SIMULATION OF SHORTEST PATH USING A-STAR ALGORITHM

NURUL HANI NORTARJA

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
UNIVERSITY OF MALAYA
KUALA LUMPUR

2004/2005

there is an interface view for the expected simulation output which mainly is in MSDos

Prompt.

The A* algorithm is considered to be more efficient than Dijkstra’s algorithm
because it searchers towards a goal without considering all nodes in a state space, but
rather more focus and directed. This means A* algorithm only calculates and consider
the next node in path that has the lowest value of‘ G and F, plus searching the shortest
route by using heuristic estimation in Manhattan method. Definitely this best-first search

algorithm saves the searching time and improves performance of shortest pathfinding.

il

Page
P17 o I el LI T o SIS e L e S A S s 1
BT 4 Ty L T R S UL 1\ e P S MBI b WL e i
Tl Of OIS ..l s i e A e e e e v
BT g8 I SR | SRR o P S e e e £ X
LISCOEIIRINCN o s s e TP G e . Xi
Chapter 1 : Introduction
11 ProblemInPakingSysteny ... cccooieee B B N0 J e 1
1.2 Automated Parking System Using A* Algonithm 1
13 ProbOnBPEinilion ..o SO N D it i skl e SR e 3
I 5 e e Bt A oAe sy 3
15 PGSR e ot e S, e o s DI o N 1
I L ¥ sy A e o e 5
L T S R e e h L o s tas s Sy A ek e e S a T in 6
LE Project SonelulC it Oty i ot s e s s ks s s e s 6
1 N et e SN UL st el 1 N O 7
Chapter 2 : Literature Review
2.1 Analysis of Common Parking Issues and Problems 8
22 ComentSolatio!Method ... nnan s B s s rea ks 11
23 Proposed New SOMRION .-.....oviiausviniccsoonssvasais 2
2.4 An Automated Parking Systemc.cooeiiiiiiiiiiiiiiiciieen,. 12
25 General View and Definition of A* Algorithm 13

Table of Contents

v

26
27
238

29

2.10

2.11

Features Of A% AIZOTRIMoveoeeeeoeeeeeeee e 14

Why Choose A% AlgorMRNT ...o..ccvaiimasimsm e mersssiismesss 18
Existing Application Using A* Algorithm 19
Review of Pathfinding Algorithms ..o, 22
291 Groaplh AIORIEY - i R AT 22
292 “SeMc/AISORIISo oo ciuiniis s mss e sos e s Fed 27
293 Other Algorithms e 28
Use of Pathfinding Algorithms 28
SHIRAIY o i iob o ibp i s st R R e 29

Chapter 3 : Methodology

31
32

33

34

3.3

RIBOARIOBY ... v iciininy i A s s Arm e s o KA A A USRS s 30
Sofvorure Provess WAOTEY. X0 Rccid vaavmvswnsvidimiomidsdiasdannoseninn 30
WoteHBE MOSEE 1. UM N tie connes nnemnonsmostane vovssssssntebenbatin frmm 30
3.3.1 Requirements analysis and definitionc...on 31
332 Systeman®SORWarC deSinovsmmmmimvaissovs smsmonivms 31
333 Implementation and umit teStingccoevieiiiiiiniiiinin 31
334 Integration and system testing ..., 31
335 Operation and MATRENRNCE" -/t s vvrewnis smen svssvansaminmanaass 32
Methods of Collecting Informationccoviiiiiiinnicnneinnnnns 33
SOOI 5 T v v RN PR N Yw ST s R T e 35

Chapter 4 : System Analysis

4.1

42

43

44

Chapter 5 : System Design

-5 |
3.2
53

54

> %

5.6

¥

_Systeint ANSIVHSot s e S A A T e 36
Systelp Requirements o DR SBNR-SU SR IE OO N EE L Fe 36
421 Functional Requirementscccccoiiiiiveiieeniiinen.. 36
422 Non-Functional Requirementscccooeeieiriienn.. 37
Run Time REQUETEMIENESconscioviniisosiniosionsessisssinsnmss sosaasnasi 38
431 HardWare ReqUITEMENtScooovvereerersessssersrnererm 38
432 SoRWHERERECIEHIE. ..o oo ossesssass iscosiisssainiss 39
433 Programming LangRage:o svnssonsesssmissas Rasdaagpiae 39
434 Microsoft Foundation Class (MFC) Library 4]
SUNTEY o 0L o ovsine denvarseviins B rmmen s e S S o s eNeNTNS 42
FIowehart of A% AlpOBthnn R SURt i v ansysvnas il sasaes 45
AF Alporith PSeplONeT . o G b vt s bt S viaein ueeonivngimias 46
AL PathBRORONRIBORINN vuyomvnrsce bbbt e e s b i A rn by s 47
SAT WG - WRE IS AT .. i vl b 48
A* AIZOTRIN PIOCESS\eieeiseiiiesiee e ene e e ennaeens 50
551 A-Simplifying The Search Aréacccooovveeiii.. 51
552 B Searching Shorest Pathccoo..ccooorvvrronns 52
553 C=Contiming Bemreli: il o S s e S b 57
534 B O . o s e e B s sy S LAl W e 58
Expected Smuiation OulDAELc.oooevsisesecinommersecssssvissreines 63
g R R R A O A L R e S 65

vi

Chapter 6 : System Development & Implementation

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

IPOTRICRRONN |+ 2o coni h s o S0 T ossias R s s oW L e A A A R R A
Developmnl ERvIFORIMIINE S ot . scoist dvmvimsmmsmosiiniobornersstntonntrs
Dovelopmient Tools: ... cmiamininsmrrarms e R e i Ak v s it
Propram Developimient . . vl taeian i Y e AR s s S AR
64.1 Reviewthe program codecooeeiviiiiiiinaciiiiiieinnn.

642 Design the program ...
643 CoUeEPIORIMM: o xiisessnisisaiagiirsnasan s NREr3 AR SAAI DNE
Systemm COBME Lot ittt et e e e
631 Control SUMCEIRS ... ccvirmrsiscmnanssitssonseifle s gMhanade fremmiits

652 Al ..o e s s Efeairiis
6.5.3 Object Oriented Programmingcueiiimenesiirrmiiiinn.
66.1 Simplicity and Claritycooooiiiiiinns

662 Use meaningful variable names
6.63 Establish effective commenting conventions

668 MO .57 . oo iorirsitorionSorms e b S Rt AR r Y
SIRIAtORIVIRAEIR |, .. .0 i s covnais b sy s s S e TS Rk
GBE NGO PR .ol o ety e

G.72 - ATROCAE NOGC CIIONY 1okl A58 et SRV T4 Vs 5k i b e

6.7.3 Search current node and all its successornodes

6.74 Define A* specific parts and evaluate to make comparison

615 DIyl Bl i o i AR e R e
Gk B RS IR SRR S ot SR M Ly A
GEE Ol SIS e s s A b i

74

74

15

75

75

vii

682 DeuEMEethBIREEo.cocreniimdobin ool e e eth s 76

6.8.2.1 REBEHS IO oo oo p e i (ot d s 77

6822 ERMEREIRE . ccocunchbas s v e 77

(5 A T T Y RSN D NGl O BOMU RN e ERONCARN,) A L 77

Chapter 7 : System Testing

1 TR e T e o S 78
72 TeSEMEBOTOIORY. ... sncecinns smusspssinmbsnminliti s (vt wiy SN TN 78
721 WIAIO-DOX BB oiiciersiviinasanisbnsiaresiscii<ine saids s ilawghy da o 78

722 BIackboR WSHNG ... corusivvsensmsmsmasyisrasll stz cali s s naa 78

73 TypeofTesting SR ORIR D D . S, “EESic | W 79
731 MOGUE TEMIMB: iy s iR Ry vy s (av e s eiomsy 79

732 Intogration TESEMEl v Xoriieiiorinonrinssnsvasapxsibes 80

V.33 SyStemrTeSNE ..o Rvandsernss s bhsmpeonsovaisstan reanisdiove 80

T4 ExmipiC ol TOMmME (..o MR crosscacrersissisossniinrisinrmnmbiint s 81
TR A N e o X S RO U 84

