at every stage.

For example, in our use-case application in chapter 5, the data stream at stage 1 is avail-

able in series of raw data points collected over the passage of time. However, data adap-

tation operations, at stage 2, filter raw data stream and discard irrelevant information.

At stage 3, data preprocessing operations convert raw data streams into feature vectors.

At stage 4, data fusion operations join multiple data streams according to application re-

quirements. At stage 5, data mining operations returns the knowledge patterns which are

further integrated and summarized at stage 6. Finally, the knowledge patterns are stored

at stage 7. Since the nature of operations at each stage is different therefore the computa-

tional complexity and resource requirements vary in terms of memory, CPU, and battery

power consumption. On the other hand, resource dynamics in mobile devices contin-

uously change the ground truth information about available computational and battery

power resources in mobile devices. The need arises to manage the data stream at each

stage when the application is in "Contextualized" state. The adaptive execution model

enables five points for data management (see Table 4.1).

94

Univ
ers

ity
 of

 M
ala

ya



Table 4.1: Multi-point Data management

Point Type of data Reflection in use-case
P1 Raw data Readings from accelerometer and GPS
P2 Filtered raw Sliding windows of 100 readings per second
P3 Preprocessed data Feature extraction from each sliding window
P4 Fused data Event generation through feature vectors

and last known GPS reading
P5 Knowledge patterns Activities and places

Since the data management operations are performed at multiple points therefore mul-

tiple data tables are used to store and manage the execution status of stored data files

(see Fig. 4.7). Data tables are managed by global_dm and local_dm components. The

global_dm components track the number of files in each data table, the local_dm gener-

ates file_identifiers and manage local data tables. The data tables are managed as follows.

Step 1: The contextualized state is invoked and the application starts data management

process.

Step 2: global_dm captures the execution stage and the data files.

Step 3: global_dm invokes the relevant local_dm, updates global data table having two

attributes (stage, number of files); global_dm uses stage_num to access and update the

data table entries

Step 4: local_dm generates file identifiers by appending stage number with file counter

such as files generated at stage 1 have the identifiers like S1-0001. Then local_dm updates

global_dm

Data Table

data table

Stage 1

local_dm

Data Table

data store

Stage 2

local_dm

Data Table

data store

Stage 3

local_dm

Data Table

data store

Stage 4

local_dm

Data Table

data store

Stage 5

local_dm

Data Table

data store

Data Stream (s)

Figure 4.7: Multi-point Data Stream Management.

95

Univ
ers

ity
 of

 M
ala

ya



local data tables with two attributes (file_id, status); local_dm uses hash function to access

file_id and update the status of each data file. File status is maintained as -1 for processed,

1 for under processed, and 0 for unprocessed data files.

Step 5: local_dm updates local data tables when a file is successfully processed at the

next stage.

Step 6: global_dm periodically performs garbage collection by deleting processed data

files from local data tables.

Step 7: local_dm updates local data tables.

Step 8: global_dm updates global data tables.

4.3.3 Multi-point Data Stream Offloading

The adaptation engine performs cost-benefit analysis over device capability, current re-

sources, and contextual information. The adaptation engine executes multi-point data

stream offloading schemes in following steps.

• Step 1: The MDSM application collects data streams from one or more data sources.

• Step 2: Resource profiler monitors the available computational and battery power

resources at multiple points such as P1, P3, and P4 as shown in Figure 4.6.

• Step 3: Resource estimator profiles and estimates the resource consumption at the

same points.

• Step 4: adaptation engine performs the cost benefit analysis at each point and sets

the execution mode accordingly.

• Step 5: In case of local analytics, the application initiates onboard components and

performs the required operations in far-edge mobile device.

96

Univ
ers

ity
 of

 M
ala

ya



• Step 6: In case of collaborative or cloud-based analytics, the adaptation engine

initiates multi-point data stream management process.

• Step 7: adaptation engine scans all communication interfaces and searches for con-

nected mobile edge servers in the local Wi-Fi routers.

• Step 8: If local devices are found, the adaptation engine inquires about available

computational and battery resources from connected mobile edge servers and per-

forms cost benefit analysis for offloading.

• Step 9: If offloading is feasible in connected mobile edge servers, the adaptation

engine offloads the data stream and initiates required application components in

mobile edge servers. For example, it initiates P2 if it offloads data stream from P1,

and initiates P4 if data stream is offloaded from P3.

• Step 10: If mobile edge server successfully executes the data stream with subse-

quent operations and returns the required results, the adaptation engine deletes the

processed data files and updates corresponding data tables accordingly.

• Step 11: If mobile edge server does not returns results within specific time period

(see eq. 4.7), the adaptation engine repeats step 6 to step 10 until there is no mo-

bile edge server or required resources are not available at connected mobile edge

servers.

t = 1.5∗avgmakespan (4.7)

whereby avgmakespan represents the average of makespan taken by last 100 success-

ful executions.

• Step 12: In case the adaptation engine could not perform the offloading in mobile

edge servers, it offloads the data stream in cloud environments and initiates the

97

Univ
ers

ity
 of

 M
ala

ya



required cloud services which perform the remaining operations from the point of

offloading.

• Step 13: adaptation engine synchronizes the results with cloud services periodi-

cally and performs garbage collection and data table management accordingly.

4.3.3.1 Adaptive Resource Estimation

The resource estimator component collects the resource information of 100 recent ex-

ecutions of corresponding components inside far-edge mobile device and estimates a

threshold Tavg[] that calculates the average resource consumption in terms of memory,

CPU, and battery power. Considering the threshold Tavg[] at each point, the algorithm

calculates resource consumption RKB[] per KilloByte (KB) using eq. 4.8. The algorithm

further estimates the required resources Rreq[]. The estimated threshold values are used to

define the rules for cost-benefit analysis.

RKB[] = {
Tavg[].B

Tavg[].FileSize
,

Tavg[].C
Tavg[].FileSize

,
Tavg[].M

Tavg[].FileSize
} (4.8)

Rreq[] = RKB[].B× currentFileSize,RKB[].C×RKB[].M× currentFileSize (4.9)

4.3.3.2 Rule-based Scheduling

The cost benefit analysis at step 4 is performed to articulate the favorable points of data

stream offloading. The adaptive execution model uses a rule-based scheduling strategy

whereby the rules for transitions among far-edge devices, mobile edge servers, and CC

servers are defined using a rule base component. Some selected rules are presented in

Table 4.2. For experimentation in this thesis, 37 rules (as presented in Appendix B) were

defined in the rule base and different rule combinations were used to formalize the logical

98

Univ
ers

ity
 of

 M
ala

ya



Table 4.2: Selected Rules for Scheduling (Please refer Appendix B for a complete list of
rules).

Rule Action
Fbattery ≤ 10% Perform data collection.
F != charging Device not charging, check battery capacity.
F != locked Device not locked, check application status.
UAi == ’running’ Application is running, perform data processing.

operations in the scheduling strategy. The logical statements are based on different rules

combinations using logical conjunction (∧), disjunction (∨), and not (¬) operators.

4.4 Summary

In chapter 4, we presented the preliminary discussion on the MDSM application archi-

tecture and its state transition model. In addition, it presented the types of data-intensive

and compute-intensive applications in MECC systems. In order to address the issue of

state explosion problem and seamless application execution in MECC systems, the chap-

ter presented two execution models. The dynamic application execution model facilitate

data-intensive applications having low computational complexity and minimum compu-

tational requirements. However, the application designer need to intervene in order to

set the file size threshold for dynamically switching among far-edge mobile devices, mo-

bile edge servers, and CC servers. In addition, the chapter presented adaptive execution

model for MDSM applications whereby resource profiling, monitoring, and estimation is

performed at multiple application components. This approach helps in adaptively switch-

ing among far-edge mobile devices, mobile edge servers, and CC servers from multiple

points. Chapter 5 presents the performance evaluation of proposed execution models, dis-

cusses the experimental results, and compare with conventional static execution models.

99

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 5: PERFORMANCE EVALUATION

"...the best way to show that a stick is crooked is not to argue about it or to spend time

denouncing it, but to lay a straight stick alongside it..."

D.L. Moody

Chapter 4 presented the dynamic and adaptive execution models for MDSM ap-

plications. The dynamic execution model facilitates low complexity data-intensive ap-

plications. However, adaptive execution model facilitates execution of high complexity

MDSM applications with low data-intensity. This chapter presents the performance eval-

uation of proposed execution models and compares the results with static execution mod-

els in terms of memory utilization, battery power consumption, makespan, data reduction,

and accuracy of classifiers.

The chapter is outlined as follows. Section 5.1 highlights the motivational scenario

for use of personal data mining in real-world and presents a use-case application for ac-

tivity detection in MECC environments. Section 5.2 provides details about development

and experimental setup as well as evaluation metrics. Section 5.3 presents performance

results of static, dynamic, and adaptive execution models. Sections 5.3.1, 5.3.2, and 5.3.3

shows the performance results for benchmarking the static execution models for com-

parison. Performance results of dynamic and adaptive execution models are presented

in section 5.3.4 and 5.3.5. Section 5.4 presents the comparative discussion of proposed

models with static models and section 5.5 summarizes this chapter.

5.1 Use-case Application for Mobile Activity Detection

In a smart city scenario, participatory sensing applications aid in collecting data streams

from citizens and sensing systems deployed on roads, railway tracks, shopping and park-

ing areas, and countless other places in the cities. Let us consider an example of citizen

100

Univ
ers

ity
 of

 M
ala

ya



A
p

p
licatio

n
 Lo

gic
Accelerometer 

x,y,z

GPS Receiver (lon, lat)

In-Memory Feature Extraction
X(Mean, SD, Var, Mag) Y(Mean, SD, 
Var, Mag) Z(Mean, SD, Var, Mag)

In-Memory Data Fusion

Online Training of Learning Model Online Activity Detection

Sliding Windows (frequency = ‘N’ Hz)

Activity Summarization

Knowledge Synchronization

d
11 d
2

a
1

a
22

p
1

p
23

f4

m
1

m
25

i6

k7
Sta

ge
s:

Use-case Application Components

Figure 5.1: Mapping Online Activity Detection Application with Multistage MDSM Ap-
plication as Presented in Section 4.1.2

sensing application for smart city whereby the city administration want to improve the

quality of leisure time that citizens want to spend in public parks, sporting places, and

shopping malls. The city government asks the citizens to share information about their

physical activities and locations in order to improve the parking spaces and other services

in crowded areas. Conventionally, the applications installed on citizens’ mobile phones

collect the sensing information (e.g. readings from accelerometers, GPS, nearer Wi-Fi)

and transfer the whole data streams in CC systems. Using the proposed architecture,

citizens first perform activity detection using MDSM components in MECC system and

append the GPS coordinates for location information. The resultant knowledge is then

transferred to city government’s system for further utilization.

Figure 5.1 maps the use-case application components to the MDSM application ar-

chitecture. The data acquisition component enables to collect the data stream from ac-

celerometer and GPS sensors. The accelerometer produces three values for x-, y-, and

z-axis for each reading. The data adaptation component enables overlapping sliding win-

101

Univ
ers

ity
 of

 M
ala

ya



dows whereby the data stream collection frequency is set as ’N’ number of readings per

second. The ’N’ value determines the generic setting of windows size that helps in config-

uring different experimental settings during experiments. However, the sliding windows

contain 50% overlapping values where 25% values from the start point overlaps with

previous window and 25% values at the end overlaps with next window. The data prepro-

cessing components enable feature extraction methods whereby four statistical features

(i.e. mean, standard deviation, variance, and magnitude) are computed against each axis.

The data preprocessing component generates 12 attributes for each sliding window. The

data fusion component appends the latest GPS reading (i.e. longitude and latitude) with

computed features and generates new feature vector. The data mining component en-

ables to label the feature vectors both manually (by user intervention) and automatically

(through online data annotation application). The labeled data streams represents the

event data streams whereby learning models are generated and data mining component

performs the activity detection for newly unlabeled data streams. The knowledge inte-

gration component produces the summary of activities and finally the knowledge man-

agement component synchronizes the produced knowledge with smart city participatory

sensing applications.

5.2 Development and Experimental Setups

Since the application logic is distributed among mobile devices, mobile edge servers, and

CC servers, therefore, multiple application development platforms were selected in order

to evaluate the performance of execution models.

5.2.1 Development

For MDSM application execution in far-edge mobile devices, the data acquisition and

adaptation, knowledge discovery, knowledge management, and system management mod-

ules of UniMiner were developed using Android SDK and Java 8 (Developers, 2014).

102

Univ
ers

ity
 of

 M
ala

ya



For collaborative application execution using mobile edge servers, the AllJoyn frame-

work (Framework, 2015) was integrated for device discovery, P2P network formation,

and data offloading. However the mobile data stream mining modules were implemented

using Android SDK and Java 8. For cloud based application execution, the multi-threaded

cloud services, for data stream synchronizing, data stream mining, knowledge manage-

ment, and garbage collection, were developed and deployed in cloud environment using

Google’s compute engine (Ciurana, 2009).

5.2.2 Experimental Setup

In order to evaluate the performance of execution models for heterogeneous MDSM ap-

plications, the experimental setup varies in multiple ways. To cater the heterogeneity

using data acquisition components, two data sources (i.e. accelerometer and GPS sen-

sor) were used. To handle the heterogeneity using data adaptation components, sliding

windows size was set as generic so that the execution models could be tested with differ-

ent stream size. The heterogeneity at data preprocessing level is handled using multiple

features extraction methods (such as mean, standard deviation, variance, and magnitude).

The heterogeneity at data mining level is handled using three different classification al-

gorithms namely, J48, naive Bayes, and random forest (Agrawal & Srikant, 1994; Lowd

& Domingos, 2005; Breiman, 2001). The algorithms were selected due to popularity

and wide acceptance in data mining research. The selected algorithms have different

computational complexities hence performance variation in execution models could be

measured. Similarly, the heterogeneity for knowledge management is handled by storing

knowledge patterns in mobile devices and CC servers.

The experiments were performed in two phases. In the first phase, the data collection

and activities annotation is performed in order to develop the learning models for activity

detection. In the second phase, the experimental setup were reconfigured multiple times

103

Univ
ers

ity
 of

 M
ala

ya



in order to assess the performance of execution models. In the first phase, 12 graduate

students from University of Malaya were recruited for 15 days. The users were explicitly

briefed about the data collection process and instructed to keep mobile devices in right

pocket of pants. For data stream collection and annotation, a separate application was de-

veloped for android phone users whereby the users can annotate 12 ambulatory activities.

The application executes data acquisition, data adaptation, data preprocessing, data fu-

sion, and data mining components of MDSM application. The activities include walking,

running, standing, going upstairs, coming downstairs, sitting, going up using escalator,

coming down using escalator, lying, and traveling through vehicle. The details about de-

vices and volume of data stream are presented in Table 5.1. The collected data streams

were used for learning model generation using three mobile devices (see Table 5.2).

Table 5.1: Devices and Data Collection Details.

User Gender Model Operating System Collected Files Size of data
1 Female Lenovo A6000 Android 4.4 1983 71.83 MB
2 Male Samsung GT-18552 Android 4.1.2 3753 123.28 MB
3 Male Samsung S3 Android 4.1.2 2679 96.99 MB
4 Male Sony Xperia Z3 Android 5.1.1 2562 85.93 MB
5 Male Lenovo S850 Android 4.4.2 1950 74.69 MB
6 Male LG G3 Android 4.4.2 1237 38.94 MB
7 Male Xiaomi Redmi2 Android 4.4 1873 63.01 MB
8 Male Xiaomi Redmi2 Android 4.4 1135 46.40 MB
9 Male Xiaomi Mi5 Android 5.1.1 1008 35.99 MB
10 Male Asus Zenphone4 Android 4.3 853 39.61 MB
11 Male Samsung Galaxy Note II Android 4.1 569 22.75 MB
12 Male Samsung Galaxy Tab S2 Android 5.1.1 1331 45.20 MB

Total Data 20933 744.62 MB

Table 5.2: Selected Devices for Performance Evaluation at Phase 2.

D1 D2 D3
Make Samsung Sony Samsung
Model GT-18552 Xperia Z3 Galaxy Tab S2
Operating System Android 4.1.2 Android 5.1.1 Android 5.1.1

Processor 1.2 GHz Quad Core 2.5 GHz Quad Core
1.9 GHz Quad
Core + 1.3 GHz
Quad Core

Memory 1 GB 3 GB 3 GB
Battery Power 2000 mAh 3100 mAh 4000 mAh

104

Univ
ers

ity
 of

 M
ala

ya



5.2.3 Evaluation Metrics

The performance evaluation is made in terms of: 1) battery power consumption, 2) mem-

ory utilization, 3) makespan, 4) data/bandwidth reduction, and 5) accuracy of MDSM

applications. Mobile devices operate in resource-constrained environments therefore bat-

tery power consumption, memory utilization, and makespan are key performance eval-

uation metrics. For performance measurement, an open source software-based power

profiling tool, namely Power Tutor (Gordon et al., 2013), was integrated into execution

models. The profiler measures the battery power consumption in milli Watts (mW) units

and memory consumption in terms of Mega Bytes (MBs). In addition, it measures the

makespan in terms of milliseconds (ms). However, the process of measuring makespan

differs in each execution model. For example, during static execution in Far-edge mo-

bile devices, the makespan corresponds to average makespan that an MSDM application

consumes to execute application components for each sliding window. The makespan in

F2F and F2C communication models also include execution time in far-edge device as

well as the round trip time between mobile devices, mobile edge servers, and CC servers.

In order to achieve the data reduction objective for minimum bandwidth utilization, the

amount of data stream processed in mobile devices and mobile edge servers is measured

as the ratio of reduced data and overall data stream. Finally, the accuracy of classifiers is

presented for each execution model.

5.3 Experiments

This section presents the results and analysis of experiments conducted in second phase.

Three different types of MDSM applications were developed for experimental evaluation

whereby App1, App2, and App3 use J48, naive Bayes, and random forest, respectively for

activity classification. The static execution models, as of used by other similar systems

such as open mobile miner (OMM), pocket data mining (PDM), and context-aware real-

105

Univ
ers

ity
 of

 M
ala

ya



time data analytic platform (CARDAP), are evaluated using three communication models.

First communication model enables only far-edge mobile devices as application execution

platform. The second model enables F2F communication model and the third model

facilitates application execution using F2C communication model.

5.3.1 Static Application Execution using Far-edge Devices

Although Chapter 3 presented the performance of MDSM applications using Far-edge

mobile devices. However, further evaluation and analysis are needed in order to compare

the results of static execution models with dynamic and adaptive models.

Experimental Procedure: The experiments were performed using standalone far-

edge mobile devices whereby all communication interfaces were disabled and all appli-

cation components were executed using onboard resources. The learning models for each

device were trained on the same device using data set collected in first phase of experi-

ments. The experiments were conducted by two users with three mobile devices for 10

days. The mobile phones were put in right pocket of pants during application execution.

Findings: As witnessed during problem analysis in Chapter 3, the mobile devices

failed to execute MDSM applications for data streams with large size. Therefore, in

order to lower the impact of data size, the initial data rate was settled as 100 readings per

second. Later on the time interval is increased by 10 milliseconds. Despite increasing the

time interval, MDSM applications on D1 failed to execute a few times due to low memory

availability and high data rates. However, the MDSM applications on devices D2 and D3

never failed and completely executed the data streams with high data rates as well. It was

observed that the MDSM applications became stable when time interval reached 70 ms.

Figure 5.2 shows the average battery consumption trends of three MDSM appli-

cations using D1. Since the applications use different data stream mining algorithms

therefore the computational complexity of each algorithm varies which in turn affects the

106

Univ
ers

ity
 of

 M
ala

ya



Po
w

er
 (

m
W

s)

Time Interval (milliseconds)

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

App1

App2

App3

Figure 5.2: Power Consumption of D1 using App1, App2, App3.

energy consumption by MDSM applications. The variations in computational complex-

ities emerge due to different data structures and the traversal behaviors of data stream

mining algorithms. For example, App1 uses J48 algorithm which contains a tree based

data structure and enables non-linear traversal behaviors. Alternatively, App2 uses naive

Bayes algorithm having array data structures and linear traversal methods therefore the

computational complexities of both algorithms differ. The overall trend in Figure 5.2

shows that App2 consumed comparatively lower battery power followed by App1 and

App3. It was observed that overall average battery power consumed by D1 occasion-

ally surpassed 30 mW and the average battery power consumed by MDSM applications

remained about 27 mW.

Figure 5.3 shows battery power consumption trends of D2 and D3 (the results of D1

presented earlier because of different data rates). The results show the minimum, aver-

age, and maximum battery power consumed by MDSM application components. Since

the applications’ performance varies due to computational complexity and traversal be-

107

Univ
ers

ity
 of

 M
ala

ya



P
o

w
er

 (
m

W
s)

47

26

35
41

17

55

0

50

100

150

200

250

300

350

App1 App2 App3 App1 App2 App3

D2 D3

Min

Avg

Max

Figure 5.3: Power Consumption of D2 and D3 using App1, App2, App3.

haviors of data stream mining algorithms. Therefore, using D2, App1 consumed 47 mW

on average as compared to App2 and App3 that consumed 26 mW and 35 mW, respec-

tively. The same battery power consumption trends were witnessed using D3. Overall,

D2 performed comparatively better because of availability of multi-core processors that

enable task parallelization and efficient application execution in mobile devices.

Considering all other sources of battery power consumption as constant, the battery

depletion time of MDSM applications is presented in Table 5.3. The time for complete

battery depletion from 100% charge is derived using eq. 5.1. The results were calculated

over a total battery capacity (in milliampere hours) and voltage level of 3.7V (volts). The

’P’ value was determined from battery power consumed (in mW) by MDSM applications

and the total_battery_capacity value was substituted by 2000 mAh for D1, 3100 mAh

for D2, and 4000 mAh for D3.

Timedepletion =
total_battery_capacity∗3600

(P/3.7)
(5.1)

The average battery depletion time of D1 and D2 remained around 29 to 30 hours. Using

108

Univ
ers

ity
 of

 M
ala

ya



Table 5.3: Battery Charge Depletion Time using Far-edge Devices.

Device Application P (mW) Timedepletion
D1 App1 19 24 Hours 02 Minutes

App2 14 32 Hours 14 Minutes
App3 20 22 Hours 22 Minutes

D2 App1 47 15 Hours 04 Minutes
App2 26 26 Hours 45 Minutes
App3 35 20 Hours 06 Minutes

D3 App1 41 22 Hours 06 Minutes
App2 17 52 Hours 28 Minutes
App3 55 16 Hours 15 Minutes

D2, the time decreased around 20 hours. The low battery power consumption at D1

occurred because of low data processing due to limited memory availability. Alternately,

D3 consumed low battery power because of availability of multiple processors which

enable fast process execution. Hence, D3 does not need to store and process the data in

memory buffers for longer period which results in efficient utilization of battery power.

D2 consumed comparatively higher energy because of single processing unit and data

management in memory buffers.

Since the computational behaviors of MDSM application differ which impact the

makespan. The unprocessed data streams need to be stored in memory buffers therefore

some energy spikes were observed during application execution. Figure 5.4 shows the

statistical results of standard deviation (calculated using eq. 5.2) of battery power con-

sumption trends. The results show that battery power consumption of App2 on D1 and

D3 had more energy spikes as compared to App2 and App3. Alternatively, App3 on D2

had significantly high energy spikes as compared to App1 and App3.

standard_deviation =

√
∑(x−µ)2

(n−1)
(5.2)

Here ’x’ represents the observed values and ’µ’ is the computed average of ’n’ number of

observations.

109

Univ
ers

ity
 of

 M
ala

ya



2.45

6.07

2.59

1.59

1.08

15.18

1.44

2.03

1.40

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

App1

App2

App3

App1

App2

App3

App1

App2

App3

D
1

D
2

D
3

Standard Deviation

Figure 5.4: Standard Deviation in Power Consumption

The memory consumption trends of MDSM applications using D1 are presented in

Figure 5.5. It was observed that the overall memory consumption of MDSM applications

remained similar, i.e. 26.77 MB for App1, 27.30 MB for App2, and 26.77 MB for App3.

However, the computational behaviors and the data rates have slight and ignorable impact

on memory utilization (see Table 5.4). Figure 5.6 shows the memory utilization of MDSM

M
em

o
ry

 (
M

B
s)

Time Interval (milliseconds)

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

App1

App2

App3

Figure 5.5: Memory Consumption of D1 using App1, App2, App3.

110

Univ
ers

ity
 of

 M
ala

ya



Table 5.4: Impact of Data Rate on Memory Utilization in D1.

