

 SIMULATION OF SHORTEST PATH USING A-STAR ALGORITHM

 NURUL HANI NORTARJA

 FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2004/2005

Univ
ers

ity
 of

 M
ala

ya

Abstract

The shortest path problem has been widely stud1ed for decades. It has been

apphed m many practical applications. For most of the cases of the shortest route

finding, the Dijkstra's algorithm is known to be an optimal search algoritlun.

'oncthclcss. the A • algorithm do have some unique propcrti1..-s which is more efficil.'Jtt in

finding the shortest path especially in human real-world problem.

In this thesis, the scope of study focuses on the effictency of the A • algoritlnn to

make the pathfinding for a shortest route from parking entrance to the empty parking

space in parking lot in fastest time and easier way. The development of A* simulation is

only one moduJ apart from the overall automated parking system. I or WXES318l, the

thes1s only cover the first part of A • development and implementatlon that includes the

algorithm flowchart, pseudocode and the calculation process of the fommla for the

shortest route (F = G + H). As for WXES3l82, the thesis cover the development of

programming code, the code tmplementatlon and testtng and the evaluation including

discussion about the problem/constramts meed in the coding program development.

This thesis also provides an explanation about the advantages. ftmctions,

charactertsttcs. the degree of complexity in A • algonthm and its implementation in real

world apphcanon. The steps to calculate a shortest path using A • algorithm is shown by

using appropriate examples and related figures. The development process for this

simulation is using programming lanbTUage of Microsoft Visual C I t 6.0 and the coding

creation depends on the algonthm flowchart and the fonnula pseudocode. Bes1des that,

Univ
ers

ity
 of

 M
ala

ya

there is an interface view for the expected simulation output whtch mainly is in MSDos

Prompt.

The A* algorithm ts considered to be more efficient than Dijkstra's algorithm

because it searchers towards a goal without constdering all nodes in a state space, but

rather more focus and directed. This means A • algorithm only calculates and consider

the next node m path that has the lowest value of G and F, plus searching the shortest

route by using heuristic estimation in Manhattan method. Definitely this bcst~ftrSt search

algorithm saves the searching time and improves performance of shortest pathfinding.

lJ

Univ
ers

ity
 of

 M
ala

ya

Acknowledgement

Utter most gratitude goes to the almighty Allah for all the confidence and patience in the

completion of part 1 and 2 of the thesis (WXES3181 & WXES3182). L wish to record

my indebtedness and appreciation to everyone who has been so helpful and supportive in

this project work and brought it to success.

I would like to express my deep gratitude to my supervisor Mr. Yamani Mohd. Idna ldris

for the tremendous help he has given me during this project, technical advice and

thoughtful comment. And also to my examiner. Dr. Phang Keat Keong for his guidance

and sharing his experience and knowledge. The valuable adVIce and motivation will be

chenshed thus to develop a personal values of mine Ill the future.

Also taking this opportunity expressing my thanks to all fellow members and ~-pecially

the family of Computer Sctence and Networkmg for thetr constructtve crittctsm and

support to face the dtfficulttes and challenging time.

Finally, last but not least, 1 am much obliged to my dear parent who have been given

invaluable support and inspiration to me throughout my university life. My gratefulness

also goes to all the unnamed others who directly or mdtrectly helped me to complete this

interesting and challenging project. With this sheet of paper, r can only say thank you

with all my heart.

lll

Univ
ers

ity
 of

 M
ala

ya

Table of Contents

Page

Abstract

Acknowledgement iii

Table of Contents iv

List of Tables x

List of Ftgures .. xi

Chapter I : Introduction

1.1 Problem In Parking System

1.2 Automated Parking System Using A • Algorithm

1.3 Problem Definition . 3

1.4 Object1ves 3

l.S Project Scope 4

1.6 Constratnts .. 5

I. 7 Targeted User 6

1.8 Project Schedule (Gantt Chart) 6

1.9 Summary 7

Chapter 2 : Literamre Review

2.1 Analysis of Common Parking Issues and Problems 8

2.2 Current Solution/Method . II

2.3 Proposed New Solution 11

2.4 An Automated Parking System .. 12

2.5 General View and Definition of A • Algorithm 13

1V

Univ
ers

ity
 of

 M
ala

ya

2.6 Features of A* Algorithm 14

2.7 Why Choose A* Algorithm? .. 18

2.8 Existing Application Using A • Algorithm . 19

2.9 Review of Pathfinding Algorithms 22

2.9.1 Graph Algorithms 22

2.9.2 Search Algonthms 27

2.9.3 Other Algorithms 28

2.10 Use of Pathfinding Algorithms 28

2.1 1 Sunu:na~y 29

Chapter 3 : Methodology

3.1 Methodology 30

3.2 Software Process Model . 30

3.3 Waterfall Model 30

3.3.1 Requirements analysts and defimt10n 31

3.3.2 System and software design 31

3.3.3 lmplementanon and umt testing 31

3.3 4 Integration and system testing 31

3.3.5 Operation and maintenance 32

3.4 Methods ofCoUecting information 33

3.5 Sun1D1ary . 35

v

Univ
ers

ity
 of

 M
ala

ya

Chapter 4 : System Analysts

4.1 System Analysts .. 36

4.2 System Requirements 36

4.2.1 Functional Requirements 36

4.2.2 Non-Functional Requirements 37

4.3 Run Time Requrrements 38

4.3.1 Hardware Requirements 38

4.3.2 Software Requirements 39

4.3.3 Progranuning Language 39

4.3.4 Mtcrosoft Foundanon Class (MFC) Library 41

4.4 ·stmunary 42

Chapter 5 : System Destgn

5.1 An Automated Parkmg System 43

5.2 · Flowchart of A* Algorithm 45

5.3 A • Algorithm Pseudocode . 46

5.4 A • Pathfindmg Algorithm 47

5:4.1 Revtsion What ls A*? 48

5.5 A* Algorithm Process 50

5.5.1 A·· Simplifying TI1c Search Area 51

5.5.2 B - Searching Shortest Path 52

5.5.3 C - Continumg Search 57

5.5.4 How It Works 58

5.6 Expected Simulation Output .. 63

5.7 Summary 65

Vl

Univ
ers

ity
 of

 M
ala

ya

Chapter 6 : System Development & Implementation

6.1 Introduction 66

6.2 Development Environment . 66

6.3 Development Tools ... 67

6.4 Program Development 67

6.4 .1 ReVlew tbe program code . 6 7

6.4.2 Design the program .. 70

6.4.3 Code the pro!:,rram .. 70

6.5 System Coding 70

6.5.1 Control Structure 70

6.5.2 Algorithm 71

6.5.3 Object Oriented Programming 72

6.6 Program Codmg Approach 72

6.6.1 Simplicity and Clarity 72

6 6.2 Use meaningful variable names 73

6.6.3 Establish effective commenting conventions 73

6.6.4 Module 73

6.7 Swulator Module 73

6.7.1 Obtaining input 73

6.7.2 Allocate node memory 74

6.7.3 Search current node and all its successor nodes 74

6.7 .4 Define A • specific parts and evaluate to make companson 74

6.7 .5 D1splay output 75

6.8 Progra•n Coding 75

6.8.1 Coding Style 75

Vll

Univ
ers

ity
 of

 M
ala

ya

6.8.2 Debug Mechanism ... 76

6.8.2.1 RWltime error .. 77

6.8.2.2 Debugger _... 77

6 9 Summary 77

Chapter 7 : System Testmg

7.1 Introduction 78

7.2 Testing Methodology 78

7 .2. 1 White~ box testing 78

7 .2.2 Black-box testing . 78

7.3 Type of Testing 79

7.3.1 Module Testing 79

7.3.2 Integration Testing ... 80

7 .3.3 System Testing 80

7.4 Example ofTesting 81

7 .5 Summary 84

Chapter 8 : System Evaluation & Conclusion

8.1 Simulator Strength 85

8.2 Systems Limitation and Constraint 85

8.3 Problem and Solution 86

8.3. 1 Lack of programming experience 86

8.3.2 Development time factor 87

8.4 fuLure Enhancement &7

8.5 Stnnma:ry 88

VUl

Univ
ers

ity
 of

 M
ala

ya

Conclusion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 °. 0 0. 00.0 0 0 0 0 ° 0 0 0 0 0 0 0 0 0 00 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ooo 89

References

Bibliography

Appendix A : lJser Manual

Appendtx B : Findpath Classes

Appendix C : Project Schedule - Gantt Chart

Appendix D Study Case

ix

Univ
ers

ity
 of

 M
ala

ya

List of Tables Page

Table 1.1 : Project Schedule 7

Table 2.1 :List of Common Parking issues 9

Table 2.2 . Examples Types of Graph Algorithms 23

Table 2.3 : Typ\::; ofSe<trch Algorithn~ , , 27

Table 2 4 : Examples Types of Other Algorithms 28

Table 3.1 : Advantages and Disadvantages of Waterfall Model . 32

Table 5.1 : Pseudocode for A* Algorithm 46

Table 6.1 : Hardware Requirement~ 66

Table 6.2 : Development Software and Tools 67

X

Univ
ers

ity
 of

 M
ala

ya

List of Figures Page

Figure 2.1 (a) : GraphFonner by · nc Marchesm 19

Figure 2.2 (b) : GraphFonner by 1c !\.1arche m 20

Figure 2.3 . The first three steps of a pathfinding state space . 21

Figure 2.4 : 8-Puz.zle state space showing f,g,h scores 22

Fib'ure 3 1 · Waterfall model 33

Figure 5.1 : How an automated parking system functionaJ . 43

Figure 5.2 : Flowchart of A • pathfinding algorithm 45

Figure 5.3 · Horizontal or Vertical square moved

(Orthogonal/Non-diagonal) and Diagonal square moved 47

Figure 5.4: Simplifying the search area 51

Figure 5.5 : Square grid of simple 2-dimensional array

(column-x * row-y) 52

Figure 5.6 : All adjacent squares added to open list (green) 53

Figure 5.7 : Formula F - G + H 54

Figure 5.8 : Calculating G 55

Figure 5.9 : Calculating H in easier way 56

Figure 5.10 :Calculating F 57

Figure 5.11 : Check other 4 squares already in open list . 59

Figure 5.12 : None of paths improved by going through

cu1Tcnt square-- don ' t change anything .. . 60

Figure 5. 13 : Choose the one just bottom-right of starting square . 61

Xl

Univ
ers

ity
 of

 M
ala

ya

Figure 5.14 : Other 3 squares, two-- on closed list

(staning square & one just above current square,

both highlighted in blue ~ IGNORE 62

Figure 5.15 · Last square. to immed1ate left of current square

ch(X;ked. to see if G score lower, if go through current

square to get there 63

Figure 5.16 : Expected output of A • pathfinding

simulation - \1S Dos prompt 64

Figure 5.17 : Example of graph output 64

Figure 5.18: Expected output- MFC interface 65

Figure 6.1 : Program development process 67

Figure 6.3 : Parking map as resource from coding program . 69

Figure 7 .1 : Example output that applied using Manhattan method 81

Figure 7.2 : Parking map (20*20 1 • • • . 82

Figure 7.3 : Example output that applied not using Manhattan method 84

xii

Univ
ers

ity
 of

 M
ala

ya

CHAPTER!:

INTRODUCTION

Univ
ers

ity
 of

 M
ala

ya

Chapter l : Introduction

1.1 Problem In Parkin~ System

MalaySian Automobile Association (MAA) expected motor vehicles sales to rise

by 5% to 425.000 units in 2004 after having fallen 6.9% to 405,010 units last year Sales

of passenger cars are expected to improve by 4.4% to 334,000, commercial vehicles by

8% to 55,000 and 4WDs by 4.8% to 36,000 The consequences of more vehicles not

only impact congestion on the road, but also blow the accessibility of parking spaces in

one building mamly s11opping complexes. Tile limited parking spaces generate a number

of difficulties not only to the management (to provide adequate parking space) also the

conswner (to search for an open parking space which would lead to a frustrating

atmosphere).

Because of the limited resources, most of the management did not undergo for

more p<trking spaces since the average time the consumer Spt.."Tld to shop is ~bout 2-3

hours. However, the management still seeks to find suitable approach to attrdct their

consumer by providing them "'i.th the best service they could. Therefore, an automated

parking system is proposed which will guide a vehicle owner to maneuver their means of

transportation without the needs to rigorously locating the vacant space.

1.2 Automared Parking System Using A • Algorithm

The automated parking system will take similar means to jockey system where

the vehicle will be maneuvered automatically to the space indicated by the database.

This will provide most convenient way of parking and will avoid the hassle of finding

unoccupted space which sometimes consume more tune than the shopping itself. The

other benefit of such approach is that the users do not need to remember where they have

parked their vehicle because the system will allow the vehicle to maneuver back to the

Univ
ers

ity
 of

 M
ala

ya

original point. Although this approach suggests an inviting way, the system must be

fully controlled.

An unfilled parking space must be detected before a vehicle is able to park. One

approach ts to implement sensors in each space. where the sensors will detect any object

which filling the area. The second approach is by using image processing technique or

to be exact image recognitton technique that has been implemented in various

applications. Each parking space has their own identity which is differentiate by their

unique numbers. Therefore. the system \\ill use the approach of charact~-r recognition to

identify which parking space is free after the empty space detection has been done.

Following the recognition process, the database will be updated to mform the vehicle

where to park. l11e database will be prioritized according to the nearest shopping

entrance where most consumers intend to park and also allows the system to

predetennine the shortest route available to accelerate the process.

One of the problems in this type of navigation is to find the shortest route from

the parking entrance to the empty space or goal. A • (A-Star) is a game programming

algorithm that can be implemented to solve this difficulty because its fairly flexible and

can be used in a wide range of contents. This algorithm utilize the path scoring equation

F(n) = G(n) + H(n)

where,

G - the movement cost from starting point to given square on the grid, following the

path generated to get there.

H = the heuristic or estimated movement cost from given square to final destination.

2

Univ
ers

ity
 of

 M
ala

ya

Although A* can be designed using arbitrary graph, but this thesis will

concentrate on designmg using square grid so it IS more easter to compute the direction

and the distance from starting to the end point.

1.3 Problem Defmition

Through the analysis process of the project. 1 discovered few problems that

should be overcomed whtch are :

• Limited references.

• Limited given time to finish the first part of the project, which is to analysis

and design the proJect

• The difficulties of implementing the theoretical of A* algorithm and

approaches into real :,)'stem because of its complicated coding.

• Inadmissible heuristics occur when ovcrestJmate the remaining distance

between the current square and tbe target destination wh1ch resulted

maccurate shortest path.

1.4 Objectives

, To build a simulator whtch capable of finding shortest path and distance

within weigllted state space when the starting and destination point, plus the

obstacles already known or given in more ea~icr manner and faster pace.

, To develop a simulator using A-Star algorithm whereby later can be used

by system developer; to be integrated and combine with other modules to

complete the design of overall automated parking system.

3

Univ
ers

ity
 of

 M
ala

ya

r To help solving parking problems including the accessibility, congested and

limited of parking system which becoming progressively more complicated

in coming years.

)- A simulator that can case vehide ownership ui fficultics arul economically

saving time by providing help guide in finding empty parking space. This

simulator will outline each steps or path needed to be taken to reach

destination in shortest wa)' or fustest time.

}or Upgraded lbe qualily of curreut park.Wg system lo ~ more systematic and

convenient. Lack of accessible parking can hurt local business and decrease

the quality of life for residents.

1 .5 Project Scope

The project scope determines part of the project process, which will overcome the

burden of the overall simulator development. The following detennined to what exte11d

simulator of A • pathfinding algorithm would be developed ·

•:• The simulator was developed to find shortest path in parking system from

the starting point of node (parking entrance) to the target point of node

(empty parking space/destination).

