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ABSTRACT

This study looks at two problems related to the robust variable selection in linear regres-

sion models with six objectives in mind. The first three objectives are concerned with

the problem of selection variables in small data sets in a linear regression model. The

first is the investigation of the robustness of various best variable selection criteria in the

presence of outliers and leverage points in the data set. The second derives the influence

function of AIC, Cp, and SIC criteria and discussed the properties of these functions.

The third is to explore the role of two robust methods for selecting the best variable in the

linear regression.

The first approach considered is a modified version ofAIC, Cp, and SIC statistics by

utilizing the high breakdown point estimators of the regression model. The other methods

are based on diagnostic regression approach using outliers and leverage diagnostics in re-

gression model procedures. For each method, the power of performance is compared with

classical non-robust criteria and the existing criteria, based on M -estimation. In general,

our findings show that these criteria are capable of selecting the appropriate models in the

presence of outliers.

The following three objectives look at the development of LASSO variable selection

regression to solve the problem of multicollinearity and large data in variable selection

procedure. The fourth is to investigate the sensitivity of non-robust LASSO (LASSO

and adaptive-LASSO) and robust LASSO (LAD-LASSO and Huber-LASSO) toward

the existence of outliers and leverage points in the data. The fifth looks at extending

the Huber-LASSO to include more robust estimators. We present the GM -LASSO

and MM -LASSO methods. If the multicollinearity does exist, we use the idea of the
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LASSO regression analysis to find the best variable in the model. The performance of

these methods has also been compared with classical non-robustLASSO, and the existing

robust LAD-LASSO and Huber-LASSO are generally good. The final objective is to

prepare a new LASSO method based on diagnostic regression approach.
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ABSTRAK

Kajian ini menyelidiki dua masalah berkaitan dengan pemilihan pembolehubah teguh

dalam model regresi yang berdasarkan enam objektif. Tiga objektif pertama melibatkan

masalah pemilihan pembolehubah dalam data set kecil bagi suatu model regresi linear.

Yang pertama adalah menyelidiki keteguhan berbagai kriteria pemilihan pembolehubah

terbaik dalam kehadiran nilai-nilai terpencil dan titik-titik tuasan dalam sesuatu data set.

Yang kedua adalah mendapatkan fungsi pengaruh bagi kriteria AIC, Cp, dan SIC dan

membincangkan ciri-ciri fungsi tersebut. Yang ketiga bertujuan untuk meninjau peranan

dua kaedah keteguhan untuk memilih pembolehubah terbaik dalam regresi tersebut.

Pendekatan pertama yang dipertimbangkan adalah versi statistik AIC, Cp dan SIC

yang diubahsuai dengan menggunakan penganggar musnah tinggi model regresi yang

terpilih. Kaedah lain berdasarkan pendekatan diagnosis regresi menggunakan diagno-

sis nilai terpencil dan titik tuasan dalam prosedur model regresi. Untuk setiap kaedah,

kuasa prestasinya dibandingkan dengan kriteria klasikal tidak teguh dan kriteria sedia

ada, berasaskan M -estimation. Secara keseluruhan, hasil kajian ini menunjukkan kriteria

tersebut mempunyai keupayaan memilih model yang sesuai apabila terdapat nilai-nilai

terpencil.

Objektif ketiga yang berikut melihat pembangunan pemilihan pembolehubah regresi

LASSO untuk menyelesaikan masalah kekolinearan berganda dan data berdimensi be-

sar dalam prosedur pemilihan pembolehubah. Yang ke empat adalah untuk menyelidiki

sensitiviti LASSO tidak teguh (LASSO dan adaptive-LASSO) dan LASSO teguh

(LAD-LASSO dan Huber-LASSO) terhadap kehadiran nilai terpencil dan titik tuasan

dalam data. Yang ke lima melihat cara untuk memperluaskan kaedah Huber-LASSO un-
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tuk merangkumi penganggar-penganggar yang lebih teguh. Penyelidik membentangkan

kaedah GM -LASSO dan MM -LASSO. Jika terdapat kekolinearan berganda, penye-

lidik menggunakan idea analisis regresi LASSO untuk mendapatkan pembolehubah pal-

ing baik dalam model tersebut. Prestasi kaedah-kaedah tersebut telah dibandingkan den-

gan LASSO klasikal tidak teguh, LAD-LASSO teguh dan Huber-LASSO yang sedia

ada, dan didapati memuaskan secara keseluruhan. Objektif terakhir adalah untuk meng-

hasilkan kaedah LASSO baru yang berdasarkan pendekatan diagnosis regresi.
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CHAPTER 1

OVERVIEW

1.1 Introduction

1.1.1 Background of the Study

Linear regression model analysis is the most widely used statistical technique that deals

with linear and additive relationships between variables. This model usually applies un-

der an assumption of independently, identically, and normally distributed errors. In many

situations, the main purpose of fitting a regression equation is to predict the response

variable. If the number of predictor variables is large and the number of observations is

relatively small, fitting the model using all the predictors will yield poorly estimated coef-

ficients, especially when predictors are highly correlated. More precisely, the variances of

the estimated coefficients will be high and therefore the forecasts made with the estimated

model will have a large variance, too. A common practice to overcome this difficulty is

to fit a model using only a subset of variables selected based on statistical criteria.

In order to deal with this key issue, various variable selection techniques have been

proposed that are able to select important variable in regression data analysis. Among

those are spawning methods such as F tests for nested models, Akaike information crite-

rion (AIC), Mallows Cp, exhaustive search, stepwise, backward, forward selection pro-

cedures, cross-validation, and Bayesian information criterion (BIC). This study focuses

especially on penalized-likelihood criteria like AIC and BIC, or Cp as rather common
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techniques. Although these methods perform well only in small sample, for large data

sets LASSO regression method are considered.

1.1.2 The Linear Regression Model

Let yi denote the response variable and Xi the p explanatory variables. Suppose that, we

have data set {(Xi, yi)}, where, Xi = (xi1, ..., xip)T , i = 1, ..., n consists of p explanatory

variables for the ith observation vector of explanatory values and yi the ith response value.

The linear regression model makes the following assumptions:

Assumption 1: a linear relationship between Xi and yi is:

yi = XT
i β + εi, (1.1)

where, εi = (ε1, ..., εn) are the errors.

Assumption 2: the errors are independent and normally distributed with mean zero and

constant variance σ2, εi ∼ N(0, σ2).

Assumption 3: yi ∼ N(XT
i β, σ

2).

The most popular way of estimating β in Eqn. ( 1.1) is to minimize the ordinary least

squares (LS) criterion,
n∑
i=1

(yi − XT
i β)2, (1.2)

which yield the estimator, β̂LS = (XTX)−1XTy, where X is as n × p matrix whose ith

row is Xi with full rank p, and y is the response vector as follows,

2

Univ
ers

ity
 of

 M
ala

ya



X =



x12 · · · x1n

x22 · · · x2n

... . . . ...

xp2 · · · xpn


, y =



y1

y2

...

yn


.

Uses of Regression Equation

The general goal of regression analysis is to identify the relationship between observed

variables based on numerical data. All of the available variables cannot be used automati-

cally, because the magnitude of var(ŷi) is influenced by the number of applied regressors.

