
OPTIMISATION MODEL FOR SCHEDULING
MAPREDUCE JOBS IN BIG DATA PROCESSING

IBRAHIM ABAKER TARGIO HASHEM

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

OPTIMISATION MODEL FOR SCHEDULING
MAPREDUCE JOBS IN BIG DATA PROCESSING

IBRAHIM ABAKER TARGIO HASHEM

THESIS SUBMITTED IN FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Ibrahim Abaker Targio Hashem Registration/Matric No: WHA120037

Name of Degree: Doctor of Philosophy

Title: Optimization Model for Scheduling MapReduce Jobs in Big Data Processing

Field of Study: Big Data Scheduling

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that
the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed
any copyright whether intentionally or otherwise, I may be subject to legal
action or any other action as may be determined by UM.

 Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITI MALAYA
PERAKUAN KEASLIAN PENULISAN

Nama: Ibrahim Abaker Targio Hashem
No. Pendaftaran/Matrik: WHA120037
Nama Ijazah: Doctor of Philosophy
Tajuk Kertas Projek/Laporan Penyelidikan/Disertasi/Tesis: Optimisation Model for

Scheduling MapReduce Jobs in Big Data Processing

Bidang Penyelidikan: Big Data Scheduling

 Saya dengan sesungguhnya dan sebenarnya mengaku bahawa:
(1) Saya adalah satu-satunya pengarang/penulis Hasil Kerja ini;
(2) Hasil Kerja ini adalah asli;
(3) Apa-apa penggunaan mana-mana hasil kerja yang mengandungi hakcipta

telah dilakukan secara urusan yang wajar dan bagi maksud yang dibenarkan
dan apa-apa petikan, ekstrak, rujukan atau pengeluaran semula daripada atau
kepada mana-mana hasil kerja yang mengandungi hakcipta telah dinyatakan
dengan sejelasnya dan secukupnya dan satu pengiktirafan tajuk hasil kerja
tersebut dan pengarang/penulisnya telah dilakukan di dalam Hasil Kerja ini;

(4) Saya tidak mempunyai apa-apa pengetahuan sebenar atau patut
semunasabahnya tahu bahawa penghasilan Hasil Kerja ini melanggar suatu
hakcipta hasil kerja yang lain;

(5) Saya dengan ini menyerahkan kesemua dan tiap-tiap hak yang terkandung di
dalam hakcipta Hasil Kerja ini kepada Universiti Malaya (“UM”) yang
seterusnya mula dari sekarang adalah tuan punya kepada hakcipta di dalam
Hasil Kerja ini dan apa-apa pengeluaran semula atau penggunaan dalam apa
jua bentuk atau dengan apa juga cara sekalipun adalah dilarang tanpa terlebih
dahulu mendapat kebenaran bertulis dari UM;

(6) Saya sedar sepenuhnya sekiranya dalam masa penghasilan Hasil Kerja ini
saya telah melanggar suatu hakcipta hasil kerja yang lain sama ada dengan
niat atau sebaliknya, saya boleh dikenakan tindakan undang-undang atau apa-
apa tindakan lain sebagaimana yang diputuskan oleh UM.

 Tandatangan Calon Tarikh:

Diperbuat dan sesungguhnya diakui di hadapan,

 Tandatangan Saksi Tarikh:

Nama:
Jawatan:

Univ
ers

ity
of

Mala
ya

iii

ABSTRACT

With the fast development of Internet-based technologies, data generation has

increased drastically over the past few years, coined as big data era. Big data offer a

new paradigm shift in data exploration and utilization. The major enabler for

underlying many big data platforms is certainly the MapReduce computational

paradigm. Scheduling plays an important role in MapReduce, mainly in reducing the

execution time of data-intensive jobs. However, despite recent efforts toward

improving MapReduce performance, scheduling MapReduce jobs across multiple

nodes have shown to be multi-objective optimization problem. The problem is even

more complex using virtualized clusters in a cloud computing to execute a large

number of tasks. The complexity lies in achieving multiple objectives that may be of

conflicting nature. These conflicting requirements and goals are challenging to

optimize due to the difficulty of predicting a new incoming job’s behavior and its

completion time. In this study, we aim to optimize task scheduling and resource

utilization using an evolutionary algorithm based on the proposed completion time

and monetary cost of cloud service models. The multi-objective approaches which

are, Sorting Genetic Algorithm II (NSGA-II) and Strength Pareto Evolutionary

Algorithm II (SPEA2) are applied to find the Pareto front of the Makespan and total

cost. The result of our experiment analysis reveals that the advantage of NSGA-II

over the SPEA2 on the tested problems based on the adopted measuring criteria. In

addition, NSGA-II algorithm was able to find the optimal solutions. We then

proposed a multi-objective scheduling algorithm framework that considers resource

allocation and task scheduling in a heterogonous cloud environment. The proposed

algorithm is evaluated using tasks scheduling in the scheduling load simulator and

Univ
ers

ity
 of

 M
ala

ya

iv

validated using statistical modeling. The simulation results acquired from the

experiments showed the effectiveness of the proposed framework and algorithm.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Dengan perkembangan pantas teknologi berasaskan Internet, penjanaan data telah

meningkat secara drastik sejak beberapa tahun kebelakangan ini, dikenali sebagai era

data yang besar. Data besar menawarkan anjakan paradigma baru dalam penerokaan

data dan penggunaannya. Pemboleh utama bagi untuk platform data besar adalah

pengkomputeran MapReduce paradigma. Penjadualan memainkan peranan yang penting

dalam MapReduce, terutama sekali dalam mengurangkan masa pelaksanaan pekerjaan

intensif-data. Walau bagaimanapun, walaupun usaha terbaru ke arah meningkatkan

prestasi MapReduce sedang dilakukan, kerja penjadualan MapReduce merentasi

pelbagai nod telah menunjukkan ia menjadi masalah objektif-pelbagai pengoptimuman.

Masalah menjadi bertambah kompleks dengan menggunakan kelompok maya dalam

pengkomputeran awan untuk melaksanakan jenis tugas yang besar. Kerumitan ini

terletak dalam mencapai pelbagai objektif yang mampu menjadi percanggahan semula

jadi. Keperluan yang bercanggah dan matlamat adalah mencabar untuk pengoptimuman

berikutan kesukaran meramalkan kelakuan kerja masuk yang baru dan waktu ia siap.

Dalam kajian ini, kami berhasrat untuk optimumkan penjadualan tugas dan penggunaan

sumber dengan menggunakan algoritma evolusi berdasarkan cadangan waktu dan kos

kewangan dalam model perkhidmatan awan. Pendekatan pelbagai-objektif adalah,

Menyusun Algoritma Genetik II (NSGA-II) dan Kekuatan Pareto Evolusi Algoritma II

(SPEA2) digunakan untuk mencari Pareto awal daripada waktu dan jumlah kos.

Keputusan analisis eksperimen mendedahkan kelebihan NSGA-II lebih pada SPEA2

pada masalah yang diuji berdasarkan kriteria pengukur yang digunakan. Di samping itu,

algoritma NSGA-II mampu mencari penyelesaian yang optimum. Kemudian kami

cadangkan rangkakerja algoritma penjadualan pelbagai-objektif mengambilkira

peruntukan sumber dan penjadualan tugas dalam persekitaran awan yang pelbagai.

Algoritma yang dicadangkan menggunakan tugasan penjadualan dalam simulator

Univ
ers

ity
 of

 M
ala

ya

vi

penjadualan dan disahkan menggunakan pemodelan statistik. Keputusan simulasi dari

eksperimen menunjukkan keberkesanan rangka kerja dan algoritma yang cadangkan.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

I wish to give my gratitude to the almighty Allah for giving me the opportunity to

complete the thesis. My sincere appreciation goes to my supervisor, Dr. Nor Badrul

Anuar Jumaat, Faculty of computer Science and Information Technology for taking his

time to guide and thoroughly go through each and every line of the thesis despite his

tight schedules. I believed the constructive comments of my supervisor have

significantly improved the quality of the thesis which could have not being so without

his inputs. I would like also to express my sincere gratitude to Prof. Abdullah Gani for

the continuous support of my Ph.D. study and research.

Thanks are not enough to be given to my parents, for their ongoing supports. There are

no words that are valuable to equalize their love for me. This thesis would not have

been possible without the support of my brother, Jamal, who always support me and

encouraged me to pursue my study.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

ABSTRACT .. III

ABSTRAK .. V

ACKNOWLEDGEMENTS .. VII

TABLE OF CONTENTS .. VIII

LIST OF FIGURES ... XI

LIST OF TABLES .. XIII

LIST OF SYMBOLS AND ABBREVIATIONS .. XV

CHAPTER 1: INTRODUCTION AND OVERVIEW .. 1

1.1 Big Data ... 2

1.2 MapReduce programming model .. 2

1.3 Scheduling ... 3

1.4 Statement of Problem .. 4

1.5 Aims and objectives ... 7

1.6 Thesis Structure ... 8

CHAPTER 2: OVERVIEW OF BIG DATA AND SCHEDULING 11

2.1 Cloud computing ... 12

2.2 The relationship between cloud and big data .. 13

2.3 Big data scheduling challenge ... 14

2.4 Apache Hadoop ... 16

2.4.1 HDFS 16

2.4.2 Hadoop MapReduce .. 18

2.5 Scheduling in big data platforms ... 19

2.6 Scheduling algorithms for big data .. 25

Univ
ers

ity
 of

 M
ala

ya

ix

2.7 Resource scheduling frameworks .. 32

2.8 Related Scheduling algorithms .. 36

2.9 Multi-objective optimization ... 38

2.9.1 Multi-objective genetic algorithms ... 40

2.9.1.1 NSGA-II algorithm ... 41

2.9.1.2 SPEA2 algorithm... 42

2.9.2 Strengths of Genetic Algorithm .. 43

2.10 Summary .. 44

CHAPTER 3: SCHEDULING MAPREDUCE JOBS AND THE
PERFORMANCE ISSUES ... 47

3.1 Hadoop physical vs. cloud cluster analysis ... 47

3.2 Analytical Time-Cost analysis ... 50

3.2.1 Completion time with budget constraint model 51

3.2.2 Cost with deadline constraint model ... 52

3.3 Time-Cost models analysis using multi-objective evolutionary algorithm 54

3.3.1 An experimental setting .. 59

3.3.2 Multi-objective tradeoff solutions ... 60

3.4 Computational Results ... 62

3.5 Summary .. 66

CHAPTER 4: FRAMEWORK FOR MULTI-OBJECTIVE SCHEDULING
ALGORITHMS ... 68

4.1 Multi-objective Scheduling algorithm ... 70

4.2 Scheduling framework ... 75

4.3 Summary .. 78

CHAPTER 5: EVALUATION OF MULTI-OBJECTIVE SCHEDULING
ALGORITHM ... 80

5.1 Benchmark Description ... 81

Univ
ers

ity
 of

 M
ala

ya

x

5.2 PingER datasets ... 84

5.3 Experimental and procedure description ... 86

5.4 Statistical Models... 87

5.4.1 Coefficient of determination ... 90

5.4.2 Execution time .. 91

5.4.3 Throughput .. 95

5.4.4 Analysis of the results regarding throughput 100

5.4.5 Execution time .. 103

5.4.6 Analysis of results regarding execution time 107

5.5 Validation of Results ... 111

5.5.1 Throughput .. 111

5.5.2 Execution time .. 113

5.6 Discussions .. 115

5.6.1 Throughput .. 115

5.6.2 Execution time .. 116

5.7 Summary .. 117

CHAPTER 6: CONCLUSION AND FUTURE DIRECTION 120

6.1 Aim and objectives of the study .. 120

6.1.1 Study the domain of big data and identify the key issues with respect
to scheduling in big data platforms ... 120

6.1.2 Investigate and identify the research problem 121

6.1.3 Design and propose a new multi-objective algorithm......................... 122

6.1.4 Evaluate the performance of a proposed algorithm 122

6.2 Limitations and Future Research Directions of the study 123

REFERENCES .. 129

APPENDIX A MyCloud usage ... 142

LIST OF PUBLICATIONS AND PAPERS PRESENTED 145

Univ
ers

ity
 of

 M
ala

ya

xi

LIST OF FIGURES

Figure 1-1: Exemplifies the big data scheduling process using the Hadoop system 6

Figure 2-1: Cloud computing usage in big data .. 13

Figure 2-2: HDFS Architecture ... 17

Figure 2-3: MapReduce architecture ... 18

Figure 2-4: Research Flow .. 40

Figure 3-1: Comparison between physical cluster and cloud in terms of runtime 49

Figure 3-2: Illustration of schedule ... 57

Figure 3-3: Illustration of problem encoding .. 57

Figure 3-4: Crossover (Single point) ... 58

Figure 3-5: Mutation (Single point) .. 59

3-6: Multi-objective tradeoff solutions ... 61

Figure 3-7: Comparisons of the 50 tasks and 10 nodes using NSGA-II 64

Figure 3-8: Comparisons of the 50 tasks and ten nodes using SPEA2 64

Figure 3-9: Example of NSGA-II/SPEA2 comparison ... 65

Figure 4-1: Scheduling process ... 74

Figure 4-2: System architecture .. 75

Figure 4-3: Resource allocation process ... 77

Figure 5-1: Process of big data processing ... 82

Figure 5-2: Data collection method: PingER .. 85

Figure 5-3: Pinger volume of compressed hourly data for 100Byte pings 86

Figure 5-4: Total respond time .. 94

Figure 5-5: Throughput using WordCount benchmark ... 101

Figure 5-6: Throughput using Sort benchmark ... 102

Univ
ers

ity
 of

 M
ala

ya

xii

Figure 5-7: Execution time using WordCount benchmark ... 107

Figure 5-8: Execution time using Sort benchmark ... 109

Figure 5-9: Actual vs. predicted throughput times .. 112

Figure 5-10: Actual vs Predicted tasks execution time ... 114

Figure 6-1: The main homepage of MyRen Cloud service provider 142

Figure 6-2: The main Dashboard of login ... 143

Figure 6-3: The number of virtual machines provisioned ... 143

Figure 6-4: The number of virtual machines provisioned ... 144

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF TABLES

Table 2-1: Comparison of several big data cloud platforms ... 14

Table 2-2 A summary of scheduling algorithms based on a single objective optimization
approach .. 25

Table 2-3: Summary of MapReduce scheduling algorithms ... 30

Table 2-4: A comparison of resources scheduling frameworks 33

Table 2-5: Modifications induced by existing scheduling approach to MapReduce 35

Table 2-6: Comparison of related scheduling algorithms ... 38

Table 3-1: Comparison between physical and cloud cluster in terms of execution time 49

Table 3-2: Notations associated with the problem description and modeling 53

Table 3-3: Parameter Setting Summary .. 59

Table 3-4: Comparison of NSGA-II and SPEA2 with the 50 tasks and ten nodes
problem ... 62

Table 4-1: The information collector in Hadoop .. 73

Table 5-1: Comparison of Bi data benchmarking efforts ... 83

Table 5-2: Example MapReduce Settings ... 87

Table 5-3: Summary of the purpose of analysis throughput and execution time 88

Table 5-4: The job profile of total response time in the cloud .. 93

Table 5-5: Comparison of the proposed algorithm, FIFO, and Fair schedule regarding
the throughput ... 95

Table 5-6: predefined fit function using multiple regression regarding throughput 96

Table 5-7: Analysis of multiple regression for throughput time execution of proposed
scheduling algorithm and FIFO scheduler .. 97

Table 5-8: t-test significance of difference between the proposed algorithm and FIFO
with respect to the throughput ... 98

Table 5-9: Analysis of multiple regression for throughput time execution of proposed
scheduling algorithm and Fair scheduler .. 98

Univ
ers

ity
 of

 M
ala

ya

xiv

Table 5-10: t-test significance of difference between the proposed algorithm and Fair
with respect to the throughput ... 99

Table 5-11: Analysis of multiple regression for throughput time execution of proposed
scheduling algorithm and Fair scheduler .. 99

Table 5-12: t-test significance of difference between the proposed algorithm and FIFO
and Fair on the throughput .. 100

Table 5-13: predefined fit function using multiple regressions regarding execution time
 ... 103

Table 5-14: Analysis of multiple regression for execution time execution of proposed
scheduling algorithm and FIFO scheduler .. 104

Table 5-15: t-test significance of difference between the proposed algorithm and FIFO
on the execution time .. 104

Table 5-16: Analysis of multiple regression for throughput time execution of proposed
scheduling algorithm and Fair scheduler .. 105

Table 5-17: t-test significant of difference between the proposed algorithm and Fair with
respect to the execution time ... 106

Table 5-18: Analysis of multiple regression of execution time execution of proposed
scheduling algorithm, FIFO, and Fair schedulers ... 106

Table 5-19: t-test significance of difference between the proposed algorithm, FIFO, and
Fair with respect to the execution time ... 106

Table 5-20: Comparison between the proposed algorithm, FIFO, Fair schedules
regarding execution time ... 110

Table 5-21: evaluation, comparison: Proposed algorithm, Fair, and FIFO in terms of
Throughput times .. 116

Table 5-22: Evaluation comparison: Proposed algorithm, Fair, and FIFO regarding
execution times .. 117

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF SYMBOLS AND ABBREVIATIONS

ACID Atomicity, Consistency, Isolation, Durability

ASF Apache Software Foundation

B2B Business-to-Business

Doc Document

DSMS Data Stream Management System

EC2 Amazon Elastic Compute Cloud

GFS Google File System

HDDs Hard Disk Drives

HDFS Hadoop Distributed File System

IaaS Infrastructure as a Service

ICT Information Communication Technology

BAR BAlance-Reduce

IT Information Technology

JSON JavaScript Object Notation

KV Key Value

NAS Network Attached Storage

NoSQL Not Only SQL

OLM Online Lazy Migration

PaaS Platform as a Service

PDF Portable Document Format

RDBMS Relational Database Management System

SAN Storage Area Network

SQL Structured Query Language

SDLM Scientific Data Lifecycle Management

Univ
ers

ity
 of

 M
ala

ya

xvi

S3 Simple Storage Service

SaaS Software as a Service

URL Uniform Resource Locator

XML Extensible Markup Language

NSGA-II Non-dominated Sorting Genetic Algorithm II

SPEA2 Strength Pareto Evolutionary Algorithm 2

ZB Zettabyte

SLA Service-level agreement

FIFO First in, first out

QoS Quality of Service

LAN Local Area Network

CPU Central processing unit

I/O Input/Output

MOEA Multi-objective Evolutionary Algorithms

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION AND OVERVIEW

With the fast development of Internet-based technologies; data generation has increased

drastically over the past few years. These data can be stored in low-cost, commodity

computers in a distributed network to be used for analytics to extract knowledge as well

as other purposes. Data creation is occurring at a record rate (Villars et al., 2011),

referred to herein as big data, and has emerged as a widely recognized trend. The term

“big data” refers to a set of processing techniques and technologies that require new

forms of integration to uncover largely hidden values from large datasets that are

diverse, complex, and in a massive scale. Big data processing assists data scientists in

uncovering hidden patterns and other useful information from huge volumes of data that

conventional processing and business intelligence cannot solve. Moreover, big data is

transforming healthcare, science, engineering, finance, business, and eventually, the

society. The major enabler for underlying many big data applications is certainly the

MapReduce computational paradigm (Dean & Ghemawat, 2008).

MapReduce is the most popular framework for processing the existing large-scale data

(Dean & Ghemawat, 2008) (Dean & Ghemawat, 2010) primarily because of its

important features that include scalability, fault tolerance, ease of programming, and

flexibility. Nowadays, MapReduce is primarily used for expressing distributed

computations on the massive amounts of data and an execution framework for large-

scale data processing on clusters of commodity servers.

Clusters in the cloud computing environment can include more than one MapReduce

jobs running simultaneously. Each job often consists of multiple tasks, many of them

periodically scheduled. Hence, for the optimizer to decide on the best execution plan is

a critical factor in a scheduling process (Kllapi et al., 2011) (H. Chang et al., 2011).

This level of optimization is called job scheduling in MapReduce programming model

Univ
ers

ity
 of

 M
ala

ya

2

(Hammoud et al., 2012; Kc & Anyanwu, 2010; D. Wang et al., 2013). Scheduling has

been widely studied in distributed computing literature (Blazewicz et al., 1983; Liu &

Layland, 1973; Pinedo, 2012); however, the cost and complexity of adopting traditional

scheduling models to big data platforms have increased.

1.1 Big Data

Since the invention of computers, large amounts of data have been generated at a rapid

rate. This condition is the key motivation for current and future research frontiers.

Advances in mobile devices, digital sensors, communications, computing, and storage

have provided means to collect data (Bryant et al., 2008). According to the renowned IT

company Industrial Development Corporation (IDC; 2011), the total amount of data in

the world has increased nine times within five years (Gantz & Reinsel, 2011). This

figure is expected to double at least every two years (M. Chen et al., 2014b). Big data is

a novel term that originated from the need of large companies, such as, Yahoo, Google,

and Facebook, to analyze large amounts of data (Garlasu et al., 2013). The three major

motives for big data technology are to minimize hardware costs, check the value of big

data before committing significant company resources, and reduce processing costs

(Leavitt, 2013). Well-managed big data should exhibit availability, reliability, security,

and maintainability (Khan et al., 2014).

1.2 MapReduce programming model

MapReduce (Dean & Ghemawat, 2008) is a simplified programming model for

processing large amounts of datasets pioneered by Google for data-intensive

applications. The model is stunningly simple, and it effectively supports parallelism

(Lämmel, 2008). Such a model is adopted through Hadoop implementation, quickly

spreading and transforming into a dominant force in the field of big data (Polato et al.,

2014). MapReduce enables an inexperienced programmer to develop parallel programs

Univ
ers

ity
 of

 M
ala

ya

3

and create a program that can run in the cloud. In most cases, programmers are required

to execute only two functions, namely, the map (mapper) and reduce functions

(reducer), which are commonly utilized in functional programming. The mapper regards

the key/value pair as input and generates intermediate key/value pairs, and the reducer

merges all pairs associated with the same (intermediate) key and then generates an

output. The map function is applied to each input (key1, value1), in which the input

domain is different from the generated output pairs list (key2, value2). The elements of

the list (key2, value2) are then grouped by a key. After grouping, the list (key2, value2)

is divided into several lists [key2, list (value2)], and the reduce function is applied to

each list [key2, list (value2)] for generating a final result list (key3, value3).

1.3 Scheduling

The widespread popularity of big data processing platforms is the growing demand to

further optimize their performance for various purposes. In particular, enhancing

resources and jobs scheduling are becoming critical since they fundamentally determine

whether the applications can achieve the performance goals in different use cases. There

are many works published that focus on big data optimization (Facchinei et al., 2014;

Richtárik & Takáč, 2015), which aim to improve the processing and completion time of

as many tasks as possible (Pop & Cristea, 2015). There are still areas to explore,

particularly with respect to scheduling and resource management related to big data

processing. According to (Kc & Anyanwu, 2010) the research studies on scheduling

optimization problem can be categories into two types: single objective optimization

and multi-objective optimization.

(a) Single objective optimization. A single objective optimization problem is presented

in (J. D. Knowles et al., 2001; Seada & Deb, 2015) by finding an optimal solution that

is corresponding to the minimization or maximization based on a single function.

Univ
ers

ity
 of

 M
ala

ya

4

Considering the nature of the study, a single objective can be used to provide decision

makers with insights of the problem. However, such solution is unable to handle an

alternative result that has conflicting objectives (Savic, 2002).

(b) Multi-objective optimization. Most real-world scheduling optimization problems are

multi-objective in nature since they normally have possibly conflicting objectives that

must be satisfied at the same time. Scheduling often requires considering several

objectives in an optimization process. For example, a trade-off between resource

consumption and performance while scheduling multiple tasks in the cloud. This

optimization procedure manages two or more objectives and is called multi-objective

optimization. Several relevant studies include (Rasooli & Down, 2014) (Nita et al.,

2015) (S.-Q. Long et al., 2014) are focused primarily on the objective functions,

constraints, minimum schedule length and global optimality on solving scheduling big

data platforms.

1.4 Statement of Problem

Scheduling tasks in MapReduce across multiple nodes have shown to be multi-objective

optimization problem. The problem is even more complex using virtualized clusters in a

cloud computing to execute a large number of tasks (Smanchat & Viriyapant, 2015).

The complexity lies in achieving multiple objectives that may be of conflicting nature

(Ruzika & Wiecek, 2005). These conflicting requirements and goals are challenging to

optimize due to the difficulty of predicting a new incoming job’s behavior and its

completion time.

Scheduling plays an important role in big data, mainly in reducing the execution time

and cost for processing. MapReduce scheduling model assumes that the processing time

of a task on a particular node is fixed and can perform work at roughly the same rate

(Zaharia et al., 2008). However, in a most realistic situation apart from the nodes, it

Univ
ers

ity
 of

 M
ala

ya

5

requires additional resources to process jobs and the processing time of a job is

determined internally by the amount of the resources allocated. Moreover, Hadoop

MapReduce assumed that the resources are similar and the data locality is often the only

scheduling constraint (Krish et al., 2014). However, with the use of virtual machines, it

leads to Hadoop cluster becoming increasingly heterogeneous, in that a cloud may have

several clusters each boasting different characteristics (Krish et al., 2014) (F. Dong &

Akl, 2007). Resource heterogeneity in the cluster may compress of either heterogeneous

or homogeneous (Polo et al., 2010). Homogeneous clusters means that the nodes in the

cluster have similar resources such as CPU, memory, storage and networking

capabilities, whereas, heterogeneous clusters, consist of different resources with the

nodes in terms of CPU, memory, storage or communication speeds (Lopes & Menascé,

2015) (Zaharia et al., 2008).

Although, MapReduce can achieve better performance with the allocation of more

compute nodes from the cloud to speed up computation; however, this approach of

“renting more nodes” is less effective in particular the cost in a pay-as-you-go

environment (Jiang et al., 2010). Furthermore, MapReduce adopts a runtime scheduling

scheme. The scheduler assigns data blocks to the available nodes for processing one at a

time. This scheduling strategy introduces runtime cost and may slow down the

execution of the MapReduce job (Jiang et al., 2010) as shown in Figure 1-1. In these

situations, both the time to complete the jobs and the cost of the resources allocated

should be taken into account.
Univ

ers
ity

 of
 M

ala
ya

6

Figure 1-1: Exemplifies the big data scheduling process using the Hadoop

system

The scenario illustrated in Figure 1-1, exemplifies the big data scheduling process using

the MapReduce in a cloud computing environment. The tasks are divided across many

virtual nodes in the cloud to be executed in parallel. However, it is possible that a few

nodes slow down the overall execution of the tasks. The execution of the tasks may be

slow due to various reasons such as software misconfiguration and hardware

degradation. When the client submits the jobs to the master node, the jobs will be

broken down into tasks. These tasks will be executed by the worker nodes in which the

total execution is dominated by the slowest worker nodes in the cluster.

Given the limitations stated above, we believe that a multi-objective approach is more

appropriate for the scheduling tasks in MapReduce.

Univ
ers

ity
 of

 M
ala

ya

7

1.5 Aims and objectives

The aim of the research is to propose an optimization model for scheduling in big data

platform. To achieve the aim of this research, the following objectives need to be

accomplished:

a) To study the research advancements of the domain of big data and identify the

key issues with respect to scheduling in big data platforms.

b) To investigate the time and cost trade-off to explore the space alternative

schedules using genetic algorithms.

c) To design a new optimization model based upon a multi-objective scheduling

algorithm to minimize time and cost in a heterogeneous cloud environment.

d) To evaluate the performance of a proposed algorithm by validating it with

current scheduling algorithms in different scenarios.

The primary objective of this thesis is to develop a multi-objective task scheduling

model. The aim is to minimize two different objectives: completion time and a total

budget of each node in the cloud. Two stages are identified to achieve the goal. The

first, being the construction of the model. The second stage, being the application of

multi-objective genetic algorithms, adopts genetic algorithms. Moreover, the trade-off

solutions of Makespan and cost computed by sorting genetic algorithm II (NSGA-II)

and Strength Pareto Evolutionary Algorithm 2 (SPEA2) are analyzed based on different

workflow in order to find an optimal solution between the two conflicting objectives.

The classic one point crossover operator is used, which is important for the creation of

the children. Also, two columns are randomly selected during the mutation operator and

in a ranking operation, different solutions assigned belong to many dominated fronts.

The analysis of the models is carried out using genetic algorithms. It is well known that

multi-objective genetic algorithms are among the most useful approaches for multi-

Univ
ers

ity
 of

 M
ala

ya

8

objective. For computational experiments, randomly non-dominated solutions for each

job are generated using testbed. These non-dominated solutions generated during the

experiment are copied to the Pareto archive. The above-mentioned objectives are based

on the research activities carried out in this study; in next section, the structure of the

study is introduced.