•:• TI1ere will be a constraint/obstacle along the path which are .

• Impossible . No route can pass through this cell (might be a wall).

•!• Each state of node involve in this pathfinding will be represented by unique

metri~.:/va.lue and ~.:olor :

• Slart Poiul (parking entr.mce) - green

• End Point (empty parking space/destination) red

4

Univ
ers

ity
 of

 M
ala

ya

• Route (result) - yellow or red oval shape

• Impossible blue

1.6 Constraints

There are some limitattons/constraints may occur concerning the simulator to be

developed which are as stated below:

• Tile simulator was developed purposely by providing a template or

predefined maps. This template provide different kinds of mapping that

generate its own value/metric for starting and destinatton pomt, plus the

obstacles. Stmulator need to be program to generate a value (f - G +H) in

empty square grid when conducting pathfinding to find shortest path from

starting point to destination point.

• A lot of time consuming to develop a program/coding that fully function by

constdenng obstacles like Impossible state (wall) when searchmg the

shortest path between two nodes. This program must be manageable and

nexible to be modifY or enhance the obstacles requirements: such as to

Tough state (sandbank) or Very Tough state (vehicle blocking).

• Each square grid in simulator must at least contams pixel~size of 20x20

which develop total up to ptxel-size of200x200 for whole state space. It's

important to ensure that the simulation can be display in clearly and

appropriate manner.

• Until now, so far there aren't any applications that could find shortest path

from parking entrance to the empty parking space which using A •

pathfinding algorithm, applied in real-time parking system. Because of

that, it's very hard to get a suitable references for this thesis projC(.i.

5

Univ
ers

ity
 of

 M
ala

ya

1.7 Targeted User

The A • pathfinding simulator will be implement and develop in an automated

parking system. Due to that, this simulation is targeted for tv~o types of user;

management of shopping centre or commercialize building/area and consume.."£ that

fre.}uently come for shopping and parked their vehicle in the provtded shopping complex

parking lot. For the time being, this simulator will be implement as a prototype tbr

simulating purposes only.

Titis simulator is not appropriate for government or private sector usc because

usually their parking lot readily provided for every staff depending on their post ranking.

Tlus project basically to proof A • algorithm as the best pathfinding algorithm best des

Dijkstra's and other pathfinding algorithms; to find shortest path from parking entrance

(starting point) to empty parking space (destination/end point) in parking syslc..'111, in more

easter and faster manner.

1.8 Project Schedule (Gantt Cbart)

The Gantt Chart represents the project planning phases that will be implemented

to develop A• pathfindmg simulator. This project schedule ts followed to develop the

simulator by fulfilling the objectives that has been proposed in this thests. "I able 1.1

shown the draft of Gantt Chart. The complete project schedule is shown in Appendix A.

6

Univ
ers

ity
 of

 M
ala

ya

Tabie i.i : Projecr Schetiuie

1.9 Suullmu y

This chapter briefly outline about the oid probiems faced by users that occurred

Ill CUll Clll pc·ll kiug ~)':O.L\.:111 C!o>(>C\:iaily ill ivl<thsy~iu alii.} :>lJuw~ huw UlllUIIIUll."ti IJUI ki11g

sysu~m by using A* pathfinding aiguriihm c;m tackie 1.he probiems. To en, the chapi~

continues by liSt om the probiem definition and constraints which wiii be faced during

me project implementation. Not forgetting to, ali the project objectives and scope that it

wiil be \:UVCI. n.c \:llupic• CIIUS hy cuuduue ihc expcdoo ll~t:•~ Ull lllc p1Ujcci alll.l

projecl schaiuie which wiii be impiememed to deveiop the simuiamr of A~ pailifinuing

algorithm.

7

Univ
ers

ity
 of

 M
ala

ya

CHAPTER2:

LITERATURE REVIEW

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 : Literature Review

2.1 Analysis of Common Parking Issues and Problems

With the high percentage of vehicle ownership in Malaysia, plus the increasmg of

vehjcle sales production through each year, parking has become a conflicting and

confusing situation tbr lots of people. Major consequences are traffic congestion and

limited accessibility parking spaces. Whether at an airport, bus stations, hecttc traffic

and compact local residents area or shopping centers (mainly), problems with parking are

an everyday occurrence.

"Therefore, if not fighting over traffic jams or risking lives over reckless drivers

on the road, user get additional wrinkles from the stress of having to find a parking spot

in the city or commercialize area especially shopping complex. Unless they are driving a

Kancil (which incidentally is the country's smallest car), they might have a headache

while wastmg time in finding parking space for their car. In average, user spend nearly

half an hour just to find an empty parking spaces to park their vehicle in parking lot.

Lack of this accessible parking can hurt local business and decrease the quality of life for

residents.

Apart from having trouble finding car park space, user also have to learn the

many parking payment systems that Malaysians love to introduce. In Kuala Lumpur or

Klang Valley, it is the meter system where they have to feed 50 cents, 20 cents or 10 cent

coins into the parking meter to the time that they require. Failing to do so will result

either the car will be towed or for most of the time, a swnmon will do the trick. A

strcmge phenomenon, that some places can be Free Of Charge, like in lpoh whilst some

charges up to RM7.50 (at a minimum) for a period of3 hours in Kuala Lumpur, such as

shopping complex like Suria KLCC. Sungei Wang, BB Plaza, or Low Yat Plaza.

8

Univ
ers

ity
 of

 M
ala

ya

The following list identifies the kinds of problems that typically occur in a

community regarding parking issues :

Table 2.1 : List uf Common Parking Issues

• Inadequate infi,mation for motorists on parking availability and price.

Motorists arc 1 ikely to be frustrated if they expected abundant and free parking

but find limited or expensive parking. or if they must spend excessive time

searching for a parkmg space.

• lnefjiciellt use of existing parking capacity. Local zoning ordinances, building

codes, and other development pracnces can result in an oversupply of parking

spaces and an meffictent use of existing parking.

• Excessive automobile use. Automobile dependency imposes many costs on

society. t scr costs include reduced travel choices, increased vehicle and

residential parking costs. and increased accident risk. External costs include

mcreased road and parking fac1hty costs. congestion, uncompensated accident

damages, envuonmental degradation, negative land use unpacts, and reduced

mobility for non-drivers.

• Economic, environmental and aesthetic impact.~t of parking jacilitie.~.

Businesses ultimately bear the costs ofunpriced parking, directly or through taxes

that they must pass on to customers. Generous parking requirements can

constram business in other ways.

• Parking spm·es th11t are an im·unve.nience to nearby residents and businesses.

9

Univ
ers

ity
 of

 M
ala

ya

Businesses may experience difficulty in retaining customers and residences may

have a problem finding parking close to their homes.

• Demand for ltandicapped parking spaces. l11ese spaces are generally located, in

both garages and surface lots, as close to access rrunps and curb cuts as possible.

• Impact ()f additional parking spaces on area traffic and local residents .
.

• Existing, severe, spillover problems. When all of the parking demand generated

by a certain usc (or group of uses) is not being accommodated on the site of those

uses or within the adjacent on-street spaces.

• Out~if-town parking. l11c majorit) of vehicles parked in a residential area arc

from outside of the neighbourhood.

• Loading and unloading zones. Scarce parking for commercial vehicles io load

or unload will cause them to block travel lanes.

• Inconvenient parking option.~·. Parking within a reasonable walking distance (3

blocks) is hard to find during specific times of the day.

• Inadequate pricing methods. Many require motorists to prepay based on the

maximum amOlmt of time that they may be parked and the price structure used at

a particular parking space. As a result, motorists often end up paying for time

they don't actually use, and if they guess wrong they face a fine.

• Confusing parking policies. Regulations and fees may apply at certain times but

not others. Parkmg substdtes may be provided to some users but not others.

10

Univ
ers

ity
 of

 M
ala

ya

• DiffiCulties with parking regulation atul pricing. This problem can cause

problems. including traffic congestion as motorist cruise for parking or stop in a

traffic lane to wait for a space, and parking congestion in nearby areas.

• !Jack of sufjlcie11t parking at event !l'iJe. Special events can potentially disrupt

traffic flow and require crowd management. Each event can generate its own

unique transportatiOn issues.

• Low parking turnover rate. This can occur when cars are parked in the same

space for at least 4 hours (on average).

2.2 Current Solution/Method

At certain schedule of timing. guard or parking caretaker help monitoring the

parking traffic flow and help the user to find empty parking space to park their vehicle.

So far, some of the current approach implemented in parking system are parking

payment system based either on meter system or hour system and the use of modem

technologies such as automatic ticket dispensers and gate openers. Both methods

mentioned just now didn' t involved either guard or parking caretaker guidance whereby

chances for user to get empty parking space depends on tuck, whether it is peek or free

hour. special occas1on events elther on holidays, working day or national festivals.

2.3 Proposed New Solution

To tackle the problem of user from wasting time m searchmg for an empty

parking space in parking lot is by developmg a simulator that can make pathfinding in a

shortest route and fastest timing. starting from the parking entrance (starting point) to t11e

11

Univ
ers

ity
 of

 M
ala

ya

empty parking space (destination point). This simulation will be develop using A*

pathfindmg algonthm. l11e A* algorithm will calculate possible shortest distance

between user and empty parkiug space that located nearby to the main entrance of

shopping complex or commercialize building. The pathfinding simulator using A •

algorithm is only one module part of overall automated parking system.

The simulator will be m a form of square grid of simple 2-dimensional array

(column-x • row-y). Pixel (node) in square grid will represent the distance in real-world.

Array will be used to represent node in square grid. By using the array method, size will

be equally. The wide of stale space for this algorithm will be based on the total size of

parking lot. For example, if parking lot has total space of 200x200 meters, so the state

space for simulation will be represent of pixels size 200x200.

Basically the constraints for this simulation are the possibility of inadmissible

heuristic and considering of obstacle along the path, like a wall (impossible state). Other

obstacles like side-walk wall, vehtcle blocking or entrance door in a real-world will also

be considered as a limitation to the movement of A* simulation. l11e simulator will

provide a template or pn .• -dcfincd maps that readily generate valuc/mcnic for starting and

destination point plus with the obstacles. The main simulation task is to search for the

best shortest path between that two points.

2.4 An Automated Parking System

An automated parking system can automatically inform and show user

whtch is the shortest path/way to find empty parking space m a fastest timing. Vehicle

Will be maneuvered automatlcally to the space indicated by the database. The benefits

that can gain from this amomatcd parking system arc

, The ability to provide the most convenient way of parking.

12

Univ
ers

ity
 of

 M
ala

ya

,. Be able to avoid the hassle of finding unoccupied space which is

somenmes consume more time than the shopping itself.

, Users do not need to remember where they have parked their vehicle

because the automated system will allow the vehicle to maneuver back to

the original point.

2.5 Genensl View and Definition of A"' Algorithm

The A* algorithm was originally proposed by Peter F.. Hart, Nils J Nilsson and

Bertram Raphael in 1968 in a paper titled "A Fonnal Basis for the Heuristic

Determination of Minimum Cost Paths". ln that paper, tt first mtroduced the concept of

admissibility by using 3 possible cases~ tennination at a non-goal node, no termination

and termination at a goal node without achieving minimum cost. ll1c optimality of A*

algonthm was also mentioned as when A • opertS a node. then the optimal path to that

node has already been found. ln the year of 1972, it is futher explained tbr some

technical proofs.

The A • algorithm works much like the Dijkstra and best-first algorithms, only it

values nodes in a different way. Each node's value is the sum of the actual cost to that

node from the start and the heuristic estimate of the remaining cost from the node to the

goal. Tn this way it combines the tracking of previous length from Dijkstra's algorithm

with the heuristic ~'timate of the remaining path from the best-first search. The A*

algonthm is guaranteed to find the shortest path as long as the heuristic estimate ts

admtssible (an admissible heuristic is one that never overestimates). If the heuristic is

inadamssible then the A* algorithms won't lind the shortest path (or a path at all), but it

will find a path faster and using less memory. While the heuristic must never

overestimate, the closer it is to being correct the more effictent the A • algonthm wlll be~

13

Univ
ers

ity
 of

 M
ala

ya

in fact, the Djikstra search is an A* search, where the heuristic is always 0. This

algonthm also makes the most efficient use of the heuristic function. meaning that no

other algorithm using the same heuristic will expand fewer nodes and ftnd an optimal

path, not counting tie-breaking among nodes of equal cost

One of the problems of the A • algorithm, as well as many other pathfinding

algorithms, is that they take up a large amount of memory by storing all previous nodes

or all previously take paths. There are some variations of the A • algorithm that are made

to use less memory, these include the iterative deepening A* (IDA*) search and the

simplified memory A* (SMA*) search. Some common heuristics for the A* algorithm

are Manhattan distance (difference x plus difference y), Euclidean distance (the straight

line distance), and the larger of the difference in x coordinates and the difT'-"fCncc in y

coordinates. Other variations on the A • algorithm may be accomplished by changing the

ratio in which the heuristic is mixed with the distance so far, standard A • has tlus as a

50:50 ratio.

2.6 Features of A • Algorithm

The A • pathfinding algorithm is the mainly used and standard patl1finding

al gorithrn m computer games. 1t is known and used for a long time (1968) and has

proven to be very reliable and fast. The A. algorithm needs a map of locations or cells

where each cell has is connected to some neighboring cells. Tile cost from moving from

one cell to one of the neighboring cells is the movement cost for this cell. Again. this

netghboring relation is easily fulfilled on square, rectangular or hexagonal grid. But this

14

Univ
ers

ity
 of

 M
ala

ya

pathfinding simulation to search for shortest route will used the square grid as the

simulator state space representations.

As it is from the family of best-first search (BFS) strategy , the A• algorithm is

recognized by two spectal features which record its problem-solving path :

I- The first feature is the .tthopping lim: The pathfinding search on the square grid is

performed by maintaining two separate lists of cell locations.

(a) The first list is called the open list and it contains all cells whtch should be

investigated during the search. It is a state where the ltst has been generated and

have had the heuristic function applied to them but which has not yet been futhcr

examined for tts successors. At the beginning of the search this list holds only one

item, the start location. However, during the search all locations whtch should be

examined are added here.

(b) The second list is the closed list It is a state where it has been futher examined.

Thts hst holds all cells which were exammed during the search. 'I hey are

moved from the open to the closed hst once the location 1s processed.

This concept lets the algorithm search a state space efficiently without

considering an exammed state (or node) twtce or even repeatedly. It therefore minimtze

the complextty1 of the A • algorithm, especially in time and space constraints.

1 The complextty of an algorithm is a mathematic measurement of the efficiency of an algonthm

15

Univ
ers

ity
 of

 M
ala

ya

During the search the algorithm examines one entry of the open list after the next

(shopping list), detennines the movement costs to this location and finally moves the

entry from the open to the closed list During this examjnation new cells, that is all

neighbors of the currently examined cen are added to the open list, so that the search can

continue in the next loop. This procedure is repeated as long as there are still items in the

open list.

Each entry/node of the both lists should at least hold the following properties :

• The cost G for the cWTent cell.

• The cost H for the current ceJL

• The cell or actual location on the map (for example. x and y coordinates, or

pointer to the cell).

• A link to the parent, for example the previously vistted node. Thts ts used

to connect the path once you have find it Follow the links from one node

to the next will be your path.

This can for example be represented by the following class defimtion :

class ANode

} ;

public:

ANode *parent~

int location;

int cost_G~

int cost_II;

16

Univ
ers

ity
 of

 M
ala

ya

1- The second feature is the cost fimction.

