WOUND HEALING AND GASTROPROTECTIVE EFFECTS OF CLAUSENA EXCAVATA LEAVES EXTRACT BY MODULATING INFLAMMATION AND OXIDATIVE STRESS

SHAYMAA FADHEL ABBAS ALBAAYIT

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPU

2016

WOUND HEALING AND GASTROPROTECTIVE EFFECTS OF *CLAUSENA EXCAVATA* LEAVES EXTRACT BY MODULATING INFLAMMATION AND OXIDATIVE STRESS

SHAYMAA FADHEL ABBAS ALBAAYIT

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2016

UNIVERSITY OF MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: SHAYMAA FADHEL ABBAS

Registration/Matric No: SHC120091

Name of Degree:

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): wound healing and gastroprotective effects of *Clausena excavata* leaves extract by modulating inflammation and oxidative stress

Field of Study: Molecular immunopharmacology

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date:

Subscribed and solemnly declared before,

Witness's Signature:

Date: 15 Sept 2016

Name: PROF. DR. NOORLIDAH ABDULLAH Designation: PROFESSOR

ABSTRACT

Clausena excavata Brum. f. is an important traditional medicinal plant commonly used in Malaysia and South-East Asian countries for the treatment of many common ailments. However, the effect of C. excavata on wounds is not known. In this study, the wound healing and gastroprotective effects of C. excavata leaves extract were determined. Successive fractionation of leaves using petroleum ether (PT) followed by chloroform (CH), ethyl acetate (EA), and methanol (MOH) showed that MOH fraction possessed the highest total phenolic content of $522.0 \pm 11.6 \text{ mg GAE/g plant}$ extract. The ferric-reducing antioxidant power (FRAP) value of C. excavata MOH fraction was $4649 \pm 11.3 \ \mu\text{mol Fe}^{2+}/\text{mg}$, while the radical scavenging activity using 2, 2-diphenyl-1picryl dihydrazyl (DPPH) was 86.89 ± 1.4 % with IC₅₀ at 23 µg/mL. The MOH fraction was innocuous against the human keratinocyte (HaCaT), macrophage (J77A.1), and Vero cell lines when assessed by the (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide) (MTT) assay. Further, the acute toxicity study on rats indicates treatment with MOH fraction even at a high dose of 5000 mg/kg body weight did not cause mortality. Further, MOH did not affect the kidney and haematological parameters or relative weights of the liver or kidneys at a high dose of 5000 mg/kg body weight. The in vitro scratch test demonstrated that MOH fraction at 100 µg/mL significantly stimulated proliferation and migration of fibroblast cells (p < 0.05) at 24 and 48 hours after treatment shown by the faster closure of wound area compared to the untreated cells. Topical treatment of wound-induced Sprague-Dawley rats with 50, 100 and 200 mg/mL MOH fraction daily for 15 days was found to be effective in stimulating wound healing by decreasing wound size, improving wound contraction, enhancing tissue regeneration and granulation tissue, which were more significant (P < 0.05) compared to the untreated control rats. The wound healing effect of MOH fraction is attributed to the significant ($P \le 0.05$) increase in transforming growth factorbeta (TGF-β1), vascular endothelial growth factor (VEGF), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and interleukine 10 (IL-10), while a significant (P < 0.05) decreased in cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF- α), interleukine 6 (IL-6) and lipid peroxidation (LPO). Histological evaluations using the haematoxylin and eosin and Masson trichome stain methods showed that healed skin after treatment with MOH fraction had less scarring and greater fibroblast proliferation, collagen deposition, and angiogenesis compared to the untreated control. Besides, MOH fraction provoked apoptosis by the down-regulation of BAX gene and up-regulation of Bcl-2 gene. To determine the gastroprotective effect of MOH fraction, oral ethanol-induced gastric ulcer and the pylorus ligature rat model were used. The acid volume and pH of the gastric juice were determined in the pylorus ligature model. MOH fraction at dose 200 and 400mg/mL also showed significant (P<0.05) anti secretory effect of gastric juice in the stomach. Pre-treatment with MOH fraction significantly (P<0.05) increased SOD, GPx and CAT and reduced LPO activities. Increased expression of heat shock protein70 (HSP70) and transforming growth factor beta (TGF- β 1) proteins occurred while decreased expression of BAX protein occurred in the stomach tissues of MOH fraction-treated rats. MOH fraction of C. excavata leaves extract decreased ulcer area and leucocyte infiltration and edema of the gastric submucosal layer, decreased volume, increased pH, and decreased total acidity of the gastric juice, showing that it is gastroprotective. MOH was characterized by LCMS/MS and shown to contain, myricetin glucoside, guercetin-rhamnose-hexose, kaempferol, furocoumarin, and 8-geranyloxy psoralen. In conclusion, MOH fraction facilitates wound healing and exhibits protective effects against gastric ulcers by stimulating activity of tissue antioxidant enzymes, thus preventing free radical-mediated tissue injury and modulating inflammatory mediators, and regulating apoptosis.

ABSTRAK

Clausena excavata Brum. F adalah tumbuhan ubatan tradisional penting dan lazim digunakan di Malaysia dan Asia Tenggara. Walau bagaimanapun, kesan C. excavata pada luka masih tidak diketahui. Dalam kajian ini, penyembuhan luka dan kesan gastroprotective ekstrak daun ditentukan. Pemeringkatan berturutan daun menggunakan eter petroleum (PT) diikuti dengan kloroform (CH), etil asetat (EA), dan metanol (MOH) menunjukkan bahawa fraksi MOH memiliki jumlah kandungan fenolik tertinggi dengan nilai 522.0 ± 11.6 mgGAE/g dan aktiviti antioksidan yang paling tinggi. Nilai potensi antioksidan secara pengurangan ferik (FRAP) adalah 4649 ± 11.3 µmol Fe²⁺/mg, manakala aktiviti memerangkap radikal menggunakan 2,2-Diphenyl-1picrylhydrazyl (DPPH) adalah $86.89 \pm 1.4\%$ dengan IC₅₀ yang rendah pada 23 µg / mL. MOH tidak toksik terhadap keratinocyte manusia (HaCaT), makrofaj murin (RAW 264.7), dan sel Vero apabila ditentukan oleh 3-(4,5-dimethylthiazol-2-YL)-2,5diphenyltetrazolium bromida (MTT). Selanjutnya, kajian ketoksikan akut menunjukkan rawatan dengan fraksi MOH walaupun pada dos yang tinggi, 5000 mg / kg berat badan tidak menyebabkan kematian. Di samping itu, fraksi MOH tidak menjejaskan parameter hematologi atau berat relatif hati atau buah pinggang. Pra-rawatan dengan fraksi MOH merangsang percambahan dan pemindahan ketara sel fibroblast (p <0.05) pada 24 dan 48 jam selepas rawatan dengan dibuktikan oleh penutupan kawasan luka dengan cepat berbanding dengan sel kawalan yang tidak dirawat. Rawatan topikal luka pada tikus Sprague-Dawley dengan 50, 100 dan 200 mg/mL fraksi MOH setiap hari selama 15 hari telah di dapati berkesan dalam merangsang penyembuhan luka dengan mengurangkan saiz luka, meningkatkan pengecutan luka, meningkatkan pertumbuhan semula tisu dan granulasi tisu, yang lebih signifikan (P < 0.05) berbanding tikus kawalan yang tidak dirawat. Penyembuhan luka kesan dari fraksi MOH adalah disebabkan oleh yang peningkatan signifikan (P < 0.05) perubahan pada faktor pertumbuhan beta (TGF- β 1), faktor pertumbuhan vaskular endothelia (VEGF), superoksida dismutase (SOD), katalase (CAT), glutathione peroksidase (GPx) dan interleukin 10 (IL-10), manakala penurunan yang signifikan (P <0.05) dalam cyclooxygenase-2 (COX-2), faktor tumor nekrosis alfa (TNF-α), interleukin 6 (IL-6) dan peroksidaan lipid (LPO). Penilaian histologi menggunakan haematoksilin dan eosin dan kaedah noda Masson trichome menunjukkan bahawa kulit yang sembuh selepas dirawat dengan fraksi MOH mempunyai kurang parut dan percambahan fibroblast yang lebih tinggi, pemendapan kolagen, dan angiogenesis berbanding kawalan yang tidak dirawat. Selain itu, ungkapan BAX, COX-2, leukemia B-sel / limfoma-2 (BCL2) gen ditentukan oleh teknologi awal menggunakan RT-PCR. Fraksi MOH menyebabkan apoptosis disahkan dengan penurunan regulasi BAX dan peningkatan regulasi BCL-2 gen. Untuk menentukan kesan gastroprotective fraksi MOH, ulser gastrik yang diinduksi etanol secara oral dan ikatan pilorus model tikus telah digunakan. Fraksi MOH menunjukkan kesan antiperembesan asid dalam perut yang signifikan (P <0.05). Pra-rawatan dengan fraksi MOH meningkatkan SOD, GPx dan CAT dengan ketara (P <0.05) dan penurunan aktiviti LPO. Terdapat peningkatan ungkapan HSP70 dan TGF-protein ß1 dan penurunan ungkapan protein Bax dalam tisu perut tikus. Fraksi metanol juga mengecilkan kawasan ulser, menurunkan penyusupan leukosit dan lapisan edema submucosal perut, meningkatkan pH dan merendahkan jumlah keasidan jus gastrik. Fraksi MOH telah diprofil oleh LCMS / MS dan ditunjukkan mengandungi konjugat myrisetin glucosida, quercetin-rhamnose-hekose, konjugat kaempferol, asid fenolik, flavonoid, furocoumarin, dan 8-geranyloxy psoralen. Kajian ini menunjukkan bahawa fraksi MOH memudahkan penyembuhan luka dan mempamerkan kesan perlindungan daripada ulser gastrik dengan merangsang aktiviti enzim antioksidan tisu, dengan itu menghalang kecederaan tisu akibat radikal bebas dan merangsang pengantara keradangan, serta mengawal selia apoptosis.

university

ACKNOWLEDGEMENTS

First and foremost I thank Allah the Almighty for giving me the strength, patience and ability to complete this study and prayer and peace be upon messenger of Allah, Mohammad (S.A.W). My sincere gratitude goes to my beloved mother and father for their continuous encouragement and support and I would like to dedicate this thesis to them.

I would like to express my honest appreciation to my supervisor Prof. Dr. Noorlidah Abdullah and my co-supervisor Prof. Dr. Rasedee Abdullah for their guidance, advice and encouragement throughout this work. I would also want to extend my gratitude to the Ministry of Higher Education, Iraq and the University of Baghdad for giving me the opportunity to further my study in Malaysia. I also appreciate the University Malaya, Malaysia for supporting this work with the research grant: PG059-2013A. My greatest thanks and appreciation to Dr. Yusuf Abba for his wise guidance and assistance throughout the period of my study.

Finally, I would like to extend my thanks to Malaysia and the Malaysian people for their good dealing, assistance and for being good hosts to a foreign citizen.

TABLE OF CONTENTS

Abst	ract			
Abst	rak	iv		
Ack	nowledg	ementsvi		
Tabl	e of Cor	tentsvii		
List	of Figur	esxiii		
List of Tablesxvi				
List	of Symb	ols and Abbreviationsxviii		
CHA		1: INTRODUCTION1		
1.1		ls1		
1.2	Peptic	Ulcer		
1.3	Object	ves of this study7		
	1.3.1	Specific Objectives		
CHA	APTER	2: LITERATURE REVIEW		
2.1	Wound	and wound healing		
2.2	Phases	of wound healing		
	2.2.1	Hemostasis		
		2.2.1.1 Vasoconstriction		
		2.2.1.2 Platelet aggregation		
		2.2.1.3 Fibrin and the coagulation cascades		
	2.2.2	Inflammation		
	2.2.3	Proliferation14		
	2.2.4	Remodeling		
2.3	Factors	Affecting Wound Healing		

	2.3.1	Infection	18
	2.3.2	Tissue Oxygenation	18
	2.3.3	Nutrition	19
	2.3.4	Age	21
2.4	Reactiv	ve Oxygen Species	21
2.5	The rol	e of growth factors and cytokines in wound healing	22
2.6	Wound	care	23
2.7	Ethnob	otanical Studies on Wound Healing	23
2.8	Gastric	ulcer	27
2.9	Risk fa	ctors gastric ulcer	28
	2.9.1	Nonsteroidal anti-inflammatory drugs (NSAIDs)	28
	2.9.2	Helicobacter pylori infection	29
	2.9.3	Genetics	29
	2.9.4	Lifestyle	30
2.10	Reactiv	ve oxygen species	30
2.11	Gastro	protective factors	32
2.12	Treatm	ent of gastric ulcer	34
2.13	Ethnob	otanical Studies on Gastric Ulcer	35
2.14	Clause	na excavata	36
	2.14.1	Traditional Usage of <i>Clausena excavata</i>	37
	2.14.2	Phytochemical and Pharmacological Properties of Clausena excavata	38

3.1	Collection and Processing of Plant Material		
	3.1.1	Plant Collection and Identification	.41
	3.1.2	Extraction of Plant Material	41

3.2	In vitro	o screening of extracts for Antioxidant	42
	3.2.1	Ferric Reducing Antioxidant Power Method (FRAP)	42
	3.2.2	2,2-Diphenyl-1-picryllyhydrazyl Free Radical Scavenging Method .	42
	3.2.3	Total Phenol Content	43
	3.2.4	Total Flavonoid Content	43
3.3	Evalua	tion of cytotoxicity using (3-(4, 5- dimethylthiazol-2-yl)-2, 5 dip	phenyl
	tetrazo	lium bromide assay	43
3.4	Assess	ment of Antibacterial Activity	44
	3.4.1	Disc diffusion method	45
	3.4.2	Determination of minimum inhibitory concentration	45
3.5	Scratcl	h wound assay of Methanolic fraction of C. excavata	46
3.6	Phytoc	chemical Characterization of Methanolic fraction of C. excavata Leav	es47
3.7	In vivo	Acute Toxicity Study of the Methanolic C. excavata Extract	47
	3.7.1	Experimental Animals	48
	3.7.2	Animal Grouping	48
	3.7.3	Blood Parameters	48
	3.7.4	Histopathology	49
3.8			
	In vivo	wound healing of the Methanolic C. excavata Extract	49
	In vivo 3.8.1		
			49
	3.8.1	Experimental Animals	49 49
	3.8.1 3.8.2	Experimental Animals	49 49 51
	3.8.1 3.8.2 3.8.3	Experimental Animals Animal Grouping and Wound infliction Wound contraction Assessment	49 49 51 51
	3.8.1 3.8.2 3.8.3	Experimental Animals Animal Grouping and Wound infliction Wound contraction Assessment Histopathological examinations	49 51 51 51
	3.8.1 3.8.2 3.8.3	Experimental Animals Animal Grouping and Wound infliction Wound contraction Assessment Histopathological examinations 4.8.4.1 Hematoxylin and Eosin- and Masson trichome-stain	49 51 51 51 51

		3.8.5.2 Catalase activity	54
		3.8.5.3 Glutathione peroxidase activity	54
		3.8.5.4 Lipid peroxidation activity	54
	3.8.6	Evaluation of TNF- α , IL-6 and IL-10 via enzyme –linked immunos	sorbent
		assay	55
3.9	Quanti	tative Real-time polymerase chain reaction (RT-PCR) BAX, BCI	L2 and
	COX-2	gene (wound healing model)	56
	3.9.1	RNA extraction	56
	3.9.2	Reverse Tanscription (RT)	57
	3.9.3	Real-time amplification assay for gene expression	57
3.10	Gastro	protective activity evaluation of <i>C. excavata</i>	60
	3.10.1	Animals	60
	3.10.2	Plant preparation and dose selection	60
	3.10.3	Pyloric ligation model	60
	3.10.4	Rat gastric ulcer model	62
	3.10.5	Gastric mucosa gross lesion	62
	3.10.6	Gastric mucus content and juice acidity	63
	3.10.7	Histopathology and lesion evaluation	63
		3.10.7.1 H&E- and periodic acid-schiff (pas)-stained sections	63
		3.10.7.2 Immunohistochemistry for BAX, Heat shock protein 7	0, and
		TGF-β	64
	3.10.8	Measurement of protein content of stomach tissue	65
		3.10.8.1 Determination of Prostaglandin E2 (PGE2)	65
		3.10.8.2 Antioxidant Activity	66
		3.10.8.3 TNF-α, IL-6, and IL-10	66
3.11	Statisti	cal analysis	66

CHA	APTER	4: RESULT	67
4.1	Yield of	of C. excavata cruds extract	67
4.2	4.2 <i>In vitro</i> antioxidant activity of <i>C. excavata</i> extract		67
	4.2.1	Ferric Reducing Antioxidant Power	67
	4.2.2	2, 2-Diphenyl-1-picrylhydrazyl Free Radical Scavenging	68
	4.2.3	Total Phenolic and Flavonoid Contents of Clausena excavata	69
4.3	In vitro	o Cytotoxicity of solvent extracts	70
4.4	Antiba	cterial activity of extracts	72
4.5	Scratcl	h wound assay of the Methanolic Extract of <i>C. excavata</i>	74
4.6	Phytoc	chemical Characterization of the Methanolic Extract of C. excavata	75
4.7	Acute	Oral Toxicity Study of the Methanolic Extract of C. excavata	80
4.8	Wound	d healing effect of the Methanolic Extract of C. excavata	87
	4.8.1	Gross wound closure	87
	4.8.2	Histopathological assessment of wound healing tissue	89
		4.8.2.1 Hematoxylin and eosin-stained sections	89
		4.8.2.2 Masson's trichome -stained sections (MT)	89
		4.8.2.3 Immunohistochemistryl analysis of VEGF and TGF- β 1 in	skin
		section	93
	4.8.3	Antioxidant enzymes SOD, CAT, GPx and LPO evaluation in the he	ealed
		wound area	98
	4.8.4	Estimation of TNF- α , IL-6 and IL-10 in the healed wound area	103
	4.8.5	Gene expression	105
4.9	Gastro	protection effect of methanolic fraction of Clausena excavata	109
	4.9.1	Pyloric ligation model	109
	4.9.2	Rat gastric ulcer model	111
		4.9.2.1 Gastric mucosa	111

		4.9.2.2	Gastric content, pH, and mucus weight	111
	4.9.3	Histolog	ical evaluation of gastric mucosa	113
		4.9.3.1	Hematoxylin and Eosin (H & E) Staining	113
		4.9.3.2	Gastric Mucus by Periodic Acid-Schiff (PAS) stain	115
		4.9.3.3	Immunohistochemistry Analysis of HSP70, BAX and	TGF-β117
	4.9.4	Effect of	f C. excavata on Prostaglandin E2 and Antioxidant activ	vity122
	4.9.5	Estimati	on of TNF-α, IL-6 and IL-10	125
CHA	PTER	5: DISCU	USSION	126
5.1	Evalua	tion of bio	ological activities of C. excavata solvent extract in vitro	126
5.2	Acute	toxicity as	sesment of methanolic extract	131
5.3	Wound	l healing e	evaluation parameters	133
	5.3.1	Analysis	of BAX and BCL2 gene expression in healed wounds	in rats 139
5.4	Evalua	tion of ga	stroprotective activity	141
CHA	APTER	6: CONC	LUSION AND FURTHER STUDIES	151
REF	RENCI	ES		154
APP	ENDIX	ES	·	

REFRENCES	154
APPENDIXES	
APPENDIX A: Preparation of reagents and experimental methods	
APPENDIX B: Manufacturer instruction of kits and procedures	
APPENDIX C: Preparation of standards	201
APPENDIX D: Statistical analysis	
APPENDIX E: List of publications and conferences papers	

LIST OF FIGURES

Figure 2.1: Acute wound healing cascade
Figure 2.2: Cutaneous wound healing at day 3 after injury
Figure 2.3: Cutaneous wound healing at day five after injury16
Figure 2.4: Cutaneous wound healing in remodeling phase
Figure 2.5: Gastric ulcer disease
Figure 2.6: <i>C. excavata</i> Burum. F; fruits and leaves
Figure 3.1: Study design
Figure B.2: Inflicted skin wound at nape of dorsal neck of rats
Figure #.1: Ferric-reducing antioxidant power (FRAP) of <i>C. excavata</i> extracts
Figure 4.2: 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of C.excavata extracts69
Figure 4.3: Cell viability evaluation following MTT assay
Figure [#] .4a: <i>invitro</i> wound scratch assay of fibroblasts treated with MFCE
Figure 4.4b:Migration of fibroblast cells in invitro wound scratch assay
Figure #4.5: Effect of methanolic extract of <i>C. excavata</i> on body weight of rats
Figure #4.6: Rat kidney tissue after treatment with methanolic <i>C. excavata</i>
Figure #.7: Rat liver treated with methanolic <i>C. excavata</i> leaf extract
Figure #.8: Gross skin lesion showin wound healing after treatment for 5, 10, and 15 days
Figure #.9: Skin of rats treated with methanol <i>C. excavata</i> leaf extract (MFCE) (Hematoxylin and Eosin staining)
Figure #.10: Rat skin treated with methanol C. excavata l (Masson's trichome stain)92
Figure #.11a&b: Quantitative estimation for VEGF expression in rat skin
Figure ^μ .12a&b: Quantitative estimation for TGFβ1 expression in rat skin

Figure #.13a: Methanol C. excavata leaf extract treatment rat wound superoxide dismutase (SOD) activity
Figure #.13b: Methanol <i>C. excavata</i> leaf extract treatment rat wound catalase (CAT) concentration
Figure #.13c: Methanol <i>C. excavata</i> leaf extract treatment rat wound glutathione peroxides (Gpx) concentration
Figure #1.13d: Methanol <i>C. excavata</i> leaf extract treatment rat wound lipid peroxidase (LPO) quantity
Figure #.14a: TNF-α level in wound tissue of rats treated with methanol extract <i>C.</i> <i>excavata</i> (MFCE)
Figure #.14b: IL-6 level in wound tissue of rats treated with methanol extract <i>C. excavata</i> (MFCE)
Figure #.14c: IL-10 level in wound tissue of rats treated with methanol extract <i>C. excavata</i> (MFCE)
Figure #.15: Quantitative real-time PCR melting curve
Figure #16: Quantitative real-time PCR standard curve
Figure #.17: Relative expression of BAX, BCL2 and COX-2 genes in the skin wounds of rats treated with methanol extract <i>C. excavata</i> (MFCE)
of rats treated with methanol extract <i>C. excavata</i> (MFCE)
of rats treated with methanol extract <i>C. excavata</i> (MFCE)
of rats treated with methanol extract <i>C. excavata</i> (MFCE)
of rats treated with methanol extract <i>C. excavata</i> (MFCE)

Figure $\cancel{4}.24$: TGF- β protein expression in rat gastric tissue with ulcer treated with omeprazole and methanol extract <i>C. excavata</i> leaf (MFCE)
Figure #4.25a: Effect of omeprazole and methanol extract <i>C. excavata</i> leaf (MFCE) on prostaglandin E2 (PGE2) level in rat gastric ulcer
Figure #4.25b: Effect of omeprazole and methanol extract <i>C. excavata</i> leaf (MFCE) on superoxidase dismutase (SOD) level in rat gastric ulcer
Figure #4.25c: Effect of omeprazole and methanol extract <i>C. excavata</i> leaf MFCE) on catalase (CAT) level in rat gastric ulcer
Figure #4.25d: Effect of omeprazole and methanol extract <i>C. excavata</i> leaf (MFCE) on glutathione peroxidase (Gpx) in rat gastric ulcer
Figure #.25e: Effect of omeprazole and methanol extract <i>C. excavata</i> leaf (MFCE) on lipoperoxidaes (LPO) in rat gastric ulcer
Figure #.26: Effect of omeprazole and methanol extract <i>C. excavata</i> leaf (MFCE) on tumor necrosis factor- α (TNF- α), interleukin-6 (IL-6) and -10 (IL-10)

LIST OF TABLES

Table 2.1: Herbal medicine in wound care 25
Table 2.2: Biologically active compounds of Clausena excavata 39
Table 3.1: Composition of reverse transcriptase reaction 58
Table 3.2: Genes used in the study
Table 3.3: Thermal cycle condition 59
Table #.1: Total phenolic and flavonoid contents of C. excavata fractions
Table #.2: Inhibition zone for C. excavata fractions
Table #.3: Minimum inhibitory concentration of C. excavata extracts 73
Table #.4: Minimum bactericidal concentration of C. excavata extracts 73
Table #.5: Compounds identified from MFCE via LCMS/MS analysis
Table #4.6: Relative weights of selected organs after administration of a single dose methanolic extract of <i>C.excavata</i>
Table #.7: Effect of methanolic extract of C. excavata on liver biochemical parameters
Table 4.8: Effect of methanolic extract of C. excavata on kidney biochemical parameters
Table #.9: Effect of methanolic extract of <i>C. excavata</i> on hematological parameters83
Table #.10: Effect of C. excavata on wound healing in rats 87
Table #.11: Histopathological evaluation of the epidermis and dermis of H&E-stained skin sections of <i>C. excavata</i> methanol extract-treated rats
Table #.12: Evaluation of connective tissue and vascular proliferation in Masson Trichome-stained skin sections of <i>C. excavata</i> methanol extract-treated rats
Table #.13: Effect of methanolic C. excavata leaf extract treatment on gastric juice parameters of rats with gastric ulcer 109
Table #.14: Effect of methanolic C. excavata leaf extract treatment on pH of gastric content, gastric ulcer area and ulcer inhibition in rats 111

 Table #.15: Gastric tissue lesion score in rat gastric tissue with ulcer treated with methanolic C. excavata leaf extract
 113

Table #.17: Area of rat gastric mucosal tissue positive for BAX protein immunoperoxidase staining after treatment with methanolic *C. excavata* leaf extract 121

Table #.18: Area of rat gastric mucosal tissue positive for HSP 70 protein immunoperoxidase staining after treatment with methanolic *C. excavata* leaf extract 121

Table β .19: Area of rat gastric mucosal tissue positive for TGF- β protein immunoperoxidase staining after treatment with methanolic *C. excavata* leaf extract 121

LIST OF SYMBOLS AND ABBREVIATIONS

%	:	Percentage
°C	:	Degree Celsius
ALP	:	Alkaline phosphatase
Alt	:	Alanine amino transferase
ANOVA	:	Analysis of variance
AST	:	Aspartate amino transferase
ATCC	:	American type culture collection
Bad	:	BCL-2 associated death protein
Bak	:	BCL-2 homologous antagonist killer
Bax	:	BCL-2 associated X protein
CAT	:	Catalase
СН	:	Chloroform
DAB	:	Diaminobenzidine
DMSO	:	Dimethyl sulfoxide
DMEM	:	Dulbecco's modified eagle medium
DPPH	:	2, 2-Diphenyl-1-picrylhydrazyl
ECM	÷	Extracellular matrix
EA	:	Ethyl acetate
FRAP	:	Ferric reducing antioxidant power
FeIITPTZ	:	Ferrous tripyridyl triazine
FeIIITPTZ	:	Ferritri pyridyl triazine
GPx	:	Glutathione peroxide
H&E	:	Haematoxylin and Eosin
H. pylori	:	Helicobacter pylori

HD :	High dose
------	-----------

- HSP : Heat shock protein
- IL-6 : Interleukin 6
- IL-10 : Interleukin 10
- LC-MS : Liquid chromatography-mass spectrometry
- LPO : Lipid peroxidation
- Mg : Milligram
- MFCE : Methanolic fraction *Clausena excavata*
- μg : Microgram
- Ml : Milliliter
- μg : Microgram
- μL : Microlitter
- µmol : Micromole
- μL : Microliter
- MTT : 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide
- MOH : Methanol
- PAS : Periodic acid Schiff
- PBS Phosphate buffer saline
- PDGF : Platelet-derived growth factor
- PGE2 : Prostaglandin E2
- PPIs : Proton pump inhibitors
- PT : Petroleum ether
- *P value* : Level of significance
- S.D : Standard division
- SD rats : Sprague dawley rats
- SOD : Superoxide dismutase

TB	:	Total bilirubin

- $TGF-\beta$: Transforming growth factor-beta
- TNF. α : Tumor necrosis factor-alpha
- TPTZ : Pyridyl triazine
- UMMC : University Malaya, Medical Center
- VEGF : Vascular endothelial growth factor
- VWF : Von willebrand factor
- Wt : Weight

CHAPTER 1: INTRODUCTION

1.1.Wounds

The Wound Healing Society defines wound as a kind of break in the normal anatomic structure and functions of the skin against the exterior environment. Generally skin wounds are generated from chemical, physical and microbial offensive harm to the tissue (Rezaei et al., 2015). Wounds may be classified as closed (e.g. ruptures and sprains) or open depending on physical damages that result in an opening of the skin (e.g. ballistic, hernias and excised or surgical wounds). Wound can also be classified as being either acute or chronic and as partial thickness or full-thickness wounds. Acute wounds are defined as wounds that heal in an expected time while, chronic wound are those wounds that are heal slowly. This usually occurs in compromised patients who have an underlying pathology conditions such as malignancies or diabetes (Boateng et al., 2008). Partial thickness wounds involve the epidermis and may or may not involve the dermis. They have mostly healed first with inflammatory sensation, then re-epithelialization. However, in full thickness wounds, healing begins after injury initiates a series of combination of cellular-molecular events that occur in proper sequential and overlapping phases within a specified period in the healthy host (Guo & DiPietro, 2010). Wound healing is a biological process that attempts to cure injuries that occurred in the defensive barrier tissue. A series of cellular and molecular reactions occur consequently, prompting the response of inflammation, in which the cells in the dermis layers begin to produce more collagen to regenerate the epithelial tissues (Guo & DiPietro, 2010).

Singer and Clark (1999) specified that wound repair is a complex immunemediatedphysiological processes, which involve a series of well-organized events including hemostasis, inflammation, granulation tissue formation, neovascularization, degradation and synthesis of collagen, epithelialization, and wound remission, each of which is guided by the action of net cells of blood, growth factors and pro-inflammatory response cytokines, which are responsible to revitalization the wounded tissue to as near normal function as possible. Undoubtedly, transforming growth factor beta (TGF- β) and cytokines participate in the contraction of wound, while TGF- β , tumor necrosis alpha (TNF- α) and vascular endothelial growth factor are all important enhancers of cell proliferation, migration, chemotaxis and angiogenesis in the wound healing process (Jing et al., 2011; Huebener & Schwabe, 2012).

It has been well established that excess ROS results in the killing of fibroblasts, resulting in the loss of skin flexibility. Thus, antioxidants seem to be efficient in the treatment and management of wounds, through eliminating products of inflammation (Park & You, 2016). Because of this, researchers have tried to find medications from natural sources which have high antioxidant defense potentials in order to cure wounds (Ipek et al., 2012).

Cells participate in each phase of the wound healing process, and expire through one of three probable ways, which are apoptosis, necrosis and emigration. BCL2 family proteins either promote or prohibit apoptosis. The pro-apoptotic proteins involve BAX, Bad and Bak, whereas B-cell lymphoma 2 is anti-apoptotic proteins. Apoptosis plays a pivotal role in the synchronization of speedily altering cell residents, which is complicated in all tissue healing. For a massive common wound, controls of proliferation causes an acceleration of the wound closure. Sometimes the equilibrium between the decrease and increase in the number of cells forfeits its equilibrium and causes pathologic tissue healing (Walaa et al., 2014).

Wound healing starts immediately after injury has occurred, but the mechanism, speed of healing, and the eventual nature of the regenerated tissue depends on the type

of damage. In wound healing process, the wound environment alter with changing individual health status (Hardy, 1989). Activation of complicated net cells of blood, tissues, growth factors and cytokines cause increased cellular activity that causes rising metabolic requests for nutrients. Deficiencies in nutrition could hold up repairing of the wound. Many nutrition agents which might enhance wound healing processes time such as, vitamin A, required for epithelial and bone formation and, vitamin C are essential for collagen synthesis and functioning of the immune system (David & Heather, 2000).

Burns and poor wound healing are major medical problems in developing countries. The management of chronic wounds is a major problem because of poor hygiene conditions that lead to bacterial infections, resulting in high cost of therapy and presence of undesirable side effects (Umachigi et al., 2007). Even though a handful of topical antibiotic creams are available over the counter, most of them are either expensive to afford, prone to misuse resulting in antibiotic resistance or have a low antioxidant activity and a narrow safety margin. Thus, the evaluation of natural compounds with potent antioxidant activities as potential wound healing agents is paramount in order to discover newer effective wound healing agents. Therefore, this study is designed to throw an insight on the wound healing activity of *Clausena excavata* in experimental rat model, with the hope that it may help reduce the cost of hospitalization and reduction in the incidence of amputation arising from wound complications. The study may also lead to a better understanding of the influence of natural products on wounds, which forms a platform for further studies that open up possibility of finding alternative therapy for wound management.

1.2. Peptic Ulcer

Peptic ulcer is the most widespread digestive condition that can be defined as mucosal incision, which may spread throughout the muscular layers into submucosa layers, as a result of gastric acid and pepsin secretion. In some cases, the condition can be severe and may lead to many complications such as malignancy. The peptic ulcer term comprises both gastric ulcer and duodenal ulcer (Ramakrishnan & Salinas, 2007). Clinical symptoms and complications include; nausea, vomiting, severe epigastric sore, cardiac burning, and loss of appetite (Ramakrishnan & Salinas, 2007).

Gastric and duodenal ulcers occur because of an imbalance between destructive and cyto-protective factors. The destructive factors include endogenous and exogenous factors such as pepsin, excess hydrochloric acid and reflux of alkaline duodenal contents containing pancreatic enzymes with bile (Wormsley, 1972; Vetro et al., 2002). Smoking, stressful lifestyle, alcohol beverage, heavy diet, coffee, and in some cases, a positive family history (Morsy & El-Sheikh, 2011), and over dose drugs, especially ibuprofen, aspirin and non-steroidal anti-inflammatory drugs (NSAIDs) are aggressive tools which have serious exogenous mucosal excitations that can cause mucosal damage as well as Helicobacter pylori infection (Ko & Cho, 2000; Weil et al., 2000). Conversely, the gastroprotective factors against ulcer formation are gastric mucusbicarbonate wall function excreted through superficial epithelial cells; prostaglandins (PGE2), gastric mucosal microcirculation and endogenous enzymatic antioxidants activity to reduce mucosal damage caused by inflammatory cells are considered important in maintaining gastric mucosal safety, as well as some other growth factors such as TGF- β , which plays an important role where it regulates epithelial cell proliferation, inflammation and tissue repair (Grisham et al., 1987; Wallace & Granger, 1996; Abdel-Salam et al., 2001).

The body is usually under an active balance between free radical generation and endogenous scavenging enzyme systems, such as superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GSH). All these molecules have a central antioxidant function in scavenging reactive oxygen species (ROS) with a redox based mechanism (Brambilla et al., 2008). The existence of drug metabolism causes ROS generation to overpower the cellular antioxidant defense which leads to oxidative stress (Verma et al., 2013).

Gastric ulcer is a global problem in developed countries and can impair community health and socio-economic status of affected countries (Zissin, 2008). Anti-secretory medications frequently used to treat gastric ulcer include; antacids like aluminum hydroxide, histamine H2-antagonists such cimetidine and ranitidine and proton pump inhibitors (PPI) such as omeprazole, all have undesirable effects, such as diarrhea, hypercalcemia (leading to kidney failure), kidney stones, cardiac arrhythmias and costly for populations (Eid et al., 2010). Besides, none of the reciprocal antiulcer agents can achieve healing completely (Borrelli & Izzo, 2000). Therefore, researchers have a growing interest in searching for alternate medicines which are safe and have antigastric ulcer effects without any adverse effect. Nowadays, potential and promising medicinal plants and their natural products are widely used for medicinal purposes as alternate medicines in treatment of ulcer. Traditional medicine is growing globally and eastern world of developing countries consider natural flora as the only choice of treatment, including Malaysia. (Al Mofleh et al., 2008). Medicinal plants are the main source of natural active compounds such as alkaloid, phenolic compounds, terpinoid and tannins that are involved in direct or indirect protection of the body from a variety of diseases, display antiulcer activities and may influence one or more phases of wound healing because of their influence on growth stimulation and antioxidant effects (de Souza Ameida et al., 2011; Ponrasu et al., 2014). Malaysian plants are used traditionally

to treat various diseases and reported to have potent anti-ulcer activities such as *Phylanthus minus, Curcuma xanthorrhiza, Momordica charantia* (Wasman et al., 2012), which have bioactive capacity and gastroprotective properties in the gastric mucosa. Some of the plants that have been tested for wound healing potentials include *Acalypha langiana* (Perez and Vargas, 2006), *Radix astragalis* and *Radix rehmannia* (Lau et al., 2009), *Rosmanis officinalis* L (Abu-Al-Basal., 2010), *Curcuma longa* (Sidhu et al., 1999), *Sparassia crispa* (Kwon et al., 2009), *Hylocereus undatus* (Perez et al., 2005), *Momordica charantia* (Teoh et al., 2009), *Lithospermum erythrorhison* (Fujita et al., 2003), *Aloe vera* (Atiba et al., 2011).

Evaluation of various plant products according to their traditional uses and medicinal value, based on their therapeutic efficacy leads to the discovery of newer and cost effective drugs for treating various ailments. This forms the basis for this study, which is to develop newer therapeutic agent from *C. excavata*, which may be useful in facilitating wound healing and gastro-protection in animal models. In this research project, *C. excavata* was chosen because it is one of the natural products of interest in the field of pharmacology, and based on previous studies, it has good antioxidant, antimicrobial and immunomodulatory activities. (Blumenthal et al., 2000). Furthermore, besides its traditional use in wound and stomach-ach (Zheng et al., 2013), there is no documented scientific evidence on other potentials of the plant. Hence, it is important to investigate the wound healing and anti-ulcer effect of *C. excavata* against gastric ulcer in rat model and wound healing in order to provide a valuable contribution to the knowledge database of phytomedicines.

Some researches have proved toxicity effects of few Malaysian plants in experimental animals. Toxicity evaluation of every medicinal plant is essential and vital procedure for any future commercial desire in product therefore; acute toxicity of *C*. *excavata* in *vivo* was also evaluated to determine the safe dose that can be used.

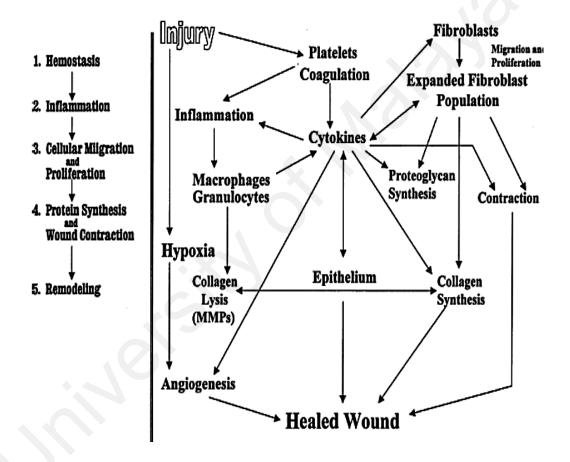
1.3. Objectives of this study

The present study was conceptualized to evaluate the wound healing efficacy of topical administration of *C. excavata* using *in vivo* experimental wound model and gastroprotective effect by modulating inflammatory response.

1.3.1. Specific objectives:

- 1. To evaluate the antioxidant, antibacterial and cytotoxicity fractions
- 2. To evaluate its *in vitro* wound healing effects through proliferation of *C*. *excavata* and migration of fibroblast cells using wound scratch test assay.
- 3. To determine the phytochemical components of methanol fraction of *C*. *excavata* by LCMS (Liquid chromatography–mass spectrometry.
- 4. To determine the acute toxicity of C. excavata methanol fraction in rats.
- 5. To evaluate the mechanisms of wound healing of methanolic fraction of *C. excavata* in animal model and estimate the changes in apoptosis and inflammatory releated genes (BAX, BCL2 and COX-2) in wound healing model.
- 6. To determine the effect of *C. excavata* on the gastric acid output in vivo and to evaluate its gastroprotective mechanism in gastric ulcers-induced animals.

CHAPTER 2: LITERATURE REVIEW


2.1. Wound and wound healing

A wound defined as any damage involving division of tissue or rupture of an integument or mucous membrane. The pathological definition of a wound is a sharp injury that damages the dermis of the skin (Boateng et al., 2008). An open wound is when the skin is cut or ruptured while a closed wound occurs when blunt force trauma is inflicted to the skin resulting in contusion. Wounds can be classified according to the cause of injury: mechanical, burns or chemical (Aljady, 2003).

Wound healing is defined as a process that leads to restoration of tissue integrity, functions of injured skin, and replacement of destroyed tissues by living cells (Watson, 2003). Dissimilar wounds include incomplete thickness incision wound and full thickness excisional wound, which vary in the degree of healing (Monaco & Lawrence, 2003). Wounds are accompanied by pain, reddening and edema, which are the classical symptoms of inflammation. These symptoms are caused by the release of eicosanoids, prostaglandins, leukotrienes, and reactive oxygen species (ROS). Wound healing can also be retarded by microbial infections. The production of reactive oxygen species (ROS) produced at the site of the wounds is one of the defense mechanisms against infections. However, since free radicals can damage tissue cells, their production in high quantities also hampers wound healing (Ilango & Chitra, 2010).

2.2. Phases of wound healing

Wound healing comprises a series of events that occur in structured manner. The events in wound healing ultimately culminate in the final repair of injured tissues. Wound healing is characterized by five phases, namely hemostasis, inflammation, proliferation, protein synthesis and wound contraction, and remodeling (David & Heather, 2000; Barrientos et al., 2008) (Figure 2.1).

Figure 2.1: Acute wound healing cascade. The propulsion of acute wound healing from hemostasis to the final phases of remodeling is dependent on a complex interaction between several wound-healing events. Cytokines play a fundamental role in wound healing and act as a central signal for various cell types in healing. Adapted from (Monaco & Lawrence, 2003).

2.2.1. Hemostasis

Trauma to tissues cause vascular damage and initiates molecular and cellular response that promote hemostasis. Blood vessel damages allow circulating platelets to come into contact with the exposed collagen and other elements of the extravascular matrix. If there are bacterial infections, chemical signals released by the organism act as chemo attractants to neutrophils and these cells enter the wound site and begin the critical task of removing foreign materials, bacteria, and damaged tissues (Borkow et al., 2008). Achieving hemostasis is vital for the healing process to commence. Vasoconstriction, platelet aggregation, and fibrin deposition are primary contributors of hemostasis. The coagulation cascade is also initiated resulting in formation of blood clot composed of fibrin networks containing aggregated platelets deposited at surrounding tissues (Lawrence, 1998).

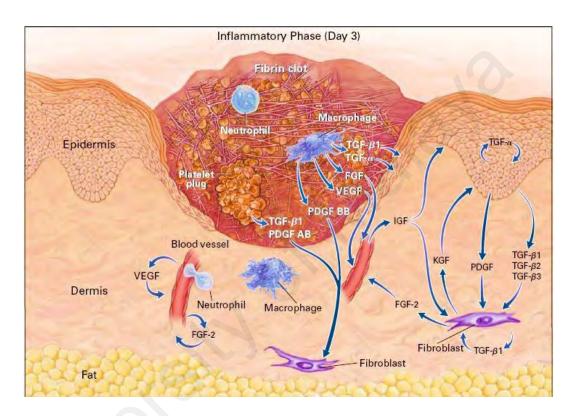
2.2.1.1. Vasoconstriction

Release of vasoactive amines by the cells of injured tissues contributes to the initiation of vasoconstriction. Simultaneously, in tissue injury the sympathetic nervous system liberates norepinephrine that functions to constrict the capillaries. In tissue injuries, prostaglandins such as thromboxane are also secreted from the injured cells and these cytokines are major contributors to vasoconstriction (Monaco & Lawrence, 2003).

2.2.1.2. Platelet aggregation

Platelets contain secretory granules, primarily α -granules, dense bodies, and lysosomes. In tissue injuries, platelets become activated upon coming in contact with exposed extravascular matrix and liberate substances from their granules (Cines et al., 1998; Borkow et al., 2008). Among these substances are a variety of proteinaceous and immunomodulatory agents from α -granules. These substances include adhesive proteins (Von Willebrand factor, fibrinogen, fibronectin, and thrombospondin), platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), transforming growth factors α and β (TGF- α & TGF- β), epidermal growth factors (EGFs), and endothelial cell growth factors. Calcium, serotonin, ADP, and ATP found in the dense bodies are also mediators that facilitate healing (Griendling et al., 2000).

2.2.1.3. Fibrin and the coagulation cascades


The coagulation cascade comprises of the intrinsic, extrinsic, and common pathways. Thrombin that is produced through the activation of these pathways catalyzes the formation of fibrin from fibrinogen. The fibrin network consists of protein polymers that anchors platelet plugs forming temporary matrix of cells and proteins that protect wound and facilitate healing. The binding of fibrin to the aggregated platelets occurs through several cell surface receptors including fibronectin receptors (Dahlbäck, 2005).

2.2.2. Inflammation

Inflammation is an essential component of tissue repair and is one of the prerequisites in healing. The cardinal signs of inflammation are erythema, heat, edema, pain, and loss of function. Erythema and heat develop in inflammation soon after injury as a result of vasodilatation, while the pain sensation is due to the accumulation of fluid in the injury causing edema (Monaco & Lawrence, 2003). The inflammatory events occur within the first six to eight hours post-injury with heavy infiltration of polymorph nuclear leukocytes (PMNs) into the tissue (Figure 2.2). Among functions of PMNs include phagocytic removal of bacteria in infections and dead cells from tissue injury. This role of PMNs in inflammation is fundamental to tissue repair (Li et al., 2007; Merchandetti & Cohen, 2008).

Inflammation occurs in two phases; vascular and cellular. In the vascular phase, blood flow and blood vessel permeability in the injured tissue increase. Early in the vascular phase, there is vasoconstriction leading to temporary blanching of wounds. This process which is initiated by circulating vasoconstrictors serves to limit the hemorrhage and concentrates healing factor within the area of the wound (Gabrie, 2015). Eventually vasodilatation ensured after 10-15 min of wound infliction. During this phase, there is an increased diffusion of plasma out of blood vessels into the extravascular spaces (Monaco & Lawrence, 2003). With vasodilation, fluid flows into the injured area and become inflammatory exudates that contain plasma proteins, antibodies, erythrocytes, leucocytes, and platelets (Majewska & Gendaszewska-Darmach, 2011). The switch from vasoconstriction to vasodilation is induced by endothelial and mast cell derived factors such as a group of arachidonic acid metabolites called leukotrienes. Leukotriene (LT) B4 is also a potent chemotactic factor for neutrophils, whereas LT4, LTD4 and LTE4 cause vasoconstriction and increased vascular permeability. Prostaglandins, PGI2, PGD2, PGE2, and PGF2a, and histamine contribute to vasodilation (Noli & Miolo, 2001). These effects are enhanced by kinin produced from kinogen. Kinin besides being a chemotactic factor also enhances phagocytosis and causes pain by stimulating sensory nerve endings (Frey et al., 2006).

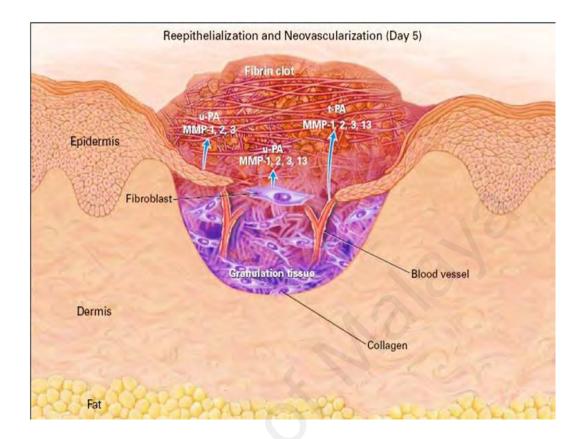
Cellular reaction of the inflammatory phase occurs within hours of injury and this is characterized by increased in leukocyte infiltration, particularly neutrophils and monocytes, into the wound area. Since neutrophils are the predominant circulating leukocytes, they are the first cell type to response. Therefore, in the first 48 hours of the inflammatory response, neutrophils predominate (Li et al., 2007). The most important cell that controls inflammatory reaction is the macrophage. Like neutrophils, macrophages can phagocytize, digest, and kill pathogenic organisms and scavenge tissue debris and destroy any residual cells. Macrophages also release enzymes and biologically active oxygen intermediates that initiate angiogenesis and the formation of granulation tissues (Lewis et al., 1999; White et al., 2004). Another important role of macrophages is in the release of cytokines including fibronectin, fibroblast growth factor, and vascular endothelial growth factor. The cytokines attract endothelial cells to the wound, stimulate their proliferation, and promote angiogenesis. Macrophages thus act like factories for growth factor production and play an important roles in the transformation of inflammation into repair of tissue (Bosco et al., 2008).

Figure 2.2: Cutaneous wound healing at day 3 after injury. Growth factors are thought to be necessary for cell movement and wound healing. In this stage there is expression of TGF- β 1, TGF- β 2 and TGF- β 3. TGF- α , fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), insulin like growth factor (IGF) and keratinocyte growth factor (KGF). Adapted from (Singer & Clark, 1999).

2.2.3. Proliferation

This phase begins with the completion of the inflammatory phase, usually between days 4-14 after injury (Figure 2.3). The proliferative phase is characterized by epithelialization, angiogenesis, granulation tissue formation, and collagen deposition (Diegelmann & Evans, 2004). Endothelial cells produce vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF). In tissue injury, intact epithelial cells within the margin of the wound, with the assistance of the growth factors, begin to reproduce within hours of injury. However, the presence of necrotic or sloughed tissue impairs epithelialization. In this case, healing can only be efficient after damaged tissues are physically removed by debridement (Davies et al., 2005; Ramundo & Gray, 2008). Modeling and establishing of new blood vessels is critical in wound healing and this occurs simultaneously through all stages of the reparative process (Pierce et al., 1991; Takeshita et al., 1994).

Granulation tissue is new connective tissue with minute vascular supply which forms on wound surface during healing. Formation of granulation tissue involves participation of structural molecules such as fibronectin and collagen that provide a scaffold for the new tissue. Collagens, produced by fibroblasts, act as a foundation for the cellular matrix within the wound (Baum & Arpey, 2005; Diegelmann & Evans, 2004). The formation of collagen by fibroblasts is stimulated by numerous cytokines, PDGF, TGF- β and EGF. Strengthening of new tissue growth requires filling of the intercellular spaces, this is the role of glycosaminoglycans (GAG). The GAG ground substance combined with water and acts as lubricant to assist movement of collagen fibers (Barrientos et al., 2008).


The rate of synthesis of collagen is influenced by several factors including age, tension, pressure, and stress (Velnar et al., 2009). Among the role of collagen is as a

contractile element of the wound that cause the wound to contract and shrink. The contraction of the wound is the prerequisite for formation of the scar that eventually flattens into a thin white line (Mahmood et al., 2010). The strength of a scar depends on the quality and quantity of deposition of structural proteins during healing (Bullard et al., 1999). In fact, the protein content should be more than 50% for the scar tissue to heal properly (Diegelmann & Evans, 2004). Other components of the wound matrix include fibrin and fibronectin. The composition of the wound matrix changes with healing, fibrin and fibronectin gradually replaced by collagen and proteoglycans.

Open wounds for duration of two weeks or more takes longer to contract. The maximum rate of contraction is 0.75 mm per day, however this differs with anatomic site. The rate of contraction is also influenced by shape of the wound; square wound contracts more than circular wounds. Myofibroblasts found at the periphery of wounds is a cardinal feature of wound contraction. The myofibroblasts appear four to six days after the initial injury and remain present for 2 to 3 weeks (Porter, 2007). These cells are essential in wound healing because they act as the "motor" of wound contractions. It was suggest that TGF- β is also among cytokines participating in wound contraction (Huebener & Schwabe, 2012).

2.2.4. Remodeling

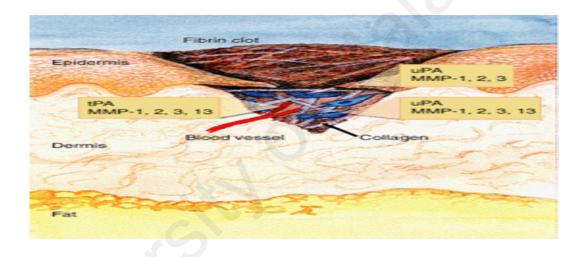

Tissue remodeling is the final stage of wound healing and it is also known as the maturation phase (Figure 2.4). This stage is most important because it also determines the type of scar that is formed. Scar remodeling involves aggregation, orientation and arrangement of collagen fibers (Diegelmann & Evans, 2004) and this dependents on the continuous collagen synthesis in the light of the collagen destruction. During healing, collagen is constantly degraded and replaced. Thus, the balance between synthesis and removal of collagen also determines the final form of the scar tissue (Atala et al., 2010).

Figure 2.3: Cutaneous wound healing at day five after injury. Blood vessels have appeared to be sprouting into the fibrin clot as epidermal cells resurface the wound. Proteinases, thought to be important for cell movement. In this phase there is expression of urokinase type plasminogen activators (u-PA), matrix metalloproteinases1, 2, 3 and 13(MMP-1, 2, 3 and 13) and tissue plasminogen activator (t-PA). Adapted from (Singer & Clark, 1999).

Matrix metalloproteinases (MMPs) play number of roles during wound repair, including removal of non-vital tissue, stimulation of blood vessel growth and keratinocyte migration, and connective tissue remodeling. The MMPs are implicated in the breakdown of collagen and facilitate angiogenesis during tissue remodeling. The modulation of action by MMPs is via the tissue inhibitors of metalloproteinase (TIMPs) (Brew et al., 2000; Gawronska-Kozak, 2011). The equilibrium between actions of MMPs and TIMPs in the tissue is controlled by several cytokines (Haroon et al., 2000; Hayden et al., 2011).

Normal skin has a type 1: type III collagen ratio of 4:1. In wound healing, collagen increases in quantity reaching a maximum level by week three post-injury (Li et al., 2007; Rosch et al., 2002; Merchandetti & Cohen, 2008). The modifications during healing involve continuous degradation and synthesis of these collagen until the ratio for normal skin is achieved. At the final phase of wound healing, there is tissue remodeling, formation of new epithelium and scar tissue.

Figure 2.4: Cutaneous wound healing in remodeling phase. The remodeling phase of wound healing is cytokine-mediated. Degradation of febrile collagen and other matrix proteins is driven by serine proteases and MMPs under the control of the cytokine network. Granulation tissue forms below the epithelium and is composed of inflammatory cells, fibroblasts and newly formed and forming vessels. Adapted from (Wahl, 2002).

2.3. Factors Affecting Wound Healing

Extrinsic and Intrinsic factors that may influence the rate of wound healing include infection, tissue oxygenation, nutrition, and age (Guo & Dipietro, 2010).

2.3.1. Infection

Wound infections are common in people of under developed and developing countries because of poor hygiene (Kumar et al., 2007). Presence of bacteria in the wound is detrimental to healing because endotoxins secreted by living bacteria in the wounded tissue inhibit the normal function of cells and tissues resulting in slow wound healing. However, inflammation, which is a normal event in wound healing, facilitates the removal of contaminating microorganisms. The inflammation can be prolonged in case of severe and persistent infections, where microbial clearance is incomplete. Bacteria and endotoxins in wound can lead to the prolonged elevation of proinflammatory cytokines such as interleukin-1 (IL-1) and TNF- α resulting in extended inflammatory phase. If the infection persists, the wound may become chronic and fail to heal. This prolonged inflammation also results to an increased level of matrix metalloproteases (MMPs) in the tissue. The net effect of these responses is a shift in protease balance and rapid degradation of growth factors (Guo & Dipietro, 2010).

2.3.2. Tissue Oxygenation

Tissue oxygenation is critical for wound healing, especially for the production of energy during cell and tissue regeneration. Among effects of tissue oxygenation are stimulation of angiogenesis, increased keratinocyte differentiation and migration, re epithelialization, enhanced fibroblast proliferation and collagen synthesis, and wound contraction (Bishop, 2008; Rodriguez et al., 2008). Oxygenation is associated with ROS production by neutrophil and macrophages during phagocytosis. Reactive oxygen species are very effective in the destruction of bacteria.

Vascular disruption and high normal tissue oxygen consumption affect rate of wound healing. Impaired blood flow can occur in old age and diabetes resulting in tissue hypoxia. Although transient hypoxia activates wound healing, extended or prolonged hypoxia disrupts wound healing. In acute wounds, hypoxia serves as a signal for stimulation of wound healing through production of cytokines from macrophages, keratinocytes, and fibroblasts. These cytokines especially PDGF, TGF- β , VEGF, TNF- α , and endothelin-1 promote cell proliferation, migration and chemotaxis, and angiogenesis. For that reason the hyperbaric oxygen therapy is an option in the treatment of wounds and other tissue injuries (Guo & Dipietro, 2010).

2.3.3. Nutrition

Proteins are the chief building blocks in cell renewal, tissue growth and restoration. Proteins significantly influence all wound healing phases through collagen and elastic tissue formation, epidermal growth, keratinization, and initiation of immune response. In protein malnutrition, the skin becomes thin and wrinkled (Dryden et al., 2013). The deficiency of protein impairs immune responses and decrease leukocyte function and increase susceptibility to infection (Guo & Dipietro, 2010).

Several amino acids are particularly essential for the wound healing process. For example, arginine, a precursor to proline, is needed for collagen deposition, angiogenesis, and wound contraction (Campos et al., 2008). Glutamine is important for the proliferation of inflammatory cells and as a source of energy (Dryden et al., 2013) while cysteine and methionine are implicated in the production of collagen and connective tissue.

Glucose is the major source of fuel for the cell. Glucose deficiency affects cellular functions, and in wound healing the condition affects fibroblast proliferation (Han et al., 2004). In short, glucose deficiency or poor glucose utilization by the body retards wound healing.

Fatty acids are major structural and functional components cells and tissues. Fatty acids are required for tissue regeneration as an energy source and building blocks of tissues (Shingel et al., 2008). Polyunsaturated fatty acids (PUFA) alters proinflammatory cytokines. In fact, it was shown that eicosapentaenoic and decosahexaenoic PUFA increase pro-inflammatory cytokine production at the wound site (McDaniel et al., 2008). The fat-soluble vitamins A, D, E and K are essential micronutrients for the various metabolic roles of the organism. Vitamin A is essential for epithelial and bone tissue development, immune system function, and cellular differentiation. The vitamin while enhancing wound repair by facilitating early inflammatory phase also improve immune response, increase number of macrophages and monocytes infiltrating wounded tissue, supports epithelial cell differentiation, and modulates collagenase activity (Mackay & Miller, 2003). Vitamin C (ascorbic acid) is necessary for hydroxylation of proline and lysine during the synthesis of collagen. The vitamin cross-links and stabilizes the triple helix structure of collagen (Wild et al., 2010).

Inorganic nutrients are required in small quantities for the health of the organism. Zinc, for example is essential for wound healing. As a cofactor of several enzymes, zinc is involved in the biosynthesis of RNA, DNA, and proteins. Low tissue zinc will decrease wound closure and suppresses inflammatory process, predisposing the wound to infections. Zinc also effects response of keratinocytes, osteocytes, and leukocytes and its deficiency would retard wound healing (Rink & Gabriel, 2001; Wild et al., 2010). Iron is a cofactor of prolyl and lysyl hydrolytic enzymes that are essential for the synthesis of collagen. As an integral component of hemoglobin, the oxygen transporter in circulation, iron deficiency results in anemia with consequential poor supply of oxygen to the tissues (Brown & Phillips, 2010). Thus, iron deficiency inhibits wound healing through poor tissue regeneration and persistent tissue hypoxia.

2.3.4. Age

Young adults and children generally heal well from wounds. Delayed wound healing in old subjects is associated with delayed inflammatory response, such as delayed T-cell infiltration into the wound area, abnormal chemokine production, and reduced macrophage phagocytic capacity (Swift et al., 2001). Wound contraction and reepithelialization are slower in old people because of the low number of tissue fibroblasts and the consequentially reduction in collagen production. Among other geriatric factors that affect wound healing are peripheral ischemia, heart disease, and diabetes mellitus. Furthermore, reduced mobility in the elderly also increases risk of pressure to the affected tissues that may prolong the healing process (Gosain & Dipietro, 2004; Oriana et al., 2012).

2.4. Reactive Oxygen Species

Reactive oxygen species are pivotal regulators of normal healing of wound (Schwentker et al., 2002). Low levels of ROS are needed for protection against infections. ROS also act as cellular messengers in cell motility, action of cytokines, and angiogenesis (Rodriguez et al., 2008). An imbalance between antioxidants and free radicals results in oxidative stress. Free radicals can damage macromolecules and cause oxidative stress that contributes to the development of a number of diseases including alzheimer, diabetes, and neurodegeneration (Lee et al., 2007). Production of ROS can

be induced both in hypoxia and hyperoxia. During cellular metabolism, especially in neutrophils and macrophages, the reactive superoxide radical anions, under the catalytic action of superoxide dismutase, are rapidly converted to hydrogen peroxide (H_2O_2) and water. Hydrogen peroxide can cause serious cell injuries. Hydroxyl radicals, the product of H_2O_2 breakdown are highly aggressive factors that can cause oxidation and damage of cellular macromolecules. For this reason, the body rapidly detoxifies H_2O_2 through the action of catalase and peroxidases. In abnormal high production of ROS or when detoxification is ineffective, the accumulation of hydroxyl radicals causes serious cell and tissue damage (Steiling et al., 1999).