1.6 Thesis Structure

Chapter 2 aims to survey the research undertaken in the field of scheduling in big data

platforms. The chapter provides knowledge of scheduling in big data to identify the key

issues with respect to scheduling and requirements for scheduling in big data platforms

such as data locality, SLA-based, load balancing, time, cost, and scheduling. Moreover,

this chapter highlights the scheduling algorithms for big data and investigates the

related scheduling algorithms. This section discusses several approaches to the

scheduling problem. These approaches consider different scenarios, which take into

account the application types, the execution platform, the type of algorithms used and

the various constraints that might be imposed. Moreover, the chapter discusses the

multi-objective optimization by focusing on genetic algorithms like NSGA-II and

SPEA2.

Chapter 3 presents a review of the research conducted within the framework of

MapReduce in solving problems of scheduling. Experimental results of the comparison

between Hadoop physical cluster and cloud cluster is provided. The chapter also

provides problem definition and introduces time with a budget constraint model and

cost with deadline constraint model.

Chapter 4 presents a new proposed framework for multi-objective algorithms, which try

to identify the importance of resource allocation and task scheduling in the cloud, by

considering both completion time and the cost minimization models. The proposed

Univ
ers

ity
 of

 M
ala

ya

9

framework algorithm is designed based on the combination of two main models which

are adaptive control and cost decision module in order to meet performance goals and

maximize the efficiency of a Hadoop cluster in the cloud. Also, to establish the

relationship between resource allocation and task scheduling, new scheduling

algorithms are proposed. This combination of the resource allocation and task

scheduling helps in achieving one of the objectives of this study. Moreover, beside the

main objective to propose new scheduling algorithm, the algorithms also address the

limitation of the resource allocation and task scheduling, which was identified in

previous chapters.

Chapter 5 presents a proposed multi-objective scheduling algorithm; it is important to

design a systematic evaluation procedure in order to provide a verification of its use.

This chapter offers performance evaluation and statistical modeling based on the

proposed algorithm which aims to compare it regarding the performance with other

algorithms from throughput and execution time perspective. First, the chapter provides a

description of big data benchmarks that used for the evaluation of the proposed

algorithm. Second, the simulation environment is described in details. Then, statistical

analysis that is derived for validation of the findings is described. A series of

experiments to show platform-independence of our proposed solution is described and

the comparative study that is designed to demonstrate the proposed algorithm regarding

throughput and execution time is described. Finally, the chapter investigates the

performance of the proposed algorithm by comparing with the most used algorithms:

FIFO and Fair.

Chapter 6 concludes the major contributions of the thesis. It also outlines the limitations

and opportunities to further improve or extend the work presented in the thesis. To this

Univ
ers

ity
 of

 M
ala

ya

10

end, this thesis stands as a substantial effort to optimize big data scheduling in the cloud

from two dimensions simultaneously, including resource allocation and task scheduling.

Univ
ers

ity
 of

 M
ala

ya

11

CHAPTER 2: OVERVIEW OF BIG DATA AND SCHEDULING

Recent trends in big data have shown that the amount of data continues to increase at an

exponential rate. This trend has inspired many researchers over the past few years to

explore new research direction of studies related to multiple areas in big data. However,

only a few research works are available to address the issues of scheduling in big data

platforms. The big data stored in a distributed fashion require processing in parallel

(Philip Chen & Zhang, 2014). As a result, the new knowledge and innovation can be

mined within a reasonable amount of time. Data processing has been successfully

adopted in some applications (Hsu, 2014), such as data mining, data analytics, scientific

computation, and search engine. Nevertheless, processing big data has been challenged

by these applications because of the complexity of the data that should be processed and

the scalability of the underlying scheduling methods and algorithms that support such

processes (Labrinidis & Jagadish, 2012).

Scheduling plays an important role in big data, mainly in reducing the execution time

and cost for processing. To understand scheduling in big data studies, this chapter

presents an introduction to the rise of big data in cloud computing and scheduling in big

data platforms, requirements for big data processing, scheduling algorithms, and multi-

objective optimization, which are close, linked to big data processing studies. This

chapter begins by giving an introduction to big data in order to establish a solid starting

point to pursue the proposed study. This chapter also discusses different scheduling

algorithms used in big data platforms. Moreover, in order to highlight the results of the

study of the previous survey conducted, the findings are strengthened. Having presented

the concept of scheduling in big data platforms, various optimization options are

identified.

Univ
ers

ity
 of

 M
ala

ya

12

2.1 Cloud computing

Cloud computing is a fast-growing technology that has established itself in the next

generation of IT industry and business. Cloud computing promises reliable software,

hardware, and infrastructure as a service delivered over the Internet and remote data

centers (Armbrust et al., 2010). Cloud services have become a powerful architecture to

perform complex large-scale computing tasks and span a range of IT functions from

storage and computation to database and application services. The need to store,

process, and analyze large amounts of datasets has driven many organizations and

individuals to adopt cloud computing (Huan, 2013). A large number of scientific

applications for extensive experiments are currently deployed in the cloud and may

continue to increase because of the lack of available computing facilities in local

servers, reduced capital costs, and increasing volume of data produced and consumed by

the experiments (Pandey & Nepal, 2013). In addition, cloud service providers have

begun to integrate frameworks for parallel data processing in their services to help users

access to cloud resources and deploy their programs (Warneke & Kao, 2009).

Cloud computing “is a model for allowing ubiquitous, convenient, and on-demand

network access to many configured computing resources (e.g., networks, server,

storage, application, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction” (Peter Mell & Timothy

Grance, 2011). Cloud computing has several favorable aspects to address the rapid

growth of economies and technological barriers. Cloud computing provides a total cost

of ownership and allows organizations to focus on the core business without worrying

about issues, such as infrastructure, flexibility, and availability of resources (Giuseppe

et al., 2013). Moreover, combining the cloud computing utility model and a rich set of

computations, infrastructures, and storage cloud services offers a highly attractive

environment where scientists can perform their experiments (Gunarathne et al., 2013).

Univ
ers

ity
 of

 M
ala

ya

13

2.2 The relationship between cloud and big data

Cloud computing and big data are conjoined. Big data provide users the ability to use

commodity computing to process distributed queries across multiple datasets and return

resultant sets in a timely manner. Cloud computing provides the underlying engine

through the use of Hadoop, a class of distributed data processing platforms. The use of

cloud computing in big data is shown in Figure 2-1. A large data source from the cloud

and Web are stored in a distributed fault-tolerant database and processed through a

programming model for large data sets with a parallel distributed algorithm in a cluster.

Figure 2-1: Cloud computing usage in big data

Furthermore, cloud computing is correlated with a new pattern for the provision of

computing infrastructure and big data processing method for all types of resources

available in the cloud through data analysis. Several cloud-based technologies have

coped with this new environment, however, dealing with big data for concurrent

processing has become increasingly complicated (Ji et al., 2012). MapReduce (Dean &

Univ
ers

ity
 of

 M
ala

ya

14

Ghemawat, 2008) is a good example of big data processing in a cloud environment; it

allows for the processing of large amounts of data sets stored in parallel in the cluster.

Cluster computing exhibits good performance in distributed system environments, such

as computer power, storage, and network communications. Likewise, (Bollier &

Firestone, 2010) emphasized the ability of cluster computing to provide a hospitable

context for data growth. Tables 2-1 show the comparison of several big data cloud

providers.

Table 2-1: Comparison of several big data cloud platforms

 Google Microsoft Amazon Cloudera
Big data
storage

Google cloud
services

Azure S3

MapReduce AppEngine Hadoop on Azure Elastic
MapReduce
(Hadoop)

MapReduce
YARN

Big data
analytics

BigQuery Hadoop on Azure Elastic
MapReduce
(Hadoop)

Elastic
MapReduce
(Hadoop

Relational
database

Cloud SQL SQL Azure MySQL or Oracle MySQL,
Oracle,
PostgreSQL

NoSQL
database

AppEngine
Datastore

Table storage DynamoDB Apache
Accumulo

Streaming
processing

Search API Streaminsight Nothing
prepackaged

Apache
Spark

Machine
Learning

Prediction
API

Hadoop + Mahout Hadoop + Mahout Hadoop +
Oryx

Data import Network Network Network Network
Data Sources A few sample

datasets
Windows Azure
marketplace

Public Datasets Public
Datasets

Availability Some services
in private beta

Some services in
private beta

Public production Industries

2.3 Big data scheduling challenge

Although cloud computing has been broadly accepted by many organizations, research

on big data in the cloud remains in its early stages. A few attempts have been made to

address the issues of big data. Moreover, new challenges continue to emerge from

applications by the organisations. In the subsequent sections, some of the key research

challenges related to scheduling are highlighted.

Univ
ers

ity
 of

 M
ala

ya

15

 The continuous increase in computational capacity over the past years has produced an

overwhelming flow of data or big data, which exceeds the capabilities of conventional

processing tools. Big data signify a new era in data exploration and utilization. The

MapReduce computational paradigm is a major enabler for underlying numerous big

data platforms. MapReduce is a popular tool for the distributed and scalable processing

of big data. It is increasingly being used in different applications primarily because of

its important features, including scalability, fault tolerance, ease of programming, and

flexibility. The impact on data processing and analytics is the need to re-think the

approaches and solutions to better performance. In this context, scheduling models and

algorithms have an important role, which based on a large variety of solutions for

specific applications. Scheduling in big data offers an important contribution to the big

data optimization, particularly in reducing execution time during the processing by

schedule resources and tasks to minimize job completion times (Pop & Cristea, 2015).

Scheduling has been widely explored from various aspects by many researchers in

recent years. However, most former research work mainly considers optimized designed

of algorithms and frameworks under a relatively a homogeneous environment.

Moreover, numerous mechanisms are used for resource allocation in the cloud, which is

heterogeneous and widely distributed (Pop & Cristea, 2015). Although many scheduling

methods are used in big data processing frameworks; however, find the best method for

a particular processing request remains a significant challenge.

Based on our discussion above on the big data challenge, we summarize that there are

several key research challenges related to big data such as scalability, availability,

quality, heterogeneity, privacy, governance, and scheduling.

Univ
ers

ity
 of

 M
ala

ya

16

Before discussing scheduling big data platforms and its algorithms, first, the brief

MapReduce and its implementation systems are provided to understand the state-of-the-

art framework. The following section provides an overview of Hadoop MapReduce.

2.4 Apache Hadoop

Hadoop (Hadoop, 2011) (Shvachko et al., 2010) is an open-source Apache Software

Foundation (ASF) project written in Java that provides cost-effective, scalable

infrastructure for the distributed processing of large datasets across clusters of the

commodity.

Hadoop was "inspired" by Google File System GFS (Ghemawat et al., 2003) and

Google's MapReduce distributed computing environment. Initially, started as a

distributed Nutch search engine project and named by developer Doug Cutting after his

son's toy elephant (White, 2009). It has been successfully used for processing highly

distributable problems across a large amount datasets using commonly available servers

in a very large cluster, where each server has a set of inexpensive internal disk drives.

The current Hadoop project consists of two main modules, that is, the distributed file

system called Hadoop Distributed File System (HDFS) and MapReduce engine.

2.4.1 HDFS

HDFS is an open source version of the Google’s GFS designed to run on commodity

hardware. Like other Hadoop-related technologies, HDFS have become a key tool for

managing pools of big data and supporting big data analytics applications and also is a

highly fault-tolerant and is designed to be deployed on low-cost hardware. HDFS is a

Master/Slaver architecture illustrated in Figure 2-2, consisting of NameNode called

master, Secondary NameNode called checkpoint, and several DataNode called slaves.

NameNode is the controller that handles all files system operations; hence, any request

that comes to the file system such as create, delete, and read a file goes through it. The

Univ
ers

ity
 of

 M
ala

ya

17

meta-data are present in the NameNode, which registers attributes such as access times,

modification, permission, and disk space quotas. NameNode also handles block

mappings. In particular, the file is divided into blocks (Default 64MB), in which each

block is independently replicated across DataNode for redundancy and periodically

sends a report of all existing blocks to the NameNode. DataNode manages the block

creation, deletion, and replication upon the instruction from the NameNode. The cluster

may incorporate thousands of DataNode and tens of thousands of HDFS clients per

cluster given that each DataNode may concurrently execute multiple application tasks.

Figure 2-2: HDFS Architecture

Moreover, DataNode sends a Heartbeat message to the NameNode periodically, the

default heartbeats interval is three seconds. If the NameNode is unable to detect

heartbeat message due to loss of connectivity between the NameNode and DataNode.

The NameNode consider being out of service and the block replicas hosted by that

DataNode to be unavailable or dead and does not forward any new requests to that

particular DataNode. The NameNode then schedules the creation of new replicas of

Univ
ers

ity
 of

 M
ala

ya

18

those blocks on other DataNode. Meanwhile, the job of the Secondary NameNode is not

to be secondary to the NameNode, but only to periodically read the file system changes

log and provides backup for the former, thereby updating it. In the larger cluster

environment, Secondary NameNode usually runs on a different machine than the

primary NameNode since its memory requirements are on the same order as the primary

NameNode. This task enables NameNode to start up faster next time.

2.4.2 Hadoop MapReduce

MapReduce engine comprises several components as shown in Figure 2-3. In particular,

the main component is job client, which submits the job to the clusters. Job tracker

oversees the task tracker and provides execution plans, coordinates the jobs, and

schedules them across the task tracker. Meanwhile, task tracker breaks down the jobs

into Map and Reduce tasks. Each task record has slots for execution map, gradually

reduces, and reports the progress.

Figure 2-3: MapReduce architecture

Then the input data are divided into input splits based on the input format. Input splits

equate to a map task, which runs in parallel. Input format determines how the files are

Univ
ers

ity
 of

 M
ala

ya

19

parsed into the MapReduce pipeline. Map transforms the input splits into intermediate

key/value pairs based on the user-defined code. Shuffle and sort: moves intermediate

key/value pairs outputs to the reducers and sorts them by the key. The reducer merges

all pairs associated with the same (intermediate) key and then generates an output based

on the user-defined code.

Job scheduling in Hadoop is performed by a master node, which manages many worker

nodes in the cluster. Each worker has a fixed number of map slots and reduces slots,

which can run the map and reduce tasks respectively. The number of maps and reduce

slots is statically configured. Based on the availability of free slots and the scheduling

policy, the master assigns map and reduce tasks to slots in the cluster (Z. Zhang et al.,

2013).

2.5 Scheduling in big data platforms

A few attempts have been made in the recent past to study scheduling in big data

platforms. The report by (Tiwari et al., 2015) provides a comprehensive and structured

survey of scheduling algorithms used for big data platforms. The study proposed a

multidimensional classification framework based on quality requirements, scheduling

entities and the adaptation of dynamic environments. Moreover, there has been a lot of

work published related to scheduling big data in MapReduce, which all aim to improve

the performance of big data platforms (Dean & Ghemawat, 2008, 2010; Doulkeridis &

Nørvåg, 2014; J.-J. Li et al., 2011; Sakr et al., 2013). However, there are still areas to

explore, particularly with respect to scheduling and resources management in cloud

heterogeneous environments. Existing studies have so far focused on reducing the

execution time, overhead, resource consumption and data locality (Z. Guo, G. Fox, M.

Zhou, et al., 2012; Zaharia et al., 2008; X. Zhang et al., 2011). The studies on

scheduling in big data have been classified into three: data storage, processing engine,

and resource manager.

Univ
ers

ity
 of

 M
ala

ya

20

(i) Data storage: The rapid growth of data has restricted the capability of existing

storage technologies to store and manage data. Over the past few years, traditional

storage systems have been utilized to store data through structured RDBMS (M. Chen et

al., 2014a). However, most storage systems have limitations and are inapplicable to the

storage and management of big data. A storage architecture that can be accessed in a

highly efficient manner while achieving availability and reliability is required to store

and manage large datasets.

Several storage technologies have been developed to meet the demands of massive data.

Existing technologies can be classified as direct attached storage (DAS), network

attached storage (NAS), and storage area network (SAN). In DAS, various hard disk

drives (HDDs) are directly connected to the servers. Each HDD receives a certain

amount of input/output (I/O) resource, which is managed by individual applications.

Therefore, DAS is suitable only for servers that are interconnected on a small scale.

Given the aforesaid low scalability, storage capacity is increased but expandability and

upgradeability are limited significantly. NAS is a storage device that supports a

network. NAS is connected directly to a network through a switch or hub via TCP/IP

protocols. In NAS, data are transferred as files. Given that the NAS server can indirectly

access a storage device through networks, the I/O burden on a NAS server is

significantly lighter than that on a DAS server. NAS can orient networks, particularly

scalable and bandwidth-intensive networks. Such networks include high-speed networks

of optical-fiber connections. The SAN system of data storage is independent with

respect to storage on the local area network (LAN). Multipath data switching is

conducted among internal nodes to maximize data management and sharing. The

organizational systems of data storages (DAS, NAS, and SAN) can be divided into three

parts: (i) disc array, where the foundation of a storage system provides the fundamental

guarantee, (ii) connection and network subsystems, which connect one or more disc

Univ
ers

ity
 of

 M
ala

ya

21

arrays and servers, and (iii) storage management software, which oversees data sharing,

storage management, and disaster recovery tasks for multiple servers.

(ii) Processing engine: MapReduce accelerates the processing of large amounts of data

in a cloud; thus, MapReduce, is the preferred computation model of cloud providers

(Zhifeng & Yang, 2013). MapReduce is a popular cloud computing framework that

robotically performs scalable distributed applications (Srirama et al., 2012) and

provides an interface that allows for parallelization and distributed computing in a

cluster of servers (O'Leary, 2013). (Srirama et al., 2012) presented an approach to apply

scientific computing problems to the MapReduce framework where scientists can

efficiently utilize existing resources in the cloud to solve computationally large-scale

scientific data. Currently, many alternative solutions are available to deploy MapReduce

in cloud environments; these solutions include using cloud MapReduce runtimes that

maximize cloud infrastructure services, using MapReduce as a service, or setting up

one’s own MapReduce cluster in cloud instances (Gunarathne et al., 2010). Several

strategies have been proposed to improve the performance of big data processing.

Moreover, the effort has been exerted to develop SQL interfaces in the MapReduce

framework to assist programmers who prefer to use SQL as a high-level language to

express their task while leaving all of the execution optimization details to the backend

engine (Sakr et al., 2013). Table 10 shows a summary of several SQL interfaces in the

MapReduce framework available in existing literature.

(iii) Resource manager: Resource manager allows data and computational resources to

be shared and accessed by the nodes in the cluster (Vavilapalli et al., 2013). There exist

some important resource management studies related to big data scheduling as below:

 (a) Adaptive resource management: The resource manager considers data, physical

resources, and workload while taking scheduling decisions (Tiwari et al., 2015), this

Univ
ers

ity
 of

 M
ala

ya

22

include fair share (Zaharia, 2009), capacity (Zaharia, 2009) , delay (Tan et al., 2012;

Zaharia et al., 2010), and resource-aware (Polo et al., 2011; Sousa et al.), which all aim

to reduce the completion time and resource consumption in distributed environment.

(b) Non-adaptive resource management: The resource manager assigns jobs/tasks a

fixed number of resources at runtime. For example, FIFO (Hadoop), is the default

Hadoop scheduler and the most popular algorithm in the non-adaptive scheduling of

Hadoop. Possibly the most straightforward approach to schedule task is to maintain a

FIFO run queue based on policies or the solution of some optimization problems.

The requirements of scheduling in big data platforms require a cluster resource

management, scheduling, and execution engines, which based on new information

processing frameworks that include applications and the storage resources. This

requirement encompasses the need to share resources and decide when tasks run. The

general requirements for scheduling in big data can be described are as follows:

(a) Data locality. Data locality is defined as how close the compute and input data are,

and it has different levels – node-level, rack-level, etc. Data locality is one of the most

important factors considered by schedulers in data parallel systems (Herodotou et al.,

2011). Hadoop MapReduce determines whether cluster/rack is being scheduled based

on the availability of the data locally. It assumes that nodes within the same rack have

higher bandwidth than those that are not resident in the same cluster. Knowing this, the

scheduler can simply increase data locality for tasks. Good data locality reduces cross-

switch network traffic - one of the bottlenecks in data-intensive computing (Z. Guo, G.

Fox, & M. Zhou, 2012). Some scheduling policies in Hadoop consider the effect of data

locality, which can be classified as cluster and rack (Park et al., 2012) (J.-J. Li et al.,

2011). For instance, to assign map tasks to a node, the Hadoop default FIFO chooses the

job from the queue and schedule its local map tasks. When the job does not have any

Univ
ers

ity
 of

 M
ala

ya

23

map task locally, it will be assigned to the non-local map in the cluster (He et al., 2011).

Furthermore, (Abad et al., 2011) proposed a distributed adaptive data replication

algorithm that helps the scheduler to achieve better data locality. The advantages of this

approach are to allow many replicas to be allocated for each file and make use of

probabilistic sampling and a competitive aging algorithm independently at each node.

(X. Zhang et al., 2011) emphasizes on data locality problem of MapReduce. The author

introduces a next-k-node scheduling method, which has implemented in Hadoop-0.20.2.

Also, (J. Jin et al., 2011) suggest that initial task allocation is produced first before the

job completion time can be reduced gradually. The author introduces a heuristic task

scheduling algorithm called BAlance-Reduce (BAR), which adjust data locality

dynamically according to network state and cluster workload by tuning the initial task

allocation using a global view. The experimental result of the algorithm shows that

BAR is able to outperform previous related algorithms in terms of the job completion

time and deal with large problem instances in a few seconds.

(b) SLA-based. Scheduling Hadoop tasks in virtual machines in the cloud demand

resources of the cloud, typically, users are aware of the deadline of when the job is

completed (Wu et al., 2011). However, in a cloud computing environment, all machines

compete for resources to execute the jobs (Buyya et al., 2009). These resources are

controlled by batch queue systems, which may not offer guarantee deadline during the

task execution, only if the priority used for resource reservation which is a restricted

level of service.

(c) Load balancing. Load balancing is one of the scheduling methods, which provides

the cluster with the share of the load of the resources between all the machines

participate in the cluster and obtain the best performance for distributed task scheduling

systems (Fang et al., 2010; K. Wang et al., 2014). However, some resources may not

Univ
ers

ity
 of

 M
ala

ya

24

match with tasks properties which are a challenging requirement need to be considered.

Many approaches has been developed to tackle this issue including round-robin

scheduling (Shreedhar & Varghese, 1996; K. Wang et al., 2014), however, new

approaches that cope with large scale and heterogeneous systems is proposed such as

slow start time (Khiyaita et al., 2012), agent-based adaptive balancing (Q. Long et al.,

2011) and least connections (McGuire, 2006).

(d) Time. In a heterogeneous environment, cluster usually contains nodes with different

computing capacity in which some of the nodes may poorly perform a task execution;

this can create some challenges to the overall execution time. Hadoop assumes that all

the machines are homogeneous, but as a matter of fact, in most cases, machines are not

homogeneous, especially in a cloud computing environment where the hardware could

be in different generations and virtualized data center as the uncontrollable several of

virtualized resources. The scheduler should improve the performance of scheduled jobs

as much as possible using different heuristics and state estimation suitable for specific

task models. Multitasking systems can process multiple datasets for multiple users at the

same time by mapping the tasks to resources in a way that optimizes their use.

(e) Cost. The cost implemented in the cloud is pay-as-you-go model, where the services

are charged as per the QoS requirements of the users. The resources in the cloud, such

as network bandwidth and storage are charged at a specific rate (Hussain et al., 2013).

Thus, the cost has become an important objective in big data cloud scheduling research.

The total cost incurred by processing big data can comprise many cost components such

as compute cost and data transfer cost. Cloud computing providers lease computing

resources that are typically charged based on a per time quantum pricing scheme.

Hence, the scheduler should lower the total cost of execution by minimizing the total

number of resources used and respect the total money budget. This aspect requires

Univ
ers

ity
 of

 M
ala

ya

25

efficient resource usage and can be done by optimizing the execution of mixed tasks

using the high-performance queuing system and by reducing the computation and

communication overhead. Table 2-2 shows the comparison of scheduling algorithms

that are based on the single objective optimization approach.

Table 2-2 A summary of scheduling algorithms based on a single objective
optimization approach

Algorithm Requirements Constraints
FIFO (Hadoop,
2011)

Execution time Deadline
Data dependency

Fair (Hadoop,
2009)

Response time, Data locality, and
Cost

Data dependency

Capacity
(Hadoop)

Response time, Data locality, and
cost

Data dependency

Delay (Zaharia
et al., 2010)

Locality and
Fairness

Fairness, Resource usage

LATE (Zaharia
et al., 2008)

Response time, SLA-based The cost to run speculative
task scheduling is expensive

Quincy (Isard et
al., 2009)

Min-cost flow Resource usage

MCP (Q. Chen
et al., 2013)

Response time, SLA-based The cost of running
speculative task scheduling is
expensive

SHadoop (Gu et
al., 2014)

Response time, data locality Throughput Performance

MRA++ (Anjos
et al., 2015)

Perform data intensive computing in
heterogeneous environments

Delay

Maestro
(Ibrahim et al.,
2012)

Improving the locality execution of
map task efficiency, SLA-based and
Cost

-

ARIA (Verma et
al., 2011)

Completion time SLO

2.6 Scheduling algorithms for big data

Several approaches to the scheduling problem have been considered over time. These

approaches consider different scenarios, which take into account the application types,

the execution platform, the type of algorithms used and the various constraints that

might be imposed. The existing schedules suitable for large environments and also big

data platforms are as follows:

Univ
ers

ity
 of

 M
ala

ya

26

(a) Fair scheduler. A fair scheduler is a method of assigning equal resources for jobs in

a Hadoop cluster by helping small tasks to run in parallel with other tasks that requires

more CPU time. Fair scheduler developed by Facebook and subsequently released to the

Apache Hadoop community. Unlike the default Hadoop scheduler, which forms a queue

of jobs, fair scheduler allows an equal share of the cluster capacity between pools over

time. With each pool allocated a guaranteed minimum number of Map and Reduce

slots. When a new job is submitted, idle resources in the pool are assigned to that new

job, so that each job ultimately gets approximately the same amount of resources. It

uses priorities applied as weights to manage the fraction of total resources for each job

assigned over time. Moreover, fair scheduler support preemption where jobs are

dismissed from pools for a certain period of time. For example, all the tasks that are

belonging to a particular job will be allocated to slots for computation. Subsequently,

the scheduler checks the time deficit against the ideal fair allocation for that job (Rao &

Reddy, 2012). As soon as the slots freed for the next scheduling of the task with the

highest time deficit, it will be assigned to the available slot. Gradually, such process will

have an effect of guaranteeing that the jobs get roughly equal amounts of resources. The

jobs with a small number of tasks allocate sufficient resources in order to finish the

tasks very fast. However, the problem with such schedule is the resource congestion

when dealing with a lot of numbers of tasks.

(b) Capacity scheduling. Capacity scheduling is originally developed at yahoo to run

Hadoop applications as a shared, where the fair allocation of computational resource is

critical to the user. The main idea is that Hadoop Map-Reduce cluster is partitioned

using the available resources between users who collectively use the cluster based on

computing needs. Besides, the capacity scheduler is similar to the fair scheduler; it uses

a queue to allocate jobs to users, but with the major difference of using prioritized queue

jobs. Each queue is given a configured capacity, which contents a scheduling that

Univ
ers

ity
 of

 M
ala

ya

27

operates on a modified priority queue basis with specific user limits. The queue with the

least number of jobs is selected if the slot becomes available in order to schedule the

task for that job. Generally, this may have an impact on the cluster capacity sharing

among users than among jobs, as was the case in the Fair Scheduler.

(c) Delay scheduling. Delay scheduling (Zaharia et al., 2010) is used to improve data

locality in MapReduce, in a situation where there is a conflict between fairness in

scheduling and data locality. The idea is that if the next jobs can be scheduled according

to fairness, then that job cannot launch local tasks. Such solution is suitable if the jobs

to be scheduled are less and the task is not been scheduled locally. Thus, delaying its

scheduling time can significantly improve data locality. The result shows that delay

scheduling can achieve nearly optimal data locality and its outperformance fair sharing

by its simplicity under a wide variety of scheduling policies. Also, (Tan et al., 2012)

suggest an analytically tractable model under different schedulers such as default FIFO

Scheduler and the popular Fair Scheduler for job processing delay distribution in

MapReduce.

(d) Maestro. (Ibrahim et al., 2012) proposed scheduling algorithm named Maestro,

which, is designed to improve the performance of the MapReduce computation. The

current Hadoop schedulers perform inefficient scheduling of map tasks by degrading the

replicas distribution. Maestro scheduler has two objectives; first, each data node is

equipped with the empty slots based on the replication scheme for their input data and

the number of hosted map tasks. Secondly, it considers the runtime of each scheduling

tasks and the replicas of the task’s input data determine the scheduling of the map task

on a particular node. With these objectives, the scheduler can achieve a higher locality

of the map tasks and also balanced intermediate data distribution for the shuffling

Univ
ers

ity
 of

 M
ala

ya

28

phase. The results of presenting Maestro algorithm are very promising compared to the

current Hadoop scheduler.