In addition, the var(β̂) will increase, as the number of regressor increases. Consequently,

the actual subset of regressors that should be used in the model needs to be determined

for making proper influence on the data.

Lacking selection of an appropriate subset of regressors for the model, causes the fol-

lowing problems: (1) exclusion of important variable, which impacts the misspecification

of the model (the least square estimate is the biased estimate, the large variance is proba-

bly a biased estimate, and the variance of predicted value is large) and the coefficient of

multiple determination gives very small value. (2) inclusion of unnecessary variables that,

consequently increases the mean sum of square error, the coefficient of multiple determi-

nation gives very small value, and lead to multicollinearity problem. In view of these, it

is necessary to show the effect of under or over fit on LS estimation.
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1.1.3 The Effect of Under Fitting on LS Estimation

Assume that, the true model for n-vector of observations is of the form:

y = x1β1 + x2β2 + ε, (1.3)

where, x1 and x2 are two matrices of size n × p and n × q, respectively, and β1 and β2

are vectors of size p and q, respectively. However, let the model fit to the data takes in the

reduced form: y = x1β1 + ε. Then for the reduced model, the LS estimators for β1, and

σ2 are: β̂1R = (xT1 x1)−1xT1 y, and σ̂2
R = yT (I−H)y/(n−p), where, H = x1(xT1 x1)−1 xT1 .

The expected value of the estimated parameter vector is: E(β̂1R) = (xT1 x1)−1xT1E(y) =

β1 + (xT1 x1)−1xT1 x2β2 6= β1, where, E(y) = x1β1 + x2β2. And the expected value of the

estimated error variance is: E(σ̂2
R) = σ2 + βT2 xT2 (I −H)xT2 β2/(n− p) ≥ σ2.

Finally, the mean squared error for β1R is: MSE(β̂1R) = var(β̂1R) + bias(β̂1R)2 =

σ2(xT1 x1)−1 + Aβ2β
T
2 A

T , where, A = (xT1 x1)−1xT1 x2 > 0.

Thus, the following properties are summarized:

• β̂1R is a biased estimate of β1 and ŷR is a biased estimate of E(y) unless the true

regression coefficient for each deleted variable is zero (β2 = 0 ) or in the case

of β̂1R, each deleted variable is orthogonal to the other retained variables ( x1 is

orthogonal to x2 or both ).

• σ̂2
R is biased positively, unless β2 = 0.

• MSE(β̂1R) is a positively biased estimate of σ2, unless the true regression coeffi-
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cients for all deleted variables are zero.

1.1.4 The Effect of Over Fitting on LS Estimation

Suppose the true model for the n-vector of observations is of the following reduced form:

y = x1β1 + ε. (1.4)

However, suppose the model fits to the data in the following full model form: y = x1β1 +

x2β2 + ε. Thus, there is an over fit model. Let the LS estimators of the parameter vectors

for the full model be: β̂1F and β̂2F ; and β̂1R is the estimator for the reduced model, then

the relationship between the estimates are: β̂1F = β̂1R − Aβ̂2F and β̂2F = (xT2 (I −

H1)x2)−1xT2 (I − H1)y, where, E(β̂1F ) = β1 and E(β̂2F ) = 0, (for reduced model true)

E(σ̂2
F ) = σ2. Then, the consequences are:

• Unbiased estimators of model parameters,

• Loss of precision, due to fitting the wrong model: var(β̂1F ) ≥ var(β̂1R).

Finding an appropriate subset of variables for the model is called "variable selection prob-

lem". This problem fits a model using only a subset of variables selected according to

some statistical criteria. The details of the selection criteria are given in the next section.

1.1.5 Subset Selection Criteria

Why is Subset of Variable Selection?

Variable selection is an important topic in linear regression analysis. At the initial stage

of most applications of regression, one may be uncertain about the exact structure of the

model. It may be unknown that whether all of the explanatory variables are really neces-

sary and which of them affects the response variable.
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However, many of the variables may have little effect on the response. Therefore, vari-

able selection aims to build a regression model with appropriate set of regressors. This

model has as few predictors as possible and with a good fit. Typically, simple models are

desirable regarding their potential to improve the prediction accuracy of the fitted model.

Furthermore it is easy to enhance interpretability of a simple model and accelerate its

learning process.

This research aims to study the variable selection problems in linear regression model

for two types of data sets;

(i) small data sets (when p is small and p ≤ n)

(ii) large data sets ( when p is large and/or p > n)

Various classical variable selection criteria are suggested when the number p of variables

is small. For example, Hocking and Leslie (1967), Miller (1984) elaborated the compu-

tational algorithms for selecting subset of regression variable in linear regression models

and investigated the LS criterion.

In most of the classical selection criterion computing for possible subset P of the pre-

dictors, which is the number of P for each model is equal to 2p− 1. Therefore, due to the

inversion of XT
i Xi, these classical variable selection criteria require p ≤ n.

There are large data set with large number of p or a number of variables that far out-

strip the number of observations. For example, DNA microarray data is time-consuming

to collect per subject, but often yield thousands of variables (genes). An example of a
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typical study is the well-known analysis of prostate cancer patients by Singh et al. (2002).

On the other hand, if the number of p is large, the number of P dramatically increases.

For example, if there are 10 independent variables available for selection, then there are

210 − 1 = 1, 023 possible models to be evaluated. This makes the best subset selection

methods to be computationally complicated.

In sparse high-dimensional modeling, it is assumed that most parameters are exactly

zero, that is only a few predictors contribute to the response. In this study, the objective of

variable selection is to identify important predictors with nonzero regression coefficient

that give accurate estimates of those parameters.

Hoerl and Kennard (1970) were the pioneers to investigate the ridge regression prob-

lem with correlated coefficients in regression models. In fact, ridge regression modifies

LS estimators into:

β̂ridge = arg min
β

[
n∑
i=1

(yi − XT
i β)2 + λ

p∑
j=1

β2
j

]
, λ ≥ 0. (1.5)

Ridge regression shrinks the coefficients, but does not select variables because it does not

force coefficients to be zero. That is why it is not considered as a method for variable

selection.

Tibshirani (1996) proposed the ’LASSO penalty’, a regularization technique for si-

multaneous estimation and variable selection for large data sets. The LASSO estimators
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are defined by:

β̂LASSO = arg min
β

[
n∑
i=1

(yi − XT
i β)2 + λ

p∑
j=1

| βj |

]
, λ ≥ 0, (1.6)

where, λ ∈ [0,∞] is the LASSO tuning parameters.

1.1.6 Outliers in Linear Regression

The outlier is a common problem in the statistical analysis. It is defined as an observation

that is very different to the other observations in a set of data. Beckman and Cook (1983)

and Barnett and Lewis (1994) defined an outlier in a set of data to be an observation (or

subset of observations) which appears to be inconsistent with the remainder of that set

of data. It is a prevalent practice to classify between two types of outliers. Outliers in

response, often referred to as vertical outliers and outliers with respect to the covariates,

X are called leverage points.

However, it is important to note the disparity between two types of leverage points:

bad leverage and good leverage point. A bad leverage point refers to a point that lies far

from the center of the covariates X̄i = (x̄1, ..., x̄p). A good leverage points are consistent

with the majority of the data. That is, both good leverage and bad leverage point promote

and reduce the precision of the regression coefficients, respectively.

