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ABSTRACT

Recently, the preference of users has shifted the computational platform to re-

source constrained smart-phone devices as users prefer to work while on the go. The

shift of information access paradigm on smart-phone devices demand high function-

ality applications to enrich user experience. However, increasing applications func-

tionality requires more smart-phone resources. As a result, smart-phone battery con-

sumption increases. Smart-phone application energy estimation investigates energy

consumption behavior of smart-phone applications at diversified granularity levels

when it is run on the smart-phone device. Traditional energy estimation schemes

consider smart-phone component’s power measurement or code analysis methods

for energy estimation of smart-phone applications. Code analysis based methods

use energy cost of operations within an application to estimate energy consump-

tion. However, smart-phone applications are non-deterministic in nature. There-

fore, traditional code analysis based energy estimation schemes run the smart-phone

application to record the execution paths in offline mode to estimate its energy con-

sumption. However, running application on hardware platform inefficiently utilizes

underlying hardware resources that lead to extended estimation time and energy es-

timation overhead. To overcome this issue, this study proposes a lightweight 2-tier

static analysis based energy estimation framework to minimize high energy overhead

of dynamic analysis based energy estimation methods. The proposed framework,

called Static analysis based lightweight energy estimation framework (SA-LEEF),

proposes storage location analyzer, ARM-IS energy profile as service, and weighted

probability based execution paths estimation to handle non-deterministic nature of

smart-phone applications. Moreover, the proposed framework considers the energy

overhead due to cache eviction during concurrent programs execution on the smart-
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phone device to present more realistic application execution environment for energy

estimation. It also considers user system interaction to input required data during

application execution on the smart-phone device to improve the energy estimation

accuracy. The proposed framework empowers application developers to estimate

energy consumption at source code line, functions, execution paths, and application

granularity. The proposed study has performed experiments on Google Nexus One

smart-phone device to highlight the effectiveness of SA-LEEF framework. The ex-

periments revealed that SA-LEEF has minimized energy estimation time of dynamic

analysis methods by 98% for benchmark applications. In terms of energy overhead,

SA-LEEF consumes up to 97% less energy than dynamic analysis based energy es-

timation method. The accuracy of SA-LEEF is up to 88% compared to external

physical measurement method. It is also noticed that SA-LEEF consumes 58% less

CPU and 97% lower RAM storage during energy estimation of a smart-phone ap-

plication. SA-LEEF assist developers investigating energy consumption behavior of

their application at earlier development stages as it estimates energy consumption

based on fine granular instruction energy cost.
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ABSTRAK

Keutamaan pengguna telah beralih platform pengiraan untuk sumber peranti

telefon pintar dikekang sebagai pengguna lebih suka bekerja di luar pejabat. Selain

keperluan platform pengkomputeran, permintaan pengguna untuk fungsi permo-

honan tinggi juga semakin meningkat. Walau bagaimanapun, peningkatan fungsi

aplikasi memerlukan lebih banyak sumber telefon pintar untuk memperkayakan pe-

ngalaman pengguna. Hasilnya, bateri telefon pintar kenaikan kadar penggunaan.

Smartphone tenaga permohonan anggaran menyiasat tingkah laku penggunaan te-

naga aplikasi telefon pintar di granularity yang pelbagai apabila ia berjalan pada te-

lefon pintar sumber dikekang. skim anggaran tenaga tradisional mempertimbangkan

telefon pintar pengukuran komponen kuasa atau analisis kod kaedah untuk anggaran

tenaga aplikasi telefon pintar. Analisis kod anggaran tenaga berasaskan menggu-

nakan kos tenaga operasi dalam permohonan untuk menganggarkan penggunaan

tenaga. Walau bagaimanapun, aplikasi telefon pintar yang bukan bersifat determi-

nistik dalam alam semula jadi. Oleh itu, berdasarkan skim anggaran tenaga analisis

kod tradisional menjalankan aplikasi telefon pintar untuk merakam laluan pelak-

sanaan dalam mod luar talian untuk menganggarkan penggunaan tenaga. Walau

bagaimanapun, permohonan yang berjalan pada peranti telefon pintar tidak cekap

menggunakan sumber perkakasan asas yang membawa kepada anggaran masa yang

panjang dan overhed anggaran tenaga. Untuk mengatasi isu ini, kajian ini menca-

dangkan dua peringkat statik kerangka anggaran berdasarkan analisis ringan untuk

mengurangkan overhed tenaga tinggi berdasarkan kaedah anggaran tenaga analisis

dinamik. rangka kerja yang dicadangkan, yang dipanggil SA-LEEF, mencadangkan

lokasi penyimpanan penganalisis, ARM-ISA profil tenaga perkhidmatan, dan keba-

rangkalian wajaran berdasarkan jalan pelaksanaan anggaran untuk mengendalikan

v

Univ
ers

ity
 of

 M
ala

ya



bukan bersifat berketentuan aplikasi telefon pintar. Rangka kerja yang dicadangkan

memberi kuasa kepada pemaju aplikasi untuk menganggarkan penggunaan tenaga

di garisan kod sumber, fungsi, laluan pelaksanaan, dan tahap permohonan butiran.

Kami melakukan eksperimen masa nyata pada Google Nexus peranti Satu telefon

pintar untuk menyerlahkan keberkesanan SA-LEEF. Eksperimen menunjukkan ba-

hawa SA-LEEF telah dikurangkan tenaga masa anggaran kaedah analisis dinamik

dengan 98 % untuk aplikasi penanda aras. Dari segi overhead tenaga, SA-LEEF

menggunakan sehingga tenaga 97 % kurang daripada analisis dinamik anggaran

tenaga berasaskan. Ketepatan SA-LEEF adalah sehingga 88 % tepat berbanding

kaedah pengukuran fizikal luaran. Ia juga mendapati bahawa SA-LEEF menggu-

nakan 58 % kurang CPU dan kapasiti RAM 97 % lebih rendah semasa anggaran

tenaga aplikasi telefon pintar. Sebagai menganggarkan tenaga di peringkat kod

berbutir halus, SA-LEEF membantu pemaju dalam menyiasat tingkah laku peng-

gunaan tenaga permohonan mereka di pelbagai peringkat pembangunan awal.

vi

Univ
ers

ity
 of

 M
ala

ya



ACKNOWLEDGEMENTS

ALLAH Almighty provides the courage, knowledge, and resources to every human

being in this world. I am thankful to ALLAH Almighty for blessing me in every

form of human quality such that I have reached this point of life and completed my

Ph.D. thesis.

I am thankful to my supervisors, family, and friends who have supported and

encouraged me through difficult times of life. I am highly thankful to my supervisors,

Prof. Dr. Abdullah Gani and Assoc. Prof. Dr. Siti Hafizah Ab Hamid, who took me

under their guidance and provided me their support for the completion of my Ph.D.

A special big thanks to Dr. Anjum Naveed for his kind guidance and continuous

support. I am also thankful to Prof. Joel J. P. C. Rodrigues and Assoc. Prof. Dr.

Sajjad A. Madani for their valuable inputs.

I would also like to thank my fellow lab mates from whom I have consulted on

various technical issues. In particular, I would like to thank Dr.Muhammad Shiraz,

Dr. Saied Abolfazli, Dr.Junaid Shuja, Misbah Liaqat, Raja Sehrab Bashir, Abdullah

Yousafzei, Ibrar Yaqoob, Khubaib Amjad Alam, and Zakira Inayat. My family has

been a great source of inspiration for me. I am also thankful for their support and

prayers. My university colleagues have been the great source of encouragement.

In particular, I would thank Irfan Tarar, Sardar Nauhman Aslam, Tahir Maqsood,

Faisal Rehman, Raja Adeel Ahmad, and Saad Mustafa for their prayers and support.

I am also thankful to the FSKTM support staff at WISMA RND and University for

lending their support and resources.

Last but not the least, I am thankful to the BrightSpark Program for financially

supporting me throughout my Ph.D. tenure. Their strict KPI’s were a blessing in

disguise that enabled me to publish multiple Tier-1 articles as the first author.

vii

Univ
ers

ity
 of

 M
ala

ya



TABLE OF CONTENTS

Abstract iii

Abstrak v

Acknowledgements vii

Table of Contents viii

List of Figures xiii

List of Tables xv

List of Appendices xvi

CHAPTER 1: INTRODUCTION 1
1.1 Introduction 1
1.2 Background 3
1.3 Motivation 4
1.4 Statement of the Problem 6
1.5 Statement of the Objectives 8
1.6 Proposed Methodology 9
1.7 Scope 13
1.8 Layout of Thesis 13

CHAPTER 2: ENERGY ESTIMATION SCHEMES FOR
SMART-PHONE APPLICATIONS 17

2.1 Background 17
2.1.1 Smart-phone Device 18
2.1.2 Smart-phone Application Energy Estimation 19

2.1.2.1 State of Charge Energy Estimation 19
2.1.2.2 Base Cost Energy Estimation 20

2.2 Static Analysis vs. Dynamic Analysis 21
2.3 Smart-phone Components Power Measurement Based Energy Estimation 23

2.3.1 Taxonomy of Smart-phone Components Power Measurement
Based Energy Estimation Schemes 24

2.3.2 Review of Smart-phone Components Power Measurements
Based Energy Estimation Schemes 27

2.3.2.1 Physical Measurement Based Energy Estimation 27
2.3.2.2 Self-metering Based Energy Estimation 32

2.3.3 Comparison of Smart-phone Components Power Measurement
Based Energy Estimation Schemes 37

2.3.3.1 Power Model Type 37
2.3.3.2 Methodology 39
2.3.3.3 Power Log Source 40
2.3.3.4 Granularity 41

viii

Univ
ers

ity
 of

 M
ala

ya



2.3.3.5 Training Mode Locality 42
2.3.3.6 Power Modeling Approach 42
2.3.3.7 Objective Function 43
2.3.3.8 Design 43

2.4 Code Analysis Based Smart-phone Application Energy Estimation
Schemes 45
2.4.1 Taxonomy of Code Analysis Based Energy Estimation Schemes 45
2.4.2 Review of Code Analysis Based Energy Estimation Schemes 48

2.4.2.1 External Setup Based Instruction Power Profiling 48
2.4.2.2 Simulation Based Instruction Power Profiling 54

2.4.3 Comparison of Code Analysis Based Energy Estimation Schemes 58
2.4.3.1 Abstraction Level 59
2.4.3.2 Instruction Profiling Method 61
2.4.3.3 Program Structure Analysis 62
2.4.3.4 Energy Estimation Overhead 63
2.4.3.5 Profiled Instruction Type and Estimation Granularity 63
2.4.3.6 Target Processor, Claimed Accuracy, and Benchmarks 64

2.5 Performance Analysis Tools for Smart-phone Applications 64
2.5.1 Val-grind 65
2.5.2 Trepn Profiler 65

2.6 Challenges and Issues for Smart-phone Application Energy Estimation 66
2.6.1 Effects of Battery Aging Factors on Estimation Accuracy 66
2.6.2 Power-performance Trade-off 68
2.6.3 Smart-phone Resource Limitations and Energy Bugs 69
2.6.4 Issues of non-deterministic behavior of Smart-phone Applications 70

2.6.4.1 Execution Flow Estimation 70
2.6.4.2 Loop Bounds Estimation 71
2.6.4.3 Storage Access Estimation 71

2.6.5 Architectural Non-compatibility and High Energy Estimation
Overhead 72

2.7 Discussion 72
2.8 Conclusions 74

CHAPTER 3: PROBLEM ANALYSIS 76
3.1 Experiments 76

3.1.1 Methodology 77
3.1.2 Benchmark Applications 79

3.1.2.1 NativeWhetstone2 79
3.1.2.2 LivermoreLoops2 80
3.1.2.3 LinpackSP2 80
3.1.2.4 Synthetic Test Programs 81
3.1.2.5 Fast Fourier Transform 81

3.1.3 Dynamic Analysis Based Energy Estimation Tools 82
3.1.3.1 Power Tutor 82
3.1.3.2 Trepn Profiler 83
3.1.3.3 External Physical Measurement 84

3.2 Energy Estimation Time Analysis for Dynamic Analysis Based
Estimation Tools 84

ix

Univ
ers

ity
 of

 M
ala

ya



3.3 Energy Consumption Analysis for Dynamic Analysis Based
Estimation Tools 89

3.4 Energy Overhead Analysis for Dynamic Analysis Based Estimation Tools 97
3.5 Resource Usage Analysis for Dynamic Analysis Based Estimation Tools 104
3.6 Analysis of Application Components Energy Consumption and

Simulation Based Architecture Level Profiling 106
3.6.1 Application Components Energy Consumption 107

3.6.1.1 Experiments 107
3.6.1.2 Experimental Results 109

3.6.2 Simulation Based Architecture Level Profiling 110
3.6.2.1 Experiments 111
3.6.2.2 Experimental Results 112

3.7 Conclusion 113

CHAPTER 4: SA-LEEF: STATIC ANALYSIS BASED
LIGHTWEIGHT ENERGY ESTIMATION
FRAMEWORK 115

4.1 Proposed Static Analysis Based Lightweight Energy Estimation
Framework 115
4.1.1 ARM Instruction Energy Profiler 117
4.1.2 Application Analyzer 119

4.1.2.1 Application Construct Analyzer 120
4.1.2.2 Instruction Storage Location Analyzer 122
4.1.2.3 Classifier 124

4.1.3 Collaborator 125
4.1.4 Application Energy Estimator 126
4.1.5 Remote Handler and ARM Profile DB 127

4.2 Assumptions and Constraints 127
4.3 System Overview 129

4.3.1 Flow Diagram of SA-LEEF Framework 129
4.3.2 SA-LEEF System Model 131

4.4 Distinguishing Features of SA-LEEF 137
4.4.1 Offline Usability 137
4.4.2 Lightweight Design 138
4.4.3 Non-incentive Based ARM-IS Profile Sharing 138
4.4.4 Energy Estimation Support for Native Smart-phone Applications 139
4.4.5 Ground For Optimization 140
4.4.6 Green Mobile Computing 140
4.4.7 Non-voluminous Communication Overhead 140

4.5 Data Design 141
4.5.1 SA-LEEF Evaluation Metrics 141

4.5.1.1 Energy Estimation Accuracy 141
4.5.1.2 Energy Estimation Overhead 142
4.5.1.3 Energy Estimation Time 142

4.6 Conclusions 143

CHAPTER 5: EVALUATION 145
5.1 Evaluation of Proposed SA-LEEF Framework 146

x

Univ
ers

ity
 of

 M
ala

ya



5.1.1 Evaluation Set-up 147
5.1.1.1 Experimental Devices 148
5.1.1.2 Benchmark Applications 148

5.2 Data Collection for ARM-IS Energy Consumption 151
5.2.1 Test Program Design and Power Measurement Setup 151
5.2.2 Analysis of Outliers in ARM-IS Power Profile 156
5.2.3 ARM-IS Energy Consumption 158

5.3 Data Collection for Network Energy Communication Cost 161
5.3.1 Analysis of Wi-Fi Energy Consumption 162
5.3.2 Analysis of 3G Network Energy Consumption 164
5.3.3 Analysis of Energy Consumption for Benchmark Applications 165

5.4 Data Collection for Concurrent Program Execution Energy Overhead 167
5.5 Data Collection for Application Analyzer 170
5.6 Base Power Consumption Computing for SA-LEEF Framework 175
5.7 Conclusion 177

CHAPTER 6: RESULTS AND DISCUSSION 179
6.1 SA-LEEF Framework Validation 179

6.1.1 Energy Consumption Estimation 180
6.1.2 SA-LEEF Estimation Accuracy 184

6.2 Performance Comparison of SA-LEEF Framework (Local Mode) to
Existing Estimation Methods 185
6.2.1 Standard Benchmarks Code size Case 186

6.2.1.1 Energy Estimation Time 186
6.2.1.2 Energy Estimation Accuracy 192
6.2.1.3 Energy Estimation Overhead 196

6.2.2 Application Data Size Case 199
6.2.2.1 Energy Estimation Time 200
6.2.2.2 Energy Estimation Overhead 202
6.2.2.3 Energy Estimation Accuracy 205

6.3 Performance Comparison of SA-LEEF Framework (Remote Mode) to
Existing Energy Estimation Methods 208
6.3.1 Energy Estimation Time 208
6.3.2 Energy Estimation Overhead 210

6.4 SA-LEEF Resource Consumption Comparison to Existing Energy
Estimation Methods 213

6.5 Qualitative Comparison of SA-LEEF Framework 215
6.6 Conclusion 217

CHAPTER 7: CONCLUSION 219
7.1 Reappraisal of Research Objectives 219
7.2 Limitations and Applications 224
7.3 Contributions 225
7.4 Future Works 226

References 228

xi

Univ
ers

ity
 of

 M
ala

ya



Appendices 239

xii

Univ
ers

ity
 of

 M
ala

ya



LIST OF FIGURES

Figure 1.1: World Wide Mobile Phone Users Growth 6
Figure 1.2: Research Methodology 10
Figure 1.3: Thesis Organization 14

Figure 2.1: Overview of Smart-phone Application Energy Estimation Methods 20
Figure 2.2: Overview of Physical Measurement and Self-metering based

Energy Estimation 24
Figure 2.3: Taxonomy of Smart-phone Components Power Measurement

Based Energy Estimation Schemes 27
Figure 2.4: Taxonomy of Code Analysis based Energy Estimation Schemes 46
Figure 2.5: Open Research Issues and Challenges 67

Figure 3.1: Estimation Time Analysis of Benchmark Applications 85
Figure 3.2: Smart-phone Components Energy Consumption Break-down

for Benchmark Applications 91
Figure 3.3: Power Tutor based Energy Estimation for Benchmark Applications 92
Figure 3.4: Trepn Profiler based Energy Estimation for Benchmark

Applications 93
Figure 3.5: Power Tutor vs. Trepn Profiler 94
Figure 3.6: Power Tutor vs. Trepn Profiler Estimation Accuracy

Difference Analysis 94
Figure 3.7: Trepn Profiler Energy Estimation Overhead 99
Figure 3.8: Power Tutor Energy Estimation Overhead 101
Figure 3.9: Power Tutor vs. Trepn Profiler Energy Estimation Overhead

Difference Analysis 101
Figure 3.10: RAM Usage Comparison for Power Tutor and Trepn Profiler

Energy Estimation Tools 105
Figure 3.11: CPU Usage Comparison for Power Tutor and Trepn Profiler

Estimation Tools 107
Figure 3.12: Evaluation Framework for Energy Consumption Behavior

Analysis of Smart-phone Application Components 108
Figure 3.13: Loops Execution Time Analysis for Benchmark Applications 109
Figure 3.14: Loops Energy Consumption Analysis for Benchmark Applications 110
Figure 3.15: Estimation Time Analysis 112
Figure 3.16: Val-grind Simulator based Application Profiling Time

Overhead Analysis 113

Figure 4.1: SA-LEEF: Smart-phone Application Energy Estimation
Framework 116

Figure 4.2: Flow Diagram of SA-LEEF Framework 130

Figure 5.1: An Overview of Evaluation Setup for SA-LEEF Framework 147
Figure 5.2: Test Program Design (Cache Based Storage Location Analysis) 152
Figure 5.3: Experimental Setup for ARM-IS Energy Profiling 154
Figure 5.4: Google Nexus One’s Power Consumption Analysis for its Idle

Execution Mode 156
Figure 5.5: Test Program Power Consumption Behavior (AND Operation) 156
Figure 5.6: Test Program Energy Consumption Behavior (ORR Operation) 157
Figure 5.7: Wi-Fi Energy Consumption Analysis 163

xiii

Univ
ers

ity
 of

 M
ala

ya



Figure 5.8: 3G Energy Consumption Analysis 165
Figure 5.9: Effect of Concurrent Programs Execution to Total Execution

Time of a Program 168
Figure 5.10: Effect of Concurrent Programs Execution on Cache Miss Rate 169

Figure 6.1: SA-LEEF System Model vs. Empirical Evaluation 184
Figure 6.2: Energy Estimation Time Analysis for SA-LEEF Framework 188
Figure 6.3: Energy Estimation Time Analysis for Power Tutor 189
Figure 6.4: Energy Estimation Time Analysis for Measurement-based

Estimation Method 190
Figure 6.5: Comparison of Energy Estimation Methods for Energy

Estimation Time 191
Figure 6.6: SA-LEEF based Application Energy Consumption Estimation 193
Figure 6.7: Power Tutor based Application Energy Consumption Estimation 194
Figure 6.8: Measurement-based Application Energy Consumption Estimation 194
Figure 6.9: Comparison of Energy Estimation Methods based on Energy

Consumption Estimation 195
Figure 6.10: Comparison of Energy Estimation Methods based on Energy

Estimation Accuracy 195
Figure 6.11: Energy Overhead of SA-LEEF Energy Estimation Framework 197
Figure 6.12: Energy Overhead of Power Tutor Energy Estimation Tool 198
Figure 6.13: Comparison of Energy Estimation Methods based on Energy

Consumption Overhead 199
Figure 6.14: Effect of Data Size on the Estimation Time of SA-LEEF

Framework 201
Figure 6.15: Effect of Data size on Estimation Time of Power Tutor

Estimation Tool 202
Figure 6.16: Power Tutor vs. SA-LEEF Energy Estimation Time 203
Figure 6.17: Effect of Data Size on Energy Estimation Overhead of SA-LEEF 204
Figure 6.18: Effect of Data size on Estimation Overhead of Power Tutor

Energy Estimation Tool 204
Figure 6.19: SA-LEEF vs. Power Tutor Estimation Overhead 205
Figure 6.20: Effect of Data Size on Energy Consumption of LinpackSP

using SA-LEEF 206
Figure 6.21: Effect of Data Size on Energy Consumption of LinpackSP

using Power Tutor 207
Figure 6.22: SA-LEEF vs. Power Tutor Energy Estimation Accuracy 208
Figure 6.23: Comparison of SA-LEEF to Existing Methods based on

Energy Estimation Time 209
Figure 6.24: Comparison of SA-LEEF to Existing Energy Estimation

Methods for Energy Estimation Time 211
Figure 6.25: Comparison of Energy Estimation Methods based on CPU

Resource Consumption 213
Figure 6.26: Comparison of Energy Estimation Methods based on RAM

Resource Consumption 214

xiv

Univ
ers

ity
 of

 M
ala

ya



LIST OF TABLES

Table 2.1: Comparison of Self-metering and Measurement based Estimation 25
Table 2.2: Comparisons of Smart-phone Components Power

Measurements Based Energy Estimation Schemes 38
Table 2.3: Comparison of Existing Energy Estimation Schemes based on

the Power Models they Built for Smart-phone Components 44
Table 2.4: Quantitative Findings of Existing Energy Estimation Schemes 45
Table 2.5: Code Analysis Based Smart-phone Application Energy

Estimation and Modeling Schemes Comparisons 59
Table 2.6: Program Structure Analysis Based Comparison of Existing

Code Analysis Based Energy Schemes 60

Table 3.1: Energy Estimation Time Analysis for Power Tutor Estimation
Tool for Matrix Multiplication Program 88

Table 3.2: Energy Consumption Analysis using Power Tutor for Matrix
Multiplication Program 97

Table 3.3: Energy Consumption Analysis for Trepn Profiler for Matrix
Multiplication Program 98

Table 3.4: Energy Estimation Overhead Analysis for Power Tutor for
Matrix Multiplication Program 103

Table 3.5: Energy Estimation Overhead Analysis for Trepn Profiler Tool
for Matrix Multiplication Program 105

Table 3.6: Val-grind Simulator based Program Execution Analysis 112

Table 5.1: ARM-IS Energy Profile for Google Nexus One (RAM Storage
Location) 158

Table 5.2: ARM-IS Energy Profile for Google Nexus One (Cache Access) 160
Table 5.3: Floating-point Operations and Library Functions Energy

Consumption Profile 161
Table 5.4: Network Energy Consumption for File Downloading (Local

Server) 164
Table 5.5: Network Energy Consumption for File Downloading (Remote

Server) 164
Table 5.6: Energy Consumption Cost for Network Communication for

Benchmark Applications 167
Table 5.7: Total Assembly Instructions Count for Benchmark Applications 171
Table 5.8: Instructions Count for Benchmark Applications (cache access) 172
Table 5.9: Instructions Count for Benchmark Applications (RAM Access) 173
Table 5.10: Estimation Time Analysis for Application Analyzer Module 174
Table 5.11: Energy Overhead Analysis for Application Analyzer Module 175

Table 6.1: Qualitative Comparison of SA-LEEF 217

xv

Univ
ers

ity
 of

 M
ala

ya



LIST OF APPENDICES

Appendix A: Dataset Noise Removal 239

Appendix B: Test Program Design 241

xvi

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 1: INTRODUCTION

1.1 Introduction

Nowadays, with the proliferation of portable devices, the energy efficient system de-

sign has become a must to meet requirement for recent resource constrained smart-

phone devices. The ever growing smart-phone user’s demands encourage application

developers to enrich the legacy applications that as a result increase its computa-

tional and communication cost. The increase in computational and communication

cost of an application noticeably augments its battery consumption rate. Among

all smart-phone applications, on-demand video (Abolfazli, Sanaei, Gani, Xia, &

Yang, 2014), multi-agent based distributed games, pedestrian tracking (Wang, Neva-

tia, & Yang, 2015), and context-aware advertisement services (Autili, Cortellessa,

Di Benedetto, & Inverardi, 2015) are the most energy consuming services. The in-

herent features of these services such as portability, ubiquity, offline usability, and

context sensing, considerably increase the energy demands of processors when it is

executed on smart-phone devices (Murmuria, Stavrou, Barbará, & Fleck, 2015; Pel-

tonen, Lagerspetz, Nurmi, & Tarkoma, 2015). To efficiently utilize smart-phone’s

power budget, software optimization minimizes inter-components interaction among

smart-phone modules to increase battery’s lifetime. Software optimization exploits

energy estimation methods to identify the battery critical part within a smart-phone

application (Aleti, Buhnova, Grunske, Koziolek, & Meedeniya, 2013; Hao, Li, Hal-

fond, & Govindan, 2013; R. W. Ahmad, Gani, Hamid, Xia, & Shiraz, 2015; Q. Lu

et al., 2016).

Smart-phone application energy estimation identifies energy demand of an ap-

plication. Energy demands of an application highly depend on the degree of interac-

tion among smart-phone components during application execution (R. W. Ahmad
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et al., 2015; Barroso & Hölzle, 2007). Smart-phone components such as CPU,

Wi-Fi, memory, blue-tooth, and network radio, are the utmost energy consuming

components (Anand, Manikopoulos, Jones, & Borcea, 2007). The power consump-

tion for each smart-phone components mainly depend on, (a) power consumption

at idle state, (b) usage level, (c) number of power states, (d) transitions among

power states, and (e) power consumption associated with each transition. Within

a smart-phone device, activities of an application trigger smart-phone components

to perform a specific task that as a result consumes battery charge (Dementyev,

Hodges, Taylor, & Smith, 2013; Hamzaoui, Benzekri, Grimaud, Berrajaa, & Azizi,

2016). Smart-phone application energy estimation weighs application energy con-

sumption at unlike granularity levels such as source code line, routines, threads, and

processes. Fine granular source code line energy cost based estimation creates an op-

portunity for application developers to investigate application energy consumption

at earlier development stages (Bhattacharya, Blunck, Kjærgaard, & Nurmi, 2015;

Hans, Burgstahler, Mueller, Zahn, & Stingl, 2015). This research work addresses

the challenge of estimating energy consumption of smart-phone applications based

on the energy cost of operations within a smart-phone application.

This chapter describes theoretical energy estimation framework and states mo-

tivations for the proposed work. It presents the statement of the problem, states

the research objectives, and highlights the research methodology to carry proposed

research. The organization of this chapter is as follows. Section 1.2 discusses some

preliminary background on smart-phone application energy consumption estimation.

Section 1.3 highlights main motivations to carry out proposed research. Section 1.4

describes the statement of the problem and presents issues related to the highlighted

problem. Section 1.5 states objectives of the proposed research whereas Section 1.6

presents the proposed methodology. Section 1.8 sketches the layout of this thesis.
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1.2 Background

Technological advancements in Information Technology (IT) sector has shaped a

new computing environment where the user prefers to perform their social, enter-

tainment, and business activities while on the go. The new computing platform,

called mobile computing, considers smart-phone and mobile devices to offer services

ubiquitously. Smart-phones are evolved from personal digital assistants (PDA) and

perform many of the functions of desktop computers. Smart-phone devices are

equipped with high storage capacity and computational power to run resource mod-

erate applications (Koudounas, n.d.; Pejovic & Musolesi, 2015). However, due to

high demands of smart-phone users, resource requirements of many of emerging

smart-phone applications (context aware services) are increased. Emerging smart-

phone applications enrich the user experience by frequently triggering smart-phone

sensors such as GPS, compass, accelerometer, and wireless radios to offer desired

context-aware services (A. U. R. Khan, Othman, Xia, & Khan, 2015). The small

size, wireless access medium, resource constraints, and mobile nature of smart-phone

devices require the lightweight design of applications. Smart-phone application en-

ergy estimation assists application developers to develop lightweight applications.

Traditional energy estimation methods follow dynamic analysis approaches to

estimate energy consumption of a smart-phone application. A dynamic analysis ap-

proach exploits power models for software operations or smart-phone components

to estimate energy consumption of an application. A power model consists of a set

of parameters that affects the total energy consumption of smart-phone application

(Kjærgaard & Blunck, 2011; Do, Rawshdeh, & Shi, 2009). For smart-phone com-

ponents power measurement based energy estimation, dynamic analysis approach

runs the application on the smart-phone device to profile power state of smart-
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phone components. The power state of a smart-phone component influences the

power consumption of smart-phone device. The power state of a smart-phone com-

ponent depends on the type of workload running on a smart-phone device. For

instance, Wi-Fi power state is low if the transmitter transmits or receives less than

8 packets in one second. Alternatively, the power state is high if Wi-Fi transmitter

transmits or receives more than 15 packets in one second (L. Zhang et al., 2010a).

After smart-phone components power state profiling, it employs power models of

smart-phone components to estimate energy consumption of target smart-phone

application.

Software operations based energy estimation methods (also known as code anal-

ysis based methods) consider execution cost of software activities to estimate energy

consumption of a smart-phone application. Software operations based energy esti-

mation associates energy cost to each operation within the smart-phone application

for energy estimation (Hao et al., 2013; Hao, Li, Halfond, & Govindan, 2012a,

2012b). The execution behavior of smart-phone applications is non-deterministic

by nature. To handle this issue, traditional software operations based energy esti-

mation methods run the application on the smart-phone device to record run-time

execution behavior (execution paths) of the application for energy estimation. Also,

the storage location of instructions and data in multi-level memory hierarchy affects

total energy estimation accuracy. Considering heavyweight nature of traditional

dynamic analysis based schemes, there is a need to propose a lightweight energy

estimation framework for efficient resource utilization.

1.3 Motivation

Nowadays, smart-phones are replacing desktop servers as preferences of the user for

computing platform have changed. In last three years, the trend in the rise of the
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number of smart-phone users has rapidly increased as shown in Fig. 1.1. It is esti-

mated that in 2016 smart-phone users in the world have reached to 1.82billions. The

main motivation for significant growth in smart-phone usage is, (a) easy accessibil-

ity, (b) improved usability, and (c) attractive application features. The smart-phone

market is generating a significant amount of revenue due to increase in the fame of

smart-phone devices. According to the info-graphic report, due to rise in application

downloading rate, by 2017 the smart-phone application market will generate 77$ bil-

lion worth of revenue (Chaffey, 2016). However, despite this tremendous hype in

smart-phone popularity, still, their usage is affected by the design of the battery.

Smart-phone devices require frequent battery charging and consume a significant

amount of world electricity budget. According to Barry Fischer report (Fischer,

2012), the amount of energy to charge iPhone 5 smart-phones in the world is equiv-

alent to the total energy usage of 54,000 US households for one year. This report

stated that iPhone 5 electricity demand per year is 3.5kWh-4.9KWh. Also, the

monetary cost to charge one iPhone 5 smart-phone device per year is 0.41$. Energy

estimation is one of the ways that help to effectively utilize a smart-phone battery

to augment device battery lifetime to minimize the total electricity budget of the

world.

Smart-phone application energy estimation provides the basis for green com-

puting within smart-phone devices. During application development process, devel-

opers usually consider maintainability, complexity, usability, and understandability

as the performance measurement metrics for their applications. It is estimated

that 80% of the application developers are unaware of green software development

strategies (Pang, Hindle, Adams, & Hassan, 2015). Energy estimation of smart-

phone applications provide feedback to the application developers to re-consider

their application design for effective battery resource usage. Smart-phone applica-
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Figure 1.1: World Wide Mobile Phone Users Growth

tion energy estimation facilitates to: (a) identify resource critical rogue applications,

(b) diagnose smart-phone energy consumption, (c) estimate per-application energy

usage, and (d) optimize application design (R. W. Ahmad et al., 2015).

Dynamic analysis based energy estimation runs application on a smart-phone

device to estimate its energy consumption. However, the performance overhead of

dynamic analysis based energy estimation is very high. Dynamic analysis approach

is impractical to use especially when estimation is applied to minimize energy con-

sumption of an application. For instance, mobile cloud computing (MCC) is one

of the methods to minimize the total energy consumption of an application. MCC

frameworks consider energy estimation as one of the metrics to decide execution

platform for the mobile application (A. R. Khan, Othman, Madani, & Khan, 2014;

Abolfazli et al., 2014; Rajan, Noureddine, & Stratis, 2016). However, running mobile

application on the smart-phone (dynamic analysis) to estimate its energy consump-

tion for execution platform estimation affects the performance of MCC frameworks.

1.4 Statement of the Problem

Several traditional schemes are proposed to estimate energy consumption of smart-

phone applications (L. Zhang et al., 2010a; Hao et al., 2012a; D. Li, Hao, Halfond,
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& Govindan, 2013; Ding, Xia, Zhang, Zhao, & Ma, 2011). These schemes con-

sider power measurement of smart-phone components or energy cost of software

operations (source code) to estimate energy consumption of a smart-phone applica-

tion. The smart-phone components power measurement based estimation considers

power models for smart-phone components to estimate energy consumption of an

application. Alternatively, software operations energy cost based estimation consid-

ers energy cost of activities within smart-phone application to estimate its energy

consumption.

Traditional smart-phone components power measurement based energy estima-

tion schemes consider dynamic analysis approach to estimate energy consumption

of an application. Smart-phone components power consumption highly depends

on utilization level of smart-phone components such as Wi-Fi, CPU, LCD, and

blue-tooth (Do et al., 2009; M. Dong & Zhong, 2010; Ding et al., 2011). Being opt-

ing dynamic analysis estimation approach, the traditional smart-phone components

power measurement method runs the application on the smart-phone device to esti-

mate its energy consumption. Dynamic analysis approach estimates the power state

of smart-phone components during application execution on a smart-phone device

for energy estimation. However, estimating energy consumption of an application

by running it on a hardware platform inefficiently utilizes underlying resources of

a smart-phone device. As a result, it considerably prolongs energy estimation time

of energy estimation schemes. Due to inefficient resource utilization, the energy

estimation overhead of the estimation schemes is very high.

Type of operations within source code significantly impacts to the total energy

consumption of a smart-phone application. Software operations energy cost based

estimation considers the cost of each instruction within the application for its energy

estimation. Applying software operation’s energy cost based estimation method on
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sequential flow based applications is straightforward (Tiwari, Malik, & Wolfe, 1994;

Mehta, Owens, & Irwin, 1996; Vasilakis, 2015). In contrast, the execution behav-

ior of smart-phone applications is non-deterministic. Existing energy estimation

methods physically run the application to log the execution paths in offline exe-

cution mode. Based on the execution paths and software operation’s energy cost,

energy consumption of application is estimated. However, due to dynamic analysis

of smart-phone application (Hao et al., 2013; D. Li et al., 2013), the resources of

smart-phone devices are inefficiency utilized that leads to prolonged energy estima-

tion time. The prolonged energy estimation time results in high energy overhead.

Also, existing estimation methods do not consider storage location of source code

instructions that inaccurate estimation accuracy.

Traditional energy estimation methods follow dynamic analysis approach for

energy estimation. Traditional energy estimation methods physically run target

smart-phone application on the smart-phone device for its energy consumption esti-

mation. During application running on a smart-phone, an energy estimation method

profiles execution behavior of target smart-phone application for its energy estima-

tion. As a result, the resources of the smart-phone device are inefficiently utilized

that leads to high energy estimation time and overhead. The total energy overhead

comprises overhead of energy estimation tool and target smart-phone application.

1.5 Statement of the Objectives

To overcome the issues of traditional dynamic analysis based energy estimation

schemes, this study aim for lightweight static analysis based energy estimation

framework. The proposed framework estimates energy consumption of smart-phone

application based on the analysis of assembly code of smart-phone application and

energy cost profile for Acorn RISC Machines Instruction Set (ARM-IS) for ARM-7
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architecture. The objectives of this research are as follows.

• To review existing state-of-the-art smart-phone application energy estimation

schemes to gain insights to their performance limitations.

• To investigate the overhead of dynamic analysis based energy estimation schemes

to reveal inefficiencies in existing methods while estimating energy consump-

tion.

• To propose a system to estimate energy consumption of assembly based in-

structions within ARM-ISA and to perform impact analysis of storage location

on instruction’s energy consumption.

• To design and develop a lightweight energy estimation framework that pro-

poses weighted probability based application execution flow estimation and

static cache analysis method to estimate energy consumption of smart-phone

applications.

• To evaluate the proposed energy estimation framework for energy estimation

time, overhead, resource consumption, and accuracy in comparison to state-

of-the-art dynamic analysis based energy estimation schemes.

1.6 Proposed Methodology

Fig. 1.2 highlights the methodology followed to conduct this research. The phases

of this research include literature review, analysis of the problem, design of static

analysis based energy estimation framework, and evaluation of framework.

This study critically reviewed existing state-of-the-art smart-phone application

energy estimation schemes to highlight their strengths and weaknesses. It classify

existing energy estimation schemes based on the proposed thematic taxonomies. Ex-

isting energy estimation schemes are classified into smart-phone components power
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Figure 1.2: Research Methodology

measurement based estimation and code analysis based energy estimation. Based

on the thematic taxonomies, existing energy estimation schemes are compared to

highlight the commonalities and variances among them. The issues in this domain

of research that affect the performance of existing energy estimation schemes are

highlighted.

In the second phase, the research problem is investigated by analyzing the

performance of dynamic analysis based energy estimation schemes. A set of bench-

mark applications are used to investigate energy estimation overhead, time, resource

consumption, estimation time, and accuracy of existing methods. The impact of in-

creasing data size of an application on the performance of dynamic analysis based

energy estimation is also highlighted. The energy consumption rate by different

constructs of an application is also discussed. The overhead of estimating low ar-

chitecture level system details such as an estimation of cache miss/hit rate is also

highlighted. The proposed study has considered Power Tutor and Trepn Profiler dy-

namic analysis based energy estimation methods for analyzing the problem. Also,

results of the measurement-based method (consisting of multi-meter, external mo-
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bile battery, and resistors) are used as ground truth values for highlighting the

accuracy of existing energy estimation schemes.

In the third phase of this research, energy consumption cost for different set

of instructions within ARM-ISA for ARM-7 is estimated. This study estimated

energy consumption for arithmetic, logical, data movement, branch, conditional,

LOAD/STORE, and system library routines. A set of test programs to estimate

energy consumption for assembly based ARM-IS instructions are proposed. Energy

cost for both integer and floating point operations is estimated. Furthermore, this

study has considered both system cache and RAM to highlight the impact of stor-

age location on the energy consumption of an instruction. During test program

execution on smart-phone, background processes inaccurate the results. This study

has opted weighted filter based neighborhood operation to analyze and remove the

outliers to improve the accuracy. EM6000 multimeter equipment is chosen to es-

timate power consumption during test program execution on smart-phone. It has

considered test program execution time, average power consumption, and size of test

program to estimate energy consumption of a single ARM assembly instruction.

In the fourth phase of this research, a lightweight framework for energy estima-

tion of smart-phone applications is proposed. The proposed framework called static

analysis based lightweight energy estimation framework (SA-LEEF) analysis assem-

bly source code of an application and uses ARM-IS energy cost profile (objective 3)

to estimate energy consumption of the smart-phone application. It also considers

the associated overheads during energy estimation process. The execution behavior

of smart-phone applications is non-deterministic by nature. In traditional energy

estimation schemes, the execution flows and storage locations for instructions within

a smart-phone application are determined based on dynamic analysis of application.

SA-LEEF has proposed a weighted probability based method to analyze the data
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sets for branch statements to estimate the execution flows of an application. To

handle instructions storage location issue, it has proposed a static cache distance

based method to analyze ARM and thumb instructions to estimate the storage ac-

cess location of instructions. The proposed static cache distance method considers

cache size, size of cache lines, and the distance between chunk of application code

to predict cache hit or miss. For repetitive statements, it has opted loop slicing

method to estimate the loop’s bounds within the target smart-phone application.

It has proposed a method that considers base power cost while two tenants are

running and the cache eviction time to estimate the concurrent program execution

energy overhead. To increase the usability feature, SA-LEEF offers ARM-IS energy

cost profile as a service for a particular ARM architecture. The proposed energy

estimation model for SA-LEEF considers base cost energy (source code energy cost),

user-system interaction cost, concurrent programs execution overhead due to cache

eviction, and ARM-IS energy profile access cost for energy estimation. Due to static

analysis methodology, the proposed framework significantly minimizes estimation

time and energy estimation overhead of existing dynamic analysis methods.

In the last phase, the significance of proposed framework is evaluated based on

real experimentation using a set of benchmark applications. For different benchmark

applications, SA-LEEF is evaluated for the android smart-phone device (Google

Nexus One). Also, the behavior of different modules of the proposed framework

is verified based on a set of benchmark applications. The performance behavior

of proposed static analysis based energy estimation framework is analyzed from

the perspective of its energy consumption overhead, estimation time, resource con-

sumption, and accuracy. Based on a set of standard benchmark applications with

varying workloads and code sizes, the empirical data is collected. Findings of pro-

posed framework to the existing dynamic analysis based energy estimation methods
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are compared to validate the lightweight nature of proposed framework. Lastly, SA-

LEEF is qualitatively compared to existing code analysis based energy estimation

frameworks to highlight its differentiating features. It has also discussed the infea-

sibility for comparing SA-LEEF to code analysis based energy estimation schemes.

1.7 Scope

This study estimates energy consumption of smart-phone applications based on code

analysis estimation method. It statically analysis smart-phone application to iden-

tify execution flows and storage locations for energy estimation. The scope of this

research work is limited to the energy estimation of Sd-card I/O based smart-phone

applications. The Sd-card I/O based applications such as audio song player does

not require user interaction during its execution. Therefore, the energy estimation

of interactive smart-phone applications such as mobile gaming is not considered in

this study. The proposed framework considers obj dump of the target smart-phone

application for its energy estimation. Therefore, the energy estimation of the ap-

plications whose obj dump cannot be generated are out of this research scope. The

native smart-phone application code is written in C or C++ languages. The obj

dump of native smart-phone applications is usually generated using objdump Linux

utility. Therefore, this study is valid for the energy estimation of native smart-phone

applications. Also, the proposed research profile energy cost for ARM-7 architec-

ture. Therefore, the energy estimation of smart-phone applications for other ARM

architectures is not considered in this research.

1.8 Layout of Thesis

This thesis is structured as a set of chapters as depicted in Fig. 1.3. It is divided into

seven chapters including introduction, literature review, problem analysis, proposed

lightweight energy estimation framework, evaluation, results and discussion, and
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conclusions. The detailed description and ingredients of each chapter are as follows.

Figure 1.3: Thesis Organization

Chapter 2 presents a through discussion on state-of-the-art smart-phone ap-

plication energy estimation schemes. It proposes thematic taxonomies to classify

existing literature into code analysis and smart-phone components power measure-

ment based energy estimation schemes. It qualitatively analysis existing energy

estimation schemes to highlight the common and dissimilar features in them. It

presents several open research issues in this domain of research and also discusses

the issues that are considered for this research work.

Chapter 3 investigates the issues of dynamic analysis based energy estimation

schemes in term of their high energy estimation overhead, prolonged estimation

time, high resource consumption, and limited accuracy. It has considered Trepn
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Profiler and Power Tutor energy estimation tools for the analysis. Both of these

tools are highly cited in the research industry. Results of the Measurement-based

method is used as ground truth value to report the accuracy of dynamic analysis

based energy estimation methods. It also investigates high profiling overhead while

estimating low architecture level details of smart-phone devices.

Chapter 4 proposes a 2-tier static analysis based framework for energy estima-

tion of native smart-phone applications. The proposed framework consists of four

key modules including ARM instruction Energy Profiler, Application Analyzer, Ap-

plication Energy Estimator, and Collaborator. It discusses flow diagram and system

model of the proposed framework. It highlights distinguishing features of proposed

framework. Moreover, it discusses assumptions and constraints considered while

designing this framework.

Chapter 5 discusses data collection methods for the evaluation of proposed

framework. It discusses tools, data collection techniques, devices, and underlying

hardware modules to evaluate energy estimation framework. For the instruction

energy profiling, the proposed framework has considered external physical measure-

ment method. A set of benchmark applications are considered to evaluate modules

of proposed framework.