(e) SHadoop (Gu et al., 2014) is a scheduling method used for improving the

performance of Hadoop MapReduce by optimizing the job and task execution

mechanism. SHadoop incorporates the following main optimization approaches: (1)

Optimizing the job initialization and termination stages, thereby shortening the startup

and cleanup time of all jobs; (2) providing an instant messaging communication

mechanism for efficient critical event notification that can benefit the majority of the

short jobs with large deployment or many tasks. However, such optimization may

induce a little more burden to the JobTracker because it needs to create and delete an

empty temporary directory for each job. Compared with the standard Hadoop, SHadoop

can averagely achieve 25 percent of performance improvement for various tested

Hadoop benchmark jobs and Hive applications.

(f) Quincy (Isard et al., 2009) addresses the problem of scheduling jobs on distributed

computing clusters that are close to application data stored on the computing node. Each

job in the node is managed by a root task that is assigned by the scheduler in the cluster.

Such node is responsible for submitting a list of the worker to the schedule in which

these works have no dependency relationship. For each worker, the root is calculated

based on the preference list of computers and racks that have a high rate of data in the

computer in the rack of computers. Quincy originally designed for DryadLing, but it can

be applied to other systems such as MapReduce. The system implemented the concept

of the queue based on the hierarchical nature of the cloud networks to allow data to be

executed locally and close to computation. Queues exist for machines, racks, and the

system. This system works well when data locality is even and job lengths are

approximately equal.

Univ
ers

ity
 of

 M
ala

ya

29

(g) ARIA (Verma et al., 2011) is a framework for addressing the problem of job

scheduler in MapReduce environment. This framework consists of three components,

which are as follows: (i) Job profile of continuing executing jobs; (ii) MapReduce for a

particular job; and (iii) time to execute the tasks based on the amount of the resource

estimated for a specific job with a time frame. Moreover, a novel SLO-based schedule

has been proposed by the authors in order to select job ordering and the amount of

resources to be allocated for meeting the job deadline. Resource allocations can be

increased by expediting job completion and can be realized during the Map and Reduce

stages.

(h) MRA++ (Anjos et al., 2015) has been presented as a scheduling and data placement

framework design on MapReduce that is suitable for the heterogeneous environment.

MRA++ adapts the amount of data processed during the Map phase to the distributed

computing capability of the computers. Based on the sum granularity factors, the

reduced data is partitioned into smaller sizes. This signifies that the fastest computers

process more data than the slower ones (i.e. the efficiency of the computer depends on

its configurations). The idea behind this framework is to efficiently perform intensive

data computation in a heterogeneous environment. The system consists of two main

features, including task scheduling job control and the heterogeneity of nodes during

data distribution. Moreover, the implementation proposed in MRA++ is concerned

about whether the workload can be adapted to the computing capability of each

machine.

(i) Throughput Scheduler: (Gupta et al., 2013) proposed throughput scheduler which

reduces the overall job completion time on clusters of heterogeneous nodes. The idea is,

the scheduler uses optimal matching job requirements to actively schedule the tasks

based on the node capabilities. Node capabilities are learned by running probe jobs on

Univ
ers

ity
 of

 M
ala

ya

30

the cluster. The scheduler utilizes two methods: a Bayesian and active learning scheme

to learn the resource requirements of job on-the-fly. The result showed that throughput

scheduler can reduce average mapping time by 33% compared to other Hadoop

schedulers.

According to the scheduling strategy discussion on the current research improvement,

we summarize the implementation approach and limitations for MapReduce scheduling

algorithms in Table 2-3. For each work, we present the objective of the algorithm, the

implementation approach and the limitation of each algorithm. We observe that most of

the algorithms are a focus on improving the performance of jobs or tasks scheduling. On

the basis of our analysis, we anticipate, gradually the challenges can be reduced to

achieve accurate scheduling algorithm by exploring the underlying research progress on

scheduling.

Table 2-3: Summary of MapReduce scheduling algorithms

Algorithm Objectives Implementation

approach

Limitation

FCFS To minimize the

completion time

• Run a queue

• Compare each

task’s progress to

the average

progress.

• Designed only for

the single type of a

job.

• Low performance

when running

multiple jobs.

• Poor response times

for short jobs

compared to large

jobs.

LATE To improve

response time for

short jobs.

Progress rate is

calculated by dividing

the progress score

• Only takes action on

appropriate slow

tasks.

• 2. However, it does

Univ
ers

ity
 of

 M
ala

ya

31

not compute the

remaining time for

tasks correctly, and

cannot find real slow

tasks in the end.

• Poor performance

due to the static

manner in computing

the progress of the

tasks

Quincy Reduce the

scheduling

problem to the

min-cost flow

problem

Fairness and data

locality

• Resource sharing

• Predictability and

consequently

fairness

MCP Improves the

effectiveness of

speculative

execution

Both the progress rate

and the bandwidth are

used within a phase to

select slow tasks.

Exponentially

weighted moving

average is used to

predict process speed

and calculate a task’s

remaining time, and

Determine which

the task to backup

based on the load on a

cluster using a cost-

benefit model

Poor performance due to

the static manner in

computing the progress

of the tasks

SHadoop Improving the

performance of

job and task

• Optimize the setup

and cleanup tasks

• Messaging

• Hadoop cluster can

only be statically

configured.

Univ
ers

ity
 of

 M
ala

ya

32

optimizing the job

and task

execution.

communication

mechanism

• It does not work

well in

heterogeneous

MRA++ Develop

algorithms allow

the use of data-

intensive

applications in

large-scale

environments

with the use of

the internet

• Grouping,

• Data distribution

• Task scheduling

• Low

performance

when running

multiple types of

jobs.

Maestro Improve the

overall

performance of

MapReduce

computation

Using a replica-aware

execution of map

tasks

Maestro algorithm can

only be statically

configured.

ARIA To provides

scheduler

mechanism for

job completion

deadline.

Uses job profiles and a

soft deadline that

determines job

ordering and many

resources to allocate

for meeting the job

deadlines.

It does not consider node

failures.

Flex To optimize any

of the variety

of standard

scheduling theory

metrics

Flexible scheduling

allocation scheme.

Schemes are very metric

dependent

2.7 Resource scheduling frameworks

During the last decade, a lot of resource allocation and job scheduling frameworks have

emerged and also become popular, including Yarn, Mesos, and Corona. Table 2-4

Univ
ers

ity
 of

 M
ala

ya

33

shows a comparison of MapReduce default, Yarn, Mesos and Corona scheduling

frameworks.

Table 2-4: A comparison of resources scheduling frameworks
Features MapReduce YARN Mesos Corona
Resources Request-based Request-

based
Offer-based Push-based

Scheduling Memory Memory Memory/CPU Memory/CPU/Disk
Cluster
utilization

Low High High High

Fairness No Yes Yes Yes
Job latency High Low Low Low
Scalability Medium High High High
Computation
model

Job/task-based Cluster-
based

Cluster-based Slot-based

Language Java Java C++ -
Platform Apache Hadoop Apache

Hadoop
Cross-
platform

Cross-platform

Open Source Yes Yes Yes Yes
Developer ASF ASF ASF Facebook

(a) YARN (Vavilapalli et al., 2013) is a resource manager that represents a generational

shift in the architecture of Apache Hadoop. It utilizes the MapReduce programming

framework by default to perform efficient data processing by separating the processing

engine and resource management capabilities of MapReduce. Hence, it makes the

Hadoop environment highly suitable for operational applications that cannot wait for

batch jobs to be completed. This feature simplifies the support of maintaining a multi-

tenant environment, managing and monitoring workloads, implementing security

controls, cluster utilization and providing high- scalability for Hadoop framework.

Moreover, YARN enables programmers to design and implement distributed

frameworks while sharing a common set of resources and data (Murthy et al., 2013). A

resource manager, the central entity of YARN, employs a node manager to launch

containers that could either map or reduce tasks and monitor the operations of

individual cluster nodes. When a job request comes into the YARN resource manager,

YARN evaluates all the resources available, and it places the job.

Univ
ers

ity
 of

 M
ala

ya

34

(c) Apache Mesos (Hindman et al., 2011) is an open source cluster manager, originally

developed at the University of California at Berkeley to offer effective heterogeneous

resources isolation and allocation across distributed applications. Apache Mesos is

being used by many companies such as Twitter, MediaCrossing, Xogito, Airbnb and

Apple. It offers an abstraction of computing resources (CPU, storage, network, memory,

and file system) from nodes aiming to deploy and manage applications in large-scale

clustered environments more efficiently. Mesos adapting features of the modern

kernel—"cgroups" in Linux, "zones" in Solaris and reside between the operating system

layer and the applications layer to provide isolation for CPU, memory, I/O, file system,

rack locality, which allow applications like Hadoop, Spark, Kafka to run dynamically

across shared pool of nodes. Mesos determines which resources are available, and it

makes offers back to an application scheduler (Scott, 2015). Those offers can be

accepted or rejected by the framework. The Hadoop framework uses Mesos-aware

schedule in order to register against the Mesos master. The Mesos master sends offers

with available resources to the registered Hadoop. When MapReduce requires launching

tasks, it replies to the master that it is taking part of the offers to launch the tasks.

Hadoop often uses a pre-defined set of resources to task for one of its specific tasks

(d) Corona: is an extension of the MapReduce framework; it provides high scalability

and cluster utilization for small tasks. This extension was designed to overcome some of

the important Facebook challenges, such as scalability, low latency for small jobs, and

processing needs (Facebook, 2012). Facebook has rewritten its scheduling framework in

Corona, which is based on a task resource requirement rather than a count of the map

and reduces tasks. Cluster manager is also introduced in Corona to monitor nodes in the

cluster and report their available resources. For each job, a dedicated job tracker is

initialized in either small or large job with a separate process.

Univ
ers

ity
 of

 M
ala

ya

35

A list of existing resource scheduling framework and MapReduce scheduling

algorithms that have been modified into on Hadoop framework is provided in Table 2-5

below:

Table 2-5: Modifications induced by existing scheduling approach to
MapReduce

System Modification in Hadoop systems

Yarn (Vavilapalli
et al., 2013)

Yes, build on top of Hadoop to provide resource management

Mesos (Hindman
et al., 2011)

No, runs on every machine and provides applications Hadoop with
API’s for resource management and scheduling

Corona (Facebook,
2012)

No, separates cluster resource management from job coordination

FIFO (Hadoop,
2011)

Yes, integrated into Hadoop

Fair scheduler
(Hadoop, 2009)

Yes, integrated into Hadoop

Capacity scheduler
(Hadoop)

Yes, integrated into Hadoop

Late (Zaharia et
al., 2008)

No, add-on algorithm uses estimated finish times to speculatively
execute the tasks that hurt the response time the most

Quincy (Isard et
al., 2009)

No, introduce a powerful and flexible new framework for
scheduling concurrent distributed jobs with fine-grain resource
sharing

MCP (Qi et al.,
2014)

No, add-on algorithm modified to choose proper worker nodes for
backup tasks

SHadoop (Gu et
al., 2014)

Yes, integrated into the Intel Distributed Hadoop (IDH)

MRA++ (Anjos et
al., 2015)

No, a new MapReduce framework design that considers the
heterogeneity of nodes during data distribution, task scheduling,
and job control

Maestro (Ibrahim
et al., 2012)

No, extension based on replica-aware Map Scheduling

ARIA (Verma et
al., 2011)

No, implemented on top of Hadoop to determine job ordering and
several resources to allocate for meeting the job deadlines

Flex (Wolf et al.,
2010)

No, add-on module

MTSD (Tang et
al., 2012)

No, extensional MapReduce Task Scheduling algorithm for
Deadline constraints in Hadoop platform

COSHH (Rasooli
& Down, 2014)

No, add-on algorithm considers heterogeneity

MOMTH (Nita et
al., 2015)

No, a tool integrated into Hadoop

MORM (S.-Q.
Long et al., 2014)

Different system

Univ
ers

ity
 of

 M
ala

ya

36

2.8 Related Scheduling algorithms

Essentially the scheduling optimization problems in MapReduce are similar to query

optimization in RDBMS in two aspects, first, its research space is vast, because of

different optimization opportunities that cloud computing offers, and second the

dimension of the optimization is content more than one criterion with the monetary cost

of using the public cloud being at least as important as completion time (L. Guo et al.,

2012).

The cloud computing paradigm is different from clusters, in term of the cost model

(Armbrust et al., 2010; Peter Mell & Tim Grance, 2011). The cluster represents a fixed

capital investment made up-front and relatively small operational cost paid over time

(Eisen et al., 1998). On the other hand, clouds are characterized by elasticity and offer

their users the ability to lease resources only for as long as needed, based on per

quantum pricing scheme.

The work on scheduling data processing in distributed computing systems has been

studied in the current literature. Many taxonomies exist that can present the grounds for

this study (Casavant & Kuhl, 1988; Rimal et al., 2009; Su et al., 2013; Venugopal et al.,

2006; Yu & Buyya, 2005), especially, the studies on which multi-objective functions

are involved (Tsai et al., 2013; X. Wang et al., 2014; F. Zhang et al., 2014). The most

relevant studies related to this study are concerned the time and cost (Bittencourt &

Madeira, 2011; S.-Q. Long et al., 2014; Nita et al., 2015; Rasooli & Down, 2014).

Rasooli and Down (2014) propose a job scheduler to improve the performance of

Hadoop job completion time in a heterogeneous cluster environment which consider

both the application and cluster level of the system. The schedule is competitive with

respect to other performance measures such as fairness, locality, and minimum share

satisfaction. The authors also designed a scheduling algorithm which classifies the job

Univ
ers

ity
 of

 M
ala

ya

37

based on their requirements and finds an appropriate matching of resources and jobs in

the system. The classification part detects changes and adapts the classes based on the

new system parameters. A typical Hadoop scheduler receives two main messages from

the Hadoop system: a message signaling a new job arrival from a user to store the

incoming job in an appropriate queue, and a heartbeat message from a free resource by

triggering the routing process to assign a job.

Nita et al. (2015) proposed multi-objective scheduling algorithm of many tasks in

Hadoop for big data processing, named MOMTH. For that reason, two objective

functions related to users and resources are considered with constraints such as deadline

and budget. In order to evaluate the algorithm in the scheduling load simulator, a

collaboration platform known as MobiWay that exposes interoperability between a large

number of sensing mobile devices and a wide-range of mobility applications is used for

performance analysis of the MOMTH. The algorithm is compared with FIFO and fair

schedules and it obtained similar performance for the same approach.

S.-Q. Long et al. (2014) proposes a multi-objective offline optimization approach for

replica management, in which we view the various factors influencing replication

decisions such as mean file unavailability, mean service time, load variance, energy

consumption and mean access latency as five objectives. It makes decisions about

replication factor and replication layout with an improved artificial immune algorithm

that evolves a set of solution candidates through clone, mutation and selection

processes. The proposed algorithm named Multi-objective Optimized Replication

Management (MORM) seeks the near optimal solutions by balancing the trade-offs

among the five optimisation objectives. Table 2.6 shows the comparison of scheduling

algorithms based on a multi-objective. It shows the objectives of the proposed

Univ
ers

ity
 of

 M
ala

ya

38

scheduling algorithms with different constraints. These scheduling algorithms are

dealing with more than one objective.

Table 2-6: Comparison of related scheduling algorithms

Algorithm Objectives Constraints Minimum
schedule
length

COSHH
(Rasooli &
Down, 2014)

Fairness, locality, and
minimum share satisfaction

Heterogeneity Yes

MOMTH
(Nita et al.,
2015)

Avoiding resource contention
and having an optimal
workload of the cluster

Deadline and budget Yes

MORM (S.-
Q. Long et
al., 2014)

Optimized replication
management

Load variance, energy
consumption, and
Latency.

Yes

2.9 Multi-objective optimization

Most real-world scheduling parallel machine optimization problems are multi-objective

in nature since they possibly have conflicting objectives that must be satisfied at the

same time using Meta-heuristic algorithms (Deb, 2014; Marler & Arora, 2004). The

multi-objective optimization problem can be defined as “a vector of decision variables,

which satisfies constraints and optimizes vector functions from a mathematical

description of performance criteria which are usually in conflicts with each other”. A

general multi-objective optimization problem can be formally defined as follows:

min𝑓(𝑥) = � 𝑓1(𝑥), … …𝑓𝑛(𝑥)�

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑥) ≤ 0, 𝑖 = {1, … .𝑚}

ℎ𝑖(𝑥) ≤ 0, 𝑗 = {1, … .𝑝}

2-2-1

where minimize 𝑓(𝑥) is the convex objective function, 𝑥 is a n-dimensional decision

variable vector 𝑥 = (𝑥1, … . 𝑥𝑛), 𝑛 represents the number of objectives to be optimized

(two in this study, completion time and cost), 𝑔𝑖(𝑥) are the convex inequality constraint

Univ
ers

ity
 of

 M
ala

ya

39

functions, and ℎ𝑖(𝑥) are the equality constraint functions which can be expressed in

linear form 𝑚 + 𝑝.

Scheduling often requires considering several objectives in an optimization process

(Marler & Arora, 2004). For example, a trade-off between resource consumption and

performance while scheduling MapReduce jobs on the cloud. This optimization

procedure manages two or more objectives functions and is called multi-objective

optimization (Y. Jin & Sendhoff, 2001). The primary objective is to develop multi-

objective tasks scheduling research flow. Two stages are identified to achieve the goal.

The first, being the construction of the model. A mathematical model and schedule

evaluation criteria are established in the next chapter. The second stage, being the

application of multi-objective genetic algorithms, adopts genetic algorithms. The

research flow of the chapter is illustrated in Figure 2.4, details of which are explained in

coming sections.

Univ
ers

ity
 of

 M
ala

ya

40

Figure 2-4: Research Flow

2.9.1 Multi-objective genetic algorithms

It is well known that multi-objective genetic algorithms are among the most useful

approaches for multi-objective nonlinear discrete optimization problems. Recent

research on the applications of evolutionary algorithms to solve the MapReduce job

scheduling has been reviewed in (Tiwari et al., 2015).

A genetic algorithm has been successfully used to solve various optimization problems

using a set of procedures by enabling solutions to be found for the specific problems

(Horn et al., 1994; Ponnambalam et al., 2000). Generally, a genetic algorithm is parallel

in nature and so, it suits better to the MapReduce job scheduling problem. A genetic

algorithm is an optimization technique based on the guided random search mechanism.

It uses the principle of evolution “Survival of the fittest and inheritance” (Bagchi,

Univ
ers

ity
 of

 M
ala

ya

41

1999). Moreover, a genetic algorithm is based on the payoff function to guide the search

and utilizes the probabilistic transition rules (Goldberg & Holland, 1988). It can

produce continuous populations of different solutions. These solutions can be

reproduced until acceptable results are obtained. Meanwhile, the quality of the

individual solutions for each population is improved.

Various implementations of genetic algorithms have been used over years such as

NSGA-II (non-dominated sorting genetic algorithm) (Deb et al., 2002), SPEA2

(strength Pareto evolutionary algorithm) (Zitzler et al., 2001). Two popular genetic

algorithms like NSGA-II and SPEA2 are used to solve the problem of the scheduling

optimization.

2.9.1.1 NSGA-II algorithm

NSGA-II is a non-dominated genetic sorting algorithm; which is the updated version of

the NSGA algorithm and it is widely used to solve the multi-objective optimization

problem. In 2000 the algorithm was proposed by (Deb et al., 2000) as the first fast,

reliable and efficient multi-objective genetic algorithm for non-dominated solutions

using Pareto dominance relationship. NSGA-II uses the elitist principle and explicit

diversity preserving mechanism. NSGA-II begins with an initial population by

determining the number of the chromosome, generation as well as mutation and

crossover rate value. Moreover, the possible solutions of the population are generated

randomly and evaluation of fitness value of chromosomes is carried out by calculating

objective functions. Different solutions are realized at each generation in the population,

selection, crossover, mutation operations and ranking. The parent, child and ranked

populations are combined in order to select the individuals. If the selecting of the

individuals stopping criteria met, then the report of the final population is created.

However, if the criteria do not meet, then the process of selection will start. During the

Univ
ers

ity
 of

 M
ala

ya

42

parent selection operation, binary tournament technique can be more suitable. For this

study, the classic of one point crossover operator is used, which is important for the

creation of the children. Also, two columns are randomly selected during the mutation

operator and all the different non-dominated fronts solutions are assigned in a ranking

operation. Once the non-dominated fronts ranking is complete, the crowding distance is

assigned to sort the solutions in the same fronts. The Pseudocode of the NSGA-II

algorithm is described in Algorithm 1(Deb et al., 2000).

Input: A maximum number of generations maxgen

Output: A population evolved

begin

T= 0;

Initialize Pt with the size N Random, G,A, Min Min

Evaluate population according to the objective functions;

While t < maxgen do

Apply selection probability, crossover and mutation (explained in section 4.2.2)

to Pt to generate Q t

Rt = Pt ᵁ Qt;

Assign a hierarchy based on Pareto dominance to Rt;

Assign crowding distance to Rt;

Select N individuals of Rt, according to the crowding comparison operator to

generate Pt + 1;

end

end

Algorithm 1 : Pseudocode of the NSGA-II algorithm

2.9.1.2 SPEA2 algorithm

SPEA2 is used to find or approximate the Pareto-optimal set of multi-objective

optimization problems (P.-C. Chang et al., 2007). A regular population and archive

mechanism (Pareto archive) are used in SPEA2. All the non-dominated solutions are

Univ
ers

ity
 of

 M
ala

ya

43

copied to the Pareto archive during the generation of the population. Unlike SPEA, the

size of the Pareto archive is fixed and is fed to the non-dominated solutions till are

satisfied. If the dominated solutions are not completed, then the dominated solutions with

the finest goal values are likewise selected. However, if more than one solution found for

non-dominated over archive size, then only the best among them with a decreasing order

of distance is considered. The pseudo-code of SPEA2 is presented in algorithm 2. The

algorithm requires the same input parameters as the NSGA-II.

Input:

 Pt - Population size

 Qt - Archive size

 t - Maximum number of generations

Output: A (non-dominated set)

begin

Set t= 0;

Pt = 0;

Initialize Pt and create the empty archive

While (stop condition) is false do

Compute fitness of each individual in Pt and t

Copy all individual evaluating to non-dominated vector

Use the truncation operator to move elements from t when the capacity in Pt to t

Preform binary tournament selection with replacement to fill the mating pool

Apply crossover and mutation to the mating pool

end

end

Algorithm 2 : Pseudocode of the SPEA-II algorithm

2.9.2 Strengths of Genetic Algorithm

A genetic algorithm has the ability to accommodate different types of problems either

continuous or discrete, which makes the genetic algorithm more flexible in dealing with

Univ
ers

ity
 of

 M
ala

ya

44

a range of optimization problems such as scheduling. Moreover, genetic algorithm

offers a good performance by exploring the solution space in multiple directions at

once. As a result, many researchers are attracted by such approach to tackling different

problems in different domains (Nagata & Chu, 2003). A genetic algorithm does not

require the derivation of information before solving the problem. As typically holds a

single solution to a problem at a particular time, and search to find out the next direction

of movement based on the gradient function of the latest solution. When the genetic

algorithm decided the distance to move, then new solution is selected.

Moreover, the strength of genetic algorithms is performed on the problem with more

complexes such as changes over time, noisy and the fitness function is discontinuous.

Solving problems in multi-objective usually require huge alternative solutions

impossible to search exhaustively, which difficult to select the best solution (Marczyk,

2004). Local optima can effectively be avoided by the genetic algorithm and to provide

several alternative solutions to a problem. Local optima are a poor solution that pretends

to be the best through which algorithms can be deceived from reaching the optimal

solution, but the genetic algorithm has the capability to avoid the local optima. This is

one of the major attractive characteristics of the genetic algorithm (Chiroma et al.,

2015).

2.10 Summary

Scheduling plays an important role in big data, mainly in reducing the execution time

and cost during processing of data. To understand scheduling in big data studies, this

chapter presented an introduction to the rise of big data, which include current big data

trends and big data challenges. The chapter also provided an overview of Apache

Hadoop focusing on HDFS, and Hadoop MapReduce. Cloud computing and the

relationship between cloud and big data are discussed. Moreover, scheduling in big data

Univ
ers

ity
 of

 M
ala

ya

45

platforms and its algorithms, which are closely, linked to big data processing studies is

provided. It also underlined the requirements for scheduling in big data platforms based

on data locality, SLA-based, load balancing, time and cost. Moreover, it highlighted the

current state-of-the-art scheduling algorithms and investigated the related scheduling

algorithms by comparing their objectives and unique characteristics.

This chapter also discusses different scheduling algorithms used in big data platforms.

Furthermore, in order to highlight the results of the study of the previous survey

conducted, the findings are strengthened. By presented the concept of scheduling in big

data platforms, various optimization options are identified. Having said that, a

methodical approach, which can identify the importance of scheduling big data on the

cloud is crucial.

Moreover, in this chapter scheduling of MapReduce jobs of the large volume of data

processing are studied. The study considers the minimization of completion time given

a fixed budget, minimization of the monetary cost given a deadline and the trade-offs

between the completion time and monetary cost of using cloud computing.

Strengthened by the result of the study, this chapter has also revealed the issues that led

to performance degradation in resource allocation and task scheduling problems,

especially, when large amounts of data are being processed by a framework like

MapReduce in a distributed environment. Therefore, this thesis is devoted to addressing

those issues, by investigating the scheduling mechanism in Hadoop MapReduce. More

specific, this thesis seeks optimization solutions to tackle the issue of resource

allocation and task scheduling in Hadoop MapReduce. Moreover, this chapter

highlights the scheduling algorithms for big data and investigates the related scheduling

algorithms. This section discusses several approaches to the scheduling problem. These

approaches consider different scenarios, which take into account the application types,

Univ
ers

ity
 of

 M
ala

ya

46

the execution platform, the type of algorithms used and the various constraints that

might be imposed. Moreover, the chapter discusses the multi-objective optimization by

focusing on genetic algorithms like NSGA-II and SPEA2.

In this next chapter, we investigate and model the problem of scheduling a MapReduce

job on the cloud as an optimization problem between time and cost within budget and

deadline constraints.

Univ
ers

ity
 of

 M
ala

ya

47

CHAPTER 3: SCHEDULING MAPREDUCE JOBS AND THE PERFORMANCE

ISSUES

This chapter aims to provide analysis on the performance of scheduling MapReduce

jobs using physical and cloud cluster. This analysis has an impact on the processing in

terms of time and cost. Normally in the scheduling process, the processing time of the

job on a machine is assumed to be fixed in advance. However, in reality, it demands

resources to complete the job and the execution time is determined internally by many

resources allocated. Using analytical analysis mathematical equations is derived to

identify a time-cost model for the processing of big data, which demonstrate the

significance of the execution time and budget when utilizing cloud resources. We

formulate the completion time with a budget constraint model and cost with deadline

constraint model.

The rest of the chapter organized as follows. Section 3.1 presents our analysis of the

performance of executing MapReduce jobs when using physical and cloud cluster. We

describe problem identification in Section 3.2. Section 3.3 offers time-cost models

analysis using the multi-objective evolutionary algorithm. Section 3.4 provides

computational results.

3.1 Hadoop physical vs. cloud cluster analysis

This section provides analysis of the impact of using physical versus cloud cluster when

process large amount of data. The reason to conduct such analysis is to identify the

important of cluster usage in terms of the cost of execution time and the utilization of

the resources to complete the tasks. A physical cluster is a group of computers

connected by a local area network (LAN), where Hadoop distribution is installed

directly on the physical machines that are bounded by disk I/O. in contrast, cloud

computing is a type of computing that relies on sharing heterogeneous computing

Univ
ers

ity
 of

 M
ala

ya

48

resources to deliver computing services over the Internet in a convenient and scalable

manner (Armbrust et al., 2010).

In the cloud, Hadoop distribution is installed on the virtual machines, where multiple

"machines" does not require full physical resources at all times because the underlying

infrastructure is shared (White, 2012). Moreover, Hadoop has specifically designed for

storing and processing unstructured data in a homogeneously distributed computing

environment, which run on commodity hardware. More recently, there has been some

effort to proposed Hybrid environment for MapReduce framework. For instance,

Sharma et al. (2013) introduce hierarchical scheduler for hybrid data centers with two-

phase named HybridMR. The algorithm comprises of multiple virtual machines and

physical to make use of both paradigms. Firstly, the information acquired from

HybridMR profiles to estimate virtualization overheads based on incoming MapReduce

jobs to gauge can automatically guide placement between physical machines and virtual

machines. Secondly, HybridMR builds run-time resource prediction models and

performs dynamic resource orchestration to minimize the interference within and across

collocated interactive and MapReduce applications.

The experiments were carried out in a MYREN cloud and physical cluster machines.

We use five PCs as well as five Virtual Machine (VM) with the following

configurations: 2.80 GHz processor, 2 GB main memory, and 1000 GB disk space.

Hadoop cluster is used on Linux Ubuntu 14.04 where one machine runs a NameNode

and ResourceManager, and the remaining are running DataNode and DataManager.

Moreover, we use PingER data sets of different sizes varying from 500MB to 2 GB.

Table 3-1 provides a result of the comparison between the physical cluster and cloud

cluster in terms of execution time.