Reactive oxygen species are formed in high amounts at the site of the wound as a protection against invading bacteria (Srinivas et al., 2008). However, with increased in neutrophil infiltration, the production of ROS overpowers the anti-oxidation process of the injured tissue. At high concentrations, ROS can cause severe tissue injury or even neoplastic transformation and reduce the healing process via damaging cellular membranes, proteins, DNA, and lipids (Ipek et al., 2012).

2.5. The role of growth factors and cytokines in wound healing

Proinflammatory cytokines are expressed during inflammatory phase of wound healing process. These proinflammatory cytokines include IL-1 β , IL-6, and TNF α . In chronic wounds, the profile of these cytokines and inflammatory responses are altered in such a way that the levels of these cytokines decrease as the chronic wound begins to heal, indicating a significant correlation between non-healing wounds and increased levels of pro-inflammatory cytokines. Chronic wound fluid containing these cytokines has also been shown to inhibit growth and induce morphological changes in normal skin fibroblasts (Mendez *et al.*, 1999; Enoch and Price, 2004). The altered inflammatory repair process is associated with a high production of reactive oxygen species which cause high levels of oxidative stress when compared to the normal healing process. Macrophage activation is decreased for the release of cytokines and growth factors to recruit fibroblasts, keratinocytes and endothelial cells, causing an altered inflammatory response. Likewise, the lymphocyte infiltration in chronic wounds is also altered.

2.6. Wound care

The main aim in wound treatment is to provide a conducive environment for reestablishment of normal tissue structure. In wound treatment, it is necessary to remove excessive exudates but not to a point that it causes wound to dry. It is imperative that wound infection is prevented to allow for rapid healing, preservation of tissue structure and function (Fox et al., 1985). Since granulation tissue formation is one of the stages in healing, any treatment that is instituted must not cause damage to developing granulation tissue.

2.7. Ethnobotanical Studies on Wound Healing

The current trend in drug development is in the discovery of compounds from natural products. There seems to be a growing list of natural products claimed to be efficacious in the treatment of wounds (Table 2.1). The products were shown to have several properties that could facilitate wound healing including anti-inflammatory, stimulation of wound contraction and re-epithelialization, and anti-microorganisms.

Plants have long been the source of useful products for humans. In Eastern and Southern Asia, traditional medicine is most preferred for treatment of various ailments (Gupta & Sharma, 2006). In these countries, traditional healers sought for treatments (Kongkathip *et al.*, 2002) using traditional therapeutic compounds and regimes that are based on indigenous knowledge gained from ancestral experiences (Lewis & Elvin-Lewis, 1995).

Malaysia's rainforest contains a large collection of plant species with unexplored medicinal properties. Several plants have been evaluated and their medicinal properties identified (Alam et al., 2009). In fact, many modern drugs in the market today originated from natural products. Because of the potential of natural resources, particularly plants, as a source of therapeutic compounds, ethno pharmacology has become rapid expanding research area. Among common diseases targeted in the discovery of innovative compounds from natural resources are cancers, wounds, gastrointestinal and skin disorders (Yadav et al., 2011; Sasidharan et al., 2010). Although, several plant products are purported to be effect for these diseases, their efficacies have not been scientifically verified or documented.

In one study in rats, it was shown that the ethanolic extract of *Mallotus philippinensis* Muell fruit has potent wound healing capacity (Gangwar et al., 2015). The study showed that the extract enhanced wound contraction, decreased epithelialization period and scar area, enhanced antioxidants and connective tissue markers. Other extracts that showed wound healing properties are those of *Plantain banana* (Agarwal et al., 2009) and root tubers of *Curculigo orchioides* (Singh et al., 2014). The root tubers of *C. orchioides* significantly increased the level of superoxide dismutase, nitric oxide and decreased lipid peroxidation in granuloma tissue of diabetic mice. *Morinda citrifolia* leaf extract (Rasal et al., 2008), *Limonia acidissima* Linn (Rutaceae) (Ilango & Chitra, 2010) fruit pulp significantly increase contraction rate, tensile strength, granuloma breaking strength, collagen content, dry granuloma weight, hydroxyproline contents, and decrease period of epithelialization in wounds. These plants are potent sources of antioxidative phenolic compounds responsible for wound healing effects.

Herbal Medicine	Properties	
Aspilia africana	Hemostatic properties on wounds Inhibits growth of microbial organisms Accelerates wound healing Treatment of rheumatic pain, bee & scorpion stings Clears corneal opacities & remove foreign bodies from eyes	
Bridelia ferruginea, Parkia biglobosa Jacq Elaeis guineensis leaf extract	Increase proliferation of derma fibroblasts Improve tissue regeneration	
Cedrus libani, Abies cilicica subsp. Cilicica carapa guianensis leaf	Improve wound healing and anti inflammatory properties Increase rate of wound contraction, skin breaking strength and hydroxyproline content	
Combination of Yasha bhasma, Shoea robusta and flax seed oil,	Increase wound contraction, higher collagen content & better skin breaking strength	
Hippophae rhamniodes L. Carica papaya latex	Improve wound healing Increase wound contraction & epithelialization rate	
Methanol extract of <i>Heliotropium indicumLinn</i> .leaf	Improve wound healing rate	
Rafflesia hasseltii bud & flower extracts	Improve wound healing rate and wound contraction	
Melaleuca alternifolia	Anti-microbial, anti-septic, ant inflammatory, anti-fungal, & anti viral properties	

 Table 2.1: Herbal medicine in wound care.

Adapted from Dorai, (2012).

2.8. Gastric ulcer

Gastric ulcer, a necrotic lesion of the gastric mucosa (Figure 2.5), is one of the most widely distributed chronic diseases affecting at least 10% of the population in the Western (Barkun & Leontiadis, 2010). In Asia and the South Pacific, gastric ulcer has been diagnosed in 11.5% of the population (Scott et al., 2013). In gastric ulcers, the mucosal layers of the stomach under the influence of various exogenous and endogenous factors are stretched causing disruption of the surface of stomach lining. Damage to the gastric mucosal is usually accompanied by increased acid secretion and pepsin production that enhance damage. The disease manifest as gastric and cardiac pain, weight loss, nausea, vomiting, hematemesis, and melena (Ramakrishnan & Salinas, 2007).

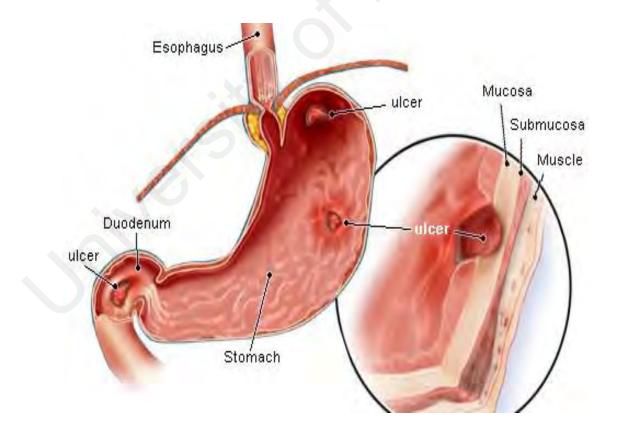


Figure 2.5: Gastric ulcer disease. Adapted from: (Marks, 2012).

2.9. Risk factors gastric ulcer

Under normal situation, the stomach can protect itself from these harmful agents through the defense mechanisms in the gastric mucosa. However, the protection from ulcer can be overwhelmed by aggressive factors that cause mucosal injury. Among aggressive factors as following:

2.9.1. Nonsteroidal anti-inflammatory drugs (NSAIDs)

Non-steroid anti-inflammatory drugs (NSAIDs) are first line therapeutic compounds in the gastric and duodenal ulcers (Bytzer & Teglbjærg, 2001). However, prolonged use of NSAIDs are known to cause adverse effects, particularly reducing natural resistance of the gastric mucosa to ulcerative damage resulting in abdominal pain, diarrhea, stomach upset, and exacerbation of the ulcer (Chan & Leung, 2002; Laine et al., 2008). Use of NSAIDs is known to inhibit the production of prostaglandin resulting in the loss of its protection, leading to a marked increase in the number of gastric and duodenal ulcers. In fact, about 60-94% of long term NSAIDs users, out of which 15%-31% were found to have an established gastric ulcer, with mucosal damage (Wang et al., 2004). The mechanistic implication of NSAIDs in delayed ulcer healing is reported to be due to its effect on the reduced expression of the vascular endothelial growth factor (VEGF) that is said to play an important role in the ulcer healing process (Sato et al., 2010). It is now considered that *H. pylori* infection and NSAIDs usage are among the major etiological causes of peptic ulcer (Lim et al., 2014).

2.9.2. Helicobacter pylori infection

The bacterium *H. pylori* infection is one of the most important etiologic agent in the development of gastrointestinal ulcers (Chan & Leung, 2002). *H. pylori* is rod-shaped bacterium that can activate gastrointestinal enzymes and down-regulate mucus and bicarbonate production and release (Nanjundaiah & Annaiah, 2009; Nilsson et al., 2003). This bacterium is capable of changing the gastric environment by reducing acidity to allow for their survival. *H. pylori* can survive in the gastric mucosa for extended periods by penetrating the stomach lining where they are protected from the host immune system by gastric mucus (Ottemann & Lowenthal, 2002). The colonization of the stomach by *H. pylori* results in chronic gastritis. *H. pylori* also produce protease, vacuolating cytotoxin A, and phospholipases that can cause damage to the gastric epithelial cells also resulting in ulcers (Smoot, 1997).

2.9.3. Genetics

The familial predisposition of gastrointestinal ulcers is modest, accounting for approximately 39% of all cases (Räihä et al., 1998). Between 20 to 50% of patients with duodenal ulcers have disease-positive family history, it seems that people genetically prone to acquiring peptic ulcers are not predisposed to *H. pylori* infection (Malaty et al., 2000). However, the incidence of *H. pylori* infections are higher in people with type O blood. A rare genetic relation was shown to occur familial hyperactive pepsinogenemia types I (genetic phenotype causing improved secretion of pepsin) gastric ulcers. This is suggested to be related to gastric acid hyper secretion that causes ulcer development (Atherton, 2006).

2.9.4. Lifestyle

The lifestyle of modern society is fraught with stress and habits detrimental to health like alcohol consumption and cigarette smoking. These social and psychological factors contributes to between 30 to 60% of peptic ulcer cases. Stress-induced peptic ulcer can manifest as hematemesis and melana. In the stomach, the lesions are predominantly multiple hemorrhagic erosions, accounting two-third of all lesions in stress-induced ulcers (Bernd et al., 1978).

Alcohol consumption and cigarette smoking are two factors that are closely related with peptic ulcers (Ko & Cho, 2000). These health threatening habits cause reduced mucus secretion, increased leukotriene B4 level, and increased activity of inducible nitric oxide synthetase, xanthine oxidase and myeloperoxidase that are all contributors to ulcer development. Alcohol, one of contributors to gastric ulcer in humans, causes gastric mucosal irritation, nonspecific gastritis, and gastric reflux (Chisholm, 1998).

2.10. Reactive oxygen species

The body system is influenced by the balance between free radical generation and scavenging. However, the level of free radicals is controlled by enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and coenzyme Q (Brambilla et al., 2008). In the stomach accumulation of free radicals can cause gastric ulcers (Suzuki et al., 2012). In fact, free radicals have been reported to be the main causative factor for gastrointestinal dysfunctions (Bagchi et al., 1998). These radicals attack proteins, DNA and fatty acids on cell membranes (Halliwell & Gutteridge, 1999).

It was also shown that alcohol consumption increases gastrointestinal hydroperoxide and superoxide anion productions, decreasing gastrointestinal mucus and bicarbonate resulting in cell membrane damage and development of necrotic gastrointestinal lesions. The injury caused by alcohol on gastric mucosa is multifaceted and complicated. Alcohol consumption increases xanthine oxidase and malondialdehyde (MDA), and decrease glutathione content in the gastric mucosa (Marotta et al., 2000) and cause breaks in DNA strands through the production of free radicals (Navasumrit et al., 2000). Alcohol is also associated with imbalance between gastric mucosal protection and action of offensive agents, mucosal edema, cellular exfoliation, sub-epithelial hemorrhages, cell infiltration, inflammation and ulcers (Suzuki et al., 2012), all seems to be mediated through superoxide anion, lipid peroxidation and hydroxyl radical activities in the gastric mucosa (Bagchi et al., 1998).

Gastric mucosal inflammation is a typical effect of alcohol consumption. The inflammatory process induced by alcohol is characterized by excessive release of inflammatory cytokines especially tumor necrosis factor- α (TNF- α) and interleukin-6 (IL-6) that result in increased production of ROS (Antonisamy et al., 2015). TNF- α is a major pro-inflammatory cytokine secreted by macrophages during gastric ulceration (Martin and Wallace, 2006) and this cytokine stimulates neutrophil infiltration into gastric mucosa during the injury (Wei et al., 2003). IL-6 is another important pro-inflammatory cytokine with pleiotropic nature and plays a central role in acute inflammation and immune regulation (Kishimoto, 2005) by activating neutrophils, lymphocytes and monocytes/macrophage and trigging oxidative stress response while, IL-10 suppresses inflammatory response and inhibits TNF- α production (Mei et al., 2012; Sabat et al., 2010).

2.11. Gastro protective factors

Food in the stomach is digested to chime, move to the duodenal tract for nutrient absorption while unabsorbed materials are excreted as waste in feces. Food may contain constituents that are harmful to gastrointestinal tract and the body. The stomach is protected against the deleterious effects of these constituents by epithelial lining and gastric secretions. The gastric epithelial layer acts as the first line defense against aggressive factors (Wallace, 2008) while the gastric secretion containing mucus, bicarbonate, sulfhydryl compounds, prostaglandins, inflammatory mediators, and epidermal growth factor (Abdel-Salam et al., 2001) protects the stomach mucosa from toxins, poisons, extreme pH and osmolality (Wallace & Granger, 1996).

Mucus on the gastric epithelium is an effective barrier to shave pressure. The carbohydrates of the mucin molecules react with bacteria preventing their colonization while facilitating their aggregation and clearance (Adrian & Flemström, 2005; Singh & Triadafilopoulos, 2005). The bacteria trapped in mucus is excreted in feces. Mucus also has antioxidant activities that protect the mucosa from damage by ROS produced by bacteria and immunocytes (Grisham et al., 1987). There are other roles of mucus to include maintenance of pH on the mucosal surface at near neutral and acting as physical barrier against luminal pepsin (Allen et al., 1993; Allen & Flemström, 2005). The constituents of mucus on the epithelial tissue and luminal tissue also create a moist environment that minimizes attachment of pathogens and absorption of materials (Moncada et al., 2003).

Eicosanoids, the bioactive lipids that include prostaglandins, leukotrienes and thromboxanes play an essential role in gastric physiology because they inhibit gastric acid secretion (Callison et al., 1976; Dey et al., 2006). Previous studies showed that prostaglandin E2 (PGE2) inhibits gastric acid output in mice, rats, dogs, monkeys, and

humans (Main & Whittle, 1973; Newman et al., 1975; Robert et al., 1967; Wallace & Granger, 1996; Wilson, 1990). Prostaglandins also have significant roles in the preservation of mucosal blood flow (Wallace & Mcknight, 1990) and stimulation of bicarbonate and mucus secretion in the stomach (Allen & Garner, 1980). In humans, luminal PGE2 production increased seven-fold over basal values after exposing the stomach to HCl at pH 0.8 (Aly et al., 1985). This effect reiterates the role of prostaglandins preserve gastric mucosal functions through the stimulation of mucus and bicarbonate excretions, control of acid secretion, stimulation of mast cell infiltration, inhibition of leukocyte infiltration, induction of apoptosis, and protection against ischemia (Atay et al., 2000). It was also shown that pretreatment with prostaglandin reduced injuries and necrotic lesions in the gastric mucosa caused by alcohol (Tarnawski et al., 1985; Trier et al., 1987; Robert et al., 1992).

Other factors that function in the preservation of gastric mucosal integrity include epidermal growth factor, transforming growth factor-beta (TGF- β), and fibroblast growth factor. These peptides also stimulate epithelial cell proliferation in the response to injury and normal tissue turnover (Barnard & Mchugh, 2006). The TGF- β , especially, induces differentiation, proliferation, migration, survival, and angiogenesis. In the human gastrointestinal tract, TGF- β regulates epithelial cell proliferation, inflammation and tissue repair. This was shown by increase in its expression of TGF- β after acute epithelial injury and inflammatory bowel disease (Frey et al., 2006; Hellmich & Evers, 2006).

One of the mechanisms in gastric ulceration is induction of gastric mucosal apoptosis. Thus, one of the means in the prevention of gastric ulceration is the inhibition of premature mucosal cell apoptosis. HSP-70 protein from the heat shock protein family

is ubiquitously present in mammalian cells and this protein serves to defend cells from oxidative stress damage. In cells, HSP-70 preserves structural proteins while functioning in the repair and removal of damaged proteins. In the gastric mucosa, reactive oxygen species (ROS) generation impedes expression of HSP70 making the mucosal layer susceptible to ulcerative damage (Emily et al., 2001).

2.12. Treatment of gastric ulcer

Hospitalization, bed rest, and special diet are prescribed for the treatment of severe gastric ulcers. Development of the disease can be minimized by avoidance of known ulcergenic agents, antacid intake, treatment with proton pump inhibitors, and quitting smoking. There are several other drugs that are used for treating gastric ulcer that functions by neutralizing gastric acid secretion and scavenging free radical. Antacids such as maalox and mylanta are the first optional drugs used to mitigate heartburns and dyspepsia. Unfortunately, antacids are not effective in preventing or curing gastric ulcers. The antacids serve to neutralize gastric acidity through the action of their three basic compounds, calcium, magnesium, and aluminum. The antacids also protect the mucosal layer of stomach by increasing bicarbonate and mucus secretions (Chisholm, 1998). Antibiotics are another group of drugs that can be used to treat gastric ulcers caused by bacterial infection *H. pylori*. An antibiotic such as amoxicillin is effective in decreasing bacterial growth in the stomach (Hentschel et al., 1993).

H2 blockers, including cimetidine and ranitidine, were earlier drugs for treatment of gastric ulcers before the development of proton pump inhibitors (PPIs). H2 blockers are suppressors of gastric acid production by blocking histamine, a cytokine that promotes acid secretion in the stomach. Although H2 blockers are popularly used for gastritis (Chisholm, 1998), these drugs do not heal ulcers (Wallace, 2005). Proton pump inhibitors are fast become the drug of choice for the inhibition of acid production in

gastric ulcer patients (Lin, 2010). The mechanism of action of PPIs is through blocking of stomach acid secretion by suppressing H+/ K+ ATPase, the enzyme responsible for regulating acid secretions by the parietal cells of stomach. Commercially available PPIs are omeprazole (Prilosec OTC), esomeprazole (nexium), lansoprazole (prevacid) and rabeprazole (aciphex) (Wallace, 2005).

2.13. Ethnobotanical Studies on Gastric Ulcer

Medical acceptance of the effectiveness of different plant species could constitute the foundation for the use of these plants as alternative therapies or as main treatment options in situations where no conventional therapy is available (Hutt & Houghton, 1998). The increasing use of medicinal plants is not only because of poverty but also due to the side effects and drug resistance encountered with pharmaceutical drugs. In addition some herbal medicine is safe due to their natural origin, which encourages people to adopt herbs for self-medication (Rokutan et al., 2000). Plants have an extensive capability to amalgamate a huge range of organic compounds, some of which may provide cost effective and better defense against ulcers and entail a lower possibility of recurrence (Koehn & Carter, 2005). Carbenoxolone derived from *Glycyrrhiza glabra* is the first powerful compound confirmed to act against gastric ulcer (Pinder et al., 1976). This finding has triggered further studies focused on discovering other prospective compounds.

Similarly, gefarnate, a substance extracted from cabbage is an antiulcer agent used in traditional medicine (Pillai et al., 2010). Following this, numerous plant extracts have been examined for their advantageous roles in treating gastric ulcers. Noordin and colleagues (2014) reported that *Enicosanthellum pulchrum* extract which is used as traditional medicine for gastrointestinal disorders in Malaysia, exhibit anti-gastric ulcer activity against ethanol induced ulcer. Acyclic polyisoprenoid like geranyl geranyl

acetone (GGA) work effectively against acute gastric mucosal injuries by increasing the production and secretion of gastric mucus (Rokutan et al., 2000). *Zingiber officinale* (ginger) is generally used as a spice, and is acknowledged to have antiulcer and antioxidant attributes in conventional medicine. Many phytoconstituents of ginger, such as sesquiphellandrene (Kobayashi et al., 2001), zingiberene (Ohta et al., 2005), and arcurcumene (Mózsik et al., 1999), show gastroprotection activity against HCI-ethanol-induced ulcer. Despite numerous studies conducted on the gastroprotective effects of these compounds against gastric ulcers, more studies need to be carried out in order to explore the potentials of natural folkloric compounds like *Clausena excavata*. Thus, investigating the gastroprotective potentials of natural product like *C. excavata* is paramount in order to document its therapeutic effects.

2.14. Clausena excavata

Clausena is a genus of about 14 species of evergreen trees, occurring wild mostly in India and tropical Asia (Shier, 1983) including the Himalayas, China, and Peninsula Malaysia (Manosroi *et al.*, 2004). In Malaysia *C. excavate* is known as "Cherek hitam" and "Kemantu hitam" (Descola, 1996). In Thailand the herb plant is known as "San Soak." (Khare, 2007). The plant is easy to grow, free of pests and diseases and can withstand heavy pruning (Swarbrick, 1997).

Clausena excavata is a plant species that belongs to the kingdom: Plantae, Phylum: Eudicota, Class: Angiosoermae, Order: Sapindales, Family: Rutaceae, Genus: Clausena, Species: *Clausena excavata*.

Clausena excavata is a slender tree of 10 m in height. The plant is woody with a shiny green leaf (Figure 2.6). The leaves are pinnate; 60 cm long, with 10-15 pairs of dark green narrowly oval oblique leaflets, 3.5 to 7 cm long and pointed tips. The leaves

have a characteristic curry-like smell when crushed. *C. excavata* has striking hourglassshaped gynophores that is completely glabrous. The flower is consists of four membranes with short pedicel, 4 mm in diameter. The fruit is approximately 19 mm in length and the twigs finely hairy (Swarbrick, 1997).

2.14.1. Traditional Usages of Clausena excavata

Amongst Malays, *C. excavata* is of medicinal importance (Ali et al., 2000). The plant is traditionally used in the treatment of abdominal pains, snakebites, and as a detoxification agent. The leaves of this plant are used in the treatment of malaria, stomachache, cold, headache, pulmonary tuberculosis, wound, dysentery, and diarrhea (Zheng et al., 2013). The pounded root is used as a poultice for sores. The root and stem decoction are drunk for bowel complaints, mainly colic. Decayed teeth can be treated using dried and powdered rootstock of the plant. In Indonesia, expressed juice of *C. excavata* is used as vermifuge for coughs (Arbab et al., 2011). In Malaysia, the plant is used for the treatment of yaws (Gimlette & Thomson, 1939) while the flowers and leaves are boiled and the decoction consumed by mothers after childbirth (Grieve and Scora, 1980).

Figure 2.6: Clausena excavata Burm. f. (Rutaceae); fruits and leaves; source: <u>http://www.tradewindsfruit.com</u>

2.14.2. Phytochemical and Pharmacological Properties of Clausena excavata

The pharmacological properties of compounds extracted from *C. exacavata* are being extensively investigated (Blumenthal *et al.*, 2000). *C. excavata* was reported to have compounds with some of the highest beneficial biological activities among the *Clausena* genus (Table 2.2). The plant also contains other pharmacologically active compounds like coumarin, carbazole alkaloid, and glycosides. The phenolic and flavonoid compounds from the plant possess immunomodulatory, analgesic, anti-inflammatory, antiviral, anticancer, antioxidant, antimycobacterial, anti-malarial, and antifungal activities. (Rahman et al., 2002; Sunthitikawinsakul et al., 2003; Manosroi et al., 2004; Sharif et al., 2011; Guntupalli et al., 2012; Kumar et al., 2012; Arbab et al.,

2012). Based on these biological properties of chemical consitutents of *C. excavata*, it is postulated that the *C. excavata* leaves extract is effective in the healing of wounds and gastric ulcers.

Compoud name	Chemical class	Bioactivity	Reference
Clausine-B	carbazole alkaloid	Anticancer	Wan et al., 2005
Clausine-TY	carbazole alkaloid	Anticancer	Taufiq-Yap et al, 2007
Clausenidin,	Pyranocoumarins	Anticancer,	Ali et al., 2000
Nordentatin,		antibactrialial	
Xanthoxyletin,	Carbazole	Antibactrialial	Sunthitikawinsakul et al., 2003
Murrayanine	derivatives		,
Mukonal	Limonoid	Antifungal	Takemura et al., 2000
Dentatin	Coumarin	Anti-HIV-1	Ali et al., 2000
Clausene-D	Alkaloid	Antiplatelet	Wu & Furukawa, 1982
Sansoakamine	Carbazole alkaloid	Anti-malarial	Lastra et al., 2005

Table 2.2: Biologically active compounds of Clausena excavata

CHAPTER 3: MATERIALS AND METHODS

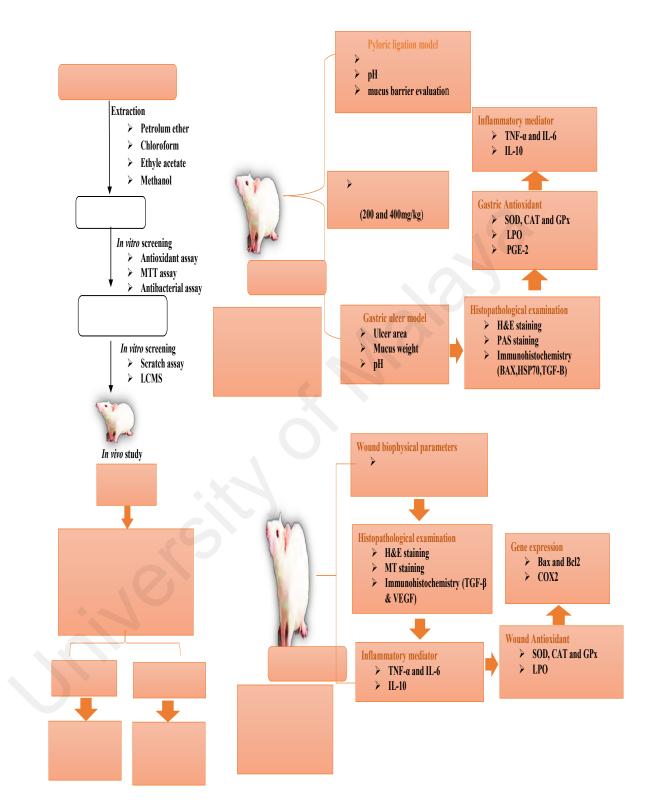


Figure 3.1: Study desigen

3.1. Collection and Processing of Plant Material

3.1.1. Plant Collection and Identification

Clausena excavata leaves were collected from Pendang, Kedah, Malaysia. The plant was identified and authenticated by Dr. Shamsul Khamis of the Biodiversity Unit, Institute of Bioscience, Universiti Putra Malaysia. A voucher specimen (TI-013201-CE) was deposit at Institute of Bioscience (IBS), Universiti Putra Malaysia.

3.1.2. Extraction of Plant Material

The leaves were sorted, washed and dried at room temperature for two weeks before ground into powder and stored in air tight plastic bags. Extraction was done at room temperature, in the order of petroleum ether (PT), chloroform (CH), ethyl acetate (EA), and methanol (MOH). The extraction at 1:5 (weight-to-volume) of dried plant weight to petroleum ether was allowed to stand for 3 days to ensure the total penetration of the solvent and dissolved chemicals. The mixtures were then filtered using a filter paper (Whitman, 185 mm). The filtrate and residue were subject to further extraction with chloroform, ethyl acetate, and methanol and the filtrate collected after each extraction. All filtrates were evaporated to dry under reduced pressure using rotary evaporator (Buchi, Switzerland) at 45 to 50°C to obtain crude extracts. The yield of dried extracts was calculated and stored at – 20° C until use.

3.2. In vitro screening of extracts for Antioxidant Activity

3.2.1. Ferric Reducing Antioxidant Power Method (FRAP)

Ferric Reducing Antioxidant Power (FRAP) reagent containing 25 mL of acetate buffer (pH 3.6), 2.5 mL of 10 mM 2, 4, 6-Tripyridyl-s-Triazine (TPTZ) solution and 2.5 mL of 20mM FeCl₃·6H₂O was freshly prepared. One milligram of extract was dissolved in 1 mL of absolute deoxymethylsulfoxide (DMSO) (Fisher Scientific, UK). Ten microliter of FeSO₄ solution, standard, or fractions were placed in the designated microplate wells in triplicates. 300 μ L of reagent was added to each well and the optical density of reaction mixture determined spectrophotometrically at 593 nm after 5 min. The FRAP value was determined from the FeSO₄·7H₂O standard curve (APPENDIX C) and expressed as μ M ferrous/mg sample (Benzie & Strain, 1996).

3.2.2. 2, 2-Diphenyl-1-picryllyhydrazyl (DPPH) Free Radical Scavenging Method

The DPPH scavenging activity of *C. excavata* leaves fractions were estimated using the method described by Generalic *et al.*, (2011). Briefly, 195 μ L DPPH reagent was added to 5 μ L of each fractions or quercetin standard. The mixtures were incubated in the dark for 2 h at room temperature. The optical density of the mixture determined at 515 nm against a blank. The DPPH scavenging activity calculated using the following formula:

DPPH scavenging (%) =
$$\frac{Abs_{blank} - Abs_{sample}}{Abs_{blank}} \times 100.$$

. .

. .

Where $Abs_{blank} = Absorbance$ of blank; $Abs_{sample} = Absorbance$ of sample.

The IC₅₀ (inhibitory concentration of sample required to scavenge 50% of the DPPH free radicals) values for each sample was obtain by linear regression analysis of the dose response curve.

3.2.3. Total Phenol Content

The total phenol content (TPC) of each fraction was determined as described by (Mayakrishnan et al., 2013) using Folin-Ciocalteu reagent. Ten microliter of 1mg/mL fraction was added to 100 μ L of 10% Folin-Ciocalteu reagent in water, mixed well and left to incubate for 5 min at room temperature. One hundred microliter of 10% sodium carbonate was added and the mixture incubated for 2 h at room temperature. The optical density was measured spectrophotometrically at 750 nm and results were obtained from the Gallic acid as a standard expressed as mg Gallic acid equivalent (GAE)/g extract (APPENDIX C).

3.2.4. Total Flavonoid Content

Total flavonoid content (TFC) was estimated using the method described by (Adedapo *et al.* 2008). Five hundred microliter of each fractions was added to 500 μ L of 2% AlCl3 dissolved in ethanol. After 1 h incubation at room temperature, the optical density was determined at 420 nm. The TFC was determined from the quercetin standard curve and expressed as quercetin equivalent/g extract (APPENDIX C).

3.3. Evaluation of cytotoxicity using (3-(4, 5- dimethylthiazol-2-yl)-2, 5 Diphenyl tetrazolium bromide assay

The diphenyl tetrazolium bromide (MTT) assay was used to determine cell toxicity of *C. excavata* extracts (Riss *et al.*, 2004). The target cells selected were human immortal keratinocyte HaCaT, macrophage (J77A.1), and Vero cells (3T3), obtained from American Type Culture collection, USA, was cultured in RPMI-1640 or DMEM

growth medium supplemented with 4500g glucose/L, 110mg sodium pyruvate/L and 1% penicillin- streptomycin (Sigma-Aldrich, UK) and 10% fetal bovine serum (FBS) (BIOWEST, France). The cells were cultured at 37°C in under 5% CO₂ (NuAire, Plymouth, MN, USA). The cells were subcultured until they reached 80% confluence and seeded in a 96-well plate at a density of 6.0×10^3 cells/well. After 24 h of incubation, the cells were washed with phosphate buffered saline (PBS). The extract was diluted in the growth media of the particular cell line. The vehicle for initial stock of drug was 0.1% DMSO. The extracts at concentrations of 12.5, 25, 50, 100, 200, and 400 µg/mL were added to their designated cells and incubated at 37°C under 5% CO. (NuAire, USA) for 24 h. Twenty microliters of MTT reagent was added to each well and the plate re-incubated for 4 h. The purple formazan formed was solubilized with 150 µL DMSO in the dark at room temperature for approximately 30 min to dissolve the vellow MTT tetrazolium salt to the purple formazan salt. The number of viable cells was determined by measuring the optical density spectrometrically determined at 570 nm, with reference at 630 nm, in a microplate reader (Tecan, Austria). Each experiment was repeated three times with triplicate wells for each concentration.

3.4. Assessment of Antibacterial Activity

Crude extracts of *C. excavata* were evaluated for antibacterial activity against gram positive and gram negative bacteria.

3.4.1. Disc diffusion method

The disc diffusion method was carried out using the technique of Kirby–Bauer (Bauer *et al.*, 1966). Gram-positive bacteria, *Staphylococcus epidermidis, Bacillus subtilis* and Gram-negative bacteria, *Acinetobacter anitratus* and *Pseudomonas aroginosa* were obtained from the Institute of Bioscience, Universiti Putra Malaysia.

Bacterial suspension was prepared from overnight culture, two colonies were selected with a sterile loop and transferred in to 2ml of normal saline and vortex thoroughly, and then turbidity is compared to that of the 0.5 McFarland standard solution (containing about 1.5×10^8 CFU/mL). The bacteria suspension was spread uniformly on the surface of the nutrient agar using a sterile cotton swabs. Extracts at 1mg in 10 uL aliquots was dispensed into each 6 mm sterile discs and seeded on the surface of the inoculated plate using sterile forceps. The plates were incubated at 37° C for 24 h. The antibacterial activity was measured by the development of inhibition zone around the disc. The diameter of this clear zone was measured in millimeters (mm). Streptomycin and DMSO were used as positive and negative control, respectively.

3.4.2. Determination of minimum inhibitory concentration (MIC)

This was conducted according to method of Agoramoorthy et al. (2007). Serial dilution between 0.009 mg /mL to 20 mg fractions per milliliter was prepared then placed in microplate wells. A 24h culture diluted with a sterile 0.9% normal saline and 0.5mL McFarland standard was used to achieve inoculums of 10^6 CFU/ mL. The samples were inoculated with 10µl standard suspensions of tested bacteria homogenized and incubated for 24 hours, then 5 µl was withdrawn from each well, sub cultured on nutrient agar plates and incubated at 37 °C for 24 h. Following incubation in broth microdilution method, 30 µL of 0.01% resazurin was added into each well of the 96-well microtiter plates and the plates were subjected to incubation for another two hours.

Color change of the dye from blue to pink indicated cell viability. The MIC was determined as the lowest concentration of fractions in the broth medium that did not show any growth of the test bacteria, which changed the resazurin colour from blue to pink or purple, whereas the minimum bacterocidal concentration (MBC) was recorded as the minimum concentration of the extract that did not change the blue pigmentation of resazurin as well as kills bacteria after the period of incubation.

3.5. Scratch Wound assay of Methanolic fraction C. excavata

This experiment was carried out according to method described by Guler *et al.*, (2014). Fibroblast cells (3T3) ATCC layered in a 24-well plate at 3×10^5 cells/mL and grown in a 10% FBS media until at least 80% cell confluent was reached. Scratches on the fibroblast layer were made with a 200 µL a sterile pipette tip. Cells were then rinsed with PBS to remove the loose cell debris. One hundred microgram per milliliter of MOH extract was added to each well and the plate incubated. The scratch in the wells was then examined at 0, 24 and 48 h post-treatment under a phase-contrast microscope (Leica microsystems, Germany) and digital images captured using a digital camera (Leica, Microsystems, UK). The width of the scratch was measured at each time period to determine rate of cell migration. The scratch test assay was performed in triplicates.

3.6. Phytochemical Characterization of the Methanolic C. excavata Leaves Extract

The methanolic fraction showed good antioxidant activity and phenolic content, optimal proliferation and migration of cell lines, and antibacterial activity was subsequently selected for phytochemical screening.

Ultra-high resolution liquid chromatography–tandem mass spectrometry (UHPLC) system was used in the identification and characterization of active constituents in the methanolic fraction *C. excavate*. The analytical condition consisted of a C18 column (150 mm x 4.6 mm X, particle size 5μ M), mobile phase made up from Water (solvent A) and Acetonitrile (solvent B) [0.1% formic acid and 5 mM ammonium format for each], a flow rate of 0.8 mL/min, and an injection volume was set to 20 μ L. The gradient program was adjusted to perform a serial dilution from 10 to 90% B from 0.01min to 8 min and back to 10% B in 0.1min after holding the system for 2 min, while maintaining the system for 5 min for re-equilibrated. The run-time was 15 min. The diode array detector recorded the spectra range from 100 to 1200 nm to identify molecular ion. All chromatic peaks from MS analyzer were identified by matching with ACD Labs mass spectral library and corresponding literature data (Mayakrishnan *et al.*, 2013). A data dependent program was established in the liquid chromatography-tandem mass spectrometry analysis such that the most abundant ions in each scan were selected and subjected to MS/MS analysis.

3.7. In vivo Acute Toxicity Study of Methanolic fraction of C. excavata

The acute oral toxicity of the methanolic fraction was evaluated according to the criteria of the Organization for Economic Cooperation and Development (OECD-423) guidelines (OECD, 2001). This test is used to describe the adverse effects of a substance that may result from single exposures within 14 days.

3.7.1. Experimental Animals

Thirty-six adult male and female Sprague-Dawley rats, 8 to 10 weeks old, weighing between 165 and 200 g, were procured from the Animal House of the Faculty of Medicine, University of Malaya, Malaysia. The rats were maintained in clean stainless steel cages at an ambient temperature of $25\pm2^{\circ}$ C and fed standard rat/mouse pellet (Specialty Feeds, Glen Forrest, and Western Australia) and water *ad libitum* for one week before experimentation. All studies performed were approved by the Institutional Animal Care and Use Committee, University of Malaya (ISB/22/007/2013/1111/SFA).

3.7.2. Animal Grouping

The Animals were divided into six groups; control male (CM) (n=6), control female (CF) (n=6) given 10% Tween-20, male 1 (M1) (n=6) and Female 1 (F1) (n=6), given 2000 mg/kg body weight of methanolic fraction *Clausena excavata* (MFCE), male 2 (M2) (n=6) and female 2 (F2) (n=6), given 5000 mg/kg body weight MFCE. The MFCE was suspended in 10% Tween-20 and given orally to each rat. The rats were observed for abnormal behavior, such as sedation, convulsion, diarrhea, and respiratory distress, during the first 3 h post-treatment. There was no mortality and the rats humanely euthanized after 14 days with an overdose of CO₂.

3.7.3. Blood Parameters

Before euthanasia, the rats were fasted for at least over night and blood samples were collected in plain and EDTA tubes. Serum was separated by centrifugation 3000 rpm (Hettich, EBA 20) for 10 min and used for determination of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, bilirubin, creatinine (Cr), urea (BUN), sodium (Na⁺), potassium (K⁺), and chloride (Cl⁻). Anticoagulated whole blood samples were used for determination of erythrocyte (RBC) and leukocyte (WBC) counts and hemoglobin concentrations.

3.7.4. Histopathology

Liver and kidney tissue samples were collected from all the experimental groups, weighed, and then fixed in 10% buffered formalin for 48 h, embedded, sectioned (Leitz Watzlar), stained with hematoxylin and eosin stain, and observed under light microscopy (Appendix A).

3.8. Wound healing of Methanolic fraction C. excavata

3.8.1. Experimental Animals

Thirty adult male Sprague-Dawley rats (200–250 g) were used in the study. The rats were acclimatized for 2 weeks in a well-ventilated room, and given standard pellet feed and water *ad libitum* throughout the experimentation period.

3.8.2. Animal Grouping and Wound infliction

The rats were divided into five groups of sex animals each, and anesthetized with an intramuscular injection of the 100 mg/mL ketamine and 30 mg/mL xylazine combination prior to skin wounds infliction. Skin from the dorsal nape of the neck was shaved with an electrical clipper, disinfected with 70% alcohol, and injected with 0.1 mL 2% lignocaine hydrochloride. A 2 cm diameter circular area (~3.14 cm²) of the skin was made using a circular stamp, and full thickness of the marked skin was then cut carefully, to ensure the muscles are spared (Figure 3.2), using a pair of sterile scissors and forceps.

The wounds were left exposed and undressed. Group 1 (negative control group) was treated with vehicle (gum acacia in normal saline 20 mg/mL); Group 2 was treated with 0.2 mL intrasite gel (Smith and Nephew Ltd., UK) (positive control); Groups 3, 4, and 5 were treated with 0.2 mL MFCE at concentrations of 50 (MFCE-LD), 100 (MFCE-

MD), and 200 (MFCE-HD) mg/mL. All treatments were by topical application twice daily for 14 days beginning on first day of wound infliction.

Figure 3.2: Inflicted skin wound at the nape of the dorsal neck of rats.

3.8.3. Wound contraction Assessment

The wound area was measured every 5 days for 15 days by placing transparent paper over the wound and tracing its border. The tracing was superimposed on a 1 mm² graph paper to determine area according to the method described by Ikobi *et al.* (2012). The area of the contracting wound with treatment is expressed as a percentage of the initial wound size according to the following formula:

Wound contraction (%) =
$$\frac{\text{Area}_{\text{initial}} - \text{Area}_{\text{treatment}} (\text{mm}^2)}{\text{Area}_{\text{initial}}} \times 100$$

Where Area_{initial} = Initial wound area, Area_{treatment} = Wound area with treatment.

Differences in wound healing of the treated groups are derived by comparing with healed wound area of the control group, during the treatment period (Murthy *et al.*, 2013).

3.8.4. Histopathological examination

3.8.4.1. Hematoxylin and Eosin- and ' trichome-stain (MT)

After euthanasia, skin specimens were collected from all the rats and placed in 10% buffered formalin, processed in the automated tissue processing machine (Leica, Germany), and 5 μ m square tissues sectioned using a microtome (Leica, Germany). The tissues were stained with hematoxylin and eosin (H&E) and Masson's trichrome (MT) (Appendix A). For each group, 6 microscopic fields were examined each from three slides at 40× magnification. The H&E-stained sections were examined for epithelialization (epithelial proliferation in the epidermal layer), degeneration (epidermal cells showing vacuolation or vacuolar degeneration), granulation tissue

(necrotic and inflammatory cells), and leucocytic (polymorphonuclear and mononuclear) infiltration and images captured. The lesions, based each of the above, were scored according to five-point scale: 0 - normal, 0%; 1 - occasional evidence, 25%; 2 - light scattering, 30%–50%; 3 - abundant evidence, 55%–75%; and 4 - confluent cell, 80%–100% (Atiba *et al.*, 2011).

The MT sections were similarly evaluated according to color intensity; 0 - no coloration, 1 - low, 2 - dull, 3 - moderate, and 4 - bright. Fibroblast distribution and collagen maturity were also determined as follows; 0 - no collagen, 1 - semi-thin fibers, 2 - thin fibers, 3 - semi-thick fiber, 4 - thick fibers. Evaluation of angiogenesis was based on the distribution of new blood capillaries and collagen distribution was based on the distribution of collagen fibers, using the five-point scale described by (Atiba*et al.*, 2011).

3.8.4.2. Immunohistochemistry Staining for VEGF and TGF-β

Immunohistochemical staining was conducted according to the manufacturer's protocol (Dako Cytomation, USA). Tissue sections were prepared as described earlier for histopathology. The tissue sections were deparaffinized and immersed in 100, 80, 70, and 50% alcohol in order for 5 min each before hydrating in PBS twice for 5 min each time. The sections were boiled in 10 mM Tris buffer (pH 9.0) for 15 minutes to retrieve the antigen, the slides cooled, and incubated for 10 mins with 3% H₂O₂. The slides were then washed twice in PBS and incubated with rabbit polyclonal primary antibodies to VEGF or TGF- β 1, (Abcam, UK) at a dilution of 1:500 and 1:100, respectively, and the tissue was then incubated in a humidified chamber at 4 °C for 1 h for detection of VEGF and 18 h for TGF- β 1. Horseradish peroxidase-conjugated secondary antibodies (EnVision System) were added to the sections and the slides were incubated at room temperature for 60 minutes.

The tissues were then stained with 3, 3'-diaminobenzidine tetrahydrochloride (DAB) and substrate (Dako, CA, USA) for 5 min. All washings were done with 0.1% Tween-20 in PBS, except for washing after rehydration and after chromogen incubation (DAB), in which PBS without Tween-20 was used. The slides were counterstained with hematoxylin, and subsequently dehydrated in increasing concentrations of alcohol of 50, 70, 80, and 100% before clearing in xylene. Tissue sections were air-dried and mounted onto slides for examination under light microscopy. Dark-brown stained VEGF-positive cells in six fields/tissue sections from 3 rat/group were counted at 40× magnification. The extracellular matrix (ECM) distribution of TGF- β 1 was evaluated using a four-point scale: 0 – 0% ECM; 1 – 25 – 40% ECM; 50 – 65% ECM; 70 – 100%, according to method described previously (Atiba *et al.*, 2011).

3.8.5. Antioxidant activity and lipids peroxidation

Tissues samples were collected from all the animals at day 15 post-wound infliction for the determination of tissue superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and lipid peroxidase activities. After homogenization, the mixture was centrifuged using a refrigerated centrifuge Rotofix 32 (Hettich Zentrifugen, Germany) at 4000 rpm at 4°C for 20 min. The supernatant was collected for enzymatic antioxidants evaluation. The protein concentration was determined using the Bradford method with bovine serum albumin as a standard (Bradford, 1976) (Appendix C).

3.8.5.1. Superoxide dismutase activity

The tissues were homogenized (Omni TH, USA) in 20 mM 4-(2-hydroxyethyl)-1piperazineethanesulfonic acid (HEPES) buffer (1 mM EGTA, 210 mM mannitol, and 70 mM sucrose/g tissue), pH 7.2. The homogenate was then centrifuged at $1,500 \times g$ for 5 min at 4°C, and the supernatant collected and assayed for SOD activity using the Cayman assay kit (Cayman Chemical, USA). Appendix B.

3.8.5.2. Catalase activity

Tissue samples were homogenized (Omni TH, Omni) in cold potassium phosphate buffer, pH 7.0, containing 1 mM EDTA. The mixture was then centrifuged at $10,000 \times g$ for 15 min at 4°C, and the supernatant assayed for CAT activity using the Cayman assay kit (Cayman Chemical, MI, USA). Appendix B.

3.8.5.3. Glutathione peroxidase activity

Tissue samples were homogenized (Omni TH, Omni) in 50 mM Tris-HCl, pH 7.5, 5 mM EDTA, and 1 mM dithiothreitol. The homogenate was then centrifuged at $10,000 \times g$ for 15 minutes at 4°C. The supernatant was assayed for GPx activity using the Cayman assay kit (Cayman Chemical, Ann Arbor, MI, USA). Appendix B

3.8.5.4. Lipid peroxidation activity

The lipid peroxidation (LPO) assays (Cayman Chemical, MI, USA) were carried out according to manufacturer's instructions. Tissue samples were homogenized (Omni TH, Omni) in PBS, and extraction buffer provided with the kit to extract lipid hydro peroxides. Real-time chromogenic reaction was allowed to occur for 5 minutes. The absorbance was read at 500 nm. Appendix B

3.9. Evaluation of TNF-α -6 and IL-10 via enzyme –linked immunosorbent assay

To determine TNF-α (Item No.CSB-E11987r), IL-6 (Item No. CSB-E04640r), and (IL-10) (Item No. CSB-E06897Rb) in the homogenate, 100 mg skin tissue was weighed and homogenized on ice in 1 mL cold PBS buffer. The tissue homogenate was centrifuged (Hettich Zentrifugen, Germany) at 10,000 \times g and 4°C for 10 min and the supernatant was collected and kept at (-80 °C) until use. Detection of cytokine in the supernatant was by a commercial ELISA (CUSABIO, China) according to manufacturer's instruction. Briefly, 100 µL of sample or standard per well was placed in a 96-well sterile ELISA microplates coated with capture antibody. The plates were sealed and incubated for 2 h at 37°C. The sample was aspirated, and then100 µL biotinylated-antibody (1:100 dilutions) was added at each well and the plates were sealed and incubated for 1 h at 37°C. The medium was aspirated from the wells and the plate washed with 200 µL buffer each time for three times. The plates were then incubated with 100 µL of working solution of horseradish-peroxide conjugated streptavidin (1:100 dilutions) for 1 h at 37°C. After aspiration of the supernatant, the washing step was repeated and 100 µL of the substrate solution tetramethylbenzidine (TMB) was added to each well and the plate incubated for 30 min at 37°C in the dark. The reactions were stopped with 50 μ L of stop solution. The optical density (OD) was determined in the ELISA plate reader (Universal Microplate reader, USA) at 450 nm.

3.9. Quantitative Real-time polymerase chain reaction (RT-PCR) BAX, BCL2 and COX-2 gene (wound healing model)

The HD-MFCE healed rat skin wound was collected and placed in RNA later solution (Ambion, USA) and snap-frozen in liquid nitrogen, and kept at -80°C.

3.9.1. RNA extraction

Total RNA was extracted from skin samples and purified using RNeasy fibrous tissue mini kit (Qiagen, Cat. No: 74704). The extraction and purification processes were carried out as per kit protocol. Briefly, 60 mg of skin tissue sample was weighed and placed in 2 mL microfuge tube, homogenized using a tissue ruptor in a volume 600 µL RLT Buffer (containing 1% B-mercaptoethanol), followed by addition of 10 µL diluted proteinase K. The homogenate was vortexed before incubating at 55°C for 10 min on a hot plate (Benchmark, USA) and centrifuged for 3 min at $10000 \times g$. The supernatant was transferred to a 1.5 mL RNase free micro-centrifuge tube. Then 0.5 volume (250 μ L) of 96 - 100% ethanol was added to the supernatant, mixed and the 700 μ L of the solution transferred to the mini RNeasy purification column in a 2-mL collection tube, and finally centrifuged at $8000 \times g$ for 15 sec. The spin column was transferred to a new collection tube and 350 μ L RW1 buffer added and mixture centrifuged at 8000 \times g for 15 sec. To avoid genomic DNA contamination, the mixture was treated with 80µL DNaseI (Qiagen, Germany). Then 350µL of RW1 buffer was added and the mixture centrifuged at $10000 \times g$ for 15 sec. The purification spin column was placed into a new collection tube and 500 µL of RPE buffer1 was added and the mixure centrifuged at $10000 \times g$ for 2 min. Finally, the spin column was placed in the 1.5 ml RNAase free collection tube to elute the RNA by adding 20 µL nuclease-free water and centrifuging at 10000 × g for 1min. The RNA collected was kept at -80°C until use. The RNA concentration determination by optical density at 260nm. The quality of RNA extracted $(A260/A280 \ge 1.65)$ were measured using a Nano Drop ND- 2000 spectrophotometer (Thermo Fisher scientific). The integrity of RNA was determined using agarose gel electrophoresis (Bio-Rad, USA) and viewed after staining with ethidium bromide (Pfaffl *et al.*, 2003).

3.9.2. Reverse transcription (RT)

Reverse transcription was carried out using a commercial kit (Tetro cDNA synthesis kit, applied Bioline, Cat.No65042). In each 20 μ L reaction mixture, the total RNA sample was mixed with RT reaction mix (Table 3.1) and the reaction determined in the thermal cycler (MJ Research PTC-100 Thermal cycler, USA) at 25°C for 10 min followed by 45°C for 30 min. The reaction was stopped at 85°C for 5 min and was held at 4°C. The cDNA product was then stored at -20°C until use.

3.9.3. Real-time amplification assay for gene expression

The reaction setup for all gene expression assays was performed according to the manufacturer's instructions for the Universal SYBR Green PCR Kit (BIO RAD Cat. No: 1725270) and generated by the CFX Manager System Software (Ver. 1.6, BioRad Laboratories). The reaction was carried out on ice by mixing 12.5 μ L 1X universal SYBR Green super mix with 1 μ L 10X corresponding primers and 1 μ L cDNA and the reaction volume made to 25 μ L with nuclease-free water (Table 3.2). The reaction mixture was gently mixed by pipetting and the PCR reaction run using the RT-PCR machine (MJ Research PTC-100 Thermal cycler, USA) (Table 3.3).

Table 3.1: Composition of the reverse transcriptase reaction				
Reaction mixture Volume (µL)				
RNA sample	Up to 9			
Random Hexamer	1			
dNTP mix	1			
RT Buffer	4			
RNase inhibitor	1			
Tetro Reverse Transcriptase	1			
Nuclease-free water	То 20			

 Table 3.2: Genes used in the study

No.	Gene name and abbreviation	NCBI Reference Sequence
1.	BCL2-associated X protein (Bax)	NM_017059.1
2.	B cell lymphoma -2 (BCL2)	NM_016993.1
3.	Cyclooxygenase-2 (Cox-2)	NM_017232.3
4.	Glyceraldehyde-3-phosphate dehydrogenase(GAPDH)	NM_017008.3
5.	Act-β (β-actin)	NM_031144.2

	Polymerase activation	PCR (40	cycle)
parameters —	Hold	Denatur Anneal/exte	•
Temperature(°C)	95	95	60
Time (mm:ss)	05:30	00:15	00:30

Table 3.3: Thermal cycle condition

The PCR gradient was done for all genes simultaneously in one run to determine the optimal annealing temperature. Annealing temperature gradients were 50 to 60 °C for 30 sec. Standard curve was created for each gene to determine the efficiency of gene amplification. No template control (NTC) contained all the components of the reaction except the cDNA. Samples that give higher CT value than control is considered to be gene down-expression and *vice versa*. CT values were calculated as the mean of triplicate measurements. The comparative CT quantification was by the $\Delta\Delta$ CT method (Shandiz *et al.*, 2015). The comparative CT method ($\Delta\Delta$ CT) expression of genes was normalized with the endogenous housekeeping genes (β -actin and GAPDH). The realtime RT-PCR analytical results for a given gene are expressed as the difference in $\Delta\Delta$ CT value between treated and calibrator (untreated control). The fold change was calculated as follows:

 $CT_{target} - CT_{control} = \Delta CT$

 $\Delta CT_{sample} - \Delta CT_{calibrator} = \Delta \Delta CT$

Fold change = $2^{-\Delta\Delta CT}$

Where $CT_{target} = CT$ of test sample; $CT_{control} = CT$ of endogenous control; $CT_{calibrator}$ = CT of untreated control.

3.10. Gastro protective activity evaluation of C. excavata

3.10.1. Animals

Fifty-four male Sprague-Dawley rats (220 to 240 g), aged 6 weeks were purchased from the Animal Resource Centre, Faculty of Veterinary Medicine, Universiti Putra Malaysia. The rats were housed in groups of 3/cage and allowed to acclimatize for week, with free access to commercial feed and water. The experiment was conducted under a constant ambient temperature of approximately 22°C and 12 hour light/dark cycle and with strict compliance to the guidelines of the Institutional Animal Care and Use Committee, University of Malaya (ISN/22/007/2013/1111/SFA). All animal studies were performed under sterile conditions at the Experimental Unit, Faculty of Veterinary Medicine, Universiti Putra Malaysia.

3.10.2. Plant preparation and dose selection

The MFCE, omeprazole, ethanol were suspended, at 5ml/kg with 5% Tween 20 v/v, and Tween 20 was used as a vehicle (Nordin, *et al.*, 2014). The doses of MFCE used for treating the rats were according to the OECD 423 guidelines and those described by Venkateswalu and Rao (2013). Two doses namely, 200 and 400 mg/kg body weight were chosen from the acute toxicity study.

3.10.3. Pyloric ligation model

The anti-secretory effect of MFCE was determined in rats according to the method described by Shay (1945) with slight modifications. Twenty-four Sprague-Dawley rats were assigned to four equal groups, fasted of feed for overnight but with free access to water. The rats were then treated once via oral gavage as follows: group 1: 5% Tween 20 (v/v) (negative control); group 2: 20 mg/kg body weight, omeprazole dissolved in 5% Tween 20 (v/v); (Positive control); group 3: 200 mg/kg body weight MFCE

dissolved in 5% Tween 20 (v/v); and group 4: 400 mg/kg body weight MFCE dissolved in 5% Tween 20 (v/v).

The rats were anesthetized, via intramuscular route, with a combination of ketamine (50 mg/kg body weight) and xylazine (5mg/kg body weight). The abdomen was opened by making a small midline incision below the sternum. The pyloric portion of the stomach was slightly lifted and ligated, avoiding traction to the pylorus or damage to blood vessels. The stomach was then carefully put back in place and the abdominal wall closed using sutures. After 4 h, all rats were sacrificed with overdose CO_2 , their stomachs were immediately removed and the volume and pH of gastric contents, determined. Total acidity of the gastric content was determined by titration with 0.01 N sodium hydroxide (NaOH) solution using phenolphthalein as indicator and calculated using the formula: Total acidity (mEq/L) = Volume of NaOH solution $\times 0.01 \times 36.45 \times 1000$ (Tan et al., 2002). Although the pH is related to total acidity, pH measures acid strength while total acidity measures the amount of acid in the gastric juice (Zakaria *et al.*, 2012).

The gastric mucus content was determined according to the method described by (Alhaider *et al.*, (2007). The glandular part of the stomach was firstly weighed then soaking for 2 h in 10 mL 0.1% w/v alcian blue solution (0.16 M sucrose, 0.05 M sodium acetate at a pH 5.6). The stomach was washed with 10 mL 0.25M sucrose solution twice, for 15 min and then 45 min, remove unbound dye. The dye incorporated into the mucus was extracted by soaking in 10 mL 0.5 M magnesium chloride for 2 hours with periodic shaking at 30 min intervals. The extract was mixed with an equal volume of diethyl ether then shaken vigorously (Labsol, India) for 2 min. The resulting emulsion was centrifuged at 3000 rpm (Hettich Zentrifugen, German) for 10 min. The alcian blue

in the bottom layer was read at 580 nm and the result obtained from the standard curve (Appendix B) was expressed as $\mu g/g$ of stomach tissue.

3.10.4. Rat gastric ulcer model

Thirty male Sprague-Dawley rats (220 to 240 g), were randomly divided into 5 groups of 6 rats each and maintained in wire bottomed cages, fasted for over night, and deprived of water for 2hr. The rats were orally pretreated as follows; Group 1: vehicle [5% Tween 20% (v/v), 5 mL/kg body weight] (normal control); Group 2: 5 mL/kg body weight absolute ethanol (ulcer control); Group 3: 20 mg/kg body weight omeprazole in 5% Tween 20 (v/v) (positive control); Group 4: 200 mg/kg body weight MFCE in 5% Tween 20 (v/v); Group 5: 400 mg/kg body weight MFCE in 5% Tween 20 (v/v). One hour after pre-treatment, all rats, except the normal controls, were orally gavaged with 5 mL/kg body weight absolute ethanol (Nordin *et al.*, 2014), anaesthetized via intramuscular route with a combination of ketamine (50 mg/kg) and xylazine (5mg/kg), euthanized under overdose CO₂ and their stomachs immediately removed (Sidahmed *et al.*, 2015.

3.10.5. Gastric mucosa gross lesion

Gastric ulcer appears as elongated bands of hemorrhagic lesions on the stomach mucosal surface. The ulcer area was determined under a dissecting microscope with a square-grid eye piece at $1.8 \times$ magnification. The area of each ulcer lesion was measured by counting the 2×2 mm squares. The lesion total area for each stomach was calculated from the following formula: Ulcer area (mm²) = (sum of small squares counted) $\times 4 \times$ 1.8. The inhibition percentage was then calculated as described by Al-Amin (2012) using the following formula:

Ulcer inhibition (%) =
$$\frac{UA_{control} - UA_{treated}}{UA_{control}} \times 100\%$$

Where UAcontrol = gastric ulcer area of untreated control rats; $UA_{treated}$ = gastric ulcer area of treated rats.

3.10.6. Gastric mucus content and juice acidity

The gastric mucosa was gently scrapped using a glass slide to obtain mucus and gastric mucosal tissue weighed using an electronic balance. Gastric juice was collected and centrifuged at 4,000 \times g at room temperature for 10 min. The acidity of the supernatant was determined using a digital pH meter (Indran *et al.*, 2008).

5.10.7. Histopathology and lesion evaluation

3.10.7.1. H&E- and periodic acid-Schiff (PAS)-stain

A small piece of gastric mucosa tissue with ulcer was fixed with 10% buffered formalin solution and dehydrated with alcohol and finally embedded in paraffin wax. Five micrometer tissue sections were cut and stained with haematoxylin and eosin (H & E) for light microscopic examination (Appendix A). Lesions such as hemorrhage, submucosal edema, epithelial erosion, and inflammatory cell infiltration were determined according to the previously described scoring system (Laine &Weinstein, 1988; Khaleel *et al.*, 2014) using the following categories: 0 = normal, 1 = Mild (less than 1/3 of field involved), 2 = Moderate (between 1/3 and 2/3 of field involved), and 3 = severe (more than 2/3 of the field involved).

Tissue sections were also stained with periodic acid-Schiff (PAS) stain (Luna, 1968) to determine mucus production (Appendix A). Tissue with mucus stained magenta and six microscopic focal fields at \times 20 magnification were captured from each slide and used

for the image J software (<u>http://imagej.nih.gov/ij/</u>). The results were expressed as percentage of area stained magenta in color to total mucosal area (Sidahmed et al., 2015).