Effect of Outliers on Regression Model

The presence of outlier has potentially serious effects on the LS estimation of the regres-

sion coefficients. Maronna et al. (2006) introduced the effect of outliers on LS estimation

in two ways: First, if yi replaced by y?i where, y?i = Ayi , which implies yi = A−1y?i ,

then the linear regression in Eqn. ( 1.1) can be rewritten as follows: A−1y?i = XT
i β + εi,
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thus, β̂(Xi, y
?
i ) = A−1β̂(Xi, yi). Second, if Xi replaced by X?

i , where X?
i = AXi. Then

Eqn. ( 1.1) can be rewritten as follows: β̂(X?
i , yi) = A−1β̂(Xi, yi).

1.1.7 Multicollinearity in Multiple Linear Regression

In some cases, the independent variables in a model might be near-linear dependence,

leading to a problem of multicollinearity. This problem will cause difficulty to assess

the relative importance of individual predictors from the estimated coefficients of the

regression equation. In some extreme cases, may fail to obtain the estimates; because

the matrix is close to being singular. Perfect multicollinearity occurs when correlation

between two independent variables is equal to 1 or -1. Mansfield and Helms (1982)

presented several indications of the multicollinearity problem including:

1. High correlation between pairs of independent variables,

2. Statistically nonsignificant regression coefficients on important predictors,

3. The extreme effect of the changes of sign or magnitude of regression coefficients

when an independent variable is included or excluded.

Effect of Multicollinearity

In studying the effect of multicollinearity on regression modeling, Hoerl and Kennard

(1970), and Swindel (1976) considered the unbiased linear estimation with minimum

variance or maximum likelihood estimation when the random vector, ε, is normally dis-

tributed giving the estimator in Eqn. ( 1.2) as the estimate of β. This gives the minimum

sum of squares of the residuals

SSE =
n∑
i=1

(yi − ŷi)2. (1.7)
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The properties of β̂ can be found in Scheffe (1999) for the case XTX is not nearly a unit

matrix. Hoerl and Kennard (1970) demonstrated the effects of the multicollinearity on the

estimation of β by considering the variance-covariance matrix

COV (β̂) = σ2
(
XTX

)−1

and the distance of β. From its expected value, say, L1 ≡ β̂ − β giving

L2
1 =

(
β̂ − β

)T (
β̂ − β

)
, (1.8)

with E [L2
1] = σ2tr

[(
XTX

)−1
]
, or equivalently E

[
β̂T β̂

]
= β̂Tβ + σ2tr

(
XTX

)−1
.

Using these properties, attempt to show the uncertainty in β̂ when XTX moves from a

unit matrix to an ill-conditioned one. If the eigenvalues of XTX are denoted by

λmax = λ1 ≥ λ2 ≥ ... ≥ λp = λmin > 0, (1.9)

then

E
[
L2

1

]
= σ2

p∑
j=1

1

λj
, (1.10)

and the variance when the error is normally distributed is given by

V ar [L1]2 = 2σ4

p∑
j=1

(
1

λj

)2

. (1.11)

Note that when the matrix XTX is ill-conditioned due to multicollinearity, then some of

the λj will be small. Hence, from Eqn. ( 1.10), the least squares estimates β̂ is farther

away from true parameter β and, from Eqn. ( 1.11), the variances of the least squares

estimator of the regression coefficient have larger values. Hence, proper handling of mul-
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ticollinearity problem is greatly needed.

To overcome these problems, Hoerl and Kennard (1970) and Breiman and Leo (1996)

proposed regression modeling by regularization techniques. The regularization methods

are based on penalty terms and should yield unique estimates of the parameter vector β.

Furthermore, an improvement of the prediction accuracy can be achieved by shrinking

the coefficients or setting some of them to zero. Thereby, regression models are obtained

that should contain only the strongest effects and those which are easier to interpret. In

the following section, an overview of some already established regularization techniques

is given.

1.2 Statement of the Problem

Data subjected to outliers are commonly encountered in applications, which may appear

either in response variables or in the predictors. In this case, the model selection method

based on LS estimator is reputed to be not efficient. It is due to the sensitivity of this

estimator to outliers and other departures from the normality assumption on the error dis-

tribution. With regard to this problem, a special variable selection method in analyzing

regression for contamination, small and large data sets is needed.

The robust variable selection methods have attracted the interest of both statisticians

and researchers. As a result, new robust variable selection methods have been developed

to overcome the problem with vertical outliers including robust versions of R2, RCp,

RFPE , RAIC and RSIC for data with small number of p. On the other hand, LAD-

LASSO and Huber-LASSO have been proposed for large data. All these robust criteria

based on objective functions define M -estimators for a parametric model.
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However, the challenge to reduce the effect of leverage points in variable selection

criterion has not received enough attention yet. In this regard, very few studies (such

as Tharmaratnam and Claeskens, 2013; Arslan, 2012) focused on the effect of leverage

points in variable selection criterion.

Tharmaratnam and Claeskens (2013) used S and MM -estimators on AIC criteria.

Alfons et al. (2013) suggested a noble method by introducing sparse least trimmed squares

(LTS) regression for analyzing large data sets. They believed that this model is capable

to control the impact of leverage point problem.

1.3 Contribution of Thesis

The objectives of this study are listed as follows:

• Variables Selection for Small Data Sets

1. To investigate the sensitivity of classical variable selections and robust vari-

able selection based on M -estimation in the presence of outliers and leverage

points in the data.

2. To propose a new procedure for robust variable selection, which may contain

high leverage points in the data set, and to study the influence function of

proposed method.

3. To suggest using a more robust estimate of scale in variable selection.

• Variable Selection for Large Data Sets

1. To investigate the sensitivity of non-robust LASSO (LASSO and adaptive-

LASSO) and robust LASSO (LAD-LASSO and Huber-LASSO) toward
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the existence of outliers and leverage points in the data.

2. To propose a new procedure to address leverage points problem and to study

its theoretical properties.

• To develop a new variable selection based on the diagnostic regression approach.

• In both cases, small & large data cases, we compare the performances of the meth-

ods using generated data. The experiences gained is the employed to real data sets.

1.4 Significance of the Study

The findings from this study will be beneficial in the following ways:

1. Contribute to the body of knowledge regarding the variable selection methods of

linear regression and detection of the effect of outliers.

2. Optimize the variable selection methods in linear regression models by derive of

influence function.

3. Contribute to the new methods that deal with leverage point and multicollinearity

problem and optimize the methods.

1.5 Research Outline

The present research is outlined as follows:

Chapter 2 reviews related literature on variable selection, on both small and large

regression data sets and robust procedures (estimation and diagnostic).

Chapter 3 establish the idea, the influence of outlier on variable selection criteria in

small sample is illustrated through a small experiment and real data sets. Finally, the the-
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ory of the LASSO and adaptive-LASSO variable selection for regression model based

on consistency and oracle properties has been discussed. As such, the advantage of pro-

posed methods over the breakdown point was discussed. Simulation study has also been

carried out to see the effect of leverage points on the robust variable selections methods

in large data set.

Chapter 4 presents the development of the new proposed robust variable selection,

for AIC, Cp and SIC criteria using high breakdown point estimate of scale, instead of

the classical scale, handling the leverage points problem in variable selection. The ro-

bustness of the proposed methods is studied through its influence function and gross-error

sensitivity. The performance of proposed criteria are illustrated through simulation and

real data set.