Univ
ers

ity
 of

 M
ala

ya

49

Table 3-1: Comparison between physical and cloud cluster in terms of execution
time
Data size (GB) Physical Cluster (s) Cloud (s)
1 46.28 42.04
2 53.44 51.67
3 69.30 50.57
4 97.57 60.39
5 124.92 90.23

As shown in Figure 3-1 the experimental result illustrates that increasing number of

data size in the cluster, significantly increase the time necessary to run the application

on both physical cluster and cloud. Figure 3-1 shows for both physical cluster and cloud

require less time to finish the jobs. Hence, running jobs on a cluster with a large number

of data is the main motivation for using Hadoop to process big data. Given the relatively

low commodity hardware of physical cluster, the results were fairly significant. Using

five nodes of machines to run the jobs practically increase the runtime, compared with

one node. Thus, increasing the number of machines could lead to increase in runtime as

the cluster size increased.

Figure 3-1: Comparison between physical cluster and cloud in terms of runtime

0

20

40

60

80

100

120

140

1 2 3 4 5

R
un

tim
e

(s
)

Data size (GB)

Physical cluster

Cloud

Univ
ers

ity
 of

 M
ala

ya

50

Nevertheless, the results indicate the unavailability of free resources. Running five

cloud nodes put a considerable load on the host computer running the virtualization

software and pushed the CPU utilization to 100%. This indicates that the use of cloud

virtual machines helped better utilize the resources of the host computer. However,

these machines require an optimal scheduling algorithm in order to reduce the overall

execution time. The monetary cost to complete the entire workflow based on cloud

platforms (e.g., Amazon EC2) is also an important metric as the resources are claimed

on demand and will be charged as long as it is used. The monetary cost is closely

related to the completion time. However, they do not always correlate due to the pricing

scheme in the cloud.

3.2 Analytical Time-Cost analysis

Several common assumptions are made in this study given the relatively high

complexity of MapReduce job scheduling. Some of these assumptions have been used

in Nita et al. (2015) and Wang and Shi (2014). These assumptions are as follows. (i)

One or more free slot(s) are available at a given time in each node

𝑁 = {𝑛1,𝑛2, ,𝑛𝑚} in the cluster, where the minimum number of tasks for the map is

reduced to less than or equal to the available slots. (ii) Big data processing for each

query is translated into one or more MapReduce job(s) 𝐽 = {𝑗1, 𝑗2, , 𝑗ℎ}, where each

job has multiple tasks 𝑇 = {𝑡1, 𝑡2, , 𝑡𝑛}, which consist of a known number of map

tasks 𝑁𝑚 and reduce tasks 𝑁𝑟. (iii) The reduce tasks can only be launched when all the

map tasks have been completed. (iv) For each map task, the exact amount of data

processed 𝑆𝑚 is known from the beginning and is equally distributed among map nodes.

(v) Each job has arrival time 𝐴, deadline 𝐷, and allocated budget 𝐵 for using the node.

(vii) Sufficient resources are allocated for each task in the cloud, which implies that a

node is never completed by more than one tasks, and its allocation is charged based on

the actual time that it is used and the fixed service rate. Thus, before discussing the

Univ
ers

ity
 of

 M
ala

ya

51

model for completion time and monetary cost, the definition of the problem is described

as follows: A MapReduce job 𝐽 is modeled as a workflow that consists of multiple

tasks 𝑇. This workflow is a collection of independent map and reduce tasks executed in

parallel and denoted as 𝑡 = �𝑡𝑚1 , 𝑡𝑚2 , , 𝑡𝑚𝑢 , 𝑡𝑟1 , 𝑡𝑟2 , … . . 𝑡𝑟𝑢�. Each map/reduce task

is run in a cloud VM known as a “node” with a possibly distinct performance

configuration, and a different charge rate for each machine is deployed in the cluster.

Each job has a particular number of slots assigned; these slots can be used by map and

reduce tasks at any given time, where no reduce task can be started until all the map

tasks for the job are completed. However, the same slots can be used by the mapper and

the reducer. For each task, 𝑡𝑖, 0 ≤ 𝑖 ≤ 𝑗, where 𝑡𝑖𝑢 ≤ 𝑢 ≤ 𝑁 represents the time to

run tasks 𝑡𝑖𝑢 on node 𝑁. Table 3-2 shows notations associated with the problem

description and modeling.

3.2.1 Completion time with budget constraint model

Modeling completion time is an essential part of this study because it is the basis for the

rest of the work, other calculations, and the proposed algorithms. This procedure is one

of the most widely accepted methods for modeling the optimization problem (Heintz et

al., 2012). Many variants of this model are available, but one variant is particularly

related to the map and reduce task assignment problem with budget constraints (Wang

& Shi, 2014). In this problem, the goal is to minimize the Makespan given a particular

budget constraint. To achieve this goal, the execution time 𝑇(𝑡𝑖,𝑏) of a task 𝑡𝑖 with a

specific budget 𝑏 = 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑑𝑔𝑒𝑡 (𝐵)
𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 (𝑇)

 should be defined as the time required to

complete the task within the specific budget. The shortest time to complete the task is

denoted as

𝑇(𝑡𝑖,𝑏) = 𝑡𝑖𝑢 ,𝑐𝑖𝑢+1 < 𝐵 < 𝑐𝑖𝑢−1 3-1

Univ
ers

ity
 of

 M
ala

ya

52

where the estimation of the budget per map/reduce task can be described as:

𝑏 ≤ 1,∀𝑡𝑖 ∈ 𝐽 3-2

The time to complete task 𝑡𝑖 with budget b, denoted as 𝑡𝑖(𝑏), is defined as the time

consumed when all the tasks are completed within the given budget as follows:

𝑡𝑖(𝑏) = max
𝑡𝑖 ∈𝐽

 �𝑇(𝑡𝑖,𝑏)� 3-3

For the query, the reduce task is started immediately after map tasks complete.

Therefore, the total Makespan with budget 𝐵 to complete all tasks for particular job is

defined the sum of all tasks times. The goal is to minimize this time within the given

budget 𝐵.

𝑡(𝐵) = min
∑ 𝑏 ≤ 𝐵𝑡𝑖 ∈ 𝐽

� 𝑇(𝐵)
𝑡𝑖 ∈ 𝐽

 3-4

3.2.2 Cost with deadline constraint model

Pay-as-you-go is a well-known pricing model implemented by cloud service providers

to charge users based on quality of service (QoS) requirements. The charges for some

resources in cloud-like network bandwidth and storage are at a particular rate.

The pricing model implemented in the cloud is a pay-as-you-go model, where services

are charged as per the QoS requirements of the users. The resources in the cloud, such

as network bandwidth and storage, are charged at a specific rate (Hussain et al., 2013).

Thus, cost has become an important objective in scheduling. Total cost incurred by

processing big data can comprise many cost components, such as computation and data

transfer costs. Cloud computing offers a variety of resources and services per manner of

use. These computational resources are basically used per time quantum pricing

Univ
ers

ity
 of

 M
ala

ya

53

scheme. This quantum is typically 1 h, although recently, an alternative seems to be

receiving increasing interest.

Given the deadline for the job, the minimum cost to complete all the tasks is:

𝐶(𝑁𝑚+𝑁𝑟) (𝐷) = � 𝐶𝑖
𝑡𝑖 ∈ 𝐽

 (𝐷𝑖) 3-5

where 𝐶𝑖 (𝐷𝑖) is the minimum cost to complete the task within the 𝐷𝑖. Thus, 𝑡𝑚 ≤

 𝐷𝑖 and 𝑡𝑟 ≤ 𝐷𝑖

𝐶(𝑁𝑚+𝑁𝑟) (𝐷) = min
𝑡𝑖 ∈ 𝐽

� 𝐶𝑖
𝑡𝑖 ∈𝐽

 (𝐷𝑖) 3-6

The computation cost is defined based on resource 𝑅𝑗, such that, for each task 𝑡𝑖

executed on resource 𝑅𝑗, two timestamps will be recorded, that is, 𝐴 when the task starts

and 𝐸 when the task finishes its execution. The value 𝐸 can be defined as 𝐴 + 𝑡(𝑖,𝑏) +

 max𝑖 ∈ 𝐽
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝐵𝑎𝑛𝑑𝑤𝑖𝑡ℎ
. These timestamps indicate the period during which the

resources should to be utilized because of the execution of task 𝑖.

Table 3-2: Notations associated with the problem description and modeling
Symbol Definition

𝐽 The number of jobs 𝑗 = 1, … ,𝑛

𝑁 The number of nodes 𝑁 = {𝑛1,𝑛2, ,𝑛𝑚}

𝑇 The number of tasks 𝑇 = {𝑡1, 𝑡2, , 𝑡𝑛}

𝑐𝑗𝑢 The cost for each job

𝐶𝑚 The cost of executing a single map task

𝐶𝑖 Completion time of each task

𝐷𝑖 Deadline of each task

𝑡(𝐵) The total budget of all tasks during the execution

Univ
ers

ity
 of

 M
ala

ya

54

𝑘𝑖 Performance degradation perimeter

𝑡𝑖(𝑏) The time consumed when all task is completed within the given budget

𝑅𝑗 Resources

3.3 Time-Cost models analysis using multi-objective evolutionary algorithm

The analysis of the models is carried out using the evolutionary algorithm. It is well

known that multi-objective evolutionary algorithm is among the most useful approaches

for multi-objective. This fact makes multi-objective genetic algorithms suitable for

solving the MapReduce job scheduling as the objective functions and the decision

variable is an integer in the MapReduce job scheduling. Recent research on the

applications of evolutionary algorithms to solve the MapReduce job scheduling has

been reviewed in (Tiwari et al., 2015).

The following describes the multi-objective genetic algorithms, focusing on the problem

specific features, designed to solve the time-cost problem based on the NSGA-II and

SPEA2 algorithms discussed in Chapter 2.

(a) Representation of solutions: For the problem formulated each solution is represented

by the one chromosome with N genes; one or more genes are considered for each node.

The first gene contains the task to which the corresponding node is assigned in the

cluster. The second gene contains the selected resources for the corresponding node. It

is seen that by this representation at least one resource and one task is selected for each

node and therefore constraints 𝑏 ≤ 1,∀𝑡𝑖 ∈ 𝐽 and 𝑡𝑚 ≤ 𝐷𝑖 , 𝑡𝑟 ≤ 𝐷𝑖 are satisfied

automatically.

(b) Initial Population: The first step in the functioning of a genetic algorithm is the

generation of an initial population, which is a set of randomly generated of populations

to find an optimal solution (Goldberg & Holland, 1988). Each solution in the population

Univ
ers

ity
 of

 M
ala

ya

55

is named individually, and this individual is referred as a chromosome, which involved

genes and its value can be bit string, real number, permutations of elements, program

elements or data structure. From the initial population, the individuals are being selected

and its operations are transformed to the next generation. The mating chromosomes are

selected based on some specific criteria.

(c) Fitness Function: Fitness is used to measure the quality of the represented solutions

in the population according to the given optimization objective. The fitness values are

then used in the process of natural selection to choose which potential solutions will

continue to the next generation. Maximization can be straightforwardly achieved using

fitness functions 𝐹(𝑥) in genetic algorithms, where it first derived from the problem’s

objective function 𝐹(𝑥) = 𝑓(𝑥), however, minimization is required multiple

transformations for example 𝐹(𝑥) = 1
1+𝑓(𝑥), This transformation does not alter the

location of the minimum but it converts the original minimization problem into a

maximization problem.

Since the objective space is explored in two directions, in this case, time and cost, then

the cost fitness function of an individual is defined as expressed by Eq (3-10) adapted

from (Yu & Buyya, 2006).

𝐹𝐶(𝑁𝑚+ 𝑁𝑟)(𝐼) =
∑ 𝐶𝑖𝑡𝑖 ∈ 𝐽

𝐵𝛼 × 𝑚𝑎𝑥𝐶𝑜𝑠𝑡(1−𝛼)
 3-10

where the ∑ 𝐶𝑖𝑡𝑖 ∈ 𝐽 is the sum of the execution cost of the task, 𝑚𝑎𝑥𝐶𝑜𝑠𝑡 is the most

expensive solution of the current population and 𝛼 is the binary variables used in this

function. The cost fitness module for the budget constrained scheduling encourages the

formation of the solutions that satisfy the budget constraint. For the deadline

Univ
ers

ity
 of

 M
ala

ya

56

constrained scheduling, it encourage the genetic algorithm to choose individuals with

less cost.

The time fitness component for the budget constrained is constructed to encourage the

genetic algorithm to choose individuals with earliest completion time from the current

population. The time fitness function of an individual is defined as expressed by Eq (3-

11) adapted from (Yu & Buyya, 2006).

𝐹𝑡(𝑁𝑚+ 𝑁𝑟)(𝐼) =
max
𝑡𝑖 ∈𝐽

 �𝑇(𝑡𝑖,𝑏)�

𝐷𝛽 × 𝑚𝑎𝑥𝑇𝑖𝑚𝑒(1−𝛽)
 3-11

where max𝑡𝑖 ∈𝐽 �𝑇(𝑡𝑖,𝑏)� the completion time of the individual is, 𝑚𝑎𝑥𝑇𝑖𝑚𝑒 is the largest

completion time of the current population.

In equation (3.11) and (3.12), the fitness of time and cost with respect to the budget and

deadline constraints. The combination of the both fitness functions is defined as

follows:

𝐹(𝐼) = �
𝛼 × 𝐹𝐶(𝑁𝑚+ 𝑁𝑟)(𝐼) + 𝛽 × 𝐹𝑡(𝑁𝑚+ 𝑁𝑟)(𝐼), 𝑖𝑓 𝐹𝐶(𝑁𝑚+ 𝑁𝑟)(𝐼) > 1

𝐹𝐶(𝑁𝑚+ 𝑁𝑟)(𝐼)𝛽 × 𝐹𝑡(𝑁𝑚+ 𝑁𝑟)(𝐼)𝛼 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 3-12

(d) Encoding: Encoding problem in the genetic algorithm has been studied by many

researchers in the past, where considerably different problems need completely different

genetic encoding for a good solution to be established. Some different encoding

methods are proposed in the literature (Jia et al., 2003; Orero & Irving, 1998). The

encoding strategy can be divided into many types which are the binary, permutation,

value, tree, direct chromosome representation and indirect chromosome representation.

This study adopted direct representation to give viability and legibility to a

chromosome. The encoding strategy of the mentioned scheduling problem is obtained to

assist in the development of the methods as shown in Figure 3-2. A chromosome with

Univ
ers

ity
 of

 M
ala

ya

57

an (N * 3) matrix is proposed to enable the scheduling problem. Each task assigned to

the node represented as a gene of the chromosome. There are two rows represent the

encoding solution. The first row in the chromosome displays the node in which the task

is executed. The second row displays the budget on each node.

Figure 3-2: Encoding strategy

where J is a job which consists of multiple tasks 𝑇 = {𝑡1, 𝑡2, , 𝑡𝑛} and known

number of map tasks 𝑁𝑚 and reduce tasks 𝑁𝑟, respectively. N is the number of nodes in

the cluster and B is the budget that allocated to each node.

Figure 3-3: Illustration of problem encoding

As shown in Figure 3-3 the chromosome has divided into two strings to represent the

order and tasks. The string order is a vector containing a permutation of all tasks

indexes.

(e) Selection: In order to determine the probability of various individuals genetic to the

next generation, the proportion selection operator is used to breed a new generation. The

proportional selection operator means the probability, which is selected and genetic to

next generation sets is related to the size of the individual's fitness. According to the

Univ
ers

ity
 of

 M
ala

ya

58

fitness value generated by the fitness function, the selection probability can be

determined by using equation 3-13.

𝑃𝑖 =
𝐹𝑖

∑ 𝐹𝑖𝑁
𝑖=1

 3-13

where 𝑃𝑖 is the selection probability of the string 𝑖, 𝐹𝑖 the fitness value of string 𝑖 and N

is the population size.

(f) Crossover: Crossover in genetic algorithms is used to evolve the programming of

one or more chromosomes from one generation to another. The purpose of a crossover

is to improve the new chromosome from their parents if it inherits the better

characteristics from each of the parents. It happens during evolution according to a user

definable crossover probability. A popular implementation of crossover uses the single

point crossover process (see Figure 3-4) in which a crossing site is randomly chosen

along the string length, and all bits to the right side of the crossing site are exchanged

between the two parent strings.

1 2 1 6 3 4Parent1

1 2 1 4 3 6Childs

4 1 3 6 1 2Parent2

Figure 3-4: Crossover (Single point)

(g) Mutation: While a crossover operator attempts to produce new strings of superior

fitness by affecting large changes in a string’s makeup, the need for local jumps in

search around a current solution also exists. Mutation is used to keep genetic diversity

from one generation of a population of genetic algorithm chromosomes to the other,

Univ
ers

ity
 of

 M
ala

ya

59

where the chromosome coding series were replaced by the other gene values in order to

generate a new individual. Figure 3-5 shows the mutation of a single point.

1 2 6 4 1 3Before

1 3 1 4 6 2After

Randomly selected gens

Figure 3-5: Mutation (Single point)

In the following subsection, the detail of the simulation environment and experimental

setting are discussed. Then simulation, computational results are presented.

3.3.1 An experimental setting

The problem is implemented according to its descriptions in the above sections and

compared it using two popular genetic algorithms like NSGA-II and SPEA2 on multi-

objective evolutionary algorithms (MOEAs) framework. Section 2.9.1 provides a brief

introduction to NSGA-II and SPEA2 algorithms. For both algorithms, the parameters

setting used are shown in Table 3.3. The population size 𝑃𝑡 is 100 with max evolution

of 1000; archive size 𝑄𝑡 for SPEA2 is 50. However, NSGA-II has no archive

population. The crossover probability is 0.7 and, the mutation probability is 0.1 to

decide the convergence and the diversity of the result.

Table 3-3: Parameter Setting Summary

Parameters Setting
NSGA-II SPEA2

Population size 500 500
Archive size N/A 50
Max evaluations 1000 1000
Crossover probability 0.7 0.7
Mutation probability 0.1 0.1

Univ
ers

ity
 of

 M
ala

ya

60

This study validated the performance of the proposed multi-objective scheduling model

through experiments. The results obtained by MOEA Framework are compared to

validate the quality of the solutions by genetic algorithm NSGA-II and SPEA2.

 Specific parameter settings for all the considered algorithms are described in Table 3.3.

The parameters used in the experiment are based on the previous research findings.

Each experiment was repeated 10 times with different random seeds. That is being said.

First, the shortest Makespan of the schedules is computed using NSGA-II and SPEA2

algorithms. Second, the aspect of the cost of the schedules regarding money is

considered, analyzing the cheapest solution using NSGA-II and SPEA2 algorithms.

Lastly, the hypervolume is defined in order to evaluate the quality of computed trade-off

solutions described in 3.3.2.

The trade-off solutions of Makespan and cost computed by NSGA-II and SPEA2 are

analyzed based on different workflow in order to find an optimal solution between the

two conflicting objectives. For this analysis, the graphical representation is used for the

solution computed by the two algorithms.

3.3.2 Multi-objective tradeoff solutions

The dominance is introduced in this study as it is not possible to find an optimal

solution that minimizes both the completion time and cost at the same time. A solution

𝑦 dominates a solution 𝑧, if the completion time and cost of 𝑦 are less than those in 𝑧.

Conversely, two solutions are said to be non-dominated whenever none of them

dominates the other, for example, one is better at compilation time and, the other is

better in cost.

Univ
ers

ity
 of

 M
ala

ya

61

a

b

c

d

W

a

d

hypervolum
e

3-6: Multi-objective tradeoff solutions

Figure 3-6 shows the multi-objective tradeoff solutions, in which the solutions marked

(a) and (d) dominates the marked (b) and (c) because it has better Makespan and cost.

Meantime, (a) and (d) are represented by the non-dominated solutions, in which (a) is

good in Makespan, while (d) is good in cost. This set of non-dominated solutions

represented a set of trade-off solutions among the different mapping of the workflow

tasks with different Makespan and cost and known as the Pareto front (the trend line

containing the (a), (d), and (e) solutions).

For multi-objective, the minimized or maximized optimal result is represented by a

multi-dimensional vector of values. This vector of the solution is called the Pareto

optimal set (ps). The image of this Pareto set of the objective functions is called a Pareto

front. The PS comprises many solutions, as there exist different trade-off solutions, each

describing a compromise between the different objective functions.

That is being said; hypervolume is used to measure the quality of a set tradeoff

solutions. Given a set of tradeoff solutions, the hypervolume measures the area enclosed

between the points in (b), (c) and (W) as it can be seen in Figure 3-6, usually selected as

the maximum objective value. Thus, the better and the more diverse the points

contained in X are, the higher hypervolume.

Univ
ers

ity
 of

 M
ala

ya

62

3.4 Computational Results

Recently many researchers have studied measurement criteria for comparing non-

dominated solutions. For example, a spread metric has been introduced by (Ranjithan et

al., 2001) to defines the high number of choice represented by the non-dominated

solutions and a coverage metric that characterizes the distribution of solutions. J.

Knowles and Corne (2002) have proposed an R metrics, which tend to dominate

alternatives regarding their profile of a particular property of a Pareto set approximation

which does not require knowledge of the true Pareto front and fairly scalable to many

objectives. They require, however, using reference set and a set of points S output from

an optimization run, and R metrics provides a single scalar value that estimates the

‘utility of S.

For computational experiments, randomly non-dominated solutions for each job are

generated using testbed. These non-dominated solutions generated during the

experiment are copied to the Pareto archive. Compared with SPEA2, the Pareto archive

size is fixed in this algorithm. The task data include the completion time T, cost for each

job to be completed within specific budget B and the deadline for each task D. For each

task, the completion time and cost are generated using a uniform distribution. The

numerical value of all obtained solutions of 50 tasks and ten nodes problem is presented

in Table 3-4.

Table 3-4: Comparison of NSGA-II and SPEA2 with the 50 tasks and ten nodes
problem

 NSGA-II (s) SPEA2 (s)
x-value y-value x-value y-value

Seed 1 54.509 26.451 30.480 43.641
Seed 2 10.134 40.767 45.104 71.035
Seed 3 44.629 31.643 51.580 42.350
Seed 4 23.322 19.432 43.621 42.862
Seed 5 56.757 24.876 43.389 56.760
Seed 6 57.583 49.501 54.741 19.424
Seed 7 34.516 54.637 64.431 62.519

Univ
ers

ity
 of

 M
ala

ya

63

Seed 8 29.698 25.583 17.901 59.871
Seed 9 52.750 29.653 42.564 43.574
Seed 10 38.633 46.432 37.299 67.891

The comparison of NSGA-II and SPEA2 are presented in Table 3-4 with the values of

each one of them, and we repeat the experiment for ten times. Figure 3-7 and 3-8 below

show the approximation set of each algorithm on the effect of the different x-values and

y-values of the distribution. Both figures show the domination of all solutions based

with respect to the cost and makespan. Some reference sets are chosen for this problem

and are shown in the black square. For a particular population size and a chosen number

of reference sets.

Moreover, the figures show that there exist many solutions that dominate other solutions

and reference sets is represented non-optimal solutions. While, in the reference sets the

shortest distances is most preferred, however, consider non-dominated solutions over

dominated solutions allows Pareto-optimal solutions to be found (Fonseca et al., 2009).

Thus, if the user is interested in knowing optimal trade-off solutions in (minimum

execution time and cost) the proposed procedure is able to find solutions near the

reference sets, instead of finding Pareto-optimal front, thereby allowing the user to

consider only a few solutions and that too solutions, which lie in the regions of user’s

interest.

Univ
ers

ity
 of

 M
ala

ya

64

Figure 3-7: Comparisons of the 50 tasks and 10 nodes using NSGA-II

Figure 3-8: Comparisons of the 50 tasks and ten nodes using SPEA2

This result developed to find a solution for the multi-objective scheduling problem.

There are two phases applied in the algorithm: the first phase, is the sub-populations,

which focus on the exact search space and careful avoids all individuals from changed

to a local optimal and regrouped as a single big population based on the subpopulation,

Univ
ers

ity
 of

 M
ala

ya

65

which explores solution space ignored or missed in the first phase. In the second phase,

each’s chromosome in this big population is randomly assigned a weight value to

explore for more solution spaces.

Figure 3-9: Example of NSGA-II/SPEA2 comparison

Figure 3-9 shows an example where 50 tasks should be scheduled on ten identical

nodes. The objective values of all the obtained solutions are shown in Table 3.4. As

shows in Figure 3-9, a set of alternative solutions, called non-dominated solutions or

Pareto optimal solutions, is obtained by the two algorithms, from which the users may

select one according to their preference. If the users preferred less time to complete the

job with a high budget, the user can choose the two left solutions in Figure 3-9, whose

no y-value more than 30, while when there is a less budget to be allocated for cloud

resources, users could choose the bottom right solution, whose x-value is 10.134 and

Univ
ers

ity
 of

 M
ala

ya

66

17.901 for both algorithms respectively. We can observe that the front obtained by

NSGA-II dominates the other obtained by SPEA2. The comparison confirms the

optimality of genetic algorithm.

3.5 Summary

This chapter provides analysis on the performance of scheduling MapReduce jobs using

physical and cloud cluster, which has an impact on the processing time and cost. It

provides analysis of the impact of using physical versus cloud cluster when processes

large amounts of data. The reason to conduct such analysis is to identify the importance

of cluster usage in terms of the cost of execution time and the utilization of the

resources to complete the tasks. The experiment result shows increasing in execution

time, which indicate the unavailability of free resources. Running five cloud nodes put a

considerable load on the host computer running the virtualization software and pushed

the CPU utilization to 100%. This indicates that the use of cloud virtual machines

helped better utilize the resources of the host computer. However, these machines

require an optimal scheduling algorithm to reduce the overall execution time. The

monetary cost to complete the entire workflow based on cloud platforms (e.g., Amazon

EC2) is also an important metric as the resources are claimed on demand and will be

charged as long as it is used. The monetary cost is closely related to the completion

time. However, they are not always correlated due to the pricing scheme in the cloud.

The analysis of the models is carried out using genetic algorithms. It is well known that

multi-objective genetic algorithms are among the most useful approaches for multi-

objective. For computational experiments, randomly non-dominated solutions for each

job are generated using testbed. These non-dominated solutions generated during the

experiment are copied to the Pareto archive. We can observe that the front obtained by

Univ
ers

ity
 of

 M
ala

ya

67

NSGA-II dominates the other obtained by SPEA2. The comparison confirms the

optimality of genetic algorithm.

Univ
ers

ity
 of

 M
ala

ya

68

CHAPTER 4: FRAMEWORK FOR MULTI-OBJECTIVE SCHEDULING

ALGORITHMS

This chapter offers comprehensive details about the proposed scheduling algorithms by

considering resource allocation and task scheduling in a heterogeneous cloud

environment. These algorithms are an extension to the multi-objective list-based

scheduling algorithm for optimizing the workflow (Durillo & Prodan, 2014) and greedy

Cost-Time distribution (Yu & Buyya, 2006). The aim of the proposed algorithms is to

improve the performance of MapReduce scheduling for big data processing to meet the

deadline and budget constraint. The deadline and budget constraints in big data

processing scheduling are important as it provides a cost-effective allocation of the

cloud resources among Hadoop nodes. Given that, this chapter details the resource

allocation and task scheduling strategies to optimize workflow big data processing in

the cloud in terms of completion time and the monetary cost of using the cloud.

Efficient large-scale data processing is one of the major aspects of MapReduce

framework characterization. Scheduling tasks in virtual machines in the cloud demand

resources of the cloud, typically, users are aware of the deadline of when the job is

completed. However, in cloud computing environment, all machines compete for

resources to execute the jobs. These resources are controlled by batch queue systems,

which may not offer guarantee deadline during the task execution, only if the priority

used for resource reservation, which is a restricted level of service.

Whereas, in MapReduce with multiple jobs workloads running simultaneously,

resource-ware is important for enhancing resource utilization across nodes (Polo et al.,

2011). It provides fast reconfigurable architectures capable of adapting at runtime

according to changing requirements and constraints (Sousa et al.). For example, to

minimize contention for CPU and I/O Yong et al. (2009) proposed resource-aware

Univ
ers

ity
 of

 M
ala

ya

69

schemes on the slave's nodes in order to improve the performance of the cluster. Such

solution can offer a learning mechanism in which tasks can be classified based on their

CPU bound and IO bound categories and assign jobs as appropriate. However,

preventing batch processing jobs from interfering with foreground workloads is a

challenging task (W. Zhang et al., 2014). Furthermore, (Z. Guo, G. Fox, M. Zhou, et al.,

2012) offer a new way of resource aware, named, resource stealing to allow tasks are

running in the cluster to steal resources kept for idle slots and release them whenever a

new task is assigned to that slots. Resource stealing can utilize wasted resources being

used by others without interfering with normal job scheduling. The results show that

resource stealing may improve the performance improvement for compute-intensive and

network intensive applications. However, a heterogeneity property in the cloud is more

difficult when the cluster is shared among multiple jobs.