3.10.7.2. Immunohistochemistry for BAX, Heat shock protein 70, and TGF-β

Tissue sections were deparaffinized for 15 min at 58°C before immersing in decreasing concentrations of 100, 80, 70 and 50% alcohol for 5 min at each concentration, followed by hydration in phosphate buffered saline (PBS) twice for 5 min each time. The sections were then heated in 10 mM tris buffer (pH 9.0) for 15 min to retrieve the antigens. The slides were allowed to cool to room temperature and endogenous peroxidase was blocked by incubating the sections with 3% H₂O₂ for 10 min at room temperature. The slides were then washed twice with PBS and incubated with rabbit primary anti-HSP70, anti-BAX or TGF-B antibody (Abcam, UK) at dilutions of 1:500, 1:200 and 1:800, respectively. The slides after incubation in a humidified chamber, in a dark, at room temperature for 30 min, were immersed in 0.1% Tween-20 in PBS (PBST) twice for 5 min each time. Horseradish peroxidase-conjugated secondary antibodies (EnVision+ System) were then added to the sections, and the slides incubated at room temperature for 60 min. The sections were then incubated with the substrate, 3,3'-diaminobenzidine tetrahydrochloride (Dako, USA), allowed to stand at room temperature for 5 min, counter-stained with Harris hematoxylin, dehydrated with 50, 70, 80 and 100% alcohol, and finally cleared in xylene. Air-dried sections were mounted for light microscopic examination.

Six microscopic focal fields at \times 20 magnification were captured from each slide and used for the image J analysis using the image J software (<u>http://imagej.nih.gov/ij/</u>). Five selected area from each tissue were analysed (Sidahmed et al., 2015). Each replicate

from the same group were evaluated and mean \pm S. E. M of the stained areas (μ m2) determined (Collins, 2007).

3.10.8. Measurement of proteins content of stomach tissue

To prepare the stomach tissue homogenate, 0.2 g of whole gastric tissue was weighed and homogenized on ice with 2 mL of PBS using tissue ruptor (Qiagen, Germany) for 15 min. After homogenization, the mixture was centrifuged at $2000 \times g$ in a refrigerated centrifuge at 4°C for 20 min. The protein content of tissues was estimated using Bradford assay (Bradford, 1976).

3.10.8.1. Prostaglandin E2 (PGE2)

The gastric prostaglandin was estimated in the homogenate using a prostaglandin E_2 kit (Cayman Chemical, USA). This test is based on competitive binding between PGE₂ and PGE₂-acetylcholinesterase (AChE) conjugate (PGE₂ Tracer) for PGE₂ monoclonal antibody. Briefly, the assay was performed by mixing 50 µL standard solution or sample homogenate, with 50 µL AChE tracer and 50µL expressing monoclonal antibody. The plate was covered with a plastic film and then incubated at room temperature for 1 h in the orbital shaker (Wisd, Germany) followed by one hour incubation with 200µL Ellman's reagent reconstituted with 20 mL ultra-pure water. The plate was read at 412 nm in a spectrophotometer (Shimadzu-Japan) and the results expressed as PGE₂/mg of protein.

3.10.8.2. Antioxidant Activity

The levels of SOD, CAT, GPx and LPO in the stomach tissue homogenate were estimated as previously described in sections **3.8.5.1**, **3.8.5.2**, **3.8.5.3** and **3.8.5.4**, respectively.

3.10.8.3. TNF-*α* **-6, and IL-10**

The concentrations of TNF- α , IL-6, and IL-10 in the stomach homogenate was analysed as described in section **3.9**.

3.11. Statistical analysis

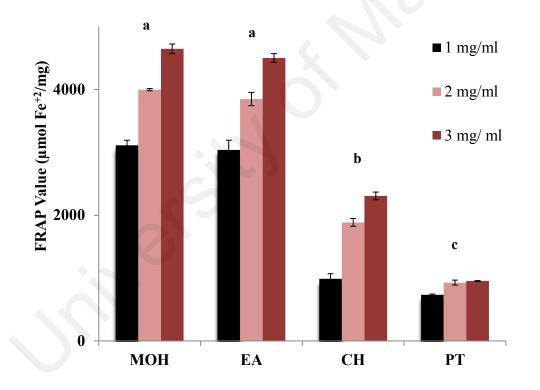
Data obtained from the experiments were expressed as mean \pm SE, SD (standard error or standard division of mean), and subjected to one-way analysis of variance using SPSS (Version 19.0; IBM Corporation, Armonk, NY, USA) and Graph Pad software (Version 5.04; San Diego California USA) with significance at *P*<0.05. The analyzed data were then presented in tables and bar graphs as shown.

CHAPTER 4: RESULTS

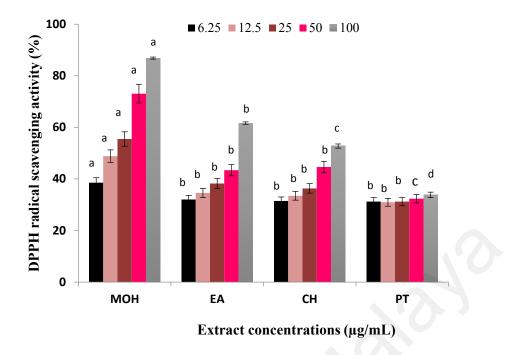
4.1. Yield of C. excavata Crude extracts

Extraction of air-dried ground *C. excavata* leaves with petroleum ether, chloroform, ethyl acetate, and methanol produced an extract yield (wt/100gm) of 1.56, 2.57, 0.38, and 0.94%, respectively.

4.2. In vitro antioxidant activity of C. excavata extracts


The antioxidant activity of *C. excavata* petroleum ether, chloroform, ethyl acetate, and methanol extracts were evaluated by ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl Free Radical Scavenging (DPPH) tests. The level of total phenolic and total flavonoid contents were also determined.

4.2.1. Ferric Reducing Antioxidant Power


The study showed that methanolic and ethyl acetate extracts at 3 mg/mL possessed greater (p<0.05) antioxidant potential among all fractions (Figure 4.1). The FRAP value of *C. excavata* methanol fraction is 4649 ± 11.3 µmol Fe²⁺/mg, while that for ethyl acetate, chloroform, petroleum ether and quercetin were 4501 ± 69.32, 2307.85 ± 61.33, 955.85 ± 6.3 and 7008± 42.1 µmol Fe²⁺/mg, respectively.

4.2.2. 2, 2-Diphenyl-1-picrylhydrazyl Free Radical Scavenging

The radical scavenging activity was assessed using a DPPH free radical test and are presented in Figure 4.2. The study showed that the MOH extract possessed the highest radical scavenging activity among extracts at 86.89 ± 1.4 % compared to ethyl acetate, chloroform, petroleum ether and quercetin at 61.79 ± 0.61 , 33.03 ± 0.3 , 78.74 ± 0.66 , and 80.1 ± 0.66 % respectively. The MOH has the lowest IC₅₀ at 23 µg/mL extract compared to ethyl acetate, chloroform, petroleum ether, and chloroform, petroleum ether extracts at 64, 83, and 397μ g/mL for ethyl acetate, and chloroform, and petroleum ether *C. excavata* extracts, respectively. The IC₅₀ for quercetin was 28μ g/mL.

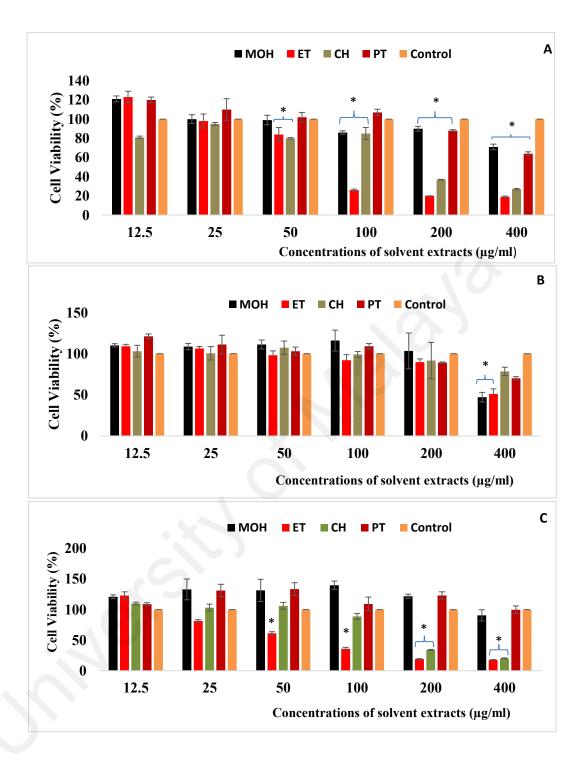
Figure 4.1: Ferric-reducing antioxidant power (FRAP) of *C. excavata* leaves solvent extracts. MOH = methanol; EA = ethyl acetate; CH =chloroform; PT = petroleum ether. a,b,c,d Mean ± SD with different superscripts are significantly different at *P*< 0.05.

Figure 4.2: 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of *C. excavata* leaves extracts. MOH = methanol; EA = ethyl acetate; CH = chloroform; PT = petroleum ether. ^{a,b,c,d} Mean \pm SD with different superscripts are significantly different at p < 0.05.

4.2.3. Total Phenolic and Flavonoid Contents of Clausena excavata

The MOH fraction had the highest amount of phenolic compounds among extracts, while the chloroform extract had the highest total flavonoid content (Table 4.1). The results revealed the total phenolic content of MOH as $522.0 \pm 11.6 \text{ mg GAE/g}$ and the total flavonoids content at $96.7 \pm 2.0 \text{ mg QE/g}$, while total phenolic content was 497.0 ± 7.1 , 373.0 ± 6.9 and $157.0 \pm 7.5 \text{ mg GAE/g}$ and total flavonoid content was 142.5 ± 1.0 , $188.6 \pm 3.0 \text{ and } 25.8 \pm 0.8 \text{ mg QE/g}$ for ethyl acetate, chloroform and petroleum fractions, respectively.

		Solvents				
	Methanol	Ethyl acetate	Chloroform	Petroleum ether		
ТРС	$522.0^{a} \pm 11.6$	$497.0^{b} \pm 7.1$	$373.0^{\circ} \pm 6.9$	$157.0^{d} \pm 7.5$		
TFC Q	$96.7^{c} \pm 2.0$	$142.5^{b} \pm 1.0$	$188.6^{a} \pm 3.0$	$25.8^d\pm0.8$		


Table 4.1: Total phenolic and flavonoid contents of C. excavata fractions.

Values are mean \pm SD. ^{a,b,c,d} Mean \pm SD with different superscripts are significantly different at p < 0.05. TPC = total phenolic content; TFC = total flavonoid content; GAE = Gallic acid equivalent; QE = quercetin equivalent.

4.3. In vitro Cytotoxicity of solvent extracts

We investigated the effect the *C. excavta* leaves extracts on the cytotoxicity of the HaCaT (keratinocyte), Vero (fibroblast) and J77A.1 macrophage cells (Figure 4.3). The ethyl acetate and chloroform extracts were more toxic to all cell lines. The ethyl acetate began showing cytotoxicity at 100 μ g/mL while the chloroform extracts at 200 μ g/mL.

The MOH and EA extracts of *C. excavata* were slightly toxic to Vero cells at 400μ g/mL only, while CH and PT *C. excavata* extracts were innocuous to these cells at the same dose (Figure 4.3B). However, proliferation of the HaCaT and Vero cells increased following exposure to the extracts at low doses. The cytotoxic effect of MOH on J774A.1 cells is shown in (Figure 4.3C). At 200 and 400 µg/mL, MOH was not toxic to J774A.1 cells. The result suggests that MOH is safe to be used for in vivo rat model. Thus, this study was paramount in order to study the cytotoxic effect of the four fractions on these cell lines to choose the best extract in the investigation of the expression of cytokines, acute toxicity, wound healing properties, gastro protective effect and LCMS profiling to identify the active constituents.

Figure 4.3: Cell viability evaluation following MTT assay on (A) HaCaT, (B) Vero cells and (C) J77A.1 cells different *C. excavata* leaves extracts. Ethyl acetate and chloroform *C. excavata* extract were most cytotoxic to HaCaT and J77A.1 cells.*significantly different versus control group, $P \le 0.05$.

4.4. Antibacterial activity of extracts

The results of the assay showed in Table 4.2 that *B. subtilis* showed relative resistance to MOH extract only and were susceptible to chloroform, and ethyl acetate *C. excavate* extracts. *S. epidermidis* was susceptible to all extracts. *P. aeruginosa* was highly resistant to all extracts among the Gram-negative bacteria.

	zones of inhibition (mm)				
<i>C. excavata</i> extract	GM+ve		GM-ve		
	S. epidermidis	B. subtilis	A. anitratus	P. aeruginosa	
Petroleum ether	-	-		-	
Chloroform	15.7 <u>+</u> 0.7	12.1 ± 0.2^{b}	14.1 <u>+</u> 0.33	-	
Ethyl acetate	15.9 <u>+</u> 0.71	11.5 ± 0.2^{b}	13.7 <u>+</u> 0.50	-	
Methanol	13.4 <u>+</u> 0.2	9.7 ± 0.1^{a}	13.3 <u>+</u> 0.16	-	
Streptomycin(+ve control)	34.0 <u>+</u> 0.3	26.5 <u>+</u> 0.2	27.2 <u>+</u> 0.09	28.3 <u>+</u> 0.5	
10%DMSO(-ve control)		-	-	-	

Table 4.2: Inhibition zone for C. excavata fractions.

- no inhibition.

The minimum inhibitory concentration (MIC) is considered as the lowest concentration of a compound that inhibited visible growth of bacteria. Subsequently, methanol, ethyl acetate and Chloroform were selected for the determination of minimum inhibitory concentration (MIC). The MIC value of plant extracts of *C. excavata* against the test bacteria ranged from 0.019 mg/mL (ethyl acetate) to 0.078 and 1.25 mg/mL (Chloroform and methanol), respectively. The MIC values of ethyl acetate extract ranged from 0.019 mg/mL to 0.039 mg/mL with the least MIC values compared to other crude extract fraction. This is illustrated in table 4.3.

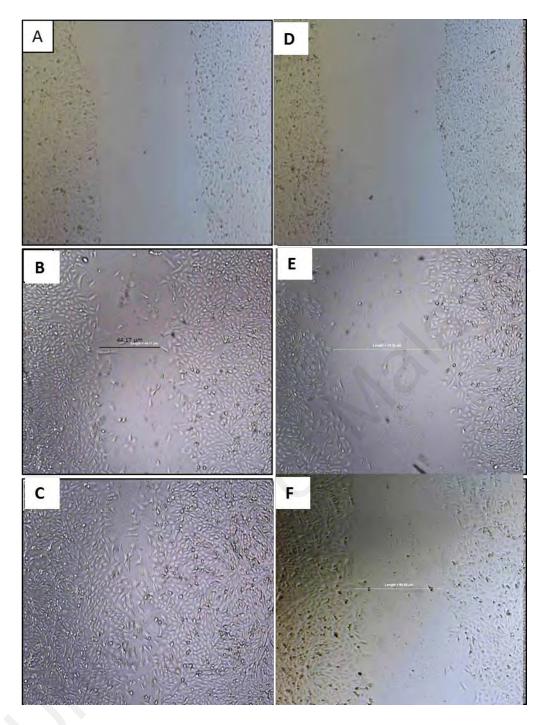
<i>C. excavata</i> extracts	Minimum inhibitory concentration (mg/mL)			
	S. epidermidis	B. subtilis	A. anitratus	
Methanol	0.078	1.25	0.078	
Ethyl acetate	0.039	0.039	0.019	
Chloroform	0.078	0.0781	0.078	

 Table 4.3: Minimum inhibitory concentration of C. excavata extract

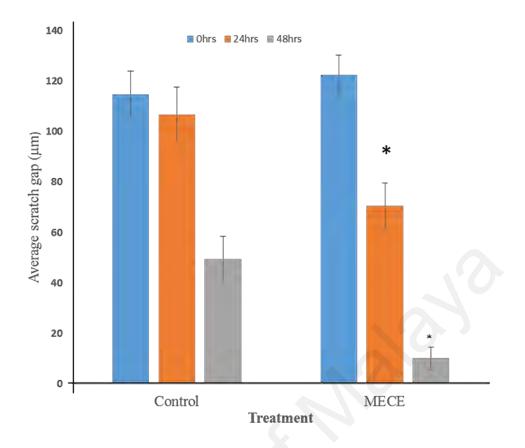
MBC value of methanol and chloroform fractions from leaves extract of *C. excavata* were 0.156 mg/mL against *S. epidermidis*, *B. subtilis* and *A. anitratus* except methanol fraction was 2.5 mg/mL for *B. subtilis* followed by ethyl acetate extract that ranged from 0.039 mg/mL against *A. anitratus* to 0.078 mg/mL against *S. epidermidis* and *B. subtilis* (Table 4.4).

C. excavata extracts	Minimum bacter	icidal concentratio	on (mg/mL)
	S. epidermidis	B. subtilis	A. anitratus
Methanol	0.156	2.5	0.156
Ethyl acetate	0.078	0.078	0.039
Chloroform	0.156	0.156	0.156

4.5. Scratch wound assay of Methanolic Extract of C. excavata


Proliferating phase initiated by the proliferation and migration of fibroblast, which plays a critical role by creating new collagen and contracting the wound. Thus, Methanolic fraction was subjected to wound scratch test assay to prove if can contribute to enhancement the wound-healing process by stimulation the migration of fibroblast.

It was observed that the migration of fibroblasts in and around the scratch area was faster and more prominent after 100 μ g/mL MOH treatment compared to the untreated cells. The distance the cells proliferated to cover the scratch area was estimated in relation to the 0 h appearance. The scratch was completly closed after 48 h post-MOH treatment while in the untreated scratch, the gap was still obvious by the time (Figures 4.4 a and b), showing that wound closure was significantly (*p*<0.05) faster after MOH treatment than in the untreated scratch.


4.6. Phytochemical Characterization of the Methanolic Extract of C. excavata

From the above *in vitro* antioxidant, cell proliferation, antimicrobial, and wound healing propriety results, MOH showed good antioxidant activity and phenolic content, optimal proliferation and migration of cell lines, therefore it was further evaluated for its phytochemical characterization.

Based on LCMS/MS analysis, the MFCE contains pipecolic acid, myricetin glucoside conjugate, quercetin-rhamnose-hexose-rhamnose, kaempferol conjugate, furocoumarin, and 8-geranyloxy psoralen (Table 4.5).

Figure 4.4 (a): *In vitro* wound scratch assay of fibroblasts treated with 100 μ g/mL methanolic *C. excavata* extract (MFCE). Fibroblasts treated with MFCE showed faster cell migration than untreated cells. A= Control; B= 24 hrMFCE; C= 48 hr MFCE; D= Control; E= 24hr untreated; F= 48 hruntreated (4x).

Figure 4.4 (b). Migration of fibroblast cells in *in vitro* wound scratch assay after treatment with 100 μ g/mL methanolic fraction *C. excavate* (MFCE). *Significantly different compared with control (*P* < 0.05).

Retention time	Molecular weight	MS/MS fragments ions[M-H]- ,[M+H]+	Tentative Identification	References
3.69	756.2	(-)755, 300, 271.0, 255.1, 179.0, 151.0	Quercetin-rhamnose- hexose-rhamnose	Lee et al.,2011 Kachlicki et al.,2008 Daniele et al.,2004
3.9	772.2	(-)771, 316, 271.1, 179.0, 151.0	Myricitin glucosideConjugate Myricetin 3-O - rhamnosyl-glucoside 7- O –rhamnoside	Lee et al., 2011 Kachlicki et al.,2008 Daniele et al., 2004
4.3	740.2	(-) 739.2, 284.1, 255.0, 179, 151.0, 179.0,	Kaempferol conjugate	Lee et al.,2011 Yang et al.,2011
7	179.3	(+) 161.2, 135.1,133.1	Caffeic acid	Lee et al.,2011
6.72		(+) 77.0, 91.0, 95.0, 105.0, 119.1, 134.1, 148.3, 149.2, 156.3, 161.3, 174.4, 177.3, 179.3, 190.4, 202.4, 204.4, 206.4, 218.4, 221.4, 230.4, 232.4, 243.4, 245.4, 246.4, 256.4, 270.4, 284.4, 288.4, 298.4, 316.4, 326.4, 344.4, 362	8-Geranyloxy psoralen	

 Table 4.5: Compounds identified from MFCE via LCMS/MS analysis

Table 4.5: Continued

Retention	MS/MS	Tentative
time	fragments	Identification
	ions[M-H]-	
	,[M+H]+	
5.95	(+) 77.91,	Unidentified
	91.0, 95.0,	Furocoumarin
	111.0, 119.0,	
	133.1,147.2,	
	149.2, 161.2,	
	177.2, 179.3,	
	191.3, 203.3,	
	243.3, 245.4,	
	247.3, 255.3,	
	271.4, 273.4,	
	289.4, 291.4,	
	313.4, 323.4,	
	331.4, 341.4,	
	359.4, 377.4	
		< N
5.27	(+) 117.1,	
	134.2, 146.2,	Flavonoids
	147.2,	
	150.2, 160.3,	
	163.3, 180.3,	
	202.3, 246.4,	
	473.4, 491.5,	
	509.5, 527.6	
4.72	(-) 107.0,	Unidentified
		Phenolic acid
	139.1, 163.1,	
	179.1, 195.2,	
	197.2, 241.1	

4.7. Acute Oral Toxicity Study of Methanolic Extract C. excavata

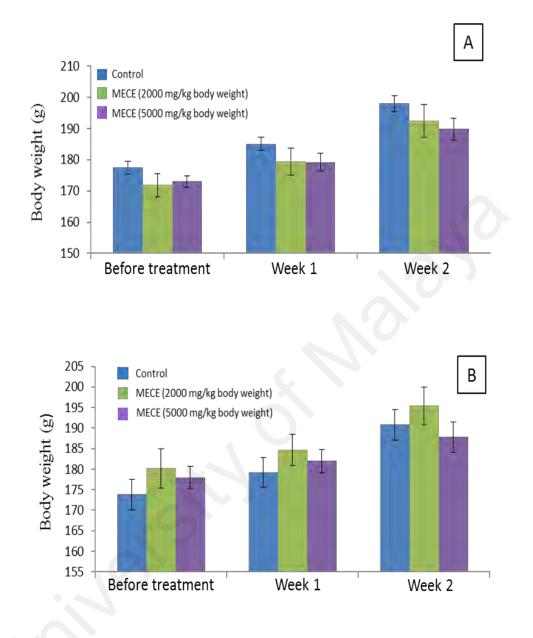

During the 14-days experimental period, there was no mortality or behavioral abnormality in the rats treated orally with 2000 and 5000 mg/kg body weight MFCE. Thus the oral LD50 was greater than 5000 mg/kg body weight. The body weight was lower in the rats treated with 5000 mg/kg of the extract. The kidneys and liver of rats treated with the extract did not show any gain in relative of organ weights (Table 4.6), and there was no significant (p>0.05) body weight change (Figure 4.5a and b).

 Table 4.6: Relative weights of selected organs after administration of a single dose methanolic C. excavata leaf extract.

		(mg/kg body we	ight)			
Organ	Sex	Untreated 2000		5000		
		Relative organ weight (g)				
Liver	Male	2.33±0.10	2.55±0.19	2.58±0.20		
	Female	2.60±0.07	2.78±0.14	2.82±0.16		
Kidney	Male	0.68 ±0.01	0.74 ± 0.02	0.70 ± 0.01		
	Female	0.55 ±0.01	0.61±0.02	0.63±0.03		

Values are mean \pm SD. MFCE = Methanolic extract *C. excavata*. No significant difference among means within or across rows. Untreated = rats given normal diet.

There was slightly increased in serum liver enzyme concentrations in both male and female rats fed MFCE. In male rats treated with 5000 mg/kg body weight MFCE, there were significant elevations in ALP, AST, and ALT concentrations, while in female rats similarly treated, only the ALT and ALP concentration increased significantly (p<0.05). The total serum bilirubin concentration increased in female rats treated with 2000 and 5000 mg/kg body weight MFCE (Table 4.7).

Figure 4.5: Effect of methanolic *C. excavata* leaves extract (MFCE) on body weight of rats. (A) male, (B) female.

Treatment Group (MFCE)	ALT(U/I)	AST(U/I)	ALP (U/I)	Albumin (g/dL)	Bilirubin (µmol/L)
Male					
СМ	57.0 ^a ±2.2	196.0 ^a ±3.6	177.7 ^a ±7.5	12.2 ^a ±0.3	2.19 ^a ±0.01
M1(2000mg/kg b.wt)	59.1 ^a ±2.3	183.4 ^a ±11.7	228.2 ^b 27.0	13.0 ^b ±0.3	2.73 ^b ±0.17
M2(5000mg/kg b.wt)	64.7 ^b ±4.3	256.6 ^b ±20.4	248.6 ^b ±23.4	13.8 ^b ±0.3	2.42 ^a ±0.22
Female					
CF	46.8 ^a ±2.5	165.1 ^a ±6.2	143.3 ^a ±10.7	14.7 ^a ±0.7	1.92 ^a ±0.03
F1(2000mg/kg b.wt)	47.8 ^a ±2.1	181.6 ^a ±15.9	109.0 ^b ±5.2	15.2 ^a ±0.2	2.76 ^b ±0.19
F2(5000mg/kg b.wt)	53.7 ^b ±5.2	195.1 ^a ±26.4	193.2 ^c ±19.3	14.8 ^a ±0.3	2.83 ^b ±0.16

Table 4.7: Effect of methanolic extract of *C. excavata* extract on liver biochemical parameters

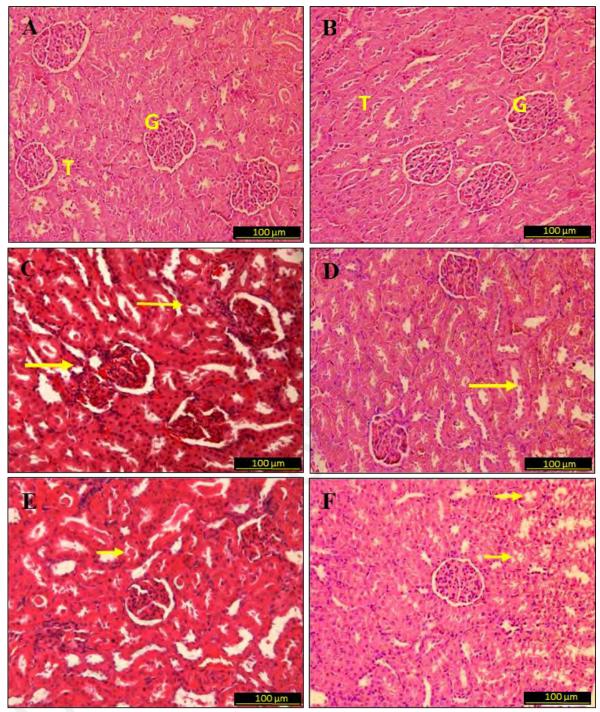
Values are mean \pm SD. ^{a,b,c} For each sex, means within column with different superscript are significant at p < 0.05.

ALT = Alanine transaminase; AST = Aspartate transaminase; ALP = Alkaline phosphatase

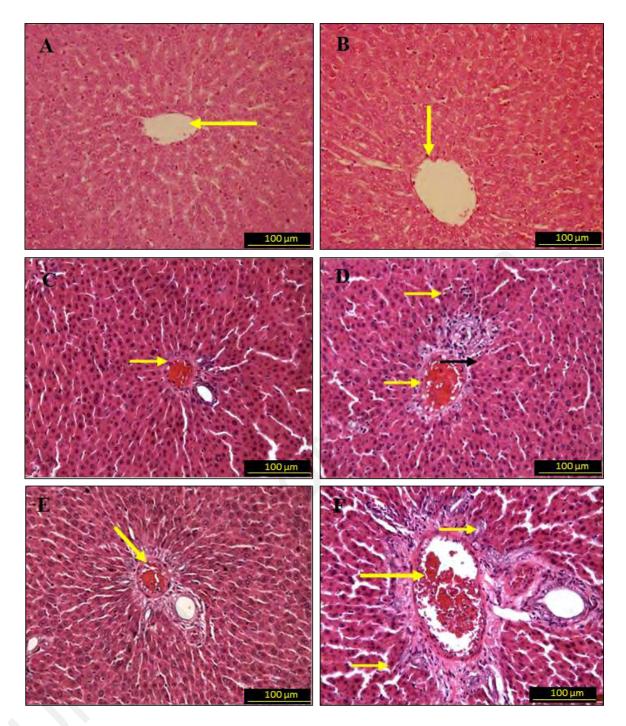
MFCE = Methanolic extract *Clausena excavata;* CM = Untreated control male; CF = Untreated control female; M1, M2, F1, F2 are treatment groups; b.wt = body weight.

Serum creatinine concentrations in all MFCE male rats were significantly (p<0.05) lower than that of normal control (NC) male rats. However, the mean BUN concentration of female rats treated with 5000 mg/kg body weight was significantly (p<0.05) higher than that of control by 24%. Similarly, serum Na+, K+, and Cl- concentrations were variably elevated among the male and female treatment groups (Table 4.8). The erythrocyte and leukocyte counts and Hb concentration did not vary significantly (p<0.05) between MFCE treatment groups (Table 4.9).

Treatment (MFCE)	Sodium (mmol/L)	Potassium (mmol/L)	Chloride (mmol/L)	Urea (mmol/L)	Creatinine (umol/L)
Male					
СМ	144.31 ^a ±7	$4.90^{a}\pm0.10$	$104.8^{a}\pm0.1$	$6.42^{a}\pm0.34$	$635.6^{a} \pm 21.4$
M1(2000mg/kg b.wt)	$145.8^{b}\pm0.2$	$4.66^{b} \pm 0.06$	$103.6^{b} \pm 1.0$	$4.61^{b}\pm 0.21$	379.6 ^b ±48.7
M2(5000 mg/kg b.wt)	$146.2^{b}\pm0.4$	$5.00^{b} \pm 0.25$	105.0 ^a ±0.4	5.90 ^c ±0.21	415.5 ^b ±25.7
Female					
CF	$144.4^{a}\pm0.7$	$4.70^{a}\pm0.06$	$104.3^{a}\pm1.1$	5.79 ^a ±0.17	576.8 ^a ±31.1
F1(2000 mg/kg b.wt)	$144.2^{b}\pm0.7$	4.64 ^a ±0.29	$104.4^{a}\pm0.4$	5.81 ^a ±0.24	424.6 ^b ±19.3
F2(5000 mg/kg b.wt)	$146.1^{b}\pm0.9$	$4.90^{a}\pm0.15$	$106.8^{b}\pm0.6$	$7.70^{b} \pm 0.29$	561.6 ^a ±29.8


Table 4.8: Effects of methanolic extract of C. excavata on kidney biochemical parameters

Values are mean \pm SD. ^{a,b,c} For each sex, means within column with different superscript are significant at p < 0.05. MFCE = Methanolic extract *C.excavata;* CM = Untreated control male; CF = Untreated control female; M1, M2, F1, F2 are treatment groups; b.wt = body weight.


Table 4.9: Effects of methanolic extract of C. excavata extract on hematological parameters in rats.

Parameter	Sex	MFCE leaves treatment (mg/kg body weight)			
	Sex	Untreated	2000	5000	
Erythrocyte(10 ¹² /L)	Male	8.44±0.11	8.04±29.00	8.32±0.20	
	Female	7.80±0.03	7.79±0.03	7.77±0.02	
Leukocyte (10 ⁹ /L)	Male	8.46±0.21	9.94±0.37	9.62±0.10	
	Female	6.55±0.96	6.20±0.71	6.13±0.34	
Hemoglobin (g/L)	Male	13.80±0.20	14.02±0.31	13.40±0.07	
	Female	13.10±0.12	12.63±0.48	12.50±0.27	

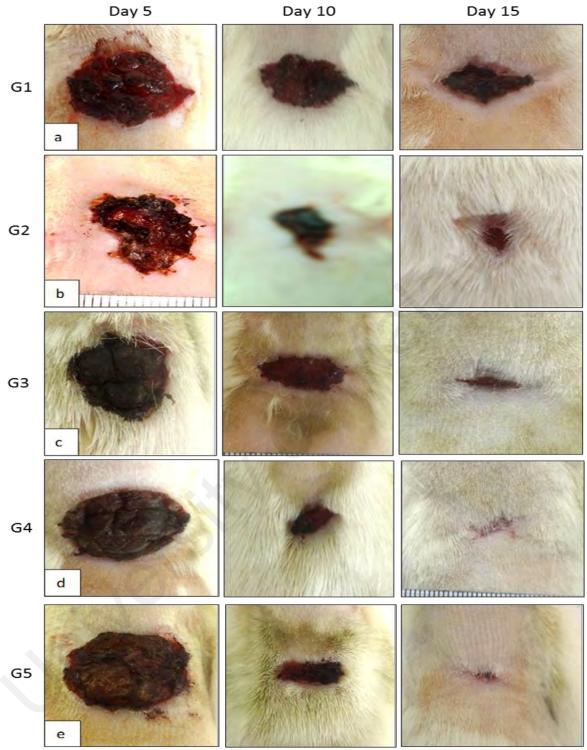
Values are mean \pm SD. No significant difference between within or across rows. MFCE = Methanolic extract *Clausena excavata*; Untreated = rats given normal diet without MFCE leaves treatment. The microscopic evaluation of kidney sections from M1 and M2 rats did not show abnormal histopathological changes. However, kidney sections of F1 and F2 rats showed histopathological changes that varied according to dose level. These changes include mild tubular epithelial degeneration, increased bowman's capsular space as a result of constriction of the glomerulus, mild congestion, cast-like materials within the renal tubular spaces, and mild leukocyte infiltration typified by lymphocyte, and neutrophil infiltration in the renal interstitium (Figure 4.6). Microscopic examination of the liver sections of M1, F1 and M2, F2 rats showed central vein congestion, cloudy hepatocyte swelling, and diffuse infiltration by Kupffer cells. Multifocal areas of mild perilobular necrosis coupled with neutrophil infiltration were observed in some sections of the liver tissue of male rats given a high dose of the extract, indicating that the effect of high dose MFCE leaves was more severe in the male than female rats (Figure 4.7).

Figure 4.6: Rat kidney tissue after treatment with methanolic *C. excavata* extract. A & B: Kidney (control; male and female) showing normal glomeruli (G) and tubules (T) in the cortical region. C&D: Kidney (low dose; 2000 mg/kg, male and female rats) showing tubular degeneration and mild mononuclear cell infiltration (arrows). E&F: Kidney (high dose; 5000 mg/kg, male and female rats) with cast in the tubular lumen and mild tubular degeneration (arrows). (H&E) stain.

Figure 4.7: Rat liver treated with methanolic *C. excavata* extract. **A & B**:Normal hepatocytes, parenchyma and central vein respectively. **C &D**:Liver (low dose; 2000 mg/kg, male and female rats)showing mononuclear cell infiltrations and congestion of the central vein(arrows). **E& F**: Liver (high dose; 5000 mg/kg, male and female rats) showing infiltration of kupffer cells, vascular congestion and mild periportal necrosis. (H&E) stain.

4.8. Wound healing effect of Methanolic Extract of C. excavata

This study was carried out in order to verify the ability of 2% gum acacia containing 50, 100, and 200 mg/mL MFCE to enhance the process of wound healing on rat skin.


4.8.1. Gross wound closure

The gross appearance of wounds at days 5, 10, and 15 post-wound inflictions are presented in (Figure 4.8). The groups treated with various concentrations of MFCE and intrasite gel showed clear signs of dermal healing that was significantly faster and produced much lesser scar compared the group treated gum acacia (Table 4.10). The gross appearance of wound sites was similar among groups at day 5 post-wound infliction. At this point, the difference between the negative control group and the MFCE-treated group was not significant. However, at days 10 and 15, the rate of wound contraction was significantly (p<0.05) better in MFCE-treated than in the negative control group. Progression of wound healing after treatment is shown in Figure 4.8. Although the rate of wound contraction appears to be highest on day 15 (Table 4.10), there was no significant (p>0.05) difference in the rate of healing among the treatment

Group	Treatment -	Wound healing post-surgery (%)			
	Treatment –	Day 5	Day 10	Day 15	
1	Gum acacia in normal saline	21.2±5.1	67.2 ^a ±4.3	78.9 ^a ±2.5	
2	Intrasite gel (10% CMC)	20.2±1.3	78.7 ^b ±1.2	95.0 ^b ±1.8	
3	MFCE (50 mg/mL)	38.8±2.6	86.7 ^b ±1.6	$95.7^{b}\pm0.6$	
4	MFCE(100 mg/mL)	34.5±6.7	$84.1^{b} \pm 1.5$	$97.4^{b}\pm0.9$	
5	MFCE(200 mg/mL)	34.8±4.5	$82.9^{b}\pm2.0$	$98.8^{b}\pm0.4$	

 Table 4.10: Effect of C. excavata on wound healing in rats

All values were expressed as mean and \pm standard error mean.^{a,b}Means with different superscripts within column are significantly different (*P*<0.05). MFCE: Methanol extract of *Clausena excavate* groups.

Figure 4.8: Gross skin lesion showing wound healing after treatment for 5, 10, and 15 days. (G1) gum acacia-treated group, showing incomplete wound healing (G2) intrasite (10% CMC) gel group (G3) MFCE-LD (50mg/mL) group (G4) MFCE-MD (100mg/mL) group and (G5) MFCE-HD (200 mg/mL) group. Wound healing and contraction is improves with increase in MFCE concentration.

4.8.2. Histopathological assessment of wound healing tissue

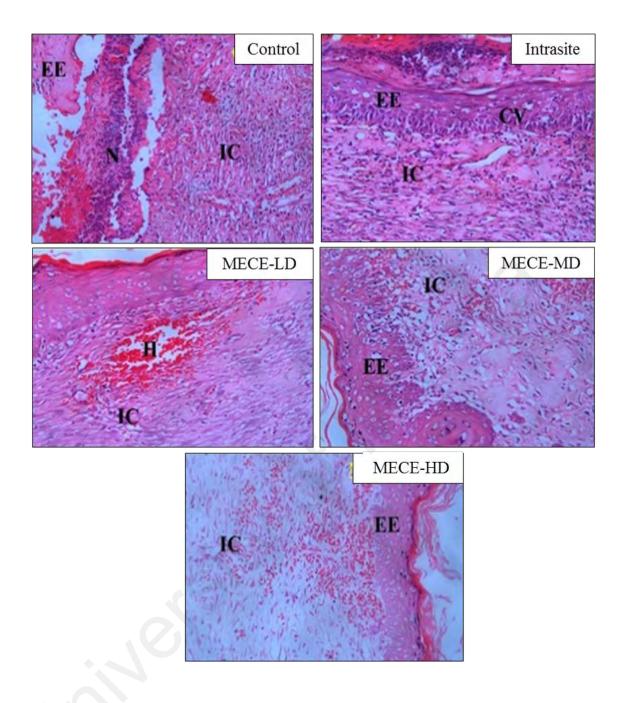
4.8.2.1. Hematoxylin and eosin-stained sections

Hematoxylin and Eosin was performed to assess basic histopathological changes. The histopathology of tissue sections on day 15 post-wound infliction was evaluated by an observer blinded to the experimental protocol (Table 4.11). There was significantly (P < 0.05) greater epithelialization in the epidermis of the treatment groups than in that of the control group. In general, more inflammatory cells, degeneration, and granulation tissue were observed in the skin of the control group than in that of the treatment groups (P < 0.05), suggesting enhanced healing in response to MFCE treatment (Figure 4.9 and Table 4.11).

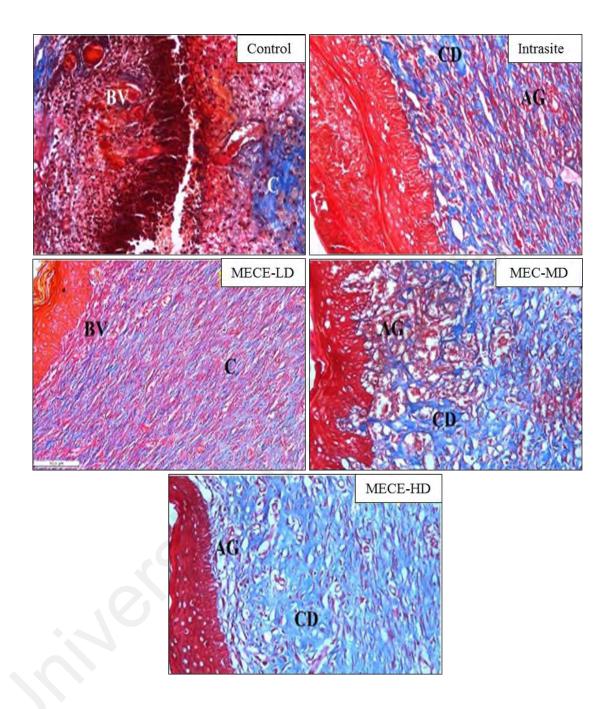
4.8.2.2. Masson' trichome -stained sections (MT)

Masson trichrome staining was used to detect collagen fibers in the healed skin area. The changes in Masson trichome-stained skin tissues are presented in Table 4.12. The color intensity of the stained tissues was significantly (P<0.05) greater in the MFCE-HD group than in the other groups. There was significantly (P=0.0003) lesser distribution of fibroblasts in the control group than in the other treatment groups. Collagen maturity was higher (P=0.0009) in the MFCE-HD and intrasite groups, while the rates of angiogenesis (P=0.0121) and collagen distribution (P=0.0041) were significantly (P< 0.05) higher in the MFCE-MD and MFCE-HD compared with the other groups (Figure 4.10 and Table 4.12).

Lesion Score (Unit) **Parameters** MFCE-LD Control MFCE-MD **MFCE-HD** Intrasite **Epidermis** $4.0^{b}\pm0.0$ $4.0^{b}\pm0.0$ $4.0^{b}\pm0.0$ $4.0^{b}\pm0.0$ $0.5^{a}\pm0.2$ **Epithelialization** Inflammatory $0.5^{bc} \pm 0.2$ 2.5^a±0.6 $0.3^{bc} \pm 0.2$ $1.7^{ac} \pm 0.2$ $1.5^{ac} \pm 0.2$ Cell $0.5^{b}\pm0.2$ $0.5^{b}\pm0.2$ $0.7^{b}\pm0.2$ Degeneration $2.3^{a}\pm0.5$ $2.3^{a}\pm0.2$ Dermis Granulation $1.3^{b}\pm 0.2$ $1.8^{ab} \pm 0.3$ $1.5^{b}\pm0.3$ 1.8^{ab}±0.2 $2.7^{a}\pm0.3$ tissue $2.5^{a}\pm0.2$ $1.5^{bc} \pm 0.2$ $1.2^{b}\pm 0.2$ $1.0^{b}\pm0.0$ $2.1^{ac} \pm 0.2$ Inflammatory cell

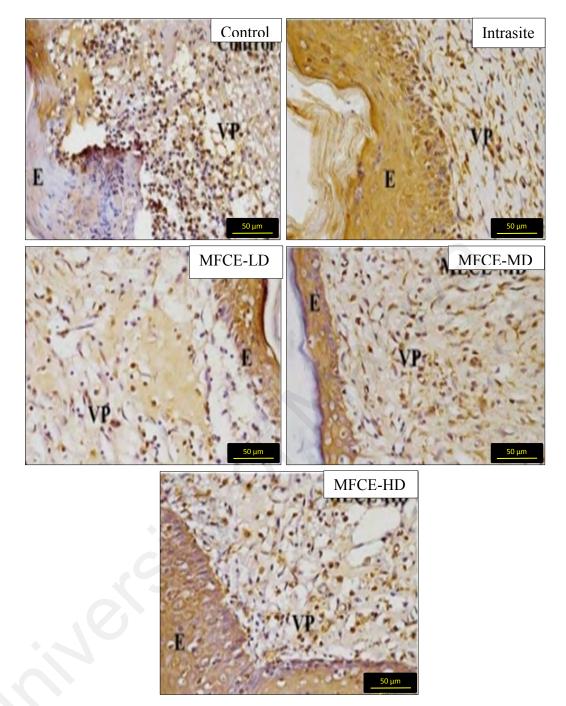

Table 4.11: Histopathological evaluation of the epidermis and dermis of H&E-stained skin sections of *C. excavata* methanol extract-treated rats

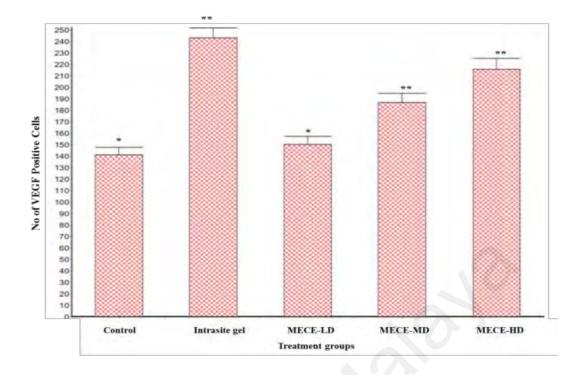
All values were expressed as mean and \pm standard error mean. Mean with different superscripts were significantly different (*P*<0.05). MFCE: Methanol fraction *Clausena excavata*; LD: Low dose (50 mg/mL); MD: Medium dose (100 mg/mL); HD: High dose (200 mg/mL), intrasite (10% CMC)


Table 4.12: Evaluation of connective tissue and vascular proliferation in Masson's
Trichome-stained skin sections of C. excavata methanol extract-treated rats.

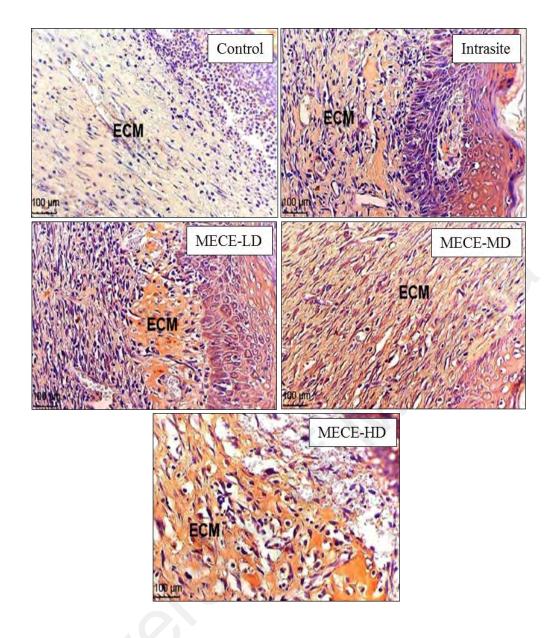
	Lesion Score (Unit)				
Parameter	Control	MFCE-LD	MFCE-MD	MFCE-HD	Intrasite
Intensity of coloration	$1.6^{ab} \pm 0.2$	1.5 ^{ab} ±0.2	2.3 ^{ac} ±0.2	2.7 ^c ±0.2	1.2 ^b ±0.2
Fibroblast distribution	1.5 ^a ±0.2	2.7 ^b ±0.2	3.3 ^b ±0.2	3.5 ^b ±0.2	$2.8^{b}\pm0.2$
Collagen maturity	1.3 ^a ±0.2	1.5 ^a ±0.2	$2.0^{ab}\pm0.0$	3.3°±0.4	$2.5^{bc}\pm 0.2$
Angiogenesis rate	$2.0^{a} \pm 0.4$	2.3 ^{ab} ±0.2	$3.5^{c}\pm0.2$	$3.1^{bc} \pm 0.2$	2.7 ^a ±0.2
Collagen distribution	2.1 ^a ±0.6	2.2 ^a ±0.2	$3.7^{bc} \pm 0.2$	$4.0^{bc} \pm 0.0$	2.8 ^{ac} ±0.2

All values were expressed as mean \pm standard error mean. Mean with different superscripts were significantly different (*P*<0.05). MFCE: Methanol fraction *Clausena excavata*; LD: Low dose (50 mg/mL); MD: Medium dose (100 mg/mL); HD: High dose (200 mg/mL), intrasite (10% CMC)


Figure 4.9: Skin of rats treated with methanol *Clausena excavata* leaves extract (MFCE) (Hematoxylin and Eosin staining). Skin sections of the control show incomplete epidermal epithelialization (EE) with necrosis (N) and abundant inflammatory cell response (IC) in the dermis; intrasite-treated skin showed complete EE with cellular vacuolation (CV) and light scattering of inflammatory cells (IC) in the dermis; low dose (MFCE-LD) (50 mg/mL) showed incomplete EE and a focal hemorrhage (H) in the dermis; medium dose (MFCE-MD) (100 mg/mL) showed complete EE with occasional evidence of IC in the dermis; and high dose (MFCE-HD) (200 mg/mL) showed complete EE and occasional evidence of IC in the dermis. (H&E, $200\times$).


Figure 4.10: Rat skin treated with methanol *Clausena excavata* leaves (Masson's trichome stain). Sections of control tissue showing occasional light scattering of collagen (C) and blood vessels (BV) in the dermis; Intrasite treatment with angiogenesis (AG) and collagen (CD); low dose (MFCE-LD) (50 mg/mL) with light scattering of collagen (C) and abundant blood vessels (BV) in the dermis; medium dose (MFCE-MD)(100 mg/mL) abundant angiogenesis (AG) and collagen (CD); high dose (MFCE)(200mg/mL) showing abundant angiogenesis (AG) and confluent collagen (CD)(200x).

4.8.2.3. Immunohistochemical analysis of VEGF and TGF-β


Immunohistochemistry was performed to show the expression of VEGF and TGF- β 1 in the skin wounds of control and treated groups. The number of VEGF-positive cells was significantly (*P*<0.05) lower in the control and MFCE-LD groups than in either the MFCE-HD, MFCE-MD, or intrasite groups (Figure 4.11a & b). Extracellular matrix deposition determined by the number of TGF- β 1-positive cells was significantly (*P*<0.05) higher in tissues treated with MFCE and intrasite gel than the untreated control (Figure 4.12a & b).

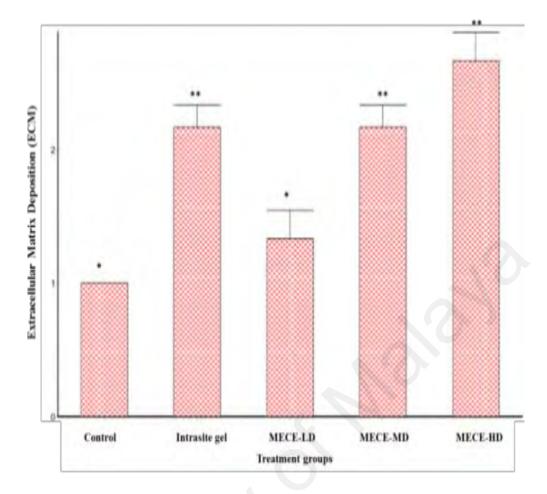
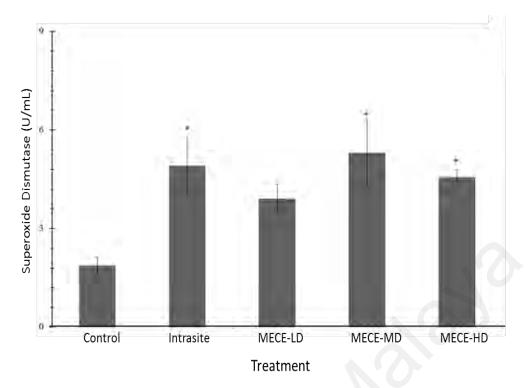
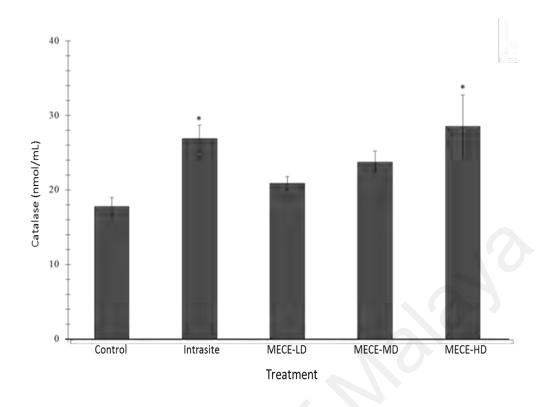
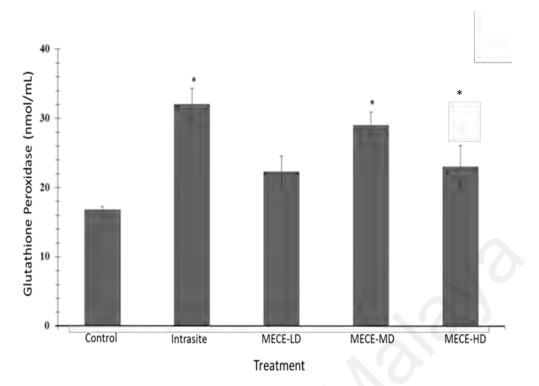

Figure 4.11a: Immunochemical analysis for vascular epidermal growth factor (VEGF) expression in rat skin treated with methanol *C. excavata* extract (MFCE). Skin section with epidermis (E) showing distribution of light to dark brown VEGF-positive cells (VP) in the untreated control, intrasite, low dose (MFCE-LD = 50 mg/mL), medim dose (MFCE-MD = 100 mg/mL) and high dose (MFCE-HD = 200 mg/mL) treatment groups (Immunoperoxidase).

Figure 4.11b: Quantitative estimation for vascular epidermal growth factor (VEGF) protein expression in rat skin treated with methanol *C. excavata* extract (MFCE). Bar graph showing distribution of VEGF-positive cells in the Control, Intrasite, and MFCE-treated rat skin wound. *Indicates significance differences at P<0.05, ** Indicates not significant within groups. Control = untreated, low dose (MFCE-LD = 50 mg/mL), medium dose (MFCE-MD = 100 mg/mL), high dose (MFCE-HD = 200 mg/mL), and Intrasite = (10% CMC) (Immunoperoxidase, 400×).


Figure 4.12a: Quantitative estimation for transforming growth factor- β 1 (TGF- β 1) expression in rat skin treated with methanol *Clausena excavata* extract (MFCE). Control: showing little deposition of extracellular matrix (ECM), Intrasite (10% CMC): moderate ECM deposition, MFCE-LD (50 mg/mL): little to moderate ECM deposition, MFCE-MD (100 mg/mL): moderate ECM deposition, MFCE-HD (200 mg/mL): confluent ECM deposition. (Immunoperoxidase, 200×).


Figure 4.12b: Quantitative estimation for transforming growth factor- β 1 (TBG- β 1) protein expression in rat skin treated with methanol *C. excavata* leaf extract (MFCE). Bar graph showing distribution of extracellular matrix (ECM) in TGF- β 1-stained skin sections of control, intrasite gel (10% CMC), and MFCE-treated rat skin wound. *Indicates significance differences at *P*<0.05. The extracellular matrix distribution (ECM) was evaluated by using a four-point scale; 0 (no ECM); 0%, 1 (little ECM); 30%, 2 (moderate ECM); 65% and 3 (confluent ECM); 70%–100.

4.8.3. Antioxidant enzymes SOD, CAT, GPx and LPO evaluation in the healed wound area


Antioxidant enzymes, SOD, CAT and Gpx and LPO were estimated in this study to determine the progression of the wound healing and to determine the effect of MFCE. The results reveal that the SOD activity was significantly (P < 0.05) higher in the MFCE-HD (4.57±0.23 U/mL), MFCE-MD (5.39±1.01 U/mL), and intrasite gel groups (4.91±0.8 U/mL) than the control (1.83±0.2 U/mL). There was no significant difference between treatment groups (Figure 4.13A). The CAT activity was significantly (P < 0.05) higher in the MFCE-HD (28.55±4.1 nmol/mL) and intrasite gel groups (26.90±1.79 nmol/mL) than that in the control group (17.82±1.07 nmol/mL) (Figure 4.13B). In addition, there was an increase in the MFCE-MD (23.77±1.40 mmol/mL) and MFCE-LD (20.91±0.90 nmol/mL) groups but it was not significant. The GPx activity was significantly (P < 0.05) higher in the intrasite (32.9 ± 1.87 nmol/mL), MFCE-MD (29.33±1.52 nmol/mL), and MFCE-HD (23.0±2.5 nmol/mL) than in the control (16.4±0.35 nmol/mL) or MFCE-LD (21.8±2.02 nmol/mL) groups (Figure 4.13C). The LPO activity was significantly (P < 0.05) higher in the control group ($9.12 \pm 1.76 \mu$ M) than in the intrasite (2.81±0.94 µM), MFCE-HD (4.17±1.10 µM), MFCE-MD (4.85±0.75 μM), or MFCE-LD (4.09±0.76 μM) groups (Figure 4.13D).

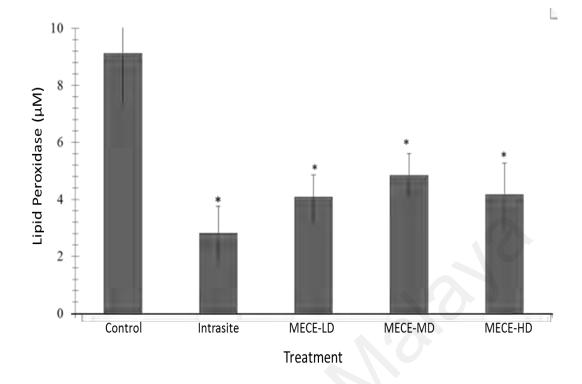

Figure 4.13a: Methanol *Clausena excavata* extract (MFCE) treatment rat wound superoxide dismutase (SOD) activity. Treatment with intrasite, MFCE-MD and MFCE-HD produced higher SOD activites in the wound than control. Values are presented as mean \pm S.D of 6 rats/group. *Significant (*P*< 0.05) compared to control. Control = untreated, Intrasite = (10% CMC), low dose (MFCE-LD; 50 mg/mL), medium dose (MFCE-MD; 100 mg/mL), high dose (MFCE-HD; 200 mg/mL).

Figure 4.13b: Methanol *Clausena excavate* extract (MFCE) treatment rat wound catalase (CAT) concentration. Treatment with intrasite and MFCE-HD produced higher CAT concentration in the wound than control. Values are presented as mean \pm S.D of 6 rats/group. * Significant (*P*< 0.05) compared to control. Control = untreated, Intrasite = (10% CMC), low dose (MFCE-LD; 50 mg/mL), medium dose (MFCE-MD; 200 mg/mL), high dose (MFCE-HD; 100 mg/mL).

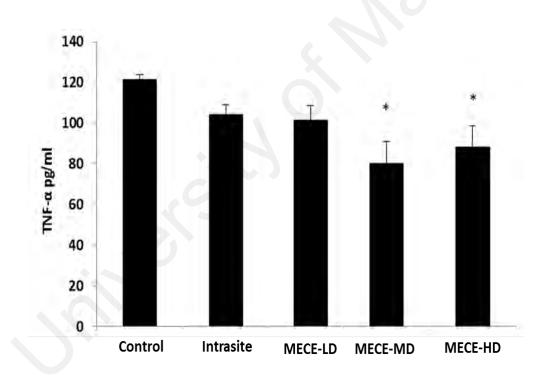

Figure 4.13c: Methanol *Clausena excavata* leaf extract (MFCE) treatment rat wound glutathione peroxides (GPx) concentration. Treatment with intrasite, MFCE-MD and MFCE-HD produced higher GPx concentration in the wound than control. Values are presented as mean \pm S.D of 6 rats/group. * Significant (*P*< 0.05) compared to control. Control = untreated, Intrasite = (10% CMC), low dose (MFCE-LD; 50 mg/mL), medium dose (MFCE-MD; 100 mg/mL), high dose (MFCE-HD; 200 mg/mL).

Figure 4.13d: Methanol *Clausena excavata* extract (MFCE) treatment rat wound lipid peroxidase (LPO) quantity. All treatments produced lower LPO quantity in the wound than control. Values are presented as mean \pm S.D of 6 rats/group. * Significant (*P*< 0.05) compared to control. Control = untreated, Intrasite = (10% CMC), low dose (MFCE-LD; 50 mg/mL), medium dos (MFCE-MD; 100 mg/mL), high dose (MFCE-HD; 200 mg/mL).