Data Rate (ms) App1 (MBs) App2 (MBs) App3 (MBs)
10 0 0 1.63
20 0 0 0
30 1.34 3.26 1.15
40 0 0 1.17
50 0 0.04 3.82
60 0.63 0.74 3.39
70 1.34 1.8 0
80 0 3.77 3.21
90 0.41 4.66 0

100 1.95 3.42 0.16
200 0 2.87 0
300 0 0 0
400 0 0 0
500 1.75 0 0
600 1.26 0 0
700 0.79 0 0
800 0 0 0
900 0 0 0
1000 1.39 0 0

M
em

or
y 

(M
B

s)

59.39
56.21

61.80

83.10

60.49 59.00

0

20

40

60

80

100

120

140

160

180

200

App1 App2 App3 App1 App2 App3

D2 D3

Min

Avg

Max

Figure 5.6: Memory Consumption of D2 and D3 using App1, App2, App3.

applications using D2 and D3. The results show that on average D2 consumed 59.13 MB

and D3 consumed 67.53 MB as compared with 26.91 MB consumed by D1. The devices

D2 and D3 consumed more memory because of high memory availability which enables

to keep more data in memory and enable fast data processing. In application perspectives,

111

Univ
ers

ity
 of

 M
ala

ya



M
ak

e
sp

an
 (

m
ill

is
ec

on
d

s)

Time Interval (milliseconds)

0

100

200

300

400

500

600

700

800

900

10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

App1

App2

App3

Figure 5.7: Makespan of D1 using App1, App2, App3.

App1 and App2 consumed more memory in D3 as compared to D2 but App2 consumed

slightly higher memory on D2.

The makespan of MDSM applications in D1 is shown in Figure 5.7. The variation

in makespan is witnessed due to different computational behaviors of MDSM application

components. It was observed that App2 executes comparatively faster because of linear

data structures and less computational complexities of naive Bayes classifier. However,

M
ak

es
p

an
 (

m
ill

is
ec

o
n

d
s)

160

85

453

139

94

402

0

100

200

300

400

500

600

700

800

App1 App2 App3 App1 App2 App3

D2 D3

Min

Avg

Max

Figure 5.8: Makespan of D2 and D3 using App1, App2, App3.

112

Univ
ers

ity
 of

 M
ala

ya



non-linear data structures such as used by J48 and random forest classifiers take more

time for traversals and computations. Similarly, App3 which uses multiple tree-based

data structures consumes marginally higher makespan as compared to single tree-based

data structure of App2. Similarly, the MDSM applications in D2 and D3 had shown the

similar results (see Figure 5.8). The comparison shows that App1 on D1 consumed about

50% extra makespan as compared to App2 and in case of App3 the average makespan

was increased about 600%. Similarly on D2, App1 consumed 94% extra makespan and

the ratio was increased about 433% in the case of App3. Likewise, App1 consumed 48%

which was increased upto 328% using App3. Overall, D2 executes MDSM applications

faster as compared to D1 because of more memory availability and D3 performs better

due to availability of multiprocessor architectures.

Considering the results of data stream mining algorithms, the accuracy of classifiers

is calculated using confusion matrix for physical activities. Figure 5.9 shows the overall

accuracy trends of MDSM applications. The results show that all applications produced

more accurate results on D1, followed by D3 and D2. An interesting fact was found that

88.2
87.9

83.5

81.3
80.9

79.4

83.7

82.8

81.1

74

76

78

80

82

84

86

88

90

App1 App2 App3 App1 App2 App3 App1 App2 App3

D1 D2 D3

Accuracy

Figure 5.9: Overall Accuracy of App1, App2, App3.

113

Univ
ers

ity
 of

 M
ala

ya



single-tree based learning models (i.e. used by App1) provide more accurate results as

compared to multiple tree-based and probabilistic learning models.

5.3.2 Static Application Execution using F2F Communication Model

Considering the three-layer architecture in Chapter 3, the MDSM applications were eval-

uated using F2F communication model.

Experimental Procedure: The experiments were performed using four far-edge

mobile devices. In this experiment, D3 was replaced with D4 and D5 (see details in Ta-

ble 5.5). The devices can function as both client and server, but not at the same time.

Therefore, two versions of each MDSM application were developed to run on far-edge

mobile client devices and mobile edge servers. The client side application enabled data

acquisition, data adaption, device discovery, peer network formation, data offloading,

knowledge integration, and knowledge management components. The client device col-

lects the data streams, and sends to mobile edge servers which perform feature extraction,

data fusion and data mining operations. The resultant knowledge patterns were sent back

to client devices using pattern synchronization components and client devices perform

knowledge integration and knowledge management operations. To further the experi-

ment, the learning models were reused as previously developed using far-edge mobile

devices. Two mobile users performed the experiments whereby the client device was

placed in the right pocket of the pants and the mobile edge server in the left pocket. The

experiments were run for three days whereby the users were asked to run each application

for 24 hours. Since the communication model uses local communication channels there-

fore only the Wi-Fi interfaces of all devices were turned on during experiments. All other

factors of complexity such as mobility, resource availability in mobile edge servers, and

battery power consumption by other processes in client and server devices were neglected

during these experiments.

114

Univ
ers

ity
 of

 M
ala

ya



Table 5.5: Selected Mobile Edge Servers.

D4 D5
Make Samsung Redmi
Model Galaxy S7 Edge Mi4i
Operating System Android 6.0 Android L

Processor
Quad-core 2.3 GHz Mongoose +
Quad-core 1.6 GHz Cortex-A53

Qualcomm Snapdragon 615
Octa-core 64-bit

Memory 4 GB 2 GB
Battery Power 3600 mAh 3120 mAh

Findings: The measurements were taken from client mobile devices in order to

evaluate the resource consumption during data communication between client and server

devices. It was observed that, unlike direct execution in mobile devices, the MDSM

applications did not crashed because the data streams were partially processed in client

devices and partially in mobile edge servers. The experiments were performed by setting

the time interval for data rate as 10 ms.

On both devices, i.e. D1 and D2, similar battery power consumption trends were

observed (see Figure 5.10) whereas App1 consumed comparatively higher battery power.

0

10

20

30

40

50

60

0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

Po
w

er
 (m

ill
iw

at
ts

)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

Figure 5.10: Average Power Consumption of App1, App2, App3.

115

Univ
ers

ity
 of

 M
ala

ya



37

30
30

0

10

20

30

40

50

60

App1 App2 App3

Po
w

er
 (m

ill
iw

at
ts

)

Min

Avg

Max

Figure 5.11: Power Consumption Trends of App1, App2, App3.

It was observed that size of data stream did not affected the battery power consumption

significantly. Figure 5.11 shows the minimum, average, and maximum battery power

consumed during experiments. On average, App1 consumed 37 mW for each batch of

sliding windows whereas App2 and App3 consumed almost 30 mW. However, there exist

variations in battery power consumption during each iteration. Considering these varia-

tions, the standard deviation was computed using eq. 5.2. The standard deviation in App1

observed as 5.91 mw, which decreased in App2 and remained 3.77 mW. However, in

App3 the standard deviation remained 3.36 mW.

Considering the battery power consumption trends and standard deviation results,

the battery depletion time was computed for D1 and D2 using eq. 5.1. It should be noted

that total battery capacity of D1 was 2000 mAh and D2 had 3100 mAh battery. Table 5.6

shows the battery depletion time. The average battery depletion time for D1 remained

between 12 to 16 hours, however, for D2, the battery can last from 18 to 24 hours. Con-

116

Univ
ers

ity
 of

 M
ala

ya



Table 5.6: Battery Charge Depletion Time using F2F Communication Model.

D1
App1 App2 App3

P Timedepletion P Timedepletion P Timedepletion
Min 21 21 Hrs 14 Mins 22 20 Hrs 18 Mins 15 39 Hrs 06 Mins
Avg-S.Dev 31 14 Hrs 32 Mins 25 18 Hrs 16 Mins 24 18 Hrs 50 Mins
Avg 36 12 Hrs 33 Mins 29 15 Hrs 31 Mins 28 16 Hrs 16 Mins
Avg+D.Dev 41 11 Hrs 22 Mins 33 13 Hrs 45 Mins 32 14 Hrs 37 Mins
Maximum 58 08 Hrs 05 Mins 40 11 Hrs 10 Mins 38 13 Hrs 08 Mins

D2
App1 App2 App3

P Timedepletion P Timedepletion P Timedepletion
Min 23 30 Hrs 32 Mins 21 33 Hrs 17 Mins 19 36 Hrs 22 Mins
Avg-S.Dev. 31 22 Hrs 20 Mins 26 26 Hrs 46 Mins 27 25 Hrs 48 Mins
Avg 37 18 Hrs 06 Mins 30 23 Hrs 34 Mins 30 23 Hrs 34 Mins
Avg+S.Dev. 43 16 Hrs 03 Mins 34 20 Hrs 24 Mins 33 21 Hrs 25 Mins
Max 52 13 Hrs 23 Mins 41 17 Hrs 19 Mins 43 16 Hrs 02 Mins

sidering the standard deviation, D1 depletes between 11 to 19 hours and D2 can last

between 16 to 27 hours. On other hand, during slow battery depletion D1 lasts between

20 to 39 hours and D2 depletes between 30 to 36 hours. During fast battery depletion,

D1 lasts between 08 and 13 hours and D2 depletes between 13 and 17 hours. Overall, D1

depletes fast because of low availability of battery capacity.

0

10

20

30

40

50

60

70

80

0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

M
em

o
ry

 (M
B

s)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

Figure 5.12: Average Memory Consumption of App1, App2, App3.

117

Univ
ers

ity
 of

 M
ala

ya



68

65

60

0

10

20

30

40

50

60

70

80

App1 App2 App3

M
em

o
ry

 (
M

B
s)

Min

Avg

Max

Figure 5.13: Memory Consumption Trends of App1, App2, App3.

Figure 5.12 shows the average memory consumption of MDSM applications on D1

and D2. It was observed that there is no significant variation in memory consumption

during whole experiment. On average, App1 consumed comparatively higher memory,

followed by App2 and then App3. Figure 5.13 depicts the minimum, average, and max-

imum memory consumption trends. It was observed that despite variation in memory

availability, the MDSM applications consumed similar amount of memory. This behavior

occurs because the computational complexity of application components in mobile de-

vices did not varied significantly and data stream mining components were executed in

mobile edge servers. The difference between lowest and highest memory consumption

remained about 12 MB in the case of App1 and App3 while it lowers to 5 MB in the case

of App2. However, the standard deviation in overall memory consumption remained 1.81

MB for App1, 1.34 MB for App2, and 3.02 MB for App3. Hence, the results shows the

insignificant variation in memory consumption.

Since the MDSM applications use client-server based execution model, therefore,

the makespan accounts for time of sending and receiving data streams and the time to

execute data streams in mobile edge servers. Figure 5.14 depicts the average makespan in

118

Univ
ers

ity
 of

 M
ala

ya



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

Figure 5.14: Average Makespan of App1, App2, App3.

2799
3030

3156

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

App1 App2 App3

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Min

Avg

Max

Figure 5.15: Makespan Trends of App1, App2, App3.

MDSM applications. It was observed that on average App3 had more makespan followed

by App1 and then App2. However, the makespan values had great amount of variations.

The computed standard deviation for makespan values of App1 remained 1121 ms which

accounts about 40% of average makespan i.e. 2799 ms. Similarly, standard deviation of

makespan for App2 was 1232 ms (about 40%) and for App3 it went upto 1347 ms (about

42%). Figure 5.15 shows the makespan trends in MDSM applications.

Considering the results of data stream mining algorithms in mobile edge servers (see

119

Univ
ers

ity
 of

 M
ala

ya



82.1

80.7

80.3

81.6

81.1

80.1

79

79.5

80

80.5

81

81.5

82

82.5

App1 App2 App3 App1 App2 App3

D1 D2

Accuracy

Figure 5.16: Accuracy Trends using D1 and D2.

Figure 5.16), the accuracy of the classifiers mainly depends upon the quality of learning

models. During these experiments, the accuracy remained more or less similar as it was

in the case of far-edge mobile devices.

5.3.3 Static Application Execution using F2C Communication Model

Referring to three-tier architecture, the MDSM applications were executed and evaluated

using F2C communication model.

Experimental Procedure: The experiments were performed using D1 and D2 and

Wi-Fi interfaces of both devices were enabled. To further the experiments, two versions

of each MDSM application were developed. On the mobile side, an android application

was developed that enables data acquisition, data adaptation, data offloading, knowledge

integration, and knowledge management components. On the cloud side, the cloud ser-

vices for each MDSM application were orchestrated. To this end, the cloud services for

data synchronization, data preprocessing, data fusion, and data mining were deployed

using Google AppEngine (Ciurana, 2009). In addition, learning models were reused and

deployed on the cloud side for each MDSM application. The experiments were performed

by commuting inside University network in order to seamlessly switch among different

120

Univ
ers

ity
 of

 M
ala

ya



communication points (i.e. wireless access points) and avoid manually connecting with

Internet through other networks. The wireless access points support bandwidth utilization

from 10 Mbps (Megabits per second) to 100 Mbps. The experiments were performed by

two users by putting mobile devices in the right pockets of their pants. The experiment

were run for three hours for each MDSM application.

Findings: In these experiments, the measurements were taken from client mobile

devices in order to find the cost of data communication between mobile devices and

CC servers. It was observed that, unlike MDSM application using F2F communication

model, the applications occasionally crashed with high data rate. Therefore, the experi-

ments were performed by setting the time interval of 20 ms.

The battery power consumption trends on both devices i.e. D1 and D2 remained

similar. In both devices, App2 consumed comparatively lower battery power, followed

by App1 and App3 (see Figure 5.17). It was observed that App1 and App2 remained

stable however in some cases App3 consumed comparatively higher battery power.

The variations in battery power measurements were calculated by finding the stan-

dard deviation using eq. 5.2. The standard deviation in App2 was 3.25 mW which in-

0

20

40

60

80

100

120

0 2 4 6 8 10 12

P
o

w
e

r 
(m

il
li

w
at

ts
)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

Figure 5.17: Average Power Consumption of App1, App2, App3.

121

Univ
ers

ity
 of

 M
ala

ya



33

29

39

0

20

40

60

80

100

120

App1 App2 App3

Min

Avg

Max

Figure 5.18: Power Consumption Trends of App1, App2, App3.

Table 5.7: Battery Charge Depletion Time using F2C Communication Model.

D1
App1 App2 App3

P Timedepletion P Timedepletion P Timedepletion
Min 18 25 Hrs 05 Mins 19 23 Hrs 37 Mins 11 40 Hrs 36 Mins
Avg-S.Dev 24 18 Hrs 50 Mins 25 18 Hrs 16 Mins 25 18 Hrs 16 Mins
Avg 31 14 Hrs 32 Mins 28 16 Hrs 25 Mins 38 12 Hrs 08 Mins
Avg+D.Dev 38 12 Hrs 08 Mins 31 14 Hrs 32 Mins 51 09 Hrs 10 Mins
Maximum 50 09 Hrs 28 Mins 42 10 Hrs 57 Mins 108 4 Hrs 11 Mins

D2
App1 App2 App3

P Timedepletion P Timedepletion P Timedepletion
Min 20 34 Hrs 41 Mins 21 33 Hrs 17 Mins 14 49 Hrs 15 Mins
Avg-S.Dev 27 25 Hrs 48 Mins 27 25 Hrs 48 Mins 28 24 Hrs 57 Mins
Avg 34 20 Hrs 24 Mins 30 23 Hrs 34 Mins 41 17 Hrs 18 Mins
Avg+D.Dev 41 17 Hrs 18 Mins 33 21 Hrs 25 Mins 54 13 Hrs 14 Mins
Maximum 53 13 Hrs 38 Mins 44 16 Hrs 04 Mins 112 06 Hrs 14 Mins

creased to 7.13 mW in App1 and 12.86 mW in App3. Figure 5.18 shows the minimum,

average, and maximum battery power consumption trends. The battery depletion times

of both devices were computed using eq. 5.1 and the results are presented in Table 5.7.

The battery depletion time of D1 fluctuates between 4 hours and 41 hours and for D2,

the battery completely discharges between 6 to 49 hours. However the average battery

depletion time of D1 remained between 12 to 16 hours and D2 discharges between 17 to

122

Univ
ers

ity
 of

 M
ala

ya



0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12

M
em

o
ry

 (M
B

s)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

Figure 5.19: Average Memory Consumption of App1, App2, App3.

24 hours. Considering standard deviation, D1 discharges between 9 to 18 hours and D2

lasts for 13 to 26 hours.

Figure 5.19 shows the memory consumption of MDSM applications using F2C com-

munication model. It was observed that App2 consumed comparatively lower memory

followed by App1 and App3. However, there were insignificant variations during whole

experiment. This behavior uncovered because computational complexities of application

components in far-edge devices did not significantly varied. The minimum, average,

59
58

65

0

10

20

30

40

50

60

70

80

App1 App2 App3

Min

Avg

Max

Figure 5.20: Memory Consumption Trends of App1, App2, App3.

123

Univ
ers

ity
 of

 M
ala

ya



and maximum memory consumption trends are presented in Figure 5.20. The difference

between lowest and highest memory consumption remained about 11 MB for App1 and

App2. However it increased upto 19 MB for App3. This behavior uncovered because

MDSM applications stores data streams temporarily in memory buffers and each batch

of sliding windows is sent upon the arrival of previously transferred data streams. The

high makespan in app3 increased the memory consumption. The standard deviation in

memory consumption remained 1.85 MB for App1, 2.24 MB for App2, and 4.64 MB for

App3. This deviation is insignificant as compared to available memory in devices (i.e.

832 MB in D1 and 2679 MB in D2).

The makespan in MDSM applications vary because of variable bandwidths and mo-

bility of devices. Figure 5.21 shows the average makespan of MDSM applications using

F2C communication model. It was observed that on average there is insignificant differ-

ence however the variations in each set of execution is found. Figure 5.22 shows the min-

imum, average, and maximum makespan in MDSM applications. The average makespan

in applications remained between 2.7 and 2.9 seconds. However, the difference between

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12

M
ak

es
[a

n
 (m

ill
is

ec
o

n
d

s)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

Figure 5.21: Average Makespan of App1, App2, App3.

124

Univ
ers

ity
 of

 M
ala

ya



2870 2771 2779

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

App1 App2 App3

Min

Avg

Max

Figure 5.22: Makespan Trends of App1, App2, App3.

minimum and maximum makespan increased about 5 to 6 seconds. The standard devia-

tion in makespan of App1 was found as 1039 ms which accounts about 36% of average

makespan. For App2, the standard deviation was 947 ms (about 34%) and for App3 it was

increased up to 1093 ms (about 39%). Although there was a minor variation in average

and standard deviation values of makespan, however, the makespan spikes were observed

due to unavailability of Internet connection or low bandwidth.

Considering the results of data stream mining algorithms, Figure 5.23 presents the

accuracy values of each application on D1 and D2. Similar to previous experiments, the

accuracy results were more or less shown the same trends.

The experimental evaluation proved that performance of MDSM applications vary in

each device. In order to find the correlation among power consumption, makespan, and

memory consumption, the statistical analysis were performed by finding the Pearson’s

correlation coefficients (termed as ’r’) using bi-variate analysis method in SPSS (Norusis,

2008). In addition, the coefficients of determination were computed against each ’r’ value

in order to determine the percentage of shared variance in each correlation. The Pear-

son’s correlation coefficients were selected instead of other correlation methods such as

125

Univ
ers

ity
 of

 M
ala

ya



83.1

81.5

79.8

80.4
80.3

79.2

77

78

79

80

81

82

83

84

App1 App2 App3 App1 App2 App3

D1 D2

Accuracy

Figure 5.23: Accuracy Trends of App1, App2, App3.

Kendall’s Tau-b and Spearman’s correlation coefficients because it supports linear corre-

lation among two variables (Bolboaca & Jäntschi, 2006). In addition, it works with the

data which is not normally distributed and may have outliers. Moreover, Pearson corre-

lation coefficients can be computed from ordinal (i.e. ordered) variables. The ’r’ values

were computed using eq. 5.3. It should be noted that ’r’ values always lies between the

interval of -1 and +1 whereas the interval and level of significance of relationship is pre-

sented in Table 5.8. The coefficients of determination (i.e. shared variance (vs)) were

computed using eq. 5.4.

r =
n∑(p×q)− (∑(p)×∑(q))√
[n∑ p2− (∑ p)2][n∑q2− (∑q)2]

(5.3)

In eq. 5.3, ’n’ represents the sample size and p, q are the studied variables.

vs = r2×100 (5.4)

Considering the static execution models, The ’r’ values and VS were computed for each

126

Univ
ers

ity
 of

 M
ala

ya



Table 5.8: Correlation Intervals and Level of Significance.

Min Max Significance Direction
-1.00 -0.50 High Negative
-0.49 -0.30 Medium Negative
-0.29 -0.10 Small Negative
-0.09 +0.09 No -
0.10 0.29 Small Positive
0.30 0.49 Medium Positive
0.50 1.00 High Positive

Table 5.9: Correlation Coefficients and Shared Variance for Static Execution Models.

RAM,Power RAM,Makespan Power,Makespan
Far-edge Devices r (App1) 0.318 -0.056 -0.023

VS (App1) 10.11% 0.31% 0.05%
r (App2) -0.032 0.1 0.101

VS (App2) 0.10% 1% 1.02%
r (App3) 0.469 0.094 0.483

VS (App3) 21.99% 0.88% 23.32%
F2F r (App1) 0.07 -0.006 -0.109

VS (App1) 0.49% 0.003% 1.19%
r (App2) -0.075 0.019 -0.147

VS (App2) 0.56% 0.036% 14.71%
r (App3) 0.274 0.098 -0.102

VS (App3) 7.51% 0.96% 1.04%
F2C r (App1) -0.585 -0.02 -0.017

VS (App1) 34.22% 0.04% 0.029%
r (App2) 0.042 -0.012 -0.071

VS (App2) 0.18% 0.014% 0.50%
r (App3) -0.666 -0.109 -0.044

VS (App3) 44.35% 1.19% 0.19%

MDSM applications (i.e. App1, App2, and App3) and presented in Table 5.9. Follow-

ing hypothesis were constructed for correlation analysis whereby H0 presents the null

hypothesis and H1 represents the alternate hypothesis.

Correlation Analysis for Far-edge Mobile Devices

H0 : For App1, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App1, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

127

Univ
ers

ity
 of

 M
ala

ya



Significance: Referring Table 5.9, a positive correlation (i.e. r=0.318) between mem-

ory utilization and battery power consumption was witnessed whereby 10.11% of the

executions share the variances. However, the correlation of makespan with both memory

and battery power consumption remained negative and insignificant whereby the shared

variance remained below 0.32%. Conclusively, H1 is accepted for memory and battery

power relationship however H0 is accepted for correlations of makespan with memory

and battery power consumption.

H0 : For App2, there is no significant correlation between batter power consumption,

memory utilization, and makespan.

H1 : For App2, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: The analysis shows that there is insignificant correlation among mem-

ory utilization, battery power consumption, and makespan. It was found that memory

utilization and power consumption are negatively correlated however the relationship is

not significant (i.e. r=-0.032). Alternatively, makespan is positively related with memory

utilization and power consumption but the relationship is minutely significant in this case.

Considering these correlation, H0 is accepted for all three relationships.

H0 : For App3, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App3, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: The ’r’ value for correlation among makespan and memory utilization

was found as 0.094 which results in 0.88% variance among variables. Therefore the

relationship remained insignificant. However, strong correlations of power consumption

with makespan and memory utilization were observed whereas the ’r’ values remained

0.469 and 0.483, respectively. The VS for power and memory remained 21.99% however

128

Univ
ers

ity
 of

 M
ala

ya



it increased up to 23.32% in the case of relationship between power consumption and

makespan. Considering these values, H0 is accepted for the correlation between memory

consumption and makespan and H1 is accepted for rest of the correlations.

Correlation Analysis for F2F Communication Model

H0 : For App1, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App1, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: The ’r’ values show the positive correlation between memory utiliza-

tion and power consumption, however, the correlation is not significant enough to distin-

guish the relationship among both variables. Alternatively, the correlation of makespan

with power consumption and memory utilization is negatively directed but this correla-

tion is also not very significant. The VS values of variables fluctuate between 0.003% and

1.19%. Considering these results, H0 is accepted for all three variables.

H0 : For App2, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App2, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: The ’r’ values show the negative correlation of battery power con-

sumption with makespan and memory utilization. However, the correlation between bat-

tery power consumption and memory utilization is not significant enough to be consid-

ered. The correlation of battery power consumption with makespan has medium level

significance with VS values as 14.71%. Alternatively, makespan and memory utiliza-

tion are positively correlated but there is no significant correlation observed between the

variables. Considering these correlations, H0 is accepted for the correlations of memory

utilization with battery power consumption and makespan. However, for the correlation

129

Univ
ers

ity
 of

 M
ala

ya



between makespan and battery power consumption, H1 is accepted.

H0 : For App3, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App3, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: The analysis show that memory utilization is positively correlated

with other variables. However, the correlation between battery power consumption and

makespan is negatively directed. The medium level significance was observed for the cor-

relation between memory utilization and battery power consumption. Similarly, medium

but not very much significant correlation was observed between battery power utilization

and makespan whereas the VS remained 1.04%. On the other hand, no significant correla-

tion was observed between memory utilization and makespan. Considering these results,

H0 is accepted for the relationship between memory utilization and makespan. For rest of

the correlations, H1 is accepted.