Chapter 5 presents the development of the robust LASSO regression model and the

treatment of leverage points problem in the linear regression models using GM and MM

regression approach. Simulation study and real data are used to illustrate the performance

of proposed methods.

Chapter 6 presents a variable selection methods statistic based on the idea of diag-

nostic tool statistic in linear regression that can be used to detect possible outliers in the

regression models. Via simulation, the cut-off points are obtained and the power of per-

formance is investigated. The statistic is then applied on simulation and real data sets.

Chapter 7 presents the summary of the study and the suggestion for further research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents the main subjects related to the topic of this study by reviewing

current literature. Since mid 90’s, studying robust variable selection in regression data

analysis became a mainstream focus area, particularly for the data sets with the smaller

number of independent candidate covariates, and for high-dimensional data sets. Both

these topics have been extensively studied in modern statistics. This chapter gives an

overview of variable selection methods, on both small and large regression data sets and

robust procedures.

2.2 Classical Variable Selection

2.2.1 Variable Selection Methods in Small Samples

The classical variable selection criteria such asR2, Mallow’s Cp andAIC are the popular

methods for selecting the best model and has widely been used in linear regression model.

However these criteria unfavourable when the number of explanatory variable is too high

due to multicollinearity that may exists in the data. Alternative to these classical variable

selection, criteria for large data sets are as discussed in Section 2.2.2. The classical vari-

able selection defined in Table 2.1 are in terms of the sum of squares of residuals for full

model (SSE) for the least squares squares estimate which are not robust against outliers.

Section 2.3 gives the robust variable selection methods for low and large dimensional
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data sets. Note, SSEp =
∑n

i=1(yi − ŷi)2 is the sum of squares error for sub model with

Table 2.1: Classical variable selection criteria

Methods Formulas References
(Hahn (1973);

R2 statistic 1− SSEp
SST

Kvålseth (1985);
Willett and Singer (1988)

Mallow’s(Cp) SSEp
σ̂2
full
− n+ 2p Mallows (1973b)

The Final Prediction Error
(FPE) SSEp

σ̂2
full

+ 2p Akaike (1969)

Akaike Information Criteria
(AIC) log(SSE

n
) + 2p Akaike (1973);

Bhansali and Downham (1977)
Schwarz Information Criterion

(SIC) log(SSE
n

) + p log(n)
n

Schwarz (1978)
Hanaan and Quinn Criteria

(HQ) log(SSE
n

) + 2p log(log(n))
n

Hannan and Quinn (1979)

p variables, and SST = Σn
i=1(yi − ȳi)2, with ȳi is the sample average of the dependent

variable. σ̂full =
√
SSE/(n− p) is an estimate of the error variance σ2 that is usually

computed in the full model.

2.2.2 Variable Selection Methods in Large Data Sets

Penalized Least Squares

Regularization approaches for normal regression problems are based on penalized least

squares

PLS(λ,β) =
∑
i

(
yi − XT

i β
)2

+ P (λ,β), (2.1)

and estimates of the parameter vector β are obtained by minimizing this equation, i.e.

β̂ = arg min
β
PLS(λ,β). (2.2)

The penalty term PLS(λ,β) depends on the tuning parameter λ that controls the shrink-

age intensity. For the tuning parameter λ = 0 the ordinary least squares solution are
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obtained. On the contrary, for large values of λ the influence of the penalty term on the

coefficient estimates increases. Hence, the penalty region determines the properties of

the estimated parameter vector; whereas, desirable features are variable selection and a

grouping effect. An estimator shows the grouping property if it tends to estimate the

absolute value of coefficients (nearly) equal if the corresponding predictors are highly

correlated.

Fan and Li (2001) proposed a unified approach based on non-concave penalized like-

lihood estimators that performs as oracle estimator in variable selection. Fan and Peng

(2004) then, suggested the following oracle properties in an ideal technique: (1) consis-

tency in variable selection, (2) asymptotic normality.

Ridge Regression

Hoerl and Kennard (1970) was the pioneer to investigate the ridge regression problem

with correlated coefficients in regression models. In fact, ridge regression modifies LS

estimators into:

β̂ridge = arg min
β

[
n∑
i=1

(yi − XT
i β)2 + λ

p∑
j=1

β2
j

]
, λ ≥ 0. (2.3)

Ridge regression shrinks the coefficients, but does not select variables because it does not

force coefficients to be zero. So it is not considered as the method for variable selection.

LASSO Regression

Tibshirani (1996) has proposed the LASSO penalty, a regularization technique for simul-

taneous estimation and variable selection for large data sets. The LASSO estimators are
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Figure 2.1: (Tibshirani, 1996) The left one is ridge and the right one is LASSO regression

defined by:

β̂LASSO = arg min
β

[
n∑
i=1

(yi − XT
i β)2 + λ

p∑
j=1

| βj |

]
, λ ≥ 0, (2.4)

where, λ ∈ [0,∞] is the LASSO tuning parameters.

LASSO minimizing the residual sum of squares, subjected to the sum of the absolute

value of the coefficients, being less than a constant. Thus, this constraint tend to produce

some coefficients that are exactly 0; and hence gives interpretable models. There are a

number of theoretical support for the LASSO method (Donoho and Elad (2003); Can-

des and Tao (2007); Bickel et al. (2009)). Figure ( 2.1) gives an idea of how the ridge

regression and LASSO work in the orthogonal case. It shows that, ridge regression only

shrinks the coefficient, and does not set any coefficients to 0. However, LASSO sets some

of the coefficient 0, and shrinks the other ones. For the two-dimensional case, Figure

( 2.2) shows why the LASSO exhibits the ability to select predictors. The contours of the

residual sum of squares are ellipses, centered at the ordinary least squares estimate. The

constraint region for the LASSO is the rotated square | β1 | + | β2 |≤ t, whereas that

for ridge regression is the disk β2
1 + β2

2 ≤ t. The first point where the elliptical contours

touch the constraint region corresponds to the LASSO and ridge solution, respectively.
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Figure 2.2: (Tibshirani, 1996) Estimation picture for LASSO (left) and ridge regression (right)

Since the first osculation point of the ellipses can be a vertex of the square, the LASSO

solution can have one coefficient βj equal to zero. In contrast, ridge regression cannot

produce zero solutions because there are no vertices in the constraint region that can be

touched.

Thus, LASSO regression has been extensively studied in the literatures (see, [Bickel

et al. (2009); Bunea et al. (2007); Khan et al. (2007); Leng et al. (2006); Osborne et al.

(2000); Zhao and Yu (2006), Lounici (2008); Wainwright (2009); Efron, Hastie, John-

stone, and Tibshirani (2004); Khan, Van Aelst, and Zamar (2007)]).

Meinshausen and Bühlmann (2006) and Leng et al. (2006) stated that LASSO is

reliable in selecting variables, provided that the fundamental model fulfils few conditions

and the variable selection is not consistent when accuracy is used as the criterion for

choosing the penalty.

Adaptive-LASSO (ada-LASSO)

Besides the advantage of variable selection, the LASSO also has some limitations. As

discussed by Tibshirani (1996) ridge regression dominates LASSO with regard to pre-

diction accuracy in common case of n > p case if there are high correlations among the
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variables. Another drawback of the LASSO solution is the fact that in p > n situations, it

selects at most n variables. Moreover, LASSO cannot be an oracle procedure as pointed

out by Zou (2006).