Chapter 8 : System Evaluation & Conclusion

8.1 Siohlatt Strength .o s e S s S S e s e 85
8.2 Systems Limitation and Constraintcoooviiiiiiiniiniiinniiienn 85
83 Problomatic SO ...l etk e S A s e et et 86

83.1 Lack of programming exXperiencec.ccoeeeeveennnnens 86

832 Deovelopment e BICIOT ..o o iiiumais s ivs s savvmts 87
84 FovERRCEMONG e o ek 87
R e ORI L S RS W 88

viil

BT RO (K] B Lot OO RS
References

Bibliography

Appendix A : User Manual

Appendix B : Findpath Classes

Appendix C : Project Schedule — Gantt Chart

Appendix D : Study Case

List of Tables

Table 1.1:
Table 2.1 :
Table2.2 :
Table 2.3 :
Table 2.4 :
Table 3.1 :
Table 5.1 :
Table 6.1 :

Table 6.2 :

Projosk Schedule: (12, .o Sl bttt nivissrina s s s e e)

List of Common Parking Issues PRI 1 ol /..) 9

Examples Types of Graph Algorithmscoooei. 23
Types of Scarch Algorithms ,.,......... s se Mo R 27
Examples Types of Other Algorithms ... 28
Advantages and Disadvantages of Waterfall Model 32
Pstidocode for AY AIGOUHBIN ,...iiiticacimiss s s sigevath e sy 46
Hardware REGUITSINEIS oo iiiniiiissisvsssommssssBigeis domsWon dsss soss | OO

Development Software and TOOISoccoviiiiiiiiiieinn 67

List of Figures Page

Figure 2.1 (a) : GraphFormer by Eric Marchesinocoivieeiicimniieimeairniiin 19
Figure 2.2 (b) : GraphFormer by Eric Marchesincooeoiieiiiiiiiiceeereiinne 20
Figure 2.3 : The first three steps of a pathfinding state space 21
Figure 2.4 : 8-Puzzle state space showing fghscores ... 22

Fipore 3.1 T WHETTRHTIONEL 5. ca0 st o tommne it o bnps Batats s A aagf T

Figure 5.1 : How an automated parking system functional 43
Figure 5.2 : Flowchart of A* pathfinding algorithm ..o i 45

Figure 5.3 : Horizontal or Vertical square moved

(Orthogonal/Non-diagonal) and Diagonal square moved ..o 47
Figure 54 : Smiphifying the search arel ...ttt cor covnnnssimvanimsass 51

Figure 5.5 : Square grid of simple 2-dimensional array

COOTIOR RN, ... siosicirmimes stvmis s e IS €h:nir e o AT D S S 52
Figure 5.6 : All adjacent squares added to open list (green)ccoeeeninnnn. 53
Figare 5.7 Formms =G F B X s e s cmias il na s saidsn doonloaisioaisis 54
Figure 5.8 - CRMRIAUNG T o o crsisimsis sombresh s Sos e sats s poba e g Rera e v sl 55
Figure 5.9 : Calculating Hin easier wayccoooveiiiiiiiiniiiinininnennns 56
Figure 5. 10 CREUIBER ..o s e i a s 57
Figure 5.11 : Check other 4 squares already inopen list 59
Figure 5.12 : None of paths improved by going through

current square - don’t change anything. ..o, 60

Figure 5.13 : Choose the one just bottom-right of starting square _.................... 61

Figure 5.14 : Other 3 squares, two -- on closed list

(starting square & one just above current square,

both highlighted in blue = IGNOREccoooiiiiiiiieiieieee e 62
Figure 5.15 : Last square, to immediate left of current square

checked to see if G score lower, if go through current

SQUATE T PEUANOIO: ..o bl vmoiirn bt e RS B a4 3o T e ol VT SEem Y SRR 63
Figure 5.16 : Expected output of A* pathfinding

sialtion — MS DO PIOMIPE . xocisniissi veaineinaovesms ahinssesbissaiaas s ssavsenio 0
Fignre 517 : Example oF graph G ...covaiiiriiniscaconeessmisasasaons smrlpelosdbar | 8
Figure 5.18 : Expected output - MFC interfaceccocovimiiiniiiniinannennny, 65
Figure 6.1 : Program development processcoiiiiiiiii. 67
Figure 6.3 : Parking map as resource from coding program .. . 69
Figure 7.1 : Example output that applied using Manhattan method 8l
Figure 72 : PEking mD [20%20] . i . sialhn el nns icyanssmshomanimsrmseet il 82
Figure 7.3 : Example output that applied not using Manhattan method 84

Xii

CHAPTER 1:

INTRODUCTION

Although A* can be designed using arbitrary graph, but this thesis will

concentrate on designing using square grid so it is more easier to compute the direction

and the distance from starting to the end point.

13 Problem Definition

Through the analysis process of the project, | discovered few problems that

should be overcomed which are :

Limited references.

Limited given time to finish the first part of the project, which is to analysis
and design the project.

The difficulties of implementing the theoretical of A* algorithm and
approaches into real system because of its complicated coding.

Inadmissible heuristics occur when overestimate the remaining distance
between the current square and the target destination which resulted

inaccurate shortest path.

1.4 Objectives

»”

To build a simulator which capable of finding shortest path and distance
within weighted state space when the starting and destination point, plus the
obstacles already known or given in more easier manner and faster pace.

To develop a simulator using A-Star algorithm whereby later can be used
by system developer; to be integrated and combine with other modules to

complete the design of overall automated parking system,

» To help solving parking problems including the accessibility, congested and
limited of parking system which becoming progressively more complicated
in coming years.

» A simulator thal can ease vehicle ownership difficulties and economically
saving time by providing help guide in finding empty parking space. This
simulator will outline each steps or path needed to be taken to reach
destination in shortest way or fastest time.

» Upgraded the quality of current parking sysiem (0 be more systematic and
convenient. Lack of accessible parking can hurt local business and decrease

the quality of life for residents.

1.5 Project Scope
The project scope determines part of the project process, which will overcome the
burden of the overall simulator development. The following determined to what extend

simulator of A* pathfinding algorithm would be developed :

% The simulator was developed to find shortest path in parking system from
the starting point of node (parking entrance) to the target point of node
{empty parking space/destination).

% There will be a constraint/obstacle along the path which are :

* Impossible : No route can pass through this cell (might be a wall).

% Each state of node involve in this pathfinding will be represented by unique
metric/value and color
* Start Point (parking entrance) — green

e End Point (empty parking space/destination) - red

* Route (result) - yellow or red oval shape

. Impossible - blue

1.6 Constraints

There are some limitations/constraints may occur concerning the simulator to be

developed which are as stated below :

The simulator was developed purposely by providing a template or
predefined maps. This template provide different kinds of mapping that
generate its own value/metric for starting and destination point, plus the
obstacles. Simulator need to be program to generate a value (F = G + H) in
empty square grid when conducting pathfinding to find shortest path from
starting point to destination point. |

A lot of time consuming to develop a program/coding that fully function by
considering obstacles like Impossible state (wall) when searching the
shortest path between two nodes. This program must be manageable and
flexible to be modify or enhance the obstacles requirements; such as to
Tough state (sandbank) or Very Tough state (vehicle blocking).

Each square grid in simulator must at least contains pixel-size of 20x20
which develop total up to pixel-size of 200x200 for whole state space. It’s
important to ensure that the simulation can be display in clearly and
appropriate manner.

Until now, so far there aren’t any applications that could find shortest path
from parking entrance to the empty parking space which using A*
pathfinding algorithm, applied in real-time parking system. Because of

that, it’s very hard to get a suitable references for this thesis project.

1.7 Targeted User

The A* pathfinding simulator will be implement and develop in an automated
parking system. Due to that, this simulation is targeted for two types of user;
management of shopping centre or commercialize building/area and consumer that
frequently come for shopping and parked their vehicle in the provided shopping complex
parking lot. For the time being, this simulator will be implement as a prototype for
simulating purposes only.

This simulator is not appropriate for government or private sector use because
usually their parking lot readily provided for every staff depending on their post ranking.
This project basically to proof A* algorithm as the best pathfinding algorithm besides
Dijkstra’s and other pathfinding algorithms; to find shortest path from parking entrance
(starting point) to empty parking space (destination/end point) in parking system, in more

easier and faster manner.