The proposed framework for multi-objective algorithms tries to identify the importance

of resource allocation and task scheduling in the cloud, by considering both completion

time and the cost minimization models. These models are based on similar work by (Kc

& Anyanwu, 2010; Nita et al., 2015; W. Zhang et al., 2014), who proposed models that

assist MapReduce jobs to meet the performance deadline with the monetary cost of

using the cloud. Selecting suitable schemes to adopt in the algorithms is essential,

particularly, considering the technical aspects of the chosen approach. The proposed

framework algorithms are designed based on the combination of two main models

which are adaptive control and cost decision module in order to meet performance goals

and maximize the efficiency of a Hadoop cluster in the cloud.

Lastly, in order to establish the relationship between resource allocation and task

scheduling, new scheduling algorithms are proposed. This combination of the resource

allocation and task scheduling helps in achieving one of the objectives of this study.

Univ
ers

ity
 of

 M
ala

ya

70

Moreover, beside the main objective to propose new scheduling algorithms, the

algorithms are also addressing the limitation of the resource allocation and task

scheduling, which was identified in Chapter 3. The following discussion offers an in-

depth description of the algorithms.

4.1 Multi-objective Scheduling algorithm

In this section, the proposed algorithm is described based on the objectives discussed in

Chapter 1, which related to user preferences with respect to completion time and cost.

Thus, users are allowed to specify the values for deadline and budget constraints.

However, to satisfy these constraints, the information of map and reduce tasks are

required during the implementation. Moreover, the information about memory, IO, CPU

must be known at the time of execution. However, since the proposed algorithm is

designed to work on Hadoop framework deployed on cloud, only the cost of the map

and reduce are considered and not the measure of information exchanged from outside.

Furthermore, Hadoop comes with storage module, where the datasets are stored in

HDFS and accessible at running time for any job.

The multi-objective earliest finish time algorithm has been used to optimize the

workflow in the cloud and to iteratively map the workflow tasks onto the resources.

Aside from mapping every task onto the resource, the algorithm also maps resources

onto tasks to establish a trade-off among the considered objectives. This algorithm is

described in the study of Durillo and Prodan (2014), in which a positive value should be

returned by the service function if the mappers and reducers are sufficient to complete

the tasks for a specific job within the given budget and deadline.

Univ
ers

ity
 of

 M
ala

ya

71

Algorithm 3: Earliest finish time scheduling

Input

Q: the task queue, where all tasks 𝑇 ∈ 𝐽 and 𝑇 ≤ 𝑡𝑚 + 𝑡𝑟

N: many nodes in the cluster, where 𝑁 ≥ 𝑆𝑙𝑜𝑡𝑠

1. For each task t ∈ 𝑇𝑚+𝑟 do

2. Assign 𝑇 to an available compute 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

3. End for

4. Repeat

5. For all 𝑡𝑚 & 𝑡𝑟 do

6. Assign ready task 𝑡𝑖 to any available slots

7. End for

8. Dispatch all the mapped tasks

9. Wait for tasks_queue

10. Update the running tasks_queue

11. tasks in the ready list are zero

The pseudocode described in Algorithm 3 presents the multi-objective earliest finish

time algorithm, which begins with the required inputs of all the tasks that belong to a

particular job in the cluster. The tasks are then split into map and reduce tasks

represented by the job. The map tasks will be scheduled first, followed by the reduce

tasks. The total of both tasks are scheduled in some nodes, depending on the availability

of the slots. Subsequently, the mapping and reducing phases of the algorithm begin by

iterating over the list of tasks of the map and reduce tasks sorted according to their order

in the queue. The tasks are assigned to available resources in the cluster. Therefore, only

trade-off solutions are saved to avoid assigning performance degradation. We only

consider the solution belong to non-dominated by other solutions as discussed in

chapter 3. All the map tasks, outputs are dispatched, and new inputs for reduce begins

Univ
ers

ity
 of

 M
ala

ya

72

the iteration. Each map task is input to reduce, which is in the queue ready to be

executed. The process continues for all tasks on the queue till the tasks listed in the

ready queue are completed.

For the basic scheduling policy, the framework has a scheduler that allows the resource

allocation decision to be made at the time of the task submission. A scheduling

algorithm for the multi-objective heterogeneous earliest finish time algorithm is listed in

algorithm 3. First, the tasks are assigned to available resources. The map tasks without

parents, which will be on top of the list, are assigned to the first available resources.

These available resources should be able to accept new tasks for execution and should

not exceed the limit for accepting tasks to new slots. All of the tasks are stored in a

queue and updated throughout the scheduling process. Afterward, the tasks that are

ready will be assigned by the scheduler to the available cloud resources and slots. The

optimum choice for the earliest finish time depends on the number of tasks in the

application, the scheduling policy, and the decision model, which are configurable by

the user before executing any workflow application in the cloud.

Algorithm 4: Workload information gathering

1. If a 𝑡𝑚 of job 𝑗, is finished then

2. Update the execution time of a map tasks 𝑡𝑚 in the log

3. If reduce tasks of job 𝑗 is finished then

4. Update the execution time of reduce 𝑡𝑟 in the log

Once the map and reduce tasks have completed the execution, the current workload

information should be updated, as shown in Algorithm 2. After the map and reduce

tasks are completed, the execution time is collected and reported to the “Job Tracker” in

the current Hadoop system. The following subsection describes the process of the

scheduling algorithm framework.

Univ
ers

ity
 of

 M
ala

ya

73

Gathering more system information can have a significant impact on making better

scheduling decisions. Gathering information from the Hadoop system is critical,

especially during the scheduling decision. The algorithm works with the first check if

all the map tasks have completed in every node in Hadoop cluster. Then, the output of

the results of the execution of the map tasks and the time is saved in the logs. Similarly,

for the reduce tasks, the completed tasks of the execution and the time are updated in

the logs. The importance of gathering the information about the execution is to help

analysis the result in terms of the completion time, latency and the utilization of the

CPU.

Since the birth of the Hadoop paradigm, the MapReduce programming model has been

one of its main components as discussed in the previous section. The traditional

implementation of MapReduce has revealed high latencies during execution of Hadoop

MapReduce jobs. The submitted jobs are performed based on the steps structure in

which the data will be split, Map, shuffle, sort and then reduce. This problem is

exacerbated for more complex processing involving statistical MapReduce jobs which

require time on the order of minutes, hours, or longer – even with fairly small data

volumes. Table 4-1 shows the information collector in Hadoop.

Table 4-1: The information collector in Hadoop

./bin/Hadoop fs -put /tmp/logs /var/logs

./bin/hadoop dfs -ls /var/logs
public static class LogEntryMapper extends Mapper<Object, Text, Text, IntWritable> {
./bin/hadoop jar loganalyzer.jar loganalyzer /var/logs /var/logs-output

Univ
ers

ity
 of

 M
ala

ya

74

New job arrives

User provides preference

Scheduler’s
decision

Assign requests

Terminate job

User’s
decision

Refusing request

Accepting request

Refusing/Accepting

Figure 4-1: Scheduling process

For the sake of comparing and describe the performance characteristics of the Hadoop

MapReduce in the cloud environment, a series of performance indicators is required.

This section mainly focuses on measuring the working capability of the MapReduce

jobs, including the measurement of throughput and respond time of each MapReduce

job, and the processing duration, CPU utilization of the node. The scheduling process is

shown in Figure 4.1. Thus, an experiment is conducted to illustrate the MapReduce

scheduling performance under difference scenarios.

Univ
ers

ity
 of

 M
ala

ya

75

4.2 Scheduling framework

The proposed framework is considered based on user preferences and the current cloud

state, the scheduler confirms a scheduling decision by assigning or refuses the offer, this

allows the model to decide what the best fit for the job to run. Since no priority jobs

considered in the proposed model, a scheduling policy has been used to share resources

between the running jobs. If the request is refused, the job has to be resubmitted. Upon

receiving a request, a user can choose to accept or reject it.

Finally, the scheduling process is terminated, if all slots in a cluster have been fully

scheduled, the scheduling system for the given slot is closed. The parameters are given

by users' requests and assign tasks on resource nodes according to status information

and scheduling policy. Scheduling policy is critical for saving energy and satisfying

QoS requirements.

Figure 4-2: System architecture

Univ
ers

ity
 of

 M
ala

ya

76

As shows in Figure 4-2 system architecture, various running applications are allocated

resources by the scheduler subject to some constraints. Such schedule provides no

guarantees on resuming failed tasks because of either application failure or hardware

failures. The scheduling components as described below.

(a) Resource manager represents a generational shift in the architecture of Apache

Hadoop. It utilizes the MapReduce programming framework by default to perform

efficient data processing by separating the processing engine and resource management

capabilities of MapReduce. Hence, it makes the Hadoop environment highly suitable for

operational applications that cannot wait for batch jobs to be completed. This feature

simplifies the support of maintaining a multi-tenant environment, managing and

monitoring workloads, implementing security controls, cluster utilization and providing

high- scalability for Hadoop framework.

The resource manager consists of two interfaces, namely, clients submitting

applications and application masters who dynamically negotiate with an access to

resources and others toward node managers. Application masters codify their need for

resources in terms of one or more resource requests, each of which tracks the number of

containers (Vavilapalli et al., 2013).

Univ
ers

ity
 of

 M
ala

ya

77

Figure 4-3: Resource allocation process

In addition, Yarn uses two steps for resource allocation based on a pluggable solution

for dynamic policy loading (Pop & Cristea, 2015) as shows in Figure 4-3. The yarn is

responsible for resource allocation, whereas application responsible for dividing the

jobs into multiple tasks then schedule them. This makes Yarn more generic while

allowing flexibility of scheduling strategies. The resource manager consists of two

interfaces, namely, clients submitting applications and application masters who

dynamically negotiate with an access to resources and others toward node managers.

Application masters codify their need for resources in terms of one or more resource

requests, each of which tracks the number of containers.

(b) Task scheduling: the resource manager assigns resources to the jobs within the

cluster. Each job will have many execution slots allocated by the resource manager.

Assigning more slots to a job lead to more resources allocated to the job. The jobs are

divided into multiple tasks, one or more tasks are assigned to slots in form of queue.

This queue is updated during the task scheduling. The scheduler then assigns these

Univ
ers

ity
 of

 M
ala

ya

78

ready tasks from the queue to resources based on the availability of each resource and

slots. The optimum choice for earliest finish time depends on the number of tasks in the

application, scheduling policy and decision model, which is configurable by the user

before executing any workflow application in the cloud.

(c) Scheduling policy: The scheduling policy is used to control the ordering request for

different resources. The policy is considered a priority, locality, deadlines, budget, and

the system behavior. Resource allocation is done by YARN, and task scheduling is done

by the application, which permits the YARN platform to be a generic one while still

allowing flexibility of scheduling strategies. The specific policies in YARN are oriented

on resource splitting according to schedules provided by the applications. In this way,

the YARN can decide on which cluster to be allocated the resource and how much

based on their availability and on the configured sharing policy. Altering the

configuration of a queue using time, the queue-level time-based policies can be used

including allowing jobs to be submitted.

 (d) Adaptive control: The main objective of the adaptive control is to identify tasks that

unable to complete in a given time with the available resources and provides a feedback

for the users. The users may adjust their preferences for the tasks and take appropriate

steps to meet the availability of resources in the Hadoop cluster. The preferences with

regard to nodes and time slots are assumed to be independent of each other. Moreover,

adaptive control contains, in addition to a feedback control with adjustable parameters.

4.3 Summary

This chapter has provided a framework for multi-objective scheduling algorithm, in

order to improve the execution time of tasks in the big data platforms. A framework is

designed based on MapReduce framework, where resource manager is responsible for

allocating the resources among the Hadoop clusters. The framework has introduced two

Univ
ers

ity
 of

 M
ala

ya

79

main components, which are adaptive control to identify tasks that unable to complete

in a given time with the available resources and provides a feedback for the users and

the decision module to decide what the best fit for the job to run.

The algorithm works with the first check if all the map tasks have completed in every

node in Hadoop cluster. Then, the output of the results of the execution of the map tasks

and the time is saved in the logs. Similarly, for the reduce tasks, the completed tasks of

the execution and the time are updated in the logs. The importance of gathering the

information about the execution is to help analysis the result in terms of the completion

time, latency and the utilization of the CPU.

Having established the proposed framework using multi-objective scheduling algorithm

strategies and models, the next chapter presents the evaluation of the framework and is

followed by the resulting discussion. It is important to understand that the results

provide an evaluation and verification of the usefulness and suitability of the framework

in improving the execution time.

In conclusion, this chapter highlighted the main point of the research objective in this

study by design a new optimization proposal based upon a multi-objective algorithm to

minimize time and cost in a heterogeneous cloud environment and offered a detail of the

framework.

 Univ
ers

ity
 of

 M
ala

ya

80

CHAPTER 5: EVALUATION OF MULTI-OBJECTIVE SCHEDULING

ALGORITHM

The objective of this chapter is to provide performance evaluation method used to

evaluate and validate the proposed multi-objective scheduling algorithm. The

scheduling algorithm adopts more accurate methods to determine the execution time.

The purpose is to improve resource allocation and tasks scheduling in big data

processing. Thus, in order to outline the importance of the proposed algorithm as

discussed in Chapter 4, this evaluation study is significant. The performance of

MapReduce scheduling for big data processing has been investigated by many

researchers ranging from job scheduling to an adaptive and on-demand fault, replication

and placement to new resource allocation models. However, evaluating of these models

have been overly by simplified setting in most MapReduce performance enhancement

solutions, which presents significant challenges to the analysis and compare the

effectiveness of these solutions (Sangroya et al., 2016).

Having proposed multi-objective scheduling algorithm, it is important in this chapter to

design an evaluation procedure in order to provide a verification of its use. This chapter

also offers validation using statistical analysis, which aims to validate the results of the

proposed algorithm in terms of the performance and compare with the FIFO and Fair

schedulers. The evaluation results are validated using linear regression models. First,

the chapter provides a description of the benchmarks that used for the evaluation of the

proposed algorithm. Second, the simulation environment and the datasets used for the

experiment are described in details. Finally, the chapter investigates the performance of

the proposed algorithm by comparing it with the most used scheduling algorithms:

FIFO and Fair schedulers.

Univ
ers

ity
 of

 M
ala

ya

81

The chapter is organized as follows. Section 5.1 provides benchmark description that is

used for the evaluation of big data scheduling algorithms. Section 5.2 highlights the

datasets used in the experimental stage. Section 5.3 presents the list of experiment and

their procedure, as well as a description of this study. Section 5.4 presents a statistical

model include the coefficient of determination. Section 5.5 presents performance

evaluation results for the throughput and the execution time. Section 5.6 offers

validation of results and the discussion is in Section 5.7. Section 5.8 provides a

summary of the chapter.

5.1 Benchmark Description

In order to evaluate Hadoop schedulers in a proper way, we assume that various big data

applications vary dynamically when running in a real application in cloud computing.

This evaluation assumes that users can scale-up or scale-down the workload traces in

terms of both data and workload scales according to their requirements. The purpose of

using the benchmarks is to evaluate the performance of proposed scheduling algorithm

regarding execution time and throughput.

The performance of MapReduce job is measured based upon the execution time

(Shankar et al., 2014). Also, many other factors can influence the performance of the

MapReduce job significantly, such as many map tasks and reduce tasks, the underlying

network, intermediate shuffle data pattern, and the shuffle data size.

The scheduling algorithm performance of virtualized Hadoop cluster deployed on the

cloud computing is evaluated. Figure 5-1 shows the process of big data processing using

Hadoop cluster. The cluster is configured in a virtualized environment where each

cluster node installed in a separate virtual machine. The cluster consists of the master

virtual machine running JobTracker, NameNode, and multiple workers virtual machine

running TaskTracker and DataNode. When the user places a query, the NameNode

Univ
ers

ity
 of

 M
ala

ya

82

located the DataNode within the cluster. Each DataNode holds a portion of the datasets

and constantly communicates with the NameNode to complete a certain task. Once the

datasets located within the cluster the TaskTracker begins processing the data using the

MapReduce framework mechanism, which start from Map, combine, shuffle and then

reduce. The result of the data processing can be stored back in HDFS.

Figure 5-1: Process of big data processing

Hadoop, in general, is known to be low CPU usage system. Some internal restrictions

imposed by the implementation do not allow boosting the CPU usage to its maximum if

a single job running on each node. To address this Hadoop scheduler load simulator is

used to obtain high average CPU usage per node, which increases the cluster

performance for the non I/O bound workloads.

Table 5.1 shows some of the big state-of-the-art data benchmarks efforts used for

evaluating different methods and algorithms of applications. Some of these benchmarks

Univ
ers

ity
 of

 M
ala

ya

83

can be used to evaluate scheduling algorithms in some big data platforms like

MapReduce. To cover diverse and representative workloads, the important workloads

from four applications are highlighted in order to help in the selection of suitable

benchmarks.

Table 5-1: Comparison of Bi data benchmarking efforts
Benchmark Datasets Software stacks Examples Status
Micro (Islam
et al., 2014)

Unstructured text
data

Apache Hadoop WordCount
and Sort

Open source

HiBench
(Huang et al.,
2011)

Unstructured/Semi-
structured data

Apache Hadoop
+ Hive

Offline
analytics

Open source

BigDataBench
(L. Wang et
al., 2014)

Unstructured text,
graph data

NoSQL Online
analytics

Open source

That is being said; Hadoop is used as the basic software stack. For the same big data

application, the scale of the simulator running big data applications is mainly decided

by the size of data input. Since the evaluation of the algorithms is based on text datasets,

the benchmarks used in these experiments are Micro Benchmark which can be tuned

depends on the cluster and workload characteristics. For the analysis of the scheduling

algorithm, the WordCount and Sort applications are used on a Hadoop cluster deployed

in the cloud virtual machines. These applications are commonly employed in a

computation of workloads to measure the factors which include CPU usage, throughput

and execution time.

WordCount is a program which as its name suggests, is used to count the number of

times each word is found in a text. The Hadoop distribution comes with several

benchmarks, which are bundled in Hadoop-*examples*.jar. Sort is a synthetic, which

also included in Hadoop distribution. It allows generating variable-sized data sets and

sorting the generated data. This benchmark has been used by Google and Yahoo to

evaluate their MapReduce frameworks and it is considered to be a good measure of the

Univ
ers

ity
 of

 M
ala

ya

84

performance characteristic of the underlying platform. Next section introduces the

PingER datasets that are used in the research.

5.2 PingER datasets

This evaluation uses datasets that represent different ends of the spectrum in terms of

difficulty. The datasets used referred to herein as PingER, is the datasets generated

using the point-to-point network.

The PingER data sets generate data about the Internet in order to anticipate the

performance of internet links between laboratories, universities and research institutions

(Cottrell, 2012). The project started in laboratories for modern High Energy Nuclear and

Particle (HENP) Physics. The goal is to help the projects group to monitor performance

and assess the feasibility of the computing goals of the future experiments (Cottrell,

2012). The laboratories faced a significant challenge in their wide-area networks. Thus,

the HENP networking community used End-to-End performance monitoring

infrastructure to closely examine malfunctions across a wide range of networks and

connections and chart long-term trends. According to ICFA-SCIC Monitoring Working

Group in 2014, the pingER project has over 86 active monitoring nodes in 22 different

countries around the world monitoring over 810 remote nodes at over 775 sites in 166

countries that are around 8000 monitor nodes.

Univ
ers

ity
 of

 M
ala

ya

85

Figure 5-2: Data collection method: PingER

As demonstrated in Figure 5-2 each monitoring node sends ping messages at regular

intervals to single or group of selected worldwide remote nodes and data is collected at

archive site via HyperText Transport Protocol (HTTP) for analysis purpose (Cottrell et

al., 2013). This process resulted in a massive amount of data being produced by

PingER. Figure 5.3 represent the PingER hourly data compressed for each 100 bytes of

pings, which stored in PingER archive and made available via anonymous ftp via

ftp://ftp.slac.stanford.edu/users/cottrell (Cottrell, 2012).

Over the past 15 years, PingER project has generated a tremendous amount of data

stored in flat CSV files in a form of Linked open data, which have been used to

anticipate the performance of internet links between laboratories, universities and

research institutions (Cottrell, 2012). Hence, to access such data, Pingtable application

(Cottrell et al., 2013) is used to retrieve row data stored in the archive and load it into a

normal HTML page.

Univ
ers

ity
 of

 M
ala

ya

86

Figure 5-3: Pinger volume of compressed hourly data for 100Byte pings

The data sets are stored in the Hadoop distributed file system, which accommodates a

large number of PingER files. Moreover, this dataset stored is in many pieces across

many nodes in the cloud to facilitate parallel computation.

In this study, we used up to 10 GB of PingER datasets. The reason of using this PingER

data is that the data available to the public for research purposes and it is suitable for

experiment with WordCount and Sort benchmark applications due to the complexity of

the data.

5.3 Experimental and procedure description

This section presents a systematic performance evaluation of the proposed algorithm

using divers’ sets of workloads, including Map, Shuffle, and Reduce workload. In

addition, the Hadoop scheduling simulator is used for the evaluation. The scheduling

algorithms FIFO and Fair schedulers are compared with the proposed algorithm using

Hadoop version 2.6.0. The newest version content YARN as a successor of Hadoop,

which offers a new framework for resource management. Thus, based on the

performance evaluation, the algorithms implemented within YARN such as Fair

Univ
ers

ity
 of

 M
ala

ya

87

scheduler is working well. Although, YARN still in its early stage of development,

therefore it is not fully stable yet for very large-scale execution (Kulkarni & Khandewal,

2014).

The experiments were conducted using the Hadoop cluster with 10 VMs installed on

Linux Ubuntu 14.04. One of the VMs runs NameNode and ResourceManager, whereas

the other VMs run DataNode and DataManager. Each VM has the following

configuration: 2.80 GHz processor, 8 GB main memory, and 1000 GB disk space.

Hadoop version 2.6.0 was used for the high-level query. The maximum replication

factor “dfs.replication.max” was applied to set the replication limit of data blocks. A

benchmark representative set of CPU and IO intensive applications included in the

Hadoop distribution, such as WordCount and Sort, for performance analysis was used to

efficiently evaluate the MapReduce task scheduling algorithms (Huang et al., 2011).

The reason for choosing these two benchmarks is because both are used most often as a

baseline benchmarks for MapReduce. Table 5.2 provides an example of MapReduce of

the basic settings for the experiment.

Table 5-2: Example MapReduce Settings
Property Value
mapreduce.map.memory.mb 1536
mapreduce.reduce.memory.mb 2560
mapreduce.map.java.opts -Xmx1024m
mapreduce.reduce.java.opts -Xmx2048m
yarn.scheduler.minimum-allocation-mb 512
yarn.scheduler.maximum-allocation-mb 4096

5.4 Statistical Models

Scheduling jobs on MapReduce have conflicting requirements and goals to optimize

due to the difficulty of predicting a new incoming job’s behavior and its completion

time. Given the possible presence of the cloud heterogeneity, deterministic modeling of

scheduling jobs on MapReduce is difficult. As such, proven statistical scheduling

Univ
ers

ity
 of

 M
ala

ya

88

models are required to represent the real life scenario of the data analysis regarding

validation. In order to perform data analysis, the statistical model is used to identify

various forms of inferences from the benchmarking experiments. Hence, the purpose of

the statistical model is to construct a model that approximates the true structure as

accurately as possible through the use of available data. This statistical model is based

on two factors which are throughput and execution time.

In realistic settings, a lot of factors can impact the performance of the Hadoop

scheduling mechanism, in the following, critical factors which are closely correlated

with the system performance are elaborated. The purpose of analyzing these factors is

summarized in Table 5-3.

Table 5-3: Summary of the purpose of analysis throughput and execution time
Factors Purpose of analysis
Throughput Compare the average task throughput of FIFO, Fair scheduler, and

the proposed scheduling algorithm under different data sizes in
order to verify that the proposed algorithm can foster average task
throughput.

Execution time Compare the performance of execution time of FIFO, Fair
scheduler; confirms that to the proposed scheduling algorithm can
enhance the execution time performance of MapReduce in the
cloud.

For the statistical analysis model, we used alteration method to produce numerical

values, which content the execution time and throughput for each workload. These

workloads are independent in nature. Moreover, in order to identify the correlation

between the workloads and the execution time and the throughput of the experimental

output, we use a regression model to determine the value of the execution time and

throughput from the values of one or more variables, so that the dependent variable can

be predicted. That is being said; the dependent variable is execution time and

throughput that mainly depends on the independent variables.

Univ
ers

ity
 of

 M
ala

ya

89

The execution time and throughput predictions can be made from the set of the data

collected from the experiments. A method to predict the execution time and throughput

of each task on a Hadoop cluster running on the cloud is required for an efficient

mapping of the task to the CPU and the cost to complete each task within a deadline.

The workload of the cluster offers knowledge of the amount of work at the CPU at any

given time. The load is obtained as a numerical value taking into consideration the

amount of time to complete the tasks and the CPU time and an average number of jobs

in the run queue.

Linear regression is considered due to independent variables such as size and the

number of tasks running on the virtual cluster. Thus, for the execution time and

throughput considering the size and the numbers of tasks, linear regressions are

employed in order to find the significance of execution time and throughput. The

regression line is depicted by the relationship between two variables in a straight line in

order to predict the dependent variable from independent variables. Equation 5-1 shows

an example of the mathematical relationship between two variables 𝑥 − 𝑎𝑥𝑖𝑠 and

𝑦 − 𝑎𝑥𝑖𝑠 as the linear regression relationship. The parameters 𝑏 and 𝑚 represented the

coefficients of the regression model which are fixed values.

 𝒚 = 𝒎 ∗ 𝒙 + 𝒃 5-1

For the several independent variable relationships, linear regression is used to predict

variables and dependent variables. The main goal of linear regression is to offer a

probabilities model that relates a dependent variable to one independent variable. The

dependent variable is represented by the time to execute the tasks, and the independent

variables are the amount of the data that is being executed by Hadoop.

For validation the result of the regression model, we used a numerical methods strategy.

Consequently, the generated data from the experiments are used to validate the result of

Univ
ers

ity
 of

 M
ala

ya

90

the model. As such, the data split randomly into two: first, to develop the model and the

second, is to measure predictive accuracy to identify the correlations between the

variables.

5.4.1 Coefficient of determination

Basically, the measurement of predicted output corresponds to the actual output

accuracy is given by the coefficient of determination. It is represented by 𝑅2, which

magnitude varies between zero and one. The value with high number indicates the high

accuracy of the prediction. As mentioned earlier in the execution time and throughput

are defined by the linear regression models, the values of 𝑚 and 𝑏 illustrated in equation

5-1 are to be determined. These parameters cannot be directly measured and have to be

estimated. The estimation is performed by collecting a set of data for example, CPU,

total respond time and runtime. Such estimation of the parameters is done through

drawing an estimated regression line through the actual data. For any data point there

exists a residual or error of fit represented as 𝑟 given by:

 𝒓𝒊 = 𝜶𝒊 + 𝜷𝒊 5-2

Where 𝛼𝑖the actual execution time and 𝛽𝑖 is the predicted execution time. The 𝛼𝑖 can be

less than 𝛽𝑖 if the observation shows below the estimated regression line. Using the

method of ordinary least squares, the criterion for an accurate prediction is that the sum

of the squared residuals be as small as possible, which unexplained variation is

represented as:

 𝑚𝑖𝑛 ∑ 𝑟𝑖2𝑛
𝑖=1 5-3

For any observation 𝐼, the execution time 𝛼𝑖 deviates from the mean of the original

execution times. This deviation is equal to the deviation of the predicted value from the

Univ
ers

ity
 of

 M
ala

ya

91

mean plus the residual. The regression explains the predicted value, while the residual

remains unexplained.

The proportion of the total variation in the execution time and throughput is measured

by the coefficient of determination 𝑅2 that is explained by the independent variables,

which are the number of tasks and the data size, as such the 𝑅2 can be defined as:

 1 − ∑ 𝑟𝑖2𝑛
𝑖=1 = 𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 5-4

The assessment of the magnitude of 𝑅2 depends on the nature of the process being

analyzed. A 𝑅2 value of 0.05 or higher is said to be a relatively good predication.

5.4.2 Execution time

In order to perform the mapping of tasks to resources for execution, a matrix is required.

There are two ways to obtain the result of execution time, which are the measurement of

the tasks on particular resources on a Hadoop cluster. Meanwhile, statistical analysis

defines many primitive types. The analysis, determine the performances of the nodes in

the cluster based on the execution time estimation. As described in section 5.4, the

regression model can be used to predict the completion time of all the tasks executed by

MapReduce. The algorithm generates a scheduling matrix by making use of the

predicted execution times to complete the tasks at near optimal solutions, and the tasks

executed according to the scheduling time given by the algorithm. For the tasks to be

successively executed, the user’s preference regarding the budget, the deadline must be

captured. A decision module is necessary for the allocation of resources. Several

experiments were performed on Hadoop deployed on cloud environment to evaluate the

performance of the improved scheduling model. Frist, we evaluated the performance of

the MapReduce scheduler in the cloud based on, throughput, the execution time, CPU

response time, total response time by Map, and total response time by Reduce metrics.

Univ
ers

ity
 of

 M
ala

ya

92

As such, the completion time is predicted during the execution time. There are two

types of time we considered in this study also which are the response time of each task

and the total response time of CPU.

