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ABSTRACT 

With the fast development of Internet-based technologies, data generation has 

increased drastically over the past few years, coined as big data era. Big data offer a 

new paradigm shift in data exploration and utilization. The major enabler for 

underlying many big data platforms is certainly the MapReduce computational 

paradigm. Scheduling plays an important role in MapReduce, mainly in reducing the 

execution time of data-intensive jobs. However, despite recent efforts toward 

improving MapReduce performance, scheduling MapReduce jobs across multiple 

nodes have shown to be multi-objective optimization problem. The problem is even 

more complex using virtualized clusters in a cloud computing to execute a large 

number of tasks. The complexity lies in achieving multiple objectives that may be of 

conflicting nature. These conflicting requirements and goals are challenging to 

optimize due to the difficulty of predicting a new incoming job’s behavior and its 

completion time. In this study, we aim to optimize task scheduling and resource 

utilization using an evolutionary algorithm based on the proposed completion time 

and monetary cost of cloud service models. The multi-objective approaches which 

are, Sorting Genetic Algorithm II (NSGA-II) and Strength Pareto Evolutionary 

Algorithm II (SPEA2) are applied to find the Pareto front of the Makespan and total 

cost. The result of our experiment analysis reveals that the advantage of NSGA-II 

over the SPEA2 on the tested problems based on the adopted measuring criteria. In 

addition, NSGA-II algorithm was able to find the optimal solutions. We then 

proposed a multi-objective scheduling algorithm framework that considers resource 

allocation and task scheduling in a heterogonous cloud environment. The proposed 

algorithm is evaluated using tasks scheduling in the scheduling load simulator and 
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validated using statistical modeling. The simulation results acquired from the 

experiments showed the effectiveness of the proposed framework and algorithm. 
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ABSTRAK 

Dengan perkembangan pantas teknologi berasaskan Internet, penjanaan data telah 

meningkat secara drastik sejak beberapa tahun kebelakangan ini, dikenali sebagai era 

data yang besar. Data besar menawarkan anjakan paradigma baru dalam penerokaan 

data dan penggunaannya. Pemboleh utama bagi untuk platform data besar adalah 

pengkomputeran MapReduce paradigma. Penjadualan memainkan peranan yang penting 

dalam MapReduce, terutama sekali dalam mengurangkan masa pelaksanaan pekerjaan 

intensif-data. Walau bagaimanapun, walaupun usaha terbaru ke arah meningkatkan 

prestasi MapReduce sedang dilakukan, kerja penjadualan MapReduce merentasi 

pelbagai nod telah menunjukkan ia menjadi masalah objektif-pelbagai pengoptimuman. 

Masalah menjadi bertambah kompleks dengan menggunakan kelompok maya dalam 

pengkomputeran awan untuk melaksanakan jenis tugas yang besar. Kerumitan ini 

terletak dalam mencapai pelbagai objektif yang mampu menjadi percanggahan semula 

jadi. Keperluan yang bercanggah dan matlamat adalah mencabar untuk pengoptimuman 

berikutan kesukaran meramalkan kelakuan kerja masuk yang baru dan waktu ia siap. 

Dalam kajian ini, kami berhasrat untuk optimumkan penjadualan tugas dan penggunaan 

sumber dengan menggunakan algoritma evolusi berdasarkan cadangan waktu dan kos 

kewangan dalam model perkhidmatan awan. Pendekatan pelbagai-objektif adalah, 

Menyusun Algoritma Genetik II (NSGA-II) dan Kekuatan Pareto Evolusi Algoritma II 

(SPEA2) digunakan untuk mencari Pareto awal daripada waktu dan jumlah kos. 

Keputusan analisis eksperimen mendedahkan kelebihan NSGA-II lebih pada SPEA2 

pada masalah yang diuji berdasarkan kriteria pengukur yang digunakan. Di samping itu, 

algoritma NSGA-II mampu mencari penyelesaian yang optimum. Kemudian kami 

cadangkan rangkakerja algoritma penjadualan pelbagai-objektif mengambilkira 

peruntukan sumber dan penjadualan tugas dalam persekitaran awan yang pelbagai. 

Algoritma yang dicadangkan menggunakan tugasan penjadualan dalam simulator 
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penjadualan dan disahkan menggunakan pemodelan statistik. Keputusan simulasi dari 

eksperimen menunjukkan keberkesanan rangka kerja dan algoritma yang cadangkan. 
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CHAPTER 1: INTRODUCTION AND OVERVIEW  

With the fast development of Internet-based technologies; data generation has increased 

drastically over the past few years. These data can be stored in low-cost, commodity 

computers in a distributed network to be used for analytics to extract knowledge as well 

as other purposes. Data creation is occurring at a record rate (Villars et al., 2011), 

referred to herein as big data, and has emerged as a widely recognized trend. The term 

“big data” refers to a set of processing techniques and technologies that require new 

forms of integration to uncover largely hidden values from large datasets that are 

diverse, complex, and in a massive scale. Big data processing assists data scientists in 

uncovering hidden patterns and other useful information from huge volumes of data that 

conventional processing and business intelligence cannot solve. Moreover, big data is 

transforming healthcare, science, engineering, finance, business, and eventually, the 

society. The major enabler for underlying many big data applications is certainly the 

MapReduce computational paradigm (Dean & Ghemawat, 2008).  

MapReduce is the most popular framework for processing the existing large-scale data 

(Dean & Ghemawat, 2008) (Dean & Ghemawat, 2010) primarily because of its 

important features that include scalability, fault tolerance, ease of programming, and 

flexibility. Nowadays, MapReduce is primarily used for expressing distributed 

computations on the massive amounts of data and an execution framework for large-

scale data processing on clusters of commodity servers. 

Clusters in the cloud computing environment can include more than one MapReduce 

jobs running simultaneously. Each job often consists of multiple tasks, many of them 

periodically scheduled. Hence, for the optimizer to decide on the best execution plan is 

a critical factor in a scheduling process (Kllapi et al., 2011) (H. Chang et al., 2011). 

This level of optimization is called job scheduling in MapReduce programming model 
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(Hammoud et al., 2012; Kc & Anyanwu, 2010; D. Wang et al., 2013). Scheduling has 

been widely studied in distributed computing literature (Blazewicz et al., 1983; Liu & 

Layland, 1973; Pinedo, 2012); however, the cost and complexity of adopting traditional 

scheduling models to big data platforms have increased.  

1.1 Big Data 

Since the invention of computers, large amounts of data have been generated at a rapid 

rate. This condition is the key motivation for current and future research frontiers. 

Advances in mobile devices, digital sensors, communications, computing, and storage 

have provided means to collect data (Bryant et al., 2008). According to the renowned IT 

company Industrial Development Corporation (IDC; 2011), the total amount of data in 

the world has increased nine times within five years (Gantz & Reinsel, 2011). This 

figure is expected to double at least every two years (M. Chen et al., 2014b). Big data is 

a novel term that originated from the need of large companies, such as, Yahoo, Google, 

and Facebook, to analyze large amounts of data (Garlasu et al., 2013). The three major 

motives for big data technology are to minimize hardware costs, check the value of big 

data before committing significant company resources, and reduce processing costs 

(Leavitt, 2013). Well-managed big data should exhibit availability, reliability, security, 

and maintainability (Khan et al., 2014).  

1.2 MapReduce programming model 

MapReduce (Dean & Ghemawat, 2008) is a simplified programming model for 

processing large amounts of datasets pioneered by Google for data-intensive 

applications. The model is stunningly simple, and it effectively supports parallelism 

(Lämmel, 2008). Such a model is adopted through Hadoop implementation, quickly 

spreading and transforming into a dominant force in the field of big data (Polato et al., 

2014). MapReduce enables an inexperienced programmer to develop parallel programs 
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and create a program that can run in the cloud. In most cases, programmers are required 

to execute only two functions, namely, the map (mapper) and reduce functions 

(reducer), which are commonly utilized in functional programming. The mapper regards 

the key/value pair as input and generates intermediate key/value pairs, and the reducer 

merges all pairs associated with the same (intermediate) key and then generates an 

output. The map function is applied to each input (key1, value1), in which the input 

domain is different from the generated output pairs list (key2, value2). The elements of 

the list (key2, value2) are then grouped by a key. After grouping, the list (key2, value2) 

is divided into several lists [key2, list (value2)], and the reduce function is applied to 

each list [key2, list (value2)] for generating a final result list (key3, value3).  

1.3 Scheduling 

The widespread popularity of big data processing platforms is the growing demand to 

further optimize their performance for various purposes. In particular, enhancing 

resources and jobs scheduling are becoming critical since they fundamentally determine 

whether the applications can achieve the performance goals in different use cases. There 

are many works published that focus on big data optimization (Facchinei et al., 2014; 

Richtárik & Takáč, 2015), which aim to improve the processing and completion time of 

as many tasks as possible (Pop & Cristea, 2015). There are still areas to explore, 

particularly with respect to scheduling and resource management related to big data 

processing. According to (Kc & Anyanwu, 2010) the research studies on scheduling 

optimization problem can be categories into two types: single objective optimization 

and multi-objective optimization.  

(a) Single objective optimization. A single objective optimization problem is presented 

in (J. D. Knowles et al., 2001; Seada & Deb, 2015) by finding an optimal solution that 

is corresponding to the minimization or maximization based on a single function. 

Univ
ers

ity
 of

 M
ala

ya



4 

 

Considering the nature of the study, a single objective can be used to provide decision 

makers with insights of the problem. However, such solution is unable to handle an 

alternative result that has conflicting objectives (Savic, 2002).  

(b) Multi-objective optimization. Most real-world scheduling optimization problems are 

multi-objective in nature since they normally have possibly conflicting objectives that 

must be satisfied at the same time. Scheduling often requires considering several 

objectives in an optimization process. For example, a trade-off between resource 

consumption and performance while scheduling multiple tasks in the cloud. This 

optimization procedure manages two or more objectives and is called multi-objective 

optimization. Several relevant studies include (Rasooli & Down, 2014) (Nita et al., 

2015) (S.-Q. Long et al., 2014) are focused primarily on the objective functions, 

constraints, minimum schedule length and global optimality on solving scheduling big 

data platforms.  

1.4 Statement of Problem  

Scheduling tasks in MapReduce across multiple nodes have shown to be multi-objective 

optimization problem. The problem is even more complex using virtualized clusters in a 

cloud computing to execute a large number of tasks (Smanchat & Viriyapant, 2015). 

The complexity lies in achieving multiple objectives that may be of conflicting nature 

(Ruzika & Wiecek, 2005). These conflicting requirements and goals are challenging to 

optimize due to the difficulty of predicting a new incoming job’s behavior and its 

completion time.  

Scheduling plays an important role in big data, mainly in reducing the execution time 

and cost for processing. MapReduce scheduling model assumes that the processing time 

of a task on a particular node is fixed and can perform work at roughly the same rate 

(Zaharia et al., 2008). However, in a most realistic situation apart from the nodes, it 
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requires additional resources to process jobs and the processing time of a job is 

determined internally by the amount of the resources allocated. Moreover, Hadoop 

MapReduce assumed that the resources are similar and the data locality is often the only 

scheduling constraint (Krish et al., 2014). However, with the use of virtual machines, it 

leads to Hadoop cluster becoming increasingly heterogeneous, in that a cloud may have 

several clusters each boasting different characteristics (Krish et al., 2014) (F. Dong & 

Akl, 2007). Resource heterogeneity in the cluster may compress of either heterogeneous 

or homogeneous (Polo et al., 2010). Homogeneous clusters means that the nodes in the 

cluster have similar resources such as CPU, memory, storage and networking 

capabilities, whereas, heterogeneous clusters, consist of different resources with the 

nodes in terms of CPU, memory, storage or communication speeds (Lopes & Menascé, 

2015) (Zaharia et al., 2008).  

Although, MapReduce can achieve better performance with the allocation of more 

compute nodes from the cloud to speed up computation; however, this approach of 

“renting more nodes” is less effective in particular the cost in a pay-as-you-go 

environment (Jiang et al., 2010). Furthermore, MapReduce adopts a runtime scheduling 

scheme. The scheduler assigns data blocks to the available nodes for processing one at a 

time. This scheduling strategy introduces runtime cost and may slow down the 

execution of the MapReduce job (Jiang et al., 2010) as shown in Figure 1-1. In these 

situations, both the time to complete the jobs and the cost of the resources allocated 

should be taken into account.  
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Figure 1-1: Exemplifies the big data scheduling process using the Hadoop 

system 

The scenario illustrated in Figure 1-1, exemplifies the big data scheduling process using 

the MapReduce in a cloud computing environment. The tasks are divided across many 

virtual nodes in the cloud to be executed in parallel. However, it is possible that a few 

nodes slow down the overall execution of the tasks. The execution of the tasks may be 

slow due to various reasons such as software misconfiguration and hardware 

degradation. When the client submits the jobs to the master node, the jobs will be 

broken down into tasks. These tasks will be executed by the worker nodes in which the 

total execution is dominated by the slowest worker nodes in the cluster.  

Given the limitations stated above, we believe that a multi-objective approach is more 

appropriate for the scheduling tasks in MapReduce. 
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1.5 Aims and objectives 

The aim of the research is to propose an optimization model for scheduling in big data 

platform. To achieve the aim of this research, the following objectives need to be 

accomplished:  

a) To study the research advancements of the domain of big data and identify the 

key issues with respect to scheduling in big data platforms.  

b) To investigate the time and cost trade-off to explore the space alternative 

schedules using genetic algorithms.  

c) To design a new optimization model based upon a multi-objective scheduling 

algorithm to minimize time and cost in a heterogeneous cloud environment.  

d) To evaluate the performance of a proposed algorithm by validating it with 

current scheduling algorithms in different scenarios. 

The primary objective of this thesis is to develop a multi-objective task scheduling 

model. The aim is to minimize two different objectives: completion time and a total 

budget of each node in the cloud. Two stages are identified to achieve the goal. The 

first, being the construction of the model. The second stage, being the application of 

multi-objective genetic algorithms, adopts genetic algorithms. Moreover, the trade-off 

solutions of Makespan and cost computed by sorting genetic algorithm II (NSGA-II) 

and Strength Pareto Evolutionary Algorithm 2 (SPEA2) are analyzed based on different 

workflow in order to find an optimal solution between the two conflicting objectives. 

The classic one point crossover operator is used, which is important for the creation of 

the children. Also, two columns are randomly selected during the mutation operator and 

in a ranking operation, different solutions assigned belong to many dominated fronts. 

The analysis of the models is carried out using genetic algorithms. It is well known that 

multi-objective genetic algorithms are among the most useful approaches for multi-
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objective. For computational experiments, randomly non-dominated solutions for each 

job are generated using testbed. These non-dominated solutions generated during the 

experiment are copied to the Pareto archive. The above-mentioned objectives are based 

on the research activities carried out in this study; in next section, the structure of the 

study is introduced.  

1.6 Thesis Structure 

Chapter 2 aims to survey the research undertaken in the field of scheduling in big data 

platforms. The chapter provides knowledge of scheduling in big data to identify the key 

issues with respect to scheduling and requirements for scheduling in big data platforms 

such as data locality, SLA-based, load balancing, time, cost, and scheduling. Moreover, 

this chapter highlights the scheduling algorithms for big data and investigates the 

related scheduling algorithms. This section discusses several approaches to the 

scheduling problem. These approaches consider different scenarios, which take into 

account the application types, the execution platform, the type of algorithms used and 

the various constraints that might be imposed. Moreover, the chapter discusses the 

multi-objective optimization by focusing on genetic algorithms like NSGA-II and 

SPEA2. 

Chapter 3 presents a review of the research conducted within the framework of 

MapReduce in solving problems of scheduling. Experimental results of the comparison 

between Hadoop physical cluster and cloud cluster is provided. The chapter also 

provides problem definition and introduces time with a budget constraint model and 

cost with deadline constraint model.  

Chapter 4 presents a new proposed framework for multi-objective algorithms, which try 

to identify the importance of resource allocation and task scheduling in the cloud, by 

considering both completion time and the cost minimization models. The proposed 
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framework algorithm is designed based on the combination of two main models which 

are adaptive control and cost decision module in order to meet performance goals and 

maximize the efficiency of a Hadoop cluster in the cloud. Also, to establish the 

relationship between resource allocation and task scheduling, new scheduling 

algorithms are proposed. This combination of the resource allocation and task 

scheduling helps in achieving one of the objectives of this study. Moreover, beside the 

main objective to propose new scheduling algorithm, the algorithms also address the 

limitation of the resource allocation and task scheduling, which was identified in 

previous chapters. 

Chapter 5 presents a proposed multi-objective scheduling algorithm; it is important to 

design a systematic evaluation procedure in order to provide a verification of its use. 

This chapter offers performance evaluation and statistical modeling based on the 

proposed algorithm which aims to compare it regarding the performance with other 

algorithms from throughput and execution time perspective. First, the chapter provides a 

description of big data benchmarks that used for the evaluation of the proposed 

algorithm. Second, the simulation environment is described in details. Then, statistical 

analysis that is derived for validation of the findings is described. A series of 

experiments to show platform-independence of our proposed solution is described and 

the comparative study that is designed to demonstrate the proposed algorithm regarding 

throughput and execution time is described. Finally, the chapter investigates the 

performance of the proposed algorithm by comparing with the most used algorithms: 

FIFO and Fair. 

Chapter 6 concludes the major contributions of the thesis. It also outlines the limitations 

and opportunities to further improve or extend the work presented in the thesis. To this 
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end, this thesis stands as a substantial effort to optimize big data scheduling in the cloud 

from two dimensions simultaneously, including resource allocation and task scheduling.  

Univ
ers

ity
 of

 M
ala

ya



11 

 

CHAPTER 2: OVERVIEW OF BIG DATA AND SCHEDULING  

Recent trends in big data have shown that the amount of data continues to increase at an 

exponential rate. This trend has inspired many researchers over the past few years to 

explore new research direction of studies related to multiple areas in big data. However, 

only a few research works are available to address the issues of scheduling in big data 

platforms. The big data stored in a distributed fashion require processing in parallel 

(Philip Chen & Zhang, 2014). As a result, the new knowledge and innovation can be 

mined within a reasonable amount of time. Data processing has been successfully 

adopted in some applications (Hsu, 2014), such as data mining, data analytics, scientific 

computation, and search engine. Nevertheless, processing big data has been challenged 

by these applications because of the complexity of the data that should be processed and 

the scalability of the underlying scheduling methods and algorithms that support such 

processes (Labrinidis & Jagadish, 2012). 

Scheduling plays an important role in big data, mainly in reducing the execution time 

and cost for processing. To understand scheduling in big data studies, this chapter 

presents an introduction to the rise of big data in cloud computing and scheduling in big 

data platforms, requirements for big data processing, scheduling algorithms, and multi-

objective optimization, which are close, linked to big data processing studies. This 

chapter begins by giving an introduction to big data in order to establish a solid starting 

point to pursue the proposed study. This chapter also discusses different scheduling 

algorithms used in big data platforms. Moreover, in order to highlight the results of the 

study of the previous survey conducted, the findings are strengthened. Having presented 

the concept of scheduling in big data platforms, various optimization options are 

identified.  
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2.1 Cloud computing 

Cloud computing is a fast-growing technology that has established itself in the next 

generation of IT industry and business. Cloud computing promises reliable software, 

hardware, and infrastructure as a service delivered over the Internet and remote data 

centers (Armbrust et al., 2010). Cloud services have become a powerful architecture to 

perform complex large-scale computing tasks and span a range of IT functions from 

storage and computation to database and application services. The need to store, 

process, and analyze large amounts of datasets has driven many organizations and 

individuals to adopt cloud computing (Huan, 2013). A large number of scientific 

applications for extensive experiments are currently deployed in the cloud and may 

continue to increase because of the lack of available computing facilities in local 

servers, reduced capital costs, and increasing volume of data produced and consumed by 

the experiments (Pandey & Nepal, 2013). In addition, cloud service providers have 

begun to integrate frameworks for parallel data processing in their services to help users 

access to cloud resources and deploy their programs (Warneke & Kao, 2009).  

Cloud computing “is a model for allowing ubiquitous, convenient, and on-demand 

network access to many configured computing resources (e.g., networks, server, 

storage, application, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction” (Peter Mell & Timothy 

Grance, 2011). Cloud computing has several favorable aspects to address the rapid 

growth of economies and technological barriers. Cloud computing provides a total cost 

of ownership and allows organizations to focus on the core business without worrying 

about issues, such as infrastructure, flexibility, and availability of resources (Giuseppe 

et al., 2013). Moreover, combining the cloud computing utility model and a rich set of 

computations, infrastructures, and storage cloud services offers a highly attractive 

environment where scientists can perform their experiments (Gunarathne et al., 2013).  
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2.2 The relationship between cloud and big data 

Cloud computing and big data are conjoined. Big data provide users the ability to use 

commodity computing to process distributed queries across multiple datasets and return 

resultant sets in a timely manner. Cloud computing provides the underlying engine 

through the use of Hadoop, a class of distributed data processing platforms. The use of 

cloud computing in big data is shown in Figure 2-1. A large data source from the cloud 

and Web are stored in a distributed fault-tolerant database and processed through a 

programming model for large data sets with a parallel distributed algorithm in a cluster.  

 

Figure 2-1: Cloud computing usage in big data 
 

Furthermore, cloud computing is correlated with a new pattern for the provision of 

computing infrastructure and big data processing method for all types of resources 

available in the cloud through data analysis. Several cloud-based technologies have 

coped with this new environment, however, dealing with big data for concurrent 

processing has become increasingly complicated (Ji et al., 2012). MapReduce (Dean & 
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Ghemawat, 2008) is a good example of big data processing in a cloud environment; it 

allows for the processing of large amounts of data sets stored in parallel in the cluster. 

Cluster computing exhibits good performance in distributed system environments, such 

as computer power, storage, and network communications. Likewise, (Bollier & 

Firestone, 2010) emphasized the ability of cluster computing to provide a hospitable 

context for data growth. Tables 2-1 show the comparison of several big data cloud 

providers. 