An alternative method was proposed by Zou (2006) to improve LASSO in terms

of achieving consistency of variable selection and prediction accuracy in large data sets.

This model is based on the weighted LASSO and has oracle property that, is a major

improvement for LASSO. Zou (2006) proposed ada-LASSO which assigns different

weights to different coefficients and illustrates an oracle procedure. The ada-LASSO

criterion is defined by

β̂
(n)

ada−LASSO = arg min
β

{
n∑
i=1

(
yi − XT

i β
)2

+ λn

p∑
j=1

ŵj | βj |

}
, (2.5)

where wj known weight vector. To define ada-LASSO, suppose that β̂ is a root n-

consistent estimator to β; for example, β̂LS can be used to pick a γ > 0, and define the

weight vector ŵj = 1

|β̂j |γ
. Similarly, let A =

{
j : β̂

(n)
j 6= 0

}
. With a proper choice of λn,

for wj = 1, LASSO regression are obtained, whereas for wj = 1/β̂LS; then the adaptive

solves

β̂
(n)

ada−LASSO = arg min
β

{
n∑
i=1

(yi − XT
i β)2 + λn

p∑
j=1

| βj |
| β̂jLS |

}
, s.t.βjβ̂jLS ≥ 0∀j. (2.6)

In the following sections 2.3 to 2.5, some general knowledge on robust statistics are

written.

20

Univ
ers

ity
 of

 M
ala

ya



2.3 A Review of Robust Procedures

There are two approaches to reduce the effect of outliers in regression models. First,

robust regression estimators, which tries to obtain estimators that are not so strongly af-

fected by outliers. The second approach is based on regression diagnostics, where certain

quantities are computed from the data with the purpose of pinpointing influential points,

after which these outliers can be removed.

2.3.1 Robust Regression Estimation Techniques

Several robust techniques have been proposed to obtain the estimates that are not influ-

enced by outliers and have high efficiencies, relative to LS estimates under the assump-

tion of normally distribution errors. Some of the robust techniques are resistant to vertical

outliers, that is, their breakdown points are near 0.5, but have breakdown with leverage

points. On the other hand, others achieve both, verticals and leverage points. However, in

this section some of these robust estimator techniques used for estimating the regression

coefficients are reviewed.

M-estimators

In Eqn. ( 1.1), if (yi−XT
i β)2 has been replaced by ρ(yi−XT

i β), where ρ(·) is a function

less intensively demonstrates the dimension of the residual. This concept results in the

idea of M -estimation as described by Huber (2011), Hampel et al. (2011), and Birkes and

Dodge (2011).

In case of a linear model, suppose that the observed responses yi are independent, but
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not identically distributed and have density functions as follows:

fi(yi) =
1

σ
f

(
yi − XT

i β

σ

)
, (2.7)

where, the log likelihood is given by:

`(β) = −n log σ +
n∑
i=1

log

(
f

(
yi − XT

i β

σ

))
. (2.8)

M -estimates on regression are defined as the value β that, minimizes the following crite-

rion:
n∑
i=1

ρ

(
yi − XT

i β̂

σ̂

)
, (2.9)

where, ρ a known function and σ̂ is a preliminary robust error scale such as median

absolute deviation (MAD) scale given by: σ̂ = c × median |ri −median(ri)| where,

ri = yi − XT
i β̂ and the tuning constant c = 1.4825.

For each i = 1, 2, ..., n, for the M -estimator, the ρ-function in Eqn. ( 2.9) is a filter

function constructed subject to the following properties: ρ
(
ri
σ̂

)
≥ 0, ρ(0) = 0, −ρ

(
ri
σ̂

)
=

ρ
(
− ri

σ̂

)
and ρ(∞)=1, if ρ is bounded. Differentiating Eqn. ( 2.9) with respect to β yields

the normal Equation
n∑
i=1

ψ

(
yi − XT

i β̂

σ̂

)
= 0, (2.10)

where, ψ = ρ′. In particular, if ρ = − log(f(Xi)), then the solution of the normal equation

becomes the maximum likelihood estimation (MLE) of β. Whereas, if ρ = 1
2
(yi −

XT
i β)2, then the solution of the normal equation becomes the LS estimate. Generally,

Biweight or Huber functions have been widely used as ρ.

Biweight Function: Define the weight matrix = diag(wi), with wi =
ψ( riσ̂ )
( riσ̂ )

, then Eqn.
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( 2.10) can be written as:

n∑
i=1

wiρ

(
yi − XT

i β

σ̂

)
Xi = 0, (2.11)

this equation can be combined into the following single matrix equation XT
i WXiβ =

XT
i Wyi. Therefore, the estimator is β̂ = (XT

i WXi)
−1XT

i Wyi, where W is n × n matrix

of weight matrix.

In practice, the weighted matrix W involves β and is unknown. Therefore, iterative

algorithm to solve this problem should be used, that is, use the estimator of β in the last it-

eration to calculateW , then use it to obtain the estimator of β in the current iteration. The

algorithm stops when the estimator converges. This is the so-called iteratively reweighted

least-squares (IRLS) algorithm.

Huber Function: Huber function is given by the following equation:

ρH(r) =


r2
i , if |ri| ≤M,

2M |ri| −M2, elsewhere,
(2.12)

this function is quadratic in small values of r, but grows linearly for large values of

r. Huber (2011) have proposed to fix M = 1.345 to increase the robustness as much

as possible, while being efficient for normal distributed data. Then Eqn. ( 2.9) can be

written as:
∑n

i=1 ρH
(
ri
σ̂

)
, or Huber’s criterion with concomitant scale with respect to β

and σ (see, (Mallows, 1973a, 1975)),

nσ +
n∑
i=1

ρH(
ri
σ̂

)σ, σ > 0.
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Least Absolute Deviations (LAD) Regression or (L1): If ρ =| Xi |, then the LAD

estimates are achieved by minimizing the sum of the absolute values of the residuals:

β̂LAD = min
β

[
n∑
i=1

∣∣yi − XT
i β
∣∣] , (2.13)

where the random errors εi have median zero.

High Breakdown Point and Bounded Influence Estimators

Regression LMS-Estimates

A lot of approaches rely on decreasing a more effective scale estimate against the sum

of squared residuals. For example, Rousseeuw and Yohai (1984) have presented a high

breakdown approach known as ’least median of squares’ (LMS), which is defined by

minimizing the median of squared residuals as opposed to their total,

Med

(
yi − XT

i β̂

σ̂

)
= min . (2.14)

The LMS achieves the highest breakdown point value, BP = ([(n− p)/2] + 1)/n. This

means that LMS fit stays in a bounded region whenever [(n−p)/2] or fewer observations

are outliers (Rousseeuw and Van Driessen, 2006).

Regression LTS-Estimates

According to Rousseeuw (1984), the least trimmed squares (LTS) is the other high break-

down and bounded influence estimator that minimize,

β̂(LTS,H,N) = arg min
H∑
i=1

r2
[i](β), (2.15)

where,H ∈ 1, ..., n, and
∣∣r[1]

∣∣ ≤ ∣∣r[2]

∣∣ ≤ ... ≤
∣∣r[n]

∣∣ denote the ordered absolute residuals.