Total CPU respond time: CPU is an important resource element during data processing,

especially in the Map and Reduce phases. We observed that intensive computation in

the map and reduced code can increase the CPU utilization as shown in Figure 5.4.

Usually, CPU resources consume more by computationally intensive jobs as compare to

other resources like bandwidth and I/O throughput. Consider the CPU utilization as

given in Equation 5.3.

 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

 5-3

Increase CPU utilization can create a bottleneck problem. However, most of the

problems come from insufficient CPU utilization that is because, with current hardware,

the CPU can to process a large amount of data faster than any other resources such as

storage I/O and network. Thus, in many cases, when data is flowing through the

MapReduce pipeline, the CPU is waiting for other resources to feed in data before it can

proceed to the actual computation.

That is being said. First, the proposed algorithm is measured regarding CPU utilization

in order to evaluate the performance of CPU scheduling. This is because running

Hadoop in a shared environment is maybe affected by the limits of available resources.

The job completion and resource utilization are part of the user’s requirements, in a

sense that the user specifies the values in the scheduler configuration file for the for the

deadline and the budget

A set of tasks run in a Hadoop cluster with ten nodes is measured based on the CPU

utilization ranging from 0 to 100%. The x-axis represents the CPU utilization of the

Univ
ers

ity
 of

 M
ala

ya

93

cluster nodes before each task is started; we measured task execution time by the

average completion time when running the same type of task on a node in a Hadoop

cluster.

The result from Table 5-4 shows the toal response time of each map task is higher

compared to the time spent on the reducer and CPU that is because, during the

scheduling process, the map tasks require more computational to finish the tasks.

Moreover, the number of tasks given by the scheduler is more compared the Reduce

phase.

Figure 5-4 illustrates that a number of resources consumed by different applications run

on the virtual Hadoop cluster. The execution time of the application is increased

significantly for some tasks due to CPU intensive job. This shows that WordCount has

high CPU utilization regarding IO compare with the other applications. As such, for

both applications, better performance can be achieved if carefully allocate the resources

in Hadoop cluster that offer an efficient performance.

Table 5-4: The job profile of total response time in the cloud
No Total respond time (s)

CPU Map Reduce
1 485030 132919 18122
2 47090 102730 5878
3 53440 117224 11323
4 29030 124923 21761
5 46280 154398 25451
 Univ

ers
ity

 of
 M

ala
ya

94

Figure 5-4: Total respond time

We can also observe that the completion of the task of each phase is changed when the

input size varies. As we have shown in the Figure 5-5 the completion time in the reduce

phase stays fairly constant, whereas the others increase as the input data becomes larger,

especially in Map phases where it takes most of the time to complete the tasks. A

heterogeneous cluster with the numbers of VMs in cloud computing is created.

Performance evaluation results

Results of performance evaluation generated using two selected benchmarks:

WordCount and Sort, for each one the result is collected based on the configured

algorithm. The same data set size is specified for all algorithms in order to avoid bias

during the evaluation. Moreover, the number of tasks executed in each job is determined

by the input data set during the processing, which is handled by the MapReduce

framework. These inputs are split into independent chunks which processed by the map

tasks in a completely parallel manner. The performance of the proposed work compared

with the default Hadoop scheduler and the Fair scheduler algorithms. Both Sort and

WordCount benchmarks were run on the Hadoop Scheduler Load Simulator on the

MYRAN cloud (see Appendix B) with 10 VMs to process input PingER data sets of

different sizes varying from 2GB to 10 GB. The benchmark applications are executed

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

2 4 6 8 10

T
ot

al
 r

es
po

nd
 ti

m
e

(s
)

Data Size (GB)

CPU

Map

Reduce

Univ
ers

ity
 of

 M
ala

ya

95

multiple times each using an average of the execution and throughput. In following, we

present an explanation of statistical models of throughput and execution time. We have

collected the data not only based on the size but also the number of tasks that is given

by ResourceManager to the DataManager to be executed. The next section we discuss

the performance result of both the throughput and execution time. For each one, we

conducted a regression analysis to predict the performance of the results.

5.4.3 Throughput

 This section presents the result of throughput when executing PingER datasets on

MapReduce using a WordCount and Sort applications. Statistical analysis of section 5.4

is applied to predict and evaluate the performance of the result. In most cases, higher

throughput shows that the system can complete more tasks in a given deadline, and the

resources can be utilized sufficiently. Many charts and tables are used to demonstrate

the finding.

Table 5-5 provides the comparison between the three scheduling algorithms: FIFO, Fair,

and the proposed algorithm. As shown from the table the proposed algorithm has high

throughput percentage to the overall average of (78.31) compare to the Fair scheduler

(69.31) and FIFO (62.18). The default Hadoop scheduler Throughput of FIFO can be

shown to be low compared with other scheduling algorithms like Fair and the proposed

algorithm.

Table 5-5: Comparison of the proposed algorithm, FIFO, and Fair schedule
regarding the throughput

Data Size (GB) Proposed algorithm Fair Scheduler FIFO
2 46.280 47.090 42.045
4 53.440 44.519 51.670
6 69.309 54.030 50.570
8 97.579 88.613 67.398
10 124.923 111.398 99.230
Total 391.531 345.650 310.913

Univ
ers

ity
 of

 M
ala

ya

96

The throughput of the proposed algorithm is predicted from executing MapReduce jobs

using linear regression over different data sizes. This predicted throughput is analyzed

for all algorithms using same data sizes in order to find the correction between them.

Table 5.6 shows predefined fit function using linear regression for throughput. It

presents the coefficient of determination; R2 "R squared" value of the results gathered

from tasks processed in MapReduce that is deployed on the cloud. An R2 0.95 and

higher are generally considered a good prediction. Considering that even at higher load

the value of R2 is consistently closer to 1 and in most cases above 0.95 this process that

the regression model is accurate in its prediction (see equation 5-1).

Table 5-6: predefined fit function using multiple regression regarding
throughput

Attribute Value

R2 0.95

Mean squared error 8.4

Fit parameters b=17.9 +/- 8.8
m=10.1 +/- 1.3

Unformatted fit
parameters

b=17.878700000000023
m=10.071249999999997

The data presented in Table 5-5 were analyzed using ANOVA, and the results are

reported in Table 5-7, 5-8, 5-9, 5-10, 5-11,5-12.

Table 5-7 shows that the significant is (0.008). The result suggests that the regression

procedure, which estimated by the model is significant at the level of 0.05. Thus, at least

one of the regression coefficients is different from zero. The output of the analysis

indicates a statistically significant difference F (2, 2) = 124.69, p < 0.008 = 124.692,

Univ
ers

ity
 of

 M
ala

ya

97

therefore, the throughput accuracy of the proposed algorithm is significantly better than

the FIFO algorithm.

Moreover, Table 5-7 shows the temporal data related to throughput using regression

model. The table presents mean coefficients, standard errors, and throughput of the two

algorithms (Proposed algorithm and FIFO) with 95% confidence interval. The

coefficients here means the response variable when the predictor variable changed,

whereas holding other predictors in the model constant. The higher values of one

variable tend to be related to lower values for the other variable. A positive correction

indicates that higher values of one variable tend to be related to higher values of the

other variable. As shown in the table, there is a significant high throughput when

performing tasks execution using proposed algorithm on the cloud. The performance

has a direct correlation with latency, meaning that the system can produce low latency

using the proposed algorithm.

Thus, the performance accuracy of the proposed algorithm regarding throughput

significantly better than that of the FIFO. The accuracy of the results is most likely

because the datasets used are of approximately equal size.

Table 5-7: Analysis of multiple regression for throughput time execution of
proposed scheduling algorithm and FIFO scheduler

 df SS MS F Significance F
Regression 2 39.682 19.841 124.692 0.008
Residual 2 0.318 0.159 0.000 0.000
Total 4 40.000 20.000 124.692 0.008

While, as shown in Table 5-8 the p-value for the estimated coefficients of x-axis and y-

axis, are respectively 0.028 and 0.048, indicating that they are significantly related at

the level of 0.05. Therefore, our proposed algorithm framework demonstrates high

throughput when executing big data compare to the FIFO scheduling algorithm. The t-

Univ
ers

ity
 of

 M
ala

ya

98

value and p-value give an indication of the impact and the significance of each

independent variable.

Table 5-8: t-test significance of difference between the proposed algorithm and
FIFO with respect to the throughput

 Coefficients Standard Error T-value P-value
Intercept -6.019 1.007 -5.977 0.027
Proposed algorithm 0.752 0.128 5.883 0.028
FIFO -0.540 0.122 -4.420 0.048

Table 5-8 reveals that p-value is less than 0.05 for proposed algorithm and FIFO. Since

the P-value is less than 0.05, the result is accepted at the 5 percent level of significance.

Therefore, it is concluded that there no significant difference between proposed

algorithm and the FIFO when small execution size of data. Furthermore, Table 5-8

shows the coefficients that give intercept and the regression coefficients for each

explanatory variable. The intercept value -6.019 represents the contestant which

predicted throughput time. The finding of the study also reveals that the perception of

the proposed algorithm and FIFO with respect to throughput is different. A coefficient

score of proposed algorithm is 75.2.

Table 5-9: Analysis of multiple regression for throughput time execution of
proposed scheduling algorithm and Fair scheduler

 df SS MS F Significance F
Regression 2 39.430 19.715 69.190 0.014
Residual 2 0.570 0.285 - -
Total 4 40.000 20.000 - 69.190 0.014

The throughput of the proposed algorithm and fair analysis of multiple regressions

given in Table 5-9 yielded an F value of 69.190. When compared to the table value, the

result is highly significant.

Univ
ers

ity
 of

 M
ala

ya

99

Table 5-10: t-test significance of difference between the proposed algorithm and
Fair with respect to the throughput

 Coefficients Standard Error T-value P-value
Intercept -6.784 1.592 -4.260 0.051
Proposed algorithm 0.742 0.175 4.235 0.051
Fair -0.503 0.159 -3.166 0.087

Table 5-10 shows the coefficients that give intercept and the regression coefficients for

each explanatory variable. The coefficient value of the proposed algorithm 0.742

represents the contestant which predicted throughput time in comparison with the Fair.

Therefore, our proposed algorithm framework demonstrates high throughput when

executing big data compare to the Fair scheduling algorithm.

Table 5-11: Analysis of multiple regression for throughput time execution of
proposed scheduling algorithm and Fair scheduler

 df SS MS F Significance F
Regression 3 39.728 19.243 48.627 0.105
Residual 1 0.272 00.757 - -
Total 4 40.000 20.000 48.627 0.105

The summary analysis of linear regressions for the three algorithms sections is listed in

Table 5-11. A closer inspection of Table 5-11 and 5-12 revealed that the summary of

linear regression for predicting scheduling algorithm in MapReduce jobs using the

cloud. This table contained information obtains from the analysis of linear regression

for all possible combinations of the three selected predictor variables. Moreover,

included in the table were computed F values, standard errors of estimated multiple

correlation coefficients, F and the significance of F. The data in this table were then

used to select the best possible combination of the independent variable for predicting

the performance of the scheduling algorithm in MapReduce. The regression equation is

used to predict the dependent variable shown in (5-2). The result revealed that multiple

correlations of 0.737 and standard error of 0.171 were recorded from three variable

analysis. The multiple correlations indicated that the three-variable models accounted

Univ
ers

ity
 of

 M
ala

ya

100

for over 50 percent of the variance involved. The F ratio that was 48.627 was highly

significant beyond the one percent significant level. From the data, the results indicated

that the prediction of proposed scheduling algorithm improves the performance of

executing tasks in MapReduce using cloud computing is possible.

Table 5-12: t-test significance of difference between the proposed algorithm and
FIFO and Fair on the throughput

 Coefficients Standard Error T-value P-value
Intercept -5.366 2.065 -2.598 0.234
Proposed algorithm 0.737 0.171 4.301 0.145
FIFO -0.879 0.841 -1.045 0.486
Fair 0.335 0.816 0.411 0.752

5.4.4 Analysis of the results regarding throughput

The correlation analysis of the proposed algorithm, FIFO, and the Fair identical

dependent variables reveals 0.145 significant correction counts for proposed algorithm,

0.486 significant corrections for FIFO and 0.752 counts for the Fair scheduler. From an

independent variable set perspective, we observed the proposed algorithm set dominates

the significant correction count 0.737.

Figure 5-5 and 5-6 present the throughput of different data sizes to be processed by the

MapReduce framework in a cloud computing environment using the WordCount and

Sort benchmarks, respectively. This processing of datasets is scheduled by different

algorithms, that is, FIFO scheduler, Fair scheduler, and the proposed scheduling

algorithm. Data size affects the type of scheduler required to execute the tasks at a

targeted performance level. This metric significantly influences task scheduling, where

the execution time of each task has to be minimized considering the heterogeneity of the

cluster.

Univ
ers

ity
 of

 M
ala

ya

101

Figure 5-5: Throughput using WordCount benchmark

As can be seen from Figure 5-5 shows that the proposed algorithm can provide higher

throughput compared with the other scheduling algorithms, namely, FIFO and Fair. The

main purpose of achieving high throughput is to reduce the processing time of the

workload, particularly when a large amount of data is involved. The resource utilization

rate is the reflection of system throughput, which is the useful computation cost over the

total cost, including the overhead for starting up the cluster. Many cloud service

providers offer hour-based or minute-based charges to users who are availing of

computing service on the cloud to reduce the unnecessary CPU cycles spent on

overhead, which may consume a large amount of resources to be allocated elsewhere to

meet the demands of users (Armbrust et al., 2010).

Figure 5-6 presents the number of allocated data inputs in the cluster to test the

proposed algorithm. The experiment conducted using the WordCount benchmark is

similar for FIFO, Fair, and the proposed scheduling algorithm.

.

Univ
ers

ity
 of

 M
ala

ya

102

Figure 5-6: Throughput using Sort benchmark

Figure 5-6 presents the throughput obtained by executing datasets with the same amount

of data using the Sort benchmark. The tested result of the three scheduling algorithms

also used a dataset with the same size as that used for the WordCount benchmark.

Figure 4 shows that the proposed algorithm has high throughput compared with FIFO

and Fair schedulers. However, a simple technique to achieve good performance in the

FIFO and Fair algorithms is to assign an available slot to the pool with the least amount

of running tasks (Hadoop, 2009). The overall throughputs are insignificantly different

under FIFO and Fair.

As shown in Figure 5-5 and 5-6, show that the amount of resources consumed by each

node increases as throughput time becomes longer during the execution. Thus, the task

in Hadoop scheduling should be matched carefully to the VM in the cloud environment

to achieve good performance. In this manner, the system can effectively use the

resources to improve the progress of executing the tasks in the Hadoop cluster.

Univ
ers

ity
 of

 M
ala

ya

103

5.4.5 Execution time

This section presents the results of the execution time of the MapReduce job in the

cloud using the WordCount and Sort benchmarks. The design of the experiment is

based on the MapReduce framework running on the cloud. The execution of the

MapReduce job depends on the scheduling algorithms deployed for each experiment,

which includes the proposed algorithm, FIFO, and Fair. Data related to execution time

are collected using benchmarking in this section. Several tables and charts used to

demonstrate the findings. Table 5.13 shows predefined fit function using linear

regression for throughput. It presents the R2 value of the tasks being processed in

MapReduce. An R2, 0.90 and higher are generally considered a good prediction.

Considering that even at higher load the value of R2 is consistently closer to 1 and in

most cases above 0.90 this process that the regression model is accurate in its prediction

(see eq 5-1)

Table 5-13: predefined fit function using multiple regressions regarding
execution time

Attribute Value

R2 0.90

Mean squared error 4.6e+3

Fit parameters b=144.3766 +/- 1.7e+3
m=19.3 +/- 2.1

Unformatted fit
parameters

b=144.37656306548365
m=19.303353662617386

Table 5-13 shows the historical data related to throughput using regression model. The

table presents mean coefficients, standard errors, and execution time of the two

algorithms (Proposed algorithm and FIFO) with 90% confidence interval. The

coefficients here represent the mean change in the response variable for one algorithm

Univ
ers

ity
 of

 M
ala

ya

104

of change in the predictor variable, whereas holding other predictors in the model

constant. The higher values of one variable tend to be related to lower values for the

other variable. A positive correction indicates that higher values of one variable tend to

be related to higher values of the other variable. As shown in the table, there is

significant in execution time when performing tasks execution using proposed

algorithms on the cloud. The performance has a direct correlation with completion time

and cost of using the cloud, meaning that the system can reduce the execution time

using the proposed algorithm.

Table 5-14: Analysis of multiple regression for execution time execution of
proposed scheduling algorithm and FIFO scheduler

 df SS MS F Significance F
Regression 2 4130753.341 2065376.670 35.923 0.000
Residual 8 459951.205 57493.901 - -
Total 10 4590704.545 2122870.571 - -

Table 5-14 shows that the significant F is (0.000), which suggests that the regression

procedure estimated by the model is significant at the level of 0.05. The minimum of the

coefficients is different from zero. F (2, 8) = 35.923, p < 0.000. As shown in Table 5-14

the estimated coefficients of the p-value of x-axis and y-axis, are respectively 0.889 and

0.998, indicating that they are significantly related at the level of 0.05. The t-value and

p-value give an indication of the impact and the significance of each independent

variable. The T-value and P-value represent a significant difference between mean

proposed algorithm and FIFO execution time values. The positive T-value of the

proposed algorithm (0.145) and FIFO (-0.002) demonstrate that the execution time of

the proposed algorithm takes less time than the FIFO. Thus, the completion time and

cost of our proposed algorithm is more significant compared to FIFO.

Table 5-15: t-test significance of difference between the proposed algorithm and
FIFO on the execution time

 Coefficients Standard Error T-value P-value
Intercept 133.475 92.478 1.443 0.187

Univ
ers

ity
 of

 M
ala

ya

105

Proposed Algorithm 0.053 0.364 0.145 0.889
FIFO -0.001 0.276 -0.002 0.998

Table 5-15 shows the coefficients that give intercept and the regression coefficients for

each explanatory variable. The coefficient value of the proposed algorithm 0.742

represents the contestant, which predicted execution time in comparison with the Fair.

Therefore, our proposed algorithm framework demonstrates execution time when

executing big data compare to the FIFO scheduling algorithm.

Table 5-16: Analysis of multiple regression for throughput time execution of
proposed scheduling algorithm and Fair scheduler

 df SS MS F Significance F
Regression 2 4133289.341 2066644.671 36.145 0.000
Residual 8 457415.204 57176.901 - -
Total 10 4590704.545 2123821.572 36.145 0.000

Table 5-16 shows that the significant is (0.000), which suggests that the regression

procedure estimated by the model is significant at the level of 0.05. Therefore, at

minimum one of the coefficients is different from zero. F (2, 8) = 36.145, p < 0.000. As

shown in Table 5-16 the p-value for the estimated coefficients of x-axis and y-axis, are

respectively 0.891 and 0.838, indicating that they are significantly related at the level of

0.05. The t-value and p-value give an indication of the impact and the significance of

each independent variable. The T-value and p-value give an indication of the impact and

the significance of each independent variable. Therefore, the T-value and P-value

represent a significant difference between mean proposed algorithm and Fair execution

time values. Negative T-value of the proposed algorithm (-0.141) demonstrate that the

execution time of the proposed algorithm takes more time than the Fair at some point.

Thus, the completion time and cost of our proposed algorithm is less significant

compared to Fair at some point. However, the value can change as shown the P-value of

the proposed algorithm (0.891) is positive.

Univ
ers

ity
 of

 M
ala

ya

106

Table 5-17: t-test significant of difference between the proposed algorithm and
Fair with respect to the execution time

 Coefficients Standard Error T-value P-value
Intercept 139.369 90.218 1.545 0.161
Proposed Algorithm -0.105 0.745 -0.141 0.891
Fair 0.133 0.631 0.211 0.838

Table 5-17 shows the coefficients that give intercept and the regression coefficients for

each explanatory variable. The coefficient value of the proposed algorithm -0.105

represents the contestant which predicted execution time in comparison with the Fair

scheduler. Therefore, our proposed algorithm framework demonstrates execution time

when executing big data compare to the Fair scheduling algorithm.

Table 5-18: Analysis of multiple regression of execution time execution of
proposed scheduling algorithm, FIFO, and Fair schedulers

 df SS MS F Significance F
Regression 3 4137223.409 1379074.470 21.288 0.001
Residual 7 453481.136 64783.019 - -
Total 10 4590704.545 1443857.489 - -

Table 5-18 shows that the significant is (0.001). This implies that the model estimated

by the regression procedure is significant at the level of 0.05. Thus, at least one of the

regression coefficients is different from zero. F (7, 10) = 21.288, p < 0.000. As shown in

Table 5-18 the P-value for the estimated coefficients of x and y, are respectively 0.788,

0.761 and 0.812, indicating that they are significantly related at the level of 0.05. The T-

value and p-value give an indication of the impact and the significance of each

independent variable.

Table 5-19: t-test significance of difference between the proposed algorithm,
FIFO, and Fair with respect to the execution time

 Coefficients Standard Error T-value P-value
Intercept 134.310 98.201 1.368 0.214
Proposed Algorithm 0.505 1.807 0.280 0.788
Fair 0.342 1.081 0.316 0.761
FIFO 0.116 0.473 0.246 0.812

Univ
ers

ity
 of

 M
ala

ya

107

As shown in Table 5-19 the T-value and P-value give an indication of the impact and

the significance of each independent variable. The t Stat and P-value represent a

significant difference between mean proposed algorithm, FIFO, and Fair execution time

values. The positive T-value of the proposed algorithm (0.280), FIFO (0.246) and Fair

(0.316) demonstrate that the execution time of the proposed algorithm takes less time

than the Fair. Thus, the completion time and cost of our proposed algorithm is more

significant compared other algorithms.

5.4.6 Analysis of results regarding execution time

Figure 5-7 shows the differences in execution time. The straight line denotes the

difference in achievement and the correlation between workload and execution time.

Initially, execution is unstable in terms of time due to the small size of the data.

However, execution becomes relatively stable with the increase in data size and the

number of tasks to be executed by the framework on the cloud.

Figure 5-7: Execution time using WordCount benchmark

Univ
ers

ity
 of

 M
ala

ya

108

Figure 5-7 presents the execution time of several tasks using the WordCount benchmark

with FIFO, Fair, and the proposed scheduling algorithms in virtual cluster nodes with 12

Hadoop jobs of different sizes. The figure shows that the completion time of the overall

processing is also increased. In the first scenario, the default algorithm FIFO is used on

the Hadoop nodes without tuning the Hadoop parameters. Figure 5 illustrates that the

FIFO algorithm slightly degrades the performance of Hadoop in terms of execution time

and resource utilization, where data are shared among multiple users. The Fair scheduler

and the proposed algorithm appear to exhibit better performance compared with the

FIFO algorithm, but the data locality feature is hindered. The proposed algorithm can

finish the tasks faster than the other two schedulers using WordCount to process the

data. The completion times change based on the type of workload given that different

workloads have various resource demands. The sharing of resources during workflow

execution regardless of the size are typically relayed on the structure, a number of

modules of the workflow, and the complexities. However, only a limited amount of

resources that are shared among the nodes can be utilized by the small number of

modules in each layer.

In Addition, as shown in Figure 5-7 the sign of dropping after 1500 number of tasks

probably indicate that, many nodes in the clusters participate during the process of data

since Hadoop replicate its datasets across the cluster. In addition, Hadoop relies on data

locality during the processing and as the number of tasks increases the possibility of

finding data in a designated node is high compared to less number of tasks which only

fewer nodes are participating.

Univ
ers

ity
 of

 M
ala

ya

109

Figure 5-8: Execution time using Sort benchmark

In Figure 5-8, shows the use of the Sort benchmark to simulate the FIFO, Fair, and

proposed scheduling algorithms. The result slightly differs from that of the WordCount

benchmark, where the proposed algorithm achieves a noticeable reduction in task

execution time. The Sort benchmark consumes more resources than the WordCount

benchmark because of the intensive data flow and the computation of aggregate

functions that must perform the Sort benchmark.

The comparison of the aforementioned algorithms indicates that performance has

significantly improved using the Sort benchmark, which relies completely on the

sharing of resources. Thus, the number of maps and reduce tasks is scaled. The

proposed algorithm occasionally exhibits better performance compared with the other

algorithms, such as FIFO, given the limited resources to be shared among active nodes.

Univ
ers

ity
 of

 M
ala

ya

110

Table 5.20 provides the comparison between the three algorithms. As shown from the

table the proposed algorithm has low execution time regarding the number of tasks for

each job in most of the cases as compare to FIFO and Fair scheduler. The default

Hadoop scheduler FIFO execution time can be shown to be high regarding execution

compare with other scheduling algorithms like fair and the proposed algorithm.

Table 5-20: Comparison between the proposed algorithm, FIFO, Fair schedules
regarding execution time

Number of tasks Proposed algorithm Fair Scheduler FIFO Default
15 30 39 37
25 148.19 199.08 204.06
50 255.2 358.58 354.12
100 674.68 787.44 930.02
150 1250.2 1494.53 1631.95
200 4048.04 4525.55 5454.49
250 5342.59 6164.7 7537.13
500 2115.08 2307.18 3457.25
1000 6329.22 7464.96 8303.04
1500 25267.13 29980.91 33001.93
2000 37964.17 44690.48 50369.89

From the Figure 5-7 and 5-8, from the curves, we can observe that the execution time of

the WordCount and Sort tasks scheduled are different in some cases. The reason is that

WordCount process requires heavy disk I/O and network throughput. Table 5-20 shows

the comparison of different performance measurement based on the result of the

experiments conducted using three algorithms FIFO, Fair and the proposed algorithm.

Various criteria are presented in the table for the comparison. The summary of the

discussion has shown that the proposed algorithm is high in terms of the throughput,

resource utilization, and CPU.

The results of execution time show the significant improvement in processing big data

with the MapReduce framework in the cloud when our proposed algorithm is used. This

significant achievement is because of many factors, including, the flexibility of utilizing

the cloud resources when executing a large amount of data, high throughput, low

Univ
ers

ity
 of

 M
ala

ya

111

latency deployed Hadoop cluster on the cloud. The result of this section is comparable

with and supporting the finding of the statistical analysis. Finally, the completion time

of MapReduce job can achieve with a high probability of the proposed algorithm

prediction on the cloud. Moreover, it is able to make good trade-off decisions using

multi-objective mechanism.

5.5 Validation of Results

The performance accuracy of the multi-objective optimization model was recorded

while considering throughput and execution time.

In order to measure the results of our proposed algorithm, validation feature is needed to

confirm the quality of the results. This section presents the validation of the proposed

algorithm results collected from the experiments for the performance evaluation in

section 5.4. Based on the statistical analysis conducted, the results are related to

throughput and execution time, which show overall effectiveness of our algorithm.

Statistical analysis of our finding via multiple regression models is presented, and their

individual values are plotted using figures. We use t-test results to confirm significant of

the proposed algorithm. The result of the t-test shows significant differences between

mean values of throughput and execution time. The prediction scheme is proving to be

accurate considering the high values of the coefficient of determination with respect to

the proposed algorithm.

5.5.1 Throughput

MapReduce in terms of throughput is limited to hardware and software. As such, the

throughput could increase linearly with several jobs submitted to the cluster, which

leads to high intensive workload and consequently increases in a total throughput at a

constant rate. This shows that linear regression is a clear choice for predicting

throughput of the MapReduce. Figure 5-9 illustrates the result of statistical analysis

Univ
ers

ity
 of

 M
ala

ya

112

using linear regression where x-axis gives data size, and y-axis gives the throughput

regarding seconds. Moreover, it illustrates the actual and predicted throughput obtained

from the experimental test of the proposed algorithm used by linear regression. In

Figure 5-10, we observe that the predicted throughput is very close to the actual

throughput.

The P-values obtained from section 5.5.1 test the statistical association between the

proposed algorithm and other algorithms like FIFO and Fair. Figure 5-6 shows the

scatter plot of actual proposed algorithm values and estimated or predicted values

obtained by using the R2 method.

Figure 5-9: Actual vs. predicted throughput times

Figure 5.9 shows the throughput of both predicted and actual performance using

Hadoop cluster in the cloud for a given size distribution of the job. The runtime is

shown as the average value of the runtime on the virtual resource that was used to

execute the tasks. Obviously, the predicted throughput of the tasks is very close to the

Univ
ers

ity
 of

 M
ala

ya

113

actual throughput even under varying and high load. This observation is supported by

the high value of the unformatted fit parameters. The magnitude of R2 lies between 0

and 1 with a higher magnitude indicating a better prediction. The regression analysis

showed a significant relationship between the actual and predicted proposed algorithm,

R2 = 0.95.

5.5.2 Execution time

Figure 5-9 illustrates the result of statistical analysis using linear regression where x-

axis gives the number of tasks and y-axis gives the runtime in terms of seconds.

Moreover, it shows the actual and predicted execution time obtained from the

experimental test of the proposed algorithm used by linear regression. In Figure 5-11,

we observe that the predicted execution time is very close to the actual execution time

in the early stage.