Chapter 6 validates proposed framework by comparing results of system model

for the proposed framework to the results of its empirical evaluation. It compares

finding of proposed framework to Power Tutor and Measurement-based energy esti-

mation methods for two scenarios including (a) Standard benchmark code size case

and (b) Application data size case. Moreover, it has compared the performance of

SA-LEEF to Power Tutor for two of its operational modes including Local mode

and Remote mode.

Chapter 7 concludes this research work by re-visiting the research objectives.
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It highlights main contributions of this research. It discusses findings, highlights

significance of proposed framework, and states limitation in proposed work to put

forward future research directions.
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CHAPTER 2: ENERGY ESTIMATION SCHEMES FOR
SMART-PHONE APPLICATIONS

This chapter briefly discusses the essence of smart-phone applications, reviews the

state-of-the-art smart-phone application energy estimation schemes, and presents

thematic taxonomies for classification of literature. It presents several open research

issues that affect the performance of existing energy estimation schemes.

This chapter is organized into seven main sections. Section 2.1 discusses some

basic terminologies and necessary background to define fundamental concepts of

smart-phone application energy estimation. Section 2.3 presents a thematic tax-

onomy for smart-phone components power measurement based energy estimation

schemes. It reviews and compares existing state-of-the-art energy estimation schemes

to highlight the commonalities and variances among them. Section 2.4 discusses

code analysis based smart-phone application energy estimation followed by a de-

tailed thematic taxonomy, extensive literature review, and in-depth comparisons of

existing energy estimation schemes. Section 2.5 discusses main features of smart-

phone application performance analysis tools. Section 2.6 discusses open research

issues and challenges that hinder designing optimized energy estimation methods

for smart-phone applications. Section 2.7 presents a brief summary on energy esti-

mation to analyze the most important issues in energy estimation research domain.

Lastly, Section 2.8 concludes the whole chapter and presents an overview of findings.

2.1 Background

Nowadays, smart-phones have become an integral part of one’s life due to high

dependency on them. This section defines a smart-phone device and highlights

main features of smart-phone applications. It overviews smart-phone application

energy estimation methods. The majority of the contents for this chapter are taken
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from our published articles in ISI index journals as highlighted in the footnote of

this page1 2.

2.1.1 Smart-phone Device

A smart-phone is a cellular device that performs many of the functions of a desk-

top computer and offers internet access (Wi-Fi,3G), touch screen interface, local

and remote data storage, and operating system capable of running downloaded ap-

plications. It integrates capabilities of a cell phone to more common features of

a hand-held computer or PDA to enrich the services for the user. Due to size

limitation, smart-phone carries low-speed CPU and limited capacity of RAM stor-

age. Moreover, smart-phones are equipped with lithium battery with less than the

3000mAh capacity that lasts for a few hours when the network and computations

intensive applications run on it (Abolfazli et al., 2014; R. W. Ahmad et al., 2015).

The hype in popularity of smart-phones has remarkably increased due to their

unlimited applications in various computing domains such as education (Thornton

& Houser, 2005), management information system (Wu & Wang, 2005), and health-

care monitoring (Pascu, White, Beloff, Patoli, & Barker, 2016; Joos et al., 2016).

Smart-phone applications have inherited main features of rich internet applications

to enrich user experience. Recent smart-phone applications offer code portability,

asynchronous communication, quick responsiveness, and extensive functionality. It

embodies context aware and multi-tier services to entertain smart-phone users (PCs,

2008; Abolfazli et al., 2014). However, in-lining with increasing functionality, these

1Ahmad, Raja Wasim, Abdullah Gani, Siti Hafizah Ab Hamid, Feng Xia, and Muhammad
Shiraz. "A Review on mobile application energy profiling: Taxonomy, state-of-the-art, and open
research issues." Journal of Network and Computer Applications 58 (2015): 42-59.

2Ahmad, Raja Wasim, Abdullah Gani, Siti Hafizah Ab Hamid, Mohammad Shojafar, Abdel-
muttlib Ibrahim Abdalla Ahmed, Sajjad A. Madani, Kashif Saleem, and Joel JPC Rodrigues. "A
survey on energy estimation and power modeling schemes for smartphone applications." Interna-
tional Journal of Communication Systems (2016).

18

Univ
ers

ity
 of

 M
ala

ya



applications heavily uses light sensors, GPS, compass, and accelerometers, to per-

form the desired task. As a result, sensors deplete battery charge when application

triggers them to perform required task (Gavalas & Economou, 2011; Abolfazli et

al., 2014; Plaza, MartíN, Martin, & Medrano, 2011; X. Li & Gallagher, 2016).

2.1.2 Smart-phone Application Energy Estimation

Energy of an application is estimated based on its average power consumption and

execution time. Alternatively, the power consumption states the rate at which

energy is consumed (Tiwari et al., 1994). Smart-phone application energy estima-

tion considers power models for smart-phone components or software operations to

estimate energy consumption of a smart-phone application. Smart-phone compo-

nents power model based energy estimation uses state of charge (SOC) estimation

methods such as coulomb counting and terminal voltage methods to forecast energy

consumption of an application as highlighted in Fig. 2.1. Alternatively, software

operation’s cost based estimation method (also known as code analysis based esti-

mation) considers base cost energy of source code instructions to estimate energy

consumption of the smart-phone application. Section 2.1.2.1 and section 2.1.2.2

briefly discusses energy estimation methodologies for smart-phone applications.

2.1.2.1 State of Charge Energy Estimation

State of charge represents total remaining charge capacity inside a smart-phone

battery. It reflects the performance of a battery. Accurate SOC estimation im-

proves battery life, prevents over-discharging, and assists application developers to

adopt rational control strategies to save energy. SOC for smart-phone battery is

estimated based on coulomb counting (Shin et al., 2013; Sepasi, Ghorbani, & Liaw,

2014) and terminal voltage method (C. Jiang, Taylor, Duan, & Bai, 2013; H. He,

Zhang, Xiong, Xu, & Guo, 2012; Gholizadeh & Salmasi, 2014). Coulomb count-
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Figure 2.1: Overview of Smart-phone Application Energy Estimation Methods

ing estimates SOC based on an accumulative current drop by directly accessing

the current sensor within smart-phone devices. The accuracy of coulomb counting

method is highly affected by numerous external and internal factors such as bat-

tery aging, temperature, and charging/discharging rate (L. Lu, Han, Li, Hua, &

Ouyang, 2013; Zhong, Zhang, He, & Chen, 2014; Hoque, Siekkinen, Khan, Xiao, &

Tarkoma, 2015). Alternatively, terminal voltage method estimates SOC based on

voltage drop because of the internal impedance of battery during its discharging.

Both coulomb counting and terminal voltage methods are implemented in battery

fuel gauge hardware module of the smart-phone battery. For energy estimation of an

application, operating system (OS) considers android power APIs to access the fuel

gauge (Y. He, Liu, Zhang, & Chen, 2013; Hu, Youn, & Chung, 2012; W.-Y. Chang,

2013).

2.1.2.2 Base Cost Energy Estimation

Smart-phone application performs a series of activities during its execution on a

smart-phone device. Base cost energy of an activity truly depends on the circuitry
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it triggers during application execution on the smart-phone device. Within an appli-

cation, the energy cost of each operation such as variable declaration, assignment,

and arithmetic operations is fixed. In comparison to coarse granular operations,

the energy cost of a fine granular operation is much lower. The energy cost of

each instruction within Acorn RISC Machines Instruction Set (ARM-IS) is dissimi-

lar and highly depends on cycles per instruction (CPI) for a particular instruction.

For a single instruction, energy consumption also depend on the type of op-code,

number of operands in instruction address part, operands type, and architecture of

smart-phone device. For instance, base cost energy for ARM assembly based LOAD

instruction is higher than ADD instruction because memory-based operations are

expensive than simple Arithmetic and Logical Unit (ALU) based operations. Base

cost energy of a program is estimated based on the energy cost of the source code

of the application (Jayaseelan, Mitra, & Li, 2006; Allcott & Greenstone, 2012; Hao

et al., 2013; Sinha, Ickes, & Chandrakasan, 2003; Tiwari et al., 1994).

2.2 Static Analysis vs. Dynamic Analysis

Static analysis is a program analysis method that debugs an application based on

source code examination without running it on underlying hardware platform. Ap-

plication developers consider static analysis of their applications to uncover the bugs.

Static analysis approach is used for debugging application at its earlier development

stages. It helps to understand the structure of the code for better software quality

control (Emanuelsson & Nilsson, 2008; Pistoia, Chandra, Fink, & Yahav, 2007).

The programers use static analysis to identify the variables with undefined values,

unreachable code, syntax violation, and security vulnerabilities. As static analysis

is concerned to the structure of the code, therefore it is mainly used to identify the

logical errors within a piece of code (Ayewah, Hovemeyer, Morgenthaler, Penix, &
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Pugh, 2008). To identify the uninitialized variables in a program, static analysis

considers flow graph and examines how variables are used. In a graph, the nodes

represent the program main units whereas arcs represents the dependency among

the modules of the program. Moreover, static analysis helps to estimate worst case

execution time of a program. Loops are the most energy consuming element within

an application. Static analysis opts loop slicing and abstract interpretation (AI)

techniques to estimate upper bounds of a loop. The loop slicing method extracts

the set of variables and the statements within a program that must be considered

for loop bound estimation. AI is a program analysis method that estimates the pos-

sible set of values for variables at different points of the program (Maroneze, Blazy,

Pichardie, & Puaut, 2014; Lisper, 2014; Sun & Cassé, 2016). Also, static analysis

based cache prediction helps to estimate the storage location of code within an ap-

plication for high level program constructs based on graph theory (Guan, Yang, Lv,

& Yi, 2013; Grund, 2012).

Dynamic analysis evaluates a program by executing it on a physical hardware

machine in real-time mode. The main purpose of dynamic analysis is to examine the

code for error finding. In comparisons to static analysis, dynamic analysis is per-

formed after program development. To be effective, dynamic analysis requires the

target application to be executed with multiple set of use cases (Gosain & Sharma,

2014; Cornelissen, Zaidman, Van Deursen, Moonen, & Koschke, 2009). There are

several tools available for dynamic analysis of a program. For instance, tools includ-

ing ClearSQL, Daikon, Dmalloc, and Cenzic follows dynamic analysis approach for

program understanding (Nimmer & Ernst, 2001; Mandeep, 2008; Watson, 2004).

CleanSQL is a code illustration tool for PL/SQL. Alternatively, Cenzic and Daikon

supports security vulnerability identification and invariant detection within a pro-

gram, respectively. Alternatively, Dmalloc helps application developers to check the

22

Univ
ers

ity
 of

 M
ala

ya



memory allocation and leaks for their applications. Valgrand (Seward, Nethercote,

& Fitzhardinge, 2004) is another dynamic analysis based tool that analysis appli-

cations to estimate execution flows, memory leaks, instructions count, and cache

hit/miss rate. The disadvantage of dynamic analysis is the requirement to run ap-

plication for its testing. However, as compared to static analysis, coverage issue

problem is well handled by dynamic analysis tools. Moreover, another advantage

of dynamic analysis is its support to identify vulnerabilities in code that is false

negative in case of static analysis. Also, dynamic analysis can be done over and

over for extensive testing. However, dynamic analysis requires sufficient hardware

resources that make it costly compared to static analysis.

2.3 Smart-phone Components Power Measurement Based Energy Esti-
mation

Smart-phones of the modern day come with wide variety of components embedded

in them. Typical smart-phone components include CPU, Wi-Fi, memory, 3G, GPS,

compass, LCD, touch screen, and speaker. Smart-phone applications simultaneously

utilize several components to offer a rich experience to its users. During application

execution on a smart-phone device, each component consumes unlike power depend-

ing on its execution states. Total energy consumption of an application is estimated

based on the power consumption of smart-phone components during its execution

on the smart-phone device. The power consumption of a smart-phone component

is estimated based on its power model constructed using physical measurements or

self-metering methods as discussed below.

Fig. 2.2(a) highlights a physical measurement based power measurement setup.

In Fig. 2.2, measuring hardware devices such as multi-meter, power-meter, or am-

meter captures voltage and current drop across battery terminals to estimate power

consumption of the target application. Alternatively, self-metering method (Fig. 2.2(b))
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Figure 2.2: Overview of Physical Measurement and Self-metering based Energy
Estimation

uses smart battery interface of the smart-phone device for power measurement of

the target application.

Section 2.3.1 presents a taxonomy for classification of existing smart-phone

components power measurement based energy estimation schemes.

2.3.1 Taxonomy of Smart-phone Components Power Measurement Based
Energy Estimation Schemes

Fig. 2.3 presents a thematic taxonomy to classify existing state-of-the-art smart-

phone components power measurement based energy estimation schemes. The pa-

rameters to classify state-of-the-art energy estimation schemes include power model

type, methodology, granularity, training mode, power modeling approach, and ob-
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Table 2.1: Comparison of Self-metering and Measurement based Estimation

Parameter Physical Measurement Self-metering
Accuracy High Low
Power Source Uses an external power source for

hardware equipment during en-
ergy profiling process

Uses smart-phone’s battery
power for application energy
profiler

Setup It interfaces smart-phone battery
to the power meter

APIs to access the battery drain-
ing rate, temperature, and total
remaining battery power

Support System level power consumption
monitoring

Individual hardware component
and system level

Dependency Accuracy depends on hardware
sampling rate

Accuracy depends on Fuel guage
sensor’s accuracy

Sampling Rate Sampling rate as offered by hard-
ware equipment

Power sampling rate is as offered
by underlying OS

Structure It uses physical tools like power
meters, multi-meter, amm-meter

Android APIs, pre-constructed
component power models

Overhead Do not suffer from feedback loop Suffers from feedback loop as pro-
filing application too runs on the
same smart-phone device

Scalability Not scalable Scalable

jective function.

Attributes of Power Model Type parameter states whether an estimation model

has followed external power measurement or self-metering based estimation methods

to construct power models for smart-phone components. External power measure-

ment method employs power estimation tools (e.g., multimeter and power meter) to

obtain voltage and current drop across sense resistor attached to the power rail of

the smart-phone battery. Alternatively, the self-metering method employs SOC es-

timation methods to estimate energy consumption of an application or smart-phone

device.

Attributes of Methodology parameter defines the power modeling approach

based on the kind of input variables the model uses. Utilization-based method-

ology co-relates smart-phone components power usage to its resource consumption

rate. Utilization-based methods exploit hardware performance counters (HPCs) to

model power consumption of smart-phone sub-components such as CPU fetch cy-

cles, cache hit rate, pipeline stalls, and number of cache hits/miss. The utilization-
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based methodology is effective for capturing the linear relationship between resource

and energy consumption of the hardware component being modeled. Event driven

methodology considers the non-linear energy consumption behavior (e.g., Wi-Fi tail

energy) of smart-phone components for accurate energy estimation.

Energy estimation Granularity states the level at which an estimation model

finds energy consumption of the application. Attributes of granularity for energy es-

timation includes smart-phone application, web browser, smart-phone device, func-

tion, process, and device components. For instance, Power Tutor estimates energy

consumption at the application and smart-phone component granularity levels.

For power modeling of smart-phone components in lab setting environment,

training measurements are collected to build power models for smart-phone compo-

nents. For training measurements, each smart-phone component is set to execute

at allof its possible execution states where rest of the components are put to their

lowest execution modes. Attributes of Training Mode Locality parameter describes

the platform where the analysis on the smart-phone component’s power training

profile is performed to construct power models for smart-phone components. The

smart-phone component’s power training analysis is carried either at the mobile de-

vice or on desktop/cloud servers. Trepn Profiler considers on-device training mode

locality for power modeling and application energy estimation.

Power Modeling Approach highlights method opted to analyze energy consump-

tion behavior of smart-phone components. The attributes of this parameter in-

clude deterministic or statistical modeling designs. Deterministic power modeling

paradigm opts power state machine (PSM) to estimate energy consumption of an

operation. PSM based estimation considers, (a) power consumption at each system

state, (b) number of transitions among states, and (c) power consumption during

each transition to estimate energy consumption of a mobile component. Alterna-
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tively, statistical power model design considers statistical models such as regression

analysis to investigate non-linear power consumption behavior of smart-phone ap-

plications.

Objective Function parameter states main aim of energy estimation schemes.

Energy estimation methods aim to automate energy estimation process, minimize

estimation overhead, and to propose power models for smart-phone devices.

Figure 2.3: Taxonomy of Smart-phone Components Power Measurement Based
Energy Estimation Schemes

2.3.2 Review of Smart-phone Components Power Measurements Based
Energy Estimation Schemes

This section presents a review on state-of-the-art smart-phone components power

measurements based energy estimation schemes. Section 2.3.2.1 discusses physical

measurement based energy estimation schemes; whereas, Section 2.3.2.2 reviews

self-metering based energy estimation schemes.

2.3.2.1 Physical Measurement Based Energy Estimation

The knowledge of where and how energy is consumed within a smart-phone assists

designing resource efficient smart-phone applications. DUT (Carroll & Heiser, 2010)
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is a physical measurement based power modeling scheme that break-down energy

consumption of a smart-phone into its sub-components. It has considered lab setting

environment to construct power models for smart-phone components. The design

of DUT includes mobile under test, data acquisition (DAQ) board, and a sense

resistor to construct models for smart-phone components. To investigate power

consumption behavior, a sense resistor (residing at power rail of the target mobile

component) captures voltage and current drop using DAQ module. DAQ is a high

rate power profiling tool that captures power profile of an application executing

for a short period of time (milli-seconds). DUT analyzes power profile in an offline

execution mode to propose power models for smart-phone components. For instance,

Eq. 2.1 presents power model for energy estimation of audio and video services.

Alternatively, Eq. 2.2 models energy consumption for call and emailing services.

In the mentioned equations t represents total activity time whereas PBL defines

the back-light power of the smart-phone device. DUT has proposed models for

free-runner smart-phone that can be replicated easily as its design files are freely

available. However, the proposed scheme has not modeled 3G radio as free-runner

smart-phone does not have the support for it.

EAudio = 0.32× t,EV ideo = (0.45W +PBL)× t (2.1)

ECall = 1.05W × t,EEmail = (0.61W +PBL)× t (2.2)

The energy consumption of a smart-phone device increases when a user scroll

the screen to perform some task. During smart-phone components power mod-

eling, interaction with smart-phone to adjust settings in-accurate the estimation
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readings owing to sudden rise in LCD power consumption rate. To suppress the

estimation error due to interaction with smart-phone during power profiling, A. C.

Rice et al. (A. C. Rice & Hay, 2010) has proposed a framework that downloads

(online mode) scripts to generate annotated traces for smart-phone applications

energy consumption assessment. Proposed framework consists of a desktop server

(for timestamped power recording) and power measurement tool (power capturing).

Smart-phone hosted module runs script on the smart-phone device and uses power

measurement tool to profile and transfer traces to the remote server. To assure the

strict synchronization between the smart-phone device and remote cloud server, the

framework uses a test client application that formulates synchronization pulse. Dur-

ing the offline phase it processes power profile using regression analysis to construct

power models. Authors considered a network study to examine the power consump-

tion of 2G/3G radios. It was concluded that 2G is more power consuming than

3G. The advantage of proposed framework is its versatility to support non-invasive

tasks, batch job processing, automated test generation, and execution. However, re-

cent smart-phones are equipped with OLED screens which increase battery charge

consumption rate when the color of GUI is brighter. The proposed model can be

re-configured to work for OLED based smart-phone screens too.

A similar to A. C. Rice et al. (A. C. Rice & Hay, 2010) work, but with more

detailed analysis has been reported in (A. Rice & Hay, 2010) to analyze the behavior

of smart-phone power consumption using hardware instrumentation. The proposed

framework consists of hardware equipment and software module. The former mea-

sures voltage drop across a sense resistor to estimate power consumption whereas

the latter acquires test scripts from a remote server to generate the execution log

during application execution on smart-phone device. In this study it was observed

that Wi-Fi network power consumption is a function of network traffic, connec-
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tion establishment method, data transmission rate/size, network protocol type, and

sender buffer size. The power consumption of an application during network ac-

tivity is costly when considering the DHCP protocol (dynamic host configuration

protocol) compared with static address assignment policy. However, access point

position, attenuation pattern, and types of radio significantly affect battery power

consumption, which is not considered in this scheme. The profiling module also

does not consider the asynchronous behavior of network interfaces, such as Wi-Fi.

Furthermore, it requires a stable network connection to download the test script

to analyze power consumption behavior. The effects of the distance between the

smart-phone and the Wi-Fi access point on the total power consumption of the

Wi-Fi component can improve the estimation accuracy of proposed model.

The asynchronous nature of I/O operations during application execution com-

plicates the process of identifying what is responsible for an I/O activity because

of rapid context switching during application execution. Power Memo (Tsao et al.,

2012) is a measurement-based energy profiler that overcomes the aforementioned

issue by adding the process identifier (PID) to the socket data structure to precisely

identify the process that has generated or received the packets. Power Memo es-

timates application power consumption at process and function granularity levels.

The Power Memo architecture deploys the required system modules at host and

target sides. The host side implements the GUI module which, (a) acts as a control

center and access the data-acquisition card (DAQ), (b) emulates mobility using a

single attenuator module, and (c) maps power measurements to calculate the total

energy for each system activity. On the target side, the kernel module uses kernel

probes (K-probes) and user space probes (U-probes) to support static and dynamic

profiling. Compared with static profiling, dynamic profiling does not require the

source code of the application to generate a report. The kernel module logs system
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activities and other necessary parameters in a file before transferring the log to the

user space for energy consumption estimation using National Instruments PCI-6115

data-acquisition board. However, the accuracy of I/O energy estimation is affected

by noise pattern on channels, type of radio, distance to the access point (in case of

Wi-Fi), and the available bit rate that has not been focused by the Power Memo.

Thiagarajan et al. (Thiagarajan, Aggarwal, Nicoara, Boneh, & Singh, 2012)

proposed a framework to investigate the power consumption behavior of smart-

phone based web browser. The design of the proposed energy estimation scheme

consists of a server, a smart-phone, and a multi-meter module. The server entity

control and manages the smart-phone and multimeter equipment during the power

profiling process. In the first step, the server module communicates to web browser

profiler on the smart-phone to repeatedly load a specific URL. During the subsequent

stages, the profiler measures energy consumption of web browser using a multi-meter

hooked with smart-phone battery while the browser renders the web pages. The

software part of the proposed scheme includes web browser profiler and android

browser. During browsing activity on smart-phone, the profiler caches the web

page elements and monitors 3G/Wi-Fi signal strength, data transfer rate, and page

loading time to estimate the power consumption. The web browser loads web pages

either in “with cache” or “no cache” mode. The authors concluded that the cascade

style sheet and java scripts are expensive elements while accounting browser energy.

The critical aspect of the proposed scheme is this that the sampling rate of the chosen

multi-meter was low that lead to estimation inaccuracy. Also, the proposed study

has considered energy estimation of only a few web pages; however, the proposed

model can be extended by considering complete web session energy estimation.

F. Jiang et al. (F. Jiang, Zarepour, Hassan, Seneviratne, & Mohapatra, 2015)

conducted experiments to investigate and compare the power consumption of three
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input modalities including soft key, speech to text, and swype. Authors performed

primary and secondary experiments to investigate these three modules with and

without user related context information. To capture voltage and current drop,

the shunt resistor is attached to the battery terminal to capture readings during

activity on the mobile phone. It was concluded that for short size messages (14-30

characters) soft tex-ting is most energy efficient. However, for long messages, soft

key outperforms than other two modalities in terms of power consumption. Also,

power consumption for different applications such as email via a web browser, video

streaming, online games, news/weather, and emailing, has been investigated with

non-textual online/offline activities. This study helped to find out how battery life

of the smart-phone can be increased. However, apart from the input modalities,

numerous other factors such as bugs in the code, Wi-Fi locks, and aging factor

of smart-phone batteries also affects battery’s power consumption rate which is

overlooked in this study while classifying three input modalities.

2.3.2.2 Self-metering Based Energy Estimation

Unsupervised power profiling assists to reduce human efforts during smart-phone

components power modeling. PowerProf (Kjærgaard & Blunck, 2011) follows on-

demand power modeling paradigm that re-constructs smart-phone power models

when the hardware or software is updated. It considers Genetic algorithm (GA) to

propose power models for smart-phone components to represent their dynamic power

consumption behavior. PowerProf considered smart battery interface (fuel gauge

sensors) for capturing current and voltage drop through android built-in power APIs.

Power model for each smart-phone component has considered four power states to

represent power consumption behavior with limited search space to speed up power

estimation process. Moreover, to optimize mobile battery consumption, PowerProf
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offers offline training mode to perform resource expensive execution there. However,

during the training phase, it overlooks inter smart-phone components dependency

that affects estimation accuracy. Also, as PowerProf has considered four power

states for a smart-phone component; therefore, estimation accuracy is limited.

Power Tutor follows off-device power state finding for online power model gen-

eration process. On-device power model generation do not require an external hard-

ware device to construct power models for smart-phone components. The proposed

framework discussed in (L. Zhang et al., 2010a), called Power Booter, consists of

two components including training and model construction. Training phase profiles

power consumption of each mobile component using built-in smart battery inter-

faces; whereas, model construction module applies linear regression to find a rela-

tionship between resource usage and power consumption to construct power models.

The overhead of power booter is very high as training phase is both resource and

time consuming process. Also, Power Booter has exploited voltage discharge curve

for voltage/current estimation. However, voltage discharge curve based estimation

is not scalable as it varies with time and age of the battery. The advantage of this

method is its adaptability as it does not depend on external hardware devices for

power modeling.

S. Dong et al. presented Se-same (M. Dong & Zhong, 2010), an energy esti-

mation framework, to propose a self-modeling approach for constructing high-rate

and accurate smart-phone components power model. Se-same consists of collector,

model modeling, and model constructor modules, to estimate application energy

consumption. Among all modules, collector module being located within the kernel

collects power and utilization logs based on advanced configuration profiling inter-

face (ACPI) interface. Alternatively, model modeling module generates high-rate

smart-phone components power model based on prediction transformation compo-
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nent (PTC). The estimation overhead of Se-same is very limited as it exploited

external physical server to execute resource expensive tasks. However, the accept-

ability of Se-same is very low as it considers only those components which are visible

to OS for energy estimation.

Smart energy monitoring system (SEMO) (Ding et al., 2011) is a tool that

continuously monitor and analyzes the energy consumption of smart-phone appli-

cations to rank them based on their energy consumption rate. The design of SEMO

consists of three key modules: inspector, recorder, and analyzer. The inspector

module monitors battery health status, voltage level, total battery charge remain-

ing, and temperature of the smart-phone device during application execution. It

notifies the application users when the device is about to reach its critical condition

(e.g., low power, low temperature, over-utilization, and voltage level). The recorder

is responsible for collecting various battery and program-related parameters such as

execution time t, power consumption during time t, and a number of applications

running during time t. The analyzer module utilizes the profile of the recorder and

the power-remaining historic curve of the mobile battery to estimate the energy con-

sumption rate of an application. SEMO assists application developers in ranking

smart-phone applications based on energy consumption behavior to optimize power

hungry applications. The critical aspect of the SEMO framework is its low-rate to

capture power readings (1 sample per second). Thus, it has a high probability of

missing many high-power consumption statistics. This framework does not consider

the effect of the components that are invisible to the running OS.

Application energy profiling experiences the unique challenge of asynchronous

power consumption behavior, wherein the state of the smart-phone component re-

mains unchanged even beyond the lifetime of the entity that triggers it. Eprof (Yetim,

Malik, & Martonosi, 2012), a fine-granular energy estimation tool, has resolved the
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asynchronous power consumption behavior issue of smart-phone components by

employing the last-trigger accounting policy. Based on power state analysis, Eprof

identifies the key reasons for asynchronous power consumption behavior, which in-

clude component/application tail power state, persistent power state wake-locks,

and exotic components within smart-phones. The tail energy (e.g., disk, Wi-Fi, 3G,

and GPS) of smart-phone components represent the state in which the activities

of one entity (e.g., function, thread) push the smart-phone component to a high

power state and the component remains in that state even after termination of the

entity. Persistent state wake-lock occurs because of aggressive CPU screen sleeping

policies as legacy OS exports wake-lock APIs to ensure that the components of the

smart-phone are awake during application execution. Exotic components such as

GPS, camera, and accelerometer, consume a significant amount of battery power

because they are activated and deactivated by distinct entities. The advantage of

Eprof is its capability to map the energy consumption of a smart-phone component

at diversified granularity levels such as process, subroutine, thread, and system call.

However, Eprof overlooked energy consumption by OS policies and poor software

design.

P-top (Do et al., 2009) estimates the energy consumption of an application at

process granularity. The design of P-top consists of four vital components: energy

profiler daemon, in-memory data, display utility, and API-kit. The energy profiler

daemon runs within the OS kernel and records the resource utilization level for

several smart-phone components including CPU, hard disk, and network connectiv-

ity. The energy consumed by each smart-phone component during a specified time

interval is calculated through power models, as presented in Eq. 2.3 and Eq. 2.4,

prior to transferring it to the in-memory module for temporary storage. In the

presented models, the parameters tj , nk, Ek, and Pend represent process execution
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time, count of transition between CPU states, energy consumption at a particular

state, and power consumed during data sending via Wi-Fi link, respectively.

ECP U =
∑
a
pj× tj +

∑
k

nk×Ek (2.3)

ENET = tsend×Psend + treceive×Preceive (2.4)

The display utility uses collected execution log (from the in-memory module) to

generate a detailed report that highlights the power consumption of several mobile

components. P-top offers the API interface to enable application developers to

access the power log of their desired processes. Consequently, application developers

can optimize application scheduling and lightweight application design with the help

of API interface module. This tool is helpful because it is embedded as an OS service.

However, numerous factors such as GPS and LCD brightness, are disregarded during

energy profiling. The asynchronous power features of mobile components are also

overlooked.

Table 2.2 relates aforementioned state-of-the-art energy estimation schemes

based on a set of parameters highlighted in thematic taxonomy. Table 2.3 presents a

set of smart-phone components that existing schemes have considered during energy

estimation of applications. Also, in Table 2.3 the hardware model and mobile type

chosen by existing schemes during power consumption profiling are reported. The

detail discussion on the aforementioned tables is presented in Section 2.2.3.
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2.3.3 Comparison of Smart-phone Components Power Measurement Based
Energy Estimation Schemes

This section compares state-of-the-art smart-phone components power measure-

ment based energy estimation schemes to highlight the commonalities and variances

among existing schemes. The parameters to compare existing energy estimation

schemes include power model type, methodology, granularity, training mode local-

ity, power modeling approach, objective function, and design as shown in Table 2.2.

Given below is an analysis of existing schemes based on each of aforementioned

parameters.

2.3.3.1 Power Model Type

Attributes of power model type represents whether an estimation scheme has con-

sidered external physical measurement or self-metering based energy estimation

paradigm. Existing energy estimation schemes such as DUT (Carroll & Heiser,

2010), Rice and Hay (A. C. Rice & Hay, 2010), Netw (A. Rice & Hay, 2010), Power

Memo (Tsao et al., 2012), Browser (Thiagarajan et al., 2012), and Skype (F. Jiang

et al., 2015), considered external measurement based power estimation mode. Alter-

natively, state-of-the-art energy estimation schemes such as PowerProf (Kjærgaard

& Blunck, 2011), Power Booter (L. Zhang et al., 2010a), Se-same (M. Dong &

Zhong, 2010), P-top (Do et al., 2009), Eprof (Yetim et al., 2012), and SEMO (Ding

et al., 2011), have chosen self-metering based energy estimation mode. External

physical measurement based energy estimation models are more accurate compared

to self-metering based energy estimation due to error prone nature of fuel gauge’s

voltage and current sensors. However, external physical measurement based esti-

mation requires lab setting environment to conduct experiments. The accuracy of

external physical measurement based modeling highly depend on, (a) sample rate of

power monitoring devices such as a multimeter, power meter, ammeter, (b) device
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Table 2.2: Comparisons of Smart-phone Components Power Measurements Based
Energy Estimation Schemes

Reference Power
Model
Type

Methodology Power Log
Source

Granularity Training
Mode
Locality

Power
Modeling
Approach

Objective
Function

Design

(Carroll
&
Heiser,
2010)

External
Power Mea-
surement

Utilization
Based

Sense Re-
sistor

Mobile
Component
and Mobile
System

Off-Device N/A Where Mo-
bile Battery
Used?

Heavy
weight

(A. C. Rice
& Hay,
2010)

External
Power Mea-
surement

Trace
Driven

Sense Re-
sistor

Mobile
Apps

N/A N/A Automated
Energy
Profiling

Heavyweight

(A. Rice
& Hay,
2010)

External
Power Mea-
surement

Trace
Driven

Sense Re-
sistor

Mobile
Apps

N/A Deterministic Automated
energy
Profiling

Heavyweight

(Tsao
et al.,
2012)

External
Power Mea-
surement

Trace
Driven

V/I Clamps Process and
Function

Off-Device N/A Asynchronous
Behavior
of Wi-Fi
Power Con-
sumption

Heavyweight

(Thiagarajan
et al.,
2012)

External
Power Mea-
surement

N/A Sense Re-
sistor

Web
Browser

Off-Device N/A Web Com-
ponent
Rendering
Energy

Heavyweight

(F. Jiang
et al.,
2015)

External
Power Mea-
surement

Utilization
Based

Sense Re-
sistor

Skype,
Text, Wype

Off-device N/A Characterize
Power Con-
sumption of
Three In-
put Modes

Heavyweight

(Kjærgaard
&
Blunck,
2011)

Self-
metering

Trace
Driven

Fuel Gauge API, Mo-
bile Apps

Off-Device Statical Unsupervised
Power Pro-
filing

Heavyweight

(L. Zhang
et al.,
2010a)

Self-
metering

utilization
Based

Fuel Gauge Mobile
Apps

On-Device Statistical Online
Power
Model
Generation

Heavyweight

(M. Dong
&
Zhong,
2010)

Self-
metering

Trace
Driven

Fuel Gauge Application
and System

Off-Device Statistical Self Power
Model Con-
struction

Heavyweight

(Ding
et al.,
2011)

Self-
metering

N/A N/A Application N/A N/A Smart En-
ergy Moni-
toring

Heavyweight

(Yetim
et al.,
2012)

Self-
metering

Trace
Driven

Fuel Gauge Application,
System
calls

Off-Device Statistical Energy Bug
Finding

Heavyweight

(Do
et al.,
2009)

Self-
metering

Trace
Driven

Fuel Gauge Process N/A N/A Process
Level Esti-
mation

Heavyweight

disruption rate during the training phase, (c) and calibration of the device under

test. Existing energy estimation schemes considered various types of power mea-

surement equipment to capture voltage and current drop during experiments such

as PCI-6229 DAQ, PCI-MIO-16E-4, PCI-6115 DAQ, and PCI-MIO-16E-4 to pre-

dict smart-phone/application energy consumption. The accuracy of self-metering

based energy estimation schemes depends on, (a) error rate of smart battery’s volt-

age/current sensors, (b) fuel gauge’s sensor updating rate and (c) mobile power

API’s access rate. Self-metering based estimation solutions do not require extra
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external hardware equipment to capture power readings as they use API to access

voltage and current sensors. In terms of overhead, self-metering based estimation

is more expensive than external physical measurement based method as estimation

tool has to run on the smart-phone device to record the time-stamped power profile

in parallel to an application under test. In terms of monitory cost, self-metering

based estimation is cheep compare to external measurement based estimation.

2.3.3.2 Methodology

Attributes of methodology parameter describes whether an estimation scheme has

chosen utilization based method or trace driven power modeling approach to es-

timate smart-phone application energy usage. State-of-the-art energy estimation

schemes such as DUT (Carroll & Heiser, 2010), Power Booter (L. Zhang et al.,

2010a), and Skype (F. Jiang et al., 2015) has considered utilization based power

modeling for energy estimation of smart-phone applications. Alternatively, Rice

and Hay (A. C. Rice & Hay, 2010), Network, Power Memo (Tsao et al., 2012),

Browser (Thiagarajan et al., 2012), PowerProf (Kjærgaard & Blunck, 2011), Se-

same (M. Dong & Zhong, 2010), P-top (Do et al., 2009), Eprof (Yetim et al., 2012),

and SEMO (Ding et al., 2011), has considered event driven power model construc-

tion methodology to estimate application energy consumption. Utilization based

type of power modeling requires low power sample rate of hardware equipment to

access architectural level details such as cycles, cache, and other HPCs parameters.

Moreover, utilization based models lack in handling non-linear relationship of the

parameters. Alternatively, event based power models consider system calls, hard-

ware/software operating modes, and APIs, to capture voltage/current drop. The

advantage of event driven to utilization based power modeling is their capability

to model non-linear relationship among power model entities. Moreover, the event
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driven based approach is more suitable to identify the energy bugs within smart-

phone applications.

2.3.3.3 Power Log Source

Power log source parameter describes the hardware equipment opted as a source to

collect current and voltage drop readings. Existing state-of-the-art energy estima-

tion schemes have either considered sense resistor or fuel gauge hardware sensors

to access current and voltage drop. Estimation schemes such as DUT (Carroll &

Heiser, 2010), Rice and Hay (A. C. Rice & Hay, 2010), Netw (A. Rice & Hay,

2010), Power Memo (Tsao et al., 2012), and Skype (F. Jiang et al., 2015), has

considered a sense resistor to collect current and voltage drop during activity on

mobile phone to construct power models. Alternatively, Power Booter (L. Zhang et

al., 2010a), PowerProf (Kjærgaard & Blunck, 2011), Se-same (M. Dong & Zhong,

2010), Eprof (Yetim et al., 2012), and P-top (Do et al., 2009), has exploited fuel

gauge sensors to log voltage and current drop using built in voltage/current sensors.

Sense resistor based methodology uses an extra external resistor placed at mobile

component’s power supply rail to monitor voltage/current drop. The accuracy of

this category of estimation schemes highly depends on the resistance of the sense

resistor. Sense resistor based methodology is helpful when evaluating power con-

sumption behavior of single mobile component; however, they are not accurate while

monitoring the behavior of an application in terms of mobile components power us-

age. This is due to the fact that collectively instrumenting every component of the

mobile phone for application energy estimation increases the complexity of circuits

and total impedance. Alternatively, fuel gauge based estimation does not require ex-

ternal hardware resources and uses built in OS’s power management APIs to collect

voltage/current drop. However, fuel gauge based methods do not directly estimate
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per-mobile component energy. For a single mobile component power capturing, it

switches off all the mobile components except one under analysis. However, some

of the components reside on the same physical hardware and hinders fuel gauge

based estimation method to measure current/voltage accurately (i.e., blue-tooth

and Wi-Fi).

2.3.3.4 Granularity

Attributes of granularity parameter describes the extent to which an energy esti-

mation scheme assesses energy consumption. Estimation schemes considered esti-

mation at diversified granularity levels such as smart-phone application, function,

thread, smart-phone device, web browser, and smart-phone components. Among

all granularity levels, fine granular level estimation is more accurate. However, fine

granularity level estimation (mobile-component, source code line, path) is resource

expensive and also requires extensive profiling of target application/component for

a long period of time (Carroll & Heiser, 2010), (Yetim et al., 2012), (Kjærgaard &

Blunck, 2011)). Alternatively, coarse granularity based estimation ( (A. C. Rice &

Hay, 2010), (A. Rice & Hay, 2010), (F. Jiang et al., 2015), (Do et al., 2009)) requires

few system resources, (b) limited energy profiling time, and (c) low resource moni-

toring. In comparison to software level granularity, estimating energy consumption

at smart-phone components level such as Wi-Fi, LCD, Radio, CPU (DUT (Carroll

& Heiser, 2010)) requires, (a) extensive profiling, (b) per-component power profile

isolation, (c) and offline power trace analysis (regression analysis) to extract co-

efficient of power models. Using external measurement based method, estimating

power consumption of an individual hardware component is inaccurate as external

measurement based devices capture energy consumption at the system level. More-

over, estimating energy consumption at fine granular function level requires that
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the power capturing tool should offer high sample rate to cope with low execution

time of fine granular operations. For instance, EM6000 multi-meter captures three

power samples per second (chapter 3).

2.3.3.5 Training Mode Locality

Training phase is the most resource rigorous process during smart-phone compo-

nents power modeling. In this phase, it estimates coefficient of mobile phone power

models. Training phase is performed either on mobile-device or off-device. On-

device training incurs high estimation overhead and quickly depletes mobile battery

charge. Alternatively, off-device training augments device battery lifetime as it

schedules power model’s co-efficient finding process on the remote cloud or desk-

top systems. However, the drawback of off-device based computation is the high

dependency on the external hardware. Existing state-of-the-art energy estimation

schemes such as DUT (Carroll & Heiser, 2010), Power Memo (Tsao et al., 2012),

Skype (F. Jiang et al., 2015), Eprof (Yetim et al., 2012), PowerProf (Kjærgaard

& Blunck, 2011), and Se-same (M. Dong & Zhong, 2010), has scheduled resource

intensive tasks on the desktop servers to reduce estimation overhead. Alternatively,

Power Booter (L. Zhang et al., 2010a) has not relied on the external hardware for

the processing of resource expensive tasks.

2.3.3.6 Power Modeling Approach

Attributes of power modeling approach parameter defines what approach an esti-

mation scheme has considered while constructing power models for smart-phone

components. Attributes of power modeling approach are divided into determin-

istic and statistical power modeling categories. Netw (A. Rice & Hay, 2010) fol-

lowed deterministic approach to construct power models. Alternatively, numer-

ous energy estimation schemes such as Se-same (M. Dong & Zhong, 2010), Power
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Booter (L. Zhang et al., 2010a), and PowerProf (Kjærgaard & Blunck, 2011), fol-

lowed statistical modeling approach (i.e., linear regression) to find the coefficient

of power models. However, using a statistical approach, power modeling is re-

source expensive unless resource expensive tasks are scheduled on off-device cloud

servers. Deterministic based power modeling approach is only valid to investigate

power modeling of smart-phone components. A deterministic approach based power

models estimate energy consumption based on, (a) energy per state of the mobile

component, (b) number of transitions between states, (c) and energy per transi-

tion among system states. Nevertheless, finding all this information consumes a

significant amount of battery charge due to time agnostic training phase. Statistical

methods are only applicable for software component power estimation and cannot

be used for hardware component’s power consumption estimation.

2.3.3.7 Objective Function

Objective function defines the core motivation for each of smart-phone application

energy estimation scheme. State-of-the-art energy estimation schemes have tar-

geted, (a) automatic power model generation, (b) low overhead based estimation,

(c) asynchronous network component behavior monitoring, (d) digging loop holes

within application, (e) self-power model construction, (f) web components rendering

cost estimation, and (g) investigating the resource expensive activity within mobile

phone among talk, text, and whype operations.

2.3.3.8 Design

Design parameter states the resource consumption behaviour of existing energy

estimation schemes. Smart-phone components power measurement based energy

estimation schemes are heavyweight by their design. The main reason for the

heavyweight design of existing smart-phone components power measurement based
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Table 2.3: Comparison of Existing Energy Estimation Schemes based on the Power
Models they Built for Smart-phone Components

Smart-phone Components
Reference CPU Wi-Fi LCD 2G/3G Blue-tooth Compass Smart-phone Model Power Captur-

ing Tool
Estimation
Accuracy

Estimation
Overhead

(Carroll & Heiser,
2010)

YES YES YES NO YES NO HTC Dream, Nexus one PCI-6229 DAQ NA NA

(A. C. Rice & Hay,
2010)

NO YES NO YES NO NO T-Mobile (HTC) G1 PCI-MIO-16E-4 NA NA

(A. Rice & Hay,
2010)

NO YES NO YES NO NO Magic, Hero PCI-MIO-16E-4 NA NA

(Tsao et al., 2012) NO YES NO NO NO NO NA EPA-400BMG NA 380 sec
(Thiagarajan et

al., 2012)
NO NO NO YES NO NO ADP2 Agilent 34410A NA NA

(F. Jiang et al.,
2015)

NO YES YES YES NO NO Samsung galaxy S3 NI-USB 6008 91.69 % NA

(Kjærgaard &
Blunck, 2011)

YES YES NO YES NO YES N7, N8, C7 Not Applicable 97% NA

(L. Zhang et al.,
2010a)

YES YES YES YES NO NO HTC dream Not Applicable 80% NA

(M. Dong &
Zhong, 2010)

YES NO NO NO NO NO N85, N900 Not Applicable 95% NA

(Ding et al., 2011) NO NO NO NO NO NO ZTE-X876 Not Applicable NA NA
(Yetim et al., 2012) YES YES NO YES NO NO N/A Not Applicable 94% NA
(Do et al., 2009) YES YES NO YES NO NO T42 laptop Not Applicable 2W "error" 3% CPU

schemes is the dynamic analysis approach for estimation. Dynamic analysis engages

resources of a smart-phone for a longer period of time and as a result, it makes the

estimation tool heavyweight.