Correlation Analysis for F2C Communication Model

H0 : For App1, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App1, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: The ’r’ values show the negative correlation among all variables. How-

ever, memory utilization and battery power consumption are highly correlated (i.e. r=

-0.585) having VS as 34.22%. The relationships of makespan with battery power con-

sumption and memory utilization were not significant enough. Considering these results,

H1 is accepted for the relationship between memory utilization and battery power con-

sumption. For other relationships, H0 is accepted.

H0 : For App2, there is no significant correlation between battery power consump-

130

Univ
ers

ity
 of

 M
ala

ya



tion, memory utilization, and makespan.

H1 : For App2, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: Referring Table 5.9, the correlation of makespan with other variables

is negatively directed and the correlation coefficient for memory utilization and power

consumption has positive direction. However, the ’r’ values shows the insignificant cor-

relation among all variables under consideration and the VS values fluctuate between

0.014% and 0.50%. Therefore, H0 is accepted for all correlations.

H0 : For App3, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App3, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: The ’r’ values show that all correlation coefficients are negatively di-

rected. The correlation between memory utilization and battery power consumption is

highly significant (i.e. r=-0.666) having VS of 44.35%. On the other hand, the correlation

between memory utilization and makespan has medium level of significance having VS

as 1.19%. However, the correlation between power consumption and makespan is not

significant. Considering these results, H0 is accepted for the correlation between battery

power consumption and makespan. For rest of the correlations, H1 is accepted.

Overall, the correlation analysis show that there is a medium level of significance

between memory utilization and battery power consumption when MDSM applications

were executed using far-edge mobile devices and F2F communication models. However,

there exists a high but negative correlation between memory utilization and power con-

sumption when applications were executed using F2C communication model. On the

other hand, the memory utilization and makespan has no correlation in all three execution

models. Finally, the correlation between battery power consumption and makespan has

131

Univ
ers

ity
 of

 M
ala

ya



medium level of significance.

This section presented performance evaluation of static execution models of MDSM

applications in far-edge mobile devices, and F2F and F2C communication models. Since

there is no simulator available for the evaluation of existing systems, therefore these sys-

tems are mapped onto static execution models in order to compare with the performance

of proposed dynamic and adaptive execution models (see Figure 5.24) later in this chapter.

Static Execution 
Models

F2C

F2F

Standalone Far-edge Devices

MineFleet

OMM

CARDAP

MOSDEN

MARS

STAR

PDM

CARA

SOA

MobiSens

Mobile WEKA

MSM Mobile Miner

Figure 5.24: Existing Systems and their Mappings with Static Execution Models.

5.3.4 Dynamic Application Execution using UniMiner

The proposed dynamic execution model was evaluated by enabling all three communica-

tion models (i.e. standalone, F2F, and F2C) at the same time in UniMiner architecture.

Experimental Procedure: The experiments were performed using four mobile

devices (i.e. D1, D2, D4, and D5) by enabling the Wi-Fi interfaces. The devices D1

and D2 function as client devices whereas the devices D4 and D5 work as mobile edge

132

Univ
ers

ity
 of

 M
ala

ya



servers. Three versions of each MDSM application were developed to run in client mo-

bile devices, mobile edge servers, and in CC servers. Since the main objective of dynamic

execution model is to lower the makespan in MDSM applications by preferring local ex-

ecution in client devices instead of mobile edge servers and CC servers. Therefore, client

applications enable components for data acquisition, data adaptation, data preprocessing,

data fusion, transient data stream management, device discovery, peer network formation,

resource monitoring, context collection, adaptation engine, data offloading, data mining,

knowledge integration, and knowledge management. The server application for mobile

edge servers enabled components for data mining and pattern synchronization. Similarly

cloud side application enabled the data mining and pattern synchronization services.

The experiments were performed by two users. It should be noted that the same

learning models were reused which were developed in first phase of performance evalua-

tion. First user put D1 in right pocket and D4 in left pocket and second user put D3 and

D5 in right and left pockets of pants, respectively. The users were instructed to remain

inside university premises in order to asses the performance of execution model within

same Wi-Fi network. The mobility factors in switching to other networks were ignored

in this experiment. The experiment were run for nine hours in total whereby each MDSM

application was executed for three hours. It should be noted that number of events stored

in each data file during transient data stream management varied randomly whereas the

maximum events stored in a single file were set as 1000.

Findings: The experiments were performed by setting the time interval for data rate

as 10 ms. It was observed that the application did not crashed with the given data rate.

The power consumption trends on both devices varied and presented in Figure 5.25a

and Figure 5.25b. The power consumption varies due to varying resource availability in

both devices. It was observed that App3 on D1 consumed comparatively higher battery

power while App1 and App2 consumed more or less same amount of power. Alterna-

133

Univ
ers

ity
 of

 M
ala

ya



0

10

20

30

40

50

60

70

0.00 5.00 10.00 15.00 20.00 25.00

Po
w

er
 (m

ill
iw

at
ts

)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(a) Power Consumption of D1.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

Po
w

er
 (m

ill
iw

at
ts

)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(b) Power Consumption of D2.

Figure 5.25: Power Consumption using Dynamic Execution Model

App1 App2 App3 App1 App2 App3

D1 D2

Min 8 3 5 22 25 22

Avg 16 14 24 29 40 39

Max 57 32 52 42 68 68

0

10

20

30

40

50

60

70

80

Po
w

er
 (

m
ill

iw
at

ts
)

Figure 5.26: Power Consumption Trends of D1 and D2.

tively, using D2, App1 consumed comparatively lower power whereas App2 and App3

consumed more or less same amount of power. The overall power consumption trends

of both devices are presented in Figure 5.26. To compare the performance of MDSM

applications in both devices, the standard deviation was calculated using eq.5.2. It was

observed that App1 has standard deviation of 6 mW on D1 which was lowered to 4 mW

on D2. However, for App2, standard deviation is increased up to 10 mW on D2. For

App3, the standard deviation on D1 was 9 mW which was slightly increased up to 10

mW on D2.

Table 5.10 presents the battery depletion time of both devices. It was found that

134

Univ
ers

ity
 of

 M
ala

ya



Table 5.10: Battery Charge Depletion Time using Dynamic Execution Model.

D1
App1 App2 App3

P Timedepletion P Timedepletion P Timedepletion
Min 8 55 Hrs 05 Mins 3 148 Hrs 02 Mins 5 89 Hrs 20 Mins
Avg-S.Dev 10 44 Hrs 42 Mins 8 55 Hrs 05 Mins 15 29 Hrs 36 Mins
Avg 16 28 Hrs 25 Mins 14 32 Hrs 11 Mins 24 18 Hrs 50 Mins
Avg+D.Dev 22 20 Hrs 18 Mins 20 22 Hrs 20 Mins 33 13 Hrs 45 Mins
Maximum 57 08 Hrs 19 Mins 32 14 Hrs 27 Mins 52 12 Hrs 33 Mins

D2
App1 App2 App3

P Timedepletion P Timedepletion P Timedepletion
Min 22 31 Hrs 28 Mins 25 27 Hrs 53 Mins 22 31 Hrs 28 Mins
Avg-S.Dev 25 27 Hrs 53 Mins 30 23 Hrs 34 Mins 29 24 Hrs 13 Mins
Avg 29 24 Hrs 13 Mins 40 17 Hrs 20 Mins 39 18 Hrs 04 Mins
Avg+D.Dev 33 21 Hrs 25 Mins 50 14 Hrs 16 Mins 49 14 Hrs 04 Mins
Maximum 42 16 Hrs 38 Mins 68 10 Hrs 12 Mins 68 10 Hrs 12 Mins

complete battery depletion time of D1 while running App1 varies between eight hours

at minimum to 55 hours at maximum. However, battery depletion time of D2 for App1

fluctuates between 16 hours and 31 hours. Similar trends were uncovered for App2 and

App3 whereby the battery depletion time has more variation on D1 as compared to D2.

Overall, the battery depletion time of D1 varies between 08 hours at minimum to 148

hours at maximum. For D2, it varies between minimum 10 hours to maximum 31 hours.

The memory consumption trends of both devices are presented in Figures 5.27 and

Figure 5.28. It was observed that, on average, D1 consumed lower memory (i.e. be-

tween 34 MB and 38 MB) because of low memory availability. Alternatively, the average

memory consumption on D2 remained between 54 MB and 62 MB. It was also observed

that during some executions, the memory consumption at D1 drastically increased almost

doubling the average. Therefore, the standard deviations results of D1 remained com-

paratively higher. The standard deviations on D1 were found as 6.72 MB, 11.7 MB, and

13.65 MB for App1, App2, and App3, respectively. However, the memory consumption

on D2 remained comparatively stable whereas the standard deviations for App1, App2,

and App3 remained 2.38 MB, 4.44 MB, 1.3 MB, respectively. Considering the memory

135

Univ
ers

ity
 of

 M
ala

ya



0

10

20

30

40

50

60

70

80

0.00 5.00 10.00 15.00 20.00 25.00

M
em

o
ry

 (
M

B
s)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(a) Memory Consumption of D1.

0

10

20

30

40

50

60

70

80

0.00 5.00 10.00 15.00 20.00 25.00

M
em

o
ry

 (
M

B
s)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(b) Memory Consumption of D2.

Figure 5.27: Memory Consumption using Dynamic Execution Model

App1 App2 App3 App1 App2 App3

D1 D2

Min 30 25 24 58 49 55

Avg 34 35 38 62 54 61

Max 66 66 64 68 66 63

0

10

20

30

40

50

60

70

80

M
em

o
ry

 (
M

B
s)

Figure 5.28: Memory Consumption Trends of D1 and D2.

consumption at application level, App3 consumed comparatively higher memory at D1,

whereas there is no significant difference between App1 and App3 observed. On the other

hand, at D2, App2 consumed comparatively lower memory, whereas an insignificant dif-

ference in memory consumption was observed for App1 and App3. At device level, D2

consumed comparatively higher memory because of more memory availability. How-

ever, the average memory consumption on D1 accounts for about 4.32% of total available

memory (i.e. 832 MB) which is decreased up to 2.12% of total available memory (i.e.

2783 MB) in D2. Therefore, it was found that dynamic application execution does not

hampers the memory resources of mobile devices.

136

Univ
ers

ity
 of

 M
ala

ya



0

2000

4000

6000

8000

10000

12000

14000

16000

0.00 5.00 10.00 15.00 20.00 25.00

M
ak

es
[a

n
 (m

ill
is

ec
o

n
d

s)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(a) Makespan of D1.

0

5000

10000

15000

20000

25000

30000

35000

0.00 5.00 10.00 15.00 20.00 25.00

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Stream Size (KBs)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(b) Makespan of D2.

Figure 5.29: Makespan using Dynamic Execution Model

App1 App2 App3 App1 App2 App3

D1 D2

Min 122 67 516 121 111 506

Avg 444 1128 1785 1255 1401 1565

Max 6933 14446 8303 16804 31025 26817

0

5000

10000

15000

20000

25000

30000

35000

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Figure 5.30: Makespan Trends of D1 and D2.

Figure 5.29 and Figure 5.30 present the makespan variations and trends during dy-

namic application execution. Since the execution model enables to dynamically switch

between three different modes of execution. Therefore, significant variations in makespan

values were observed. For example the makespan values for App1 on D1 fluctuated be-

tween 122 ms and 6933 ms and on D2 the makespan fluctuated between 122 ms and 16804

ms. Similar trends were observed for App2 and App3 on both devices. Overall, the aver-

age makespan on D1 remained 444 ms, 1128 ms, and 1785 ms for App1, App2 and App3.

Alternatively, the average makespan on D2 remained 1255 ms, 1401 ms, and 1565 ms for

App1, App2, and App3, respectively. Considering the variations in makespan, the com-

137

Univ
ers

ity
 of

 M
ala

ya



puted standard deviation was 1169 ms, 2556 ms, and 1825 ms for App1, App2, and App3

for D1. It was found that standard deviation for App1 on D1 is about 62% higher as com-

pared with average makespan. Similarly, for App2, the difference between average and

standard deviation of makespan increases about 56% of average makespan. For App3, this

difference reduces to about 2%. On the other hand, the average makespan on D2 remained

1255 ms, 1401 ms, and 1565 ms for App1, App2, and App3 respectively. However, the

standard deviation remained 63%, 67%, and 41% of average makespan for App1, App2,

App3, respectively. The variations in statistics show that neither the available resources

in far-edge mobile devices nor the size of data stream impacts the makespan. However

communication relevant issues such as connecting ad hoc mobile edge servers and trans-

mitting data to cloud servers from different bandwidth connections increase the makespan

in MDSM applications. Considering overall average makespan, MDSM applications on

D1 performed comparatively better. Apparently, it looks that dynamic execution model

performs worse in terms of makespan; when considered the amount of data processed in

all three modes, it was found that most of the executions were performed inside far-edge

91%

88%

85%

88%

89%

86%

7%

8%

9%

6%

8%

11%

2%

4%

6%

6%

3%

3%

0% 20% 40% 60% 80% 100%

App1

App2

App3

App1

App2

App3

D
1

D
2

Remote

Collaborative

Local

Figure 5.31: Data Reduction using Dynamic Execution Model.

138

Univ
ers

ity
 of

 M
ala

ya



devices whereas the execution model occasionally switched to other execution modes.

Figure 5.31 shows the amount of data processed in each mode. It was observed that each

MDSM application processed at least 85% of data using far-edge devices whereas at most

11% of data was processed using mobile servers and 6% by CC servers. These statistics

shows that adoption of dynamic execution model is favorable for MDSM application ex-

ecution because of reduced dependency over mobile edge servers and CC servers.

Considering the performance of MDSM applications, the accuracy trends are pre-

sented in Figure 5.32. The results show insignificant variations however the applications

on D1 produced comparatively lower accuracy. The produced accuracy remained as low

as 78.9% and as high as 79.7%. The accuracy varied because the learning models were

reused however the testing was performed in real settings by different users.

78.9

79.6

79.8

80.1

79.8

79.7

78.2

78.4

78.6

78.8

79

79.2

79.4

79.6

79.8

80

80.2

App1 App2 App3 App1 App2 App3

D1 D2

Accuracy

Figure 5.32: Accuracy Analysis using Dynamic Execution Model.

Correlation analysis for dynamic execution model

H0 : For App1, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App1, there is a significant correlation between battery power consumption,

139

Univ
ers

ity
 of

 M
ala

ya



Table 5.11: Correlation Coefficients and Shared Variance in Dynamic Execution model.

RAM,Power RAM,Makespan Power,Makespan
r (App1-D1) 0.583 0.959 0.677

VS (App1-D1) 33.99% 91.97% 45.83%
r (App2-D1) 0.722 0.778 0.275

VS (App2-D1) 52.12% 60.52% 7.56%
r (App3-D1) 0.647 0.887 0.620

VS (App3-D1) 41.86% 78.68% 38.44%
r (App1-D2) 0.182 0.245 0.503

VS (App1-D2) 3.31% 6% 25.3%
r (App2-D2) 0.455 0.378 0.479

VS (App2-D2) 20.7% 14.29% 22.94%
r (App3-D2) -0.179 -0.109 0.589

VS (App3-D2) 3.20% 1.19% 34.69%

memory utilization, and makespan.

Significance: The ’r’ values relevant to App1 show the significant correlation among

all three variables for both devices (i.e. D1 and D2) (see Table 5.11). For D1, the high

level significance among all variables having positive correlations was witnessed. How-

ever, for D2, the correlation of memory utilization with battery power consumption and

makespan remained medium but high level of significance was observed for the correla-

tion between battery power consumption and makespan. The VS in D1 varies between

33.99% and 91.97% but on D2 it lowers and remained between 3.31% and 25.3%. Con-

sidering these results, H1 is accepted for relationship among all variables.

H0 : For App2, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App2, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: The ’r’ values for App2 show the positive correlation among all vari-

ables in both devices. For D1, the correlation of memory utilization with other variables

remained significantly high however small level of significance was witnessed for corre-

lation between battery power consumption and makespan. For D2, the medium level of

140

Univ
ers

ity
 of

 M
ala

ya



correlation among all variables was witnessed. The VS on D1 varies between 7.56% and

60.52% and it varies between 14.29% and 22.94% on D2. Considering these results, H1

is accepted for all correlations.

H0 : For App3, there is no significance correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App3, there is a significance correlation between battery power consump-

tion, memory utilization, and makespan.

Significance: The ’r’ values show that all variables on D1 have high level of positive

correlation. On D2, the correlation between battery power consumption and makespan

is high and positively directed but the correlation of memory consumption with battery

power consumption and makespan remained small and negatively directed. The VS on D1

remained between 38.44% and 78.68% however it fluctuates between 1.19% and 34.69%

on D2. Considering these variations, the H1 is accepted for all variables on D1 but, for

D2, H1 is accepted for the correlation between battery power consumption and makespan,

H0 is accepted for other correlations.

The overall analysis show a positively significant correlation among makespan, mem-

ory utilization, and battery power consumption for dynamic execution model.

5.3.5 Adaptive Application Execution using UniMiner

The enforced execution of MDSM application components in mobile devices and the

manual setting of file size challenges the seamless application execution in UniMiner.

Therefore the experiments were performed to assess the performance of adaptive appli-

cation execution models.

Experimental Procedure: The experiments were performed using four mobile de-

vices (i.e. D1, D2, D4, and D5) by two users moving inside university’s Wi-Fi network.

In these experiments, three versions of each MDSM application were developed to run in

141

Univ
ers

ity
 of

 M
ala

ya



client far-edge devices, mobile edge servers, and CC servers. The client side application

enabled application components for data acquisition, data adaptation, data preprocessing,

data fusion, data mining, knowledge integration, and knowledge management. In ad-

dition resource monitoring, context collection, and adaptation engine components were

enabled to deploy proposed multiple point data stream management and multiple point

data offloading schemes. The mobile edge server application enabled the components for

data synchronization, data preprocessing, data fusion, data mining, and pattern synchro-

nization. Similarly, the cloud application enabled cloud services for data synchronization,

data preprocessing, data fusion, data mining, and pattern synchronization. It should be

noted that the same learning models were reused which were developed in first phase of

performance evaluation. The experiments were run for nine hours whereas each MDSM

application were run for three hours. During experiments, first user put D1 in right pocket

and D4 in left pocket and second user put D2 in right pocket and D5 in left pocket.

Findings: The performance evaluation of MDSM applications were made for all

application components. An interesting phenomenon was observed that the use-case ap-

plication performed transition between execution modes from only two points. The ap-

plications performed switching either after raw data collection and data adaptation or the

applications performed in-memory operations for data preprocessing and data fusion us-

ing onboard resources in far-edge devices and switched to other modes in order to perform

data mining and knowledge management operations. Therefore, the results presented in

this section shows performance of MDSM applications from two points of execution i.e.

P1 and P2 whereas P1 represents first switching point and P2 is the second point for appli-

cation switching.

The battery power consumption results of MDSM applications are presented in Fig-

ure 5.33 and Figure 5.34. The results show that most of the data streams were processed

with small size and power consumption varied significantly. It was observed that, on av-

142

Univ
ers

ity
 of

 M
ala

ya



0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

Po
w

er
 (

m
ill

iw
at

ts
)

Stream Size (Bytes)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(a) Power Consumption at P1.

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000

Po
w

er
 (

m
ill

iw
at

ts
)

Stream Size (Bytes)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(b) Power Consumption at P2.

Figure 5.33: Power Consumption using Adaptive Execution Model

App1 App2 App3 App1 App2 App3

Raw Analytic

Min 2 4 4 3 6 7

Avg 16 19 12 16 17 14

Max 52 51 73 43 40 63

0

10

20

30

40

50

60

70

80

Po
w

er
 (m

ill
iw

at
ts

)

Figure 5.34: Power Consumption Trends at P1 and P2.

erage, App3 consumed comparatively lower power i.e. 10 mW at P1 and 14 mW at P2. It

was also observed that difference between minimum and maximum power consumption

widened as compared to other applications (see Figure 5.34). The standard deviation in

power consumption at P1 remained 9 mW for App1 and App2, and 12 mW for App3.

Similarly, at P2, the standard deviation remained 8 mW, 6 mW, and 12 mW for App1,

App2, and App3, respectively. Considering variations in power consumption, the battery

depletion time for MDSM applications is presented in Table 5.12. The average battery

depletion time at P1 varies between 12 hours and 222 hours for App1, between 09 to 111

hours for App2, and it remained between 6 hours 111 hours for App3. Similarly, for P2,

143

Univ
ers

ity
 of

 M
ala

ya



Table 5.12: Battery Charge Depletion Time using Adaptive Execution Model.

P1
App1 App2 App3

P Timedepletion P Timedepletion P Timedepletion
Min 2 222 Hrs 05 Mins 4 111 Hrs 08 Mins 4 111 Hrs 01 Mins
Avg-S.Dev 7 63 Hrs 43 Mins 10 44 Hrs 40 Mins 3 148 Hrs 01 Mins
Avg 16 28 Hrs 25 Mins 19 23 Hrs 36 Mins 12 37 Hrs 01 Mins
Avg+D.Dev 25 18 Hrs 16 Mins 28 16 Hrs 36 Mins 21 21 Hrs 14 Mins
Maximum 52 12 Hrs 33 Mins 51 09 Hrs 11 Mins 73 06 Hrs 08 Mins

P2
App1 App2 App3

P Timedepletion P Timedepletion P Timedepletion
Min 3 229 Hrs 40 Mins 6 115 Hrs 10 Mins 7 98 Hrs 31 Mins
Avg-S.Dev 8 86 Hrs 02 Mins 11 62 Hrs 56 Mins 2 344 Hrs 12 Mins
Avg 16 43 Hrs 01 Mins 17 40 Hrs 48 Mins 14 49 Hrs 15 Mins
Avg+D.Dev 24 29 Hrs 18 Mins 23 30 Hrs 32 Mins 26 26 Hrs 46 Mins
Maximum 43 16 Hrs 01 Mins 40 17 Hrs 20 Mins 63 11 Hrs 32 Mins

the average battery depletion time remained between 16 hours and 229 hours for App1,

between 17 hours and 115 hours for App2, and between the interval of 11 hours and 344

hours for App3.

The memory consumption of MDSM applications vary at both P1 and P2 (see Fig-

ure 5.35). It was observed that MDSM applications consumed relatively more memory at

P1. In addition, the applications performed raw data offloading when stream size grows

more than 500 Bytes. Although applications showed variations however memory con-

sumption linearly grows for App1 and App3 at both points. However, for App2, the

memory consumption significantly grows at P1 but linearly on P2. Considering the stan-

dard deviation, the memory consumption at P1 varies as 5.84 MB for App1, 5.66 MB

for App2, and 12.84 MB for App3. At P2, the memory consumption varied about 2.23

MB for App1, 2.27 MB for App2, and about 12.69 MB for App3. Despite variations, the

MDSM applications do not impact the overall performance of far-edge devices. On aver-

age, mobile devices utilized 29 MB to 40 MB which accounts between 3.48% to 4.80%

of available memory at D1 and 1.04% and 1.44% of available memory and D2.

The makespan in MDSM applications using adaptive execution model were mea-

144

Univ
ers

ity
 of

 M
ala

ya



0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

M
m

eo
ry

 (M
B

s)

Stream Size (Bytes)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(a) Memory Consumption of P1.

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900 1000

M
em

o
ry

 (M
B

)

Stream Size (Bytes)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(b) Memory Consumption of P2.

Figure 5.35: Memory Consumption using Adaptive Execution Model

App1 App2 App3 App1 App2 App3

Raw Analytic

Min 23 25 25 24 26 28

Avg 32.55 34.22 39.13 30.54 29.4 38.25

Max 64 63 74 62 38 74

0

10

20

30

40

50

60

70

80

M
em

o
ry

 (
M

B
s)

Figure 5.36: Memory Consumption Trends at P1 and P2.

sured similarly as it was measured in the case of dynamic execution model. However, the

makespan values were measured from multiple switching points (see Figure 5.37 and Fig-

ure 5.38). It was observed that makespan values has variations as low as 33 ms and as

high as 6792 ms. However, at P1, the MDSM applications have comparatively higher

makespan. On average, App1 had lowest makespan at P1, followed by App2 and App3.

Alternatively, at P2, App2 had the lowest makespan, followed by App1 and App3. Con-

sidering the variation in makespan, the standard deviation at P1 remained 1286 ms for

App1, 1504 ms for App2, and 1746 ms for App3. On P2, the standard deviation remained

449 ms, 60 ms, 1174 ms. It was observed that with some applications the standard devi-

145

Univ
ers

ity
 of

 M
ala

ya



0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Stream Size (Bytes)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(a) Makespan of P1.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Stream Size (Bytes)

App1

App2

App3

Linear (App1)

Linear (App2)

Linear (App3)

(b) Makespan of P2.

Figure 5.37: Makespan using Adaptive Execution Model

App1 App2 App3 App1 App2 App3

Raw Analytic

Min 33 34 40 141 81 385

Avg 560 741 989 311 167 1172

Max 6358 6756 6792 3014 429 4865

0

1000

2000

3000

4000

5000

6000

7000

8000

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Figure 5.38: Makespan Trends at P1 and P2.

ation supersedes the double of average values which shows that few executions produced

higher makespan as compared to other executions. However, overall makespan at P1 re-

mained 1512 ms and at P2 it decreased to 561 ms.