4.8.4. Estimation of TNF-α -6 and IL-10 in the healed wound area

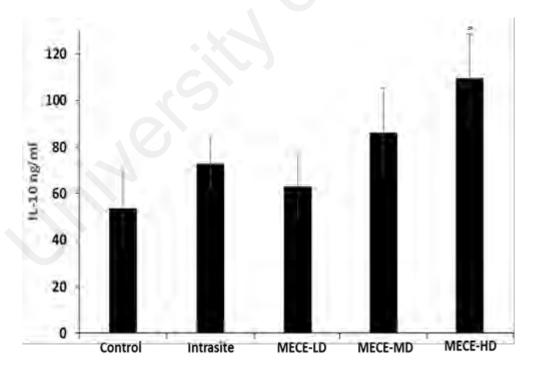
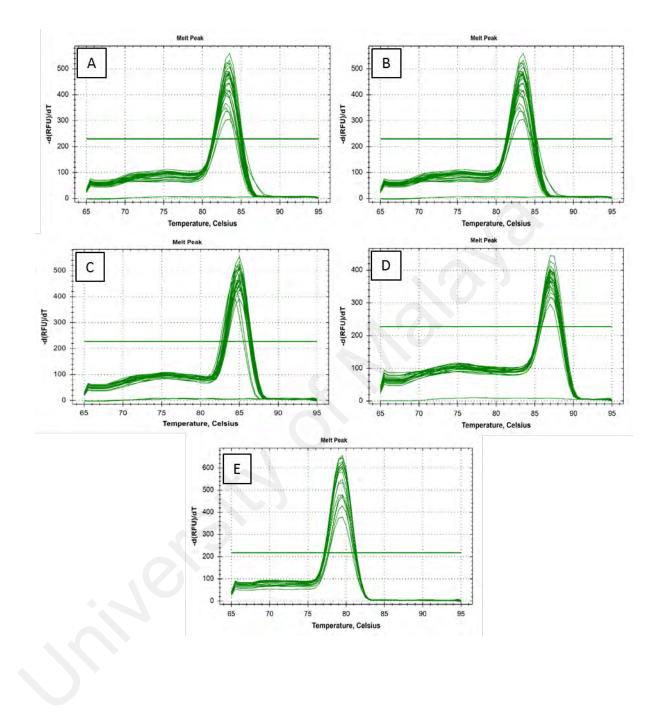

Since inflammation plays a vital role in the pathogenesis of impaired wound healing, the down regulation of these proinflammatory cytokines by the methanolic fraction of *C. excaavata* is important in the regulation of prolong inflammatory response. The results show that the level of TNF- α and IL-6 were significantly (*P*<0.05) lower in the group treated with 100 and 200 mg/mL MFCE than in the untreated (Figure 4.14 a&b). By contrast, the level of IL-10 was significantly (*P*<0.05) higher in the 200 mg/mL MFCE-treated group compared to control (Figure 4.14c).

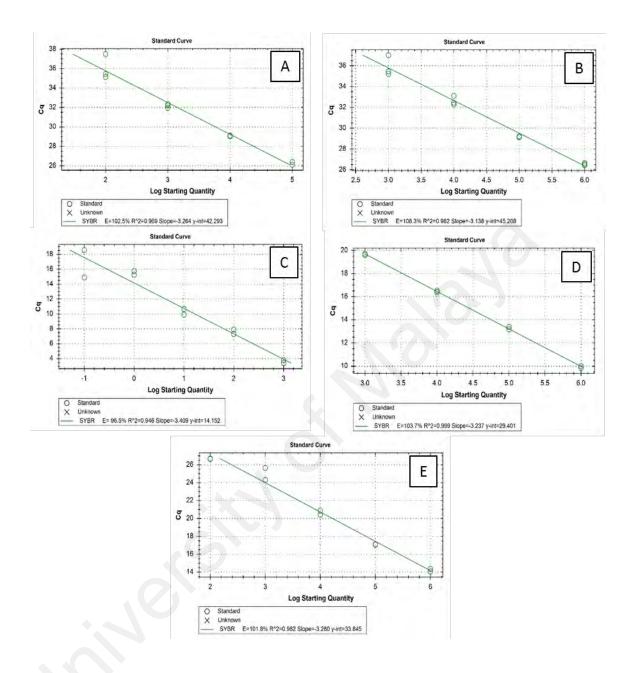
Figure 4.14a: TNF- α level in wound tissue of rats treated with methanol *C. excavata* extract (MFCE). The TNF- α level were significantly lower in MFCE-MD and MFCE-HD-treated than in control. MFCE-LD = 50 mg/mL; MFCE-MD = 100 mg/mL; MFCE-HD = 200 mg/mL. All values are presented as mean \pm S.D of 6 rats/group. *Significant difference at *P* < 0.05.

Figure 4.14b: IL-6 level in wound tissue of rats treated with methanol *Clausena excavata* extract (MFCE). The IL-6 levels were significantly lower in all treatment groups compared to untreated control. MFCE-LD = 50 mg/mL; MFCE-MD = 100 mg/mL; MFCE-LD = 200 mg/mL. All values are presented as mean \pm S.D of 6 rats/group. * Significant difference at P < 0.05.

Figure 4.14c: IL-10 level in wound tissue of rats treated with methanol *Clausena excavata* extract (MFCE). No significant difference among MFCE treatment groups. MFCE-LD = 50 mg/mL; MFCE-MD = 100 mg/mL; MFCE-HD = 200 mg/mL. All values are presented as mean \pm S.D of 6 rats/group. * Significant difference at *P* < 0.05 compare to control.


4.8.5. Gene expression

Immortality of inflammatory phase could generate overproduction of ROS at wound site results in the induction of apoptosis, which might be a crucial reason for delay wound healing. Therefore BAXand BCL2, which play an important role in apoptosis process were choosen in present study.


Cox-2 is reported to be expressed during inflammation phase and it is found to be induced in macrophage by proinflammatory cytokines. Thus, demonstrating that the wound-healing process was at a later stage, and enter remodeling phase as a part of return to the normal situation by investigation these genes.

The RNA concentration, purity and integrity in the wounded rat skin sample were measured by Nano Drop ND-2000 Spectrophotometer and gel electrophoresis are shown in APPENDIX C.

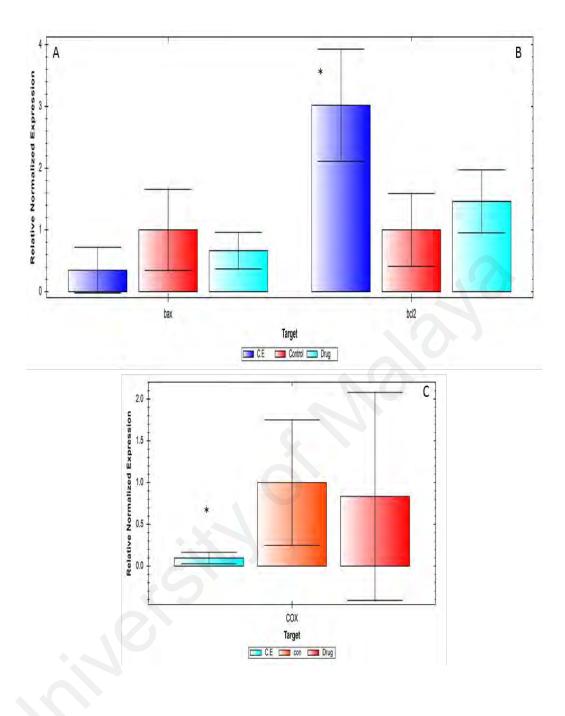
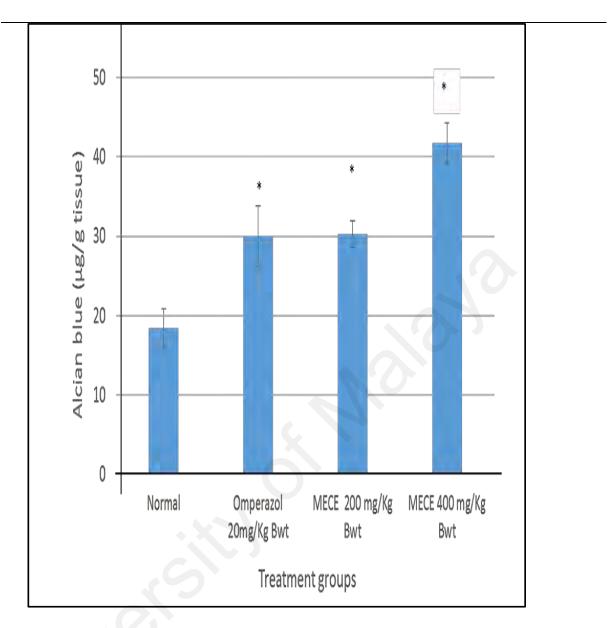

The optimal annealing temperature chosen for reference and target genes was based on the lowest Cq values in the gene expression assay, as well as the melting peak (Figure 4.15). The standard curve shown for both reference and target genes based on the cDNA serial dilution (Figure 4.16). All genes showed efficiency of between 96 and 108%. The expression level of the target gene was normalized with two endogenous housekeeping genes, the β -actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The C_T value of the target gene showed that there are differences in gene expression between the calibrator group (vehicle control group) and treated groups. From the results, the relative mRNA expression level of BAX gene was down-regulated in the HD-MFCEtreated group but not significantly (Figure 4.17). On the other hand, there was a significant (*P*<0.05) up-regulation in the BCL2 gene in the MFCE-treated group (Figure 4.17b). The relative expression of COX-2 was significantly (P<0.05) down-regulation in MFCE-treated group (Figure 4.17 c).

Figure 4.15: Quantitative real-time PCR melting curves for (A) β -actin, (B) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), (C) BAX, (D) Bcl-2, and (E) COX-2 genes in rat skin wound, analyzed by CFX manager TM software.

Figure 4.16: Quantitative real-time PCR standard curve for (A) β -actin, (B) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), (C) BAX, (D) Bcl-2, and (E) COX-2 genes in rat skin wound, analyzed by CFX manager TM software.

Figure 4.17: Relative expression of BAX, BCL2 and COX-2 genes in the skin wounds of rats treated with 200 mg/mL methanolic *Clausena excavata* extract (MFCE). Relative gene expression levels were calculated using the delta-delta C_T method and values are presented as mean \pm SD, (5 rats/group) *significantly different at *P*<0.05 versus calibrator (vehicle control group). Control = untreated; Reference drug = Intrasite gel.

4.9. Gastroprotection effect of methanolic extract Clausena excavata


4.9.1. Pyloric ligation model

Treatment with MFCE at 200 and 400 mg/kg and omeprazole at 20 mg/kg body weight significantly (p < 0.05) reduced the volume and total acidity of gastric juice at 4 h post-treatment (Table 4.13). Furthermore, rats pre-treated with omeprazole and MFCE in all the doses showed significantly (p<0.05) higher production of gastric mucus than the untreated control (Figure 4.18).

Table 4.13: Effect of methanolic C. excavata extract treatment on gastric juice parameters of rats with gastric ulcer.

Treatment	Volume of Gastric juice (mL)	pH of Gastric juice	Total acidity (mEq/L)
5%Tween 20 (Normal control)	5.15±0.5	1.46±0.13	3717.90±146.70
Omeprazole (20mg/kg Bwt)	2.22*±0.30	3.82*±0.10	1976.65*±389.02
MFCE (200 mg/kg Bwt)	2.62*±0.21	2.59*±0.11	1578.98*±235.95
MFCE (400 mg/kg Bwt)	1.73*±0.27	2.73*±0.31	1102.37*±82.20

All the values are expressed as the mean \pm SEM. *Significant differences at (p < 0.05) compared with normal control. MFCE = methanolic *C. excavata* extract. Bwt = Body weight.

Figure 4.18: Effect of methanolic *C. excavata* extract (MFCE) on rat gastric mucus content in stomach. Values are mean \pm S.D. * significant ($P \le 0.05$) compared with normal control group (6 rats/group).

4.9.2. Rat gastric ulcer model

4.9.2.1. Gastric mucosa

At 200 and 400 mg/kg body weight, MFCE significantly (p<0.05) inhibited ulcer formation by 92.6 and 87.8%, respectively (Table 4.14 and Figure. 4.19). There was histological evidence of flattening of gastric mucosa folds and reduction in mucosal damage in these rats upon treatment with the extract and omeprazole.

4.9.2.2. Gastric content, pH, and mucus weight

Treatment with MFCE and omeprazole increased mucus content of the gastric mucosa, with the effect being more pronounced (p<0.05) with MFCE at 400 mg/kg body weight compared with other treatments. The pH of the gastric content of rats treated with MFCE was also significantly (p<0.05) higher than in the untreated rats with ulcer (Table 4.14).

Table 4.14: Effect of methanolic *C. excavata* extract treatment on pH of gastric content, gastric ulcer area and ulcer inhibition in rats

Treatment	рН	Mucus content	Ulcer area (mm ²)	Inhibition (%)
Tween 20 (Normal control)	6.81±0.17	0.92 ± 0.46	0	NA
Ethanol (Untreated control)	3.08±0.11	0.48 ± 0.07	460.8 ± 65.07	NA
Omeprazole (20mg/kg Bwt)	7.14*±0.26	0.82 ± 0.08	59.40*±23.81	86.3
MFCE (200 mg/kg Bwt)	6.16*±0.08	0.66*±0.18	34.20*±14.46	92.6
MFCE (400 mg/kg Bwt)	6.03*±0.33	1.14*±0.03	56.16*±23.92	87.8

All the values are expressed as the mean \pm SEM. *Significant differences at (p<0.05) compared with untreated control. MFCE = methanolic *C. excavata* leaf extract. Bwt = Body weight, NA=not applicable.

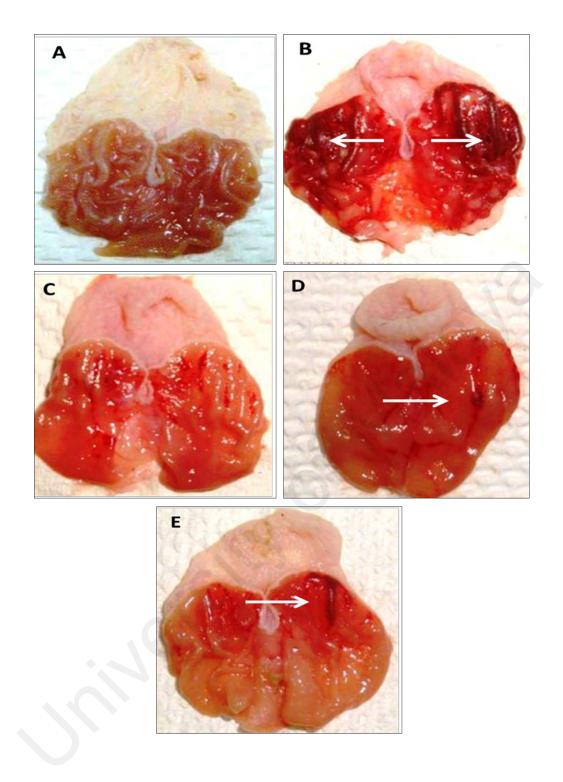
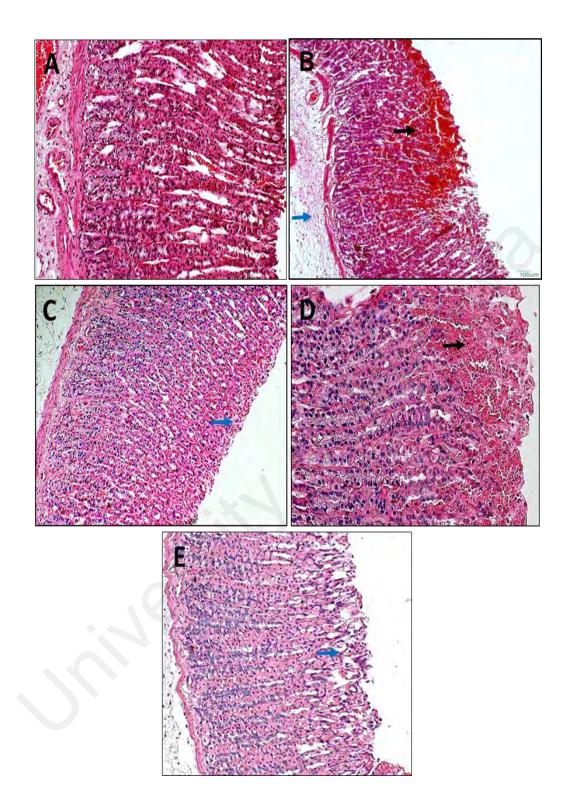


Figure 4.19: Gastric lesions in rats with gastric ulcer treated with omeprazole and methanol *Clausena excavata* extract (MFCE). (A) 5% Tween 20%, 5 mL/kg body weight (normal control), (B) 5 mL/kg body weight distilled water (ulcer control) showing severe ulceration of the gastric mucosa (arrows), (C) 20 mg/kg body weight omeprazole, (D) 200 and (E) 400 mg/kg body weight MFCE showing mild gastric mucosal ulceration (arrow).

4.9.3. Histological evaluation of gastric mucosa

4.9.3.1. Hematoxylin and eosin (H & E) staining


Hematoxylin and Eosin was performed to assess basic histopathological changes in stomach tissue. Histopathologically, rats with untreated ulcers showed extensive gastric lesions with submucosal oedema and leucocytes infiltration. The ulcer control rats had the highest lesion scores among groups. The stomach of rats pretreated with MFCE showed significantly (p<0.05) lesser ulceration in the gastric mucosa then the untreated control as evident by the smaller ulcer area, lesser or complete absence of oedema and leucocyte infiltration in the submucosal (Figure 4.20 and Table 4.15).

Treatment	Hemorrhage	Submucosal oedema	Epithelial cell loss	Inflammatory cell Infiltration	Total lesion area (mm ²)
Tween 20 (Normal control)	0	0	0	0	0
Ethanol(Untreated control)	2.8±0.2	2.6±0.3	2.7±0.4	2.3±0.1	10.4
Omeprazole (20mg/kg Bwt)	1.5*±0.4	1.55*±0.2	1.4*±0.1	1.6*±0.3	6.05*
MFCE (200 mg/kg Bwt)	1.56*±0.3	1.41 ± 0.1	1.49*±0.3	1.32*±0.4	5.78*
MFCE (400 mg/kg Bwt)	0.73*±0.1	0.91*±0.1	0.63*±0.2	$0.68 * \pm 0.1$	2.95*

Table 4.15: Gastric tissue lesion score in rat gastric tissue with ulcer treated with methanolic C.

 excavata leaf extract

One unit square is the 2×2 mm area of tissue with lesion. All the values are expressed as the mean \pm SEM. Significant differences at *(p<0.05) compared with untreated control. MFCE = Methanolic *C. excavata* extract. Bwt = body weight.

Figure 4.20: Rat gastric tissue with ulcer treated with omeprazole and methanolic *Clausena excavata* extract (MFCE). (A) Normal gastric tissue, (B) untreated gastric ulcer with extensive haemorrhages (black arrow) and oedema (blue arrow), and treated with (C) 20 mg/kg body weight omeprazole, (D) 200 (E) and 400 mg/kg body weight MFCE. (H & E stain, ×200).

4.9.3.2. Gastric mucus by periodic acid-Schiff (PAS) stain

The histological staining by PAS staining was conducted to detect the level of mucosubstances secreted in stomach, in which glycoprotein react with Schiff's reagent after oxidized to produce magenta color. Under PAS staining, the rats with gastric ulcer treated with MFCE and omeprazole treatments showed significantly (p<0.05) enhanced mucus secretion as seen over the entire lining of gastric mucosa at the surface cells and neck part of the gastric glands. Untreated ulcers did not show mucus secretion on the gastric mucosa (Figure 4.21 and Table 4.16).

Table 4.16: Area of rat gastric mucosal tissue positive for periodic acid-Schiff staining after treatment with methanolic *C. excavata* leaf extract.

	Stained area
Treatment	(mm ²)
5% Tween 20 (Normal control)	$1.56^{*}\pm 0.2 \times 10^{3}$
Ethanol (Untreated control)	NA
Omeprazole (20mg/kg Bwt)	$3.19^{*}\pm 0.19 \times 10^{3}$
MFCE (200 mg/kg Bwt)	$3.02^* \pm 0.3 \times 10^3$
MFCE (400 mg/kg Bwt)	$4.67^{*}\pm 0.21 \times 10^{3}$

All the values are expressed as the mean \pm SEM. *Significant differences (*P*< 0.05) compared with untreated control. MFCE = methanolic extract of *C. excavata* methanolic leaves. Bwt = Body weight, NA=not applicable.

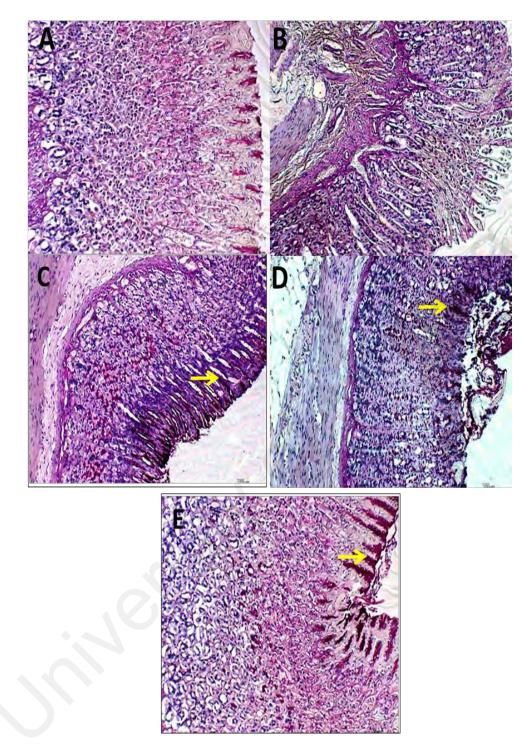
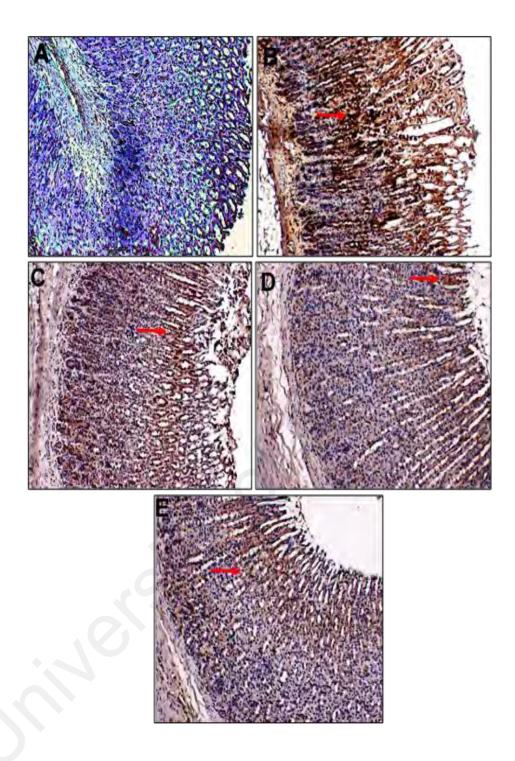



Figure 4.21: Mucus production in rat gastric tissue treated with omeprazole and methanol *Clausena excavate* extract (MFCE). (A) Normal gastric tissue (Normal control), (B) Untreated ethanol-induced gastric ulcer (negative control), and treatment with (C) 20mg/kg body weight omeprazole (positive control), (D) 200 and (E) 400 mg/kg body weight MFCE. Magenta coloration (arrow) in the epithelial cells indicates increased gastric gland secretion. The most intense color is in gastric tissue treated with 400 mg/kg body weight MFCE. (Periodic acid-Schiff stain, ×200).

4.9.3.3. Immunohistochemistry analysis of HSP70, BAX and TGF-β

Immunohistochemistry was performed to show the expression of HSP70, BAX and TGF- β proteins in stomach. Since HSP70 plays an important role in protection the cells against stresses and preventing damage, while the BAX is a proliferative suppressor, which promotes apoptosis, TGF- β which is reported to be unique in its effect on cell growth and differentiation. Therefore, we selected these proteins in present study. Unlike in untreated gastric mucosa with ulcer that showed up-regulation of BAX protein, in the MFCE-treated mucosa the expression of this protein was down-regulated (Figure 4.22 and Table 4.17). On the other hand, the HSP70 expression was up-regulated in both omeprazole and MFCE-treated groups. The effect of MFCE on HSP70 expression was dose-dependent, with greater expression at the higher dose of the extract (Figure 4.23 and Table 4.18). TGF β was upregulated in the MFCE-treatment group but this was not statistically significant among MFCE-treated groups (Figure 4.24 and Table 4.19).

Figure 4.22: BAX protein expression in rat gastric tissue with ulcer treated with omeprazole and methanol *Clausena excavata* extract (MFCE). (A) Normal control, (B) untreated ethanol-induced ulcer showing over-expression of BAX proteins in the epithelial cells, treatment with (C) 20 mg/kg body weight omeprazole (D) 200 and (E) 400 mg/kg body methanolic *C. excavate* extract showing reduced BAX protein expression in the apical epithelial cells. Positive staining shown by the dark brown coulor. (Immunoperoxidase stain, $\times 200$).

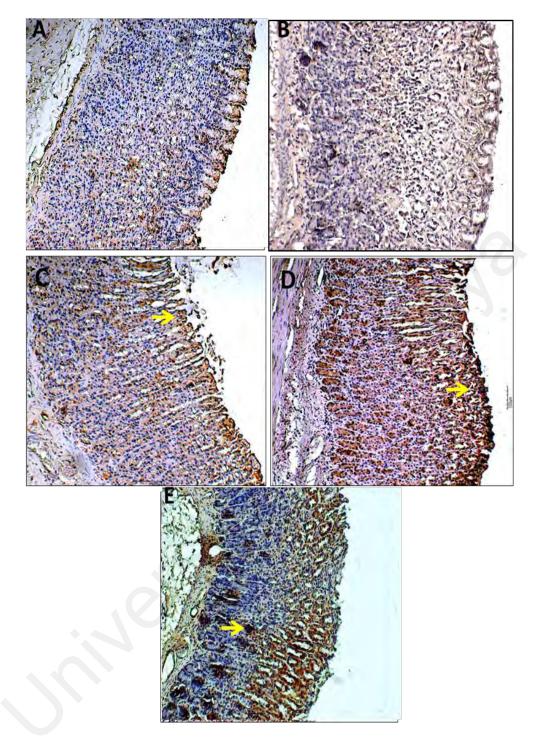
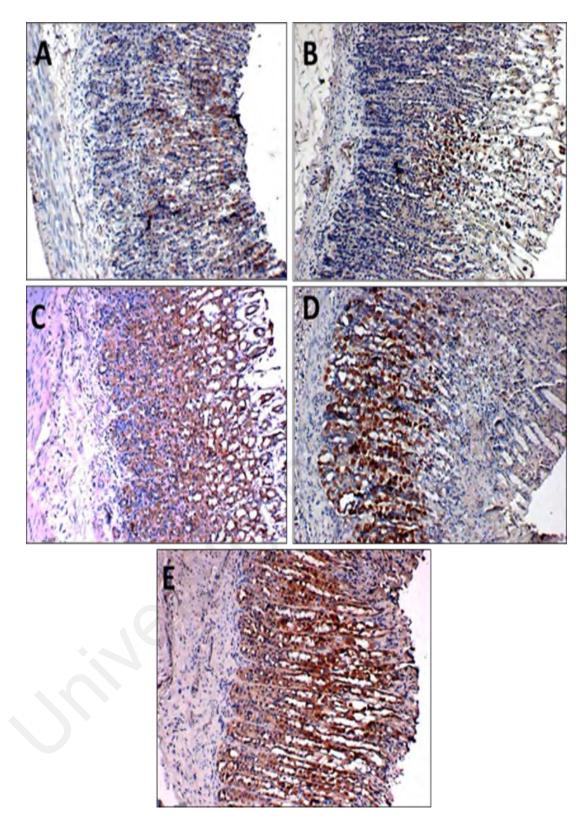



Figure 4.23: HSP70 expression in rat gastric tissue with ulcer treated with omeprazole and methanol *Clausena excavate* extract (MFCE). (A) Normal control, (B) untreated ethanol-induced ulcer showing under-expression of HSP70 proteins in the epithelial cells, treatment with (C) 20 mg/kg body weight omeprazole (D) 200 and (E) 400 mg/kg body MFCE. Increased HSP70 expression was seen after treatment with 400 mg/kg body weight extract. Arrows show positive expression. (Immunoperoxidase stain, $\times 200$).

Figure 4.24: TGF- β protein expression in rat gastric tissue with ulcer treated with omeprazole and methanol *Clausena excavata* extract (MFCE). (A) Normal control, (B) untreated ethanol-induced ulcer showing under-expression of TGF- β proteins in the epithelial cells, treatment with (C) 20 mg/kg body weight omeprazole (D) 200 and (E) 400 mg/kg body MFCE showing increased TGF- β protein expression in the apical epithelial cells. Arrow show positive expression. (Immunoperoxidase stain, ×200).

Treatment	Stained area (×10 ³) (μm ²)	% Area
5% Tween 20 v/v ([#] Normal control)	0.00	0
Ethanol (5mL/kg Bwt) (Untreated control)	48.0 ± 0.4	40
Omeprazole (20mg/kg Bwt)	21.2* ±2.6	17
MFCE (200 mg/kg Bwt)	15.1* ±2.1	12
MFCE (400 mg/kg Bwt)	4.2* ±1.3	4

Table 4.17: Area of rat gastric mucosal tissue positive for BAX protein immunoperoxidase staining after treatment with methanolic *C. excavata* extract.

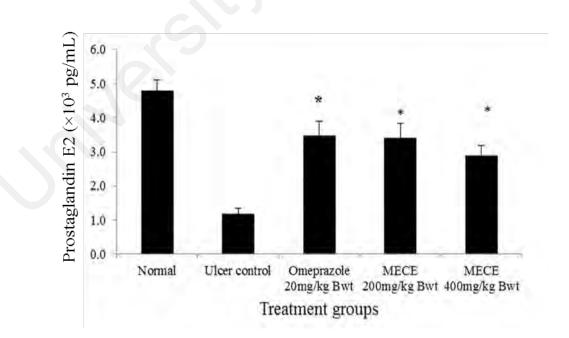
All the values are expressed as the mean \pm SEM. * Significant differences at (p < 0.05) compared with ulcer control. [#]Treated with 5% Tween 20 only. MFCE = methanol *C. excavata* extract. Bwt = Body weight.

Table 4.18: Area of rat gastric mucosal tissue positive for HSP 70 protein immunoperoxidase staining after treatment with methanolic *C. excavata* extract.

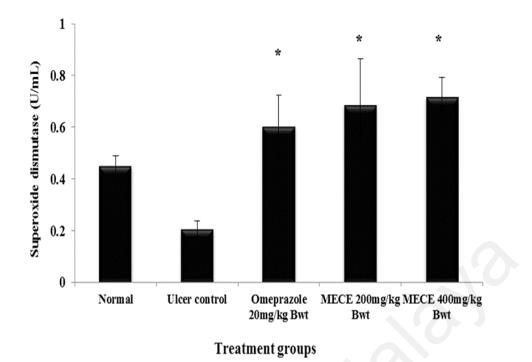
Treatment	Stained area (×10 ³) (μm ²)	% Area
5% Tween 20 v/v ([#] Normal control)	5.4±2.2	4
Ethanol (5mL/kg Bwt) (Untreated control)	6.3±3.1	5
Omeprazole (20mg/kg Bwt)	32.4*±2.9	22
MFCE (200 mg/kg Bwt)	36.4*±3.3	25
MFCE0 (40 mg/kg Bwt)	46.3*±3.7	33

All the values are expressed as the mean \pm SEM. * Significant differences at (p < 0.05) compared with ulcer control. #Treated with 5% Tween 20 only. MFCE = methanol *C. excavata* extract. Bwt = Body weight.

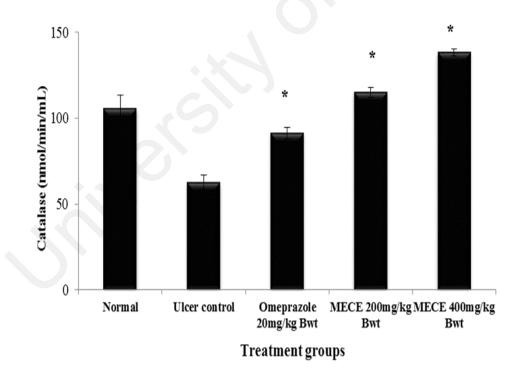
Table 4.19: Area of rat gastric mucosal tissue positive for TGF- β protein immunoperoxidase staining after treatment with methanolic *C. excavata* extract.

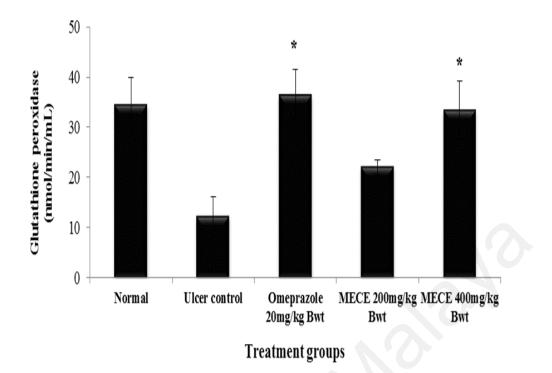

Treatment	Stained area (×10 ³) (μm ²)	% Area
5% Tween 20 v/v ([#] Normal control)	3.6±0.8	3
Ethanol (5mL/kg Bwt) (Untreated control)	4.5±0.1	4
Omeprazole (20mg/kg Bwt)	44.2*±0.9	34
MFCE (200 mg/kg Bwt)	31.6*±2.3	20
MFCE (400 mg/kg Bwt)	35.1*±3.4	24

All the values are expressed as the mean \pm SEM. * Significant differences at (p < 0.05) compared with ulcer control. #Treated with 5% Tween 20 only. MFCE = methanol *C. excavata* leaf extract. Bwt = Body weight.


4.9.4. Effect of *C. excavata* on Prostaglandin E2 and Antioxidant activity

Since prostaglandins control gastric acid secretion and enhance gastric mucus productions, thus playing a significant protective role by conferring the gastric mucosa ability to resist injury caused by noxious compounds. Reactive oxidative radicals are scavenged by the antioxidant defense system of the body and accumulation of ROS increases LPO, so measurement of these biomarker are important in development gastric mucosal lesions.


The SOD, CAT, GPx activities and PGE2 concentrations were significantly (p<0.05) higher in the gastric tissue with ulcer treated with MFCE and omeprazole than the untreated tissue (Figures 4.25 a, b, c, d & e). In contrast, the extract produced significantly (p< 0.05) lower lipid peroxidation activity in all treated than untreated gastric tissue with ulcer. The results show that the antioxidant activities in gastric tissue treated with MFCE are greater than in tissues treated with omeprazole.


Figure 4.25 a: Effect of omeprazole and methanol *Clausena excavata* extract (MFCE) on prostaglandin E2 (PGE2) level in rat gastric ulcer. All data are mean \pm SD of 6 rats per group. The PGE2 concentrations are higher in omeprazole and MFCE treated than untreated ulcers. *Significant at *P*<0.05.

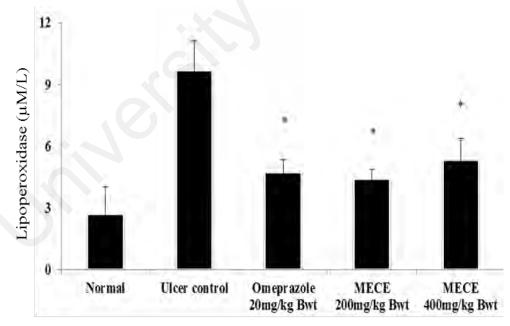

Figure 4.25 b: Effect of omeprazole and methanol *Clausena excavata* extract (MFCE) on superoxide dismutase (SOD) level in rat gastric ulcer. The SOD levels were significantly higher in omeprazole and MFCE treated than untreated ulcers. Values are presented as mean \pm SD of 6 rats/group. *Significant at (*P*< 0.05).

Figure 4.25 c: Effect of omeprazole and methanol *Clausena excavata* extract (MFCE) on catalase (CAT) level in rat gastric ulcer. The CAT level were higher in omeprazole and MFCE treated than untreated ulcer. Values are presented as mean \pm SD of 6 rats/group.*significant at *P* < 0.05.

Figure 4.25 d: Effect of omeprazole and methanol *Clausena excavata* extract (MFCE) on glutathione peroxidase (GPx) in rat gastric ulcer. The GPx level was higher in omeprazole and 400 mg/kg body weight MFCE-treated than untreated gastric ulcer. Values are presented as mean \pm SD of 6 rats/group. *significant at P < 0.05.

Treatment Groups

Figure 4.25 e: Effect of omeprazole and methanol *Clausena excavata* extract (MFCE) on lipid peroxidation (LPO) in rat gastric ulcer. The LPO level are significantly lower in omeprazole and MFCE-treated than untreated gastric ulcer. Values are presented as mean \pm SD of 6 rats/group. *Significant at *P* <0.05.

4.9.5. Estimation of TNF-α -6 and IL-10

Since ethanol ingestion causes releasing the proinflammatory cytokines as TNF- α and IL-6, which are associated with increased gastric tissue damage, therefore in this study we investigated the effect of MFCE on these cytokines. The IL-10 levels were significantly (P < 0.05) higher in rat gastric ulcer pretreated with MFCE than untreated control ulcer. By contrast, the levels of TNF- α and IL-6 were significantly (P < 0.05) lower in these treated groups compared to the untreated control ulcer (Figure 4.26).

Figure 4.26: Effect of omeprazole and methanol *Clausena excavata* extract (MFCE) on tumor necrosis factor- α (TNF- α), interleukin-6 (IL-6) and -10 (IL-10). The TNF- α and IL-6 are significantly lower and IL-10 higher in the omeprazole and MFCE-treated than the untreated control ulcers. Values are expressed as mean \pm S.D of 6 rats/group. *Significant at p < 0.05.

CHAPTER 5: DISCUSSION

5.1. Evaluation of biological activities of C. excavata solvent extracts in vitro

Over the past years, a handful of pharmacologically active plant constituents belonging to the family Rutaceae has been identified, these include methoxyflavones, furoquinoline alkaloids, furanone-coumarins, and flavonoids. These constituents were shown to have remarkable effects on inflammation, viral infections, and digestive system disorders such as gastritis and enteritis (He et al., 2000; Xin et al., 2008; Nakamura et al., 2009; Guntupalli et al., 2013; Venugopala et al., 2013). *Clausena excavata*, in particular, possesses a wide range of pharmacological properties which range from the antioxidant properties (Guntupalli et al., 2012), hyperglycemic, anti-rhinitis, anti-inflammatory (Sakong et al., 2011), anti-nociceptive (Rahman et al., 2002), anti-viral, anti-cancer and anti-fungal activities (Su et al., 2009; Kumar et al., 2012).

The antioxidant activity of plants has become important in recent years because of its effectiveness in general health by playing an important role in the protection of the body from the adverse effects of over production of reactive oxygen species (Gupta et al., 2005). In most studies, antioxidant activities of *C. excavata* used the bark and stem of this plant, but not the leaves. In the present study, the extraction of the leaves with solvents such as methanol, ethyl acetate, chloroform and petroleum ether fractions, showed variations in the potency of antioxidant activities as measured by FRAP and DPPH, which showed that difference in extraction solvents affected the antioxidant properties of the extract. Polar solvents such as water, methanol, ethanol and ethyl acetate were more suitable as extraction solvents in recovering polyphenols from the matrix of plants (Khan et al., 2012). Another study showed that the type of solvent significantly influenced the level of antioxidants in plant extracts (Lapornik et al., 2005).

In the present study, the effective antioxidant ability of C. excavata was demonstrated through the ferric reducing ability and radical scavenging action. FRAP assay is considered to be an accurate and simple method for evaluating the antioxidant capacity of therapeutic compounds. The reducing ability of any compound has been established to depend on its ability to donate H⁺ electron (Al-Abd et al., 2015). In DPPH radical scavenging assay, unstable free radical DPPH receives a hydrogen atom from antioxidant compound so that it will be converted into a stable form (Kedare & singh, 2011). Among these four fractions, the methanolic fraction was observed to strongly reduce FeCl₃ and showed a DHPP scavenging activity with IC₅₀ near to quercetin. This finding corroborates with other studies which reported that the methanolic extract possesses higher antioxidant activity which is linked to its high polarity index when compared to other plant extracts in various model systems (Iloki-Assanga et al., 2015). This observation suggests that the methanolic fraction of C. excavata is be able to donate electrons to free radicals due to its phenolic and flavonoid contents (Moure et al., 2000; Jayaprakasha et al., 2008). It is well-documented that phenolic compounds are among the principal and effective antioxidant constituents in plant foods, and its antioxidant activity resulting from their ability to scavenge free radicals through their hydroxyl groups (Velioglu et al., 1998; Altaf et al., 2013). Previous in vitro studies have reported that C.excavata leaves with high phenolic content inhibited lipid peroxidation (Sakong et al., 2011; Guntupalli et al., 2012). In the present study the MFCE leaves had the highest amount of phenolic compounds, so the high antioxidant activity of the methanolic fraction could be due to its ability to scavenge free radicals. Of all the polyphenolic compounds, flavonoids are said to be the major scavengers of superoxide anions, peroxyl radical and other oxidizing species by virtue of their wide spectrum of medicinal actions (Iloki-Assanga et al., 2015). In this study, the chloroform extract of C. excavata showed the highest concentration of flavonoids, which was comparable with

concentrations reported by other researchers (Hossain et al., 2011; Ekeanyanwu & Njoky, 2014). Thus, it is not surprising that *C. excavata*, with its potent phenolic and antioxidant properties can be used to treat of various oxidative stress-related diseases.

Since the biological activity of extracts have a strong relationship with the solvents employed on the basis of their polarities, different solvent extracts from C. excavata leaves were used to determine their biocompatibility on in vitro cell lines including; keratinocytes, fibroblast and macrophages. The MOH extract of C. excavata used in this study had a cell viability of 71% and 47% at 400 µg/mL in HaCaT and Vero cells, respectively. It was also observed that at low doses, the MOH and PT extracts of C. excavata enhanced the proliferation of these cells. The MFCE contains quercetin and myricetin, which have been shown to enhance the growth of the normal human skin fibroblast (FS5) cell line by conferring protection on against hydrogen peroxideinduced damage (Adetutu, 2009). However, the EA and CH extracts showed a significant reduction in the percentage of cell viability in HaCaT cells with 19% and 27% viability at 400 µg/mL, respectively. This may indicate that non-polar active components are responsible for the antiproliferative activity of this plant as previously reported in other plants (Talib & Mahasneh, 2010). The percentage of cell viability observed in Vero cells was similar to that of HaCaT cells, but Vero cells were more resistant (51% and 78% at 400 µg/mL) than HaCaT cells following exposure to EA and CH. This selectivity could be due to the sensitivity of the cell line to the active compounds in the extract (Ayob et al., 2014). However, the EA and CH fractions showed a significant reduction in the percentage of cell viability in macrophage cells with 17% and 20% viability at 400 μ g/mL, respectively, the methanolic fraction did not show any toxicity towards the macrophage cell line even at a high dose. Since macrophages produce macrophage colony stimulating factor (M-CSF), which play a

significant role in healing of gastric ulcers through promotion of angiogenesis, treatment of gastric ulcers with MFCE should not inhibit healing (Kawahara et al., 2011).

In wound healing, bacterial infections play an important role in the healing by release of free radicals and lytic enzymes at the wound site. These enzymes have the ability to destroy the lipids, proteins and extracellular matrix that delay the onset of the proliferative and remodeling phases of wound healing process (Udegbunam et al., 2014). The pathogens tested in this study namely; S. aureus, B. subtilis, A. anitratus and *P. aeruginosa* are frequently incriminated in wounds infections (Allen & Green, 1987; Abrahamian & Goldstein, 2011). Previous studies have reported that plants with antibacterial and antioxidant properties accelerate wound healing by increasing the rate of wound contraction and re-epithelialization (Navak & pereira, 2006; Udegbunam et al., 2014). Another study reported that antimicrobial property attributed to the presence of marker compounds like: phenolic/flavonoids-based compounds and could be a good therapeutic agent for accelerating wound healing process (Houghton et al., 2005; Geethalakshmi et al., 2013; Udegbunam et al., 2014). In the present study, fractions of C. excavata demonstrated antibacterial activity through inhibition of growth of these organisms suggesting this plant may facilitate wound healing through antibacterial action. It has been reported earlier that gram-negative bacteria are usually more resistant to the plant-origin antimicrobials and even show no effect compared to Gram-positive bacteria (Biswas et al., 2013). Another reports have shown that several compounds isolated from the roots of C. excavata exhibited profound antimicrobial properties (Wu & Furukawa, 1982).

To investigate the healing properties of MFCE, which is attributable to its antioxidant and antimicrobial activities, which in turn result from high phenolic content, we performed classical scratch assay.

The scratch wound test assay adopted fibroblast proliferation and migration as indicators to assess the efficacy of active methanolic extract *in vitro*, because fibroblast is known to play an essential role in wound healing and closure (Basso et al., 2012). Since scarring of the skin and other body parts are due to excessive proliferation of fibroblast cells and its ECM, fibroblast cells are major targets in therapeutic drug design (Singh et al, 2014). Previous research on wound healing have shown the efficacy of this assay in wound-healing *in vitro* models (Guler et al., 2014). Enhancement of fibroblast proliferation and migration by MFCE serve as an indicator for enhancement of wound healing by this fraction. This finding is similar to what was reported in an earlier study where stimulation of fibroblast proliferation and migration was used as an indicator for regulation of angiogenesis, inflammation and tissue regeneration (Tam et al., 2011).

Based on the *in vitro* screening results, methanol extract of *C. excavata* had high antioxidant and total phenolic contents, optimal proliferation of HaCaT and macrophage cell lines, fibroblast migration and antibacterial activity, therefore the methanolic fraction of the leaves of *C. excavata* was subsequently selected for phytochemical screening, and animal studies.

Initial investigation using LCMS/MS revealed by the chromatograms of the methanolic fraction indicate that *C. excavata* leaves are rich in phenolic/flavonoidsbased compounds (Ito et al., 2000). Notably, the compounds in the methanolic fraction of the leaves possess several biological activities such as coumarin, stimulator of gastric prostaglandin and mucus production (Moure et al., 2000; Nakamura et al., 2009; Mogana, et al., 2013; Venugopala, et al., 2013), quercetin glycoside, myricetin glucosides and kaempferol, which belong to a group of flavonoid compounds have been shown to have high anti-inflammatory and antioxidant activities as well as prevention of gastric ulcer and enhancement of wound healing *in vitro* via scratch-wound healing assays on HaCaT keratinocytes (Calderon-Montano et al., 2011; Clericuzio et al., 2012; Krishnappa et al., 2014).

5.2. Acute toxicity assessment of methanolic extract

Natural products such as plant extracts have been used in therapeutic management of several diseases. Unfortunately, many of these compounds were known to be toxic to life-forms (Parra et al., 2001). Among these compounds, some may exert the toxicity once taken, while others are toxic when give over an extended period. Given these reasons, evaluating the acute toxicity of medicinal compounds for human use is necessary before using them in the proposed therapy (Ateba et al., 2014). The present study showed that during 14 days of the experimental period, there was no mortality or symptoms of toxicity in all the rats at all doses (2000 and 5000 mg/kg). The LD50 of MFCE leaves in both sexes of rats was greater than 5000 mg/kg body weight. This is in accordance with an earlier study by Puongtip et al. (2011), which reported that oral LD50 of the methanolic extract from the stem of *C. excavata* is more than 5000 mg/kg body weight in both sexes in rats. Therefore, the high LD50 of MFCE leaves indicates that the extract is relatively safe, especially for oral administration. According to Ecobichon, (1997) and OECD 2001, any test compound that does not produce death at a dose exceeding 5 g/kg body weight is considered nontoxic.

Change in body weight and relative organ weight of animals is an indicator of adverse effect of administered drugs or chemicals (Teo et al., 2002; Mohamed et al., 2011). The organs of these animals tend to swell or become damaged, which will subsequently alter their organ-to-body weight ratios upon exposure to toxic substances. The hematopoietic system is considered as one of the most sensitive system affected by toxic compounds. Ye et al. (2005) conducted an acute toxicity analysis, where they evaluated the biochemical functions of the renal and liver systems of both control and

compound treated rats (Ekeanyanwu & Njoky, 2014). In this study, the body weights of rats (male and female) treated with MFCE leaves increased gradually but insignificantly (p>0.05) compared with the control rats. Similarly, the relative organ weights showed no significant (p>0.05) difference between test and control groups. Hematological analysis showed that there are no significant differences between all of the treated groups as compared to the control groups. The level of RBC and HGB, did not change, indicating that polycythemia and hemolytic anemia were not induced. On the other hand, increased serum creatinine is a good indicator for assessment of glomerular filtration and abnormal kidney function while simultaneous increases in serum AST and ALT, the liver enzymes associated with hepatopathy (Rhiouani et al., 2008). Our study showed significant (p < 0.05) but variable increases in serum enzymes according to dose and sex. High dose MFCE treatment seemed to affect the males slightly more than the females. Serum bilirubin concentration was significantly (p < 0.05) elevated in treated female rats only. In this case, increase in ALP level is associated with increased hepatic synthesis, in the presence of increasing biliary pressure and obstruction in the normal bile flow as a result of damage or inflammation (Ekeanyanwu & Njoky, 2014). Significant increase in BUN without abnormality in serum creatinine concentration in female rats treated with a high dose of MFCE leaves is indicative of hem concentration and/or high dietary protein rather than kidney impairment (Ashafa et al., 2009). This assertion is based on the fact that serum creatinine is more accurate marker of glomerular filtration and kidney function than urea. The mild to moderate histopathological changes in the kidneys and liver, coupled with relatively lack of change in hematological and other serum biochemical parameters further confirms that MFCE is nontoxic and safe to be used as a therapeutic extract at low to moderate doses.

5.3. Wound healing evaluation parameters

Cutaneous wound healing is reportedly a complex process that involves a series of immune-mediated cellular and molecular interactions which begins with wound contraction, which is part of normal healing process that closes wounds to the external environment. Thereafter, the proliferative phase sets in, which is characterized by tissue granulation formation, and finally epithelialization developing and remodeling of damaged tissue (Roy et al., 2009; Hsu & Mustoe, 2010). In recent years, ethno pharmacology has become a focus area for researchers in the search for natural materials with potent antioxidant and wound healing properties (Geethalakshmiet et al., 2013). The reactive oxygen species (ROS) generation by inflammatory cells within the dermis plays an integral role in mediating wound healing by affecting proliferation and cell survival signaling to alter apoptotic pathways in the skin and this contributes significantly to pathogenesis of impaired skin wound healing (Lee et al., 2012). Since wound healing can be accelerated by enhanced radical scavenging power (Abdulla et al., 2011), C. excavata extract containing coumarins, flavonoids with a wide array of biological properties and demonstrated effective antioxidant ability through various mechanisms of ferric reducing ability and radical scavenging action, was investigated for its wound healing properties through its antioxidant capacity.

The choice of topical application of MFCE was made because of the advantages associated with such formulation; availability of high and sustained concentration of these agents at the site of infection with limited total amount needed and limited potential for systemic absorption and toxicity (Lipsky & Hoey, 2009). Similarly, it has been reported in a study that, topically applied drugs are known to be effective in faster wound closure and overall healing due to larger availability of the drug at the desired wound site (Ponrasu et al., 2014). The difficulty of applying and maintaining the topical

formulation of MFCE and the duration of treatment while maintaining absorption and penetration of the formulation to the wounded skin area are part of the challenges and limitations of this study.

The wound healing properties of MFCE was determined in inflicted wounds in a rat model. During treatment, the MFCE did not cause irritation or pain to the animals as evident by the lack of discomfort in the rats. The main finding of this study is that the topical application of the bioactive fraction of *C. excavata* increased wound contraction in all the treated groups by days 10 and 15 compared to the untreated group. The observed healing impairment in the control group could be accorded to the high level of reactive oxygen species due to higher leukocytes infiltration, which in turn impairs keratinocyte, endothelial cell, fibroblast, and collagen metabolism. Similarly, the observed accelerative wound healing upon *C. excavata* treatment could be attributed to the radical scavenged activity of the *C. excavata*.

Transforming growth factor beta type appreciative1 (TGF-β1) plays an important role in wound healing as a regulators of the deposition of extracellular matrix (ECM), it enhances the gene transcription of collagen, inhibits the production of collagenase in charge of matrix breakdown, stimulates the metalloprotease inhibitor and collagen formation in vivo (Upadhyay et al., 2013; Diegelmann & Evans, 2004). The study also showed that MFCE treatment resulted in increased TGF-β expression in the skin wound. Among the effects of TGF- β is inhibiting lymphocyte infiltration (Eisenstein & Williams 2009; Kubiczkova et al., 2012). What this does is to facilitate wound repair while preventing development of immune response in the treated tissues. This observation is supported by the histopathological study. The skin treated with MFCE decreased inflammatory response, degeneration, showed granulation tissue. angiogenesis rate, collagen intensity, and maturation. Evidently, the polyphenols of MFCE had contributed to the anti-inflammatory effect. The use of *Eleutherine indica* in the treated wound accelerates wound healing through the effect of the stimulation of released TGF- β which is bound to the fibroblast receptors and initiates collagen production (Upadhyay et al., 2013). Similar results were produced with *Polygonum cuspidatum* in the treated wound. The immunohistochemistry results showed that TGF- β 1 increased significantly in the group treated with plant extract on day 1, 3 and 7 after wounding (Wu et al., 2012). These results clearly indicate that the effect of MFCE in accelerating wound healing may be due to the effect of the rapid movement to the proliferative phase and the shortening of the inflammatory phase in order to enhance wound contraction.

It is well established that collagen formation is very important for tissue repair and remodeling, as it is a principle component of connective tissue and provides a structural skeleton for the regeneration of tissue enhanced tensile strength of the healing wound (Ponrasu, et al., 2014). Using the Masson's trichrome staining method, it was shown in this study that at day 15, the granulation tissue in the treated skin showed comparatively more collagen deposition and fibroblasts, and higher angiogenesis than in the untreated control group as reported in previous studies that used different compounds and/or plants such as 3-(2-chlorophenyl)-1-phenyl-propenomein, ethanol extract of *Bacopa monniera* (Abu-Al-Basal, 2010; Udegbunam et al., 2012; Murthy et al., 2013). Antioxidant, anti-inflammatory, and antimicrobial effects of polyphenols are responsible for the acceleration of wound healing that is facilitated by rapid wound closure and increased rate of epidermal regeneration (Xin et al., 2008; Lai et al., 2011). The MFCE is thus shown to stimulate matrix deposition and the resolution of tissue at the wound site, these effects are attributed to the high phenolic content of MFCE (Sakong et al., 2011). The underlying mechanisms of topical application of MFCE in the wound

area which are caused by the chemotactic influence of the plant extract may attract, increase cellular proliferation and contribute significantly to the healing process.

The process of wound healing is regulated and executed by a complex signaling network involving numerous growth factors. VEGF mediates angiogenesis and granulation tissue formation during wound healing and is expressed by many cells, including leukocytes and endothelial cells (Atiba et al., 2011). Increased VEGF expression has been reported to be associated with accelerated wound healing in model animals, while decreased expression occurred in poor wound healing (Manoj & Muragan., 2012; Pessoa et al., 2012). In this study, MFCE-HD increased the number of VEGF-positive cells in the wound tissue sections, which is suggested to be associated with increase in the growth factor expression. However, it is not certain how MFCE stimulates the expression of VEGF. It is possible that the furanocoumarins such as angelicin of MFCE is responsible for the effect, since it can regulate inflammation via inhibition of the MAPK/NF-kB pathways (Liu et al., 2013a). The finding also corroborates well with our earlier results of histopathology that revealed a complete regeneration of the epidermis, high collagen deposition, angiogenesis. and epithelialization in the groups treated with methanol fraction of C. excavata compared to the untreated control group. Therefore, findings from this investigation suggests that, topical application of methanol fraction of C. excavata could have the possibility to accelerate angiogenesis through angiogenic marker.

During the inflammation phase, various inflammatory cells like neutrophils, macrophages, fibroblasts, and endothelial cells produce a sudden burst of ROS in the site of the wound, which providing signaling and defense against invading microorganisms. Overproduction of ROS may also hinder the rate of wound healing by causing damage to surrounding cells. In fact, H_2O_2 reportedly causes fatal injury to

fibroblasts and blocks cell signaling by inhibiting epidermal growth factor (EGF) receptor internalization, in addition to the inhibiting keratinocyte migration (Phan et al., 2001). Thus, tissues must be protected from oxidative damage via intracellular and extracellular antioxidants, which enhance the healing process by reducing the damage to tissue and cell structures. Plant extracts such as MFCE possessing antioxidant properties can prevent oxidative damage to cells induced by wound injury, thereby promote healing (Ilango & Chitra, 2010; Ram et al., 2014). In this study, increased SOD, GPx and CAT, and decreased LPO activities were observed from wound tissue homogenates of HD-MFCE-treated groups. The reduced SOD as well as GPx activity in the homogenate wound obtained from the vehicle control group has been attributed to enhanced manufacture of reactive oxygen which could decrease the action of antioxidant enzymes (El-Razek et al., 2012). Similar results were reported from previous studies using Plagiochasma appendiculatum Lehm, where enhanced wound healing rate was attributed to decreased activity of LPO and increased activities of SOD and CAT (Singh et al., 2006). The inhibition of ROS production and LPO promotes fibroblast proliferation, neovascularization, and the healing process of wounds (Murthy et al., 2013).

Inflammatory cells invade the wound tissue within a few hours after injury, and their expression is strongly up-regulated during the inflammatory phase of healing. These pro-inflammatory cytokines are potent inducers of matrix metalloproteinases (MMP) synthesis in fibroblasts and inflammatory cells, resulting in inhibits collagen formation and hydroxyproline production, which are essential for the final part of the proliferative phase, thus impaired in wound healing (Lobmann et al., 2002; Wojdasiewicz et al.,2014). It is likely that the balance between protease and inhibitor concentrations plays a crucial part in successful wound healing (McCarty & Percival, 2013). The high concentrations of pro-inflammatory cytokines and proteases act as a positive feedback

loop involving increase inflammatory cells and releasing cytokines, which stimulate wound cells to secrete proteases that destroy tissue and prevent the wound from closing (Guo & DiPietro, 2010). These cytokines particularly stimulate of keratinocyte, granulation tissue formation, fibroblast proliferation, synthesis of collagen, and breakdown of ECM. The expressions of pro-inflammatory cytokine IL-6 and TNF- α are strongly up-regulated during the inflammatory phase of healing. The IL-6 promotes inflammation through monocyte and neutrophil chemotaxis and activation. One of the means to facilitate a scar less wound repair is to subdue the inflammatory cytokine cascade in the wound (Liu et al., 2013b). IL-10 appears to influence the wound-healing environment by decreasing the expression of pro inflammatory/profibrotic mediators, resulting in decreased recruitment of inflammatory cells to the wound by inhibiting the expression of specific chemokines, including macrophage inflammatory protein- 1α (MIP-1 α) and monocyte chemoattractant protein-1 (MCP-1) (Peranteau et al., 2008). In addition IL-10 has been shown that is responsible for inhibiting the production of MMPs family of metalloproteinase (Wojdasiewicz et al., 2014). In the present study, MFCE treatment in fact revealed down regulation of pro-inflammatory cytokines (IL-6 and TNF- α) while simultaneously increased the anti-inflammatory cytokines IL-10 concentration present at the wound site. These findings suggested that C. excavata regulates anti-inflammatory and proinflammatory cytokines and ultimately the systemic immune pathways associated with inflammation, allowing for faster tissue repair. The significant changes in cytokines levels are in accordance with other studies that linked decrease in pro-inflammatory cytokines level during healing of chronic wounds and the reduction in inflammatory state of the wound (Kapoor et al., 2004; Rosique et al., 2015).

In addition during the process of wound healing, COX-2 that is reported to be predominantly expressed during the inflammation process, and found to reduce as the healing process starts. COX-2 is an inducible isoform of COX-2 and it is found to be rapidly induced in macrophages and endothelial cells by proinflammatory cytokines, may be responsible for the edema and vasodilation associated with inflammation (Muthukumar et al., 2014). Following gene expression analysis, down regulation of COX- 2 was observed from the wounds of rats treated with MFCE after 14 days, while there was upregulation in the wounds of untreated control. These findings were similar to the previous reports (Muthukumar et al., 2014; Yip et al., 2015), and it is believed that the reduction in the epidermal COX-2 plays an important physiological role in the wound healing.

Incidentally, *C. excavata* has a wide variety of secondary metabolites, such as coumarins, quercetin glycoside kaempferol and myricitin glucoside. All these metabolites displayed antioxidant, anti-inflammatory and antimicrobial effects (Calderón-Montaño et al., 2011; Krishnappa et al., 2014). Thus, the presence of these antioxidant, anti-inflammatory properties of MFCE, which in turn result from high phenolic content are proposed to be the prime mechanism in the facilitation of wound healing.

5.3.1. Analysis of BAX and BCL2 gene expression in healed wounds in rats

Apoptosis is the active process of eliminating cells, which plays a vital role in reducing inflammation by removing inflammatory cells and granulation tissue (Mutsaers et al., 1997). Neutrophils are the first cells that arrive at the wound site to eliminate microorganisms and initiate the inflammatory process. Neutrophils and other recruited inflammatory cells could generate ROS in the wound area. Overproduction of ROS at the wound site results in the induction of apoptosis of surrounding cells, including keratinocytes, through activation of apoptosis-related proteins such as Bax, Bad, and Bid were known to be pro apoptotic, whereas others, such as Bcl-2 and Bcl-xl

were shown to inhibit the apoptotic process (Cepero et al., 2001; Rouhollahi et al., 2015). Abnormal control of apoptosis in wound healing might be a crucial reason for delayed wound healing. BAX and BCL2 proteins play an important role in the apoptosis pathway in regulating wound healing. The expression of BAX protein increased similarly with increasing apoptosis and revealed a good compatible relationship with the wound healing process, whereas the expression of BCL2 protein declined apoptosis (Cui et al., 2003).