Table 2-1: Comparison of several big data cloud platforms 

 Google Microsoft  Amazon Cloudera 
Big data 
storage  

Google cloud 
services 

Azure  S3  

MapReduce AppEngine  Hadoop on Azure Elastic 
MapReduce 
(Hadoop) 

MapReduce 
YARN 

Big data 
analytics 

BigQuery Hadoop on Azure Elastic 
MapReduce 
(Hadoop) 

Elastic 
MapReduce 
(Hadoop 

Relational 
database 

Cloud SQL SQL Azure MySQL or Oracle MySQL, 
Oracle, 
PostgreSQL 

NoSQL 
database  

AppEngine 
Datastore 

Table storage DynamoDB Apache 
Accumulo 

Streaming 
processing  

Search API Streaminsight Nothing 
prepackaged 

Apache 
Spark 

Machine 
Learning  

Prediction 
API 

Hadoop + Mahout Hadoop + Mahout  Hadoop + 
Oryx 

Data import Network Network Network Network 
Data Sources  A few sample 

datasets 
Windows Azure 
marketplace  

Public Datasets Public 
Datasets 

Availability  Some services 
in private beta 

Some services in 
private beta 

Public production Industries 

 

2.3 Big data scheduling challenge 

Although cloud computing has been broadly accepted by many organizations, research 

on big data in the cloud remains in its early stages. A few attempts have been made to 

address the issues of big data. Moreover, new challenges continue to emerge from 

applications by the organisations. In the subsequent sections, some of the key research 

challenges related to scheduling are highlighted.  
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 The continuous increase in computational capacity over the past years has produced an 

overwhelming flow of data or big data, which exceeds the capabilities of conventional 

processing tools. Big data signify a new era in data exploration and utilization. The 

MapReduce computational paradigm is a major enabler for underlying numerous big 

data platforms. MapReduce is a popular tool for the distributed and scalable processing 

of big data. It is increasingly being used in different applications primarily because of 

its important features, including scalability, fault tolerance, ease of programming, and 

flexibility. The impact on data processing and analytics is the need to re-think the 

approaches and solutions to better performance. In this context, scheduling models and 

algorithms have an important role, which based on a large variety of solutions for 

specific applications. Scheduling in big data offers an important contribution to the big 

data optimization, particularly in reducing execution time during the processing by 

schedule resources and tasks to minimize job completion times (Pop & Cristea, 2015). 

Scheduling has been widely explored from various aspects by many researchers in 

recent years. However, most former research work mainly considers optimized designed 

of algorithms and frameworks under a relatively a homogeneous environment. 

Moreover, numerous mechanisms are used for resource allocation in the cloud, which is 

heterogeneous and widely distributed (Pop & Cristea, 2015). Although many scheduling 

methods are used in big data processing frameworks; however, find the best method for 

a particular processing request remains a significant challenge.  

Based on our discussion above on the big data challenge, we summarize that there are 

several key research challenges related to big data such as scalability, availability, 

quality, heterogeneity, privacy, governance, and scheduling.  
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Before discussing scheduling big data platforms and its algorithms, first, the brief 

MapReduce and its implementation systems are provided to understand the state-of-the-

art framework. The following section provides an overview of Hadoop MapReduce. 

2.4 Apache Hadoop 

Hadoop (Hadoop, 2011) (Shvachko et al., 2010) is an open-source Apache Software 

Foundation (ASF) project written in Java that provides cost-effective, scalable 

infrastructure for the distributed processing of large datasets across clusters of the 

commodity.  

Hadoop was "inspired" by Google File System GFS (Ghemawat et al., 2003) and 

Google's MapReduce distributed computing environment. Initially, started as a 

distributed Nutch search engine project and named by developer Doug Cutting after his 

son's toy elephant (White, 2009). It has been successfully used for processing highly 

distributable problems across a large amount datasets using commonly available servers 

in a very large cluster, where each server has a set of inexpensive internal disk drives. 

The current Hadoop project consists of two main modules, that is, the distributed file 

system called Hadoop Distributed File System (HDFS) and MapReduce engine.  

2.4.1 HDFS 

HDFS is an open source version of the Google’s GFS designed to run on commodity 

hardware. Like other Hadoop-related technologies, HDFS have become a key tool for 

managing pools of big data and supporting big data analytics applications and also is a 

highly fault-tolerant and is designed to be deployed on low-cost hardware. HDFS is a 

Master/Slaver architecture illustrated in Figure 2-2, consisting of NameNode called 

master, Secondary NameNode called checkpoint, and several DataNode called slaves. 

NameNode is the controller that handles all files system operations; hence, any request 

that comes to the file system such as create, delete, and read a file goes through it. The 
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meta-data are present in the NameNode, which registers attributes such as access times, 

modification, permission, and disk space quotas. NameNode also handles block 

mappings. In particular, the file is divided into blocks (Default 64MB), in which each 

block is independently replicated across DataNode for redundancy and periodically 

sends a report of all existing blocks to the NameNode. DataNode manages the block 

creation, deletion, and replication upon the instruction from the NameNode. The cluster 

may incorporate thousands of DataNode and tens of thousands of HDFS clients per 

cluster given that each DataNode may concurrently execute multiple application tasks. 

 

Figure 2-2: HDFS Architecture 
 

Moreover, DataNode sends a Heartbeat message to the NameNode periodically, the 

default heartbeats interval is three seconds. If the NameNode is unable to detect 

heartbeat message due to loss of connectivity between the NameNode and DataNode. 

The NameNode consider being out of service and the block replicas hosted by that 

DataNode to be unavailable or dead and does not forward any new requests to that 

particular DataNode. The NameNode then schedules the creation of new replicas of 
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those blocks on other DataNode. Meanwhile, the job of the Secondary NameNode is not 

to be secondary to the NameNode, but only to periodically read the file system changes 

log and provides backup for the former, thereby updating it. In the larger cluster 

environment, Secondary NameNode usually runs on a different machine than the 

primary NameNode since its memory requirements are on the same order as the primary 

NameNode. This task enables NameNode to start up faster next time. 

2.4.2 Hadoop MapReduce 

MapReduce engine comprises several components as shown in Figure 2-3. In particular, 

the main component is job client, which submits the job to the clusters. Job tracker 

oversees the task tracker and provides execution plans, coordinates the jobs, and 

schedules them across the task tracker. Meanwhile, task tracker breaks down the jobs 

into Map and Reduce tasks. Each task record has slots for execution map, gradually 

reduces, and reports the progress. 

 

Figure 2-3: MapReduce architecture 
 

Then the input data are divided into input splits based on the input format. Input splits 

equate to a map task, which runs in parallel. Input format determines how the files are 
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parsed into the MapReduce pipeline. Map transforms the input splits into intermediate 

key/value pairs based on the user-defined code. Shuffle and sort: moves intermediate 

key/value pairs outputs to the reducers and sorts them by the key. The reducer merges 

all pairs associated with the same (intermediate) key and then generates an output based 

on the user-defined code.  

Job scheduling in Hadoop is performed by a master node, which manages many worker 

nodes in the cluster. Each worker has a fixed number of map slots and reduces slots, 

which can run the map and reduce tasks respectively. The number of maps and reduce 

slots is statically configured. Based on the availability of free slots and the scheduling 

policy, the master assigns map and reduce tasks to slots in the cluster (Z. Zhang et al., 

2013).  

 
2.5 Scheduling in big data platforms 

A few attempts have been made in the recent past to study scheduling in big data 

platforms. The report by (Tiwari et al., 2015) provides a comprehensive and structured 

survey of scheduling algorithms used for big data platforms. The study proposed a 

multidimensional classification framework based on quality requirements, scheduling 

entities and the adaptation of dynamic environments. Moreover, there has been a lot of 

work published related to scheduling big data in MapReduce, which all aim to improve 

the performance of big data platforms (Dean & Ghemawat, 2008, 2010; Doulkeridis & 

Nørvåg, 2014; J.-J. Li et al., 2011; Sakr et al., 2013). However, there are still areas to 

explore, particularly with respect to scheduling and resources management in cloud 

heterogeneous environments. Existing studies have so far focused on reducing the 

execution time, overhead, resource consumption and data locality (Z. Guo, G. Fox, M. 

Zhou, et al., 2012; Zaharia et al., 2008; X. Zhang et al., 2011). The studies on 

scheduling in big data have been classified into three: data storage, processing engine, 

and resource manager.  
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(i) Data storage: The rapid growth of data has restricted the capability of existing 

storage technologies to store and manage data. Over the past few years, traditional 

storage systems have been utilized to store data through structured RDBMS (M. Chen et 

al., 2014a). However, most storage systems have limitations and are inapplicable to the 

storage and management of big data. A storage architecture that can be accessed in a 

highly efficient manner while achieving availability and reliability is required to store 

and manage large datasets. 

Several storage technologies have been developed to meet the demands of massive data. 

Existing technologies can be classified as direct attached storage (DAS), network 

attached storage (NAS), and storage area network (SAN). In DAS, various hard disk 

drives (HDDs) are directly connected to the servers. Each HDD receives a certain 

amount of input/output (I/O) resource, which is managed by individual applications. 

Therefore, DAS is suitable only for servers that are interconnected on a small scale. 

Given the aforesaid low scalability, storage capacity is increased but expandability and 

upgradeability are limited significantly. NAS is a storage device that supports a 

network. NAS is connected directly to a network through a switch or hub via TCP/IP 

protocols. In NAS, data are transferred as files. Given that the NAS server can indirectly 

access a storage device through networks, the I/O burden on a NAS server is 

significantly lighter than that on a DAS server. NAS can orient networks, particularly 

scalable and bandwidth-intensive networks. Such networks include high-speed networks 

of optical-fiber connections. The SAN system of data storage is independent with 

respect to storage on the local area network (LAN). Multipath data switching is 

conducted among internal nodes to maximize data management and sharing. The 

organizational systems of data storages (DAS, NAS, and SAN) can be divided into three 

parts: (i) disc array, where the foundation of a storage system provides the fundamental 

guarantee, (ii) connection and network subsystems, which connect one or more disc 
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arrays and servers, and (iii) storage management software, which oversees data sharing, 

storage management, and disaster recovery tasks for multiple servers. 

(ii) Processing engine: MapReduce accelerates the processing of large amounts of data 

in a cloud; thus, MapReduce, is the preferred computation model of cloud providers 

(Zhifeng & Yang, 2013). MapReduce is a popular cloud computing framework that 

robotically performs scalable distributed applications (Srirama et al., 2012) and 

provides an interface that allows for parallelization and distributed computing in a 

cluster of servers (O'Leary, 2013). (Srirama et al., 2012) presented an approach to apply 

scientific computing problems to the MapReduce framework where scientists can 

efficiently utilize existing resources in the cloud to solve computationally large-scale 

scientific data. Currently, many alternative solutions are available to deploy MapReduce 

in cloud environments; these solutions include using cloud MapReduce runtimes that 

maximize cloud infrastructure services, using MapReduce as a service, or setting up 

one’s own MapReduce cluster in cloud instances (Gunarathne et al., 2010). Several 

strategies have been proposed to improve the performance of big data processing. 

Moreover, the effort has been exerted to develop SQL interfaces in the MapReduce 

framework to assist programmers who prefer to use SQL as a high-level language to 

express their task while leaving all of the execution optimization details to the backend 

engine (Sakr et al., 2013). Table 10 shows a summary of several SQL interfaces in the 

MapReduce framework available in existing literature. 

(iii) Resource manager: Resource manager allows data and computational resources to 

be shared and accessed by the nodes in the cluster (Vavilapalli et al., 2013). There exist 

some important resource management studies related to big data scheduling as below: 

 (a) Adaptive resource management: The resource manager considers data, physical 

resources, and workload while taking scheduling decisions (Tiwari et al., 2015), this 
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include fair share (Zaharia, 2009), capacity (Zaharia, 2009) , delay (Tan et al., 2012; 

Zaharia et al., 2010), and resource-aware (Polo et al., 2011; Sousa et al.), which all aim 

to reduce the completion time and resource consumption in distributed environment.  

(b) Non-adaptive resource management: The resource manager assigns jobs/tasks a 

fixed number of resources at runtime. For example, FIFO (Hadoop), is the default 

Hadoop scheduler and the most popular algorithm in the non-adaptive scheduling of 

Hadoop. Possibly the most straightforward approach to schedule task is to maintain a 

FIFO run queue based on policies or the solution of some optimization problems.  

The requirements of scheduling in big data platforms require a cluster resource 

management, scheduling, and execution engines, which based on new information 

processing frameworks that include applications and the storage resources. This 

requirement encompasses the need to share resources and decide when tasks run. The 

general requirements for scheduling in big data can be described are as follows:  

(a) Data locality. Data locality is defined as how close the compute and input data are, 

and it has different levels – node-level, rack-level, etc. Data locality is one of the most 

important factors considered by schedulers in data parallel systems (Herodotou et al., 

2011). Hadoop MapReduce determines whether cluster/rack is being scheduled based 

on the availability of the data locally. It assumes that nodes within the same rack have 

higher bandwidth than those that are not resident in the same cluster. Knowing this, the 

scheduler can simply increase data locality for tasks. Good data locality reduces cross-

switch network traffic - one of the bottlenecks in data-intensive computing (Z. Guo, G. 

Fox, & M. Zhou, 2012). Some scheduling policies in Hadoop consider the effect of data 

locality, which can be classified as cluster and rack (Park et al., 2012) (J.-J. Li et al., 

2011). For instance, to assign map tasks to a node, the Hadoop default FIFO chooses the 

job from the queue and schedule its local map tasks. When the job does not have any 

Univ
ers

ity
 of

 M
ala

ya



23 

 

map task locally, it will be assigned to the non-local map in the cluster (He et al., 2011). 

Furthermore, (Abad et al., 2011) proposed a distributed adaptive data replication 

algorithm that helps the scheduler to achieve better data locality. The advantages of this 

approach are to allow many replicas to be allocated for each file and make use of 

probabilistic sampling and a competitive aging algorithm independently at each node. 

(X. Zhang et al., 2011) emphasizes on data locality problem of MapReduce. The author 

introduces a next-k-node scheduling method, which has implemented in Hadoop-0.20.2. 

Also, (J. Jin et al., 2011) suggest that initial task allocation is produced first before the 

job completion time can be reduced gradually. The author introduces a heuristic task 

scheduling algorithm called BAlance-Reduce (BAR), which adjust data locality 

dynamically according to network state and cluster workload by tuning the initial task 

allocation using a global view. The experimental result of the algorithm shows that 

BAR is able to outperform previous related algorithms in terms of the job completion 

time and deal with large problem instances in a few seconds. 

(b) SLA-based. Scheduling Hadoop tasks in virtual machines in the cloud demand 

resources of the cloud, typically, users are aware of the deadline of when the job is 

completed (Wu et al., 2011). However, in a cloud computing environment, all machines 

compete for resources to execute the jobs (Buyya et al., 2009). These resources are 

controlled by batch queue systems, which may not offer guarantee deadline during the 

task execution, only if the priority used for resource reservation which is a restricted 

level of service. 

(c) Load balancing. Load balancing is one of the scheduling methods, which provides 

the cluster with the share of the load of the resources between all the machines 

participate in the cluster and obtain the best performance for distributed task scheduling 

systems (Fang et al., 2010; K. Wang et al., 2014). However, some resources may not 
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match with tasks properties which are a challenging requirement need to be considered. 

Many approaches has been developed to tackle this issue including round-robin 

scheduling (Shreedhar & Varghese, 1996; K. Wang et al., 2014), however, new 

approaches that cope with large scale and heterogeneous systems is proposed such as 

slow start time (Khiyaita et al., 2012), agent-based adaptive balancing (Q. Long et al., 

2011) and least connections (McGuire, 2006). 

(d) Time. In a heterogeneous environment, cluster usually contains nodes with different 

computing capacity in which some of the nodes may poorly perform a task execution; 

this can create some challenges to the overall execution time. Hadoop assumes that all 

the machines are homogeneous, but as a matter of fact, in most cases, machines are not 

homogeneous, especially in a cloud computing environment where the hardware could 

be in different generations and virtualized data center as the uncontrollable several of 

virtualized resources. The scheduler should improve the performance of scheduled jobs 

as much as possible using different heuristics and state estimation suitable for specific 

task models. Multitasking systems can process multiple datasets for multiple users at the 

same time by mapping the tasks to resources in a way that optimizes their use.  

(e) Cost. The cost implemented in the cloud is pay-as-you-go model, where the services 

are charged as per the QoS requirements of the users. The resources in the cloud, such 

as network bandwidth and storage are charged at a specific rate (Hussain et al., 2013). 

Thus, the cost has become an important objective in big data cloud scheduling research. 

The total cost incurred by processing big data can comprise many cost components such 

as compute cost and data transfer cost. Cloud computing providers lease computing 

resources that are typically charged based on a per time quantum pricing scheme. 

Hence, the scheduler should lower the total cost of execution by minimizing the total 

number of resources used and respect the total money budget. This aspect requires 
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efficient resource usage and can be done by optimizing the execution of mixed tasks 

using the high-performance queuing system and by reducing the computation and 

communication overhead. Table 2-2 shows the comparison of scheduling algorithms 

that are based on the single objective optimization approach.  

Table 2-2 A summary of scheduling algorithms based on a single objective 
optimization approach 

Algorithm  Requirements Constraints 
FIFO (Hadoop, 
2011) 

Execution time Deadline 
Data dependency 

Fair (Hadoop, 
2009) 

Response time, Data locality, and 
Cost 

Data dependency 

Capacity 
(Hadoop) 

Response time, Data locality, and 
cost 

Data dependency 

Delay (Zaharia 
et al., 2010) 

Locality and  
Fairness 

Fairness, Resource usage 

LATE (Zaharia 
et al., 2008) 

Response time, SLA-based The cost to run speculative 
task scheduling is expensive 

Quincy (Isard et 
al., 2009) 

Min-cost flow Resource usage 

MCP (Q. Chen 
et al., 2013) 

Response time, SLA-based The cost of running 
speculative task scheduling is 
expensive 

SHadoop (Gu et 
al., 2014) 

Response time, data locality Throughput Performance 

MRA++ (Anjos 
et al., 2015) 

Perform data intensive computing in 
heterogeneous environments 

Delay 

Maestro 
(Ibrahim et al., 
2012) 

Improving the locality execution of 
map task efficiency, SLA-based and 
Cost 

- 

ARIA (Verma et 
al., 2011) 

Completion time SLO 

 

2.6 Scheduling algorithms for big data 

Several approaches to the scheduling problem have been considered over time. These 

approaches consider different scenarios, which take into account the application types, 

the execution platform, the type of algorithms used and the various constraints that 

might be imposed. The existing schedules suitable for large environments and also big 

data platforms are as follows:  
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(a) Fair scheduler. A fair scheduler is a method of assigning equal resources for jobs in 

a Hadoop cluster by helping small tasks to run in parallel with other tasks that requires 

more CPU time. Fair scheduler developed by Facebook and subsequently released to the 

Apache Hadoop community. Unlike the default Hadoop scheduler, which forms a queue 

of jobs, fair scheduler allows an equal share of the cluster capacity between pools over 

time. With each pool allocated a guaranteed minimum number of Map and Reduce 

slots. When a new job is submitted, idle resources in the pool are assigned to that new 

job, so that each job ultimately gets approximately the same amount of resources. It 

uses priorities applied as weights to manage the fraction of total resources for each job 

assigned over time. Moreover, fair scheduler support preemption where jobs are 

dismissed from pools for a certain period of time. For example, all the tasks that are 

belonging to a particular job will be allocated to slots for computation. Subsequently, 

the scheduler checks the time deficit against the ideal fair allocation for that job (Rao & 

Reddy, 2012). As soon as the slots freed for the next scheduling of the task with the 

highest time deficit, it will be assigned to the available slot. Gradually, such process will 

have an effect of guaranteeing that the jobs get roughly equal amounts of resources. The 

jobs with a small number of tasks allocate sufficient resources in order to finish the 

tasks very fast. However, the problem with such schedule is the resource congestion 

when dealing with a lot of numbers of tasks.  

(b) Capacity scheduling. Capacity scheduling is originally developed at yahoo to run 

Hadoop applications as a shared, where the fair allocation of computational resource is 

critical to the user. The main idea is that Hadoop Map-Reduce cluster is partitioned 

using the available resources between users who collectively use the cluster based on 

computing needs. Besides, the capacity scheduler is similar to the fair scheduler; it uses 

a queue to allocate jobs to users, but with the major difference of using prioritized queue 

jobs. Each queue is given a configured capacity, which contents a scheduling that 
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operates on a modified priority queue basis with specific user limits. The queue with the 

least number of jobs is selected if the slot becomes available in order to schedule the 

task for that job. Generally, this may have an impact on the cluster capacity sharing 

among users than among jobs, as was the case in the Fair Scheduler. 

(c) Delay scheduling. Delay scheduling (Zaharia et al., 2010) is used to improve data 

locality in MapReduce, in a situation where there is a conflict between fairness in 

scheduling and data locality. The idea is that if the next jobs can be scheduled according 

to fairness, then that job cannot launch local tasks. Such solution is suitable if the jobs 

to be scheduled are less and the task is not been scheduled locally. Thus, delaying its 

scheduling time can significantly improve data locality. The result shows that delay 

scheduling can achieve nearly optimal data locality and its outperformance fair sharing 

by its simplicity under a wide variety of scheduling policies. Also, (Tan et al., 2012) 

suggest an analytically tractable model under different schedulers such as default FIFO 

Scheduler and the popular Fair Scheduler for job processing delay distribution in 

MapReduce. 

(d) Maestro. (Ibrahim et al., 2012) proposed scheduling algorithm named Maestro, 

which, is designed to improve the performance of the MapReduce computation. The 

current Hadoop schedulers perform inefficient scheduling of map tasks by degrading the 

replicas distribution. Maestro scheduler has two objectives; first, each data node is 

equipped with the empty slots based on the replication scheme for their input data and 

the number of hosted map tasks. Secondly, it considers the runtime of each scheduling 

tasks and the replicas of the task’s input data determine the scheduling of the map task 

on a particular node. With these objectives, the scheduler can achieve a higher locality 

of the map tasks and also balanced intermediate data distribution for the shuffling 
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phase. The results of presenting Maestro algorithm are very promising compared to the 

current Hadoop scheduler. 

(e) SHadoop (Gu et al., 2014) is a scheduling method used for improving the 

performance of Hadoop MapReduce by optimizing the job and task execution 

mechanism. SHadoop incorporates the following main optimization approaches: (1) 

Optimizing the job initialization and termination stages, thereby shortening the startup 

and cleanup time of all jobs; (2) providing an instant messaging communication 

mechanism for efficient critical event notification that can benefit the majority of the 

short jobs with large deployment or many tasks. However, such optimization may 

induce a little more burden to the JobTracker because it needs to create and delete an 

empty temporary directory for each job. Compared with the standard Hadoop, SHadoop 

can averagely achieve 25 percent of performance improvement for various tested 

Hadoop benchmark jobs and Hive applications. 

(f) Quincy (Isard et al., 2009) addresses the problem of scheduling jobs on distributed 

computing clusters that are close to application data stored on the computing node. Each 

job in the node is managed by a root task that is assigned by the scheduler in the cluster. 

Such node is responsible for submitting a list of the worker to the schedule in which 

these works have no dependency relationship. For each worker, the root is calculated 

based on the preference list of computers and racks that have a high rate of data in the 

computer in the rack of computers. Quincy originally designed for DryadLing, but it can 

be applied to other systems such as MapReduce. The system implemented the concept 

of the queue based on the hierarchical nature of the cloud networks to allow data to be 

executed locally and close to computation. Queues exist for machines, racks, and the 

system. This system works well when data locality is even and job lengths are 

approximately equal. 
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(g) ARIA (Verma et al., 2011) is a framework for addressing the problem of job 

scheduler in MapReduce environment. This framework consists of three components, 

which are as follows: (i) Job profile of continuing executing jobs; (ii) MapReduce for a 

particular job; and (iii) time to execute the tasks based on the amount of the resource 

estimated for a specific job with a time frame. Moreover, a novel SLO-based schedule 

has been proposed by the authors in order to select job ordering and the amount of 

resources to be allocated for meeting the job deadline. Resource allocations can be 

increased by expediting job completion and can be realized during the Map and Reduce 

stages.  