1.8 Project Schedule (Gantt Chart)

The Gantt Chart represents the project planning phases that will be implemented
to develop A* pathfinding simulator. This project schedule is followed to develop the
simulator by fulfilling the objectives that has been proposed in this thesis. Table 1.1

shown the draft of Gantt Chart. The complete project schedule is shown in Appendix A,

CHAPTER 2 :

LITERATURE REVIEW

pathfinding simulation to search for shortest route will used the square grid as the

simulator state space representations.

As it is from the family of best-first scarch (BFS) strategy , the A" algorithm is

recognized by two special features which record its problem-solving path :

I- The first feature is the shopping lists : The pathfinding search on the square grid is

performed by maintaining two separate lists of cell locations.

(a) The first list is called the open list and it contains all cells which should be
investigated during the search. It is a state where the list has been generated and
have had the heuristic function applied to them but which has not yet been futher
examined for its successors. At the beginning of the search this list holds only one
item, the start location. However, during the search all locations which should be

examined are added here.

(b) The second list is the closed list. It is a state where it has been futher examined.
This list holds all cells which were examined during the search. They are

moved from the open to the closed list once the location is processed.

This concept lets the algorithm search a state space efficiently without
considering an examined state (or node) twice or even repeatedly. It therefore minimize

the complexity’ of the A* algorithm, especially in time and space constraints.

" The complexity of an algorithm is a mathematic measurement of the efficiency of an algorithm.

15

During the search the algorithm examines one entry of the open list after the next
(shopping list), determines the movement costs to this location and finally moves the
entry from the open to the closed list. During this examination new cells, that is all
neighbors of the currently examined cell are added to the open list, so that the search can
continue in the next loop. This procedure is repeated as long as there are still items in the

open list.
Each entry/node of the both lists should at least hold the following properties

« The cost G for the current cell.

e The cost H for the current cell.

o The cell or actual location on the map (for example. x and y coordinates, or
pointer to the cell).

« Alink to the parent, for example the previously visited node. This is used
to connect the path once you have find it. Follow the links from one node

to the next will be your path.

This can for example be represented by the following class definition :
class ANode
{
public:
ANode *parent;
int location;
int cost G,

int cost H;

16

2- The second feature is the cost function.

Unlike the breath-first search (BFS) and depth-first search (DFS) strategy, A*
algorithm uses heuristic function to guide its direction of searching. It is more informed®
that BFS and DFS; and it is guaranteed to found a least costly path from an initial node
to the desired goal node with a minimum branching manner. The overall movement cost
(F(n) = G(n) + H(n)) of the currently analysed cell is determined by two function

called G and . The nmihematioal notations e deaciihel Below -

= G (n)=the movement cost to move from the starting point A to a given square on

the grid, following the path generated to get there.

1- Horizontal or Vertical square moved (Orthogonal/Non-diogonal) = cost 10

2- Diagonal moved = cost 14.

* H (n) = the estimated movement cost to move from that given square on the grid
to the final destination. This is often referred to as the heuristic, which can be a
bit confusing. It of course sounds hard or impossible to estimate the cost from a
given location to the target location without knowing the path. The reason why it

is called that is because it is a guess and it need not be correct..

? An informed search strategy uses problem specific knowledge to guide its node expansion in a

state space.

17

2.7

We really don’t know the actual distance until we find the path, because all sorts
of things can be in the way (walls, sandbank, water, etc.). A valid assumption for
the cost is for example to take a straight line from the current location to the
target with movement cost for normal terrain (e.g. cost=1), so that cost is related

to the geometrical distance between the two locations.

Why Choose A* Algorithm?

* Although this A* algorithm implementation will not 100% achieve the
optimal solution means shortest possible path, still the pathfinding process
can be done in more faster and convenient way compare (o the other
pathfinding algorithms.

* When combining the efficiency of heuristic together with the cost
estimation from the current location, the performance of finding shortest
path to destination could be improved.

= A¥* algorithm is easy to be implement in a real-world system such as
computer games, road mapping or network routing,

* No computation is wasted since A* algorithm only evaluate and consider
next nodes that has lowest G and F as possible path to the destination.

= When calculating the heuristic estimation (H) by using Euclidean distance
means distance “as birds fly”, H can be computed very easily using a
standard vector math. As a result the calculation match with the length of

path, but never over-estimate it.

18

28 Existing Application Using A* Algorithm
» Understand graphs and A* path-finding algorithm with C# By Eric
Marchesin.

URL address : http://www.thecodeproject.com/csharp/graphs _astar.asp

D & E ? ’ o .iO i Kl Sel=ct 4 rvsde with telt bddon 1D move & (rghe button to mave the el ptachl]

foen ¥z Sheetest pah found i 6 stepls): 6 archi)\ cont = 678 __|

Figure 2.1 (a) : GraphFormer by Eric Marchesin
The Graph class gathers a set of methods to manage its data, such as :

« Add/Suppress a node/arc
o Get the nearest/farthest node/arc from a point
« Activate/Inactivate the entire graph

« Empty the graph

The graphical interface aims at bringing the component into play so as to reflect,
fairly and simply, what it can do. The application lets you draw, move, erase or
inactivate several nodes and arcs. When your graph is complete you just have to click on

the 'A*" icon and select the starting and ending nodes with the respective left and right

19

mouse buttons. Then you will automatically see the best way. If you modify the graph,
this path will be updated. If you want to visualize the algorithm's logic, then select the
'Step by Step' mode in the sub-menu of the 'A*' icon. The idea is to give the user a clear

view of what happens.

D B n ? [4 P ’*' A W B M Chore nodes to delete [ocle or selact s rectancia)
.'_2
S e
TNE
ox7 ¥x8 Opentat: 3 roen; Closed et 21ed - Cmentsiep: 2|

Figure 2.2 (b) : GraphFormer by Eric Marchesin

» PathFinder2D by Intrafoundation Software. PathFinder2D is an open-source
experiment in various 2D shortest-path path-finding algorithms and techniques.
This software was written in C++ using MSVC++ 6 Professional SP5 + MS
Platform SDK. Algorithms involved : A*, Dijkstra, Breadth-First, Best-First and

Depth-First. URL address : http://www. intrafoundation.com/pathfinder2d.asp

20

> Sliding tile puzzle (the 8-puzzle) — using A* algorithm.

I | ‘
Figure 2.3 : The first three steps of a pathfinding state space

There are 362,880 different states that the puzzle can be in, and to find a solution
the search has to find a route through them. From most positions of the search the
number of edges (that's the blue lines) is two. That means that the number of nodes you
have in each level of the search is 2°°d where d is the depth. If the number of steps to
solve a particular state is 18, then that’s 262,144 nodes just at that level. The 8 puzzle
game state is as simple as representing a list of the 9 squares and what's in them. Here are
two states for example; the last one is the GOAL state, at which point we've found the
solution. The first is a jumbled up example that you may start from.

Start state SPACE, A,C,H, B, D, G, F,E
Goal state A, B, C, H, SPACE, D, G, F, E
The rules that you can apply to the puzzle are also simple. If there is a blank tile

above, below, to the left or to the right of a given tile, then you can move that tile into the

21

space. To solve the puzzle you need to find the path from the start state, through the
graph down to the goal state.

f.9.h scores : 17.017

. ek -

e 2N yo1se
LN AN

22,0 19217 JThesenodes dnt got kcked ot

Figure 2.4 : 8-Puzzle state space showing f,8,h scores

29 Review of Pathfinding Algorithms

Path planning is the art of deciding which route to take, based on and expressed
in terms of the current internal representation of the terrain. Path finding is the
execution of this theoretical route, by translating the plan from the internal representation

in terms of physical movement in the environment.

2.9.1 Graph Algorithms

Graph theory is the branch of mathematics that examines the properties of graphs.
A graph with 6 vertices and 7 edges. Informally, a graph is a set of objects called
vertices (or nodes) connected by links called edges (or arcs). Typically, a graph is

depicted as a set of dots (i.e., vertices) connected by lines (i.e., edges).

22

In graphical form : where w(T) is the minimum total weight and (u,v) is an edge

between vertices u and v.