Table 2.3 highlights the smart-phone components power models constructed

by existing energy estimation schemes. It states which of the energy estimation

scheme has proposed power models for which of the smart-phone component. It

also highlights the claimed accuracy and energy estimation overhead for existing

energy estimation schemes. Table 2.4 compares state-of-the-art energy estimation

schemes based on their quantitative findings. Moreover, it showed a set of bench-

marks that are considered by the state-of-the-art energy estimation schemes during

experimentation. For instance, DUT (Carroll & Heiser, 2010) reported that dur-

ing run of Equake on HTC dream mobile phone, blue-tooth consumed 44.9 mW

power. Similarly, Netw (A. Rice & Hay, 2010) states that during an idle state of a

smart-phone with LCD set to its full brightness-level (LCD) magic phone consumes

1-1.5W power (on average).
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Table 2.4: Quantitative Findings of Existing Energy Estimation Schemes

Reference Benchmark(s) Key Finding (s)
(Carroll & Heiser, 2010) Equake, Vpr, Gzip, Mcf [Component Energy]:- Blue-tooth= 44.9 mW
(A. C. Rice & Hay, 2010) TCPdump, Libpcap [Network Energy]:-3G idle= 0.6 W

2G idle=0.7 W, Wi-Fi idle=0.9W
(A. Rice & Hay, 2010) TCPdump [Mobile Energy]:-Idle full-brightens= 1-1.5 W,

Idle dim-light=0.3-0.7 W,
Standby=0.1-0.4 W

(Tsao et al., 2012) NA [Apps Energy]:-Unmodified JPEG= 23.3 J
Modified JPEG= 15.91 J

(Thiagarajan et al., 2012) Aol, picasa, live.com [Network Energy]:-3G Upload= 25 J for 26 KB
3G download= 15 J for 26 KB

(F. Jiang et al., 2015) Oracle-modality [Apps Energy]:-Apple rendering= 455 J,
Wikipedia=35 J
Picasa=15 J, Yahoo= 18.5 J

(Kjærgaard & Blunck, 2011) NA [Modalities Energy]: Swype= 0.57 J/char, type= 0.11
J/char
Skype= 0.45 J/char

(L. Zhang et al., 2010a) Synthetic benchmark 0.145 Error for 95% percentile
(M. Dong & Zhong, 2010) JBenchmark , 3DMarkMobile NA
(Ding et al., 2011) NA accuracy=95% for 1 estima-

tion/second
accuracy=88% for 1 estima-
tion/10ms

(Yetim et al., 2012) fft, filterbank, fmra-
dio,
matrixmult, audio-
beam-former

NA

2.4 Code Analysis Based Smart-phone Application Energy Estimation
Schemes

Code analysis based smart-phone application energy estimation schemes consider

operation’s energy cost to estimate energy consumption of an application. For

a smart-phone application, each operation consumes unlike resource consumption;

therefor, each operation has dissimilar CPU execution-time and power-consumption

cost. This section presents a thematic taxonomy and analysis current state-of-the-

art code analysis based energy estimation schemes.

2.4.1 Taxonomy of Code Analysis Based Energy Estimation Schemes

Fig. 2.4 presents a thematic taxonomy to classify existing code analysis based en-

ergy estimation schemes based on a set of parameters including abstraction level,

instruction profiling method, program structure analysis, estimation overhead, pro-

filed instruction type, and estimation granularity.

Attributes of Abstraction Level parameter defines whether an energy estimation

scheme has considered architectural details or non-architectural designs for energy
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Figure 2.4: Taxonomy of Code Analysis based Energy Estimation Schemes

modeling of source code instructions. Attributes of abstraction level parameter con-

sists of architectural details and non-architectural. In the case of architectural de-

tails, hardware performance counters (HPC) are used to construct instruction power

model. However, for the non-architectural attribute, instruction power consumption

is estimated based on the external power measurement tools such as multi-meter,

power meter, and ammeter.

Instruction Profiling Method states the monitoring approach to capture power

profile for instructions power modeling. The attributes of profiling method are clas-

sified into source code instrumentation and test program (s) categories. Source code

instrumentation refers to the process of logging the performance of an application

(power consumption) at different execution points. For instance, to find the en-

ergy cost of a function in an application, the entry and exit points of the target

function is marked to record the timestamped power profile for that function. Test

program refers to a set of statements performing the desired task when executed on

smart-phone device. For instance, test program to examine the network connectivity

embodies a set of statements continuously pinging target IP address.
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Attributes of Program Structure Analysis parameter defines the basic ingre-

dients of an application that an estimation scheme has considered during energy

estimation. Program’s base cost represents energy cost of a program based on the

individual base-cost energy of each instruction within the smart-phone application.

The energy consumption of application truly depends on the path that an appli-

cation takes at dynamic execution time. To find the execution path, smart-phone

applications are instrumented prior to running on the mobile phone to record exe-

cution paths (offline mode).

Estimation Overhead highlights the energy consumption rate of energy esti-

mation tool to assess energy usage-rate of smart-phone applications. Based on the

architectural complexity of estimation tools, estimation overhead is attributed as

low or high. Low value attribute defines that proposed scheme follows lightweight

estimation design. Whereas, high attribute states that proposed scheme does not

effectively utilize underlying smart-phone resources to estimate application energy

consumption.

The source code of the application is of diverse types i.e., C, Java, or assembly,

depending on the design of an application. Based on the nature of source code,

type of an instruction (whose energy consumption is to be modeled) is different.

Profiled Instruction Type parameter defines the type of instruction which is profiled

to estimate application energy consumption. The attributes of profiled instruction

type include assembly instructions, system calls, and APIs, as shown in Fig. 2.4.

An assembly instruction presents the lowest system details when interacting with

smart-phone. On the other hand, some of the code based analysis schemes has

considered power profiling at system calls or API level.

Estimation Granularity describes the level at which energy estimation tool es-

timates energy consumption of an application. Estimation granularity includes ap-
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plication, line, path, and routines within an application. Application level energy

estimation is most trivial as it requires considering every chunk of application’s

source code. The line represents the high level source-code line that is considered

during profiling process (e.g., compound assignment statement, prefix, and incre-

ment statement). Execution path is also a complex entity as execution of a particular

path depends on the data set in conditional statement.

Cycle Level energy estimation (Table 2.5) represents per CPU cycle energy

consumption and is computed based on Eq. 2.5. In Eq. 2.5, VDD represents the

supplied voltage and t represents clock-time.

Ecycle = VDD×
∫ t

0
i(t)dt (2.5)

Look-up table based energy estimation does not simulate architectural details for

mobile application energy estimation. Rather, it uses already profiled architectural

details to estimate application energy consumption. However, size of the look-up

table greatly impacts estimation time (Table 2.5).

2.4.2 Review of Code Analysis Based Energy Estimation Schemes

This section briefly discusses code analysis based energy estimation schemes. Based

on the design of energy estimation schemes, state-of-the-art code analysis based

estimation schemes are classified into two categories. The categories of code anal-

ysis based estimation includes external setup based instruction power profiling and

simulation based instruction power profiling.

2.4.2.1 External Setup Based Instruction Power Profiling

External setup based instruction power profiling paradigm exploits external hard-

ware based laboratory setting environment to construct power models for instruc-
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tions. In this section, external setup based instruction power profiling based energy

estimation schemes are discussed to highlight their advantages and shortcomings.

To estimate power consumption of embedded software, Tiwari et al. (Tiwari et

al., 1994) has proposed an instruction power cost estimation model. The power cost

of an assembly based instruction, called base cost energy, is estimated by creating

and running test programs comprising several instances of the same instruction exe-

cuting within a tight loop to capture current drop across the battery terminals. How-

ever, inside the application instruction execution order impacts estimation accuracy

due to circuit state overhead. To handle the circuit state overhead, inter instruction

effects of a few instructions is modeled. The proposed framework identifies basic

building blocks within application followed by per block energy estimation to fore-

cast energy demands of the application. The advantage of the proposed technique

is simplicity and applicability towards identifying application energy consumption

at earlier development stages. However, the proposed technique requires per CPU

cycle energy consumption to model power cost of each assembly based instruction.

However, finding low architectural details is computationally expensive and also it

requires high sample rate based power meters. Also, in comparison to sequential

based embedded applications considered in this study, the non-deterministic behav-

ior of mobile application poses numerous challenges that require rigorous program

analysis to estimate energy consumption. The proposed scheme has considered em-

bedded sequential flow based application for estimation.

To investigate the power consumed by various activities involved in ARM in-

struction execution, Bazzaz et al. (Bazzaz, Salehi, & Ejlali, 2013) proposed a model

to breakdown an instruction’s power consumption into its sub activities. The pro-

posed model calculates ARM-IS power consumption based on the aggregate sum

of energy consumed by processor cores, memory-controller, and static RAM. The
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modeled parameters include register bank flip flops, the number of shift operations,

instruction weight, and the hamming distance between instructions. Moreover, the

proposed scheme modeled inter instruction effect for a set of instructions due to

resource constrained nature of mobile phones. To capture the power consumption

at mobile component granularity, the proposed approach (similarly to (Tiwari et al.,

1994)) places a low-resistance resistor (1 ohm) at the power supply line of micro-

controller. The proposed processor energy model for a single instruction is presented

in Eq. 2.6, Eq. 2.7, and Eq. 2.8. In the mentioned equations, EControl(code) and Eflash

represent the energy consumed in the memory controller and caused by the code

in flash memory, respectively. Alternatively, EIF , EID, and EEX , represent the

energy consumed during fetch, decode, and execute stages of CPU pipelines. Estall

represents the energy consumption during pipeline staling.

Efetch = EControl(code) +Eflash +EIF (2.6)

Edecode = EID (2.7)

Eexecute = EEX +EControl(data) +EF lash(data) +Estall (2.8)

The proposed approach is useful when lower architectural details are required to op-

timize design of an application. However, to find energy for each mobile component,

rest of the mobile components are switched off to minimize effect of estimation noise

that as a result requires extensive offline regression analysis. Also, the proposed ap-

proach places 1 ohm resistor at each component power rail to capture current drop

that makes proposed methodology suitable and adaptable only for lab experiments.
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A similar study to Bazzle et al. (Bazzaz et al., 2013) has been proposed by

Khoshbakht et al. (Khoshbakht & Dimopoulos, 2015) to analyze ARM IS power

consumption behavior when varying type of data within store memory operations.

The proposed scheme enhanced Intel Pin cycle accurate estimation tool to instru-

ment the store instructions. It was concluded that with more bit transitions (number

of ’1’s) the energy consumption of store operation surges significantly. However, this

scheme lack in considering effect of changing the storage location of data i.e., cache

and memory. It also does not relate power consumption behavior of store operation

to memory access pattern such as aligned, stride, and random.

To consider the complex nature of mobile applications, Shuai et al. (Hao et

al., 2012b) proposed an estimation framework called eCalc to estimate energy con-

sumption based on source code power profile of application. For instruction cost

model construction, eCalc exploited an instrumented test program to profile power

consumption of system calls, APIs, return function statement, and array creation

process. In comparison to (Khoshbakht & Dimopoulos, 2015) and (Bazzaz et al.,

2013), eCalc considered execution path of the application by instrumenting and

running mobile application on mobile phone using application’s uses cases to mark

the execution path. The estimator module of eCalc exploited execution path and

instruction power cost profile to estimate application energy consumption. The au-

thors reported that eCalc is accurate up to 91.5% ground truth value. The proposed

framework does not require any cycle accurate estimation simulator to profile in-

struction’s energy consumption. However, path finding method of eCalc is both time

consuming and resource expensive as it has considered dynamic code analysis based

path profiling. Also, eCalc estimates energy consumption of only those applications

whose source code is available.

A similar but more detailed study to eCalc (Hao et al., 2012b) has been pro-
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posed in (Hao et al., 2013) to combine per-instruction energy consumption and

program analysis for mobile application energy estimation. However, in comparison

to eCalc (Hao et al., 2012b), the proposed work has considered both path dependent

and independent cost functions to improve estimation accuracy. The energy cost

of path dependent instructions not only depend on type of instruction and state of

mobile component, but it also relies on the weight of an argument such as number of

packets transmitted on WAN interface and waiting for the state of the component.

Also, the proposed framework annotated the application with energy cost to assist

application developers in optimizing smart-phone application with limited efforts.

Li et al. (D. Li et al., 2013) combined hardware based and program analysis

to estimate energy demands for an application’s source code instructions. Proposed

approach in comparison to (Hao et al., 2013) and (Hao et al., 2012b) has consid-

ered energy bugs that affect the accuracy of power models when profiling energy

consumption of source code instructions (high level). This work too instrumented

application and ran it on a smart-phone to capture time-stamped power log in

parallel to execution path recording. Regression analysis on logged time-stamped

power profile is performed to find per API energy consumption with high accuracy.

Based on the execution paths, energy demands of the target application are identi-

fied. However, the instrumentation and running application requires a lot of system

resources in addition to overhead imposed by instrumentation instructions.

Elens (Hao et al., 2012a) is a lightweight energy estimation framework as it

does not depend on smart battery sensors for power estimation. The training phase

of Elens captures application’s execution paths when tested against test-case suites.

Workload generator module is responsible generating load on the mobile phone

to test application in a particular execution environment for a test stetting. It

generates load based on the input of description document and software-artifacts
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modules. The analyzer module considers execution paths and SEEP based source

code energy estimation to assess application energy consumption. The drawback of

this scheme is its infeasible assumption that per-instruction power profile for any

mobile everywhere is available.

Motivated by the work of Shuai et al. (Hao et al., 2013) and Hao et al. (Hao

et al., 2012a), Reyhaned et al. (Jabbarvand, Sadeghi, Garcia, Malek, & Ammann,

2015) proposed EcoDroid, a system to rank mobile applications by estimating appli-

cation energy consumption across several test cases. EcoDroid estimated application

energy consumption using power prole for a set of system calls while automatically

generating the test cases for path generations. However, EcoDroid considered power

modeling at system call level and overlooked ne granular assembly instruction based

energy estimation that gives more insights into the application’s power consumption

behavior.

Jayaseelan et al. (Jayaseelan et al., 2006) has proposed a method to estimate

application energy consumption for ARM architecture. In comparison to (Hao et al.,

2012b), (Hao et al., 2013), and (Jabbarvand et al., 2015), the proposed study has

considered cache analysis of the application too during energy estimation. During

application execution, the data and instructions are fetched from the main memory

or cache depending on the frequency of memory access. The proposed scheme

integrates cache analysis (simulator based) to the analysis of the application for

worst case energy estimation. The proposed scheme lack in considering the impact

of cache hierarchy and lines to cache hit/miss rate.

To profile energy consumption of low-level ARM-ISA, Sinha et al. (Sinha et

al., 2003) considered Brutus SA-1100, a verification design platform, to link it with

a desktop server (serial link). Moreover, the power supply to ARM core (residing

within Brutus SA-1100) is externally provided through variable voltage supplier
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source. For power measurement, ammeter was used to log current readings. For

each instruction, a test program comprising a set of same instances of the target

instruction was designed. The proposed scheme concluded that branch instructions

are most expensive ones among all instructions. The proposed scheme is accurate

as it separates leakage current during the estimation process. However, the cost of

the equipment is very high and also the proposed work does not consider execution

path analysis.

Another approach proposed by Shao et al. (Shao & Brooks, 2013) has con-

sidered per-instruction energy consumption for Xeo Phi processor based on high

performance counters (HPC). The proposed scheme considered the effect of the

multi-threaded multi-processing environment to the accuracy of instructions energy

consumption. The proposed framework accepts parameters including, performance

counters, EPIs, instruction, and operand counts, to find the energy of a single

instruction. The EPI is calculated based on the micro-benchmark designed to con-

figure different cores. The reported estimation accuracy ranges from 1% to 5%.

However, collecting performance counter creates dependency on some external tool

(i.e., intel’s VTune tool) to investigate benchmarks to collect required counter vari-

ables.

2.4.2.2 Simulation Based Instruction Power Profiling

External setup based instruction power profiling method requires external power

measurement tool to record timestamped power profile of an instruction test pro-

gram to construct instruction power model. However, simulation based application’s

energy estimation does not require external power measurement tool. Rather, it cre-

ates target architecture environment inside a system to measure their behavior on

different input data-sets. This section briefly describes application energy estima-
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tion literature that considered instruction power modeling based on HPCs simulated

over different simulation tools.

Stanley et al. (Stanley-Marbell & Hsiao, 2001) proposed and implemented a

cycle accurate simulator calledMyrmigki to investigate power dissipation rate during

instruction execution. The distinguishing features of Myrmigki include dynamic

voltage frequency scaling (DVFS), per-cycle architectural configuration, and clock

speed setting by modeling CPU cores, off-chip memory, and shared decode cache.

The proposed modeled architecture is a 32-bit RISC architecture and is based on

5 stages pipeline. To estimate power consumption, simulator performs a look-up

to access the current drop for the memory and CPU operations to calculate the

per-cycle estimate. However, the proposed simulator is lacking in considering inter-

instruction effects during application energy consumption estimation.

Vasilios et al. (Konstantakos, Chatzigeorgiou, Nikolaidis, & Laopoulos, 2008)

presented an approach that has considered and modeled instruction energy in terms

of number of accesses to memory, type of executed instruction, and analog to digital

(ADC) conversion, as described in Eq. 2.9, Eq. 2.10, and Eq. 2.11, respectively. In

the here mentioned equations, total energy consumed by RAM storage (ERAM )

depends on number of reads and write accesses. Also, Emicrcontr is attributed in

terms of a number of cycles for each instruction. For EADC , energy is estimated

based on number of accesses to memory. The advantage of the proposed model is

its flexibility to adjust with any simulator to perform desired operations. However,

the proposed work lack in considering the impact of cache hit/miss on the power

performance. Also, it does not consider circuit state overhead of assembly based

instructions.

ERAM = f(#ReadAccesses,#WriteAccesses,#References) (2.9)
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Emicr−contr = f(Ins#1Cycles,Ins#2Cycles..Ins#5Cycles) (2.10)

EADC = f(#Accesses) (2.11)

Another simulation based approach proposed by Zhao et al. (Zhao, Guo, Wang, &

Chen, 2008) has considered per cycle energy modeling to find instruction’s energy

cost to track power consumed by function calls and execution paths. However, the

authors overlooked the effect of cache hit-rate and miss-ratio to total energy esti-

mation accuracy. Moreover, it overlooked circuit state overhead of the instructions.

Alternatively, (Brandolese, Fornaciari, Salice, & Sciuto, 2000) modeled instruction’s

power cost based on the functional decomposition of tasks a microprocessor performs

at the time of instruction test program execution. Authors constructed power mod-

els to breakdown instruction’s power cost into, fetch, decode, and execute activities.

Also, authors considered single and multi-processors to investigate power consump-

tion for each functional unit during application execution.

Chen et al. (Chen, Irwin, & Bajwa, 1998) considered the format of instructions

to estimate energy consumption at processor’s control unit. It has considered tran-

sition signal among co-resident instructions to investigate inter-instruction power

consumption effects. The proposed framework considered CPU instructions, DSP

instructions, and pre-decoder, to identify the instruction (s) and power consump-

tion behavior while placing instruction in different order. The complexity of the

proposed technique is very high as it builds energy tables for all control units that

takes reasonably larger time. Therefore, accuracy is traded by the estimation speed.

The advantage of this technique is its capability to deal with both synthetic and

kernel benchmarks.
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A similar to chen et al. (Chen et al., 1998) work but more detailed simulation

has been reported by Chang et al. (N. Chang, Kim, & Lee, 2002) to investigate

per cycle energy consumption for the ARM7 processor. The proposed simulator

estimates architectural level energy based on the charge transfer within processor’s

circuit and also it is robust to noise. Simulator accurately estimates per-instruction

energy to highlight the power consuming elements within an instruction such as

instruction fetch address, op-codes, the number of registers, operand type, and data

access. Efficiently optimizing these low level activities helps to optimize application

power usage. However, the cache analysis is missing in this study that significantly

impacts application performance.

Xiang et al. (Zhou, Guo, Shen, & Li, 2009) has proposed C based instruction’s

power cost model to estimate application energy consumption. The proposed study

improved Embedded strong-ARM energy simulator (EMSIM) to propose iEMSIM

that has considered improved power models for instruction power consumption as

depicted in Eq. 2.12, Eq. 2.13, Eq. 2.14, and Eq. 2.15. Eq. 2.12 demonstrates

energy consumption of a single instruction in terms of energy required during fetch,

decode, and execute. Alternatively, for a single instruction, eq 2.13 computes total

fetch energy based on energy consumed while fetching instruction form memory

and a total number of CPU cycles for the fetch state. Eq. 2.13 exploits CPU cycles

during which memory was active and energy consumed during decoding process

(per cycle) to estimate decode stage energy consumption. Energy consumption for

an execute state is accumulative sum of, (a) CPU energy in active and an idle

state, (b) accumulated memory energy, (c) accumulated universal asynchronous

receiver/transmitter (UART) energy, (d) and energy consumed due to peripheral

input/output operations. The proposed simulator is good for analyzing limited

instruction based operations. However, considering cache analysis, the designed
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approach is not effective as it overlooked cache analysis support.

Etotal = Etotalfetch +Etotaldecode +Etotalexecute (2.12)

Etotalfetch = Emem×Nmemcycles (2.13)

Etotaldecode = Edecode×Ndecodecycles (2.14)

Etot_exec = EP roc +EIdle +EMemory +EURT +EP eri (2.15)

In (Mehta et al., 1996), an instruction power profile is proposed that simulates

total energy consumption of instructions based on control paths and ALU. The

advantage of the proposed framework is limited simulation speed as it requires a

small table look up during instruction power estimation. The reported accuracy

for instruction energy estimation is 8% for the IRSIM-CAP processor. IRSIM is a

switch level circuit to simulate a digital circuit. However, the proposed simulator is

only applicable for the desired processor and cannot be adopted widely.

2.4.3 Comparison of Code Analysis Based Energy Estimation Schemes

This section compares code analysis based smart-phone application energy esti-

mation schemes using a set of comparison parameters such as abstraction level, in-

struction profiling method, estimation granularity, target processors, program struc-

ture analysis, estimation overhead, profiled instruction type, estimation granularity,

claimed accuracy, and benchmarks as depicted in table 2.5. The following section

briefly debates on each of the categories discussed above.
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Table 2.5: Code Analysis Based Smart-phone Application Energy Estimation and
Modeling Schemes Comparisons
Ref. Abstraction

Level
Instruction Pro-
filing Method

Program Struc-
ture Analysis

Estimation
Over-
head

Profiled Instruc-
tion Type

Estimation
Granular-
ity

Target Pro-
cessor

Claimed
Accu-
racy

Benchmark
(s)

(Tiwari et
al., 1994)

Architectural
Details

Test Programs Program Base
cost Energy and
Inter Instructions
Effects

N/A Assembly Based
Instructions

Application Intel
486DX2

N/A Synthetic

(Bazzaz et
al., 2013)

Architectural
Details

Source Code
Instrumentation

Inter Instructions
Effects

N/A Assembly Based
instructions

Application AT91SAM7 94% MiBench

(Khoshbakht
& Di-
mopoulos,
2015)

Non-
Architectural

Source Code
Instrumentation

N/A N/A Assembly Based
Instructions

N/A N/A N/A Spec2000
CPU

(Hao et al.,
2012b)

Non-
Architectural

Test Programs Execution Paths High System Calls,
APIs

Line,Path,
Function

N/A 89% Qsort,
Md5, Ma-
trix

(Hao et al.,
2013)

Non-
Architectural

Source Code
Instrumentation

,

Test Programs

Execution Paths High System Calls Line, Path N/A 90% Text-
program,
Bubble,
Sky-Fire

(Stanley-
Marbell
& Hsiao,
2001)

Architectural
Details

N/A Program Base
Cost Energy

N/A Assembly Based
Instructions

Application N/A 90% Bubble,
Heap,
Quick

(Konstantakos
et al., 2008)

Architectural
Details

N/A N/A N/A Assembly Based
Instructions

Application ARM7TDMI N/A N/A

(Zhao et
al., 2008)

Architectural
Details

N/A N/A High System calls Execution
Paths,
Routine

N/A N/A N/A

(Brandolese
et al., 2000)

Architectural
details

N/A N/A N/A Assembly Based
Instructions

N/A i80486 N/A N/A

(Chen et
al., 1998)

Architectural
Details

N/A Inter Instructions
Effects

High Assembly Based
Instructions

N/A 16 bit DSP NA G711,
IIR filter,
LMS_B

(N. Chang
et al., 2002)

Architectural
Details

N/A Inter Instructions
Effects

NA Assembly Based
Instructions

N/A ARM7TDI N/A N/A

(Zhou et
al., 2009)

Architectural
Details

N/A N/A N/A API Application N/A N/A N/A

(Jabbarvand
et al., 2015)

Non-
Architectural

Source Code
Instrumentation

Program Base
Cost Energy

NA System Calls Application NA NA Weather

(Jayaseelan
et al., 2006)

Architectural
Level

N/A Inter Instructions
Effects, Execution
Paths

High N/A Application Power PC N/A Isort, fft,
Fdct, Des

(Mehta et
al., 1996)

Architectural
Details

N/A N/A N/A Low Line DSP 92% N/A

(Sinha et
al., 2003)

Non-
Architectural

Test Programs N/A N/A Assembly Based
Instructions

Application,
Line

itachi SH-
4 micropro-
cessors

97% Alram,
Mutex

(Shao &
Brooks,
2013)

Architecture
Details

N/A N/A NA Assembly Based
Instructions

Application Xeon Phi 95% Linpack,
Scan

(D. Li et
al., 2013)

Non-
Architectural

Source Code
Instrumentation

Execution Paths High System Calls,
APIs

Line, Ex-
ecution
Path,
Function

N/A 90% BBC, Sky-
Fire

2.4.3.1 Abstraction Level

Abstraction level parameter defines what type of information the instruction power

models are made from to estimate smart-phone energy usage. The architectural

detail attribute of abstraction level parameter demonstrates that estimation scheme

has considered HPCs to construct fine granular power models to estimate energy

requirements of a smart-phone application. However, finding architectural details

is a slow process and also it requires offline simulation of required architecture to

collect HPCs. Instruction power model is based on the number of CPU cycle to
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Table 2.6: Program Structure Analysis Based Comparison of Existing Code Anal-
ysis Based Energy Schemes

Reference Program Base Cost Inter Instructions Effects Execution Paths Cache AnalysisResource Constraints Circuit State Overhead Dynamic Analysis Static Analysis
(Tiwari et al., 1994) X × X N/A N/A ×
(Bazzaz et al., 2013) × × X N/A N/A ×
(Khoshbakht & Dimopoulos, 2015) × N/A N/A N/A N/A ×
(Hao et al., 2012b) X N/A N/A X × ×

(Hao et al., 2013) X N/A N/A X × ×
(Stanley-Marbell & Hsiao, 2001) X N/A N/A N/A N/A X
(Konstantakos et al., 2008) N/A N/A N/A N/A N/A ×
(Zhao et al., 2008) N/A N/A N/A N/A N/A X
(Brandolese et al., 2000) N/A N/A N/A N/A N/A ×
(Chen et al., 1998) × X × N/A N/A ×
(N. Chang et al., 2002) × × X N/A N/A X
(Zhou et al., 2009) N/A N/A N/A N/A N/A ×
(Jabbarvand et al., 2015) X N/A N/A N/A N/A ×
(Jayaseelan et al., 2006) × X × N/A N/A X
(Mehta et al., 1996) N/A N/A N/A N/A N/A ×
(Sinha et al., 2003) N/A N/A N/A N/A N/A ×
(Shao & Brooks, 2013) N/A N/A N/A N/A N/A ×
(D. Li et al., 2013) × N/A N/A X × ×

fetch, decode, and execute a target instruction in addition to power consumption

during cache hit/miss. Existing state-of-the-art energy estimation schemes such as

(Shao & Brooks, 2013), (Sinha et al., 2003), (Jayaseelan et al., 2006), (Zhou et

al., 2009), (Chen et al., 1998), (Tiwari et al., 1994), and (Stanley-Marbell & Hsiao,

2001), has considered architectural details attribute to construct per-instruction en-

ergy models. On the other hand, (D. Li et al., 2013), (Sinha et al., 2003), (Jabbarvand

et al., 2015), and (Hao et al., 2013), constructed instruction power models based

on profiling through extremal power measuring hardware device. Non-architectural

based instruction power models collect timestamped power profile for a test program

when it is executed on the target processor. However, profiling based instruction

power modeling is costly as they require external power measurement tools such as

muti-meter, monsoon power meter, and ammeter. Considering architectural based

instruction power modeling, finding per cycle power consumption of embedded pro-

cessors is a challenging task. The accuracy of non-architectural based instruction

power modeling depends on the resistance of resistor attached to the battery termi-

nals to capture voltage and current drop.
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2.4.3.2 Instruction Profiling Method

Attributes of this parameter defines the method chosen to estimate per instruc-

tion energy consumption. Attributes of instruction profiling method include test

programs and source-code instrumentation for instruction power profiling. State-

of-the-art smart-phone application energy estimation schemes such as (Tiwari et

al., 1994), (Hao et al., 2012b), (Hao et al., 2013), and (Sinha et al., 2003) has

considered test programs attribute to find per instruction energy consumption. Al-

ternatively, (D. Li et al., 2013), (Jabbarvand et al., 2015), (Hao et al., 2013), and

(Khoshbakht & Dimopoulos, 2015) has considered source-code instrumentation to

find per instruction energy consumption. However, finding instruction’s energy

based on source-code instrumentation method requires high sample rate power cap-

turing tools as low sample rate based tools can miss various low-level details. Also,

it requires strict synchronization between time unit and power profile to eliminate

any chance of error. Source code instrumentation based profiling method is usu-

ally preferred to observe energy usage behavior of instructions written in high-level

languages (i.e., system calls, APIs). Test program based power profiling is suit-

able for instructions written in a low-level language such as assembly programs.

Therefore, in comparison to test program based profiling, instrumentation method

cannot profile power consumption for the activities whose runtime is very small.

Moreover, running instrumentation based application also executes instrumentation

code that itself consumes sufficient amount of smart-phone battery charge. In com-

parison, test program’s overhead is low and also they can handle instructions with

relatively small execution time. However, considering power profiling a source-code

line, source-code instrumentation based profiling is more suitable compared to test

program based profiling.
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2.4.3.3 Program Structure Analysis

Considering smart-phone applications, the design of recent applications is very com-

plex due to their non-deterministic execution nature. While estimating smart-phone

application energy consumption, the basic constructs considered during energy esti-

mation by different schemes include, (a) program base cost energy ( (Stanley-Marbell

& Hsiao, 2001), (Tiwari et al., 1994)), (b) inter-dependent behavior of instructions

( (N. Chang et al., 2002), (Chen et al., 1998), (Bazzaz et al., 2013), (Tiwari et al.,

1994), (Jabbarvand et al., 2015)), and (b) execution path ( (D. Li et al., 2013), (Hao

et al., 2013), (Jabbarvand et al., 2015)) of the application. Finding base cost en-

ergy of the program is simple; however, inter-instruction effect requires checking

all the possible combination of the instruction to find the overhead during chang-

ing their execution order. Path profiling is a resource expensive process as it runs

instrumented application to record the execution path for all possible use cases in

offline mode. However, such path profiling is expensive and time-consuming due

to dynamic analysis method. Table 2.6 highlights a detailed analysis of program

structures considered by various energy estimation schemes. As highlighted in the

aforementioned table, the majority of energy estimation schemes has estimated pro-

gram base cost energy of program. Also, existing energy estimation schemes have

considered dynamic analysis approach to estimate execution paths for energy es-

timation of the smart phone application. Due to dynamic analysis approach, the

design of energy estimation approach is heavyweight as it inefficiently exploits re-

sources of a smart-phone device. Existing profiling based energy estimation schemes

overlooked cache analysis of data and instructions to estimate energy consumption.

Therefore, the estimation accuracy of existing schemes is significantly affected.
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2.4.3.4 Energy Estimation Overhead

A lightweight energy estimation framework efficiently utilizes mobile phone resources

while estimating application energy consumption. The energy estimation overhead

of existing energy estimation schemes is characterized as low or high based on the

architectural design of proposed schemes. Estimation overhead is low when an es-

timation scheme schedules the resource expensive operations on nearby desktop or

cloud servers to save mobile battery charge. In Metha et al. (Mehta et al., 1996)

work, estimation overhead is low as this scheme requires a small look-up table to

estimate energy consumption of different activities involved during instruction ex-

ecution. Alternatively, the majority of proposed schemes have not considered their

overhead in terms of how much battery power they have consumed during the esti-

mation process. The stat-of-the-art schemes such as, (D. Li et al., 2013), (Jayaseelan

et al., 2006), (Zhao et al., 2008), and (Hao et al., 2013), incur high estimation over-

head due to dynamic profiling to mark execution paths of the application for all use

cases.

2.4.3.5 Profiled Instruction Type and Estimation Granularity

Profiled instruction type parameter defines type of the instruction for which times-

tamped power profile is captured to estimate energy usage of the smart-phone appli-

cation. Existing state-of-the-art smart-phone application energy estimation meth-

ods have profiled power consumption for, (a) assembly instructions, (b) system

calls, (c) and APIs. Among all, assembly based power profile ( i.e., (Konstantakos

et al., 2008) and (Bazzaz et al., 2013)) gives lowest level of details while consider-

ing power consumption from software perspective. Moreover, system calls and APIs

level power profiling (i.e., (D. Li et al., 2013; Hasan et al., 2016), (D. Li et al., 2013),

(Jayaseelan et al., 2006), (Zhao et al., 2008), (Hao et al., 2013)) is useful when high
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level source code of the application is available to estimate application’s energy

consumption. However, assembly instruction power profiling gives more detailed

and lower level insights of application power consumption behavior. Considering

system calls and APIs, to profile source code of the application is required. How-

ever, having assembly power profile, the obj-dump of application’s executable can

be used to estimate application energy consumption (obj-dump of an application is

in assembly).

2.4.3.6 Target Processor, Claimed Accuracy, and Benchmarks

ARM-IS power profile for all architectures is different due to high resource hetero-

geneity in their underlying architectures. Attributes of the target processor parame-

ter represent the processor model that estimation tool has considered during energy

consumption estimation for the desired benchmarks. The processor reported in dif-

ferent energy estimation schemes include Intel 486DX2, itachi SH-4 microprocessors,

Power PC, ARM7TDI, and DSP. The application benchmarks considered by various

energy estimation schemes includes BBC, Sky-fire, Lin-pack, scan, Spec2000 CPU,

Mi-Bench, isort, fft, fdct, and DES. It is noticed that accuracy, as reported by the

simulator based power models, is higher than the rest. However, simulators are

comparatively slow and incur high energy estimation time.

2.5 Performance Analysis Tools for Smart-phone Applications

This section briefly discusses smart-phone performance analysis tools that assist in

analyzing smart-phone applications.
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2.5.1 Val-grind

Val-grind3 is a suite of tools that provides a number of debugging and profiling

options to increase correctness and execution speed of a program. It is a dynamic

analysis based debugging tool. The main tools in the Val-grind package include, (a)

memory faults detector, (b) cache profile, (c) heap profiler, (d) branch predictor, and

(e) thread bugs detector. The main debugging options of the Val-grind tool includes

memcheck, cachegrind, callgrind, helgrind, massif, sgcheck, and lackey. Among all

debugging options, memcheck and lackey are commonly used tools. Memcheck4

assists to highlight the common errors usually in C/C++ programs that lead to

system crashes or unpredictable behavior. It profiles the number of memory leaks

occurred during program execution. Alternatively, Lackey5 debugging tool profiles,

(a) number of calls to a function, (b) number of branches taken/not-taken, (c)

number of super-blocks entered, (d) the number of guest instructions executed, (e)

and exit code of the program.

2.5.2 Trepn Profiler

Trepn Profiler is an on-device power modeling and performance measurement tool

for energy estimation of the smart-phone device, samrt-phone component, and appli-

cation. It constructs power models for smart-phone components based on on-device

application profiling and fuel gauge sensor based power measurements. It assists in

monitoring CPU utilization and network activity during application execution on

the smart-phone device. It analysis performance of all the cores within smart-phone.

For network activity, it generates the activity graph to highlight different states of

network components such as, Off, Connect, Dormant, Idle, Send, Receive, and Ac-

3www.linux.die.net/man/1/valgrind
4www.valgrind.org/docs/manual
5www.valgrind.org
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tive. Trepn Profiler collects system data once per 100ms and on average consumes

40-05% CPU capacity during execution on smart-phone. Unlike Power Tutor, it

follows self-modeling paradigm and exploits SOC estimation methodologies to esti-

mate energy consumption during activity on smart-phone. However, for a device to

accurately produce output, mobile development platform hardware instrumentation

is required. To estimate utilization level of a hardware component, Trepn Profiler

relies on Proc and other system files (Qian & Andresen, 2015; Ben-Zur, 2011).

2.6 Challenges and Issues for Smart-phone Application Energy Estima-
tion

Fig 2.5 presents several research issues in this domain of research that hinders

designing a resource efficient highly accurate energy estimation tool for smart-phone

applications.

2.6.1 Effects of Battery Aging Factors on Estimation Accuracy

State-of-the-art smart-phone application energy estimation schemes forecast energy

consumption of an application based on SOC estimation by considering the ratio

of current battery charge capacity to the normal capacity. Normal capacity rep-

resents the total storage capacity of the battery and usually, it is defined by the

manufacturer of the battery. However, SOC estimation accuracy is limited due to

the architectural flaws in their construction. For instance, for each smart-phone

model the SOC estimation error is different. SOC estimation methods i.e., Rint

model and Counting model, does not truly represents the accurate capacity of the

battery. This is due to the fact that these models do not consider the impact of

aging, operational history, and size of the battery, during SOC estimation process.

Historically, it is proven that for lithium based batteries, discharge-rate varies even

with the same battery usage (known as a lithium-ion aging factor) (Hoque et al.,
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Figure 2.5: Open Research Issues and Challenges

2015; G. Dong, Chen, Wei, Zhang, & Wang, 2016; L. Lu et al., 2013). As a result,

state-of-the-art SOC estimation methods report voltage-drop that is higher than its

true value. Therefore, power models generated for one type of smart-phone or bat-

tery cannot be generalized for every model of batteries. For smart-phone batteries,

Rint model based SOC estimation gives 11% estimation error. Also, counting based

method incurs 5 to 2% error. Another factor that affects estimation accuracy is

the high difference between smart phone’s battery interface updating rate and OS’s

API access rate. For instance, the highest updating rate of smart battery interface

is 4Hz, whereas, Linux OS updates the P-state residency for CPU component at

250Hz rate. The rate of the smart battery interface affects the power model gen-

eration time (Do et al., 2009; Hoque et al., 2015; Peltonen, Lagerspetz, Nurmi, &
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Tarkoma, 2016). Existing energy estimation schemes that considered built-in smart

battery interface for energy estimation does not accommodate the error generated

by SOC while reporting smart-phone application energy consumption.

2.6.2 Power-performance Trade-off

Resource hungry high-performance computing based applications consume a signifi-

cant amount of smart-phone battery when they are executed on resource constrained

smart-phone devices. Therefore, it is important for application developers to con-

sider power performance tradeoff while optimizing smart-phone application design.

For instance, while executing real-time communication applications, a quick appli-

cation response time is highly crucial and consumes a significant amount of battery

resource. Similarly, for security based applications, quantifying power performance

trade-off during encryption decryption process is difficult because this process is

highly complex. In particular, each line of application source code consumes a

dissimilar amount of energy because of the variance in the number of operations

being performed. Subsequently, the application segment that heavily uses smart-

phone components drain more battery power because of the dynamic behavior of

the application/mobile components. For example, pedestrian tracking applications

use GPS module and network radio to calculate and transfer position updates to

the monitoring server for continuous observation. In this scenario, increasing the

time interval between position updates effects to the usability of application (low

accuracy). Therefore, energy profiling designs should consider energy–performance

trade-off while estimating and optimizing application energy consumption. For ex-

ample, applying dynamic voltage frequency scaling (DVFS) increases battery life-

time at the cost of application throughput. To date, limited attention has been paid

to highlight the effects of applying DVFS optimization during power profiling on
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estimation accuracy for recent smart-phone devices.

2.6.3 Smart-phone Resource Limitations and Energy Bugs

Nowadays, smart-phones are commonly used portable devices due to their high

applications in various computing domains. It is estimated that by 2017, smart-

phone application market will reach to 77$ billion industry 6. However, despite

this tremendous growth still smart-phone usage is limited due to their resource con-

strained nature. Usually, smart-phones are equipped with limited battery capacity,

limited storage, small size screen, low capacity processors, and highly vulnerable

circuits. The average battery life-time of a smart-phone is very limited due to re-

source hungry nature of smart-phone applications. For instance, a context aware

resource rich smart-phone application i.e., proximity based applications, enriches

user experience at the cost of quick mobile battery charge depletion. The execu-

tion speed of smart-phones is very limited because of, (a) limited CPU clock rate

(s), (b) small cache size to host frequently used data, and (c) limited RAM stor-

age capacity (Abolfazli et al., 2014; W. Zhang, Wen, Wu, & Li, 2013). Moreover,

smart-phone device’s visualization quality is very poor because of the small size of

the screen. Considering security perspectives, smart-phone devices are vulnerable

compared to desktop servers. This is due to the fact that smart-phone devices of-

fer low-resistance against sensitive vulnerable attacks to save battery charge. Also,

high negligence of users during smart-phone usage makes it vulnerable to attacks.

In addition to vulnerability issues, smart-phone applications sometime abnormally

use smart-phone’s battery charge due to energy bugs embedded within applications

or hardware. Hardware energy bugs are difficult to track and mainly occur due

to, (a) faulty batteries, (b) damaged mobile battery chargers, (c) infected memory

6www.entrepreneur.com/article/236832
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cards, (d) and damaged SIM cards (Pathak, Hu, & Zhang, 2011; Oliner, Iyer, Stoica,

Lagerspetz, & Tarkoma, 2013; Monte, 2010). For software applications, within an

OS changing OS configuration impacts the smart-phone battery power consumption

rate. For instance, incorrect SetCPU configuration for kernel’s over-clocking leads

to a sudden rise in mobile battery power-usage rate. Similarly, infected smart-phone

applications (bad smells) and frameworks are difficult to track as energy bugs do not

affect the functioning of the application. A “no sleep” bug hinders a smart-phone

component to go into a sleep state that as a result depletes smart-phone battery

charge. A smart-phone application, with no sleep bugs, acquires a lock on smart-

phone component and does not release it for a long period of time. Similarly, “sleep

conflict” bad smell is due to a situation where an application acquires a lock on one

of the smart-phone component and then CPU moves to sleep state without waiting

for the application to release the component.

2.6.4 Issues of non-deterministic behavior of Smart-phone Applications

This sub-section discusses the issues relating to the non-deterministic nature of

smart-phone applications for static analysis based energy estimation (D. Li et al.,

2013; Konstantakos et al., 2008).

2.6.4.1 Execution Flow Estimation

The battery usage of a smart-phone application profoundly depends on the execu-

tion path it selects at run-time. At run time, application execution path depends

on the current input, use case of the application, and application’s historic data.

Dynamic application profiling based estimation methods instrument application to

identify the execution paths by running it in offline mode (D. Li et al., 2013, 2013;

Jayaseelan et al., 2006; Zhao et al., 2008; Hao et al., 2013). The energy estima-

tion of the program is estimated based on the energy cost model and execution
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path marked during dynamic path profiling phase. However, the instrumentation

and profiling phases are time consuming and resource expensive. Also, in order to

use instrumentation based method, the source code of the smart-phone application

should be available. In reality, due to application privacy issues, the source code of

every smart-phone application is not available. As a result, dynamic analysis based

path profiling has low scalability.

2.6.4.2 Loop Bounds Estimation

Within smart-phone application’s source code, some portion repeatedly executes for

a fixed number of time depending on the input to the application. Finding a solu-

tion to identify and estimate iteration of repetitive portion of code can augment es-

timation methodology while considering static code analysis based solutions (Blazy,

Maroneze, & Pichardie, 2013; Hardy, Puaut, & Sazeides, 2016). The factor that

affects loop bound estimation includes (a) initialization, (b) termination, and (c)

growth rate of the variable. However, these three parameters are not known always

depending on the structure and need of the program. Therefore, a method should be

proposed to estimate bounds on loops for energy estimation (using static analysis).

2.6.4.3 Storage Access Estimation

Nowadays, smart phones are equipped with multi-level caches to speed up the ap-

plication execution time by directly accessing data and instructions from the lo-

cally hosted cache. For architectural level details such as cache access rate, miss

rate, simulators are used to track memory access pattern for smart-phone applica-

tions (Noguchi et al., 2016). However, simulation based solutions are offline and

computationally very slow. Rather than opting dynamic code analysis, static code

analysis method can be used to estimate memory access pattern of smart-phone

application’s code.
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2.6.5 Architectural Non-compatibility and High Energy Estimation Over-
head

The instruction power profile for a set of instructions for heterogeneous smart-phone

architectures is dissimilar because of their resource objectives. For instance, ARM7

is high performance whereas ARM15 is energy efficient architecture (Vasilakis,

2015). Estimation overhead is one of the most important issues in code based es-

timation domain. Dynamic profiling runs the application to analyze the source

program for energy estimation. However, to analyze the program, the smart-phone

application is instrumented that requires annotating the application. Also, at execu-

tion time, execution of annotation instructions itself consumes a sufficient amount

of energy. Dynamic profiling increases estimation time and consumes significant

energy.