The data reduction trends for adaptive execution model are presented in Figure 5.39.

It was observed that most of the data streams were processed inside far-edge devices. For

example, for App1 51% of the data stream was fully processed inside far-edge devices

which becomes the best case for application execution. However, 26% of the data stream

was immediately offloaded from P1 which becomes the worst case scenario for application

execution. Considering the overall data reduction results, about 21.33% of the data stream

146

Univ
ers

ity
 of

 M
ala

ya



21%

4%

3%

63%

3%

6%

17%

4%

2%

69%

4%

4%

26%

6%

5%

51%

8%

4%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Local

Collaborative

Remote

Local

Collaborative

Remote

R
a
w

A
n
al
yt
ic
s

App3

App2

App1

Figure 5.39: Data Reduction using Adaptive Execution Model.

were directly offloaded from P1 whereby 58.32% was processed by mobile edge servers

and 41.68% was processed by CC servers. Alternatively, from P2, on average 9.68% of

the data stream was offloaded whereby 51.75% was processed by mobile edge servers and

48.24% was processed by CC servers. The data reduction analysis shows that proposed

execution model reduces 82.33% of data stream using far-edge devices, and 91.66% of

the data streams using far-edge devices and mobile edge servers. It was observed that

only 8.34% of the data stream was offloaded to CC servers.

76.3

75.3

76.8

81.3

78.3

76.4

72

73

74

75

76

77

78

79

80

81

82

App1 App2 App3 App1 App2 App3

Raw Analytics

Accuracy

Figure 5.40: Accuracy Analysis using Adaptive Execution Model.

147

Univ
ers

ity
 of

 M
ala

ya



Figure 5.40 shows the accuracy trends of MDSM applications using adaptive exe-

cution model. It was observed that MDSM applications produced comparatively higher

accuracy at P2 which ranges between 76.4% to 81.3%. However due to raw data trans-

fer and possible induction of noise and missing values in the data streams, the MDSM

applications produced lower accuracy which ranges from 75.3% to 76.8%. Since the ac-

curacy of MDSM applications depends upon the quality of learning models therefore the

problem of low accuracy could be handled easily by training good learning models.

Correlation analysis for adaptive execution model

Table 5.13 presents the correlation coefficients and shared variance among studied

variables. Following hypotheses were constructed for correlation analysis.

H0 : For App1, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App1, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: The ’r’ values show the positive correlation among all variables at

P1. At P2, the memory consumption is negatively correlated with makespan and bat-

tery power consumption but the correlation between makespan and battery power con-

sumption is positively directed. At P1, the level of significance for correlation between

memory utilization and battery power consumption is small, which increased to medium

for correlation between power consumption and makespan and high between memory

consumption and makespan. At P2, there is no significance in correlation of memory

consumption and makespan. However, medium level of correlation was witnessed in the

relationships of makespan with memory utilization and battery power consumption. The

VS at P1 varies between 3.13% and 51.12%. Alternatively, at P2, the VS varies between

0.65% and 11.56%. Considering these results, H1 is accepted for all variables at P1. At

P2, the H0 is accepted for correlation between memory utilization and battery power con-

148

Univ
ers

ity
 of

 M
ala

ya



Table 5.13: Correlation Coefficients and Shared Variance of Adaptive Execution Model.

RAM,Power RAM,Makespan Power,Makespan
r (App1-P1) 0.177 0.715 0.337

VS (App1-P1) 3.13% 51.12% 11.36%
r (App2-P1) 0.310 0.928 0.378

VS (App2-P1) 9.61% 86.11% 14.28%
r (App3-P1) -0.205 0.925 -0.110

VS (App3-P1) 4.20% 85.56% 1.21%
r (App1-P2) -0.081 -0.340 0.316

VS (App1-P2) 0.65% 11.56% 9.99%
r (App2-P2) -0.376 -0.218 0.067

VS (App2-P2) 14.13% 4.75% 0.45%
r (App3-P2) -0.068 0.947 0.091

VS (App3-P2) 0.46% 89.68% 0.83%

sumption. Alternatively, H1 is accepted for correlation of makespan with battery power

consumption and memory utilization.

H0 : For App2, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App2, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: For App2, similar trends were observed whereby at P1 there is a pos-

itive correlation among all variables and at P2 both the positive and negative correlations

were observed among variables. At P1, medium and high levels of significance were

observed however, at P2, correlation of memory utilization with battery power consump-

tion and makespan was negative. The correlation between memory utilization and bat-

tery power consumption remained medium. Alternatively, a small level of significance

was witnessed in correlation between memory utilization and makespan. However, there

is no significance observed in the correlation between battery power consumption and

makespan. The VS at P1 varies between 9.16% and 86.11% and,at P2, SV fluctuates

between 0.45% and 14.13%. Considering these results, the H1 is accepted for all corre-

lations at P1 and the correlation of memory utilization with battery power consumption

149

Univ
ers

ity
 of

 M
ala

ya



and makespan at P2. However, H0 is accepted for the correlation between battery power

consumption and makespan.

H0 : For App3, there is no significant correlation between battery power consump-

tion, memory utilization, and makespan.

H1 : For App3, there is a significant correlation between battery power consumption,

memory utilization, and makespan.

Significance: At P1, the ’r’ values show the small level of significance in the corre-

lations of battery power consumption with other variables. However high level of signif-

icance was observed in the correlation between memory utilization and makespan. Al-

ternatively, at P2, similar trends were observed for all variables. The VS at P1 remained

between 1.21% and 85.56% and, at P2, VS fluctuates between 0.46% and 89.68%. Con-

sidering these results H1 is accepted for the correlation between memory utilization and

makespan at both P1 and P2. For rest of the correlations, H0 is accepted.

The overall analysis shows the positive and significant correlation among all vari-

ables, however, at P2, the correlation coefficients vary in positive and negative directions.

5.4 Discussion

Section 5.2 presented experimental evaluation of MDSM applications using static, dy-

namic, and adaptive execution models. Since the static models lack run-time executions

in multiple modes. The dynamic execution models facilitate in addressing this issue but

these models need human interventions during application deployment in order to set the

maximum file size which is processable in far-edge devices. In addition, dynamic exe-

cution model bounds the execution of few components strictly in far-edge devices. The

adaptive execution model facilitate in addressing these issues. The adaptive execution

enables to switch application execution from multiple points of execution. In addition, it

adapts the execution behavior from multiple points in MDSM applications. The static ex-

150

Univ
ers

ity
 of

 M
ala

ya



0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Po
w

er
 (m

ill
iw

at
ts

)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

(a) Power Consumption Comparison of D1.

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Po
w

er
 (m

ill
iw

at
ts

)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

(b) Power Consumption Comparison of D2.

Figure 5.41: Power Consumption Comparisons - Static vs. Dynamic

ecution models are considered as benchmark for comparison with dynamic and adaptive

execution models. It should be noted that static models replicate the application execution

logic of several existing systems as shown previously in Figure 5.24.

The battery power consumption trends of static and dynamic execution models are

presented in Figure 5.41. It was observed that on average static applications consumed 18

mW (using D1) and 29 mW (using D2) for each batch of sliding windows. Comparatively,

dynamic applications consumed 18 mW (using D1) and 36 mW (using D2) on average

for each batch of sliding windows. It was observed that dynamic execution model do

not significantly impacts the extra battery power consumption because of size limitations

of data stream. Since the model ensures to execute maximum data streams in far-edge

devices therefore battery power consumption remains lower. It was also observed that in

most of the executions, size of data streams was low therefore battery power consumption

remained closer to static execution of data stream in far-edge devices. Comparatively,

the average battery power consumption of static execution models using F2F settings

remained 29 mw (using D1) and 33 mW (using D2). Similarly, for F2F communication

model, the average battery power consumption remained 24 mW (using D1) and 34 mW

(using D2). Although there exist some spikes in battery power consumption however the

linear trend line shows that dynamic execution model performs comparatively better than

151

Univ
ers

ity
 of

 M
ala

ya



0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

o
ry

 (
M

B
s)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

(a) Memory Consumption Comparison of D1.

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

o
ry

 (
M

B
s)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

(b) Memory Consumption Comparison of D2.

Figure 5.42: Memory Comparisons - Static vs. Dynamic

static models which use F2F and F2C communication models but it can not outperform

the static execution in far-edge mobile devices.

Figure 5.42 shows memory consumption of static and dynamic execution models

using D1 and D2. It was observed that static execution in far-edge devices consumed

28 MB in D1 and 86 MB in D2. Alternatively, during dynamic executions, MDSM ap-

plications consumed 36 MB in D1 and 59 MB in D2. Comparatively static execution

using F2F communication model incurred 58 MB and 64 MB on average and using F2C

communication model, static applications consumed 51 MB in D1 and 60 MB in D2.

The comparison shows that memory consumption of dynamic execution model remained

higher than static application execution in far-edge mobile devices but it occasionally

increased the memory utilization of static applications in F2F and F2C communication

models.

As witnessed in section 5.2, the static application execution using F2F and F2C set-

tings increases the makespan as compared with static execution in far-edge devices. Con-

sidering these facts, the dynamic model was designed to process maximum data stream

using onboard computational resources. Therefore, the makespan in MDSM applications

remained closer to the makespan of static applications in far-edge devices. Figure 5.43

shows the comparison of static and dynamic execution models. It was observed that on

152

Univ
ers

ity
 of

 M
ala

ya



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

(a) Makespan Comparison of D1.

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

(b) Makespan Comparison of D2.

Figure 5.43: Makespan Comparisons - Static vs. Dynamic

average static applications in far-edge devices consumed 331 ms using D1 and 227 ms

using D2. However, the makespan increases in static applications for F2F and F2C com-

munication models. In F2F settings, MDSM applications consumed 4070 ms (using D1)

and 3021 ms (using D2). Similarly, in F2C settings, the makespan was increased up to

5098 ms using D1 and 2787 ms using D2. However, the dynamic application execution

brings 1119 ms of makespan at D1 and 1195 ms of makespan at D2 which is compara-

tively better than F2F and F2C models. This comparative evaluation shows that dynamic

execution model outperforms the resource consumption using static execution models in

F2F and F2C settings but the performance remains closer to the static application execu-

tion in far-edge devices.

The comparisons of proposed adaptive execution model with static and dynamic

execution models show improved performance. Considering the battery power consump-

tion, the performance of adaptive execution model remained more or less similar to dy-

namic model. The average battery power consumption remained 15 mW (using D1) and

31 mW (using D2) as compared with dynamic execution model having 18 mW (using

D1) and 36 mW (using D2) (see Figure 5.44). However, the energy spikes which were

witnessed during dynamic execution were not found in adaptive execution. This phe-

nomenon happened because dynamic model was bounded to execute few components in

153

Univ
ers

ity
 of

 M
ala

ya



0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Po
w

er
 (m

ill
iw

at
ts

)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Adaptive

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

Linear (Adaptive)

(a) Power Consumption Comparison of D1.

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Po
w

er
 (m

ill
iw

at
ts

)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Adaptive

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

Linear (Adaptive)

(b) Power Consumption Comparison of D2.

Figure 5.44: Power Consumption Comparisons - Static vs. Dynamic vs. Adaptive

far-edge devices regardless of the computational complexity. In contrast, the adaptive ex-

ecution model enables multi-point data stream management and multi-point data stream

offloading schemes in order to adaptively switch among execution modes from any point

of execution in MDSM applications. Therefore, whenever the computational complexi-

ties increases and far-edge devices enter in critical situations, i.e. a few resources left, the

execution model switches to other execution modes i.e. collaborative or remote. Hence

the scheme conserves energy as well as adapts the seamless application execution behav-

ior. Overall, the adaptive execution model consumes less battery power as compared to

static execution in mobile edge servers and CC servers. In addition, the battery power

consumption remains lower at most of the executions as compared to dynamic model.

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

o
ry

 (M
B

s)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Adaptive

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

Linear (Adaptive)

(a) Memory Consumption Comparison of D1.

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

o
ry

 (M
B

s)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Adaptive

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

Linear (Adaptive)

(b) Memory Consumption Comparison of D2.

Figure 5.45: Memory Comparisons - Static vs. Dynamic vs. Adaptive

154

Univ
ers

ity
 of

 M
ala

ya



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ak

es
p

an
 (m

ill
i s

ec
o

n
d

s)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Adaptive

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

Linear (Adaptive)

(a) Makespan Comparison of D1.

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ak

es
p

an
 (m

ill
is

ec
o

n
d

s)

Stream Size (Bytes)

Far-edge

F2F

F2C

Dynaminc

Adaptive

Linear (Far-edge)

Linear (F2F)

Linear (F2C)

Linear (Dynaminc)

Linear (Adaptive)

(b) Makespan Comparison of D2.

Figure 5.46: Makespan Comparisons - Static vs. Dynamic vs. Adaptive

Considering the memory consumption, the adaptive execution model performs com-

paratively equal or better as compared to static applications in far-edge devices and dy-

namic execution model. The memory consumption remained lower because most the

executions either performed inside mobile devices or the model adaptively switched to

other execution modes. Therefore, the average memory consumption of adaptive applica-

tions remained 33 MB and 67 MB as compared to dynamic applications which consumed

36 MB and 59 MB.

Although the adaptive execution model outperforms other models in terms of mem-

ory utilization and power consumption. The makespan trends vary significantly (see 5.46).

For example, the makespan during adaptive application execution in D1 remained 468 ms

on average which is far better than dynamic model having average makespan of 1119 ms.

However, when same applications were executed in D2, the average makespan of adaptive

applications (i.e. 1808 ms) far exceeds the average makespan of dynamic applications (i.e.

1196 ms). Therefore, it should be noted that makespan in adaptive applications remains

flexible depending upon the availability of onboard computational resources, mobile edge

servers and Internet connections for F2C communication.

155

Univ
ers

ity
 of

 M
ala

ya



5.4.1 Lessons Learned

Following lessons are learned after thorough performance evaluation, analysis and com-

parison of static, dynamic, and adaptive execution models.

• There is no high level of correlation among energy consumption, memory utiliza-

tion, and execution when static applications were executed in far-edge devices (as

witnessed in Section 5.3.3).

• During static application execution using F2F communication model, there was

a medium level of correlation between memory utilization and makespan which

shows that executions with high makespan may quickly hamper memory resources

in far-edge devices. Therefore, MDSM applications must transfer the data stream

to mobile edge servers or CC servers before overloading the memory resources.

• The static execution using F2C communication model shows that although a small

level of correlation was observed between makespan and memory utilization, the

data stream buffering in far-edge devices increases battery power consumption. In

this case, the devices consume power for data buffering in mobile devices as well as

the energy cost of data communication increases because of transferring large size

of data streams. Therefore, MDSM applications were needed to control the data

size as well as data rate in order to lower the memory utilization and cost of energy.

• The dynamic execution model gracefully addresses the issues of memory utilization

and power consumption using transient data stream management and opportunis-

tic data stream offloading schemes, In addition, the model enables maximum data

processing using onboard resources in far-edge devices. This strategy enabled in

lowering the makespan as well as reducing the dependency over Internet connec-

tion. In addition, the model reduced bandwidth utilization by processing up to 91%

156

Univ
ers

ity
 of

 M
ala

ya



data streams using far-edge devices and up to 98% data stream using far-edge de-

vices and F2F communication model. Therefore, for about 2% to 6% data stream,

the model depends upon Internet connections. Despite significant achievements,

dynamic model is bounded for user intervention in order to set the file size thresh-

olds which require laborious efforts of application developers to profile the file size

for each far-edge device.

• The adaptive execution model addresses the issue of file sizes. In addition, it per-

forms transient data stream management and opportunistic offloading operations

only when the device enters in critical situations or unable to perform local ex-

ecutions. The adaptive model enables resource profiling and context monitoring

at multiple points. Therefore, the application adaptively switches among different

modes of execution. Depending upon the resource availability and computational

requirements, each MDSM application adapts the execution behavior accordingly.

The execution model still need improvement in terms of resource estimation, con-

text profiling, and device profiling.

• Since the classifiers were trained on event-based data streams. Therefore, size of

input data streams do not impacts the overall accuracy of classifiers as it is in the

case of other data mining algorithms which need whole data streams inside memory

in order to better predict (i.e. classifying, clustering, or finding association rules) the

knowledge patterns. The accuracy of classifiers depends upon the personalization

features of MDSM applications which need more research, therefore, left for future

research work.

157

Univ
ers

ity
 of

 M
ala

ya



5.4.2 Qualitative Comparison of UniMiner

Due to the absence of a simulator to deploy similar systems for performance comparison

and analysis, the proposed architecture was qualitatively compared with relevant systems

as presented in Table 5.14. The comparison was made based on analytic mode, applica-

tion execution model, data stream offloading strategies, and transient data management

approach for system implementation.

Table 5.14: Qualitative Comparison of UniMiner.

Study Analytic Mode Execution Data offloading Data Management
Star Mobile Local NA No

CARDAP Mobile/Cloud Distributed Push/Pull based No
CC-Stream Mobile Distributed Push based No

Here-n-Now Mobile/Cloud Distributed Push/pull based No
PDM Mobile Distributed Agent-based No

MARS Mobile Local NA No
SOA Server Distributed Push based No

OMM Mobile Local NA No
ShareLikeCrowd Mobile/Cloud Distributed push/pull based No

UniMiner Mobile/P2P/Cloud Distributed Dynamic/Adaptive Yes

The UniMiner execution model operates in three tiers, whereas other systems either

work independently or in two-layer settings. For example, OMM (P. D. Haghighi et al.,

2013), CAROMM (Zaslavsky, Jayaraman, & Krishnaswamy, 2013), Star (Abdallah et al.,

2015), and MARS (J. B. Gomes, Krishnaswamy, Gaber, Sousa, & Menasalvas, 2012b)

are systems that work independently. Therefore, these systems adapt the execution be-

havior at the analytics component level. Comparatively, UniMiner enhances the system

performance in mobile environments by enabling maximum execution without algorithm-

level adaptations. On the other hand, cloud-based systems like CARDAP (Jayaraman,

Gomes, et al., 2014) function at the mobile and cloud levels, or edge services are en-

abled through agent-oriented architectures like PDM (Gaber, Stahl, & Gomes, 2014)

or cloud-based collaborative settings like MOSDEN (Jayaraman, Perera, et al., 2014).

Nonetheless, the three-layer architecture of UniMiner supports generality by customizing

the AllJoyn framework at the collaborative layer, which is expandable to thousands of

158

Univ
ers

ity
 of

 M
ala

ya



IoT systems (Framework, 2015).

In addition, existing systems transfer data streams as either push-based, pull-based or

agent-based collaborative strategies. For example, the CC-Stream (J. B. B. Gomes, Gaber,

Sousa, & Menasalvas, 2011) and SOA (Talia & Trunfio, 2010) operate as push-based sys-

tems, where the data streams are uploaded to a cloud environment and the cloud resource

manager directs further executions. Other systems, such as MOSDEN (Jayaraman, Per-

era, et al., 2014) and CARDAP (Jayaraman, Gomes, et al., 2014) transfer data streams

using push/pull-based strategies to work collaboratively in mobile cloud computing envi-

ronments. Similarly, PDM (Gaber, Stahl, & Gomes, 2014) performs agent-based collabo-

rative executions. Still, none of these systems execute dynamic data stream offloading to

consider ground truth information for efficient data processing in MECC environments.

Aside from this, the data stream offloading scheme in UniMiner ensures adaptive and

collaborative execution of analytics components in the MECC architecture. In addition,

the data stream offloading scheme effectively reduces memory and energy consumption

when the results are compared with the simple push-based data transfer in both collabora-

tive and cloud-based analytics. Furthermore, none of the existing systems handle online

data streams to address the problems of information loss and complete data processing.

However, UniMiner seamlessly manages the data stream in transient data stores, which

increases efficiency in terms of makespan and enhances system performance by enabling

heavy-weight analytic components.

5.5 Summary

This chapter presented the performance evaluation of static execution models and maps

the existing systems accordingly. In addition, the chapter presented the performance eval-

uation results of proposed dynamic and adaptive execution models. The performance

evaluation was made by developing a real-world use-case applications for activity detec-

159

Univ
ers

ity
 of

 M
ala

ya



tion in MECC environments. The models were evaluated in terms of memory utilization,

battery power consumption, makespan, and accuracy of results produced by MDSM ap-

plications. The data reduction analysis of proposed models were also presented. The

chapter presented the detailed correlation analysis, and comparisons of static, dynamic,

and adaptive execution models. Finally, the chapter presented qualitative comparison of

proposed architecture with existing systems.

160

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 6: CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This chapter concludes the thesis by discussing objectives of research and mapping the

achievements accordingly. In addition, the chapter presents the future research issues in

this thesis and presents the future research agenda accordingly.

6.1 Achievements

Primarily this research work had four objectives.

1. OB1: To conduct the experimental studies for feasibility and analysis of MDSM

applications in far-edge mobile devices.

2. OB2: To design, verify, validate, and develop a three-tier MECC architecture for

distributed MDSM applications.

3. OB3: To design and develop a dynamic execution model for distributed MDSM

applications in MECC systems.

4. OB4: To design and develop an adaptive execution model for distributed MDSM

applications in MECC systems.

The research objectives were achieved as follows.

In order to achieve OB1, a thorough performance evaluations of nine data stream

mining algorithms were made using three far-edge mobile devices. The results were eval-

uated in terms of energy consumption, memory utilization, and makespan and presented

in Chapter 3.

In order to achieve OB2, a three-tier component based architecture was proposed

for MDSM application execution in MECC systems. The detailed discussion on layers

and components was presented in Chapter 3. The proposed architecture was modeled and

verified using HLPN, SMT-Lib, and Z3 solver. Moreover, the architecture was simulated

161

Univ
ers

ity
 of

 M
ala

ya



using PiPE+ editor and it was found that, if MDSM applications run statically without

any controlling mechanism, the architecture faces the state explosion problem.

In order to achieve OB3 and OB4, chapter 4 presents the discussion on operations of

dynamic and adaptive execution models. The models enables to handle the state explo-

sion problem using data stream management and offloading schemes. The performance

evaluation and comparison of proposed execution models with existing systems having

static execution models are presented in Chapter 5.

6.2 Future Research Agenda

This thesis presents a novel idea of distributed mobile data stream mining in MECC sys-

tems whereby all application execution processes are device-centric. However, we per-

ceive numerous research directions in order to further the research work from this thesis.

6.2.1 Future Research Work

The work presented in this thesis is expendable in following directions.

Multi-tier Architectures

The computing technologies are growing rapidly and next-generation MDSM plat-

forms needs to use these processing technologies in order to accelerate the application

performance. Despite of wide acceptance existing literature still lacks the multi-tier and

heterogeneous data processing platforms. Therefore, future MDSM platforms should be

designed with scalable topological settings using heterogeneous computing architectures

blended with CPUs, GPUs, FPGAs, and large scale data centers. In addition, hierarchical

memory architectures based on Caches, RAMs, and internal and external storage should

also considered to design next-generation applications and platforms.

Load-balancing

Considering the advancements in computing technologies, future MDSM platforms

will span across resource-constrained IoTs, wearable, and mobile devices at one end and

162

Univ
ers

ity
 of

 M
ala

ya



resourceful servers, clusters, and multi-cloud infrastructures on the other end. Future

MDSM platforms need to integrate efficient load-balancing strategies in order to min-

imize the latency, efficient energy utilization, reduce bandwidth consumption and in-

network data movement across the platforms. The new load-balancing strategies may

integrate fuzzy logic and soft set theory based methods for improved efficiency. In addi-

tion, deep context models could be used in order to improve the load-balancing strategies

across the platforms.

Optimization

The streaming data in mobile environments challenges the capacities of MDSM plat-

forms in terms of energy consumption, storage management, bandwidth utilization, per-

formance gain, privacy preservation, scheduling, and workflow management. Consid-

ering the above mentioned challenges, the MDSM applications and platforms need to

be optimized for data processing, task scheduling, privacy preservation, and knowledge

management. In addition with this the optimization algorithms should ensure seamless

application execution across multiple devices and computing systems. The MDSM plat-

forms should enable dynamic and adaptive application execution in MECC systems. TO

further the research, the optimization strategies should be devised to achieve the max-

imum trade-off between data processing efforts and application execution in multiple

platforms. Considering the optimization objectives, new algorithms must ensure the re-

duced and optimal resource consumption both for application execution and the resource

required to execute the optimization algorithms itself.

Data Stream and Knowledge Management

MDSM applications need to handle the data streams in multiple formats and need

different data management strategies. The MDSM platforms must provide the optimal

data management schemes for raw data streams. To this end, existing in-memory data

management schemes needs to be improved in order to efficiently handle the stream-

163

Univ
ers

ity
 of

 M
ala

ya



ing data considering its velocity, variety, volume, and variability characteristics. MDSM

applications convert raw data streams into different formats at each stage of execution.