% Prim's algorithm

- is an algorithm in graph theory that finds a mimimum spanning tree for a
connected weighted graph. This means it finds a subset of the edges that forms
a tree that includes every vertex, where the.total weight of all the edges in the
tree is minimized. If the graph is not connected, then it will only find a
minimum spanning tree for one of the connected components. The algorithm
was discovered in 1930 by mathematician Vojtech Jarmik and later
independently by computer scientist Robert Prim in 1957 and rediscovered by
Dijsktra in 1959. Therefore it is sometimes called DIP algorithm or Jamik

algorithm.

% Boriivka's algorithm

- is an algorithm for finding minimum spanning trees. It was first published in

1926 by Otakar Boriivka as a method of efficiently electrifying Bohemia.
Boriivka's algorithm, in pseudocode, given a graph ., is :

o Copy the vertices of into a new graph, , with no edges.

o While is not connected (e.g., is a forest of more than one tree) :

o For each subtree in , find the smallest edge in connecting a vertex in to
one outside it.

o Add that edge to , reducing the number of trees in by one.

25

< Ford-Fulkerson algorithm

- (named for L. R. Ford and D. R. Fulkerson) computes the maximum flow in a

flow network,

- It works by finding a flow augmenting path in the graph. By adding the flow
augmenting path to the flow already established in the graph, the maximum flow
will be reached when no more flow augmenting paths can be found in the graph.
However, there is no certainty that this computes the maximum flow in a graph.
The max flow min cut theorem is a statement in optimization theory about

optimal flows in networks.

- Suppose G is a finite directed graph and every edge e has a capacity w(e), a non-
negative real number. Further assume two vertices s and t have been
distinguished. Think of G as a network of pipes; we want to pump as much
stuff as possible from the source s to the sink t, never exceeding any edge's

capacity.

< FEdmonds-Karp algorithm

- In computer science, in the field of graph theory, this algorithm is an
implementation of the Ford-Fulkerson algorithm. The important additional
feature is that the shortest augmenting path is used at each step, which
guarantees that the computation will terminate. In most implementations, the

shortest augmenting path is found using breadth-first search.

- The Edmonds-Karp algorithm runs in O(VE2) time, where V and E is the

number of vertices and edges in a graph.

26

293 Other Algorithms

Table 2.4 : Examples Types of Other Algorithms

I Type] Function / Operation

" Hill climbing e A graph search algorithm where the
current path is extended with a
: successor node which is closer to the
| - solution than the end of the currem
| path.

f Genetic algorithm e An algorithm wused to find
, approximate solutions to difficult-to-
| solve problems through application
of the principles of evolutionary
| biology to computer science,

2.10 Use of Pathfinding Algorithms

Pathfinding algorithms have many uses. These algorithms are useful in the field
of robotics, because they can be used to guide a robot around difficult terrain without
constant human intervention. This would be useful if the robot were on another planet
like Mars, where some terrain must be avoided, but due to the extreme distances
involved, controlling it completely via remote control would be impossible (too much
delay in the radio transmission). It could also be useful if the robot were to operate

underwater, where radio waves could not get to it.

28

Pathfinding algorithms could also be used in almost any case where a vehicle
needs to go somewhere, while avoiding obstacles, without human intervention. Another
use is in computer games where something needs to be moved from one place to another
avoiding any walls or other obstacles in the way. These algorithms could also be used to
find the shortest way to drive between two points on a map, the best way to route e-mail
through a computer network, or the shortest way to run telephone wires through
existing conduits. Some of the algorithms mentioned earlier would be better for this than
others due to the fact that each one has very different characteristics and is good at

different things.

2.11 Summary

This chapter basically describe the literature review more detail on problems and
issues of parking, about the A* algorithm features, how the formula works and the
algorithm implementation in applications; and also the background of some pathfinding

algorithms,

29

CHAPTER 3 :

METHODOLOGY

phase to another, this model is known as the “waterfall model”. It reflects engineering
practice and therefore it is used widely for softiware development. Below are the

descriptions for each phase :

3.3.1 Requirements analysis and definition
The simulator’s services (functions), constraints and goals are established by
consultation with simulator users. They are then defined in detail and serve as a project

specification.

3.3.2 System and software design

The simulator design process partitions the requirements to either hardware or
software component. It establishes overall project architecture. Software design
involves identifying and describing the fundamental simulator abstractions and their

relationships.

33.3 Implementation and unit testing
During this stage, the simulator (software) design is realized as a set of programs

or program units. Unit testing involves verifying that each unit meets its specification.

3.3.4 Integration and system testing

The individual program units or programs are integrated and tested as a complete
project to ensure that the simulator requirements have been meets. After testing, the
simulator prototype is delivered to system developer or system engineer to be integrated

with other modules to complete the overall automated parking system,

31

As a conclusion, because of all advantages above and since Waterfall model only
suit for smaller software products which need shorter time from requirements phase to
product completion; it has influenced for this model to be chosen as a suitable
methodology for simulator development using A* pathfinding algorithm. When a clear
cut goal of the prototype is reached before the process begins, requirements are less

likely to change.

-« Development

=~ Maintenance

Figure 3.1 : Waterfall model

3.4 Methods of Collecting Information
There are several ways which are used to collect relevant information for this
research and simulator development. The information was useful in terms of references

and guidance to make the progress of simulator development running smoother. With

33

» Observation and research on current parking system

Observation has been done randomly on a few current parking systems that
always full during peek hours. As a result, there aren’t any implementation of
electronic devices or system that can provide the needed information for the users
when they navigating the vehicle from parking entrance to search for empty
parking space in parking lot. It clearly means that no automated parking system

yet exist and implement in Malaysia.

3.5 Summary
This chapter presents the methodology used m A* pathfinding simulator
development which was Waterfall model and outline its pros and cons to be chosen. It

also covers a few methods that has been used to collect information for the research

purposes,

35

CHAPTER 4 :

SYSTEM ANALYSIS

Chapter 4 : System Analysis
4.1 System Analysis

System analysis is a part where the system requirements or specifications need to
be well-identified so that the simulator can be developed up to standard and will fulfil
those requirements precisely and correctly. Basically, the requirements will be
categorized into two main components which are system requirements and run-time

requirements.

42 System Requirements

System requirements are divided into two subcategories which are functional
requirements and non-functional requirements. In functional requirements, all the
services and functionality that can be performed by the simulator will be defined,
whereas in the non-functional requirements, components that relate to this simulator
properties such as its reliability, response time and flexibility will be concluded as far as

possible.

42.1 Functional Requirements

1- Browse

This function button will load template or predefined maps which provide many
different patterns of mapping that readily generated starting and destination point
along with the obstacles. So far, the obstacles will be limited to Impossible state

(wall) only.

2- Finding Shortest Path
This function button will make calculation of A* pathfinding algorithm,
[F = G + H] and searching for shortest path from starting point to destination

point by considering the obstacles ahead in fastest timing.

Both function buttons above will only be implement if the MFC interface is
chosen or used. Originally, the main purpose is to show the expected output of
pathfinding in MSDos Prompt Windows. It will list out each next coordinate, means
next pomt of nodes chosen in shortest path from the starting point to the destination

point.

422 Non-Functional Requirements

Non-functional requirements are the other factors that must be taken nto
consideration in the simulator development cycle. These requirements are very
subjective but they play an important role to ensure the simulator robustness and

successful.

1. Reliability

The simulator should be designed in such a way that process errors in path
finding are avoided or trapped before the result in output becomes error. 1t shall
not cause any unnecessary actions of the overall environment. In simple term,
the simulator must be able to convey and perform appropriate functions with
minimal errors and at least 90% accurate and reliant results (the best shortest
route from starting point/parking entrance to the destination point/empty parking

space).

37

2. Manageability and flexibility

The simulator shall be capable for future expansion which to be operate, manage
and integrated by the user (system developer) with other modules of sub-system
to complete overall automated parking system development or with other systems

and new technologies.

3. Response time
The simulator should be able to process and convey its output within a reasonable

and acceptable period of time (not more than a 60 seconds).

4. Usability

The simulator must provide documentation or guideline that outline each process
steps of pathfinding in detail and precise method/formula of calculation for every
alternative next node in path consideration. This is for user (system developer)

ease of use and manageability to conduct system’s checkup if errors occur.

43 Run Time Requirements
Hardware and software requirements was defined as below as to run the

simulator of pathfinding smoothly.
43.1 Hardware Requirements

= PC with a Pentium-class processor; Pentium Celeron 300 MHz or higher

processor recommended.