Unlike the breath-first search (BFS) and depth-first search (DFS) strategy, A*

algorithm uses heuristic fimction to guide its direction of searching. It is more infonned2

that BFS and DFS; and it is guaranteed to fmmd a least costly path from an initial node

to the desired goal node With. a minimum branching manner. The overall movement cost

(F(n) = G(n) + H(n)) of the currently analysed cell is detennined by two function

called G and H. The mathematical notations are described below :

• G (n) =the movement cost to move from the startmgpoint A to a given square on

the grid, following the path generated to get there.

1- I lorizontal or Vertical square moved (Orthogonal/Non-diagonal)= cost I 0

2- Diagonal moved= cost 14.

• H (n) - the estimated movement cost to move from that given square on the grid

to the final destination. This is often referred to as the heuristic, which can be a

bit confusing. lt of course sounds hard or impossible to estimate the cost from a

given location to the target location without knowing the path. The reason why it

is called that is because it is a guess and it need not be correct .

2 An infonned search strategy uses problem specific knowledge to gUide tls node expanston in a

state space.

17

Univ
ers

ity
 of

 M
ala

ya

• We really don't know the actual distance until we find the path, because all sorts

of things can be in the way (walls, sandbank, water, etc.). A valld assumption for

the cost is for example to take a straight line from the current location to the

target with movement cost for normal terrain (e.g. cost= 1), so that cost is related

to the geometrical distance between the two locations.

2.7 Why Choose A"' AJ~oritbm?

• Although this A* algorithm implementation will not 100% achieve the

optimal solution means shmtest possible path, still the pathfinding process

can be done in more faster and convenient way compare to the other

pathfinding algorithms.

• When combining the efficiency of heuristic together with the cost

estimation from the current location, the performance of finding sh01test

path to destination could be improved.

• A* algorithm is easy to be tmplement in a real-world system such as

computer games, road mapping or network routing.

• No computation is wasted since A* algorithm only evaluate and consider

next nodes that has lowest G and F as possible path to the destination.

• When calculating the heuristic estimation (I I) by using Euclidean distance

means distance "as birds fly", H can be computed very easily using a

standard vector math. As a result the calculation match with the length of

path, but never over-estimate it.

18

Univ
ers

ity
 of

 M
ala

ya

2.8 Existing Application Using A* Algorithm

> Understand graphs and A • path-finding 11/gorllhm with C# By Erk

Marchesln.

o a.:liJ ?

Figure 2.1 (a) : GraphFormer by Eric Marchesln

The Graph class gathers a set of methods to manage its data, such as :

• Add/Suppress a node/arc

• Get the nearest/farthest node/arc from a point

• Activate/Inactivate the entire graph

• Empty the graph

The graphical interface aims at bringing the component into play so as to reflect,

fairly and simply, what it can do. The application lets you draw, move, erase or

inactivate several nodes and arcs. When your graph is complete you just have to click on

the 'A •· icon and select the starting and ending nodes with the respective left and right

19

Univ
ers

ity
 of

 M
ala

ya

mouse buttons. Then you will automatically see the best way. If you modify the graph,

this path will be updated. If you want to visualize the algorithm's logic, then select the

'Step by Step' mode in the sub-menu of the 'A*' icon. The idea is to give the user a clear

view of what happens.

2

•

Figure 2.2 (b) : GraphFormer by Eric Marchesln

~ PathFinder2D by lntrafoundation Software. PathFindei'2D is an open-source

experiment in various 20 shortest-path path-finding algorithms and techniques.

This software was written in C++ using MSVC++ 6 Professional SP5 + MS

Platform SDK. Algorithms involved: A*, Dijkstra, Breadth-First, Best-First and

Depth-First. URL address : tlllp ://www.imratoundation.com/pathJiuder2d.asp

20

Univ
ers

ity
 of

 M
ala

ya

)> Sliding tile puule (the 8-puuJe)- using A* algorithm.

Figure 2.3 : The flnt three steps of a JHithflnding state space

There are 362,880 different states that the puzzle can be in, and to find a solution

the search has to find a route through them. From most positions of the search the

number of edges (that's the blue lines) is two. That means that the number of nodes you

have in each level of the search is 2"<1 where d is the depth. If the nwnber of steps to

solve a particular state is 18, then that's 262,144 nodes just at that level. The 8 puzzle

game state is as simple as representing a list of the 9 squares and what's in them. Here are

two states for example; the last one is the GOAL state, at which point we've found the

solution. The first is a jumbled up example that you may start from.

Start state SPACE, A, C, H, B, D, G, F, E

Goal state A, B, C, H, SPACE. 0, G, F, E

The rules that you can apply to the puzzle are also simple. If there is a blank tile

above, below, to the left or to the right of a given tile, then you can move that tile into the

21

Univ
ers

ity
 of

 M
ala

ya

space. To solve the puzzle you need to find the path from the start state, through the

graph down to the goal state.

f.g.h scores : 17.0.17

11.1.10 A 19.1 .18

A
2.2.0 19.2,17

Figure 1.4: 8-Puule state space sh.owingf,g,h scores

2.9 Review of Pathfinding Algorithms

Path planning is the art of deciding which route to take, based on and expressed

in terms of the current internal representation of the terrain. Path finding is the

execution of this theoretical route, by translating the plan from the internal representation

in terms of physical movement in the environment.

2.9.1 Graph Algorithms

Graph theory is the branch of mathematics that examines the properties of graphs.

A graph with 6 vertices and 7 edges. Informally, a graph is a set of objects called

vertices (or nodes) connected by links called edges (or arcs). Typically, a graph is

depicted as a set of dots (i.e., vertices) connected by lines (i.e., edges).

22

Univ
ers

ity
 of

 M
ala

ya

Table 2.2: Examples Types of Graph Algorithms

•) BeUman-Ford algoritltm

- computes single-source shortest paths in a weighted graph (where some of the

edge weights may be negative). Dijkstra's algorithm accomplishes the same
I

problem with a lower running time, but requires edges to be non-negative. 1

Thus, Bellman-Ford is usually used only when there are negative edge weights. I
Bellman Ford runs in O(VE) time, where V and E are the number of vertices

and edges.

- In graph theory, the single source shortest path problem is the following : Given

a weighted graph, (that is a set N of nodes, a set E of edges and a real-valued

function f : E -> R), and given further two elements n, n' of N, find a path P

from n ton', so that is minimal among all paths connecting n lo n'. The all-pairs ,

shortest path problem is a similar problem where we have to find such paths for

every two different vertices n to n'.

•:• Dijkstra 's algoritllm

- named after its inventor, the Dutch computer scientist Edsger Dijkstra, solves the

shortest path problem for a directed graph with non-negative edge weights. For

example, if the vertices of the graph represent cities and edge weights represent

driving distances between pairs of cities connected by a direct road, Dijkstra's I
algorithm can be used to find the shortest route between two cities.

-
(• F/oyd-Warl·lw/1 algorithm

- In computer science, this is an algorithm to solve lhc All pairs shortest path

23

Univ
ers

ity
 of

 M
ala

ya

problem in a weighted, directed graph by multiplying an adjacency matrix

representation of the !,>Taph multiple times. The edges may have negative

weights, but no negative weight cycles. The time complexity is ®(IV I3). The

algorithm is based on the tbUowing observation : Assuming the vertices of a

directed graph G are V , consider a subset. For any pair of vertices G arc V

{1.2.3.4, ,n}. consider a subset {L.2.3 ,k}. For any pair of vertices IJ in V.

consider all paths from i to J whose intermediate vertices are all drawn from

{ l.2, ... ,k}, and p is a minimum weight path from among them. The algorithm

exploits a relationship between path p and shortest paths fi·om 1 to j with all

intermediate vertices in the set { l ,2,k-l}. The relationship depends on

whether or not k ts an intermediate vertex of path p.

0:• Kru~·kltl'~· lt/gorithm

- is an algorithm in graph theory that finds a minimum spanning tree for a

cotmected wejgbted graph. This means it finds a subset of the edges that furms

a tree tltat includes every vertex. where the total weight of all the edges in the

tree is minimized. lf the graph is not connected, then it finds a minimum

spanning forest (a minimum spanning tree for each connected component).

Kruskal's algoritlun is an example of a greedy algorithm.

-A minimum spanning tree is a tree formed from a subset of the edges in a given

undirected graph., with two properties :

o It spans the graph- it includes every verte-x in the graph.

o It is a minimum - the total weight of all the edges is as low as possible.

-

24

Univ
ers

ity
 of

 M
ala

ya

-
fn graphical fonn : where w(T) is the minimwn total weight and (u,v) is an edge

between vertices u and v.

~· Prim's algorithm

- 1s an algorithm in grapb theory that finds a minimum spanning tree for a

connected weighted graph. This means it finds a subset of tbe edges that tbnns

a tree that includes every vertex, where the total weight of all the edges in the

tree is minimized. If tbe graph is not connected, then it will only find a

minimum spanning tree for one of the connected components. The algorithm

was discovered in 1930 by mathematician Vojtech Jamik and later

independently by computer scientist Robert Prim in 1957 and rediscovered by

Dijskt:m in 1959. Th<..-rcforc it is sometimes called DJP algorithm or Jamik

algorithm.

•!• Bordvka 's algorithm

- IS an algorithm for finding minimum spanning trees. It was first published in

1926 by Otakar Bonivka as a method of efficiently electrifying Bohemia.

Boruvka's algorithm, m pseudocode, given a graph • is :

o Copy the vertices of into a new graph .. with no edges.

o While is not connected (e.g., ts a forest of more than one tree) :

o For each subtree in , find tbe smallest edge in connecting a vertex in to

one outside it

o Add that edge to , reducing the number of trees in by one.

25

Univ
ers

ity
 of

 M
ala

ya

•!• Ford-Fullrerson algorithm

- (named for L. R. Ford and D. R. Fulkerson) computes the maximum flow in a

flow network.

~ It works by finding a flow augmenting path in the graph. By adding the flow

augmenting path to the flow already established in the graph. the maximum flow

will be reached when no more flow augmentmg paths can be found in the graph.

However, there is no certainty that this computes the maximum now in a graph.

The max flow min cut theorem is a statement in optimization theory about

optimal ftows in networks.

-Suppose G is a finite directed graph and every edge e has a capacity w(e), a non

negative real number. Further assume two vertices s and t have been

distinguished. Think of G as a network of pipes; we want to pump as much

stuff as possible from the source s to the sink t. never exceeding any edge's

capac1ty.

•:+ Edmonds-Karp algorithm

- In computer science, m the field of graph theory, this algorithm is an

implementation of the Ford-Fulkerson algorithm. The important additional

feature IS that the shortest augmenting path is used at each step, which

guarantees that the computation will terminate. In most implementations, the

shortest augmenting path is fOLmd using breadth-fll"St search.

- The Edmonds-Karp algorithm runs in 0(VE2) time, where V and E ts the

number of vertices and edges in a graph.

26

Univ
ers

ity
 of

 M
ala

ya

2.9.2 Search Algorithms

Iu computer science, a search algorithm, broadly speaking, is an algorithm that

takes a problem as input and returns a solution to the problem. Most of the algorithms

studied by computer scientists that solve problems are kinds of search algorithms. The

set of all possible solutions to a problem is called the search space. Brute-force search or

"naive"/uninfonned search algorithms use the simplest, most intuitive method of

searching through the search space, whereas informed search algorithms use heuristics to

apply knowledge about the structure of the search space to try to reduce the amotmt of

time spent searching.

Table 1.3 : Types of Sean·h Algoritllm.o;

[II
-

Types Function I Operation _j
I Linear searcll 11 · Finds an item in an unsorted list. --~

I Binary ,,et~rc/1
11 ·

Locates an item in a sorted list.

I
[Breadth first .wurch I . Traverses a tree level by level. I

- J I Depth fust search

I
• Traverses a tree branch by branch .

I Best:ftrst searc/1 I. Traverses a tree m the order of likely

importance using a priority queue.

I A • tree search

11 ·
Special case of best-first search.

I
Predictive search • Binary like search which factors in

magnitude of search term versus the

high and low values in the searcb.

Sometimes called a dictionary search.

-- -· ------- -

27

Univ
ers

ity
 of

 M
ala

ya

2.9.3 Other Algorithms

Tuh/e 2.4: Examples Types of Other Algorithms

'fype

Hill c:limbing

Genetic lllgoritlmt

2.10 Use of Pathfinding Algorithms

Function I Operation

• A graph search algorithm where the

current path js extended with a

successor node which is closer to the

solulion than the end of the currcnl

path

• An algorithm used to find

approximate solutions to dtfficult-to

solvc problems rhrough application

of the principles of evolutionary

biology to computer science.

Pathfinding algorithms have many uses. These algorithms are useful in the field

of robotic.~. because they can be used to guide a robot arow1d difficult terrain without

constant human intervention. This would be useful if the robot were on another planet

like Mars. where some terrain must be avoided.. but due to the extreme distances

involved, controlllng it completely via remote control would be impossible (too much

delay in the radio transmission). It could also be useful if the robot were to operate

undcrv.atl.'f, where radio waves could not get to it.

28

Univ
ers

ity
 of

 M
ala

ya

Pathfinding algorithms could also be used in almost any case where a vehicle

needs to go somewhere, while avoiding obstacles, Wlthout human mterventton. Another

use is in computer game.t; where something needs to be moved from one place to another

avoiding any \\alls 01 othl.'T obstacles in the way. These algorithms could also be used to

find the shortest way to drive between two points on a map, the best way to route e-mail

tllrollf.(lt a comp11ter network, or the slwrtest way to r1111 telephone wires througlt

exi~'ting conduits. Some of the algorithms mentiotled earher would be better for this than

others due to the fact that each one has very diiTerent characteristics and is good at

different things.

2.11 Summary

TIUs chapter basically describe the literature review more detail on problems and

tssues of parking. about the A • algorithm features, how the formula works and the

algorithm implementation in applications; and also the backgrOlrnd of some pathfmding

algorithms.

29

Univ
ers

ity
 of

 M
ala

ya

CHAPTER3:

METHODOLOGY

Univ
ers

ity
 of

 M
ala

ya

Chapter J : Methodology

3.1 Methodology

System development methodology is a collection of techruques tor building

model-applied across the simulator hfecycle. A model is process of simulator

dcvdopmcnt which used for now: and later by software engineers or system developers

to describe their approach in producing an automated parking system.

A software hfe cycle model depicts the sigmficant phase of a simulator

development from conceptions until the prototype (expected output) is completed. It

specifics the relationship between project phases including transition critl.•ria. feedback

mechanism. milestones. baselines, revtews and deliverables. Typically a lifecycle model

address the following phases of a simulator project; requirement phase, design phase,

implementation, integration, testing, operation and maintenance.

3.2 Software Process Modd

Software process is used to help software developer later to manage the simulator

development, to identify what phases are present, to define the order of phases. to

idcnlify what happens in each phase and also to identify deliverable of each phase. lllus,

implementation of software process in simulator development will help in producing a

good stmulator product.

3.3 Waterfall Model

Waterfall model was the first published model of the software development

process, was derived from other engineering processes (Royce, 1970). It takes the

fundamental process activities of specification, development. validation and evolution

and represents tllcm as separate process phases and because of the cascade from one

30

Univ
ers

ity
 of

 M
ala

ya

phase to another. this model is known as the ''Waterfall model". It reflects engineering

pracuce and therefore it is used widely for software development. Below are the

descriptions for each phase :

3.3.1 Requirements analysis and definition

The s1mulator' s seTVIces (functions), constraints and goals are established by

consultation Vtith simulator users. They are then defined in detail and serve ac; a project

specification.

3.3.2 System and software design

l11e simulator de~igo process partitions the requirements to either hardware or

software component ll establishes overall project architecture. Software design

involves identifying and describing the fundamental simulator abstractions and their

relationsh1ps.

3.3.3 Implementation and unit testing

During this stage. the simulator (software) design is realized as a set of programs

or program units. Unit testing involves verifYing that each unit meets its specification.