It can be observed in Figure 5-10 that there is an improvement regarding execution time

with respect to predicted ones. This is because increasing number of tasks in Hadoop

cluster would speed the process of executing jobs of the datasets. Thus, it is indicated

from the performance evaluation that the algorithm was able to reduce the time to

execute Hadoop jobs using cloud computing. The comparison results indicated that the

proposed methodology presented in the research was found to be better than the FIFO

and Fair scheduler regarding the performance metrics (throughput and execution time).

The proposed algorithm outperforms the FIFO and Fair in both throughput and

execution time.

Univ
ers

ity
 of

 M
ala

ya

114

Figure 5-10: Actual vs Predicted tasks execution time

Figure 5.10 presents the actual and predicted execution time of the tasks. The predicted

and actual execution times are compared for a given number of tasks in Hadoop cluster.

The coefficient of determination and the average load on the cluster at the time the task

was executed is shown. The regression analysis showed a significant relationship

between the actual and predicted proposed algorithm, R2 = 0.90. Moreover, Figure 5.10

demonstrates remarkable improvement in execution time of the MapReduce job using

proposed scheduling algorithm in the cloud; further analysis is undertaken in tables 5-

17, 5-18 and 5-19.

For the execution of MapReduce tasks, the resources of cloud computing like CPU,

memory, and I/O used to complete the Map and Reduce tasks. The initial stage of the

execution, all the data is loaded in HDFS, and then when the user submits the

application, the data is loaded into memory. After the processing of the data is

completed, the output is saved in a separate file in the storage to present to the user.

Univ
ers

ity
 of

 M
ala

ya

115

Such process does not entertain unnecessary virtual resources. However, when the

computation requires a high memory and CPU and RAM intensive are not available.

Such limitations cause completion time take longer than expected. In addition, because

of the constraint set by the cloud providers in terms of cloud resources, it is not possible

to load the entire data into memory for the high intensive workload. Therefore, the time

consuming by I/O process continues to load the data into memory. Nonetheless,

significant differences in execution MapReduce tasks in the cloud allow users to adjust

the resources depends on the extremely large workload.

5.6 Discussions

In the previous sections, we provide a performance evaluation and validation of our

proposed algorithm framework thought experiments and statistical analysis. In this

section, we provide a discussion of the resulting findings and statistical analysis in order

to validate the finding. The statistical analysis is implemented in order to ensure the

accuracy achieved by the proposed algorithm. The research used a t-test to measure the

significant of the proposed algorithm. Two independent samples are employed for

testing difference of the two means which are throughput and execution time. The t-test

is performed under the assumption that the completion time and the actual cost have no

significant difference between them as shown by the throughput and the execution time.

5.6.1 Throughput

We compared the results of the experiments and the statistical modeling. Table 5-21

provides a comparison of the statistical analysis of throughput results. As illustrated in

the table, the results of the algorithms and statistical analysis show significant high

throughput in using our proposed algorithm. The average of the high throughput of our

proposed algorithm is significant 78.31 % when WordCount benchmark application is

used. In addition, the coefficient is measured by 0.737 when using the proposed

Univ
ers

ity
 of

 M
ala

ya

116

algorithm. Such, approximately and strong support of findings advocate reliability and

validity of the throughput.

Table 5-21: evaluation, comparison: Proposed algorithm, Fair, and FIFO in
terms of Throughput times

Evaluation Throughput
Time

Coefficients Standard
Error

P-value R2

Proposed
algorithm High 0.737 0.171 0.145 0.91

Fair Medium 0.335 0.816 0.752 0.86
FIFO Low -0.879 0.841 0.486 0.85

Moreover, the table shows the coefficient of determination R2 "R squared" value of the

results gathered from tasks processed in MapReduce that is deployed on the cloud. R2

values are given for the executed tasks under cloud computing environment. An R2 for

the proposed algorithm (0.91), Fair (0.86), and FIFO (0.85) is captured which is higher

than 0.05 that is considered a good prediction and prove that the regression model is

accurate in its prediction. Thus, the actual and predicted throughput times are compared

to a given size. The standard error on the workload on the cluster at the time the tasks

were executed is also displayed. As shown in Table 5-21 the P-value of the estimated

coefficients of x-axis and y-axis, are 0.145, 0.752and 0.752, for the proposed algorithm,

Fair, and FIFO respectively, indicating that they are significantly related at the level of

0.05.

5.6.2 Execution time

The execution time also compared using statistical analysis models to predict the

execution times of all the tasks on all nodes from the data gathered by the algorithms.

Thesis times represent the current cluster workload conditions in the cloud. Note that

the schedule generated by the proposed algorithm clearly outperforms the Fair and

FIFO schedulers.

Univ
ers

ity
 of

 M
ala

ya

117

Table 5-22: Evaluation comparison: Proposed algorithm, Fair, and FIFO
regarding execution times

Evaluation Execution Time Coefficients Standard
Error

P-value R2

Proposed
algorithm

Low 0.505 1.807 0.214 0.90

Fair Medium 0.342 1.081 0.788 0.90
FIFO High 0.116 0.473 0.761 0.90

Table 5-22 shows the coefficient of determination R2 "R squared" value of (0.90) from

the results gathered from tasks processed in MapReduce that is deployed on the cloud.

This R2 is higher than 0.05, which considered a good prediction and proved that the

regression model is accurate in its prediction. Therefore, the actual and predicted

execution times are compared regarding given many tasks. The standard error on the

workload on the cluster at the time the tasks were executed is also displayed. As shown

in Table 5-22 the P-value for the estimated coefficients of x-axis and y-axis, are 0.214,

0.788 and 0.761, for the proposed algorithm, Fair, and FIFO respectively, indicating

that they are significantly related at the level of 0.05.

5.7 Summary

As a new emerging technology, scheduling in MapReduce has been widely explored

from various aspects by many researchers in recent years. However, most former

research work mainly considers optimized and designed of algorithms and frameworks

under a relatively a homogeneous environment. As a matter of fact, many performance

issues, like hardware failure, software error and the heterogeneity of the machines and

data have brought a great challenge in the performing data analysis. Therefore, it is

essential to consider the performance tuning in MapReduce scheduling, such that the

performance of algorithms and frameworks can be guaranteed for a different

environment.

Univ
ers

ity
 of

 M
ala

ya

118

The goal of the proposed multi-objective algorithm in this chapter is to decrease the

execution time of the tasks in the MapReduce framework in the cloud in order to

achieve the minimization of the time and cost objective. This algorithm can decide the

task start time through the running situation of the tasks. This evaluation set out to test

the efficiency of the proposed algorithm against very common scheduling algorithms

used for big data processing on Hadoop cluster. Using Hadoop benchmarks, a good

performance was achieved in a different scenario. The evaluation metric revealed that

running time of multiple tasks in a parallel environment is reduced under proposed

algorithm and the throughput revealed that the scheduling could offer low latency with

high throughput.

To measure and calculate the performance of each node on the cluster, different

benchmarks are used. Also, for the verification of the effectiveness of the result, we use

formulas in the experiment to confirm the correctness of the results obtained. For the

evaluation, we use Hadoop MapReduce program on the heterogeneous parallel virtual

computer.

In this chapter, the result of performance evaluation of the proposed algorithm using

benchmarking and statistical modeling is presented and discussed using tables and

figures. Linear regression analysis was performed on throughput and execution time

using single predictor variable. Moreover, F significance, R-square, coefficient, and

standard error were produced using standard Summary Report. For checking the

linearity of the regression Residual Plots and Line Fit Plots were used. The result is

based on p-values which typically 0.05 at 95% confidence interval. The t-test results are

shown in Table 5-21, and 5-22 showed that the t-test is not significant (p>0.05). Thus, it

is accepted that the completion time and the actual cost has no significant difference

between them as shown by the throughput and the execution time. This means that the

Univ
ers

ity
 of

 M
ala

ya

119

throughput by the proposed algorithm is statistically equivalent to the cost. Thus, the

algorithm has the potential for representing the real world system because it was able to

produce results that are statistically the same as the actual real world system. We show

to demonstrate the results in section 5.2, which highlight the significance of the

minimization of the execution time and latency via increase the throughput from the

benchmarking and statistical analysis. The performance evaluation of the proposed

algorithm is conducted using workloads of the two applications in order to show the

significance of the execution and throughput.

Univ
ers

ity
 of

 M
ala

ya

120

CHAPTER 6: CONCLUSION AND FUTURE DIRECTION

This chapter concludes the major contributions of the thesis. It also outlines the

potential opportunities to improve further or extend the work presented in the thesis. To

this end, this thesis stands as a substantial effort to optimize scheduling of MapReduce

in cloud computing from two dimensions simultaneously, including resource allocation

and task scheduling.

6.1 Aim and objectives of the study

In this thesis, we aimed to achieved multi-objective scheduling algorithm that

minimizes both the completion time and cost of using cloud computing by using

evolutionary algorithms in order to improve resource allocation and tasks scheduling

during the processing of big data. In the following, we highlight the contribution

achievement of the thesis.

6.1.1 Study the domain of big data and identify the key issues with respect to
scheduling in big data platforms

We accomplish this objective by reviewing the rise of big data in cloud computing. The

characteristics and classification of big data along with some discussions on cloud

computing are introduced. The relationship between big data and cloud computing and

Hadoop technology are also discussed. We discussed the background of Hadoop

technology and its core components, namely, MapReduce and HDFS. We also present

scheduling in big data platforms, requirements for big data processing, scheduling

algorithms, and multi-objective optimization, which is close, linked to big data

processing studies.

Moreover, in this objective also we discuss different scheduling algorithms used in big

data platforms. In order to highlight the results of the study of the previous survey

Univ
ers

ity
 of

 M
ala

ya

121

conducted, the findings are strengthened. Having presented the concept of scheduling in

big data platforms, various optimization options are identified. We studied scheduling

of MapReduce jobs of the large volume of data processing. The study considers the

minimization of completion time given a fixed budget, minimization of the monetary

cost given a deadline and the trade-offs between the completion time and monetary cost

of using cloud computing.

Strengthened by the result of the study, this objective has revealed the issues that led to

performance degradation in resource allocation and task scheduling problems,

especially, when large amounts of data are being processed by a framework like

MapReduce in a distributed environment.

6.1.2 Investigate and identify the research problem

This objective aims to provide analysis on the performance of scheduling MapReduce

jobs in terms of the processing using the physical and cloud cluster, which has an

impact on the processing time and cost. Using analytical analysis mathematical

equations is derived to identify the time-cost model in the processing of big data which

demonstrate the significant of the execution time and budget when utilizing cloud

resources. We formulate the completion time with budget constraint model and cost

with deadline constraint model. The initial findings are verified through experiments

using two genetic algorithms: NSGA-II and SPEA2. The analysis of the models is

carried out using genetic algorithms. It is well known that multi-objective genetic

algorithms are among the most useful approaches for multi-objective. For

computational experiments, the testbed is developed in which the tasks data for each job

are randomly generated. Moreover, the trade-off solutions of Makespan and cost

computed by sorting genetic algorithm II (NSGA-II) and Strength Pareto Evolutionary

Algorithm 2 (SPEA2) are analyzed based on different workflow in order to find an

Univ
ers

ity
 of

 M
ala

ya

122

optimal solution between the two conflicting objectives. The classic one point crossover

operator is used, which is important for the creation of the children. Also, two columns

are randomly selected during the mutation operator, and all the different solutions are

assigned to many non-dominated fronts in a ranking operation. During the generation,

all the non-dominated solutions are copied to the Pareto archive. Compared with

SPEA2, the Pareto archive size is fixed in this algorithm. The Pareto archive is filled

with the non-dominated solutions until the considered archive size.

6.1.3 Design and propose a new multi-objective algorithm

This objective has achieved by providing a framework for multi-objective scheduling

algorithm, in order to improve the execution time of tasks in the big data platforms. The

framework designed is based on MapReduce framework, where resource manager is

responsible for allocating the resources among the Hadoop clusters. The framework has

introduced two main components which are adaptive control to identify tasks that

unable to complete in a given time with the available resources and provides a feedback

for the users and decision module to decide what the best fit for the job to run.

Hadoop checks if all the map tasks have completed in in the cluster.,then, the output of

the results of the execution of the map tasks and the time is saved in the logs. Similarly,

for the reduce tasks, the completed tasks of the execution and the time are updated in

the logs. The important of gathering the information about the execution is to help

analysis the result in terms of the completion time, latency and the utilization of the

CPU.

6.1.4 Evaluate the performance of a proposed algorithm

In this objective, the result of performance evaluation of the proposed algorithm using

benchmarking and statistical modeling is presented and discussed using tables and

figures. We demonstrate the results in section 5.2, which highlight the significant of the

Univ
ers

ity
 of

 M
ala

ya

123

minimization of the execution time and latency via increase the throughput from the

benchmarking and statistical analysis. Linear regression analysis was performed on

throughput and execution time. In each case presented single predictor variable was

used. R square, Adjusted R square, intercept, coefficient, standard error, and F

significance were generated by the standard Summary Report. Residual Plots and Line

Fit Plots were used to check for the linearity of the regression. The result is based on p-

values which typically 0.05 at 95% confidence interval. The t-test results are shown in

Table 5-21, and 5-22 showed that the t-test is not significant (p>0.05). Thus, it is

accepted that the completion time and the actual cost has no significant difference

between them as shown by the throughput and the execution time. This means that the

throughput by the proposed algorithm is statistically equivalent to the cost. Thus, the

algorithm has the potential for representing the real world system because it was able to

produce results that are statistically the same as the actual real world system.

The performance evaluation of the proposed algorithm is conducted using workloads of

the two applications in order to show the significant of the execution time and

throughput.

6.2 Limitations and Future Research Directions of the study

In this thesis, we developed a multi-objective algorithm framework to improve the

resource allocation and job scheduling in the cloud. The framework is based on a multi-

objective algorithm, which considers execution time is an important factor. There are

several limitations that extend from the work presented here. The research studies only

two objective functions and constraints in developing the models. However, many other

objective functions need to be considered, which may have a significant impact on the

MapReduce performance while processing big data. Moreover, this thesis focused only

one job with multiple tasks to be execution. However, several jobs with multiple with

different resources can be considered. Moreover, the study does not focus on services

Univ
ers

ity
 of

 M
ala

ya

124

level agreements as the whole for resource allocation, in which the providers are not

aware of the quality metrics set by the users regarding resource allocation decision.

While existing research on Hadoop scheduling has shown great improvement, numerous

challenging yet to be solved. Hadoop composed of one master node and several data

nodes dependents on the size of the cluster. Users can make their choices according to

the availability of the resources and the nodes. This research offers insights into the

future research opportunities as follows:

(a) QoS-Based Scheduling: In the last few years, cloud computing has become a fully

service-oriented paradigm, which effectively allows users to consume based on their

QoS requirement. The decision on scheduling is based on assumptions, in which the

dependencies of workflow tasks are properly defined (Yu, 2007). Thus, monitoring task

execution, resource capability, and service time based on the SLA are significant.

Moreover, there is a lack of algorithms that consider the tradeoff of multiple quality

requirements (Tiwari et al., 2015). The scheduler should be able to find an alternative

service and request an SLA for the task execution with respect to its currently accepted

set of SLAs and expected the return of unscheduled tasks. Moreover, most of the

previous scheduling is based on focuses on deterministic Directed Acyclic Graphs

(DAGs). Moreover, using Hadoop on cloud require a good QoS based workflow

execution. It is important that new benchmarks put in place to ensure QoS-based

workflow scheduling algorithms by comparing and evaluating different workflow

applications that are suitable for Hadoop framework.

 (b) Multi-dimensional resource scheduling: Traditional scheduling systems based on a

single-resource optimization, like processors, fail to provide near optimal solutions

(Sheikhalishahi et al., 2016). Multi-dimensional resources may consider using a series

of resources such as network bandwidth, CPU, and memory. For example, slot

Univ
ers

ity
 of

 M
ala

ya

125

management scheme (Y. Yao et al., 2015) is proposed in order to enable dynamic slot

configuration in Hadoop. The idea behind slot management scheme is to improve

resource utilization and reduce the Makespan of multiple jobs. Thus, there is a lack of

related metrics for scheduling algorithms considering multi-dimensional resource. For

future research in, the main idea of the scheduling algorithm with multi-dimensional

resources such as CPU and memory is to achieve a less completion time through

efficient management of existing cloud resources (Khoo et al., 2007) (Z. Yao et al.,

2015). Moreover, the scheduling algorithms should be able to consider diverse resource

requirements of different tasks and shown to obtain a minimal execution schedule

through efficient management of available cloud computing resources.

 (c) Event-based scheduling: Previously, the offline problem has been the main focus in

scheduling research in order to minimize execution time for a single workflow with

known task runtimes (X. Dong et al., 2011). Heterogeneity brings new challenging

issues to the Hadoop scheduling the low support for complex requirements in current

queue-based scheduling algorithms and arising problems of the schedule-based solution

when applied in a dynamic environment with uncertainties. Optimization of these

scheduling algorithms for Hadoop demanded to schedule many jobs in the queue. Thus,

it is essential to overcome the traditional method and develop automatic synchronization

activity execution for enabling workflows to exchange data with other workflows or

other applications (Casati & Shan, 2007) (Ilyushkin et al., 2015).

(d) Energy consumption and efficiency models for Map-reduce jobs: Although a new

power-aware MapReduce application model has introduced in (Y. Li et al., 2011) to be

used for power-aware computing with consideration of users’ requirements. There is a

need of detailed energy efficiency model for MapReduce environments to predict the

energy consumed for mix workload scenarios (Goiri et al., 2012). It should also

Univ
ers

ity
 of

 M
ala

ya

http://scn.sap.com/thread/3199756�

126

consider the background HDFS activities carried out for availability checks. It should be

able to incorporate the idle nodes energy as well. The performance of MapReduce

framework can possibly use for prediction of the map and reduce task timings

depending on the data volume, their distribution, underlying hardware, etc. Energy and

performance models can be combined to evaluate various scheduling algorithms for

predicting the energy consumptions and thus decide which one maximizes the

performance and energy efficiency.

Moreover, the continuous growth in the size of the data-centers containing Hadoop

MapReduce clusters of hundreds and thousands of machines to support many users has

let in a tremendous increase in the energy consumed to operate these large-scale data

centers. Consequently, energy efficiency becoming a key open issue in the development

of different techniques and approaches to optimize power management in Hadoop

clusters (Ibrahim et al.). Furthermore, in interactive data analysis, MapReduce workload

runs in large clusters, whose size and cost make energy efficiency a critical concern on

MapReduce, particularly in a cloud environment in which large equipped infrastructure

is involved. For example, (Maheshwari et al., 2012) and (Wirtz & Ge, 2011) addressed

the problem of energy conservation for large data centers that run MapReduce jobs.

Accordingly, the tremendously increased amount of energy is consumed to operate

these data centers (i.e., electricity used for operating and cooling them) and ends up

with a high money bill in the order of millions of dollars. To this end, the system may

offload some computation tasks to the sources in the distributed data-centric

environment to avoid the expensive data movement costs (Kambatla et al., 2014) and to

achieve fast response time with minimal energy consumption.

 (e) Mapping scheme: It assigns multiple inputs to a set of reducers in such a manner

that for each output, a reducer receives all inputs while performing the computation.

Univ
ers

ity
 of

 M
ala

ya

127

Owing to the limited capacity of reducers, only specific inputs can be assigned.

However, the size of each individual input may vary, which results in a high

communication cost. Consideration and restriction of input size are important in the

MapReduce framework and can help optimize the communication cost between map

and reduce phases (Afrati et al., 2014). Several solutions have been proposed to

minimize the number of copies of inputs being sent to reducers. Research is required to

establish an efficient mapping scheme that can minimize the communication cost

without affecting the performance of a specified task.

(f) Performance optimizations: Hadoop/MapReduce is useful because of its multiple

characteristics, such as scalability, fault tolerance, and large amounts of data processing.

MapReduce comprises several factors, namely, task initialization time, scheduling, and

monitoring performance degradation in different types of applications (Kalavri &

Vlassov, 2013). In addition, Hadoop/MapReduce does not support data pipelining or

overlapping of the map and reduce phases. To improve the MapReduce performance,

further optimization is required in the different aspects of MapReduce, such as index

creation, reuse of previously computed results, and fast query execution. MapReduce

will achieve better performance if the said issues are solved.

(g) Optimized data shuffling: In MapReduce, intensive disk input/output during the

shuffling phase increases the overall execution time, which in turn degrades the

performance of overall systems (Lin et al., 2013). Reducing the execution time has

become challenging. Many solutions have been proposed to address this problem, but

no solution has solved this problem completely in an efficient manner. Only new

optimized techniques can solve this problem completely and efficiently. Research in

this area can increase the performance of MapReduce by reducing the shuffle phase

time.

Univ
ers

ity
 of

 M
ala

ya

128

(h) Automation and configuration: Automatic tuning and configuration help while

deploying the Hadoop/MapReduce cluster by setting several parameters. To perform

proper tuning, both hardware and workload characteristics must be known. While

performing configuration, a small mistake can cause inefficient execution of jobs, which

leads to performance degradation (Lama & Zhou, 2012). To overcome this issue,

several new techniques and algorithms are required; these techniques and algorithms

perform the calculation in which basic setting can be performed in an efficient manner.

Creating such algorithms that receive input from the user, understanding the

characteristics of underlying hardware by using machine learning, and suggesting a

proper setting for better performance are challenging.

Univ
ers

ity
 of

 M
ala

ya

129

REFERENCES

Abad, C. L., Lu, Y., & Campbell, R. H. (2011). DARE: Adaptive data replication for
efficient cluster scheduling. Paper presented at the Cluster Computing
(CLUSTER), 2011 IEEE International Conference on, pp. 159-168.

Afrati, F., Dolev, S., Korach, E., Sharma, S., & Ullman, J. D. (2014). Assignment
Problems Of Different-Sized Inputs In Mapreduce, 11(2), 18.

Anjos, J. C., Carrera, I., Kolberg, W., Tibola, A. L., Arantes, L. B., & Geyer, C. R.
(2015). MRA++: Scheduling and data placement on MapReduce for
heterogeneous environments. Future Generation Computer Systems, 42, 22-35.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Stoica,
I. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-
58.

Bagchi, T. P. (1999). Multiobjective scheduling by genetic algorithms: Springer Science
& Business Media, Kluwer Academic Publishers.

Bittencourt, L. F., & Madeira, E. R. M. (2011). HCOC: a cost optimization algorithm
for workflow scheduling in hybrid clouds. Journal of Internet Services and
Applications, 2(3), 207-227.

Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics, 5(1),
11-24.

Bollier, D., & Firestone, C., M. (2010). The promise and peril of big data: Aspen
Institute, Communications and Society Program Washington, DC, USA.

Bryant, R., Katz, R. H., & Lazowska, E. D. (2008). Big-Data Computing: Creating
Revolutionary Breakthroughs in Commerce, Science and Society, pp 1-15.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation Computer Systems, 25(6), 599-
616.

Casati, F., & Shan, M.-C. (2007). Event-based scheduling method and system for
workflow activities: Google Patents, U.S. Patent No. 7,240,324. 3.

Casavant, T. L., & Kuhl, J. G. (1988). A taxonomy of scheduling in general-purpose
distributed computing systems. Software Engineering, IEEE Transactions on,
14(2), 141-154.

Chang, H., Kodialam, M., Kompella, R. R., Lakshman, T., Lee, M., & Mukherjee, S.
(2011). Scheduling in mapreduce-like systems for fast completion time. Paper
presented at the INFOCOM, 2011 Proceedings IEEE, (pp. 3074-3082).

Univ
ers

ity
 of

 M
ala

ya

130

Chang, P.-C., Chen, S.-H., & Liu, C.-H. (2007). Sub-population genetic algorithm with
mining gene structures for multiobjective flowshop scheduling problems. Expert
Systems with Applications, 33(3), 762-771.

Chen, M., Mao, S., & Liu, Y. (2014a). Big Data: A Survey. Mobile Networks and
Applications, 1-39.

Chen, M., Mao, S., & Liu, Y. (2014b). Big Data: A Survey. Mobile Networks and
Applications, 19(2), 171-209.

Chen, Q., Liu, C., & Xiao, Z. (2013). Improving mapreduce performance using smart
speculative execution strategy, 63(4), 954-967.

Chiroma, H., Abdulkareem, S., & Herawan, T. (2015). Evolutionary Neural Network
model for West Texas Intermediate crude oil price prediction. Applied Energy,
142, 266-273.

Cottrell, L. (2012). PingER: Actively measuring the worldwide Internet’s end-to-end
performance. Paper presented at the Workshop at the University of Malaysia in
Sarawak.

Cottrell, L., Matthews, W., & Logg, C. (2013). Tutorial on Internet Monitoring &
PingER at SLAC. Retrieved from http://www.slac.stanford.edu/comp/net/wan-
mon/tutorial.html

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1), 107-113.

Dean, J., & Ghemawat, S. (2010). MapReduce: a flexible data processing tool.
Communications of the ACM, 53(1), 72-77.

Deb, K. (2014). Multi-objective optimization Search methodologies (pp. 403-449):
Springer.

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. Paper
presented at the Parallel problem solving from nature PPSN VI.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE
Transactions on, 6(2), 182-197.

Dong, F., & Akl, S. G. (2007). PFAS: a resource-performance-fluctuation-aware
workflow scheduling algorithm for grid computing. Paper presented at the
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International.

Dong, X., Wang, Y., & Liao, H. (2011). Scheduling mixed real-time and non-real-time
applications in mapreduce environment. Paper presented at the Parallel and
Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on.

Univ
ers

ity
 of

 M
ala

ya

131

Doulkeridis, C., & Nørvåg, K. (2014). A survey of large-scale analytical query
processing in MapReduce. The VLDB Journal, 23(3), 355-380.

Durillo, J. J., & Prodan, R. (2014). Multi-objective workflow scheduling in Amazon
EC2. Cluster Computing, 17(2), 169-189.

Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National
Academy of Sciences, 95(25), 14863-14868.

Facchinei, F., Sagratella, S., & Scutari, G. (2014). Flexible parallel algorithms for big
data optimization. Paper presented at the Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on.

Facebook. (2012). Facebook Engineering. Under the Hood: Scheduling MapReduce
jobs more efficiently with Corona. Retrieved from
https://www.facebook.com/notes/facebook-engineering/under-the-hood-
scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920

Fang, Y., Wang, F., & Ge, J. (2010). A task scheduling algorithm based on load
balancing in cloud computing Web Information Systems and Mining (pp. 271-
277): Springer.

Fonseca, C. M., Gandibleux, X., Hao, J.-K., & Sevaux, M. (2009). Evolutionary Multi-
Criterion Optimization: 5th International Conference, EMO 2009, Nantes,
France, April 7-10, 2009, Proceedings (Vol. 5467): Springer.

Gantz, J., & Reinsel, D. (2011). Extracting value from chaos. IDC iview, 1-12.

Garlasu, D., Sandulescu, V., Halcu, I., Neculoiu, G., Grigoriu, O., Marinescu, M., &
Marinescu, V. (2013). A big data implementation based on grid computing.
Paper presented at the Roedunet International Conference (RoEduNet), 2013
11th.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. Paper
presented at the ACM SIGOPS Operating Systems Review.

Giuseppe, A., Alessio, B., Walter, D., & Antonio, P. (2013). Survey Cloud monitoring:
A survey. Comput. Netw., 57(9), 2093-2115. doi:10.1016/j.comnet.2013.04.001

Goiri, Í., Le, K., Nguyen, T. D., Guitart, J., Torres, J., & Bianchini, R. (2012).
GreenHadoop: leveraging green energy in data-processing frameworks. Paper
presented at the Proceedings of the 7th ACM european conference on Computer
Systems, (pp. 57-70). ACM.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.
Machine Learning, 3(2), 95-99.

Gu, R., Yang, X., Yan, J., Sun, Y., Wang, B., Yuan, C., & Huang, Y. (2014). SHadoop:
Improving MapReduce performance by optimizing job execution mechanism in
Hadoop clusters. Journal of Parallel and Distributed Computing, 74(3), 2166-
2179.

Univ
ers

ity
 of

 M
ala

ya

132

Gunarathne, T., Wu, T.-L., Qiu, J., & Fox, G. (2010). MapReduce in the Clouds for
Science. Paper presented at the Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on, (pp. 565-572).

Gunarathne, T., Zhang, B., Wu, T.-L., & Qiu, J. (2013). Scalable parallel computing on
clouds using Twister4Azure iterative MapReduce. Future Generation Computer
Systems, 29(4), 1035-1048.

Guo, L., Zhao, S., Shen, S., & Jiang, C. (2012). Task scheduling optimization in cloud
computing based on heuristic algorithm. Journal of Networks, 7(3), 547-553.

Guo, Z., Fox, G., & Zhou, M. (2012). Investigation of data locality in mapreduce. Paper
presented at the Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).

Guo, Z., Fox, G., Zhou, M., & Ruan, Y. (2012). Improving resource utilization in
mapreduce. Paper presented at the Cluster Computing (CLUSTER), 2012 IEEE
International Conference on.