38

432

433

* Microsoft Windows® 95, 98, 2000 Professional or later operating system,
or Microsoft Windows NT® operating system version 4.0 with Service

Pack 3 or later.

. 184 MB RAM or above.

« 1.44” Floppy disk drive or CD-ROM drive.

* VGA Monitor 14™ (true color 32 bit) or higher-resolution monitor; Super
VGA recommended.

* Microsoft Internet Explorer 4.01 Service Pack 1.

* Microsoft Mouse or compatible pointing device.

Software Requirements

* Microsoft Visual C++ 6.0 Enterprise Edition

= MSDos Prompt Windows (main choice for expected simulation
output/result)

* Microsoft Foundation Class (MFC) Library (optional)

Programming Language

Programming language of Microsoft Visual C++ is chosen over Java for building

this A* pathfinding simulator because of the factors below :

% Pros : Microsoft Visual C++

v' Visual C++ is a very powerful, 'complete’ and nice high-level language; and
also as close to a universal programming language as you're likely to get at

the moment. It's used everywhere,

39

44 Summary

This chapter presents about the system requirements involved in A* pathfinding
simulator which covers functional and non-functional requirements, also the run time
requirements including hardware and software requirements that used for the simulator
development. The chapter continues by briefly outline the reasons why choosing
Microsoft Visual C++ as programming language to develop the simulator and describe
about Microsoft Foundation Class (MFC) Library as an optional alternative for expected

simulation output/result besides MSDos Prompt Windows.

42

CHAPTERS :

SYSTEM DESIGN

Chapter 5 : System Design

5.1

An Automated Parking System

Empty Space Detection
i.) Image Processing To dgtect empty
ii.) Sensor/CCTV camera,| Parking space

o

Chain Code
1.) Character recognition } Sort by

Database

U

A* Algorithm :
Calculate shortest path using formula Project
F(n} = G(n}+ H(n) Scope

Example : [1,7], [1.6], [1.5]. [2.4], [3.3] 3

U

Robot Navigation

Figure 5.1 : How an automated parking system functional

43

5.2 Flowchart of A* Algorithm

Next is the flowchart of how A* algorithm works using the formula F(n) = G(n) +

H(n) when searching for shortest path from starting point to the destination point..

Figure 5.2 : Flowchart of A* pathfinding algorithm

45

5.4

A* Pathfinding Algorithm

Formula : F(n) = G(n) + H(n), where
G(n) = the movement cost from the starting point to given square on the
grid, following the path generated to get there.
1- Horizontal or Vertical square moved (Orthogonal/Non-diagonal)
equal to cost 10.

2- Diagonal moved equal to cost 14,

H(n) = the heuristic or estimated movement cost from given square on the
grid to the final destination. Why it is called heuristics? Because it is a
guess and we really don’t know the actual distance until we find the path.
There’s possibilities that all sorts of things can be in the way like walls,

sandbank etc.

- Node

Square
grid

Figure 5.3 : Horizontal or Vertical square moved (Orthogonal/Non-diagonal) and

Diagonal square moved

47

A* Algorithm Process

1

2

)
)

Add the starting square to the open list.

Repeat the following :

a) Look for the lowest F cost square on the open list. We refer to this as
the current square.

b) Switch it to the closed list.

¢) For each of the 8 squares adjacent to this current square ...

— If it is not walkable or if it is on the closed list, ignore it.
Otherwise do the following.

— If it isn’t on the open list, add it to the open list. Make the current
square the parent of this square. Record the F, G, and H costs of
the square.

~ If it is on the open list already, check to see if this path to that
square is better, using G cost as the measure. A lower G cost
means that this is a better path. If so, change the parent of the
square to the current square, and recalculate the G and F scores of
the square. [f you are keeping your open list sorted by F score, you

may need to resort the list to account for the change.

d) Stop when you :
— Add the target square to the open list, in which case the path has
been found, or

— Fail to find the target square, and the open list is empty. In this
case, there is no path.

50

3) Save the path. Working backwards from the target square, go from each
square to its parent square until you reach the starting square. That is your

path.

5.5.1 A - Simplifying The Search Area
- Assume :
1- Someone who wants-to get from point A (parking entrance) to point B (empty
parking space).

2- A wall separates the two points.

Figure 5.4 : Simplifying the search area

= starting point A

= ending point B

= wall in between 2 points.

e Simplifying the search area into square grid of simple 2-dimensional array

(column-x * row-y).

51

e Each item in the array represents one of the squares on the grid. The grid status is

recorded as either walkable or unwalkable.
e To get PATH — figure out which squares should be taken to get from A to B.

e Once path founded — person will moves from one center of one square to center of

the next until the target is reached.

Figure 5.5 : Square grid of simple 2-dimensional array (column-x * row-y)

5.5.2 B - Searching Shortest Path
e Result:
1- Green square (light blue) — starting point = indicate square has been added to
closed list.
2- All adjacent squares added to open list (green)
-- squares to be checked, each has gray pointer = points back to its parent

(starting square).

52

8 squares adjacent to this current square
(parent square == starting square).

Figure 5.6 : All adjacent squares added to open list (green)

Path Scoring
Path - generated by repeatedly going through open list & choosing the square
with lowest F score.

To determine which squares to use = F(n) = G(n) + H(n)

53

F(n) = Gn) +I(n)

Heuristic Estimation

Horizontal Vertical Diagonal

G(n) == Dv)=min D(v), D(w) + I{w,v)

Figure 5.7 : Formula F=G+ H

Calculating G

— Cost 10 = Horizontal/Vertical square moved

— Cost 14 = Diagonal square moved

— Calculating G cost along specific path to given square -> take G cost of its
parent & then add 10 or 14 depending on whether it is diagonal or orthogonal

(non-diagonal) from that parent square.

54

Figure 5.8 : Calculating G

e Estimating H
~ Use Manhattan method -- calculate total number of squares moved
horizontally and vertically to reach target square from current square,
ignoring diagonal movement & ignoring any obstacles that may be in the way
-- then multiply total by 10.
~ Why called Manhattan? = like calculating number of city blocks from one

place to another, where can’t cut across block diagonally.

55

Inadmissible heuristics — the closer estimation to actual remaining distance, the
faster A* algorithm will be. If overestimate this distance, not guaranteed to give
shortest path.
Calculating H in easier way - example :
1- Current square (2,2) - Destination square (5,2) = (3, 0)
3 +0 =3 X 10 = 30 < Reversely counting backwards from current square to
destination square {30, 20, 10}
2- Current square (2,1) - Destination square (5,2) = (3, 1)
3+ 1=4X 10 =40 -> Reversely counting backwards from current square to
destination square {40, 30, 20, 10}.

** Disregard the negative value.

Figure 5.9 : Calculating H In Easier Way

56

o Calculating F
Example : Adjacent square coordinated at (2,2);
F(n) = G(n) + H(n) = 10+ 30 =40
** Same rules applied to the rest of 6 squares adjacent to current square (parent

square) for calculating H & F.

Figure 5.10 : Calculating F

553 C -Continuing Search
e Choose lowest F score square from all squares in open list.
e Drop selected square from open list & add it to closed list. Check all adjacent

squares - ignoring those that on closed list or unwalkable (obstacles with walls or

57

6- Repeat this process for all 4 adjacent squares (in open list) -> none of paths

improved by going through current square -- don’t change anything.

° Done with this square -- move to next square. [Figure 5.11] [Figure 5.12]

Figure 5.11 : Check other 4 squares already in open list

59

[Previous]
()

Figure 5.12 : None of paths improved by going through current square — don’t

change anything.

7- Go through list of squares on open list -- now down to 7 squares.
8- Pick the one with lowest F cost - two squares with score 54.
e Which do we choose? - doesn’t really matter. (Differing treatment of ties is
why two versions of A* may find different paths of equal length).

9- Result : choose the one just bottom-right of starting square. [Figure 5.13]

60

10-

Figure 5.13 : Choose the one just bottom-right of starting square

Check adjacent squares. The one to immediate right & the one just above that

[wall square] + the square just below the wall => IGNORE

e Why? = can’t get to that square directly from current square without cutting
across corner of nearby wall -- need to go down first, then move over to that
square, moving around the corner in the process.