When H = n/2 is equivalent to finds the estimates corresponding to the half samples
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having the smallest sum of squares of residuals. As such, breakdown point is 50%. When

H = [(n + p + 1)/2] is equivalent to LMS and when H = n, LTS and LS coincide:

β̂(LTS,n,N) = β̂(LS,N).

Regression Biweight S-Estimate

According to Rousseeuw and Yohai (1984), S-estimates are defined by:

σ̂
(
r1(β̂), ..., rn(β̂)

)
= min, (2.16)

where, σ̂
(
r1(β̂), ..., rn(β̂)

)
is the scale M -estimate which is defined as the solution to

1

n

n∑
i=1

ρ0

(
r1(β̂)

σ̂

)
= δ, (2.17)

where, δ is taken to be EΦ[ρ0(r)] and Φ is the standard normal distribution. A commonly

used family of loss function ρ0 is given by Tukey’s Biweight function (Beaton and Tukey,

1974),

ρ(r; d) =


3(r/d)2 − 3(r/d)4 + (r/d)6, if |r| ≤ d,

1, elsewhere,
(2.18)

where, d = 1.5476 yields b = EΦ[ρ(Z; d)] = 2(1 − F0(d)), with Φ the standard normal

cumulative distribution function and Z ∼ N(0, 1). Maronna et al. (2006) stated that

associated BS-estimator has maximal asymptotic breakdown point 50%.

2.3.2 Outliers Diagnostics in Regression Model

Single Outliers Diagnostics

The ordinary residual vector is defined as ei = yi− ŷi = (1−H)yi, where ŷi is the vector

of the fitted values and H is the hat or leverage matrix which is a symmetric and idempo-

tent matrix. The matrix H contains the information on the influence of the response value
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yi on the corresponding fitted value ŷi = HT
i yi, where HT

i is the ith row of matrix H .

The hii is the diagonal elements of the hat matrix. Huber (2011) suggested that hii with

values less than 0.2 appearing to be safe, values between 0.2 and 0.5 as being risky and

values greater than 0.5, if possible, be avoided by the control of the design matrix. Belsey

et al. (1980) suggested an approximation cut-off value at 0.05 level of significance to be

2p/n, where p is the number of model coefficients.

Well-known Mahalanobis (MDi) distances is suggested to use as measures of lever-

age points in the literature (see Leroy and Rousseeuw (1987)), it’s defined as: MDi =√
(Xi − X̄)C−1(Xi − X̄), where X̄i = 1/n

∑n
i=1 Xi is the mean vector and C = 1/(n −

1)
∑n

i=1(Xi − X̄)T (Xi − X̄) is variance-covariance matrix. The values of MD2
i are com-

puted with χ2
p,0.95 and observations exceeding that cut-off value are considered as high

leverage points.

Another technique is proposed by Rousseeuw and Van Zomeren (1990), they suggest

using the least median of squares (LMS) estimated to detect regression outliers. This

method begins by computing the residuals associated with LMS regression

s = 1.4826

(
1 +

5

(n− p− 1)

)√
Mr, (2.19)

where, Mr is the median of r2
1, ..., r

2
n, the squared residuals, p is the number of predictors.

However, a regression outlier is ith vector that satisfy, (| ri | /s) > 2.5.

The effect of deleting one row on the estimation of parameters and their covariance,

residual sum of squares and fitted values can be used to identify outliers in the data

set. First, we look at the effect of outliers on the parameter estimation of β. Let β̂(−i)

26

Univ
ers

ity
 of

 M
ala

ya



be the least square estimate of β when the ith observation is deleted. Then β̂(−i) =

(XT
(−i)X(−i))

−1XT
(−i)y(−i) where X(−i) and y(−i) are obtained by removing the ith row in

X and y, respectively.

The change in the estimate of the parameter vector β when the ith observation is

deleted is given by

β̂ − β̂(−i) =
(XT

i Xi)
−1XT

i ei
1− hii

. (2.20)

Hadi (1992) introduced potentials as a single leverage deleted measure define as

pii = xTi (XT
(i)X(i))

−1xi. (2.21)

But the problem with this cut-off point is that both mean and variance of pii may be non-

robust in the presence of a single extreme value yielding a high cut-off point. To avoid

such a problem Hadi (1992) suggested replacing the mean and the standard deviation in

Eqn. (2.21) by the median and the median absolute deviation (MAD) respectively.

A cut-off point for pii is Median(pii) + 3.MAD(pii), where MAD is median absolute

deviation. Ryan (2008) reviewed a different types of residuals for the diagnostic purpose,

the commonly used is Studentized residuals define as

ti =
yi − XT

i β
(−i)

σ̂(i)

√
1− hii

. (2.22)

And observation i is termed as outlier if |ti| > c, where c is a constant value 2 ≤ c ≤ 3.

Belsey et al. (1980) introduced DFFITS defined as

DFFITSi =

√
hii

1− hii
ti (2.23)
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and Belsey et al. (1980) recommended considering observations as influential if |DFFITSi| ≥

2
√
p/n. However, the quantity DFFITS is closely related to the well-known Cook’s dis-

tance proposed by Cook (2000, 1979), which considered a statistic based on the confi-

dence ellipsoids for investigating the contribution of each data point i to the least squares

estimate of the parameter, β, which is given by

(β̂ − β)TXT
i Xi(β̂ − β)

ps2
∼ Fp,n−p. (2.24)

In order to determine the degree of influence of the ith data point on the estimated pa-

rameter vector, β, Cook suggested the measure of the critical nature of each data point to

be

D−i =
(β̂ − β(−i))

TXT
i Xi(β̂ − β(−i))

ps2
∼ Fp,n−p.

=
e2
i

ps2

{
hii

(1− hii)2

}
. (2.25)

A large value of D−i indicates that the associated observation has a strong influence on

the estimate of parameter vector β̂.

Another technique is to compare the estimated covariance matrix of β using all avail-

able data, σ2(XT
i Xi)

−1, with the estimated covariance matrix when the ith observation is

deleted, σ2(XT
(−i)X(−i))

−1. The relationship between CDi and DFFITSi is given by

CDi =
σ̂(i)

pσ̂2
DFFITS2

i . (2.26)

Finally, Belsey et al. (1980) suggested to compare the two matrices using a determinant
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ratio, which is given by

COV RATIO(−i) =
det{s2

(−i)[X
T
(−i)X(−i)]

−1}
det{s2(XTX)−1}

=
(s(−i)

s

)2p 1

1− hii
. (2.27)

A value of COV RATIO(−i) which is not near unity indicates that the ith observation is

possibly influential. They further proposed that any data point with COV RATIO(−i)−1

close to or larger than (3p/n) is identified as an outlier.

Imon (2002) proposed a method to identify the suspected outliers and high lever-

age points using some diagnostic measure. Baum et al. (2003) discussed instrumental

variables (IV) estimation in the broader context of the generalized method of moments

(GMM), and describe an extended IV estimation routine that provides GMM estimates as

well as additional diagnostic tests.