(h) MRA++ (Anjos et al., 2015) has been presented as a scheduling and data placement 

framework design on MapReduce that is suitable for the heterogeneous environment. 

MRA++ adapts the amount of data processed during the Map phase to the distributed 

computing capability of the computers. Based on the sum granularity factors, the 

reduced data is partitioned into smaller sizes. This signifies that the fastest computers 

process more data than the slower ones (i.e. the efficiency of the computer depends on 

its configurations). The idea behind this framework is to efficiently perform intensive 

data computation in a heterogeneous environment. The system consists of two main 

features, including task scheduling job control and the heterogeneity of nodes during 

data distribution. Moreover, the implementation proposed in MRA++ is concerned 

about whether the workload can be adapted to the computing capability of each 

machine.  

(i) Throughput Scheduler: (Gupta et al., 2013) proposed throughput scheduler which 

reduces the overall job completion time on clusters of heterogeneous nodes. The idea is, 

the scheduler uses optimal matching job requirements to actively schedule the tasks 

based on the node capabilities. Node capabilities are learned by running probe jobs on 
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the cluster. The scheduler utilizes two methods: a Bayesian and active learning scheme 

to learn the resource requirements of job on-the-fly. The result showed that throughput 

scheduler can reduce average mapping time by 33% compared to other Hadoop 

schedulers.  

According to the scheduling strategy discussion on the current research improvement, 

we summarize the implementation approach and limitations for MapReduce scheduling 

algorithms in Table 2-3. For each work, we present the objective of the algorithm, the 

implementation approach and the limitation of each algorithm. We observe that most of 

the algorithms are a focus on improving the performance of jobs or tasks scheduling. On 

the basis of our analysis, we anticipate, gradually the challenges can be reduced to 

achieve accurate scheduling algorithm by exploring the underlying research progress on 

scheduling.  

Table 2-3: Summary of MapReduce scheduling algorithms 

Algorithm Objectives Implementation 

approach 

Limitation 

FCFS To minimize the 

completion time 

• Run a queue 

• Compare each 

task’s progress to 

the average 

progress.  

• Designed only for 

the single type of a 

job. 

• Low performance 

when running 

multiple jobs. 

• Poor response times 

for short jobs 

compared to large 

jobs. 

LATE To improve 

response time for 

short jobs.  

Progress rate is 

calculated by dividing 

the progress score 

• Only takes action on 

appropriate slow 

tasks.  

• 2. However, it does 
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not compute the 

remaining time for 

tasks correctly, and 

cannot find real slow 

tasks in the end.  

• Poor performance 

due to the static 

manner in computing 

the progress of the 

tasks 

Quincy Reduce the 

scheduling 

problem to the 

min-cost flow 

problem 

Fairness and data 

locality  

• Resource sharing  

• Predictability and 

consequently 

fairness  

 

 

MCP Improves the 

effectiveness of 

speculative 

execution 

Both the progress rate 

and the bandwidth are 

used within a phase to 

select slow tasks. 

Exponentially 

weighted moving 

average is used to 

predict process speed 

and calculate a task’s 

remaining time, and 

Determine which 

the task to backup 

based on the load on a 

cluster using a cost-

benefit model 

Poor performance due to 

the static manner in 

computing the progress 

of the tasks 

SHadoop Improving the 

performance of 

job and task 

• Optimize the setup 

and cleanup tasks 

• Messaging 

• Hadoop cluster can 

only be statically 

configured. 
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optimizing the job 

and task 

execution.  

communication 

mechanism 

• It does not work 

well in 

heterogeneous  

MRA++ Develop 

algorithms allow 

the use of data-

intensive 

applications in 

large-scale 

environments 

with the use of 

the internet 

• Grouping,  

• Data distribution  

• Task scheduling 

• Low 

performance 

when running 

multiple types of 

jobs. 

 

Maestro Improve the 

overall 

performance of 

MapReduce 

computation 

Using a replica-aware 

execution of map 

tasks 

Maestro algorithm can 

only be statically 

configured. 

 

ARIA To provides 

scheduler 

mechanism for 

job completion 

deadline. 

Uses job profiles and a 

soft deadline that 

determines job 

ordering and many 

resources to allocate 

for meeting the job 

deadlines. 

 

It does not consider node 

failures.  

Flex To optimize any 

of the variety 

of standard 

scheduling theory 

metrics 

Flexible scheduling 

allocation scheme. 

 

Schemes are very metric 

dependent 

 
2.7 Resource scheduling frameworks  

During the last decade, a lot of resource allocation and job scheduling frameworks have 

emerged and also become popular, including Yarn, Mesos, and Corona. Table 2-4 
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shows a comparison of MapReduce default, Yarn, Mesos and Corona scheduling 

frameworks.  

Table 2-4: A comparison of resources scheduling frameworks 
Features  MapReduce  YARN  Mesos  Corona  
Resources  Request-based Request-

based 
Offer-based Push-based 

Scheduling  Memory  Memory  Memory/CPU Memory/CPU/Disk 
Cluster 
utilization 

Low  High High High 

Fairness No Yes Yes Yes 
Job latency High  Low Low Low 
Scalability Medium  High High High 
Computation 
model  

Job/task-based Cluster-
based 

Cluster-based Slot-based 

Language  Java Java C++ - 
Platform Apache Hadoop Apache 

Hadoop 
Cross-
platform 

Cross-platform 

Open Source Yes Yes Yes Yes 
Developer ASF ASF ASF Facebook 

 

(a) YARN (Vavilapalli et al., 2013) is a resource manager that represents a generational 

shift in the architecture of Apache Hadoop. It utilizes the MapReduce programming 

framework by default to perform efficient data processing by separating the processing 

engine and resource management capabilities of MapReduce. Hence, it makes the 

Hadoop environment highly suitable for operational applications that cannot wait for 

batch jobs to be completed. This feature simplifies the support of maintaining a multi-

tenant environment, managing and monitoring workloads, implementing security 

controls, cluster utilization and providing high- scalability for Hadoop framework. 

Moreover, YARN enables programmers to design and implement distributed 

frameworks while sharing a common set of resources and data (Murthy et al., 2013). A 

resource manager, the central entity of YARN, employs a node manager to launch 

containers that could either map or reduce tasks and monitor the operations of 

individual cluster nodes. When a job request comes into the YARN resource manager, 

YARN evaluates all the resources available, and it places the job.  
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(c) Apache Mesos (Hindman et al., 2011) is an open source cluster manager, originally 

developed at the University of California at Berkeley to offer effective heterogeneous 

resources isolation and allocation across distributed applications. Apache Mesos is 

being used by many companies such as Twitter, MediaCrossing, Xogito, Airbnb and 

Apple. It offers an abstraction of computing resources (CPU, storage, network, memory, 

and file system) from nodes aiming to deploy and manage applications in large-scale 

clustered environments more efficiently. Mesos adapting features of the modern 

kernel—"cgroups" in Linux, "zones" in Solaris and reside between the operating system 

layer and the applications layer to provide isolation for CPU, memory, I/O, file system, 

rack locality, which allow applications like Hadoop, Spark, Kafka to run dynamically 

across shared pool of nodes. Mesos determines which resources are available, and it 

makes offers back to an application scheduler (Scott, 2015). Those offers can be 

accepted or rejected by the framework. The Hadoop framework uses Mesos-aware 

schedule in order to register against the Mesos master. The Mesos master sends offers 

with available resources to the registered Hadoop. When MapReduce requires launching 

tasks, it replies to the master that it is taking part of the offers to launch the tasks. 

Hadoop often uses a pre-defined set of resources to task for one of its specific tasks 

(d) Corona:  is an extension of the MapReduce framework; it provides high scalability 

and cluster utilization for small tasks. This extension was designed to overcome some of 

the important Facebook challenges, such as scalability, low latency for small jobs, and 

processing needs (Facebook, 2012). Facebook has rewritten its scheduling framework in 

Corona, which is based on a task resource requirement rather than a count of the map 

and reduces tasks. Cluster manager is also introduced in Corona to monitor nodes in the 

cluster and report their available resources. For each job, a dedicated job tracker is 

initialized in either small or large job with a separate process.  
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A list of existing resource scheduling framework and MapReduce scheduling 

algorithms that have been modified into on Hadoop framework is provided in Table 2-5 

below: 

Table 2-5: Modifications induced by existing scheduling approach to 
MapReduce 

System  Modification in Hadoop systems 

Yarn (Vavilapalli 
et al., 2013) 

Yes, build on top of Hadoop to provide resource management 

Mesos (Hindman 
et al., 2011) 

No, runs on every machine and provides applications Hadoop with 
API’s for resource management and scheduling 

Corona (Facebook, 
2012) 

No, separates cluster resource management from job coordination 

FIFO (Hadoop, 
2011) 

Yes, integrated into Hadoop 

Fair scheduler 
(Hadoop, 2009) 

Yes, integrated into Hadoop 

Capacity scheduler 
(Hadoop) 

Yes, integrated into Hadoop 

Late (Zaharia et 
al., 2008) 

No, add-on algorithm uses estimated finish times to speculatively 
execute the tasks that hurt the response time the most 

Quincy (Isard et 
al., 2009) 

No, introduce a powerful and flexible new framework for 
scheduling concurrent distributed jobs with fine-grain resource 
sharing 

MCP (Qi et al., 
2014) 

No, add-on algorithm modified to choose proper worker nodes for 
backup tasks 

SHadoop (Gu et 
al., 2014) 

Yes, integrated into the Intel Distributed Hadoop (IDH) 

MRA++ (Anjos et 
al., 2015) 

No, a new MapReduce framework design that considers the 
heterogeneity of nodes during data distribution, task scheduling, 
and job control 

Maestro (Ibrahim 
et al., 2012) 

No, extension based on replica-aware Map Scheduling 

ARIA (Verma et 
al., 2011) 

No, implemented on top of Hadoop to determine job ordering and 
several resources to allocate for meeting the job deadlines 

Flex (Wolf et al., 
2010) 

No, add-on module 

MTSD (Tang et 
al., 2012) 

No, extensional MapReduce Task Scheduling algorithm for 
Deadline constraints in Hadoop platform 

COSHH (Rasooli 
& Down, 2014) 

No, add-on algorithm considers heterogeneity 

MOMTH (Nita et 
al., 2015) 

No, a tool integrated into Hadoop 

MORM (S.-Q. 
Long et al., 2014) 

Different system  
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2.8 Related Scheduling algorithms  

Essentially the scheduling optimization problems in MapReduce are similar to query 

optimization in RDBMS in two aspects, first, its research space is vast, because of 

different optimization opportunities that cloud computing offers, and second the 

dimension of the optimization is content more than one criterion with the monetary cost 

of using the public cloud being at least as important as completion time (L. Guo et al., 

2012).  

The cloud computing paradigm is different from clusters, in term of the cost model 

(Armbrust et al., 2010; Peter Mell & Tim Grance, 2011). The cluster represents a fixed 

capital investment made up-front and relatively small operational cost paid over time 

(Eisen et al., 1998). On the other hand, clouds are characterized by elasticity and offer 

their users the ability to lease resources only for as long as needed, based on per 

quantum pricing scheme.  

The work on scheduling data processing in distributed computing systems has been 

studied in the current literature. Many taxonomies exist that can present the grounds for 

this study (Casavant & Kuhl, 1988; Rimal et al., 2009; Su et al., 2013; Venugopal et al., 

2006; Yu & Buyya, 2005), especially, the studies on which multi-objective functions 

are involved (Tsai et al., 2013; X. Wang et al., 2014; F. Zhang et al., 2014). The most 

relevant studies related to this study are concerned the time and cost (Bittencourt & 

Madeira, 2011; S.-Q. Long et al., 2014; Nita et al., 2015; Rasooli & Down, 2014).  

Rasooli and Down (2014) propose a job scheduler to improve the performance of 

Hadoop job completion time in a heterogeneous cluster environment which consider 

both the application and cluster level of the system. The schedule is competitive with 

respect to other performance measures such as fairness, locality, and minimum share 

satisfaction. The authors also designed a scheduling algorithm which classifies the job 

Univ
ers

ity
 of

 M
ala

ya



37 

 

based on their requirements and finds an appropriate matching of resources and jobs in 

the system. The classification part detects changes and adapts the classes based on the 

new system parameters. A typical Hadoop scheduler receives two main messages from 

the Hadoop system: a message signaling a new job arrival from a user to store the 

incoming job in an appropriate queue, and a heartbeat message from a free resource by 

triggering the routing process to assign a job.  

Nita et al. (2015) proposed multi-objective scheduling algorithm of many tasks in 

Hadoop for big data processing, named MOMTH. For that reason, two objective 

functions related to users and resources are considered with constraints such as deadline 

and budget. In order to evaluate the algorithm in the scheduling load simulator, a 

collaboration platform known as MobiWay that exposes interoperability between a large 

number of sensing mobile devices and a wide-range of mobility applications is used for 

performance analysis of the MOMTH. The algorithm is compared with FIFO and fair 

schedules and it obtained similar performance for the same approach. 

S.-Q. Long et al. (2014) proposes a multi-objective offline optimization approach for 

replica management, in which we view the various factors influencing replication 

decisions such as mean file unavailability, mean service time, load variance, energy 

consumption and mean access latency as five objectives. It makes decisions about 

replication factor and replication layout with an improved artificial immune algorithm 

that evolves a set of solution candidates through clone, mutation and selection 

processes. The proposed algorithm named Multi-objective Optimized Replication 

Management (MORM) seeks the near optimal solutions by balancing the trade-offs 

among the five optimisation objectives. Table 2.6 shows the comparison of scheduling 

algorithms based on a multi-objective. It shows the objectives of the proposed 
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scheduling algorithms with different constraints. These scheduling algorithms are 

dealing with more than one objective.  

Table 2-6: Comparison of related scheduling algorithms 

Algorithm  Objectives Constraints Minimum 
schedule 
length 

COSHH 
(Rasooli & 
Down, 2014) 

Fairness, locality, and 
minimum share satisfaction 

Heterogeneity Yes 

MOMTH 
(Nita et al., 
2015) 

Avoiding resource contention 
and having an optimal 
workload of the cluster 

Deadline and budget Yes  

MORM (S.-
Q. Long et 
al., 2014) 

Optimized replication 
management  

Load variance, energy 
consumption, and 
Latency. 

Yes 

 

2.9 Multi-objective optimization 

Most real-world scheduling parallel machine optimization problems are multi-objective 

in nature since they possibly have conflicting objectives that must be satisfied at the 

same time using Meta-heuristic algorithms (Deb, 2014; Marler & Arora, 2004). The 

multi-objective optimization problem can be defined as “a vector of decision variables, 

which satisfies constraints and optimizes vector functions from a mathematical 

description of performance criteria which are usually in conflicts with each other”. A 

general multi-objective optimization problem can be formally defined as follows: 

min𝑓(𝑥) = � 𝑓1(𝑥), … …𝑓𝑛(𝑥)� 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑥)  ≤ 0, 𝑖 =  {1, … .𝑚} 

ℎ𝑖(𝑥)  ≤ 0, 𝑗 =  {1, … .𝑝} 

2-2-1 

  

where minimize 𝑓(𝑥) is the convex objective function, 𝑥 is a n-dimensional decision 

variable vector 𝑥 =  (𝑥1, … . 𝑥𝑛), 𝑛 represents the number of objectives to be optimized 

(two in this study, completion time and cost), 𝑔𝑖(𝑥) are the convex inequality constraint 
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functions, and ℎ𝑖(𝑥) are the equality constraint functions which can be expressed in 

linear form 𝑚 + 𝑝.  

Scheduling often requires considering several objectives in an optimization process 

(Marler & Arora, 2004). For example, a trade-off between resource consumption and 

performance while scheduling MapReduce jobs on the cloud. This optimization 

procedure manages two or more objectives functions and is called multi-objective 

optimization (Y. Jin & Sendhoff, 2001). The primary objective is to develop multi-

objective tasks scheduling research flow. Two stages are identified to achieve the goal. 

The first, being the construction of the model. A mathematical model and schedule 

evaluation criteria are established in the next chapter. The second stage, being the 

application of multi-objective genetic algorithms, adopts genetic algorithms. The 

research flow of the chapter is illustrated in Figure 2.4, details of which are explained in 

coming sections.  
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Figure 2-4: Research Flow 

2.9.1 Multi-objective genetic algorithms  

It is well known that multi-objective genetic algorithms are among the most useful 

approaches for multi-objective nonlinear discrete optimization problems. Recent 

research on the applications of evolutionary algorithms to solve the MapReduce job 

scheduling has been reviewed in (Tiwari et al., 2015). 

A genetic algorithm has been successfully used to solve various optimization problems 

using a set of procedures by enabling solutions to be found for the specific problems 

(Horn et al., 1994; Ponnambalam et al., 2000). Generally, a genetic algorithm is parallel 

in nature and so, it suits better to the MapReduce job scheduling problem. A genetic 

algorithm is an optimization technique based on the guided random search mechanism. 

It uses the principle of evolution “Survival of the fittest and inheritance” (Bagchi, 
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1999). Moreover, a genetic algorithm is based on the payoff function to guide the search 

and utilizes the probabilistic transition rules (Goldberg & Holland, 1988). It can 

produce continuous populations of different solutions. These solutions can be 

reproduced until acceptable results are obtained. Meanwhile, the quality of the 

individual solutions for each population is improved.    

Various implementations of genetic algorithms have been used over years such as 

NSGA-II (non-dominated sorting genetic algorithm) (Deb et al., 2002), SPEA2 

(strength Pareto evolutionary algorithm) (Zitzler et al., 2001). Two popular genetic 

algorithms like NSGA-II and SPEA2 are used to solve the problem of the scheduling 

optimization.  

2.9.1.1 NSGA-II algorithm 

NSGA-II is a non-dominated genetic sorting algorithm; which is the updated version of 

the NSGA algorithm and it is widely used to solve the multi-objective optimization 

problem. In 2000 the algorithm was proposed by (Deb et al., 2000) as the first fast, 

reliable and efficient multi-objective genetic algorithm for non-dominated solutions 

using Pareto dominance relationship. NSGA-II uses the elitist principle and explicit 

diversity preserving mechanism. NSGA-II begins with an initial population by 

determining the number of the chromosome, generation as well as mutation and 

crossover rate value. Moreover, the possible solutions of the population are generated 

randomly and evaluation of fitness value of chromosomes is carried out by calculating 

objective functions. Different solutions are realized at each generation in the population, 

selection, crossover, mutation operations and ranking. The parent, child and ranked 

populations are combined in order to select the individuals. If the selecting of the 

individuals stopping criteria met, then the report of the final population is created. 

However, if the criteria do not meet, then the process of selection will start. During the 
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parent selection operation, binary tournament technique can be more suitable. For this 

study, the classic of one point crossover operator is used, which is important for the 

creation of the children. Also, two columns are randomly selected during the mutation 

operator and all the different non-dominated fronts solutions are assigned in a ranking 

operation. Once the non-dominated fronts ranking is complete, the crowding distance is 

assigned to sort the solutions in the same fronts. The Pseudocode of the NSGA-II 

algorithm is described in Algorithm 1(Deb et al., 2000).  

Input: A maximum number of generations maxgen

Output: A population evolved 

begin

T= 0;

Initialize Pt with the size N Random, G,A, Min Min

Evaluate population according to the objective functions;

While t < maxgen do

Apply selection probability, crossover and mutation (explained in section 4.2.2) 

to Pt to generate Q t  

Rt = Pt ᵁ Qt;

Assign a hierarchy based on Pareto dominance to Rt;

Assign crowding distance to Rt;

Select N individuals of Rt, according to the crowding comparison operator to 

generate Pt + 1;

end

end

Algorithm 1 : Pseudocode of the NSGA-II algorithm

 

2.9.1.2 SPEA2 algorithm 

SPEA2 is used to find or approximate the Pareto-optimal set of multi-objective 

optimization problems (P.-C. Chang et al., 2007). A regular population and archive 

mechanism (Pareto archive) are used in SPEA2. All the non-dominated solutions are 
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copied to the Pareto archive during the generation of the population. Unlike SPEA, the 

size of the Pareto archive is fixed and is fed to the non-dominated solutions till are 

satisfied. If the dominated solutions are not completed, then the dominated solutions with 

the finest goal values are likewise selected. However, if more than one solution found for 

non-dominated over archive size, then only the best among them with a decreasing order 

of distance is considered. The pseudo-code of SPEA2 is presented in algorithm 2. The 

algorithm requires the same input parameters as the NSGA-II.  

Input:

          Pt  - Population size 

          Qt  - Archive size

          t  - Maximum number of generations

Output: A (non-dominated set) 

begin

Set t= 0;

Pt = 0;

Initialize Pt and create the empty archive

While (stop condition) is false  do

Compute fitness of each individual in Pt and t

Copy all individual evaluating to non-dominated vector

Use the truncation operator to move elements from t when the capacity in Pt to t

Preform binary tournament selection with replacement to fill the mating pool

Apply crossover and mutation to the mating pool

end

end

Algorithm 2 : Pseudocode of the SPEA-II algorithm

 

2.9.2 Strengths of Genetic Algorithm 

A genetic algorithm has the ability to accommodate different types of problems either 

continuous or discrete, which makes the genetic algorithm more flexible in dealing with 
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a range of optimization problems such as scheduling. Moreover, genetic algorithm 

offers a good performance by exploring the solution space in multiple directions at 

once. As a result, many researchers are attracted by such approach to tackling different 

problems in different domains (Nagata & Chu, 2003). A genetic algorithm does not 

require the derivation of information before solving the problem. As typically holds a 

single solution to a problem at a particular time, and search to find out the next direction 

of movement based on the gradient function of the latest solution. When the genetic 

algorithm decided the distance to move, then new solution is selected. 

Moreover, the strength of genetic algorithms is performed on the problem with more 

complexes such as changes over time, noisy and the fitness function is discontinuous. 

Solving problems in multi-objective usually require huge alternative solutions 

impossible to search exhaustively, which difficult to select the best solution (Marczyk, 

2004). Local optima can effectively be avoided by the genetic algorithm and to provide 

several alternative solutions to a problem. Local optima are a poor solution that pretends 

to be the best through which algorithms can be deceived from reaching the optimal 

solution, but the genetic algorithm has the capability to avoid the local optima. This is 

one of the major attractive characteristics of the genetic algorithm (Chiroma et al., 

2015).  