These formats include raw data converted into event data streams, feature vectors, struc-

tured formats such as tables, to name a few. In addition, the intermediate data generated

during data processing, when the data populated in data structures (i.e. arrays, trees,

and graphs), challenge the computational capacities of resource constrained devices and

computing systems which have low amount of available memory. New data management

strategies are required to efficiently handle the intermediate data streams. Finally, the

MDSM applications produce knowledge patterns which need to be integrated and sum-

marized for a holistic view of incoming data streams. Future MDSM platforms must

provide synchronized knowledge management schemes across the MECC systems.

Programming Models, Design Patterns, and Development Environments

Considering the heterogeneity in next-generation MDSM applications and platforms,

new programming models, design patterns, and development environments are needed.

Existing simulation tools and programming models support application execution as ei-

ther mobile-first or cloud-first approach, however, new programming models should sup-

port the application execution across MECC systems. In addition, new design patterns are

required which could be reused to each the application development process in MECC

systems. Moreover, new integrated development environments (IDEs) are needed to in-

tegrate the programming models and design patterns. The IDEs should provide support

for drop and drop component based visual workflow management across MECC systems.

Further, the IDEs should provide reusable components for rapid application development

in MECC systems.

164

Univ
ers

ity
 of

 M
ala

ya



6.2.2 Future Research Areas

This section presents some future areas in order to accelerate the research work in mobile

data stream mining applications and platforms. Due to application and platform level

heterogeneity, MDSM applications can help in future and emerging research areas in

multiple ways. Figure 6.1 depicts the relevance of this thesis with future research areas.

Value 

Creation

Privacy and 

Security

Future 

Research 

Directions

Mobile 

Crowd 

Sensing

Participatory 

Sensing

Personal 

Analytics

Machine 

Analytics

IoT 

Analytics

Big Data 

Reduction

Figure 6.1: Future Research Directions.

Privacy and Security: The onboard data sources in far-edge devices produce per-

sonal data streams, therefore, mobile data stream mining applications need to address

the privacy and security concerns of end users (Sokolova & Matwin, 2016). However,

to this end, existing literature lacks in scalable end-to-end privacy preservation models

for MDSM applications in MECC systems (Jayaraman, Gomes, et al., 2014). The pri-

vacy preservation models are needed to be designed and embedded in existing MDSM

165

Univ
ers

ity
 of

 M
ala

ya



applications without loosing the quality of uncovered knowledge patterns. Moreover, the

MDSM applications should enable secure data and knowledge transfer strategies for data

movement inside MDSM platforms. To this end, privacy and security challenges need

serious attentions in order to prevail this important research area.

Big Data Reduction: The continuous evolution in mobile data streams eventually

results in big data. However, analyzing the massive amount of data and uncovering useful

patterns for end users is a challenging task. The deployment of MDSM applications at

user-end can help in reducing big data wherein the users can uncover the knowledge pat-

terns using personal far-edge devices (Rehman & Batool, 2015; Rehman, Chang, Batool,

& Wah, 2016). Existing literature lacks the pattern based data sharing strategies for big

data systems. Future research work should focus on the development and deployment

of learning models complying with the needs of big data systems. In addition, pattern

sharing, knowledge summarization, and big data aggregation models are needed in order

to deal with reduced big data. In essence pattern based big data reduction can benefit to

users and big data system providers in many ways including, a) reduced data commu-

nication cost, b) minimum bandwidth utilization, c) reduced in-network data movement,

d) fewer efforts in data cleaning and preprocessing for conversion of unstructured big data

in to structured datasets, and last but not the least, e) big data system providers can offer

personalized services to end users.

Value Creation The MDSM applications in MECC systems can help in value cre-

ation for customers and enterprises in multiple ways. At one end, the customers can

use the personal far-edge devices, edge servers, and cloud computing systems to find

the personal knowledge patterns. At the other end, enterprises can acquire the cus-

tomers’ data in order to develop and optimize their business process models and meet

their needs (Rehman, Chang, et al., 2016). MDSM applications can benefit in value cre-

ation for a wide spectrum of user-centered business models.

166

Univ
ers

ity
 of

 M
ala

ya



Machine Analytics: The MDSM applications can benefit in machine analytics

in order to uncover the operating and performance behaviors of machines. The embed-

ded data stream mining components in machines can help in onboard and off-board data

collection and uncovering machine behaviors in MECC systems. For example, in manu-

facturing industries, large scale industrial production units can use embedded data stream

mining components to uncover knowledge patterns from machine log files and monitor

the machine’s performance (Cochran, Kinard, & Bi, 2016). Similarly, local and collective

intelligence in robotics can be embedded using MDSM applications. Few more exam-

ple application areas include smart cars, vehicular ad-hoc networks, machine to machine

communication systems, and cyber-physcial systems.

Personal Analytics: Mobile users generate personal data from a plethora of sen-

sory and non-sensory data sources (Rehman et al., 2015). These data sources collect data

streams of mobile users from onboard and off-board sensors as well as the data gener-

ated in the result of user interactions with mobile devices, physical activities performed

by users, and the behavioral data of users on social networks and world wide web. The

MDSM applications in MECC system can help in uncovering personal knowledge pat-

terns from above mentioned personal data. The knowledge patterns are useful for lifestyle

and wellness management applications, behavioral analytic driven systems, mobile health

applications, mobile social networks, and mobile commerce, to name a few.

IoT Analytics: The MDSM applications can be embedded in IoT systems in order

to uncover the device-centric and collective knowledge patterns. The applications can be

deployed in a single device and multi-device settings. In single device settings, the un-

covered knowledge patterns could be used for improving single device usage experiences

however in the case of multi-device settings, the patterns could be used for the overall im-

provement of IoT systems (Satyanarayanan et al., 2015). In addition, the application logic

could be distributed across multiple IoT devices in order to find the collective behavior.

167

Univ
ers

ity
 of

 M
ala

ya



Mobile Crowd Sensing: The MDSM applications in MECC systems can facilitate

in mobile crowd sensing systems (Jayaraman, Gomes, et al., 2014). For example, the

data streams collected by smart city management applications for traffic management,

commuters facilitation, crowd management in sporting arenas, and facilitating pilgrims

and peoples gatherings at holy places. Similarly, MDSM applications can facilitate in

managing crowds of animals, vehicles, IoTs and many more similar applications.

Participatory Sensing: Participatory sensing is another application area for MDSM

applications and platform (Jayaraman, Perera, et al., 2014). The knowledge patterns gen-

erated by mobile users can help governments, businesses, enterprises, corporations, and

third party public data stream collectors in order to develop user-driven applications and

systems. However, participatory sensing systems must ensure user privacy and security

of shared data. In addition, new incentive mechanisms are needed in order to lure mobile

users for participatory data sharing.

In this section, we discussed a few future research opportunities for the intervention

of MDSM applications and platforms. However, the tremendous growth in IoTs, big data,

cloud computing, and mobile edge computing has risen many new application areas and

research opportunities for MDSM applications and platforms. Therefore, we perceive

that the deployment of MDSM applications in MECC system will quickly prevail in all

sectors of the economy and humane lifestyle management.

6.3 Final Thoughts

This research mainly focuses MDSM applications for personal data. Therefore the pro-

posed three-tier architecture in this thesis enables device-centric approach that benefits

in delegating complete control of data processing at user and device ends. In addition,

the adoption of far-edge devices as primary platform for data processing not only reduces

makespan and size of data streams in MDSM applications. It also enables maximum data

168

Univ
ers

ity
 of

 M
ala

ya



processing at user end which lowers the risks of compromises on privacy and security of

personal data. In order to scale up the architecture further research is required and we are

aiming to extend this work in multiple dimensions as discussed in Section 6.2.

The dynamic execution model in this thesis facilitates in opportunistic execution

of MDSM applications in three-tier architecture. The model meets the objective of maxi-

mum data processing near the data sources however it currently supports the data-intensive

applications having low computational complexities. In addition, the execution model

supports controlled size of input data stream. The model could be further improved by

setting dynamic upper size of data stream which could be derived from correlation anal-

ysis between input data streams and quality of knowledge patterns. In addition, resource

estimation scheme of dynamic execution model could be further improved using statisti-

cal estimation methods.

The adaptive execution model supports data-intensive and compute-intensive appli-

cations. The strength of proposed model is its ability to perform data stream management

and data stream offloading from multiple points of execution in MDSM applications. An-

other important feature is the ability of MDSM applications to adapt the execution behav-

iors according to underlying resources. This adaptation benefits in overcoming the issue

of abrupt resource utilization (i.e. sudden energy and memory spikes). Using adaptive

execution model, MDSM applications switch to collaborative or remote data processing

modes at early stages of execution if onboard resources are not available.

To limit the scope, this thesis primarily presented the performance evaluation of

proposed architecture and executions models with classification applications. We will ex-

tend this work in future by deploying association rule mining and clustering applications

in proposed models. This thesis is just the beginning of next generation MDSM appli-

cations for personal data and big data reduction but we aim to extend this work to many

interesting applications areas as presented in Section 6.2.

169

Univ
ers

ity
 of

 M
ala

ya



LIST OF PUBLICATIONS

1. Rehman, M. H., Liew, C. S., & Wah, T. Y. (2014). Frequent pattern mining in

mobile devices: A feasibility study. In Information technology and multimedia

(ICIMu), 2014 international conference on (pp. 351–356).

2. Rehman, M. H., Liew, C. S., & Wah, T. Y. (2014). UniMiner: Towards a uni-

fied framework for data mining. In Information and Communication Technologies

(WICT), 2014 Fourth World Congress on (pp. 134–139).

3. Rehman, M. H., Liew, C. S., Wah, T. Y., Shuja, J., Daghighi, B., et al. (2015).

Mining personal data using smartphones and wearable devices: A survey. Sensors,

15(2), 4430–4469.

4. Rehman, M. H., Chang, V., Batool, A., & Wah, T. Y. (2016), Big data reduction

framework for value creation in sustainable enterprises, International Journal of

Information Management, Volume 36, Issue 6, Part A, December 2016, 917-928

5. Rehman, M. H., Liew, C. S., , Iqbal, A., Wah, T. Y., & Jayaraman, P. P. (13-17

June, 2016). Opportunistic computation offloading in mobile edge cloud computing

environments. in 17th IEEE international conference on mobile data management

(pp. 208-213).

6. Rehman, M. H., Liew, C. S., Wah, T. Y., & Khan, M. K. (2017). Towards Next-

generation Mobile Data Stream Mining Applications: Opportunities, Challenges,

and Future Research Directions. Journal of Network and Computer Applications,

79, pp. 1-24.

7. Rehman, M. H., Liew, C. S., Batool, A., Wah, T. Y., & Khan, A.R. (2017). Execu-

tion Models for MDA Applications in MECC Systems. IEEE IT Professional.

170

Univ
ers

ity
 of

 M
ala

ya



REFERENCES

Abdallah, Z. S., Gaber, M. M., Srinivasan, B., & Krishnaswamy, S. (2012). Cbars:
Cluster based classification for activity recognition systems. In Advanced machine
learning technologies and applications (pp. 82–91). Springer.

Abdallah, Z. S., Gaber, M. M., Srinivasan, B., & Krishnaswamy, S. (2015). Adaptive
mobile activity recognition system with evolving data streams. Neurocomputing,
150, 304–317.

Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., & Buyya, R. (2014). Cloud-based aug-
mentation for mobile devices: motivation, taxonomies, and open challenges. Com-
munications Surveys & Tutorials, IEEE, 16(1), 337–368.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proc.
20th int. conf. very large data bases, vldb (Vol. 1215, pp. 487–499).

Ahmad, A., & Ahmad, E. (2016). A survey on mobile edge computing. In 10th interna-
tonal conference on intelligenct systems and control (isco), coimbatore, india.

Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yousafzai, A., & Xia, F. (2015). A
survey on virtual machine migration and server consolidation frameworks for cloud
data centers. Journal of Network and Computer Applications, 52, 11–25.

Ahmed, E., Akhunzada, A., Whaiduzzaman, M., Gani, A., Ab Hamid, S. H., & Buyya,
R. (2015). Network-centric performance analysis of runtime application migration
in mobile cloud computing. Simulation Modelling Practice and Theory, 50, 42–56.

Al-Fuqaha, A., Khreishah, A., Guizani, M., Rayes, A., & Mohammadi, M. (2015). To-
ward better horizontal integration among iot services. IEEE Communications Mag-
azine, 53(9), 72–79.

Altomare, A., Cesario, E., Comito, C., Marozzo, F., & Talia, D. (2013). Using clouds
for smart city applications. In Cloud computing technology and science (cloudcom),
2013 ieee 5th international conference on (Vol. 2, pp. 234–237).

Amini, A., Wah, T. Y., & Saboohi, H. (2014). On density-based data streams clustering
algorithms: A survey. Journal of Computer Science and Technology, 29(1), 116–
141.

Android (operating system). (2016, 03). Retrieved from https://en.wikipedia.org/
wiki/Android_(operating_system)

Apple iphone history. (2016, 03). Retrieved from apple-history.com/iPhone

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Stoica, I.
(2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.

Arunkumar, S., Srivatsa, M., & Rajarajan, M. (2015). A review paper on preserving
privacy in mobile environments. Journal of Network and Computer Applications,

171

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_(operating_system)
apple-history.com/iPhone


53, 74–90.

Augustyniak, P., Smoleń, M., Mikrut, Z., & Kańtoch, E. (2014). Seamless tracing of
human behavior using complementary wearable and house-embedded sensors. Sen-
sors, 14(5), 7831–7856.

Bache, K., & Lichman, M. (2013). Uci machine learning repository. URL http://archive.
ics. uci. edu/ml, 19.

Bahl, V. (2015, May). The emergence of micro datacenters (cloudlets) for mobile comput-
ing. Retrieved from http://research.microsoft.com/apps/video/default.aspx
?id=246447

Bittencourt, L. F., Lopes, M. M., Petri, I., & Rana, O. F. (2015). Towards virtual machine
migration in fog computing. In 2015 10th international conference on p2p, parallel,
grid, cloud and internet computing (3pgcic) (pp. 1–8).

Bolboaca, S.-D., & Jäntschi, L. (2006). Pearson versus spearman, kendall tau correlation
analysis on structure-activity relationships of biologic active compounds. Leonardo
Journal of Sciences, 5(9), 179–200.

Bonet, P., Lladó, C. M., Puijaner, R., & Knottenbelt, W. J. (2007). Pipe v2. 5: A petri
net tool for performance modelling. In Proc. 23rd latin american conference on
informatics (clei 2007).

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the
internet of things. In Proceedings of the first edition of the mcc workshop on mobile
cloud computing (pp. 13–16).

Boukhechba, M., Bouzouane, A., Bouchard, B., Gouin-Vallerand, C., & Giroux, S.
(2015). Online prediction of peoples next point-of-interest, concept drift support.
In Human behavior understanding (pp. 97–116). Springer.

Braojos, R., Beretta, I., Constantin, J., Burg, A., & Atienza, D. (2014). A wireless
body sensor network for activity monitoring with low transmission overhead. In
Embedded and ubiquitous computing (euc), 2014 12th ieee international conference
on (pp. 265–272).

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as the
5th utility. Future Generation computer systems, 25(6), 599–616.

Cameron, J. J., Cuzzocrea, A., Jiang, F., & Leung, C. K. (2013). Mining frequent itemsets
from sparse data streams in limited memory environments. In Web-age information
management (pp. 51–57). Springer.

Chen, J., & Chen, P. (2014). Sequential pattern mining for uncertain data streams using
sequential sketch. Journal of Networks, 9(2), 252–258.

172

Univ
ers

ity
 of

 M
ala

ya

http://research.microsoft.com/apps/video/default.aspx?id=246447
http://research.microsoft.com/apps/video/default.aspx?id=246447


Choe, E. K., Lee, N. B., Lee, B., Pratt, W., & Kientz, J. A. (2014). Understanding
quantified-selfers’ practices in collecting and exploring personal data. In Proceed-
ings of the 32nd annual acm conference on human factors in computing systems (pp.
1143–1152).

Ciurana, E. (2009). Developing with google app engine. Apress.

Cochran, D. S., Kinard, D., & Bi, Z. (2016). Manufacturing system design meets big data
analytics for continuous improvement. Procedia CIRP, 50, 647–652.

Comito, C., & Talia, D. (2013). Energy characterization of data mining algorithms on
mobile devices. In Energy efficiency in large scale distributed systems (pp. 98–113).
Springer.

Cord, M., & Cunningham, P. (2008). Machine learning techniques for multimedia: case
studies on organization and retrieval. Springer Science & Business Media.

Cormode, G., Garofalakis, M., Haas, P. J., & Jermaine, C. (2012). Synopses for mas-
sive data: Samples, histograms, wavelets, sketches. Foundations and Trends in
Databases, 4(1–3), 1–294.

Cormode, G., & Muthukrishnan, S. (2004). An improved data stream summary: The
count-min sketch and its applications. In Latin 2004: Theoretical informatics (pp.
29–38). Springer.

De Moura, L., & Bjørner, N. (2008). Z3: An efficient smt solver. In International
conference on tools and algorithms for the construction and analysis of systems (pp.
337–340).

De Moura, L., & Bjørner, N. (2009). Satisfiability modulo theories: An appetizer. In
Formal methods: Foundations and applications (pp. 23–36). Springer.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the em algorithm. Journal of the royal statistical society. Series B
(methodological), 1–38.

Developers, A. (2014). Get the android sdk. Retrieved from https://developer.android
.com/sdk/index.html

Diaz, M. (2013). Petri nets: fundamental models, verification and applications. John
Wiley & Sons.

Dogan, N., & Tanrikulu, Z. (2013). A comparative analysis of classification algorithms
in data mining for accuracy, speed and robustness. Information Technology and
Management, 14(2), 105–124.

Donohoo, B. K., Ohlsen, C., Pasricha, S., Xiang, Y., & Anderson, C. (2014). Context-
aware energy enhancements for smart mobile devices. Mobile Computing, IEEE
Transactions on, 13(8), 1720–1732.

Dou, A. J., Kalogeraki, V., Gunopulos, D., Mielikinen, T., Tuulos, V., Foley, S., & Yu, C.

173

Univ
ers

ity
 of

 M
ala

ya

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html


(2011). Data clustering on a network of mobile smartphones. In Applications and
the internet (saint), 2011 ieee/ipsj 11th international symposium on (pp. 118–127).

Drolia, U., Martins, R. P., Tan, J., Chheda, A., Sanghavi, M., Gandhi, R., & Narasimhan,
P. (2013). The case for mobile edge-clouds. In Ubiquitous intelligence and comput-
ing, 2013 ieee 10th international conference on and 10th international conference
on autonomic and trusted computing (uic/atc) (pp. 209–215).

Eom, H., Figueiredo, R., Cai, H., Zhang, Y., & Huang, G. (2015). Malmos: Machine
learning-based mobile offloading scheduler with online training. In Mobile cloud
computing, services, and engineering (mobilecloud), 2015 3rd ieee international
conference on (pp. 51–60).

Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A survey.
Future Generation Computer Systems, 29(1), 84–106.

Ferreira, H., Duarte, S., & Preguiça, N. (2010). 4sensing–decentralized processing for
participatory sensing data. In Parallel and distributed systems (icpads), 2010 ieee
16th international conference on (pp. 306–313).

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering.
Machine learning, 2(2), 139–172.

Framework, A. (2015). Allseen alliance. Retrieved from https://allseenalliance.org/
framework/documentation/learn

Gaber, M. M. (2009). Data stream mining using granularity-based approach. In Founda-
tions of computational, intelligencevolume 6 (pp. 47–66). Springer.

Gaber, M. M., Gama, J., Krishnaswamy, S., Gomes, J. B., & Stahl, F. (2014). Data stream
mining in ubiquitous environments: state-of-the-art and current directions. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(2), 116–138.

Gaber, M. M., Stahl, F., & Gomes, J. B. (2014). Pocket data mining framework. In Pocket
data mining (pp. 23–40). Springer.

Gama, J. (2013). Data stream mining: the bounded rationality. Informatica, 37(1).

Goldberg, A. B., Zhu, X., Singh, A., Xu, Z., & Nowak, R. (2009). Multi-manifold
semi-supervised learning. in Proceedings of the 12th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2009, Clearwater Beach, Florida,
USA..

Gomes, J. B., Krishnaswamy, S., Gaber, M. M., Sousa, P. A., & Menasalvas, E. (2012a).
Mars: a personalised mobile activity recognition system. In Mobile data manage-
ment (mdm), 2012 ieee 13th international conference on, july 23-26, balngluru, india
(pp. 316–319).

Gomes, J. B., Krishnaswamy, S., Gaber, M. M., Sousa, P. A., & Menasalvas, E. (2012b).
Mobile activity recognition using ubiquitous data stream mining. Springer.

174

Univ
ers

ity
 of

 M
ala

ya

https://allseenalliance.org/framework/documentation/learn
https://allseenalliance.org/framework/documentation/learn


Gomes, J. B. B., Gaber, M. M., Sousa, P. A., & Menasalvas, E. (2011). Context-aware
collaborative data stream mining in ubiquitous devices. In Advances in intelligent
data analysis x (pp. 22–33). Springer.

Gordon, M., Zhang, L., Tiwana, B., Dick, R., Mao, Z., & Yang, L. (2013). Powertutor:
a power monitor for android-based mobile platforms.

Gu, T., Wang, L., Wu, Z., Tao, X., & Lu, J. (2011). A pattern mining approach to
sensor-based human activity recognition. Knowledge and Data Engineering, IEEE
Transactions on, 23(9), 1359–1372.

Guan, T., Wang, Y., Duan, L., & Ji, R. (2015). On-device mobile landmark recognition
using binarized descriptor with multifeature fusion. ACM Transactions on Intelligent
Systems and Technology (TIST), 7(1), 12.

Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., & Satyanarayanan, M. (2014). Towards
wearable cognitive assistance. In Proceedings of the 12th annual international con-
ference on mobile systems, applications, and services (pp. 68–81).

Ha, K., & Satyanarayanan, M. (2015). Openstack++ for cloudlet deployment. School of
Computer Science Carnegie Mellon University Pittsburgh.

Haghighi, P., Gaber, M., Krishnaswamy, S., & Zaslavsky, A. (2007). An architecture
for context-aware adaptive data stream mining. In Proceedings of the international
workshop on knowledge discovery from ubiquitous data streams (iwkduds07).

Haghighi, P. D., Krishnaswamy, S., Zaslavsky, A., Gaber, M. M., Sinha, A., & Gillick, B.
(2013). Open mobile miner: A toolkit for building situation-aware data mining ap-
plications. Journal of Organizational Computing and Electronic Commerce, 23(3),
224–248.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).
The weka data mining software: an update. ACM SIGKDD explorations newsletter,
11(1), 10–18.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data mining and knowledge discovery,
8(1), 53–87.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algo-
rithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1),
100–108.

Hassan, M. A., Wei, Q., & Chen, S. (2015). Elicit: Efficiently identify computation-
intensive tasks in mobile applications for offloading. In Networking, architecture
and storage (nas), 2015 ieee international conference on (pp. 12–22).

Hromic, H., Le Phuoc, D., Serrano, M., Antonic, A., Zarko, I. P., Hayes, C., & Decker,
S. (2015). Real time analysis of sensor data for the internet of things by means of
clustering and event processing. In Communications (icc), 2015 ieee international
conference on (pp. 685–691).

175

Univ
ers

ity
 of

 M
ala

ya



Huang, G., Song, S., Gupta, J. N., & Wu, C. (2014). Semi-supervised and unsuper-
vised extreme learning machines. Cybernetics, IEEE Transactions on, 44(12), 2405–
2417.

Jayaraman, P. P., Gomes, J. B., Nguyen, H. L., Abdallah, Z. S., Krishnaswamy, S., &
Zaslavsky, A. (2014). Cardap: A scalable energy-efficient context aware distributed
mobile data analytics platform for the fog. In Advances in databases and information
systems (pp. 192–206).

Jayaraman, P. P., Perera, C., Georgakopoulos, D., & Zaslavsky, A. (2014). Mosden: A
scalable mobile collaborative platform for opportunistic sensing applications. arXiv
preprint arXiv:1405.5867.

Jayaraman, P. P., Sinha, A., Sherchan, W., Krishnaswamy, S., Zaslavsky, A., Haghighi,
P. D., . . . Do, M. T. (2012). Here-n-now: A framework for context-aware mobile
crowdsensing. In Proc. of the tenth international conference on pervasive comput-
ing.

Kargupta, H., Gilligan, M., Puttagunta, V., Sarkar, K., Klein, M., Lenzi, N., & John-
son, D. (2010). Minefleet: The vehicle data stream mining system for ubiquitous
environments. In Ubiquitous knowledge discovery (pp. 235–254). Springer.

Khan, A. M., Lee, Y.-K., Lee, S., & Kim, T.-S. (2010). Human activity recognition via
an accelerometer-enabled-smartphone using kernel discriminant analysis. In Future
information technology (futuretech), 2010 5th international conference on (pp. 1–6).

Khan, A. M., Siddiqi, M. H., & Lee, S.-W. (2013). Exploratory data analysis of ac-
celeration signals to select light-weight and accurate features for real-time activity
recognition on smartphones. Sensors, 13(10), 13099–13122.

Khan, A. R., Othman, M., Madani, S. A., & Khan, S. U. (2014). A survey of mobile
cloud computing application models. IEEE Communications Surveys & Tutorials,
16(1), 393–413.