Group Outliers Diagnostics

In large data, the single case deleted measure may be ineffective for identification of mul-

tiple influential observations. Suppose that a regression data contains K outliers. Most

diagnostic tools seem to be successful to separate the data into a clean subset without

outliers and a complementary subset that contains all prospect outliers. However, when

delete the subset of K observations, produces the largest reduction in the residual sum of

squares. Let the clean subset of R observation remaining in the analysis, hence a clean

set contains (n − k) cases after k < (n − p) cases deleted. When a group of observa-

tion K is omitted, then the ith diagonal element of the X(XT
RXR)−1XT matrix define as

hii(R) = xTi (XT
RXR)−1xi.
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Imon (1996) considered the generalized potentials for all members in the data set that

are defined as

pii =


hii(R)

1−hii(R)
, for i ∈ R,

hii(R), for i ∈ K.
(2.28)

Thus, one could consider pii to be large if pii > Median(pii) + 3MAD(pii). Various

numbers of diagnostic methods of regression model have been developed in the past ( see

Leroy and Rousseeuw (1987), Chatterjee and Hadi (2009), and Barnett and Lewis (1994)

), for the identification of multiple outliers. Most of these methods attempt to separate the

data into a clean subset without outliers and a complementary subset that contain all the

potential outliers. The ith external Studentized residual, for the observations remaining in

the data set indexed by R, as

t?i =
yi − XT

i β̂R

σ̂R−i
√

1− h(ii)R
. (2.29)

The generalized Studentized residuals (GS) and the generalized cook’s distance (GCD)

are defined respectively as

t?i =


ε̂i(R)

σ̂R−i
√

1−hii(R)

, for i ∈ R,

ε̂i(R)

σ̂R
√

1+h(ii(R))
, for i ∈ K.

(2.30)

Rahmatullah Imon (2005) defined the generalized DFFITS as

GDFFITSi =


ŷi(R)−ŷi(R−i)
σ̂R−i
√
hii(R)

, for i ∈ R,

ŷi(R+i)−ŷi(R)

σ̂R
√
hii(R+i)

, for i ∈ K,
(2.31)

and the author considered observations as influential if |GDFFITSi| ≥ 3
√
p/(n− k).

30

Univ
ers

ity
 of

 M
ala

ya



2.4 Definition of Statistical Functional

Let X1, ..., Xn be a sample from a population with distribution function F and let Tn =

Tn(X1, ..., Xn) be a statistic. When Tn can be written as a functional T of the empirical

distribution function Fn, Tn = T (Fn) where T does not depend on n, then we call T a

statistical functional. The domain of T is assumed to contain the empirical distribution

functions Fn for all n > 1 and the population distribution function F . The range of T is

assumed to be R.

2.5 Measuring of Robustness

Several measures of robustness are used in different studies the to explore good properties

of the estimates (e.g. (Wilcox, 2012)). The most common measures are breakdown point

and influence function. The following sections elaborate some measures.

2.5.1 Influence Function

Influence function (IF ) describes the effect of an infinitesimal contamination at x on the

estimator T . It is defined as:

IF (x0;T, F ) = lim
ε↓0

T ((1− ε)F + ε∆x0)− T (F )

ε
, (2.32)

where ∆x0 is the point-mass at x0.

2.5.2 Hampel’s Empirical Influence Function Hampel et al. (2011)

Given a sample of n observations, replace one, say xn, by an arbitrary x and define the

empirical influence function as

EIFn(x;Tn) = Tn(x1, ..., xn−1, x). (2.33)
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2.5.3 Tukey’s Sensitivity Curve

The sensitivity curve is a tool for evaluating the effect on an estimate of perturbing an

observation at a finite sample. Tukey defined a version for addition of an observation as

follows (see, Hoaglin et al. (1983)). Given an estimator Tn and a sample x1, ..., xn−1,

define the sensitivity curve as a function of an additional observation x scaled by the

sample size n. Formally, we have

SCn(x;Tn) = n[Tn(x1, ..., xn−1, x)− Tn−1(x1, ..., xn−1)]. (2.34)

2.5.4 Gross-Error Sensitivity (Hampel, 1968)

The influence function given by Eqn. ( 2.32) may be used to study several robustness

properties. One of the simplest and most revealing is the gross-error sensitivity of an

estimator T at a distribution F . It is defined by

γ? = sup
x
|IF (x;T, F )|. (2.35)

By taking the supremum over all x for which the IF (x;T, F ) exists, gross-error sensi-

tivity measures the worst possible influence on an estimator by an arbitrary infinitesimal

contaminant. If the gross-error sensitivity is unbounded, γ? = ∞, then the estimator is

completely intolerant of outliers; a single outlier can ruin the estimator.

2.5.5 Breakdown Point

The breakdown point of an estimate β̂ of the parameters β is the largest amount of con-

tamination that the data may contain such that β̂ even turns over some information about

β. In other words, breakdown point of an estimate β̂ shows the effects of replacing several
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data values by outliers (Maronna et al. (2006)). The breakdown point for the regression

estimator β̂ of the sample Z = (X, y) is defined as

ε?(β̂;Z) = min

{
m

n
sup
Z̃

‖β̂(ZT )‖2 =∞
}
, (2.36)

where Z̃ are contaminated data obtained from Z by replacing m of the original n data by

outliers.

2.5.6 The Properties of LS and M Estimators

LS-estimates have a breakdown point equals 1/n, which tends to zero when the sam-

ple size n gets large. Therefore, one single unusual observation can cause LS-estimates

breakdown. That is, the IF of LS-estimate given by:

IF (Xi, yi;T, F ) = V −1(ψ, F )XiXT
i ψ
(
yi − XT

i T (F )
)
, (2.37)

where ψ = ρ′ = 2Xi(yi − XT
i β) and V is a certain p× p matrix given by:

V (ψ, F ) =

∫
ψ′(yi − XT

i T (F ))XiXT
i dF (Xi, yi) = E [ρ′(ε)ε] . (2.38)

However, that is, the influence function (IF ) of M -estimator given by:

IF (Xi, yi;T, F ) = V −1(ψ, F )XiXT
i ψ
(
yi − XT

i T (F )
)
, (2.39)

where ψ = ρ′ bounded function and V is as in Eqn. ( 2.38). It is remarkable that LS-

estimator is sensitive to outliers and M -estimator is sensitive to leverage point.
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2.6 Robust Variable Selection

The classical algorithm namely LASSO and weighted LASSO are much affected by

outliers and often fails to select the correct linear prediction model that would have been

chosen if there were no outliers. Additionally, a number of studies have proposed different

approaches to deal with the outliers in response variables for the large data sets. However,

seminal papers addressed the robust LASSO, Least Absolute Deviation (LAD-LASSO)

Wang et al. (2007), Huber M -estimation function (Huber-LASSO) Lambert-Lacroix and

Zwald (2011), and least trimmed squared (sparse LTS) Alfons et al. (2013). Several

classical selection variable methods in large data are discussed in this section.

2.6.1 Robust Variable Selection Methods in Small Samples

Robust model selection procedures received a great deal of interest in the mid 90’s, mainly

to improve existing selection criteria. These procedures limit the influence of outliers on

the chosen models. In this regard, Rousseeuw (1985) have proposed a robust version

of the selection criteria AIC. Later, Anderson-Sprecher (1994) and Croux and Dehon

(2003) have introduced the robust R2 that, relies on the effective scale S and the class

of M -estimator of residual scale selected, correspondingly. On the other hand, Ronchetti

and Staudte (1994) studied the robust version of Cp. Similarly a robust version of SIC

has been proposed by Machado (1993). In another study, a robust analogue to the classi-

cal FPE criterion was proposed by Ronchetti et al. (1997), in which ideal requirements

rely upon the objective functions that, determine theM -estimators for a parametric model.