Leaves 5 other squares.

e Other two squares below current square aren’t already on open list - add

them and current square becomes their parent.

61

e Other 3 squares, two -- on closed list (starting square & one just above current

square, both highlighted in blue = IGNORE [Figure 5.14]

[Previous]

Figure 5.14 : Other 3 squares, two — on closed list (starting square & one just

above current square, both highlighted in blue - IGNORE

e Last square, to immediate left of current square -- checked to see if G score
lower, if go through current square to get there > no dice -- done & ready to

check next square on open list. [Figure 5.15]

62

[Previous]

Figure 5.15 : Last square, to immediate left of current square — checked to see if

G score lower, if go through current square to get there.

REPEAT SAME PROCESS UNTIL ADD TARGET SQUARE TO OPEN LIST !!!

5.6 Expected Simulation Output

The goal is to show the output in MsDos Prompt Windows rather in the MFC

interface. The reason is because this simulation is target to be integrated in the hardware

implementation.

63

“D:\astar\Debug\astar,exe”

Figure 5.16 : Expected output of A* pathfinding simulation -MSDos prompt

Figure 5.17 : Example of graph output

Browse Find Shortest Path

Figure 5.18 : Expected Output - MFC Interface

5.7 Summary

This chapter cover the context about all modules that are involved in the
automated parking system besides the simulation of using A* algorithm. The chapter
continues by describing the flowchart and pseudocode for A* pathfinding algorithm. It
also outlines each step and level of how the algorithm works, plus with the expected
simulation output which mainly are in MSDos Prompt Windows. The MFC interface is

only the alternative which is optional for the expected simulation output.

65

CHAPTER 6 :

SYSTEM DEVELOPMENT

& IMPLEMENTATION

document consists of data flow of the simulator and the connection of

module. The program document is then analyzed through these following

steps

e In written form, a complete definition of the requirements of the
program.

* Understanding the written definition well enough to produce the
desired result manually. i

¢ Defining the input required to produce the desired output.

o ldentifying the source of the input.

Generally, the first area to analyze should be the output area of the
program. This comes from the written definition of the requirements. The
simulator’s output will be show in the MS Dos Prompt Windows (main
choice for expected simulation output/result) as a layout of on the screen,
showing the information that should result from program running

correctly.

The second area to look at is input = parking map that consist weighted
coordinate (column-x * row-y) for each point of nodes in square grid.
Determine what facts are needed to produce the require information, and

where that data is going to come from.

6.4.2 Design the program
For the second level of program development, decisions have to be made

on how the program can accomplish its tasks by developing a logical
capturing solution fo those program documents. The ecasiest way is to
break the project into small pieces so and design the logic for each part of

the problem.

6.43 Code the program
Coding programs 1s the process of translating the program design into the
appropriate Microsoft Visual C++ 6.0 language to solve the problem. The
activities in this process produce program modules that compile, build and
run smoothly. Implementation of testing and analysis on the modules is
to test its effectiveness and free of any error that could lead to simulator

failure and malfunction.

65 System Coding
In system coding, every component of the program will look into this three

aspects :

6.5.1 Control Structure
The control structure for the component proposed in the system design
phase is translated into code. The program design structure must reflex
with the control structure design. In this project the coding is done using

the bottom-up approach.

70

6.5.2 Algorithm

The simulator program code were designed based on a specific algorithm.

Algorithm is a detail sequence of actions to perform to accomplish some

task. An algorithm must reach a result after a finite number of steps.

The program were broken into several steps :

Create/define start node and goal/end node thro‘ugh user input.
Allocate node memory management for start node and end node.
Same process will be implement for current/parent node and all
their successor nodes.

Make advances search for each current node and find its
successors nodes and all their possible moves until reach to the
end node. |
Initialise value of A* specific parts : g, h, f and parent for start
node and end node. Same process will be implement for
current/parent node and all their successor nodes.

Evaluate and compare each current/parent and their successors
nodes for A* specific parts values : g, h, f and parent value by
using push/pop method into open/close list.

Choose nodes with lowest g value and compare their value
through class HeapCompare f.

Show node position (xy) in path taken, number of solution steps

and search steps taken in output, MS Dos prompt windows.

71

6.7

6.6.2 Use meaningful variable names
In general, variables and data structures should be named in a manner that
enables the programmer to infer their meaning within the context of the

procedure at hand and their correlation with some real-world object.

663 ﬂth effective commenting conventions
e Start with an effective prologue.
e Describe blocks of code, rather than commenting every line.
e Use blank lines and indenting so that comments can be readily

distinguished from code.

6.6.4 Module
Separate function structure so it can function independantly and easy for

modifications.

Simulator Module
The simulator’s module is divided into :
6.7.1 Obtaining input

The simulator obtain input from :

e int map[MAP_WIDTH*MAP HEIGHT}={};

- Parking map as resource in findpath.cpp which can be access by
using map helper functions, GetMap(int x, int y).
¢ Input by user in main(int argc, char *argv([]) function for start and end

node metric (X,y).

73

successor nodes, and so determme next best path to be taken until
reach the end node.
¢ GoalDistanceEstimate(MapSearchNode &nodeGoal) function is to

calculate heuristics that estimates the distance from a node to the goal.

6.7.5 Display output _

e By activate the debugging mechanism : #define DEBUG LISTS 1
and #define DEBUG_LIST LENGTHS_ONLY 1, each steps taken
when push/pop from open/close list is shown by calling the functions :
GetOpenListStart(float &f, float &g, float &bh),
GetOpenListNext(float &f, float &g, float &h),
GetClosedListStart(float &f, float &g, float &h) and
GetClosedListNext(float &f, float &g, float &h).

¢ When search found the goal state, PrintNodelnfo() will show output
for each node position taken in the best path together with the solution
steps and search steps by calling function GetSolutionStart() and
GetSolutionNext().

e FreeSolutionNodes() function is called to clean up all used node

memory when done searching.

6.8 Program Coding
6.8.1 Coding Style
There are two standard methods of program design : the top-down

approach and the bottom-up approach.

75

The way of debugging the program code :
6.8.2.1 Runtime error
The program does something, but not as expected — a great way

to make sure the code is getting executed.

63.2.2 Debugger
Debugging is the process of correcting or mf)difyiug the code in
the program so that the program can build, run smoothly, act as
expected and be easy to maintain later.
Example : // Activate debugging (change value from 0 to 1) for
programmer convenience to check for error.
#define DEBUG_LISTS 1

#define DEBUG_LIST LENGTHS ONLY 1

6.9 Summary

This chapter outline the hardware and software requirements besides phases that
involved in program development process. It also describe the important aspect for
system coding, factors that contribute for program coding approach and modules in

simulator. Last but not least, the type of coding style and debug mechanism which used

in program coding.

77

CHAPTER 7 :

SYSTEM TESTING

73

the output of the program to be different from what the specifications

would require.

Type of Testing
73.1 Module Testing

It is also referred to unit testing and it focuses on verification of the
smallest unit of system design - the module. Using the detailed design
specification as a guide, important control paths are tested to uncover error§

within the boundary of the module.

Module testing were done on :
e Input by user for start node (x.y) and end node (x.y)
- to ensure that program could read the valid metric (1) for path and
not (9) for wall as available path. At the same time, to ensure that

result of output 1s shown in right way in MS Dos prompt.

Types of error occurred during module testing :
e Algorithm error - error in the assembly of program code results
in the output display area
e Syntax error - innocent mistakes during keying in the program
code.
e Parameter passing error - Data type of argument passed were

different from the argument in methody().

79

again as a complete program. The system testing will verify the accuracy of the
simulator process, input and output to ensure it follows the design specification

and the system’s requirement.

Example Testing
& Test whether the simulator still can find the shortest path if user input start

node metric (6,11) that has been block all around by wall (9).