Khan, M. A. (2015). A survey of computation offloading strategies for performance
improvement of applications running on mobile devices. Journal of Network and
Computer Applications, 56, 28–40.

Klas, G. I. (2015). Fog computing and mobile edge cloud gain momentum open fog
consortium, etsi mec and cloudlets. Retrieved from http://yucianga.info/?p=
938

Krishnaswamy, S., Gaber, M., Harbach, M., Hugues, C., Sinha, A., Gillick, B., . . . Za-
slavsky, A. (2009). Open mobile miner: a toolkit for mobile data stream mining.
ACM KDD09.

Krishnaswamy, S., Gama, J., & Gaber, M. M. (2012). Mobile data stream mining:
from algorithms to applications. In Mobile data management (mdm), 2012 ieee 13th
international conference on (pp. 360–363).

Kumar, K., Liu, J., Lu, Y.-H., & Bhargava, B. (2013). A survey of computation offloading

176

Univ
ers

ity
 of

 M
ala

ya

http://yucianga.info/?p=938
http://yucianga.info/?p=938


for mobile systems. Mobile Networks and Applications, 18(1), 129–140.

Larose, D. T. (2014). Discovering knowledge in data: an introduction to data mining.
John Wiley & Sons.

Li, J., Peng, Z., Xiao, B., & Hua, Y. (2015). Make smartphones last a day: Pre-processing
based computer vision application offloading. In Sensing, communication, and net-
working (secon), 2015 12th annual ieee international conference on (pp. 462–470).

Liang, Y., Zhou, X., Yu, Z., & Guo, B. (2014). Energy-efficient motion related activ-
ity recognition on mobile devices for pervasive healthcare. Mobile Networks and
Applications, 19(3), 303–317.

Lin, C., Choy, K.-l., Pang, G., & Ng, M. T. (2013). A data mining and optimization-
based real-time mobile intelligent routing system for city logistics. In Industrial
and information systems (iciis), 2013 8th ieee international conference on (pp. 156–
161).

Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., & Qureshi, A. (2015). Application
partitioning algorithms in mobile cloud computing: Taxonomy, review and future
directions. Journal of Network and Computer Applications, 48, 99–117.

Liu, P., Chen, Y., Tang, W., & Yue, Q. (2012). Mobile weka as data mining tool on an-
droid. In Advances in electrical engineering and automation (pp. 75–80). Springer.

Lowd, D., & Domingos, P. (2005). Naive bayes models for probability estimation. In
Proceedings of the 22nd international conference on machine learning (pp. 529–
536).

Lu, H., Frauendorfer, D., Rabbi, M., Mast, M. S., Chittaranjan, G. T., Campbell, A. T.,
. . . Choudhury, T. (2012). Stresssense: Detecting stress in unconstrained acoustic
environments using smartphones. In Proceedings of the 2012 acm conference on
ubiquitous computing (pp. 351–360).

Luan, T. H., Gao, L., Li, Z., Xiang, Y., & Sun, L. (2015). Fog computing: Focusing on
mobile users at the edge. arXiv preprint arXiv:1502.01815.

Miller, G. (2012). The smartphone psychology manifesto. Perspectives on Psychological
Science, 7(3), 221–237.

Min, J.-K., & Cho, S.-B. (2011). Activity recognition based on wearable sensors using
selection/fusion hybrid ensemble. In Systems, man, and cybernetics (smc), 2011 ieee
international conference on (pp. 1319–1324).

Mukherji, A., Srinivasan, V., & Welbourne, E. (2014). Adding intelligence to your
mobile device via on-device sequential pattern mining. In Proceedings of the 2014
acm international joint conference on pervasive and ubiquitous computing: Adjunct
publication (pp. 1005–1014).

Norusis, M. (2008). Spss 16.0 statistical procedures companion. Prentice Hall Press.

177

Univ
ers

ity
 of

 M
ala

ya



Oneto, L., Ghio, A., Ridella, S., & Anguita, D. (2015). Learning resource-aware classi-
fiers for mobile devices: From regularization to energy efficiency. Neurocomputing,
169, 225–235.

Ortiz, J., Huang, C.-C., & Chakraborty, S. (2015). Get more with less: Near real-time
image clustering on mobile phones. arXiv preprint arXiv:1512.02972.

Oshin, T. O., Poslad, S., & Zhang, Z. (2015). Energy-efficient real-time human mobility
state classification using smartphones. Computers, IEEE Transactions on, 64(6),
1680–1693.

Ozzie, R. E., Gates III, W. H., Flake, G. W., Bergstraesser, T. F., Blinn, A. N., Brumme,
C. W., . . . Glasgow, D. A. (2011, April). Personal data mining. Google Patents.
(US Patent 7,930,197)

Pasricha, S., Donohoo, B. K., & Ohlsen, C. (2015). A middleware framework for
application-aware and user-specific energy optimization in smart mobile devices.
Pervasive and Mobile Computing, 20, 47–63.

Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.

Rai, A., Yan, Z., Chakraborty, D., Wijaya, T. K., & Aberer, K. (2012). Mining complex
activities in the wild via a single smartphone accelerometer. In Proceedings of the
sixth international workshop on knowledge discovery from sensor data (pp. 43–51).

Rehman, M. H., & Batool, A. (2015). The concept of pattern based data sharing in big
data environments. International Journal of Database Theory and Application, 8(4),
11–18.

Rehman, M. H., Chang, V., Batool, A., & Wah, T. Y. (2016). Big data reduc-
tion framework for value creation in sustainable enterprises. International Journal
of Information Management, 36(6, Part A), 917 - 928. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0268401216303097 doi: http://
dx.doi.org/10.1016/j.ijinfomgt.2016.05.013

Rehman, M. H., Liew, C. S., & Wah, T. Y. (2014a). Frequent pattern mining in mobile
devices: A feasibility study. In Information technology and multimedia (icimu), 2014
international conference on (pp. 351–356).

Rehman, M. H., Liew, C. S., & Wah, T. Y. (2014b). Uniminer: Towards a unified
framework for data mining. In Information and communication technologies (wict),
2014 fourth world congress on (pp. 134–139).

Rehman, M. H., Liew, C. S., Wah, T. Y., Iqbal, A., & Jayaraman, P. P. (2016). Oppor-
tunistic computation offloading in mobile edge cloud computing environments. In
2016 17th ieee international conference on mobile data management (mdm) (Vol. 1,
pp. 208–213).

Rehman, M. H., Liew, C. S., Wah, T. Y., Shuja, J., & Daghighi, B. (2015). Mining
personal data using smartphones and wearable devices: A survey. Sensors, 15(2),
4430–4469.

178

Univ
ers

ity
 of

 M
ala

ya

http://www.sciencedirect.com/science/article/pii/S0268401216303097
http://www.sciencedirect.com/science/article/pii/S0268401216303097


Rehman, M. H., Sun, L. C., Wah, T. Y., & Khan, M. K. (2017). Towards next-generation
heterogeneous mobile data stream mining applications: opportunities, challenges,
and future research directions. Journal of Network and Computer Applications, 79,
1-24. doi: 10.1016/j.jnca.2016.11.031

Samsung. (2014, February). Samsung unveils galaxy s5 and new gear range.
Online. Retrieved from http://www.samsung.com/uk/discover/mobile/
samsung-unveils-galaxy-s5-and-new-gear-range/

Satyanarayanan, M. (2015). A brief history of cloud offload: A personal journey from
odyssey through cyber foraging to cloudlets. ACM SIGMOBILE Mobile Computing
and Communications Review, 18(4), 19–23.

Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for vm-based
cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4), 14–23.

Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., . . . Amos, B.
(2015). Edge analytics in the internet of things. IEEE Pervasive Computing(2),
24–31.

Shaukat, U., Ahmed, E., Anwar, Z., & Xia, F. (2015). Cloudlet deployment in local wire-
less networks: Motivation, architectures, applications, and open challenges. Journal
of Network and Computer Applications.

Sherchan, W., Jayaraman, P. P., Krishnaswamy, S., Zaslavsky, A., Loke, S., & Sinha,
A. (2012). Using on-the-move mining for mobile crowdsensing. In Mobile data
management (mdm), 2012 ieee 13th international conference on (pp. 115–124).

Shi, Y., Zhang, L., Tian, Y., & Li, X. (2015). Data mining and knowledge management.
In Intelligent knowledge (pp. 1–11). Springer.

Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. (2014). Fusion of
smartphone motion sensors for physical activity recognition. Sensors, 14(6), 10146–
10176.

Sidek, K. A., Mai, V., & Khalil, I. (2014). Data mining in mobile ecg based biometric
identification. Journal of Network and Computer Applications, 44, 83–91.

Siirtola, P., & Röning, J. (2012). Recognizing human activities user-independently on
smartphones based on accelerometer data. International Journal of Interactive Mul-
timedia and Artificial Intelligence, 1(5).

Siirtola, P., & Roning, J. (2013). Ready-to-use activity recognition for smartphones. In
Computational intelligence and data mining (cidm), 2013 ieee symposium on (pp.
59–64).

Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., & Satyanarayanan, M. (2013). Scalable
crowd-sourcing of video from mobile devices. In Proceeding of the 11th annual
international conference on mobile systems, applications, and services (pp. 139–
152).

179

Univ
ers

ity
 of

 M
ala

ya

http://www.samsung.com/uk/discover/mobile/samsung-unveils-galaxy-s5-and-new-gear-range/
http://www.samsung.com/uk/discover/mobile/samsung-unveils-galaxy-s5-and-new-gear-range/


Sokolova, M., & Matwin, S. (2016). Personal privacy protection in time of big data. In
Challenges in computational statistics and data mining (pp. 365–380). Springer.

Srinivasan, V., Moghaddam, S., Mukherji, A., Rachuri, K. K., Xu, C., & Tapia, E. M.
(2014). Mobileminer: Mining your frequent patterns on your phone. In Proceedings
of the 2014 acm international joint conference on pervasive and ubiquitous comput-
ing (pp. 389–400).

Stahl, F., Gaber, M. M., Aldridge, P., May, D., Liu, H., Bramer, M., & Philip, S. Y.
(2012). Homogeneous and heterogeneous distributed classification for pocket data
mining. In Transactions on large-scale data-and knowledge-centered systems v (pp.
183–205). Springer.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Pastrana, S. (2015). Power-aware
anomaly detection in smartphones: An analysis of on-platform versus externalized
operation. Pervasive and Mobile Computing, 18, 137–151.

Swan, M. (2012a). Health 2050: The realization of personalized medicine through crowd-
sourcing, the quantified self, and the participatory biocitizen. Journal of Personalized
Medicine, 2(3), 93–118.

Swan, M. (2012b). Sensor mania! the internet of things, wearable computing, objective
metrics, and the quantified self 2.0. Journal of Sensor and Actuator Networks, 1(3),
217–253.

Talia, D., & Trunfio, P. (2010). Mobile data mining on small devices through web
services. Mobile Intelligence, 69, 264.

Triguero, I., García, S., & Herrera, F. (2015). Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study. Knowledge and Information Sys-
tems, 42(2), 245–284.

Wang, L., Gu, T., Tao, X., & Lu, J. (2012). A hierarchical approach to real-time activity
recognition in body sensor networks. Pervasive and Mobile Computing, 8(1), 115–
130.

Wang, N., Merrett, G. V., Maunder, R. G., & Rogers, A. (2013). Energy and accuracy
trade-offs in accelerometry-based activity recognition. In Computer communications
and networks (icccn), 2013 22nd international conference on (pp. 1–6).

Wickramasinghe, A., & Ranasinghe, D. C. (2015). Recognising activities in real time
using body worn passive sensors with sparse data streams: To interpolate or not to
interpolate? In proceedings of the 12th eai international conference on mobile and
ubiquitous systems: Computing, networking and services on 12th eai international
conference on mobile and ubiquitous systems: Computing, networking and services
(pp. 21–30).

Wu, P., Zhu, J., & Zhang, J. Y. (2013). Mobisens: A versatile mobile sensing platform
for real-world applications. Mobile Networks and Applications, 18(1), 60–80.

Yang, Z., Shangguan, L., Gu, W., Zhou, Z., Wu, C., & Liu, Y. (2014). Sherlock:

180

Univ
ers

ity
 of

 M
ala

ya



Micro-environment sensing for smartphones. Parallel and Distributed Systems,
IEEE Transactions on, 25(12), 3295–3305.

Ye, F., Ganti, R., Dimaghani, R., Grueneberg, K., & Calo, S. (2012). Meca: mobile edge
capture and analysis middleware for social sensing applications. In Proceedings of
the 21st international conference on world wide web (pp. 699–702).

Yoon, J. (2013). Three-tiered data mining for big data patterns of wireless sensor net-
works in medical and healthcare domains. In Proceedings of the 8th international
conference on internet and web applications and services, rome, italy (pp. 23–28).

Yuan, B., & Herbert, J. (2014). A cloud-based mobile data analytics framework: Case
study of activity recognition using smartphone. In Mobile cloud computing, services,
and engineering (mobilecloud), 2014 2nd ieee international conference on (pp. 220–
227).

Zaslavsky, A., Jayaraman, P. P., & Krishnaswamy, S. (2013). Sharelikescrowd: Mobile
analytics for participatory sensing and crowd-sourcing applications. In Data engi-
neering workshops (icdew), 2013 ieee 29th international conference on (pp. 128–
135).

181

Univ
ers

ity
 of

 M
ala

ya



APPENDIX A: HETEROGENEITY IN MDSM APPLICATIONS

A.1 Bibliometric Analysis of WoS Databases

Research on mobile data mining has grown rapidly in recent years. A preliminary study

of WoS databases was made by querying the string "mobile data mining". According to

retrieved statistics, as of 28th January 2016, the WoS databases indexed 1930 publications

in last 27 years (from 1990 to 28th January 2016) from International Scientific Indexing

(ISI)-listed journals, conferences and workshop proceedings, and magazines (See Fig-

ure A.1). There was no significant research on the topic from 1990 to 2002. Since Year

2002, the miniaturization of technologies and onboard sensing technologies had geared-

up the research on mobile data mining. However the major boom started from Year 2007

when both Google (Android (Operating System), 2016) and Apple (Apple IPhone History,

2016) released their mobile phone operating systems.

According to Figure A.1, the number of publications rapidly increased till 2015

which shows that mobile data mining is continuously becoming a hot research topic. In

N
u

m
b

e
r 

o
f 

P
u

b
lic

at
io

n
s

Publication Year

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

Figure A.1: Year-wise Publications (1992-2016).

182

Univ
ers

ity
 of

 M
ala

ya



near future we perceive a major shift towards the research on mobile data mining due

to rapid growth in far-edge mobile devices for example smartphones, wearable devices,

mobile Internet of Things (IoTs), and body sensor networks to name a few.

The citation trends for the topic "mobile data mining" are depicted in Figure A.2.

The citation analysis showed that publications on the topic of mobile data mining obtained

9041 total citations from 8180 publications which were indexed in WoS databases. The

popularity of research on mobile data mining is witnessed by the fact that 7935 citing

publications were published without self-citations by the respective authors. The average

citations per publication are 4.68 with h-index as 40. Figure A.2 also depicts that arrival

of mobile operating systems in 2007, boomed the research on mobile data mining and it

is still increasing day by day.

Since the main focus of this thesis is on mobile streaming data therefore we fur-

ther analyzed the bibliographic records from WoS databases with another query string

as "mobile data stream mining". We found 112 publications indexed by WoS databases

from Year 1996 to 28th January, 2016. These 112 publications were cited by 343 other

N
u

m
b

e
r 

o
f 

C
it

at
io

n
s

Citation Year

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

Figure A.2: Year-wise Citations (1992-2016).

183

Univ
ers

ity
 of

 M
ala

ya



publications in WoS databases whereby 331 publications do not contain any self-citation

by respective authors. The average citations per publication are 3.06 with h-index as 11

which was lower when compared with bibliometric analysis of "mobile data mining" be-

cause less number of publications on the topic. Likewise, the major boom on "mobile

data stream mining" was also witnessed after Year 2007 and it is rapidly growing.

A.2 Heterogeneity in MDSM Applications

The MDSM applications work in five steps: a) mobile applications provide functionality

to acquire data streams from one or more data sources, b) fusion of data stream from mul-

tiple sources results in information rich data stream representing multiple facets of each

data tuple, c) preprocessing operations enable to improve the quality of data stream by

handling missing values, removing noise, and detecting anomalies and outliers, d) data

stream mining operations are performed for online knowledge discovery using differ-

ent model-based and model-less data mining algorithms, and e) uncovered knowledge

patterns are summarized, integrated and managed for further utilization using multiple

knowledge management approaches. Figure A.3 presents the taxonomy of heterogeneous

MDSM applications.

A.2.1 Heterogeneity in Data Acquisition

Data acquisition in MDSM applications is a challenging task because of massive hetero-

geneity in multiple aspects.

Volume (Data Size): The MDSM applications need to handle continuous and un-

bounded data streams therefore limiting the size of data stream is a tedious task. MDSM

applications handle volume using few methods based on sliding windows and segmen-

tation (Krishnaswamy et al., 2012; Oneto et al., 2015; Abdallah et al., 2015; Wu et al.,

2013). The sliding windows are used to sample preset number of tuples at a given time

interval. The size of sliding windows may vary in different applications. Sliding windows

184

Univ
ers

ity
 of

 M
ala

ya



Data 
Preprocessing

Application Heterogeneity

Data Acquisition Data Fusion Data Mining
Knowledge 

Management

Variety

Veracity

Volume

Velocity

Variability

Early

Late

Discriminatory

Sparsity Handling

Feature 
Extraction

Noise Filtration

Outliers 
Detection

Anomaly 
Detection

Learning Model

Mining 
Algorithms

On-board

On-device

On-edge

On-cloud

Data Source Type

Figure A.3: Taxonomy of Heterogeneous MDSM Applications.

are used in two modes. The overlapping sliding windows contain a portion of data which

overlap the previous window. The overlapping is performed to improve the quality of

data stream so that the useful data items on the start and end of the windows should not

be wasted. The non-overlapping sliding windows also play a vital role in some of the

application areas. For example, mobile health applications with non-overlapping sliding

windows are more useful than overlapping windows. Similarly data segmentation is used

as an alternate of sliding windows methods where the buffered data streams are equally

distributed in finite number of chunks for lateral processing.

Velocity (Speed or Data Rate): The speeds of incoming data streams play vital role in

MDSM applications (Gaber, 2009). Velocity is the key challenge in mobile applications

that increases makespan. MDSM applications handle velocity in two ways: a) raw data is

collected in central data stores for lateral analysis and b) in-memory data analysis of data

streams right after acquisition is performed. In the first approach, MDSM platforms create

a delay between data acquisition and knowledge discovery. This strategy is more useful

for analysis of historical data. The second approach is more appropriate for real-time data

185

Univ
ers

ity
 of

 M
ala

ya



analysis. In this case, MDSM applications need to compromise on the value of overall

knowledge patterns due to one-time processing constraints of MDSM applications.

Variety (Number and Type of Data Sources): The heterogeneity of data sources and

data formats in MDSM applications is represented by the variety property of streaming

data (Rehman et al., 2015; Swan, 2012b). Data sources for mobile applications vary

in terms of sensory and non-sensory data sources. In addition, the structured, semi-

structured, and unstructured data formats also increase the variety in mobile applications.

MDSM applications handle the variety challenge effectively to uncover maximum knowl-

edge patterns.

Variability (Variable Data Production Rates: ) Management of inconsistencies in mo-

bile streaming data is attributed to variations. The variable data rates may cause compu-

tational overhead in peak-load times; therefore, a proper handling of variability property

increases the usefulness of MDSM applications.

Veracity (Authenticity of Data Sources) The trustworthiness of mobile data streams is

represented by veracity property (Swan, 2012a). This property is based on the authenticity

of data sources and correctness of data. Effective handling of veracity property of data

streams improves the overall effectiveness and usability of MDSM applications.

Data Source Type: The data sources in MDSM applications include sensory data sources

such as accelerometer, camera, and microphone and non-sensory data sources such as

application log files, device and communication interface scans etc.

Sensor Data Sources: Sensor configurations in far-edge mobile devices vary in

terms of: a) locality, b) placement, and c) modality. The locality of sensors (Miller,

2012) is further referenced in two forms: a) sensors configured on the same motherboard

as computational components, such as CPU, memory, and storage facilities; and b) sen-

sors placed in remote wearable devices. Although useful for real-time data processing

systems, local sensors-based far-edge mobile devices are disadvantaged by heat dissipa-

186

Univ
ers

ity
 of

 M
ala

ya



tion and energy consumption. Nonetheless, data collected from off-board sensors-based

far-edge devices are prone to noise and communication protocol hurdles. Thus, decid-

ing where to place sensor on body locations presents additional challenges for far-edge

mobile device based data mining systems.

In MDSM applications, sensors can be configured in multiple ways (Miller, 2012):

a) on-body through wearable devices; b) off-body through smartphones and other smart

spaces; or c) sensors implanted inside the body. Selecting the best location for the sensors

is critical in obtaining exact readings and noise-free data collection. For example, a study

shows that far-edge mobile devices placed in the front and back of pants pockets produce

different results (A. M. Khan, Siddiqi, & Lee, 2013). Therefore, sensor placement must

be considered in any MDSM application.

Modality constraints in far-edge mobile devices (Augustyniak, Smoleń, Mikrut,

& Kańtoch, 2014) can be categorized in two forms: a) to sense inside far-edge mobile

device only; or b) to gather data from external environments as well. The fusion of data

points from both modalities enable contextual information from external environments to

be maintained. Consequently, different sensor configurations result in heterogeneity and

complexity in data enabling feature-rich MDSM applications. A number of commonly

known data sources in far-edge devices are presented in Table A.1. Notably, wearable

devices generate sensor data streams, whereas smartphones may handle non-sensor data

streams as well.

Non-Sensory Data Sources: In addition to sensor data streams, a huge variety of

non-sensor data streams are present in far-edge mobile devices. These non-sensor data

streams can be categorized as: a) device-resident; b) application-resident; or c) user-

interaction based data. As a powerful far-edge mobile device, smartphones store a number

of log files to maintain: a) communication and b) device-status related periodic informa-

tion. Communication-related information includes Wi-Fi and Bluetooth scans as well as

187

Univ
ers

ity
 of

 M
ala

ya



Table A.1: Data Sources in MDSM Applications.

Type Nature of Data Source Data Source Data Type
Sensors Physiological Heart Rate Monitor Integer

Blood Glucose Monitor Integer
Physical Activity Accelerometer Floating Point
Environmental Temperature Floating Point

Humidity Integer
Air Pressure Monitor Floating Point

Navigational GPS Location Floating Point
Compass Text

User Interaction Input Data On-screen Keyboard Text/Numeric
Microphone Audio
Camera Image/Video

Device Resident Application Logs Web Browser Logs Text
Application-specific Logs Text

Communication Logs Bluetooth Scans Text
Wi-Fi Scans Text

User Data Contact List Text
Call Logs Text
SMS Data Text

data about cellular networks and nearest cell towers. Status logs store information related

to battery, operating system, and device hardware. Thus, a huge amount of data points

can be gathered from device-resident information.

Mobile applications gather a variety of user-related information. For example, mo-

bile web browsers maintain cookies to store user credentials and personal login informa-

tion for social networks and mail-service providers. The sensitivity of this information

suggests the need for privacy-preserving MDSM applications. Moreover, a user’s inter-

action including the use of on-screen keyboards, microphone, and video cameras, is the

key driver of non-sensor data production in far-edge mobile devices.

A.2.2 Heterogeneity in Data Fusion

Data sources generate data stream with different sampling frequencies and introduce het-

erogeneity in data fusion operations. For example, the sampling frequency of accelerome-

ter is absolutely different when compared with a parallel data stream that is being sampled

from Camera.

188

Univ
ers

ity
 of

 M
ala

ya



Early Data Fusion: Early data fusion methods are applied when raw sensor data from

multiple data sources is sampled at the same sample rate which is measured as number

of samples in each given time period (Oneto et al., 2015; Mukherji, Srinivasan, & Wel-

bourne, 2014; A. M. Khan et al., 2013; L. Wang et al., 2012). For example, activity

recognition applications sampling data streams from accelerometer and GPS location at

the same time with same sampling rate. The average sampling frequency of accelerom-

eter for activity recognition applications is recommended as 25Hz however user location

do not change so frequently hence produce a lot of redundant GPS data. Similarly, if the

sampling frequency is set as 1Hz the under-sampling of accelerometer produce inaccu-

rate data hence affects the results of data mining algorithms. Therefore early data fusion

strategies are helpful for MDSM applications with low sampling rates but under perform

in case of high variance in sampling rates of different data sources.

Late Data Fusion: Late data fusion methods are applied after preprocessing the data

stream (Min & Cho, 2011; Sherchan et al., 2012; Jayaraman, Gomes, et al., 2014). The

late fusion strategies help in addressing the data redundancy issues. The data stream from

multiple data sources is sampled at different sampling rates, preprocessed and the resul-

tant data is integrated to generate an event data stream. For example, the accelerometer

samples the sensors at 25Hz while the GPS is sampled at 1Hz. The late data fusion strate-

gies first create sliding windows of 25 readings and performs the feature extraction from

each sliding window. The extracted features and GPS locations are integrated and trans-

formed into events. When compared with early data fusion, the late data fusion strategies

helps in data reduction and improving data quality.