In this study, the Fold change $(2^{-\Delta\Delta CT})$ of the mRNA expression level of the BAX and BCL2 on the 14th day after wound, showed down-regulation in the expression of the BAX gene in the C. excavata treated group with fold change (3.25) and slight downregulation in the reference drug group with fold change (1.65) when compared to the calibrator group. On the other hand significant up-regulation occurred in the BCL2 genes in the C. excavata treated groups with fold change (2.75891) and slight upregulation in the reference drug group with fold change (1.33) when compared to the calibrator group. As the group with topical treatment of C. excavata at a dose of 200 mg/ml showed down regulation of the BAX gene expression, this may indicate that the wound-healing process was at a later stage; remodeling phase, while in the intrasite gel group it may be an indication that slight down apoptosis signals the end of the inflammatory phase of healing. This data also indicates that the apoptosis of granulation tissue begins at wound closure and decreases when the wound is healed or closed at about 95%. These findings confirm the results of a previous study by Rouhollahi et al., (2015) which suggested that a topical application of *Curcuma purpurascens* induced down regulation of BAX. Another study also showed that apoptosis and protein expression increased in both the inflammatory and proliferation stages of wound healing, but decreased during the remodeling stage. In addition, apoptosis plays a vital role to epidermal regeneration; decrease apoptosis-regulates the proliferation process or it is associated with accelerated terminal differentiation of keratinocytes in the regenerated epidermis (Nagata et al., 1999). Another study by Kane & Greenhalgh, (2000) which suggested that an inverse relationship existed between BCL2 and p53. The expression of BCL2 was increased to allow cellular proliferation to occur at the beginning of the injury, whereas p53 expression decreased. Another study reported that increased apoptosis in diabetic wound may be due to persistent hyperglycemia due to oxidative stress (Bhan et al., 2013).

5.4. Evaluation of gastric ulcer activity

Gastric ulcers are caused by imbalance between the intrinsic protective mechanism (growth factors, mucous and bicarbonates) and offensive endogenous (increased acid and pepsin secretions) and exogenous (stress, use of cigarettes and alcohol, *Helicobacter pylori* and non-steroidal anti-inflammatory drugs) factors in the mucosa (Yu et al., 2014).

Today, different approaches for treating peptic ulcer are used to reducing the gastric acid secretion or re-enforcing the mucosal defense mechanism by increasing the mucus production protecting the surface epithelial cells or interfering with the prostaglandin E2 synthesis (Sumbul et al., 2011). A more recent approach to this includes proton pump inhibitors, histamine H2 receptor antagonists, drugs affecting the mucosal barrier and prostaglandin analog (Al Asmari et al., 2016). The drugs currently available in the market show limited efficacy against gastric ulcer diseases and their long-term use is associated with disturbing side effects such as arrhythmias, impotence, gynecomastia, osteoporosis, constipation and hematopoietic changes (Awaad et al., 2014). Thus, there is an urgent need for new antiulcer drugs, which includes herbal drugs. The advantage of the natural products is that they have fewer side effects, more effective and relatively less expensive than the commercial drugs.

Ligation of the pylorus is one of the most common models to study the anti-secretory efficacy of drugs on gastric juice secretions and mucus secretion due to excess production and accumulation of gastric acid (Gyawali et al., 2013; Zakaria et al., 2015). The ligation of the pyloric end of the stomach, which triggers the activity of the partial cells H+,K+ -ATPase by stimulation of pressure receptors in the antral gastric mucosa, causes an increase in acid-pepsin accumulation in the stomach, which are responsible for producing ulcers through auto-digestion of gastric mucosa and breakdown of the gastric mucosal barrier (Schubert, 2011; Zakaria et al., 2015). Moreover, pyloric ligation disturbs cytoprotective factors such as prostaglandin, cytokines, membranes lipid peroxidation, and endogenous glutathione, resulting in inducing tissue injury (muthuraman & Sood, 2010). Thus, inhibition of gastric acid over secretion is one approach to prevent gastric injuries. To investigate the anti-secretory effect of MFCE the pyloric ligation used in the rat model. It was shown that MFCE reduced the volume and total acidity of the gastric juice. Thus, we considered that the antiulcer effect of MFCE may partially be through its anti-secretory effect of gastric juices. Similarly, the observed reduction in gastric acidity due to the reported suppression of the activity of hydrogen/potassium adenosine triphosphates (ATPase) in the gastric parietal cells, or the blocking of the action of histamine on these cells (Mitra & Kesisoglou, 2013).

Gastric mucus is the first line of defense secreted by the mucus neck cells. It comprises of mucin-type glycoproteins that serve as a barrier to back diffusion of hydrogen ions and reducing stomach wall friction during peristalsis and can be detected by amounts of Alcian Blue binding, (Zakaria et al., 2011; Zakaria et al., 2014). In this study, the ability of *C.excavata* to enhance the gastric mucus wall secretion proves that it could be one of the potential mechanisms of the gastro protective effect exerted by MFCE. Similar results were observed in previous studies using *Melastoma*

malabathricum leaves, which showed gastro protective ability by significantly increasing mucus production (Zakaria et al., 2015).

Polyphenols, like coumarins and flavonoids inhibit H+/K+ - ATPase, decrease histamine and stimulate prostaglandin biosynthesis, it was postulated that these mechanisms of action may be responsible for the antiulcer activity of flavonoids (Bighetti et al., 2005; Sakat et al., 2012; Sharath et al., 2014).

Consumption of excessive alcohol frequently produces gastric mucosal injuries, which may progress to gastric cancer. Thus, the administration of absolute ethanol by gavage has been used as reproducible method to induce gastric damage in rats and to investigate the gastro protective effects of medicinal plants (Adinortey et al., 2013; Antonisamy et al., 2014). According to Shanmukha et al. (2013), necrotizing agentsinduced gastric ulcers and the lesions were characterized by multiple haemorrhage red bands of different sizes along the longitudinal axis of the glandular stomach. This model is extensively used to screen drugs for cytoprotection. Ethanol rapidly penetrates into the gastric mucosa causes development of necrotic lesions in the gastric mucosa, damaged areas in the deep layers of the mucosa with necrosis by decreasing mucus and bicarbonate when it reaches the mucosa and results in the induce disturb the wall of blood vessels, inflammatory cell penetration, hypoxia and therefore overproductions of ROS. High concentrations of ROS cause reduction in the levels of major antioxidants, lipid peroxidation, and loss of epithelial cells in the stomach and cellular apoptosis that are classic features of alcohol damage (Vendramini-Costa et al., 2014; Li et al., 2013; Luo et al., 2013). As a model, ethanol-induced ulcer may not be appropriate or useful for the assessment of the usefulness of anti-secretory drugs or testing materials due to the absence of gastric acid secretion where acid secretion underlies the development of the ulcer.

Many studies have been done to investigate the gastro protection of different plants from ethanol induced gastric injuries, the protection being through the involvement of a different mechanism (Zheng et al., 2014; Miranda et al., 2015). However, in natural plant products there are several agents purported to be also effective in the treatment of gastric ulcers; among which are products from the *C. excavata* plant. Using the ethanolinduced rat gastric ulcer model to investigate MFCE ability in gastric protection and its possible mechanisms of actions, the pretreated groups with different doses of MFCE showed significant decrease in ulcer area and increased ulcer inhibition percentage, and this effect is attributable to the free radical scavenging properties and anti-inflammatory activity of the extract (Ishida et al., 2010). This in turn reduces neutrophil infiltration and strengthens the protection of gastric mucosa, resulting in an enhanced ulcer healing process. The data show that the MFCE did not present a dose-dependent response. Da Silva et al., (2013) stated that plant extracts can act as antioxidants or pro-oxidants, depending on the structure and composition of the different classes of polyphenols present in the extract.

Among the eminent gastric protection mechanisms is the gastric mucosa lining, which is known to compose of a jelly mixture of water and glycogen serves as the first line of defense to gastric lumen from the aggressive effects of necrotizing agents (Sidahmed et al., 2015). The efficiency of the mucosa membrane to protect the gastric walls highly depends on the equilibrium balance between the aggressive and the protective factors (Salga al., 2012). In our study, MFCE was shown to increase production of gastric mucus from mucous cells to form the first line of defense to protect the mucosal epithelial layer from damage by the ulcerogenic action of ethanol. In fact, treatment with the extract did not only increase mucus production by the gastric mucosal but also increased the pH of gastric juice that serve to curb development of gastric ulcers. Similar results were observed in previous studies (Halabi et al., 2014).

144

The contraction caused by ethanol in the circular muscles of the stomach can lead to mucosal compression at the site of the greatest mechanical stress, at the crests of mucosal folds leading to necrosis and ulceration (Mahmood et al., 2010). The enhanced flattening of the mucosa folds surface as a result of MFCE treatment could be attributed to circular muscle relaxations that resulted in more mucosal area exposure to the action of the MFCE at the same time reduce the volume of the gastric irritants in the rugal crest (Bardi et al., 2011). Thus, the mechanism of mucosa protection may be the anti-secretory activity of *C. excavata* leaves and its effect on enhancing mucin production.

The observed gastro-protective effect of these MFCE could be due to the restoration of the gastric mucosa by improving the continuous generation of COX-1, which catalyzes the rate-limiting step in the conversion of arachidonic acid to prostaglandins such as PGE2 (da Silva et al., 2013). Prostaglandins control gastric acid secretion, enhances gastric mucus and bicarbonate productions, promotes angiogenesis, inhibiting leukocyte recruitment, and therefore inhibit the free radical production and the inflammatory mediator release, thus play significant protective roles by conferring the gastric mucosal the facility to resist injury caused by noxious compounds (Da Silva et al., 2013; Balogun et al., 2014). The gastric mucosa with ulcers showed higher expression of PGE2 after MFCE treatment than those not treated. The result suggests that enhancement of PGE2 activity is another mechanism by which MFCE reduces ulceration in the gastric mucosa. Thus, it can be concluded that the gastroprotective effect is partly due to the coumarin and flavonoid in extract that is a stimulator of gastric prostaglandin and mucus production (Goel et al., 1997; Bighetti et al., 2005; Kumar et al., 2011; Sakat et al., 2012; Seigler et al., 2012). The findings of this study are supported by the results obtained through investigating the effect of Decalepis hamiltonii root polysaccharide as an antiulcer agent against ethanol induced gastric ulcer (Srikanta et al., 2010).

The histopathological evaluation of the gastric mucosa by H & E showed that MFCE inhibits leucocyte infiltration, hemorrhage, oedema and epithelial cell loss in rat gastric tissues with ethanol-induced gastric ulcer. Additionally, myriads of research have associated infiltration of neutrophils with the release of pro-inflammatory mediators (Olatunji et al., 2015). On the other hand, the released inflammatory mediators stimulate the production of potent ROS, which interfere with the healing process of gastric ulcers (Al-Rashdi et al., 2012). Therefore, the MFCE could probably play a role in inhibiting the infiltration of neutrophils in the gastric ulcer tissues, thus enhancing the healing process. In fact, the healing and lesion-inhibition effects of MFCE were suggested to be through its antioxidant and anti-inflammatory activities (Manosroi et al., 2004; Sakong et al., 2011). A similar notion of antiulcer drug activity by inhibiting neutrophil infiltration was reported (Salga et al., 2012; Wong et al., 2013).

The mucus layer lining of the gastric mucosa, acting as physical barrier against the aggressive effect of the gastric juice as well as reduces the damaging effect of oxidative stress. Periodic Acid–Schiff (PAS) staining is widely used in staining carbohydrates having high molecular weights, such as mucins, glycolipids, and glycoproteins (Kilcoyne et al., 2011). Thus, through using PAS the integrity of the mucus lining can easily be ascertained. Observation of PAS stained tissue sections showed a gradual increases mucus production in MFCE treated groups. Similar intense coloration was observed in the glandular epithelium of experimental ulcer tissues treated with different compounds (Devaraj et al., 2011; Salga et al., 2012). Therefore, the gastro protective effect of this plant might attribute to their activity in maintaining gastric mucus integrity.

The regulation of apoptosis in the tissues is complex, involving the activation of several apoptosis related proteins such as the Bcl-2 family, p53, and Fas and its ligand (FasL). Some members of the Bcl-2 family, such as Bax, Bad or Bid, are known to be proapoptosis, whereas the other members, such as Bcl-2 and Bcl-xl are antiapoptosis (Cepero et al., 2001). The susceptibility of cells to apoptosis depends on the balance between apoptosis-promoting and apoptosis-suppressing (Goel et al., 1997). It was found that apoptosis is regulated by ROS production. PGE2 was able to inhibit apoptosis and stimulate the expression of Bcl-2 (Alibek et al., 2014). One of the mechanisms in gastric ulceration is induction of apoptosis of the gastric mucosal cells (Rudin et al., 1997; Fornai et al., 2011). Thus, another means of inhibition of gastric ulceration is by the prevention of premature mucosal cell apoptosis. It was reported earlier that omperazol protect mucosa from imjuries by acting as potent antioxidant and antiapoptotic agent. Our results showed that MFCE caused down-regulation of BAX, a pro-apoptotic protein expression in the rat gastric tissues with ulcer. In untreated rats, the BAX protein is up-regulated. This suggests that MFCE retards premature cell death in the gastric mucosa, an effect that is strongly associated with the gastro protective property of the extract through anti-apoptotic process.

HSP-70 protein from the heat shock protein family is ubiquitously present in mammalian cells and this protein serves to defend cells from oxidative stress damage. In the cell, the HSP-70 preserves the functional structure of normal proteins while repairing or removing damaged proteins. In the gastric mucosa, ROS generation by ethanol impedes expression of HSP70 making the mucosal layer susceptible to ulcerative damage. HSP70 inductions protected rats against ethanol induced gastric mucosal damages, Thus HSP-70 may contribute in gastroprotective (Emily et al., 2012; Al Rashdi et al., 2012). However, treatment with MFCE increased expression of HSP70 in the gastric mucosa with ethanol-induced ulcer, which suggests that this effect is one

of the many facets of the gastro protective properties of MFCE. Similar findings have been reported by other authors using different compounds and plant extracts (Shichijo et al., 2003; Chen et al., 2005; Al Batran et al., 2013a; Al Batran et al., 2013b).

TGF- β is one of the most important growth factors that have a healing effect on gastric ulcer through induction of cell migration, cell growth and differentiation, and increased epithelial cells proliferation. In fact, TGF- β exists in three isoforms (1, 2, and 3), and is said to play a crucial role in complex growth regulatory activities, inflammation, and host immunity on virtually all types of cells (Chin et al., 2004; Clark & Coker, 1998; Wahl, 2002). As expected, in the ulcer group, a low expression of TGF- β was observed due to poor cellular proliferation. Conversely, there was an increased expression of TGF- β in the omeprazole treated and MFCE treated groups. These findings were similar to those reported by (Dhiyaaldeen et al., 2014) following administration of HPTP chalcone in rats having indomethacin induced ulcer, the immunoreactive effect of TGF- β enhances proliferation of epithelial cells in the gastric glands (Tanigawa et al., 2005; Walsh et al., 2008).

To further ascertain the gastroprotective property of MFCE, its effect on antioxidant enzymes and scavenging of free radicals from the oxidative stress induced by ethanol was determined. Reactive Oxygen Species (ROS) such as hydroxyl radical and superoxide radical anion are generated at a low rate in normal cellular metabolism and these oxidative radicals are scavenged by the endogenous antioxidant defense system of the body (Hiruma-Lima et al., 2006), namely the SOD, GPx, and CAT. Superoxide dismutase-mediated catalyse the superoxide radical anion (O2•–) into less noxious hydrogen peroxide (H₂O₂). This represents the first line of antioxidant defense by catalase through the transformation of H₂O₂ into water (La Casa et al., 2000; Tripathi & Chandra, 2009). Since the accumulation of ROS increases lipid peroxidation (LPO), the

LPO content in the gastric mucosa can be used as a biomarker for development of ROSmediated gastric mucosal lesions which has a critical role in the pathogenesis of gastric ulceration (Agarwal et al., 2012). ROS are reportedly capable of oxidizing cellular lipids that contain unsaturated fatty acids with more than one double bond are said to be more susceptible to the oxidizing action of free radicals (Alzoghaibi, 2013), resulting in the generation of MDA as one of the major secondary oxidation products. The generated MDA is shown to integrate to the cellular DNA, causing cytotoxic and mutagenic effects (Ayala et al., 2014). Thus, lipid peroxidation assay evaluates the oxidative degradation of lipids, which caused the disruption of cellular membranes. Thus, in pathological conditions like gastric ulceration, ROS may be produced in excess and disrupt the delicate balance between ROS and endogenous antioxidant enzymes (Agarwal et al., 2012). In this study, MFCE increased the activity of ROS scavenging enzymes SOD, GPx and CAT and decreased LPO contents in the gastric mucosa, further confirming that the methanolic fraction is gastro protective to the development of ethanol-induced ulcers by scavenge the free radicals resulting from the oxidative stress induced by ethanol through antioxidant mechanism. This scavenging ability of C. excavata comes from their high phenolic and flavonoid contents. In similar research, numerous medicinal plants have been employed for their antioxidant potential and investigated for their gastro protective abilities (Khan& Khan, 2013; Hussein et al., 2014).

One of the important findings in this study was that the level of pro-inflammatory factor TNF- α and IL-6 significantly decreased in groups pretreated with MFCE, which increased the level of anti-inflammatory cytokine IL-10 and TGF- β 1. These results indicate that the immunomodulatory effect of *C. excavata* might be affected through the inflammatory mediator. TNF- α being a major pro-inflammatory cytokine produced by macrophages attract neutrophils to the site of gastric mucosal injury as well as stimulate

inducible nitric oxide expression (Wei et al., 2003; Martin & Wallace, 2006). IL-6 is shown to mediate immune response and acute inflammation. IL-6 activates granulocytes, which in turn trigger a stress response in injured tissue (Kishimoto, 2005; Mei et al., 2012). The decreasing levels of TNF- α and IL-6 in pretreated group are a result of the immune suppressor effect on elevated TGF- β 1 and IL-10 (Taylor et al., 2006; Kamarazaman et al., 2012). Sabat et al. (2010) suggested that IL-10 has the ability to suppress the inflammatory response and inhibit TNF- α production. The results of our study showed that MFCE pre-treatment inhibited depletion of IL-10 and elevation of TNF- α and IL-6 level, which showed its anti-inflammatory effect. These activities are key in the prevention of gastric ulcer as reported earlier (Swarnakar et al., 2005; Zhou et al., 2014).

CHAPTER 6: CONCLUSION AND FURTHER WORK

The current study revealed the *in vitro* and *in vivo* bioactivity of *C. excavata* which includes: radical scavenging power, enhancement of cellular proliferation and migration of cells, toxicological implications, and gastro protective wound-healing potentials. The MFCE leaves contain pharmacologically active compounds which include: flavonoids and phenolic compounds, which are good antioxidants. In addition, remarkable antioxidant activities were demonstrated by the bioactive methanol fraction through radical scavenging and ferric reducing abilities as well the total phenolic and flavonoid contents. The MFCE leaves did not exhibit obvious toxicity at concentrations as high as 5000mg/kg body weight. Thus the *C. excavata* leaves have potent antioxidant activity and is presumed safe to be used orally as health-promoting product at low to moderate doses.

The methanolic fraction was effective in enhancing wound healing *in vitro* through enhanced proliferation and migration of fibroblast cells. Furthermore, topical applications of methanolic fraction for 14 days enhanced wound healing through overall decrease in wound size, improved wound contraction, reduced inflammation, angiogenesis, increased collagen synthesis and fibroblast synthesis, decreased activities of lipid peroxidase and increased SOD, CAT, and GPx activities, as well as modulation of inflammatory cytokines and inflammatory mediators such as TNF- α , IL-6, COX-2 and IL10. VEGF and TGF- β 1 expression in the MFCE-treated group were dramatically increased and higher than in the control.

In addition, this study also showed that the gastro-protective properties of MFCE are elicited through a number of mechanisms including, inhibition of gastric juice and enhancement of gastric mucus secretions, elevation of gastric juice pH, stimulation of antioxidant enzyme activity, PGE2, and up-regulation of HSP-70 and TGF-β protein

151

expressions in the gastric mucosa as well as increased secretion of interleukin IL-10 and decreased secretion of interleukin IL-6, and TNF- α . Based on the findings of this work, methanolic fraction has a potential to be developed into a therapeutic compound for the treatment of gastric ulcers. In either ulcer or wound healing, methanolic administration was showed downregulation of BCL2 associated X protein (BAX); suggest that MFCE provoked apoptosis that is responsible for protecting gastric walls and skin from damage. Our results indicate that *C. excavata* possess anti-inflammatory potential, wound healing activity and gastro protective effect.

The results obtained from this study suggest that *C. excavata* can be used as source of antioxidants and supplement in nutritional and pharmaceutical industry, especially the methanol fraction can serve as a potential source of drug discovery for treatment of wounds and gastritis conditions. Further studies are needed to confirm the potential properties for the active constituents identified in this study such as bioavailability, pharmacokinetics and other pharmacological evaluations.

Recommendations for future research

- Similar study should be conducted using other wound models such as incision; dead space wound model to determine the effectiveness of this fraction in other models of wound healing in diabetic condition.
- There is need to further determine the major active compounds in MFCE so the full potential of the extract as a therapeutic compound can be realized.
- Further studies are needed to understand and validate on how this plant can contribute to maintenance of human physiological health, particularly its stability and bioavailability in human

• Additional studies are essential to confirm the potential properties for active constituents identified in this study such as bioavailability, pharmacokinetics and other pharmacological evaluations.

153

REFERENCES

- Abdel-Salam, O. M. E., Czimmer, J., Debreceni, A., Szolcsanyi, J., & Mo'zsik, G. (2001). Gastric mucosal integrity: gastric mucosal blood flow and microcirculation. An overview. *Journal of Physiology*, 95(1), 105–127.
- Abdulla, M. A., Fard, A. A., Sabaratnam, V., Wong, K. H., Kuppusamy, U. R., Abdullah, N., & Ismail, S. (2011). Potential activity of aqueous extract of culinary-medicinal lion's mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) in accelerating wound healing in rats. *International Journal of Medicinal Mushrooms*, 13(1), 33-39.
- Abrahamian, F. M., & Goldstein, E. J. (2011). Microbiology of animal bite wound infections. *Clinical microbiology reviews*, 24(2), 231-246.
- Abu-Al-Basal, M. A. (2010). Healing potential of *Rosmarinus officinalis* L. on fullthickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. *Journal of Ethnopharmacology*, 131(2), 443-450.
- Adedapo, A. A., Jimoh, F. O., Koduru, S., Afolayan, A. J., & Masika, P. J. (2008). Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of *Calpurnia aurea*. *BMC Complementary and Alternative Medicine*, 8(1), 53.
- Adetutu, A. (2009). Evaluation of wound healing activity of selected Nigerian plants (Doctoral dissertation, University of East London).
- Adinortey, M. B., Ansah, C., Galyuon, I., & Nyarko, A. (2013). In vivo models used for evaluation of potential antigastroduodenal ulcer agents. *Ulcers*, 2013, 12 pages.
- Adrian, A., & Flemström, G. (2005). Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. American Journal of Physiology-Cell Physiology, 288(1), C1-C19.
- Agarwal, P., Singh, A., Gaurav, K., Goel, S., Khanna, H., & Goel, R. (2009). Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats. *Indian Journal of Experimental Biology*, 47(1), 32-40.
- Agarwal, A., Aponte-Mellado, A., Premkumar, B. J., Shaman, A., & Gupta, S. (2012). The effects of oxidative stress on female reproduction: a review. *Reproductive Biology and Endocrinology*, 10(49), 1-31.
- Agoramoorthy, G., Chandrasekaran, M., Venkatesalu, V., & Hsu, M. J. (2007). Antibacterial and antifungal activities of fatty acid methyl esters of the blind-youreye mangrove from India. *Brazilian Journal of Microbiology*, *38*(4), 739-742.
- Al-Abd, N. M., Nor, Z. M., Mansor, M., Azhar, F., Hasan, M. S., & Kassim, M. (2015). Antioxidant, antibacterial activity, and phytochemical characterization of *Melaleuca cajuputi* extract. *BMC Complementary and Alternative Medicine*, 15(1), 385-398.

- Alam, S., Asad, M., Asdaq, S. M. B., Prasad, V. S. (2009). Antiulcer activity of methanolic extract of *Momordica charantia* L. in rats. *Journal of Ethnopharmacology*, 123(3), 464-469.
- Al-Amin, M., Sultana, G. N. N., & Hossain, C. F. (2012). Antiulcer principle from Zingiber montanum. Journal of Ethnopharmacology, 141(1), 57-60.
- Al Asmari, A., Al Shahrani, H., Al Masri, N., Al Faraidi, A., Elfaki, I., & Arshaduddin, M. (2016). Vanillin abrogates ethanol induced gastric injury in rats via modulation of gastric secretion, oxidative stress and inflammation. *Toxicology Reports*, 3, 105-113.
- Al Batran, R., Al-Bayaty, F., Ameen Abdulla, M., Al-Obaidi, J., Mazen, M., Hajrezaei, M., & Talaee, S. (2013a). Gastroprotective effects of *Corchorus olitorius* leaf extract against ethanol-induced gastric mucosal hemorrhagic lesions in rats. *Journal of Gastroenterology and Hepatology*, 28(8), 1321-1329.
- Al Batran, R., Al-Bayaty, F., Al-Obaidi, M. M. J., Abdualkader, A. M., Hadi, H. A., Ali, H. M., & Abdulla, M. A. (2013b). In vivo antioxidant and antiulcer activity of *Parkia speciosa* ethanolic leaf extract against ethanol-induced gastric ulcer in rats. *PLoS ONE*, 8(5): e64751. doi:10.1371/journal.pone.0064751.
- Alhaider, A. A., Al-Moqh, I. A., Mossa, J. S., Al-Soohaibani, M. O., & Rafatullah, S. (2007). Aqueous suspension of anise" Pimpinella and /sum" protects rats against chemically induced gastric ulcers. *World Journal of Gastroenterology*, 13(7), 1112-1118.
- Ali, A. M., Ismail, N. H., Mackeen, M. M., Yazan, L. S., Mohamed, S. M., Ho, A. S. H., & Lajis, N. H. (2000). Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of *Morinda elliptica*. *Journal of Pharmaceutical Biology*, 38(4), 298-301.
- Alibek, K., Irving, S., Sautbayeva, Z., Kakpenova, A., Bekmurzayeva, A., Baiken, Y., Imangali, N., Shaimerdenova, M., Mektepbayeva, D., Balabiyev, A., & Chinybayeva, A. (2014). Disruption of Bcl-2 and Bcl-xL by viral proteins as a possible cause of cancer. *Infectious Agents and Cancer*, 9(1), 44-57.
- Aljady, A. M. A. (2003). Biochemical study on the wound healing property of honey PHD thesis. University of Malaya, Kuala lumpure.
- Allen, A., & Garner, A. (1980). Mucus and bicarbonate secretion in the stomach and their possible role in mucosal protection. *Gut*, 21(3), 249-262.
- Allen, K. D., & Green, H. T. (1987). Hospital outbreak of multi-resistant Acinetobacter anitratus: an airborne mode of spread?. *Journal of Hospital Infection*, 9(2), 110-119.
- Allen, A., Flemstrom, G., Garner, A., Kivilaakso, E. (1993). Gastroduodenal mucosal protection. *Physiological Reviews*, 73(4), 823-857.

- Allen, A., & Flemström, G. (2005). Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. *American Journal of Physiology-Cell Physiology*, 288(1), C1- C19.
- Al Mofleh, I., Alhaider, A., Mossa, J., Al-Sohaibani, M., Al-Yahya, M., Rafatullah, S., & Shaik, S. (2008). Gastroprotective effect of an aqueous suspension of black cumin *Nigella sativa* on necrotizing agents-induced gastric injury in experimental animals. *Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association*, 14(3), 128-134.
- AlRashdi, A. S., Salama, S. M., Alkiyumi, S. S., Abdulla, M. A., Hadi, A. H. A., Abdelwahab, S. I., Taha, M. M., Hussiani, J., & Asykin, N. (2012). Mechanisms of gastroprotective effects of ethanolic leaf extract of *Jasminum sambac* against HCl/Ethanol-induced gastric mucosal injury in rats. *Evidence-Based Complementary and Alternative Medicine, vol 2012*, 15 pages.
- Altaf, R., Asmawi, M. Z. B., Dewa, A., Sadikun, A., & Umar, M. I. (2013). Phytochemistry and medicinal properties of *Phaleria macrocarpa* (Scheff.) Boerl extracts. *Pharmacognosy Reviews*, 7(13), 73-80.
- Aly, A., Gréen, K., & Johansson, C. (1985). Acid instillation increases gastric luminal prostaglandin E2 output in man. *Acta Medica Scandinavica*, *218*(5), 505-510.
- Alzoghaibi, M. A. (2013). Concepts of oxidative stress and antioxidant defense in Crohn's disease. *World Journal of Gastroenterology: WJG*, 19(39), 6540–6547.
- Antonisamy, P., Subash-Babu, P., Alshatwi, A. A., Aravinthan, A., Ignacimuthu, S., Choi, K. C., & Kim, J. H. (2014). Gastroprotective effect of nymphayol isolated from Nymphaea stellata (Willd.) flowers: Contribution of antioxidant, antiinflammatory and anti-apoptotic activities. Chemico-Biological Interactions, 224, 157-163.
- Antonisamy, P., Duraipandiyan, V., Aravinthan, A., Al-Dhabi, N. A., Ignacimuthu, S., Choi, K. C., & Kim, J. H. (2015). Protective effects of friedelin isolated from *Azima tetracantha* Lam. against ethanol-induced gastric ulcer in rats and possible underlying mechanisms. *European Journal of Pharmacology*, 750, 167-175.
- Arbab, I. A., Abdul, A. B., Aspollah, M., Abdullah, R., Abdelwahab, S. I., Mohan, S., & Abdelmageed, A. H. A. (2011). *Clausena excavata* Burm. F. (Rutaceae): A review of its traditional uses, pharmacological and phytochemical properties. *Journal of Medicinal Plants Research*, 5(33), 7177-7184.
- Arbab, I. A., Abdul, A. B., Aspollah, M., Abdullah, R., Abdelwahab, S. I., & Ali, L. Z. (2012). A review of traditional uses, phytochemical and pharmacological aspects of selected members of Clausena genus (Rutaceae). *Journal of Medicinal Plants Research*, 6(38), 5107-5118.
- Ashafa, A. O. T., Yakubu, M. T., Grierson, D. S., & Afolayan, A. J. (2009). Toxicological evaluation of the aqueous extract of *Felicia muricata* Thunb. Leaves in Wistar rats. *African Journal of Biotechnology*, 8(6), 949-954.

- Atala, A., Irvine, D. J., Moses, M., & Shaunak, S. (2010). Wound Healing Versus Regeneration: Role of the Tissue Environment in Regenerative Medicine. MRS bulletin. 35(08), 597-606.
- Atay, S., Tarnawski, A. S., & Dubois, A. (2000). Eicosanoids and the stomach. *Prostaglandins & Other Lipid Mediators, 61*(3), 105-124.
- Ateba, S. B., Simo, R. V., Mbanya, J. C., Krenn, L., & Njamen, D. (2014). Safety profile and gender specific differences of a methanol extract of *Eriosema laurentii* (Leguminosae) in acute and subchronic (28 days) oral toxicity studies in Wistar rats. *Food and Chemical Toxicology*, 65, 27-32.
- Atherton, J. C. (2006). The pathogenesis of *H. pylori* induced gastroduodenal diseases. *Anuual. Review of Pathology-Mechanisms of Disease, 1*, 63-96.
- Atiba, A., Ueno, H., & Uzuka, Y. (2011). The effect of *aloe vera* oral administration on cutaneous wound healing in type 2 diabetic rats. *Journal of Veterinary Medical Science*, 73(5), 583-589.
- Awaad, A. S., Al-Rifai, A. A., El-Meligy, R. M., Alafeefy, A. M., & Alqasoumi, S. I. (2014). Antiulcerogenic Activity of Convolvulus Species. *Austin Chromatogr*, 1(4), 9.
- Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2nonenal. Oxidative Medicine and Cellular Longevity, 2014, 31 pages.
- Ayob, Z., Mohd Bohari, S. P., Abd Samad, A., & Jamil, S. (2014). Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts. Evidence-Based Complementary and Alternative Medicine, 2014, 12 pages.
- Bagchi, D., Carryl, O., Tran, M., Krohn, R., Bagchi, D., Garg, A., Bagchi, M., Mitra, S., & Stohs, S. J. (1998). Stress, diet and alcohol induced oxidative gastrointestinal mucosal injury in rats and protection by bismuth subsalicylate. *Journal of Applied Toxicology*, 18(1), 3-13.
- Balogun, M. E., Nwachukwu, D., Onwe, P. E., & Folawiyo, M. A. (2014). Gastric acid anti-secretory effects of aqueous leaf extract of *Nauclea latifolia* (Rubiaceae) in rats. *The Journal of Psychopharmacology*, *3*(6), 389-394.
- Bardi, D. A. A., Khan, M. A. S, Sabri, S. Z., Kadir, F. A., Mahmood, A. A., Zahra, A. A., Al-Hanhana, N., & Al-Magrami, A. (2011). Anti-ulcerogenic activity of *Typhonium flagelliforme* aqueous leaf extract against ethanol-induced gastric mucosal injury in rats. *Scientific Research and Essays*, 6(15), 3232-3239.
- Barkun, A., & Leontiadis, G. (2010). Systematic review of the symptom burden, quality of life impairment and costs associated with peptic ulcer disease. *The American Journal of Medicine*, *123*(4), 358-366.
- Barnard, J. A., & Mchugh, K. M. (2006). Growth factors in the gastrointestinal tract. *Physiology of the Gastrointestinal Tract, 1,* 183-221.

- Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., Tomic-Canic, M. (2008). Growth factors and cytokines in wound healing. *Wound Repair and Regeneration*, 16(5), 585-601.
- Basso, F. G., Pansani, T. N., Turrioni, A. P. S., Bagnato, V. S., Hebling, J., & de Souza Costa, C. A. (2012). In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. *International Journal of Dentistry*, 2012, 6 pages.
- Bauer, A. W., Kirby, W., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. *American Journal of Clinical Pathology*, 45(4), 493-496.
- Baum, C. L., & Arpey, C. J. (2005). Normal cutaneous wound healing: clinical correlation with cellular and molecular events. *Dermatologic Surgery*, 31(6), 674-686.
- Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. *Analytical Biochemistry*, 239(1), 70-76.
- Bernd, V., Gotz, E., Shonleben, K., & langhans, P. (1978). [Stress-induced peptic ulcer; pathogenesis, clinical features, prevention and treatment (author's transl)]. *Praktische Anasthesie, Wiederbelebung und Intensivtherapie 13*(2), 108-122.
- Bhan, S., Mitra, R., Arya, A. K., Pandey, H. P., & Tripathi, K. (2013). A study on evaluation of apoptosis and expression of bcl-2-related marker in wound healing of streptozotocin-induced diabetic rats. *ISRN Dermatology*, 2013, 6pages.
- Bighetti, A. E., Antonio, M. A., Kohn, L. K., Rehder, V. L. G., Foglio, M. A., Possenti, A., Vilela, L., & Carvalho, J. E. (2005). Antiulcerogenic activity of a crude hydroalcoholic extract and coumarin isolated from *Mikania laevigata* Schultz Bip. *Phytomedicine*, 12(1), 72-77.
- Bishop, A. (2008). Role of oxygen in wound healing. Journal of Wound Care, 17(9), 399-402.
- Biswas, B., Rogers, K., McLaughlin, F., Daniels, D., & Yadav, A. (2013). Antimicrobial activities of leaf extracts of guava (*Psidium guajava* L.) on two gram-negative and gram-positive bacteria. *International Journal of Microbiology*, 2013, 7pages.
- Blumenthal, R. D., Lew, W., Reising, A., Soyne, D., Osorio, L., Ying, Z., & Goldenberg, D. M. (2000). Anti-oxidant vitamins reduce normal tissue toxicity induced by radio-immunotherapy. *International Journal of Cancer*, 86(2), 276-280.
- Boateng, J. S., Matthews, K. H., Stevens, H. N., & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: a review. *Journal of Pharmaceutical Sciences*, 97(8), 2892-2923.

- Borkow, G., Gabbay, J., & Zatcoff, R. C. (2008). Could chronic wounds not heal due to too low local copper levels? *Medical hypotheses*, 70(3), 610-613.
- Borrelli, F., & Izzo, A. A. (2000). The plant kingdom as a source of anti-ulcer remedies. *Phytotherapy Research, 14*(8), 581-591.
- Bosco, M. C., Puppo, M., Blengio, F., Fraone, T., Cappello, P., Giovarelli, M., & Varesio, L. (2008). Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. *Immunobiology*, 213(9), 733–749.
- Bradford, M.M. (1976). Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 72, 248-254.
- Brambilla, D., Mancuso, C., Scuderi, M. R., Bosco, P., Cantarella, G., Lempereur, L., Di Benedetto, G., Pezzino, S., & Bernardini, R. (2008). The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. *Nutrition Journal*, 7(1), 29-37.
- Brew, K., Dinakarpandian, D., & Nagase, H. (2000). Tissue inhibitors of metalloproteinases: evolution, structure and function. *Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology*, 1477(1), 267-283.
- Brown, K. L., & Phillips, T. J. (2010). Nutrition and wound healing. *Clinics in Dermatology*, 28(4), 432-439.
- Bullard, K. M., Lund, L., Mudgett, J. S., Mellin, T. N., Hunt, T. K., Murphy, B., Ronan, J., Werb, Z., & Banda, M. J. (1999). Impaired wound contraction in stromelysin-1–deficient mice. *Annals of Surgery*, 230(2), 260-265.
- Bytzer, P., & Teglbjærg, P. S. (2001). Helicobacter pylori-negative duodenal ulcers: prevalence, clinical characteristics, and prognosis--results from a randomized trial with 2-year follow-up. *The American journal of gastroenterology*, 96(5), 1409-1416.
- Calderon-Montano, J. M., Burgos-Morón, E., Pérez-Guerrero, C., & López-Lázaro, M. (2011). A review on the dietary flavonoid kaempferol. *Mini reviews in Medicinal Chemistry*, 11(4), 298-344.
- Callison, D. A., Bianchi, R. G., Driskill, D. R. (1976). Gastric anti-secretory effects of E prostaglandins in rhesus monkeys. *The American Journal of Digestive Diseases*, 21(12), 1020-1028.
- Cepero, E., Johnson, B. W., & Boise, L. H. (2001). Cloning and analysis of Bcl-2 family genes. *Methods in Cell Biology*, 66, 29-48.
- Chan, F. K. L., & Leung, W. K. (2002). Peptic-ulcer disease. Lancet, 360, 933-941.
- Chen, S. H., Liang, Y. C., Chao, J. C., Tsai, L. H., Chang, C. C., Wang, C. C., & Pan, S. (2005). Protective effects of *Ginkgo biloba* extract on the ethanol-induced gastric ulcer in rats. *World Journal of Gastroenterology*, 11(24), 3746-3750.

- Chin, D., Boyle, G. M., Parsons, P. G., & Coman, W. B. (2004). What is transforming growth factor-beta (TGF-β) ? *British Journal of Plastic Surgery*, *57*(3), 215-221.
- Chisholm, M. A. (1998). Pharmacotherapy of Duodenal and Gastric Ulcerations. *American Journal of Pharmaceutical Education*, 62(2), 196-203.
- Cines, D. B., Pollak, E. S., Buck, C. A., Loscalzo, J., Zimmerman, G. A., McEver, R. P., Pober, J. S., Wick, T. M., Konkle, B. A., Schwartz, B. S., Barnathan, E. S., McCrae, K. R., Hug, B. A., Schmidt, A. M., & Stern, D. M. (1998). Endothelial cells in physiology and in the pathophysiology of vascular disorders. *Blood*, *91*(10), 3527-3561.
- Clark, D. A., & Coker, R. (1998). Molecules in focus transforming growth factor-beta (TGF-β). *The International Journal of Biochemistry & Cell Biology*, *30*(3), 293-298.
- Clericuzio, M., Tinello, S., Burlando, B., Ranzato, E., Martinotti, S., Cornara, L., & La Rocca, A. (2012). Flavonoid oligoglycosides from *Ophioglossum vulgatum* L. having wound healing properties. *Planta Medica-Natural Products and Medicinal Plant Research*, 78(15), 1639-1644.
- Collins, T. J. (2007) ImageJ for microscopy. Biotechniques, 43(1), 25-30.
- Cui, Y., Xia, G., Fu, X., Yang, H., Peng, R., Zhang, Y., et al. (2003). Relationship between expression of Bax and Bcl-2 proteins and apoptosis in radiation compound wound healing of rats. *Chinese Journal of Traumatology= Zhonghua Chuang Shang Za Zhi/Chinese Medical Association*, 6(3), 135-138.
- Dahlbäck, B. (2005). Blood coagulation and its regulation by anticoagulant pathways: genetic pathogenesis of bleeding and thrombotic diseases. *Journal of Internal Medicine*, 257(3), 209-223.
- da Silva, L. M., Allemand, A., Mendes, D. A. G., dos Santos, A. C., André, E., de Souza, L. M., Cipriani, T. R., Dartora, N., Marques, M. C., Baggio, C. H., & Werner, M. F. (2013). Ethanolic extract of roots from *Arctium lappa* L. accelerates the healing of acetic acid-induced gastric ulcer in rats: Involvement of the antioxidant system. *Food and Chemical Toxicology*, *51*, 179-187.
- David, K., & Heather, E. (2000). The Basic principles of wound healing. Ostomy Wound Management, 46(11), 1-16.
- Davies, C. E., Turton, G., Woolfrey, G., Elley, R., & Taylor, M. (2005). Exploring debridement options for chronic venous leg ulcers. *British journal of nursing*, 14(7), 393-397.
- Descola, P. (1996). Nature and Society: *anthropological Perspectives*. In: London: Routledge, p529-544.
- de Souza Almeida, E. S. (2011). Pharmacological mechanisms underlying the anti-ulcer activity of methanol extract and canthin-6-one of Simaba ferruginea A. St-Hil. in animal models. *Journal of ethnopharmacology*.

- Devaraj, V. C., Krishna, B. G., Viswanatha, G. L., Prasad, V. S., & Babu, S. V. (2011). Protective effect of leaves of *Raphinus sativus* Linn on experimentally induced gastric ulcers in rats. *Saudi Pharmaceutical Journal*, 19 (3), 171-176.
- Dey, I., Lejeune, M., & Chadee, K. (2006). Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. *British Journal of Pharmacology*, 149(6), 611-623.
- Dhiyaaldeen, S. M., Amin, Z. A., Darvish, P. H., Mustafa, I. F., Jamil, M. M., Rouhollahi, E., & Abdulla, M. A. (2014). Protective effects of (1-(4-hydroxyphenyl)-3-m-tolyl-propenone chalcone in indomethacin-induced gastric erosive damage in rats. *BMC Veterinary Research*, 10(1), 961.
- Diegelmann, R. F., & Evans, M. C. (2004). Wound healing: an overview of acute, fibrotic and delayed healing. *Frontiers in Bioscience* 9(1), 283-289.
- Dorai, A. A. (2012). Wound care with traditional, complementary and alternative medicine. *Indian Journal of Plastic Surgery*, 45(2), 418-424.
- Dryden, S. V., Shoemaker, W. G., & Kim, J., H. (2013). Wound Management and Nutrition for Optimal Wound Healing. *Atlas of Oral and Maxillofacial Surgery Clinics of North America*, 21(1), 37-47.
- Ecobichon, D. J. (1997). The basis of toxicity testing. CRC press.
- Eid, S. M., Boueiz, A., Paranji, S., Mativo, C., BA, R. L., & Abougergi, M. S. (2010). Patterns and predictors of proton pump inhibitor overuse among academic and nonacademic hospitalists. *Internal Medicine*, 49(23), 2561-2568.
- Eisenstein, E. M., & Williams, C. B. (2009). The Treg/Th17 cell balance: a new paradigm for autoimmunity. *Pediatric Research*, 65, 26R-31R.
- Ekeanyanwu, R. C., & Njoku, O. U. (2014). Acute and subacute oral toxicity study on the flavonoid rich fraction of *Monodora tenuifolia* seed in albino rats. *Asian Pacific Journal of Tropical Biomedicine*, 4(3), 194-202.
- El-Razek, F. A., El-Metwally, E., Shehab, G., Hassan, A., & Gomaa, A. (2012). Effects of cactus pear (*Opuntia ficus indica*) juice on oxidative stress in diabetic cataract rats. *Saudi Journal for Health Sciences, 1*(1), 23-29.
- Emily, H. Y. C., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T. & Korsmeyer, S. J. (2001). BCL-2, BCL-X L sequesters BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. *Molecular Cell*, 8(3), 705-711.
- Enoch, S., and Price, P. (2004). Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the aged. *World Wide Wounds*, 1-16.
- Fornai, M., Antonioli, L., Colucci, R., Tuccori, M., & Blandizzi, C. (2011). Pathophysiology of Gastric Ulcer Development and Healing: Molecular Mechanisms and Novel Therapeutic Options. *Peptic Ulcer Disease*, 113.

- Fox, P. T., Perlmutter, J. S., & Raichle, M. E. (1985). A stereotactic method of anatomical localization for positron emission tomography. *Journal of Computer Assisted Tomography*, 9(1), 141-153.
- Frey, M. R., Dise, R. S., Edelblum, K. L., & Polk, D. B. (2006). P 38 kinase regulates epidermal growth factor receptor downregulation and cellular migration. *The EMBO Journal*, 25(24), 5683-5692.
- Fujita, N., Sakaguchi, I., Kobayashi, H., Ikeda, N., Kato, Y., Minamino, M., & Ishii, M. (2003). An extract of the root of *Lithospermun erythrorhison* accelerates wound healing in diabetic mice. *Biological and Pharmaceutical Bulletin*, 26(3), 329-335.
- Gabrie, A. (2015). Wound Healing and Growth Factors. <u>http://emedicine.medscape.com/article/1298196-overview</u>.
- Gangwar, M., Gautam, M. K., Ghildiyal, S., Nath, G., & Goel, R. K. (2015). Mallotus philippinensis Muell. Arg fruit glandular hairs extract promotes wound healing on different wound model in rats. BMC Complementary and Alternative Medicine, 15(1), 123.
- Gawronska-Kozak, B. (2011). Scarless skin wound healing in FOXN1 deficient (nude) mice is associated with distinctive matrix metalloproteinase expression. *Matrix Biology*, *30*(4), 290-300.
- Geethalakshmi, R., Sakravarthi, C., Kritika, T., Arul Kirubakaran, M., & Sarada, D. V. L. (2013). Evaluation of antioxidant and wound healing potentials of *Sphaeranthus amaranthoides* Burm. f. *BioMed Research International*, 2013, 7 pages.
- Generalic, I., Skroza, D., Ljubenkov, I., Katalinic, A., Burc'ul, F., & Katalinic, V. (2011). Influence of the phenophase on the phenolic profile and antioxidant properties of Dalmatian sage. *Food Chemistry*, 127(2), 427–433.
- Gimlette, J. D., & Thomson, H. W. (1939). A Dictionary of Malayan Medicine. A *Dictionary of Malayan Medicine*, p: 1287-1299.
- Goel, R. K., Maiti, R. N., Manickam, M., & Ray, A. B. (1997). Antiulcer activity of naturally occurring pyrano-coumarin and isocoumarins and their effect on prostanoid synthesis using human colonic mucosa. *Indian Journal of Experimental Biology*, *35*(10), 1080-1083.
- Gosain, A., & Dipietro, L. A. (2004). Aging and wound healing. *World Journal of Surgery*, 28(3), 321-326.
- Griendling, K. K., Sorescu, D., Lassègue, B., & Ushio-Fukai, M. (2000). Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. *Arteriosclerosis, Thrombosis,* and Vascular Biology, 20 (10), 2175-2183.
- Grieve, C.M., Scora, R.W. (1980). Flavonoid distribution in the Aurantioideae (Rutaceae). *Journal of Systematic Botany*, *5*(1), 39-53.

- Grisham, M. B., Von Ritter, C., Smith, B. F., Lamont, J. T., & Granger, D. N. (1987). Interaction between oxygen radicals and gastric mucin. *American Journal of Physiology-Gastrointestinal and Liver Physiology*, 253(1), G93-G96.
- Guler, E., Barlas, F. B., Yavuz, M., Demir, B., Gumus, Z. P., Baspinar, Y., & Timur, S. (2014). Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations. *Colloids and Surfaces B: Biointerfaces, 121*, 299-306.
- Guntupalli, C., Kumar, G.S., Kumar, A.S., & Tubati, T. (2012). Evaluation of antioxidant activity of the methanolic leaf extract of *Clausena excavata* Burm. f. (Rutaceae) using the lipid peroxidation model. *Pharmacognosy Journal*, 4(34), 22–25.
- Guntupalli, C., Ramaiah, M., & Kumar, G. S. (2013). RP-HPLC analysis and antimicrobial screening of *Clausena excavata* burm.F. (rutaceae). *International Journal of Phytotherapy*, 3(2), 91–97.
- Guo, S., & Dipietro, L. A. (2010). Factors affecting wound healing. *Journal of Dental Research*, 89(3), 219-229.
- Gupta, V. K., & Sharma, S., Kumar (2006). Plants as natural antioxidants. *Natural Product Radiance*, 5(4), 326-334.
- Gupta, M., Mazumder, U. K., Manikandan, L., Bhattacharya, S., Senthilkumar, G. P., & Suresh, R. (2005). Anti-ulcer activity of ethanol extract of *Terminaliapallida Brandis*. In Swiss albino rats. *Journal of Ethnopharmacology*, 97(2), 405-408.
- Gyawali, S., Khan, G. M., Lamichane, S., Gautam, J., Ghimire, S., Adhikari, R., & Lamsal, R. (2013). Evaluation of Anti-Secretory and Anti-Ulcerogenic Activities of Avipattikar Churna on the Peptic Ulcers in Experimental Rats. Journal of Clinical and Diagnostic research: JCDR, 7(6), 1135–1139.
- Hajiaghaalipour, F., Kanthimathi, M. S., Abdulla, M. A., & Sanusi, J. (2013). The effect of Camellia sinensis on wound healing potential in an animal model. *Evidence-Based Complementary and Alternative Medicine*, 2013, 7 pages.
- Halabi, M. F., Shakir, R. M., Bardi, D. A., Al-Wajeeh, N. S., Ablat, A., Hassandarvish,
 P., Hajrezaie, M., Norazit, A., & Abdulla, M. A. (2014). Gastroprotective activity of ethyl-4-[(3, 5-di-tert-butyl-2-hydroxybenzylidene) amino] benzoate against ethanol-induced gastric mucosal ulcer in rats. *PloS One.* 9(5), e95908.
- Halliwell, B., & Gutteridge, J. M. (1999). *Free radicals in biology and medicine* (Vol. 3, pp. 1-543). Oxford: Oxford university press.
- Han, J., Hughes, M., & Cherry, G. (2004). Effect of glucose concentration on the growth of normal human dermal fibroblasts in vitro. *Journal of Wound Care*, 13(4), 150-153.
- Hardy, M. A. (1989). The biology of scar formation. *Physical Therapy*, 69(12), 1014-1024.

- Haroon, Z. A., Raleigh, J. A., Greenberg, C. S., & Dewhirst, M. W. (2000). Early wound healing exhibits cytokine surge without evidence of hypoxia. *Annals of Surgery*, 231(1), 137-147.
- Hayden, D. M., Forsyth, C., & Keshavarzian, A. (2011). The role of matrix metalloproteinases in intestinal epithelial wound healing during normal and inflammatory states. *Journal of Surgical Research*, *168*(2), 315-324.
- He, H., Zhu, W., Shen, Y., Yang, X., Zuo, G., & Hao, X. (2000). Flavonoid glycosides from *Clausena excavata*. Acta Botanica Yunnanica, 23(2), 256-260.
- Hellmich, M. R., & Evers, B. M. (2006). Regulation of Gastrointestinal Normal Cell Growth. *The Physiology of the Gastrointestinal Tract, 1*, 435-453.
- Hentschel, E., Brandstatter, G., Dragosics, B., Hirschl, A. M., Nemec, H., Schutze, K., Taufer, M., & Wurzer, H. (1993). Effect of ranitidine and amoxicillin plus metronidazole on the eradication of *Helicobacter pylori* and the recurrence of duodenal ulcer. *New England Journal of Medicine*, 328(5), 308-312.
- Hiruma-Lima, C. A., Calvo, T. R., Rodrigues, C. M., Andrade, F. D. P., Vilegas, W., & Brito, A. R. M. S. (2006). Antiulcerogenic activity of *Alchornea castaneaefolia*: effects on somatostatin, gastrin and prostaglandin. *Journal of Ethnopharmacology*, 104(1), 215-224.
- Hossain, M. A., & Shah, M. D. (2011). A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant *Merremia borneensis*. *Arabian Journal of Chemistry*, 8(1), 66–71.
- Houghton, P.J., Hylands, P.J., Mensah, A.Y., Hensel, A., Deters, A.M., (2005). *In vitro* tests and ethnopharmacological investigations: wound healing as an example. *Journal of Ethnopharmacology* 100, 100–107.
- Hsu, A., & Mustoe, T. A. (2010). The principles of wound healing. *Plastic Surgery* Secrets Plus, 3-7.
- Huebener, P., & Schwabe, R. F. (2012). Regulation of wound healing and organ fibrosis by toll-like receptors. *Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1832*(2013), 1005-1017.
- Hussein, S. A., El-Senosy, Y. A., & Hassan, M. F. (2014). Gastro protective, antiapoptotic and anti-inflammatory effect of alpha-lipoic acid on ethanol induced gastric mucosal lesions in rats. *American Journal of Biochemistry and Molecular Biology*, 4(2), 48-63.
- Hutt, M. J., & Houghton, P. J. (1998). A survey from the literature of plants used to treat scorpion stings. *Journal of Ethnopharmacology*, 60(2), 97-110.
- Ikobi, E. U., Igwilo, C. I., Awodele, O., & Azubuike, P. C. (2012). Antibacterial and wound healing properties of methanolic extract of dried fresh Gossypium barbadense leaves. Asian Journal of Biomedical and Pharmaceutical Sciences, 2(13), 32-37.

- Ilango, K., & Chitra, V. (2010). Wound healing and anti-oxidant activities of the fruit pulp of *Limonia acidissima* Linn (Rutaceae) in rats. *Tropical Journal of Pharmaceutical Research*, 9(3), 223-230.
- Iloki-Assanga, S. B., Lewis-Luján, L. M., Lara-Espinoza, C. L., Gil-Salido, A. A., Fernandez-Angulo, D., Rubio-Pino, J. L., & Haines, D. D. (2015). Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of *Bucida buceras* L. and *Phoradendron californicum*. *BMC Research Notes*, 8(1), 396.
- Indran, M., Mahmood, A. A., & Kuppusamy, U. R. (2008). Protective effect of *Carica* papaya L leaf extract against alcohol induced acute gastric damage and blood oxidative stress in rats. *West Indian Medical Journal*, *57*(4), 323-326.
- Ipek, S., Esra, K. A., Lutfun, N., & Satyajit, D. S. (2012). Wound healing and antioxidant properties: do they coexist in plants? *Free Radicals and Antioxidants*, 2(2), 1-7.
- Ishida, K., Kojima, R., Tsuboi, M., Tsuda, Y., & Ito, M. (2010). Effects of artichoke leaf extract on acute gastric mucosal injury in rats. *Biological and Pharmaceutical Bulletin*, 33(2), 223-229.
- Ito, C., Itoigawa, M., Katsuno, S., Omura, M., Tokuda, H., Nishino, H., & Furukawa, H. (2000). Chemical Constituents of *Clausena excavata*: Isolation and Structure Elucidation of Novel Furanone-Coumarins with Inhibitory Effects for Tumor-Promotion 1. *Journal of Natural Products*, 63(9), 1218-1224.
- Jayaprakasha, G. K., Girennavar, B., & Patil, B. S. (2008). Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems. *Bioresource Technology*, 99(10), 4484-4494.
- Jing, Y., Ma, N., Fan, T., Wang, C., Bu, X., Jiang, G., & Wei, L. (2011). Tumor necrosis factor-alpha promotes tumor growth by inducing vascular endothelial growth factor. *Cancer Investigation*, 29(7), 485-493.
- Kamarazaman, I. S., Amom, Z. H., Ali, R. M., Akim, A. M., Azman, K. F., Arapoc, D. J., Hassan, M. K. N., Arshad, M. M., Shah, Z. M., & Abdul Kadir, K. K. (2012). Protective effects of Tinospora crispa extracts on H2O2-induced oxidative stress and TNF-α-induced inflammation on human umbilical vein endothelial cells (HUVECs). *Journal of Medicinal Plants Research*, *6*(15), 30133021.
- Kane, C. D., & Greenhalgh, D. G. (2000). Expression and localization of p53 and bcl2 in healing wounds in diabetic and nondiabetic mice. *Wound Repair and Regeneration*, 8(1), 45-58.
- Kapoor, M., Howard, R., Hall, I., & Appleton, I. (2004). Effects of *epicatechin gallate* on wound healing and scar formation in a full thickness incisional wound healing model in rats. *The American Journal of Pathology*, *165*(1), 299-307.
- Kawahara, Y., Nakase, Y., Isomoto, Y., Matsuda, N., Amagase, K., Kato, S., & Takeuchi, K. (2011). Role of macrophage colony stimulating factor (M-CSF)-

dependent macrophages in gastric ulcer healing in mice. Journal of Physiology and Pharmacology, 62(4), 441.

- Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. *Journal of Food science and Technology*, 48(4), 412-422.
- Khaleel, M. M., Abdullah, F. F. J., Adamu, L., Abba, Y., Haron, A. W., Saad, M. Z., & Omar, A. R. (2014). Histopathological changes in mice infected with river water contaminated by Pasteurella multocida type B: 2. *American Journal of Animal and Veterinary Sciences*, 9(2), 71-76.
- Khan, B. A., Akhtar, N., Akhtar Rasul, T. M., Khan, H. M. S., Shahiq-Uz-Zaman, M. I., & Murtaza, G. (2012). Investigation of the effects of extraction solvent/technique on the antioxidant activity of *Cassia fistula L. Journal of Medicinal Plants Research*, 6(3), 500-503.
- Khan, M. I., & Khan, M. R. (2013). Gastroprotective potential of *Dalbergia sissoo* roxb. Stem bark against diclofenac-induced gastric damage in rats. Osong Public Health and Research Perspectives, 4(5), 271-277.
- Khare C. P. (2007). *Indian Medicinal Plants: an illustrated dictionary*: Springer Verlag. P: 294-299.
- Kilcoyne, M., Gerlach, J. Q., Farrell, M. P., Bhavanandan, V. P., & Joshi, L. (2011). Periodic acid–Schiff's reagent assay for carbohydrates in a microtiter plate format. *Analytical biochemistry*, 416(1), 18-26.
- Kishimoto, T. (2005). Interleukin-6: from basic science to medicine 40 years in immunology. *Annual Review of Immunology*, 23, 1–21.
- Ko, J. K., & Cho, C. H. (2000). Alcohol drinking and cigarette smoking: a" partner" for gastric ulceration. *Zhonghua yi xue za zhi= Chinese medical journal; Free China ed*, 63(12), 845-854.
- Kobayashi, T., Ohta, Y., Yoshino, J., & Nakazawa, S. (2001). Teprenone promotes the healing of acetic acid-induced chronic gastric ulcers in rats by inhibiting neutrophil infiltration and lipid peroxidation in ulcerated gastric tissues. *Pharmacological Research*, 43(1), 23-30.
- Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug discovery. *Nature Reviews Drug Discovery*, 4(3), 206-220.
- Kongkathip, N., Dhumma-upakorn, P., Kongkathip, B., Chawananoraset, K., Sangchomkaeo, P., & Hatthakitpanichakul, S. (2002). Study on cardiac contractility of cycloeucalenol and cycloeucalenone isolated from *Tinospora crispa. Journal of Ethnopharmacology*, 83(1), 95-99.
- Krishnappa, P., Venkatarangaiah, K., Shivamogga Rajanna, S. K., & Kashi Prakash Gupta, R. (2014). Antioxidant and prophylactic effects of *Delonix elata* L., stem bark extracts, and flavonoid isolated quercetin against carbon tetrachlorideinduced hepatotoxicity in rats. *BioMed Research International*, 2014, 14 pages.

- Kuemmerle, J. F., Barnard, J. A., & McHugh, K. M. (2012). Chapter 8 Growth Factors in the Gastrointestinal Tract. In L. R. Johnson, F. K. Ghishan, J. D. Kaunitz, J. L. Merchant, H. M. Said & J. D. Wood (Eds.), *Physiology of the Gastrointestinal Tract (Fifth Edition)* (pp. 199-277). *Boston*: Academic Press.
- Kubiczkova, L., Sedlarikova, L., Hajek, R., & Sevcikova, S. (2012). TGF-beta-an excellent servant but a bad master. *Journal of Translational medicine*, 10(1), 183.
- Kumar, B., Vijayakumar, M., Govindarajan, R., & Pushpangadan, P. (2007). Ethnopharmacological approaches to wound healing exploring medicinal plants of India. *Journal of Ethnopharmacology*, 114(2), 103-113.
- Kumar, S., Gupta, P., Sharma, S., & Kumar, D. (2011). A review on immunostimulatory plants. *Journal of Chinese Integrative Medicine*, 9(2), 117-128.
- Kumar, R., Saha, A., & Saha, D., 2012. A new antifungal coumarin from *Clausena* excavata. Fitoterapy. 83(1), 230-233.
- Kwon, A; Qiu, Z., Hashimoto, M., Yamamoto, K., and Kimura, T. (2009). Effects of medicinal mushroom (*Sparassis crispa*) on wound healing in streptozotocininduced diabetic rats. *The American Journal of Surgery*, 197(4), 503-509.
- La Casa, C., Villegas, I., Alarcón de la Lastra, C., Motilva, V., & Martín Calero, M. J. (2000). Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. *Journal of Ethnopharmacology*, 71(1-2), 45-53.
- Lai, H. Y., Lim, Y. Y., & Kim, K. H. (2011). Potential dermal wound healing agent in Blechnum orientale Linn. BMC Complementary and Alternative Medicine, 11(1), 62.
- Laine, L., & Weinstein, W. M. (1988). Histology of alcoholic hemorrhagic "gastritis": a prospective evaluation. *Gastroenterology*, 94 (6):1254–62.
- Laine, L., Takeuchi, K., & Tarnawski, A. (2008). Gastric mucosal defense and cytoprotection: bench to bedside. *Gastroenterology*, 135(1), 41-60.
- Lapornik, B., Prošek, M., & Wondra, A. G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. *Journal of Food Engineering*, 71(2), 214-222.
- Lau, T. W., Lam, F. F. Y., Lau, K. M., Chan, Y. W., Lee, K. M., Sahota, D. S., Lau, C. B. S. (2009). Pharmacological investigation on the wound healing effects of *Radix Rehmanniae* in an animal model of diabetic foot ulcer. *Journal of ethnopharmacology*, 123(1), 155-162.
- Lastra, G., Manrique, C. M., Govindarajan, G., Whaley-Connell, A., & Sowers, J. R. (2005). Insights into the emerging cardiometabolic prevention and management of diabetes mellitus. *Journal of Expert Opinion on Pharmacotherapy*, 6(13), 2209-2221.