2.10 Summary 

Scheduling plays an important role in big data, mainly in reducing the execution time 

and cost during processing of data. To understand scheduling in big data studies, this 

chapter presented an introduction to the rise of big data, which include current big data 

trends and big data challenges. The chapter also provided an overview of Apache 

Hadoop focusing on HDFS,  and Hadoop MapReduce. Cloud computing and the 

relationship between cloud and big data are discussed. Moreover, scheduling in big data 
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platforms and its algorithms, which are closely, linked to big data processing studies is 

provided. It also underlined the requirements for scheduling in big data platforms based 

on data locality, SLA-based, load balancing, time and cost. Moreover, it highlighted the 

current state-of-the-art scheduling algorithms and investigated the related scheduling 

algorithms by comparing their objectives and unique characteristics.  

This chapter also discusses different scheduling algorithms used in big data platforms. 

Furthermore, in order to highlight the results of the study of the previous survey 

conducted, the findings are strengthened. By presented the concept of scheduling in big 

data platforms, various optimization options are identified. Having said that, a 

methodical approach, which can identify the importance of scheduling big data on the 

cloud is crucial. 

Moreover, in this chapter scheduling of MapReduce jobs of the large volume of data 

processing are studied. The study considers the minimization of completion time given 

a fixed budget, minimization of the monetary cost given a deadline and the trade-offs 

between the completion time and monetary cost of using cloud computing.  

Strengthened by the result of the study, this chapter has also revealed the issues that led 

to performance degradation in resource allocation and task scheduling problems, 

especially, when large amounts of data are being processed by a framework like 

MapReduce in a distributed environment. Therefore, this thesis is devoted to addressing 

those issues, by investigating the scheduling mechanism in Hadoop MapReduce. More 

specific, this thesis seeks optimization solutions to tackle the issue of resource 

allocation and task scheduling in Hadoop MapReduce. Moreover, this chapter 

highlights the scheduling algorithms for big data and investigates the related scheduling 

algorithms. This section discusses several approaches to the scheduling problem. These 

approaches consider different scenarios, which take into account the application types, 
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the execution platform, the type of algorithms used and the various constraints that 

might be imposed. Moreover, the chapter discusses the multi-objective optimization by 

focusing on genetic algorithms like NSGA-II and SPEA2. 

In this next chapter, we investigate and model the problem of scheduling a MapReduce 

job on the cloud as an optimization problem between time and cost within budget and 

deadline constraints. 
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CHAPTER 3: SCHEDULING MAPREDUCE JOBS AND THE PERFORMANCE 

ISSUES 

This chapter aims to provide analysis on the performance of scheduling MapReduce 

jobs using physical and cloud cluster. This analysis has an impact on the processing in 

terms of time and cost. Normally in the scheduling process, the processing time of the 

job on a machine is assumed to be fixed in advance. However, in reality, it demands 

resources to complete the job and the execution time is determined internally by many 

resources allocated. Using analytical analysis mathematical equations is derived to 

identify a time-cost model for the processing of big data, which demonstrate the 

significance of the execution time and budget when utilizing cloud resources. We 

formulate the completion time with a budget constraint model and cost with deadline 

constraint model.  

The rest of the chapter organized as follows. Section 3.1 presents our analysis of the 

performance of executing MapReduce jobs when using physical and cloud cluster. We 

describe problem identification in Section 3.2. Section 3.3 offers time-cost models 

analysis using the multi-objective evolutionary algorithm. Section 3.4 provides 

computational results.  

3.1 Hadoop physical vs. cloud cluster analysis 

This section provides analysis of the impact of using physical versus cloud cluster when 

process large amount of data. The reason to conduct such analysis is to identify the 

important of cluster usage in terms of the cost of execution time and the utilization of 

the resources to complete the tasks. A physical cluster is a group of computers 

connected by a local area network (LAN), where Hadoop distribution is installed 

directly on the physical machines that are bounded by disk I/O. in contrast, cloud 

computing is a type of computing that relies on sharing heterogeneous computing 
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resources to deliver computing services over the Internet in a convenient and scalable 

manner (Armbrust et al., 2010).  

In the cloud, Hadoop distribution is installed on the virtual machines, where multiple 

"machines" does not require full physical resources at all times because the underlying 

infrastructure is shared (White, 2012). Moreover, Hadoop has specifically designed for 

storing and processing unstructured data in a homogeneously distributed computing 

environment, which run on commodity hardware. More recently, there has been some 

effort to proposed Hybrid environment for MapReduce framework. For instance, 

Sharma et al. (2013) introduce hierarchical scheduler for hybrid data centers with two-

phase named HybridMR. The algorithm comprises of multiple virtual machines and 

physical to make use of both paradigms. Firstly, the information acquired from 

HybridMR profiles to estimate virtualization overheads based on incoming MapReduce 

jobs to gauge can automatically guide placement between physical machines and virtual 

machines. Secondly, HybridMR builds run-time resource prediction models and 

performs dynamic resource orchestration to minimize the interference within and across 

collocated interactive and MapReduce applications.  

The experiments were carried out in a MYREN cloud and physical cluster machines. 

We use five PCs as well as five Virtual Machine (VM) with the following 

configurations: 2.80 GHz processor, 2 GB main memory, and 1000 GB disk space. 

Hadoop cluster is used on Linux Ubuntu 14.04 where one machine runs a NameNode 

and ResourceManager, and the remaining are running DataNode and DataManager. 

Moreover, we use PingER data sets of different sizes varying from 500MB to 2 GB. 

Table 3-1 provides a result of the comparison between the physical cluster and cloud 

cluster in terms of execution time. 
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Table 3-1: Comparison between physical and cloud cluster in terms of execution 
time 
Data size (GB) Physical Cluster (s) Cloud (s) 
1 46.28  42.04  
2 53.44  51.67  
3 69.30  50.57  
4 97.57  60.39  
5 124.92  90.23  
 

As shown in Figure 3-1  the experimental result illustrates that increasing number of 

data size in the cluster, significantly increase the time necessary to run the application 

on both physical cluster and cloud. Figure 3-1 shows for both physical cluster and cloud 

require less time to finish the jobs. Hence, running jobs on a cluster with a large number 

of data is the main motivation for using Hadoop to process big data. Given the relatively 

low commodity hardware of physical cluster, the results were fairly significant. Using 

five nodes of machines to run the jobs practically increase the runtime, compared with 

one node. Thus, increasing the number of machines could lead to increase in runtime as 

the cluster size increased. 

 
 

Figure 3-1: Comparison between physical cluster and cloud in terms of runtime 
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Nevertheless, the results indicate the unavailability of free resources. Running five 

cloud nodes put a considerable load on the host computer running the virtualization 

software and pushed the CPU utilization to 100%. This indicates that the use of cloud 

virtual machines helped better utilize the resources of the host computer. However, 

these machines require an optimal scheduling algorithm in order to reduce the overall 

execution time. The monetary cost to complete the entire workflow based on cloud 

platforms (e.g., Amazon EC2) is also an important metric as the resources are claimed 

on demand and will be charged as long as it is used. The monetary cost is closely 

related to the completion time. However, they do not always correlate due to the pricing 

scheme in the cloud. 

3.2 Analytical Time-Cost analysis 

Several common assumptions are made in this study given the relatively high 

complexity of MapReduce job scheduling. Some of these assumptions have been used 

in Nita et al. (2015) and Wang and Shi (2014). These assumptions are as follows. (i) 

One or more free slot(s) are available at a given time in each node 

𝑁 =  {𝑛1,𝑛2, . . . . ,𝑛𝑚} in the cluster, where the minimum number of tasks for the map is 

reduced to less than or equal to the available slots. (ii) Big data processing for each 

query is translated into one or more MapReduce job(s) 𝐽 =  {𝑗1, 𝑗2, . . . . , 𝑗ℎ}, where each 

job has multiple tasks 𝑇 =  {𝑡1, 𝑡2, . . . . , 𝑡𝑛}, which consist of a known number of map 

tasks 𝑁𝑚 and reduce tasks 𝑁𝑟. (iii) The reduce tasks can only be launched when all the 

map tasks have been completed. (iv) For each map task, the exact amount of data 

processed 𝑆𝑚 is known from the beginning and is equally distributed among map nodes. 

(v) Each job has arrival time 𝐴, deadline 𝐷, and allocated budget 𝐵 for using the node. 

(vii) Sufficient resources are allocated for each task in the cloud, which implies that a 

node is never completed by more than one tasks, and its allocation is charged based on 

the actual time that it is used and the fixed service rate. Thus, before discussing the 
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model for completion time and monetary cost, the definition of the problem is described 

as follows: A MapReduce job 𝐽 is modeled as a workflow that consists of multiple 

tasks 𝑇. This workflow is a collection of independent map and reduce tasks executed in 

parallel and denoted as 𝑡 =  �𝑡𝑚1 , 𝑡𝑚2 , . . . . , 𝑡𝑚𝑢 , 𝑡𝑟1 , 𝑡𝑟2 , … . . 𝑡𝑟𝑢�. Each map/reduce task 

is run in a cloud VM known as a “node” with a possibly distinct performance 

configuration, and a different charge rate for each machine is deployed in the cluster. 

Each job has a particular number of slots assigned; these slots can be used by map and 

reduce tasks at any given time, where no reduce task can be started until all the map 

tasks for the job are completed. However, the same slots can be used by the mapper and 

the reducer. For each task, 𝑡𝑖, 0 ≤ 𝑖 ≤ 𝑗, where 𝑡𝑖𝑢  ≤ 𝑢 ≤  𝑁 represents the time to 

run tasks 𝑡𝑖𝑢 on node 𝑁. Table 3-2 shows notations associated with the problem 

description and modeling. 

3.2.1 Completion time with budget constraint model 

Modeling completion time is an essential part of this study because it is the basis for the 

rest of the work, other calculations, and the proposed algorithms. This procedure is one 

of the most widely accepted methods for modeling the optimization problem (Heintz et 

al., 2012). Many variants of this model are available, but one variant is particularly 

related to the map and reduce task assignment problem with budget constraints (Wang 

& Shi, 2014). In this problem, the goal is to minimize the Makespan given a particular 

budget constraint. To achieve this goal, the execution time 𝑇(𝑡𝑖,𝑏) of a task 𝑡𝑖 with a 

specific budget 𝑏 =  𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑑𝑔𝑒𝑡 (𝐵)
𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 (𝑇)

 should be defined as the time required to 

complete the task within the specific budget. The shortest time to complete the task is 

denoted as 

𝑇(𝑡𝑖,𝑏) = 𝑡𝑖𝑢 ,𝑐𝑖𝑢+1 <  𝐵 <  𝑐𝑖𝑢−1  3-1 
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where the estimation of the budget per map/reduce task can be described as: 

𝑏 ≤ 1,∀𝑡𝑖  ∈ 𝐽 3-2 

The time to complete task 𝑡𝑖 with budget b, denoted as 𝑡𝑖(𝑏), is defined as the time 

consumed when all the tasks are completed within the given budget as follows: 

𝑡𝑖(𝑏) =  max
𝑡𝑖 ∈𝐽

 �𝑇(𝑡𝑖,𝑏)�  3-3 

For the query, the reduce task is started immediately after map tasks complete. 

Therefore, the total Makespan with budget 𝐵 to complete all tasks for particular job is 

defined the sum of all tasks times. The goal is to minimize this time within the given 

budget 𝐵.  

𝑡(𝐵) =  min
∑ 𝑏 ≤ 𝐵𝑡𝑖 ∈ 𝐽

� 𝑇(𝐵)
𝑡𝑖 ∈ 𝐽

 3-4 

3.2.2 Cost with deadline constraint model 

Pay-as-you-go is a well-known pricing model implemented by cloud service providers 

to charge users based on quality of service (QoS) requirements. The charges for some 

resources in cloud-like network bandwidth and storage are at a particular rate. 

The pricing model implemented in the cloud is a pay-as-you-go model, where services 

are charged as per the QoS requirements of the users. The resources in the cloud, such 

as network bandwidth and storage, are charged at a specific rate (Hussain et al., 2013). 

Thus, cost has become an important objective in scheduling. Total cost incurred by 

processing big data can comprise many cost components, such as computation and data 

transfer costs. Cloud computing offers a variety of resources and services per manner of 

use. These computational resources are basically used per time quantum pricing 
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scheme. This quantum is typically 1 h, although recently, an alternative seems to be 

receiving increasing interest. 

Given the deadline for the job, the minimum cost to complete all the tasks is: 

𝐶(𝑁𝑚+𝑁𝑟) (𝐷)  =  � 𝐶𝑖
𝑡𝑖 ∈ 𝐽

 (𝐷𝑖) 3-5 

where 𝐶𝑖  (𝐷𝑖) is the minimum cost to complete the task within the 𝐷𝑖. Thus, 𝑡𝑚  ≤

 𝐷𝑖  and 𝑡𝑟  ≤  𝐷𝑖 

𝐶(𝑁𝑚+𝑁𝑟) (𝐷) =  min
𝑡𝑖 ∈ 𝐽

� 𝐶𝑖
𝑡𝑖 ∈𝐽

 (𝐷𝑖) 3-6 

The computation cost is defined based on resource 𝑅𝑗, such that, for each task 𝑡𝑖 

executed on resource 𝑅𝑗, two timestamps will be recorded, that is, 𝐴 when the task starts 

and 𝐸 when the task finishes its execution. The value 𝐸 can be defined as 𝐴 +  𝑡(𝑖,𝑏) +

 max𝑖 ∈ 𝐽
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝐵𝑎𝑛𝑑𝑤𝑖𝑡ℎ
. These timestamps indicate the period during which the 

resources should to be utilized because of the execution of task 𝑖. 

Table 3-2: Notations associated with the problem description and modeling 
Symbol Definition 

𝐽 The number of jobs 𝑗 = 1, … ,𝑛 

𝑁 The number of nodes 𝑁 = {𝑛1,𝑛2, . . . . ,𝑛𝑚} 

𝑇 The number of tasks 𝑇 =  {𝑡1, 𝑡2, . . . . , 𝑡𝑛} 

𝑐𝑗𝑢 The cost for each job 

𝐶𝑚 The cost of executing a single map task 

𝐶𝑖 Completion time of each task  

𝐷𝑖 Deadline of each task 

𝑡(𝐵) The total budget of all tasks during the execution 
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𝑘𝑖 Performance degradation perimeter  

𝑡𝑖(𝑏) The time consumed when all task is completed within the given budget 

𝑅𝑗 Resources 

3.3 Time-Cost models analysis using multi-objective evolutionary algorithm 

The analysis of the models is carried out using the evolutionary algorithm. It is well 

known that multi-objective evolutionary algorithm is among the most useful approaches 

for multi-objective. This fact makes multi-objective genetic algorithms suitable for 

solving the MapReduce job scheduling as the objective functions and the decision 

variable is an integer in the MapReduce job scheduling. Recent research on the 

applications of evolutionary algorithms to solve the MapReduce job scheduling has 

been reviewed in (Tiwari et al., 2015). 

The following describes the multi-objective genetic algorithms, focusing on the problem 

specific features, designed to solve the time-cost problem based on the NSGA-II and 

SPEA2 algorithms discussed in Chapter 2.  

(a) Representation of solutions: For the problem formulated each solution is represented 

by the one chromosome with N genes; one or more genes are considered for each node. 

The first gene contains the task to which the corresponding node is assigned in the 

cluster. The second gene contains the selected resources for the corresponding node. It 

is seen that by this representation at least one resource and one task is selected for each 

node and therefore constraints 𝑏 ≤ 1,∀𝑡𝑖  ∈ 𝐽 and 𝑡𝑚  ≤  𝐷𝑖  , 𝑡𝑟  ≤  𝐷𝑖  are satisfied 

automatically. 

(b) Initial Population: The first step in the functioning of a genetic algorithm is the 

generation of an initial population, which is a set of randomly generated of populations 

to find an optimal solution (Goldberg & Holland, 1988). Each solution in the population 
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is named individually, and this individual is referred as a chromosome, which involved 

genes and its value can be bit string, real number, permutations of elements, program 

elements or data structure. From the initial population, the individuals are being selected 

and its operations are transformed to the next generation. The mating chromosomes are 

selected based on some specific criteria.  

(c) Fitness Function: Fitness is used to measure the quality of the represented solutions 

in the population according to the given optimization objective. The fitness values are 

then used in the process of natural selection to choose which potential solutions will 

continue to the next generation. Maximization can be straightforwardly achieved using 

fitness functions 𝐹(𝑥) in genetic algorithms, where it first derived from the problem’s 

objective function 𝐹(𝑥) = 𝑓(𝑥), however, minimization is required multiple 

transformations for example 𝐹(𝑥) =  1
1+𝑓(𝑥), This transformation does not alter the 

location of the minimum but it converts the original minimization problem into a 

maximization problem.  

Since the objective space is explored in two directions, in this case, time and cost, then 

the cost fitness function of an individual is defined as expressed by Eq (3-10) adapted 

from (Yu & Buyya, 2006). 

𝐹𝐶(𝑁𝑚+ 𝑁𝑟)(𝐼) =  
∑ 𝐶𝑖𝑡𝑖  ∈ 𝐽

𝐵𝛼  × 𝑚𝑎𝑥𝐶𝑜𝑠𝑡(1−𝛼) 
 3-10 

where the ∑ 𝐶𝑖𝑡𝑖  ∈ 𝐽  is the sum of the execution cost of the task, 𝑚𝑎𝑥𝐶𝑜𝑠𝑡 is the most 

expensive solution of the current population and 𝛼 is the binary variables used in this 

function. The cost fitness module for the budget constrained scheduling encourages the 

formation of the solutions that satisfy the budget constraint. For the deadline 
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constrained scheduling, it encourage the genetic algorithm to choose individuals with 

less cost. 

The time fitness component for the budget constrained is constructed to encourage the 

genetic algorithm to choose individuals with earliest completion time from the current 

population. The time fitness function of an individual is defined as expressed by Eq (3-

11) adapted from (Yu & Buyya, 2006). 

𝐹𝑡(𝑁𝑚+ 𝑁𝑟)(𝐼) =  
max
𝑡𝑖 ∈𝐽

 �𝑇(𝑡𝑖,𝑏)�

𝐷𝛽  ×  𝑚𝑎𝑥𝑇𝑖𝑚𝑒(1−𝛽) 
 3-11 

where max𝑡𝑖 ∈𝐽  �𝑇(𝑡𝑖,𝑏)� the completion time of the individual is, 𝑚𝑎𝑥𝑇𝑖𝑚𝑒 is the largest 

completion time of the current population. 

In equation (3.11) and (3.12), the fitness of time and cost with respect to the budget and 

deadline constraints. The combination of the both fitness functions is defined as 

follows:  

𝐹(𝐼) =  �
𝛼 ×  𝐹𝐶(𝑁𝑚+ 𝑁𝑟)(𝐼) +  𝛽 ×  𝐹𝑡(𝑁𝑚+ 𝑁𝑟)(𝐼), 𝑖𝑓 𝐹𝐶(𝑁𝑚+ 𝑁𝑟)(𝐼)  > 1 

𝐹𝐶(𝑁𝑚+ 𝑁𝑟)(𝐼)𝛽  ×  𝐹𝑡(𝑁𝑚+ 𝑁𝑟)(𝐼)𝛼  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 3-12 

(d) Encoding: Encoding problem in the genetic algorithm has been studied by many 

researchers in the past, where considerably different problems need completely different 

genetic encoding for a good solution to be established. Some different encoding 

methods are proposed in the literature (Jia et al., 2003; Orero & Irving, 1998). The 

encoding strategy can be divided into many types which are the binary, permutation, 

value, tree, direct chromosome representation and indirect chromosome representation. 

This study adopted direct representation to give viability and legibility to a 

chromosome. The encoding strategy of the mentioned scheduling problem is obtained to 

assist in the development of the methods as shown in Figure 3-2. A chromosome with 
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an (N * 3) matrix is proposed to enable the scheduling problem. Each task assigned to 

the node represented as a gene of the chromosome. There are two rows represent the 

encoding solution. The first row in the chromosome displays the node in which the task 

is executed. The second row displays the budget on each node. 

 

Figure 3-2: Encoding strategy 
 

where J is a job which consists of multiple tasks 𝑇 =  {𝑡1, 𝑡2, . . . . , 𝑡𝑛} and known 

number of map tasks 𝑁𝑚 and reduce tasks 𝑁𝑟, respectively. N is the number of nodes in 

the cluster and B is the budget that allocated to each node.  

 

Figure 3-3: Illustration of problem encoding 

As shown in Figure 3-3 the chromosome has divided into two strings to represent the 

order and tasks. The string order is a vector containing a permutation of all tasks 

indexes.  

(e) Selection: In order to determine the probability of various individuals genetic to the 

next generation, the proportion selection operator is used to breed a new generation. The 

proportional selection operator means the probability, which is selected and genetic to 

next generation sets is related to the size of the individual's fitness. According to the 
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fitness value generated by the fitness function, the selection probability can be 

determined by using equation 3-13. 

𝑃𝑖 =  
𝐹𝑖

∑ 𝐹𝑖𝑁
𝑖=1

 3-13 

where 𝑃𝑖 is the selection probability of the string 𝑖, 𝐹𝑖 the fitness value of string 𝑖 and N 

is the population size.  

(f) Crossover: Crossover in genetic algorithms is used to evolve the programming of 

one or more chromosomes from one generation to another. The purpose of a crossover 

is to improve the new chromosome from their parents if it inherits the better 

characteristics from each of the parents. It happens during evolution according to a user 

definable crossover probability. A popular implementation of crossover uses the single 

point crossover process (see Figure 3-4) in which a crossing site is randomly chosen 

along the string length, and all bits to the right side of the crossing site are exchanged 

between the two parent strings. 

1 2 1 6 3 4Parent1

1 2 1 4 3 6Childs

4 1 3 6 1 2Parent2
 

Figure 3-4: Crossover (Single point) 

(g) Mutation: While a crossover operator attempts to produce new strings of superior 

fitness by affecting large changes in a string’s makeup, the need for local jumps in 

search around a current solution also exists. Mutation is used to keep genetic diversity 

from one generation of a population of genetic algorithm chromosomes to the other, 

Univ
ers

ity
 of

 M
ala

ya



59 

 

where the chromosome coding series were replaced by the other gene values in order to 

generate a new individual. Figure 3-5 shows the mutation of a single point.  

1 2 6 4 1 3Before

1 3 1 4 6 2After

Randomly selected gens 

 

Figure 3-5: Mutation (Single point) 

In the following subsection, the detail of the simulation environment and experimental 

setting are discussed. Then simulation, computational results are presented. 

3.3.1 An experimental setting 

The problem is implemented according to its descriptions in the above sections and 

compared it using two popular genetic algorithms like NSGA-II and SPEA2 on multi-

objective evolutionary algorithms (MOEAs) framework. Section 2.9.1 provides a brief 

introduction to NSGA-II and SPEA2 algorithms. For both algorithms, the parameters 

setting used are shown in Table 3.3. The population size 𝑃𝑡 is 100 with max evolution 

of 1000; archive size 𝑄𝑡 for SPEA2 is 50. However, NSGA-II has no archive 

population. The crossover probability is 0.7 and, the mutation probability is 0.1 to 

decide the convergence and the diversity of the result. 