2.7 Discussion

The recent trend to shift information access paradigm to smart-phone device calls

for optimizing legacy applications for effective battery resource usage. Smart-phone

application energy estimation creates an opportunity for developers to reconsider

their application design at earlier development stages for effective battery resource

usage. A smart-phone application energy estimation method either uses smart-

phone components power consumption or code analysis based estimation models

to forecast application energy consumption. Smart-phone component based power

models are not highly accurate as they use SOC estimation to monitor smart-phone

application power consumption. However, due to the architectural flaws in mobile

battery construction, SOC estimation methodologies do not reports true capacity

of mobile battery charge. On the other hand, hardware based mobile application

energy estimation solutions are time consuming and resource expensive due to, (a)

inter mobile component dependency, (b) the low sample rate of power measurement
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tools, (c) mobile component’s wake-locks, and (d) energy bugs within mobile appli-

cations. Considering software aspects of mobile applications, code analysis assists

estimating power consumption based on power cost model of instructions within

application’s source code.

Code analysis based energy estimation helps application developers to esti-

mate application energy estimation at diversified granularity levels such as paths,

lines, application, and functions. Smart-phone application energy estimation is

based on power cost models for either high-level source code instructions or low

granular assembly instructions. High level source code power cost models require

source code of the application to estimate application energy consumption. How-

ever, assembly instructions power profile based estimation uses assembly code of

the application for energy estimation. ARM-IS power cost profile is created us-

ing external hardware based power capturing tools (profiling based) or using cycle

accurate simulators. Compared to profiling based power modeling, cycle accurate

simulators are extremely slow. Based on the ARM-IS power cost profile and analy-

sis of smart-phone application energy consumption is estimated. However, program

analysis faces various challenges because of non-deterministic behavior of today’s

smart-phone applications. Current estimation methods exploit dynamic analysis of

application to find the execution paths to estimate application energy consump-

tion. However, dynamic analysis requires annotating source code of the application.

Annotated code itself consumes a significant amount of energy to record execution

paths of the application when executed on smart-phone. Also, dynamic analysis

energy estimation schemes are heavyweight as they engages system resources for

longer period of time. During application execution, a sufficient amount of energy

is consumed that depletes mobile battery charge. As a result, estimation time and

overall estimation overhead surges when considering dynamic analysis based smart-
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phone application energy estimation. In addition, for recent smart-phone devices,

the inclusion of multi-level cache too increases the opportunity to accurately esti-

mate smart-phone application energy consumption rate by identifying the storage

location of source code within an application.

2.8 Conclusions

Smart-phone application energy modeling and estimation is an emerging area of

research due to its long lasting applications in various resource critical domains

such as MCC, Internet of things (IoT), mobile code optimization, energy bug detec-

tion, and hardware performance monitoring. This chapter has extensively reviewed

smart-phone application energy estimation schemes to critically analyze them for

highlighting their performance limitations. It has proposed thematic taxonomies

to classify existing literature into several categories. Based on the thematic tax-

onomies, it has compared existing schemes to highlight the commonalities and vari-

ances among them. Finally, it has presented several open research issues and chal-

lenges that need further research to minimize energy estimation overhead.

Existing smart-phone application energy estimation schemes are classified in

smart-phone components power measurement and code analysis based estimation

categories. Performance overhead of smart-phone components power measurement

based estimation is observed very high owing to its high energy estimation time.

For smart-phone components power measurements based estimation, energy con-

sumption estimation accuracy highly depends on, (a) fuel gauge updating-rate, (b)

OS’s API power capturing-rate, (c) SOC estimation error, (d) power measurement

tool’s accuracy and sample-rate, and (e) inter-dependency among smart-phone com-

ponents. Code analysis based energy estimation of smart-phone applications too is

of limited performance as it employs dynamic analysis method to estimate execu-
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tion paths of an application. Also, it overlooks the role of instruction/data storage

location on the total energy estimation accuracy. The accuracy of smart-phone

application energy estimation for code analysis methods depend on, (a) ARM-IS

power cost profiling accuracy, (b) accurate execution paths estimation, and (c) pre-

cise loops bound estimation. Design of dynamic analysis based energy estimation

scheme is heavyweight as it engages the resources of smart-phone for longer pe-

riod of time. Based on the analysis of existing dynamic analysis based estimation

schemes, it is concluded that there is a need of proposing a method to minimize the

performance overhead of dynamic analysis methods for smart-phone applications

energy estimation.

75

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 3: PROBLEM ANALYSIS

This chapter analyzes the performance overhead of existing dynamic analysis based

energy estimation schemes to highlight their high energy estimation time, energy

overhead, and resources consumption rate. It also analyzes the performance over-

head of simulation based application profiling methods for smart-phone applications.

For experiments, it considers standard benchmark applications to evaluate perfor-

mance of dynamic analysis based energy estimation schemes. The performance

analysis will reveal level of severity of estimation overhead associated with existing

dynamic analysis based energy estimation schemes.

The rest of this chapter is organized as follows. Section 3.1 discusses the evalua-

tion method, states benchmark applications used for experiments, and discusses dif-

ferentiating features of selected energy estimation schemes. Section 3.2 discusses en-

ergy estimation time analysis for dynamic analysis based energy estimation schemes.

Section 3.3 presents energy consumption analysis for chosen benchmark applications

using dynamic analysis based energy estimation schemes. Section 3.4 debates on

energy overhead for existing dynamic analysis based energy estimation schemes.

Section 3.5 highlights resource consumption behavior of dynamic analysis based en-

ergy estimation schemes. Section 3.6 presents a detailed analysis on application

components energy consumption and system architecture level profiling overhead.

Lastly, this chapter provide concluding remarks of the performance evaluation in

Section 3.7.

3.1 Experiments

This section briefly discusses the methodology, devices, benchmark applications,

and dynamic analysis based energy estimation tools.
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3.1.1 Methodology

This study has performed experiments on a smart-phone device to analyze per-

formance overhead of dynamic analysis based energy estimation schemes. It has

selected ARM-7 based smart-phone device for the experimentation. Nexus One is a

single core (1.0 GHz processor) device. Dynamic analysis based energy estimation

schemes estimate application energy consumption based on power consumption of

smart-phone components. Smart-phone components such as Wi-Fi, LCD, CPU,

and sensors (e.g., Compass, GPS, accelerometer) contribute to the total energy con-

sumption of a smart-phone. For the problem analysis, the proposed study has con-

sidered computing intensive applications. Computing intensive applications do not

require user system interaction and smart-phone sensors to perform the required

task. Therefore, prior to experiments, all the unnecessary sensors within smart-

phone such as accelerometer, GPS, Wi-Fi, 3G Radio, and compass, were turned

off to eliminate background noise. Moreover, OLED brightness level was set to the

lowest state to avoid the risk of errors in estimation accuracy. In contrast to LCD,

power consumption rate of OLED is affected by the color pattern of the text dis-

played on smart-phone screen. Also, all the unnecessary applications were closed

(System and user applications) prior to the experimentation. To avoid the estima-

tion error due to the power state of the battery, all experiments are performed with

the smart-phone battery fully charged. This study has conducted each experiment

15 times to suppress the effects of background OS activities such as context switch-

ing and DVFS on the accuracy of the results. The average of 15 runs is reported for

all results discussed in this chapter. Power Tutor and Trepn Profiler dynamic energy

estimation tools are selected for energy estimation of the smart-phone applications.

Power Tutor and Trepn Profiler runs in parallel with target smart-phone application
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for energy estimation.

External physical measurement based estimation method was chosen to ana-

lyze overhead of dynamic analysis based energy estimation tools. External physical

measurement environment consists of a sense resistor attached to the smart-phone

battery terminals (Tiwari et al., 1994). In external physical measurement envi-

ronment, it attaches power measurement hardware device such as power meter and

multimeter to the sense resistor to record the time-stamped power profile at desktop

server as described in chapter 5 in details (Fig. 5.3). For the experiments, EM6000

multimeter is used to capture voltage and current drop across sense resistor. The

resistance of sense resistor greatly impacts the accuracy of captured voltage/current

drop; therefore, in this study 1-ohm resistor was used in the circuit. The voltage

drop (in mV) across the sense resistor is profiled at the desktop server. As in current

case, the resistance of sense resistor is 1 ohm, therefore current drop is exactly same

as is the voltage drop (ohm’s law I = V/R (Ferry, 2012)).

During application execution on smart-phone device, power measurement de-

vice (EM6000 multi-meter) records the voltage drop at the desktop server for post-

processing to estimate energy consumption of the application. Based on the pro-

filed voltage and current readings, Eq. 3.1 estimates application energy consump-

tion (Tiwari et al., 1994).

E = P ×T,WhereP = I×VCC (3.1)

In Eq. 3.1, P and T parameters represent average power consumption and total

execution time of application on smart-phone. For execution time of application,

this study has used "time" utility of Ubuntu distribution of Linux to acquire system

and user time for smart-phone application. P is estimated based on the voltage
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(VCC) and current drop (I) across the sense resistor.

The proposed study has selected energy estimation time, energy overhead, en-

ergy consumption, and resource consumption rate as the measures of performance

for the dynamic analysis based energy estimation schemes.

3.1.2 Benchmark Applications

This section discusses the main features of benchmark applications selected for per-

formance analysis of dynamic analysis based energy estimation schemes. All of the

selected benchmark applications are compute intensive, open source, and operates

on system memory. In addition, chosen benchmark applications consist of standard

operations such as array creation, loops, function calls, object creation, arithmetic

functioning, array index operations, sequence, and selection statements. To ensure

the diversity of data set, it has considered non-homogenous benchmark applica-

tions in terms of their code size and type of operations for the experiments. In

the following sections, the design of each of the benchmark applications is briefly

discussed.

3.1.2.1 NativeWhetstone2

NativeWhetstone21 benchmark application calculates the rating of target CPU in

million of whetstone instructions per second (MWIPS). It primarily focuses mea-

surement of basic floating point arithmetic and effectively separates results for the

procedures in mega floating point per second (MFLOPS) operations. The modules

within NativeWhetstone2 triggers processor (s) to perform required task by access-

ing data from RAM and cache storage. Eq. 3.2 and Eq. 3.3 present the basic array

trigonometry operations defined within NativeWehtstone2 benchmark application.

In the presented models, xi, x, and y represents array indexes, integer, and floating

1www.roylongbottom.org.uk/android
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point numbers, respectively.

X1 = (x1 +x2 +x3−x4)×0.5,X2 = (x1 +x2−x3 +x4)×0.5 (3.2)

X = t×arctan(2.0× sin(x)× cos(x)/(cos(x×y) + cos(xy)1.0)) (3.3)

3.1.2.2 LivermoreLoops2

LivermoreLoops2 benchmark calculates instruction execution speed in MFLOPS

and comprises of 24 kernels of numerical calculations to perform dissimilar CPU

bound operations. Loops within LivermoreLoops2 benchmark composed of floating

point numbers to perform floating point operations. The major operations per-

formed by Livermoreloops2 benchmark includes matrix multiplication, Planckian

distribution finding, discrete coordinates transport, general linear recurrence equa-

tion, and Monte carlo search loop. Linear recurrence equation model is presented in

Eq. 3.4. In Eq. 3.4, ci represents constant real number values, whereas, an−k repre-

sents the sequence of numbers (Batyuk, Schmidt, Schmidt, Camtepe, & Albayrak,

2009).

an = c1×an−1 + c2×an−2 + c3×an−3 + ...ck×an−k (3.4)

3.1.2.3 LinpackSP2

LinpackSP2 (SP denotes single point operations) is a single precision floating point

benchmark that outputs MFLOPS for floating point operations. The performance of

this benchmark highly depends on X[i] =X[i]∗y[i]+m operation where a change in

CPU instructions modifies result notably. LinpackSP2 is a compute-intensive bench-
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mark and multiplies two matrices as presented in Eq. 3.52. During the experiments,

the matrix sizes are chosen 200×201 for linpackSP2 benchmark.

(AB)ij =
m∑

k=1
Aik×Bkj (3.5)

In Eq. 3.5, AB is the target matrix that hosts multiplication result of A and B

matrices. Moreover, values of i, k, and j represent row and column indexing of

matrices (Batyuk et al., 2009).

3.1.2.4 Synthetic Test Programs

To extensively investigate the performance of CPU, a set of synthetic test pro-

grams comprising loops of different sizes performing basic arithmetic operations

are designed. For instance, 10000K synthetic test program comprised of a set of

statements performing basic arithmetic operations on unsigned integer values en-

capsulated within nested loops. The name of the test program is chosen based on

the size of the loop within each test program. For instance, in the 10000K test

program, the body of the loop is executed for 1.0× 106 number of times. Alterna-

tively, for the other test programs of this category such as 100000k, 1000000k, and

10000000k, it executes body of loop for 1.0× 107, 1.0× 108, and 1.0× 1010 times,

respectively.

3.1.2.5 Fast Fourier Transform

Fast Fourier Transform (FFT1) converts an input from original domain to frequency

domain or vice versa. FFT1 operates on code for double and single precision fast

Fourier transforms of size 1024bytes to 1048576bytes. During execution, this bench-

mark empowers the user to record the results in the FFT-tests.txt file for offline

2www.tomsguide.com
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analysis. FFT1 benchmark contains source code for multiple platforms such as

ARM, MIPS, CISC; dynamically it decides which code to execute based on the

architecture of the underlying device.

Eq. 3.6 highlights discrete Fourier transform (DFT) to convert time domain

data into its equivalent frequency domain. In Eq 3.6,K = 0 ... N−1 series represents

the sequence of complex numbers. Alternatively, X[k] defines the kth harmonic

number, and, X[n] represents nth input sample.

Xk =
N−1∑
n=0

Xne
−i2×22/7×k n

N (3.6)

3.1.3 Dynamic Analysis Based Energy Estimation Tools

This study has selected two highly cited dynamic analysis based energy estimation

tools called Power Tutor and Trepn Profiler for analysis. Both of these energy

estimation tools run application for energy estimation. A short overview of the

main features of selected energy estimation tools is as follows.

3.1.3.1 Power Tutor

Power Tutor follows on-device profiling, off-device modeling, and on-device estima-

tion for energy measurement of smart-phone applications. In the profiling stage,

it collects power states of smart-phone components. In the subsequent stages, it

exploits power models of smart phone components to estimate energy consumption

of smart-phone applications. Eq. 3.7 highlights energy estimation model of Power

Tutor energy estimation tool to estimate energy consumption of the smart-phone

application. The power coefficient values for smart-phone components such as βuh,

βul, βCP U , βbr, and β3Gidle, are computed in lab setting environment; whereas, it

captures execution traces of smart-phone components based on android APIs. In
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Eq. 3.7, β parameter represents power coefficient for a particular execution state

of smart-phone component. For instance, when CPU operates in high frequency

mode (freqh), power coefficient value is 4.34 W (βuh) whereas, it is 3.42 W (βul)

when it operates in low frequency execution mode (frql) (L. Zhang et al., 2010b).

In the referenced equation, GPSsl, Wi−Fil, 3GDCH , and brightnessl, represent

state of GPS, Wi-Fi, 3G, and LCD brightness, during application execution on

smart-phone. Alternatively, 3Gidle and 3GF ACH represents idle and shared channel

accessing states of 3G radio, respectively (L. Zhang et al., 2010b; Ren, Juarez, Sanz,

Raulet, & Pescador, 2015).

AppEP owerT utor = (βuh×freqh +βul×frql)×util+βCP U ×CPUon +βbr×

brightnessl +βGon×GPSon+βGsl×GPSsl+βW i−F i−l×Wi−Fil +βW i−F i−h×

Wi−Fih +β3Gidle×3Gidle +β3G−F ACH ×3GF ACH +β3GDCH ×3GDCH

(3.7)

3.1.3.2 Trepn Profiler

Trepn Profiler is an on-device power modeling and performance measurement tool

for energy estimation of the smart-phone device, components, and applications. It

constructs power models for smart-phone components based on on-device applica-

tion profiling and fuel gauge sensor based power measurements. It assists in mon-

itoring CPU utilization and network activity during application execution on the

smart-phone device. It analysis performance of all the cores within smart-phone.

For network activity, it generates the activity graph to highlight different states of

network components such as, Off, Connect, Dormant, Idle, Send, Receive, and Ac-

tive. Trepn Profiler collects system data once per 100ms and on average consumes

40-05% CPU capacity during execution on smart-phone. Unlike Power Tutor, it
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follows self-modeling paradigm and exploits SOC estimation methodologies to es-

timate energy consumption during activity on smart-phone. However, for a device

to accurately produce output, MDP hardware instrumentation is required. To esti-

mate utilization level of a hardware component, Trepn Profiler relies on Proc system

file (Qian & Andresen, 2015; Ben-Zur, 2011).

3.1.3.3 External Physical Measurement

Trepn Profiler and Power Tutor are software-based energy estimation tools. Ex-

ternal physical measurement based estimation method uses power measurement

hardware device to estimate application energy consumption. External physical

Measurement based estimation (also known as measurement method) attaches a

small shunt (also called shunt) resistor to the power rail of the target hardware

component for smart-phone sub-component energy estimation. Then, it interfaces

power monitoring hardware device to sense resistor to record voltage/current drop

across the resistor during activity on smart-phone. However, the accuracy of exter-

nal physical measurement method depends on the resistance of the sense resistor.

3.2 Energy Estimation Time Analysis for Dynamic Analysis Based Es-
timation Tools

Energy estimation time is a projection of the time required to estimate energy con-

sumption of a smart-phone application. Energy estimation time of dynamic analysis

based estimation methods comprised of application profiling and analysis time. Ap-

plication profiling time is the dominant factor in total estimation time as it depends

on the total execution time of application on the smart-phone device. In this section,

NWS, LPS, LML, and FFT1 are the acronyms used to represent NativeWhetstone2,

LinpackSP2, LivermoreLoops2, and FFT1 benchmark applications.

Fig. 3.1 presents energy estimation time for a set of benchmark applications us-
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Figure 3.1: Estimation Time Analysis of Benchmark Applications

ing dynamic analysis based energy estimation tools. Energy estimation time of an

application using dynamic analysis based energy estimation tool is estimated based

on its wall clock execution time. For energy estimation time analysis, each bench-

mark application is ran 15 times on the smart-phone and the average of collected

data is reported in this section. The average energy estimation time for 10000K,

100000K, and 1000000k is observed 0.14s, 0.72s, and 12.54s, respectively. Alter-

natively, for NativeWhetstone2, LinpackSP2, LivermoreLoops2, and FFT1, average

energy estimation time is observed 16.5s, 7.4s, 12.2s, and 55s, respectively. The wall

clock execution time of 10000K test program is minimal; therefore, energy estima-

tion time of 10000K is very limited. Alternatively, the wall clock execution time

of 10000000k is observed highest among all benchmark applications. The energy

estimation time of 10000000k is noticed 146.33 seconds. The main reason of high

estimation time is the large number of instructions CPU executed while running the

10000000k test program. Also, the energy estimation time of FFT1 is noticed high

as this benchmark calculates Fourier transform of arrays of size 1048574, 524288,

1048576, 528288, and 1048576 elements. Energy estimation time for each of the

benchmark application depends on the type and number of instructions executed

within the application. For large data size applications such as 10000000k and

FFT1, the more CPU clock cycles are required execution. As a result, estimation
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time of these application is very high. The descriptive statistics is applied to show

the variance in findings of energy estimation time. Standard deviation from mean

for all the test runs for test programs including 10000K, 100000K, 1000000k, and

10000000K, is noticed 0.008, 0.012, 0.015, and 2.740, respectively. Similarly, for

NativeWhetstone2, LinpackSP2, LivermoreLoops2, and FFT1, standard deviation

from mean is noticed 0.207, 0.534, 0.277, and 1.923, respectively. The main rea-

son of high standard deviation from the mean for some of the benchmarks is due

to background activities such as DFS, Garbage collection, and context switching of

applications. The standard deviation from the mean and variance from the standard

deviation among all selected benchmarks is noticed 48.46 and 2446.26, respectively.

The main reason for this high standard deviation is because the selected benchmarks

are not homogenous. For instance, the 100000000k test program is 1042.857 times

faster than the 10000k program.

Table 3.1 highlights the effect of increasing data size on the total energy es-

timation time for matrix multiplication program. Matrix multiplication program

multiplies two input matrices to store the results in a third matrix. In this exper-

iment, the size of input matrices (number of Rows and Columns) is varied from

100×100 to 850×850 to analyze the impact of varying input data sizes to the total

energy estimation time. For a specified input size of matrices for multiplication,

total energy estimation time is recorded for 15 runs of the program. Standard de-

viation from mean and confidence interval for 95% percentile is calculated. It is

noticed that increasing the input data size increases the total energy estimation

time of matrix multiplication program. For input data sizes of 100× 100, the av-

erage energy estimation time is found 0.30 seconds. The main reason of this small

energy estimation time is the low application execution time on smart-phone device.

For 15 runs of the program, standard deviation from the mean is noticed 0.0125.
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95% percentile is chosen to present confidence interval of the experiments. For 95%

desired confidence interval, the energy estimation time for 100× 100 based matrix

multiplication program is noticed in the range of 0.30±0.01. The energy estimation

time for matrix multiplication program with different input matrix sizes including

150× 150, 200× 200, 250× 250, 300× 300, 350× 350, and 400× 400, is observed

0.75s, 0.99s, 2.34s, 3.43s, 4.17s, and 8.07s, respectively. The confidence interval

for energy estimation time for aforementioned input data sizes is observed, ±0.02,

±0.03, ±0.17, ±0.82, ±0.01, and ±0.82, respectively. The main reason for compar-

atively higher values of energy estimation time for matrix multiplication program is

the more CPU capacity required to process the data for matrix multiplication pro-

gram. Increasing the matrix sizes increase the amount of data that CPU processes

for multiplying matrices. With the increase in data size, the CPU execution time

increases. As a result, estimation time of application increases as it depends on the

execution time of application. Total energy estimation time for matrix multiplica-

tion program for large input matrix sizes such as 450× 450, 500× 500, 550× 550,

600× 600, 650× 650, and 700× 700, is observed high. The energy estimation time

is noticed 10.15s, 14.15s, 20.08s, 26.14s, 33.402, 43.00s, and 53.71s, for matrix mul-

tiplication program with data sizes of 450× 450, 500× 500, 550× 550, 600× 600,

650× 650, and 700× 700, respectively. Standard deviation from the mean for en-

ergy estimation time readings for 15 runs of matrix multiplication with 450× 450

input matrix size is observed 0.00896. For 95% percentile, the energy estimation

time is observed 10.15±0.01 for matrix multiplication program with matrix sizes of

450× 450. Similarly, for matrix input sizes of 500× 500, 550× 550, and 600× 600,

the estimation time is observed 14.15±0.11, 20.08±0.73, and 26.14±0.35, respec-

tively (95% percentile). Considering very large input matrix sizes such as, 700×700,

750× 750, 800× 800, and 850× 850, the energy estimation time is 43.00s, 53.71s,
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Table 3.1: Energy Estimation Time Analysis for Power Tutor Estimation Tool for
Matrix Multiplication Program

Matrix Size Estimation time (s) Standard Deviation Confidence Interval
100×100 00.30 0.0125 ±0.01
150×150 00.75 0.0206 ±0.02
200×200 00.99 0.0321 ±0.03
250×250 02.34 0.1744 ±0.17
300×300 03.43 0.8392 ±0.82
350×350 04.17 0.0136 ±0.01
400×400 08.07 0.8406 ±0.82
450×450 10.15 0.0089 ±0.01
500×500 14.15 0.0068 ±0.11
550×550 20.08 0.7461 ±0.73
600×600 26.14 0.3540 ±0.35
650×650 33.40 0.4508 ±0.44
700×700 43.00 0.7871 ±0.77
750×750 53.71 1.0098 ±0.99
800×800 75.16 0.7954 ±0.78
850×850 84.96 0.7452 ±0.73

75.16s, and 84.96 s, respectively. Standard deviation from the mean for very large

size matrices is estimated 0.78716, 1.00983, 0.79541, and 0.75521, respectively. For

very large input matrix sizes, the confidence interval for the execution runs is esti-

mated, ±0.77, ±0.99, ±0.78, and ±0.73, respectively. In comparison to large size

matrices, the estimation time for very large size matrices is very high because of

significant increase in CPU execution time.

From above analysis, it is observed that increasing the data size for an applica-

tion significantly increase the total energy estimation time of an application. During

multiple execution runs of a program on smart-phone, estimation time varies with

limited margin depending on the OS activities scheduled in the background dur-

ing program execution on smart-phone device. Energy estimation time for Trepn

Profiler is exactly same as estimated using Power Tutor energy estimation tool.
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3.3 Energy Consumption Analysis for Dynamic Analysis Based Estima-
tion Tools

Energy estimation accuracy states how much accurate the findings of a particular

estimation tool are relative to an external physical measurement method. Prior to

smart-phone application energy consumption estimation, to ensure high estimation

accuracy, system baseline power is captured to subtract it from the estimated value

to improve the estimation results. Baseline power represents the energy consumed by

the smart-phone during no activity period. To capture baseline power, the current

study has used external physical measurement setup.

Smart-phone application triggers hardware components to perform a set of

activities. Eq. 3.8 highlights the total energy consumption of an application on a

smart-phone. In Eq. 3.8, ECP UAP P represents total energy budget of application

consumed by the CPU component; whereas, EW i−F iAP P represents Wi-Fi energy

consumption during discovery and connection establishment phases. Ebyte defines

the total energy per-byte data transfer over network connection from mobile phone.

In Eq. 3.8, tcpBytReceived+ tcpBytSent demonstrates total data sent/received on

the network link (Hoque et al., 2015; A. Ahmad, Paul, Rathore, & Rho, 2015).

EApp =ECP UAP P +EwakeLock +EW i−F iAP P +(tcpBytReceived+tcpBytSent)×Ebyte

(3.8)

Eq. 3.9 demonstrates that CPU energy cost depends on the total execution time of

application when executing user and system code. Alternatively, PSpeed−i represents

power consumption of CPU executing at speed i.

ECP UApp =
N∑

i=1

Tspeed−i∑N
i=1Tspeed−i

× (Tappcode +TsystCode)×Pspeed−i (3.9)
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Smart-phone components wake lock energy "EwakeLock" as defined in Eq. 3.10 depend

on the time the component remained lock in waiting for state and power associated

with that lock. Alternatively, EW i−F iApp (Eq. 3.11) depend on the amount of en-

ergy application consumes during scan time (PW i−F iSCAN
) and idle time of Wi-Fi

component (PW i−F iON
). Lastly, TW i−F iAP P represents the time for which Wi-Fi

discover the network connections.

EW akeLOCK = PW ake−LOCK ×TW ake−LOCK (3.10)

EW i−F iApp = TW i−F iAP P ×PW i−F iON
+TW i−F iSCAN

×PW i−F iSCAN
(3.11)

During data transfer via network link, energy consumption highly depends on the

number of bytes transmitted and received on the radio. The energy cost of Ebyte

depends on, (a) power consumption of mobile radio and Wi-Fi in active states, (b)

transfer rate, and (c) total data transferred or received using Wi-Fi and radios as

shown in Eq. 3.12. Eq. 3.13 models GPS energy consumption. In Eq. 3.13, PGP S

and TGP S parameters represent GPS power consumption and total time for which

application accesses GPS module.

Ebyte =
PW i−F iactive
W i−F iBps ×Wi−FiData + Pradioactive

MobBps ×MobData

Wi−FiDAT A +mobDATA
(3.12)

EGP S = TGP S×PGP S (3.13)

Fig. 3.2 highlights energy consumption of different components of a smart-phone

device captured through Power Tutor for a set of benchmark applications. The

energy consumed by the smart-phone components highly depends on the type of
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operations within a smart-phone application. For instance, in all of the chosen

benchmark applications, none is performing any network activity. As a result, the

energy cost for Wi-Fi and 3G for all benchmarks is zero. The major cost for selected

benchmark is by CPU component of smart-phone device. LCD energy consumption

too is low as this study has estimated energy consumption with brightness level

adjusted to its minimum state. All the chosen benchmark applications are compu-

tational bounds, therefore, 85-92% of the energy budget of benchmarks is consumed

by CPU component.

Figure 3.2: Smart-phone Components Energy Consumption Break-down for
Benchmark Applications

Fig. 3.3 demonstrates energy consumption for a set of benchmark applications

estimated using the Power Tutor energy estimation tool. Energy consumption of all

selected benchmark applications is different and varies with execution time of bench-

mark application. Using Power Tutor, the estimated energy for 10000k, 100000k,

1000000k, and 10000000k, is observed 0.006j, 0.035j, 6.1j, and 70.4j, respectively.

Alternatively, for NativeWhetstone2, LinpackSP2, LivermoreLoops2, and FFT1

benchmarks, energy is estimated 8.02j, 3.4j, 5.96j, and 37j, respectively. Among

all benchmark applications, 10000k has consumed lowest energy whereas 10000000k

has consumed the highest amount of energy when executed on the smart-phone de-
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vice. During multiple runs of benchmark application, the standard deviation from

mean was observed minimal. For 10000k, 100000k, 1000000k, and 10000000k, stan-

dard deviation from mean is observed 9.5E−6, 0.001, 0.045, and 3.95, respectively.

Similarly for remaining benchmarks in Fig. 3.3, standard deviation is noticed 0.58,

0.20, 0.12, and 2.25, respectively. The main reason of comparatively high standard

deviation (for 10000000k test program) is the background noise and effects of battery

discharge rate when it runs for a longer period of time. Due to high dissimilarity

among chosen benchmark applications, the standard deviation from the mean for

the findings of chosen benchmark applications is observed 24.87515 (high). The

variance from the standard deviation is noticed 541.426.

Figure 3.3: Power Tutor based Energy Estimation for Benchmark Applications

Fig. 3.4 highlights energy consumption for a set of benchmark applications

estimated using Trepn Profiler energy estimation tool. Based on Trepn Profiler,

the estimated energy for 10000k, 100000k, 1000000k, and 10000000k, is observed

0.008j, 0.041j, 7.9j, and 82.776j, respectively. Alternatively, for NativeWhetstone2,

LinpackSP2, LivermoreLoop2, and FFT1 benchmarks, energy is estimated 10.54j,

4.8j, 7.09j, and 44.52j, respectively. Among all benchmark applications, 10000k has

consumed lowest energy whereas 10000000k has consumed the highest amount of en-

ergy when executed on smart-phone. Standard deviation from the mean for 15 runs
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for each benchmark application is calculated. For instance, for 10000k, 100000k,

1000000k, and 10000000k, standard deviation from mean is observed 2.2E−6, 0.021,

0.27, and 4.01, respectively. Similarly, for remaining benchmarks, the standard de-

viation is noticed 0.36, 0.93, 0.89, and 3.19, respectively. The main reason of high

standard deviation (in few cases) is the background noise and effects of battery

discharge rate when it runs for a longer period of time. The standard deviation

from the mean is noticed very high due to high dis-similarity among the selected

benchmark applications. It is estimated 29.20. On the other hand, variance from

standard deviation is noticed 746.53.

Figure 3.4: Trepn Profiler based Energy Estimation for Benchmark Applications

Fig. 3.5 compares the findings of Power Tutor and Trepn Profiler energy esti-

mation tools. As can be seen from Fig. 3.5, Trepn Profiler estimated higher values

of energy consumption for benchmark applications than Power Tutor based esti-

mation. The main reason for this behavior is the difference in energy estimation

methods opted by both of the selected energy estimation tools. Another reason of

Trepn Profiler’s high energy estimation values is this that it is originally designed for

qualcomm processors and is low accurate for chosen smart-phone device compared

to Power Tutor energy estimation tool. Fig. 3.6 highlighted the total difference

in energy estimation values. The estimation difference in the estimated values for
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chosen benchmark applications ranges from 22 to 14% as shown in Fig. 3.6. The

estimation difference is highest for LinpackSP2 benchmark and is lowest for the

100000000K test program.

Figure 3.5: Power Tutor vs. Trepn Profiler

Figure 3.6: Power Tutor vs. Trepn Profiler Estimation Accuracy Difference Anal-
ysis

Table 3.2 presents energy consumption behavior of matrix multiplication pro-

gram for different data sets estimated through Power Tutor energy estimation tool.

For a specific input size of matrices for multiplication, total estimated energy is

recorded for 15 runs of the program. Standard deviation from mean and confidence

interval for 95% percentile is calculated. It is observed that increasing the input

data size linearly increases the total energy consumption of matrix multiplication

program. For matrix sizes of 100× 100, the average energy consumption is found
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0.25 j. For 15 runs of the program, standard deviation from the mean is noticed

0.021 for 100×100 matrix multiplication. For desired confidence interval, the esti-

mated energy for 100× 100 matrix multiplication program is noticed in the range

of 0.15±0.02 j. The main reason of small value of energy consumption is the lower

execution time of matrix multiplication program with 100×100 matrices. CPU took

0.30s only to execute 100×1000 matrix multiplication program. As a result, energy

consumption of 100×100 based matrix multiplication program is very limited.

The energy consumption estimation for matrix multiplication program with

different input matrix sizes including 150× 150, 200× 200, 250× 250, 300× 300,

350×350, and 400×400, is observed 0.47j, 0.88j, 1.17j, 1.71j, 2.24j, and 4.02j, respec-

tively. The confidence interval for energy consumption statistics for aforementioned

input data sizes is ±0.02, ±0.01, ±0.031, ±0.10, ±0.13, and ±0.12, respectively. In

comparison to 100×100 size matrices, energy consumption of 150×150, 200×200,

250× 250, 300× 300, 350× 350, and 400× 400 size matrices is higher. The main

reason of difference in energy consumption is the high execution time of former

sizes of matrices for matrix multiplication program. For instance, the execution

time of 250×250 based matrix multiplication program is 87% higher than 100×100

size based matrix multiplication program. Due to this execution time difference,

the energy consumption of 250×250 based matrix multiplication program is higher

than 100× 100 based matrix multiplication. The more is the execution time of an

application, higher is its energy consumption. Total energy consumption for matrix

multiplication program for large input matrix sizes such as 450× 450, 500× 500,

550× 550, 600× 600, 650× 650, and 700× 700, is observed very high as shown in

Table 3.2.

The energy consumption is noticed 4.97j, 7.01j, 10.04j, 12.93j, 16.53j, 21.03j,

and 51.83j, for matrix multiplication program with data sizes of 450×450, 500×500,
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550×550, 600×600, 650×650, and 700×700, respectively. Standard deviation from

the mean for energy consumption readings for 15 runs of matrix multiplication with

450× 450 input matrix size is observed 0.467. For 95% percentile, the energy esti-

mation time is observed 10.15±0.01 for matrix multiplication program with matrix

sizes of 450×450. The energy consumption of large sized matrices is high because

of the extended execution time of matrix multiplication program with increasing

matrix sizes. Smart-phone resources such as CPU, memory, buses, cache, and LCD

are the major entities contributing to the total energy consumption of matrix mul-

tiplication program. With high matrix sizes, the system resources remain engaged

for a longer period of time. As a result, for large data sized matrices, the energy

consumption is high. Considering very large input matrix sizes such as 700× 700,

750× 750, 800× 800, and 850× 850, the energy consumption is estimated 21.03j,

51.83j, 66.52j, and 80.48j, respectively. Standard deviation from the mean for very

large size matrices is estimated 1.77j, 1.108j, 2.48j, and 1.70j, respectively. For very

large input matrix sizes, the confidence interval for the execution runs is estimated,

±1.77, ±1.37, ±3.09, and ±2.11, respectively.

Table 3.3 presents an analysis of energy consumption behavior of benchmark

applications estimated through Trepn Profiler when input data size for matrix mul-

tiplication is increasing. For 95% percentile, the confidence interval for matrix mul-

tiplication program with different input matrix sizes including 100×100, 150×150,

200×200, 250×250, 300×300, 350×350, and 400×400, is observed±0.006, ±0.062,

±0.016, ±0.138, ±0.189, ±0.576, and ±0.409, respectively. Similarly, for 450×450,

500× 500, 550× 550, 600× 600, 650× 650, and 700× 700, confidence interval is

observed ±0.681, ±0.886, ±1.756, ±1.834, ±1.355, and ±1.658, respectively. Con-

sidering very large input matrix sizes such as 700× 700, 750× 750, 800× 800, and

850× 850, confidence interval is noticed ±1.658, ±2.973, ±2.807, and ±3.586, re-
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Table 3.2: Energy Consumption Analysis using Power Tutor for Matrix Multipli-
cation Program

Matrix Size Estimated Energy (j) Standard Deviation Confidence Interval
100×100 00.25 0.021 ±0.02
150×150 00.47 0.018 ±0.02
200×200 00.88 0.009 ±0.01
250×250 01.17 0.025 ±0.03
300×300 01.71 0.082 ±0.10
350×350 02.24 0.109 ±0.13
400×400 04.02 0.097 ±0.12
450×450 04.97 0.467 ±0.58
500×500 07.01 0.783 ±0.97
550×550 10.04 1.016 ±1.26
600×600 12.93 1.164 ±1.44
650×650 16.53 1.153 ±1.89
700×700 21.03 1.773 ±1.77
750×750 51.83 1.108 ±1.37
800×800 66.52 2.489 ±3.09
850×850 80.48 1.700 ±2.11

spectively. The main reason of comparatively high standard deviation for large

input data sets is due to the unpredictable behavior of processes running in the

background. Also, for a process that runs for longer period of time, the probability

of frequent context switching is high. Energy bugs within smart-phone hardware

components and application results in high standard deviation (comparatively).

3.4 Energy Overhead Analysis for Dynamic Analysis Based Estimation
Tools

Energy overhead states amount of battery charge an estimation tool consumes dur-

ing estimating energy consumption of smart-phone application. The energy over-

head consists of energy consumed by estimation tool and application being analyzed

for estimation. In this section, the overhead of energy estimation tools is reported.

Energy estimation overhead of each energy estimation tool is different depend-

ing on the methodology it opts to profile and construct power models for smart-

phone components. In the case of Power Tutor, total energy overhead of Power
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Table 3.3: Energy Consumption Analysis for Trepn Profiler for Matrix Multipli-
cation Program

Matrix Size Estimated Energy (j) Standard Deviation Confidence Interval
100×100 000.36 0.00 ±0.006
150×150 000.90 0.05 ±0.062
200×200 000.27 0.01 ±0.016
250×250 002.80 0.11 ±0.138
300×300 004.31 0.15 ±0.189
350×350 005.00 0.46 ±0.576
400×400 009.68 0.32 ±0.409
450×450 012.18 0.54 ±0.681
500×500 017.23 0.71 ±0.886
550×550 024.09 1.41 ±1.756
600×600 031.36 1.47 ±1.834
650×650 040.08 1.09 ±1.355
700×700 050.69 1.33 ±1.658
750×750 064.45 2.39 ±2.973
800×800 090.19 2.26 ±2.807
850×850 101.92 1.88 ±3.586

Tutor is divided into a set of modules as depicted in Eq. 3.14. In Eq. 3.14, the

elements that contribute to the total energy overhead of Power Tutor are high-

lighted. In the aforementioned equation, EExecutionLOG represents the total energy

consumed during logging the system states when android APIs are called during

activity within the smart-phone application. This is the most expensive operation

as it requires logging execution profile of application throughout its execution life

cycle. Alternatively, EEstimation depicts energy cost when Power Tutor uses pre-

defined smart-phone power cost models and captured power states of smart-phone

components to estimate total energy consumption of the application.

PowerTutorOV ERHEAD = EExecutionLOG +EEstimation (3.14)

Trepn Profiler consumes more energy than Power Tutor as it follows on-device

power pro-filing and modeling paradigm. Eq. 3.15 presents a conceptual model

to state the energy estimation overhead breakdown of Trepn Profiler. In Eq. 3.14,
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ESOCEstimation represents the amount of energy to estimate current and voltage

drop during application execution on smart-phone device. The rate of Trepn Pro-

filer is very high as it triggers fuel gauge every 100ms to capture voltage and current

drop for energy estimation. In Eq. 3.14, EExecutionLoG represents the amount of

energy required to record the execution profile of the application in terms of CPU

state and Wi-Fi mode. Following these two stages, EModelConstruction represents

amount of energy required to generate power models on smart-phone device.

TrepnProfilerOV ERHEAD = ESOCEstimation +EExecutionLoG +EModelConstruction

(3.15)

Figure 3.7: Trepn Profiler Energy Estimation Overhead

Fig. 3.7 highlights energy estimation overhead of Trepn Profiler energy esti-

mation tool for a set of benchmark applications. Among all selected benchmark

applications, Trepn Profiler has consumed the highest energy (e.g., 680mJ) during

energy estimation of the 10000000k test program. The main reason for high energy

estimation overhead is the high estimation time of 10000000k test program. Among

all chosen benchmark applications, energy estimation time for 10000000k is noticed

highest. The energy estimation overhead of an estimation tool is directly related
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to the estimation time of the energy estimation tool. Alternatively, for the 10000K

test program, it has consumed negligible energy (≤ 1 mj). The main reason for the

negligible energy overhead is the low estimation time of Trepn Profiler while esti-

mating energy consumption of 10000K test program. For the remaining benchmark

applications such as LinpackSP2, NativeWhetstone2, LivermoreLoops2, 100000K,

1000000K, and FFT1, Trepn Profiler has consumed 88mJ, 198mJ, 135mJ, 8mJ,

135mJ, and 609mJ energy as shown in Fig. 3.7. The value of energy estimation

overhead for each benchmark application demonstrates the average of 15 runs on

a smart-phone. For all the selected benchmark programs, standard deviation from

the mean for the energy estimation overhead of Trepn Profiler is observed 223.86.

The main reason of high value of standard deviation is the high divergence among

chosen benchmark applications in terms of their execution time.

Fig. 3.8 presents energy overhead of Power Tutor energy estimation tool dur-

ing energy estimation for a set of benchmark applications. The energy estimation

overhead for all selected benchmark applications is dissimilar depending on their

execution time. The energy estimation overhead behavior of Power Tutor is similar

to the one presented in Fig. 3.7. Among all selected benchmark applications, power

tutor has consumed the highest energy (e.g., 615mJ) during energy estimation of

the 10000000k test program. For the remaining benchmark applications such as

LinpackSP2, NativeWhetstone2, LivermoreLoop2, 100000K, 1000000K, and FFT1,

power tutor has consumed 81mJ, 182mJ, 124mJ, 7mJ, 122mJ, and 555mJ energy

as shown in Fig. 3.8. For the 10000K test program, Power Tutor has consumed

negligible energy (≤ 1 mj) during energy estimation process. The main reason for

this negligible energy overhead is the low estimation time of Power Tutor while esti-

mating energy consumption of 10000K test program. This study has calculated and

reported standard deviation from the mean for aforementioned benchmarks. It was
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noticed the standard deviation from the mean is 246.86. The main reason for high

value of standard deviation is the non-similarity among the designs/functionality of

chosen benchmark applications.

Figure 3.8: Power Tutor Energy Estimation Overhead

Fig. 3.9 compares Power Tutor and Trepn Profiler to highlight the energy es-

timation overhead difference between their findings for a set of benchmark applica-

tions. Fig. 3.9 revealed that Power Tutor is more energy efficient energy estimation

tool than Trepn Profiler. The energy estimation overhead of Trepn Profiler is 9-14%

higher than Power Tutor. The main reason of high energy estimation overhead of

Trepn Profiler is its heavy weight design to construct power models online, more

smart-phone components to model, and high valued GUI to represent the findings.

Figure 3.9: Power Tutor vs. Trepn Profiler Energy Estimation Overhead Difference
Analysis
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Table 3.4 presents an analysis of energy overhead for Power Tutor energy es-

timation tool for matrix multiplication program when input data size is linearly

increasing. For a specified input size of matrices for multiplication program, total

energy estimation overhead is collected for 15 runs of the program. Standard de-

viation from mean and confidence interval for 95% percentile is calculated. It is

noticed that increasing the input data size increases the energy overhead of matrix

multiplication program. The energy estimation overhead for matrix multiplication

program for matrices of size 100× 100, 150× 150, 200× 200, 250× 250, 300× 300,

350× 350, and 400× 400, is observed 0.02mj, 0.6mj, 001mj, 022mj, 031mj, 037mj,

and 073mj, respectively. It is noticed that increasing the size of matrices for multi-

plication increases energy overhead. Energy estimation overhead is directly related

to the estimation time of an application. Therefore, increasing data size indirectly

increases energy overhead of Power Tutor energy estimation tool. For instance, the

estimation time of 100× 100 is lower than 200× 200; hence, energy overhead of

former is lower than latter as highlighted in Table 3.4. For 95% percentile value,

the confidence interval for matrix multiplication program with different input ma-

trix sizes including 100×100, 150×150, 200×200, 250×250, 300×300, 350×350,

and 400×400, is observed ±0.00, ±0.003, ±0.010, ±0.74, ±0.92, ±1.76, and ±1.55,

respectively. Alternatively, for matrices of size 450× 450, 500× 500, 550× 550,

600×600, 650×650, and 700×700, energy estimation overhead is observed 091mj,

127mj, 181mj, 236mj, 301mj, and 387mj, respectively. For 450× 450, 500× 500,

550× 550, 600× 600, 650× 650, and 700× 700, confidence interval is calculated

±1.69, ±2.5, ±2.12, ±3.04, ±3.24, and ±3.28, respectively. For very large input

matrix sizes such as 700×700, 750×750, 800×800, and 850×850, the energy over-

head is estimated 387mj, 483mj, 676mj, and 764mj, respectively. For all matrix

sizes considered for matrix multiplication, the energy overhead is noticed highest
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Table 3.4: Energy Estimation Overhead Analysis for Power Tutor for Matrix
Multiplication Program

Matrix Size Energy Overhead (mj) Standard Deviation Confidence Interval
100×100 0.02 0.001 ±0.00
150×150 0.6 0.002 ±0.003
200×200 001 0.010 ±0.010
250×250 022 0.700 ±0.74
300×300 031 0.940 ±0.92
350×350 037 1.672 ±1.76
400×400 073 1.473 ±1.55
450×450 091 1.580 ±1.69
500×500 127 2.300 ±2.50
550×550 181 2.401 ±2.12
600×600 236 2.900 ±3.04
650×650 301 2.971 ±3.20
700×700 387 3.640 ±3.80
750×750 483 2.701 ±3.91
800×800 676 4.293 ±4.53
850×850 764 4.990 ±5.24

for 850×850 because of its high energy estimation time. For 700×700, 750×750,

800× 800, and 850× 850 matrix sizes, confidence interval is noticed ±3.8, ±3.9,

±4.5, and ±5.2, respectively.

