REFORM IN THE ELECTRICITY SUPPLY INDUSTRY AND IMPLEMENTATION OF A COMPETITIVE ELECTRICITY MARKET IN MALAYSIA

William Leong Kim Cheong
Bachelor of Electrical Engineering (Hons.)
University of Strathclyde
Glasgow, Scotland
U.K.
1992
&

Simon Seong Pick Pak
Bachelor of Electrical Engineering (Hons.)
University of Melbourne
Parkville, Victoria
Australia
1991

Submitted to the Faculty of Business and Accountancy, University of Malaya, in partial fulfillment of the requirements for the Degree of Master of Business Administration

October 2001

Perpustakaan Universiti Malaya
A511702337
Acknowledgements

We wish to express our sincere appreciation to our supervisor, Dr. M. Fazilah bte. Abdul Samad, for her guidance in preparing this research paper. Her invaluable comments, particularly constantly reminding us to "stick" to the objectives, led us to carry this project through.

We would also like to thank all the managers whom we had the pleasures of conducting interviews, either directly at the office or through e-mails and telephone conversations. We very much appreciate their willingness to share their precious time with us.

We are also indebted to our colleagues at Mahkota Technologies, for giving us the time to complete this project.

Last but not least, we thank our families (particularly our spouses) for their patience and love as we continue our quest to understand the newly deregulated electrical industry.
ACKNOWLEDGEMENTS

TABLE OF CONTENTS

ABSTRACT

CHAPTER 1: INTRODUCTION AND RESEARCH METHODOLOGY

1.1 Background
1.2 Scope and Objective of the Study
1.3 Research Methodology
1.4 Terminology

CHAPTER 2: CURRENT STRUCTURE OF MALAYSIA ELECTRICITY SUPPLY INDUSTRY

2.1 Evolution of the Electricity Supply Industry
2.2 Regulation Framework and Policy Formulation
2.3 Current Electricity Supply Industry Structure
 2.3.1 Overview
 2.3.2 Generation Profile
 2.3.3 Transmission System
 2.3.4 Fuel Profile

CHAPTER 3: ASSESSMENT OF ELECTRICITY SUPPLY INDUSTRY IN MALAYSIA

3.1 External Environment Analysis
3.2 Segments in External Environment Analysis
 3.2.1 Global Segment
3.2.2 Economic Segment
 3.2.2.1 Infrastructure and risk Costs
 3.2.2.2 Economic Co-operation among ASEAN Countries
 3.2.2.3 Fuel for Electricity Generation
3.2.3 Political/Legal Segment
 3.2.3.1 Existing Industry Structure
 3.2.3.2 Privatization of Power Generation in Malaysia
3.2.4 Technology Segment
 3.2.4.1 Renewable Sources of Energy
 3.2.4.2 Improves Customer services
 3.2.4.3 Threats in Technological Segments
3.2.5 Environmental Segment
 3.2.5.1 Pollution and Loss of Ecosystem
 3.2.5.2 Electromagnetic Forces and Health
 3.2.5.3 Threats in environmental Segments
3.3 Opportunities
 3.3.1 Competitive Power Market
 3.3.2 Export Opportunities
3.4 Threats
 3.4.1 Non Competitive Electricity Tariff
 3.4.2 High selling Price of electricity frpm IPPs
 3.4.3 IPP Contract Awarded Through Political Connection
 3.4.4 Lack of Comprehensive and Well Defined Regulatory Frameworks
 3.4.5 Project Financing
CHAPTER 4: OBJECTIVES AND CURRENT PROGRESS OF RESTRUCTURING AND POWER POOLING IN MALAYSIA

4.1 Overview

4.2 Objectives of Restructuring
 4.2.1 Emphasis on Customer Needs
 4.2.1.1 Need for Low Price
 4.2.1.2 Need for Reliability
 4.2.1.3 Need for Customer Services
 4.2.2 Transparency in the Electricity Supply Industry
 4.2.3 Effective Competition in Wholesale and Retail Power Market
 4.2.4 Achieving Technical and Financial Resources Efficiency
 4.2.5 Low Entry Barrier or Non Discriminatory Access to the Pool

4.3 Current Status of Power Pooling in Malaysia
 4.3.1 Overview
 4.3.2 Pooling Doubts in Malaysia

4.4 Reasons behind TNB’s Decision Against Power Pooling

4.5 TNB’s Dilemma at Existing PPA

4.6 TNB’s Proposals in New Structuring Program

4.7 Comments on TNB’s Decision to withhold Power Pooling

4.8 Recommendation for “Strategies to Achieve Technical and Financial Efficiencies through a Successful Restructuring Plan.”
 4.8.1 Implementation of Fair and Transparent Bidding Procedures
 4.8.2 Well Established Threshold Regulatory Framework
 4.8.3 Changes in Policy Status
 4.8.4 Conducting of Fair Negotiation
 4.8.5 Avoided Cost Vs Cost Plus
CHAPTER 5: ELECTRICITY REFORM IN OTHER COUNTRIES

5.1 Introduction
5.2 Electricity Restructuring and Privatisation in the UK
5.3 Results of the Reform in UK
5.4 Electricity Restructuring and Privatisation in Australia
5.5 The Victoria Model
5.6 Results of the Reform in Victoria
5.7 A review of the Deregulation in the Electric Power Industry of the ASEAN Member Countries
 5.7.1 Brunei
 5.7.2 Cambodia
 5.7.3 Indonesia
 5.7.4 Lao PDR and Myanmar
 5.7.5 Philippines
 5.7.6 Singapore
 5.7.7 Thailand
 5.7.8 Vietnam
5.8 Summary