Discriminatory Features-based Data Fusion: Far-edge mobile devices such as wireless

sensor networks and IoTs may involve homogeneous sensing settings where multiple data

sources represent same information (Shoaib et al., 2014). However sensor configurations

189

Univ
ers

ity
 of

 M
ala

ya



and placement may affect in quality data acquisition. The discriminatory fusion method-

ologies involve the identification of quality data sources and fusion of discriminatory

features which may help in improving the quality of uncovered knowledge patterns.

A.2.3 Heterogeneity in Data Preprocessing

The preprocessing operations enable to improve the quality of data stream. The het-

erogeneity in preprocessing operations arise when MDSM applications need to handle

missing values, remove noise, and detect anomalies and outliers from the data stream.

Noise Filtration: Noise refers to the inclusion of extraneous and irrelevant information

in mobile data streams (A. M. Khan, Lee, Lee, & Kim, 2010). The data streams becomes

noisy due to multiple reasons such as improper placement of sensors, wrong sensor con-

figurations, and inducement of environmental noise among others.

Outliers Detection: Outliers refer to misreported data streams where the acquired data

streams do not fully represent the desired data streams (Hromic et al., 2015). A bundle of

classification and clustering methods are used to detect and remove the outliers.

Anomaly Detection: Anomaly detection refers to the presence of anomalous data points

in acquired data streams (Suarez-Tangil, Tapiador, Peris-Lopez, & Pastrana, 2015). The

anomaly detection helps in improving the quality of knowledge patterns.

Feature Extraction: Massive data streams need to handle efficiently. The feature ex-

traction methods help in extracting features (also known as attributes) from incoming data

streams (Siirtola & Roning, 2013; Yang et al., 2014; Oshin, Poslad, & Zhang, 2015).

Sparsity Handling Highly sparse data may hamper the performance of far-edge mobile

devices in some cases (Wickramasinghe & Ranasinghe, 2015). Similarly low sparsity de-

grades the performance of MDSM applications. Therefore, maintaining an adequate level

of sparsity in MDSM applications help in improving the quality of knowledge patterns.

190

Univ
ers

ity
 of

 M
ala

ya



A.2.4 Heterogeneity in Data Stream Mining

Data stream mining algorithms vary in terms of frequent pattern mining, classification,

and clustering schemes. Therefore, numerous types of supervised, unsupervised, and

semi-supervised learning models are used for knowledge discovery in MDSM applica-

tions. The heterogeneity arises with type of data mining algorithms and their learning

models.

Learning Model Heterogeneity: Machine learning algorithms, also called learning mod-

els (LM), play a significant role in MDSM applications. Although the selection and

deployment of these models is difficult owing to onboard available resources, LMs are

widely adopted in MDSM applications as well. LMs vary in terms of training type, train-

ing mode, and training modalities. The LMs are trained in three different ways.

1. Supervised Learning (SL): One of the most common tasks in data mining is to

build models for the prediction of an object’s class on the basis of its labeled at-

tributes. A classification or regression model is usually trained for class prediction

on large data sets. Model training is done using supervised learning, which allows

for manual labeling of data points so that classification algorithms can predict sim-

ilar unobserved data (Cord & Cunningham, 2008). An overview of SL algorithm

development process is presented in Figure A.4. The designer first outlines the

type and amount of training data that could help in building prediction models. The

training data are acquired from multiple data sources, and feature extraction is per-

formed for dimensionality reduction. In addition, instances are labeled manually

(by user) or automatically (by application).

The SL algorithms work by taking A (a set of input spaces with ai feature vectors

and Li labeled attributes) and invoking a learning function that maps A to B (set

of output spaces). The selection of function affects the overall performance of the

191

Univ
ers

ity
 of

 M
ala

ya



Outline Training Data

Training Data Acquisition

Test Data Acquisition

Evaluate Accuracy

Perform Validation

Structure Function

Unsupervised LearningSupervised Learning

Determine Input 
Feature Vector Spaces

Determine Input 
Feature Vector Spaces 
and Label Attributes

Figure A.4: Supervised and Unsupervised Learning Model Development Process.

SL algorithm. The evaluation of SL algorithm is performed using cross-validation,

hold-out, prequential or leave-one-out techniques. Finally, the model is tested for

accuracy using different evaluation criteria.

Formally, SL algorithm works under some assumption or bias for better predictions

in unseen test environments. For example, smoothness assumption states that if two

points, P1 and P2, are closer to each other in a training dataset, it is most likely that

they will be closer in test data as well. In addition, an algorithm has high variance

in SL settings if it predicts different output values when it is trained with different

data sets; it is considered biased when it predicts correct results with systematically

incorrect input spaces. The prediction error ( P̂e ) of a learned classifier is the sum

of bias (β ) and variance (σ2) denoted as P̂e = β + σ2. The trade-off between β and

σ2 is that learning model must be flexible with low β value so that it can fit the data

well, but the high flexibility in learning model also increases σ2 value. Therefore,

a good SL algorithm provides a mechanism (automatic or manual) with which to

adjust this trade-off between β and σ2 and prevent over-fitting of the model (Cord

& Cunningham, 2008; Dogan & Tanrikulu, 2013).

192

Univ
ers

ity
 of

 M
ala

ya



2. Unsupervised Learning (UL): The absence of class labels in data leads toward the

discovery of new groups using UL techniques. Given the large data sets or streams

with multiple attributes, the conventional SL algorithms require a great number

of computational powers, making it difficult to manually handle all the grouping

activities.

The algorithm development process of UL methods, as depicted in Figure A.4, is

the same except the labeling of data. In UL, the definition of training data and its

acquisition is the same, but the input features vector space contains only unlabeled

data. The learning model is trained and evaluated on the basis of input features

vector space and finally tested using separate test data. The primary assumption for

UL algorithms is that all data points are identically and independently distributed

to define a (n× d) matrix. UL is initially used for density estimation, but now it

is equally being adopted for outliers detection, clustering, quantile estimation, and

dimensionality reduction (Huang, Song, Gupta, & Wu, 2014).

3. Semi-supervised Learning (SSL): The SSL plays an intermediate role between

SL and UL methods. Both the scarcity of labeled data and the extensive labeling

efforts are the main bottlenecks of SL algorithms. SSL extends SL by handling

unlabeled data as well. Yet, SSL still needs human-intervention but reduces the

effort of manually labeling the data. Moreover, SSL is equally exploited in other

forms of data mining algorithms, such as clustering and regression. SSL algorithms

work best under certain assumptions, and some of these known assumptions in-

clude smoothness assumption for classification algorithms, cluster assumption for

interrelationship between cluster points, and low density separation assumption for

dimensionality reduction algorithms. The assumptions with higher certainty level

help develop better predictive models with higher accuracy. Alternately, poorly

modeled assumptions can reduce the performance of predictive models.

193

Univ
ers

ity
 of

 M
ala

ya



The rest of the algorithm development process depicted in Figure A.5 is the same as

SL and differs only in feedback propagation in learning models. The model is given

positive feedback and is updated with labels of accurately predicted input vectors.

Meanwhile, negative feedback is sent for re-training to training datasets. SSL algo-

rithms work by first establishing a hypothesis from labeled data and then modifying

or prioritizing the hypothesis using unlabeled data. For example, a SSL algorithm

takes both A (labeled data) and B (unlabeled data) as input. Using A, it then builds

a hypothesized model called LM(A), then it processes B and based on the assump-

tions, it modifies or ranks LM(A). The new model is called LM(A+B), which

means that it can handle both labeled and unlabeled input instances (Goldberg,

Zhu, Singh, Xu, & Nowak, 2009).

Outline Training Data

Training Data Acquisition

Test Data Acquisition

Evaluate Accuracy

Perform Validation

Structure Function

Determine Input 
Feature Vector Spaces 
and Label Attributes

Negative Feedback

Positive Feedback

Figure A.5: Semi-supervised Learning Model Development Process.

SSL could be either transductive or inductive in nature. The transductive learning

can only handle the known data points. Alternately, inductive learning enables one

to handle unseen data as well. Some commonly used SSL methods include trans-

ductive SVM, co-training, self-training, and graph-based methods. An overview of

existing literature reveals that there is no SSL method that can be categorized as the

194

Univ
ers

ity
 of

 M
ala

ya



best, but the authors (Triguero, García, & Herrera, 2015) recommends a checklist

for method selection. They argued that expectation maximization with generative

models may be a good choice for clustering algorithms. Similarly, co-training is

appropriate for two set features, graph-based methods could be used for feature

similarities, and self-training methods are best for complicated supervised classi-

fiers. A detailed literature review of these methods can be found in (Triguero et al.,

2015) for interested readers.

Training Mode (Online vs. offline): The LMs for MDSM applications vary in two di-

mensions (i.e., off-line and on-line). In case of off-line learning, the learning models are

first trained out-of-far-edge mobile devices and then used inside far-edge mobile devices,

thus compromising accuracy as well as personalization at user-end (A. M. Khan et al.,

2013; Liang, Zhou, Yu, & Guo, 2014). Alternately, on-line learning provides more accu-

rate and personalized models, but less energy efficient because of computation intensities

inside far-edge mobile devices(J. B. Gomes et al., 2012b).

Linear vs. Incremental Learning :Learning process takes place linearly or incremen-

tally (Abdallah et al., 2015; Jayaraman, Gomes, et al., 2014; Min & Cho, 2011). Mean-

while, linear learning is more computation-intensive compared with incremental or en-

semble learning. Hence, the choice of learning algorithm significantly affects the overall

performance of MDSM applications.

Mining Algorithm Heterogeneity: The MDSM algorithms are categorized as classifica-

tion, clustering, and association rule mining algorithms.

1. Classification: Three types of training models are used for classification in MDSM

applications: a) universal, a single model that is used for all type of users; b) per-

sonalized, in which a model is trained for each individual; and c) adaptive, a model

that starts with a universal scheme but gradually adapts and becomes personal for

195

Univ
ers

ity
 of

 M
ala

ya



each user (Lu et al., 2012). Each modeling technique, however, has some limita-

tions. For example, the universal model is a single model for all users; therefore, the

need for more accurate predictions arises because of differences in behavioral and

physiological patterns of users. Personalized models are more accurate but require

manual labeling for each activity. Finally, adaptive models must be self-trained and

manually labeled at both times. Of the three, the universal modeling scheme is used

in most of the studies in existing literature.

2. Clustering: Clustering using UL schemes creates multiple groups or clusters of

highly similar or dissimilar data points (Abdallah et al., 2015; P. D. Haghighi et

al., 2013; Suarez-Tangil et al., 2015). The assessment of such similarities and

dissimilarities depends on the attribute values and distance measured from the clus-

ter centroids. Different variants of data clustering techniques include hierarchical,

spectral, subspace, and density-, centroid-, and constrained-based techniques. The

choice of these techniques solely depends upon the type and nature of data to be

clustered as well as the application requirements. However, clustering algorithms

are not widely adopted in far-edge mobile device-based data stream mining sys-

tems due to high and sometimes unlimited computational requirements. In addition

far-edge mobile devices face the challenges of dealing with concept drift and high

dimensional noisy data streams in ubiquitous and pervasive environments.

3. Frequent Pattern Mining: Frequent pattern mining (FPM) is a key research area

in knowledge discovery and data mining (Rehman et al., 2014a). Formally, FPM is

basically applied over I(set of items):{i1,...,in} and T(set of transactions): {t1,..,tn}

where T ⊆ I (Agrawal & Srikant, 1994; Rehman et al., 2014a). Transaction ID

(TID) is used to uniquely identify a transaction in database. T contains A(a set of

items) iff A ⊆ T . The association rule (AR): A⇒ B over two itemsets A and B

exists iff A⊂ I and B⊂ I and A∩B = /0. The rule A⇒ B contains the transactions

196

Univ
ers

ity
 of

 M
ala

ya



with minimum support minsup for A⇒ B and confidence minconf for A∪B. More-

over, for a given set of transactions D, the rule for minimum confidence (minconf )

and minimum support (minsup) are specified by users and all rules that support

minconf and minsup are generated for D resultantly. The itemsets and their ARs

vary in simple, closed, maximal, rare, sporadic and utility based itemsets. Over-

all research in frequent pattern mining varies from basic patterns to multilevel and

multidimensional patterns, to extended patterns for data sets and streams.

A.2.5 Heterogeneity in Knowledge Management

The integration, storage, and utilization of knowledge patterns in mobile data stream min-

ing applications takes place at various places.

Onboard: The onboard storage refers to the storage capabilities of far-edge devices

which is utilized to store locally uncovered knowledge patterns (N. Wang, Merrett, Maun-

der, & Rogers, 2013; Yoon, 2013). In addition, the synchronized knowledge patterns for

personalized user experience are also stored onboard far-edge mobile devices.

on-edge: The knowledge management at edge servers help in achieving location aware

distributed intelligence in MECC systems (Ye et al., 2012; Yoon, 2013). In addition, the

location-aware aggregation of knowledge patterns facilitate in reduced data transfer in

remote environments and minimize bandwidth utilization.

Remote: Conventionally knowledge patterns are integrated and stored in remote data

stores which include cloud data center, servers, grid, and application server. Remote

knowledge aggregation is useful for global knowledge discovery (Ferreira et al., 2010).

A.3 Handling Heterogeneity in MDSM Applications

This section presents the methods for handling heterogeneity at different levels in MDSM

applications.

197

Univ
ers

ity
 of

 M
ala

ya



A.3.1 Methods for Handling Data Acquisition Heterogeneity

Number and type of data sources vary depending upon the nature of data stream min-

ing systems. The application specific systems facilitate only essential data sources how-

ever the number of data sources in generic systems varies. For example, the application

specific systems such as mobile activity recognition system mostly use accelerometers,

GPS receivers, and magnetometers (Oneto et al., 2015; A. M. Khan et al., 2013; Yang

et al., 2014). Alternately, generic systems like CARDAP, OMM, and MobiSens caters

bundles of sensory and non-sensory data sources to enable generality and support wide

range of applications (Jayaraman, Gomes, et al., 2014; P. D. Haghighi et al., 2013; Wu

et al., 2013). The data sources include homogeneous and heterogeneous type of data

sources. Homogeneous data sources are mainly used when same type of data is produced

by multiple data sources such as multiple accelerometers deployed in wireless body sen-

sor networks (Shoaib et al., 2014). Alternately heterogeneous data sources are used when

MDSM applications need to collect and analyze data stream from different data sources.

The heterogeneous data sources produce integrated and multi-dimensional data stream.

Systems such as MineFleet and MobiSens utilizes heterogeneous data sources and pro-

duce multi-format information-rich data stream (Kargupta et al., 2010; Wu et al., 2013).

The data streams are collected from both onboard and off-board data sources. Sim-

ilarly, the systems are designed as first-person data stream mining systems whereby per-

sonal data is analyzed and personalized knowledge discovery is performed (Gu et al.,

2011; Mukherji et al., 2014). Alternately, the data stream mining systems integrate

the data stream from multiple users/ devices/data sources for production of generalized

knowledge patterns (Pasricha et al., 2015; Jayaraman, Perera, et al., 2014). MDSM appli-

cations handle multiple data types ranging from numerical and textual data to multimedia

and event data streams. Literature review reveals that most of the systems cater only the

198

Univ
ers

ity
 of

 M
ala

ya



numerical data streams such as accelerometer axis and GPS coordinates however a few

systems such as MSM (Mukherji et al., 2014) and OMM (P. D. Haghighi et al., 2013)

supports multiple data formats. These data types finally lead towards the nature of data

streams as structured, unstructured, and semi-structured data tuples.

To handle the resource constraints, MDSM applications adopt numerous data col-

lection strategies which differ in terms of collection mode, and amount and nature of

collected data. The data streams are either collected offline for lateral data processing or

immediately processed using either onboard computational resource, offloaded to other

computational system/infrastructures such as edge servers, cloud servers, or perform col-

laborative data processing by harnessing computational resources from nearer similar de-

vices/systems. MDSM applications either collected raw data streams, or initially process

and reduce the data streams to lower onboard resource consumption as well as bandwidth

utilization cost for data offloading.

In addition, some studies reported the representative and context aware data col-

lections strategies as well. The representative data collection strategies are useful when

multiple data sources generate same data stream representing same knowledge. The rep-

resentative data collection strategies works best in crowd-sensing like application scenario

and useful in handling highly redundant data streams. The contextual information about

user states, locations, and behavior helps in inferring current situations of users which

in turn facilitate in data reduction whereby data stream mining applications only collect

the data stream when specific situation occurs. For example, CAROMM utilizes context

aware data collection strategies based on fuzzy situation inference model which infer cur-

rent situation of users (Sherchan et al., 2012). Table A.2 presents the detailed literature

review of methodologies for handling data acquisition used by selected studies.

199

Univ
ers

ity
 of

 M
ala

ya



Reference Data Sources Types Name Users Data Types Nature Mode

(Oneto et al., 2015) 2 Off-board Accelerometer and Magnetometer Multiple Numeric / Textual Structured Offline

(Pasricha et al., 2015) 1 Onboard Application Log Files NA Textual Structured Online

(Abdallah et al., 2015) 72 Onboard Accelerometer Multiple Numeric / Textual Structured Offline

(Suarez-Tangil et al., 2015) Numerous Onboard Sequence of System Calls NA Textual Structured Online

(Boukhechba, Bouzouane, Bouchard, Gouin-Vallerand, & Giroux, 2015) 1 Onboard GPS Receiver Multiple Textual Structured Offline

(P. D. Haghighi et al., 2013) 2 Off-board ECG Sensors, Accelerometers Single Numerical Structured Offline

(J. B. Gomes et al., 2012a) 1 Onboard Accelerometer Multiple Numerical Structured Online

(P. Liu et al., 2012) 1 Off-board Accelerometers Multiple Numerical Structured Online

(A. M. Khan et al., 2010) 5 Onboard Accelerometer Multiple Numerical Structured Offline

(Mukherji et al., 2014) 3 Onboard Application Log Files, Call Records, Location Single Textual Structured Offline

(Abdallah, Gaber, Srinivasan, & Krishnaswamy, 2012) 72 Onboard Accelerometer Single Numerical / Textual Structured Offline

(Sidek, Mai, & Khalil, 2014) Numerous Off-board ECG Sensors Multiple Continuous Signals Unstructured Offline

(A. M. Khan et al., 2013) 5 Onboard Accelerometer Multiple Numerical Structured Offline

(Srinivasan et al., 2014) 3 Onboard Application Log Files, Call Records, Locations Multiple Textual Structured Offline

(Siirtola & Roning, 2013) 1 Onboard Accelerometer Multiple Numerical Structured Offline

(Siirtola & Röning, 2012) 1 Onboard Accelerometer Multiple Numerical Structured Offline

(Yang et al., 2014) 1 Onboard Accelerometer Multiple Numerical Structured Offline

(Lu et al., 2012) 1 Onboard Microphone Multiple Audio Unstructured Offline

(Donohoo, Ohlsen, Pasricha, Xiang, & Anderson, 2014) Numerous Onboard GPS / user Interactions Multiple Numerical / Textual Structured Offline

(Oshin et al., 2015) 1 Onboard Accelerometer Multiple Numerical Structured Offline200

Univ
ers

ity
 of

 M
ala

ya



(Rai, Yan, Chakraborty, Wijaya, & Aberer, 2012) 1 Onboard Accelerometer Multiple Numerical Structured Offline

(L. Wang et al., 2012) 7 Off-board 5 Accelerometers and 2 RFID Multiple Numerical Structured Offline

(Gaber, Stahl, & Gomes, 2014) Numerous Both Multiple Data Sources Multiple Both Both Both

(Ortiz et al., 2015) 1 Onboard Camera Multiple Images Unstructured Offline

(Braojos et al., 2014) 9 Both Accelerometer Multiple Numerical Structured Offline

(Min & Cho, 2011) Numerous Both Accelerometer and Magnetometer Multiple Numerical Structured Offline

(Stahl et al., 2012) Numerous Both Multiple Data Sources Multiple Both Both Both

(Jayaraman, Perera, et al., 2014) 13 Both Multiple Multiple Both Both Online

(Wu et al., 2013) 8 Onboard Accelerometer, Magnetometer, Ambient Light, Tem-

perature, Microphone, Camera, GPS, Wi-Fi

Multiple Both Both Offline

(Sherchan et al., 2012) Numerous Both Multiple Data Sources Multiple Both Both Offline

(Jayaraman, Gomes, et al., 2014) Numerous Onboard Multiple Data Sources Multiple Both Both Online

(Lin et al., 2013) 1 Onboard GPS Receiver Multiple Numerical Structured Offline

(Yuan & Herbert, 2014) 2 Both Accelerometer and Gyroscope Multiple Numerical Structured Both

(Talia & Trunfio, 2010) Numerous NA Numerous Multiple NA NA Offline

(Kargupta et al., 2010) Numerous Onboard Onboard Vehicle Sensors Multiple Both Both Online

(Yoon, 2013) 2 Onboard Accelerometer and GPS Multiple Numerical Structured Online

(Gu et al., 2011) 2 Off-board Accelerometer and Camera Multiple Both Both Offline

Table A.2: Data Acquisition Heterogeneity.

201

Univ
ers

ity
 of

 M
ala

ya



A.3.2 Methods for Handling Data Fusion Heterogeneity

Literature review reveals that in most of the studies early data fusion is adopted whereby

MDSM applications which collect data streams from multiple data sources and aggregate

for further processing (Srinivasan et al., 2014; Braojos et al., 2014). Early data fusion

results in redundant and noisy data streams therefore leads to inefficiency and extraneous

resource consumption in mobile devices. A few studies use late data fusion strategies

whereby collected data streams are preprocessed in parallel before data fusion (Min &

Cho, 2011; Jayaraman, Gomes, et al., 2014). The late data fusion strategies consume

onboard computational resources however it improves the data quality for lateral data

processing. Late data fusion is useful when preprocessed data is integrated from multiple

data sources. Although discriminatory data fusion strategies are also proposed by the

researchers but existing literature still lacks its application in MDSM applications (Shoaib

et al., 2014).

Data fusion strategies either work as online methods where all computations are

performed in memory or works offline where data streams are stored onboard before data

fusion (Oshin et al., 2015; Yoon, 2013). The online strategies are effective and improve

system performance in terms of makespan and local storage I/O operations. However

in-memory computations sometimes result in data loss and reduced data quality when

dealing with large and complex data streams. Offline data fusion facilitates in improved

data quality and complete data streams however quickly hampers onboard storage re-

sources. Table A.3 presents a detailed literature review of data fusion heterogeneity in

MDSM applications.

A.3.3 Methods for Handling Data Preprocessing Heterogeneity

The MDSM applications use various data preprocessing methods for sliding windows

based data stream segmentations, feature extraction, data conversion from unstructured

202

Univ
ers

ity
 of

 M
ala

ya



Reference Nature of
Fused Data

Data
Fusion

Fusion
Mode

Fusion Objective

(Oneto et al., 2015) Raw Early Offline Linear acceleration and angular velocity
(Abdallah et al., 2015) Raw Early Offline Multi-sensor data acquisition
(P. D. Haghighi et al., 2013) Raw Early Offline Multi-sensor data acquisition
(A. M. Khan et al., 2010) Raw Early Offline To generate a linear feature space
(Mukherji et al., 2014) Raw Early Offline To produce a multi-dimensional dataset
(Abdallah et al., 2012) Raw Early Offline Multi-sensor data acquisition
(Sidek et al., 2014) Preprocessed Early Offline Acquisition of ECG signals
(A. M. Khan et al., 2013) Raw Early Offline To generate a non-linear feature space
(Srinivasan et al., 2014) Raw Early Offline To produce a high-dimensional dataset
(Donohoo et al., 2014) Raw Early Offline To generate feature vectors for context acquisition
(Oshin et al., 2015) Raw Early Offline Collection of data from multiple users
(Rai et al., 2012) Raw Both Offline To generate a quality feature space
(L. Wang et al., 2012) Raw Early Offline To generate a quality feature space
(Gaber, Stahl, & Gomes, 2014) Raw Both Online Knowledge aggregation
(Ortiz et al., 2015) Raw Early Online To generate a quality feature space
(Braojos et al., 2014) Raw Early Online To generate a quality feature space
(Min & Cho, 2011) Preprocessed Late Online Pattern integration and template matching
(Stahl et al., 2012) Raw Both Online Knowledge aggregation
(Jayaraman, Perera, et al., 2014) Raw Early Online Multi-sensor data acquisition
(Wu et al., 2013) Raw Early Offline Multi-sensor data acquisition
(Sherchan et al., 2012) Preprocessed Late Offline Collection of data from multiple users
(Jayaraman, Gomes, et al., 2014) Raw Late Online Collection of data from multiple users
(Lin et al., 2013) Raw Early Online Collection of data from multiple users
(Yuan & Herbert, 2014) Raw Early Online Collection of data from multiple users
(Talia & Trunfio, 2010) Raw Early Offline Collection of data from multiple users
(Kargupta et al., 2010) Raw Early Online Collection of data from multiple users
(Yoon, 2013) Raw Both Online Collection of data from multiple users
(Gu et al., 2011) Raw Early Offline Collection of data from multiple users

Table A.3: Data Fusion Heterogeneity.

to structured formats, signal analysis, noise and data filtration, addition of privacy and

security features, dimension reduction, and outliers’ detection, to name a few. The selec-

tion of preprocessing methods depends upon the nature of data streams and application

requirements. For example, overlapping sliding windows based segmentations are used

for activity recognition applications (Suarez-Tangil et al., 2015). Similarly, anonymiza-

tion and encryption techniques facilitate in privacy and security features of MDSM appli-

cations (Mukherji et al., 2014).