Table 3.5 presents an analysis of energy overhead for Trepn Profiler energy

estimation tool for matrix multiplication program when input data size is linearly

increasing. For a specified input size of matrices for multiplication program, total

energy estimation overhead is collected for 15 runs of the program. Standard de-

viation from mean and confidence interval for 95% percentile is calculated. It is

observed that on increasing the input data size of matrices, energy overhead of ma-

trix multiplication program linearly increases. The energy estimation overhead for

matrix multiplication program for matrices of size 100× 100, 150× 150, 200× 200,

250×250, 300×300, 350×350, and 400×400, is observed 0.02mj, 0.73mj, 1.40mj,

022mj, 033mj, 041mj, and 079mj, respectively. It is noticed that increasing the size

of matrices for multiplication program increases energy overhead. Energy estima-
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tion overhead is directly related to the estimation time of an application. Therefore,

increasing data size indirectly increases energy overhead of Trepn Profiler energy es-

timation tool. For instance, the estimation time of 100×100 is lower than 200×200;

hence, energy overhead of former is lower than latter as highlighted in Table 3.5.

For 95% percentile, the confidence interval for matrix multiplication program with

different input matrix sizes including 100× 100, 150× 150, 200× 200, 250× 250,

300×300, 350×350, and 400×400, is ±0.00, ±0.003, ±0.006, ±0.63, ±0.92, ±1.27,

and ±1.05, respectively. Alternatively, for matrices of size 450× 450, 500× 500,

550× 550, 600× 600, 650× 650, and 700× 700, energy estimation overhead is ob-

served 100mj, 139mj, 197mj, 259mj, 328mj, and 422mj, respectively. For 450×450,

500× 500, 550× 550, 600× 600, 650× 650, and 700× 700, confidence interval is,

±1.62, ±1.76, ±2.48, ±3.03, ±1.99, and ±3.12, respectively. For very large input

matrix sizes such as 700×700, 750×750, 800×800, and 850×850, the energy over-

head is estimated 422mj, 532mj, 751mj, and 857mj, respectively. For all matrix

sizes considered for matrix multiplication, the energy overhead is noticed highest

for 850×850 because of its high energy estimation time. For 700×700, 750×750,

800× 800, and 850× 850 matrix sizes, confidence interval is noticed ±3.12, ±3.35,

±2.68, and ±2.07, respectively.

3.5 Resource Usage Analysis for Dynamic Analysis Based Estimation
Tools

Dynamic analysis based energy estimation tools inefficiently exploit resources of

smart-phone devices. Dynamic analysis energy estimation tools engage resources

of smart-phone for a longer period of time for energy estimation of smart-phone

applications as discussed in Section 3.2 and Section 3.3. This section investigates the

amount of CPU and RAM capacity that a dynamic analysis based energy estimation

tool requires during energy estimation of a smart-phone application. The reported
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Table 3.5: Energy Estimation Overhead Analysis for Trepn Profiler Tool for Matrix
Multiplication Program

Matrix Size Energy Overhead (mj) Standard Deviation Confidence Interval
100×100 0.02 0.001 ±0.00
150×150 0.73 0.004 ±0.003
200×200 1.40 0.007 ±0.006
250×250 022 0.691 ±0.63
300×300 033 0.995 ±0.92
350×350 041 1.38 ±1.27
400×400 079 1.12 ±1.05
450×450 100 1.74 ±1.62
500×500 139 1.70 ±1.76
550×550 197 2.68 ±2.48
600×600 259 2.99 ±3.03
650×650 328 2.16 ±1.99
700×700 422 3.37 ±3.12
750×750 532 3.8 ±3.35
800×800 751 4.29 ±2.68
850×850 857 4.99 ±2.07

results in this section has shown the resource consumption for energy estimation

tool only.

Figure 3.10: RAM Usage Comparison for Power Tutor and Trepn Profiler Energy
Estimation Tools

To estimate resource usage of estimation tools, this study has used Pmap com-

mand of Ubuntu distribution to estimate the amount of RAM the estimation tool

needs to load its pages for energy estimation of smart-phone applications. During

the experiments, the estimation tool was set to run in the background of smart-phone
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to investigate its resource usage behavior. To investigate CPU usage of estimation

tools, htop Linux utility is used. The resource consumption rate for Power Tutor and

Trepn Profiler energy estimation tools was monitored by running htop and pmap

processes from the terminal emulator installed on the smart-phone.

Fig. 3.10 highlights RAM usage of Trepn Profiler and Power Tutor energy

estimation tools to estimate energy consumption of a smart-phone applications. The

memory and CPU usage are investigated during energy estimation of OS running

utilities such as system UI, Kernel, Media Server, system, and radio sub-system,

using Power Tutor and Trepn Profiler tools. It is shown in the Fig 3.10 that Power

Tutor consumes less memory than Trepn Profiler during energy estimation process.

During energy estimation process, Power Tutor has consumed 283.17MB memory,

whereas, Trepn Profiler has consumed 300.39MB RAM. In terms of memory, Power

Tutor consumes 6% less memory than Trpen Profiler energy estimation tool.

Fig. 3.11 highlights CPU usage comparison for Power Tutor and Trepn Profiler

energy estimation tools. It is observed that Power Tutor requires less CPU capacity

than Trepn Profiler during energy estimation of a smart-phone application. For

background system activities, during estimation process Power Tutor has consumed

2-10% of the total CPU capacity whereas Trepn Profiler has consumed up to 55%

CPU capacity. The CPU usage of Trepn Profiler is observed 75% higher than Power

Tutor for energy estimation of smart-phone applications. Trepn Profiler offers high

functionality than Power Tutor (e.g, energy estimation, performance measurement);

therefore, it requires more CPU capacity during the estimation process.

3.6 Analysis of Application Components Energy Consumption and Sim-
ulation Based Architecture Level Profiling

Smart-phone application triggers components of smart-phone device to perform spe-

cific tasks. Smart-phone application is the main force behind smart-phone battery
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Figure 3.11: CPU Usage Comparison for Power Tutor and Trepn Profiler Estima-
tion Tools

charge usage. The amount of energy consumed by an application highly depends

on the activity time of application. Within a smart-phone device, application con-

structs such as function calls, loops, arrays, and arithmetic processing, are the ut-

most energy consuming entities. In this section, the energy consumption of different

constructs of a smart-phone application are explored.

3.6.1 Application Components Energy Consumption

This section highlights most energy consuming element within an application in

terms of its execution time and energy consumption.

3.6.1.1 Experiments

Fig. 3.12 highlights the experimental setup to estimate execution time and energy

consumption of smart-phone application’s constructs (e.g., function, loops, paths,

etc). It instrumented target smart-phone application to record the execution time

and energy consumption across target application construct. In the next phase, it

runs the instrumented application on the smart-phone device to log timestamped

execution profile on the the smart-phone device. The energy consumption behavior

of the smart-phone application is profiled (parallel to execution log at the mobile
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Figure 3.12: Evaluation Framework for Energy Consumption Behavior Analysis
of Smart-phone Application Components

side) at the external physical server using EM6000 multi-meter. EM6000 multimeter

records timestamped power profile at external physical server. After profiling stage,

the recorded timestamped power profile is post processed at the server to examine

the energy consumption of smart-phone application constructs. For energy finding,

the offline analysis correlates timestamped execution profile generated at smart-

phone to the timestamped power profile recorded on the server side. During the

experiments, this study has used ClockSync (NTP server) tool to insure that the

clocks of the smart-phone and server are strictly synchronized to eliminate any

chances of errors. During the offline analysis phase, it is noticed that function calls

and loop structures are the major entities where the majority of application energy

budget goes. In this section, the energy consumption and execution time analysis

are highlighted for few selected benchmark applications. During post-processing

on time-stamped power profile of the smart phone application, the proportion of

energy consumed by loops was noticed highest. Therefore, energy consumption of

loops within the smart-phone application is highlighted.
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3.6.1.2 Experimental Results

Fig. 3.13 demonstrates proportion of energy consumed by loop structures to the

rest of the program. A set of benchmark applications for experiments including

10000000K, NativeWhetston2, LinpackSP2, LivermoreLoops2, and FFT1 are se-

lected. It was observed that loop significantly consumes energy and execution time

within a smart-phone application. For instance, in NativeWhetstone2, body of

loop executes several thousands million of times while performing arithmetic and

trigonometric operations. The code within loops of 10000000K, NativeWhetstone2,

LinpackSP2, LivermoreLoops2, and FFT1, has attributed 100%, 94.5%, 93%, 96%,

and 90% of the total execution time, respectively. During benchmark execution on

a smart-phone device, 96% of the CPU time was spent in executing code residing

within loops in Livermoreloop2 benchmark to perform arithmetic, trigonometric,

and array based operations on integer and float point data.

Figure 3.13: Loops Execution Time Analysis for Benchmark Applications

Fig. 3.14 demonstrates energy consumption of loops in comparison to rest of the

parts of a program for a set of benchmark applications. The benchmarks selected

for experiments include 10000000K, Netwhetstone2, LinpackSP2, LivermoreLoop2,

and FFT1. The code within loops of 10000000K, Netwhetstone2, LinpackSP2, Liv-
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ermoreLoop2, and FFT1, has attributed 100%, 92%, 89.2%, 95%, and 84% of the

total energy consumption, respectively.

Figure 3.14: Loops Energy Consumption Analysis for Benchmark Applications

From above discussion it is noticed that for a computations intensive bench-

mark application loops are the most critical part of the program as they consume

major portion of the program battery consumption. The execution time and en-

ergy of loops highly depends on (a) loops iteration count, (b) size, and (c) type

of operations within loop body. Also, memory access pattern too effects energy

consumption of smart-phone applications. Higher the cache size, less the execution

time program takes (e.g., audio song player). In the next section, the memory access

pattern during smart-phone applications execution using simulation based method

is analyzed.

3.6.2 Simulation Based Architecture Level Profiling

This section discusses overhead associated with estimating low level architectural

details of a smart-phone device using Val-grind tool. It highlights the time analysis

while collecting low architectural details for a set of applications.
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3.6.2.1 Experiments

To perform experiments, a set of test programs were designed and tested to moni-

tor the performance of simulation based architecture level profiling for smart-phone

applications. Test programs consist of a set of statements performing standard

CPU and memory arithmetic operations. Mem-ADD test program comprised of

1012 instances of ADD statement written in a series without looping the program to

minimize the cache hit rate. C-ADDOP test program comprised several instances

of ADD instructions encapsulated within three nested loops to fetch the data from

the local cache. Alternatively, WHET test program comprises of mixed standard

arithmetic and trigonometric operations where program statements are encapsu-

lated under tightly nested loops. The names of the remaining test programs such

as 8MOD, 12MOD, 15MOD are chosen based on their size on hard disk storage.

For instance, the 8MOD test program comprised of 8K instructions performing a

modulus operation on integer data. Alternatively, 12MOD and 15MOD comprised

of 12K and 15K instructions encapsulated in tight loops. The instructions within

12MOD and 15MOD test programs perform modulus operation on the integer data.

This study has used Valgrind-3.11.0 tool to analyze execution behavior of test

programs to testify ARM-7’s architecture level operations such as cache access pat-

tern and execution time. It has used two tools including Lackey and Cache-grind to

simulate the low architectural details. Lackey is used to measure total memory ref-

erences during program execution on ARM architecture. Alternatively, Cache-grind

is used to analyze the cache access pattern for the chosen programs on ARM archi-

tecture. Moreover, the performance of simulation based method to the performance

of experimentation on real smart-phone is compared. The size of cache for ARM-7

was chosen 16kB. For experiments, cache was configured to 4-way set associativity.
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Table 3.6: Val-grind Simulator based Program Execution Analysis

Test Program Memory reference Cache Hits Cache Miss Miss/Hit(%) Program size
Mem-ADD 152,010,363 118,653,082 33357281 22/78 608MB
C-ADDOP 201,765,406,976 201,765,406,563 413 0.00/99.99 593kB
WHET 137,283,478,361 137,281,686,679 179,168,2 0.001/99.99 810kB
8MOD 3,955,381,412 3,911,142,941 44,238,471 1.11/98.8 619kB
12MOD 407,404,285,4 4,028,477,056 45565798 1.12/98.7 641kB
15MOD 423,700,456,9 4,189,615,219 47389350 1.11/98.8 651kB

3.6.2.2 Experimental Results

Table 3.6 highlights cache access pattern for seven test programs. It is observed

that Mem-ADD test program has highlighted the largest cache miss rate among

all the selected test programs. The main reason of this behavior is the sequential

organization of statements within the program to perform a specific task.

Figure 3.15: Estimation Time Analysis

Fig. 3.15 compares the performance of three test execution modes including

Val-grind simulation, ARM-7 server, and real smart-phone device. It can be seen

that application execution on the server (emulation) is 10-19% times slower than

operations on real smart-phones. Moreover, as shown in Fig. 3.16, analyzing an

application based on Val-grind increases the application execution time by 97-99.8%.

This overhead makes the emulation based estimation impractical as estimation time

is very large.
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Figure 3.16: Val-grind Simulator based Application Profiling Time Overhead
Analysis

3.7 Conclusion

In this chapter, the performance of dynamic analysis based energy estimation tools

is analyzed. It performed experimentation to analyze estimation time, energy over-

head, energy consumption, and resource consumption of existing dynamic analysis

based energy estimation tools.

A higher degree of complexity within an application prolongs its execution time

and significantly impacts to the battery lifetime of a smart-phone device. It was

observed that total energy estimation time of an estimation tool highly depends

on the execution time of smart-phone application on smart-phone device. Energy

consumption of a smart-phone application highly depends on its execution time

on a smart-phone device. It was observed that Trepn Profiler estimated energy is

13% higher than the Power Tutor estimation tool. Dynamic analysis based energy

estimation is costly as it consumes a significant amount of energy to execute an

application to estimate its energy consumption. The energy overhead of Trepn Pro-

filer is observed 9-14% higher than Power Tutor energy estimation tool. Moreover,

Trepn Profiler has consumed 6% more storage resources during energy estimation of

a smart-phone application. Trepn Profiler’s CPU resource usage is 75% more than
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Power Tutor energy estimation tool. It is also noticed that loops are utmost time

and energy consuming entities within a smart-phone application as it uses up to 95%

CPU and battery resources of the application. Considering all these issues, it is im-

portant to propose an estimation method that should minimize energy estimation

time and energy overhead of existing energy estimation tools.
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CHAPTER 4: SA-LEEF: STATIC ANALYSIS BASED
LIGHTWEIGHT ENERGY ESTIMATION FRAMEWORK

Smart-phones are resource constrained devices and carry limited battery power. Due

to the emergence of rich mobile applications, efficient battery usage has become

a must to meet requirement for recent smart-phone devices. Dynamic analysis

based energy estimation tools considerably use system resources to estimate energy

consumption of smart-phone applications. This chapter discusses the methods and

procedures to solve the problem of traditional dynamic analysis estimation methods

identified in chapter 3.

The contents of this chapter are divided into six sections. Section 4.1 briefly

discusses the design of proposed static analysis based lightweight energy estimation

framework for smart-phone applications. Section 4.2 discusses assumptions and

constraints. Section 4.3 presents a flow diagram and system model of the proposed

SA-LEEF framework. Section 4.4 discusses distinguishing features of SA-LEEF.

Section 4.5 presents the data design to evaluate proposed framework. Lastly, Section

4.6 concludes this chapter and highlights the main findings.

4.1 Proposed Static Analysis Based Lightweight Energy Estimation Frame-
work

This section proposes and presents a 2-tier lightweight energy estimation frame-

work for smart phone applications1. The proposed framework called SA-LEEF

solves the issues of dynamic analysis based energy estimation schemes by employing

static analysis methodology. Static analysis method does not run the application

on smart-phone to estimate energy consumption of the smart-phone application.

SA-LEEF solves the issues of non-deterministic nature of smart-phone applications

1Ahmad, Raja Wasim, Abdullah Gani, Siti Hafizah Ab Hamid, Anjum Naveed, Kwangman KO,
and Joel JPC Rodrigues. "A case and framework for code analysis–based smartphone application
energy estimation." International Journal of Communication Systems (2016)
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based on weighted probability based execution path estimation and static cache

analysis method.

Figure 4.1: SA-LEEF: Smart-phone Application Energy Estimation Framework

Fig. 4.1 demonstrates the proposed 2-tier lightweight estimation framework to

estimate application energy consumption for smart-phones. In comparison to exist-
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ing energy estimation methods, it employs static analysis methodology to not run the

application to estimate its energy consumption. Tier-1 of the proposed framework

is hosted on nearby cloud servers. Alternatively, Tier-2 of the proposed framework

hosts locally on the smart-phone device. SA-LEEF is lightweight by design as, (a)

it does not run the application on smart-phone, (b) it schedules resource expen-

sive tasks on resource-rich cloud servers, and (c) it employs probabilistic analysis of

code to forecast execution paths of application. Proposed framework is generic and

is applicable to all mobile architectures whose ARM-IS energy profile is available on

cloud servers.

Proposed estimation framework comprises a set of modules which are, Collab-

orator, Application Energy Estimator, ARM instruction Energy Profiler, Applica-

tion Analyzer, Power Profile DB, Remote Handler, and Profile Mode, as depicted in

Fig. 4.1. Each module of the framework has some unique features associated with

it to estimate application energy consumption. Among all modules in SA-LEEF, a

few hosts at cloud side (i.e., ARM Instruction Energy Profiler, Power Profile DB,

and Remote Handler) whereas remaining modules reside on smart-phone (i.e., Ap-

plication Analyzer, Collaborator, and Application Energy Estimator). On the cloud

side, all modules except Remote Handler runs in an offline execution mode. On the

other hand, all modules of smart-phone side execute in an online mode to estimate

application energy consumption. Among all modules in SA-LEEF, ARM instruction

energy Profiler is resource expensive as it profiles energy consumption of ARM-IS

for a particular ARM architecture using a number of test programs.

4.1.1 ARM Instruction Energy Profiler

The main responsibility of ARM instruction energy profiler module is to estimate

and log energy consumption of each instruction within target ARM-IS at Energy
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Profile DB module. In contrast to profiling energy consumption of high level source

code operations, ARM Instruction Energy Profiler estimates energy consumption

of low level ARM assembly instructions. Also, during energy estimation of ARM

assembly instructions, it applies neighborhood operation (weighted filter) on test

program’s power profile to improve the estimation accuracy.

ARM Instruction Energy Profiler is a cloud-based offline computational module.

Basic operations in ARM instruction energy profiler includes, (a) instruction test

program generation, (b) test program execution for power profiling, (c) execution

time logging, and (d) energy estimation for individual ARM instructions.

Algorithm 1 details the order of execution of different operations in ARM in-

struction energy profiler module. In the first step, the proposed module runs the

test programs on the smart-phone to record the power profile (using multi-meter)

and execution time for each test program. In the next step, it applies neighborhood

operation on time-stamped power profile (Neighborhood_Operation()) to suppress

the effect of noise due to running of background OS activities such as threads context

switching and garbage collection, to the total estimation accuracy. In the neighbor-

hood operation, it analysis the power profile to identify the abnormal power peaks

within power profile of instructions test programs. In the subsequent stages, it re-

places abnormal power peaks within test programs power profile with the weight of

power consumption readings in its neighborhood. The weight of a power reading

(abnormal power peak) is estimated by finding the average of 8 power values in its

neighborhood. For Pt10 (an abnormal power peak at time "t") in a test program,

neighborhood operation employs "Pt10←
∑14

t=6 Pt

8 " to estimate power consumption

for it (Appendix B). The baseline system power (captured at line 2) is eliminated

from the power profile of test program to isolate test program’s power profile from

the idle system power to ensure accurate instruction energy consumption estimation
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(see line 9-11). The average energy consumption for a single instruction is estimated

based on energy consumed during test program execution, test program execution

time, and test program size as highlighted in Algorithm 1(steps 9-11). In Algorithm

1, TestProgramSize is an integer constant that represents count of statements in

the test program.

Algorithm 1 ARM Instruction Energy Profiler
1: Input: N number of ARM instructions test programs
2: Base_P ←Baseline_Power() .Power Consumption with no-activity on phone

3: for I = 0 to N do
4: < Pow_Prof [I],Exe_TimeI >← Run_Test_Program(I) .Capture Power

Profile and Execution time
5: end for
6: for I = 0 to N do
7: <Pow_Prof [I]>←Neighborhood_Operation(Pow_Prof [I],Weight_Filter)
8: end for
9: for I = 0 to N do
10: Avg_Pow[I]←

∑M
n=1 P ow_P rof [J ]

#ofP owerReadings −Base_P .Eliminate Idle Power for Test
Programs

11: end for
12: for I = 0 to N do
13: ARM_ISA_ENER[I] ← Avg_P ow[I]×Exe_T imeI

T estP rogramSize .Per-instruction Energy
Cost

14: end for
15: Return ARM_ISA_ENER

4.1.2 Application Analyzer

Application analyzer module scans assembly based source code of application to es-

timate the execution flows, storage locations, and loop bounds. In contrast to appli-

cation instrumentation based execution flow analysis, Application analyzer module

uses weighted probability based function to estimate execution paths in an applica-

tion. Moreover, it improves the estimation accuracy of existing code analysis based

estimation methods by adding cache analysis on assembly source code of the appli-

cation. The core responsibility of Application Analyzer module is, (a) finding basic

building blocks of application, (b) execution paths and loops bound estimation for
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each building block, (c) instruction storage location analysis, and (d) classifying

instructions within application into a set of categories.

Algorithm 2 Application Analyzer
Input: Assembly Based Mobile application (App)
1: B{B1,B2,B3....Bn}← Identify_Application_Building_Blocks(App)
2: for I = 0 to N do
3: {∅,∂, h̄} ← LoopsBound_Estimation(BlockI) .∅ = baseline,∂ =

growthrate, and h̄= endline
4: Loops_Count(BlockI ,∅,∂,h̄)
5: ExecutionPath_Estimation(BlockI) .Equation( 4.2)
6: InstructionStorageLocation_Analysis(BlockI)
7: end for
8: for I = 0 to N do
9: CD =MaximumCache_Distance(BlockI ,BlockI)
10: IteratCountBlockI

← Count_Iteration() .Blocks iteration counting
11: InstructionCAnalBlockI

← CacheAnalysis(IteratCountBlockI
,CD)

12: end for
13: for I = 0 to N do
14: BlockIIRAM,ICACH

←Classfier(BlockI , InstructionCAnalBlockI
, IteratCountBlockI

)

15: Return Block{I→N}IRAM,ICACHE
.Instructions classified within each block

16: end for

4.1.2.1 Application Construct Analyzer

The main responsibility of this module is to analyze assembly source code of the

application to predict its run-time execution behavior. Application Construct An-

alyzer scans application assembly source code to find and analyze basic building

blocks of an application. During the analysis process, it estimates execution paths

and loops bounds within building blocks to empower Instruction Storage Location

Analyzer and classifier to classify the instructions based on their storage location

analysis.

For each basic building blocks, App construct analyzer estimates loops bound

based on slicing method. It extracts the loops from the assembly based code to

generate loop slices that contain information necessary to estimate loop bounds.

Slicing method estimate parameters including loop baseline, growth rate, and loop
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final criteria for all loops within each building block (Ermedahl, Sandberg, Gustafs-

son, Bygde, & Lisper, 2007). In next stage, it estimates bound if required vari-

able’s values are already known. Alternatively, if parameters are not pre-defined,

it exploits data set for the variables within the application to choose the high-

est value for worst case bound estimation. For instance, consider a statement

for(i= 0; i <=UNKNOWN ; i++); let’s assume data set for UNKNOWN variable

is {1,6,12,15}. In this case, App construct analyzer will estimate that the body of

loop will execute for 16 times.

Within a smart-phone application, total energy cost highly depends on the ex-

ecution paths it follow during application execution on smart-phone. App construct

analyzer proposes a weighted probability function to statically estimate execution

paths within the application. It analysis parameters within branch headers to es-

timate the probability of execution of code following the branch header. Based on

the probability, it assigns weight to the code followed by the branch statement. It

calculates weight based on Eq. 4.1. In Eq. 4.1, ⊗ describes the bitwise operation

among variables XI and M . pr[XI ⊗M = 1] represents the cases when the proba-

bility is TRUE. Eq. 4.2 demonstrates the proposed model to find total energy cost

of a path within smart-phone application.

Weight=
∑

I∈SETI

pr[XI ⊗M = 1] (4.1)

EExe_path = ENstatmentsIblock
× (weight

M
) +ENstatmentsJblock

×1− (weight
M

) (4.2)
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4.1.2.2 Instruction Storage Location Analyzer

The instruction storage location analyzer module is responsible for estimating stor-

age location of instructions within target smart-phone application. At run-time,

CPU fetches instructions either from cache or memory for execution. Loops and

function calls are the two major entities that execute same code over and over de-

pending on loop bounds and number of function calls, respectively. For the loops

structure, Instruction storage location analyzer estimates storage location of instruc-

tions based on the reference iteration number of the loop. For the first iteration of

the loop, it always estimates RAM as the target storage location as instructions are

copied from RAM to cache. In case of a cache hit, the instructions and data of the

application is fetched from the local cache, whereas, for cache miss case it is fetched

from the RAM storage. Therefore, for the first iteration of the loop, Storage loca-

tion analyzer module result in cache miss for the instructions within the loop body.

During remaining loop iterations, for 20% of the instructions within loop body it es-

timates cache miss whereas for remaining 80% it predicts cache hit (Stallings, 2000;

Guan et al., 2013; Grund, 2012). Except for first loop iteration, the probability of

data access from the cache is high as loop executes the same code over and over.

20% of instructions within loop body are usually LOAD/STORE; therefore, Storage

Location Analyzer considers 20% cache miss penalty. The execution and energy cost

while accessing instructions from local cache and RAM is different due to the high

difference in their access latency as presented in Eq.4.3. Accessing instructions or

data from the local cache consumes less energy compared to RAM access as cache

offers limited access latency.

CacheLatency <RAMLatency < SD−CARDLatency (4.3)
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Functions of an application eliminate the need to write the same code again and

again. Calling a function executes same code segment, again and again, depending

on the number of calls to it. The information about the distance between two calls

to a function helps to statically predict storage location of instructions within the

body of a function. Frequent calls (minimum distance between calls) to the same

segment of code increases the probability to incur high cache hit rate during run

time execution. For a function call, storage location analyzer estimates storage

location for the body of function based on cache distance, the size of the cache, and

cache lines. During analysis, Instruction Storage Location Analyzer calculates cache

distance between function calls by counting instructions that are executed between

two calls to the same chunk of code. In the case of ARM architecture, instructions

are either 32 bit or 16bit long (thumb2 instructions). In the next step, it compares

cache distance to the number of cache lines (already known) to predict the execution

location of the instructions. It estimates a cache hit if cache distance of function

calls is less than the number of cache lines. Otherwise, it predicts cache miss for the

function calls. Eq. 4.4 demonstrates the cache distance between two function calls

accessing the same chunk of code. During static code analysis, it marks the function

calls within application’s code and sums the instructions till the next function call

to the same piece of code (Distance(ni,nj)). In Distance(ni,nj), ni and nj are

the function calls from ith and jth locations from within application source code.

Alternatively, max{α(p)} represents the maximum distance between subsequent

calls; whereas, P (ni,nj) represents sets of paths that an application can take to

reach next function call. Eq. 4.5 decides storage location of instructions based on

the cache distance of the code. Instruction storage location analyzer module also

considers the case when size of the body of a function is higher than cache line size.
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In this scenario, it recursively adopts Eq. 4.5 to estimate storage location.

Distance(ni,nj) =


max{α(p) | p ∈ P (ni,nj)} IFn > 0

0 otherwise

(4.4)

Decision_V ariable=


HIT IFdistance(ni,nj)<K

MISS otherwise

(4.5)

4.1.2.3 Classifier

The main responsibility of this module is to lexically analyze the instructions within

each basic building block of application to classify them into several classes. Classi-

fier considers the output of storage location analyzer module to classify instructions

into two main categories including RAM and system Cache. RAM category includes

set of instructions within the application that are fetched from the RAM memory.

Alternatively, cache category includes instructions which are fetched from the local

system cache. Inside each category, it further classifies instructions into arithmetic,

logical, LOAD/STORE, MOVE, Built-in Libraries, and JUMP categories. The

arithmetic class includes a set of ARM instructions that performs arithmetic oper-

ations such as ADD, SUB, MUL, RSB (C, n.d.). The logical class includes a set

of instructions responsible for performing logical operations on contents of registers

such as ORR, NOR, and AND instructions. LOAD/STORE class includes memory

operation based instructions such as LOAD and STORE instructions. MOVE class

includes all the instructions to perform data movement operations to CPU registers.

Built-in libraries class contains set of libraries to perform required operation such

as scanf and printf. JUMP class contains set of assembly instructions that shift

control to a different segment of code such as bl, ble, and blg (Hohl & Hinds, 2016;
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C, n.d.). Classifier component analyze the instructions within each building block

of application to categorize instructions into aforementioned classes. The output of

this module is the instruction count for each instruction within each instructions

class for both RAM and Cache categories as presented by BlockIIRAM,ICACH
vari-

able in algorithm. 2. The estimator module uses classified instructions to estimate

energy consumption of the application.

4.1.3 Collaborator

Collaborator works as an interface between cloud hosted modules to the one hosted

on the smart-phone device. It is responsible for handling connection management

tasks at the local smart-phone device. In the first step, it establishes the network

connection to a remote server based on IP address and port ID of receiver server.

After the connection is successfully established to the remote cloud, it queries to the

remote cloud for ARM-IS energy profile for the target smart-phone device. Based

on the response from the cloud it dynamically triggers appropriate profiling mode

for energy estimation for smart-phone applications. Profile mode is either local

or remote as shown in Fig. 4.1. It triggers remote profile mode if the ARM-IS

energy profile for the target smart-phone is already available on a cloud server.

Alternatively, if for the target smart-phone device ARM-IS energy profile is not

available, it triggers local profile mode. In local profile mode, it downloads ARM-

IS test programs from the server to generate ARM-IS energy profile locally based

on the Power Tutor energy estimation module. In local profile mode, it runs test

programs locally to record time-stamped energy profile for ARM-IS energy profile.

Once a smart-phone generates ARM-IS energy profile, it optionally stores it back

on a cloud server to make it available for the future queries.
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4.1.4 Application Energy Estimator

Application energy estimator module statically estimates energy consumption of a

smart-phone application based on the inputs from the Application Analyzer, Col-

laborator, and ARM instruction energy profiler modules. In contrast to existing

code analysis based methods, Application Energy Estimator module considers en-

ergy consumption overhead while running concurrent programs on the smart-phone,

user-system interaction, and ARM-IS energy profile downloading cost in addition

to application base cost energy.

Application energy estimator module triggers interaction interface (See Fig. 4.1)

to communicate with collaborator module to access the ARM-IS energy profile for

the required target smart-phone architecture. Estimator module runs the test pro-

gram locally to generate timestamped power profile based on android APIs if col-

laborator triggers local profile mode. In the next step, it considers the output of

application analyzer module to estimate energy consumption of the smart-phone

application. If collaborator module triggers remote profile mode, estimator con-

siders offline generated ARM-IS energy profile to estimate energy consumption of

the smart-phone application. Eq. 4.6 demonstrates energy estimation for a set

of modules within the application. For each block, Application energy estimator

sums the energy consumed by RAM and cache storage location based instructions.

In Eq. 4.6, CountBIRAM
function represents number of times instruction "I" (e.g.,

ADD and SUB) in block "B" has been accessed from the RAM memory. Whereas,

countBICACHE
represents a count of instruction "I" (e.g., ADD and SUB) in block

"B" fetched from the cache. Also, CostICACHE
and CountBIRAM

variables represent

energy consumed while executing instruction "I" on smart-phone when fetched from
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system cache and RAM, respectively.

EBaseCost =
N∑

B=1

M∑
I=1

((CountBIRAM
×CostIRAM

) + (countBICACHE
×CostICACHE

))

(4.6)

Eq. 4.7 represents total energy consumption of an application estimated by the SA-

LEEF framework. In Eq. 4.7, EEviction highlights the amount of energy consumed

due to cache eviction during concurrent program execution on smart-phone device.

Alternatively, EInter highlights the amount of energy consumed when the smart-

phone is waiting for the inputs from the user in interactive applications. Finally,

EDownload demonstrates the total energy consumed while accessing ARM assembly

based source code of application and ARM-IS energy profile from the remote cloud

server.

EnergyT otal = EBaseCost +EEviction +EInter +EDownload (4.7)

4.1.5 Remote Handler and ARM Profile DB

Remote handler is responsible for listening and establishing the connection to the

requests from the smart-phone device. After successful connection establishment,

it queries Power Profile DB to search for the ARM-IS energy profile for the target

smart-phone model. It forwards the ARM-IS energy profile to the collaborator

module if it is available in Power Profile DB. Otherwise, it accesses test programs to

copy it to the collaborator module. ARM Profile DB module logs ARM-IS energy

profile for a set of smart-phone architectures.

4.2 Assumptions and Constraints

• The current research has proposed a model that is useful for energy estimation

of disk I/O based smart-phone applications (e.g., the audio song playing). The

interactive smart-phone applications require user input at different intervals
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when the application is executed on smart-phones. The variance in delays

by the users, while data is input to the application, is not considered in this

system.

• The current research has been carried to estimate energy consumption of na-

tive smart-phone application (written in objective C). Native smart-phone

applications are high-performance applications and can access the hardware

components of smart-phone.

• Application developers set the possible values of variables in the application

for ease of analysis. In proposed research, it is assumed that the possible value

set for the majority of the variables in the application is already available. The

proposed model considers these values to decide whether a branch is taken or

not taken.

• The energy estimation framework predicts storage location of data and in-

structions based on the size of the cache. It is assumed that size of the cache

and number of cache lines are already known to the estimation framework for

the storage estimation of instructions.

• The proposed framework is valid for the applications for which accessing obj

dump is possible. It estimates energy consumption based on ARM-IS energy

profile. Therefore, it is a must for the target application to be in assembly

language. Linux offers obj dump utility to extract the obj dump of the target

application.

• To use the proposed SA-LEEF system, a smart-phone user has to access ARM-

IS energy profile from the remote server. Therefore, a stable network con-
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nection is a mandatory requirement to use the proposed energy estimation

framework.

• It is assumed that only one user application other than the SA-LEEF is run-

ning during energy estimation of smart-phone application.

4.3 System Overview

This section discusses the flow diagram and system model of the proposed SA-LEEF

framework.

4.3.1 Flow Diagram of SA-LEEF Framework

Fig. 4.2 demonstrates the execution flow of the activities within SA-LEEF frame-

work. It presents activities that run on the smart-phone side in online mode to

estimate energy consumption of applications. Before smart-phone application en-

ergy estimation, SA-LEEF establishes the network connection to the remote cloud

to access the ARM assembly code of the target smart-phone application. After

accessing the assembly source code, it triggers application analyzer to, (a) find the

basic building blocks in source code of application, (b) estimate loop bounds, (c)

analyze storage location of instructions, and (d) classify the instructions within each

building block of application. After application analysis, it calls collaborator mod-

ule to access the ARM-IS energy profile from the cloud server. Collaborator triggers

remote profile mode if ARM-IS energy profile for the target mobile is already avail-

able on cloud servers. Otherwise, it triggers local profile mode to locally generate

ARM-IS energy profile based on android power APIs. After this phase, estimator

module accesses ARM-IS energy profile and classified blocks of the application to

estimate energy consumption of the smart-phone application. If the local profiling

mode is selected, it (optionally) store back the ARM-IS energy profile on the cloud
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Figure 4.2: Flow Diagram of SA-LEEF Framework

for future accesses.
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4.3.2 SA-LEEF System Model

Eq. 4.8 presents system model of the proposed framework for energy estimation of

smart-phone applications. In comparison to existing code analysis based energy esti-

mation models, the proposed SA-LEEF system model has considered static analysis

of the code to overcome the overheads of existing models. Existing code analysis

based energy estimation models overlooked the cache analysis on the source code

of the application while estimating base cost energy of an application. Base cost

energy of a program states the amount of energy that the instructions of an ap-

plication consumes during execution on smart-phone. However, SA-LEEF system

model has improved the base cost energy estimation by adding cache analysis on the

source code to present more real execution scenario. Also, the proposed SA-LEEF

system model has considered weighted probability based execution flow estimation

instead of application instrumentation method to estimate execution flows for min-

imizing energy estimation time (base cost energy estimation module). Moreover, as

compared to existing models, SA-LEEF system model has considered the associated

overheads due to frequent context switching of applications (cache eviction). During

application execution, user interact with application to provide the required inputs.

The proposed SA-LEEF framework has modeled the user-system interaction module

to simulate run time execution environment.

In Eq. 4.8, total energy consumption of a smart-phone application is divided

into (a) program base cost energy, (b) system idle period energy consumption,

(c) concurrent program execution energy overhead, and (d) network ARM-ISA ac-

cess cost. Program base cost energy (EBaseCostEnergy) states energy consumed by

source code instructions of the smart-phone application. Alternatively, (NIdletime×

EIdleState) demonstrates energy consumed by smart-phone device when target smart-
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phone application waits for the input event from the user. Normally, a smart-phone

runs more than one application at a time. Co-hosting applications share the re-

sources of the smart-phone device. In Eq. 4.8, ECon−Exe−Over represents the energy

overhead occurred due to co-running smart-phone applications because of applica-

tion context switching.

TotalEnergy =EBaseCostEnergy +(NIdletime×EIdleState)+ECon−Exe−Over +EISA−Access

(4.8)

In the proposed model, NIdletime represents count of the number of times application

waits for the input events from the smart-phone user. For the interactive smart-

phone applications such as mobile-games, the value of NIdletime is very high as

application needs user inputs for decision making. However, Sdcard targeted I/O

based applications (e.g., audio song player) does not depend on user’s inputs to

perform desired functionality. Therefore, for Sdcard I/O based applications, value

of NIdletime and EIdleState parameters is negligible. ECon−Exe−Over demonstrates

amount of energy consumed by SA-LEEF when executed in parallel with other

applications on the smart-phone device. Concurrent application execution leads to

cache evictions (shared resource) that as a result increases application execution

time and surges energy consumption of the smart-phone application. EISA−Access

parameter demonstrates the amount of energy required to access ARM-IS energy

profile from the remote cloud server.

EBaseCostEnergy = ESystem−Libraries +EApp−developer−modules (4.9)

Eq. 4.9 estimates base cost energy of a program. EBaseCostEnergy of a program
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demonstrates the energy consumed by the smart-phone application based on fixed

energy cost model of ARM-IS. EBaseCostEnergy of a smart-phone application as de-

picted in Eq. 4.9 is attributed as the energy consumed by the library functions and

user defined modules within smart-phone application. Each library function has a

fixed energy cost associated with it depending on the nature of operation it performs

when it is called from within the application. Also, ESystem−Libraries is calculated

based on the sum of energy consumed by all the built-in functions within applica-

tion code as shown in Eq. 4.10. In the said equation, Mod parameter describes a

particular user defined module within smart-phone application. In eq. 4.10, ELF

states energy consumption of a library function; whereas, COUNTLF determines

the execution frequency of a particular library function. For M = 0, the number of

calls to this module is fixed to one as it represents main function of the application.

ESystem−Libraries =
N∑

Mod=0
(

K∑
LF =0

ELF ×COUNTLF ) (4.10)

EApp−developer−modules demonstrates energy consumed by the part of a smart-phone

application written by an application developer to implement the specific function-

ality of the application. The code within smart-phone application considers modular

structuring to reduce the complexity. The total energy of application in terms of ap-

plication modules is estimated as the sum of energy consumed by individual modules

times number of calls to those modules as shown in Eq.4.11.

EApp−developer−modules =
M∑

n=0
EModulesn×N (4.11)

Eq. 4.12 demonstrates the energy estimation within each module of application.

For each module, the total energy is attributed in terms of set of instructions exe-

cuting in sequential flow order (EF ×Fcount), paths dependent instruction execution
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(EExeflowi
), and a set of statements executing within loops (ELoopi

).

EModules =
N∑

F =0
EF ×Fcount +

n∑
i=0

ELoopi
+

n∑
i=0

EExeflowi
(4.12)

Energy consumption of a loop structure highly depends on the count of iterations

and size of program enclosed within the body of the loop. Eq. 4.13 demonstrates

that total energy of a loop is composed of two blocks including loop body and

loop invariant initialization. Considering loop body, being executing repeatedly,

SA-LEEF considers cache access pattern to minimize the total energy consumption

of an application based on cache access based ARM-IS energy profile. For the first

iteration of the loop, SA-LEEF estimates instruction energy based on RAM memory

model. However, for the remaining iterations, majority of the time, it fetches in-

structions from the local cache as loops repeatedly executes same chunk of code over

and over. However, it was observed that for the iterations following the first itera-

tion, 20% of the instructions are fetched from the RAM due to load store operations

as highlighted in eq. 4.14 and eq. 4.15. In the equation, ELoop−Invariant−Initialization

demonstrates energy consumed during initialization of loop invariants. It consists

of one MOVE, one LOAD, and one STORE operation.

ELoop = ELoop−Block +ELoop−Invariant−Initialization (4.13)

ELoop−Block = E1 +E2 +E3 (4.14)
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E[1,2,3] =



E1←
∑N

i=1 icount×Ei, [∀i,Ei ∈RAM −Model] N = 1

E2←
∑0.8×N

i=1 icount×Ei, [∀i,Ei ∈ Cache−Model] N > 1

E3←
∑0.2×N

i=1 icount×Ei, [∀i,Ei ∈RAM −Model] N > 1

(4.15)

Eq. 4.16 models energy consumption of conditional statements based on pro-

posed weighted probability function as described in previous section. Eq. 4.17 and

Eq. 4.18 estimates energy consumption of source code blocks following the condi-

tional statements. EBodyT RUECase
×P describes the energy consumed by a block

following branch statement (branch taken); whereas, (P −1)×EBodyF ALSECase
rep-

resents the total energy consumption if branch is not taken.

EExeflow = EBranchcheck
+EBodyT RUECase

×P + (P −1)×EBodyF ALSECase
(4.16)

EBodyT RUECase
=

N∑
i=1

icount×Ei (4.17)

EBodyF ALSECase
=

N∑
i=1

icount×Ei (4.18)

SA-LEEF, in comparison to existing code analysis based estimation methods,

has considered the cache eviction overhead during energy estimation of smart-phone

application. The adding of cache eviction overhead has improved the realistic ex-

ecution environment for SA-LEEF framework. Eq. 4.19 demonstrates the cache

eviction energy overhead when concurrently more than one applications are run-
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ning and sharing the system cache. In the mentioned equation, TimeCon−exe and

TimeP rogram represents the execution time of a program running with its tenants

and in isolation, respectively. Alternatively, Base−PowerCache−Evi demonstrates

the average power consumed when cache is evicted (Harizopoulos & Ailamaki, 2004).

ECo−Ex−Ov = (TimeCon−exe−TimeP rogram)×Base−PowerCache−Evi (4.19)

The execution time of a program is statically estimated by dividing size of the

program to the processor speed as shown in Eq. 4.20. The size of the program is

estimated based on instructions count and CPI of instructions in each category of

instructions as shown in Eq. 4.212.

TimeP rogram = Program−Size
Processor−Speed

(4.20)

Programsize = Instructions− count×CPI (4.21)

The energy consumption while accessing the ARM-IS energy profile from the re-

mote cloud is modeled in Eq. 4.22. In Eq. 4.22, Activitytime parameter describes

the amount of time a particular networking task consumes performing network ac-

tivity when the file is accessed from the remote cloud. Eq. 4.23 has modeled activity

time on Wi-Fi link in terms of throughput and the total data size of the target file.

AvgP ower of the Wi-Fi module represents the average power consumed during net-

work activity to download a text file from the cloud server. Activitytime is estimated

based on ratio of data size to the total bandwidth of the system. Bandwidth of the

2http://stackoverflow.com/questions/35208398/calculate-cpu-execution-time
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Wi-Fi links is easy to know as many apps at play store are publicly available to

estimate network bandwidth.