3.3.4 Integration and system testing

The individual program units or prugr-cUDs are integrated and tested as a complete

project to ensure that the simulator requirements have been meets. After testing, the

simulator prototype is delivered to system developer or system engineer to be integrated

with other modules to complete the overall automated parking system.

31

Univ
ers

ity
 of

 M
ala

ya

3.3.5 Operation and maintenance

Normally (although not necessarily), this is the longest life cycle phase. The

simulator is installed and put mto practical use. Maintenance involves correcting errors

which were not discovered in earlier stages of the life cycle, improving the

implementanon of simulator and enhancing the simulator' s services as new requirements

are discovered.

In principle, the result of each phase is one or more documents which approved

(' signed are off'). The following phase should not start until the previous phase has

firushed. ln practlce, these stages overlap and feed mformation to each other. ' l11is has

caused inflexible panitioning of the proJect into distinct stages. Also, commitments must

be made at early stage in the process and this means that it is difficult to rt.-spond to

changing customer requirements. As a result, waterfall model can be used only when

requirement are well-defined. Below are the concluded advantages and disadvantages of

watetiall model :

Table 3.1 : Advantages and Disadvantages of Waterfall Model

Advantages Disadvantnges

./ Discourage jWllping al1ead. X Requires capturing requirements

early.

./ Emphasizes planning aud good X Makes iterative design difficult

reqmrements. (prototypmg).
.,.

Testing and verification central. X Long period before product

delivery.

./ Measmable objectives which can be

used tor planning future proJects

32

Univ
ers

ity
 of

 M
ala

ya

As a conclusion, because of all advantages above and since Waterfall model only

suit for smaller software products which need shorter time from requirements phase to

product completion; it has influenced for this model to be chosen as a suitable

methodology for simulator development using A • pathfinding algorithm. When a clear

cut goal of the prototype is reached before the process begins, requirements are less

likely to change.

Figure 3.1 : WatetfaU model

3.4 Methods of Collecting Information

There are several ways which are used to collect relevant information for this

research and simulator development. The information was useful in terms of references

and guidance to make the progress of simulator development running smoother. With

33

Univ
ers

ity
 of

 M
ala

ya

proper methods of collecting finding, this would be able to make the understanding

clearer in terms of knowing what to do next, what is required and be updated Wlth latest

trend of pathfinding application. The methods used were reading appropnate reference

books and research while paper, surfing the Internet and having discussion.

,. Reading

Reading materials such as reference books. magazines, articles, dictionary and so

on can be obtained from the Main Library al University of Malaya and the

Document Room in Faculty of Computer Science and lnfmmation Technology

(FSKTM). By referring to the previous senior's thesis. it gives 1deas of how the

project should be carried out.

r Internet

Jnformation proVlded by the Lnternet is up-to-date and more concern on the recent

trend of technologies. Besides, the cost to obtain knowledge from digitized

information is cheaper than from information on paper.

,. Discussion

Discussion was carried out together with supervisor, Mr. Mohd. Yamani ldna

Idris and team member, Mohd. Yohan Ibrahim whose do1ng thesis on title

"Shortest Route Using Dijkstra's Algorithm" plus some good hearted

coursemates as to identify the aspects of system objectives, project scope,

constramts, literature review on project, functional requirements, non-functional

requirements, system design (in terms of algorithm, pseudo-code and Oow chan)

and others.

34

Univ
ers

ity
 of

 M
ala

ya

,. Observation and research on current parking system

Observation has been done randomly on a few current parking systems that

always full during peek hours As a result, there aren't any implementation of

electronic devices or system that can provide the needed information for the users

when they navigating the vehicle from parking entrance to search for empty

parking space in parking lot. lt clearly means that no automated parking system

yet exist and tmplement in Malaysia.

3.5 Summary

This chapter presents the methodology used in A • pathfinding simulator

development which was Waterfall model and outline its pros and cons to be chosen. It

also covers a few methods that bas been used to coUcct infonnation for the research

purposes.

35

Univ
ers

ity
 of

 M
ala

ya

CHAPTER4:

SYSTEM ANALYSIS

(Univ
ers

ity
 of

 M
ala

ya

Chapter 4 : System Analysis

4.1 System Analysis

System analysis is a part where the system requirements or specificatlons need to

be well-identified so that the simulator can be developed up to standard and will fulfil

U1o~c requirements precisely and correctly. Basically, the requirements will be

categorized into two main components which are system requirements and run-time

requirements.

4.2 System Requirements

System requirements are diVIded into two subcategories which are functional

reqwrements and non-functional reqmrements. ln funct1onal requirements, aU the

services and functionality that can be perfonned by the simulator wilJ be defined,

whereas in the non-functional requirements. components that relate to this simulator

properties such as its reliability, rt~s'Ponse time and flex.ibltity will be concluded as tar as

possible.

4.2.1 Functional Requirements

1- Browse

This function button will load template or predefined maps which provide many

different paucms of mapping that readily generated starling and destination point

along with the obstacles. So far, the obstacles will be limited to Impossible state

(wall) only.

36

Univ
ers

ity
 of

 M
ala

ya

2- Fmdin~ Shortest Path

This function button will make calculation of A • pathfinding algorithm,

[F = G + H] and searching for shortest path fi·om starting point to destination

point by considering the obstacles ahead in faSlcst timing.

Both function buttons above will only be implement if the MFC interface is

chosen or used. Originally, the main purpose is to show the expected output of

pathfinding in MSDos Prompt Windows. It will lisl oul each next coordinate, means

next point of nodes chosen in shortest path from the starting point to the destination

point.

4.2.2 Non-Functional Requirements

~on-functional requirements are the other factors that must be taken into

consideration in the simulator development cycle. These reqwrements are very

subjective but they play an important role to ensure the simulator robustness and

successful.

1. Reliability

The simulator should be designed in such a way that process errors in path

finding are avoided or trapped before the result in output becomes eiTOr. Il shall

not cause any unnecessary actions of the overall environment. ln simple tenn,

the simulator must be able to convey and perfonn appropriate functions with

minimal errors and at least 90% accurate and rehant results (the best shortest

route from starting point/parking entrance to the destination point/empty parking

space).

37

Univ
ers

ity
 of

 M
ala

ya

2. Mana~eability and flexibility

The simulator shall be capable for future expansion which to be operate, manage

and integrated by the user (system developer) with other modules of sub-system

to complete overall automated parking system development or with other systems

and new technologies.

3. Response time

The simulator should be able to process and convey its output within a reasonable

and acceptable period oftime (not more than a 60 seconds).

4. Usability

The simulator must provide documcnlation or guideline that outline ~ch process

steps of pathfindmg in detail and precise method/fonnula of calculation for every

alternative next node in path consideration. This is for user (system developer)

ease of use and manageability to conduct system's checkup if errors occur.

4.3 Run Time Requirements

Hardware and software requirements was defined as below as to run the

simulator of pathfinding smoothly.

4.3.1 Hardware Requirements

• PC with a Pentium-class processor; Pentium Celeron 300 MHz or higher

processor recommended.

38

Univ
ers

ity
 of

 M
ala

ya

• Microsoft Windows® 95, 98, 2000 Professional or later operating system,

or Microsoft Windows NT® operating system version 4.0 wilb Service

Pack 3 or later.

• 184 MB R \\1 or above.

• 1.44" Floppy disk drive or CD-ROM drive.

• VGA \1onitor 14" (true color 32 bit} or htgher-resolution monitor~ Super

VGA recommended.

• Mi<..Tosoft Internet Explorer 4.01 Service Pack l.

• Microsofl Mouse or compatible pointing device.

4.3.2 Software Requirements

• Microsoft Visual Ct i- 6.0 Enterprise Edition

• \.1SOos Prompt Windows (main choice for expected simulation

output/result)

• Microsofl Foundation Class (MFC) Library (optional)

4.3.3 Programming Language

Programming language of Microsoft Visual C++ is chosen over Java for building

this A• pathfindmg simulator because of the factors below:

•!• Pros : Microsoft Visual C++

./ Visual C++ is a very powerful, 'complete' and mce high-level language~ and

also as close to a universal progranuning language as you're likely to get at

the moment. It's used everywhere.

39

Univ
ers

ity
 of

 M
ala

ya

./ Visual C++ included object oriented technology which highly supported

and recommended because it has a very good qualities or strengths

especially in speed, perfom1ance and flexibility .

./ Visual C++ boasts an Object Oriented Programming (OOP) which is very

segmented, easy to work with. and doesn't require very many lines of code

to perfonn simple tasks. By using functions and what are known as classes,

certain parts of the code may be re-used multiple times throughout the

program .

./ Visual C H programs are stand alone, no need for interpreters (sometunes

external libraries wlll need to be installed on the target PC) .

./ Visual C-++ mainly used for fast application like many desktop applications.

For example, many of those nm on :vficrosoft Windows and other Operating

Systems, also in some games (such as Qualce Ill) .

./ Visual C++ is one of the easiest computer languages to learn as much of the

syntax is very stratght-forward. However don't underestinlated this

programming language, as it is still extremely Oexible and functional in the

workforce .

./ lt 1s easy to port Visual C++ programs to other platfonns tf standard C++

guidehnes are adhered to .

./ Many Visual C'++ libraries available for added functionality .

./ Because of Visual Cl r is a high-levellanbruage and very powerful in that, it

aUows the programmer benefits otherwtse only available in the assembly

(low-level) language. For example, programmers have much control over

memory management, as can be demonstrated with arrays and li11ked lists

./ Visual C+-+ is more familiar for the author.

40

Univ
ers

ity
 of

 M
ala

ya

•!• Cons : Java Language

X Speed. Java runs quite slow. because it is essential compiled at run-time by

the system's virtual machine. Java is a partially interpreted language,

which means it's code is not completely compiled into native machine code

but instead compiled into byte code interpreted by the nmtime environment.

X lt is difficult to compile Java programs into a stand-alone application.

X Memory pointers not allowed in Java.

X Java language don' t have features like hardware-specific data types, low

level pointers to arbitrary memory addresses, or programming methods like

operator overloading and multiple inheritance.

X Some people dislike being forced into fully object oriented progranuning

like Java language. But that's their problem.

4.3.4 Microsoft Foundation Class (MFC) Library

The Microsoft Foundation Class (MFC) Library is a collection of classes

(generalized definitions used in object-oriented programming) that can be used in

buildmg application programs. The classes m the MFC Library are written m the C+t

programming language. The MFC Library saves a programmer time by providing code

that has already been written.

It also provides an overall framework for developing the application program.

There are MFC Library classes for all graphical user interface elements (windows,

frames, menus, tool bars, status bars, and so forth), for building interfaces to databases,

for handling events such as messages from other appbcanons, for handlmg keyboard and

mouse input, and for creating Active X controls.

41

Univ
ers

ity
 of

 M
ala

ya

4.4 Summary

This chapter presents about the system requirements involved m A • pathfinding

simulator which covers functional and non-functional requirements, also the run time

requirements including hardware and software requirements that used for the simulator

development The chapter continues by briefly outline the reasons why choosing

Microsoft Visual C++ as programming language to develop the sunulator and describe

about Microsoft Foundation Class (MFC) Library as an optional alternative for expected

simulation oulputlresuli besides MSDos Prompt Windows.

42

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS:

SYSTEM DESIGN

Univ
ers

ity
 of

 M
ala

ya

Chapter 5: System Design

5.1 An Automated Parking System

Empty Space Detection
i.) !mage Processing }To d~tectempty
ii.) Sensor/CCTV camera. parking space

D
Cbain Code

i.) Character recognition
ii) Pixel

D
Database

D

}
Sort by
priority

A* Algorithm
Calculate shortest path using formula

F(n) G(n) -i H(n)

D
Chain Code -----------
Decode path

[direction.. distance J
Example : [1.7]. [1,6], [15]. [2.4]. [3.31

D
Robot Navigation

}
Project
Scope

---~ *6 7
4 0

3 1
2

Fif:ure 5.1 ·How an automatetl parking sy.,·temftmctwmtl

43

Univ
ers

ity
 of

 M
ala

ya

Figure 5.1 shows all modules that involved besides A • pathfinding simulation to

make an automated parking system perfectly ftmction. The automated parking system

will be implementing the concept of image processing, robotics and control.

At the begmning of an automated parking system. the Empty Space Detection

will use its sensor to track down the available empty parking space. The mformation

then will be acknowledge to Cham Code. Cllai11 Code will use the character

recognition to identify that empty parking space. The unique code is given to

differentiate between the available empty parking space with the others parking space.

Then. it will sort the empty parking space by refer to priority, which is the shortest

distance from the entrance of commerctal butldmg.

This information will be stored in database. The infonnation comain.s the value

for start and destination point plus the coordmate of wall obstacle. A* sim11lation will

take the start and destination value from database and so forth. search tor the .~ltortest

pllth to the given clestintllion. The project scope is focus on developing simulation to

find shortest path by using A-Star algoritlun. Chain Code will decode the obtam result

from the A* simulation and interpret them into a movement ami patll distance.

Instructions will be taken by rohot to conduct movement .mnulaJion.

(Parking System Using Cllaitr Cotle & A • Algorithm, FSKTM.2004)

44

Univ
ers

ity
 of

 M
ala

ya

5.2 Flowchart of A • Algorithm

Next is the flowchart of how A • algorithm works using the fonnula F(n) = G(n) +

H(n) when searching for shortest path from starting point to the destination point..

Figure 5.2 : Flowchart of A • patlrjl11dbtg algorltlrm

45

Univ
ers

ity
 of

 M
ala

ya

5.3 A • Algorithm Pseudocode

Tttble 5.1 : Pse11docode For A* A/goritllm

1 Create a node containing the goal state node _goal

2 Create a node containing the start state node _start

3 Put node_start on the open list

4 !while the OPEN list is not empty

5 {

6 Get the node off the open list w1t11 the lowest f and call it node current

7
if node_ current is the same state as node _goal we have follild the solution~ break

from the wh ilc loop

8 Generate each state node_successor that can come after node_current

9 for each node_ successor of node_ current

10 {

ll
Set the cost ofnode_successor to be the cost ofnode_current plus the cost to

get to node successor from node current

12 find node_successor on the OPEN list

r if node_ successor is on the OPEN list but the existing one is as good or better
13

then dJscard th1s successor and contmue

14
if node_successor is on the CLOSED list but the existing one is as good or

bcucr then discard this successor and continue

15 Remove occurences of node successor from OPEN and CLOSED

16 Set the parent of node_successor to node_current

17 Seth to be the estimated distance to node _goal (Using the heuristic function)

18 Add node successor to the OPEN list

19 }

20 Add node_current to the CLOSED list

21)

46

Univ
ers

ity
 of

 M
ala

ya

5.4 A,.. Patbfmding Algorithm

• Formula : F(n) = G(n) + H(n), where

• G(n) = the movement cost from the starting point to given square on the

grid, following the path generated to get there.

1- Horizontal or Vertical square moved (Orthogonal/Non-diagonal)

equal to cost 10.

2- Diagonal moved equal to cost 14,

• H(n) = the heuristic or estimated movement cost from given square on the

grid to the final destination. Why it is called heuristics? Because it is a

guess and we really don't know the actual distance until we find the path.

There' s possibilities that all sorts of things can be in the way like walls,

sandbank etc.

Figure 5.3 : Horizontal or Vertical square moved (OrthogonaVNon-diagona/) and

Diagonal square moved

47

Univ
ers

ity
 of

 M
ala

ya

5.4.1 Revision- What ls A*?

Imagine that you are on a node and that you want to reach another position

somewhere else on the graph. Then ask : "Which wa} will I follow, and wh} ?". The

main factor to take into account here is the cost of moving. It must be minimal. The cost

crit~rion 1s basically a function of the distance (sum of arcs' lengths). However. it can

also be adjusted and varied with other data. which describe for example the slope, the

harshncss·practicabihty of the ground You can even model a tmfficjam.