Table 3-3: Parameter Setting Summary 

Parameters Setting 
NSGA-II SPEA2 

Population size 500 500 
Archive size N/A 50 
Max evaluations 1000 1000 
Crossover probability 0.7 0.7 
Mutation probability 0.1 0.1 
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This study validated the performance of the proposed multi-objective scheduling model 

through experiments. The results obtained by MOEA Framework are compared to 

validate the quality of the solutions by genetic algorithm NSGA-II and SPEA2.  

 Specific parameter settings for all the considered algorithms are described in Table 3.3. 

The parameters used in the experiment are based on the previous research findings. 

Each experiment was repeated 10 times with different random seeds. That is being said. 

First, the shortest Makespan of the schedules is computed using NSGA-II and SPEA2 

algorithms. Second, the aspect of the cost of the schedules regarding money is 

considered, analyzing the cheapest solution using NSGA-II and SPEA2 algorithms. 

Lastly, the hypervolume is defined in order to evaluate the quality of computed trade-off 

solutions described in 3.3.2.  

The trade-off solutions of Makespan and cost computed by NSGA-II and SPEA2 are 

analyzed based on different workflow in order to find an optimal solution between the 

two conflicting objectives. For this analysis, the graphical representation is used for the 

solution computed by the two algorithms.  

3.3.2 Multi-objective tradeoff solutions 

The dominance is introduced in this study as it is not possible to find an optimal 

solution that minimizes both the completion time and cost at the same time. A solution 

𝑦 dominates a solution 𝑧, if the completion time and cost of 𝑦 are less than those in 𝑧. 

Conversely, two solutions are said to be non-dominated whenever none of them 

dominates the other, for example, one is better at compilation time and, the other is 

better in cost.  
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d
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3-6: Multi-objective tradeoff solutions 

Figure 3-6 shows the multi-objective tradeoff solutions, in which the solutions marked 

(a) and (d) dominates the marked (b) and (c) because it has better Makespan and cost. 

Meantime, (a) and (d) are represented by the non-dominated solutions, in which (a) is 

good in Makespan, while (d) is good in cost. This set of non-dominated solutions 

represented a set of trade-off solutions among the different mapping of the workflow 

tasks with different Makespan and cost and known as the Pareto front (the trend line 

containing the (a), (d), and (e) solutions). 

For multi-objective, the minimized or maximized optimal result is represented by a 

multi-dimensional vector of values. This vector of the solution is called the Pareto 

optimal set (ps). The image of this Pareto set of the objective functions is called a Pareto 

front. The PS comprises many solutions, as there exist different trade-off solutions, each 

describing a compromise between the different objective functions.  

That is being said; hypervolume is used to measure the quality of a set tradeoff 

solutions. Given a set of tradeoff solutions, the hypervolume measures the area enclosed 

between the points in (b), (c) and (W) as it can be seen in Figure 3-6, usually selected as 

the maximum objective value. Thus, the better and the more diverse the points 

contained in X are, the higher hypervolume.  
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3.4 Computational Results 

Recently many researchers have studied measurement criteria for comparing non-

dominated solutions. For example, a spread metric has been introduced by (Ranjithan et 

al., 2001) to defines the high number of choice represented by the non-dominated 

solutions and a coverage metric that characterizes the distribution of solutions. J. 

Knowles and Corne (2002) have proposed an R metrics, which tend to dominate 

alternatives regarding their profile of a particular property of a Pareto set approximation 

which does not require knowledge of the true Pareto front and fairly scalable to many 

objectives. They require, however, using reference set and a set of points S output from 

an optimization run, and R metrics provides a single scalar value that estimates the 

‘utility of S.  

For computational experiments, randomly non-dominated solutions for each job are 

generated using testbed. These non-dominated solutions generated during the 

experiment are copied to the Pareto archive. Compared with SPEA2, the Pareto archive 

size is fixed in this algorithm. The task data include the completion time T, cost for each 

job to be completed within specific budget B and the deadline for each task D. For each 

task, the completion time and cost are generated using a uniform distribution. The 

numerical value of all obtained solutions of 50 tasks and ten nodes problem is presented 

in Table 3-4. 

Table 3-4: Comparison of NSGA-II and SPEA2 with the 50 tasks and ten nodes 
problem 

 NSGA-II (s) SPEA2 (s) 
x-value y-value x-value y-value 

Seed 1 54.509 26.451 30.480 43.641 
Seed 2 10.134 40.767 45.104 71.035 
Seed 3 44.629 31.643 51.580 42.350 
Seed 4 23.322 19.432 43.621 42.862 
Seed 5 56.757 24.876 43.389 56.760 
Seed 6 57.583 49.501 54.741 19.424 
Seed 7 34.516 54.637 64.431 62.519 
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Seed 8 29.698 25.583 17.901 59.871 
Seed 9 52.750 29.653 42.564 43.574 
Seed 10 38.633 46.432 37.299 67.891 
 

The comparison of NSGA-II and SPEA2 are presented in Table 3-4 with the values of 

each one of them, and we repeat the experiment for ten times. Figure 3-7 and 3-8 below 

show the approximation set of each algorithm on the effect of the different x-values and 

y-values of the distribution. Both figures show the domination of all solutions based 

with respect to the cost and makespan. Some reference sets are chosen for this problem 

and are shown in the black square. For a particular population size and a chosen number 

of reference sets.  

Moreover, the figures show that there exist many solutions that dominate other solutions 

and reference sets is represented non-optimal solutions. While, in the reference sets the 

shortest distances is most preferred, however, consider non-dominated solutions over 

dominated solutions allows Pareto-optimal solutions to be found (Fonseca et al., 2009). 

Thus, if the user is interested in knowing optimal trade-off solutions in (minimum 

execution time and cost) the proposed procedure is able to find solutions near the 

reference sets, instead of finding Pareto-optimal front, thereby allowing the user to 

consider only a few solutions and that too solutions, which lie in the regions of user’s 

interest. 
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Figure 3-7: Comparisons of the 50 tasks and 10 nodes using NSGA-II 

 

Figure 3-8: Comparisons of the 50 tasks and ten nodes using SPEA2 

This result developed to find a solution for the multi-objective scheduling problem. 

There are two phases applied in the algorithm: the first phase, is the sub-populations, 

which focus on the exact search space and careful avoids all individuals from changed 

to a local optimal and regrouped as a single big population based on the subpopulation, 
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which explores solution space ignored or missed in the first phase. In the second phase, 

each’s chromosome in this big population is randomly assigned a weight value to 

explore for more solution spaces. 

 

Figure 3-9: Example of NSGA-II/SPEA2 comparison 
 

Figure 3-9 shows an example where 50 tasks should be scheduled on ten identical 

nodes. The objective values of all the obtained solutions are shown in Table 3.4. As 

shows in Figure 3-9, a set of alternative solutions, called non-dominated solutions or 

Pareto optimal solutions, is obtained by the two algorithms, from which the users may 

select one according to their preference. If the users preferred less time to complete the 

job with a high budget, the user can choose the two left solutions in Figure 3-9, whose 

no y-value more than 30, while when there is a less budget to be allocated for cloud 

resources, users could choose the bottom right solution, whose x-value is 10.134 and 

Univ
ers

ity
 of

 M
ala

ya



66 

 

17.901 for both algorithms respectively. We can observe that the front obtained by 

NSGA-II dominates the other obtained by SPEA2. The comparison confirms the 

optimality of genetic algorithm.  

3.5 Summary  

This chapter provides analysis on the performance of scheduling MapReduce jobs using 

physical and cloud cluster, which has an impact on the processing time and cost. It 

provides analysis of the impact of using physical versus cloud cluster when processes 

large amounts of data. The reason to conduct such analysis is to identify the importance 

of cluster usage in terms of the cost of execution time and the utilization of the 

resources to complete the tasks. The experiment result shows increasing in execution 

time, which indicate the unavailability of free resources. Running five cloud nodes put a 

considerable load on the host computer running the virtualization software and pushed 

the CPU utilization to 100%. This indicates that the use of cloud virtual machines 

helped better utilize the resources of the host computer. However, these machines 

require an optimal scheduling algorithm to reduce the overall execution time. The 

monetary cost to complete the entire workflow based on cloud platforms (e.g., Amazon 

EC2) is also an important metric as the resources are claimed on demand and will be 

charged as long as it is used. The monetary cost is closely related to the completion 

time. However, they are not always correlated due to the pricing scheme in the cloud. 

The analysis of the models is carried out using genetic algorithms. It is well known that 

multi-objective genetic algorithms are among the most useful approaches for multi-

objective. For computational experiments, randomly non-dominated solutions for each 

job are generated using testbed. These non-dominated solutions generated during the 

experiment are copied to the Pareto archive. We can observe that the front obtained by 
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NSGA-II dominates the other obtained by SPEA2. The comparison confirms the 

optimality of genetic algorithm. 
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CHAPTER 4: FRAMEWORK FOR MULTI-OBJECTIVE SCHEDULING 

ALGORITHMS 

This chapter offers comprehensive details about the proposed scheduling algorithms by 

considering resource allocation and task scheduling in a heterogeneous cloud 

environment. These algorithms are an extension to the multi-objective list-based 

scheduling algorithm for optimizing the workflow (Durillo & Prodan, 2014) and greedy 

Cost-Time distribution (Yu & Buyya, 2006). The aim of the proposed algorithms is to 

improve the performance of MapReduce scheduling for big data processing to meet the 

deadline and budget constraint. The deadline and budget constraints in big data 

processing scheduling are important as it provides a cost-effective allocation of the 

cloud resources among Hadoop nodes. Given that, this chapter details the resource 

allocation and task scheduling strategies to optimize workflow big data processing in 

the cloud in terms of completion time and the monetary cost of using the cloud.  

Efficient large-scale data processing is one of the major aspects of MapReduce 

framework characterization. Scheduling tasks in virtual machines in the cloud demand 

resources of the cloud, typically, users are aware of the deadline of when the job is 

completed. However, in cloud computing environment, all machines compete for 

resources to execute the jobs. These resources are controlled by batch queue systems, 

which may not offer guarantee deadline during the task execution, only if the priority 

used for resource reservation, which is a restricted level of service. 

Whereas, in MapReduce with multiple jobs workloads running simultaneously, 

resource-ware is important for enhancing resource utilization across nodes (Polo et al., 

2011). It provides fast reconfigurable architectures capable of adapting at runtime 

according to changing requirements and constraints (Sousa et al.). For example, to 

minimize contention for CPU and I/O Yong et al. (2009) proposed resource-aware 
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schemes on the slave's nodes in order to improve the performance of the cluster. Such 

solution can offer a learning mechanism in which tasks can be classified based on their 

CPU bound and IO bound categories and assign jobs as appropriate. However, 

preventing batch processing jobs from interfering with foreground workloads is a 

challenging task (W. Zhang et al., 2014). Furthermore, (Z. Guo, G. Fox, M. Zhou, et al., 

2012) offer a new way of resource aware, named, resource stealing to allow tasks are 

running in the cluster to steal resources kept for idle slots and release them whenever a 

new task is assigned to that slots. Resource stealing can utilize wasted resources being 

used by others without interfering with normal job scheduling. The results show that 

resource stealing may improve the performance improvement for compute-intensive and 

network intensive applications. However, a heterogeneity property in the cloud is more 

difficult when the cluster is shared among multiple jobs.  

The proposed framework for multi-objective algorithms tries to identify the importance 

of resource allocation and task scheduling in the cloud, by considering both completion 

time and the cost minimization models. These models are based on similar work by (Kc 

& Anyanwu, 2010; Nita et al., 2015; W. Zhang et al., 2014), who proposed models that 

assist MapReduce jobs to meet the performance deadline with the monetary cost of 

using the cloud. Selecting suitable schemes to adopt in the algorithms is essential, 

particularly, considering the technical aspects of the chosen approach. The proposed 

framework algorithms are designed based on the combination of two main models 

which are adaptive control and cost decision module in order to meet performance goals 

and maximize the efficiency of a Hadoop cluster in the cloud. 

Lastly, in order to establish the relationship between resource allocation and task 

scheduling, new scheduling algorithms are proposed. This combination of the resource 

allocation and task scheduling helps in achieving one of the objectives of this study. 
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Moreover, beside the main objective to propose new scheduling algorithms, the 

algorithms are also addressing the limitation of the resource allocation and task 

scheduling, which was identified in Chapter 3. The following discussion offers an in-

depth description of the algorithms.  

4.1 Multi-objective Scheduling algorithm 

In this section, the proposed algorithm is described based on the objectives discussed in 

Chapter 1, which related to user preferences with respect to completion time and cost. 

Thus, users are allowed to specify the values for deadline and budget constraints. 

However, to satisfy these constraints, the information of map and reduce tasks are 

required during the implementation. Moreover, the information about memory, IO, CPU 

must be known at the time of execution. However, since the proposed algorithm is 

designed to work on Hadoop framework deployed on cloud, only the cost of the map 

and reduce are considered and not the measure of information exchanged from outside. 

Furthermore, Hadoop comes with storage module, where the datasets are stored in 

HDFS and accessible at running time for any job.  

The multi-objective earliest finish time algorithm has been used to optimize the 

workflow in the cloud and to iteratively map the workflow tasks onto the resources. 

Aside from mapping every task onto the resource, the algorithm also maps resources 

onto tasks to establish a trade-off among the considered objectives. This algorithm is 

described in the study of Durillo and Prodan (2014), in which a positive value should be 

returned by the service function if the mappers and reducers are sufficient to complete 

the tasks for a specific job within the given budget and deadline. 
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Algorithm 3: Earliest finish time scheduling 

Input  

Q: the task queue, where all tasks 𝑇 ∈ 𝐽 and 𝑇 ≤  𝑡𝑚 +  𝑡𝑟 

N: many nodes in the cluster, where 𝑁 ≥ 𝑆𝑙𝑜𝑡𝑠 

1. For each task t ∈ 𝑇𝑚+𝑟 do 

2.  Assign 𝑇 to an available compute 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

3. End for 

4. Repeat 

5. For all 𝑡𝑚 & 𝑡𝑟 do 

6. Assign ready task 𝑡𝑖 to any available slots  

7. End for 

8. Dispatch all the mapped tasks 

9. Wait for tasks_queue  

10. Update the running tasks_queue 

11.  tasks in the ready list are zero 

 

The pseudocode described in Algorithm 3 presents the multi-objective earliest finish 

time algorithm, which begins with the required inputs of all the tasks that belong to a 

particular job in the cluster. The tasks are then split into map and reduce tasks 

represented by the job. The map tasks will be scheduled first, followed by the reduce 

tasks. The total of both tasks are scheduled in some nodes, depending on the availability 

of the slots. Subsequently, the mapping and reducing phases of the algorithm begin by 

iterating over the list of tasks of the map and reduce tasks sorted according to their order 

in the queue. The tasks are assigned to available resources in the cluster. Therefore, only 

trade-off solutions are saved to avoid assigning performance degradation. We only 

consider the solution belong to non-dominated by other solutions as discussed in 

chapter 3. All the map tasks, outputs are dispatched, and new inputs for reduce begins 
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the iteration. Each map task is input to reduce, which is in the queue ready to be 

executed. The process continues for all tasks on the queue till the tasks listed in the 

ready queue are completed.   

For the basic scheduling policy, the framework has a scheduler that allows the resource 

allocation decision to be made at the time of the task submission. A scheduling 

algorithm for the multi-objective heterogeneous earliest finish time algorithm is listed in 

algorithm 3. First, the tasks are assigned to available resources. The map tasks without 

parents, which will be on top of the list, are assigned to the first available resources. 

These available resources should be able to accept new tasks for execution and should 

not exceed the limit for accepting tasks to new slots. All of the tasks are stored in a 

queue and updated throughout the scheduling process. Afterward, the tasks that are 

ready will be assigned by the scheduler to the available cloud resources and slots. The 

optimum choice for the earliest finish time depends on the number of tasks in the 

application, the scheduling policy, and the decision model, which are configurable by 

the user before executing any workflow application in the cloud.  

Algorithm 4: Workload information gathering  

1. If a 𝑡𝑚 of job 𝑗, is finished then 

2. Update the execution time of a map tasks 𝑡𝑚 in the log 

3. If reduce tasks of job 𝑗 is finished then 

4. Update the execution time of reduce 𝑡𝑟 in the log 

Once the map and reduce tasks have completed the execution, the current workload 

information should be updated, as shown in Algorithm 2. After the map and reduce 

tasks are completed, the execution time is collected and reported to the “Job Tracker” in 

the current Hadoop system. The following subsection describes the process of the 

scheduling algorithm framework. 
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Gathering more system information can have a significant impact on making better 

scheduling decisions. Gathering information from the Hadoop system is critical, 

especially during the scheduling decision. The algorithm works with the first check if 

all the map tasks have completed in every node in Hadoop cluster. Then, the output of 

the results of the execution of the map tasks and the time is saved in the logs. Similarly, 

for the reduce tasks, the completed tasks of the execution and the time are updated in 

the logs. The importance of gathering the information about the execution is to help 

analysis the result in terms of the completion time, latency and the utilization of the 

CPU.  

Since the birth of the Hadoop paradigm, the MapReduce programming model has been 

one of its main components as discussed in the previous section. The traditional 

implementation of MapReduce has revealed high latencies during execution of Hadoop 

MapReduce jobs. The submitted jobs are performed based on the steps structure in 

which the data will be split, Map, shuffle, sort and then reduce. This problem is 

exacerbated for more complex processing involving statistical MapReduce jobs which 

require time on the order of minutes, hours, or longer – even with fairly small data 

volumes. Table 4-1 shows the information collector in Hadoop.  

Table 4-1: The information collector in Hadoop 

./bin/Hadoop fs -put /tmp/logs /var/logs 

./bin/hadoop dfs -ls /var/logs 
public static class LogEntryMapper extends Mapper<Object, Text, Text, IntWritable> { 
./bin/hadoop jar loganalyzer.jar loganalyzer /var/logs /var/logs-output 
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New job arrives

User provides preference

Scheduler’s 
decision

Assign requests

Terminate job

User’s 
decision

Refusing request

Accepting request

Refusing/Accepting

 

Figure 4-1: Scheduling process 
 

For the sake of comparing and describe the performance characteristics of the Hadoop 

MapReduce in the cloud environment, a series of performance indicators is required. 

This section mainly focuses on measuring the working capability of the MapReduce 

jobs, including the measurement of throughput and respond time of each MapReduce 

job, and the processing duration, CPU utilization of the node. The scheduling process is 

shown in Figure 4.1. Thus, an experiment is conducted to illustrate the MapReduce 

scheduling performance under difference scenarios.  
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4.2 Scheduling framework 

The proposed framework is considered based on user preferences and the current cloud 

state, the scheduler confirms a scheduling decision by assigning or refuses the offer, this 

allows the model to decide what the best fit for the job to run. Since no priority jobs 

considered in the proposed model, a scheduling policy has been used to share resources 

between the running jobs. If the request is refused, the job has to be resubmitted. Upon 

receiving a request, a user can choose to accept or reject it.  

Finally, the scheduling process is terminated, if all slots in a cluster have been fully 

scheduled, the scheduling system for the given slot is closed. The parameters are given 

by users' requests and assign tasks on resource nodes according to status information 

and scheduling policy. Scheduling policy is critical for saving energy and satisfying 

QoS requirements.  

 

Figure 4-2: System architecture 
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As shows in Figure 4-2 system architecture, various running applications are allocated 

resources by the scheduler subject to some constraints. Such schedule provides no 

guarantees on resuming failed tasks because of either application failure or hardware 

failures. The scheduling components as described below. 

(a) Resource manager represents a generational shift in the architecture of Apache 

Hadoop. It utilizes the MapReduce programming framework by default to perform 

efficient data processing by separating the processing engine and resource management 

capabilities of MapReduce. Hence, it makes the Hadoop environment highly suitable for 

operational applications that cannot wait for batch jobs to be completed. This feature 

simplifies the support of maintaining a multi-tenant environment, managing and 

monitoring workloads, implementing security controls, cluster utilization and providing 

high- scalability for Hadoop framework. 

The resource manager consists of two interfaces, namely, clients submitting 

applications and application masters who dynamically negotiate with an access to 

resources and others toward node managers. Application masters codify their need for 

resources in terms of one or more resource requests, each of which tracks the number of 

containers (Vavilapalli et al., 2013).  
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Figure 4-3: Resource allocation process  
 

In addition, Yarn uses two steps for resource allocation based on a pluggable solution 

for dynamic policy loading (Pop & Cristea, 2015) as shows in Figure 4-3. The yarn is 

responsible for resource allocation, whereas application responsible for dividing the 

jobs into multiple tasks then schedule them. This makes Yarn more generic while 

allowing flexibility of scheduling strategies. The resource manager consists of two 

interfaces, namely, clients submitting applications and application masters who 

dynamically negotiate with an access to resources and others toward node managers. 

Application masters codify their need for resources in terms of one or more resource 

requests, each of which tracks the number of containers.  

(b) Task scheduling: the resource manager assigns resources to the jobs within the 

cluster. Each job will have many execution slots allocated by the resource manager. 

Assigning more slots to a job lead to more resources allocated to the job. The jobs are 

divided into multiple tasks, one or more tasks are assigned to slots in form of queue. 

This queue is updated during the task scheduling. The scheduler then assigns these 
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ready tasks from the queue to resources based on the availability of each resource and 

slots. The optimum choice for earliest finish time depends on the number of tasks in the 

application, scheduling policy and decision model, which is configurable by the user 

before executing any workflow application in the cloud.  

(c) Scheduling policy: The scheduling policy is used to control the ordering request for 

different resources. The policy is considered a priority, locality, deadlines, budget, and 

the system behavior. Resource allocation is done by YARN, and task scheduling is done 

by the application, which permits the YARN platform to be a generic one while still 

allowing flexibility of scheduling strategies. The specific policies in YARN are oriented 

on resource splitting according to schedules provided by the applications. In this way, 

the YARN can decide on which cluster to be allocated the resource and how much 

based on their availability and on the configured sharing policy. Altering the 

configuration of a queue using time, the queue-level time-based policies can be used 

including allowing jobs to be submitted. 

 (d) Adaptive control: The main objective of the adaptive control is to identify tasks that 

unable to complete in a given time with the available resources and provides a feedback 

for the users. The users may adjust their preferences for the tasks and take appropriate 

steps to meet the availability of resources in the Hadoop cluster. The preferences with 

regard to nodes and time slots are assumed to be independent of each other. Moreover, 

adaptive control contains, in addition to a feedback control with adjustable parameters. 

4.3 Summary  

This chapter has provided a framework for multi-objective scheduling algorithm, in 

order to improve the execution time of tasks in the big data platforms. A framework is 

designed based on MapReduce framework, where resource manager is responsible for 

allocating the resources among the Hadoop clusters. The framework has introduced two 
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main components, which are adaptive control to identify tasks that unable to complete 

in a given time with the available resources and provides a feedback for the users and 

the decision module to decide what the best fit for the job to run.  