EISA−Access = Activitytime×AvgP ower (4.22)

Activitytime = Data− size
Bandwidth

(4.23)

4.4 Distinguishing Features of SA-LEEF

This section comprehensively discusses distinguishing features of SA-LEEF in com-

parison to traditional dynamic analysis based energy estimation schemes.

4.4.1 Offline Usability

Traditional dynamic analysis based energy estimation schemes run target appli-

cation on smart-phone to estimate its energy consumption. Traditional dynamic

analysis based energy estimation schemes either exploit pre-built power models or

design their own to estimate energy consumption of the smart-phone application.

SA-LEEF exploits static analysis based methodology to estimate energy consump-

tion of smart-phone applications. Being a 2-tier architecture by design, it exploits

offline usability feature to schedule resource expensive tasks on resource-rich cloud

servers for effective resource usage. Among all operations in static analysis based

estimation, energy profiling of ARM-IS is most expensive task. ARM-IS energy

profiling is one-time activity as SA-LEEF log it on the remote cloud to offer ARM-

IS energy profile as-a-service. Offline usability feature hides per ARM instruction

energy estimation finding complexity and offers a simple profile-as-a-service inter-

face. Also, SA-LEEF hosted source code extraction from the executable program at

cloud server to optimally utilize underlying resources of smart-phone. Offline usabil-
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ity feature empowered the SA-LEEF framework to augment smart-phone battery

lifetime.

4.4.2 Lightweight Design

Traditional dynamic analysis based energy estimation tools inefficiently utilize re-

sources of a smart-phone device during energy consumption estimation of a smart-

phone application. Traditional dynamic analysis based energy estimation schemes

consume a significant amount of CPU and RAM storage as discussed in chapter

3 while estimating energy consumption of smart-phone application. As discussed

in chapter 3, majority of CPU time is consumed while estimating loops and func-

tion calls of smart-phone applications. Loops repeatedly execute the same chunk of

code to perform specific tasks. Calling a peace of code over and over at different

time intervals from different locations increases the execution time of application.

Lightweight static analysis estimation design of SA-LEEF suppresses execution time

of loops and function calls as it scans application only three times. Moreover, con-

sidering dynamic analysis based estimation, estimating the execution path based

on the cache-look-ahead buffer is expensive especially when it leads to false pre-

diction. SA-LEEF considers weighted probabilistic estimation approach to find the

execution path within the application for effective resource usage. SA-LEEF sig-

nificantly reduces the energy estimation time and system resources ultimately to

achieve lightweight solution.

4.4.3 Non-incentive Based ARM-IS Profile Sharing

Unlike traditional utilization based energy estimation tools, SA-LEEF is more trust-

able as it is not designed only for a few set of smart-phone devices. It is applicable

for all smart-phone devices whose ARM-IS energy profile is available. Traditional

utilization based tool is only accurate for the smart-phone for which it is devel-
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oped. For instance, Power Tutor is platform dependent and accurately estimates

energy consumption for HTC Desire and Google Nexus One smart-phone devices.

Alternatively, SA-LEEF is a generic framework that can be used for all types of

smart-phones (ARM-IS-Energy profile-as-a-service). It also offers test programs to

the requesting host to locally generate ARM-IS energy profile based on android

power APIs. Once ARM-IS energy profile is generated, it offers a non-incentive

ARM-IS energy sharing method to store ARM-IS energy profile on a remote cloud

server for future requests. This dual profiling mode increases generality and adapt-

ability features of SA-LEEF.

4.4.4 Energy Estimation Support for Native Smart-phone Applications

SA-LEEF support energy estimation of native smart-phone applications. Native

smart-phone applications are high-performance applications as they have direct ac-

cess to the hardware components such as a camera. Estimating energy consumption

of an application at high source code level effects its applicability for other high-level

languages due to high differences in their syntax. SA-LEEF is easily applicable for

all type of applications as it considers an assembly based application to estimate its

energy consumption. Estimation based on assembly code is not affected by the opti-

mization within compiler design; therefore, it gives more accurate results compared

to high level energy profiling based solutions. For energy estimation, SA-LEEF

generates assembly file of an executable program using ARM obj dump program.

Obj dump based assembly code represents the lower system operations. SA-LEEF

schedules application translation process on cloud servers to augment device battery

lifetime.
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4.4.5 Ground For Optimization

Traditional energy estimation tools estimate energy consumption at the coarse gran-

ular application level. However, SA-LEEF estimates energy consumption at fine

granular loops, functions, instruction, path, and library routine. Also, it estimates

energy consumption at the application level. SA-LEEF assists application devel-

opers to estimate energy consumption of their mobile applications at earlier devel-

opment stages. Based on energy assessment of application at earlier development

stages, developers can redesign their application for effective battery usage. Due to

fine granular energy estimation support, SA-LEEF is an ideal platform that assists

developers to optimize their application code to improve battery charge usage.

4.4.6 Green Mobile Computing

Traditional dynamic analysis based energy estimation tools consume a significant

amount of smart-phone resources as their estimation time is very high. However,

energy estimation time of SA-LEEF framework is very limited as it considers the

static analysis of the application for energy estimation. As estimation overhead is

proportional to the total execution time of the application, therefore, SA-LEEF im-

poses limited energy overhead on smart-phone devices during the estimation process.

Limited energy overhead augments device battery lifetime. Energy estimation based

on lightweight estimation tool is the first step towards green mobile computing.

4.4.7 Non-voluminous Communication Overhead

SA-LEEF exploits network links to download ARM-IS energy profile and assembly

code of the smart-phone application (executable) from the cloud servers. The size

of these files is very limited. ARM-IS energy and application’s assembly version

are in simple plain text format. Therefore, the size of these files is in the range of

kilobytes normally. As the majority of smart-phones are Wi-Fi enabled or equipped
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with 3G radio, therefore, downloading these files does not require ample time and

energy. Also, data transfer over network communication link is a one-time activity.

Therefore, it does not significantly impact the total energy consumption budget

of smart-phone. MCC considers code size as one of the parameters to decide the

execution location of the smart-phone application. In contrast to code size, energy

consumption of an application highly depends on the type of operations within

it. SA-LEEF when integrated with MCC computational offloading frameworks can

improve the accuracy in decision making for execution location of the application.

4.5 Data Design

This section describes method and metrics to evaluate SA-LEEF framework.

4.5.1 SA-LEEF Evaluation Metrics

The proposed study has identified energy estimation accuracy, estimation time, and

energy estimation overhead as three metrics to investigate the performance of the

proposed framework.

4.5.1.1 Energy Estimation Accuracy

Energy estimation accuracy relates closeness of measured data using SA-LEEF to

the ground truth value. The energy estimation accuracy is measured in percentage

and is calculated based on the Eq. 4.24. In Eq. 4.24, EnergyGroundT ruthvalue states

the reference value to estimate accuracy. In the current case, this study has chosen

Measurement based methods as the reference values (EnergyGroundT ruthvalue) to

highlight accuracy of SA-LEEF. Alternatively, EnergySA−LEEF−Estimation states

energy consumption of smart-phone application estimated using SA-LEEF frame-
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work.

Accuracy = EnergySA−LEEF−Estimation

EnergyGroundT ruthvalue
×100 (4.24)

4.5.1.2 Energy Estimation Overhead

Energy estimation overhead highlights how much energy the proposed SA-LEEF

framework has consumed when estimating energy consumption of the smart-phone

application. In this case, the proposed study has chosen a measurement based

method to find the estimation overhead of SA-LEEF framework. Eq. 4.25 high-

lights the model to estimate energy overhead of the proposed SA-LEEF framework.

In the mentioned equation, SA−LEEFEstimat−T ime describes the total estimation

time of SA-LEEF framework to analyze and estimate energy consumption based

on application source code. Alternatively, SA−LEEFP ower−Consump demonstrates

amount of power (average) SA-LEEF consumes during analyzing and estimating

smart-phone application energy consumption. The unit of energy estimation over-

head is joule.

Estimation−Overhead= SA−LEEFEstimat−T ime×SA−LEEFP ower−Consump

(4.25)

4.5.1.3 Energy Estimation Time

Energy estimation time states the amount of time SA-LEEF framework takes to es-

timate energy consumption of the smart-phone application. It includes the time to

estimate base cost energy of smart-phone application, context switching overhead,

time for ARM-IS energy profile downloading from the remote cloud server, and

user-system activity time as shown in Eq. 4.26. In Eq. 4.26, TBaseCost represents

the time SA-LEEF takes while estimating the base cost energy of the smart-phone
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application. Alternatively, TEviction highlights the context switching time overhead

due to cache eviction owing to smart-phone resource sharing among tenant appli-

cations. Finally, TInter and TDownload states the user system interaction time and

time to download ARM-IS energy profile from the remote cloud server, respectively.

Estimation−Time= TBaseCost +TEviction +TInter +TDownload (4.26)

4.6 Conclusions

In this chapter, a 2-tier lightweight energy estimation framework for energy estima-

tion of native smart-phone applications is proposed. Traditional dynamic analysis

based energy estimation schemes run the application on the smart-phone device

to estimate its energy consumption. However, running smart-phone application on

the smart-phone device for energy estimation significantly consumes smart-phone

resources. The distinguishing feature of SA-LEEF is to consider static analysis to

estimate energy consumption of the smart-phone application. The applicability of

static analysis based energy estimation is affected by the non-deterministic execution

behavior of smart-phone applications.

SA-LEEF proposes a weighted probability based execution path estimation

method to resolve the issue of execution path estimation within a smart-phone

application. Moreover, it employed a cache distance based method to predict the

storage location of instructions within source code. The slicing based loop estimation

feature of SA-LEEF empowered it to estimate bounds for loops. The incorporation

of dual profiling mode in SA-LEEF increases its adaptability and generality. Also,

the adoption of 2-tier design empowered SA-LEEF to lessen high profiling time and

energy estimation overhead to propose a lightweight design. It is concluded that
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SA-LEEF provides a lightweight energy estimation solution for energy estimation

of native smart-phone applications.
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CHAPTER 5: EVALUATION

This chapter aim to report evaluation process opted to evaluate SA-LEEF frame-

work. It discusses tools, experimental setup, benchmark applications, evaluation pa-

rameters, and performance analysis of proposed framework. The evaluation process

analysis performance of different components of SA-LEEF such as ARM Instruction

Energy Profiler, Application Analyzer, and Collaborator (network communication

energy). It also reports energy consumption overhead due to concurrent application

execution on smart-phone device owing to cache eviction. To validate the findings

of different modules of SA-LEEF, val-grind application profiling software is used.

Alternatively, energy consumption during network activity for ARM-IS and appli-

cation’s assembly code downloading has been tested using the Power Tutor 4.0.1

energy estimation tool.

This chapter is organized into seven sections. Section 5.1 discusses the exper-

imental setup, devices, and benchmark applications for the evaluation of SA-LEEF

framework. Section 5.2 discusses the method to estimate energy consumption of a

single ARM assembly based instruction within ARM-IS. It presents data collection

for highlighting the effect of storage location on energy consumption of an instruc-

tion. It presents an offline neighborhood-based noise suppression method to remove

outliers from the collected data. Section 5.3 discusses network energy consump-

tion cost while downloading application’s assembly code and ARM-IS energy profile

from local and remote servers. Section 5.4 debates on method and data collection

for concurrent program execution on a smart-phone device. Section 5.5 analysis

application analyzer module of SA-LEEF framework to count and classify the in-

structions within a smart-phone application. Section 5.6 discusses the method and

base cost power consumption of SA-LEEF framework. Section 5.7 concludes the
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whole chapter to verify the objectives of this chapter by presenting an overview of

findings.

5.1 Evaluation of Proposed SA-LEEF Framework

SA-LEEF framework is designed for energy estimation of native smart-phone appli-

cations based on static analysis method. SA-LEEF estimates energy consumption

based on the assembly code version of the smart-phone application. SA-LEEF

framework receives input from ARM instruction energy profiler, application ana-

lyzer, and collaborator modules, to estimate energy consumption of the smart-phone

application.

A prototype of SA-LEEF is developed and deployed on a smart-phone device

and a nearby server to host ARM-IS energy profile. Multiple compute-intensive

benchmark applications are used to analyze the performance of SA-LEEF. The data

for benchmark applications is collected through application profiling. For validation

of application profiling process, Val-grand application profiling tool is used. The

energy consumption during network activity is collected through the Power Tutor

energy estimation tool. For network power consumption estimation, client/server

tests are performed to analyze energy consumption during application downloading

process for different sizes of data. For SA-LEEF implementation, ARM assembly,

C++ library, and EM6000 tool Kit are used. Server side ARM instruction energy

profiler module exploits Linux based ARM-objdump utility to generate assembly

code version of the native smart-phone application. Compared to non-native smart-

phone applications, native smart-phone applications are of high performance. Given

below is a brief description of the experimental setup, devices used during experi-

mentation, and benchmark applications.
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5.1.1 Evaluation Set-up

Figure 5.1: An Overview of Evaluation Setup for SA-LEEF Framework

The proposed energy estimation framework is evaluated based on experimen-

tation on real devices. The main reasons for considering real experimentation are

the high estimation time for simulation-based methods (application profiling case).

Also, the existing simulation-based methods either does not support smart-phone

application energy estimation or are not mature enough to provide technical capabil-

ities to estimate energy consumption of the smart-phone application. Alternatively,

real device based experimentation gives an in-depth knowledge about the perfor-

mance of the system under observation for multiple parameters. Simulation-based

solutions, as they simulate the real smart-phone devices, are vulnerable to results
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skewing and estimation that leads to low accuracy.

The physical server hosts ARM-IS energy profile and is located within the

premises of a building as depicted in Fig. 5.1. On smart-phone device, a prototype

of SA-LEEF runs that accesses assembly code of the native smart-phone application

and ARM-IS energy profile for the target smart-phone architecture from the server.

It analyzes the smart-phone application and employs ARM IS energy profile to

estimate energy consumption of the application.

5.1.1.1 Experimental Devices

To prepare the experimentation, one smart-phone device, one desktop server, Cisco

Linksys WRT54GL wireless communication access point, Multi-meter, and a sense

resistor are used. The chosen desktop server is very powerful as it carries Intel i5-

2500 processor having 4GB RAM capacity, 3.3 GHz clock speed, 32-bit Windows

7 professional, and 1 TB storage, accessible via a wireless connection. The desk-

top server hosts Power Profile DB, Remote handler, and ARM instruction Energy

profiler module of the SA-LEEF framework. Smart-phone device hosts application

analyzer, collaborator, and application energy estimator modules of SA-LEEF for

energy estimation of smart-phone applications. Main features of Google Nexus One

smart-phone device includes, (a) Dual Core 1.0 GHz Cortex-A9 CPU, (b) 802.11

a/b/g Wi-Fi radio, (c) 1GB RAM storage, (d) 32 GB storage, (e) android v2.3.6,

(f) Adreno 200 GPU, and (g) 1400mAh Li-ion battery. For wireless communication

between smart-phone and desktop server, Cisco Linksys WRT54GL is used.

5.1.1.2 Benchmark Applications

To evaluate the performance behavior of SA-LEEF framework, this study has con-

sidered several benchmark applications. Chosen benchmark applications investigate

CPU performance and memory data access speed. There are four main reasons be-
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hind choosing the selected benchmark applications. Firstly, as SA-LEEF targets

energy estimation of disk I/O based applications; therefore, during benchmark se-

lection process it was ensured that chosen benchmark application does not require

human interaction during its execution. Secondly, the framework operates on na-

tive smart-phone applications (coded in C/C++). Therefore, during the selection

process, this study considered that chosen benchmark should be coded in C/C++

language. Thirdly, SA-LEEF considers energy estimation of disk I/O based appli-

cations that frequently operates on the storage memory of smart-phone. Therefore,

this study has selected only those benchmark applications that heavily performs

memory operations. Lastly, while choosing benchmark applications, it is ensured

that the selected benchmark is an open source application.

This study has selected nine benchmark applications while considering the con-

straints as mentioned above. The chosen benchmark applications include Mem-

Speedi, Dhrystone2, RandMemi, FFT1, Nested Branches, Factorial, NativeWhet-

stone2, LivermoreLoops2, and LinpackSP2. Given below is a brief overview of se-

lected benchmark applications.

MemSpeedi MemSpeedi investigates RAM and cache data access rate in megabytes

per second in the range of 2× 8KB(16KB) until 2× 32MB(65536KB). It per-

forms operation on arrays of cache and RAM based data to estimate memory

data accessing speed. It operates on single and double precision float point data

using x[m] = x[m] + s ∗ y[m] and x[m] = x[m] + y[m] calculations. Alternatively,

for single and double integer operations it employed x[m] = x[m] + s+ y[m] and

x[m] = x[m] + y[m], respectively. MemSpeedi operates on 64MB size array of inte-

ger values to access data from different offsets such as 1, 2, 4, 8, 16, and 32 (Batyuk

et al., 2009).

Dhrystone2 Dhrystone2 benchmark is an integer performance measurement
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benchmark application. It analysis performance of CPU in terms of million of in-

structions per second (MIPS). Dhrystone2 has two versions including non optimized

and optimized version. In this study optimized compiled version of dhrystone2 for

the experiments is used. The code and data sizes of dhrystone2 benchmark is very

small. It includes basic arithmetic and string based operations (Weiss, 2002).

Nested Branches Nested branches is a synthetic benchmark and is composed

of a set of basic arithmetic instructions written inside the branch statements. The

code within branch statements performs integer and floating point operations on the

arrays. The operations on array repeatedly update the stored elements to frequently

update the data inside RAMmemory. Inside Nested Branches benchmark, the depth

of branching is set up to four levels to execute a bunch of code.

Factorial Factorial is a synthetic benchmark application that calculates factorial

of an integer number using recursion as highlighted in Eq. 5.1. It is a compute

bound benchmark application to measure the performance of CPU. In the estimation

method, 99999 was chosen as input number to estimate energy consumption during

factorial calculation. The loop within factorial benchmark implements Eq. 5.1 to

recursively call itself for factorial calculation.

N ! =N × (N −1)!,N > 0 (5.1)

RandMemi RandMemi benchmark is a memory performance measurement bench-

mark application (Weiss, 2002). The detail on NativeWhetstone2, LivermoreLoops2,

and LinpackSP2 is provided in chapter 3. During the experiments, default settings

of all the chosen benchmark applications are considered 1.

1www.roylongbottom.org.uk/android%20benchmarks.htm
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5.2 Data Collection for ARM-IS Energy Consumption

This section empirically validates ARM-IS energy profiling module of SA-LEEF

framework. It reports data collection for accessing and executing assembly based

code of an application from RAM storage and local cache. It also reports the effect

of registers reordering within the arguments of an instruction to the total energy

consumption of a an assembly based instruction.

Energy consumption of a single instruction is modeled as the energy cost dur-

ing different CPU pipeline stages such as instruction fetch, decode, execute, store,

and memory write-back operations. Each CPU pipeline stage exhibits dissimilar

execution time and energy consumption. However, execution time and energy con-

sumption across CPU pipeline stages is very minimal; also, all smart-phone model

architectures does not support finding energy consumption at these lower architec-

ture levels. Therefore, this study has designed and tested different test programs to

estimate energy consumption of each ARM-IS instruction.

5.2.1 Test Program Design and Power Measurement Setup

This section discusses the design of test programs proposed to estimate energy con-

sumption of ARM-IS instructions. It also discusses measurement setup for profiling

power consumption of test programs.

ARM-IS defines set of operations that a particular ARM architecture per-

forms. The execution time for each ARM-IS instruction (e.g., ADD, SUB, MUL,

and LOAD) is different and highly depends on the functionality it performs. The

assembly based ARM instructions takes very limited time when it is executed on

ARM based smart-phone devices. Therefore, it is difficult to directly estimate en-

ergy consumption for a single ARM based assembly operation. To handle this issue,

a set of test programs are developed that assists in estimating energy consumption
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of a single ARM based assembly instruction. Each test program is designated to

estimate energy consumption of a single ARM based assembly operation (Tiwari et

al., 1994).

Design of a test program comprises a sequence of same instance of an ARM

assembly instruction enclosed in tight loops executing millions of times as shown in

Fig. 5.2. The size of each test program consists of 2×1012 instances of an instruction

(Appendix B). The size of the test program represents the number of instructions

that are executed during its execution on smart-phone device. The aforementioned

size of test program is chosen such that it collects sufficient power readings to es-

timate energy consumption for the target ARM assembly based instructions. For

instance, considering test program for ARM assembly based LOAD operation, it

took 80s when executed on chosen smart-phone device.

Figure 5.2: Test Program Design (Cache Based Storage Location Analysis)

During application execution, instructions are either loaded from cache or mem-

ory storage locations. Therefore, two types of test programs are designed. First
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category of test programs accesses data and instructions from local cache. Alterna-

tively, second category of test programs accesses data and instructions from RAM

storage. Design of a test program belonging to first category of test programs (Cache

based access) executes instructions sequence in loops to increase the probability of

cache hits. The size of the loop is chosen based on the upper bound estimation of

cache size (16K). For the second category of test programs (RAM based access),

the proposed test programs comprise of instructions executing in a sequence. In

the sequential order of execution, CPU always fetches instructions from the RAM

storage.

The energy consumption of an ARM assembly instruction is estimated based

on the execution profile of the test program. As discussed in chapter 4, for each test

program, the total execution time, size of the test program, and average power con-

sumption rate assists estimating its energy consumption. For power measurement

for the test programs, EM6000 multimeter is used. The main reason of choosing

EM6000 multimeter2 is its high rate to capture enough power samples. EM6000

captures three power samples per second. Also, EM6000 is robust and can capture

voltage/current drop up to 6000 maximum value. It measures true root mean square

(RMS) values of AC voltage and current. It is accurate and offers 5% to 95% duty

cycles. The other differentiating features of EM6000 includes, 600m/6/60/600V DC

voltage, 6/60/600 AC voltage, 9.9999.99 MHz frequency, 4000 Micro farad capaci-

tance, and approximately 3.0V diode check. EM6000 captures voltage and current

drop across a resistor attached to the power rail of a smart-phone device. We have

chosen 1 ohm resistor to attach it to the battery terminals of the smart-phone device

for voltage/current measurements.

Fig. 5.3 demonstrates the experimental setup to estimate energy consumption

2www.all-sun.com/en/d.aspx
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of ARM IS based assembly instructions. In the designed circuit, the battery is

externally connected via a high precision resistor to the smart-phone battery termi-

nals to record voltage and current drop as shown in Fig. 5.3. However, inserting a

resistor increases the resistance of the circuit. But, as the chosen sensor offers low

resistivity; therefore, resistance of circuit increases with low rate (less than 1%). To

capture voltage and current drop during test program execution on the smart-phone

device, EM6000 is interfaced to the sense resistor as shown in Fig. 5.3.

Figure 5.3: Experimental Setup for ARM-IS Energy Profiling

The energy consumed by each test program is calculated based on Eq. 5.2 and

Eq. 5.3. Here, "T" represents the total execution time of test program, whereas, "P"

states average power consumed in terms of current (I) and the voltage drop (VCC)

during test program execution on smart-phone. Energy consumption for a single

instruction in a test program is estimated using Eq. 5.4. In Eq. 5.4, SizeT estP rogram

represents the total size of the test program. In current case, SizeT estP rogram is

2× 1012. Furthermore, ET estP rogram demonstrates total energy consumed during
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test program execution on smart-phone device. The power profile of an instruction

contains various noise values due to background processes running on smart-phone.

To suppress the noise, neighborhood operation is selected to guaranty high estima-

tion accuracy.

ET estP rogram = P ×T (5.2)

where,

P = I×VCC (5.3)

EInstruction = ET estP rogram

SizeT estP rogram
(5.4)

The power consumption of OLED screen highly depends on its brightness level (Carroll

& Heiser, 2010). In order to validate the experimental setup as shown in Fig. 5.4, the

experiments are performed to analysis power consumption for chosen smart-phone

device. Prior to experiments, all unnecessary applications and sensors were turned

off to minimize the noise. In Fig. 5.4, power consumption analysis is performed for

three modes of smart-phone including Idle, Idle Full-Back-light, and Idle Dim-Light.

In Idle mode, smart-phone does not perform any activity except running background

processes to manage its resources. In idle Full Back-light mode, the back-light of

OLED screen was set to its full brightness level. However, for idle Dim-Back-light

mode, the brightness level of OLED was set to dim level. The experimental setup

has correctly estimated the power consumption for smart-phone for its three modes.

In the experiment it was noticed that brightness level of OLED effects the total

power consumption. It was noticed that the power consumption of smart-phone

while setting the brightness to its highest brightness level is greater than its dim
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brightness mode.

Figure 5.4: Google Nexus One’s Power Consumption Analysis for its Idle Execu-
tion Mode

5.2.2 Analysis of Outliers in ARM-IS Power Profile

Power profile of a test program exhibits few abnormal power peaks called noise data.

The main reason of this noise is the resource sharing by tenant processes running in

the background of smart-phone device or tail energy of smart-phone components.

In this section, the chosen method to suppress this noise is discussed.

Figure 5.5: Test Program Power Consumption Behavior (AND Operation)

Fig. 5.5 and Fig. 5.6 demonstrates power consumption behavior of a test pro-

gram on smart-phone device. In the mentioned figures, X-axis represents the exe-

cution time, whereas, Y-axis highlights power consumption in milliwatt (mW). As
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depicted from Fig. 5.5 and Fig. 5.6, power consumption varies a little over total

execution time frame except for a few high power peaks. For instance, in Fig. 5.5

at execution time 6, 41, 55, 83, 86, and 95s, the power consumption is 23mW,

17.3mW, 19.8mW, 15.2mW, 15.1mW, and 18.2mW, respectively. To handle this is-

sue this study has used neighborhood operation to suppress the effect of noise due

to background running processes in offline mode (Bandyopadhyay, Chakraborty,

Bag, & Das, 2016).

Figure 5.6: Test Program Energy Consumption Behavior (ORR Operation)

Neighborhood operation operates on timestamped power profile of target test

program to suppress the noise. Firstly, it calculates divergence of every power peak

value from the average power consumption of test program. Secondly, it marks a

power consumption reading as noise if the distance from the average is very high.

To suppress the noise, it considers 8 power readings in surrounding of the power

reading with noise to replace it with their average value. For time= 6 in Fig. 5.5(an

abnormal power peak at time "t"), neighborhood operation employs "t6←
∑10

t=2 Pt

8 "

to estimate true power consumption for it.
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5.2.3 ARM-IS Energy Consumption

This section reports average energy cost for executing a single assembly instruction

of ARM-IS for ARM7 architecture. It collects data for energy consumption of

executing a single instruction fetched from local cache and RAM storage.

Table 5.1 highlights average energy cost for assembly based ARM instructions

accessed from RAM storage. The energy cost of each instruction is different and

highly depends on the CPI for each ARM instruction. To find the average en-

ergy consumption of an instruction, the experiment has been repeated ten times to

suppress the effect of background activities on estimation accuracy. The standard

deviation from the mean is reported in Table 5.1. The value of standard devia-

tion from the mean is noticed very minimal. For instance, for ADD, MOV, SUB,

MUL, and STR instructions, the average energy consumption is noticed 1.27×10−06,

1.12×10−06, 1.30×10−06, 1.95×10−06, and 8.5×10−06, respectively. Alternatively,

standard deviation for ten runs from the mean is observed 2.60×10−08, 2.98×10−08,

2.58×10−08, 6.95×10−08, and 7.42×10−08, for aforementioned ARM assembly in-

structions. The main reason for the small variation in here mentioned standard

deviation is the application of neighborhood operation on test program power pro-

file for noise suppression.

Table 5.1: ARM-IS Energy Profile for Google Nexus One (RAM Storage Location)

Instruction Energy (J) ST.Dev Instruction Energy (J) St.Dev
ADD 1.27×10−06 2.60×10−08 CMP 1.18×10−06 3.00×10−08

MOV 1.12×10−06 2.98×10−08 ORR 1.12×10−06 2.71×10−08

SUB 1.30×10−06 2.58×10−08 EOR 1.24×10−06 2.58×10−08

MUL 1.95×10−06 6.95×10−08 AND 1.13×10−06 2.78×10−08

B 1.27×10−05 9.56×10−07 CMN 1.18×10−06 3.62×10−08

RSB 1.39×10−06 2.80×10−08 TEQ 6.3×10−06 3.63×10−08

LDR 8.92×10−06 8.19×10−08 TST 6.2×10−06 3.87×10−08

LSL 1.49×10−06 2.51×10−08 SMULL 6.4×10−06 5.91×10−08

MLA 5.5×10−06 4.98×10−08 SRC 1.2×10−06 3.05×10−08

STR 8.5×10−06 7.42×10−08 MOVN 1.77×10−06 3.01×10−08
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Access to the cache memory is faster compared to RAM storage due to high

latency of RAM storage. Eq. 5.5 highlights total access time for a program while

considering system cache and memory as target storage locations. In the here-

mentioned equation, HITRate describes the fraction of data accessed from the cache.

Alternatively, miss rate represents a fraction of data accessed from the main memory.

Also, CacheAccessT ime and RAMAccessT ime represents the total time taken by the

system to access data/instruction from cache and main memory, respectively (Kong,

2015; Neglia et al., 2016). For instance, in the majority of the systems, main memory

access time is 100 ns. Cache is proven to be 10 times faster than the main memory.

Consider a program that yields 0.92 hit ratio for read requests and also suppose

that 85% of the memory requests generated by the CPU are for read operation. To

yield effective access time, the values are substituted in Eq. 5.5 as shown in Eq. 5.6.

EffectiveAccessT ime =HITRate×CacheAccessT ime +MISRate×RAMAccessT ime

(5.5)

EffectiveAccessT ime = 0.92×10 + (1−0.92)×100≈ 17ns (5.6)

Table 5.2 highlights average energy cost for assembly based ARM instructions

accessed from cache storage. The standard deviation from the mean is reported in

Table 5.2 to highlight the variance in results for multiple runs of application. For

the cache based access, it is observed that average energy cost of an instruction is

very small (E−10). This study has repeated the experiments ten times to mini-

mize the chances of the effect of background activities on estimation accuracy. The

observed standard deviation from the mean is noticed very low. For instance, for

159

Univ
ers

ity
 of

 M
ala

ya



ADD, MOV, SUB, MUL, and STR instructions, the average energy consumption is

noticed 4.26×10−10, 3.76×10−10, 4.369×10−10, 1.66×10−09, and 7.15×10−09, re-

spectively. Alternatively, standard deviation from the mean is observed 1.4×10−10,

1.9×10−10, 1.5×10−10, 4.6×10−10, and 8.6×10−10, for aforementioned ARM as-

sembly instructions. The main reason for the small variation in here mentioned

standard deviation is the application of neighborhood operation on test program

power profile for noise suppression. From Table 5.1 and Table. 5.2 it can be ana-

lyzed that energy consumption of an instruction, when fetched from the local cache,

is lower than RAM storage access. This is due to the fact that accessing data from

cache imposes lower access latency compared to RAM based access.

Table 5.2: ARM-IS Energy Profile for Google Nexus One (Cache Access)

Instruction Energy (J) St.Dev Instruction Energy (J) St.Dev
ADD 4.26×10−10 1.4×10−11 CMP 3.96×10−10 2.3×10−11

MOV 3.76×10−10 1.9×10−11 ORR 3.76×10−10 2.2×10−11

SUB 4.369×10−10 1.5×10−11 EOR 4.16×10−10 2.5×10−11

MUL 1.66×10−09 0.1×10−10 AND 3.66×10−10 3.1×10−11

RSL 4.27×10−10 3.0×10−11 CMN 3.96×10−10 3.4×10−11

RSB 4.60×10−10 2.2×10−11 TEQ 3.86×10−10 3.7×10−11

LDR 6.89×10−09 1.9×10−10 TST 3.66×10−10 2.3×10−11

LSL 4.69×10−10 3.6×10−11 SMULL 2.44×10−09 0.6×10−10

MLA 2.24×10−09 0.5×10−10 TST 2.42×10−09 0.1×10−10

STR 7.15×10−09 1.2×10−10 MOVN 5.94×10−10 3.7×10−11

Table 5.3 demonstrates average energy consumption of instructions of ARM-IS

operating on float point values. This study has repeated the experiments ten times

to report an average and standard deviation from the mean for the energy consump-

tion of ARM-IS instructions. Also, it reports energy consumption of several library

functions related to math, input/output, and string manipulation operations. From

the Table. 5.3 it is seen that energy consumption while performing floating point

arithmetic operations is more expensive than integer based operations. This is be-

cause of high latency while considering floating point numerical operations. For
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instance, addition operation on integer operands take 1 cycle whereas floating point

addition consumes 3 cycles for ARM-7 architecture. In Table 5.3, the instructions

with suffix "S"demonstrates single precision operations whereas remaining instruc-

tions demonstrate double precision. In compassion to single precision operations,

double precision based instruction are more energy consuming as it involves com-

paratively complex operational logic.

Table 5.3: Floating-point Operations and Library Functions Energy Consumption
Profile

Instruction Energy (J) St. Dev Instruction Energy (J) St. Dev
FADDS 7.033×10−6 1.2×10−7 FMULTD 1.80×10−6 2.9×10−7

FDIVS 4.715×10−5 2.0×10−6 FSUBD 7.13×10−6 1.6×10−7

FMULS 7.03×10−5 2.5×10−6 FCPYS 6.93×10−6 8.2×10−7

FSUBS 7.03×10−6 1.4×10−7 FNEGS 7.03×10−6 4.5×10−7

FADDD 7.13×10−6 3.7×10−7 FLDS 1.188×10−6 1.4×10−7

FLDD 1.45×10−5 1.5×10−6 FSTD 1.545×10−5 2.5×10−6

FDIVD 8.39×10−5 2.5×10−6 FSTS 1.44×10−5 2.7×10−6

SQRT 1.00×10−05 3.7×10−6 STRCMP 1.17×10−5 4.7×10−6

STRCAT 1.17×10−5 4.5×10−6 PRINTF 2.75×10−5 6.9×10−6

ABS 2.02×10−6 4.2×10−7 ISDIG 1.99×10−6 3.4×10−7

SCAN 1.99×10−5 6.9×10−6 FSEEK 3.27×10−5 7.3×10−6

5.3 Data Collection for Network Energy Communication Cost

This section validates collaborator module of SA-LEEF to estimates energy con-

sumption during network activity. It discusses the method to estimate energy con-

sumption while accessing ARM-IS energy profile and assembly code version of the

smart-phone application from the remote/local server. It has collected data for

accessing data files using Wi-Fi and 3G network links. It has collected data for

accessing data from both local server and remote cloud server. The collaborator

module of SA-LEEF is responsible for downloading text files from the remote/local

server.

The data for energy consumption during network activity is collected using
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the Power Tutor energy estimation tool. To evaluate network energy cost, test

programs are designed to replicate different network environments. Total energy

consumption is estimated based on the average power consumption during activity

on communication link (Wi-Fi, 3G) and total activity time.

5.3.1 Analysis of Wi-Fi Energy Consumption

This section discusses energy consumed by Wi-Fi network connection when files of

different sizes are downloaded from a local and remote server. Energy cost of Wi-Fi

link highly depends on the amount of data transferred over the network link and

distance to the file hosting server. In experiments, data is collected when data files of

different sizes such as 1KB, 10KB, and 100KB, are downloaded from the server. The

main reason for choosing these three file sizes for the analysis is this that data size of

ARM-IS energy profile and assembly code of application usually lied in this range.

Cisco Linksys WRT54GL wireless communication access point is used to access the

hosting server. The round trip time (RTT) of the link is adjusted to 25ms and 50ms

to simulate a local and remote cloud server link. Among two RTTs, 25ms simulates

accessing data files from the local server usually located within the premises of a

building. Alternatively, 50ms RTT represents the total RTT for accessing the data

center located in Singapore (measured using speedtest.net).

Table 5.4 and Table 5.5 demonstrates energy consumption data collected for

Wi-Fi network interface while downloading data files from local and remote server.

In aforementioned tables, text file size, energy consumed by Wi-Fi link, standard

deviation from the mean, and confidence interval for 95% percentile are presented.

The reported energy consumption is average of seven runs of the test program on

smart-phone. The average energy consumed by Wi-Fi link for 25ms RTT while

downloading files of size 1KB, 10KB, and 100KB is noticed 66mJ, 330mJ, and
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576mJ, respectively. Alternatively, average energy consumed by Wi-Fi link for 50ms

RTT while downloading files of size 1KB, 10KB, and 100KB is noticed 108.4mJ,

542mJ, and 979mJ, respectively. It is noticed that for high RTT value average

file downloading energy consumption is high. The main reason of this behavior

is the high energy estimation time for larger RTT values. While accessing data

from remote server (high RTT value), the total file downloading time is invested

in the packet queuing time, source to destination routing time, propagation delay,

and packet loss ratio. The standard deviation of collected data from mean for 25ms

RTT is noticed 1.1401, 2.5099, and 4.1472 for 1kB, 10KB, and 100Kb file downloads,

respectively. Also, the confidence interval for 95% percentile is estimated 1.4157,

3.1165, and 5.1495 for accessing data files from the local server as shown in Table. 5.4.

Alternatively, the confidence interval for 95% percentile is estimated 2.1879, 4.4283,

and 5.2105 for accessing data files from the remote server as shown in Table. 5.5.

The main reason of high value of standard deviation is the uncontrollable network

traffic ongoing on the network that yields network congestion and high packet loss.

Fig. 5.7 compares energy consumption behavior when data is downloaded using

Wi-Fi network connection.

Figure 5.7: Wi-Fi Energy Consumption Analysis
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Table 5.4: Network Energy Consumption for File Downloading (Local Server)

Data Size Avg. Energy Consumption (mJ) Standard Deviation Confidence Interval
1KB 66 1.1401 1.4157
10KB 330 2.5099 3.1165
100KB 576 4.1472 5.1495

Table 5.5: Network Energy Consumption for File Downloading (Remote Server)

Data Size Avg. Energy Consumption (mJ) Standard Deviation Confidence Interval
1KB 108.4 1.7621 2.1879
10KB 542 3.5628 4.4238
100KB 979 4.1964 5.2105

5.3.2 Analysis of 3G Network Energy Consumption

This section analysis 3G network to collect energy consumption data while down-

loading data files of different sizes from the remote cloud. As is the case of 3G

networks, Wi-Fi is not ubiquitously available everywhere owing to unavailability of

Wi-Fi hot spots. To ensure high reliability, this study has investigated and reported

energy consumption of 3G network link as discussed below.

During experiments, this study has ignored the energy consumed by the smart-

phone device while establishing the network connection to the remote cloud. Also,

during 3G network energy estimation, Wi-Fi network connection was switched off

to avoid the effect of noise on estimation accuracy. This experiment has simulated

3G radio while adjusting RTT to be 200ms (remote server). Fig. 5.8 represents the

energy consumption of 3G module when RTT of 200ms is simulated. As can be seen

from Fig. 5.8, large-sized data file downloading process yields longer activity time

on the network link. As a result, energy consumption for downloading large sized

data files is high.

In comparison to Wi-Fi network link, the energy consumption during files down-

loading from the remote server using 3G link is higher because of larger bandwidth

of Wi-Fi network connection. The energy consumption of 3G network connection

depends on, (a) network congestion, (b) data rate, (c) signal to noise ratio (SNR) on
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channel, and (d) routing latency. For energy estimation, this study have repeated

the experiments seven times to report the average energy consumption while down-

loading files using 3G network link. Using 3G network link, the downloading process

has consumed 261.6mJ, 1308mJ, and 2401mJ energy, for 1KB, 10KB, and 100KB

file sizes downlands, respectively. The energy consumption for 3G network while

downloading 100KB file is more than the 10KB. The main reason of this behavior is

because of the fact that the downloading time of 100KB is greater than 10KB for 3G

network link. The standard deviation of the runs from mean for 1KB, 10KB, and

100KB size files is noticed 2.9453, 3.8725, and 6.9034, respectively. The main reason

of high standard deviation is the unpredictable and uncontrollable network traffic

ongoing on network links. The confidence interval for 95% percentile is observed

1.4491, 4.8083, and 8.5717, for aforementioned file sizes.

Figure 5.8: 3G Energy Consumption Analysis

5.3.3 Analysis of Energy Consumption for Benchmark Applications

Table 5.6 demonstrates total energy consumption while accessing assembly code of

benchmark application and ARM-IS energy profile for a particular smart-phone ar-

chitecture from the server. The energy consumption of each benchmark is attributed

based on the Power Tutor energy estimation tool. The size of ARM-IS energy profile
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is fixed and is 446byte for the selected smart-phone device. For Wi-Fi network con-

nection, downloading ARM-IS energy profile costs 66mJ and 108.4mJ for both local

and remote server, respectively. Similarly, for 3G network connection, download-

ing ARM-IS energy profile costs 261.6mJ energy. In Table 5.6, the average energy

consumption highlights energy cost for downloading assembly source code of bench-

mark application and ARM-IS energy profile. It was assumed that the assembly

code of all the benchmark applications is already available at cloud server. There-

fore, the energy cost while waiting for conversion of C based benchmark application

to assembly code is not added in this cost.

Among all the selected benchmark applications, the network energy cost of Liv-

ermoreLoops2 is highest. The network energy cost while considering Wi-Fi network

connection (Local Server) for NativeWhetstone2, LinpackSP2, FFT1, Factorial, and

Dhrystone2 is estimated 340mJ, 351mJ, 348mJ, 66mJ, and 81mJ, respectively. Simi-

larly, the network energy cost while considering Wi-Fi network connection (Remote

Server) for NativeWhetstone2, LinpackSP2, FFT1, Factorial, and Dhrystone2 is

estimated 565 mJ, 575mJ, 572mJ, 108.4mJ, and 118.4mJ, respectively. However,

for 3G network connection, the energy cost of accessing NativeWhetstone2, Lin-

packSP2, FFT1, Factorial, and Dhrystone2 is estimated 1329mJ, 1342mJ, 1339mJ,

261.6mJ, and 267mJ, respectively. The energy cost of each of benchmark applica-

tions is based on the size of the benchmark applications. For instance, the size of

LivermoreLoops2 is noticed largest among all the chosen benchmark applications.

As a result, downloading energy cost of LiveremoreLoops2 is highest among all

chosen benchmark applications.
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Table 5.6: Energy Consumption Cost for Network Communication for Benchmark
Applications

Benchmarks Energy (Wi-Fi-25ms) Energy(Wi-Fi-50ms) Energy(3G-mJ)
NativeWhetStone2 340mJ 565mJ 1329mJ
LinpackSP2 351mJ 575mJ 1342mJ
FFT1 348mJ 572mJ 1339mJ
Factorial 66mJ 108.4mJ 261.6mJ
Dhrystone2 81mJ 118mJ 268mJ
LiverMoreLoop2 550mJ 970mJ 2395mJ
MemSpeedi 338j 561mJ 1318mJ
RandMemi 339mJ 563mJ 1321mJ
NestedBranches 79mJ 114mJ 265mJ

5.4 Data Collection for Concurrent Program Execution Energy Over-
head

This section empirically validates the overhead associated to SA-LEEF during con-

current program execution. Smart-phones are resource constrained devices due to

their size and weight limitations. Resources of a smart-phone device such as CPU,

cache, RAM, and other peripheral components are shared among the co-resident

applications. Due to resource limitations, concurrent running applications on a

smart-phone leads to poor performance in terms of application extended execu-

tion time and energy consumption. One of the reasons of application performance

degradation is the cache eviction during context switching of tasks. In this section,

the energy overhead due to cache eviction during concurrent program execution is

briefly discussed.

To highlight the impact of concurrent program execution on the total execution

time of an application, it has executed several instances of the same program on

the smart-phone device. For the experiments, it has considered SA-LEEF as test

program for execution time analysis. It considered "time" Linux shell command to

collect the execution time of test programs on smart-phone. It has considered user

and system time generated by time Linux command to estimate total execution time

of SA-LEEF program. It was ensured that all unnecessary background applications
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Figure 5.9: Effect of Concurrent Programs Execution to Total Execution Time of
a Program

are turned off during experiments.

Fig. 5.9 highlights increase in total execution time of an application when mul-

tiple programs are concurrently running on a smart-phone device. As depicted in

Fig. 5.9, the total execution time is highest when seven programs are executed

concurrently on smart-phone. The increase in execution time is because of CPU

sharing and cache eviction due to context switching of programs by the OS. It was

noticed that during programs execution CPU usage increases up to 100% for seven

concurrent programs execution case. Cache eviction is another factor impacting the

total execution time when concurrently executing a set of programs on the same

hardware. The execution time increases by a factor of 1.068 when two programs

are executing in parallel on smart-phone. It increases by 1.063, 1.121, 1.155, 1.159,

and 1.174 factors when three, four, five, six, and seven programs are executing in

parallel. Due to multiple cores of the processor under observation, the increase

in execution time when considering five, six, and seven programs is marginal as

mentioned above.