#itht STL A* SEARCH IMPLEMENTATION ###
Press | to enter the program or 0 to exit > 1

Enter start node for column-x : 6
Enter start node for row-y : 11

Enter end node for column-x : 8
Enter end node for row-y : 12
Steps : 1

Open :

Open list has 0 nodes

Closed :

Closed list has 1 nodes

Steps : 2

Open :

Open list has 0 nodes

Closed :

Closed list has 0 nodes

Search terminated. Did not find goal state
SearchSteps : 2

Press 1 to enter the program or 0 (o exit —> 0
Press any key to continue

Figure 7.1 : Example output that applied using Manhattan method

Result : Simulator cannot find available path because it does not program the

node to cross over the comner of wall. The node only can move either by

81

% Change coding condition loop in function MapGetNode::GetSuccessor() and
test whether the new modification will take different effect on program

execution and result.

if{ (GetMap(x+1,y-1)<9)
&& '((parent x — x+1) && (parent y == y-1)))

{ astarsearch->AddSuccessor(NewNode), |}

ifl{ (GetMap(x*1,y+1)<9)
&& l((parent_x =x+1)&& (parent_y =T y+1)))
{ NewNode = MapSearchNode(x+1, y+1);

astarsearch->AddSuccessor(NewNode), |}

ifl (GetMap(x-1,y-1)<9)
&& !((parent x = x-1) && (parent y = y-1)))
{ NewNode = MapSearchNode(x-1, y-1);

astarsearch->AddSuccessor(NewNode): }

ifl (GetMap(x-1,y+1)<9)
&& '((parent_x = x-1) && (parent Yy =y+1)))
{ NewNode = MapSearchNode(x-1, y+1);

astarsearch->AddSuccessor(NewNode | A

83

STL A* SEARCH IMPLEMENTATION
Press 1 to enter the program or 0 to exit - |

Enter start node for column-x : 6
Enter start node for row-y . 11

Enter end node for column-x : 8

Enter end node for row-y = 12

Steps : |

Open :

Open list has 2 nodes

Closed ; .
Closed list has 1 nodes

Steps : 2

Open -

Open list has 3 nodes
Closed :

Closed list has 2 nodes
Steps : 3

Open :

Open list has 3 nodes
Closed

Closed list has 3 nodes

Steps * 4

Open :

Open list has 0 nodes
Closed :

Closed list has 0 nodes
Search found goal state
Node position : (6, 11)
Node position * (7, 10)
Node position : (8, 11)
Node position (8, 12)
Solution steps : 3
SearchSteps © 4

Press | to enter the program or 0 to exit > 0
Press any key to continue

Figure 7.3 : Example output that applied not using Manhattan method

7.5 Summary
Chapter 7 : System Testing basically describe more about testing, type of testing
and its methodology that used. There also shown an example on how testing is been

done for this program simulator.

CHAPTER S8 :

SYSTEM EVALUATION

& CONCLUSION

e Implement this simulator in real-world environment that is in parking lot area
through the collaboration with update technology such as GPRS mapping or
roaming. Users that have handheld devices such as iPod, 2.5G or 3G
handphone and notebook or computer laptop could easily connected with the
automated parking system that implement A* algorithm for the pathfinding

search in parking environment.

85 Summary
This chapter will cover and discuss the simulator strength and limitation, thé

simulator’s problem and solution, and a few suggestions to enhance the simulator in the

future.

REFERENCES

&

BIBLIOGRAPHY

Chai. lan & White. Jonathan David. (2002). Structuring Data & Building Algorithms.
McGraw-Hill,

Deitel. Harvey M. & Deitel. Paul J. (2003). C++ How To Program. 4™ Ed. Prentice Hall.

Journals and Articles From The Internet

Jagdev Singh Sidhu & Pauline S.C. Ng. “MAA : Five percent vehicles sales growth
within reach™ . Star Online.

“Amit’s Thoughts on Path Finding and A-Star”.
(URL - hitp://theory stantord edu/~amitp/GameProgramming), 28/08/2004.

Patrick Lester. “A* Path Findings for Beginners”,
(URL - http://www policyalmanac org/games/aStar Tutornal htm), 04/07/2004.

“System Requirements To Use Microsoft Visual Studio 6.0”.
(URL - http://msdn.microsofi.com/ vstudio/previous/vs6/ features/specifications. aspx),
28/08/2004.

“What's New in Visual C++ Version 6.0”.
(URL - http://msdn.microsoft com/library/default asp?url=/library/en-

us/veedit98/HT ML/ verefwhatsnew forvisualeversion6.0.asp), 28/08/2004.

Microsoft Foundation Class Library (MFC).
(URL - http.//searchvb techtarget com/sDefinition/0,_sid8 ¢¢i2 14094 00 hunl),
28/08/2004.

“High-Level Languages™.

{(URL - hitp://www daniweb com/techtalkforums/thread 1729 _himl)

(URL:http://www daniweb_com/techialk forums/showthread php21=8908 & eoto=nexinew
est), 28/08/2004.

Lim, Audrey. “The Truths About Malaysians™.
(URL : http://www thingsasian.com/goto_article/article 1872 himi), 30/08/2004.

A* Algorithm Pseudocode.

(URL : hitp.//www._geocities com/ jheyesjones/pseudocode htmt), 1/09/2004.

NARPAC, Inc. - Robotic Parking (National Association To Restore Pride In America’s
Capital) .
(URL : hutp//www narpac.org/ METROPRK HTM#robotic), 1/09/2004.

Pathfinding : A Comparison of Algorithms.
(URL : http://www.cpcug.org/user/scifair/Preygel/Prevgel html# Tocd45443578),
1/09/2004.

Patrick Lester. Heuristics and A* Pathfinding.
(URL : http://www policyalmanac org/games/heunstics hitm), 2/09/2004.

Graph algorithms.
(URL : http:/encyclopedia thefreedictionary.com/List%200f%20algorithms), 4/09/2004.

Search algorithms.
(URL : http://encvclopedia thefreedictionary.com/List%200f%20algorithms), 4/09/2004.

Genetic Algorithms.
(URL : http: /encyclopedia. thefreedictionary com/Genetic%20 Algorithms), 4/09/2004.

Hill climbing.
(URL : http://encyclopedia thefreedictionary. com/Hill%20climbing), 4/09/2004.

Pathfinding using the A star method.
(URL : hup://www heni-online. de/libkdegames/pathdoc/index html), 6/09/2004.

Thomas Grubb's Delphi Pathfinding demo.
(URL : http://www.niversoftave. com/downloads. htm), 6/09/2004.

A* algorithm tutorial.

(URL : http://www.geocities.com/jhevesjones/astar himl), 2/09/2004.

James Matthews. A* for the Masses.
(URL : http://www_generation5 ory/content/ 2000/ astar. asp), 2/09/2004.

(URL : hitp://encyclopedia thefreedictionary.com/A-star%20algorithm), 19/07/2004.

Short Description of A*. i
(URL : http.//www-cs-students. stanford edu/-amitp/ Articles/ AStar5 . himt), 19/07/2004.

Beginners Guide to Pathfinding Algorithms.
(URL : http://ai-depot.com/Tutorial/PathFinding html), 21/07/2004.

Problem Description.
(URL : http//ai-depot.com/BotNavigation/Path html), 21/07/2004.

Patrick Lester. Heuristics and A* Pathfinding.
(URL : hup.//www.policvalmanac.org/games/heuristics. htm), 25/07/2004.

Patrick Lester. Using Binary Heaps in A* Pathfinding.
(URL : http://www policvalmanac.org/games/binarvHeaps hum), 30/07/2004.

James Matthews. A* Explorer Version 2.0 (16th July, 2002).
(URL : http://www.generations .org/), 3/1/2005.

Bibliography

Tee Wee Jing. (2002). A Genetic Algorithm Solution To The Shortest Path Problem In

OSPF & MPLS. Master Thesis. University of Malaya.

Wan Hoong Thai. (May, 2002). Using A* Algorithm For Solving Optimal Path

Problem In Road Network. Master Thesis. University of Malaya.

Vikneswaran Veerasamy. (2003). Intelligent Map Guider. BSc Thesis. University of

Malaya.

APPENDIX A :

USER MANUAL

User Manual

A - Installation Manual
In order to use the simulator, the minimum requirements of your computer are :
= Windows 2000 and above
= Microsoft Visual C++ 6.0

= MSDos prompt windows

B- How To Use The Simulator of Shortest Path Using A-Star Algorithm

1 - Open the Microsoft Visual C++ 6.0 application and then open the findpath.dsw

workspace file from a findpath folder.

. Microsoft ¥isual C++

|/t Edt yiew Inssrt Project Buld Took Window Help

Owen.. o pg|2-o-EES|NC 1|
g Frr o] - |le e B

ke save k|45
SEVE AB
ﬁ Save Al

Fage Setup, .