To achieve the best path, there arc many algorithms whtch are more or less

effective, depending on the pru1icular case. Efficiency depends not only on the time

ncodcd for calculation. but also on the reliability of the result. A • is able to return the

best path (if it exists) between two nodes, according to accessibility/orientation and, of

course, cost of arcs.

Among the variety of existing algorithms, some do not always actually return the

best path, but they can give precedence to speed over accuracy. Efficiency depends on

the number of nodes and on their geographical distribution. However in most cases A •

rums out to be the most eftecnve, because tt combines optimized search with the use of a

heuristic.

A heuristic is a function that associates a value with a node to gauge it. One node

1s constdered better than another, if the final point is reached with less effon (e.g. shorter

distance). A • will always rctum the shortest path if. and only if, the heuristic is

admt\\tble: that is to say, if it never overestimates. On the other hand. if the heuristic is

not admissible, A • will find a path in less time and with less memory usage, but without

48

Univ
ers

ity
 of

 M
ala

ya

the absolute guaranty that it is the best one. I lere are three admissible heuristics which

correspond to a particular distance between the node of evaluation and the target node :

• Euclidean distance-- >- Sqrt(Dxl..f-Dy'+DzZ)

• Manhattan distance - Dx · Dy IDz

• Maxunum distance-.-. Max(Ox, Dy, Dzl)

These functions give an estimation of the .remaining distance for each node that

can be explored. Thus the search can be oriented toward the 'best' nodes. For a g~ven

node, the sum tCurrent cost + Heuristic value] is an esumation of the cost of reaching the

ending node from the starting node, pas.~ing by the current one. This value is used to

contmuously choose the most promising path.

In practtce. the algonthm maintains 2 lists of nodes that are tilled and modified

during the search :

I . The first one. called Open, contains the tracks leading to nodes that can be

explored. initially, there 1s only the starting node. At each step, the best node of

Open is taken out. Then. the best successor of this node (according to the

heun~llc) is added to the list as a new track. One doesn't know where the nodes

that arc in Open lead, because they have not been propagated yet. However. the

best one is examined at each new step.

2. The second one, called Closed, stores the tracks leading to nodes that have

already been explored.

49

Univ
ers

ity
 of

 M
ala

ya

5.5 A* Algorithm Process

1) Add the stanmg square to the open list.

2) Repeat the following :

a) Look for the lowest F cost square on Lhc open list. We refer to this as

the current square.

b) S wttcb it to the closed list.

c) For each of the 8 squares adjacent to this current square ..

If it is not walkable or if it is on the closed list, ignore it.

Otherwise do the following.

- lf it isn't on the open list, add it to the open list Make the current

square the parent of this square. Record the F. G. and H costs of

the square.

lf it 1s on the open list already, check to sec if tlus path to that

square is better, using G cost as the measure. A lower G cost

means Uust this is a bcucr path. lf so, change the parcut of the

square to the current square, and recalculate the G and F scores of

the square. lf you are keeping your open hst sorted by f score, you

may need to resort the hst to account for the change.

d) Stop when you :

Add the target square to the open list, m which case the path has

been found, or

- Fail to find the Largct square, and the open list is empty. In this

case, there is no path.

so

Univ
ers

ity
 of

 M
ala

ya

3) Save the path. Working backwards from the target square, go from each

square to its parent square until you reach the starting square. That is your

path.

5.5.1 A- Simplifying Tbe Seartb Area

• Assume :

1- Someone who wants to get from point A (parking entrance) to point 8 (empty

parking space).

2- A wall separates the two points.

Figure 5.4: SimpUfylng the setzrch area

• Legend :

= starting point A

= ending point B

= wall in between 2 points.

• Simplifying the search area into square grid of simple 2-dimensional array

(column-x • row-y).

51

Univ
ers

ity
 of

 M
ala

ya

• Each item in the array represents one of the squares on the grid. TI1e grid status is

recorded as either walkable or unwalkable.

• To get PATH - figure out which squares should be taken to get from A to B.

• Once path fOtmded - person will moves from one center of one square to center of

the next until the target is reached.

Figure 5.5: Square grid of simple 2-dimensiolllll a"ay (colum,..x * row-y)

5.5.2 B- Searching Shortest Path

• Result :

1- Green square (light blue) - starting point ~ indicate square has been added to

closed list.

2- All adjacent squares added to open list (green)

-- squares to be checked, each has gray pointer ~ points back to its parent

(starting square).

52

Univ
ers

ity
 of

 M
ala

ya

Figure 5.6: AU adjacent squares added to open list (green)

• Path Scoring

Path ~ generated by repeatedly going through open list & choosing the square

with lowest F score.

• To determine which squares to use ~ F(n) = G(n) + H(n)

53

Univ
ers

ity
 of

 M
ala

ya

Figure 5. 7: Formula F"" G + H

• Cakuladng G

Cost 1 0 = Horizon taW ertical square moved

Cost 14 = Diagonal square moved

Calculating G cost along specific path to given square ~ take 0 cost of its

parent & then add l 0 or 14 depending on whether it is diagonal or orthogonal

(non-diagonal) from that parent square.

54

Univ
ers

ity
 of

 M
ala

ya

Figure 5.8: Ca/culllting G

• Estimating H

Use Manhattan method - calculate total number of squares moved

horizontally and vertically to reach target square from current square,

ignoring diagonal movement & ignoring any obstacles that may be in the way

--then multiply total by 10.

Why called Manhattan? ~ like calculating number of city blocks from one

place to another, where can't cut across block diagonally.

55

Univ
ers

ity
 of

 M
ala

ya

• Inadmissible heuristics - the closer estimation to actual remaining distance, the

faster A • algorithm will be. If overestimate this distance, not guaranteed to give

shortest path.

• Cakulllting H in easier way- example :

1- Current square (2,2)- Destination square (5,2):::: (3, 0)

3 + 0 = 3 X 10 :::: 30 ~ Reversely counting backwards from current square to

destination square {30, 20, 10}

2- Current square (2,1)- Destination square (5,2) = (3, 1)

3 + 1 = 4 X 10 = 40 ~ Reversely counting backwards from current square to

destination square {40, 30, 20, 10}.

• • Disregard the negative value.

Figure 5.9: Cakulllting H In Easier Way

56

Univ
ers

ity
 of

 M
ala

ya

• Calculllting F

Example : Adjacent square coordinated at (2,2);

F(n) = G(n) + H(n) ~ 10 + 30 = 40

•• Same rules applied to the rest of 6 squares adjacent to current square (parent

square) for calculating H & F.

Figure 5.10: 01/culating F

S.S.3 C - Continuing Search

• Choose lowest F score square from all squares in open list.

• Drop selected square from open list & add it to closed list. Check all adjacent

squares - ignoring those that on closed list or unwalkable (obstacles with walls or

57

Univ
ers

ity
 of

 M
ala

ya

sandbank), add squares to open list if they not on open list already -7 Make

selected square the "parent" of new squares.

• lf adjacent square already on open list, check whether this path to that square is

better one -7 check to see if G score for that square is lower if we use current

square to get there. If not, don't do anything.

• If G cost of new path is lower, change parent of adjacent square to selected square.

• Finally, recalculate both F & G scores of that square.

5.5.4 How It Works

1- From initial 9 squares - balance 8 left on open list after starting square switched to

closed list.

• The one with lowest F cost (immediate right of starting square) - F score 40

-7 select it to be next square (highlight in light blue).

2- Drop it from open list & add to closed List - check adjacent squares -- the ones to

immediate tight of this square [wall squares] & the one to immediate left (struting

square] on closed list => IGNORE

3- Other 4 squares already on open list -- check if paths to those squares better by

using this square to get there -7 using G scores as point of reference. f.Figure 5.11/

4- Square right above selected square -- current G score, 14.

• If went through current square to get there- G score 20 (10, G score to get

to current square + 10 more to go vertically to one just above it).

5- G score of 20 > 14 -7 not a better path --more direct moving one square diagonally

to get to that square from starting square -- rather than moving horizontally one

square, and then vertically one square.

58

Univ
ers

ity
 of

 M
ala

ya

6- Repeat this process for all 4 adjacent squares (in open list) ~ none of paths

improved by going through current square-- don•t change anything.

• Done with this square-- move to next square. [Figure 5.1/J{Figure 5.12/

Flgun 5.11 : Check other 4 squares already in open list

59

Univ
ers

ity
 of

 M
ala

ya

Figure 5.11: None of paths Improved by going through cu"ent square- don't

change anything.

7- Go through list of squares on open list -- now down to 7 squares.

8- Pick the one with lowest F cost - two squares with score 54.

• Which do we choose? - doesn't really matter. (Differing treatment of ties is

why two versions of A • may find different paths of equal length).

9- Result : choose the one just bottom-right of starting square. {Figure 5.13/

60

Univ
ers

ity
 of

 M
ala

ya

Figure 5.13 : Choose the one just bottom-right of starting square

10- Check adjacent squares. The one to immediate right & the one just above that

[wall square] + the square just below the walJ => IGNORE

• Why? ~ can't get to that square directly from current square without cutting

across comer of nearby wall -- need to go down first. then move over to that

square. moving around the comer in the process.

10- Leaves 5 other squares.

• Other two squares below current square aren't already on open list - add

them and current square becomes their parent.

61

Univ
ers

ity
 of

 M
ala

ya

• Other 3 squares. two-- on closed list (starting square & one just above current

square, both highlighted in blue ~ IGNORE {Figure 5.14{

Figure 5.14 : Other 3 squares, two -on closed list (stllrling square & one just

above current square, both highlighted in blue 71GNORE

• Last square, to immediate left of current square -- checked to see if G score

lower, if go through current square to get there ~ no dice -- done & ready to

check next square on open list {Figure 5.15/

62

Univ
ers

ity
 of

 M
ala

ya

Figure 5.15 : Last square, to immediate left of cu"ent square- checked to see if

G score lower, if go through current square to get there.

REPEAT SAME PROCESS UNTIL ADD TARGET SQUARE TO OPEN LIST!!!

5.6 Expected Simulation Output

The goal is to show the output in MsDos Prompt Windows rather in the MFC

interface. The reason is because this simulation is target to be integrated in the hardware

implementation.

63

Univ
ers

ity
 of

 M
ala

ya

Figure 5.16: Expected output of A • pathfinding simulation -MSDos prompt

101 ·- ·~ .·'

:s so .. , . : 0 &C :' ,~

,, . " b 0 ., '

;, ·a I" & c 10 ~a I• 'a
80 bO "c B: ~~ B:

:o bC I 0 '• ~ , a J 0 - •0 H ·; ~ I ~

~- -" L:;

D
:'

D
ue

:" • 0 ., ~ c •J \C '•- .· c ~ 8 "
"

101 , ' ~:

DOD
.,

' :.: ~·

:I a: :' " - u ~= l -c "(J J c ~- • u I:

=s ~' B i 6 s s e

IB . 0 I' !.0 I 9 '• 0 'A •0 ·.II I~

Figure 5.17: Example ojgraplt output

64

Univ
ers

ity
 of

 M
ala

ya

Browse

Figure 5.18: Expected Output- MFC Interface

5.7 Summary

Tills chapter cover the context about all modules that are involved in the

automated parking system besides the simulation of using A • algorithm. The chapter

continues by describing the flowchart and pseudocode for A • pathfinding algorithm. It

also outlines each step and level of how the algorithm works, plus with the expected

simulation output which mainly are in MSDos Prompt Windows. The MFC interface is

only the alternative which is optional for the expected simulation output.

65

Univ
ers

ity
 of

 M
ala

ya

CHAPTER6:

SYSTEM DEVELOPMENT

& IMPLEMENTATION

Univ
ers

ity
 of

 M
ala

ya

document consists of data flow of the simulator and the connection of

module. The program document is then analyzed through these following

steps:

• In wntten fonn, a complete definition of the requirements of the

program.

• Understanding the written definition well enough to produce the

desired result manually.

• Defining the input required to produce the desired output.

• Identifying the source of the input.

Generally, the first area to analyze should be the output area of the

program. 1l1is comes from the written definition of the requirements. The

simulator's output will be show in the ~1S Dos Prompt Windows (main

ch01ce for expected sunulanon output result) as a layout of on the screen,

showing the information that should result from program running

correctly.

The second area to look at is input ~ parking map that constSt weighted

coordinate (column-x * row-y) for each pomt of nodes in square grid.

Determine what facts arc needed to produce the rcqurrc infonnalion, and

where that data is going to come from.

68

Univ
ers

ity
 of

 M
ala

ya

II Global data
II The parking ~"Pace map
const int MAP_ WfDTI l = 20;
const int MAP _HEIGHT = 20;

II Represent x->column
II Represent y->row

int map[MAP WIDTH • MAP_ HEIGHT) =
{
II x->colmnn
H00010203040506070809t011t21314151617t819

) ;

l ,l,l , l ,l,l,l ,l.lJJJ ,U .Ll ,l.I, l ,J, 11 00 ll y->row
l ,9,9, 1,9,9, 1.1 , J ,9, l ,9,9,9,9,9, I ,1,1, 1. II 01
l , l ,9.1 , 1,9,9,9, I ,9,1,9, l,9, L9,9,9, l, I, II 02
1 ,9,9, I, I ,9,9,9, l ,9, 1 ,9, I ,9, 1 ,9,9,9, I, 1, II 03
I ,1 , l , 1.1,1 ,9,9, I ,9, 1.9, I, l , 1,1 ,9.9.1, I , II 04
l ,1,1 , 1.9,1,1, I ,1.9, I , I ,I ,1,9, 1. l,l, l , 1, II 05
I ,9,9,9,9, I ,I ,I , I ,1, l ,9,9,9,9,1 , 1 ,1, 1, I, II 06
1,1 ,9,9,9,9,9,9,9 , I , I, I ,9,9,9,9,9,9,9, I , II 07
1.9,1 ,1,1 ,1 ,1 , 1.1 , I ,1,9,1,1 ,l , l,l , l,l , l , II 08
J, 1,1.9,9,9,9,9,9,9,1 ,l ,9,9,9,9,9,9,9,J. II 09
l ,l,l.J , l,l ,9, l,l,9,l , l,l,l ,l,l ,L,l ,l, l, II 10
1,9,9,9,9,9, 1 ,9, I ,9,1 ,9,9,9,9,9,1, 1,1, l, /I ll
l ,9J,9,1,9,9,9,l ,9,1,9,1,9,1,9,9,9,1,1, 11 12
1 ,9, 1.9, I ,9,9,9,1 ,9, 1,9,1 ,9 .1,9,9,9,1 , 1, II 13
1,9,1,1,1,1,9,9,1,9,1,9.1,1,1,1,9,9,1,1, 11 14
1,1,1 ,1,9,1 ,1,1,1 ,9.1 ,1.1 ,1,9,1 ,1,1,1 ,1, 11 15
1 ,9,9,9,9,1,1 ,1 ,I , I ,1 ,9,9,9 ,9,1,1 .1.1 , 1, I. 16
l ,L9,9,9.9.9,9,9J ,1,1,9,9,9,9.9,9,9,1, 11 11
1,9,l , l , l , l , l ,l , l , l , l ,9,l , l , l , l,l,l,l ,l, II 18
1 ,1,9,9,9,9,9,9,9,9,1, l ,9,9,9,9,9,9, 1' l , // 19

Figure 6.3 : Parking map a.~ re.wurce for coding program

The last ~1ep to analyze is process. To detennine what to be done to each

input to tum 1t into output infonnatiou.

69

Univ
ers

ity
 of

 M
ala

ya

6.4.2 Design the program

for the second level of program development, decisions have to be made

on how the program can accomplish its tasks by developing a logical

capturing solution to those program documents. The easiest way is to

break the project into small pieces so and destgn the logtc for each part of

the problem.