Similar to data fusion operation, data preprocessing operations are performed in

offline and online mode (Lu et al., 2012; Yuan & Herbert, 2014). The offline preprocess-

ing methods are applied over historical data which is acquired and stored using onboard

storage. The online data preprocessing operations are performed in memory. However

in-memory computations become challenging due to variant complexities of data pre-

processing algorithms. Table A.4 presents the detailed literature review of preprocessing

methods.

203

Univ
ers

ity
 of

 M
ala

ya



Reference Data Preprocessing Method Type of Preprocessing Algorithm Preprocessing

Mode

Preprocessing Objective

(Oneto et al., 2015) Sliding Windowing with 50% Overlap Time and Frequency Domain Feature Extraction Offline Extraction of 561 Features

(Abdallah et al., 2015) Clustering Sliding Windows KNN Clustering Online Extraction of Features from Clusters and Sub-clusters

(Suarez-Tangil et al., 2015) Sliding Windowing with 50% Overlap Histogram Features Online / Offline Feature Extraction for Anomaly Detection

(P. D. Haghighi et al., 2013) ECG signals converted using mobile health

open source framework

ECG signals to numeric value conversion Offline Feature Extraction

(A. M. Khan et al., 2010) Auto-regressive Co-efficient, Signal Mag-

nitude Area, Linear Discriminant Analysis,

and Kernal Discriminant Analysis

Noise Filtering and Feature Extraction Offline Feature Extraction from Non-linear Space

(Abdallah et al., 2012) Clustering of Sliding Windows Cluster-based Features Online Extracted Features from Clusters

(Mukherji et al., 2014) Anonymization and Encryption Privacy and Security Offline User De-identification

(Sidek et al., 2014) QRS Selection / Normalization Feature Selection and Normalization Offline Feature Extraction from ECG Data

(A. M. Khan et al., 2013) Auto-regressive Co-efficient, SMA, LDA,

and KDA

Noise Filtering and Feature Extraction Offline Feature Extraction from Non-linear Space

(Srinivasan et al., 2014) Anonymization and Encryption Privacy and Security Offline User De-identification

(Siirtola & Roning, 2013) Feature Extraction Statistical Feature Extraction Methods Offline Features Extraction from Accelerometer Data

(Siirtola & Röning, 2012) Feature Extraction Statistical Feature Extraction Methods Offline Features Extraction From Accelerometer Data

(Yang et al., 2014) Feature Extraction Time and Frequency Domain Feature Extraction Offline Feature Extraction

(Lu et al., 2012) Feature Extraction Statistical and Acoustic Features Offline Feature Extraction From Voice Data

204

Univ
ers

ity
 of

 M
ala

ya



(Donohoo et al., 2014) Principle Component Analysis Feature Extraction Offline Feature Extraction from GPS and other Onboard Sen-

sors

(Oshin et al., 2015) Feature Extraction Mathematical Functions for Feature Extraction Offline Feature Extraction from Accelerometer Data

(Rai et al., 2012) Feature Extraction Statistical Feature for Time and Frequency Domain

Features / Clustering of Higher-order Features

Offline Feature Extraction

(L. Wang et al., 2012) Dynamic Time Wrapping Template Matching Offline Template Matching

(Gaber, Stahl, & Gomes, 2014) Numerous Numerous Both Multiple

(Ortiz et al., 2015) Sift/Surb/ORB Feature Extraction Method Online Feature Extraction

(Braojos et al., 2014) Time-domain, Frequency domain, Wavelet Feature Extraction Method Online Feature Extraction

(Min & Cho, 2011) Segmentation Activity based Classification Offline Segmentation

(Stahl et al., 2012) Numerous Numerous Both Multiple

(Jayaraman, Perera, et al., 2014) Sliding Windows with 50% Overlap FFT and Light-weight Analysis Online Multiple

(Wu et al., 2013) Sliding Windowing for Segmentation NA NA NA

(Sherchan et al., 2012) Change Detection Light-weight Clustering Online Quality Data Collection

(Jayaraman, Gomes, et al., 2014) Light-weight Algorithms Light-weight Clustering Online Quality Data Collection

(Yuan & Herbert, 2014) Sliding Windowing with 50% Overlap and

Feature Extraction

66 Time Domain and Frequency Domain Features Ex-

tracted through Statistical Methods

Online Multi-user Data Collection

(Talia & Trunfio, 2010) NA NA Offline Multi-user Data Collection

(Yoon, 2013) Filtration methods are applied Filtration Online Data Filtration

(Gu et al., 2011) Sliding Windows based Segmentation NA Offline Improving Data Quality

Table A.4: Data Preprocessing Heterogeneity.

205

Univ
ers

ity
 of

 M
ala

ya



A.3.4 Methods for Handling Data Mining Heterogeneity

The MDSM applications use different learning models based on SL, UL, and SSL ap-

proaches. Currently most of the learning models are trained offline in desktop PCs, LAN

servers, or CC systems. Some studies trained learning models in mobile devices as well

however online training of learning models inside mobile environments is a challenging

task. The challenge arises because training types of SL, UL, and SSL approaches dif-

fer. In case of SL models, the training data stream needs to be labeled/annotated so that

learning models can accurately recognize and predict the future similar data streams. The

labeling of data streams differs in manual, automatic, and observational settings. The

manual labeling is performed when each segment/chunk of data stream is manually an-

notated however this process is quite laborious and needs a lot of efforts. An alternate

methodology is the adoption of automatic application driven labeling where the appli-

cations are configured at the time of data collection and the resultant data streams are

annotated accordingly. The automatic labeling is more promising as compared to manual

labeling in order to reduce the training efforts. The observational settings further enhance

the automatic labeling by allowing users to intervene in data labeling process. In this

approach the learning models are initially trained in automatic settings however in case

of discrepancies users are allowed to intervene by manually labeling the data streams.

The selection of learning algorithms significantly impacts the performance of MDSM

applications in order to perform energy-efficient, cost-effective, highly accurate data stream

mining operations. For deployment in mobile environments, the internal structures of

learning models and their processing behavior play an important role in devising the com-

putational complexity of learning models. In essence, MDSM applications need to per-

form online data stream mining operations on continuous data streams. Therefore most

of the studies either separate the training and recognition processes or use shallow data

206

Univ
ers

ity
 of

 M
ala

ya



structures like arrays, lists, or pruned trees for improved efficiency.

Learning in MDSM applications is performed to achieve multiple objectives which

include system level and application level performance enhancements. The system level

performance objectives include battery life enhancements in mobile devices and perform-

ing offloading decisions in mobile cloud settings. However majority of the methods used

learning models to enhance application performance in terms of change detection from

uncertain data streams, model personalization, prediction and optimization of next loca-

tions, online activity recognition, finding emerging patterns, to name a few.

Once the learning models are trained and deployed, the MDSM applications process

the incoming data streams in both online and offline mode. The offline data streams are

first stored in onboard local storage and processed whenever the feasible environment

for data stream processing is available. The online data streams are directly processed

either using onboard computational resources or offloaded in other devices and systems

in F2F, mobile-edge, MCC, or MECC settings. Majority of the studies in literature used

classification algorithms due to low computational complexities and easy deployment

as compared to clustering and frequent pattern mining algorithms. The classification

algorithms are used for multiple purposes such as onboard classifications, on-wireless

node classification, distributed classification, multi-level classification, and light-weight

classification. A few studies implemented light-weight clustering and association rule

mining algorithms which shows the practicality of clustering and frequent pattern mining

algorithms in mobile-environments. Table A.5 presents a detailed literature review of data

stream mining heterogeneity in MDSM applications.

207

Univ
ers

ity
 of

 M
ala

ya



Reference Learning

Mode

Learning

Type

Learning Algorithm Learning Objective Mining

Mode

Learning

Model

Training

Mode

Data Mining Algorithm Purpose

(Oneto et al., 2015) Offline SL Multiple Learning Algorithms Battery Life Enhancement Online Yes Offline Feed Forward Selection Classification

(Pasricha et al., 2015) Online SL Q-learning Battery Life Enhancement Online Yes Offline/

Adap-

tive

Bayesian Classifier Classification

(Abdallah et al., 2015) Both SL/ UL Incremental/ Active Learning Handling Concept Drift Online/

Offline

Yes Offline Ensemble Classifier Classification

(Suarez-Tangil et al.,

2015)

Both SL ONB, J48, K-means Offload or not to Offload Online Yes Both naive Bayes, J-48, K-means Classification/ Clustering

(Boukhechba et al., 2015) Online SL Habit Tree Data Structure To Optimize and Predict Next Location Online Yes Online Association Rule Mining

(ARM)

ARM

(P. D. Haghighi et al.,

2013)

Online SL/ UL Multiple Learning Algorithms Onboard Data Stream Mining Online Yes Online ARM, Classification, Cluster-

ing

Light-weight Data Mining

(J. B. Gomes et al., 2012a) Online SL naive Bayes Model Personalization Online Yes Online naive Bayes Classification

(P. Liu et al., 2012) NA SL/ UL Multiple Learning Algorithms Proof of concept for Mobile Data Mining Online Yes NA Mobile WEKA library Classification, Clustering,

ARM

(A. M. Khan et al., 2010) Offline SL Feed Forward Neural Network Onboard Multi-sensor Activity Recognition Online Yes Offline Feed Forward Selection Classification

(Mukherji et al., 2014) Online SL Tree based To Perform Context Prediction Online Yes Online Sequential Pattern Mining Sequential Pattern Mining

(Abdallah et al., 2012) Both SL/ UL Incremental/ Active Learning Clustering Online Yes Offline K-means Clustering

208

Univ
ers

ity
 of

 M
ala

ya



(Sidek et al., 2014) Both SL NB, BN, and MLP ECG Signal Classification for Biometric

Identification

Online Yes Online BN, MNN Classification

(A. M. Khan et al., 2013) Offline SL Feed Forward Neural Network Onboard Multi-sensor Activity Recognition Online Yes Offline Feed Forward Selection Algo-

rithm

Classification

(Srinivasan et al., 2014) Online SL Tree based To Perform Context Prediction Online Yes Online Sequential Pattern Mining Sequential Pattern Mining

(Siirtola & Roning, 2013) Offline SL Decision Tree and QDA Model Training Online Yes Offline Decision Tree and QDA Classification

(Yang et al., 2014) Offline SL SVM Model Training Online Yes Offline Support Vector Machine Classification

(Lu et al., 2012) Offline SL Gausian Mixture Model Speaker Identification Online Yes Offline GMM, K-means, and EM Classification

(Donohoo et al., 2014) Offline SL LDA, LLR, SVM, VRL Model Training Online Yes Offline LDA, LLR, SVM, KNN Classification

(Oshin et al., 2015) Offline SL EHMS Model Training Online Yes Online EHMS Classification

(Rai et al., 2012) Online SL/ UL K-means and SVM Higher Order Feature Extraction/ Model

Training

Online Yes Online Support Vector Machine Classification

(L. Wang et al., 2012) Offline UL Emerging Patterns Activity Recognition Offline Yes Offline Emerging Patterns Classification

(Gaber, Stahl, & Gomes,

2014)

Offline SL Hoefding Tree Distributed Classification Online Yes Offline Emerging Patterns Classification

(Ortiz et al., 2015) Online SL NA NA Online No NA K-means Distributed Clustering

(Braojos et al., 2014) Offline SL NFC Classification Online No Offline Nero Fuzzy Classifier, DT Multi-level Classification

(Min & Cho, 2011) Offline SL SVM, NB, DT Classification Online Yes Offline SVM, NB, DT Multi-level Classification

(Stahl et al., 2012) Offline SL Hoefding Tree Distributed Classification Online Yes Offline Hoefding Tree Distributed Classification

(Jayaraman, Perera, et al.,

2014)

NA NA NA NA NA NA NA Light-weight Algorithms Classification, Clustering,

ARM209

Univ
ers

ity
 of

 M
ala

ya



(Dou et al., 2011) NA NA NA NA Online No NA K-means Distributed Clustering

(Wu et al., 2013) Offline SL EM Classification Offline Yes Offline HMM Classification

(Eom et al., 2015) Online SL Instance based Learning, naive

Bayes, Single Layer Percep-

tron

Classification Online Yes Online Instance based Learning, naive

Bayes, Single Layer Percep-

tron

Machine Learning based

Dynamic Task Scheduling

(Sherchan et al., 2012) Online UL Light-weight Clustering Change Detection Online Yes Online Light-weight Algorithms Light-weight Data Mining

(Jayaraman, Gomes, et al.,

2014)

Online SL/UL Light-weight Clustering and

Classification

Local Analytics Online Yes NA Light-weight Algorithms Light-weight Algorithms

(Lin et al., 2013) NA NA NA NA online No NA K-means Clustering of GPS Data

(Yuan & Herbert, 2014) Both SL / UL NB, DT, Nearest Neighbor,

Neural Network

Universal and Personalized Model Develop-

ment

Online/

Offline

Yes Both NB, DT, Nearest Neighbor,

Neural Network

Personalized Activity

Classification

(Hassan et al., 2015) Online SL MLP, Linear Regression,

SVM, Decision tree

Model Training for Predicting Offload-able

Computations

Online Yes Online MLP, LR, SVM, DT Compute/Resource-

intensive Methods Classi-

fication

(Talia & Trunfio, 2010) Offline NA Numerous NA Offline NA Offline Numerous Multiple

(Kargupta et al., 2010) NA NA NA NA Online No NA Correlation and Distance Ma-

trices Computations

Change Detection

(Yoon, 2013) NA NA NA NA Online No Online Multi-level Deployment of

ARM Algorithms

ARM

(Gu et al., 2011) Offline UL Emerging Patterns Prediction of Emerging Patterns Online Yes Offline Emerging Patterns ARM

Table A.5: Data Stream Mining Heterogeneity.210

Univ
ers

ity
 of

 M
ala

ya



A.3.5 Methods for Handling Knowledge Management Heterogeneity

Since MDSM applications process data streams at multiple devices and systems therefore

the integration and summarization of knowledge patterns needs careful attention. MDSM

applications usually run the knowledge discovery operations such as learning and recog-

nition and knowledge management operations such as integration, summarization, and

storage of knowledge patterns at the same device or system. However, few studies present

the synchronization/transfer of knowledge patterns among different systems whereby the

knowledge patterns are stored either in local storage such as onboard data stores in far-

edge mobile devices or in remote data stores such as those in cloud data centers and

edge servers. The hierarchical knowledge management facilitate in enabling both local

and remote storage settings. Hierarchical knowledge management strategies enable local

storage at lower level where far-edge mobile devices mange the knowledge patterns using

onboard settings. At the second level, multiple devices transfer the knowledge patterns to

nearer edge servers which integrate and manage local data stores. Finally multiple edge

servers in different geographical settings transfer the knowledge patterns to centralized

cloud data centers which enable knowledge integration for a global view.

Knowledge visualization is another challenge that MDSM applications need to han-

dle efficiently. MDSM applications provide the visualization functionalities either on-

screen in far-edge mobile devices or provide a web interface for remote visualization.

On-screen visualization in far-edge mobile devices is handy for real-time applications

however limited screen size and energy intensive operations quickly hampers the on-

board computational and battery resources. The knowledge management strategies work

in both online and offline mode. The online knowledge strategies integrate, summarize

and visualize the knowledge patterns before storage and lateral aggregation if required.

However offline strategies first integrate, summarize, and store the knowledge patterns.

211

Univ
ers

ity
 of

 M
ala

ya



Reference Local DM Remote DM On-screen Visu-
alization

Remote Vi-
sualization

Knowledge
Management

(Pasricha et al., 2015) Y N Y N Online
(Abdallah et al., 2015) Y N Y N Online
(Boukhechba et al., 2015) Y N N N N
(P. D. Haghighi et al., 2013) Y Y N N Online
(J. B. Gomes et al., 2012a) Y N Y N Online
(Mukherji et al., 2014) Y N N N N
(Abdallah et al., 2012) Y N N N N
(Srinivasan et al., 2014) Y N N N N
(Yang et al., 2014) Y N Y N Online
(Gaber, Stahl, & Gomes, 2014) Y N Y N Online
(Min & Cho, 2011) Y N N N N
(Stahl et al., 2012) Y N Y N Online
(Jayaraman, Perera, et al., 2014) Y Y N Y Both
(Dou et al., 2011) N N Y N N
(Wu et al., 2013) N Y N Y Offline
(Sherchan et al., 2012) Y Y Y Y Offline
(Jayaraman, Gomes, et al., 2014) Y Y Y Y Offline
(Lin et al., 2013) N N N NA Online
(Yuan & Herbert, 2014) Y N N NA Both
(Talia & Trunfio, 2010) N Y Y N Offline
(Kargupta et al., 2010) Y Y Y Y Online
(Yoon, 2013) Y Y NA NA Online

Table A.6: Knowledge Management Heterogeneity.

In such cases, the on-demand visualization is enabled whereby knowledge patterns are

visualized when required. Table A.6 presents the detailed literature review of knowledge

management heterogeneity in MDSM applications.

212

Univ
ers

ity
 of

 M
ala

ya



APPENDIX B: RULES FOR SCHEDULING

Rule_id Rule Action

r1 Fbattery ≤ 10% perform data collection.

r2 F != charging device not charging, check battery

capacity.

r3 F != locked device not locked, check application

status.

r4 UAi == ’active’ application is running, perform data

processing.

r5 Fbattery > 10% perform data processing.

r6 F == charging device charging, perform data

processing.

r7 MBattery> Required_AvgPower*0.5 on average, mobile edge server has

sufficient battery power, start

collaboration.

r8 MBattery ≤ Required_AvgPower*0.5 on average, mobile edge server has

insufficient battery power, look for

other devices, or connect with Internet.

r9 FMemory>Req_Memory far-edge device has sufficient memory,

process locally.

r10 FMemory ≤Req_Memory far-edge device has insufficient memory,

process using mobile edge server or

cloud services.

r11 MBattery>Req_Battery*0.5 mobile edge server has sufficient battery

for current process, offload data stream

213

Univ
ers

ity
 of

 M
ala

ya



for collaborative execution.

r12 MBattery ≤Req_Battery*0.5 mobile edge server has insufficient battery

for current process, offload data stream for

cloud-based execution.

r13 MMemory>Req_Memory*0.5 mobile edge server has sufficient memory

for current process, offload data stream for

collaborative execution.

r14 MMemory ≤Req_Memory*0.5 mobile edge server has insufficient memory

for current process, offload data stream for

cloud-base execution.

r15 UAi 6= ’active’ MDSM application is active, start data

processing

r16 UAi == ’real-time’ MDSM application is real-time, must

run data processing in either LA, CA,

CLA, or low processing modes.

r17 UAi 6= ’real-time’ MDSM application is not real-time,

check resources or perform data

collection.

r18 Location == ’known’ location is known, perform data

processing.

r19 Location == ’unknown location is unknown, update list

of locations.

r20 Connection == ’Wi-Fi’ connected with Wi-Fi, start data

processing in CA or CLA.

r21 Connection 6= Wi-Fi not connected with Wi-Fi, stop

214

Univ
ers

ity
 of

 M
ala

ya



data processing and continue data

collection.

r22 Device == ’idle’ check application status, perform

data processing.

r23 Device == ’busy’ stop data processing, continue data

collection.

r24 Mmemory > Memoryestimated mobile edge server has sufficient

memory to process current data

stream, process in mobile edge server.

r25 Mmemory ≤Memoryestimated mobile edge server has insufficient

memory to process current data

stream, do not process in mobile

edge server.

r26 MBattery > Memoryestimated mobile edge server has sufficient

battery power to process current data

stream, process in mobile edge server.

r27 MBattery ≤Memoryestimated mobile edge server has insufficient

battery power to process current data

stream, do not process in mobile

edge server.

r28 Fi.count > 0 unprocessed files are present, start

data processing.

r29 Fi.count ≤ 0 no unprocessed file, stop data

processing, continue data collection.

r30 Timer>0 timer is not expired, wait for result

215

Univ
ers

ity
 of

 M
ala

ya



from mobile edge server.

r31 Mode==LA f ull start data processing in LA mode.

r32 Mode==LAadaptive disable all communication

interfaces and inactive sensors and

perform data processing.

r33 Mode==CA connect through local wi-fi and

perform data processing using mobile

edge servers.

r34 Mode==CLA connect through local wi-fi and

perform data processing using

cloud servers.

r35 M == known mobile edge servers are known,

perform data processing.

r36 M 6= unknown mobile edge servers are unknown,

update list of servers and perform

data processing.

r37 Timer≤0 timer is expired, rescheduled Fi

to other mobile edge servers or

check Internet connection and

upload in cloud.

216

Univ
ers

ity
 of

 M
ala

ya


	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	INTRODUCTION
	Problem Statement
	Mobile Edge Cloud Computing System
	Objectives of Thesis and Research Methodology
	Thesis Contributions
	Thesis Outline

	EXECUTION MODELS FOR MDSM PLATFORMS
	The Anatomy of MDSM Applications
	Topological Settings of MDSM Platforms
	Far-edge Mobile Devices
	Far-edge to Far-edge Communication Model
	Mobile Edge Servers
	Immobile Edge Servers
	Mobile Cloud Computing System

	MDSM Execution Models
	Model Type
	Granularity of Data Processing
	Model Behavior
	Data Management and Adaptation Strategies
	Application Partitioning
	Computation Offloading
	Data Transfer Strategies

	Critical Factors of Complexity in MDSM Applications
	Controlling Complexity at Platform Level
	Scope Limitation

	Summary

	DISTRIBUTED DATA STREAM MINING IN MECC SYSTEMS
	Problem Analysis
	Impact Analysis of Data Size and Data Rate
	Impact Analysis of Early Data Fusion and Data Preprocessing
	Impact Analysis of Learning Model Generation and Data Mining

	UniMiner: A Framework for Heterogeneous Application Execution
	Assumptions

	Three-layer MECC Architecture for UniMiner
	Components and Operations for LA
	Data Acquisition and Data Adaptation
	Knowledge Discovery
	Knowledge Management
	System Management
	Visualization and Actuation

	Components and Operations for CA
	Discovering Mobile Edge Servers and Communication Interfaces
	Peer to Peer (P2P) Network Formation
	Knowledge Discovery and Pattern Synchronization

	Components and Operations for CLA
	Service Discovery and Service Model


	Formal Modeling, Analysis and Verification
	High Level Petri Nets
	SMT-Lib and Z3 Solver

	Simulation Results and Discussion
	Summary

	Execution Models for MDSM Applications in MECC Systems
	Preliminaries
	MDSM Application Architecture in MECC System
	Multistage MDSM Application Execution in MECC Systems
	MDMS Application State Transition Model
	Data-intensive vs. Compute-intensive Applications

	Dynamic Execution Model
	Operations
	Single-point Data Stream Management
	Managing Data Tables

	Single-point Opportunistic Data Stream Offloading
	The Proposed Offloading Strategy
	Dynamic Resource Estimation for Data Stream Offloading


	Adaptive Execution Model
	Operations
	Multi-point Data Stream Management
	Multi-point Data Stream Offloading
	Adaptive Resource Estimation
	Rule-based Scheduling


	Summary

	PERFORMANCE EVALUATION
	Use-case Application for Mobile Activity Detection
	Development and Experimental Setups
	Development
	Experimental Setup
	Evaluation Metrics

	Experiments
	Static Application Execution using Far-edge Devices
	Static Application Execution using F2F Communication Model
	Static Application Execution using F2C Communication Model
	Dynamic Application Execution using UniMiner
	Adaptive Application Execution using UniMiner

	Discussion
	Lessons Learned
	Qualitative Comparison of UniMiner

	Summary

	Conclusion and Future Research Directions
	Achievements
	Future Research Agenda
	Future Research Work
	Future Research Areas

	Final Thoughts

	References
	Appendix
	Bibliometric Analysis of WoS Databases
	Heterogeneity in MDSM Applications
	Heterogeneity in Data Acquisition
	Heterogeneity in Data Fusion
	Heterogeneity in Data Preprocessing
	Heterogeneity in Data Stream Mining
	Heterogeneity in Knowledge Management

	Handling Heterogeneity in MDSM Applications
	Methods for Handling Data Acquisition Heterogeneity
	Methods for Handling Data Fusion Heterogeneity
	Methods for Handling Data Preprocessing Heterogeneity
	Methods for Handling Data Mining Heterogeneity
	Methods for Handling Knowledge Management Heterogeneity