The algorithm works with the first check if all the map tasks have completed in every 

node in Hadoop cluster. Then, the output of the results of the execution of the map tasks 

and the time is saved in the logs. Similarly, for the reduce tasks, the completed tasks of 

the execution and the time are updated in the logs. The importance of gathering the 

information about the execution is to help analysis the result in terms of the completion 

time, latency and the utilization of the CPU.  

Having established the proposed framework using multi-objective scheduling algorithm 

strategies and models, the next chapter presents the evaluation of the framework and is 

followed by the resulting discussion. It is important to understand that the results 

provide an evaluation and verification of the usefulness and suitability of the framework 

in improving the execution time.  

In conclusion, this chapter highlighted the main point of the research objective in this 

study by design a new optimization proposal based upon a multi-objective algorithm to 

minimize time and cost in a heterogeneous cloud environment and offered a detail of the 

framework.  
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CHAPTER 5: EVALUATION OF MULTI-OBJECTIVE SCHEDULING 

ALGORITHM 

The objective of this chapter is to provide performance evaluation method used to 

evaluate and validate the proposed multi-objective scheduling algorithm. The 

scheduling algorithm adopts more accurate methods to determine the execution time. 

The purpose is to improve resource allocation and tasks scheduling in big data 

processing. Thus, in order to outline the importance of the proposed algorithm as 

discussed in Chapter 4, this evaluation study is significant. The performance of 

MapReduce scheduling for big data processing has been investigated by many 

researchers ranging from job scheduling to an adaptive and on-demand fault, replication 

and placement to new resource allocation models. However, evaluating of these models 

have been overly by simplified setting in most MapReduce performance enhancement 

solutions, which presents significant challenges to the analysis and compare the 

effectiveness of these solutions (Sangroya et al., 2016). 

Having proposed multi-objective scheduling algorithm, it is important in this chapter to 

design an evaluation procedure in order to provide a verification of its use. This chapter 

also offers validation using statistical analysis, which aims to validate the results of the 

proposed algorithm in terms of the performance and compare with the FIFO and Fair 

schedulers. The evaluation results are validated using linear regression models. First, 

the chapter provides a description of the benchmarks that used for the evaluation of the 

proposed algorithm. Second, the simulation environment and the datasets used for the 

experiment are described in details. Finally, the chapter investigates the performance of 

the proposed algorithm by comparing it with the most used scheduling algorithms: 

FIFO and Fair schedulers. 
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The chapter is organized as follows. Section 5.1 provides benchmark description that is 

used for the evaluation of big data scheduling algorithms. Section 5.2 highlights the 

datasets used in the experimental stage. Section 5.3 presents the list of experiment and 

their procedure, as well as a description of this study. Section 5.4 presents a statistical 

model include the coefficient of determination. Section 5.5 presents performance 

evaluation results for the throughput and the execution time. Section 5.6 offers 

validation of results and the discussion is in Section 5.7. Section 5.8 provides a 

summary of the chapter. 

5.1 Benchmark Description  

In order to evaluate Hadoop schedulers in a proper way, we assume that various big data 

applications vary dynamically when running in a real application in cloud computing. 

This evaluation assumes that users can scale-up or scale-down the workload traces in 

terms of both data and workload scales according to their requirements. The purpose of 

using the benchmarks is to evaluate the performance of proposed scheduling algorithm 

regarding execution time and throughput.  

The performance of MapReduce job is measured based upon the execution time 

(Shankar et al., 2014). Also, many other factors can influence the performance of the 

MapReduce job significantly, such as many map tasks and reduce tasks, the underlying 

network, intermediate shuffle data pattern, and the shuffle data size. 

The scheduling algorithm performance of virtualized Hadoop cluster deployed on the 

cloud computing is evaluated. Figure 5-1 shows the process of big data processing using 

Hadoop cluster. The cluster is configured in a virtualized environment where each 

cluster node installed in a separate virtual machine. The cluster consists of the master 

virtual machine running JobTracker, NameNode, and multiple workers virtual machine 

running TaskTracker and DataNode. When the user places a query, the NameNode 
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located the DataNode within the cluster. Each DataNode holds a portion of the datasets 

and constantly communicates with the NameNode to complete a certain task. Once the 

datasets located within the cluster the TaskTracker begins processing the data using the 

MapReduce framework mechanism, which start from Map, combine, shuffle and then 

reduce. The result of the data processing can be stored back in HDFS.  

  

Figure 5-1: Process of big data processing 
 

Hadoop, in general, is known to be low CPU usage system. Some internal restrictions 

imposed by the implementation do not allow boosting the CPU usage to its maximum if 

a single job running on each node. To address this Hadoop scheduler load simulator is 

used to obtain high average CPU usage per node, which increases the cluster 

performance for the non I/O bound workloads.  

Table 5.1 shows some of the big state-of-the-art data benchmarks efforts used for 

evaluating different methods and algorithms of applications. Some of these benchmarks 
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can be used to evaluate scheduling algorithms in some big data platforms like 

MapReduce. To cover diverse and representative workloads, the important workloads 

from four applications are highlighted in order to help in the selection of suitable 

benchmarks.  

Table 5-1: Comparison of Bi data benchmarking efforts 
Benchmark Datasets Software stacks Examples Status 
Micro (Islam 
et al., 2014) 

Unstructured text 
data 

Apache Hadoop WordCount 
and Sort 

Open source 

HiBench 
(Huang et al., 
2011) 

Unstructured/Semi-
structured data 

Apache Hadoop 
+ Hive 

Offline 
analytics 

Open source 

BigDataBench 
(L. Wang et 
al., 2014) 

Unstructured text, 
graph data  

NoSQL  Online 
analytics 

Open source 

 

That is being said; Hadoop is used as the basic software stack. For the same big data 

application, the scale of the simulator running big data applications is mainly decided 

by the size of data input. Since the evaluation of the algorithms is based on text datasets, 

the benchmarks used in these experiments are Micro Benchmark which can be tuned 

depends on the cluster and workload characteristics. For the analysis of the scheduling 

algorithm, the WordCount and Sort applications are used on a Hadoop cluster deployed 

in the cloud virtual machines. These applications are commonly employed in a 

computation of workloads to measure the factors which include CPU usage, throughput 

and execution time. 

WordCount is a program which as its name suggests, is used to count the number of 

times each word is found in a text. The Hadoop distribution comes with several 

benchmarks, which are bundled in Hadoop-*examples*.jar. Sort is a synthetic, which 

also included in Hadoop distribution. It allows generating variable-sized data sets and 

sorting the generated data. This benchmark has been used by Google and Yahoo to 

evaluate their MapReduce frameworks and it is considered to be a good measure of the 
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performance characteristic of the underlying platform. Next section introduces the 

PingER datasets that are used in the research. 

5.2 PingER datasets  

This evaluation uses datasets that represent different ends of the spectrum in terms of 

difficulty. The datasets used referred to herein as PingER, is the datasets generated 

using the point-to-point network.  

The PingER data sets generate data about the Internet in order to anticipate the 

performance of internet links between laboratories, universities and research institutions 

(Cottrell, 2012). The project started in laboratories for modern High Energy Nuclear and 

Particle (HENP) Physics. The goal is to help the projects group to monitor performance 

and assess the feasibility of the computing goals of the future experiments (Cottrell, 

2012). The laboratories faced a significant challenge in their wide-area networks. Thus, 

the HENP networking community used End-to-End performance monitoring 

infrastructure to closely examine malfunctions across a wide range of networks and 

connections and chart long-term trends. According to ICFA-SCIC Monitoring Working 

Group in 2014, the pingER project has over 86 active monitoring nodes in 22 different 

countries around the world monitoring over 810 remote nodes at over 775 sites in 166 

countries that are around 8000 monitor nodes.  
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Figure 5-2: Data collection method: PingER 
 

As demonstrated in Figure 5-2 each monitoring node sends ping messages at regular 

intervals to single or group of selected worldwide remote nodes and data is collected at 

archive site via HyperText Transport Protocol (HTTP) for analysis purpose (Cottrell et 

al., 2013). This process resulted in a massive amount of data being produced by 

PingER. Figure 5.3 represent the PingER hourly data compressed for each 100 bytes of 

pings, which stored in PingER archive and made available via anonymous ftp via 

ftp://ftp.slac.stanford.edu/users/cottrell (Cottrell, 2012). 

Over the past 15 years, PingER project has generated a tremendous amount of data 

stored in flat CSV files in a form of Linked open data, which have been used to 

anticipate the performance of internet links between laboratories, universities and 

research institutions (Cottrell, 2012). Hence, to access such data, Pingtable application 

(Cottrell et al., 2013) is used to retrieve row data stored in the archive and load it into a 

normal HTML page.  
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Figure 5-3: Pinger volume of compressed hourly data for 100Byte pings  
 

The data sets are stored in the Hadoop distributed file system, which accommodates a 

large number of PingER files. Moreover, this dataset stored is in many pieces across 

many nodes in the cloud to facilitate parallel computation. 

In this study, we used up to 10 GB of PingER datasets. The reason of using this PingER 

data is that the data available to the public for research purposes and it is suitable for 

experiment with WordCount and Sort benchmark applications due to the complexity of 

the data.     

5.3 Experimental and procedure description 

This section presents a systematic performance evaluation of the proposed algorithm 

using divers’ sets of workloads, including Map, Shuffle, and Reduce workload. In 

addition, the Hadoop scheduling simulator is used for the evaluation. The scheduling 

algorithms FIFO and Fair schedulers are compared with the proposed algorithm using 

Hadoop version 2.6.0. The newest version content YARN as a successor of Hadoop, 

which offers a new framework for resource management. Thus, based on the 

performance evaluation, the algorithms implemented within YARN such as Fair 
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scheduler is working well. Although, YARN still in its early stage of development, 

therefore it is not fully stable yet for very large-scale execution (Kulkarni & Khandewal, 

2014). 

The experiments were conducted using the Hadoop cluster with 10 VMs installed on 

Linux Ubuntu 14.04. One of the VMs runs NameNode and ResourceManager, whereas 

the other VMs run DataNode and DataManager. Each VM has the following 

configuration: 2.80 GHz processor, 8 GB main memory, and 1000 GB disk space. 

Hadoop version 2.6.0 was used for the high-level query. The maximum replication 

factor “dfs.replication.max” was applied to set the replication limit of data blocks. A 

benchmark representative set of CPU and IO intensive applications included in the 

Hadoop distribution, such as WordCount and Sort, for performance analysis was used to 

efficiently evaluate the MapReduce task scheduling algorithms (Huang et al., 2011). 

The reason for choosing these two benchmarks is because both are used most often as a 

baseline benchmarks for MapReduce. Table 5.2 provides an example of MapReduce of 

the basic settings for the experiment.  

Table 5-2: Example MapReduce Settings 
Property Value 
mapreduce.map.memory.mb 1536 
mapreduce.reduce.memory.mb 2560 
mapreduce.map.java.opts -Xmx1024m 
mapreduce.reduce.java.opts -Xmx2048m 
yarn.scheduler.minimum-allocation-mb 512 
yarn.scheduler.maximum-allocation-mb 4096 
 

5.4 Statistical Models  

Scheduling jobs on MapReduce have conflicting requirements and goals to optimize 

due to the difficulty of predicting a new incoming job’s behavior and its completion 

time. Given the possible presence of the cloud heterogeneity, deterministic modeling of 

scheduling jobs on MapReduce is difficult. As such, proven statistical scheduling 
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models are required to represent the real life scenario of the data analysis regarding 

validation. In order to perform data analysis, the statistical model is used to identify 

various forms of inferences from the benchmarking experiments. Hence, the purpose of 

the statistical model is to construct a model that approximates the true structure as 

accurately as possible through the use of available data. This statistical model is based 

on two factors which are throughput and execution time.  

In realistic settings, a lot of factors can impact the performance of the Hadoop 

scheduling mechanism, in the following, critical factors which are closely correlated 

with the system performance are elaborated. The purpose of analyzing these factors is 

summarized in Table 5-3.  

Table 5-3: Summary of the purpose of analysis throughput and execution time 
Factors  Purpose of analysis 
Throughput Compare the average task throughput of FIFO, Fair scheduler, and 

the proposed scheduling algorithm under different data sizes in 
order to verify that the proposed algorithm can foster average task 
throughput. 

Execution time Compare the performance of execution time of FIFO, Fair 
scheduler; confirms that to the proposed scheduling algorithm can 
enhance the execution time performance of MapReduce in the 
cloud.  

 

For the statistical analysis model, we used alteration method to produce numerical 

values, which content the execution time and throughput for each workload. These 

workloads are independent in nature. Moreover, in order to identify the correlation 

between the workloads and the execution time and the throughput of the experimental 

output, we use a regression model to determine the value of the execution time and 

throughput from the values of one or more variables, so that the dependent variable can 

be predicted. That is being said; the dependent variable is execution time and 

throughput that mainly depends on the independent variables. 
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The execution time and throughput predictions can be made from the set of the data 

collected from the experiments. A method to predict the execution time and throughput 

of each task on a Hadoop cluster running on the cloud is required for an efficient 

mapping of the task to the CPU and the cost to complete each task within a deadline. 

The workload of the cluster offers knowledge of the amount of work at the CPU at any 

given time. The load is obtained as a numerical value taking into consideration the 

amount of time to complete the tasks and the CPU time and an average number of jobs 

in the run queue. 

Linear regression is considered due to independent variables such as size and the 

number of tasks running on the virtual cluster. Thus, for the execution time and 

throughput considering the size and the numbers of tasks, linear regressions are 

employed in order to find the significance of execution time and throughput. The 

regression line is depicted by the relationship between two variables in a straight line in 

order to predict the dependent variable from independent variables. Equation 5-1 shows 

an example of the mathematical relationship between two variables 𝑥 − 𝑎𝑥𝑖𝑠 and 

𝑦 − 𝑎𝑥𝑖𝑠 as the linear regression relationship. The parameters 𝑏 and 𝑚 represented the 

coefficients of the regression model which are fixed values.  

              𝒚 =  𝒎 ∗ 𝒙 + 𝒃                                                                                                 5-1 

For the several independent variable relationships, linear regression is used to predict 

variables and dependent variables. The main goal of linear regression is to offer a 

probabilities model that relates a dependent variable to one independent variable. The 

dependent variable is represented by the time to execute the tasks, and the independent 

variables are the amount of the data that is being executed by Hadoop.  

For validation the result of the regression model, we used a numerical methods strategy. 

Consequently, the generated data from the experiments are used to validate the result of 
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the model. As such, the data split randomly into two: first, to develop the model and the 

second, is to measure predictive accuracy to identify the correlations between the 

variables. 

5.4.1 Coefficient of determination  

Basically, the measurement of predicted output corresponds to the actual output 

accuracy is given by the coefficient of determination. It is represented by 𝑅2, which 

magnitude varies between zero and one. The value with high number indicates the high 

accuracy of the prediction. As mentioned earlier in the execution time and throughput 

are defined by the linear regression models, the values of 𝑚 and 𝑏 illustrated in equation 

5-1 are to be determined. These parameters cannot be directly measured and have to be 

estimated. The estimation is performed by collecting a set of data for example, CPU, 

total respond time and runtime. Such estimation of the parameters is done through 

drawing an estimated regression line through the actual data. For any data point there 

exists a residual or error of fit represented as 𝑟 given by: 

         𝒓𝒊 =  𝜶𝒊 +  𝜷𝒊                                                                                                        5-2 
    

Where 𝛼𝑖the actual execution time and 𝛽𝑖 is the predicted execution time. The 𝛼𝑖 can be 

less than 𝛽𝑖 if the observation shows below the estimated regression line. Using the 

method of ordinary least squares, the criterion for an accurate prediction is that the sum 

of the squared residuals be as small as possible, which unexplained variation is 

represented as:  

             𝑚𝑖𝑛 ∑ 𝑟𝑖2𝑛
𝑖=1                                                                                                                     5-3 

For any observation 𝐼, the execution time 𝛼𝑖 deviates from the mean of the original 

execution times. This deviation is equal to the deviation of the predicted value from the 
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mean plus the residual. The regression explains the predicted value, while the residual 

remains unexplained.  

The proportion of the total variation in the execution time and throughput is measured 

by the coefficient of determination 𝑅2 that is explained by the independent variables, 

which are the number of tasks and the data size, as such the 𝑅2 can be defined as: 

          1 −  ∑ 𝑟𝑖2𝑛
𝑖=1  =  𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
                                                                   5-4 

The assessment of the magnitude of 𝑅2 depends on the nature of the process being 

analyzed. A 𝑅2 value of 0.05 or higher is said to be a relatively good predication. 

5.4.2 Execution time 

In order to perform the mapping of tasks to resources for execution, a matrix is required. 

There are two ways to obtain the result of execution time, which are the measurement of 

the tasks on particular resources on a Hadoop cluster. Meanwhile, statistical analysis 

defines many primitive types. The analysis, determine the performances of the nodes in 

the cluster based on the execution time estimation. As described in section 5.4, the 

regression model can be used to predict the completion time of all the tasks executed by 

MapReduce. The algorithm generates a scheduling matrix by making use of the 

predicted execution times to complete the tasks at near optimal solutions, and the tasks 

executed according to the scheduling time given by the algorithm. For the tasks to be 

successively executed, the user’s preference regarding the budget, the deadline must be 

captured. A decision module is necessary for the allocation of resources. Several 

experiments were performed on Hadoop deployed on cloud environment to evaluate the 

performance of the improved scheduling model. Frist, we evaluated the performance of 

the MapReduce scheduler in the cloud based on, throughput, the execution time, CPU 

response time, total response time by Map, and total response time by Reduce metrics. 
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As such, the completion time is predicted during the execution time. There are two 

types of time we considered in this study also which are the response time of each task 

and the total response time of CPU.  

Total CPU respond time: CPU is an important resource element during data processing, 

especially in the Map and Reduce phases. We observed that intensive computation in 

the map and reduced code can increase the CPU utilization as shown in Figure 5.4. 

Usually, CPU resources consume more by computationally intensive jobs as compare to 

other resources like bandwidth and I/O throughput. Consider the CPU utilization as 

given in Equation 5.3. 

            𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

                                                                                                  5-3  

Increase CPU utilization can create a bottleneck problem. However, most of the 

problems come from insufficient CPU utilization that is because, with current hardware, 

the CPU can to process a large amount of data faster than any other resources such as 

storage I/O and network. Thus, in many cases, when data is flowing through the 

MapReduce pipeline, the CPU is waiting for other resources to feed in data before it can 

proceed to the actual computation.  

That is being said. First, the proposed algorithm is measured regarding CPU utilization 

in order to evaluate the performance of CPU scheduling. This is because running 

Hadoop in a shared environment is maybe affected by the limits of available resources. 

The job completion and resource utilization are part of the user’s requirements, in a 

sense that the user specifies the values in the scheduler configuration file for the for the 

deadline and the budget 

A set of tasks run in a Hadoop cluster with ten nodes is measured based on the CPU 

utilization ranging from 0 to 100%. The x-axis represents the CPU utilization of the 
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cluster nodes before each task is started; we measured task execution time by the 

average completion time when running the same type of task on a node in a Hadoop 

cluster. 

The result from Table 5-4 shows the toal response time of each map task is higher 

compared to the time spent on the reducer and CPU that is because, during the 

scheduling process, the map tasks require more computational to finish the tasks. 

Moreover, the number of tasks given by the scheduler is more compared the Reduce 

phase.  

Figure 5-4 illustrates that a number of resources consumed by different applications run 

on the virtual Hadoop cluster. The execution time of the application is increased 

significantly for some tasks due to CPU intensive job. This shows that WordCount has 

high CPU utilization regarding IO compare with the other applications. As such, for 

both applications, better performance can be achieved if carefully allocate the resources 

in Hadoop cluster that offer an efficient performance.  

Table 5-4: The job profile of total response time in the cloud 
No Total respond time (s)  

CPU Map  Reduce 
1 485030  132919 18122 
2 47090 102730 5878 
3 53440 117224 11323 
4 29030 124923 21761 
5 46280 154398 25451 
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Figure 5-4: Total respond time 

We can also observe that the completion of the task of each phase is changed when the 

input size varies. As we have shown in the Figure 5-5 the completion time in the reduce 

phase stays fairly constant, whereas the others increase as the input data becomes larger, 

especially in Map phases where it takes most of the time to complete the tasks. A 

heterogeneous cluster with the numbers of VMs in cloud computing is created. 

Performance evaluation results 

Results of performance evaluation generated using two selected benchmarks: 

WordCount and Sort, for each one the result is collected based on the configured 

algorithm. The same data set size is specified for all algorithms in order to avoid bias 

during the evaluation. Moreover, the number of tasks executed in each job is determined 

by the input data set during the processing, which is handled by the MapReduce 

framework. These inputs are split into independent chunks which processed by the map 

tasks in a completely parallel manner. The performance of the proposed work compared 

with the default Hadoop scheduler and the Fair scheduler algorithms. Both Sort and 

WordCount benchmarks were run on the Hadoop Scheduler Load Simulator on the 

MYRAN cloud (see Appendix B) with 10 VMs to process input PingER data sets of 

different sizes varying from 2GB to 10 GB. The benchmark applications are executed 
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multiple times each using an average of the execution and throughput. In following, we 

present an explanation of statistical models of throughput and execution time. We have 

collected the data not only based on the size but also the number of tasks that is given 

by ResourceManager to the DataManager to be executed. The next section we discuss 

the performance result of both the throughput and execution time. For each one, we 

conducted a regression analysis to predict the performance of the results.  

5.4.3 Throughput  

 This section presents the result of throughput when executing PingER datasets on 

MapReduce using a WordCount and Sort applications. Statistical analysis of section 5.4 

is applied to predict and evaluate the performance of the result. In most cases, higher 

throughput shows that the system can complete more tasks in a given deadline, and the 

resources can be utilized sufficiently. Many charts and tables are used to demonstrate 

the finding.  

Table 5-5 provides the comparison between the three scheduling algorithms: FIFO, Fair, 

and the proposed algorithm. As shown from the table the proposed algorithm has high 

throughput percentage to the overall average of (78.31) compare to the Fair scheduler 

(69.31) and FIFO (62.18). The default Hadoop scheduler Throughput of FIFO can be 

shown to be low compared with other scheduling algorithms like Fair and the proposed 

algorithm. 

Table 5-5: Comparison of the proposed algorithm, FIFO, and Fair schedule 
regarding the throughput 

Data Size (GB) Proposed algorithm  Fair Scheduler FIFO 
2 46.280  47.090  42.045  
4 53.440  44.519  51.670 
6 69.309  54.030 50.570  
8 97.579  88.613  67.398  
10 124.923  111.398  99.230  
Total 391.531 345.650 310.913 
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The throughput of the proposed algorithm is predicted from executing MapReduce jobs 

using linear regression over different data sizes. This predicted throughput is analyzed 

for all algorithms using same data sizes in order to find the correction between them.  