6.4.3 Code the program

Coding programs is the process of translating the program design into the

appropriate Microsoft Visual C++ 6.0 language to solve the problem. The

activities in this process produce program modules that compile, build and

run smootWy Implementation of testing and analysis on the modules is

to test its effectiveness and free of any error that could lead to simulator

failure and malfunction.

6.5 System Coding

In system coding, every component of the program will look mto this three

aspects :

6.5.1 Control Structure

The control structure for the component proposed in the system design

phase is translated into code. The program design structure must reflex

with the control structure destgn. In this project the coding is done using

the bottom-up approach.

70

Univ
ers

ity
 of

 M
ala

ya

6.5.2 Al~oritbm

The simulator program ccxle were designed based on a specific algorithm.

Algorithm is a detail sequence of acttons to perform to accomplish some

task. An algorithm mU£t reach a result after a finite numlx.-r of steps.

The program were broken into several steps :

• Create/define start node and goal/end node through user input.

• Allocate node memory management for start node and end node.

Same process will be implement for current/parent ncxle and all

their successor nodes.

• Make advances searcb for each current node and find lts

successors nodes and all their possible moves until reach to the

end ncxle.

• Initialise value of A • specific parts : g. h, f and parent for start

node and end ncxle. Same process will be implement for

current/parent node and all their successor nodes

• Evaluate and compare each current/parent and their successors

ncxles for A • specific parts values : g, h, f and parent value by

using push/pop method into open/close list.

• Choose nodes with lowest g value and compare their f value

through class HeapCompare_f.

• Show node poSition (x,y) in path taken. number of solution steps

and search steps taken in output, MS Dos prompt windows.

71

Univ
ers

ity
 of

 M
ala

ya

6.5.3 Object Oriented Programming

Object Oriented Programming supports obJect technology. lt is an

evolutionary fonn of modular programming with more fonnal rules that

allow pieces of software to be reused and interchanged between programs.

OOP is thought to increase productivity by allowing programmers to

focus on higher-level software objects. One of primary features of object

oriented is inheritance. In this project, the simulator's program code was

written in one source file (.cpp), two header files (.h) and one workspace

file {findpath.dsw): findpath.cpp consist three globals - GetMap(iot x.. int

y), mam(mt argc, char •argvO). map and also classes, MapSearchNode.

stlastar.h contain function and classes for manipulating data in Standard

Tt.mplatc Library (STL) -<algorithm>, <set>. <vector> and also classes

AStarSearch<class UserState>. fsa.h contain FixedSizeAllocator class

t11at used as fast fixed size memory allocator for fast node memory

management.

6.6 Program Coding Approach

Factors to be taken into account wben doing system coding:

6.6.1 Simplicity and Clarity

More than a few misguided programmers believe that the more complex

and convoluted therr code, the more sophisticated the1r skills. A good

program is generally quite simple. The Wlderlying meaning of the

procedure represented in programming language source code should be

easy to understand and clear for the programmer.

72

Univ
ers

ity
 of

 M
ala

ya

6.6.2 Use meaningful variable names

ln general, variables and data structures should be named in a manner that

enables the programmer to infer their meaning within the context of the

procedure at hand and their correlation with some real-world object

6.6.3 Establish effective commenting conventions

• Start with an effective prologue.

• Describe blocks of code, rather than commenting every line.

• Usc blank lines and indenting so that comments can be readily

distinguished from code.

6.6.4 Module

Separate function structure so it can function independantly and easy for

modifications.

6.7 Simulator Module

The simulator's module is divided into:

6.7.1 Obtaining input

The simulator obtain input from :

• int map(MAP _ WIDTH*MAP _HEIGHT]-{}:

Parking map as resource in findpatb.cpp which can be access by

using map helper functions, Get\.tap(int x. int y).

• Input by user in main(int argc. char *argvO) ftmcnon for start and end

node metric (x,y).

73

Univ
ers

ity
 of

 M
ala

ya

6. 7.2 Allocate node memory

• SetStartAndGoalStates(UserState &Start, UserS tate &Goal)

By using AStarSearch<class UserState> in stlastar.h header file.

asstgned start and end node for memory node allocation through

AJiocateNode() and FixedSizeAllocator<class USER_TYPE> in

fsa .h header file. Same process wilt be implement for

current/parent node and all their successor nodes along the process

of push (go in) and pop (take out) from open and close list.

6.7 .3 Search current node and all its successor nodes

• The simulator will start searching the current node and all its

successor nodes that possibly be the next best path to the end node by

using function SearchStep(). AddSuccessor(UserState &State) is a list

of successors which will be called when user expanding the search

frontier and need to add successor.

6.7 .4 Defme A"' specific parts and evaluate to make comparison

• Through public class Node in AStarScarch<. class UserState> values of

A • specific parts : g, b, f and parent for start node and end node will

be mitlalised. Same process will be implement for current/parent

node and all their successor nodes.

• GetSuccessors(AstarSearch<MapSearch.Node>•astarsearch,

MapSearchNode *parent_node) and class HeapCompare_f will be

called to compare tl1e lowest g and f value among current and its

74

Univ
ers

ity
 of

 M
ala

ya

successor nodes, and so determine next best path to be taken until

reach the end node.

• GoalDistanceEstimate(MapSearcbNode &nodeGoal) function is to

calculate heuristics that estimates the dtstance from a node to the goal.

6.7.5 Display output

• By activate the debugging mechanism : #define OEBUG_LISTS

and #define DEBUG_LIST_LENGTliS_ONLY l , each steps taken

when push/pop from open/close list is shown by calling the functions :

GetOpenListStart(tloat &f, float &g. float &h),

GetOpenListNext(float &f. float &g, tloat &h),

GetCioscdListStart(noat &f. noat &g. no at &h) and

GetClosedListNext(float &t: float &g, float &h).

• When search found the goal state. PrintNodelnfo() will show output

for each node position taken in the best path together with the solution

steps and search steps by calling functton Get SolutionS tart() and

GetSolutionNext().

• FreeSolunonNodes() ftmction is called to clean up all used node

memory when done searching.

6.8 Program Coding

6.8.1 Coding Style

There are two standard methods of program design the top-down

approach and the bottom-up approach.

75

Univ
ers

ity
 of

 M
ala

ya

• ToJHiown pmgramming involves writing code that calls functions

that haven't defined and working through the general algoritlun before

writing the ftmctions that do the processing. Top-down programming

is, to a good degree, a very abstract way of writing code because it

starts out by using functions that haven't been designed.

• The bottom-lip approacll to programming is the opposite: writes the

basic functions, Lhen work up to the more complex pans of the

pro1:,rram.

It's interesting that both of these approaches focus on the actions of the

program rather than the objects the program manipulates - variables

Many times. the best way to write a program is to figure out the variables

that need to work. By defining variables fi~1 and then working with

functions that work on them, this always maintain a basic fmmdatton of

what the program should be doing. Finally, the code for each individual

function is \\ritten.

6.8.2 Debug Mecbaoism

Errors caused by faulty logic and coding mistakes are referrt:d to as bugs.

Fmding and correcting these mistakes and errors that prevent the program

from running and producing correct output is called debugging. Some

common mistakes which cause program hugs arc : mistakes in coding

punctuation, incorrect operation codes, tnmsposed characters, keying

errors and failure to provide a sequence of instructions needed to process

certain conditions.

76

Univ
ers

ity
 of

 M
ala

ya

TI1e way of debugging the program code :

6.8.2.1 Runtime error

TI1e program does something, but not as expected - a great way

to make sure the code is getting executed.

6.8.2.2 Debugger

6.9 Summary

Debugging is the process of correcting or modifYing the code in

the program so thalthe program can build. run smoothly. act as

expected and be easy to maintain later.

Example : // Activate debugging (change value from 0 to 1) for

progranuner convenience to check for error.

udefine DEBLG_LISTS 1

#define DEBUG_LIST_LENGTIIS_ONL Y 1

1l1is chapter outline the hardware and software requirements besides phases that

involved in program development process. It also describe the important aspect for

system coding. factors that contribute for program coding approach and modules in

simulator. Last but not least, the type of coding style and debug mechanism which used

in program coding.

77

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7:

SYSTEM TESTING

Univ
ers

ity
 of

 M
ala

ya

Chapter 7 : System Testing

7.1 Introduction

The main functton of testing is to establish the pressure of defect. Testing is

performed to ensure that it is working correctly and efficiently and generally focused on

two areas : internal efficiency and external effectiveness. TI1e goal of external

efjectivene.~s testing ts to venfy that the simulator is fimct10ning according to system

design, that is performing all necessary functions and sub-functtons. The goal of

internal te.~ti11g is to make sure that tl1e computer code is efficient, standardized and well

documented. Testing can be a labor-intensive process, due to its it<..-rative nature. After

simulator has been venfied. it needs to be thoroughly tested to ensure that every

component of the stmulator is operatmg as It should and it is performing exactly in

accordance with the requirements.

7.2 Testing Methodology

lbere are two main methodologies of testing: white-box and black-box testing.

7.2.1 White-box te:•ting examines the intemal structure of a program and

attempts to test each logical case. Wbite-box testing can be thought of as

transparent box testing : the tester can see and test a specific section of

code.

7 .2.2 Black-box tel·ting also known input/output-driven testing in which the

tester v1ews the program as a black box, and as such, the inner workmgs

of the program are unknown. The main tool used in black-box testmg is

the specification of the program : aucmpts to detcnninc what inpm causes

78

Univ
ers

ity
 of

 M
ala

ya

the output of the program to be different from what the specifications

would requtre.

7.3 Type ofT esting

7.3.1 Module Testing

It is also referred to wlit testing and it focuses on verification of the

smallest tmit of system design - the module. Using the deta1led design

specification as a guide, important control paths are tested to tmcover errors

within the bom1dar) of the module.

Module testing were done on :

• Input by user for start node (x,y) and cud node (x,y)

to ensure that program could read the valid metric (1) for path and

not (9) for wall as available path. At the same time, to ensure that

result of output is sho·wn in right way in MS Dos prompt.

Types of error occurred during module testing :

• Algorithm error - error in the assembly of program code f(.'Sults

in the output display area

• Syntax error - innocent mistakes during keying in the progrcUU

code.

• Par.tmeter passing error - Data type of argument passed were

different from the argument in method().

79

Univ
ers

ity
 of

 M
ala

ya

7 .3.2 Integration Testing

Testing two or more modules or functJons together with the mtent of

finding interface defects between the modules or functions. Testing completed at

as a part of unit or functional testing, and sometimes. becomes its own standalone

test phase. integration testing can involve a putnng together of groups of modules

and functions with the goal of completing and verifying that the simulator meets

the system requirements.

Integration testing were done on .

• Open and closed list, by activate the DEBUG LIST and

DEBUG_ LIST _LENGTHS_ONL Y. Activate debugging for programmer

convemence to check for error. Zero (0) means not activate and one (I)

means activate debugging.

#define DEBUG_LISTS 1

#define DEBUG_UST_LENGTHS_O'lL Y J

for each steps of searching, program will test and check appropriately

with function : GetOpenListStart(), GetOpenListNext(),

GetClosedListStan() and GetClosedListNext() to ensure the algorithm

cvaluat ion is correct aJld each node position, solution steps and search

steps accurately obtained.

7.3.3 System Testing

It ensures that the simulator as a whole satisfies input and output

specifications and that interfaces between modules, programs or subsystems are

correct. Emphasis is placed on simulator access, security, performance, and

recovery capabtlittes. The modules tested in the integration tested were tested

80

Univ
ers

ity
 of

 M
ala

ya

again as a complete program. The system testmg will verify the accuracy of the

Simulator process, input and output to ensure u follows the des11.'11 spectfication

and the sy:)tem's requirement.

7.4 Example Testin~

•!• Test whether the Simulator still can find the shortest path if user mput start

node metric (6, 11) that has been block all around by wall (9).

STL A• SEARCH IMPLEMENTATION 11#11

Press 1 to enter the program or 0 to ex1t _ ,..,

Enter start node for column-x : 6
Enter start node for row-y : l I

Enter end node for column-x : 8
Enter end node for row-y : 12
Steps ~ I
Open :
Open list has 0 nodes
Closed :
Closed list has 1 nodes
Sti..'J)S : 2
Open ·
Open list has 0 nodes
Closed:
Closed list has 0 nodes
Search tenninated. Did not find goal state
SearchSteps : 2

Press I to cmcr the program or 0 to exit - > 0
Press any key to continue

Figure 7.1 :Example output that applied using Manhattan method

Result : Simulator cannot find available path because it docs not program the

node to cross over the comer of wall. The node only can move either by

81

Univ
ers

ity
 of

 M
ala

ya

horizontal or vertical only based on Manhattan method principles Refer to

Figure 7.2, whereby 11s path/road and 9 is walUobstacle.

II x-") column
//00 01 02 OJ 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 II y-") row

I ,
l.
I ,

I '
1'
1,
I ,

1'
I ,
l ,

l '
1,
) ,
1,
l ,
l ,
1,

1'
I ,
1,

I ' I ' 1, I , l , 1, I ' 1, 1, 1' 1, 1, I , 1, I , 1, 1, l , 1, 1100
9, 9, l, 9. 9, l , I. l. 9, 1, 9, 9, 9, 9, 9. I . L I. I. II Ol
l , 9, l , 1, 9, 9. 9, I , 9. 1' 9. I , 9, l , 9. 9, 9, l , L 1102
9, 9, l , 1, 9, 9. 9, I ' 9. l. 9, I. 9, I. 9, 9. 9, 1, l , 11(}3
1, 1, l, I , 1, 9, 9.) ' 9, 1, 9, l, I. I , L 9, 9. l, 1' //04
1, 1, I , 9, l. 1, 1. l , 9, l , l , 1, I , 9, l, I ' I ' 1, 1' 1105
9, 9, 9, 9, I , I ' 1' l , l , 1, 9, 9, 9, 9, 1, I . I, 1, I , 1106
1, 9, 9, 9, 9, 9, 9. 9. 1, l ' T, 9, 9, 9 , 9, 9, 9, 9, 1, 1101
9, 1 ' I , l , l , I , I. I , I. I , 9, I. l, I , l , t , 1. I , 1, //08 .
I , 1' 9, 9, 9, 9, 9 , 9, 9, L L, 9, 9, 9, 9, 9, 9, 9, L 1109
1, 1, 1, I , 1. 9, I , l , 9, l. 1, I, L I , I, l , I . 1, 1, II tO
9, 9, 9, 9, 9, I, 9, 1, 9, l . 9, 9, 9, 9, 9, 1, I , L l , //11
9, 1, 9. 1, 9, 9, 9, I, 9, 1, 9, I , 9. 1' 9. 9, 9, l , 1, II 12
9, 1, 9, 1, 9, 9, 9, 1, 9, l , 9~ L, 9, l , 9, 9, 9, l, l, //13
9, 1, 1, 1, 1, 9, 9, l , 9, I , 9, 1, 1, l ' 1' 9, 9, 1, 1, //14
1' 1'] ' 9, 1, 1')) 1, 9, l , 1, 1, 1) 9, 1, 1, I , 1, 1, //15
9, 9, 9, 9 , 1, 1, 1, l ' 1' 1, 9, 9, 9, 9, l , l, 1, 1, l , //16
) ' 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, l , //17
9, 1' 1' I , 1' l ' 1' 1, I, 1, 9. 1' 1' 1' I , 1' 1' 1, 1' 1/18
1, 9, 9. 9, 9, 9, 9, 9, 9, 1' t 9, 9. 9, 9, 9, 9. 1, 1, //19

Figure 7.2: Pltrking map f20*20j

•!• By modify coding condition loop in fimction MapGetNode::GetSuccessor(),

simulator now can search for shortest path from stan node (6, 11) to end node

(8, l2). The node find their path by moving diagonally, instead only moving

. horizontal and vertical.