- Lawrence, W. T. (1998). Physiology of the acute wound. *Clinics in Plastic Surgery*, 25(3), 321-340.
- Lee, E. R., Kang, G. H., & Cho, S. G. (2007). Effect of flavonoids on human health: old subjects but new challenges. *Recent Patents on Biotechnology*, *1*(2), 139-150.
- Lee, Y. H., Chang, J. J., Yang, M. C., Chien, C. T., & Lai, W. F. (2012). Acceleration of wound healing in diabetic rats by layered hydrogel dressing. *Carbohydrate Polymers*, 88(3), 809-819.
- Lewis, W. H., Elvin-Lewis, M. P. (1995). Medicinal plants as sources of new therapeutics. *Annals of the Missouri Botanical Garden* 82, 16–24.
- Lewis, J., Lee, J., Underwood, J., Harris, A., & Lewis, C. (1999). Macrophage responses to hypoxia: relevance to disease mechanisms. *Journal of Leukocyte Biology*, 66(6), 889-900.
- Li, J., Chen, J., & Kirsner, R. (2007). Pathophysiology of acute wound healing. *Clinics in Dermatology*, 25(1), 9-18.
- Li, S., Li, S.-K., Gan, R.-Y., Song, F.-L., Kuang, L., & Li, H.-B. (2013). Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. *Industrial Crops and Products*, *51*, 289-298.
- Lim, W. Y., Subramaniam, M., Abdin, E., Vaingankar, J., & Chong, S. A. (2014). Peptic ulcer disease and mental illnesses. *General Hospital Psychiatry*, 36(1), 63-67.
- Lin, H. J. (2010). Role of proton pump inhibitors in the management of peptic ulcer bleeding. World journal of gastrointestinal pharmacology and therapeutics, *I*(2), 51-53, doi:10.4292/wjgpt.v1.i2.51.
- Lipsky, B. A., & Hoey, C. (2009). Topical antimicrobial therapy for treating chronic wounds. *Clinical Infectious Diseases*, 49(10), 1541-1549.
- Liu, F., Sun, G. Q., Gao, H. Y., Li, R. S., Soromou, L. W., Chen, N., Deng, Y. H. & Feng, H. H. (2013a). Angelicin regulates LPS-induced inflammation via inhibiting MAPK/NF-κB pathways. *Journal of Surgical Research*, *185*(1), 300-309.
- Liu, H., Lin, S., Xiao, D., Zheng, X., Gu, Y., & Guo, S. (2013b). Evaluation of the wound healing potential of *resina draconis* (Dracaena cochinchinensis) in animal models. *Evidence-Based Complementary and Alternative Medicine*, 2013, 10 pages.
 - Lobmann, R., Ambrosch, A., Schultz, G., Waldmann, K., Schiweck, S., Lehnert, H. (2002). Expression of matrix-metalloproteinases and inhibitors in wounds of diabetic and non-diabetic patients. *Diabetologia*, *45*(7), 1011-1016.
- Luna, L. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology.

- Luo, X.-J., Liu, B., Dai, Z., Li, T.-B., Li, N.-S., Zhang, X.-J., Yang, Z.C., Li Y, J., & Peng, J. (2013). Expression of apoptosis-associated microRNAs in ethanolinduced acute gastric mucosal injury via JNK pathway. *Alcohol*, 47(6), 481-493.
- Mackay, D., & Miller, A., L. (2003). Nutritional Support for Wound Healing. *Alternative Medicine Review*, 8(4), 359-377.
- Mahmood, A., Mariod, A. A., Abdelwahab, S. I., Ismail, S., & Al-Bayaty, F. (2010). Potential activity of ethanolic extract of *Boesenbergia rotunda* (L.) rhizomes extract in accelerating wound healing in rats. *Journal of Medicinal Plants Research*, 4(15), 1570-1576.
- Main, I., & Whittle, B. (1973). The effects of E and A prostaglandins on gastric mucosal blood flow and acid secretion in the rat. *British Journal of Pharmacology*, 49(3), 428-436.
- Majewska, I., & Gendaszewska-Darmach, E. (2011). Proangiogenic activity of plant extracts in accelerating wound healing-a new face of old phytomedicines. *Acta Biochimica Polonica*, 58(4), 449-460.
- Malaty, H., Graham, D.Y., Isaksson, I., Engstrand, L., & Pedersen, N.L. (2000). Are genetic influences on peptic ulcer dependent of independent of genetic influences for *Helicobacter pylori* infection? *Archive of Internal Medicine*, 160(1), 105-109.
- Manoj, G. S., & Murugan, K. (2012). Wound healing activity of methanolic and aqueous extracts of *Plagiochila beddomei* Steph. Thallus in rat model. *Indian Journal of Experimental Biology*, 50(8): 551-558.
- Manosroi, A., Saraphanchotiwitthaya, A., & Manosroi, J. (2004). Immunomodulatory activities of fractions from hot aqueous extract of wood from *Clausena* excavata. Fitoterapia, 75(3), 302-308.
- Marks, J. W. (2012). Peptic Ulcer, from http://www.medicinenet.com /peptic _ ulcer /page2.htm.
- Marotta, F., Tajiri, H., Safran, P., Fesce, E., & Ideo, G. (2000). Ethanol-related gastric mucosal damage: evidence of a free radical-mediated mechanism and beneficial effect of oral supplementation with bio normalizer, a novel natural antioxidant. *Digestion, 60*(6), 538-543.
- Martin, G. R., & Wallace, J. L. (2006). Gastrointestinal inflammation: a central component of mucosal defense and repair. *Experimental Biology and Medicine*, 231(2), 130-137.
- Mayakrishnan, V., Abdullah, N., Abidin, M. H. Z., Fadzil, N. H. M., Johari, N. M. K., Aminudin, N., & Abidin, N. Z. (2013). Investigation of the antioxidative potential of various solvent fractions from fruiting bodies of Schizophyllum commune (Fr.) mushrooms and characterization of phytoconstituents. *Journal of Agricultural Science*, 5(6), 58-68.

- McCarty, S. M., & Percival, S. L. (2013). Proteases and delayed wound healing. *Advances in Wound Care*, 2(8), 438-447.
- McDaniel, J.C, Bulerr, M., Ahijevych, K., & Blakely, W. (2008). Omega-3 fatty acids effect on wound healing. *Wound Repair and Regeneration*, 16(3), 337-345.
- Mei, X., Xu, D., Xu, S., Zheng, Y., & Xu, S. (2012). Novel role of Zn (II)-curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers. *Chemico-biological interactions*, 197(1), 31-39.
- Mendez, M. V., Raffetto, J. D., Phillips, T., Menzoian, J. O., and Park, H. (1999). The proliferative capacity of neonatal skin fibroblasts is reduced after exposure to venous ulcer wound fluid: A potential mechanism for senescence in venous ulcers. *Journal of Vascular Surgery*, 30(4), 734-743.
- Merchandetti, M., & Cohen, A. J. (2008). Wound healing, healing and repair. eMedicine WebMD.
- Miranda, M. A., Lemos, M., Cowart, K. A., Rodenburg, D., McChesney, J. D., Radwan, M. M., Furtado, N. A., & Kenupp, J. (2015). Gastroprotective activity of the hydroethanolic extract and isolated compounds from the leaves of *Solanum cernuum* Vell. *Journal of Ethnopharmacology*, 172, 421-429.
- Mitra, A. & Kesisoglou, F. (2013). Impaired drug absorption due to high stomach ph: A review of strategies for mitigation of such effect to enable pharmaceutical product development. *Molecular Pharmaceutics*, 10(11), 3970-397.
- Mogana, R., Teng-Jin, K., & Wiart, C. (2013). Anti-inflammatory, anticholinesterase, and antioxidant potential of scopoletin isolated from *Canarium patentinervium* Miq. (Burseraceae Kunth). *Evidence-based Complementary and Alternative Medicine*, 2013, 7 pages.
- Mohamed, E. A. H., Lim, C. P., Ebrika, O. S., Asmawi, M. Z., Sadikun, A., & Yam, M. F. (2011). Toxicity evaluation of a standardised 50% ethanol extract of Orthosiphon stamineus. Journal of Ethnopharmacology, 133(2), 358-363.
- Monaco, J. L., & Lawrence, T. (2003). Acute wound healing: an overview. *Clinics in Plastic Surgery*, 30(1), 1-12.
- Moncada, D. M., Kammanadiminti, S. J., & Chadee, K. (2003). Mucin and Toll-like receptors in host defense against intestinal parasites. *TRENDS in Parasitology*, 19(7), 305-311.
- Morsy, M., & El-Sheikh, A. (2011). Prevention of gastric ulcers. *Peptic Ulcer Disease*. *Chai*, J. (Ed.), In Tech, Croatia.43.
- Moure, A., Franco, D., Sineiro, J., Domínguez, H., Núñez, M. J., & Lema, J. M. (2000). Evaluation of extracts from *Gevuina avellana* hulls as antioxidants. *Journal of Agricultural and Food Chemistry*, 48(9), 3890-3897.

- Mózsik, G., Rumi, G., Bódis, B., Figler, M., Kiraly, A., Sütõ, G., & Vincze, A. (1999). Effects of indomethacin, with vitamin A or β-carotene, on the rat gastric mucosa: Extra-and intracellular membrane-bound ATP mechanisms. *Inflammopharmacology*, 7(3), 287-295.
- Murthy, S., Gautam, M. K., Goel, S., Purohit, V., Sharma, H., & Goel, R. K. (2013). Evaluation of In Vivo Wound Healing Activity of Bacopa monniera on Different Wound Model in Rats. *BioMed Research International*, 2013, 9 pages.
- Muthukumar, T., Prakash, D., Anbarasu, K., Kumar, B. S., & Sastry, T. P. (2014). Effect of collagen sponge incorporating Macrotyloma uniflorum extract on fullthickness wound healing by down-regulation of matrix metalloproteinases and inflammatory markers. RSC Advances, 4(109), 64267-64276.
- Muthuraman, A., & Sood, S. (2010). Antisecretory, antioxidative and antiapoptotic effects of montelukast on pyloric ligation and water immersion stress induced peptic ulcer in rat. Prostaglandins, *Leukotrienes and Essential Fatty Acids*, 83(1), 55-60.
- Mutsaers, S. E., Bishop, J. E., McGrouther, G., & Laurent, G. J. (1997). Mechanisms of tissue repair: from wound healing to fibrosis. *The International Journal of Biochemistry & Cell Biology*, 29(1), 5-17.
- Nagata, M., Takenaka, H., Shibagaki, R., & Kishimoto, S. (1999). Apoptosis and p53 protein expression increase in the process of burn wound healing in guinea-pig skin. *British Journal of Dermatology*, *140*(5), 829-838.
- Nakamura, T., Kodama, N., Arai, Y., Kumamoto, T., Higuchi, Y., Chaichantipyuth, C., Ishikawa, T., Ueno, K., & Yano, S. (2009). Inhibitory effect of oxycoumarins isolated from the Thai medicinal plant *Clausena guillauminii* on the inflammation mediators, iNOS, TNF-α, and COX-2 expression in mouse macrophage RAW 264.7. *Journal of Natural Medicines*, 63(1), 21-27.
- Nanjundaiah, S., & Annaiah, H. (2009). Gastroprotective Effect of Ginger Rhizome (Zingiber officinale) Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-oxidative Mechanism. Evidence-Based Complementary and Alternative Medicine, vol 2011, 13 pages.
- Navasumrit, P., Ward, T. H., Dodd, N. J. F., & O'Connor, P. J. (2000). Ethanol-induced free radicals and hepatic DNA strand breaks are prevented in vivo by antioxidants: effects of acute and chronic ethanol exposure. *Carcinogenesis*, 21(1), 93-99.
- Nayak, B. S., & Pereira, L. M. P. (2006). Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats. BMC Complementary and Alternative Medicine, 6(1), 41.
- Newman, A., de Moraes-Filho, J., Philippakos, D., & Misiewicz, J. (1975). The effect of intravenous infusions of prostaglandins E-2 and F-2alpha on human gastric function. *Gut*, *16*(4), 272-276.

- Nilsson, C., Sillen, A., Eriksson, L., Strand, M. L., Enroth, H., Normark, S., & Engstrand, L. (2003). Correlation between cag pathogenicity island composition and Helicobacter pylori-associated gastroduodenal disease. *Infection and Immunity*, 71(11), 6573-6581.
- Noli, C., & Miolo, A. (2001). The mast cell in wound healing. *Veterinary Dermatology*, *12*(6), 303-313.
- Nordin, N., Salama, S. M., Golbabapour, S., Hajrezaie, M., Hassan darvish, P., Kamalidehghan, B., Majid, N. A., Hashim, N. M., Omar, H., Fadaienasab, M., Karimian, H., Taha, H., Ali, H. M., & Abdulla, M. A. (2014). Antiulcerogenic effect of methanolic extracts from *Enicosanthellum pulchrum* (King) Heusden against ethanol-induced acute gastric lesion in animal models. *PloS One.* 9(11), e11192.
- OECD [Organization for Economic Cooperation and Development]: OECD 423 (2001). Guidelines for the testing of chemicals, acute oral toxicity: Acute toxic class method, 1-14.
- Ohta, Y., Kamiya, Y., Imai, Y., Arisawa, T., & Nakano, H. (2005). Plaunotol prevents the progression of acute gastric mucosal lesions induced by compound 48/80, a mast cell degranulator, in rats. *Pharmacology*, 74(4), 182-192.
- Olatunji, O. J., Chen, H., & Zhou, Y. (2015). Anti-Ulcerogenic Properties of Lycium chinense Mill Extracts against Ethanol-Induced Acute Gastric Lesion in Animal Models and Its Active Constituents. *Molecules*, 20(12), 22553-22564.
- Oriana, S., Guendalina, L., Oscar, C., Antonio, Z., Fiorenza, O., Mauro, P., et al. (2012). Delayed wound healing in aged skin rat models after thermal injury is associated with an increased MMP-9, K6 and CD44 expression. *Burns*, 39(4), 776-787.
- Ottemann, K. M., & Lowenthal, A. C. (2002). *Helicobacter pylori* uses motility for initial colonization and to attain robust infection. *Infection and Immunity*, 70 (4), 1984-1990.
- Park, W. H., & You, B. R. (2016). Antimycin A induces death of the human pulmonary fibroblast cells via ROS increase and GSH depletion. *International Journal of Oncology*, 48(2), 813-820.
- Parra, A. L., Yhebra, R. S., Sardinas, I. G., & Buela, L. I. (2001). Comparative study of the assay of *Artemia salina* L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. *Phytomedicine*, 8(5), 395-400.
- Pessoa, W. S., Estevão, L. R. D. M., Simões, R. S., Barros, M. E. G. D., Mendonça, F. D. S., Baratella-Evêncio, L., & Evêncio-Neto, J. (2012). Effects of angico extract (Anadenanthera colubrina var. cebil) in cutaneous wound healing in rats. Acta Cirúrgica Brasileira, 27(10), 655-670.
- Peranteau, W. H., Zhang, L., Muvarak, N., Badillo, A. T., Radu, A., Zoltick, P. W., & Liechty, K. W. (2008). IL-10 overexpression decreases inflammatory mediators

and promotes regenerative healing in an adult model of scar formation. *Journal of Investigative Dermatology*, 128(7), 1852-1860.

- Perez, G., Vargas, S., Ortiz, H. (2005). Wound healing properties of *Hylocereus* undatus on diabetic rats. *Phytotherapy Research*, 19(8), 665-668.
- Perez, G. R.M & Vargas, S.R. (2006). Evaluation of the wound healing properties of Acalypha langiana in diabetic rats. *Fitoterapia*, 77(4), 286-289.
- Pfaffl, M., Wittmann, S., Meyer, H., & Bruckmaier, R. (2003). Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. *Journal of Dairy Science*, 86(2), 538-545.
- Phan, T. T., Wang, L., See, P., Grayer, R. J., Chan, S. Y., & Lee, S. T. (2001). Phenolic compounds of *Chromolaena odorata* protect cultured skin cells from oxidative damage: Implication for cutaneous wound healing. *Biological & Pharmaceutical Bulletin, 24*(12), 1373-1379.
- Pierce, G., Berg, J. V., Rudolph, R., Tarpley, J., & Mustoe, T. (1991). Platelet-derived growth factor-BB and transforming growth factor beta 1 selectively modulate glycosaminoglycans, collagen, and myofibroblasts in excisional wounds. *The American Journal of Pathology*, 138(3), 629-646.
- Pillai, S. I., Kandaswamy, M., & Subramanian, S. (2010). Antiulcerogenic and ulcer healing effects of *Indian propolis* in experimental rat ulcer models. *Journal of ApiProduct and ApiMedical Science*, 2(1), 21-28.
- Pinder, R. M., Brogden, R. N., Sawyer, P. R., Speight, T. M., Spencer, R., & Avery, G. S. (1976). Carbenoxolone; a review of its pharmacological properties and therapeutic efficacy in peptic ulcer disease. *Drugs*, 11(4), 245-307.
- Ponrasu, T., Madhukumar, K. N., Ganeshkumar, M., Iyappan, K., Sangeethapriya, V., Gayathri, V. S., & Suguna, L. (2014). Efficacy of *Acorus calamus* on collagen maturation on full thickness cutaneous wounds in rats. *Pharmacognosy Magazine*, 10 (Suppl 2), S299 –S305.
- Porter, S. (2007). The role of the fibroblast in wound contraction and healing. *Wounds* UK, 3(1), 33-40.
- Puongtip, K., Ampai, P., Narong, N., Prapadsorn, P. & Vichai, R. (2011). Acute and repeated dose 90-day oral toxicity studies of *Clausena excavata* extract in rats, *Journal of Pharmaceutical and Biomedical Research*, 12(12), 1–6.
- Rahman, M.T., Alimuzzaman, M., Shilpi, J.A., & Hossain, M.F. (2002). Antinociceptive activity of *Clausena excavata* leaves. *Fitoterapia*, 73, 701-703.
- Räihä, I., Kemppainen, H., kaprio, J., Koskenvuo, M., & Sourander, L. (1998). Lifestyle, stress, and genetics in peptic ulcer. A nationwide twin cohort study. *Archive of Internal Medicine 158*(7), 698-704.
- Ram, M., Singh, V., Kumar, D., Kumawat, S., Gopalakrishnan, A., Lingaraju, M. C., & Kumar, D. (2014). Antioxidant potential of bilirubin-accelerated wound healing

in streptozotocin-induced diabetic rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 387(10), 955-961.

- Ramakrishnan, K., & Salinas, R. C. (2007). Peptic ulcer disease. American Family *Physician*, 76(7), 1005-1012.
- Ramundo, J., & Gray, M. (2008). Enzymatic wound debridement. Journal of Wound Ostomy & Continence Nursing, 35(3), 273-280.
- Rasal, V. P., Sinnathambi, A., Ashok, P., & Yeshmaina, S. (2008). Wound healing and antioxidant activities of *Morinda citrifolia* leaf extract in rats. *Iranian Journal of Pharmacology & Therapeutics (IJPT)*, 7(1), 49-52.
- Rezaei, M., Dadgar, Z., Noori-Zadeh, A., Mesbah-Namin, S. A., Pakzad, I., & Davodian, E. (2015). Evaluation of the antibacterial activity of the *Althaea* officinalis L. leaf extract and its wound healing potency in the rat model of excision wound creation. *Avicenna Journal of Phytomedicine*, 5(2), 105-112.
- Rhiouani, H., El-Hilaly, J., Israili, Z. H., & Lyoussi, B. (2008). Acute and sub-chronic toxicity of an aqueous extract of the leaves of *Herniaria glabra* in rodents. *Journal of Ethnopharmacology*, 118(3), 378-386.
- Rink, L., & Gabriel, P. (2001). Extracellular and immunological actions of zinc. *Biometals*, 14(3-4), 367-383.
- Riss, T. L., Moravec, R. A., Niles, A. L., Benink, H. A., Worzella, T. J., & Minor, L. (2004). Cell viability assays. Assay Guidance Manual. http://europepmc.org/books/NBK144065;jsessionid=nA2VOliLnEce0hT2B06X
- Robert, A., Nezamis, J. E., & Phillips, J. P. (1967). Inhibition of gastric secretion by prostaglandins. *Digestive Diseases and Sciences*, 12(10), 1073-1076.
- Robert, A., Leung, F., & Guth, P. (1992). Morphological and functional gastric cytoprotection by prostaglandin in rats receiving absolute ethanol orally. *Gut*, 33(4), 444-451.
- Rodriguez, P. G., Felix, F. N., Woodley, D. T., & Shim, E. K. (2008). The role of oxygen in wound healing: a review of the literature. *Dermatologic Surgery*, 34(9), 1159-1169.
- Rokutan, K., Teshima, S., Kawai, T., Kawahara, T., Kusumoto, K., Mizushima, T., & Kishi, K. (2000). Geranylgeranylacetone stimulates mucin synthesis in cultured guinea pig gastric pit cells by inducing a neuronal nitric oxide synthase. *Journal* of Gastroenterology, 35(9), 673-681.
- Romo, Pearson, J.M., Yalamanchili, H., & Zoumalan, R.A. (2008). Wound healing, skin (publication. Retrieved 25 February 2010, from eMedicine from Web MD: <u>http://emedicine.medscape.com/article/884594-overview</u>.

- Rosique, R. G., Rosique, M. J., & Farina Junior, J. A. (2015). Curbing Inflammation in Skin Wound Healing: A Review. *International Journal of Inflammation*, 2015. 9 pages.
- Rosch, R., Klinge, U., Si, Z., Junge, K., Klosterhalfen, B., & Schumpelick, V. (2002). A role for the collagen I/III and MMP-1/-13 genes in primary inguinal hernia? *BMC Medical Genetics*, 3(1), 2.
- Rouhollahi, E., Moghadamtousi, S. Z., Hajiaghaalipour, F., Zahedifard, M., Tayeby, F., Awang, K., & Mohamed, Z. (2015). *Curcuma purpurascens* Bi. rhizome accelerates rat excisional wound healing: involvement of hsp70/Bax proteins, antioxidant defense, and angiogenesis activity. *Drug design, development and therapy*, 9, 5805.
- Rudin, MD, PhD, C., & B. Thompson, MD, C. (1997). Apoptosis and disease: regulation and clinical relevance of programmed cell death. *Annual Review of Medicine*, 48(1), 267-281.
- Roy, K., Shivakumar, H., & Sarkar, S. (2009). Wound healing potential of leaf extracts of Ficus religiosa on Wistar albino strain rats. *International Journal of Pharm Tech Research*, 1(3), 506-508.
- Sabat, R., Grütz, G., Warszawska, K., Kirsch, S., Witte, E., Wolk, K., & Geginat, J. (2010). Biology of interleukin-10. *Cytokine & Growth factor Reviews*, 21(5), 331-344.
- Sakat, S. S., Tupe, P., & Juvekar, A. (2012). Gastroprotective effect of Oxalis corniculata (whole plant) on experimentally induced gastric ulceration in Wistar rats. Indian Journal of Pharmaceutical sciences, 74(1), 48-53.
- Sakong, P., Khampitak, T., Cha'on, U., Pinitsoontorn, C., Sriboonlue, P., Yongvanit, P.,
 & Boonsiri, P. (2011). Antioxidant activity and bioactive phytochemical contents of traditional medicinal plants in northeast Thailand. *Journal of Medicinal Plants Research*, 5(31), 6822-6831.
- Salga, M. S., Ali, H. M., Abdulla, M. A., & Abdelwahab, S. I. (2012). Gastroprotective activity and mechanism of novel dichlorido-zinc (II)-4-(2-(5-methoxybenzylideneamino) ethyl) piperazin-1-iumphenolate complex on ethanol-induced gastric ulceration. *Chemico-Biological Interactions, 195*(2), 144-153.
- Sasidharan, S., Nilawatyi, R., Xavier, R., Latha, L. Y., & Amala, R. (2010). Wound healing potential of *Elaeis guineensis* Jacq leaves in an infected albino rat model. *Molecules*, 15(5), 3186-3199.
- Schubert, M. L. (2011). Gastric secretion. Current Opinion in Gastroenterology, 27(6), 536-542.
- Schwentker, A., Vodovotz, Y., Weller, R., & Billiar, T. R. (2002). Nitric oxide and wound repair: role of cytokines? *Nitric Oxide*, 7(1), 1-10.

Scott, K. M., Alonso, J., de Jonge, P., Viana, M. C., Liu, Z., O'Neill, S., Aguilar-Gaxiola, S., Bruffaerts, R., Caldas-de-Almeida, J. M., Stein, D. J., Angermeyer, M., Benjet, C., de Girolamo, G., Firuleasa, I. L., Hu, C., Kiejna, A., Kovess-Masfety, V., Levinson, D., Nakane, Y., Piazza, M., Posada-Villa, J. A., Khalaf, M. S., Lim, C. C., & Kessler, R. C. (2013). Associations between DSM-IV mental disorders and onset of self-reported peptic ulcer in the World Mental Health Surveys. *Journal of Psychosomatic Research*, 75(2), 121-127.

Seigler, D. S. (2012). Plant secondary metabolism. Springer Science & Business Media.

- Shandiz, S. A. S., Khosravani, M., Mohammadi, S., Noorbazargan, H., Mirzaie, A., Inanlou, D. N., Jalali, M. D., Jouzaghkar, H., Baghbani-Arani, F., & Keshavarz-Pakseresht, B. (2015). Evaluation of imatinib mesylate (Gleevec) on KAI1/CD82 gene expression in breast cancer MCF-7 cells using quantitative real-time PCR. Asian Pacific Journal of Tropical Biomedicine, 6 (2), 159-163.
- Shanmukha, I., Kumar, V., & Ramachandra Setty, S. Protective effect of *Tecoma stans* leaf extract on Experimentally induced gastric ulcers in rats. (2013). *International Journal of Drug Development and Research.* 5 (3), 231-236.
- Sharath, S. S., Preethy, J., Surendra Kumar, G., Revannaswamy, A., Muralidhar, P., Rajashekar, S. T., & Rohini, K. R. (2014). Convolvulus pluricaulis cytoprotective activity using absolute lcohol induced gastric ulcer. World Journal of Pharmacy and Pharmaceutical Sciences 44(11), 498-507.
- Sharif, N.W.M., Mustahil, N.A., Noor, H.S.M., Sukari, M.A., Rahmani, M., Taufiq-Yap, Y.H., & Ee, G. C. L. (2011). Cytotoxic constituents of *Clausena excavata*. *African Journal of Biotechnology*, 10(72), 16337-16341.
- Shay, H. (1945). A simple method for the uniform production of gastric ulceration in the rat. *Gastroenterology*, *5*, 43-61.
- Shichijo, K., Ihara, M., Matsuu, M., Ito, M., Okumura, Y., & Sekine, I. (2003). Overexpression of heat shock protein 70 in stomach of stress-induced gastric ulcer-resistant rats. *Digestive Diseases and Sciences*, 48(2), 340-348.
- Shier, W. T. (1983). An Undergraduate Experiment to Demonstrate the Use of Cytotoxic Drugs in Cancer Chemotherapy. *American Journal of Pharmaceutica Education* 47(3), 216-220.
- Shingel, K. I., Faure, M. P., Azoulay, L., Roberge, C., & Deckelbaum, R. J. (2008). Solid emulsion gel as a vehicle for delivery of polyunsaturated fatty acids: implications for tissue repair, dermal angiogenesis and wound healing. *Journal* of Tissue Engineering and Regenerative Medicine, 2(7), 383-393.
- Sidahmed, H. M. A., Hashim, N. M., Abdulla, M. A., Ali, H. M., Mohan, S., Abdelwahab, S. I. & Vadivelu, J. (2015). Antisecretory, Gastroprotective, Antioxidant and Anti-Helicobeter Pylori Activity of Zerumbone from *Zingiber Zerumbet* (L.) Smith. *PloS one*, 10(3): e0121060.
- Simonetti, O., Lucarini, G., Cirioni, O., Zizzi, A., Orlando, F., Provinciali, M., Di Primio, R., Giacometti, A., & Offidani, A. (2012). Delayed wound healing in

aged skin rat models after thermal injury is associated with an increased MMP-9, K6 and CD44 expression. *Burns*, *39*(4), 776-787.

- Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. *New England Journal* of Medicine, 341(10), 738-746.
- Singh, G., & Triadafilopoulos, G. (2005). Appropriate choice of proton pump inhibitor therapy in the prevention and management of NSAID-related gastrointestinal damage. *International Journal of Clinical Practice*, *59*(10), 1210-1217.
- Singh, M., Govindarajan, R., Nath, V., Rawat, A. K. S., & Mehrotra, S. (2006). Antimicrobial, wound healing and antioxidant activity of *Plagiochasma* appendiculatum Lehm. et Lind. Journal of Ethnopharmacology, 107(1), 67-72.
- Singh, A., Bajpai, S., Singh, N., Kumar, V., Gour, J. K., Singh, P. K., & Singh, R. K. (2014). Wound healing activity of standardized extract of *Curculigo orchioides* in streptozotocin-induced diabetic mice. *Asian Pacific Journal of Tropical Disease*, 4, S48-S53.
- Smoot, D. T. (1997). "How does *Helicobacter pylori* cause mucosal damage? Direct mechanisms". *Gastroenterology* 113 (6), S31–40.
- Srikanta, B. M., Sathisha, U. V., & Dharmesh, S. M. (2010). Alterations of matrix metalloproteinases, gastric mucin and prostaglandin E2 levels by pectic polysaccharide of swallow root (*Decalepis hamiltonii*) during ulcer healing. *Biochimie*, 92(2), 194-203.
- Srinivas, R., Boreddy, Kiran Kumar Reddy, R., Naidu, V., Madhusudhana, K., Agwane, S. B., Ramakrishna, S., & Diwan, P. V. (2008). Evaluation of antimicrobial, antioxidant and wound-healing potentials of *Holoptelea integrifolia*. *Journal of Ethnopharmacology*, 115(2), 249-256.
- Steiling, H., Munz, B., Werner, S., & Brauchle, M. (1999). Different types of ROS scavenging enzymes are expressed during cutaneous wound repair. *Experimental Cell Research*, 247(2), 484-494.
- Su, C. R., Yeh, S. F., Liu, C. M., Damu, A. G., Kuo, T. H., Chiang, P. C., Bastow, K. F., Lee, K. H., & Wu, T. S. (2009). Anti-HBV and cytotoxic activities of pyranocoumarin derivatives. *Bioorganic & Medicinal Chemistry*, 17(16), 6137-6143.
- Sumbul, S., Ahmad, M. A., Mohd, A., & Mohd, A. (2011). Role of phenolic compounds in peptic ulcer: An overview. *Journal of Pharmacy and Bioallied Sciences*, 3(3), 361-367.
- Sunthitikawinsakul, A., Kongkathip, N., Kongkathip, B., Phonnakhu, S., Daly, J.W., Spande, T. F., Nimit, Y., & Rochanaruangrai, S. (2003). Coumarins and carbazoles from *Clausena excavata* exhibited antimycobacterial and antifungal activities. *Planta Medica* 69(2), 155-157.

- Suzuki, H., Nishizawa, T., Tsugawa, H., Mogami, S., & Hibi, T. (2011). Roles of oxidantive stress in stomach disorders. *Journal of Clinical Biochemistry and Nutrition*, 50(1), 35-39.
- Swarnakar, S., Ganguly, K., Kundu, P., Banerjee, A., Maity, P., & Sharma, A. V. (2005). Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. *Journal of Biological Chemistry*, 280(10), 9409-9415.
- Swarbrick, J.T. (1997). Environmental weeds and exotic plants on Christmas Island. *Indian Ocean: a report to Parks Australia*, p 387-392.
- Swift, M. E., Burns, A. L., Gray, K. L., & DiPietro, L. A. (2001). Age-related alterations in the inflammatory response to dermal injury. *Journal of Investigative Dermatology*, 117(5), 1027-1035.
- Takemura, Y., Nakamura, K., Hirusawa, T., Ju, M., Ito, C., & Furukawa, H. (2000). Four New Furanone-Coumarins from *Clausena excavata*. *Chemical and Pharmaceutical Bulletin*, 48(4), 582-584.
- Takeshita, S., Zheng, L., Brogi, E., Kearney, M., Pu, L., Bunting, S., Ferrara, N., Symes, J.F., & Isner, J.M. (1994). Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. *Journal of Clinical Investigation*, 93(2), 662-670.
- Talib, W. H., & Mahasneh, A. M. (2010). Antiproliferative activity of plant extracts used against cancer in traditional medicine. *Scientia pharmaceutica*, 78(1), 33-45.
- Tam, J. C. W., Lau, K. M., Liu, C. L., To, M. H., Kwok, H. F., Lai, K. K., & San Lau, C. B. (2011). The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action. *Journal of Ethnopharmacology*, 134(3), 831-838.
- Tanigawa, T., Pai, R., Arakawa, T., Higuchi, K., & Tarnawski, A. S. (2005). TGF-beta signaling pathway: its role in gastrointestinal pathophysiology and modulation of ulcer healing. *Journal of physiology and pharmacology: an official journal of the Polish Physiological Society*, 56(1), 3-13.
- Tan, P. V., Nyasse, B., Dimo, T., & Mezui, C. (2002). Gastric cytoprotective anti-ulcer effects of the leaf methanol extract of *Ocimum suave* (Lamiaceae) in rats. *Journal of Ethnopharmacology*, 82(2), 69-74.
- Tarnawski, A., Hollander, D., Stachura, J., Krause, W. J., & Gergely, H. (1985). Prostaglandin Protection of the Gastric Mucosa against Alcohol Injury-A Dynamic Time-Related Process. *Gastroenterology*, 88(1), 334-352.
- Taufiq-Yap, Y. H., Peh, T. H., Ee, G.C. L., Rahmani, M., Sukari, M. A., Ali, A. M., & Muse, R. (2007). A new cytotoxic carbazole alkaloid from *Clausena excavata*. *Journal of Natural Product Research*, 21(9), 810-813.

- Taylor, A., Verhagen, J., Blaser, K., Akdis, M., & Akdis, C. A. (2006). Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. *Immunology*, *117*(4), 433-442.
- Teo, S., Stirling, D., Thomas, S., Hoberman, A., Kiorpes, A., & Khetani, V. (2002). A 90-day oral gavage toxicity study of d-methylphenidate and d, l-methylphenidate in Sprague–Dawley rats. *Toxicology*, 179(3), 183-196.
- Teoh, S. L., Latiff, A. A., and Das, S. (2009). The effect of topical extract of *Momordica charantia* (bitter gourd) on wound healing in non-diabetic rats and in rats with diabetes induced by streptozotocin. *Clinical and Experimental Dermatology*, 34(7), 815-822.
- Tripathi, U. N., & Chandra, D. (2009). The plant extracts of *Momordica charantia* and Trigonella foenum graecum have antioxidant and anti-hyperglycemic properties for cardiac tissue during diabetes mellitus. *Oxidative Medicine and Cellular Longevity*, 2(5), 290-296.
- Udegbunam, S. O., Udegbunam, R. I., Okpo, O. S., & Muogbo, C. J. (2012). Evaluation of the wound healing potential of *protea madiensis* Oliv leaf extract in rats. *African Journal of Biotechnology*, *11*(90), 15719-15727.
- Udegbunam, S. O., Udegbunam, R. I., Muogbo, C. C., Anyanwu, M. U., & Nwaehujor, C. O. (2014). Wound healing and antibacterial properties of methanolic extract of *Pupalia lappacea* Juss in rats. *BMC Complementary and Alternative Medicine*, 14(1), 157.
- Umachigi, S. P., Jayaveera, K., Ashok Kumar, C., & Kumar, G. (2007). Antimicrobial, wound healing and antioxidant potential of *Couroupita guianebsis* in rats. *Pharmacologyonline*, *3*, 269-281.
- Upadhyay, A., Chattopadhyay, P., Goyary, D., Mazumder, P. M., & Veer, V. (2013). *Eleutherine indica* L. accelerates in vivo cutaneous wound healing by stimulating Smad-mediated collagen production. *Journal of Ethnopharmacology*, *146*(2), 490-494.
- Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. *Journal of Agricultural and Food Chemistry*, 46(10), 4113-4117.
- Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. *Journal of International Medical Research*, 37(5), 1528-1542.
- Vendramini-Costa, D. B., Monteiro, K. M., Iwamoto, L. H., Jorge, M. P., Tinti, S. V., Pilli, R. A., & de Carvalho, J. E. (2014). Gastroprotective effects of goniothalamin against ethanol and indomethacin-induced gastric lesions in rats: Role of prostaglandins, nitric oxide and sulfhydryl compounds. *Chemicobiological interactions*, 224, 206-212.

- Venkateswarlu, B. & Rao, Y. R. (2013). Evaluation of antisecretory activities of *Erythrina vaiegata* in albino rats. *Asian Journal of Pharmaceutical Research*, 3 (1), 24-29.
- Venugopala, K. N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. *BioMed research International*, 2013, 14 pages.
- Verma, G., Marella, A., Shaquiquzzaman, M., & Alam, M. (2013). Immunoinflamma tory responses in gastrointestinal tract injury and recovery. *Acta Biochimica Polonica*, 60(2), 143-149.
- Vetro, W. T., Lester, G., D, & Merritt, A., M. (2002). Effect of hydrochloric acid, pepsin, or taurocholate on bioelectric properties of gastric squamous mucosa in horses. *American Journal of Veterinary Research*, 63(5), 744-749.
- Wahl, S. (2002). Cytokines in Wound Healing. R&D Systems, from <u>http://www.</u> <u>Rndsystems.com/mini_review_detail_objectname_MR02_Cytokine</u> Wound Healing.aspx.
- Walaa, N. A. Immunomodulatory, Gastroprotective and Wound Healing Potential of Malaysian Medicinal Plants (Phaleria macrocarpa and Tinospora crispa). PHD thesis. (2014). University of Malaya, Kuala lumpure.
- Walsh, M. F., Ampasala, D. R., Hatfield, J., Vander Heide, R., Suer, S., Rishi, A. K., & Basson, M. D. (2008). Transforming growth factor-β stimulates intestinal epithelial focal adhesion kinase synthesis via Smad-and p38-dependent mechanisms. *The American Journal of Pathology*, 173(2), 385-399.
- Wallace, J., & Mcknight, G. (1990). The mucoid cap over superficial gastric damage in the rat. A high-pH microenvironment dissipated by nonsteroidal antiinflammatory drugs and endothelin. *Gastroenterology*, 99(2), 295-304.
- Wallace, J. L., & Granger, D. (1996). The cellular and molecular basis of gastric mucosal defense. *The FASEB journal*, 10(7), 731-740.
- Wallace, J. L. (2005). Recent advances in gastric ulcer therapeutics. *Current Opinion in Pharmacology*, *5*(6), 573-577.
- Wallace, J. L. (2008). Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn't the stomach digest itself? *Physiological Reviews*, 88(4), 1547-1565.
- Wan, M. Z. W. N. (2005). Nutrient Composition, Antioxidant and antiproliferative Properties of *Clausena excavata* and *Murraya koenigii*. Masters Thesis, UPM. p 14-19.
- Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. *Trends in Plant Science*, *9*(5), 244-252.

- Wasman, S. Q., Mahmood, A. A., Salehhuddin, H., Zahra, A. A., & Salmah, I. (2010). Cytoprotective activities of Polygonum minus aqueous leaf extract on ethanolinduced gastric ulcer in rats. J. Med. Plants Res., 4(24), 2658-2665.
- Watson, T. (2003). "Soft Tissue Healing." In Touch 104, 2-9.
- Wei, X. M., Heywood, G. J., DiGirolamo, N., & Thomas, P. S. (2003). Nicorandil inhibits the release of TNF-alpha from a lymphocyte cell line and peripheral blood lymphocytes. *International Immunopharmacology*, 3(12), 1581–1588.
- Weil, J., Langman, M., Wainwright, P., Lawson, D., Rawlins, M., Logan, R., Brown, T., Vessey, M., & Colin-Jones, D. (2000). Peptic ulcer bleeding: accessory risk factors and interactions with non-steroidal anti-inflammatory drugs. *Gut*, 46(1), 27-31.
- White, J. R., Harris, R. A., Lee, S. R., Craigon, M. H., Binley, K., Price, T., Beard, G. L., Mundy, C.R., & Naylor, S. (2004). Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. *Genomics*, 83(1), 1-8.
- Wild, T., Rahbarnia, A., Kellner, M., Sobotka, L., & Eberlein, T. (2010). Basics in nutrition and wound healing. *Nutrition*, 26(9), 862-866.
- Wilson, D. E. (1990). Role of prostaglandins in gastroduodenal mucosal protection. Journal of Clinical Gastroenterology, 13(1), S65-71.
- Wojdasiewicz, P., Poniatowski, Ł. A., & Szukiewicz, D. (2014). The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. *Mediators of Inflammation*, 2014, 19 pages.
- Wong, J. Y., Abdulla, M. A., Raman, J., Phan, C. W., Kuppusamy, U. R., Golbabapour, S., & Sabaratnam, V. (2013). Gastroprotective effects of Lion's Mane mushroom Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) extract against ethanol-induced ulcer in rats. *Evidence-Based Complementary* and Alternative Medicine, 2013, 9 pages.
- Wormsley, K. (1972). Aspects of duodeno-gastric reflux in man. Gut, 13(4), 243-250.
- Wu, T. S., & Furukawa, H. (1982). Biological and phytochemical investigation of *Clausena excavata. Journal of Natural Products*, 45(6), 718-720.
- Wu, X.-b., Luo, X.-q., Gu, S.-y., & Xu, J.-h. (2012). the effects of Polygonum cuspidatum extract on wound healing in rats. Journal of Ethnopharmacology, 141(3), 934-937.
- Xin, Z. Q., Lu, J. J., Ke, C. Q., Hu, C. X., Lin, L. P., & Ye, Y. (2008). Constituents from *Clausena excavata*. *Chemical and Pharmaceutical Bulletin*, 56(6), 827-830.
- Yadav, D. K., Singh, N., Dev, K., Sharma, R., Sharma, M., Palit, G., & Maurya, R. (2011). Antiulcer constituents of *Annona squamosa* twigs. *Fitoterapia*, 82(4), 666-675.

- Yip, H. Y., Poh, M. S. W., & Chia, Y. Y. (2015). The effects of glycyrrhizic acid and glabridin in the regulation of CXCL5 inflammation gene on acceleration of wound healing. *Asian Pacific Journal of Tropical Biomedicine*, 6, 108–113.
- Ye, C. L., Liu, J. W., Wei, D. Z., Lu, Y. H., & Qian, F. (2005). In vivo antitumor activity by 2', 4'-dihydroxy-6'-methoxy-3', 5'-dimethylchalcone in a solid human carcinoma xenograft model. Cancer Chemotherapy and Pharmacology, 55(5), 447-452.
- Yu, C., Mei, X. T., Zheng, Y. P., & Xu, D. H. (2014). Gastroprotective effect of taurine zinc solid dispersions against absolute ethanol-induced gastric lesions is mediated by enhancement of antioxidant activity and endogenous PGE 2 production and attenuation of NO production. *European Journal of pharmacology*, 740, 329-336.
- Zakaria, Z. A., Hisam, E. A., Rofiee, M. S., Norhafizah, M., Somchit, M. N., Teh, L. K., & Salleh, M. Z. (2011). In vivo antiulcer activity of the aqueous extract of *Bauhinia purpurea* leaf. *Journal of Ethnopharmacology*, 137(2), 1047-1054.
- Zakaria, Z. A., Abdul Hisam, E. E., Norhafizah, M., Rofiee, M. S., Othman, F., Hasiah, A. H., & Vasudevan, M. (2012). Methanol extract of *Bauhinia purpurea* leaf possesses Anti-Ulcer activity. *Medical Principles and Practice*, 21(5), 476-482.
- Zakaria, Z. A., Balan, T., Suppaiah, V., Ahmad, S., & Jamaludin, F. (2014). Mechanism
 (s) of action involved in the gastroprotective activity of *Muntingia* calabura. Journal of Ethnopharmacology, 151(3), 1184-1193.
- Zakaria, Z. A., Balan, T., Mamat, S. S., Mohtarrudin, N., Teh, L. K., & Salleh, M. Z. (2015). Mechanisms of gastroprotection of methanol extract of *Melastoma malabathricum* leaves. *BMC Complementary and Alternative Medicine*, 15(1), 135.
- Zheng, X.L., Wei, J.H., Sun, W., Li, R.T., Liu, S.B., & Dai, H.F. (2013). Ethnobotanical study on medicinal plants around Limu Mountains of Hainan Island, China. *Journal of Ethnopharmacology*, 148(3), 964-974.
- Zheng, Y. F., Xie, J. H., Xu, Y. F., Liang, Y. Z., Mo, Z. Z., Jiang, W. W., Chen, X. Y., Liu, Y. H., Yu, X. D., Huang, P. & Su, Z. R. (2014). Gastroprotective effect and mechanism of patchouli alcohol against ethanol, indomethacin and stress-induced ulcer in rats. *Chemico-biological Interactions*, 222, 27-36.
- Zhou, Y. L., Wang, R., Feng, X., & Zhao, X. (2014). Preventive effect of insect tea against reserpine-induced gastric ulcers in mice. *Experimental and Therapeutic Medicine*, 8(4), 1318-1324.
- Zissin, R. (2008). CT of the duodenum: In *Radiology of the Stomach and Duodenum*, (pp. 167-180). Springer Berlin Heidelberg.

APPENDIX A: PREPARATION OF REAGENTS AND EXPERIMENTAL METHODS

1. Ferric reducing power (FRAP) Reagents: Iron (II) sulfate hepatohydrate (FeSO4. 7H2O), Sodium acetate trihydrate buffer (C2H3O2N9. 3H2O), 2, 4, 6-tris (2-pyridyl)-s-triazine (TPTZ) and 98% FeCl3. 6H2O

Preparation of reagents 0.0278 g of FeSO4.7H2O was dissolved in 100 ml dH2O and 0.0775 g of acetate buffer was dissolved in 25 ml dH2O mixed previously with 0.4 ml glacial acetic acid. TPTZ (0.00781 g) was dissolved in 2.5 ml dH2O mixed previously with 0.1 ml (1M HCL). Finally, 0.0135g FeCl3. 6H2O was dissolved in 2.5 ml dH2O. The freshly prepared acetate buffer, TPTZ and FeCl3. 6H2O solutions were mixed and vortexed to obtain the ready to use FRAP reagent.

2. DPPH free radical scavenging assay Reagents: 2, 2-diphenyl-1-picrylehydrazyl (C18H12N5O0) solution.

Preparation of reagent: DPPH solution was prepared by dissolving 0.001972 g of DPPH in 50 ml of absolute ethanol then stirred until the DPPH was completely dissolved.

3. PREPARATION OF 2% AGAROSE GEL ELECTROPHORESIS

Dissolve (1gm) of agarose in 100ml of 1x Tris-acetate EDTA buffer, then add 1µl of ethidium bromide to the mixture and pour on the gel boat to the electrophoresis system. After gel is solidified, load RNA and run the electrophoresis at 80 volts to migrate the RNA bands 28S and 18S.

4. TISSUE PROCESSING AND STAINING

a. PREPARATION OF TISSUE FOR PARAFFIN FIXATION

For paraffin, processed tissue the most usual fixative is formalin. Use 10% formalin for fixation to prepare 10% formalin; mix 100ml of Formaldehyde 40\%, 900ml Distilled water and adjusted the PH at (7 - 7.4) by adding the tablet of PBS and mix well.

b. AUTOMATED TISSUE PROCESSING (LEICA TP1020):

FIXATION: (10% buffered formalin I for 1 hour and 10% buffered formalin II for 1 hour)

DEHYDRATION: The traditional method of dehydration –removing the water from the tissue - is the use of ascending concentrations of alcohols. Dehydration usually commences using 70% ethanol, progressing to absolute alcohol.

- 70% ethanol for 1 hour.
- 95% ethanol for 1 hour.
- 95% ethanol for 1 hour
- 95% ethanol for 1 hour
- First absolute ethanol for 1 hour.
- Second absolute ethanol 1¹/₂ hours.

CLEANING: The next step is called "clearing" and consists of removal of dehydrating fluids (alcohols) and paraffin wax with a substance that will be miscible with the embedding medi-um (paraffin). The commonest clearing agent is xylene.

- Cleaning Alcohol : Xylene (1:1) for 1 hour
- Xylene I for 1¹/₂ hours

• Xylene II for 1¹/₂ hours

INFILTRATION

- Infiltration Paraffin wax I for 1¹/₂ hours
- Paraffin wax II for 1¹/₂ hours

c. HEMATOXYLIN-EOSIN (H&E) STAINING PROTOCOL

MAIN STEPS OF STAINING

- De-waxing with xylene
- Re-hydration
- Staining
- Dehydration with xylene
- Mounting

• <u>STAINING</u>	WITH HAE	MATOXYLIN & EOSIN:	
STEP		SOLUTIN	TIME(MINUTE)
De-waxing	37.1 11	Xylene I	3 min
Re-hydration	Xylene II	Absolute alcohol	3 min 2 min
ite nyununon			
	95% alcoho	l I	2 min
			2 min 2 min
	95% alcoho	l II	2 min
	70% alcoho	51	
Bring section to wa	ater	Running tap water	3 min
Staining		Hematoxylin stain	10 min
Differentiation	Running ta	p water 0.5% acid alcohol	until excess color wash off
Differentiation		0.5% acid alconol	2-3 sec
	Running tap	water	2-3 min
	Kunning tap	water	2 sec
	2% sodium	acetate	2-3 min
	270 30010111		2-3 sec
	Running tap	water	
	D: : 000		
Staining	Rinse in 80%	Eosin stain	5 min
Dehydration		95% alcohol I	5 sec
Denyulution			5 500
	95% alcoh	ol II	2 min
			2 min
	Absolute e	thanol I	2 min
Classing	Absolute e		2 min
Cleaning		Xylene I	
	Xylene II		2 min
			1 min
	Xvlene III		

Xylene III Mounting with DPX (DPX mounting media and cover the section with cover slip.

STAINING WITH PERIODIC ACID SCHIFF BASE (PAS):

STEP De-waxing Re-hydration	SOLUTIN Xylene I Xylene II Absolute alcohol	TIME(MINUTE) 3 min 3 min 2 min
	95% alcohol I 95% alcohol II	2 min 2 min 2 min
Bring section to water Staining	70% alcohol Running tap water Periodic acid Running tap water Schiff reagent	3 min 3 min until excess color wash off 15 min
	Running tap water	2-3 min
Staining Dehydration	Hematoxylin stain 95% alcohol I	1-2 min 5 sec
	95% alcohol II	2 min

	Absolute ethanol I	2 min 2 min
Cleaning	Absolute ethanol II Xylene I	2 min
	Xylene II	2 min 1 min

Xylene III Mounting with DPX (DPX mounting media and cover the section with cover slip.

STAINING WITH MASSON'S TRICHOM STAIN (MT):

STEP	SOLUTIN	TIME(MINUTE)
De-waxing	Xylene I	3 min
e	Xylene II	3 min
Re-hydration	Absolute alcohol	2 min
	95% alcohol I	2 min
		2 min
	95% alcohol II	2 min
	70% alcohol	
Bring section to water	Running tap water	3 min
Staining	Bouins solution	1 hour
	ing tap water	until excess color wash off
Kulli	Weigers iron hematoxylin	10 min
	Rinse in distilled water	10 mm
	Biebrich scarlet-acid fuchsion	2 min
	Rinse in distilled water	
	Phosphomolybdic-phosphotungstic acid	15 min
	Light green	1 min
	Rinse in distilled water	
	Glacial acetic solution	3 min
Dehydration	95% alcohol I	5 sec
		2 ·
	95% alcohol II	2 min
		2 min
	Absolute ethanol I	2 min
	Absolute ethanol II	
Cleaning	Xylene I	2 min
Creaning	-	
	Xylene II	2 min
		1 min
	Xvlene III	

Xylene III Mounting with DPX (DPX mounting media and cover the section with cover slip.

APPENDIX B: MANUFACTURER INSTRUCTION OF KITS AND PROCEDURES

1. PGE2 (CAYMAN PGE2 ASSAY ELISA KIT; CAT# 400144)

- Prepare SPE (C-18) columns by rinsing with 5 ml methanol followed by 5 ml deionized water. Do not allow the SPE Cartridge (C-18) to dry.
- Apply the sample to the SPE Cartridge (C-18) and allow the sample to completely enter the packing material.
- 7. Wash the column with 5 ml deionized water. Discard the wash.
- Elute the PGE₂ from the column with 5 ml ethyl acetate containing 1% methanol. Higher recovery and better reproducibility may be obtained if the sample is applied and eluted by gravity. The wash steps may be performed under vacuum or pressure.
- Evaporate the ethyl acetate to dryness under a stream of nitrogen. It is very important that all of the organic solvent be removed as even small quantities will adversely affect the EIA.
- To resuspend the sample, add 500 µl EIA Buffer. Vortex. It is common for insoluble precipitate to remain in the sample after addition of EIA Buffer; this will not affect the assay. This sample is now ready for use in the EIA.
- 11. Use 50 µl of the resuspended sample for scintillation counting.

ASSAY PROTOCOL

Preparation of Assay-Specific Reagents

PGE₂ Express EIA Standard

Reconstitute the contents of the PGE₂ Express EIA Standard (Item No. 400144) with 1.0 ml of EIA Buffer. The concentration of this solution (the bulk standard) will be 10 ng/ml. Stored at 4°C; this standard will be stable for up to four weeks.

NOTE: If anaying culture medium samples that have not been diluted with EIA Buffer, culture medium should be used in place of EIA Buffer for dilution of the standard curve.

To prepare the standard for use in EIA: Obtain eight clean test tubes and number them #1 through #8. Aliquot 800 µl EIA Buffer to tube #1 and 500 µl EIA Buffer to tubes #2-8. Transfer 200 µl of the bulk standard (10 ng/ml) to tube #1 and mix thoroughly. The concentration of this standard, the first point on the standard curve, will be 2 ng/ml (2.000 pg/ml). Serially dilute the standard by removing 500 µl from tube #1 and placing in tube #2; mix thoroughly. Next, remove 500 µl from tube #2 and place it into tube #3; mix thoroughly. Repeat this process for tubes #4-8. These diluted standards should not be stored for more than 24 hours.

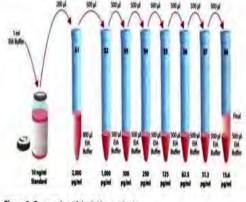


Figure 5. Preparation of the PGE, standards

ASSAY PROTOCOL 19

18 PRE-ASSAY PREPARATION

Performing the Assay

Pipetting Hints

- Use different tips to pipette each reagent.
 - Before pipetting each reagent, equilibrate the pipette tip in that reagent (*i.e.*, slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.

Addition of the Reagents

1. EIA Buffer

Add 100 μ l EIA Buffer to Non-Specific Binding (NSB) wells. Add 50 μ l EIA Buffer to Maximum Binding (B₀) wells. If culture medium was used to dilute the standard curve, substitute 50 μ l of culture medium for EIA Buffer in the NSB and B₀ wells (*i.e.*, add 50 μ l culture medium to NSB and B₀ wells and 50 μ l EIA Buffer to NSB wells).

2. Prostaglandin E₂ Express EIA Standard

Add 50 μ l from tube #8 to both of the lowest standard wells (S8). Add 50 μ l from tube #7 to each of the next two standard wells (S7). Continue with this procedure until all the standards are aliquoted. The same pipette tip should be used to aliquot all the standards. Before pipetting each standard, be sure to equilibrate the pipette tip in that standard.

3. Samples

Add 50 µl of sample per well. Each sample should be assayed at a minimum of two dilutions. Each dilution should be assayed in duplicate (triplicate recommended).

4. Prostaglandin E₂ Express AChE Tracer

Add 50 µl to each well except the Total Activity (TA) and the Blank (Blk) wells.

5. Prostaglandin E2 Express Monoclonal Antibody

Add 50 µl to each well except the Total Activity (TA), the Non-Specific Binding (NSB), and the Blank (Blk) wells.

Well	EIA Buffer	Standard/ Sample	Tracer	Antibody
Bik	5	Ŧ		1
TA			5 µl (at devl. step)	-
NSB	100 µl	AL U	50 µl	-
Bo	50 µl	3-1	50 µl	50 µl
Std/Sample		50 µl	50 µl	50 µl

Table 1. Pipetting summary

Incubation of the Plate

Cover each plate with plastic film (Item No. 400012) and incubate 60 minutes at room temperature on an orbital shaker.

Development of the Plate

 Reconstitute Ellman's Reagent immediately before use (20 ml of reagent is sufficient to develop 100 wells):

100 dtn vial Ellman's Reagent (96-well kit; Item No. 400050): Reconstitute with 20 ml of UltraPure water.

OR

250 dtn vial Ellman's Reagent (480-well kit; Item No. 400050): Reconstitute with 50 ml of UltraPure water.

NOTE: Reconstituted Ellman's Reagent is unstable and should be used the same day it is prepared; protect the Ellman's Reagent from light when not in use. Extra vials of the reagent have been provided should a plate need to be re-developed or multiple assays run on different days.

- 2. Empty the wells and rinse five times with Wash Buffer.
- 3. Add 200 µl of Ellman's Reagent to each well.
- 4. Add 5 µl of tracer to the Total Activity wells.
- Cover the plate with plastic film. Optimum development is obtained by using an orbital shaker equipped with a large, flat cover to allow the plate(s) to develop in the dark. This assay typically develops (*i.e.*, B₀ wells ≥0.3 A.U. (blank subtracted)) in 60-90 minutes.

Reading the Plate

- 1. Wipe the bottom of the plate with a clean tissue to remove fingerprints, dirt, etc.
- 2. Remove the plate cover being careful to keep Ellman's Reagent from splashing on the cover. NOTE: Any loss of Ellman's Reagent will affect the absorbance readings. If Ellman's Reagent is present on the cover, use a pipette to transfer the Ellman's Reagent into the well. If too much Ellman's Reagent has splashed on the cover to easily redistribute back into the wells, wash the plate three times with wash buffer and repeat the development with fresh Ellman's Reagent.
- 3. Read the plate at a wavelength between 405 and 420 nm. The absorbance may be checked periodically until the B_0 wells have reached a minimum of 0.3 A.U. (blank subtracted). The plate should be read when the absorbance of the B_0 wells are in the range of 0.3-1.0 A.U. (blank subtracted). If the absorbance of the wells exceeds 1.5, wash the plate, add fresh Ellman's Reagent and let it develop again.

ANALYSIS

Many plate readers come with data reduction software that plot data automatically. Alternatively a spreadsheet program can be used. The data should be plotted as either %B/B₀ versus log concentration using a four-parameter logistic fit or as logit B/B₀ versus log concentration using a linear fit. NOTE: Cayman has a computer spreadsheet available for data anaylsis. Please contact Technical Service or visit our website (www.caymanchem.com/analysis/ eia) to obtain a free copy of this convenient data analysis tool.

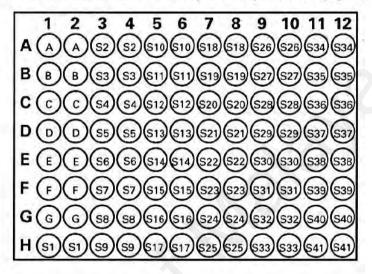
Calculations

Preparation of the Data

The following procedure is recommended for preparation of the data prior to graphical analysis.

NOTE: If the plate reader has not subtracted the absorbance readings of the blank wells from the absorbance readings of the rest of the plate, be sure to do that now.

- Average the absorbance readings from the NSB wells.
- 2. Average the absorbance readings from the B₀ wells.
- Subtract the NSB average from the B₀ average. This is the corrected B₀ or corrected maximum binding.
- 4. Calculate the B/B₀ (Sample or Standard Bound/Maximum Bound) for the remaining wells. To do this, subtract the average NSB absorbance from the S1 absorbance and divide by the corrected B₀ (from Step 3). Repeat for S2-S8 and all sample wells. (To obtain %B/B₀ for a logistic four-parameter fit, multiply these values by 100.)