Cache eviction leads to the extended execution time of a program if the contents

of the concurrently executing programs frequently update system cache. During ap-
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Figure 5.10: Effect of Concurrent Programs Execution on Cache Miss Rate

plication execution, CPU either notifies cache hit or a miss for instructions depend-

ing on the execution behavior of a program. To analyze the cache miss/hit behavior,

this experiment ran several instances of a single program to see cache hit/miss be-

havior. It chose ARM 7 based server to analyze the performance of cache using the

Val-grind tool. Fig. 5.10 demonstrates cache hit/miss behavior when SA-LEEF is

running with its clone tenants. It is noticed that when only SA-LEEF was running

on smart-phone device, instruction cache miss rate is noticed 0.08% only. For re-

maining cases, due to high context switching, the cache is evicted again and again

causing data and instructions to be fetched from the RAM in the subsequent round

robin slots. For the concurrent execution of seven clones of SA-LEEF, cache miss

rate is noticed surging to 52%. In Fig. 5.10, total cache parameter demonstrates

total cache misses in terms of data and instruction cache for all the levels of cache

in the memory hierarchy.

Energy consumption during data/instruction eviction is estimated using exter-

nal physical measurements based method. For the experiments, a test program is

designed that frequently updates memory references. Due to continuously oper-

ating on the updated data the cache eviction rate was noticed very high. It has
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validated the behavior of test program on ARM server using the Val-grind tool.

The proposed study has used the cache-grind option of Val-grind for cache analysis

validation. During execution of test programs, the voltage drop across the resistor is

profiled at the physical server. During the offline analysis phase, the average power

consumption for the test program is calculated based on Eq. 5.2. To find the to-

tal energy consumed during cache eviction process, the average power consumption

value is multiplied with the cache eviction time as highlighted in Eq. 5.7. The aver-

age power consumption during cache eviction test program execution is estimated

153.2mW. The overhead of concurrent program execution on a smart-phone device

depends on the rise in execution time and base power consumption due to cache

eviction as shown in Eq. 5.7.

Base−Powercache−eviction = Avg.PowerConsumption×CacheEvict−time (5.7)

5.5 Data Collection for Application Analyzer

This section empirically validates the Application analyzer module of SA-LEEF

framework. It discusses the method to collect data to classify ARM assembly in-

structions for the target smart-phone benchmark applications. It evaluates the

application analyzer module based on a set of benchmarks. In total, the application

analyzer module profiles 69 ARM-IS instructions for the input smart-phone appli-

cation. However, in this section, a subset of total profiled instructions which were

common in the majority of benchmark applications are reported.

Application analyzer module is coded in C language. The input to application

analyzer module is smart-phone application translated into ARM assembly code

and pre-defined data set for variables inside the application. It trained application

in offline mode against all possible execution scenarios to acquire the possible values
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Table 5.7: Total Assembly Instructions Count for Benchmark Applications

Benchmark Assembly Instruction Count
LinpackSP2 1.07491×1010

FFT1 7.98920×1010

Factorial 5.66507×1009

Dhrystone2 1.88835×1009

LivermoreLoops2 1.88837×1010

MemSpeedi 2.17987×1010

RandMemi 2.32413×1010

Nested Branches 1.13301×1010

NativeWhetStone2 2.32413×1010

for each data point whose value is not known. Application analyzer scans the appli-

cation and classifies the instructions into memory based and cache based categories.

Table 5.7 highlights count of assembly instructions for each benchmark application.

The reported total number of instructions are the sum of 69 instructions profiled

by the application analyzer module. It highlights aggregate sum of instructions ac-

cessed from the RAM storage and cache memory. As can be seen from Table 5.7, the

total number of instructions for each benchmark is different depending on the num-

ber of operations a benchmark application performs. For instance, among all chosen

benchmark applications, total instruction count for FFT1 benchmark is highest as

it performs computationally complex operations while transforming data from one

domain to another. The number of assembly based instructions for each benchmark

depends on the type and number of operations for each benchmark application.

The instructions of an application are fetched from RAM or cache during its

execution. The storage location analyzer module of application profiler (SA-LEEF

framework) estimates storage location of instructions within a benchmark applica-

tion. Table 5.8 demonstrates a set of assembly instructions for ARM-IS that the

proposed storage location analyzer module has predicted to be fetched from the

cache at run time. In Table 5.8, only those instructions which were common in

the majority of benchmark applications are presented. The number and type of
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Table 5.8: Instructions Count for Benchmark Applications (cache access)

Inst NWS LSP FFT1 FACT DHY LIV MEM RND NB
#FADD 652811 0 0 0 0 0 0 0 22451
#FSUB 36472 22905 14740 0 0 0 0 0 7931
#MOV 1026168 2190532 15606169 456209 732689 29930763 529565 9837147 9087086
#LDR 998034 990364 80878156 399992 298028 1490564 152939 1041287 1060364
#STR 360705 498018 20916764 199996 2490091 7646292 90182 3689628 510182
#BL 450617 45600 109440 99998 22800 687923 3882 3948 58018
#FMUL 28803 345629 31106013 0 0 0 1209 0 3944
#ADD 208939 234009 1684865 99988 37657 171665 420653 18953 328675
#SUB 2500 4201415 15345042 99997 2051 3244625 4207 38009 44942
#MUL 410742 253746 8214984 99998 114097 2167843 64259 0 34942
#CMP 450617 399230 1047305 99998 18701 486438 86247 349832 196972
#FDIV 0 0 20285 0 0 0 0 0 9923
#DIV 55794 0 1334 3 0 0 0 0 9424
#ORR 0 50941 0 0 4 0 0 10341 0
#SMULL 0 70982 0 0 0 2283 389129 0 0
#RSB 50397 14519 0 0 0 34819 78 367 77644
#LSL 20289 158582 3452713 0 0 1585602 78192 90723 0

ARM-IS instructions in each benchmark depend on the functionality of that par-

ticular benchmark. For instance, LinpackSP2 has performed addition operation on

single and double type data; that is why ADD instruction count is very high for

LinpackSP2 benchmark. The application analyzer is ran five times but the results

revealed that the estimation behaviour remained unchanged as there is no ran-

domization involved in profiling process. Table 5.9 demonstrates a set of ARM-IS

instructions which are common in the majority of benchmark applications. Table 5.9

discusses RAM storage based instructions. The number and type of instructions in

ARM-IS for each benchmark depend on the functionality of that benchmark. For

instance, LivermoreLoops2 has performed addition operation on single and double

type data; that is why this value is noticed high for this benchmark application.

Table 5.8 and Table 5.9 demonstrates count of instructions within each bench-

mark application tested based on static analysis method. Based on the cache and

RAM storage analysis of the smart-phone application, instructions are classified

into two categories. In the first category as shown in Table 5.8, the highlighted in-

structions are those which are accessed from local system cache during application

execution on smart-phone. On the other hand, in the second category as shown in
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Table 5.9: Instructions Count for Benchmark Applications (RAM Access)

Inst NWS LSP FFT1 FACT DHY LIV MEM RND NB
#FADD 00065 00000 00000 0 0 0 0 0 00019
#FSUB 00044 00005 00007 0 0 00000 00000 0 00011
#MOV 00670 00445 01257 00035 00081 05087 00492 00631 00486
#LDR 00278 00811 00587 00022 00036 01910 00344 00269 00199
#STR 00181 00220 00328 00011 00017 00612 131 113 102
#BL 00069 00184 00319 0005 00016 00599 116 88 99
#FMUL 00038 00051 00018 00000 00000 0 4 0 12
#ADD 00089 00361 00267 00008 00059 02138 00196 100 135
#SUB 00025 00090 00228 00005 00036 000294 0008 00014 00076
#MUL 00033 00256 00190 00004 00043 00370 00018 00000 00043
#CMP 00034 00077 00084 00004 00019 00241 00070 00025 00270
#FDIV 00000 00000 00005 00000 00000 00000 00000 0 00013
#DIV 00011 00000 00007 00005 00000 00000 00000 00000 00009
#ORR 00000 0022 00000 00000 00004 00000 00000 00016 00000
#SMULL 00000 0012 00000 00000 00000 00003 02515 00000 00000
#RSB 00015 0033 00000 00000 00000 00035 00001 00002 00071
#LSL 00052 00301 00189 00000 00000 00657 00090 00136 00000

Table 5.9, instructions which are fetched from the RAM storage during execution

on smart-phone are shown. For Factorial benchmark application, SA-LEEF esti-

mated that when considering SUBRi,Ri,Rj
instruction, in total 99998 instances of

this instruction are fetched from the local system cache during application execution

on smart-phone. However, only 3 instances of SUBRi,Ri,Rj
instruction are fetched

from the RAM storage for execution on smart-phone.

Application analyzer is the most resource consuming module of SA-LEEF after

ARM instruction energy profiler module. Table 5.10 and Table 5.11 highlights over-

head of application analyzer module of SA-LEEF framework. The estimation time

overhead of application analyzer highly depends on the total assembly size of the ap-

plication. Total estimation time of the application analyzer module consists of, (a)

execution path estimation, (b) loop estimation, (c) storage location analysis, and (d)

classification of instructions within the application. It is noticed that application

analyzer has consumed 1.94s, 2.15s, 1.95s, and 0.18s for NativeWhetstone2, Lin-

packSP2, FFT1, and Factorial benchmark applications. Similarly, it has consumed
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Table 5.10: Estimation Time Analysis for Application Analyzer Module

Benchmark Avg.Time (s) St. Dev Conf. Interval Population Range
NWS 1.94 0.00894 ±0.01 1.94±0.01
LPS 2.15 0.0114 ±0.01 2.15±0.01
FFT1 1.95 0.0129 ±0.01 1.95±0.01
FACT 0.18 0.00548 ±0.00 1.95±0.0
DHY 1.06 0.00548 ±0.01 1.95±0.01
LIV 2.57 0.0182 ±0.02 2.57±0.02
MEM 2.04 0.0083 ±0.01 2.04±0.01
RND 1.88 0.0072 ±0.01 1.88±0.01
NB 0.45 0.0044 ±0.00 0.45±0.00

1.06s, 2.57s, 2.04s, 1.88s, and 0.45s, while classifying instructions within Dhrystone2,

LivermoreLoops2, MemSpeedi, RandMemi, and Nested Branches benchmarks, re-

spectively. For all chosen benchmark applications, the estimation time overhead is

analyzed for ten runs. The descriptive statistics is applied to find the confidence

interval for 95% percentile interval. It is noticed that the error in the estimation

readings for different runs was noticed very small. For instance, application analyzer

has reported estimation time in the range of 1.94±0.01 for ten runs for NativeWhet-

stone2 benchmark application. Similarly, for LivermoreLoops2 and Nested Branches

benchmark application, the estimation time is observed in the range of 2.57±0.02

and 0.45±0.00, respectively.

Table 5.11 highlights energy consumption overhead of application analyzer

module of SA-LEEF framework. The energy estimation overhead is estimated based

on the product of application analyzer estimation time and its average base power

consumption. The average base power consumption is estimated using external

physical measurement setup to log voltage and current drop during application an-

alyzer execution on smart-phone. It ran application analyzer in nested loops while

classifying instructions for FFT1 to record sufficient voltage and current drop read-

ings to estimate average power consumption of application analyzer module. The

proposed study ran application analyzer ten times while analyzing FFT1 to find the
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Table 5.11: Energy Overhead Analysis for Application Analyzer Module

Benchmark Avg. Energy (mJ) St. Dev Conf. Interval Population Range
NWS 56 0.2500 ±0.3104 56±0.3104
LPS 62 0.5828 ±0.7235 62±0.7235
FFT1 56 0.4000 ±0.4000 56±0.4000
FACT 5 0.0000 ±0.0000 5±0.0000
DHY 30 0.0000 ±0.0000 30±0.0000
LIV 74 0.6752 ±0.8383 74±0.8383
MEM 59 0.5000 ±0.6208 59±0.6208
RND 54 0.1732 ±0.2150 54±0.2150
NB 13 0.0000 ±0.0000 13±0.0000

average of ten runs to find its base power consumption. The energy overhead de-

scribes the amount of energy in mili-joule the application analyzer consumes while

classifying instructions of benchmark application based on their execution paths,

loop bounds, and storage location analysis. It was noticed that application ana-

lyzer module has consumed dissimilar energy for chosen benchmark applications.

For instance, application analyzer has consumed 56mJ, 62mJ, 57mJ, and 5mJ en-

ergy while classifying instructions of NativeWhetstone2, LinpackSP2, FFT1, and

Factorial benchmark applications. Similarly, it has consumed 30mJ, 74mJ, 59mJ,

54mJ, and 13mJ energy on average, while classifying instructions within Dhrystone2,

LivermoreLoops2, MemSpeedi, RandMemi, and Nested Branches benchmarks, re-

spectively. The estimation population range based on descriptive statistics for ten

runs is estimated 56±0.3104, 62±0.7235, 56±0.4000, 5±0.0000, and 54±0.2150

for NativeWhetstone2, LinpackSP2, FFT1, Factorial, and RandMemi benchmark

applications, receptively. The results and validation of energy estimation module is

discussed in chapter 6.

5.6 Base Power Consumption Computing for SA-LEEF Framework

This section discusses data collection method for base power consumption estima-

tion for SA-LEEF energy estimation tool. Base power consumption represents the
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average power consumed by SA-LEEF during energy estimation of smart-phone

applications.

This study has computed base power consumption of SA-LEEF using external

physical measurement method as highlighted in Fig. 5.3. Base power consumption

is estimated based on the product of voltage and current drop during SA-LEEF

execution on smart-phone device. Data for voltage and current drop is collected

using EM6000 multi-meter tool. It was observed that the average power consump-

tion during SA-LEEF execution on smart-phone for energy estimation of different

benchmark applications remained same. The complexity of smart-phone applica-

tions varies depending on the structure and operations in it. SA-LEEF proposes

same operations for energy estimation of smart-phone applications irrespective of

their complexities. As a result, the average base power consumption of SA-LEEF is

almost same for all type of benchmark applications.

Six benchmark applications including NativeWhetstone2, LinpacksSP2, Facto-

rial,FFT1, LivermoreLoop2, and MemSpeedi, are selected to collect data for base

power consumption estimation of SA-LEEF framework. The estimation time of SA-

LEEF framework while estimating energy consumption of here-mentioned bench-

marks was observed very limited. As a result, only a few timestamped voltage

readings were captured at the physical server. To handle this issue, the size of cho-

sen benchmark applications was increased by replicating its code 20 times to increase

energy estimation time of SA-LEEF. As a result, sufficient voltage and current drop

readings were collected at the physical server for offline analysis to estimate base

power consumption of SA-LEEF framework. Each experiment is repeated 10 times

to report average base power consumption of SA-LEEF framework for benchmark

applications.

It is observed that average power consumption during energy consumption esti-
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mation for different benchmark applications is same. The average power consump-

tion of 10 runs for NativeWhetstone2, LinpacksSP2, Livermoreloops2, FFT1, Fac-

torial, and MemSpeedi, is noticed 28.9mW, 28.8mW, 28.6mW, 28.8mW, 28.9mW,

and 28.7, respectively. The mean of base power consumption for aforementioned

benchmark applications is estimated 28.78mW. Alternatively, standard deviation

from the mean is noticed 0.1169. For 99% percentile, the population range for the

base power consumption of SA-LEEF is observed 28.78±0.265.

5.7 Conclusion

In this chapter, SA-LEEF framework is evaluated. It has discussed data collection

tools, methods, devices, and experimental setup to evaluate SA-LEFF. Based on the

collected data, application analyzer, application energy estimator, and collaborator

modules of SA-LEEF framework are evaluated.

It has collected energy consumption data for ARM-IS for both cache and

memory-based operations. It was noticed that energy consumption of memory-

based operations is more expensive than cache operations. It has analyzed appli-

cation analyzer module of SA-LEEF to count the total number of instructions in

ARM assembly based benchmark application and to classify them into cache and

memory based categories. It was observed that the number of instructions fetched

from the cache are much higher than those accessed from the main memory. Also,

the overhead of application analyzer in terms of energy consumption and estima-

tion time is noticed very minimal. It has also collected data for the energy cost of

accessing benchmark applications from both local and remote servers using Wi-Fi

and 3G radios. It was observed that 3G is more energy consuming than a Wi-Fi

module. Also, it is observed that SA-LEEF has consumed highest energy while ac-

cessing ARM-IS energy profile and assembly code of LivermoreLoops2 benchmark.
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Data is collected to estimate average base power consumption of SA-LEEF frame-

work. The average base power consumption of SA-LEEF is reported 28.78mW. To

present the real application execution environments on a smart-phone, the overhead

of concurrent program execution in terms of cache eviction is estimated. For cache

eviction when two applications are executing concurrently, the average base power

consumption is reported 153.2mW.
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CHAPTER 6: RESULTS AND DISCUSSION

This chapter validates system model of SA-LEEF framework against its empirical

evaluation results. It compares the performance of SA-LEEF framework against

Power Tutor and Measurement-based energy estimation methods. It considers en-

ergy estimation time, energy overhead, estimation accuracy, and resource consump-

tion as performance measurement parameters for the comparisons. It considers a

set of benchmark applications to analyze the behavior of SA-LEEF in comparison

to other estimation methods for aforementioned parameters.

This chapter is organized into six main sections. Section 6.1 validates SA-

LEEF system model by comparing it against empirical evaluation. Section 6.2

compares SA-LEEF to existing energy estimation methods for its local operation

mode case. Section 6.3 compares SA-LEEF to existing energy estimation methods

for its remote operational mode case. Section 6.4 compares SA-LEEF to existing

energy estimation tools based on CPU and RAM resource consumption behavior.

Section 6.5 presents qualitative comparison of SA-LEEF to existing code analysis

based energy estimation methods. Section 6.6 concludes the whole discussion and

presents the main findings of this chapter.

6.1 SA-LEEF Framework Validation

This section validates system model for SA-LEEF framework discussed in Section

4.2.2 by comparing its results with results of empirical evaluation. It has validated

system model for SA-LEEF framework using code review validation method based

on energy consumption estimation of benchmark applications as discussed below.
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6.1.1 Energy Consumption Estimation

SA-LEEF estimates energy consumption of a smart-phone application using ARM-

IS energy profile. Based on SA-LEEF estimation model, total energy of an appli-

cation consist of, (a) ARM ISA access cost from the server, (b) base cost energy

of application, (c) user system interaction cost, and (d) energy overhead associated

with concurrent program execution on resource constrained smart-phone devices.

In the following section, the energy consumption of NativeWhetstone2 benchmark

application using SA-LEEF system model is derived and presented.

SA-LEEF estimated that NativeWhetstone2 has consumed 7.9j energy when

it is executed on Google Nexus One smart-phone device as highlighted in Eq. 6.1.

The major portion of NativeWhetstone2’s energy is consumed by the source code

instructions (base cost) of the benchmark application. It is noticed that 7.6j of

the total energy budget is consumed by the base cost energy element of SA-LEEF

system model. Alternatively, concurrent program execution and ARM-ISA-Access

processes consumed 48mJ and 257.08mJ energy, respectively. NativeWhetstone2

is a compute-intensive benchmark, and it does not require any input from the user

during its execution. Therefore, user system interaction energy cost is 0J in this

case.

TotalEnergy = 7.6j+ 0j+ 48mJ + 257.08mJ ≈ 7.905j (6.1)

The total base cost energy is estimated by statically analyzing ARM assembly code

of NativeWhetstone2 benchmark application. The built-in system library routines

which are called from within the code and user defined routines contributes to the

total base cost energy of application. For NativeWhetstone2 benchmark application,

in total, 1.334J energy is consumed by the built-in system library routines; whereas,
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user defined code has consumed 7.01j energy as presented in Eq. 6.2.

EBaseCostEnergy = 1.334J + 7.01j ≈ 7.6j (6.2)

A call to a built-in system library routine executes a set of instructions to perform

the required task. As a result, it consumes a significant amount of energy. Eq. 6.3

highlights the energy consumption for a set of system library routines called from

within NativeWhetstone2’s source code (assembly based). In the NativeWhetstone2

benchmark application, overall 39 calls were made to printf routine from within

benchmark application to generate outputs. Alternatively, for a few other library

routines such as sqrt, cos, and sin, number of calls are profiled 55800, 19200, and

19200, respectively.

ESystm−Libraries = (39×2.7+55800×1.0+19200×2.0+19200×1.9)×10−5 ≈ 1.3J

(6.3)

NativeWhetstone2 benchmark consists of six user defined modules including

Main, Whetstones, Pa, Po, P3, and Pout. Each module of SA-LEEF executes for

k times. Among all user defined modules, main module executes only once. The

remaining modules execute for 80, 539400, 246400, 02, and 8400, number of times

to perform the required task as shown in Eq. 6.4. Each module of the application

has consumed dissimilar energy depending on the number and type of operations

it involves. For each module of the NativeWhetstone2 benchmark application, to-

tal energy consumption is estimated using, (a) energy cost of instructions residing

outside of the branching constructs, (b) statements executing within loops, and

(c) statements whose total energy consumption depends on the branch predictors
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(weighted probability). In Eq. 6.5, the energy consumption of one of NativeWhet-

stone2 module (5th in Eq. 6.4) is presented. It represents energy cost associated

with loops structures, branching statements, and the sequential code. In the said

equation, 200mj is the energy cost associated with the code running in sequential

flow outside the branching and loop constructs. Moreover, for loop constructs, the

energy is divided into two categories (e.g., 1999.99mj and 0.002981) depending on

the storage location of instructions within the loops at run-time.

EApp−developer−modules = (20mj×1 + 3mj×80 + (3.7078×10−6)j×539400

+(4.8701×10−6)j×246400 + 0.000190j×8400 + 0.61j×2)≈ 6.27j
(6.4)

EModule−A = 200mj+ (1999.99mj+ 0.002981) + 0≈ 2.2 (6.5)

Eq. 6.6 calculates energy overhead associated with concurrent execution of SA-

LEEF with its tenants for energy estimation of smart-phone application. The asso-

ciated energy overhead is computed based on increase rate in execution time while

running SA-LEEF with its tenants and average power consumption during cache

eviction. To find the power consumption during cache eviction, the current study

has designed a synthetic benchmark that evicted cache again and again to fetch data

and instructions from RAM storage. The power consumption during cache eviction

was recorded using external measurement based method. It was found that average

power consumption during cache eviction process was 153.2mW . This study has

used Val-grind tool to verify the effect of concurrent program execution on the cache

eviction rate. It was noticed that cache was the dominant factor that increased the

execution time while running programs concurrently. While executing the same
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process concurrently, the execution time of a program is surged by a factor of 0.31s.

The concurrent execution energy overhead for the proposed system is found 48mj.

EConcurrent−Execution−Overhead = (3.41s−3.1s)×153.2mW ≈ 48mj (6.6)

Total execution time of an application is estimated based on the size of the program

and speed of processor as shown in Eq. 6.7 and Eq. 6.8. The size of a program is

estimated based on CPI for target ARM architecture and total instructions within

benchmark application. Average CPI for ARM-7 ISA is 1.6 (Blem, Menon, Vija-

yaraghavan, & Sankaralingam, 2015). Therefore, in this research, 1.6 CPI for the

execution time estimation is chosen. NativeWhetstone2 is statically analyzed to find

total number of instructions in it.

TimeP rogram = 3701400000Ins
1194MIPS

≈ 3.1s (6.7)

Programsize = 2313375000×1.6≈ 3701400000ins (6.8)

TimeConcurrentExecution = 0.40×3.1s≈ 3.41s (6.9)

Energy consumption of Wi-Fi module while downloading a file from remote server

depends on the average power consumption and total activity time on Wi-Fi module

as shown in Eq. 6.11. Activity time as shown in Eq. 6.10 is estimated based on the

total size of the file that is downloaded and bandwidth of the network link. This

study has opted speed test application to find the bandwidth of downlink for the

considered Wi-Fi connection while selecting a server located in Singapore. On the
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other hand, network power consumption is estimated using Power Tutor energy

estimation tool.

EISA−Access = 0.53s×485mW ≈ 257.08mj (6.10)

Activitytime = 110×1024bytes
1.78Mbps

≈ 0.53s (6.11)

6.1.2 SA-LEEF Estimation Accuracy

This section compares results of system model for SA-LEEF to the results of em-

pirical evaluation. Three benchmark applications are used to validate system model

of the proposed energy estimation framework. The same procedure is followed for

LivermoreLoops2 and Nested Branches benchmarks as discussed in Section 6.1.1 to

evaluate system model of SA-LEEF framework.

Figure 6.1: SA-LEEF System Model vs. Empirical Evaluation

Fig. 6.1 draws a comparison between energy consumption estimation for a set

of benchmark applications using system model (mathematical model) and empirical

evaluation of SA-LEEF framework. Two benchmark applications are selected, and

one synthetic benchmark for comparison. Synthetic benchmark application com-

posed of a set of nested branching statements. The results demonstrate that the
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system model is accurate up to 97.37% when compared with empirical evaluation

results. The marginal error for system model is due to, variance in energy consumed

by concurrent programs executing on smart-phone to the one considered in model,

effect of power states of Wi-Fi component to the energy consumption, locality of

ARM-IS energy profile hosting server, peak signal to noise ratio of Wi-Fi network

connectivity, and the possibility to miss few instructions during application analysis.

The experiments are repeated several times to examine the behavior. It was noticed

that SA-LEEF model exhibits approximately similar behavior for multiple runs of

SA-LEEF while examining benchmark applications for energy estimation. To find

whether the correlation between results of system model and empirical evaluation is

significant or not, the proposed study has applied Pearson variance method (Filina

& Zubkov, 2008). The correlation between the data set is observed 0.99.

6.2 Performance Comparison of SA-LEEF Framework (Local Mode) to
Existing Estimation Methods

This section compares the performance of SA-LEEF framework to existing energy es-

timation methods based on energy estimation time, energy estimation accuracy, and

energy estimation overhead parameters. A set of benchmark applications including

LinpackSP2, LivermoreLoops2, Dhrystone2, RandMemi, NativeWhetstone2, Nested

branches, FFT1, and Factorial are selected. For ease of use, the current study

has proposed and used abbreviation words for aforementioned benchmark applica-

tions in the rest of this chapter. For instance, it proposes MSP, LPS, LML, DHS,

RNM, NWS, NSB, FFT, and FAC, abbreviation words to represent MemSpeedi,

LinpackSP2, LivermoreLoop2, Dhrystone2, RandMemi, NativeWhetstone2, Nested

Branches, FFT1, and Factorial benchmark, respectively. In this section, it is as-

sumed that the ARM-IS energy profile and ARM-based assembly code is already

available on the smart-phone. This study called this operational mode as local

185

Univ
ers

ity
 of

 M
ala

ya



execution mode of SA-LEEF framework.

Power Tutor and Measurement-based method are selected for the comparisons.

Power Tutor is a highly cited open access energy estimation tool. It is easily and

freely available on Google play store. The measurement-based method is accurate as

it uses high precision, rate, and accurate power measurement equipment for energy

estimation of an application. In this study, measurement based method is selected

for the comparisons to calculate the accuracy of SA-LEEF energy estimation tool.

SA-LEEF considers estimation environment much similar to the one a dynamic

analysis method uses. For instance, it models context switching overhead and user

system interaction behavior during energy estimation of an application. Therefore,

one main reason for choosing Power Tutor for comparison with SA-LEEF is the high

resemblance in their execution environments.

6.2.1 Standard Benchmarks Code size Case

In this section, SA-LEEF and existing energy estimation methods are compared

based on the standard code size of the chosen benchmark applications.

6.2.1.1 Energy Estimation Time

Fig. 6.2 demonstrates the total energy estimation time for a set of benchmark ap-

plications using SA-LEEF estimation framework. The X-axis in Fig. 6.2 represents

selected android based benchmark applications; whereas, Y-axis demonstrates av-

erage energy estimation time in seconds (system time) for each benchmark appli-

cation. Energy estimation time for each benchmark application highly depends on

the size and complexity of assembly based operations within benchmark applica-

tions. As presented in Fig. 6.2, LivermoreLoops2 benchmark has exhibited highest

energy estimation time among all selected benchmark applications. SA-LEEF took

2.96 seconds during energy estimation of the LivermoreLoops2 benchmark. On the
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other hand, the Factorial program took lowest estimation time when it is estimated

using SA-LEEF energy estimation framework. For the Factorial program, whole

energy estimation process of SA-LEEF was completed in only 0.21s. Energy esti-

mation time for LinpackSP2 benchmark application was noticed 2.48s. Estimation

time for Nested branches benchmark in comparison to other benchmark applications

was noticed very limited (0.52s). Moreover, for NativeWhetstone2 and Dhrystone2

benchmarks, SA-LEEF reported 2.23s and 1.22s of estimation time, respectively.

From the above reported data, it is noticed that SA-LEEF’s energy estimation time

is dissimilar for a set of chosen benchmark applications. For instance, the estimation

time of SA-LEEF for the Factorial benchmark is 91% lower than the LinpackSP2

benchmark. The assembly code size of all benchmark applications except Facto-

rial, Nested branches, and Dhrystone2, is noticed closer to each other due to the

marginal difference in their total code size. The estimation time reported in Fig. 6.2

is the average of 15 runs of SA-LEEF for each benchmark application. The varia-

tion in estimation time for different runs for a benchmark application was noticed

very nominal (Standard deviation of 0.003 for LinpackSP2). The main reason for

this small variation in estimation time is the set of OS activities running in the

background. The effect of background activities is high when an application runs

for a large period of time. As SA-LEEF energy estimation time is very small; there-

fore, the effect of background activities is very small. The data is analyzed to find

the correlation between estimation time for the chosen benchmark applications and

found it satisfactory. The mean estimation time is noticed 1.754 seconds for all the

chosen benchmark applications. The standard deviation from the mean is noticed

0.872. The 0.872 value of standard deviation is because of the fact that chosen

benchmarks are non-similar in terms of their operations. A few of the benchmark

applications offered very small estimation time compared to the rest of the bench-
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mark applications. The variance is also estimated from the standard deviation and

was noticed 0.76 only.

Figure 6.2: Energy Estimation Time Analysis for SA-LEEF Framework

Fig. 6.3 and Fig. 6.4 highlights energy estimation time for a set of benchmark

applications using dynamic analysis based energy estimation methods. Power Tu-

tor and measurement-based energy estimation methods are two dynamic analysis

based energy estimation methods. In the aforementioned figures, X-axis presents

the benchmark applications whereas Y-axis highlights the average total energy es-

timation time for each benchmark applications. For Power Tutor energy estimation

method, among all the chosen benchmark applications, the average energy esti-

mation time for FFT1 benchmark was noticed highest. Power Tutor estimated

energy consumption of FFT1 benchmark in 55 seconds. Alternatively, for Dhrys-

tone2, Power Tutor took 1.3 seconds only to estimate its energy consumption. For

dynamic analysis based energy estimation, estimation time truly depends on the

total execution time of the application. Fig. 6.3 depicts that Power Tutor took

15, 7.4, 12.2, and 16 seconds during energy estimation of MemSpeedi, LinpackSP2,

LivermoreLoops2, and RandMemi benchmarks, respectively. For Nested branches,

Factorial, and NativeWhetstone2 benchmarks, Power Tutor took 7.5, 3.9, and 14.5

seconds, to estimate their energy consumption. The standard deviation from the
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mean for energy estimation time of chosen benchmark applications is noticed 16.

The high value of standard deviation from the mean is due to the noticeable differ-

ence among the estimation times of chosen benchmark applications. The variance

from standard deviation for estimation by Power Tutor for chosen benchmark appli-

cations is noticed 256.2. Fig. 6.4 highlights total energy estimation time for android

based benchmark applications using measurement-based estimation method. Using

measurement-based energy estimation method, energy estimation time is noticed

15.4s, 7.6s, 12.5s, 16.4s, 3.9s, 55.11s, 7.8s, and 16.9s for MemSpeedi, LinpackSPs,

LivermoreLoops2, RandMemi, Factorial, FFT1, Nested branches, and NativeWhet-

stone2 benchmarks, respectively. For both Power Tutor and measurement-based

energy estimation methods, the energy estimation time presented in Fig. 6.3 and

Fig. 6.4 is the average of 15 runs. The variance among estimation time readings

is marginal as prior to experiments it has switched off all the unnecessary appli-

cations. Considering measurement-based energy estimation method, the standard

deviation for selected benchmark applications is noticed 15.95. Also, the variance

from standard deviation is 254.24 for measurement based method. The high value

of standard deviation is due to high difference between estimation time of FFT1,

Factorial, and Dhrystone2 benchmarks.

Figure 6.3: Energy Estimation Time Analysis for Power Tutor
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Figure 6.4: Energy Estimation Time Analysis for Measurement-based Estimation
Method

Fig. 6.5 compares three energy estimation methods including SA-LEEF, Power

Tutor, and measurement method, based on energy estimation time parameter for a

set of benchmark applications. The X-axis highlights energy estimation tools and

chosen benchmark applications. Y-axis states the average energy estimation time

for the chosen benchmark applications. The energy estimation time of SA-LEEF is

much lower than Power Tutor and measurement-based energy estimation methods

due to its static analysis methodology to estimate energy consumption of bench-

mark applications. It is noticed that SA-LEEF energy estimation process is 16

times faster than Power Tutor energy estimation method when considering Mem-

Speedi benchmark application. For LinpackSP2 benchmark, SA-LEEF is 34 times

faster than Power Tutor energy estimation method. Moreover, for LivermoreLoops2,

RandMemi, NativeWhetstone2, Nested branches, FFT1, and Factorial benchmarks,

SA-LEEF estimation time is lower than Power Tutor by a factor of 75%, 86%, 86%,

93%, 95%, and 94%, respectively. In the case of the measurement-based method,

approximately same behavior is noticed when comparing it with SA-LEEF energy

estimation framework. For instance, SA-LEEF estimation process is faster than

measurement based method by a factor of 84.74%, 67.3%, 76.32%, 6.1%, 95.90%,
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and 94.6%, for MemSpeedi, LinpackSP2, LivermoreLoops2, Dhrystone2, Nested

branches, and Factorial benchmark applications, respectively. The main reason for

such huge difference in estimation time is due to the fact that loops took up to 98%

(chapter 3) of the total execution time of an application. In case of SA-LEEF, the

body of the loops is traversed only three times. Therefore, energy estimation time is

noticeably minimized. From Fig. 6.5 it is evident that the estimation time of Power

Tutor, measurement-based method, and SA-LEEF is approximately similar when

the Dhrystone2 benchmark is analyzed. For Power Tutor and measurement based

methods, the main reason of this minimal estimation time is the minimum itera-

tion counts within loops of Dhyrstone2 benchmark. In the case of the Dhyrstone2

benchmark application, SA-LEEF is only 6 times faster than Power Tutor energy

estimation method. While comparing measurement based method with the Power

Tutor energy estimation tool, energy estimation time of Power Tutor is lower than

measurement based method by a factor of 2-3.5% for all benchmark applications

except Dhrystone2. The main reason for this marginal increase in estimation time

of measurement-based method is the neighborhood operation to suppress the effect

of noise due to background activities.

Figure 6.5: Comparison of Energy Estimation Methods for Energy Estimation
Time
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6.2.1.2 Energy Estimation Accuracy

Energy estimation accuracy of energy estimation methods highly depend on the

accuracy of the power models used during energy estimation process. Fig. 6.6

demonstrates energy consumption for a set of android based benchmark applications

when estimated using SA-LEEF framework. X-axis highlights a set of benchmark

applications, whereas, Y-axis depicts average energy consumption for benchmark

applications. SA-LEEF reported that MemSpeedi, LinpackSP2, LvermoreLoops2,

Dhrystone2, RandMemi, NativeWhetstone2, Nested branches, FFT1, and Factorial

benchmarks, has consumed 7.62 j, 3.48 j, 5.966 j, 0.6 j, 7.87 j, 8.02 j, 3.34 j, 34.99

j, and 1.85j energy, respectively. Among all the selected benchmark applications,

energy consumption for Dhrystone2 benchmark was noticed the lowest. On the

other hand, the value of energy estimation for FFT1 is noticed highest for all the

chosen benchmark applications. From the energy consumption data for selected

benchmark applications, the mean of the energy consumption is noticed 8.19. The

standard deviation from the mean is noticed 10.4 as shown in Fig. 6.6. The main rea-

son for this high value of standard deviation is the high variance among the nature

of benchmark applications selected for the analysis. However, LinpackSP2 consists

of several thousand numbers of instructions encapsulated in loops. As a result,

estimation time and power consumption of LinpackSP2 is higher than Dhrystone2

benchmark application.

Fig. 6.7 highlights energy consumed by a set of android based benchmark ap-

plications estimated using Power Tutor energy estimation method. Power Tutor

reported that MemSpeedi, LinpackSP2, LivermoreLoops2, Dhrystone2, RandMemi,

NativeWhetstone2, Nested branches, FFT1, and Factorial benchmarks has con-

sumed 8 j, 3.7 j, 6.3 j, 0.7 j, 8.2 j, 8.4 j, 3.75 j, 37.1 j, and 1.95j energy, re-
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Figure 6.6: SA-LEEF based Application Energy Consumption Estimation

spectively. The standard deviation from the mean for chosen benchmark appli-

cations is noticed 11.02. However, the variance from the standard deviation is

very high and it is reported 121.52. Fig. 6.8 demonstrates energy consumed by

a set of android based benchmark applications estimated using measurement-based

method. Measurement-based method reported that MemSpeedi, LinpackSP2, Liver-

moreLoops2, Dhrystone2, RandMemi, NativeWhetstone2, Nested branches, FFT1,

and Factorial benchmarks has consumed 8.64 j, 3.95 j, 6.77 j, 0.75 j, 8.5 j, 9.01 j,

4.01 j, 39.77 j, and 2.08j energy, respectively. The standard deviation from the mean

is reported 11.81. The main reason of high value of standard deviation from the

mean is the high divergence (139.67) among the execution time statistics of selected

benchmark applications.

Fig. 6.9 compares SA-LEEF, Power Tutor, and measurement-based energy es-

timation methods on the basis of collected data for energy consumption for a set

of benchmark applications. It is shown in Fig. 6.9 that measurement-based method

has highlighted highest energy consumption readings for chosen benchmark appli-

cations. Alternatively, SA-LEEF has reported lowest energy consumption readings

for selected benchmark applications. Fig. 6.10 highlights the estimation accuracy

of Power Tutor and SA-LEEF framework while considering findings of measure-
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Figure 6.7: Power Tutor based Application Energy Consumption Estimation

Figure 6.8: Measurement-based Application Energy Consumption Estimation

ment based method as ground truth value. The estimation accuracy of Power Tutor

benchmark ranges from 92 to 93%. For instance, for MemSpeedi, LinpackSP2, Liv-

ermoreLoops2, and FFT1, the energy estimation is noticed 92.5 %, 93.4 %, 93.02

%, and 93.28 % accurate (for Power Tutor estimation method). The estimation

accuracy of SA-LEEF framework is lower than Power Tutor. For instance, for Mem-

Speedi, LinpackSP2, LivermoreLoops2, and FFT1, the estimation is noticed 88.3 %,

88 %, 87.3 %, and 88 % accurate. For Nested branches benchmark application, the

estimation accuracy of SA-LEEF is 82% accurate due to large number of Nested

branches. The main reason for this behavior is the high chances of the errors while

estimating the location of instructions, execution path estimation, the power states
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of smart-phone components, and loops termination. Power Tutor estimates energy

consumption by physically running application on smart-phone; therefore, Power

Tutor results are comparatively better. Estimation accuracy of Power Tutor is 5-

6.3% higher than SA-LEEF energy estimation framework. The error in results of

Power Tutor is due to errors in power models for the smart-phone components. The

standard deviation from the mean for the accuracy statistics of the Power Tutor for

chosen benchmark applications is observed 0.32. On the other hand, for SA-LEEF

framework, the value of standard deviation from the mean for accuracy statistics is

noticed 1.76.

Figure 6.9: Comparison of Energy Estimation Methods based on Energy Con-
sumption Estimation

Figure 6.10: Comparison of Energy Estimation Methods based on Energy Esti-
mation Accuracy
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6.2.1.3 Energy Estimation Overhead

The energy estimation overhead of an estimation tool states the total energy it re-

quires to estimate energy consumption of the smart-phone application. Fig. 6.11

demonstrates energy estimation overhead for SA-LEEF estimation framework in

milli joules for a set of benchmark applications. X-axis represents the selected

benchmark applications whereas Y-axis highlights the average energy overhead of

SA-LEEF benchmark. Energy estimation overhead composed of energy consumed

during scanning target smart-phone application to estimate loops, execution paths,

and instruction storage analysis. Among all the selected benchmark applications,

during energy estimation of the Factorial program, SA-LEEF has consumed min-

imum energy. For LivermoreLoops2 benchmark application, SA-LEEF framework

has exhibited highest energy overhead for selected benchmark applications. Statis-

tically, the energy estimation overhead of SA-LEEF estimation tool during energy

estimation of LivermoreLoops2 benchmark application is noticed 92.9 times higher

than the Factorial program. During energy estimation of MemSpeedi, LinpackSP2,

LivermoreLoops2, and Dhrystone2, SA-LEEF has consumed 67.91 mJ, 71.67 mJ,

85.54mJ, and 13mJ energy, respectively. Alternatively, for RandMemi, NativeWhet-

stone2, Nested branches, FFT1, and Factorial, SA-LEEF has consumed 62.71mJ,

64.44mJ, 15.02mJ, 65.02mJ, and 6.09mJ energy, respectively. The standard devia-

tion from the mean for energy overhead of SA-LEEF for chosen benchmark applica-

tions is noticed 50.15. The high value of standard deviation is due to the variance

in code size of chosen benchmark applications. The variance from the standard

deviation is noticed 896.57.

Fig. 6.12 demonstrates energy estimation overhead for Power Tutor energy es-

timation tool during energy consumption estimation for a set of benchmark appli-
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Figure 6.11: Energy Overhead of SA-LEEF Energy Estimation Framework

cations. The energy estimation overhead of Power Tutor during energy estimation

of MemSpeedi, LinpackSP2, LivermoreLoops2, and Dhrystone2, is noticed 168mJ,

81mJ, 122mJ, and 16mJ, respectively. Alternatively, for RandMemi, NativeWhet-

stone2, Nested Branches, FFT1, and Factorial, Power Tutor has consumed 200mJ,

182mJ, 85mJ, 555mJ, and 42mJ energy, respectively. Among all chosen benchmark

applications, during energy estimation of Dhrystone2, Power Tutor has consumed

minimal energy. The energy estimation overhead of Power Tutor highly depends

on the execution time of the smart-phone application. For instance, Power Tutor

has consumed 99.97% more energy while estimating energy consumption for FFT1

benchmark than Dhrystone2. The standard deviation from mean for energy esti-

mation overhead data for chosen benchmark applications is noticed 160.22. The

variance from the standard deviation is noticed 1257.66. The main reason of high

value of standard deviation is the non-homogenous nature of chosen benchmark

applications.

Fig. 6.13 relates SA-LEEF and Power Tutor energy estimation tools based on

their energy estimation overhead for a set of benchmark applications. Consider-

ing Power Tutor tool, the energy estimation overhead is noticed minimum for the

Dhyrystone2 benchmark application. However, for SA-LEEF framework, during en-
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Figure 6.12: Energy Overhead of Power Tutor Energy Estimation Tool

ergy estimation of Factorial program SA-LEEF has consumed minimal energy. The

main reason for this surprising behavior is because of unlike estimation approaches

opted by Power Tutor and SA-LEEF estimation tools. For instance, in the case

of SA-LEEF, the size of code (in assembly), loops and their size, frequency of ex-

ecution paths, calls to functions, the accuracy of instruction/data storage location

prediction, are the main reasons for total energy estimation overhead. However, for

Power Tutor, in addition to the size of code, loops iterations are the utmost respon-

sible entities for energy estimation overhead (Chapter 3). SA-LEEF’s application

profiler module scan through loops only three times and significantly suppresses

the total execution time of application (overhead is dependent on execution time).

Overall, energy estimation overhead of SA-LEEF framework during energy esti-

mation of benchmark applications is much lower than Power Tutor. The ratio of

energy estimation overhead of SA-LEEF to Power Tutor is different for different

benchmark applications depending on their size. For MemSpeedi, LinpackSP2, Liv-

ermoreLoops2, and Dhrystone2, SA-LEEF has consumed 59.5%, 11.5%, 29.88%,

and 18.75% less energy than Power Tutor during energy estimation of benchmark

applications. Alternatively, for RandMemi, NativeWhetstone2, Nested branches,

FFT1, and Factorial, SA-LEEF consumed 68.6%, 68.58%, 82.32%, 88.28%, and
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85.55% lower energy than Power Tutor energy estimation tool. Therefore, in terms

of energy overhead, SA-LEEF outperforms dynamic energy estimation methods.

Figure 6.13: Comparison of Energy Estimation Methods based on Energy Con-
sumption Overhead

6.2.2 Application Data Size Case

This section compares selected energy estimation tools to SA-LEEF framework when

data sizes of the chosen benchmark application is increased. C variant of LinpackSP

benchmark is used to analyze the impact of increasing data size on the performance

of SA-LEEF framework in comparison to existing energy estimation methods. Lin-

packSP is a CPU bound benchmark application and it calculates the product of two

matrices during execution on smart-phone. In this section, to highlight the impact

of an increase in data size on the performance of SA-LEEF in comparison to existing

methods, different variants of LinpackSP are created based on the size of integer

matrices. For instance, in Linpack200, both input matrices are of size 200× 200.