Gupta, S., Fritz, C., Price, B., Hoover, R., De Kleer, J., & Witteveen, C. (2013).
ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop
Clusters. Paper presented at the ICAC.

Hadoop, A. Apache Hadoop. (2008, july 12) Retrieved from https://hadoop.apache.org/

Hadoop, A. Capacity Scheduler Guide. (2013, Aug 12) Retrieved from
https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html

Hadoop,A.(2009 May 22). Fair Scheduler.Retrieved from
https://hadoop.apache.org/docs/stable1/fair_scheduler.html

Hadoop, A. (2011). Apache Hadoop. Retrieved from https://hadoop.apache.org/

Hammoud, M., Rehman, M. S., & Sakr, M. F. (2012). Center-of-gravity reduce task
scheduling to lower mapreduce network traffic. Paper presented at the Cloud
Computing (CLOUD), 2012 IEEE 5th International Conference on. (pp. 49-58).
IEEE.

He, C., Lu, Y., & Swanson, D. (2011). Matchmaking: A new mapreduce scheduling
technique. Paper presented at the Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on. (pp. 40-47). IEEE.

Heintz, B., Chandra, A., & Sitaraman, R. K. (2012). Optimizing mapreduce for highly
distributed environments. arXiv preprint arXiv:1207.7055.

Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., & Babu, S.
(2011). Starfish: A Self-tuning System for Big Data Analytics. Paper presented at
the CIDR, (11), pp. 261-272.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R. H., . . .
Stoica, I. (2011). Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center. Paper presented at the NSDI, (11), pp. 22-22.

Univ
ers

ity
 of

 M
ala

ya

133

Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm
for multiobjective optimization. Paper presented at the Evolutionary
Computation, 1994. IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on. (pp. 82-87). Ieee.

Hsu, C.-H. (2014). Intelligent big data processing. Future Generation Computer
Systems, 36(0), 16-18. doi:http://dx.doi.org/10.1016/j.future.2014.02.003

Huan, L. (2013). Big Data Drives Cloud Adoption in Enterprise. Internet Computing,
IEEE, 17(4), 68-71.

Huang, S., Huang, J., Dai, J., Xie, T., & Huang, B. (2011). The HiBench benchmark
suite: Characterization of the MapReduce-based data analysis New Frontiers in
Information and Software as Services (pp. 209-228): Springer.

Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G., Min-Allah, N., . . .
Ghani, N. (2013). A survey on resource allocation in high performance
distributed computing systems. Parallel Computing, 39(11), 709-736.

Ibrahim, S., Jin, H., Lu, L., He, B., Antoniu, G., & Wu, S. (2012). Maestro: Replica-
aware map scheduling for mapreduce. Paper presented at the Cluster, Cloud and
Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on.
(pp. 435-442). IEEE.

Ibrahim, S., Phan, T.-D., Carpen-Amarie, A., Chihoub, H.-E., Moise, D., & Antoniu, G.
Governing energy consumption in Hadoop through CPU frequency scaling: An
analysis. Future Generation Computer Systems(0). 54, 219-232.

Ilyushkin, A., Ghit, B., & Epema, D. (2015). Scheduling workloads of workflows with
unknown task runtimes. Paper presented at the Cluster, Cloud and Grid
Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on. (pp.
606-616). IEEE.

Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., & Goldberg, A. (2009).
Quincy: fair scheduling for distributed computing clusters. Paper presented at
the Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. (pp. 261-276). ACM.

Islam, N. S., Lu, X., Wasi-ur-Rahman, M., Jose, J., & Panda, D. K. D. (2014). A micro-
benchmark suite for evaluating HDFS operations on modern clusters Specifying
Big Data Benchmarks (pp. 129-147): Springer.

Ji, C., Li, Y., Qiu, W., Awada, U., & Li, K. (2012). Big data processing in cloud
computing environments. Paper presented at the Pervasive Systems, Algorithms
and Networks (ISPAN), 2012 12th International Symposium on. (pp. 17-23).
IEEE.

Jia, H., Nee, A. Y., Fuh, J. Y., & Zhang, Y. (2003). A modified genetic algorithm for
distributed scheduling problems. Journal of Intelligent Manufacturing, 14(3-4),
351-362.

Univ
ers

ity
 of

 M
ala

ya

134

Jiang, D., Ooi, B. C., Shi, L., & Wu, S. (2010). The performance of mapreduce: An in-
depth study. Proceedings of the VLDB Endowment, 3(1-2), 472-483.

Jin, J., Luo, J., Song, A., Dong, F., & Xiong, R. (2011). Bar: An efficient data locality
driven task scheduling algorithm for cloud computing. Paper presented at the
Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. (pp. 295-304). IEEE.

Jin, Y., & Sendhoff, B. (2001). Multi-objective optimization: Google Patents. U.S.
Patent Application No. 10/007,906.

Kalavri, V., & Vlassov, V. (2013). Mapreduce: Limitations, optimizations and open
issues. Paper presented at the Trust, Security and Privacy in Computing and
Communications (TrustCom), 2013 12th IEEE International Conference on. (pp.
1031-1038). IEEE.

Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics.
Journal of Parallel and Distributed Computing, 74(7), 2561-2573.

Kc, K., & Anyanwu, K. (2010). Scheduling hadoop jobs to meet deadlines. Paper
presented at the Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on. (pp. 388-392). IEEE.

Khan, S., Shiraz, M., Abdul Wahab, A. W., Gani, A., Han, Q., & Bin Abdul Rahman, Z.
(2014). A Comprehensive Review on Adaptability of Network Forensics
Frameworks for Mobile Cloud Computing. The Scientific World Journal, 2014,
27. doi:10.1155/2014/547062

Khiyaita, A., Zbakh, M., El Bakkali, H., & El Kettani, D. (2012). Load balancing cloud
computing: state of art. Paper presented at the Network Security and Systems
(JNS2), 2012 National Days of of (pp. 106-109). IEEE..

Khoo, B. B., Veeravalli, B., Hung, T., & See, C. S. (2007). A multi-dimensional
scheduling scheme in a Grid computing environment. Journal of Parallel and
Distributed Computing, 67(6), 659-673.

Kllapi, H., Sitaridi, E., Tsangaris, M. M., & Ioannidis, Y. (2011). Schedule optimization
for data processing flows on the cloud. Paper presented at the Proceedings of the
2011 ACM SIGMOD International Conference on Management of data.

Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated sets. Paper
presented at the Evolutionary Computation, 2002. CEC'02. Proceedings of the
2002 Congress on. (Vol. 1, pp. 711-716). IEEE.

Knowles, J. D., Watson, R. A., & Corne, D. W. (2001). Reducing local optima in
single-objective problems by multi-objectivization. Paper presented at the
Evolutionary multi-criterion optimization. (pp. 269-283). Springer Berlin
Heidelberg.

Krish, K., Anwar, A., & Butt, A. R. (2014). [phi] Sched: A Heterogeneity-Aware
Hadoop Workflow Scheduler. Paper presented at the Modelling, Analysis &

Univ
ers

ity
 of

 M
ala

ya

135

Simulation of Computer and Telecommunication Systems (MASCOTS), 2014
IEEE 22nd International Symposium on. (pp. 255-264). IEEE.

Kulkarni, A. P., & Khandewal, M. (2014). Survey on Hadoop and Introduction to
YARN. International journal of emerging technology and advanced
engineering, 4(5), 82-87.

Labrinidis, A., & Jagadish, H. (2012). Challenges and opportunities with big data.
Proceedings of the VLDB Endowment, 5(12), 2032-2033.

Lama, P., & Zhou, X. (2012). Aroma: Automated resource allocation and configuration
of mapreduce environment in the cloud. Paper presented at the Proceedings of
the 9th international conference on Autonomic computing. (pp. 63-72). ACM

Lämmel, R. (2008). Google’s MapReduce programming model — Revisited. Science of
Computer Programming, 70(1), 1-30.

Leavitt, N. (2013). Bringing big analytics to the masses. Computer, 46(1), 20-23.

Li, J.-J., Cui, J., Wang, D., Yan, L., & Huang, Y.-S. (2011). Survey of MapReduce
parallel programming model. Dianzi Xuebao(Acta Electronica Sinica), 39(11),
2635-2642.

Li, Y., Zhang, H., & Kim, K. H. (2011). A power-aware scheduling of mapreduce
applications in the cloud. Paper presented at the Dependable, Autonomic and
Secure Computing (DASC), 2011 IEEE Ninth International Conference on. (pp.
613-620). IEEE.

Lin, M., Zhang, L., Wierman, A., & Tan, J. (2013). Joint optimization of overlapping
phases in MapReduce. Performance Evaluation, 70(10), 720-735.

Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM (JACM), 20(1), 46-61.

Long, Q., Lin, J., & Sun, Z. (2011). Agent scheduling model for adaptive dynamic load
balancing in agent-based distributed simulations. Simulation Modelling Practice
and Theory, 19(4), 1021-1034.

Long, S.-Q., Zhao, Y.-L., & Chen, W. (2014). MORM: A Multi-objective Optimized
Replication Management strategy for cloud storage cluster. Journal of Systems
Architecture, 60(2), 234-244.

Lopes, R., & Menascé, D. (2015). A Taxonomy of Job Scheduling on Distributed
Computing Systems. Retrieved from http://cs.gmu.edu

Maheshwari, N., Nanduri, R., & Varma, V. (2012). Dynamic energy efficient data
placement and cluster reconfiguration algorithm for MapReduce framework.
Future Generation Computer Systems, 28(1), 119-127.

Marczyk, A. (2004). Genetic algorithms and evolutionary computation. The Talk
Origins Archive: http://www. talkorigins/faqs/genalg/genalg.html.

Univ
ers

ity
 of

 M
ala

ya

136

Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization, 26(6), 369-395.

McGuire, J. M. (2006). Highly scalable least connections load balancing: Google
Patents. Patent No. 6,996,615. Washington, DC: U.S. Patent and Trademark
Office

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., . . .
Daly, M. (2010). The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome research, 20(9),
1297-1303.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (draft). NIST
special publication, 800(145), 7.

Murthy, A. C., Vavilapalli, V. K., Eadline, D., Niemiec, J., & Markham, J. (2013).
Apache Hadoop YARN: Moving Beyond MapReduce and Batch Processing with
Apache Hadoop 2: Pearson Education.

Nagata, Y., & Chu, K. H. (2003). Optimization of a fermentation medium using neural
networks and genetic algorithms. Biotechnology letters, 25(21), 1837-1842.

Nita, M.-C., Pop, F., Voicu, C., Dobre, C., & Xhafa, F. (2015). MOMTH: multi-
objective scheduling algorithm of many tasks in Hadoop. Cluster Computing, 1-
14.

O'Leary, D. E. (2013). Artificial Intelligence and Big Data. Intelligent Systems, IEEE,
28(2), 96-99. doi:10.1109/MIS.2013.39

Orero, S., & Irving, M. (1998). A genetic algorithm modelling framework and solution
technique for short term optimal hydrothermal scheduling. Power Systems, IEEE
Transactions on, 13(2), 501-518.

Pandey, S., & Nepal, S. (2013). Cloud Computing and Scientific Applications — Big
Data, Scalable Analytics, and Beyond. Future Generation Computer Systems,
29(7), 1774-1776.

Park, J., Lee, D., Kim, B., Huh, J., & Maeng, S. (2012). Locality-aware dynamic VM
reconfiguration on MapReduce clouds. Paper presented at the Proceedings of the
21st international symposium on High-Performance Parallel and Distributed
Computing.

Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data. Information Sciences,
275(0), 314-347. doi:http://dx.doi.org/10.1016/j.ins.2014.01.015

Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems: Springer Science &
Business Media.

Univ
ers

ity
 of

 M
ala

ya

137

Polato, I., Ré, R., Goldman, A., & Kon, F. (2014). A comprehensive view of Hadoop
research—A systematic literature review. Journal of Network and Computer
Applications, 46, 1-25. doi:http://dx.doi.org/10.1016/j.jnca.2014.07.022

Polo, J., Carrera, D., Becerra, Y., Beltran, V., Torres, J., & Ayguadé, E. (2010).
Performance management of accelerated mapreduce workloads in
heterogeneous clusters. Paper presented at the Parallel Processing (ICPP), 2010
39th International Conference on. (pp. 653-662). IEEE.

Polo, J., Castillo, C., Carrera, D., Becerra, Y., Whalley, I., Steinder, M., . . . Ayguadé,
E. (2011). Resource-aware adaptive scheduling for mapreduce clusters
Middleware 2011 (pp. 187-207): Springer.

Ponnambalam, S., Aravindan, P., & Naidu, G. M. (2000). A multi-objective genetic
algorithm for solving assembly line balancing problem. The International
Journal of Advanced Manufacturing Technology, 16(5), 341-352.

Pop, F., & Cristea, V. (2015). The Art of Scheduling for Big Data Science. Taylor &
Francis Group LLC.

Qi, C., Cheng, L., & Zhen, X. (2014). Improving MapReduce Performance Using Smart
Speculative Execution Strategy. Computers, IEEE Transactions on, 63(4), 954-
967. doi:10.1109/TC.2013.15

Ranjithan, S. R., Chetan, S. K., & Dakshina, H. K. (2001). Constraint method-based
evolutionary algorithm (CMEA) for multiobjective optimization. Paper presented
at the International Conference on Evolutionary Multi-Criterion Optimization.

Rao, B. T., & Reddy, L. (2012). Survey on improved scheduling in Hadoop MapReduce
in cloud environments. arXiv preprint arXiv:1207.0780.

Rasooli, A., & Down, D. G. (2014). COSHH: A classification and optimization based
scheduler for heterogeneous Hadoop systems. Future Generation Computer
Systems, 36, pp (1-15).

Richtárik, P., & Takáč, M. (2015). Parallel coordinate descent methods for big data
optimization. Mathematical Programming, pp (1-52).

Rimal, B. P., Choi, E., & Lumb, I. (2009). A taxonomy and survey of cloud computing
systems. Paper presented at the 2009 Fifth International Joint Conference on
INC, IMS and IDC. pp (44-51).

Ruzika, S., & Wiecek, M. M. (2005). Approximation methods in multiobjective
programming. Journal of optimization theory and applications, 126(3), 473-501.

Sakr, S., Liu, A., & Fayoumi, A. G. (2013). The family of MapReduce and large-scale
data processing systems. ACM Computing Surveys (CSUR), 46(1), 11.

Sangroya, A., Bouchenak, S., Dami, & Serrano, n. (2016). Experience with
benchmarking dependability and performance of MapReduce systems. Perform.
Eval., 101(C), 1-19. doi:10.1016/j.peva.2016.04.001

Univ
ers

ity
 of

 M
ala

ya

138

Savic, D. (2002). Single-objective vs. multiobjective optimisation for integrated
decision support. Integrated Assessment and Decision Support, 1, 7-12.

Scott, J. (2015). A tale of two clusters: Mesos and YARN. Retrieved from
http://radar.oreilly.com/2015/02/a-tale-of-two-clusters-mesos-and-yarn.html

Seada, H., & Deb, K. (2015). U-nsga-iii: A unified evolutionary optimization procedure
for single, multiple, and many objectives: Proof-of-principle results. Paper
presented at the Evolutionary Multi-Criterion Optimization. (pp. 34-49).
Springer.

Shankar, D., Lu, X., Wasi-ur-Rahman, M., Islam, N., & Panda, D. K. D. (2014). A
Micro-benchmark Suite for Evaluating Hadoop MapReduce on high-
performance networks. Paper presented at the Workshop on Big Data
Benchmarks, Performance Optimization, and Emerging Hardware. (pp. 19-33).
Springer.

Sharma, B. P., Wood, T., & Das, C. R. (2013). Hybridmr: A hierarchical mapreduce
scheduler for hybrid data centers. Paper presented at the Distributed Computing
Systems (ICDCS), 2013 IEEE 33rd International Conference on. (pp. 102-111).
IEEE.

Sheikhalishahi, M., Wallace, R. M., Grandinetti, L., Vazquez-Poletti, J. L., & Guerriero,
F. (2016). A multi-dimensional job scheduling. Future Generation Computer
Systems, 54, 123-131. doi:http://dx.doi.org/10.1016/j.future.2015.03.014

Shreedhar, M., & Varghese, G. (1996). Efficient fair queuing using deficit round-robin.
Networking, IEEE/ACM Transactions on, 4(3), 375-385.

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The hadoop distributed file
system. Paper presented at the Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on. (pp. 1-10). IEEE.

Smanchat, S., & Viriyapant, K. (2015). Taxonomies of workflow scheduling problem
and techniques in the cloud. Future Generation Computer Systems, 52, 1-12.

Sousa, E., Paul, J., Lari, V., Hannig, F., Teich, J., & Stechele, W. Resource-aware
Computer Vision Application on Heterogeneous Multi-tile Architecture.
Retrieved from https://www.date-conference.com/files/file/date14/.

Srirama, S. N., Jakovits, P., & Vainikko, E. (2012). Adapting scientific computing
problems to clouds using MapReduce. Future Generation Computer Systems,
28(1), 184-192.

Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., & Wang, J. (2013). Cost-efficient task
scheduling for executing large programs in the cloud. Parallel Computing,
39(4–5), 177-188. doi:http://dx.doi.org/10.1016/j.parco.2013.03.002

Tan, J., Meng, X., & Zhang, L. (2012). Delay tails in MapReduce scheduling. ACM
SIGMETRICS Performance Evaluation Review, 40(1), 5-16.

Univ
ers

ity
 of

 M
ala

ya

139

Tang, Z., Zhou, J., Li, K., & Li, R. (2012). MTSD: A task scheduling algorithm for
MapReduce base on deadline constraints. Paper presented at the Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012
IEEE 26th International.

Tiwari, N., Sarkar, S., Bellur, U., & Indrawan, M. (2015). Classification Framework of
MapReduce Scheduling Algorithms. ACM Computing Surveys (CSUR), 47(3),
49.

Tsai, J.-T., Fang, J.-C., & Chou, J.-H. (2013). Optimized task scheduling and resource
allocation on cloud computing environment using improved differential
evolution algorithm. Computers & Operations Research, 40(12), 3045-3055.
doi:http://dx.doi.org/10.1016/j.cor.2013.06.012

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Seth,
S. (2013). Apache hadoop yarn: Yet another resource negotiator. Paper
presented at the Proceedings of the 4th annual Symposium on Cloud Computing.
(p. 5). ACM

Venugopal, S., Buyya, R., & Ramamohanarao, K. (2006). A taxonomy of data grids for
distributed data sharing, management, and processing. ACM Computing Surveys
(CSUR), 38(1), 3.

Verma, A., Cherkasova, L., & Campbell, R. H. (2011). ARIA: automatic resource
inference and allocation for mapreduce environments. Paper presented at the
Proceedings of the 8th ACM international conference on Autonomic computing.
(pp. 235-244). ACM. (pp. 235-244). ACM.

Villars, R. L., Olofson, C. W., & Eastwood, M. (2011). Big data: What it is and why
you should care. White Paper, IDC.

Wang, D., Chen, J., & Zhao, W. (2013). A task scheduling algorithm for Hadoop
platform. Journal of Computers, 8(4), 929-936.

Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., & Raicu, I. (2014). Optimizing load
balancing and data-locality with data-aware scheduling. Paper presented at the
Big Data (Big Data), 2014 IEEE International Conference on. (pp. 119-128).
IEEE.

Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., . . . Zhang, S. (2014).
Bigdatabench: A big data benchmark suite from internet services. Paper
presented at the 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). (pp. 488-499). IEEE.

Wang, X., Wang, Y., & Cui, Y. (2014). A new multi-objective bi-level programming
model for energy and locality aware multi-job scheduling in cloud computing.
Future Generation Computer Systems, 36, 91-101.
doi:http://dx.doi.org/10.1016/j.future.2013.12.004

Wang, Y., & Shi, W. (2014). Budget-driven scheduling algorithms for batches of
MapReduce jobs in heterogeneous clouds. Cloud Computing, IEEE
Transactions on, 2(3), 306-319.

Univ
ers

ity
 of

 M
ala

ya

140

Warneke, D., & Kao, O. (2009). Nephele: efficient parallel data processing in the
cloud. Paper presented at the Proceedings of the 2nd workshop on many-task
computing on grids and supercomputers. (p. 8). ACM.

White, T. (2009). Hadoop: The Definitive Guide: The Definitive Guide: O'Reilly Media.

White, T. (2012). Hadoop: The definitive guide: " O'Reilly Media, Inc.".

Wirtz, T., & Ge, R. (2011). Improving mapreduce energy efficiency for computation
intensive workloads. Paper presented at the Green Computing Conference and
Workshops (IGCC), 2011 International. (pp. 1-8). IEEE

Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S., . . . Balmin, A.
(2010). Flex: A slot allocation scheduling optimizer for mapreduce workloads
Middleware 2010 (pp. 1-20): Springer.

Wu, L., Garg, S. K., & Buyya, R. (2011). SLA-based resource allocation for software
as a service provider (SaaS) in cloud computing environments. Paper presented
at the Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM
International Symposium on, (pp. 195-204). IEEE..

Yao, Y., Wang, J., Sheng, B., Tan, C., & Mi, N. (2015). Self-Adjusting Slot
Configurations for Homogeneous and Heterogeneous Hadoop Clusters. IEEE
Transactions on Cloud Computing. doi:DOI 10.1109/TCC.2015.2415802

Yao, Z., Papapanagiotou, I., & Callaway, R. D. (2015). Multi-Dimensional Scheduling
in Cloud Storage Systems. Paper presented at the International Communications
Conference (ICC), (pp. 395-400). IEEE..

Yong, M., Garegrat, N., & Mohan, S. (2009). Towards a resource aware scheduler in
hadoop. Paper presented at the Proceedings of the 2009 IEEE International
Conference on Web Services, Los Angeles, CA, USA.

Yu, J. (2007). QoS-based scheduling of workflows on global grids. Retrieved from
https://minerva-access.unimelb.edu.au/handle/11343/39376.

Yu, J., & Buyya, R. (2005). A taxonomy of workflow management systems for grid
computing. Journal of Grid Computing, 3(3-4), 171-200.

Yu, J., & Buyya, R. (2006). Scheduling scientific workflow applications with deadline
and budget constraints using genetic algorithms. Scientific Programming, 14(3-
4), 217-230.

Zaharia, M. (2009). Job scheduling with the fair and capacity schedulers. Hadoop
Summit, 9.

Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., & Stoica, I.
(2010). Delay scheduling: a simple technique for achieving locality and fairness
in cluster scheduling. Paper presented at the Proceedings of the 5th European
conference on Computer systems, (pp. 265-278). ACM.

Univ
ers

ity
 of

 M
ala

ya

141

Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., & Stoica, I. (2008). Improving
MapReduce Performance in Heterogeneous Environments. Paper presented at
the OSDI. (Vol. 8, No. 4, p. 7).

Zhang, F., Cao, J., Li, K., Khan, S. U., & Hwang, K. (2014). Multi-objective scheduling
of many tasks in cloud platforms. Future Generation Computer Systems, 37,
309-320.

Zhang, W., Rajasekaran, S., Wood, T., & Zhu, M. (2014). Mimp: Deadline and
interference aware scheduling of hadoop virtual machines. Paper presented at
the Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on. (pp. 394-403). IEEE.

Zhang, X., Zhong, Z., Feng, S., Tu, B., & Fan, J. (2011). Improving data locality of
MapReduce by scheduling in homogeneous computing environments. Paper
presented at the Parallel and Distributed Processing with Applications (ISPA),
2011 IEEE 9th International Symposium on.

Zhang, Z., Cherkasova, L., Verma, A., & Loo, B. T. (2013). Performance modeling and
optimization of deadline-driven pig programs. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 8(3), 14.

Zhifeng, X., & Yang, X. (2013). Security and Privacy in Cloud Computing.
Communications Surveys & Tutorials, IEEE, 15(2), 843-859.

Zitzler, E., Laumanns, M., Thiele, L., Zitzler, E., Zitzler, E., Thiele, L., & Thiele, L.
(2001). SPEA2: Improving the strength Pareto evolutionary algorithm:
Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische
Informatik und Kommunikationsnetze (TIK) Zürich, Switzerland.

Univ
ers

ity
 of

 M
ala

ya

142

APPENDIX A

MYCLOUD USAGE

MYREN cloud service has been used to conduct an experiment of the proposed

solution. The following are the screenshot of the account and the number of the virtual

machines used in this research. The account created from 28/02/2013 to 02/28/2017.

Figure 6-1: The main homepage of MyRen Cloud service provider

Univ
ers

ity
 of

 M
ala

ya

143

Figure 6-2: The main Dashboard of login

Figure 6-3: The number of virtual machines provisioned

Univ
ers

ity
 of

 M
ala

ya

144

Figure 6-4: The number of virtual machines provisioned

Univ
ers

ity
 of

 M
ala

ya

145

LIST OF PUBLICATIONS AND PAPERS PRESENTED

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U.

(2015). The rise of “big data” on cloud computing: Review and open research issues.

Information Systems, 47, 98-115.

Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., ... &

Chiroma, H. (2016). The role of big data in smart city. International Journal of

Information Management, 36(5), 748-758.

Hashem, I. A. T., Anuar, N. B., & Gani, A. (2015). Schedule optimization for big

data processing on cloud. Paper presented at the 2nd International Conference on Big

Data Analysis and Data Mining, J Data Mining Genomics Proteomics.

Hashem, I. A. T., Anuar, N. B., Gani, A., Yaqoob, I., Xia, F., & Khan, S. U. (2016).

MapReduce: Review and open challenges. Scientometrics, 1-34.

Khan, N., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Mahmoud Ali, W. K., Alam, M.,

... & Gani, A. (2014). Big data: survey, technologies, opportunities, and challenges. The

Scientific World Journal, 2014.

Yaqoob, I., Chang, V., Gani, A., Mokhtar, S., Hashem, I. A. T., Ahmed, E., ... &

Khan, S. U. (2016). Information fusion in social big data: Foundations, state-of-the-art,

applications, challenges, and future research directions. International Journal of

Information Management.

Hashem, I. A. T., Anuar, N. B., Gani, A, Sakariyah, .A .K., Sangaiah, .A .K. 'Multi-

objective Scheduling of MapReduce Jobs in Big Data Processing', Multimedia Tools

and Applications, (Accepted with minor).

Univ
ers

ity
 of

 M
ala

ya

146

Univ
ers

ity
 of

 M
ala

ya

	CHAPTER 1: INTRODUCTION AND OVERVIEW
	1.1 Big Data
	1.2 MapReduce programming model
	1.3 Scheduling
	1.4 Statement of Problem
	1.5 Aims and objectives
	1.6 Thesis Structure

	CHAPTER 2: OVERVIEW OF BIG DATA AND SCHEDULING
	2.1 Cloud computing
	2.2 The relationship between cloud and big data
	2.3 Big data scheduling challenge
	2.4 Apache Hadoop
	2.4.1 HDFS
	2.4.2 Hadoop MapReduce

	2.5 Scheduling in big data platforms
	2.6 Scheduling algorithms for big data
	2.7 Resource scheduling frameworks
	2.8 Related Scheduling algorithms
	2.9 Multi-objective optimization
	2.9.1 Multi-objective genetic algorithms
	2.9.1.1 NSGA-II algorithm
	2.9.1.2 SPEA2 algorithm

	2.9.2 Strengths of Genetic Algorithm

	2.10 Summary

	CHAPTER 3: SCHEDULING MAPREDUCE JOBS AND THE PERFORMANCE ISSUES
	3.1 Hadoop physical vs. cloud cluster analysis
	3.2 Analytical Time-Cost analysis
	3.2.1 Completion time with budget constraint model
	3.2.2 Cost with deadline constraint model

	3.3 Time-Cost models analysis using multi-objective evolutionary algorithm
	3.3.1 An experimental setting
	3.3.2 Multi-objective tradeoff solutions

	3.4 Computational Results
	3.5 Summary

	CHAPTER 4: FRAMEWORK FOR MULTI-OBJECTIVE SCHEDULING ALGORITHMS
	4.1 Multi-objective Scheduling algorithm
	4.2 Scheduling framework
	4.3 Summary

	CHAPTER 5: EVALUATION OF MULTI-OBJECTIVE SCHEDULING ALGORITHM
	5.1 Benchmark Description
	5.2 PingER datasets
	5.3 Experimental and procedure description
	5.4 Statistical Models
	5.4.1 Coefficient of determination
	5.4.2 Execution time
	5.4.3 Throughput
	5.4.4 Analysis of the results regarding throughput
	5.4.5 Execution time
	5.4.6 Analysis of results regarding execution time

	5.5 Validation of Results
	5.5.1 Throughput
	5.5.2 Execution time

	5.6 Discussions
	5.6.1 Throughput
	5.6.2 Execution time

	5.7 Summary

	CHAPTER 6: CONCLUSION AND FUTURE DIRECTION
	6.1 Aim and objectives of the study
	6.1.1 Study the domain of big data and identify the key issues with respect to scheduling in big data platforms
	6.1.2 Investigate and identify the research problem
	6.1.3 Design and propose a new multi-objective algorithm
	6.1.4 Evaluate the performance of a proposed algorithm

	6.2 Limitations and Future Research Directions of the study
	APPENDIX A MYCLOUD USAGE