CHAPTER 6: LESSONS LEARN FROM CALIFORNIA POWER CRISIS

6.1 Overview
6.2 California Power Crisis
 6.2.1 Introduction
 6.2.2 Chronology Events
6.3 California Reform and its Failure
 6.3.1 Objective of Reform
6.3.2 Pre-Reform Electric Industry
6.3.3 Reformed Electric Industry with its Power Pool Model
6.4 Consequence of California Power Crisis
6.5 Shortfalls in Reformed Electricity that led to Crisis
6.5.1 Shortage of Power Supply
6.5.1.1 Lack of Economic Incentives and Planning for Adequate and Reliable Power Supply
6.5.1.2 Dry Weather
6.5.1.3 Unjustified Maintenance of Power Plants
6.5.2 Market Design Flaws
6.5.2.1 Market Governance
6.5.2.2 Wholesale Price higher than Retail Rates
6.5.2.3 Lack of Risk Management for Utilities
6.5.2.4 Implementation of Soft Price Caps on Bids
6.5.2.5 Exploitation of Market Power by Generators
6.5.2.6 Market Arbitrage by Utilities
6.5.2.7 Failure in Full Retail Competition – High Switching Price
6.5.2.8 Constraints on Expanding Supply
6.5.2.9 Inaccuracy in Anticipation of Demand and Supply
6.5.2.10 Strict Environment and Nox Emission Regulations
6.5.2.11 Loop Hole in Regulation on Utilities Exodus Fund
6.6 Summary

CHAPTER 7: POWER POOL STRUCTURES
7.1 Introduction
7.2 Pool Models
7.2.1 The Gross Pool
7.2.2 The Net Pool – Bilateral Trading
7.2.3 The Single Buyer Model
7.2.4 The Zonal Pool Model
CHAPTER 8: CHOICE OF ELECTRICITY MARKET MODEL FOR MALAYSIA

8.1 Fundamental requirements for an Effective Competition

Electricity Market

8.1.1 Market Design should Promote Effective Competition and Economic Efficiency
Page 94

8.1.2 Market Design should support both Provider and Consumer Choice in regard to the Supply and Purchase of Electricity
Page 95

8.1.3 Basic Market Design Establish a level Playing Field for Competition
Page 95

8.2 Basic Issues related to the Market Design, setting up of an Independent Regulator – ISO and IMO
Page 96

8.2.1 Governance Structure of Independent Regulator
Page 98

8.2.1.1 Expanded Club Approach
Page 99

8.2.1.2 Independent Contractor subject to Performance Base Regulation Approach
Page 99

8.2.1.3 The Hybrid Approach
Page 100

8.2.1.4 The Public Authority Approach
Page 100

8.3 Market Power Mitigation
Page 100

8.4 The Wholesale Market Design
Page 102

8.5 Regulating Electricity Transmission
Page 104

8.6 Retail Competition
Page 105
TABLES

Table 7.1: Qualitative Relative between Cost, Investment Rating and Security of each Model

FIGURES

Figure 2.1: Relationship between Policy Formulating Agencies and Regulating Bodies. Page 12
Figure 7.1: The Gross pool Model Page 74
Figure 7.2: A Contract for Differences (CFD) Page 78
Figure 7.3: The Net Pool Model – Bilateral Trading Page 79
Figure 7.4: The Single Buyer Model Page 81
Figure 7.5: The zonal Model Page 83
Figure 9.1: Price Distribution for 1, 2 and 5 Years Horizon Page 106
Figure 9.2: A Hypothetical Price Forecast Page 106
Figure 9.3: Capacity Value versus Remaining Life Page 107
Figure 9.4: Capacity Value versus Fuel Price Page 107
Figure 9.5: Capacity Value versus Energy or Fuel Price Page 108
Figure 9.6: Capacity Value versus Correlation of Energy And Fuel Price Page 108
Figure 9.7: Volatility of Capacity Values Page 109
Figure 9.8: Capturing Value by Introducing the Right to Interrupt Delivery Page 112
Figure 9.9: Using Value at Risk to determine Risk Capital Needs Page 115
Figure 9.10: Energy Portfolio View Page 116
Figure 9.11: How Credit Derivatives Work Page 122
ABSTRACT

Over the past decade, a number of nations have restructured their electricity industries. Several nations have also significantly reduced the government’s role in the ownership and management of the electricity industries both at the state and national level. The wave of changes is driven by the forces of competition; the need to make the industry more efficient and allowing customers to have choices in deciding their electricity supplier, the package of services and the associated prices that best meet their needs. A crucial element of the deregulation and reform in the electric industry is the creation of a wholesale electricity market, commonly known as power pool.

The objective of this study is to determine how a competitive electricity market can be established in Malaysia.

To achieve this objective, this study will review the current structure of the electrical industry in Malaysia and the progress so far in terms of restructuring. The recent electricity reform in other countries (Australia, United Kingdom and California, United States) and ASEAN Member Countries will be assessed in order to gain important lessons. The recent power crisis in California highlights the dangerous pitfall of restructuring if the market design is adopted in haste. In setting up a wholesale electricity market, there are several types of power pool models that Malaysia can choose from. In order for the chosen power pool to be effective in promoting competition, this study reviews some of the basic elements that need to be considered in the market design stage. This study also introduces some of the financial derivatives that can be used to hedge against risk in a competitive electricity market.