In this section, it is assumed that ARM-IS energy profile and assembly code of the

application is already available on smart-phone device.
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6.2.2.1 Energy Estimation Time

Fig. 6.14 highlights the effect of increasing benchmark data size on total energy

estimation time of SA-LEEF energy estimation framework. In Fig. 6.14, X-axis

highlights different variants of LinpackSP benchmark whereas Y-axis states average

energy estimation time for each variant of LinpackSP benchmark. It is noticed that

the average estimation time of SA-LEEF framework with different data sizes remain

almost unchanged. In Fig. 6.14, the minimum reported estimation time is 2.53s when

matrices of 200 are multiplied. The main reason for the ignorable rise in estimation

time for SA-LEEF estimation framework is this that SA-LEEF estimation time

is not affected by the increase in execution time (real-time) of the application.

Rather, it changes with the increase in the line of code of the application. When a

native smart-phone application is compiled with GCC compiler, it creates labels to

represent the loops. Irrespective of the number of iterations of the loop, the assembly

code size remains unchanged. The estimation time for Linpack200, Linpack400,

Linpack600, Linpack800, Linpack1000, Linpack1200, and LinpackSP 1400, is noticed

2.533s, 2.533s, 2.534s, 2.535s, 2.535s, 2.535, and 2.536s, respectively. The small

variation in estimation time is due to the activities running in the background

of smart-phone during energy estimation by SA-LEEF framework. Also, standard

deviation from the mean for estimation time of all benchmark applications is noticed

0.00113 only. The variance from the standard deviation is found 0.0000012 only.

The main reason of this small value of standard deviation is the negligible effect of

increasing data sizes within an application on the total estimation time.

Fig. 6.15 demonstrates energy estimation time analysis for Power Tutor en-

ergy estimation tool for increasing sizes of matrices within LinpackSP benchmark

application. The X-axis of Fig. 6.15 states different variants of LinpackSP bench-
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Figure 6.14: Effect of Data Size on the Estimation Time of SA-LEEF Framework

mark whereas Y-axis demonstrates average energy estimation time for each variant

of LinpackSP benchmark application. It is noticed that increasing data size of

matrices within LinpackSP benchmark significantly increases the total energy esti-

mation time of Power Tutor energy estimation tool. As can be seen from Fig. 6.15,

varying the data sizes of matrices within LinpackSP linearly increases the energy es-

timation time. The total estimation time for Linpack200, Linpack400, Linpack600,

Linpack800, Linpack1000, Linpack1200, and Linpack 1400, is noticed 17.87s, 18.12s,

21.15s, 51.3s, 105.6s, 182.41s, and 298.6s, respectively. Due to high variance among

the size of chosen data sets for LinpackSP benchmark, the standard deviation from

the mean is noticed 78.5s. Also, the variance from standard deviation is very high

and is noticed 6168.31s. The main reason of this high value of standard devia-

tion and variance is the physical execution of the smart-phone application on the

smart-phone device.

Fig. 6.16 concludes that varying data sizes within a benchmark application does

not impacts the total energy estimation time of SA-LEEF framework. In comparison

to Power Tutor, the performance of SA-LEEF for large sized data within LinpackSP

benchmark application is much better. For instance, considering Linpack200 bench-

mark variant, SA-LEEF has reduced energy estimation time by a factor of 85.78%
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Figure 6.15: Effect of Data size on Estimation Time of Power Tutor Estimation
Tool

compared to Power Tutor energy estimation tool. Whereas, for Linpack1400, it has

reduced estimation time of Power Tutor by a factor of 99.14%. For Linpack400,

Linpack600, Linpack800, Linpack1000, and Linpack1200, average energy estimation

time of Power Tutor is 86%, 88%, 95%, 97%, and 98%, higher than SA-LEEF en-

ergy estimation framework. Therefore, SA-LEEF is a better choice when the size

of data for a particular benchmark application is very large. For small data sized

applications, the performance of SA-LEEF is either equal or lower than existing dy-

namic analysis based energy estimation methods. Considering Linpack1400 variant

of benchmark application, the estimation time difference is noticed highest. The

main reason for such huge difference in estimation time for Linpack1400 is due to

the fact that the body of the loops is traversed only three times for SA-LEEF. For

SA-LEEF, the energy estimation time is not affected by changing data size within

the loops. However, in the case of Power Tutor, the estimation time is directly

proportional to the data size (loop bounds) of the loops.

6.2.2.2 Energy Estimation Overhead

This section compares SA-LEEF energy estimation framework to existing energy

estimation methods based on energy estimation overhead parameter. It highlights
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Figure 6.16: Power Tutor vs. SA-LEEF Energy Estimation Time

the impact of increasing data sizes within LinpackSP benchmark on the average

energy overhead of Power Tutor.

Fig. 6.17 demonstrates energy estimation overhead of SA-LEEF framework

when data size within LinpackSP benchmark application is increased. In said figure,

X-axis describes different variants of LinpackSP benchmark whereas Y-axis states

average energy estimation overhead across each variant of LinpackSP benchmark.

It is noticed that SA-LEEF energy estimation overhead is almost same for all the

variants of LinpackSP benchmark. For chosen data sizes of LinpackSP benchmark,

the minimum energy overhead is noticed 73.34mJ, whereas, maximum energy over-

head is observed 73.59mj. For Linpack400, Linpack600, Linpack800, Linpack1000,

and Linpack1200, energy estimation overhead of SA-LEEF is estimated 73.34mJ,

73.40mJ, 73.59mJ, 73.59mJ, and 73.59mJ, respectively. In case of SA-LEEF frame-

work, for all chosen variants of LinpackSP benchmark, standard deviation from the

mean is noticed 0.125 only.

Fig. 6.18 demonstrates energy estimation overhead of Power Tutor energy esti-

mation tool for different variants of LinpackSP benchmark. The energy estimation

overhead of Power Tutor is very high in comparison to SA-LEEF framework because

of unlike energy estimation methods opted by both of these estimation methods.
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Figure 6.17: Effect of Data Size on Energy Estimation Overhead of SA-LEEF

The minimum energy estimation overhead for all variants of LinpackSP is noticed

182.81mJ when LinpackSP200×200 is run on smart-phone device (for Power Tutor).

The highest energy overhead for Power Tutor is noticed 3580.21mj when matrices of

size 1400× 1400 and 1400× 1400 are multiplied. The standard deviation from the

mean is noticed very high due to the high difference in energy estimation overhead

values. It is noticed 1291.87. The variance from standard deviation is observed

1668939.

Figure 6.18: Effect of Data size on Estimation Overhead of Power Tutor Energy
Estimation Tool

Fig. 6.19 compares SA-LEEF to Power Tutor energy estimation tool when size

of data in LinpackSP benchmark is increasing. It is shown in Fig. 6.19 that the en-
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ergy estimation overhead of SA-LEEF is much lower than Power Tutor tool when the

data size within benchmark application is very large. The energy estimation over-

head of SA-LEEF is noticed 59%, 60%, 66%, 86%, 94%, 96%, and 97% lower than

Power Tutor for LinpackSP200, LinpackSP400, LinpackSP600, LinpackSP800, Lin-

packSP1000, LinpackSP1200, and LinpackSP1400 benchmarks, respectively. Con-

sidering Linpack1400 variant of benchmark application, the energy estimation over-

head difference among chosen energy estimation methods is noticed highest. The

main reason for such huge difference in energy estimation overhead for Linpack1400

is due to the fact that the body of the loops is traversed only three times for SA-

LEEF. For SA-LEEF, the energy estimation overhead is not affected by changing

data size within the loops. However, in the case of Power Tutor, the energy estima-

tion overhead is directly proportional to the data size of the loops (high estimation

time).

Figure 6.19: SA-LEEF vs. Power Tutor Estimation Overhead

6.2.2.3 Energy Estimation Accuracy

Fig. 6.20 demonstrates energy consumption for different variants of LinpackSP

benchmark application estimated using SA-LEEF energy estimation tool. Energy

consumption of benchmark application depends on the total number of instructions
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that CPU executes at run time. The energy consumption of different variants of

LinpackSP such as Linpack200, Linpack400, Linpack600, Linpack800, Linpack1000,

Linpack1200, and Linpack 1400, is estimated 8.51j, 8.57j, 9.58j ,23.66j, 49.98j, 86.66j,

and 142.84j using SA-LEEF framework. The standard deviation from the mean for

different benchmark variants is estimated 51.18. Alternatively, the variance from

standard deviation is noticed 2620.35.

Figure 6.20: Effect of Data Size on Energy Consumption of LinpackSP using
SA-LEEF

Fig. 6.21 highlights energy consumption of different variants of LinpackSP

benchmark application using the Power Tutor energy estimation tool. The energy

consumption of LinpackSP for different data sizes is noticed different. The energy

consumption of different variants of LinpackSP application such as Linpack200, Lin-

pack400, Linpack600, Linpack800, Linpack1000, Linpack1200, and Linpack 1400, is

estimated 8.99j, 9.06j, 10.12j, 24.99j, 52.8j, 91.6j, and 150.9 j, respectively. The

standard deviation from the mean for chosen variants of LinpackSP is estimated

50.23. The high value of standard deviation from the mean is due to high variance

in execution time of different variants of LinpackSP benchmark application.

Fig. 6.22 compares SA-LEEF and Power Tutor energy estimation tools based

on their estimation accuracy for different variants of LinpackSP benchmark. In the
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Figure 6.21: Effect of Data Size on Energy Consumption of LinpackSP using
Power Tutor

said figure, X-axis describes LinpackSP variants whereas Y-axis states estimation

accuracy across each variant of benchmark application while considering measure-

ment based method as the measurement of ground truth value. Energy estimation

accuracy for different variants of LinpackSP benchmark is approximately similar for

both SA-LEEF and Power Tutor tool. The estimation accuracy for Power Tutor is

noticed in the range of 90-92.1%. The standard deviation from the mean for cho-

sen variants of LinpackSP benchmark using Power Tutor is estimated 0.52. Also,

the variance from the standard deviation is noticed 0.27. The estimation accuracy

for SA-LEEF framework is noticed in the range of 86.4-88.8% for different variants

of LinpackSP benchmark application. The standard deviation from the mean is

noticed 0.19 for SA-LEEF framework. The variance from standard deviation for

different variants of LinpackSP benchmark using SA-LEEF is noticed 0.03 only.

The main reason of low accuracy of SA-LEEF compared to Power Tutor is due to

the fact that SA-LEEF does not consider the impact of the power state of smart-

phone components during estimation. Also, nested branching inaccurate the total

energy consumption as SA-LEEF considers weighted probability for execution flow

analysis.
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Figure 6.22: SA-LEEF vs. Power Tutor Energy Estimation Accuracy

6.3 Performance Comparison of SA-LEEF Framework (Remote Mode)
to Existing Energy Estimation Methods

This section compares SA-LEEF framework to existing dynamic analysis based en-

ergy estimation tools when ARM-IS energy profile and assembly based version of

benchmark application is not available on local smart-phone device. In this scenario,

ARM-IS energy profile is hosted on a physical server. The physical server is located

either within local premises of a user (i.e., cloud-let) or is located on a remote cloud

server. This study has compared the performance of SA-LEEF to Power Tutor and

external measurement methods for both scenarios.

6.3.1 Energy Estimation Time

This section compares two variants of SA-LEEF framework with dynamic analysis

based energy estimation methods. It compares energy estimation methods (SA-

LEEF, Power Tutor, and Measurement) based on average energy estimation time

as discussed below in details.

Fig. 6.23 compares SA-LEEF framework with Power Tutor and measurement-

based energy estimation methods. X-axis in Fig. 6.23 highlights a set of benchmark

applications whereas Y-axis demonstrates average energy estimation time for each
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energy estimation method against chosen benchmark applications. The reported

results are the average of 15 runs on the smart-phone. In Fig. 6.23, a scaling

function is used to suppress the huge difference among findings of SA-LEEF and

dynamic solutions for better presentation. For instance, the reported results for

Power Tutor and measurement-based energy estimation methods are divided by 3.

Two operational variants of SA-LEEF framework including SA-LEEF (LOC SER)

and SA-LEEF (REM SER) are presented. SA-LEEF (LOC SER) represents the case

where ARM-IS energy profile and assembly code of target smart-phone application

is hosted on a local server. SA-LEEF framework accesses these files from the server

to estimate energy consumption of the application. Alternatively, SA-LEEF (REM

SER) states the case when ARM-IS energy profile and assembly code of the smart-

phone application is hosted on a remote cloud server.

Figure 6.23: Comparison of SA-LEEF to Existing Methods based on Energy
Estimation Time

Energy estimation time of measurement based method is noticed highest among

all chosen energy estimation methods. Total energy estimation time of measure-

ment based method consists of application execution time and offline analysis on

time-stamped power profile for noise suppression (neighborhood operation). Within

total energy estimation time of measurement based method, application execution
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time is superior to offline analysis time (98.99%). The estimation time of Power

Tutor too is much higher than SA-LEEF framework. In comparison to SA-LEEF

(REM SER), energy estimation time of SA-LEEF (LOC SER) is lower. On av-

erage, the energy estimation time of measurement based method is 2-4% higher

than Power Tutor energy estimation tool. The estimation time difference between

Power Tutor and measurement based method is minimal when the execution time

of target benchmark application is very small. For the selected benchmark ap-

plications such as MemSpeedi, LinpackSP2, LivermoreLoops2, Dhrystone2, Rand-

Memi, NativeWhetstone2, Nested Branches, FFT1, and Factorial, SA-LEEF (LOC

SER) is 86.78, 73.05, 83.23, 21.38, 88.70, 88.02, 99.33, 96.32, and 99.46 times faster

than measurement-based estimation method. Similarly, the energy estimation time

of SA-LEEF (LOC SER) is 86.43%, 72.32%, 82.81%, 21.38%, 87.39%, 87.73 %,

99.30%, 96.32%, and 99.46% lower than Power Tutor energy estimation tool for

aforementioned benchmark applications. The similar behavior is noticed when SA-

LEEF (REM SER) is compared with measurement and Power Tutor energy esti-

mation tools. For instance, considering MemSpeedi, LinpackSP2, LivermoreLoops2,

Dhrystone2, RandMemi, and NativeWhetstone2 benchmark applications, SA-LEEF

(REM SER) has reduced total energy estimation time of Power Tutor by 86.43%,

72.32%, 82.81%, 21.38%, 87.39%, and 87.73%, respectively.

6.3.2 Energy Estimation Overhead

In this section, two variants of SA-LEEF framework with Power Tutor and measurement-

based energy estimation methods are compared.

Fig. 6.24 presents a comparison among SA-LEEF, Power Tutor, and measurement-

based energy estimation tools based on energy overhead during the estimation pro-

cess. In Fig. 6.24, X-axis highlights a set of benchmark applications whereas Y-axis
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demonstrates total average energy estimation overhead for each energy estimation

method against chosen benchmark applications. The scaling function in Fig. 6.24

divides the energy overhead of Power Tutor and measurement based method by 5

to improve the presentation of results. In Fig. 6.24, the presented results are the

average of 15 runs on smart-phone. The energy overhead of SA-LEEF framework is

presented in terms of two settings including SA-LEEF (LOC SER) and SA-LEEF

(REM SER). Power Tutor runs benchmark application on smart-phone and it pro-

files execution behavior of application for its energy estimation. Therefore, the

energy estimation overhead of Power Tutor is estimated based on energy overhead

of Power Tutor and overhead of benchmark application running on smart-phone. Al-

ternatively, energy estimation overhead of measurement based method is estimated

based on the energy overhead of application executing on smart-phone.

Figure 6.24: Comparison of SA-LEEF to Existing Energy Estimation Methods for
Energy Estimation Time

The energy estimation overhead of Power Tutor is noticed highest among all

chosen energy estimation methods. Alternatively, energy estimation overhead of

SA-LEEF is noticed lowest among all chosen energy estimation methods. In terms

of energy estimation overhead, the performance of SA-LEEF is much better than

measurement-based energy estimation method. For the selected benchmark appli-
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cations such as MemSpeedi, LinpackSP2, LivermoreLoops2, and Dhrystone2, SA-

LEEF(LOC SER) is 95.30, 89.32, 90.61, and 87.55 times energy efficient than mea-

surement based method. Also, for RandMemi, NativeWhetstone2, Nested branches,

FFT1, and Factorial benchmarks, SA-LEEF (LOC SER) has consumed 95.46%,

95.51%, 99.25%, 98.96%, and 96.54%, less energy than measurement-based energy

estimation method. Alternatively, while considering SA-LEEF (REM SER) remote

profile setting, SA-LEEF has consumed 92.72, 83.66, 84.4, and 82.65 times less

energy while estimating energy consumption of MemSpeedi, LinpackSP2, Liver-

moreLoops2, and Dhrystone2 benchmark applications, respectively. Also, it con-

sumes 92.88%, 93.01%, 96.78%, 98.39%, and 94.51% less battery charge during

energy estimation of RandMemi, NativeWhetstone2, Nested branches, FFT1, and

Factorial benchmark applications, respectively.

In comparison to Power Tutor, SA-LEEF (LOC SER) local mode has reduced

energy consumption budget by 95.39%, 89.53%, 90.78%, and 87.81% for MemSpeedi,

LinpackSP2, LivermoreLoops2, and Dhrystone2, benchmark applications, respec-

tively. On the other hand, for RandMemi, NativeWhetstone2, Nested branches,

FFT1, and Factorial benchmarks, it has consumed 95.56%, 95.60%, 99.26%, 98.97%,

and 96.61% less energy than Power Tutor energy estimation tool. SA-LEEF (REM

SER) remote setting consumes more energy than SA-LEEF (LOC SER) setting due

to high RTT value while downloading assembly file of benchmark application. While

considering energy estimation overhead of estimation tools, SA-LEEF (LOC SER)

has consumed 92.85%, 83.99%, 84.69%, and 83.01% less energy than Power Tutor

while estimating energy consumption of MemSpeedi, LinpackSP2, LivermoreLoops2,

and Dhrystone2, respectively. Alternatively, for RandMemi, NativeWhetstone2,

Nested branches, FFT1, and Factorial benchmarks, SA-LEEF (REM SER) has re-

duced the total energy consumption of Power Tutor by a factor of 93.04%, 93.15%,
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96.85%, 98.42%, and 94.62%, respectively. For the selected benchmark applications

such as MemSpeedi, LinpackSP2, LivermoreLoops2, Dhrystone2, RandMemi, Na-

tiveWhetstone2, Nested branches, FFT1, and Factorial, energy estimation overhead

of SA-LEEF (LOC SER) is 35.45, 34.63, 39.78, 28.24, 36.20, 35.74, 76.72, 35.16, and

37.04 times lower than SA-LEEF(REM SER) framework. The energy estimation

accuracy is not affected by the remote profiling mode that is why results are not

added here.

6.4 SA-LEEF Resource Consumption Comparison to Existing Energy
Estimation Methods

This section compares SA-LEEF energy estimation framework with Power Tutor in

terms of its resource consumption behavior. This study has evaluated performance

behavior of SA-LEEF for two smart-phone resources including CPU and RAM us-

age.

Figure 6.25: Comparison of Energy Estimation Methods based on CPU Resource
Consumption

Fig. 6.25 highlights CPU resource consumption of SA-LEEF in comparison

to Power Tutor energy estimation tool. The X-axis of Fig. 6.25 highlights chosen

energy estimation tools whereas Y-axis states average CPU usage. This study has

used top Linux utility to estimate the CPU usage for energy estimation tools. It is
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noticed that SA-LEEF has consumed less CPU capacity than Power Tutor during

energy estimation process. SA-LEEF has consumed 58% fewer CPU resource than

Power Tutor energy estimation method. The main reason for this behavior is the

static analysis approach that makes SA-LEEF lightweight in terms of its CPU usage.

Power Tutor continuously monitors the smart-phone components power states. Due

to continuous monitoring of smart-phone components state, the CPU usage of Power

Tutor is higher than SA-LEEF. The reported results in Fig. 6.25 are an average of 15

runs. It was observed that the standard deviation is 0.55 from the mean for 15 runs.

Also, for 95% percentile, the confidence interval is observed 0.46. For power Tutor

the standard deviation from mean is observed 0.91. Moreover, for 95% percentile,

the value of confidence interval is estimated 0.73.

Figure 6.26: Comparison of Energy Estimation Methods based on RAM Resource
Consumption

Fig. 6.26 compares SA-LEEF and Power Tutor energy estimation methods for

RAM usage during the energy estimation process. The X-axis of Fig. 6.26 highlights

chosen energy estimation tools whereas Y-axis states average RAM usage. To esti-

mate the RAM usage of an estimation tool, this study has considered Pmap utility of

Linux. It is noticed that SA-LEEF is much resource efficient in terms of RAM usage

than Power Tutor energy estimation tool. SA-LEEF consumes up to 97% less RAM
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capacity during energy estimation. The main reason for this behavior is the static

analysis approach of SA-LEEF. The design of Power Tutor is heavyweight as it fol-

lows dynamic analysis for estimation. This study has run the experiment 15 times

to report the average RAM usage for energy estimation methods. The standard

deviation from the mean is noticed 0.08 whereas, for 95% percentile, the confidence

interval is estimated 0.11. For Power Tutor energy estimation tool, the standard

deviation from the mean is observed 1.81. Alternatively, for 95% percentile, the

value of confidence interval is estimated 2.25.

6.5 Qualitative Comparison of SA-LEEF Framework

The code analysis based energy estimation schemes consider energy cost of software

operations to estimate energy consumption of an application. Due to the absence

of a simulator and LEAP power measurement equipment for smart-phone devices

to deploy the same system for comparison, a qualitative analysis of SA-LEEF is

performed to the relevant studies. Table 6.1 compares SA-LEEF to existing code

analysis based energy estimation schemes based on a set of parameters including

Flow Analysis Method, Storage Analysis, Concurrent Execution Overhead, Instruc-

tion Granularity, Application Type, Power Measurement Equipment, and Power

Profile Availability parameters.

Existing energy estimation methods such as eLens (Hao et al., 2013), eCalc (Hao

et al., 2012a), Ins-Ener (D. Li et al., 2013), and Eco-Droid (Jabbarvand et al., 2015)

has considered dynamic analysis approach to estimate execution paths of an ap-

plication. Dynamic analysis category of energy estimation schemes instruments

the application to capture the execution flow across a set of application use cases.

However, the test cases for many of the smart-phone applications are not avail-

able usually that makes this approach impractical. Also, dynamic analysis based
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application profiling is a time and resource consuming process. Alternatively, SA-

LEEF is unique as it considers static analysis approach (weighted probability based

estimation) to estimate energy consumption of an application. Also, in existing

energy estimation schemes, cache analysis is overlooked (eLens (Hao et al., 2013),

eCalc (Hao et al., 2012a), Tiwari et al. (Tiwari et al., 1994), Ins-Ener (D. Li et

al., 2013), and Eco-Droid (Jabbarvand et al., 2015)). SA-LEEF estimates energy

consumption of an application based on the set of instructions fetched either from

the RAM storage or system cache.

For energy estimation of an application, an energy estimation tool runs on the

smart-phone device in parallel to several others smart-phone applications. Due to

resource sharing, cache eviction owing to high context switching leads to high energy

overhead. Existing energy estimation schemes such as eLens (Hao et al., 2013),

eCalc (Hao et al., 2012a), Ins-Ener (D. Li et al., 2013), Tiwari et al. (Tiwari et

al., 1994), and Eco-Droid (Jabbarvand et al., 2015) has overlooked energy overhead

due to cache eviction. Alternatively, SA-LEEF has considered energy overhead

due to concurrent program execution while estimating energy consumption of an

application. Instruction granularity states the level at which energy cost of software

operations is profiled. High-level granularity attribute defines the energy cost of

software libraries, system calls, and APIs. Existing energy estimation schemes such

as eLens (Hao et al., 2013), eCalc (Hao et al., 2012a), Ins-Ener (D. Li et al., 2013),

and Eco-Droid (Jabbarvand et al., 2015) has considered energy profile of high level

software operations. On the other hand, SA-LEEF has profiled energy consumption

of low-level assembly based instructions. Energy estimation of an application based

on the fine granular operations is more effective as it is not affected by bugs of the

system (sleep, wake-lock).

Existing energy estimation schemes including eLens (Hao et al., 2013), eCalc (Hao
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Table 6.1: Qualitative Comparison of SA-LEEF
Study Flow

Analysis
Method

Storage
Analysis

Concurrent
Execution
Overhead

Instruction
Granularity

Application Type Power
Measure-
ment
Equipment

Power
Profile Avail-
able?

eLens (Hao et al., 2013) Dynamic NO NO High Level Source Code LEAP NO
eCalc (Hao et al., 2012a) Dynamic NO NO High Level Source Code LEAP NO
Ins-Ener (D. Li et al., 2013) Dynamic NO NO High level Source Code LEAP NO
Eco-Droid (Jabbarvand et al., 2015) Dynamic NO NO API Source Code Monsoon NO
Tiwari et al. (Tiwari et al., 1994) N/A N/A N/A Low Level Assembly

Source
Code

Ammeter Incomplete

SA-LEEF Static YES YES Low Level Objdump EM6000
multimeter

YES

et al., 2012a), Ins-Ener (D. Li et al., 2013), and Eco-Droid (Jabbarvand et al., 2015)

requires java source code of the application for its energy estimation. However, the

source code of many applications is not available due to the privacy issues. SA-

LEEF is unique in comparison to aforementioned energy estimation schemes as it

estimates energy consumption using obj dump of the application. SA-LEEF pro-

vides energy profile of ARM-IS instructions online for its users. Existing energy

estimation schemes such as eLens (Hao et al., 2013), Ins-Ener (D. Li et al., 2013),

and Eco-Droid (Jabbarvand et al., 2015) have not published the energy profile of

software operations either scholarly or via web services.

6.6 Conclusion

In this chapter, SA-LEEF is validated and compared to Power Tutor and measurement-

based energy estimation methods. The performance of SA-LEEF is compared to

existing estimation tools with dissimilar application code and data sizes. Moreover,

the performance of SA-LEEF is compared to existing schemes in two of its oper-

ational mode, (a) Local ARM-IS profile hosting, and (b) Remote ARM-IS profile

hosting mode. The estimation of system model for SA-LEEF is observed 97.37%

accurate to its empirical evaluation.

The energy estimation time of SA-LEEF is compared to Power Tutor and mea-

surement based energy estimation methods. Energy estimation time of SA-LEEF

is noticed up to 98% lower than Power Tutor and measurement based methods
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for large data sized applications. While considering small data sized applications,

energy estimation time of SA-LEEF is 6% and 6.1% lower than Power Tutor and

measurement based methods, respectively. In terms of energy estimation overhead,

SA-LEEF has consumed up to 97% less energy than Power Tutor during energy

estimation of large data sized smart-phone application. However, for small data

sized applications, the energy overhead of SA-LEEF is 11.5% lower than the Power

Tutor energy estimation tool. In terms of estimation accuracy, findings of SA-LEEF

framework are accurate up to 88% to the ground truth energy estimation values cap-

tured through measurement based method. However, energy estimation accuracy of

SA-LEEF is lower than Power Tutor by a marginal range of 3-4%. For remote ARM-

IS profiling mode, the performance of SA-LEEF is 99% and 96% better than Power

Tutor in terms of energy estimation time and overhead, respectively. SA-LEEF

has significantly reduced energy estimation time and overhead of existing energy

estimation tools while offering acceptable accuracy for various applications such as

MCC, IoT, and WSN. In terms of resource consumption rate, SA-LEEF consumes

58% less CPU resource capacity than Power Tutor energy estimation tool during

estimation process. For RAM usage, SA-LEEF requires up to 97% less smart-phone

RAM during energy estimation of smart-phone applications. However, the perfor-

mance of SA-LEEF in terms of its estimation time and energy is badly affected if

the wall clock execution time of an application is lower than 1.5s.
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CHAPTER 7: CONCLUSION

This chapter reexamines the research objectives set in the first chapter of this thesis

and draws a conclusion of the whole research work. It discusses limitations, research

contributions, and presents future research directions of this work.

The organization of the chapter is as follows. Section 7.1 discusses reappraisal of

research objectives, the procedure to achieve the objectives, and presents research

findings. Section 7.2 highlights the limitations and applications of this research

work. Section 7.3 highlights the main contributions. Lastly, Section 7.4 highlights

several possible research directions from this work for further research to solve the

problems in this field of research.

7.1 Reappraisal of Research Objectives

This research work aimed to solve the problems of dynamic analysis based energy

estimation schemes. To achieve research objectives set in section 1.5, the given

below research road-map is followed.

Objective 1: To explore existing energy estimation schemes to gain

insights to the performance limitations of current state-of-the-art solu-

tions.

The first objective of this research work was to study and critically analyze

existing energy estimation schemes to highlight their limitations. To accomplish this

research objective, the current study thoroughly reviewed existing energy estimation

schemes to highlight their performance limitations. It has thoroughly reviewed

design, approaches, and methods for energy estimation of smart-phone applications.

It has performed an extensive search on online databases such as ACM, Elsevier,

Web of science, and Springer, to review existing literature in energy estimation of

smart-phone applications research domain. It has proposed thematic taxonomies
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to classify the existing literature based on parameters which were common in the

majority of the literature. Furthermore, existing schemes are compared based on

thematic taxonomies to highlight the commonalities and variances among existing

schemes. The issues in existing energy estimation schemes are highlighted to propose

possible research directions in this domain of research.

An analysis on open research issues is performed to investigate the feasibility

of research in each direction. It was found that existing energy estimation schemes

inefficiently utilizes underlying resources of smart-phone while estimating energy

consumption of smart-phone applications. It was also noticed that existing energy

estimation schemes consider dynamic analysis for application execution path find-

ing and overlooks storage location of instructions during energy estimation. There-

fore, to minimize the overhead of existing energy estimation schemes, an efficient

lightweight energy estimation framework was needed in this domain of research.

Objective 2: To investigative performance overhead of dynamic anal-

ysis based energy estimation schemes to reveal inefficiencies of existing

methods.

The second objective of this research was to analyze and investigate overhead of

existing energy estimation schemes. The proposed research has considered dynamic

analysis energy estimation schemes to examine their performance. The parameters

considered for investigating the performance of dynamic analysis based estimation

methods include energy estimation time, overhead, accuracy, and resource consump-

tion during energy estimation process of smart-phone applications. It was noticed

that the energy overhead and estimation time of dynamic analysis schemes is very

high and highly depends on the size of data within an application. The energy

estimation time of Power Tutor was noticed 14.3s, 7.8s, and 10.1s for NativeWhet-

stone2, LinpackSP2, and LivermoreLoops2 benchmark applications. The energy
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overhead of Power Tutor was noticed 187mJ. It was noticed that energy overhead

and estimation time increases with increase in total execution time and operations

within a smart-phone application. The energy consuming elements within a smart-

phone application are also highlighted. It was noticed that up to 89% energy budget

of an application (LinpackSP2) is consumed by the code written within loops of an

application. It was noticed that Power Tutor consumed 2-10% of the total CPU

capacity during energy estimation of smart-phone application. It was also noticed

that because of dynamic analysis approach existing energy schemes exhibit high

energy estimation time and overhead.

Objective 3: To develop a system to estimate energy consumption of

assembly based instructions within ARM-ISA for both system cache and

RAM storage access.

The third objective of this research was to estimate energy consumption of

fine granular assembly based instructions for ARM-7 ISA. To estimate energy cost

of ARM based assembly instructions, EM6000 multimeter is used. In the designed

experimental setup, a resistor of one ohm resistance was attached to the battery ter-

minals. Multimeter was interfaced to the sense resistor and desktop server. A set of

test programs were designed to estimate energy consumption of instructions fetched

from the RAM and cache storage. Moreover, energy is estimated for instructions

performing integer and floating point operations. During test program execution on

smart-phone device, multi-meter capture and records timestamped voltage drop at

the desktop server. During post processing phase, timestamped voltage profile is

processed to estimate power consumption of the test program. Also, weighted filter

is applied to suppress the noise from the power profile to eliminate the effect of

background activities on the power profile of the test programs. The timestamped

power profile and size of the test program was used to estimate energy consumption
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of single ARM assembly instruction. It was observed that power consumption rate

while running different type of test programs vary a little. It was also observed

that energy consumption of each instruction highly depends on its CPI. The energy

consumption of branch instructions was noticed very high. It was concluded that

arithmetic operations based instructions consume more energy than logical opera-

tion based instructions. Moreover, the energy cost of multiply and divide operations

was also noticed higher compared to arithmetic operations. The energy cost of float-

ing based operations was noticed much higher than integer based operations because

of their higher CPI. The energy cost of accessing instructions from RAM is higher

that accessing it from local cache. Moreover, it was noticed that energy consumption

of system libraries is very high.

Objective 4: To design and develop a lightweight energy estimation

framework that proposes weighted probability based application execu-

tion flow estimation and static cache analysis to estimate energy con-

sumption of smart-phone applications.

The fourth objective of this research was to propose a lightweight static analysis

based energy estimation framework. The lightweight feature in proposed framework

is achieved by eliminating the need to run the application on smart-phone for its

energy estimation. The proposed energy estimation method analysis native smart-

phone application and employs cost models for different operations of an application

to estimate its energy consumption. However, recent smart-phone applications are

non-deterministic by nature. The proposed work considered weighted probability

theory to handle the non-deterministic nature of smart-phone applications. SA-

LEEF employs probabilistic theory to predict the run time execution behaviors of a

smart-phone application. For instance, it estimates execution path of an application

based on a weighted probability function. It employs a slicing based approach to
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estimate the loop bounds within an application. For the data and storage location of

instructions within the native smart-phone application, it considers cache distance

based storage location prediction method. Two of main modules of proposed energy

estimation framework includes Application Analyzer and ARM Instruction Energy

Profiler. Application Analyzer and ARM Instruction Energy Profiler are responsible

for resolving the issues of non-deterministic nature of the application and to find the

operational cost of activities in a smart-phone application, respectively. The pro-

posed framework hosts operational cost of activities in the smart-phone application

on a cloud server to offer ARM-ISA energy profile as a service.

Objective 5: To evaluate the proposed energy estimation framework

for energy estimation time, overhead, resource consumption, and accu-

racy, and to compare it with state-of-the-art energy estimation schemes.

The fifth objective of this research was to evaluate and validate the system

model for the proposed framework. The viability of SA-LEEF is evaluated by test-

ing benchmark applications on the real smart-phone device. SA-LEEF has shown

remarkable performance in comparison to existing dynamic analysis based estima-

tion methods. Energy estimation time of SA-LEEF is noticed up to 98% lower than

Power Tutor and measurement-based energy estimation methods for large data sized

applications. While considering small data sized applications, energy estimation

time of SA-LEEF is 6% and 6.1% lower than Power Tutor and measurement-based

energy estimation methods, respectively. In terms of energy estimation overhead,

SA-LEEF has consumed up to 97% less energy than power tutor during energy

estimation of large data sized smart-phone application. However, for small data

sized applications, the energy overhead of SA-LEEF is 11.5% lower than Power Tu-

tor energy estimation tool. In terms of estimation accuracy, findings of SA-LEEF

framework are accurate up to 88% to the ground truth energy estimation values cap-

223

Univ
ers

ity
 of

 M
ala

ya



tured through measurement-based method. However, energy estimation accuracy

of SA-LEEF is lower than Power Tutor by a marginal range of 3-4%. For remote

ARM-ISA profiling mode, the performance of SA-LEEF is 99% and 96% higher

than Power Tutor in terms of energy estimation time and overhead, respectively.

SA-LEEF has significantly reduced energy estimation time and overhead of existing

energy estimation tools while offering acceptable accuracy for various application

domains such as mobile cloud computing. However, the performance of SA-LEEF

in terms of its estimation time and energy is badly affected if the wall clock exe-

cution time of applications is lower than 1.5s. In terms of resource consumption

rate, SA-LEEF consumes 58% less CPU resource capacity than Power Tutor energy

estimation tool during energy estimation process. For RAM usage, SA-LEEF re-

quires up to 97% less smart-phone RAM during energy estimation of smart-phone

applications.

7.2 Limitations and Applications

This research work is limited to the analysis of heaviness of existing dynamic analy-

sis energy estimation methods and proposing a lightweight energy estimation frame-

work to estimate energy consumption of the native smart-phone applications. SA-

LEEF framework considers the static analysis of smart-phone application to mini-

mize estimation time and energy overhead. The proposed framework is suitable for

decision making in computational offloading frameworks for battery augmentation.

Being a lightweight module, SA-LEEF can be integrated into SDK of a smart-

phone application to empower smart-phone users to estimate energy consumption

of their applications. Also, it is suitable for the external battery equipped small

sized devices doing soft real-time decisions making. The main application areas for

SA-LEEF includes MCC, IoTs, WSN, Body Area Network (BAN), and Internet of
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mobiles.

The scope of SA-LEEF is limited to native smart-phone applications only. It is

applicable only to ARM processor as it has profiled operational energy cost of ARM-

based assembly instructions only. In its current stand, it is applicable for energy

estimation of those applications which does not require inputs from the users during

their execution. Moreover, SA-LEEF lacks in considering the effect of smart-phone

component’s power states on estimation accuracy.

7.3 Contributions

In this section, the main contributions of this research are highlighted. A few con-

tributions have already been published in scholarly articles as listed in publication

section. Main contributions of this research are as follow.

• Taxonomies of Energy Estimation Schemes: This research has proposed

thematic taxonomies to classify existing state-of-the-art smart-phone appli-

cation energy estimation schemes. The proposed taxonomies highlight the

main categories in this domain of research. It highlights critical aspects and

significant features of existing categories of energy estimation schemes that

ultimately lead to new emerging research directions.

• Performance Evaluation of Dynamic Analysis Schemes: A detailed

analysis using a set of parameters on existing dynamic analysis based esti-

mation schemes is performed to investigate their performance overhead. The

performance evaluations reveal insights to the issues in existing energy esti-

mation methods.

• Fine Granular Instruction Energy Profile: This study has estimated

energy consumption of ARM-7 ISA instructions. It proposes energy cost for
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fetching ARM assembly instructions from RAM and local Cache. It has im-

proved the estimation accuracy by applying weighted filter based neighbor-

hood operation on power profile for an instruction.

• Static Analysis based Energy Estimation Framework (SA-LEEF):

A lightweight static analysis based energy estimation framework is proposed.

The proposed framework proposes weighted probability based application exe-

cution flow estimation. It also estimates storage location of instructions based

on the cache distance between different chunks of the code. It estimates energy

consumption based on application’s base cost energy, user-system interaction

model, ARM-IS energy profile access cost, and concurrent program execution

energy overhead.

• Evaluation and Validation of SA-LEEF: This study validated the pro-

posed energy estimation framework against empirical results. It chose four

parameters to compare SA-LEEF with Power Tutor and measurement-based

estimation methods. Chosen parameters include estimation time, energy over-

head, resource consumption, and accuracy. It compared SA-LEEF with ex-

isting solutions while considering the different sizes of application code and

data. It has also evaluated SA-LEEF to estimate its resource requirements in

terms of its CPU and RAM requirements.

7.4 Future Works

The future research work includes extending SA-LEEF model to consider user sys-

tem interaction model to estimate energy consumption of interactive web and mo-

bile games applications. For gaming mobile applications, the extended version of

this work will profile energy cost for graphics libraries. Also, it will model energy
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consumption while user interact with the smart-phone device. The user system

interaction model is a complex system as the interaction time varies from person

to person. The power consumption behavior of smart-phone components vary with

load and type of operations within an application. The future research work will en-

able application analyzer module of SA-LEEF to statically predict the power state

of smart-phone components based on the analysis of operations within a smart-

phone application. SA-LEEF converts the native smart-phone application into its

equivalent assembly code to analyze the application. To empower SA-LEEF for

suppressing the conventional conversion process, a mapper can be proposed to ef-

ficiently generate assembly based instructions for each operation within high-level

constructs of native smart-phone application. The compilers such as GCC applies

optimization to minimize the code size for effective storage resource usage. The

impact of compiler optimization on the performance of SA-LEEF in terms of esti-

mation accuracy and estimation time is also part of future research. In its current

stand, SA-LEEF has only implemented its remote profile mode. However, SA-LEEF

local profile mode can be implemented to generate ARM-IS energy profile on local

smart-phone based on the test programs.

MCC considers code size as one of the parameters to decide the execution loca-

tion of the smart-phone application. In contrast to code size, energy consumption

of an application highly depends on the type of operations within it. In future re-

search, SA-LEEF can be integrated with MCC computational offloading frameworks

to increase accuracy in decision making for execution location of the application.
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APPENDIX A: DATASET NOISE REMOVAL

Generally, there are various types noise removal approaches exists in literature.

We normalize data by removing the noise from dataset (XYZ) inspired by image

processing noise removal mean filtering method1.

Algorithm 3 has presented a Mean Filter for removal of noise. Mean filtering

(MF) is intuitive and easy to implement method of smoothing data. It reduces the

amount of intensity variation between one data element and the next by simply

mean (‘average’) value of its neighbors, including itself. This process eliminates the

data element which is beyond the representation of their neighbors. The proposed

pseudo code of applying MF over target data-set is shown below.

Algorithm 3 Noise Removal
1: Input: Grayscale Image
2: SumKernal← 0
3: for X =WL to l−WL do
4: i← 0
5: for fx= 0 to WL−1 do
6: SumKernal+ = InputDataV alue[x+fx+WL]
7: end for
8: i+ = 1
9: AvgKernal = SumKernla/i
10: OutputDataElement[x] = floor(AvgKernal)
11: end for

For evaluation of propose noise removal, we have considered a case study as

given below. Assume the inputDataValue = [11,12,9,8,13,8,12,109,7,11,12,190].

Where L represent the length of inputDataValue, i.e. L = 14, and similarly the

WL represent the window length i.e. WL = 8. Assume in the 8th element of

inputDataValue is 109, considered the noise element. From step 2 to 7, we observed

if x = 1, the SumKernal = 182 with inputDataValue [11+12+9+8+13+8+12+

109] = 182, and AvgKernal = 22.75, So the inputDataValue 109 value would be

1http://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
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replaced by floored 22. And similarly the above process will be applied for other

noise elements in data sets.
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APPENDIX B: TEST PROGRAM DESIGN

This section presents the design of the test program that is considered to estimate

energy consumption for a single ARM based assembly instruction. The test program

when compiled outputs the assembly based sequence for an ARM instructions.

#include <stdio.h>

#include <stdlib.h>

int main (int arg, char *argv[])

{

FILE *fp;

fp=fopen("CSTORE.s", "w");

fprintf(fp," .arch armv7t\n");

fprintf(fp," .fpu softvfp");

fprintf(fp," .eabi_attribute 20, 1 \n")

fprintf(fp," .eabi_attribute 21, 1\n")

fprintf(fp," .eabi_attribute 23, 3\n")

fprintf(fp," .eabi_attribute 24, 1\n")

fprintf(fp," .eabi_attribute 25, 1\n")

fprintf(fp," .eabi_attribute 26, 2\n")

fprintf(fp," .eabi_attribute 30, 6\n")

fprintf(fp," .eabi_attribute 34, 0\n")

fprintf(fp," .eabi_attribute 18, 4\n")

fprintf(fp," .file p̈pc1.c¨\n");

fprintf(fp," .text\n");

fprintf(fp," .align 2\n");

fprintf(fp," .global main\n");
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fprintf(fp,"main:\n");

fprintf(fp," args = 0, pretend = 0, frame = 24\n");

fprintf(fp," frame_needed = 1, uses_anonymous_args = 0\n");

fprintf(fp," str fp, [sp, #-4]\n");

fprintf(fp," add fp, sp, #0\n");

fprintf(fp," sub sp, sp, #28\n");

fprintf(fp," str r0, [fp, #-24]\n");

fprintf(fp," str r1, [fp, #-28]\n");

fprintf(fp," mov r3, #5\n");

fprintf(fp," str r3, [fp, #-12]\n");

fprintf(fp," mov r3, #0\n");

fprintf(fp," str r3, [fp, #-16]\n");

fprintf(fp," ldr r3, [fp, #-12]\n");

fprintf(fp," mov r3, #0\n");

fprintf(fp," str r3, [fp, #-12]\n");

fprintf(fp," ldr r2, [fp, #-16]\n");

int j,k;

for (i=0;i<1000;i++)

{

for(j=0;j<1521;j++)

{

for(k=0;k<10;k++)

{

n=rand()%4096;

if (n>4000)

{n=3471;}
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//fprintf(fp," add r3, r3, 1\n");

n=rand()

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;
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if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}
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fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3472;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3470;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3321;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3371;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3456;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;
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if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3171;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3131;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3411;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3401;}
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fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3470;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3271;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;
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if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3456;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}
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fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;
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if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

n=rand()%4096;

if (n>4000)

{n=3471;}

fprintf(fp," str r3, [fp, -%d]\n",n);

}

}

fprintf(fp," sub sp, fp, #4\n");
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fprintf(fp," ldmfd sp!, {fp, pc}\n");

fprintf(fp," .size main, .-main\n");

fprintf(fp," .ident "GCC: (Ubuntu/Linaro 4.7.3-12ubuntu1) 4.7.3¨\n");

fprintf(fp," .section .note.GNU-stack,"",%%progbits\n");

fclose(fp);

return 0;

}
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