82

Univ
ers

ity
 of

 M
ala

ya

•!• Change coding condition loop in function MapGetNode::GetSuccessor() and

test whether the new modification will take different effect on program

execution and result.

if{ (GeL\lap(x ~ L y-1) < 9)

&& !((parent x = x+ 1) && (parent _y = y-1)))

{ astarsearch->AddSuccessor(:\ew~ode);

if((Get\1ap(X I 1. y I I) .-: 9)

&& !((parent x = x+l)&&(parent y = y+ l)))

{ NewNode - MapSearch~ode(x+l. y+ l);

astarscarcb- >AddSucccssor(\lewXodc);

if((Get.\1ap(x-1, y-1) < 9)

&& !((parent_x - x-1) && (parent_y - y-1)))

NewNodc - MapScan:hNode(x-1, y-1);

astarsearch->AddSuccessor(New}';ode):

if((GetMap(x-1, y+ l) < 9)

&&!((parent x x-l)&&(parent_y y+ l)))

{ ~ew~ode = MapSearchNode(x-1, ytl);

astarsearch- '> AddSuccessor(N ewNode);

83

Univ
ers

ity
 of

 M
ala

ya

##n STL A• SEARCH IMPLEMENTATION ###

Press 1 to enter the program or 0 to ex1t - ">

Enter start node for column-x · o
Enter stan node for row-y . 11

Enter end node for column-x . 8
Enter end node for row-y · 12
Steps I
Open
Open hst has 2 nodes
Closed .
Closed hst has I nodes
Steps . 2
Open
Open hst has 3 nodes
Closed
Closed list has 2 nodes
Steps : 3
Open
Open list has 3 nodes
Closed ·
Clo!.ed hst has 3 nodes
Steps · 4
Open :
Open hst has 0 nodes
Closed
Closed hst has 0 nodes
Search found goal state
Node posttton : (6, I I)
Node poSition : (7, 10)
Node position . (8, 11)
1\oode pos1uon · (8, 12)
Solution steps : 3
SearchSteps : 4

Press I to enter the program or 0 to exit --> 0
Press any key to contmue

Figure 7.3 : Example output tlull applied not using ManhatUm methml

7.5 Summary

Chapter 7 :System Testing basically describe more about testing, type of testing

and its methodology that used. There also shown an example on how testing is been

done for this probrram simulator.

84

Univ
ers

ity
 of

 M
ala

ya

CHAPTERS:

SYSTEM EVALUATION

& CONCLUSION

Univ
ers

ity
 of

 M
ala

ya

Chapter 8 : System Evaluation & Summary

8.1 Simulator Strength

After the stmulator 1s developed, A • algorithm has achieved 1ts main objective.

The simulator 1s used to search for best shortest path from stan node until to the end

node by using A • algorithm. The search only done after the user define the start node

metric (x,y) and end node metric (x,y). The program will read the coordinate mput by

user and refer to the map resource that already been prepared by programmer. ThiS JS to

check whether the value is valid, means not a metric for wall (9) and the meuic is wtthin

the weighted state space of map.

The stmulator effectively able to find shortest path either by moving honzontal

and vertical (usmg Manhattan method) or by movmg diagonaUy (better shortest path)

from start node to the end node. Coding program also provide good debugging function

to check for errors as a convenient tools for programmer. The code program can be

easily modify either to change the coding or adding new modules to the code.

8.2 Systems Limitation and Constraint

, ntc simulator is not program to take resoltrce of map from the .txt file text

input (Notepad). Programmer already provide the map that is declared as

global data in findpath.cpp. This array of map can be access from any

funcuon m same or dtfferent file wtth the map helper functions GetMap().

ntis means hardcorc coding because only programmer or system developer

can modify or change the map and detennine valid value for path (l) and wall

(9). OnJy one map is proVIded and use in one time for the sunulator

reference; except if the programmer willing to go through hassle task buildmg

more constructive coding.

85

Univ
ers

ity
 of

 M
ala

ya

, Sometimes the simulator misread the metric (x.y) that point to wall (9) as the

valid path (1) for node. The stmulator st11l able to search for the shortest path

although user define such wrong input.

8.3 Problem and solution

During the system requtrement and analysis phase, a lot of study and research has

been carried out. The problem faced during the analysis and requirement phase were not

as crudal as during the implementation phase. A lot of modification and work cannot be

carried out due to lack of knowledge in certain areas and time constraint. Below are

some of the problems encountered :

8.3.1 Lack of Programming Experience

Problem:

lt is a major drawback during the implementatton of the proJect. The

initial choice of using the Microsoft Foundation Class (MFC) Library as

the GUI interface for the simulator had to be change to ~S Dos prompt

windows. This dectsion was made because ofthe complicated structure of

coding, vast amount of classes and the complexity of using MFC in C+t.

Solution:

As t1mc was the main factor, MS Dos prompt windows was chosen as

output environment due to its friendly and easy use style. Nevertheless, a

lack of experience and skills in programming has been the major obstacle

from completely achieving the whole proJect's objective.

86

Univ
ers

ity
 of

 M
ala

ya

8.3.2 Development Time Factor

Problem:

Small prior knowledge in A* algorithm and how pathfinding algorithm

really works demand for lots of studtcs that need to be done and learn

within a short span of time. Due to this factor also. certain features is not

unplemented in this project.

Solution:

However some of the obstacles were resolved by doing personal studies

and research through the Internet.

8.4 Future Enhancement

Due to time limitation. not all of the target objectives and ideas could be

incorporated in thts project. Future enhancement IS essential to make the system more

up-to-date, interesting and dynamic. These factors are crucial to create an interest on the

user to use the system.

Ideas for future enhancement :

• Create a user-friendly and colourful graphical user interface (GUI) by using

Microsoft Fmmdation Class (MFC) Library that could interact more with the

user.

• Enhanced the obstacles requirements, such as to Tough state {sandbank) or

Very Tough state (vehicle blocking) in A* algorithm simulation whereby the

code program must be manageable and flextble to be modifY.

• The simulator that able to provide vanatton template of different mapping

that based on real parking space terrain in real world.

87

Univ
ers

ity
 of

 M
ala

ya

• Implement this simulator in real-world environment that is in parking lot area

through the collaboration with update tcchnoiOb'Y such as GPRS mapping or

roaming. Users that have handheld devices such as iPod, 2.5G or 3G

handphone and notebook or computer laptop could easily connected with the

automated parking system that implement A* algorithm for the pathfinding

search in parking environment.

8.5 Summary

1l1is chapter will cover and discuss the simulator strength and limitation. the

simulator's problem and solution. and a few suggestions to enhance the simulator in the

future.

88

Univ
ers

ity
 of

 M
ala

ya

Conclusion

After conducting analysis and testmg, it 1s concluded that the proJect has

achteved Its main objective. searching for best shortest path in fastest time manner from

start node (parking entrance) until the end node (empty parking space) . There are more

re:se<uch need to be done in developing the simulator. With the first step takl.'ll,

enhancement can snll be made in the future to this version of simulator. The simulator

could be made more up to date, dynamic and detail.

As the project has to he done in a short period oftime and a lot of techmcaJ issue

arises and need to resolve, a few problt.'llls has been encountered Solution has been

sought during testing. Encountenng with problem has been proven to be a valuable

learning expenence.

I learnt that a good knowledge of software development life cycle could

accommodate a developer to manage the1r prOJect smoothly. All five phases. requirement

analysis, system destgn phase, system coding, testing and maintenance need to be

followed accordingly in order to build a good system (simulator) To build a good

stmulator also reqwre time, effort and patience.

One the most essential knowledge gained from this project is the teclmique on

problem solvmg. l was also able to practice my skill in programming Visual C+l

language and gain a sufficient knowledge on bow to build a stmple codmg for

pathfinding, how the A • algorithm works to search for the shortest path and a lot more.

Thts proJect has helped me a lot in recogmzmg my poor skill in time

management, project management and communication. These expenences and

knowledge gained would certainly help me to manage and organize any future project

and will make me become a better programmer besides a better person.

89

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

&

BIBLIOGRAPHY

Univ
ers

ity
 of

 M
ala

ya

References

Books and Research Documentuion

Transportation Research Record 845 :Transportation System Management and Parking.

'l ransportation Research Board, National Research Counctl. ~ational Academy of

Sc1ences. Washington, D.C., 1982.

Judea Pearl. (1984). Heunstics - Intelligent Search Strategies for Computer Problem

Solving. Addison-Wesley.

Alan Bundy. (1997). Artijic1al lntellif{ence Techniques. 4th revised ed. Sponger-Verlag,.

Doran, .1. and Michie, D. (1966). Experiments with the graph traverser program. Proc.

Royal Society of London, 294(A) . 235-259

Elaine Rich & Kevin Knight. { 1991). Art{ficiallntelltJ?ent. t"1 Ed. McGraw-Hill.

Peter E. Hart, Nils J. Nilsson & Bertram Raphael. (1968). A Fonnal Basis for the

Heuristic Determination of ~inimum Cost Paths IEEE Transactions on S} stem

Sciences and Cybernetics, SSC-4(2) : 100-l07.

Thomas A. Standish. (1995). Data f:itmcrures, Alf{onthms & Software J>rinctple: .. m C.

Addison Wesley.

Robert Sedgewick. (1988). Algorithms. Addison-Wcslt.')'.

Jacob Shapiro, Jerry Waxman & Dany Nir. (1992). Level Graphs and Approxtmate

Shortest Path Algorithm. Networks, vol. 22, pp 691-717. John Wiley & Sons Inc.

James W. Lark, Chelsea C. White & Kirsten Syverson (1995) A Best-First Search

Algorithm Guided by a Set-Valued Heuristic. IEEE. S}stems. Man and Cybernetics, \OJ.

25, no. 7, pp. 1097-1101.

Univ
ers

ity
 of

 M
ala

ya

Chai. Ian & White. Jonathan Davtd. (2002). StrocturmK Data & JJwldinK Algor~thms.

McGraw-Hill.

Ocitcl. Harvey M. & DeiteL Paul J. (2003). C HoM To Program. 4lh F.d . Prentice Hall.

.Journals and Articles From The Internet

-
Jagdev Singh Sidhu & Pau1ine S C. Ng. ·'MAA : Five percent vehicles sales growth

within reach" . Star Online.

" Amifs Thoughts on Path Finding and A·Star'' .

(URL- ~nt=m~==~========~==~====~~==~·

Patrick Lester. "A • Path Findings for Beginners".

"System Reqwrements To Use Mtcrosoft Visual Studio 6.0".

(URL- h'"'

28/08/2004.

"What's New m Vtsual C · · Verston 6.0''.

Microsoft Foundation Class Library (MFC).

(URL- nttp

28/08/2004.

''High-Level Languages".

(URl - !!llP """ \" lmum eb com tcchtalkforum tlu cad 1729 html)

(URL:~\\ "'' dnt11wcl> com lcchl11lkfimnns. shm' thread php?t 8908&goto HcxtncYt

~) 28/08/2004.

Univ
ers

ity
 of

 M
ala

ya

Lim, Audrey. "The Truths About Malaysians''.

(URL: !!lllL \'"''' thuu.!.sasmn.com goto amcte .1111cle 1872 hunt), 30 08'2004.

A • Algorithm Pseudocode.

NARPAC. lnc. Robotic Parking (National Association To Restore Pride ln A.menca's

Capital)

(URL http WW\\ narpac Ot!.!f~IETROPRK I IT\1 •obotic), 1/09/2004.

Pathfinding : A Comparison of Algorithms.

(URL: ."' 1\\\\\X~_gut~u" 1hm nt:: gei'Pre\gel hunt _IocU5l43578),

l /09/2004.

Patrick l,cster. Heuristic:> and A* Pathfinding.

Graph algorithms.

Search algorithms.

Genetic Algorithms.

(URL : llllJ!: em. cto~m thefreedtcttonarysom Genettc0 020Al!wuthm:s), 4/09'2004.

Hill climbing.

Pathfinding usmg the A star method.

(URL: hltJ)" \\W\\ hl:lll-onhm; de ho~o;d<ti011lCslllathdoc mdcx hti:tl), 6/09/2004

Thomas Grubb's Delphi Pathfinding demo.

(URL : ilrtp. '"' ".11 vt:t softet' g.~.:uw um~ nloads.htm), 6/09/2004.

Univ
ers

ity
 of

 M
ala

ya

A* algorithm tutorial.

James Mauhews A • for the Masses.

(URL :~nt~IP~~~~~~~============~~

(URL :~ht~tJ~)~~~~~~~=====~~==~~-==

Short Descnption of A*. .
(URL : IIIIJl W\HV-cs-smdent'\ stan ford cdu amitp Article~ AStar5 html), 19/07/2004.

Beginners Guide to Pathfinding Algorithms.

(URL: http://at-deoot.com/Tutonal!PathFinding.html), 21/07/2004.

Problem Description.

(URL : http.//ai-dcoot.com/BotNavigation!Path.html), 21 10712004.

Patrick Lester. Heurisncs and A • Pathfindmg.

(URL : Jlup. \Hl \\ IJUII~ cliOiillldC On!, -dlH~;;o tMlrtStlCS.htm), 25/07/2004.

Patrick Lester. Using Binary Heaps in A* Pathfinding.

James Matthews. A* Explorer Vers10n 2.0 (16th July. 2002).

(URL: hill'· V.\\ \l.g<:nc:~et\allllj.uiU }, 3/1/2005.

Univ
ers

ity
 of

 M
ala

ya

Bibliography

Tee Wee Jing. (2002). A Gene11c Algonthm SolutiOn to 1he Shortest Path Problem In

OSPF & MPLS. Master TI1esis. University of Malaya.

Wan lloong Thai. (May, 2002). Using A* Algorithm For Solving Optimal Path

Problem In Road Network. Master lbesis. Universtty of Malaya.

Vikneswaran Veerasam> (2003). lnJtdltgenl Mup Gwder. BSc Thesis. University of

Malaya.

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A:

USER MANUAL

Univ
ers

ity
 of

 M
ala

ya

User Manual

A - Installation Manual

In order to use the simulator, the minimum requirements of your computer are:

• Windows 2000 and above

• Microsoft Visual C++ 6.0

• MSDos prompt windows

B- How To Use The Simulator of Shortest Path Using A-Star Algorithm

1 - Open the Microsoft Visual C++ 6.0 application and then open the fmdpath.dsw

workspace file from a fmdpath folder.

Recent fie$

RecentWO[I<spaces • I========================~

0 , .
'• Start ~ll,;err>'l.,r~HI·MIO•··. r.h_••-•·•At':l. J.,•·:~+ /. F: i;) '7 (0

.,. • •l•~'r1

Univ
ers

ity
 of

 M
ala

ya

------- - ~ - --
·. Mk:rotofl Vf5ual C•+ - dl . X

File name: I finQ:>ath

';.;:::=====1 ne. ot type: lwakapac:M (.ckw;.~J

-- ·

Open

•• start g User~·~nu~l. f·\Jcro ~-1·•• .,, ·t• •, t•-•J1 •.++ / .• ; lfl ':' < • .,, • ~.)~ ,.,

2 - There are three files in findpath.dsp project : fmdpath.cpp, stlastar.h and fsa.h.

Choose the fmdpath.cpp files by double-click on the file.