Table 5.6 shows predefined fit function using linear regression for throughput. It 

presents the coefficient of determination; R2 "R squared" value of the results gathered 

from tasks processed in MapReduce that is deployed on the cloud. An R2 0.95 and 

higher are generally considered a good prediction. Considering that even at higher load 

the value of R2 is consistently closer to 1 and in most cases above 0.95 this process that 

the regression model is accurate in its prediction (see equation 5-1).  

Table 5-6: predefined fit function using multiple regression regarding 
throughput 

Attribute Value 

R2 0.95 

Mean squared error 8.4 

Fit parameters b=17.9 +/- 8.8 
m=10.1 +/- 1.3 

Unformatted fit 
parameters 

b=17.878700000000023 
m=10.071249999999997 

 

The data presented in Table 5-5 were analyzed using ANOVA, and the results are 

reported in Table 5-7, 5-8, 5-9, 5-10, 5-11,5-12. 

Table 5-7 shows that the significant is (0.008). The result suggests that the regression 

procedure, which estimated by the model is significant at the level of 0.05. Thus, at least 

one of the regression coefficients is different from zero. The output of the analysis 

indicates a statistically significant difference F (2, 2) = 124.69, p < 0.008 = 124.692, 
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therefore, the throughput accuracy of the proposed algorithm is significantly better than 

the FIFO algorithm. 

Moreover, Table 5-7 shows the temporal data related to throughput using regression 

model. The table presents mean coefficients, standard errors, and throughput of the two 

algorithms (Proposed algorithm and FIFO) with 95% confidence interval. The 

coefficients here means the response variable when the predictor variable changed, 

whereas holding other predictors in the model constant. The higher values of one 

variable tend to be related to lower values for the other variable. A positive correction 

indicates that higher values of one variable tend to be related to higher values of the 

other variable. As shown in the table, there is a significant high throughput when 

performing tasks execution using proposed algorithm on the cloud. The performance 

has a direct correlation with latency, meaning that the system can produce low latency 

using the proposed algorithm.  

Thus, the performance accuracy of the proposed algorithm regarding throughput 

significantly better than that of the FIFO. The accuracy of the results is most likely 

because the datasets used are of approximately equal size.  

Table 5-7: Analysis of multiple regression for throughput time execution of 
proposed scheduling algorithm and FIFO scheduler 

  df SS MS F Significance F 
Regression 2 39.682 19.841 124.692 0.008 
Residual 2 0.318 0.159 0.000 0.000 
Total 4 40.000 20.000 124.692 0.008 
 

While, as shown in Table 5-8 the p-value for the estimated coefficients of x-axis and y-

axis, are respectively 0.028 and 0.048, indicating that they are significantly related at 

the level of 0.05. Therefore, our proposed algorithm framework demonstrates high 

throughput when executing big data compare to the FIFO scheduling algorithm. The t-
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value and p-value give an indication of the impact and the significance of each 

independent variable.  

Table 5-8: t-test significance of difference between the proposed algorithm and 
FIFO with respect to the throughput 

  Coefficients Standard Error T-value P-value 
Intercept -6.019 1.007 -5.977 0.027 
Proposed algorithm 0.752 0.128 5.883 0.028 
FIFO -0.540 0.122 -4.420 0.048 
 

Table 5-8 reveals that p-value is less than 0.05 for proposed algorithm and FIFO. Since 

the P-value is less than 0.05, the result is accepted at the 5 percent level of significance. 

Therefore, it is concluded that there no significant difference between proposed 

algorithm and the FIFO when small execution size of data. Furthermore, Table 5-8 

shows the coefficients that give intercept and the regression coefficients for each 

explanatory variable. The intercept value -6.019 represents the contestant which 

predicted throughput time. The finding of the study also reveals that the perception of 

the proposed algorithm and FIFO with respect to throughput is different. A coefficient 

score of proposed algorithm is 75.2.  

Table 5-9: Analysis of multiple regression for throughput time execution of 
proposed scheduling algorithm and Fair scheduler 

  df SS MS F Significance F 
Regression 2 39.430 19.715 69.190 0.014 
Residual 2 0.570 0.285 - - 
Total 4 40.000 20.000 - 69.190 0.014 
 

The throughput of the proposed algorithm and fair analysis of multiple regressions 

given in Table 5-9 yielded an F value of 69.190. When compared to the table value, the 

result is highly significant.  
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Table 5-10: t-test significance of difference between the proposed algorithm and 
Fair with respect to the throughput 

  Coefficients Standard Error T-value P-value 
Intercept -6.784 1.592 -4.260 0.051 
Proposed algorithm 0.742 0.175 4.235 0.051 
Fair -0.503 0.159 -3.166 0.087 
 

Table 5-10 shows the coefficients that give intercept and the regression coefficients for 

each explanatory variable. The coefficient value of the proposed algorithm 0.742 

represents the contestant which predicted throughput time in comparison with the Fair. 

Therefore, our proposed algorithm framework demonstrates high throughput when 

executing big data compare to the Fair scheduling algorithm. 

Table 5-11: Analysis of multiple regression for throughput time execution of 
proposed scheduling algorithm and Fair scheduler 

  df SS MS F Significance F 
Regression 3 39.728 19.243 48.627 0.105 
Residual 1 0.272 00.757 - - 
Total 4 40.000 20.000 48.627 0.105 
 

The summary analysis of linear regressions for the three algorithms sections is listed in 

Table 5-11. A closer inspection of Table 5-11 and 5-12 revealed that the summary of 

linear regression for predicting scheduling algorithm in MapReduce jobs using the 

cloud. This table contained information obtains from the analysis of linear regression 

for all possible combinations of the three selected predictor variables. Moreover, 

included in the table were computed F values, standard errors of estimated multiple 

correlation coefficients, F and the significance of F. The data in this table were then 

used to select the best possible combination of the independent variable for predicting 

the performance of the scheduling algorithm in MapReduce. The regression equation is 

used to predict the dependent variable shown in (5-2). The result revealed that multiple 

correlations of 0.737 and standard error of 0.171 were recorded from three variable 

analysis. The multiple correlations indicated that the three-variable models accounted 
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for over 50 percent of the variance involved. The F ratio that was 48.627 was highly 

significant beyond the one percent significant level. From the data, the results indicated 

that the prediction of proposed scheduling algorithm improves the performance of 

executing tasks in MapReduce using cloud computing is possible.  

Table 5-12: t-test significance of difference between the proposed algorithm and 
FIFO and Fair on the throughput 

  Coefficients Standard Error T-value P-value 
Intercept -5.366 2.065 -2.598 0.234 
Proposed algorithm 0.737 0.171 4.301 0.145 
FIFO -0.879 0.841 -1.045 0.486 
Fair 0.335 0.816 0.411 0.752 
 

5.4.4 Analysis of the results regarding throughput 

The correlation analysis of the proposed algorithm, FIFO, and the Fair identical 

dependent variables reveals 0.145 significant correction counts for proposed algorithm, 

0.486 significant corrections for FIFO and 0.752 counts for the Fair scheduler. From an 

independent variable set perspective, we observed the proposed algorithm set dominates 

the significant correction count 0.737.  

Figure 5-5 and 5-6 present the throughput of different data sizes to be processed by the 

MapReduce framework in a cloud computing environment using the WordCount and 

Sort benchmarks, respectively. This processing of datasets is scheduled by different 

algorithms, that is, FIFO scheduler, Fair scheduler, and the proposed scheduling 

algorithm. Data size affects the type of scheduler required to execute the tasks at a 

targeted performance level. This metric significantly influences task scheduling, where 

the execution time of each task has to be minimized considering the heterogeneity of the 

cluster. 
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Figure 5-5: Throughput using WordCount benchmark 
 

As can be seen from Figure 5-5 shows that the proposed algorithm can provide higher 

throughput compared with the other scheduling algorithms, namely, FIFO and Fair. The 

main purpose of achieving high throughput is to reduce the processing time of the 

workload, particularly when a large amount of data is involved. The resource utilization 

rate is the reflection of system throughput, which is the useful computation cost over the 

total cost, including the overhead for starting up the cluster. Many cloud service 

providers offer hour-based or minute-based charges to users who are availing of 

computing service on the cloud to reduce the unnecessary CPU cycles spent on 

overhead, which may consume a large amount of resources to be allocated elsewhere to 

meet the demands of users (Armbrust et al., 2010).  

Figure 5-6 presents the number of allocated data inputs in the cluster to test the 

proposed algorithm. The experiment conducted using the WordCount benchmark is 

similar for FIFO, Fair, and the proposed scheduling algorithm. 

. 
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Figure 5-6: Throughput using Sort benchmark 
 

Figure 5-6 presents the throughput obtained by executing datasets with the same amount 

of data using the Sort benchmark. The tested result of the three scheduling algorithms 

also used a dataset with the same size as that used for the WordCount benchmark. 

Figure 4 shows that the proposed algorithm has high throughput compared with FIFO 

and Fair schedulers. However, a simple technique to achieve good performance in the 

FIFO and Fair algorithms is to assign an available slot to the pool with the least amount 

of running tasks (Hadoop, 2009). The overall throughputs are insignificantly different 

under FIFO and Fair. 

As shown in Figure 5-5 and 5-6, show that the amount of resources consumed by each 

node increases as throughput time becomes longer during the execution. Thus, the task 

in Hadoop scheduling should be matched carefully to the VM in the cloud environment 

to achieve good performance. In this manner, the system can effectively use the 

resources to improve the progress of executing the tasks in the Hadoop cluster. 
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5.4.5 Execution time  

This section presents the results of the execution time of the MapReduce job in the 

cloud using the WordCount and Sort benchmarks. The design of the experiment is 

based on the MapReduce framework running on the cloud. The execution of the 

MapReduce job depends on the scheduling algorithms deployed for each experiment, 

which includes the proposed algorithm, FIFO, and Fair. Data related to execution time 

are collected using benchmarking in this section. Several tables and charts used to 

demonstrate the findings. Table 5.13 shows predefined fit function using linear 

regression for throughput. It presents the R2 value of the tasks being processed in 

MapReduce. An R2, 0.90 and higher are generally considered a good prediction. 

Considering that even at higher load the value of R2 is consistently closer to 1 and in 

most cases above 0.90 this process that the regression model is accurate in its prediction 

(see eq 5-1) 

Table 5-13: predefined fit function using multiple regressions regarding 
execution time 

Attribute Value 

R2 0.90 

Mean squared error 4.6e+3 

Fit parameters b=144.3766 +/- 1.7e+3 
m=19.3 +/- 2.1 

Unformatted fit 
parameters 

b=144.37656306548365 
m=19.303353662617386 

 

Table 5-13 shows the historical data related to throughput using regression model. The 

table presents mean coefficients, standard errors, and execution time of the two 

algorithms (Proposed algorithm and FIFO) with 90% confidence interval. The 

coefficients here represent the mean change in the response variable for one algorithm 
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of change in the predictor variable, whereas holding other predictors in the model 

constant. The higher values of one variable tend to be related to lower values for the 

other variable. A positive correction indicates that higher values of one variable tend to 

be related to higher values of the other variable. As shown in the table, there is 

significant in execution time when performing tasks execution using proposed 

algorithms on the cloud. The performance has a direct correlation with completion time 

and cost of using the cloud, meaning that the system can reduce the execution time 

using the proposed algorithm. 

Table 5-14: Analysis of multiple regression for execution time execution of 
proposed scheduling algorithm and FIFO scheduler 

  df SS MS F Significance F 
Regression 2 4130753.341 2065376.670 35.923 0.000 
Residual 8 459951.205 57493.901 -  -  
Total 10 4590704.545 2122870.571 -  -  
 

Table 5-14 shows that the significant F is (0.000), which suggests that the regression 

procedure estimated by the model is significant at the level of 0.05. The minimum of the 

coefficients is different from zero. F (2, 8) = 35.923, p < 0.000. As shown in Table 5-14 

the estimated coefficients of the p-value of x-axis and y-axis, are respectively 0.889 and 

0.998, indicating that they are significantly related at the level of 0.05. The t-value and 

p-value give an indication of the impact and the significance of each independent 

variable. The T-value and P-value represent a significant difference between mean 

proposed algorithm and FIFO execution time values. The positive T-value of the 

proposed algorithm (0.145) and FIFO (-0.002) demonstrate that the execution time of 

the proposed algorithm takes less time than the FIFO. Thus, the completion time and 

cost of our proposed algorithm is more significant compared to FIFO.  

Table 5-15: t-test significance of difference between the proposed algorithm and 
FIFO on the execution time 

  Coefficients Standard Error T-value P-value 
Intercept 133.475 92.478 1.443 0.187 
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Proposed Algorithm 0.053 0.364 0.145 0.889 
FIFO -0.001 0.276 -0.002 0.998 
 

Table 5-15 shows the coefficients that give intercept and the regression coefficients for 

each explanatory variable. The coefficient value of the proposed algorithm 0.742 

represents the contestant, which predicted execution time in comparison with the Fair. 

Therefore, our proposed algorithm framework demonstrates execution time when 

executing big data compare to the FIFO scheduling algorithm. 

Table 5-16: Analysis of multiple regression for throughput time execution of 
proposed scheduling algorithm and Fair scheduler 

  df SS MS F Significance F 
Regression 2 4133289.341 2066644.671 36.145 0.000 
Residual 8 457415.204 57176.901 - - 
Total 10 4590704.545 2123821.572 36.145 0.000 
 

Table 5-16 shows that the significant is (0.000), which suggests that the regression 

procedure estimated by the model is significant at the level of 0.05. Therefore, at 

minimum one of the coefficients is different from zero. F (2, 8) = 36.145, p < 0.000. As 

shown in Table 5-16 the p-value for the estimated coefficients of x-axis and y-axis, are 

respectively 0.891 and 0.838, indicating that they are significantly related at the level of 

0.05. The t-value and p-value give an indication of the impact and the significance of 

each independent variable. The T-value and p-value give an indication of the impact and 

the significance of each independent variable. Therefore, the T-value and P-value 

represent a significant difference between mean proposed algorithm and Fair execution 

time values. Negative T-value of the proposed algorithm (-0.141) demonstrate that the 

execution time of the proposed algorithm takes more time than the Fair at some point. 

Thus, the completion time and cost of our proposed algorithm is less significant 

compared to Fair at some point. However, the value can change as shown the P-value of 

the proposed algorithm (0.891) is positive.  
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Table 5-17: t-test significant of difference between the proposed algorithm and 
Fair with respect to the execution time 

  Coefficients Standard Error T-value P-value 
Intercept 139.369 90.218 1.545 0.161 
Proposed Algorithm -0.105 0.745 -0.141 0.891 
Fair 0.133 0.631 0.211 0.838 
 

Table 5-17 shows the coefficients that give intercept and the regression coefficients for 

each explanatory variable. The coefficient value of the proposed algorithm -0.105 

represents the contestant which predicted execution time in comparison with the Fair 

scheduler. Therefore, our proposed algorithm framework demonstrates execution time 

when executing big data compare to the Fair scheduling algorithm. 

Table 5-18: Analysis of multiple regression of execution time execution of 
proposed scheduling algorithm, FIFO, and Fair schedulers 

  df SS MS F Significance F 
Regression 3 4137223.409 1379074.470 21.288 0.001 
Residual 7 453481.136 64783.019 - - 
Total 10 4590704.545 1443857.489 - - 
 

Table 5-18 shows that the significant is (0.001). This implies that the model estimated 

by the regression procedure is significant at the level of 0.05. Thus, at least one of the 

regression coefficients is different from zero. F (7, 10) = 21.288, p < 0.000. As shown in 

Table 5-18 the P-value for the estimated coefficients of x and y, are respectively 0.788, 

0.761 and 0.812, indicating that they are significantly related at the level of 0.05. The T-

value and p-value give an indication of the impact and the significance of each 

independent variable. 

Table 5-19: t-test significance of difference between the proposed algorithm, 
FIFO, and Fair with respect to the execution time 

  Coefficients Standard Error T-value P-value 
Intercept 134.310 98.201 1.368 0.214 
Proposed Algorithm 0.505 1.807 0.280 0.788 
Fair 0.342 1.081 0.316 0.761 
FIFO 0.116 0.473 0.246 0.812 
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As shown in Table 5-19 the T-value and P-value give an indication of the impact and 

the significance of each independent variable. The t Stat and P-value represent a 

significant difference between mean proposed algorithm, FIFO, and Fair execution time 

values. The positive T-value of the proposed algorithm (0.280), FIFO (0.246) and Fair 

(0.316) demonstrate that the execution time of the proposed algorithm takes less time 

than the Fair. Thus, the completion time and cost of our proposed algorithm is more 

significant compared other algorithms. 

5.4.6 Analysis of results regarding execution time 

Figure 5-7 shows the differences in execution time. The straight line denotes the 

difference in achievement and the correlation between workload and execution time. 

Initially, execution is unstable in terms of time due to the small size of the data. 

However, execution becomes relatively stable with the increase in data size and the 

number of tasks to be executed by the framework on the cloud.  

 

Figure 5-7: Execution time using WordCount benchmark 

Univ
ers

ity
 of

 M
ala

ya



108 

 

 

Figure 5-7 presents the execution time of several tasks using the WordCount benchmark 

with FIFO, Fair, and the proposed scheduling algorithms in virtual cluster nodes with 12 

Hadoop jobs of different sizes. The figure shows that the completion time of the overall 

processing is also increased. In the first scenario, the default algorithm FIFO is used on 

the Hadoop nodes without tuning the Hadoop parameters. Figure 5 illustrates that the 

FIFO algorithm slightly degrades the performance of Hadoop in terms of execution time 

and resource utilization, where data are shared among multiple users. The Fair scheduler 

and the proposed algorithm appear to exhibit better performance compared with the 

FIFO algorithm, but the data locality feature is hindered. The proposed algorithm can 

finish the tasks faster than the other two schedulers using WordCount to process the 

data. The completion times change based on the type of workload given that different 

workloads have various resource demands. The sharing of resources during workflow 

execution regardless of the size are typically relayed on the structure, a number of 

modules of the workflow, and the complexities. However, only a limited amount of 

resources that are shared among the nodes can be utilized by the small number of 

modules in each layer. 

In Addition, as shown in Figure 5-7 the sign of dropping after 1500 number of tasks 

probably indicate that, many nodes in the clusters participate during the process of data 

since Hadoop replicate its datasets across the cluster. In addition, Hadoop relies on data 

locality during the processing and as the number of tasks increases the possibility of 

finding data in a designated node is high compared to less number of tasks which only 

fewer nodes are participating.  
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Figure 5-8: Execution time using Sort benchmark 
 

In Figure 5-8, shows the use of the Sort benchmark to simulate the FIFO, Fair, and 

proposed scheduling algorithms. The result slightly differs from that of the WordCount 

benchmark, where the proposed algorithm achieves a noticeable reduction in task 

execution time. The Sort benchmark consumes more resources than the WordCount 

benchmark because of the intensive data flow and the computation of aggregate 

functions that must perform the Sort benchmark. 

The comparison of the aforementioned algorithms indicates that performance has 

significantly improved using the Sort benchmark, which relies completely on the 

sharing of resources. Thus, the number of maps and reduce tasks is scaled. The 

proposed algorithm occasionally exhibits better performance compared with the other 

algorithms, such as FIFO, given the limited resources to be shared among active nodes. 
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Table 5.20 provides the comparison between the three algorithms. As shown from the 

table the proposed algorithm has low execution time regarding the number of tasks for 

each job in most of the cases as compare to FIFO and Fair scheduler. The default 

Hadoop scheduler FIFO execution time can be shown to be high regarding execution 

compare with other scheduling algorithms like fair and the proposed algorithm.  

Table 5-20: Comparison between the proposed algorithm, FIFO, Fair schedules 
regarding execution time 

Number of tasks Proposed algorithm  Fair Scheduler  FIFO Default  
15 30 39 37 
25 148.19 199.08 204.06 
50 255.2 358.58 354.12 
100 674.68 787.44 930.02 
150 1250.2 1494.53 1631.95 
200 4048.04 4525.55 5454.49 
250 5342.59 6164.7 7537.13 
500 2115.08 2307.18 3457.25 
1000 6329.22 7464.96 8303.04 
1500 25267.13 29980.91 33001.93 
2000 37964.17 44690.48 50369.89 
 

From the Figure 5-7 and 5-8, from the curves, we can observe that the execution time of 

the WordCount and Sort tasks scheduled are different in some cases. The reason is that 

WordCount process requires heavy disk I/O and network throughput. Table 5-20 shows 

the comparison of different performance measurement based on the result of the 

experiments conducted using three algorithms FIFO, Fair and the proposed algorithm. 

Various criteria are presented in the table for the comparison. The summary of the 

discussion has shown that the proposed algorithm is high in terms of the throughput, 

resource utilization, and CPU.  

The results of execution time show the significant improvement in processing big data 

with the MapReduce framework in the cloud when our proposed algorithm is used. This 

significant achievement is because of many factors, including, the flexibility of utilizing 

the cloud resources when executing a large amount of data, high throughput, low 
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latency deployed Hadoop cluster on the cloud. The result of this section is comparable 

with and supporting the finding of the statistical analysis. Finally, the completion time 

of MapReduce job can achieve with a high probability of the proposed algorithm 

prediction on the cloud. Moreover, it is able to make good trade-off decisions using 

multi-objective mechanism.  

5.5 Validation of Results 

The performance accuracy of the multi-objective optimization model was recorded 

while considering throughput and execution time. 

In order to measure the results of our proposed algorithm, validation feature is needed to 

confirm the quality of the results. This section presents the validation of the proposed 

algorithm results collected from the experiments for the performance evaluation in 

section 5.4. Based on the statistical analysis conducted, the results are related to 

throughput and execution time, which show overall effectiveness of our algorithm. 

Statistical analysis of our finding via multiple regression models is presented, and their 

individual values are plotted using figures. We use t-test results to confirm significant of 

the proposed algorithm. The result of the t-test shows significant differences between 

mean values of throughput and execution time. The prediction scheme is proving to be 

accurate considering the high values of the coefficient of determination with respect to 

the proposed algorithm.  

5.5.1 Throughput 

MapReduce in terms of throughput is limited to hardware and software. As such, the 

throughput could increase linearly with several jobs submitted to the cluster, which 

leads to high intensive workload and consequently increases in a total throughput at a 

constant rate. This shows that linear regression is a clear choice for predicting 

throughput of the MapReduce. Figure 5-9 illustrates the result of statistical analysis 
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using linear regression where x-axis gives data size, and y-axis gives the throughput 

regarding seconds. Moreover, it illustrates the actual and predicted throughput obtained 

from the experimental test of the proposed algorithm used by linear regression. In 

Figure 5-10, we observe that the predicted throughput is very close to the actual 

throughput.  

The P-values obtained from section 5.5.1 test the statistical association between the 

proposed algorithm and other algorithms like FIFO and Fair. Figure 5-6 shows the 

scatter plot of actual proposed algorithm values and estimated or predicted values 

obtained by using the R2 method.  