&9 Print. . Clride

Y Recent Files b
T Recent Workspaces »
2 = S e
| Ex

‘:h. sl

| 412\ Buta (Debug \ FindinFles1 || «| |

st O -

":»_"l‘ LserManual - Micro..

8 - After run/execute the program, you will get this result if there’s no error in code

program when you compile and build the program before.

© "D:Mindpath\Debugifindpath. exe"

HILLFHIN]

. Start) UserMmanal - v firdpatho- MiL.,

9 - Press | if you want to enter the program or press 0 if you want to exit from the
program.

“"D:Mindpath\Debugifindpath. exe”

firidpath - M, ., "D\ Fndpathy

10 - Enter value of column-x for start node.

- "D:Vfindpath\Debugh\findpath.exe™

', start Th UserManual -, +. Ffindpath - Mi,.

11 - Next enter value of row-y for start node.

“D:\findpath\Debug\findpath.exe™

. start Tl LisarMarual -... . findpath - Mi..

12 - Then enter value of column-x for end node.

+ "DiVfindpath\Debug\findpath.exe"

‘e Start Y UserManual -... . Findpath - M.

13 - Now, enter value of row-y for end node.

“D:\findpath\Debug\findpath.exe”

] a St&l'r E_-“.} LserMariual -, L nrujpath - Ml

14 - When you press enter, you will get this result.

"D:AfindpathiDebug\findpath.exe”

s Start 1Y UserMarniusl -, *. Findpaths = M1

15 - The code program will evaluate and search for shortest path and show each step of
searching using A* algorithm, the open and closed list activities, each node

position in shortest path, number of solution steps and search steps taken.

v Stalrt G UserManisal -, .. . finchpath =M - 4450 P

16 - To exit from the program, press 0 and enter. You will go back to the findpath.dsw

workspace in Microsoft Visual C++ 6.0 environment.

“D:\findpath\Dehug\findpath.exe™

17 - Save the findpath.dsw workspace file by going to File menu and choose Save

Workspace.

- findpath - Microsoft Visual C++ . [findpath.cpp] = ” HXI

[File Edt view Insert Project Buid Jools Window Help =.Iglﬁl
I&Dm ChN (I |- o Iu:'.ﬁl'%‘ Y ~] ul
& Open.. Cri+0O -
| = rombers) = o1 SIm -[[emx 1 ws
l____l b PP FALELPLL LS LT LSS PP IFIIFTIF eSS
_ﬂ Opﬁﬂw - /7 STL (‘-tanclarcl Temnplats I.:Lbra:l.v} 1* Cjearch Impll-
Save Workspace 7/ Finding a path on a siaple grid maze of parking
Close Workspace i THIS '=‘hn::w_ how to do ‘:?.h«:a:rte'st. path f1nd1ng usin
A Al o e Pl il o o ol i i
& save Ctrids) A :
. #include “"stlastar.h 77 Include <algorithm>.<se
&P save Al #finclude <iostream. h>
#finclude <stdio.h>
P#w 7/ Activate debugging for programmer convenience t
&l & priet... cukp ¥ #define DEBUG_LISTS 1
== #def ine DEBUG LIST LENGTHS ONLY 1 2|
=A Recent Files » |«l] |
ﬂ: Recent Workspaces. » FHConfiguration: findpath — WindZ Debug- -
L: |
Exit |
findpath exe — U error(s)., 0 warning(s) =
vl
I ZIE] pusa (Oabig J, Find in Fies | T2l "—‘
Saves the workspace ['En246.Col8 [HET [EOIL [OVIT [REAT

' Start Tl Usertan, ., v Findpath - ., 7} Yahoo! Ma...

18 - Exit (close) from the Microsoft Visual C++ 6.0 application, go to File menu and

choose Close Workspace option and Exit option.

findpath - Micrusaft Visual C+« [Hadpath.cppl I= [
D Ble Edt Yew Jsst Project fuid Took Window Heb =I®x|

& s A& ww =-’2"--="JIBN‘E""RI “_"llm

lu.psmm _jlwdmmmbml [__13* i|9& R | llﬁ

e T PI PP T I T TTTTITTTT T T T ITTTT TP TP T
v Open Workspacs... <~ BTL (Standard Tenplate Library) A= Ssarch Imnple2=

grid naze of pavbing
It Poth finding usin
W LSS

Microsoft Yisual C++

l_\. Do you want to dose all document windows? [Ude® <algorithns . <se

e

anneT convenlieance t

<1 % print,.. P T TETINE DEBUG TISIS T

Bar e fdefine DEBUG LIST LENGTHS ONLY 1 —
L _WE'!?___..'_.__.. : L4
= ‘onfiguration: findpath — Wip g
‘Tl:i.nking. X *
|findpath.exe - 0 error(s), 0 warning(s) |
} |
|[ST30\ suna (Gosop y, FramrmsT T« | o
Read, [In246.CalB [REG [COL [GVE [READ

a.5lall Tl Usertanu...

- Microsofl Visual C++
|Ble Bt Wew Insert Broject Buld Tods Window Heb

[Qtew. ot &5 colmms W Slw
‘,l Cio e | _'J'&"J'lgf%"f s) EHOO

3 fahool Ma

APPENDIX B :

FINDPATH CLASSES

// findpath.dsw classes
1- AStarSearch<class UserState> --> in stlastar.h header file

2- FixedSizeAllocator<class USER TYPE> --> in fsa.h header file

3- MapSearchNode --> in findpath.cpp file

4

GLOBALS (in findpath.cpp file) :

- GetMap(int x, int y)

- main (int argc, char *argv(])

- map
L e
AStarSearch<class UserState>

1- HeapCompare f

- operator() (const AStarSearch<UserState>:Node *x, const

AStarSearch<UserState>:Node *y)

2- Node

Member functions : Node()

Data members : child
(6) f

g
h
m_UserState

parent

Member functions (23) :

- AddSuccessor(UserState & State)

- AllocateNode()

- AStarSearch(int MaxNodes=1000)

- CancelSearch()

- FreeAllNodes()

- FreeNode(AStarSearch<UserState>:Node “néde)
- FreeSolutionNodes()

- FreeUnusedNodes()

- GetClosedListNext(float &f, float &g, float &h)
- GetClosedListNext()

- GetClosedListStart(float &f, float &g, float &h)
- GetClosedListStart()

- GetOpenListNext()

- GetOpenListNext(float &f, float &g, float &h)
- GetOpenListStart()

- GetOpenListStart(float &f, float &g, float &h)

- GetSolutionEnd()

- GetSolutionNext()

- GetSolutionPrev()

- GetSolutionStart()

- GetStepCount()

- SearchStep()

- SetStartAndGoalStates(UserState &Start, UserState &Goal)

- Data members (/4) :

iterDbgClosed

iterDbgOpen

m_ AllocateNodeCount

m_CancelRequest

m_ClosedList

- m_CurrentSolutionNode

m_FixedSizeAllocator

m_FreeNodeCount

m_Goal

m_OpenList

m_Start

m_State

L]

m_Steps

m_Successors
s
FixedSizeAllocator<class USER_TYPE>
- Member functions (7) :

- alloc()

- Debug()

- FixedSizeAllocator(unsigned int MaxElements=FSA_DEFAULT SIZE)

- ~FixedSizeAllocator()

- free(USER TYPE *user data)

- GetFirst()

- GetNext(USER_TYPE *node)

- Datamembers: m_MaxElements
) m_pFirstFree
m_pFirstUsed

m_pMemory

1- FSA_ELEMENT

- Data members: pNext

) pPrev
UserType

i
MapSearchNode
- Member functions (8) :

- GetCost(MapSearchNode &successor)

- GetSuccessors(AstarSearch<MapSearchNode> *astarsearch, MapSearchNode

*parent node)

- GoalDistanceEstimate(MapSearchNode &nodeGoal)

- IsGoal(MapSearchNode &nodeGoal)

- IsSameStateMap(MapSearchNode &rhs)

- MapSearchNode()

- MapSearchNode(unsigned int px, unsigned int py)

- PrintNodelnfo()

- Datamembers: x

(2) y
e

APPENDIX C :

PROJECT SCHEDULE

— GANTT CHART