NOTE: The total activity (TA) values are not used in the standard curve calculations. Rather, they are used as a diagnostic tool; the corrected B_0 divided by the actual TA (10X measured absorbance) will give the % Bound. This value should closely approximate the % Bound that can be calculated from the Sample Data (see page 28). Erratic absorbance values and a low (or no) % Bound could indicate the presence of organic solvents in the buffer or other technical problems (see page 32 for Troubleshooting).

2. <u>SOD (CAYMAN, CAT#. 706002)</u>

ASSAY PROTOCOL

Plate Set Up

There is no specific pattern for using the wells on the plate. A typical layout of SOD standards and samples to be measured in duplicate is given below in Figure 2. We suggest you record the contents of each well on the template sheet provided (see page 19).

A-G = Standards S1-S41 = Sample Wells

Pipetting Hints

- It is recommended that an adjustable pipette be used to deliver reagents to the wells.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent
 (*i.e.*, slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.

General Information

- The final volume of the assay is 230 µl in all the wells.
- It is not necessary to use all the wells on the plate at one time.
- The assay temperature is 25°C.
- All reagents except samples and Xanthine Oxidase must be equilibrated to room temperature before beginning the assay.
- It is recommended that the samples and SOD standards be assayed at least in duplicate.
- Monitor the absorbance at 440-460 nm using a plate reader.

Standard Preparation

Dilute 20 μ l of the SOD Standard (Item No. 706005) with 1.98 ml of Sample Buffer (dilute) to obtain the SOD stock solution. Take seven clean glass test tubes and mark them A-G. Add the amount of SOD stock and Sample Buffer (dilute) to each tube as described in Table 1 on page 12.

Tube	SOD Stock (µl)	Sample Buffer (µl)	Final SOD Activity (U/ml)
A	0	1,000	0
В	20	980	0.025
C	40	960	0.05
D	80	920	0.1
E	120	880	0.15
F	160	840	0.2
G	200	800	0.25

Table 1. Superoxide Dismutase standards

Performing the Assay

- 1. SOD Standard Wells add 200 µl of the diluted Radical Detector and 10 µl of Standard (tubes A-G) per well in the designated wells on the plate (see sample plate format, Figure 2, page 10).
- 2. Sample Wells add 200 µl of the diluted Radical Detector and 10 µl of sample to the wells. NOTE: If using an inhibitor, add 190 µl of the diluted Radical Detector, 10 µl of inhibitor, and 10 µl of sample to the wells. The amount of sample added to the well should always be 10 µl. Samples should be diluted with Sample Buffer (dilute) or concentrated with an Amicon centrifuge concentrator with a molecular weight cut-off of 10,000 to bring the enzymatic activity to fall within the standard curve range.
- 3. Initiate the reactions by adding 20 µl of diluted Xanthine Oxidase to all the wells you are using. Make sure to note the precise time you started and add the Xanthine Oxidase as quickly as possible. NOTE: If assaying sample backgrounds, add 20 µl of Sample Buffer instead of Xanthine Oxidase.
- 4. Carefully shake the 96-well plate for a few seconds to mix. Cover with the plate cover.
- 5. Incubate the plate on a shaker for 20 minutes at room temperature. Read the absorbance at 440-460 nm using a plate reader.

ANALYSIS

Calculations

- 1. Calculate the average absorbance of each standard and sample. If assayed, subtract sample background absorbance from the sample.
- 2. Divide standard A's absorbance by itself and divide standard A's absorbance by all the other standards and samples absorbances to yield the linearized rate (LR) (*i.e.*, LR for Std A = Abs Std A/Abs Std A; LR for Std B = Abs Std A/Abs Std B).
- 3. Plot the linearized SOD standard rate (LR) (from step 2 above) as a function of final SOD Activity (U/ml) from Table 1. See Figure 3 (on page 14) for a typical standard curve.
- 4. Calculate the SOD activity of the samples using the equation obtained from the linear regression of the standard curve substituting the linearized rate (LR) for each sample. One unit is defined as the amount of enzyme needed to exhibit 50% dismutation of the superoxide radical. SOD activity is standardized using the cytochrome c and xanthine oxidase coupled assay

SOD (U/ml) =
$$\left[\left(\frac{\text{sample LR - y-intercept}}{\text{slope}} \right) \times \frac{0.23 \text{ ml}}{0.01 \text{ ml}} \right] \times \text{sample dilution}$$

Performance Characteristics

Precision:

When a series of 60 SOD standard measurements were performed on the same day, the intraassay coefficient of variation was 3.2%. When a series of 60 SOD standard measurements were performed on five different days under the same experimental conditions, the interassay coefficient of variation was 3.7%.

Assay Range:

Under the standardized conditions of the assay described in this booklet, the dynamic range of the kit is 0.025-0.25 units/ml SOD.

3. CAT (CAYMAN CAT#. 707002)

Standard Preparation

1. Preparation of the Formaldehyde Standards - Dilute 10 μ l of Catalase Formaldehyde Standard (Item No. 707014) with 9.99 ml of diluted Sample Buffer to obtain a 4.25 mM formaldehyde stock solution. Take seven clean glass test tubes and mark them A-G. Add the amount of formaldehyde stock and diluted Sample Buffer to each tube as described in Table 1 (below).

Tube	Formaldehyde (µl)	Sample Buffer (µl)	Final Concentration (µM formaldehyde)*
Α	0	1,000	0
В	10	990	5
c	30	970	15
D	60	940	30
E	90	910	.45
F	120	880	60
G	150	850	75

Table 1

*Final formaldehyde concentration in the 170 μl reaction.

Performing the Assay

- Formaldehyde Standard Wells Add 100 μl of diluted Assay Buffer, 30 μl of methanol, and 20 μl of standard (tubes A-G) per well in the designated wells on the plate (see sample plate format, Figure 1, page 12).
- 2. Positive Control Wells (bovine liver CAT) Add 100 µl of diluted Assay Buffer, 30 µl of methanol, and 20 µl of diluted Catalase (Control) to two wells.
- 3. Sample Wells Add 100 µl of diluted Assay Buffer, 30 µl of methanol, and 20 µl of sample to two wells. To obtain reproducible results, the amount of CAT added to the well should result in an activity between 2-35 nmol/min/ml. When necessary, samples should be diluted with diluted Sample Buffer or concentrated with an Amicon centrifuge concentrator with a molecular weight cut-off of 100,000 to bring the enzymatic activity to this level.
- 4. Initiate the reactions by adding 20 μl of diluted Hydrogen Peroxide to all the wells being used. Make sure to note the precise time the reaction is initiated and add the diluted Hydrogen Peroxide as quickly as possible.
- 5. Cover the plate with the plate cover and incubate on a shaker for 20 minutes at room temperature.
- 6. Add 30 μl of diluted Potassium Hydroxide to each well to terminate the reaction and then add 30 μl of Catalase Purpald (Chromagen) (Item No. 707017) to each well.
- 7. Cover the plate with the plate cover and incubate for 10 minutes at room temperature on the shaker.
- Add 10 µl of Catalase Potassium Periodate (Item No. 707018) to each well. Cover with plate cover and incubate five minutes at room temperature on a shaker.
- 9. Read the absorbance at 540 nm using a plate reader.

4. GPX (CAYMAN CAT#. 703102)

Performing the Assay

- Background or Non-enzymatic Wells add 120 µl of Assay Buffer and 50 µl of co-substrate mixture to three wells.
- Positive Control Wells (bovine crythrocyte GPx) add 100 µl of Assay Buffer, 50 µl of Co-Substrate Mixture, and 20 µl of diluted GPx (control) to three wells.
- 3. Sample Wells add 100 µl of Assay Buffer, 50 µl of Co-Substrate Mixture, and 20 µl of sample to three wells. To obtain reproducible results, the amount of GPx added to the well should cause an absorbance decrease between 0.02 and 0.135/min. When necessary, samples should be diluted with Sample Buffer or concentrated with an Amicon centrifuge concentrator with a molecular weight cut-off of 10,000 to bring the enzymatic activity to this level. NOTE: The amount of sample added to the well should always be 20 µl. To determine if an additional sample control should be performed see the Interferences section (page 14).
- Initiate the reactions by adding 20 µl of Cumene Hydroper oxide to all the wells being used. Make sure to note the precise time the reaction is initiated and add the Cumene Hydroperoxide as quickly as possible.
- Carefully shake the plate for a few seconds to mix.
- Read the absorbance once every minute at 340 nm using a plate reader to obtain at least 5 time points. NOTE: The initial absorbance of the sample wells should not be above 1.2 or below 0.5.

5. LPO (CAYMAN CAT#. 705003)

Standard Preparation

Take 24 clean test tubes (glass or polypropylene) and mark them A-H in triplicate. Aliquot the Lipid Hydroperoxide Standard (HP) (Item No. 705014) and chloroform-methanol mixture to each tube as described in Table 1.

libe	HP Standard (µi)	СНО ₃ -СН ₃ ОН (µI)	Final HP* (rmol)
A	0	950	0
В	TÓ	940	0.5
¢	20	930	1.0
Ð	30	9210	15
E	-40	910	2.0
F	60	890	3,0
G	- 80	870	4.0
H	100	850	5.0

Table 1.

*This is the final amount of hydroperoxide in the assay tube.

Performing the Assay

- Add 500 µl⁺ of the chloroform extract of each sample to appropriately labeled glass test tubes. NOTE: Avoid any transfer of water from the extract.
- 2. Aliquot 450 µl of chloroform-methanol solvent mixture to the sample test tubes.
- Prepare the Chrom ogen by mixing equal volumes of FTS Reagent 1 and FTS Reagent 2 in a test tube and vortex. The volume of Chromogen to be prepared is dependent on the number of tubes assayed. Calculate 50 µl for each tube (e.g., 24 x 50 µl for the tubes of the standard curve).
- Add 50 µl of the freshly prepared Chrom ogen to each assay tube and mix well by vortexing. Close the test tubes tightly with polypropylene caps.
- Keep the assay tubes at room temperature for five minutes.

NOTE: There are two methods of completing this assay, either using a spectrophotometer to test each sample separately (see step 6) or when using the glass 96-well plate, the values can be read with a plate reader (see steps 7-9).

 Measure the absorbance of each tube at 500 nm using either glass or quartz 1 ml cuvettes. Use chloroform-methanol solvent mixture for blank if the spectrophotometer requires it.

OR

- 7. Transfer 300 µl from each tube into the 96-well plate following the configuration shown in Figure 1. (There is no specific pattern for using the wells on the plate. A typical layout of standards and samples to be measured in duplicate is given on page 10.) To avoid evaporation from the wells, you may cover the plate with aluminum foil as you aliquot the samples. NOTE: Do not use plastic plate covers, the solvent will dissolve the cover. Do not shake the plate on the table top, it will scratch the bottom of the plate.
- 8. Read the absorbance at 500 nm using a 96-well plate reader.
- The 96-well plate can be reused, see Pre-Assay Preparation (see page 8) for instructions on how to clean the plate.

NOTE: The color is stable for two hours. If the test tubes are not closed tightly, evaporation of solvent will result in change of absorbance.

*Volume of the extract used for the assay can be changed depending on the concentration of hydroperoxide. However, adjust the volume of the chloroform -methanol solvent mixture accordingly to a final volume of 950 µl before the addition of the chromogen.

6. IL-6 ELISA KIT (CUSABIO, CAT#. ER3TNFA)

- Wash Buffer If crystals have formed in the concentrate, warm up to room temperature and mix gently until the crystals have completely dissolved. Dilute 20 ml of Wash Buffer Concentrate into deionized or distilled water to prepare 500 ml of Wash Buffer.
- Standard Reconstitute the Standard with 1.0 ml of Samp le Diluent. This reconstitution
 produces a stock solution of 20 pg/ml. Allow the standard to sit for a minimum of 15
 minutes with gentle agitation prior to making serial dilutions. The undiluted standard
 serves as the high standard (20 pg/ml). The Sample Diluent serves as the zero standard (0
 pg/ml).
- Biotin-antibody Dilute to the working concentration specified on the vial label using Biotin-antibody Diluent(1:100), respectively.
- HRP-avidin Dilute to the working concentration specified on the vial label using HRP-avidin Diluent(1:100), respectively.

Precaution: The Stop Solution provided with this kit is an acid solution. Wear eye, hand, face, and clothing protection when using this material.

OTHER SUPPLIES REQUIRED

- Microplate reader capable of measuring absorbance at 450 nm, with the correction wavelength set at 540 nm or 570 nm.
- Pipettes and pipette tips.
- Deionized or distilled water.
- Squirt bottle, manifold dispenser, or automated microplate was her.

SAMPLE COLLECTION AND STORAGE

- Cell Culture Supernates Remove particulates by centrifugation and assay immediately or aliquot and store samples at -20° C. Avoid repeated freeze-thaw cycles.
- Serum Use a serum separator tube (SST) and allow samples to clot for 30 minutes before centrifugation for 15 minutes at 1000 g. Remove serum and assay immediately or aliquot and store samples at -20° C. Avoid repeated freeze-thaw cycles.
- Plasma Collect plasma using citrate, EDTA, or heparin as an anticoagulant. Centrifuge for 15 minutes at 1000 x g within 30 minutes of collection. Assay immediately or aliquot and store samples at -20° C. Avoid repeated freeze-thaw cycles.

Note: Grossly hemolyzed samples are not suitable for use in this assay.

ASSAY PROCEDURE

- Add 100µl of Standard, Blank, or Sample per well. Cover with the adhesive strip. Incub ate for 2 hours at 37° C.
- 2. Remove the liquid of each well, don't was h
- Add 100µl of Biotin-antib od y working solution to each well. Incubate for 1 hour at 37°C.
 Biotin-antibody working solution may appear cloudy. Warm up to room temperature and mix gently until solution appears uniform.
- 4. As pirate each well and wash, repeating the process three times for a total of three washes. Wash by filling each well with Wash Buffer (200µl) using a squirt bottle, multi-channel pipette, manifold dispenser or autowasher. Complete removal of liquid at each step is essential to good performance. A fler the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.
- Add 100µl of HRP-avidin working solution to each well. Cover the microtiter plate with a new adhesive strip. Incub ate for 1 hour at 37° C.
- 6. Repeat the aspiration and wash three times as step 4.
- Add 90µl of TMB Substrate to each well. Incubate for 30 minutes at 37°C. Keeping the plate away from drafts and other temperature fluctuations in the dark.
- Add 50µl of Stop Solution to each well. If color charge does not appear uniform, gently tap the plate to ensure thorough mixing.
- Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm.

CALCULATION OF RESULTS

Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density. Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the IL-6 concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

LIMITATIONS OF THE PROCEDURE

- The kit should not be used beyond the expiration date on the kit label.
- Do not mix or substitute reagents with those from other lots or sources.
- It is important that the Calibrator Diluent selected for the standard curve be consistent with

appropriate Calibrator Diluent and repeat the assay.

- Any variation in Standard Diluent, operator, pipetting technique, washing technique, incubation time or temperature, and kit age can cause variation in binding.
- This assay is designed to eliminate interference by soluble receptors, binding proteins, and
 other factors present in biological samples. Until all factors have been tested in the
 Quantikine Immunoassay, the possibility of interference cannot be excluded.

TECHNICAL HINTS

- When mixing or reconstituting protein solutions, always avoid foaming.
- To avoid cross-contamination, change pipette tips between additions of each standard level, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.
- When using an automated plate washer, adding a 30 second soak period following the addition of wash buffer, and/or rotating the plate 180 degrees between wash steps may improve assay precision.
- To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary.
- Substrate Solution should remain colorless until added to the plate. Keep Substrate Solution protected from light. Substrate Solution should change from colorless to gradations of blue.
- Stop Solution should be added to the plate in the same order as the Substrate Solution. The color developed in the wells will turn from blue to yellow upon addition of the Stop Solution. Wells that are green in color indicate that the Stop Solution has not mixed thoroughly with the Substrate Solution.

<u>7. TNF-α S U S #. N</u>

 Plasma Collect plasma using citrate, EDTA, or heparin as an articoagulant. Certrifuge for 15 minutes at 1000 g within 30 minutes of collection. Assay immediately or aliquot and store samples at -20° C. Avoid repeated freeze thaw cycles.

Note: Grossly hemolyzed samples are not suitable for use in this assay.

ASSAY PROCEDURE

Bring all reagents and samples to room temperature before use. It is recommended that all samples, standards, and controls be assayed in duplicate.

- Add 100µl of Standard, Blark, or Sample perwell. Cover with the adhesive strip. Incubate for 2 hours at 37° C.
- 2. Remove the liquid of eachwell, don't wash.
- Add 100µl of Biotin-antibody working solution to each well. Incubate for 1 hour at 37°C. Biotin-antibody working solution may appear cloudy. Warm up to room temperature and mix gentlyuntil solution appears uniform.
- 4. Aspirate each well and wash repeating the process three times for a total of three was hes. Wash by filling each well with Wash Buffer (200µl) using a squirt bottle, multi-channel pipette, manifold dispenser or autowasher. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by as pirating or decanting. Invert the plate and blot it against clean paper towels.

- Add 100µl of HRP-avidin working solution to each well. Cover the microtiter plate with a new adhesive strip. Incubate for 1 hour at 37°C.
- 6. Repeat the aspiration and wash three times as step 4.
- Add 90µ1 of TMB Substrate to each well. Incubate for 10-30 minutes at 37°C. Keeping the plate away from drafts and other temperature fluctuations in the dark.
- Add 50µl of Stop Solution to each well when the first four wells containing the highest concentration of standards develop obvious blue color. If color change does not appear uniform, gently tap the plate to ensure thorough mixing
- Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm.

CALCULATION OF RESULTS

Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density. Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the correntration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the logo f the TNF- α correntrations versus the logo f the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

8. IL-10 ELISA KIT (CUSABIO, CAT#. ER3TNFA)

OTHER SUPPLIES REQUIRED

- Microplate reader capable of measuring absorbance at 450 nm, with the correction wavelength set at 540 nm or 570 nm.
- Pipettes and pipette tips.
- Deionized or distilled water.
- Squirt bottle, manifold dispenser, or automated microplate was her.

SAMPLE COLLECTION AND STORAGE

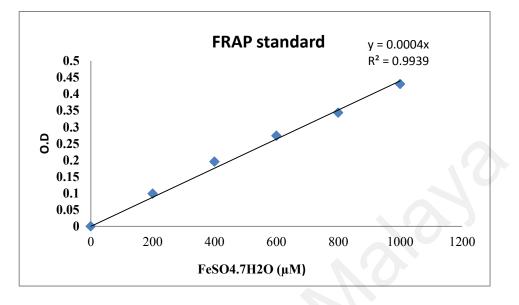
- Cell Culture Supernates Remove particulates by centrifugation and assay immediately or aliquot and store samples at-20° C. Avoid repeated freeze-thaw cycles.
- Serum Use a serum separator tube (SST) and allow samples to clot for 30 minutes before centrifugation for 15 minutes at 1000 x g. Remove serum and assay immediately or aliquot and store samples at -20° C. Avoid repeated freeze-thaw cycles.
- Plasma Collect plasma using citrate, EDTA, or heparin as an anticoagulant. Centrifuge for 15 minutes at 1000 x g within 30 minutes of collection. Assay immediately or aliquot and store samples at -20° C. Avoid repeated freeze-thaw cycles.

Note: Grossly hemolyzed samples are not suitable for use in this assay.

ASSAY PROCEDURE

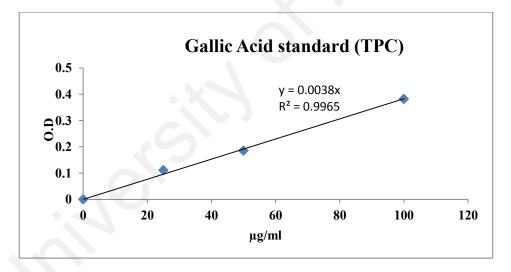
Bring all reagents and samples to room temperature before use. It is recommended that all samples, standards, and controls be assayed in duplicate.

- Add 100µl of Standard, Blank, or Sample per well. Cover with the adhesive strip. Incub ate for 2 hours at 37° C.
- 2. Remove the liquid of each well, don't was h.
- Add 100µl of Biotin-antib ody working solution to each well. Incubate for 1 hour at 37°C. Biotin-antibody working solution may appear cloudy. Warm up to room temperature and mix gently until solution appears uniform.
- 4. As pirate each well and wash, repeating the process three times for a total of three washes. Wash by filling each well with Wash Buffer (350µl) using a squirt bottle, multi-channel pipette, manifold dispenser or autowasher. Complete removal of liquid at each step is essential to good performance. A fler the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.

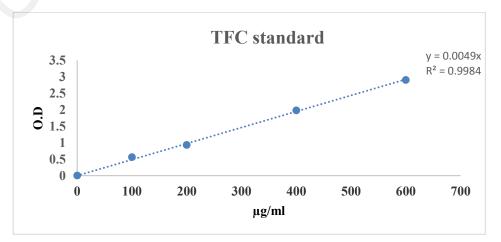

- Add 100µl of HRP-avidin working solution to each well. Cover the microtiter plate with a new adhesive strip. Incub ate for 1 hour at 37° C.
- 6. Repeat the as piration and was h three times as step 4.
- Add 90µl of TMB Substrate to each well. Incubate for 30 minutes at 37°C. Keeping the plate away from drafts and other temperature fluctuations in the dark.
- Add 50µl of Stop Solution to each well. If color charge does not appear uniform, gently tap the plate to ensure thorough mixing.
- Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm.

CALCULATION OF RESULTS

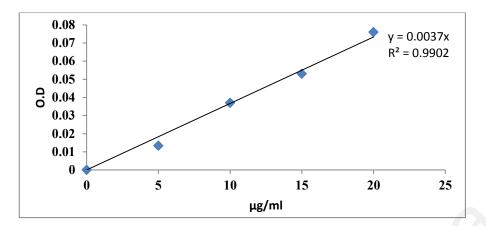
Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density. Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the IL-10 concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

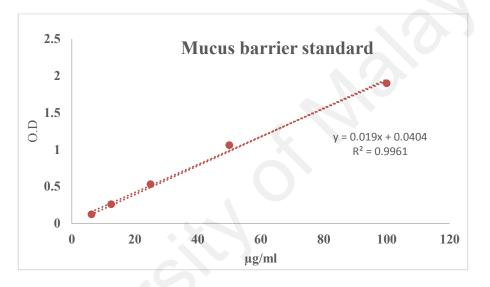

LIMITATIONS OF THE PROCEDURE

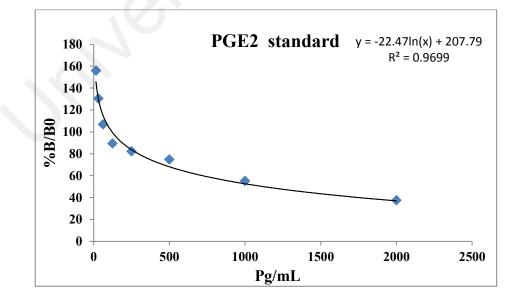
- The kit should not be used beyond the expiration date on the kit label.
- Do not mix or substitute reagents with those from other lots or sources.
- It is important that the Calibrator Diluent selected for the standard curve be consistent with the samples being assayed.
- If samples generate values higher than the highest standard, dilute the samples with the appropriate Calibrator Diluent and repeat the assay.
- Any variation in Standard Diluent, operator, pipetting technique, washing technique, incub ation time or temperature, and kit age can cause variation in binding.
- This assay is designed to eliminate interference by soluble receptors, binding proteins, and other factors present in biological samples. Until all factors have been tested in the Quantikine Immunoassay, the possibility of interference cannot be excluded.

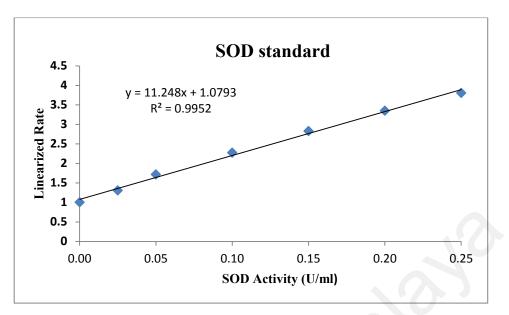


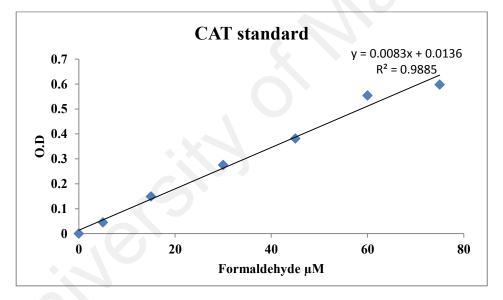
1. FRAP STANDARD CURVE

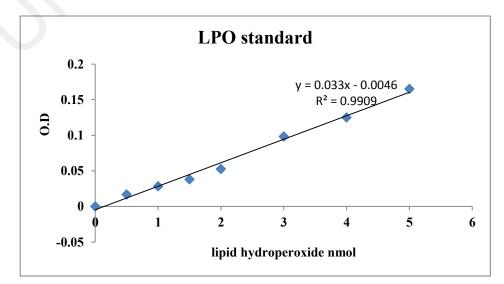

2. GALLIC ACID STANDARD CURVE

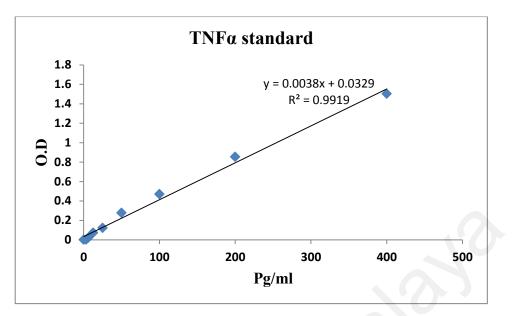

3. TOTAL FLAVANOID CONTENT STANDARD CURVE

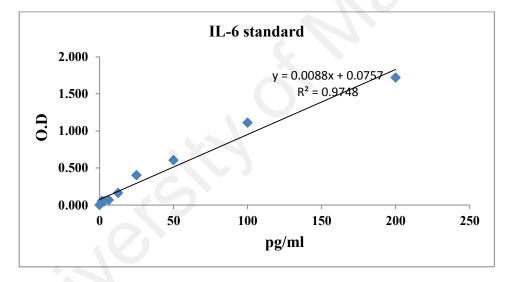

4. BOVIN SERUM ALBUMIN STANDARD CURVE

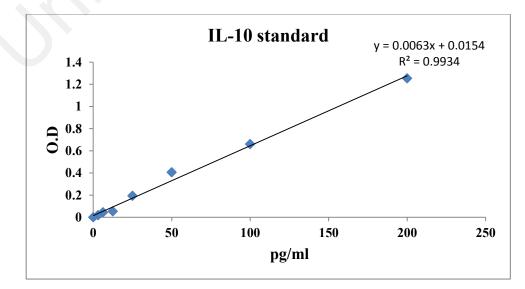

5. ALCIAN BLUE STANDARD CURVE


6. PROSTAGLANDIN STANDARD CURVE


7. SUPEROXIDE DISMUTASE STANDARD CURVE

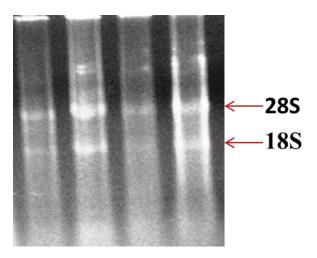

8. CATALASE STANDARD CURVE


9. LIPID PEROXIDATION STANDARD CURVE


10. TUMOR NECROSIS FACTOR STANDARD CURVE

11. INTERLEUKINE_6 STANDARD CURVE

12. INTERLEUKINE_10 STANDARD CURVE



Sample	RNA ng/µL	A260/280
Control 1	917.6	2.13
Control 2	549.1	2.07
Control 3	1334	2.02
Control 4	300.1	1.9
Control 5	403.84	2.01
Reference drug 1	661.64	2.05
Reference drug 2	124.7	2.02
Reference drug 3	424.32	1.71
Reference drug 4	199.2	2.13
Reference drug 5	273.9	2
C.E1 (200 mg/mL)	329.52	2.01
C.E2 (200 mg/mL)	297	2.03
C.E3 (200 mg/mL)	358.1	2.1
C.E4 (200 mg/mL)	167.5	2.09
C.E5 (200 mg/mL)	573.3	2.01

RNA concentration and purity

Measurement by Nano Drop ND-2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,

USA).

mRNA integrity profile ethidium bromide stained with agarose gel

APPENDIX D: STATISTICAL ANALYSIS

Multiple Comparisons

1. Wound contraction

Dependent Variable	(I) VAR00029	(J) VAR00029	Mean Difference	Std. Error	Sig.	95% Conf	idence Interva
v ai iaule	v AK00029	v AKUUU29	(I-J)			Lower Bound	Upper Bound
	-	Drug	.99394	6.33 216	1.00 0	-17.9543	19.9421
	Gum	HD	- 13.55943	6.33 216	.242	-32.5076	5.3888
	acacia	MD	- 13.26219	6.33 216	.261	-32.2104	5.6860
		LD	- 17.57943	6.33 216	.077	-36.5276	1.3688
		Gum acacia	99394	6.33 216	1.00 0	-19.9421	17.9543
	Drug	HD	- 14.55337	6.33 216	.186	-33.5016	4.3948
	Diug	MD	- 14.25613	6.33 216	.202	-33.2043	4.6921
		LD	- 18.57337	6.33 216	.056	-37.5216	.3748
		Gum acacia	13.55943	6.33 216	.242	-5.3888	32.5076
five	HD	Drug	14.55337	6.33 216	.186	-4.3948	33.5016
live	пр	MD	.29724	6.33 216	1.00 0	-18.6510	19.2454
		LD	-4.02000	6.33 216	.967	-22.9682	14.9282
		Gum acacia	13.26219	6.33 216	.261	-5.6860	32.2104
	MD	Drug	14.25613	6.33 216	.202	-4.6921	33.2043
	MD	HD	29724	6.33 216	1.00 0	-19.2454	18.6510
		LD	-4.31724	6.33 216	.958	-23.2654	14.6310
		Gum acacia	17.57943	6.33 216	.077	-1.3688	36.5276
	LD	Drug	18.57337	6.33 216	.056	3748	37.5216
	LD	HD	4.02000	6.33 216	.967	-14.9282	22.9682
		MD	4.31724	6.33 216	.958	-14.6310	23.2654
		Drug	- 11.47797 [*]	3.38 140	.021	-21.5964	-1.3596
	Gum	HD	- 15.70460 [*]	3.38 140 2.28	.001	-25.8230	-5.5862
	acacia	MD	16.91902*	3.38 140 3.38	.001	-27.0374	-6.8006
Ten		LD Gum	19.50523* 11.47797	140 3.38	.000	-29.6236	-9.3868
		acacia	*	140 3.38	.021	1.3596	21.5964
	Drug	HD MD	-4.22663 -5.44105	140 3.38	.723 .509	-14.3450 -15.5595	5.8918 4.6774
		LD	-8.02725	140 3.38	.164	-18.1457	2.0912
			0.02723	140		10.1107	2.0712

1		Gum	15.2	70460	3.38	001	5 59(2	25 9220
		acacia	*		140 3.38	.001	5.5862	25.8230
	HD	Drug		2663	140 3.38	.723	-5.8918	14.3450
		MD		21442	140 3.38	.996	-11.3328	8.9040
		LD Gum		30063 91902	140 3.38	.792	-13.9190	6.3178
		acacia	* 10.2	91902	140	.001	6.8006	27.0374
	MD	Drug	5.44	4105	3.38 140	.509	-4.6774	15.5595
		HD	1.2	1442	3.38 140	.996	-8.9040	11.3328
		LD		58621	3.38 140	.938	-12.7046	7.5322
		Gum acacia	* 19.5	50523	3.38 140	.000	9.3868	29.6236
	LD	Drug	8.02	2725	3.38 140	.164	-2.0912	18.1457
	LD	HD	3.80	0063	3.38 140	.792	-6.3178	13.9190
		MD	2.5	8621	3.38 140	.938	-7.5322	12.7046
		Drug	- 16.0701	14*	2.07 302	.000	-22.2734	-9.8669
	Gum	HD	- 19.9228	83*	2.07 302	.000	-26.1261	-13.7196
	acacia	MD	- 18.4697		2.07 302	.000	-24.6730	-12.2665
		LD	- 16.7973	35*	2.07 302	.000	-23.0006	-10.5941
		Gum acacia		07014	2.07 302	.000	9.8669	22.2734
		HD	-3.8	35269	2.07 302	.370	-10.0559	2.3506
	Drug	MD	-2.3	39963	2.07 302	.774	-8.6029	3.8036
		LD	72	2722	2.07 302	.996	-6.9305	5.4760
		Gum acacia	* 19.9 *	92283	2.07 302	.000	13.7196	26.1261
		Drug	3.8	5269	2.07 302	.370	-2.3506	10.0559
Fifteen	HD	MD	1.4	5306	2.07 302	.954	-4.7502	7.6563
		LD	3.12	2548	2.07 302	.570	-3.0778	9.3287
		Gum acacia	* 18.4	46977	2.07 302	.000	12.2665	24.6730
		Drug	2.3	9963	2.07 302	.774	-3.8036	8.6029
	MD	HD	-1.4	45306	2.07 302	.954	-7.6563	4.7502
		LD	1.6	7241	2.07 302	.925	-4.5308	7.8757
		Gum acacia	* 16. [^]	79735	2.07 302	.000	10.5941	23.0006
		Drug	.72	722	2.07 302	.996	-5.4760	6.9305
	LD	HD	-3.1	2548	2.07 302	.570	-9.3287	3.0778
		MD	-1.6	57241	2.07 302	.925	-7.8757	4.5308
*. The mean dif	ference is sign	ufficant at the 0.0	5 level					

*. The mean difference is significant at the 0.05 level.

2. Liver function test statistics

Dependent Variable: AST

(I)	lent Variable: A	Mean	Std.	Sig.	95% Confider	nce Interval
group	group	Difference (I-J)	Error		Lower Bound	Upper Bound
	NM	-30.88167	22.7831 6	.185	-77.4111	15.6478
	HDF	-30.04833	22.7831 6	.197	-76.5778	16.4811
NF	LDF	-16.54833	22.7831 6	.473	-63.0778	29.9811
	HDM	-91.48167 [*]	22.7831 6	.000	-138.0111	-44.9522
	LDM	-18.24833	22.7831 6	.429	-64.7778	28.2811
	NF	30.88167	22.7831 6	.185	-15.6478	77.4111
	HDF	.83333	22.7831 6	.971	-45.6961	47.3628
NM	LDF	14.33333	22.7831 6	.534	-32.1961	60.8628
	HDM	-60.60000*	22.7831 6	.012	-107.1294	-14.0706
	LDM	12.63333	22.7831 6	.583	-33.8961	59.1628
	NF	30.04833	22.7831 6	.197	-16.4811	76.5778
	NM	83333	22.7831	.971	-47.3628	45.6961
HDF	LDF	13.50000	22.7831 6	.558	-33.0294	60.0294
	HDM	- 61.43333*	22.7831	.011	-107.9628	-14.9039
	LDM	11.80000	22.7831	.608	-34.7294	58.3294
	NF	16.54833	22.7831	.473	-29.9811	63.0778
	NM	-14.33333	22.7831 6	.534	-60.8628	32.1961
LDF	HDF	-13.50000	22.7831 6	.558	-60.0294	33.0294
	HDM	-74.93333*	22.7831 6	.003	-121.4628	-28.4039
	LDM	-1.70000	22.7831 6	.941	-48.2294	44.8294
	NF	91.48167*	22.7831 6	.000	44.9522	138.0111
	NM	60.60000^{*}	22.7831 6	.012	14.0706	107.1294
HDM	HDF	61.43333*	22.7831 6	.011	14.9039	107.9628
	LDF	74.93333*	22.7831 6	.003	28.4039	121.4628
	LDM	73.23333*	22.7831 6	.003	26.7039	119.7628
	NF	18.24833	22.7831 6	.429	-28.2811	64.7778
	NM	-12.63333	22.7831 6	.583	-59.1628	33.8961
LDM	HDF	-11.80000	22.7831 6	.608	-58.3294	34.7294
	LDF	1.70000	22.7831 6	.941	-44.8294	48.2294
	HDM	-73.23333*	22.7831 6	.003	-119.7628	-26.7039

*. The mean difference is significant at the 0.05 level.

3. Dependent Variable: Albur	nin
------------------------------	-----

(I)	(J)	Mean Difference (L.I)	Std.	Sig.	95% Confide	
group	group	Difference (I-J)	Error		Lower Bound	Upper Bound
	NM	2.39333*	.57801	.003	.6352	4.1514
	HDF	17333	.57801	1.000	-1.9314	1.5848
NF	LDF	49000	.57801	.956	-2.2481	1.2681
1.1	HDM	.87667	.57801	.657	8814	2.6348
	LDM	1.67667	.57801	.068	0814	3.4348
	NF HDF	-2.39333* -2.56667*	.57801 .57801	.003 .001	-4.1514 -4.3248	6352 8086
NM	LDF	-2.88333*	.57801	.001	-4.5248	-1.1252
11111	HDM	-1.51667	.57801	.122	-3.2748	.2414
	LDM	71667	.57801	.122	-2.4748	1.0414
	NF	.17333	.57801	1.000	-1.5848	1.9314
	NM	2.56667*	.57801	.001	.8086	4.3248
HDF	LDF	31667	.57801	.994	-2.0748	1.4414
	HDM	1.05000	.57801	.471	7081	2.8081
	LDM	1.85000^{*}	.57801	.035	.0919	3.6081
	NF	.49000	.57801	.956	-1.2681	2.2481
	NM	2.88333*	.57801	.000	1.1252	4.6414
LDF	HDF	.31667	.57801	.994	-1.4414	2.0748
	HDM	1.36667	.57801	.201	3914	3.1248
	LDM	2.16667^{*}	.57801	.009	.4086	3.9248
	NF	87667	.57801	.657	-2.6348	.8814
	NM	1.51667	.57801	.122	2414	3.2748
HDM	HDF	-1.05000	.57801	.471	-2.8081	.7081
	LDF	-1.36667	.57801	.201	-3.1248	.3914
	LDM	.80000	.57801	.736	9581	2.5581
	NF	-1.67667	.57801	.068	-3.4348	.0814
	NM	.71667	.57801	.814	-1.0414	2.4748
	LIDE	1.05000*		025	2 (001	
LDM	HDF	-1.85000^{*}	.57801	.035	-3.6081	0919
LDM						
LDM	LDF	-2.16667*	.57801	.009	-3.9248	4086
		-2.16667 [*] 80000				
	LDF HDM	-2.16667 [*] 80000	.57801	.009	-3.9248	4086 .9581
4. Deper	LDF HDM ndent Variable	-2.16667* 80000 : Bilirubin	.57801 .57801	.009 .736	-3.9248 -2.5581 95% Confide Lower	4086 .9581 nce Interval Upper
4. Deper (I)	LDF HDM dent Variable (J) group	-2.16667 [*] 80000 : Bilirubin Mean Difference (I-J)	.57801 .57801 Std. Error	.009 .736 Sig.	-3.9248 -2.5581 95% Confide Lower Bound	4086 .9581 nce Interval Upper Bound
4. Deper (I)	LDF HDM (J) group NM	-2.16667* 80000 : Bilirubin Mean Difference (I-J) 26167	.57801 .57801 Std. Error .21462	.009 .736 Sig. .824	-3.9248 -2.5581 95% Confide Lower Bound 9145	4086 .9581 Ince Interval Upper Bound .3911
4. Deper (I) group	LDF HDM (J) group NM HDF	-2.16667* 80000 : Bilirubin Mean Difference (I-J) 26167 90500*	.57801 .57801 Std. Error .21462 .21462	.009 .736 Sig. .824 .003	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578	4086 .9581 mce Interval Upper Bound .3911 2522
4. Deper (I)	LDF HDM (J) group NM HDF LDF	-2.16667* 80000 : Bilirubin Mean Difference (I-J) 26167 90500* 83667*	.57801 .57801 Std. Error .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895	4086 .9581 nce Interval Upper Bound .3911 2522 1839
4. Deper (I) group	LDF HDM (J) group NM HDF LDF HDM	-2.16667* 80000 : Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333	.57801 .57801 Std. Error .21462 .21462 .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006 .226	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595
4. Deper (I) group	LDF HDM (J) group NM HDF LDF HDM LDM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000*	.57801 .57801 Std. Error .21462 .21462 .21462 .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572
4. Deper (I) group	LDF HDM (J) group NM HDF LDF HDM LDM NF	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167	.57801 .57801 Std. Error .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145
4. Deper (I) group NF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333	.57801 .57801 Std. Error .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095
4. Deper (I) group	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDF LDF	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500	.57801 .57801 Std. Error .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778
4. Deper (I) group NF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDF LDF HDF LDF HDF	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167	.57801 .57801 Std. Error .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211
4. Deper (I) group NF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDF HDF LDF	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833	.57801 .57801 Std. Error .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011	4086 .9581 uce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045
4. Deper (I) group NF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDF HDM LDM NF	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500*	.57801 .57801 Std. Error .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578
4. Deper (I) group NF NM	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333	.57801 .57801 Std. Error .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961
4. Deper (I) group NF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833	.57801 .57801 Std. Error .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211
4. Deper (I) group NF NM	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF HDF LDF HDM LDF HDM LDM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167	.57801 .57801 Std. Error .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645
4. Deper (I) group NF NM	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500	.57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478
4. Deper (I) group NF NM	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667*	.57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895
4. Deper (I) group NF NM HDF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667* .57500	.57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006 .109	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839 0778	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895 1.2278
4. Deper (I) group NF NM	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM NF NM HDF	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667* .57500 06833	.57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006 .109 1.000	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839 0778 7211	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895 1.2278 .5845
4. Deper (I) group NF NM HDF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667* .57500 06833 .34333	.57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006 .109 1.000 .605	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839 0778 7211 3095	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895 1.2278 .5845 .9961
4. Deper (I) group NF NM HDF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667* .57500 06833 .34333 .02667	.57801 .57801 .57801 Std. Error .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006 .109 1.000 .605 1.000	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839 0778 7211 3095 6261	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895 1.2278 .5845 .9961 .6795
4. Deper (I) group NF NM HDF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM NF	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667* .57500 06833 .34333 .02667 .49333	.57801 .57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006 .109 1.000 .605 1.000 .226	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839 0778 7211 3095 6261 1595	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895 1.2278 .5845 .9961 .6795 1.1461
4. Deper (I) group NF NM HDF LDF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM NF NM HDF HDM LDM NF NM HDF NM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667* .57500 06833 .34333 .02667 .49333 .23167	.57801 .57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006 .109 1.000 .605 1.000 .226 .886	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839 0778 7211 3095 6261 1595 4211	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895 1.2278 .5845 .9961 .6795 1.1461 .8845
4. Deper (I) group NF NM HDF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM NF NM HDF HDM LDM NF NM HDF HDM LDM NF NM HDF HDM LDM NF NM HDF HDM LDM NF NM HDF HDM LDM NF HDF HDM LDM NF HDF HDM LDF HDM LDF HDM LDF HDM LDF HDM LDF HDM LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF HDF LDF HDM LDF HDF LDF HDM LDF HDM LDF HDF HDF HDF HDF HDF HDF HDF HDF HDF H	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667* .57500 06833 .34333 .02667 .49333 .23167 41167	.57801 .57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006 .109 1.000 .605 1.000 .226 .886 .411	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839 0778 7211 3095 6261 1595 4211 -1.0645	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895 1.2278 .5845 .9961 .6795 1.1461 .8845 .2411
4. Deper (I) group NF NM HDF LDF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM NF NM HDF HDM LDM NF NM HDF LDF HDM LDM	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667* .57500 06833 .34333 .02667 .49333 .23167 41167 34333	.57801 .57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006 .109 1.000 .605 1.000 .226 .886 .411 .605	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839 0778 7211 3095 6261 1595 4211 -1.0645 9961	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895 1.2278 .5845 .9961 .6795 1.1461 .8845 .2411 .3095
4. Deper (I) group NF NM HDF LDF	LDF HDM (J) group NM HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM LDF HDM LDM NF NM HDF HDM LDM NF NM HDF HDM LDM NF NM HDF HDM LDM NF NM HDF HDM LDM NF NM HDF HDM LDM NF HDF HDM LDM NF HDF HDM LDF HDM LDF HDM LDF HDM LDF HDM LDF HDM LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF LDF HDM LDF HDF HDF LDF HDM LDF HDF LDF HDM LDF HDM LDF HDF HDF HDF HDF HDF HDF HDF HDF HDF H	-2.16667* 80000 Bilirubin Mean Difference (I-J) 26167 90500* 83667* 49333 81000* .26167 64333 57500 23167 54833 .90500* .64333 .06833 .41167 .09500 .83667* .57500 06833 .34333 .02667 .49333 .23167 41167	.57801 .57801 .57801 Std. Error 21462 .21462	.009 .736 Sig. .824 .003 .006 .226 .008 .824 .055 .109 .886 .140 .003 .055 1.000 .411 .998 .006 .109 1.000 .605 1.000 .226 .886 .411	-3.9248 -2.5581 95% Confide Lower Bound 9145 -1.5578 -1.4895 -1.1461 -1.4628 3911 -1.2961 -1.2278 8845 -1.2011 .2522 0095 5845 2411 5578 .1839 0778 7211 3095 6261 1595 4211 -1.0645	4086 .9581 nce Interval Upper Bound .3911 2522 1839 .1595 1572 .9145 .0095 .0778 .4211 .1045 1.5578 1.2961 .7211 1.0645 .7478 1.4895 1.2278 .5845 .9961 .6795 1.1461 .8845 .2411

I	HDF	09500	.21462	.998	7478	.5578
	LDF	02667	.21462	1.000	6795	.6261
* The	HDM mean differenc	.31667 e is significant at th	.21462 e.0.05 level	.682	3361	.9695
5. Depe	endent Variable	: ALP				
(I) group	(J) group	Mean Difference (I-J)	Std. Error	Sig.	95% Confider Lower	nce Interval Upper
0 1	0 1				Bound	Bound
	NM	-34.61167	24.6029 3	.170	-84.8575	15.6342
	HDF	-50.25000*	24.6029 3	.050	-100.4959	0041
NF	LDF	33.96667	24.6029 3	.178	-16.2792	84.2125
	HDM	-105.53333*	24.6029 3	.000	-155.7792	-55.2875
	LDM	-85.23333*	24.6029 3	.002	-135.4792	-34.9875
	NF	34.61167	24.6029 3	.170	-15.6342	84.8575
	HDF	-15.63833	24.6029 3	.530	-65.8842	34.6075
NM	LDF	68.57833 [*]	24.6029 3	.009	18.3325	118.8242
	HDM	-70.92167*	24.6029 3	.007	-121.1675	-20.6758
	LDM	-50.62167 [*]	24.6029 3	.048	-100.8675	3758
	NF	50.25000*	24.6029 3	.050	.0041	100.4959
	NM	15.63833	24.6029 3	.530	-34.6075	65.8842
HDF	LDF	84.21667*	24.6029 3	.002	33.9708	134.4625
	HDM	-55.28333*	3 24.6029	.032	-105.5292	-5.0375
	LDM	-34.98333	24.6029 3	.165	-85.2292	15.2625
	NF	-33.96667	24.6029 3	.178	-84.2125	16.2792
	NM	-68.57833*	24.6029 3	.009	-118.8242	-18.3325
LDF	HDF	-84.21667*	24.6029 3	.002	-134.4625	-33.9708
	HDM	-139.50000*	24.6029 3	.000	-189.7459	-89.2541
	LDM	-119.20000*	24.6029 3	.000	-169.4459	-68.9541
	NF	105.53333*	24.6029 3 24.6020	.000	55.2875	155.7792
	NM	70.92167*	24.6029 3 24.6029	.007	20.6758	121.1675
HDM	HDF	55.28333 [*]	3 24.6029	.032	5.0375	105.5292
	LDF	139.50000*	3 24.6029	.000	89.2541	189.7459
	LDM	20.30000	3 24.6029	.416	-29.9459	70.5459
	NF	85.23333 [*]	3	.002	34.9875	135.4792
LDM	NM	50.62167*	24.6029 3	.048	.3758	100.8675
	HDF	34.98333	24.6029 3	.165	-15.2625	85.2292
	LDF	119.20000*	24.6029 3	.000	68.9541	169.4459

HDM	-20.30000	24.6029 3	.416	-70.5459	29.9459
1:00		0.051 1	-		=

*. The mean difference is significant at the 0.05 level.

Multiple Comparisons 6. Dependent Variable: ALT

(I)	(J)	Mean Difference (L. I)	Std.	Sig.		dence Interval
group	group	Difference (I-J)	Error		Lower	Upper
		*			Bound	Bound
	NM	-10.27167*	4.43032	.027	-19.3196	-1.2237
	HDF	-7.05500	4.43032	.122	-16.1029	1.9929
NF	LDF	-1.02167	4.43032	.819	-10.0696	8.0263
	HDM	-19.35500*	4.43032	.000	-28.4029	-10.3071
	LDM	-12.35500*	4.43032	.009	-21.4029	-3.3071
	NF	10.27167^{*}	4.43032	.027	1.2237	19.3196
	HDF	3.21667	4.43032	.473	-5.8313	12.2646
NM	LDF	9.25000*	4.43032	.045	.2021	18.2979
	HDM	-9.08333 [*]	4.43032	.049	-18.1313	0354
	LDM	-2.08333	4.43032	.642	-11.1313	6.9646
	NF NM	7.05500 -3.21667	4.43032 4.43032	.122 .473	-1.9929 -12.2646	16.1029 5.8313
HDF	LDF	6.03333	4.43032	.183	-3.0146	15.0813
IIDI	HDM	-12.30000 [*]	4.43032	.009	-21.3479	-3.2521
	LDM	-5.30000	4.43032	.241	-14.3479	3.7479
	NF	1.02167	4.43032	.819	-8.0263	10.0696
	NM	-9.25000*	4.43032	.045	-18.2979	2021
LDF	HDF	-6.03333	4.43032	.183	-15.0813	3.0146
	HDM	-18.33333*	4.43032	.000	-27.3813	-9.2854
	LDM	-11.33333*	4.43032	.016	-20.3813	-2.2854
	NF	19.35500*	4.43032	.000	10.3071	28.4029
	NM	9.08333*	4.43032	.049	.0354	18.1313
HDM	HDF	12.30000*	4.43032	.009	3.2521	21.3479
	LDF	18.33333 [*]	4.43032	.000	9.2854	27.3813
	LDM NF	$7.00000 \\ 12.35500^{*}$	4.43032 4.43032	.125 .009	-2.0479 3.3071	16.0479 21.4029
	NM	2.08333	4.43032	.642	-6.9646	11.1313
LDM	HDF	5.30000	4.43032	.241	-3.7479	14.3479
	LDF	11.33333*	4.43032	.016	2.2854	20.3813
	HDM	-7.00000	4.43032	.125	-16.0479	2.0479
	nt Variable: Ure		~	~ .		
(I)	(J)	Mean	Std.	Sig.	95% Confide	
group	group	Difference (I-J)	Error		Lower	Upper
					Bound	Bound
		(0)((7	25006	5.40	1 (005	40.50
	NM	60667	.35896	.549	-1.6985	.4852
	HDF	-1.97167*	.35896	.000	-3.0635	8798
NF	HDF LDF	-1.97167 [*] 04333	.35896 .35896	.000 1.000	-3.0635 -1.1352	8798 1.0485
NF	HDF	-1.97167*	.35896	.000	-3.0635	8798
NF	HDF LDF HDM LDM	-1.97167 [*] 04333	.35896 .35896	.000 1.000	-3.0635 -1.1352	8798 1.0485
NF	HDF LDF HDM LDM NF	-1.97167 [*] 04333 14333 1.18167 [*] .60667	.35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549	-3.0635 -1.1352 -1.2352 .0898 4852	8798 1.0485 .9485 2.2735 1.6985
	HDF LDF HDM LDM NF HDF	-1.97167* 04333 14333 1.18167* .60667 -1.36500*	.35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568	8798 1.0485 .9485 2.2735 1.6985 2732
NF	HDF LDF HDM LDM NF HDF LDF	-1.97167* 04333 14333 1.18167* .60667 -1.36500* .56333	.35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552
	HDF LDF HDM LDM NF HDF LDF HDM	-1.97167* 04333 14333 1.18167* .60667 -1.36500* .56333 .46333	.35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552
	HDF LDF HDM LDM NF HDF LDF HDM LDM	-1.97167* 04333 14333 1.18167* .60667 -1.36500* .56333 .46333 1.78833*	.35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802
	HDF LDF HDM LDM NF HDF LDF HDM LDM NF	-1.97167* 04333 14333 1.18167* .60667 -1.36500* .56333 .46333 1.78833* 1.97167*	.35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635
NM	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM	-1.97167* 04333 14333 1.18167* .60667 -1.36500* .56333 .46333 1.78833* 1.97167* 1.36500*	.35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000 .000	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635 2.4568
	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF	-1.97167* 04333 14333 1.18167* .60667 -1.36500* .56333 .46333 1.78833* 1.97167* 1.36500* 1.92833*	.35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000 .000 .008 .000	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732 .8365	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635 2.4568 3.0202
NM	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM	-1.97167^* 04333 14333 1.18167^* .60667 -1.36500^* .56333 .46333 1.78833^* 1.97167^* 1.36500^* 1.92833^* 1.82833^*	.35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000 .000	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732 .8365 .7365	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635 2.4568 3.0202 2.9202
NM	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF	-1.97167* 04333 14333 1.18167* .60667 -1.36500* .56333 .46333 1.78833* 1.97167* 1.36500* 1.92833*	.35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000 .000 .008 .000 .000	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732 .8365	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635 2.4568 3.0202
NM	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM	-1.97167* 04333 14333 1.18167* .60667 -1.36500* .56333 .46333 1.78833* 1.97167* 1.36500* 1.92833* 1.82833* 3.15333*	.35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000 .000 .000 .000 .000 .000	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732 .8365 .7365 2.0615	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635 2.4568 3.0202 2.9202 4.2452
NM	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM HDF	-1.97167^* 04333 14333 1.18167^* .60667 -1.36500^* .56333 .46333 1.78833^* 1.97167^* 1.36500^* 1.92833^* 1.82833^* 3.15333^* .04333 56333 -1.92833^*	.35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000 .000 .000 .000 .000 .000	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732 .8365 .7365 2.0615 -1.0485 -1.6552 -3.0202	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635 2.4568 3.0202 2.9202 4.2452 1.1352 5285 8365
NM	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM HDF HDM	-1.97167* 04333 14333 1.18167* .60667 -1.36500* .56333 .46333 1.78833* 1.97167* 1.36500* 1.92833* 1.82833* 3.15333* .04333 56333 -1.92833* 10000	.35896 .35896	$\begin{array}{c} .000\\ 1.000\\ .999\\ .028\\ .549\\ .008\\ .624\\ .788\\ .000\\ .000\\ .000\\ .000\\ .000\\ .000\\ .000\\ .000\\ 1.000\\ .624\\ .000\\ 1.000\\ 1.000\end{array}$	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732 .8365 .7365 2.0615 -1.0485 -1.6552 -3.0202 -1.1918	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635 2.4568 3.0202 2.9202 4.2452 1.1352 .5285 8365 .9918
NM	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM HDF HDM LDM	-1.97167^* 04333 14333 1.18167^* .60667 -1.36500^* .56333 .46333 1.78833^* 1.97167^* 1.36500^* 1.92833^* 1.82833^* 3.15333^* .04333 56333 -1.92833^* 10000 1.22500^*	.35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000 .000 .000 .000 .000 1.000 .624 .000 1.000 .021	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732 .8365 .7365 2.0615 -1.0485 -1.6552 -3.0202 -1.1918 .1332	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635 2.4568 3.0202 2.9202 4.2452 1.1352 .5285 8365 .9918 2.3168
NM HDF LDF	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF HDM LDM NF	-1.97167^* 04333 14333 1.18167^* .60667 -1.36500^* .56333 .46333 1.78833^* 1.97167^* 1.36500^* 1.92833^* 3.15333^* .04333 56333 -1.92833^* 10000 1.22500^* .14333	.35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000 .000 .000 .000 .000 .000	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732 .8365 .7365 2.0615 -1.0485 -1.6552 -3.0202 -1.1918 .1332 9485	$\begin{array}{c}8798\\ 1.0485\\ .9485\\ 2.2735\\ 1.6985\\2732\\ 1.6552\\ 1.5552\\ 2.8802\\ 3.0635\\ 2.4568\\ 3.0202\\ 2.9202\\ 4.2452\\ 1.1352\\ .5285\\8365\\ .9918\\ 2.3168\\ 1.2352\end{array}$
NM	HDF LDF HDM LDM NF HDF LDF HDM LDM NF NM LDF HDM LDM NF NM HDF HDM LDM	-1.97167^* 04333 14333 1.18167^* .60667 -1.36500^* .56333 .46333 1.78833^* 1.97167^* 1.36500^* 1.92833^* 1.82833^* 3.15333^* .04333 56333 -1.92833^* 10000 1.22500^*	.35896 .35896	.000 1.000 .999 .028 .549 .008 .624 .788 .000 .000 .000 .000 .000 .000 1.000 .624 .000 1.000 .021	-3.0635 -1.1352 -1.2352 .0898 4852 -2.4568 5285 6285 .6965 .8798 .2732 .8365 .7365 2.0615 -1.0485 -1.6552 -3.0202 -1.1918 .1332	8798 1.0485 .9485 2.2735 1.6985 2732 1.6552 1.5552 2.8802 3.0635 2.4568 3.0202 2.9202 4.2452 1.1352 .5285 8365 .9918 2.3168

-						
	LDF	.10000	.35896	1.000	9918	1.1918
	LDM	1.32500*	.35896	.010	.2332	2.4168
	NF	-1.18167*	.35896	.028	-2.2735	0898
	NM	-1.78833*	.35896	.000	-2.8802	6965
LDM	HDF	-3.15333*	.35896	.000	-4.2452	-2.0615
	LDF	-1.22500*	.35896	.021	-2.3168	1332
	HDM	-1.32500*	.35896	.010	-2.4168	2332
* That		e is significant at th		.010	-2.4100	2552
	ndent Variable:		e 0.03 level.			
(I)	(J)	Mean	Std.	Sig.	95% Confide	naa Intarval
group	group	Difference (I-J)	Error	Sig.		1
group	group	Difference (1-3)	EIIO		Lower Bound	Upper Bound
		121/7	01070	0.07		
	NM	.13167	.91879	.887	-1.7447	2.0081
	HDF	-1.87667*	.91879	.050	-3.7531	0003
NF	LDF	.05667	.91879	.951	-1.8197	1.9331
	HDM	- 1.91833 [*]	.91879	.045	-3.7947	0419
	LDM	-1.51000	.91879	.111	-3.3864	.3664
	NF	13167	.91879	.887	-2.0081	1.7447
	HDF	-2.00833*	.91879	.037	-3.8847	1319
NM	LDF	07500	.91879	.935	-1.9514	1.8014
	HDM	-2.05000*	.91879	.033	-3.9264	1736
	LDM	-1.64167	.91879	.084	-3.5181	.2347
	NF	1.87667*	.91879	.050	.0003	3.7531
UDE	NM	2.00833*	.91879	.037	.1319	3.8847
HDF	LDF	1.93333*	.91879	.044	.0569	3.8097
	HDM	04167	.91879	.964	-1.9181	1.8347
	LDM NF	.36667 05667	.91879 .91879	.693 .951	-1.5097 -1.9331	2.2431 1.8197
	NF	05667 .07500	.91879	.931	-1.9331	1.8197
LDF	HDF	-1.93333*	.91879	.933	-3.8097	0569
LDF	HDF	-1.93555 -1.97500*	.91879	.044	-3.8514	0986
	LDM	-1.56667	.91879	.099	-3.4431	.3097
	NF	1.91833*	.91879	.045	.0419	3.7947
	NM	2.05000*	.91879	.033	.1736	3.9264
HDM	HDF	.04167	.91879	.964	-1.8347	1.9181
	LDF	1.97500*	.91879	.040	.0986	3.8514
	LDM	.40833	.91879	.660	-1.4681	2.2847
	NF	1.51000	.91879	.111	3664	3.3864
	NM	1.64167	.91879	.084	2347	3.5181
LDM	HDF	36667	.91879	.693	-2.2431	1.5097
EDIM	LDF	1.56667	.91879	.099	3097	3.4431
	HDM	40833	.91879	.660	-2.2847	1.4681
· · · · ·	endent Variable					
(I)	(J)	Mean	Std.	Sig.	95% Confide	
group	group	Difference (I-J)	Error		Lower	Upper
			ļ	-	Bound	Bound
	NM	18667	.29670	.534	7926	.4193
	HDF	15500	.29670	.605	7610	.4510
NF	LDF	.13233	.29670	.659	4736	.7383
	HDM	22167	.29670	.461	8276	.3843
	LDM	.11167	.29670	.709	4943	.7176
	NF	.18667	.29670	.709	4943	.7926
I	HDF	.03167	.29670	.916	5743	.6376
NM	LDF	.31900	.29670	.291	2870	.9250
1,111	HDM	03500	.29670	.907	6410	.5710
I	LDM	.29833	.29670	.323	3076	.9043
	NF	.15500	.29670	.605	4510	.7610
	NM	03167	.29670	.916	6376	.5743
HDF	LDF	.28733	.29670	.341	3186	.8933
I	HDM	06667	.29670	.824	6726	.5393
I	LDM	.26667	.29670	.376	3393	.8726
	NF	13233	.29670	.659	7383	.4736
LDF	NM	31900	.29670	.291	9250	.2870
	HDF	28733	.29670	.341	8933	.3186
I	HDM	35400	.29670	.242	9600	.2520