· finrlp<1t h · Microsoft Vis unl C • • I findp.ttlu:pp) 1-:-'1 d'l l!x"l

-·

///////////// /////////////////////// / / /// / ////////

// STL (Standard Teaplate L1brary) A* Search Iaple •

// F1nd1ng a path on a s1aple gr1d aaze of parking
// This shows how to do shortest path find1ng us1n
//////////////// ////////////////////////// ////////

l1nclude "stlastar . h"

linclude <iostreaa h >
l1nclude <stdio .h>

// Include <algoritha>.<se

// Activate debugg1ng for programmer conven1ence t
ldef1ne DEBUG_LISTS 1
I ehne DEBUG LIST LENGTHS ONI.Y 1

•

I I start g UserM'lnu-31 fvltoru r.r,j •. ;rh rlt·····:·:·'' /. p; lfl ": < < ., , • • ·II r-r-1

Univ
ers

ity
 of

 M
ala

ya

3 - To compile findpath.cpp, you either can go to Build menu and choose Compile

fmdpath.cpp option, or press Ctrl+F7, or press Compile (Ctri+F7) button on the

upper-right side Microsoft Visual C++ 6.0 application.

· lindJhllll Microsoft Vis odl C • • flimlpdtll.(: pp] 1-: II ri!l~l

Batch~ . ..

Cl!lan

F7

Start Q.ebuo •

DebuQoer Remote CO[lflectiOn.,,

f E;s.ec:U:e f~h.exe ctri+F5

s1mple grid •aze of park1ng
shortest path f1nd1ng us1n

///////////////////////////

//Include <algor1thm>.<se

or progra.mer conven1ence t

· findJhllh Microsoft Vis utll C• • {findpdlh.c pp) 1-:-ll~lig!

~ ae ~dlt 11eW tnsert froject ~ roo1s ~ tteiP

~ ~ liJ all IQ

J (Giobab)

•

,//////////////////////////////////~(~l~/

// STL (Standard Teaplate L1brary) A•~~~. e •

// F1nd1ng a path on a s1aple gr1d aaze of park1ng
// Tb1s shows how to do shortest path f1nd1ng us1n
//

#1nclude "stlastar . h"

#1nclude <1ostreaa . h >
#include <stdio h >

// Include <algor1tha>.<se

// &ct1vate debugg1ng for progra•mer conven1ence t
ldef1ne DEBUG_LISTS 1
I ef1ne DEBUG LIST LENGTHS ONLY 1

c 5 ,.,..,,.,, IW I
the file

Univ
ers

ity
 of

 M
ala

ya

4- After compile the program, you will get this result if there's no error in code

program.

~ fJo ~dlt ~ 1riSert froject euld

I ~ ~ liil CJ1 &lib

J (Giobalt)

tJ!. J

/ //

// STL (Standard Template L1brary) A• Search IMple •

// F1nd1ng a pat h o n ~ a1aple gr1d a a z e o f park~ng
// Th1~ s hovs hov t o do ~hortest patb f1nd~ng us1n
///////////////// ////////////////////////////////

#1nclude "stlas tar . h"

#1nclude <1ostreaa . h >
#include <stdio. h >

//Include < ~lgor1tha>.<se

// Ac t1vate debugg1n9 for progra•aer convenience t
#def1n~ DEBUG_LISTS 1
ldef1ne DEBUG LIST LENGTHS ONLY 1 ~

5 - To build fmdpath.cpp, you either can go to Build menu and choose Build

fmdpath.exe option, or press F7, or press Build (F7) button on the upper-right side

Microsoft Visual C++ 6.0 application.

· liiHIJMih Mir.rus nfl Vis u .•l C • • [finrlp.tlh. cppJ 1:- II~ II"X I

-,....,_.----~---,--.. -
WOikcpace 'findpath': 1 Plciocl
l/i}1l findpath ,.
~ findpath.cpp
[mlta.h
.m .uaatar.h

Start Qebuo •

Debuooer Remote CO[YleCtlon •• •

! ~~· ~.exe Ctrl+f'5

Set Active Cg-/IQUratlon ...

..
s imp le gr~d maze of park1ng
shortest path f1nd1ng us1n

///////////////////////////

// Include <algor1tha >.<sc

conven1ence t.

Univ
ers

ity
 of

 M
ala

ya

·. findpath- Microsoft Visual C• • - [findpath.cpp] l-llc:J11l.8:1
~ Eile !;.dit :iiew J.nsert eroject

~

\II Ofkspace 'fndpalh': 1 Pfoiect
~ i)1l r~ fie•

l
f~h.cpp
f~.h

stlastar.h

// F1nd1ng a path on a s1mple grid •aze of parking
// This shovs hov to do shortest path finding usin
////////////// / / //////////////////////////////////

#include "s tlastar . h " // Include <algor1tha>.<se

l1nclude <i ostreaa . b >
#include <stdio. h >

// Activate debugging for programmer conven1ence t
#define DEBUG_LISTS l
#define DEBUG LIST LENGTHS ONLY 1

..
- 0 error(s). 0 varn1ng(s)

6- After build the program, you will get this result if there's no error in code program.

· findpath Microsoft Visual C• • [findpdth.r:pp] 1- !I~ 11?(1

J (Glob.*)

..
// F1nd1ng a path on a s1aple gr1d aaze of park1ng
// This shovs bow to do shortest path find1ng us1n
/////////////////////// ///////// //////// //// / / ////

linclude "stlastar .h " // Include <algorithm >.<se

l1nclude <iostreaa h >
l1nclude <stdio h >

// Act1vate debugging for prograaaer conven1ence t
ldet1ne DEBUG_LISTS 1
ldef1ne DEBUG LIST LENGTHS ONLY 1

ug ..
- 0 error(s). 0 warni ng(s)

Univ
ers

ity
 of

 M
ala

ya

7 - To run/execute fmdpath.cpp, you either can go to Build menu and choose Execute

fmdpath.exe option, or press Ctri+F5, or press Execute Program (Ctri+F5) button

on the upper-right side Microsoft Visual C++ 6.0 application.

· findpt~lh Microsoft Vistrtll C• • £fimJpt~lll . t:pp) 1_-_ll~liXI

~ file ~dlt ~w Insert froject I1Uid Iools ll!'lndow l:1elp

~ ~ e ~ "omple ~.Q)p Ori+F7

F1
..

~~.exe

iJ I ~ global men' 6:!5 B.ebulld AI

Batch 9ylld .. .

do,an

Start D!ebug •

Debuooer Remote Cou-:tlon . ..

///////////////////////////

te L~brary) A• Search Iaple ..

s~aple gr1d Maze of park~ng
shortest path f1nding us1n

///////////////////////////

//Include <algoritha>.<se

or prograaaer conven1ence t

1

ug

f~ndpath . eze - 0 error(s). 0 varni ng (s)

· findpath Microsoft Visual C • • (findpcJth .c pp) 1- II~ r5<"1

J (GiobM)

Execut the ...

// F~nd1ng a path on a s1aple gr1d •aze of park1ng
// This shows how to do shortest path f 1nd1ng us1n
//

~include "stlastar . h "

#1nclude <iostreaa . h >
#1nclude <stdio h >
I

//Include <algorithm>.<se

// Act1v~te debugg1ng for prograaaer conven1ence t
#def1ne DEBUG_LISTS 1
#define DEBUG LIST LENGTHS ONLY 1

ug

- 0 error(s) . 0 warning(s)

Ln 12. Coil

·. start ~U5.:r l brru~I·M..:ro5o:• ''''"I·>'' .• , rr. /. v; IIU ": < -~ r·r1

Univ
ers

ity
 of

 M
ala

ya

8- After run/execute the program, you will get this result if there's no error in code

program when you compile and build the program before.

9 - Press 1 if you want to enter the program or press 0 if you want to exit from the

program.

Univ
ers

ity
 of

 M
ala

ya

10- Enter value ofcolumn-xfor start node.

11 - Next enter value of row-y for start node.

Univ
ers

ity
 of

 M
ala

ya

12 - Then enter value of column-x for end node.

1
• Start ~ UsctManual-. .. ·. ftndpath • f\1i.. "[• Horo•Jp~th\ ': ' (3:18 P1·1

13 - Now, enter value of row-y for end node.

Univ
ers

ity
 of

 M
ala

ya

14 - When you press enter, you will get this result.

- --
r, Sta/t i;l U$'.'t1'1~nual-- · ttnd~th- Mt.. "I ,,,r .. j~nth", ': "(-1 PM

15 - The code program will evaluate and search for shortest path and show each step of

searching using A • algorithm, the open and closed list activities, each node

position in shortest path, number of solution steps and search steps taken.

Univ
ers

ity
 of

 M
ala

ya

16- To exit from the program, press 0 and enter. You will go back to the findpath.dsw

workspace in Microsoft Visual C++ 6.0 environment.

17 - Save the fmdpath.dsw workspace file by going to File menu and choose Save

Workspace.

· fiudpath Mir:rn!:oll Vis u o l C • · lfinriJI<t l h .c ppf /-:_ 1/C'P ilx/
I ~ E.lle ~dlt Y)ew l,nsert eroject ~ Iools ~ ~

Jl ~ ~ fieW... Ctri+N "' I nu- Gjl; Q.pen... ctrt+o
..

Jl :::: !Jose

Open Workspace •• .

dose Worl!,space

Iii :iave Ctri+S

Save fa$.. •

eli Save AI

Page Set\P ...
• er;nt... Ctti+P

Recent: flies

// F1nd1n9 a path on a s1•ple gr1d aoze of park1n9
// Th1s shows how to do shortest poth f1nd1n9 us1n
//////////////////'/'/////////////////////////////

#1nc!ude "st1astar . h "

#1nclude < iostreaa h >
#1nclude <stdio. h >

// Include <c1gor1th•>.<se

// &ct1vate debugg1ng for progra•aer conven1ence t
#define DEBUG_LISTS 1
6 ef1ne DEBUG ~IST LENGTHS ONLY 1

varn1ng(s)

Univ
ers

ity
 of

 M
ala

ya

18- Exit (close) from the Microsoft Visual C++ 6.0 application, go to File menu and

choose Close Workspace option and Exit option.

error(s}, 0 warn1ng(s)

id ~!~~ Of D•~kinq
poth f~nd1ng us1n _ .. , ///////////////

<alc;or1tha> <se

· Micr01:oll ViGII<il C • • f;]fd11~l

P~setyl •••

• 8'tt·.. ctri+9

R.cent~

.s Recent~ • ~==========================~
.II

Univ
ers

ity
 of

 M
ala

ya

APPENDIXB:

FINDPATH CLASSES

Univ
ers

ity
 of

 M
ala

ya

II findpath.dsw classes

1- AStarSearch< class UserS tate> --> in stlastar.h header file

2- FixedSizeAllocator<class USER TYPE> --> in fsa.h header file

3- MapSearchNode - > in tindpath.cpp file

4- GLOBALS (m findpath.cpp file) :

- GetMap(int x, int y)

- main (int argc, char •argvO)

- map

/IIIII II I II II II I Ill I Ill /Ill Ill/ I I 11111111 Ill I /IIIII/ Ill I II /111/111 I II I IIIII/II /Ill II I II IIIII I 1111111111111111/1 II II I 1111111/ I II I

AStarSearch<class lJserState>

1- HeapCompare_f

- operator() (canst AStarSearch<UserState>:Node •x, const

AStarScarch<UserStatc>:Nodc *y)

2- Node

Member functtons : Node()

Data members : child

(6) f

g

h

m UscrState

parent

Univ
ers

ity
 of

 M
ala

ya

- Member functions (23):

- AddSuccessor(UserState &Stare)

- AllocateNode()

- AStarSearc.:h(int MaxKodcs- 1 000)

- CancelSearch()

FreeAllNodes()

- FreeNode(AStarSearch<UserState>:Node *node)

- FreeSolutionNodes()

- FreeUnusedNodes()

- GetClosedLtstt-.;ext(float &f, float &g, float &h)

- GetClosed.ListNext()

- GetClosedListStart(float &f, float &g, float &h)

- GetOosedLtstStartO

- GetOpenLtstNext()

- GetOpenListNext(tloat &f, float &g, tloat &h)

- GetOpenListStart()

- GetOpenListStart(float &f, float &g, float &h)

- GetSolutionJ::nd()

- GetSolutionNext()

- GetSolutionPrcv()

- GetSolutionStart()

- GetStepCount()

- SearcbStep{)

- SetStartAndGoalStates(UscrStatc &Start, UscrStatc &Goal)

Univ
ers

ity
 of

 M
ala

ya

- Data members (/ 4) :

- iterDbgClosed

- iterDbgOpen

- m Allocate odcCount

- m _ CancelRequest

- m ClosedList

- m C'urrentSolutionNode

- m FixcdSi/eAllocator

- m_FreeNodeCount

- m Goal

- m_Openlist

- m Start

- m State

- m Steps

- m_Successors

Ill I IIIII II I I I I I Ill! I IIIII I IIIII/ IIIII II I IIIII/ Ill Ill I Ill I II II I II Ill/ I II I II I I II I I I II I I I I II //IIIII I I Ill I II Ill Ill II II I /Ill I I I I I Ill

FixedSizeA lloca tor<class USER_ TYPE>

- Member functions (7) :

- aUoc()

- Debug()

- FixcdSiLcAIIocator(unsigncd int MaxEicments FSA_OEFAULT_ SIZE)

- - FixedSizeAllocator()

- free(USER TYPE •user data)

- Getfirst()

- GctNcxt(USER_TYPE *node)

Univ
ers

ity
 of

 M
ala

ya

- Data members : m MaxElements

(4) m pFirsthee

m _pFirstlJsed

m_pMemory

l- FSA ELEMENT

- Data members : pNext

(3) pPrev

LserType

Ill /IIIII Ill II Ill II I Ill/ 11 /Ill /llllll//lllllllllll/11111/11/111 I /ll/lll/11111111111/

MapSearcbNode

- Member functtons (8) .

- GetCost(MapSearchNodc &successor)

- GetSuccessors(AstarSearch<MapSearchNode> *astarsearch, MapSearchNode

*parent node)

- GoalDistanceEsumate(MapSearchNode &nodeGoal)

- TsGoal('vtapScarch 'ode &nodcGoal)

- IsSameStateMap(MapSearchNode &rhs)

- MapSearchNode()

- MapSearchNode(unsigned mt px. unsigned tnt py)

- Print\Jodcfnfo()

- Data members : x

(2) y

I I/11/IIII/IIIIIIIIIIIIIIIIIIIIIIII/111/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJIIIIIIIIIII/1 I IIIII I 11/11111 1/11/lllllllllllll/lll/lll/11

Univ
ers

ity
 of

 M
ala

ya

APPENDIXC:

PROJECT SCHEDULE

-GANTT CHART

Univ
ers

ity
 of

 M
ala

ya

PROJECT SCHEDULE FOR SIMULATION OF SHORTEST ROUTE USING A• ALGORITHM

ID I Task Name Duration Jun 21, '04 Jul19, '04 A\!916, '04 Sep 13, '04 Oct 11, '04 Nov8, '04 Oec6, '04 Jan 3, '05 Jan 31, 'OS Feb28,
0 M F T s w s T M F T s w s T M F T s w s T M F T s

1 ..,.. Preliminary Investigation 9days

7/1 ~1

2 ..,.. Problem Analysis 20 days
7/10 1

3 ..,.. Simulation Requirement 9days ,.
Analysis

7/28 ~1

4 ../ System Analysis 28 days:
817

5 ..,.. Design Simulation 28 days Y:
9/4 10/1

6 ..,.. Simulation Development 100 days
:X

10/2

7 ..,.. Simulation Testing 30 days
1/10 2/8

-·

8 ..,.. Dascussion/Conclusion 21 days 1
219 3/1

I

9 ..,.. Documentation 244 days 244 days
7/1 311

Task I I Milestone • External Tasks
PROJECT START Thu 7/1/04 • • EXPECTED PROJECT END · Split I I I

Summary External Mtlestone +
Tue 311/05 • • Progress ProJect Summary Deadline

Univ
ers

ity
 of

 M
ala

ya