 

Figure 5-9: Actual vs. predicted throughput times 
 

Figure 5.9 shows the throughput of both predicted and actual performance using 

Hadoop cluster in the cloud for a given size distribution of the job. The runtime is 

shown as the average value of the runtime on the virtual resource that was used to 

execute the tasks. Obviously, the predicted throughput of the tasks is very close to the 
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actual throughput even under varying and high load. This observation is supported by 

the high value of the unformatted fit parameters. The magnitude of R2 lies between 0 

and 1 with a higher magnitude indicating a better prediction. The regression analysis 

showed a significant relationship between the actual and predicted proposed algorithm, 

R2 = 0.95.  

5.5.2 Execution time 

Figure 5-9 illustrates the result of statistical analysis using linear regression where x-

axis gives the number of tasks and y-axis gives the runtime in terms of seconds. 

Moreover, it shows the actual and predicted execution time obtained from the 

experimental test of the proposed algorithm used by linear regression. In Figure 5-11, 

we observe that the predicted execution time is very close to the actual execution time 

in the early stage. 

It can be observed in Figure 5-10 that there is an improvement regarding execution time 

with respect to predicted ones. This is because increasing number of tasks in Hadoop 

cluster would speed the process of executing jobs of the datasets. Thus, it is indicated 

from the performance evaluation that the algorithm was able to reduce the time to 

execute Hadoop jobs using cloud computing. The comparison results indicated that the 

proposed methodology presented in the research was found to be better than the FIFO 

and Fair scheduler regarding the performance metrics (throughput and execution time). 

The proposed algorithm outperforms the FIFO and Fair in both throughput and 

execution time.  
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Figure 5-10: Actual vs Predicted tasks execution time 
 

Figure 5.10 presents the actual and predicted execution time of the tasks. The predicted 

and actual execution times are compared for a given number of tasks in Hadoop cluster. 

The coefficient of determination and the average load on the cluster at the time the task 

was executed is shown. The regression analysis showed a significant relationship 

between the actual and predicted proposed algorithm, R2 = 0.90. Moreover, Figure 5.10 

demonstrates remarkable improvement in execution time of the MapReduce job using 

proposed scheduling algorithm in the cloud; further analysis is undertaken in tables 5-

17, 5-18 and 5-19. 

For the execution of MapReduce tasks, the resources of cloud computing like CPU, 

memory, and I/O used to complete the Map and Reduce tasks. The initial stage of the 

execution, all the data is loaded in HDFS, and then when the user submits the 

application, the data is loaded into memory. After the processing of the data is 

completed, the output is saved in a separate file in the storage to present to the user. 
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Such process does not entertain unnecessary virtual resources. However, when the 

computation requires a high memory and CPU and RAM intensive are not available. 

Such limitations cause completion time take longer than expected. In addition, because 

of the constraint set by the cloud providers in terms of cloud resources, it is not possible 

to load the entire data into memory for the high intensive workload. Therefore, the time 

consuming by I/O process continues to load the data into memory. Nonetheless, 

significant differences in execution MapReduce tasks in the cloud allow users to adjust 

the resources depends on the extremely large workload. 

5.6 Discussions 

In the previous sections, we provide a performance evaluation and validation of our 

proposed algorithm framework thought experiments and statistical analysis. In this 

section, we provide a discussion of the resulting findings and statistical analysis in order 

to validate the finding. The statistical analysis is implemented in order to ensure the 

accuracy achieved by the proposed algorithm. The research used a t-test to measure the 

significant of the proposed algorithm. Two independent samples are employed for 

testing difference of the two means which are throughput and execution time. The t-test 

is performed under the assumption that the completion time and the actual cost have no 

significant difference between them as shown by the throughput and the execution time.  

5.6.1 Throughput 

We compared the results of the experiments and the statistical modeling. Table 5-21 

provides a comparison of the statistical analysis of throughput results. As illustrated in 

the table, the results of the algorithms and statistical analysis show significant high 

throughput in using our proposed algorithm. The average of the high throughput of our 

proposed algorithm is significant 78.31 % when WordCount benchmark application is 

used. In addition, the coefficient is measured by 0.737 when using the proposed 
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algorithm. Such, approximately and strong support of findings advocate reliability and 

validity of the throughput.  

Table 5-21: evaluation, comparison: Proposed algorithm, Fair, and FIFO in 
terms of Throughput times 

Evaluation Throughput 
Time 

Coefficients Standard 
Error 

P-value R2 

Proposed 
algorithm High 0.737 0.171 0.145 0.91 

Fair Medium 0.335 0.816 0.752 0.86 
FIFO Low -0.879 0.841 0.486 0.85 
 

Moreover, the table shows the coefficient of determination R2 "R squared" value of the 

results gathered from tasks processed in MapReduce that is deployed on the cloud. R2 

values are given for the executed tasks under cloud computing environment. An R2 for 

the proposed algorithm (0.91), Fair (0.86), and FIFO (0.85) is captured which is higher 

than 0.05 that is considered a good prediction and prove that the regression model is 

accurate in its prediction. Thus, the actual and predicted throughput times are compared 

to a given size. The standard error on the workload on the cluster at the time the tasks 

were executed is also displayed. As shown in Table 5-21 the P-value of the estimated 

coefficients of x-axis and y-axis, are 0.145, 0.752and 0.752, for the proposed algorithm, 

Fair, and FIFO respectively, indicating that they are significantly related at the level of 

0.05. 

5.6.2 Execution time 

The execution time also compared using statistical analysis models to predict the 

execution times of all the tasks on all nodes from the data gathered by the algorithms. 

Thesis times represent the current cluster workload conditions in the cloud. Note that 

the schedule generated by the proposed algorithm clearly outperforms the Fair and 

FIFO schedulers.  
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Table 5-22: Evaluation comparison: Proposed algorithm, Fair, and FIFO 
regarding execution times 

Evaluation Execution Time Coefficients Standard 
Error 

P-value R2 

Proposed 
algorithm 

Low 0.505 1.807 0.214 0.90 

Fair Medium  0.342 1.081 0.788 0.90 
FIFO High 0.116 0.473 0.761 0.90 
 

Table 5-22 shows the coefficient of determination R2 "R squared" value of (0.90) from 

the results gathered from tasks processed in MapReduce that is deployed on the cloud. 

This R2 is higher than 0.05, which considered a good prediction and proved that the 

regression model is accurate in its prediction. Therefore, the actual and predicted 

execution times are compared regarding given many tasks. The standard error on the 

workload on the cluster at the time the tasks were executed is also displayed. As shown 

in Table 5-22 the P-value for the estimated coefficients of x-axis and y-axis, are 0.214, 

0.788 and 0.761, for the proposed algorithm, Fair, and FIFO respectively, indicating 

that they are significantly related at the level of 0.05. 

5.7 Summary 

As a new emerging technology, scheduling in MapReduce has been widely explored 

from various aspects by many researchers in recent years. However, most former 

research work mainly considers optimized and designed of algorithms and frameworks 

under a relatively a homogeneous environment. As a matter of fact, many performance 

issues, like hardware failure, software error and the heterogeneity of the machines and 

data have brought a great challenge in the performing data analysis. Therefore, it is 

essential to consider the performance tuning in MapReduce scheduling, such that the 

performance of algorithms and frameworks can be guaranteed for a different 

environment.  
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The goal of the proposed multi-objective algorithm in this chapter is to decrease the 

execution time of the tasks in the MapReduce framework in the cloud in order to 

achieve the minimization of the time and cost objective. This algorithm can decide the 

task start time through the running situation of the tasks. This evaluation set out to test 

the efficiency of the proposed algorithm against very common scheduling algorithms 

used for big data processing on Hadoop cluster. Using Hadoop benchmarks, a good 

performance was achieved in a different scenario. The evaluation metric revealed that 

running time of multiple tasks in a parallel environment is reduced under proposed 

algorithm and the throughput revealed that the scheduling could offer low latency with 

high throughput.  

To measure and calculate the performance of each node on the cluster, different 

benchmarks are used. Also, for the verification of the effectiveness of the result, we use 

formulas in the experiment to confirm the correctness of the results obtained. For the 

evaluation, we use Hadoop MapReduce program on the heterogeneous parallel virtual 

computer.  

In this chapter, the result of performance evaluation of the proposed algorithm using 

benchmarking and statistical modeling is presented and discussed using tables and 

figures. Linear regression analysis was performed on throughput and execution time 

using single predictor variable. Moreover, F significance, R-square, coefficient, and 

standard error were produced using standard Summary Report. For checking the 

linearity of the regression Residual Plots and Line Fit Plots were used. The result is 

based on p-values which typically 0.05 at 95% confidence interval. The t-test results are 

shown in Table 5-21, and 5-22 showed that the t-test is not significant (p>0.05). Thus, it 

is accepted that the completion time and the actual cost has no significant difference 

between them as shown by the throughput and the execution time. This means that the 
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throughput by the proposed algorithm is statistically equivalent to the cost. Thus, the 

algorithm has the potential for representing the real world system because it was able to 

produce results that are statistically the same as the actual real world system. We show 

to demonstrate the results in section 5.2, which highlight the significance of the 

minimization of the execution time and latency via increase the throughput from the 

benchmarking and statistical analysis. The performance evaluation of the proposed 

algorithm is conducted using workloads of the two applications in order to show the 

significance of the execution and throughput.  

Univ
ers

ity
 of

 M
ala

ya



120 

 

CHAPTER 6: CONCLUSION AND FUTURE DIRECTION 

This chapter concludes the major contributions of the thesis. It also outlines the 

potential opportunities to improve further or extend the work presented in the thesis. To 

this end, this thesis stands as a substantial effort to optimize scheduling of MapReduce 

in cloud computing from two dimensions simultaneously, including resource allocation 

and task scheduling.  

6.1 Aim and objectives of the study 

In this thesis, we aimed to achieved multi-objective scheduling algorithm that 

minimizes both the completion time and cost of using cloud computing by using 

evolutionary algorithms in order to improve resource allocation and tasks scheduling 

during the processing of big data. In the following, we highlight the contribution 

achievement of the thesis. 

6.1.1  Study the domain of big data and identify the key issues with respect to 
scheduling in big data platforms 

We accomplish this objective by reviewing the rise of big data in cloud computing. The 

characteristics and classification of big data along with some discussions on cloud 

computing are introduced. The relationship between big data and cloud computing and 

Hadoop technology are also discussed. We discussed the background of Hadoop 

technology and its core components, namely, MapReduce and HDFS. We also present 

scheduling in big data platforms, requirements for big data processing, scheduling 

algorithms, and multi-objective optimization, which is close, linked to big data 

processing studies.  

Moreover, in this objective also we discuss different scheduling algorithms used in big 

data platforms. In order to highlight the results of the study of the previous survey 
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conducted, the findings are strengthened. Having presented the concept of scheduling in 

big data platforms, various optimization options are identified. We studied scheduling 

of MapReduce jobs of the large volume of data processing. The study considers the 

minimization of completion time given a fixed budget, minimization of the monetary 

cost given a deadline and the trade-offs between the completion time and monetary cost 

of using cloud computing.  

Strengthened by the result of the study, this objective has revealed the issues that led to 

performance degradation in resource allocation and task scheduling problems, 

especially, when large amounts of data are being processed by a framework like 

MapReduce in a distributed environment.  

6.1.2 Investigate and identify the research problem 

This objective aims to provide analysis on the performance of scheduling MapReduce 

jobs in terms of the processing using the physical and cloud cluster, which has an 

impact on the processing time and cost. Using analytical analysis mathematical 

equations is derived to identify the time-cost model in the processing of big data which 

demonstrate the significant of the execution time and budget when utilizing cloud 

resources. We formulate the completion time with budget constraint model and cost 

with deadline constraint model. The initial findings are verified through experiments 

using two genetic algorithms: NSGA-II and SPEA2. The analysis of the models is 

carried out using genetic algorithms. It is well known that multi-objective genetic 

algorithms are among the most useful approaches for multi-objective. For 

computational experiments, the testbed is developed in which the tasks data for each job 

are randomly generated. Moreover, the trade-off solutions of Makespan and cost 

computed by sorting genetic algorithm II (NSGA-II) and Strength Pareto Evolutionary 

Algorithm 2 (SPEA2) are analyzed based on different workflow in order to find an 
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optimal solution between the two conflicting objectives. The classic one point crossover 

operator is used, which is important for the creation of the children. Also, two columns 

are randomly selected during the mutation operator, and all the different solutions are 

assigned to many non-dominated fronts in a ranking operation. During the generation, 

all the non-dominated solutions are copied to the Pareto archive. Compared with 

SPEA2, the Pareto archive size is fixed in this algorithm. The Pareto archive is filled 

with the non-dominated solutions until the considered archive size. 

6.1.3 Design and propose a new multi-objective algorithm  

This objective has achieved by providing a framework for multi-objective scheduling 

algorithm, in order to improve the execution time of tasks in the big data platforms. The 

framework designed is based on MapReduce framework, where resource manager is 

responsible for allocating the resources among the Hadoop clusters. The framework has 

introduced two main components which are adaptive control to identify tasks that 

unable to complete in a given time with the available resources and provides a feedback 

for the users and decision module to decide what the best fit for the job to run.  

Hadoop  checks if all the map tasks have completed in  in the cluster.,then, the output of 

the results of the execution of the map tasks and the time is saved in the logs. Similarly, 

for the reduce tasks, the completed tasks of the execution and the time are updated in 

the logs. The important of gathering the information about the execution is to help 

analysis the result in terms of the completion time, latency and the utilization of the 

CPU.  

6.1.4 Evaluate the performance of a proposed algorithm  

In this objective, the result of performance evaluation of the proposed algorithm using 

benchmarking and statistical modeling is presented and discussed using tables and 

figures. We demonstrate the results in section 5.2, which highlight the significant of the 
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minimization of the execution time and latency via increase the throughput from the 

benchmarking and statistical analysis. Linear regression analysis was performed on 

throughput and execution time. In each case presented single predictor variable was 

used. R square, Adjusted R square, intercept, coefficient, standard error, and F 

significance were generated by the standard Summary Report. Residual Plots and Line 

Fit Plots were used to check for the linearity of the regression. The result is based on p-

values which typically 0.05 at 95% confidence interval. The t-test results are shown in 

Table 5-21, and 5-22 showed that the t-test is not significant (p>0.05). Thus, it is 

accepted that the completion time and the actual cost has no significant difference 

between them as shown by the throughput and the execution time. This means that the 

throughput by the proposed algorithm is statistically equivalent to the cost. Thus, the 

algorithm has the potential for representing the real world system because it was able to 

produce results that are statistically the same as the actual real world system. 

The performance evaluation of the proposed algorithm is conducted using workloads of 

the two applications in order to show the significant of the execution time and 

throughput.  

6.2 Limitations and Future Research Directions of the study 

In this thesis, we developed a multi-objective algorithm framework to improve the 

resource allocation and job scheduling in the cloud. The framework is based on a multi-

objective algorithm, which considers execution time is an important factor. There are 

several limitations that extend from the work presented here. The research studies only 

two objective functions and constraints in developing the models. However, many other 

objective functions need to be considered, which may have a significant impact on the 

MapReduce performance while processing big data. Moreover, this thesis focused only 

one job with multiple tasks to be execution. However, several jobs with multiple with 

different resources can be considered. Moreover, the study does not focus on services 
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level agreements as the whole for resource allocation, in which the providers are not 

aware of the quality metrics set by the users regarding resource allocation decision.  

While existing research on Hadoop scheduling has shown great improvement, numerous 

challenging yet to be solved. Hadoop composed of one master node and several data 

nodes dependents on the size of the cluster. Users can make their choices according to 

the availability of the resources and the nodes. This research offers insights into the 

future research opportunities as follows:  

(a) QoS-Based Scheduling: In the last few years, cloud computing has become a fully 

service-oriented paradigm, which effectively allows users to consume based on their 

QoS requirement. The decision on scheduling is based on assumptions, in which the 

dependencies of workflow tasks are properly defined (Yu, 2007). Thus, monitoring task 

execution, resource capability, and service time based on the SLA are significant. 

Moreover, there is a lack of algorithms that consider the tradeoff of multiple quality 

requirements (Tiwari et al., 2015). The scheduler should be able to find an alternative 

service and request an SLA for the task execution with respect to its currently accepted 

set of SLAs and expected the return of unscheduled tasks. Moreover, most of the 

previous scheduling is based on focuses on deterministic Directed Acyclic Graphs 

(DAGs). Moreover, using Hadoop on cloud require a good QoS based workflow 

execution. It is important that new benchmarks put in place to ensure QoS-based 

workflow scheduling algorithms by comparing and evaluating different workflow 

applications that are suitable for Hadoop framework.  

 (b) Multi-dimensional resource scheduling: Traditional scheduling systems based on a 

single-resource optimization, like processors, fail to provide near optimal solutions 

(Sheikhalishahi et al., 2016). Multi-dimensional resources may consider using a series 

of resources such as network bandwidth, CPU, and memory. For example, slot 
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management scheme (Y. Yao et al., 2015) is proposed in order to enable dynamic slot 

configuration in Hadoop. The idea behind slot management scheme is to improve 

resource utilization and reduce the Makespan of multiple jobs. Thus, there is a lack of 

related metrics for scheduling algorithms considering multi-dimensional resource. For 

future research in, the main idea of the scheduling algorithm with multi-dimensional 

resources such as CPU and memory is to achieve a less completion time through 

efficient management of existing cloud resources (Khoo et al., 2007) (Z. Yao et al., 

2015). Moreover, the scheduling algorithms should be able to consider diverse resource 

requirements of different tasks and shown to obtain a minimal execution schedule 

through efficient management of available cloud computing resources.  

 (c) Event-based scheduling: Previously, the offline problem has been the main focus in 

scheduling research in order to minimize execution time for a single workflow with 

known task runtimes (X. Dong et al., 2011). Heterogeneity brings new challenging 

issues to the Hadoop scheduling the low support for complex requirements in current 

queue-based scheduling algorithms and arising problems of the schedule-based solution 

when applied in a dynamic environment with uncertainties. Optimization of these 

scheduling algorithms for Hadoop demanded to schedule many jobs in the queue. Thus, 

it is essential to overcome the traditional method and develop automatic synchronization 

activity execution for enabling workflows to exchange data with other workflows or 

other applications (Casati & Shan, 2007) (Ilyushkin et al., 2015).  

(d) Energy consumption and efficiency models for Map-reduce jobs: Although a new 

power-aware MapReduce application model has introduced in (Y. Li et al., 2011) to be 

used for power-aware computing with consideration of users’ requirements. There is a 

need of detailed energy efficiency model for MapReduce environments to predict the 

energy consumed for mix workload scenarios (Goiri et al., 2012). It should also 
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consider the background HDFS activities carried out for availability checks. It should be 

able to incorporate the idle nodes energy as well. The performance of MapReduce 

framework can possibly use for prediction of the map and reduce task timings 

depending on the data volume, their distribution, underlying hardware, etc. Energy and 

performance models can be combined to evaluate various scheduling algorithms for 

predicting the energy consumptions and thus decide which one maximizes the 

performance and energy efficiency. 

Moreover, the continuous growth in the size of the data-centers containing Hadoop 

MapReduce clusters of hundreds and thousands of machines to support many users has 

let in a tremendous increase in the energy consumed to operate these large-scale data 

centers. Consequently, energy efficiency becoming a key open issue in the development 

of different techniques and approaches to optimize power management in Hadoop 

clusters (Ibrahim et al.). Furthermore, in interactive data analysis, MapReduce workload 

runs in large clusters, whose size and cost make energy efficiency a critical concern on 

MapReduce, particularly in a cloud environment in which large equipped infrastructure 

is involved. For example, (Maheshwari et al., 2012) and (Wirtz & Ge, 2011) addressed 

the problem of energy conservation for large data centers that run MapReduce jobs. 

Accordingly, the tremendously increased amount of energy is consumed to operate 

these data centers (i.e., electricity used for operating and cooling them) and ends up 

with a high money bill in the order of millions of dollars. To this end, the system may 

offload some computation tasks to the sources in the distributed data-centric 

environment to avoid the expensive data movement costs (Kambatla et al., 2014) and to 

achieve fast response time with minimal energy consumption. 

 (e) Mapping scheme: It assigns multiple inputs to a set of reducers in such a manner 

that for each output, a reducer receives all inputs while performing the computation. 
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Owing to the limited capacity of reducers, only specific inputs can be assigned. 

However, the size of each individual input may vary, which results in a high 

communication cost. Consideration and restriction of input size are important in the 

MapReduce framework and can help optimize the communication cost between map 

and reduce phases (Afrati et al., 2014). Several solutions have been proposed to 

minimize the number of copies of inputs being sent to reducers. Research is required to 

establish an efficient mapping scheme that can minimize the communication cost 

without affecting the performance of a specified task.  

(f) Performance optimizations: Hadoop/MapReduce is useful because of its multiple 

characteristics, such as scalability, fault tolerance, and large amounts of data processing. 

MapReduce comprises several factors, namely, task initialization time, scheduling, and 

monitoring performance degradation in different types of applications (Kalavri & 

Vlassov, 2013). In addition, Hadoop/MapReduce does not support data pipelining or 

overlapping of the map and reduce phases. To improve the MapReduce performance, 

further optimization is required in the different aspects of MapReduce, such as index 

creation, reuse of previously computed results, and fast query execution. MapReduce 

will achieve better performance if the said issues are solved. 

(g) Optimized data shuffling: In MapReduce, intensive disk input/output during the 

shuffling phase increases the overall execution time, which in turn degrades the 

performance of overall systems (Lin et al., 2013). Reducing the execution time has 

become challenging. Many solutions have been proposed to address this problem, but 

no solution has solved this problem completely in an efficient manner. Only new 

optimized techniques can solve this problem completely and efficiently. Research in 

this area can increase the performance of MapReduce by reducing the shuffle phase 

time. 
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(h) Automation and configuration: Automatic tuning and configuration help while 

deploying the Hadoop/MapReduce cluster by setting several parameters. To perform 

proper tuning, both hardware and workload characteristics must be known. While 

performing configuration, a small mistake can cause inefficient execution of jobs, which 

leads to performance degradation (Lama & Zhou, 2012). To overcome this issue, 

several new techniques and algorithms are required; these techniques and algorithms 

perform the calculation in which basic setting can be performed in an efficient manner. 

Creating such algorithms that receive input from the user, understanding the 

characteristics of underlying hardware by using machine learning, and suggesting a 

proper setting for better performance are challenging. 
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APPENDIX A  

MYCLOUD USAGE 

MYREN cloud service has been used to conduct an experiment of the proposed 

solution. The following are the screenshot of the account and the number of the virtual 

machines used in this research. The account created from 28/02/2013 to 02/28/2017.  

 

Figure 6-1: The main homepage of MyRen Cloud service provider 
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Figure 6-2: The main Dashboard of login 
 

 

Figure 6-3: The number of virtual machines provisioned 
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Figure 6-4: The number of virtual machines provisioned 
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