HDM LDM	LDM NF NM HDF LDF LDM NF NM HDF LDF HDM nt Variable: C	02067 .22167 .03500 .06667 .35400 .33333 11167 29833 26667 .02067 33333	.29670 .29670 .29670 .29670 .29670 .29670 .29670 .29670 .29670 .29670	.945 .461 .907 .824 .242 .270 .709 .323 .376 .945 .270	6266 3843 5710 5393 2520 2726 7176 9043 8726 5853 9393	.5853 .8276 .6410 .6726 .9600 .9393 .4943 .3076 .3393 .6266 .2726
(I)	(J)	Mean	Std.	Sig.	95% Confider	nce Interval
group	group	Difference (I-J)	Error	~-8.	Lower	Upper
- ^					Bound	Bound
	NM	52167	1.02194	.613	-2.6088	1.5654
	HDF	-2.49833*	1.02194	.021	-4.5854	4112
NF	LDF	02667	1.02194	.979	-2.1138	2.0604
	HDM	66500	1.02194	.520	-2.7521	1.4221
	LDM	.75167	1.02194	.468	-1.3354	2.8388
	NF	.52167	1.02194	.613	-1.5654	2.6088
	HDF	-1.97667	1.02194	.063	-4.0638	.1104
NM	LDF	.49500	1.02194	.632	-1.5921	2.5821
	HDM LDM	14333 1.27333	1.02194 1.02194	.889 .222	-2.2304 8138	1.9438 3.3604
	NF	2.49833*	1.02194	.021	.4112	4.5854
	NM	1.97667	1.02194	.063	1104	4.0638
HDF	LDF	2.47167*	1.02194	.022	.3846	4.5588
	HDM	1.83333	1.02194	.083	2538	3.9204
	LDM	3.25000^{*}	1.02194	.003	1.1629	5.3371
	NF	.02667	1.02194	.979	-2.0604	2.1138
	NM	49500	1.02194	.632	-2.5821	1.5921
LDF	HDF	-2.47167*	1.02194	.022	-4.5588	3846
	HDM	63833	1.02194	.537	-2.7254	1.4488
	LDM NF	.77833 .66500	1.02194 1.02194	.452 .520	-1.3088 -1.4221	2.8654 2.7521
	NM	.14333	1.02194	.889	-1.9438	2.2304
HDM	HDF	-1.83333	1.02194	.083	-3.9204	.2538
	LDF	.63833	1.02194	.537	-1.4488	2.7254
	LDM	1.41667	1.02194	.176	6704	3.5038
	NF	75167	1.02194	.468	-2.8388	1.3354
IDM	NM	-1.27333	1.02194	.222	-3.3604	.8138
LDM	HDF	-3.25000^{*}	1.02194	.003	-5.3371	-1.1629
	HDM	-1.41667	1.02194	.176	-3.5038	.6704

11. Mucus barrier

(I)	(J)	Mean	Std.	Sig.	95% Confide	ence Interval
VAR00004	VAR00004	Difference (I-J)	Error		Lower	Upper
					Bound	Bound
	OMP	-11.66154*	3.88777	.038	-22.7845	5385
NC	HD	-23.30256*	3.88777	.000	-34.4256	-12.1796
	LD	-11.87692*	3.88777	.034	-22.9999	7539
	NC	11.66154*	3.88777	.038	.5385	22.7845
OMP	HD	-11.64103*	3.88777	.039	-22.7640	5180
	LD	21538	3.88777	1.000	-11.3384	10.9076
	NC	23.30256*	3.88777	.000	12.1796	34.4256
HD	OMP	11.64103*	3.88777	.039	.5180	22.7640
	LD	11.42564*	3.88777	.043	.3026	22.5486
	NC	11.87692*	3.88777	.034	.7539	22.9999
LD	OMP	.21538	3.88777	1.000	-10.9076	11.3384
	HD	-11.42564*	3.88777	.043	-22.5486	3026
12. Depende	ent Variable: SOD					
(I)	(J)	Mean	Std.	Sig.	95% Confide	nce Interval

VAR00006	VAR00006	Difference (I-J)	Error		Lower	Upper
					Bound	Bound
	Drug	-3.07500*	.92945	.022	-5.8047	3453
NC	HD	-2.73000*	.92945	.050	-5.4597	0003
INC.	MD	-3.55667*	.92945	.006	-6.2863	8270
	LD	-2.15500	.92945	.172	-4.8847	.5747
	NC	3.07500^{*}	.92945	.022	.3453	5.8047
D	HD	.34500	.92945	.996	-2.3847	3.0747
Drug	MD	48167	.92945	.985	-3.2113	2.2480
	LD	.92000	.92945	.857	-1.8097	3.6497
	NC	2.73000^{*}	.92945	.050	.0003	5.4597
HD	Drug	34500	.92945	.996	-3.0747	2.3847
ΠD	MD	82667	.92945	.898	-3.5563	1.9030
	LD	.57500	.92945	.971	-2.1547	3.3047
	NC	3.55667^{*}	.92945	.006	.8270	6.2863
MD	Drug	.48167	.92945	.985	-2.2480	3.2113
MD	HD	.82667	.92945	.898	-1.9030	3.5563
	LD	1.40167	.92945	.567	-1.3280	4.1313
	NC	2.15500	.92945	.172	5747	4.8847
LD	Drug	92000	.92945	.857	-3.6497	1.8097
LD	HD	57500	.92945	.971	-3.3047	2.1547
	MD	-1.40167	.92945	.567	-4.1313	1.3280
13. Depender	nt Variable: CAT	-	-			-
(I)	(J) VAR00011	Mean	Std.	Sig.	95% Confider	
VAR00011	VARUUUTT	Difference (I-J)	Error		Lower Bound	Upper Bound
	Drug	-9.08600 [*]	3.15901	.009	-15.6756	-2.496
	HD	-10.72000*		.003		
gum acacia			3.15901		-17.3096	-4.130
0	MD	-5.94600	3.15901	.074	-12.5356	.6436
	LD	-2.54800	3.15901	.429	-9.1376	4.0416
	gum acacia	9.08600*	3.15901	.009	2.4964	15.675
Drug	HD	-1.63400	3.15901	.611	-8.2236	4.9556
Diug	MD	3.14000	3.15901	.332	-3.4496	9.7296
	LD	6.53800	3.15901	.052	0516	13.127
	gum acacia	10.72000*	3.15901	.003	4.1304	17.309
HD	Drug	1.63400	3.15901	.611	-4.9556	8.2236
	MD	4.77400	3.15901	.146	-1.8156	11.363
	LD .	8.17200*	3.15901	.018	1.5824	14.76
	gum acacia	5.94600	3.15901	.074	6436	12.53
MD	Drug	-3.14000	3.15901	.332	-9.7296	3.4490
	HD	-4.77400	3.15901	.146	-11.3636	1.8150
	LD .	3.39800	3.15901	.295	-3.1916	9.9870
	gum acacia	2.54800	3.15901	.429	-4.0416	9.1370
LD	Drug	-6.53800	3.15901	.052	-13.1276	.0516
LD	HD	-8.17200^{*}	3.15901	.018	-14.7616	-1.582
$\mathbf{}$	MD	-3.39800	3.15901	.295	-9.9876	3.191
	ent Variable: GPX		-		-	
(I) VAR00021	(J) VAR00021	Mean Difference (I-J)	Std. Error	Sig.	95% Confider	
VAR00021	VAR00021	Difference (1-J)	EIIOI		Lower	Upper
				0.00	Bound -21.8616	Bound -11.32
	Drug	-16 50167*	2 55878	000		-11.54
	Drug	-16.59167 [*]	2.55878	.000		
Gum acacia	HD	- 6.28167 [*]	2.55878	.021	-11.5516	-1.011
Gum acacia	HD MD	-6.28167 [*] -13.19667 [*]	2.55878 2.55878	.021 .000	-11.5516 -18.4666	-1.011 -7.926
Gum acacia	HD MD LD	-6.28167* -13.19667* -5.12500	2.55878 2.55878 2.55878	.021 .000 .056	-11.5516 -18.4666 -10.3949	-1.011 -7.926 .1449
Gum acacia	HD MD LD Gum acacia	-6.28167* -13.19667* -5.12500 16.59167*	2.55878 2.55878 2.55878 2.55878	.021 .000 .056 .000	-11.5516 -18.4666 -10.3949 11.3218	-1.011 -7.926 .1449 21.86
	HD MD LD Gum acacia HD	-6.28167* -13.19667* -5.12500 16.59167* 10.31000*	2.55878 2.55878 2.55878 2.55878 2.55878 2.55878	.021 .000 .056 .000 .000	-11.5516 -18.4666 -10.3949 11.3218 5.0401	-1.011 -7.926 .1449 21.86 15.579
Gum acacia Drug	HD MD LD Gum acacia HD MD	-6.28167* -13.19667* -5.12500 16.59167* 10.31000* 3.39500	2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878	.021 .000 .056 .000 .000 .197	-11.5516 -18.4666 -10.3949 11.3218 5.0401 -1.8749	-1.011 -7.926 .1449 21.86 15.579 8.6649
	HD MD LD Gum acacia HD	-6.28167* -13.19667* -5.12500 16.59167* 10.31000* 3.39500 11.46667*	2.55878 2.55878 2.55878 2.55878 2.55878 2.55878	.021 .000 .056 .000 .000 .197 .000	-11.5516 -18.4666 -10.3949 11.3218 5.0401	-1.011 -7.926 .1449 21.86 15.579 8.6649
	HD MD LD Gum acacia HD MD	-6.28167* -13.19667* -5.12500 16.59167* 10.31000* 3.39500 11.46667* 6.28167*	2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878	.021 .000 .056 .000 .000 .197 .000 .021	-11.5516 -18.4666 -10.3949 11.3218 5.0401 -1.8749 6.1968 1.0118	-1.011 -7.926 .1449 21.86 15.579 8.6649 16.730 11.55
Drug	HD MD LD Gum acacia HD MD LD Gum acacia Drug	-6.28167* -13.19667* -5.12500 16.59167* 10.31000* 3.39500 11.46667* 6.28167* -10.31000*	2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878	.021 .000 .056 .000 .000 .197 .000 .021 .000	-11.5516 -18.4666 -10.3949 11.3218 5.0401 -1.8749 6.1968 1.0118 -15.5799	-1.011 -7.926 .1449 21.86 15.57 8.6649 16.730 11.55 -5.040
	HD MD LD Gum acacia HD MD LD Gum acacia Drug MD	-6.28167* -13.19667* -5.12500 16.59167* 10.31000* 3.39500 11.46667* 6.28167* -10.31000* -6.91500*	2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878	.021 .000 .056 .000 .000 .197 .000 .021 .000 .012	-11.5516 -18.4666 -10.3949 11.3218 5.0401 -1.8749 6.1968 1.0118	-1.011 -7.926 .1449 21.86 15.57 8.6649 16.730 11.55 -5.040
Drug	HD MD LD Gum acacia HD MD LD Gum acacia Drug	-6.28167* -13.19667* -5.12500 16.59167* 10.31000* 3.39500 11.46667* 6.28167* -10.31000*	2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878	.021 .000 .056 .000 .000 .197 .000 .021 .000 .012 .655	-11.5516 -18.4666 -10.3949 11.3218 5.0401 -1.8749 6.1968 1.0118 -15.5799	-1.011 -7.926 .1449 21.86 15.579 8.6649 16.730 11.55 -5.040 -1.645
Drug	HD MD LD Gum acacia HD MD LD Gum acacia Drug MD	-6.28167* -13.19667* -5.12500 16.59167* 10.31000* 3.39500 11.46667* 6.28167* -10.31000* -6.91500*	2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878 2.55878	.021 .000 .056 .000 .000 .197 .000 .021 .000 .012	-11.5516 -18.4666 -10.3949 11.3218 5.0401 -1.8749 6.1968 1.0118 -15.5799 -12.1849	-1.011 -7.926 .1449 21.861 15.579 8.6649 16.730 11.551 -5.040 -1.645 6.4260 18.460 1.8749

I	HD	6.91500*	2.55878	.012	1.6451	12.1849
	LD	8.07167^{*}	2.55878	.004	2.8018	13.3416
	Gum acacia	5.12500	2.55878	.056	1449	10.3949
LD	Drug	-11.46667*	2.55878	.000	-16.7366	-6.1968
	HD	-1.15667	2.55878	.655	-6.4266	4.1132
	MD	-8.07167*	2.55878	.004	-13.3416	-2.8018

(I)	(J)	Mean	Std.	Sig.	95% Confidence Interval	
VAR00016	VAR00016	Difference (I-J)	Error		Lower	Upper
					Bound	Bound
	Drug	6.31000*	1.59752	.001	2.9776	9.6424
Come e consis	HD	4.95200^{*}	1.59752	.006	1.6196	8.2844
Gum acacia	MD	4.27400^{*}	1.59752	.015	.9416	7.6064
	LD	5.15600*	1.59752	.004	1.8236	8.4884
	Gum acacia	-6.31000 [*]	1.59752	.001	-9.6424	-2.9776
Drug	HD	-1.35800	1.59752	.405	-4.6904	1.9744
Drug	MD	-2.03600	1.59752	.217	-5.3684	1.2964
	LD	-1.15400	1.59752	.478	-4.4864	2.1784
	Gum acacia	-4.95200*	1.59752	.006	-8.2844	-1.6196
HD	Drug	1.35800	1.59752	.405	-1.9744	4.6904
пD	MD	67800	1.59752	.676	-4.0104	2.6544
	LD	.20400	1.59752	.900	-3.1284	3.5364
	Gum acacia	-4.27400^{*}	1.59752	.015	-7.6064	9416
MD	Drug	2.03600	1.59752	.217	-1.2964	5.3684
MD	HD	.67800	1.59752	.676	-2.6544	4.0104
	LD	.88200	1.59752	.587	-2.4504	4.2144
	Gum acacia	-5.15600*	1.59752	.004	-8.4884	-1.8236
ID	Drug	1.15400	1.59752	.478	-2.1784	4.4864
LD	HD	20400	1.59752	.900	-3.5364	3.1284
	MD	88200	1.59752	.587	-4.2144	2.4504

*. The mean difference is significant at the 0.05 level.

(I)	(J)	Mean	Std.	Sig.	95% Confider	nce Interval
VAR00029	VAR00029	Difference (I-J)	Error		Lower Bound	Upper Bound
	Drug	96.08693 [*]	20.8124 8	.000	52.6729	139.501 0
Gum acacia	HD	106.83011*	20.8124 8	.000	63.4160	150.244 2
Guin acacia	MD	96.64148 [*]	20.8124 8	.000	53.2274	140.055 6
\sim	LD	103.38693*	20.8124 8	.000	59.9729	146.801 0
	Gum acacia	-96.08693 [*]	20.8124 8	.000	-139.5010	-52.672
Drug	HD	10.74318	20.8124 8	.611	-32.6709	54.1573
Diug	MD	.55455	20.8124 8	.979	-42.8595	43.9686
	LD	7.30000	20.8124 8	.729	-36.1141	50.7141
	Gum acacia	-106.83011*	20.8124 8	.000	-150.2442	-63.416
HD	Drug	-10.74318	20.8124 8	.611	-54.1573	32.6709
	MD	-10.18864	20.8124 8 20.8124	.630	-53.6027	33.2254
	LD	-3.44318	20.8124 8 20.8124	.870	-46.8573	39.9709
MD	Gum acacia	- 96.64148 [*]	8 20.8124	.000	-140.0556	-53.227
	Drug	55455	8	.979	-43.9686	42.8595

1				20.0124	1		
		HD	10.18864	20.8124 8	.630	-33.2254	53.6027
		LD	6.74545	20.8124 8	.749	-36.6686	50.1595
		Gum acacia	-103.38693*	20.8124 8	.000	-146.8010	-59.9729
		Drug	-7.30000	20.8124 8	.729	-50.7141	36.1141
	LD	HD	3.44318	20.8124	.870	-39.9709	46.8573
		MD	-6.74545	20.8124 8	.749	-50.1595	36.6686
	17. Dependen	t Variable: TNF		0			
	(I)	(J)	Mean	Std.	Sig.	95% Confiden	
	VAR00029	VAR00029	Difference (I-J)	Error		Lower Bound	Upper Bound
		Drug	17.11184	10.9460 9	.134	-5.7213	39.9450
		HD	33.26974*	10.9460	.006	10.4366	56.1029
	Gum acacia	MD	41.24342*	10.9460 9	.001	18.4103	64.0766
		LD	19.97105	10.9460	.083	-2.8621	42.8042
		Gum acacia	-17.11184	10.9460	.134	-39.9450	5.7213
	Dmin	HD	16.15789	10.9460 9	.155	-6.6752	38.9910
	Drug	MD	24.13158*	10.9460 9	.039	1.2984	46.9647
		LD	2.85921	10.9460 9	.797	-19.9739	25.6923
		Gum acacia	-33.26974*	10.9460 9	.006	-56.1029	-10.4366
	HD	Drug	-16.15789	10.9460 9	.155	-38.9910	6.6752
	IID	MD	7.97368	10.9460 9	.475	-14.8595	30.8068
		LD	-13.29868	10.9460 9	.239	-36.1318	9.5345
		Gum acacia	-41.24342*	10.9460 9	.001	-64.0766	-18.4103
	MD	Drug	-24.13158*	10.9460 9	.039	-46.9647	-1.2984
		HD	-7.97368	10.9460 9	.475	-30.8068	14.8595
		LD	-21.27237	10.9460 9	.066	-44.1055	1.5608
		Gum acacia	-19.97105	10.9460 9	.083	-42.8042	2.8621
	LD	Drug	-2.85921	10.9460 9	.797	-25.6923	19.9739
	LD	HD	13.29868	10.9460 9	.239	-9.5345	36.1318
		MD	21.27237	10.9460 9	.066	-1.5608	44.1055
	18. Dependen	t Variable: IL10					
	(I) VAR00029	(J) VAR00029	Mean Difference (L.I)	Std.	Sig.	95% Confiden	
	v AKUUU29	v AKUUU29	Difference (I-J)	Error		Lower Bound	Upper Bound
		Drug	-17.67000	17.7187 5	.331	-54.6307	19.2907
	Gum acacia	HD	-54.33750 [*]	17.7187 5	.006	-91.2982	-17.3768
		MD	-30.91000	17.7187 5	.096	-67.8707	6.0507
	-		-	-	-		216

	LD	-7.71250	17.7187 5	.668	-44.6732	29.2482
	Gum acacia	17.67000	17.7187 5	.331	-19.2907	54.6307
	HD	-36.66750	17.7187 5	.052	-73.6282	.2932
Drug	MD	-13.24000	17.7187 5	.464	-50.2007	23.7207
	LD	9.95750	17.7187 5	.580	-27.0032	46.9182
	Gum acacia	54.33750*	17.7187 5	.006	17.3768	91.2982
UD	Drug	36.66750	17.7187 5	.052	2932	73.6282
HD	MD	23.42750	17.7187 5	.201	-13.5332	60.3882
	LD	46.62500 [*]	17.7187 5	.016	9.6643	83.5857
	Gum acacia	30.91000	17.7187 5	.096	-6.0507	67.8707
MD	Drug	13.24000	17.7187 5	.464	-23.7207	50.2007
MD	HD	-23.42750	17.7187 5	.201	-60.3882	13.5332
	LD	23.19750	17.7187 5	.205	-13.7632	60.1582
	Gum acacia	7.71250	17.7187 5	.668	-29.2482	44.6732
LD	Drug	-9.95750	17.7187 5	.580	-46.9182	27.0032
	HD	-46.62500*	17.7187	.016	-83.5857	-9.6643
	MD	-23.19750	17.7187 5	.205	-60.1582	13.7632

 The mean different 	ce is significant at the 0.05 level.
19. Dependent Varia	ble: SOD

19. Dependent Variable: SOD	
-----------------------------	--

(I)	(J)	Mean	Std.	Sig.	95% Confider	nce Interval
VAR00009	VAR00009	Difference (I-J)	Error		Lower Bound	Upper Bound
	UC	.24287	.16217	.147	0911	.5769
NG	OMP	15355	.16217	.353	4875	.1804
NC	HD	26805	.16217	.111	6020	.0659
	LD	23465	.16217	.160	5686	.0993
	NC	24287	.16217	.147	5769	.0911
UC	OMP	39642*	.16217	.022	7304	0624
UC	HD	51092*	.16217	.004	8449	1769
	LD	- .47751 [*]	.16217	.007	8115	1435
	NC	.15355	.16217	.353	1804	.4875
OMP	UC	.39642*	.16217	.022	.0624	.7304
OMP	HD	11450	.16217	.487	4485	.2195
	LD	08110	.16217	.621	4151	.2529
	NC	.26805	.16217	.111	0659	.6020
HD	UC	.51092*	.16217	.004	.1769	.8449
ПD	OMP	.11450	.16217	.487	2195	.4485
	LD	.03340	.16217	.838	3006	.3674
	NC	.23465	.16217	.160	0993	.5686
LD	UC	.47751*	.16217	.007	.1435	.8115
LD	OMP	.08110	.16217	.621	2529	.4151
	HD	03340	.16217	.838	3674	.3006
20. Depend	ent Variable: CAT	-	-		-	
(I)	(J)	Mean	Std.	Sig.	95% Confider	nce Interval
VAR00012	VAR00012	Difference (I-J)	Error		Lower	Upper
					Bound	Bound
NC	UC	43.20407*	6.26286	.000	30.1400	56.268
INC	OMP	14.35271*	6.26286	.033	1.2886	27.416

	HD	-32.73780 [*]	6.26286	.000	-45.8019	-19.6737
	LD	-9.30520	6.26286	.153	-22.3693	3.7589
	NC	-43.20407*	6.26286	.000	-56.2682	-30.1400
UC	OMP	-28.85136*	6.26286	.000	-41.9154	-15.7873
00	HD	-75.94187*	6.26286	.000	-89.0060	-62.8778
	LD	-52.50926*	6.26286	.000	-65.5734	-39.4452
	NC	-14.35271*	6.26286	.033	-27.4168	-1.2886
OMP	UC	28.85136*	6.26286	.000	15.7873	41.9154
Olvir	HD	-47.09051	6.26286	.000	-60.1546	-34.0264
	LD	-23.65791*	6.26286	.001	-36.7220	-10.5938
	NC	32.73780 [*]	6.26286	.000	19.6737	45.8019
HD	UC	75.94187*	6.26286	.000	62.8778	89.0060
IID	OMP	47.09051	6.26286	.000	34.0264	60.1546
	LD	23.43261*	6.26286	.001	10.3685	36.4967
	NC	9.30520	6.26286	.153	-3.7589	22.3693
LD	UC	52.50926*	6.26286	.000	39.4452	65.5734
LD	OMP	23.65791*	6.26286	.001	10.5938	36.7220
	HD	-23.43261*	6.26286	.001	-36.4967	-10.3685

*. The mean difference is significant at the 0.05 level. 21. Dependent Variable: GPx

(I)	(J)	Mean	Std.	Sig.	95% Confider	nce Interval
VAR00018	VAR00018	Difference (I-J)	Error		Lower Bound	Upper Bound
	UC	22.26667^{*}	6.44629	.002	8.9903	35.5431
NG	OMP	-1.98333	6.44629	.761	-15.2597	11.2931
NC	HD	1.16667	6.44629	.858	-12.1097	14.4431
	LD	12.46667	6.44629	.065	8097	25.7431
	NC	-22.26667*	6.44629	.002	-35.5431	-8.9903
UC	OMP	-24.25000*	6.44629	.001	-37.5264	-10.9736
UC	HD	-21.10000*	6.44629	.003	-34.3764	-7.8236
	LD	-9.80000	6.44629	.141	-23.0764	3.4764
	NC	1.98333	6.44629	.761	-11.2931	15.2597
OMP	UC	24.25000^{*}	6.44629	.001	10.9736	37.5264
OMF	HD	3.15000	6.44629	.629	-10.1264	16.4264
	LD	14.45000*	6.44629	.034	1.1736	27.7264
	NC	-1.16667	6.44629	.858	-14.4431	12.1097
HD	UC	21.10000^{*}	6.44629	.003	7.8236	34.3764
пр	OMP	-3.15000	6.44629	.629	-16.4264	10.1264
	LD	11.30000	6.44629	.092	-1.9764	24.5764
	NC	-12.46667	6.44629	.065	-25.7431	.8097
LD	UC	9.80000	6.44629	.141	-3.4764	23.0764
LD	OMP	-14.45000*	6.44629	.034	-27.7264	-1.1736
• •	HD	-11.30000	6.44629	.092	-24.5764	1.9764

*. The mean difference is significant at the 0.05 level. 22. Dependent Variable: LPO

(I)	(J)	Mean	Std.	Sig.	95% Confider	nce Interval
VAR00014	VAR00014	Difference (I-J)	Error		Lower Bound	Upper Bound
	UC	-7.01212*	1.48617	.000	-10.0729	-3.9513
NG	OMP	-2.05758	1.48617	.178	-5.1184	1.0032
NC	HD	-2.63030	1.48617	.089	-5.6911	.4305
	LD	-1.71818	1.48617	.259	-4.7790	1.3426
	NC	7.01212^{*}	1.48617	.000	3.9513	10.0729
UC	OMP	4.95455^{*}	1.48617	.003	1.8937	8.0154
UC	HD	4.38182^{*}	1.48617	.007	1.3210	7.4426
	LD	5.29394*	1.48617	.002	2.2331	8.3548
	NC	2.05758	1.48617	.178	-1.0032	5.1184
OMP	UC	-4.95455*	1.48617	.003	-8.0154	-1.8937
OMP	HD	57273	1.48617	.703	-3.6336	2.4881
	LD	.33939	1.48617	.821	-2.7214	3.4002
	NC	2.63030	1.48617	.089	4305	5.6911
HD	UC	-4.38182*	1.48617	.007	-7.4426	-1.3210
пD	OMP	.57273	1.48617	.703	-2.4881	3.6336
	LD	.91212	1.48617	.545	-2.1487	3.9729
LD	NC	1.71818	1.48617	.259	-1.3426	4.7790

I	UC	-5.29394*	1.48617	.002	-8.3548	-2.2331
	OMP	33939	1.48617	.821	-3.4002	2.7214
	HD	91212	1.48617	.545	-3.9729	2.1487
	nt Variable: PGE2	•				
(I) VAR00001	(J) VAR00001	Mean Difference (I-J)	Std. Error	Sig.	95% Confiden	
VAR00001	VAR00001	Difference (1-3)	LIIOI		Lower Bound	Upper Bound
	UC	2.90873^{*}	.47648	.000	1.5094	4.3081
NC	OMP	.61941	.47648	.694	7800	2.0188
ive.	HD	.66810	.47648	.632	7313	2.0675
	LD NC	1.20183 -2.90873*	.47648	.118 .000	1975 -4.3081	2.6012 -1.5094
	OMP	-2.28932*	.47648 .47648	.000	-3.6887	-1.3094 8900
UC	HD	-2.24064*	.47648	.001	-3.6400	8413
	LD	-1.70690*	.47648	.011	-3.1063	3075
	NC UC	61941 2.28932*	.47648 .47648	.694 .001	-2.0188 .8900	.7800 3.6887
OMP	HD	.04868	.47648	1.000	-1.3507	1.4480
	LD	.58242	.47648	.739	8169	1.9818
	NC UC	66810 2.24064*	.47648 .47648	.632 .001	-2.0675 .8413	.7313 3.6400
HD	OMP	04868	.47648	1.000	-1.4480	1.3507
	LD	.53374	.47648	.794	8656	1.9331
	NC	-1.20183	.47648	.118	-2.6012	.1975
LD	UC	1.70690*	.47648	.011	.3075	3.1063
	OMP	58242	.47648	.739	-1.9818	.8169
24 Depend	HD ent Variable: VAR00	53374	.47648	.794	-1.9331	.8656
(I)	(J)	Mean	Std.	Sig.	95% Confider	nce Interval
VAR00024	VAR00024	Difference (I-J)	Error	~-8.	Lower	Upper
	-				Bound	Bound
	UC	-97.34000*	11.2720 6	.000	-120.8531	-73.8269
	OMP	-44.26632*	11.2720	.001	-67.7794	-20.7532
NC			6 11.2720			l i i i i i i i i i i i i i i i i i i i
	HD	-50.02684*	6	.000	-73.5399	-26.5137
	LD	-54.38000*	11.2720 6	.000	-77.8931	-30.8669
	NC	97.34000 [*]	11.2720	.000	73.8269	120.853
	ОМР	53.07368*	6 11.2720	.000	29.5606	1 76.5868
UC	HD	47.31316*	6 11.2720	.000	23.8001	70.8263
			6 11.2720			
	LD	42.96000*	6 11.2720	.001	19.4469	66.4731
	NC	44.26632*	6	.001	20.7532	67.7794
OMP	UC	-53.07368*	11.2720 6	.000	-76.5868	-29.5606
OMI	HD	-5.76053	11.2720 6	.615	-29.2736	17.7526
	LD	-10.11368	11.2720 6	.380	-33.6268	13.3994
	NC	50.02684*	11.2720 6	.000	26.5137	73.5399
	UC	-47.31316*	11.2720 6	.000	-70.8263	-23.8001
HD	OMP	5.76053	11.2720 6	.615	-17.7526	29.2736
	LD	-4.35316	11.2720	.703	-27.8663	19.1599
LD	NC	54.38000*	6 11.2720	.000	30.8669	77.8931
		I	6	I	I	I

	UC	-42.96000*	11.2720 6	.001	-66.4731	-19.4469
	OMP	10.11368	11.2720 6	.380	-13.3994	33.6268
	HD	4.35316	11.2720 6	.703	-19.1599	27.8663
	n difference is signific ent Variable: IL6	ant at the 0.05 level.		_	-	-
(I)	(J)	Mean	Std.	Sig.	95% Confider	nce Interval
VAR00024	VAR00024	Difference (I-J)	Error		Lower Bound	Upper Bound
	UC	-91.00000 [*]	16.9567 8	.000	-126.3712	-55.6288
NC	OMP	-47.94886*	16.9567 8	.010	-83.3201	-12.5776
NC	HD	-12.65625	16.9567 8	.464	-48.0275	22.7150
	LD	-13.72443	16.9567 8	.428	-49.0957	21.6468
	NC	91.00000*	16.9567 8	.000	55.6288	126.371 2
	OMP	43.05114*	16.9567 8	.020	7.6799	78.4224
UC	HD	78.34375*	16.9567 8	.000	42.9725	113.715 0
	LD	77.27557*	16.9567 8	.000	41.9043	112.646 8
	NC	47.94886*	16.9567 8	.010	12.5776	83.3201
OMP	UC	-43.05114*	16.9567 8	.020	-78.4224	-7.6799
onn	HD	35.29261	16.9567 8	.050	0786	70.6638
	LD	34.22443	16.9567 8	.057	-1.1468	69.5957
	NC	12.65625	16.9567 8	.464	-22.7150	48.0275
HD	UC	-78.34375*	16.9567 8	.000	-113.7150	-42.9725
IID	OMP	-35.29261	16.9567 8	.050	-70.6638	.0786
	LD	-1.06818	16.9567 8	.950	-36.4394	34.3030
	NC	13.72443	16.9567 8	.428	-21.6468	49.0957
LD	UC	-77.27557*	16.9567 8	.000	-112.6468	-41.9043
	OMP	-34.22443	16.9567 8	.057	-69.5957	1.1468
	HD	1.06818	16.9567 8	.950	-34.3030	36.4394

*. The mean difference is significant at the 0.05 level. 26. Dependent Variable: IL10

(I)	(J)	Mean	Std.	Sig.	95% Confider	nce Interval
VAR00024	VAR00024	Difference (I-J)	Error		Lower Bound	Upper Bound
	UC	64.72250 [*]	17.6448 8	.002	27.9159	101.529 1
NC	OMP	43.06349*	17.6448 8	.024	6.2569	79.8701
NC	HD	12.09250	17.6448 8	.501	-24.7141	48.8991
	LD	4.24798	17.6448 8	.812	-32.5586	41.0546
UC	NC	-64.72250 [*]	17.6448 8	.002	-101.5291	-27.9159

	OMP	-21.65901	17.6448 8	.234	-58.4656	15.1476
	HD	-52.63000*	17.6448 8	.007	-89.4366	-15.8234
	LD	-60.47452 [*]	17.6448 8	.003	-97.2811	-23.6679
	NC	-43.06349*	17.6448 8	.024	-79.8701	-6.2569
	UC	21.65901	17.6448 8	.234	-15.1476	58.4656
OMP	HD	-30.97099	17.6448 8	.095	-67.7776	5.8356
	LD	-38.81552*	17.6448 8	.040	-75.6221	-2.0089
	NC	-12.09250	17.6448 8	.501	-48.8991	24.7141
UD	UC	52.63000*	17.6448 8	.007	15.8234	89.4366
HD	OMP	30.97099	17.6448 8	.095	-5.8356	67.7776
	LD	-7.84452	17.6448 8	.661	-44.6511	28.9621
	NC	-4.24798	17.6448 8	.812	-41.0546	32.5586
	UC	60.47452 [*]	17.6448 8	.003	23.6679	97.2811
LD	OMP	38.81552*	17.6448	.040	2.0089	75.6221
	HD	7.84452	17.6448 8	.661	-28.9621	44.6511

Histopathological evaluation of the epidermis and dermis

Number of families Number of comparisons per family Alpha	5 10 0.05			
Tukey's multiple comparisons test	Mean Diff.	95% CI of diff. nt?	Significa ry	Summa
Epithelialization (E)				
Control vs. MFCE-LD	-3.500	-4.475 to -2.525	Yes	****
Control vs. MFCE-MD	-3.500	-4.475 to -2.525	Yes	****
Control vs. MFCE-HD	-3.500	-4.475 to -2.525	Yes	****
Control vs. INTRASITE	-3.500	-4.475 to -2.525	Yes	****
		-0.9747 to		
MFCE-LD vs. MFCE-MD	0.0	0.9747	No	ns
		-0.9747 to		
MFCE-LD vs. MFCE-HD	0.0	0.9747	No	ns
		-0.9747 to		
MFCE-LD vs. INTRASITE	0.0	0.9747	No	ns
		-0.9747 to		
MFCE-MD vs. MFCE-HD	0.0	0.9747	No	ns
	0.0	-0.9747 to	N	
MFCE-MD vs. INTRASITE	0.0	0.9747	No	ns
MFCE-HD vs. INTRASITE	0.0	-0.9747 to 0.9747	No	n c
MFCE-HD VS. INTRASITE	0.0	0.9/4/	INU	ns
Inflammatory Cell (E)				
Control vs. MFCE-LD	2.200	1.225 to 3.175	Yes	****
Control VS. MITCE-ED	2.200	-0.1747 to	1 65	
Control vs. MFCE-MD	0.8000		No	ns
Control vs. MFCE-HD	2.000	1.025 to 2.975	Yes	****
Control vs. INTRASITE	2.000	0.02526 to	Yes	*
Contor vs. INTRASTIE	1.000	0.02520 10	1 05	

		1.975			
		-2.375 to	-	••	d. d.
MFCE-LD vs. MFCE-MD	-1.400		0	Yes	**
MFCE-LD vs. MFCE-HD	-0.2000	0.7747		No	ns
MFCE-LD vs. INTRASITE	-1.200		-	Yes	**
MFCE-MD vs. MFCE-HD	1.200	0.2253 to 2.175		Yes	**
MFCE-MD vs. INTRASITE	0.2000	1.175	0	No	ns
MFCE-HD vs. INTRASITE	-1.000	-1.975 to 0.02526	-	Yes	*
Degeneration (E)					
Control vs. MFCE-LD	1.800	0.8253 to 2.775	5	Yes	****
Control vs. MFCE-MD	1.800	0.8253 to 2.775	5	Yes	****
Control vs. MFCE-HD	1.600	0.6253 to 2.575	5	Yes	***
Control vs. INTRASITE	0.0	-0.9747 t 0.9747	0	No	19.0
	0.0		0	INO	ns
MFCE-LD vs. MFCE-MD	0.0	0.9747		No	ns
MFCE-LD vs. MFCE-HD	-0.2000		0	No	ns
	0.2000	-2.775 to	-	110	
MFCE-LD vs. INTRASITE	-1.800			Yes	****
MFCE-MD vs. MFCE-HD	-0.2000	-1.175 t 0.7747	0	No	ns
		-2.775 to	-		
MFCE-MD vs. INTRASITE	-1.800	0.8253 -2.575 to	_	Yes	****
MFCE-HD vs. INTRASITE	-1.600	0.6253		Yes	***
Granulation Tissue (D)					
Control vs. MFCE-LD	1.400	0.4253 to 2.375	5	Yes	**
			0		
Control vs. MFCE-MD	0.9000			No	ns
Control vs. MFCE-HD	1.200	0.2253 to 2.175 -0.07474 t	5 :0	Yes	**
Control vs. INTRASITE	0.9000			No	ns
	0.5000		0	NT.	
MFCE-LD vs. MFCE-MD	-0.5000		0	No	ns
MFCE-LD vs. MFCE-HD	-0.2000			No	ns
MFCE-LD vs. INTRASITE	-0.5000		0	No	ns
	0.5000		0	110	115
MFCE-MD vs. MFCE-HD	0.3000			No	ns
MFCE-MD vs. INTRASITE	0.0	-0.9747 t 0.9747	0	No	ns
			0		
MFCE-HD vs. INTRASITE	-0.3000	0.6/4/		No	ns
Inflammatory Cell (D)					
	1 000		0	X 7	*
Control vs. MFCE-LD	1.000	1.975		Yes	~ **
Control vs. MFCE-MD	1.300	0.3253 to 2.275		Yes	
Control vs. MFCE-HD	1.500	0.5253 to 2.475 -0.5747 t	5 :0	Yes	***
Control vs. INTRASITE	0.4000	1.375		No	ns
	0 2000		0	No	ns
MFCE-LD vs. MFCE-MD	0.3000	1.4/5			
		-0.4747 t	0		
MFCE-LD vs. MFCE-MD MFCE-LD vs. MFCE-HD	0.5000	-0.4747 t 1.475	0	No	ns
MFCE-LD vs. MFCE-HD	0.5000	-0.4747 t 1.475 -1.575 t	0	No	
MFCE-LD vs. MFCE-HD MFCE-LD vs. INTRASITE		-0.4747 t 1.475 -1.575 t 0.3747	0		ns ns ns

1.175			
-1.875	to		
-0.9000 0.07474		No	ns
-2.075 to	-		
-1.100 0.1253		Yes	*
	-0.9000 0.07474 -2.075 to	-1.875 to -0.9000 0.07474 -2.075 to -	-1.875 to -0.9000 0.07474 No -2.075 to -

MISSON'S TRICHOM STAIN

Tukey's multiple comparisons test	Mean Diff.	95% CI of di	ff. nt?	Significa ry	Summa
Intensity of coloration		0.0710			
Control vs. MFCE-LD	0.1000	-0.8618 1.062 -1.662	to to	No	ns
Control vs. MFCE-MD	-0.7000		-	No	ns
Control vs. MFCE-HD	-1.100		to	Yes	*
Control vs. Intrasite	0.4000		to	No	ns
MFCE-LD vs. MFCE-MD	-0.8000		-	No	ns
MFCE-LD vs. MFCE-HD	-1.200		to	Yes	**
MFCE-LD vs. Intrasite	0.3000		to	No	ns
MFCE-MD vs. MFCE-HD	-0.4000			No	ns
MFCE-MD vs. Intrasite	1.100	0.1382 to 2.0	62	Yes	*
MFCE-HD vs. Intrasite	1.500	0.5382 to 2.4	62	Yes	***
Fibroblast distribution		21(2)			
Control vs. MFCE-LD	-1.200	-2.162 to 0.2382 -2.762 to	-	Yes	**
Control vs. MFCE-MD	-1.800		-	Yes	****
Control vs. MFCE-HD	-2.000		_	Yes	****
Control vs. Intrasite	-1.300		to	Yes	**
MFCE-LD vs. MFCE-MD	-0.6000		to	No	ns
MFCE-LD vs. MFCE-HD	-0.8000		to	No	ns
MFCE-LD vs. Intrasite	-0.1000		to	No	ns
MFCE-MD vs. MFCE-HD	-0.2000		to	No	ns
MFCE-MD vs. Intrasite	0.5000		to	No	ns
MFCE-HD vs. Intrasite	0.7000			No	ns
Collagen maturity		-1.162	to		
Control vs. MFCE-LD	-0.2000		to	No	ns
Control vs. MFCE-MD	-0.7000		-	No	ns
Control vs. MFCE-HD	-2.000		_	Yes	****
Control vs. Intrasite	-1.200		to	Yes	**
MFCE-LD vs. MFCE-MD MFCE-LD vs. MFCE-HD	-0.5000 -1.800		-	No Yes	ns ****

	0.8382	
MFCE-LD vs. Intrasite	-1.962 to - -1.000 0.03817	Yes *
MFCE-MD vs. MFCE-HD	-2.262 to - -1.300 0.3382	Yes **
MFCE-MD vs. Intrasite	-1.462 to -0.5000 0.4618	No ns
MFCE-HD vs. Intrasite	-0.1618 to 0.8000 1.762	No ns
Angiogenesis rate		
Control vs. MFCE-LD	-1.262 to -0.3000 0.6618	No ns
Control vs. MFCE-MD	-2.462 to - -1.500 0.5382	Yes ***
Control vs. MFCE-HD	-2.062 to - -1.100 0.1382	Yes *
Control vs. Intrasite	-1.662 to -0.7000 0.2618	No ns
MFCE-LD vs. MFCE-MD	-2.162 to - -1.200 0.2382	Yes **
MFCE-LD vs. MFCE-HD	-1.762 to -0.8000 0.1618	No ns
MFCE-LD vs. Intrasite	-1.362 to -0.4000 0.5618	No ns
MFCE-MD vs. MFCE-HD	-0.5618 to 0.4000 1.362 -0.1618 to	No ns
MFCE-MD vs. Intrasite	0.8000 1.762	No ns
MFCE-HD vs. Intrasite	-0.5618 to 0.4000 1.362	No ns
Collagen distribution	10/2	
Control vs. MFCE-LD	-1.062 to -0.1000 0.8618	No ns
Control vs. MFCE-MD	-2.562 to - -1.600 0.6382	Yes ***
Control vs. MFCE-HD	-2.862 to - -1.900 0.9382	Yes ****
Control vs. Intrasite	-1.662 to -0.7000 0.2618 -2.462 to -	No ns
MFCE-LD vs. MFCE-MD	-2.462 to - -1.500 0.5382 -2.762 to -	Yes ***
MFCE-LD vs. MFCE-HD	-1.800 0.8382 -1.562 to	Yes ****
MFCE-LD vs. Intrasite	-0.6000 0.3618 -1.262 to	No ns
MFCE-MD vs. MFCE-HD	-0.3000 0.6618 -0.06183 to	No ns
MFCE-MD vs. Intrasite MFCE-HD vs. Intrasite	0.9000 1.862 1.200 0.2382 to 2.162	No ns Yes **

APPENDIX E: LIST OF PUBLICATION AND PAPERS

Shaymaa Fadhel Abbas, Yusuf Abba, Abdullah Rasedee and Noorlidah Abdullah. (2016). Prophylactic effects of *Clausena excavata* Burum. F leaf extract in ethanol-induced gastric ulcer. Drug Design, Development and Therapy. 2016: 10:1973-86

Shaymaa Fadhel Abbas, Yusuf Abba, Abdullah Rasedee and Noorlidah Abdullah. (2015). Effect of *Clausena excavata* Burm. f. (Rutaceae) leaf extract on wound healing and antioxidant activity in rats. Drug Design, Development and Therapy. 2015:9 3507–3518.

Shaymaa Fadhel Abbas, Yusuf Abba, Abdullah Rasedee and Noorlidah Abdullah. (2014). Evaluation of antioxidant activity and acute toxicity of *Clausena excavata* leaves extract. Evid Based Complement Alternat Med. 2014; 2014:975450.

In Vitro Evidence of Anti-Inflammatory Properties of bioactive methanolic fraction of *Clausena excavata*. INTERNATIONAL CONFERENCE OF PHARMACY AND HEALTH SCIENCES 2016.

Anti-inflammatory evidence of *Clausena excavata* in excision wound-induced rats. MALAYSIAN SOCIETY OF ANIMAL PRODUCTION 2016.

The Ethics Committee for Animal Experimentation, Faculty of science University of Malaya, Malaysia (Ethic No.ISB/22/07/2013/SFA (R)).

UM.C/TNC2/62	5/16/9/1		-
0111.0711102.12			
22 July 2013			
Shaymaa Fadh			
Institute of Biolo Faculty of Scier			
University of Ma	Not the second sec		
Mr/ Madam,			
		IAL, ANTI-OXIDANT, WOUND HEALING POTENTIAL A	ND
Title Project:	ANTILII CER	ACTIVITY OF SELECTED MEDICINAL FLANT AGAIN	110
	NECROTIZING	G AGENTS-INDUCED GASTRIC MUCOSAL INJURY	IN
	EXPERIMENT	TAL RATS	
This is to kindl	y inform you tha	at the Institutional Animal Care and Use Committee, Universit	y of for
Malava (UM L	ACUC) has app	proved your Animal Research Protocol Application (ARPA)	y of for
Malaya (UM I, duration of two	ACUC) has app (2) years effecti	proved your Animal Research Protocol Application (AREA) ive from 22 July 2013 until 22 July 2015 .	y of for
Malaya (UM I, duration of two	ACUC) has app (2) years effecti	proved your Animal Research Protocol Application (ARPA)	for
Malaya (UM I, duration of two Your Ethics Re	ACUC) has app (2) years effecti	proved your Animal Research Protocol Application (AREA) ive from 22 July 2013 until 22 July 2015 .	y of for
Malaya (UM I, duration of two	ACUC) has app (2) years effecti	proved your Animal Research Protocol Application (AREA) ive from 22 July 2013 until 22 July 2015 .	y of for
Malaya (UM I, duration of two Your Ethics Re	ACUC) has app (2) years effecti	proved your Animal Research Protocol Application (AREA) ive from 22 July 2013 until 22 July 2015 .	y of for
Malaya (UM I, duration of two Your Ethics Re Thank you.	ACUC) has app (2) years effecti ference no. : IS	proved your Animal Research Protocol Application (ARPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assoc. Prof. Dr. Durriyyah Sharifah Hasan Adli	y of for
Malaya (UM I, duration of two Your Ethics Re Thank you.	ACUC) has app (2) years effecti ference no. : IS	proved your Animal Research Protocol Application (ARPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R)	y of for
Malaya (UM I, duration of two Your Ethics Re Thank you.	ACUC) has app (2) years effecti ference no. : IS	proved your Animal Research Protocol Application (ARPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assoc. Prof. Dr. Durriyyah Sharifah Hasan Adli Chairperson Institutional Animal Care and Use Committee (IACUC)	y of for
Malaya (UM I duration of two Your Ethics Re Thank you. Yours sincerel	ACUC) has app (2) years effecti ference no. : IS	proved your Animal Research Protocol Application (ARPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assoc. Prof. Dr. Durriyyah Sharifah Hasan Adli Chairperson Institutional Animal Care and Use Committee (IACUC)	y of for
Malaya (UM I duration of two Your Ethics Re Thank you. Yours sincerel Durning ASSOC. PRO Chairperson	ACUC) has app (2) years effection ofference no. : IS y, MASIMA F. DR. DURRIY	proved your Animal Research Protocol Application (AKPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assec. Prof. Dr. Durriyyah Sharifah Hasan Adli Chaiperson Institutional Animal Care and Use Committee (IACUC) University of Malaya	y of for
Malaya (UM I duration of two Your Ethics Re Thank you. Yours sincerel Durning ASSOC. PRO Chairperson	ACUC) has app (2) years effection ofference no. : IS y, MASIMA F. DR. DURRIY	proved your Animal Research Protocol Application (AKPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assee. Prof. Dr. Durriyyah Sharifah Hasan Adli Chainperson Institutional Animal Care and Use Committee (IACUC) University of Malaya	y of for
Malaya (UM I duration of two Your Ethics Re Thank you. Yours sincerel Durning ASSOC. PRO Chairperson	ACUC) has app (2) years effection ofference no. : IS y, MASIMA F. DR. DURRIY	proved your Animal Research Protocol Application (AKPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assec. Prof. Dr. Durriyyah Sharifah Hasan Adli Chaiperson Institutional Animal Care and Use Committee (IACUC) University of Malaya	for
Malaya (UM I duration of two Your Ethics Re Thank you. Yours sincerel Durning ASSOC. PRO Chairperson	ACUC) has app (2) years effection ofference no. : IS y, MASIMA F. DR. DURRIY	proved your Animal Research Protocol Application (AKPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assec. Prof. Dr. Durriyyah Sharifah Hasan Adli Chaiperson Institutional Animal Care and Use Committee (IACUC) University of Malaya	for
Malaya (UM I duration of two Your Ethics Re Thank you. Yours sincerel During ASSOC. PRO Chairperson Institutional An	ACUC) has app (2) years effection ofference no. : IS y, MASAMA F. DR. DURRIY nimal Care and U	proved your Animal Research Protocol Application (AKPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assoc. Prof. Dr. Durriyyah Sharifah Hasan Adli Chairperson Institutional Animal Care and Use Committee (IACUC) University of Malaya YAH SHARIFAH HASAN ADLI Use Committee, University of Malaya (UM IACUC)	for
Malaya (UM I duration of two Your Ethics Re Thank you. Yours sincerel Duri Qu ASSOC. PRO Chairperson Institutional Ar	ACUC) has app (2) years effection ofference no. : IS y, AL SIM F. DR. DURRIY nimal Care and U	proved your Animal Research Protocol Application (AKFA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assoc. Prof. Dr. Durriyyah Sharifah Hasan Adli Chairperson Institutional Animal Care and Use Committee (IACUC) University of Malaya YAH SHARIFAH HASAN ADLI Use Committee, University of Malaya (UM IACUC)	for
Malaya (UM I duration of two Your Ethics Re Thank you. Yours sincerel Duri Q ASSOC. PRO Chairperson Institutional Ar	ACUC) has app (2) years effection ofference no. : IS y, AL SIM F. DR. DURRIY nimal Care and U	proved your Animal Research Protocol Application (AKPA) ive from 22 July 2013 until 22 July 2015. SB/22/07/2013/SFA (R) Assoc. Prof. Dr. Durriyyah Sharifah Hasan Adli Chairperson Institutional Animal Care and Use Committee (IACUC) University of Malaya YAH SHARIFAH HASAN ADLI Use Committee, University of Malaya (UM IACUC)	for

Drug Design, Development and Therapy

Contraction of the Assess

ORIGINAL RESEARCH

Dovepress

Prophylactic effects of Clausena excavata Burum. f. leaf extract in ethanol-induced gastric ulcers

> This article was published in the following Dove Press Journal: Drug Design, Development and Tharapy 15 June 2016 Namber of emes this which has been served

Shaymaa Fadhel Abbas Albaayit^{1,2} Yusuf Abba³ Rasedee Abdullah⁴ Noorlidah Abdullah¹

Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia; "Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq; "Department of Veterinary Pathology and Microbiology, "Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Modicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Abstract: Clausena excuvata is a natural herb with both antioxidant and anti-inflammatory properties. It has been used for decades in folkloric practice for the amelioration of various ailments. In this study, the gastroprotective activity of methanolic extract of C. excavata leaves (MECE) was determined in the Sprague Dawley rat ethanol-induced gastric ulcer model. Rats were pretreated with a single dose of vehicle (5% Tween 20), 20 mg/ml. omeprazole, 400 and 200 mg/mL of MECE dissolved in 5% Tween 20, Ulcer was induced with 5 mL/kg of ethanol and stomach tissue was obtained after 1 hour. Histological examination was done on hematoxylin and eosin, periodic acid-Schiff, and immunochemically stained gastric mucosal tissues. Prostaglandin E2, superoxide dismutase, catalase, glutathione peroxidase, and lipid peroxidation levels of the gastric tissue homogenates were also determined. Significantly (P<0.05) smaller ulcer areas, less intense edema, and fewer leukocytes' infiltration were observed in MECE- and omeprazole-treated than in untreated gastric mucosa with ulcer. The gastric pH, mucus production, superoxide dismutase, catalase, and glutathione peroxidase contents increased, while the lipid peroxidation content decreased as a result of MECE treatment. Bcl-2-associated X protein was underexpressed, while heat shock protein 70 and transforming growth factor-beta protein were overexpressed in the ulcerated gastric mucosa tissues treated with omeprazole and MECE. Similarly, there was a reduction in the levels of tumor necrotic factor-alpha and interleakin-6, while the level of interleukin-10 was increased. This study showed that the gastroprotective effect of MECE is achieved through inhibition of gastric juice secretion and ulcer lesion development, stimulation of mucus secretion, elevation of gastric pH, reduction of reactive oxygen species production, inhibition of apoptosis in the gastric mucosa, and modulation of inflammatory cytokines.

Keywords: Rutaceae, antiulcer, antioxidant enzymes, histopathology, immunohistochemical proteins, cytokines

Introduction

Correspondence: Rasedae Abdullah Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Université Putra Malaysia, Persiaran Mardi, 43400 Serdang, Selangor, Malaysia Email rasedee@gmail.com

Noorlidah Abdullah Faculty of Science, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, WP Kuala Lumpur, Malaysia Email noorlidah@um.edu.my Peptic ulcer disease (PUD), a protracted and multifactorial disease, is characterized by the presence of ulcerated lesions in the gastric or duodenal mucosa. PUD occurs in approximately 20% of the world population.¹ Development and progression of PUD is governed by the acidity of the stomach's gastric juice. Thus, modulation of the stomach acidity is fundamental to the prevention and healing of gastric ulcers.² Although several antiulcer medications such as H2 receptor antagonists (ranitidine, famotidine), antacid, and proton-pump inhibitors (omeprazole) are readily available for the treatment of ulcers, these therapeutic agents have side effects that include impaired calcium, iron, magnesium, and vitamin B12 absorption in the intestine. Hence, there is a great need to develop more efficacious drugs for the treatment of the disease.³

Drug Design, Development and Therapy

Dovepress

a Open Access Full Text Article

ORIGINAL RESEARCH

Effect of *Clausena excavata* Burm. f. (Rutaceae) leaf extract on wound healing and antioxidant activity in rats

This article was published in the following Dove Press journal: Drug Design, Development and Therapy 13 July 2015 Number of times this article has been viewed

Shaymaa Fadhel Abbas Albaayit^{1,2} Yusuf Abba³ Abdullah Rasedee³ Noorlidah Abdullah¹

Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; ²Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq; ³Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Correspondence: Noorlidah Abdullah Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia Tel +60 3 7967 4371 Email noorlidah@um.edu.my

Rasedee Abdullah

Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia Email raseede@gmail.com Abstract: Clausena excavata is a well-known plant used in folkloric medicine for the treatment of different ailments. This study aimed to determine the in vitro cytoxicity of its leaf solvent extracts as well as the in vivo wound healing and antioxidant activities of the methanolic extracts of C. excavata (MECE). HaCaT (keratocyte) and Vero cell lines were used for evaluation of the in vitro cytotoxic effects, while the in vivo wound healing and antioxidant activities were determined in skin wounds inflicted on rats. Twenty adult male Sprague-Dawley rats were divided into five groups of four animals each. Approximately 3.14 cm² excisional wound was inflicted on the nape of each rat following anesthesia. The treatment groups received topical application of MECE at 50 mg/mL (MECE-LD [low dose]), 100 mg/mL (MECE-MD [medium dose]), and 200 mg/mL (MECE-HD [high dose]), while the negative control group was treated with gum acacia in normal saline and the positive control group with intrasite gel. Wound contraction was evaluated on days 5, 10, and 15 after wound infliction, and tissue from wound area was collected at day 15 postwound infliction for antioxidant enzyme evaluation and histopathological analyses. Generally, Vero cells were more resistant to the cytotoxic effects of the solvent extracts as compared with HaCaT cells. Chloroform (CH) and ethyl acetate (EA) extracts of C. excavata were toxic to HaCaT cells at 200 and 400 µg/mL, but the same concentrations showed higher (P<0.05) viability in Vero cells. There was significantly (P<0.01) greater wound contraction at days 10 and 15 postwound infliction in all the treatment groups than in the control groups. Histopathologically, the MECE-HD-treated wound showed significantly (P<0.05) lesser inflammatory cell proliferation, degeneration, and distribution of granulation tissue than other groups. Similarly, the degree of collagen maturation, angiogenesis, and collagen distribution were significantly (P<0.05) lower in MECE-HD than in other groups. The MECE-HD, MECE-MD, and intrasite treatment groups showed a significantly (P<0.05) higher number of VEGF-positive and TGF-β1-positive cells in the skin wound than the control groups. The activities of superoxide dismutase and catalase were significantly (P<0.01) higher in the MECE-HD and intrasite treatment groups than in the other groups. Lipid peroxidase activity of the treated groups was significantly (P<0.01) lower than that in the control group. The study showed that MECE is a potent wound healing agent through anti-inflammatory and antioxidant effects that enhanced the rate of wound contraction, re-epithelialization, and collagen deposition. The effect of MECE is suggested to be due to its high polyphenolic compound content.

Keywords: Clausena excavata, cytotoxicity, wound healing, antioxidant, histopathology, VEGF, TGF-β1

Introduction

Clausena excavata Burm. f. is one of the potherb species with high antioxidant properties. Its leaves and stem are used in folk medicine for treatment disorders such

submit your manuscript www.dovepress.com	Drug Design, Development and Therapy 2015:9 3507-3518	3507
Dovepress	CO (11) 5 Albazeti et al. This wirk is policided by Dore Medical Press Limited, and Incensed under Creative Commercial uses of the work are partitude without any further License. The full terms of the License are available at http://torasitecummuis.org/icenses/by-vic/3//. Kon-commercial uses of the work are partitude without any further	
http://doi.org/10.2147/DODT.584770	Construction of the full time of the Lines are available at http://continecomions.org/ficesoub/set/2 Mi.Ne-connercial uses of the web are pointing without any further permission from bowerful and the studies are available at http://continecomions.org/ficesoub/set/2 Mi.Ne-connercial uses of the web are pointing without any further how to request permission may be found as: http://www.dowspress.com/permissions.php	

Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2014, Article ID 975450, 10 pages http://dx.doi.org/10.1155/2014/975450

Research Article

Evaluation of Antioxidant Activity and Acute Toxicity of *Clausena excavata* Leaves Extract

Shaymaa Fadhel Abbas Albaayit,^{1,2} Yusuf Abba,³ Rasedee Abdullah,³ and Noorlidah Abdullah¹

 ¹Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
 ²Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
 ³Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Correspondence should be addressed to Noorlidah Abdullah; noorlidah@um.edu.my

Received 2 October 2014; Accepted 6 December 2014; Published 24 December 2014

Academic Editor: Wenyi Kang

Copyright © 2014 Shaymaa Fadhel Abbas Albaayit et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Clausena excavata (Lour.), locally known as "Kemantu hitam," is a common plant in Malaysian folklore medicine. This study evaluated the antioxidant properties of the solvent extracts of *C. excavata* leaves and determined the acute toxicity of methanolic extract *C. excavata* (MECE) leaves in Sprague-Dawley rats. Harvested leaves were dried and subjected to solvent extraction using petroleum ether, chloroform, ethyl acetate and methanol in succession. The antioxidant activity of each extract was determined using the ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl dihydrazyl (DPPH) radical scavenging activity. The total phenolic content (TPC) and total flavonoids content (TFC) were estimated by Folin-Ciocalteu and ethanolic extract showed the highest TPC and antioxidant activity. There was no mortality in rats treated with MECE leaves even at a high dose of 5000 mg/kg body weight. However, the MECE leaves produced mild to moderate pathological changes in the liver and kidneys, shown by mild degenerative changes and leucocyte infiltration. The extract did not affect the haematological parameters or relative weights of the liver or kidneys. Overall, the MECE leaves have potent antioxidant activity and are presumed safe to be used orally as health-promoting product at low to moderate doses.

1. Introduction

Free radicals are harmful by-product of cellular oxidative phosphorylation and energy production. These radicals damage various intracellular macromolecules to include DNA, protein, and lipids [1]. Antioxidants have the ability to prevent oxidative damage and inhibit inflammatory conditions by nullifying the activities of free radicals [2]. Currently, the search for plant sources of antioxidants is gaining momentum with *Clausena excavata* (Rutaceae family) among the plants targeted. *C. excavata* is a medicinal plant widely distributed in Southeast Asia and is known by unique local names, such as Chamat in Thailand and Jia huang pi in China. In Malaysia the plant is locally known as "Cherek hitam" and "Kemantu hitam." The leaves of the plant are used in folklore medicine for the treatment of several illnesses such as malaria, headache, abdominal pain, dysentery, pulmonary tuberculosis, diarrhoea, cold, wound, snake-bite, and poisoning. Recent studies showed that the plant also possessed immune-modulatory [3], analgesic [4], anti-inflammatory, antivirus, anticancer [5], antioxidant [6], antimycobacterial [7], and antifungal [8] activities. *C. excavata* has been reported to exhibit one of the highest beneficial biological activities among *Clausena* genus [9]. These activities are attributed to its high phenolic compounds such as furanocoumarins and flavonoids. The plant also contains other pharmacologically active compounds like coumarin, carbazole alkaloid, and flavonoid glycosides [7, 10–12].

It is imperative that compounds from plants for human use are screened for potential toxicity, particularly for