It is worth to mention that the influence function of M -estimator with respect to yi

can be bounded, but it is unbounded with respect to X- direction. A number of studies

have used an alternative to robust variable selection based onM -estimation. For example,

34

Univ
ers

ity
 of

 M
ala

ya



Tharmaratnam and Claeskens (2013) improved the performance of the method proposed

by Rousseeuw (1985) by using S and MM -estimators. Table 2.2 shows the most appli-

cable methods with regard to the related formulas and references. Here, σ̂ is some robust

Table 2.2: Robust variable selection criteria

Methods Formulas References

The Robust R2 R2
L1

= 1−
(∑n

i=1 |yi−XT
i β̂L1

−µ̂L1
|∑n

i=1 |yi−mediani(yi)|

)
Anderson-Sprecher (1994)

The Robust Version of AIC RAIC =
∑
i ρ

(
yi−XT

i β̂
σ̂

)
+ αp Rousseeuw (1985)

The Robust Version of Cp RCp =
Wp

σ̂2 − (Up − Vp) Ronchetti and Staudte (1994)

The Robust Version of SIC RSIC =
∑n
i=1 ρ( ri

σ
) +

p log(n)
n

Machado (1993)

The Robust FPE RFPE =
∑n
i=1 E

[
ρ

(
yi−XT

i β̂p
σ

)]
Ronchetti, Field, & Blanchard

(1997)

estimate of σ, β̂ is the M -estimator of β, and

α = 2E
[
ψ2
(

(yi − XT
i β̂)/σ̂

)]
/(E

[
ψ′
(

(yi − XT
i β̂)/σ̂

)]
.

However, Wp =
∑
ŵ2
i r

2
i is the weighted residual sum of squares, σ̂2 is a robust and

consistent estimate of σ2 from the full model, and Up and Vp are constant depending on

the weight function and the number of parameters p given by:

Vp = tr(RM−1QM−1),

and

Up − Vp = E||ρ||2 − 2tr(NM−1) + tr(LM−1QM−1).

In addition, M = E[ρ′(Xi, ε)XiXT
i ] with ρ′ denoting the derivative of ρ with respect to its

second argument.

Q = E
[
ρ2(Xi, ε)XiXT

i

]
, ||ρ||2 =

∑
1≤i≤n ρ

2(Xi, εi), N = E[ρ2ρ′XXT
i ], L = E[ŵε((w′ε)+

4w)XXT
i ] = E[(ρ̂)2 + 2ρ′w − 3w2)XXT

i ], and, R = E[w2XiXT
i ]. If sub model holds,

σ̂2 ≈ wp/Up , and RCp ≈ Vp. Therefore, models with values of RCp which are close
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to Vp or smaller than Vp will be preferred to others and a plot of RCp versus Vp will aid

in this selection. The RCp values were calculated with the S-Plus routine RCp using

Huber’s function with M equal to 1.345. When the weight are identically 1, RCp reduces

to Mallows Cp.

2.6.2 Robust Variable Selection Methods in Large Data Sets

LASSO Least Absolute Deviation (LAD-LASSO)

The robust LASSO regression estimator proposed by Wang et al. (2007), used the penalty

least absolute deviation (LAD), written in Eqn. ( 2.13), the LAD-LASSO estimator is

computed using the following criterion:

β̂LAD−LASSO = min
β

[
n∑
i=1

∣∣yi − XT
i β
∣∣+ n

p∑
j=1

λj|βj|

]
, (2.40)

where λ is the tuning parameter determined as in LASSO estimator. LAD-LASSO can

simultaneously estimate parameters, and perform variable selection. In addition, it is re-

sistant to heavy-tailed errors or outliers in the response. With proper choice of tuning

parameters, the LAD-LASSO estimator also enjoys the oracle property (Wang et al.,

2007).

Note that, the squared loss has been replaced by the L1 loss. Unfortunately, this loss is

not adapted for small errors: it strongly penalizes the small residuals. In particular, when

the error has no heavy tail and do not suffer from outliers, this estimator is expected to

be less efficient than the ada-LASSO. As a result, Lambert-Lacroix and Zwald (2011),
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preferred to consider the criterion like M -estimation as a loss function. Thus,

β̂M−LASSO = min
β

[
n∑
i=1

ρ
(
yi − XT

i β
)

+ n

p∑
j=1

λj | βj |

]
. (2.41)

LASSO Through The M-estimators (Huber-ada-LASSO)

Lambert-Lacroix and Zwald (2011) suggested robust LASSO regression by combining

the Huber’s criterion and ada-LASSO penalty (λn
∑p

j=1 ŵj | βj |). The Huber criteria

given in Eqn. ( 2.3.1), is quadratic in small values of r, but linearly grows for large val-

ues of r. When M → ∞, then β̂M−LASSO is β̂LASSO. Likewise, when M → 0, then

β̂M−LASSO is β̂LAD−LASSO. Thus, by choosing an appropriate cut-off M , β̂M is robust

and efficient at the normal distribution.

In order to allow for oracle properties, Lambert-Lacroix and Zwald (2011) consider

Huber’s criterion with concomitant scale defined by,

Lρ(µ,β, s) = ns+
n∑
i=1

ρ

(
(yi − XT

i β)

s

)
s, s > 0. (2.42)

2.7 Summary

We have reviewed the variable selection methods, classical and robust variable selection

criteria of small and large data sets in this chapter. We have also looked at the robust

procedure measuring of robustness in linear regression. We intend to propose other robust

criteria to the both cases low and large data sets in the subsequent chapters.
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CHAPTER 3

EFFECT OF OUTLIERS ON DIFFERENT VARIABLE SELECTION CRITERIA

3.1 Introduction

This chapter is aimed to illustrated the problem of outliers and leverage points in existing

robust model selection for small data set. Then, the theory of LASSO and ada-LASSO

variable selection for regression model based on consistency and oracle properties dis-

cussed, too. The simulation study has also been carried out to compare ridge, LASSO

and ada-LASSO procedures. The application of the Ozone data set was presented. A

simulation study has also been carried out to see the effect of leverage points on the ro-

bust variable selection methods based on M -estimation.

3.2 The Effect of Outliers in Different Variable Selection Criterion

In statistical analysis, the existence of outlying values in the data set should raise concern.

The existence of outliers in linear data sets and linear regression has been investigated

extensively ( c.f. Beckman and Cook (1983); Barnett and Lewis (1994); Belsey et al.

(1980); Montgomery et al. (2012)). The effect of outliers on variable selection methods

is known to be severe.

It is essential to study the behaviour of the classical and robust variable selection, in

the presence of vertical and leverage point before dealing with the presence of outliers in

different variable selections methods.
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Experiment 1 aims to study the behavior of the classical variable selection criterion

(AIC, R2, Cp, SIC, FPE, HQ) in the presence of vertical outlier and or leverage point.

Furthermore, experiment 2, study the performance of robust variable selection methods

(R2
M , RAIC, RCp, RSIC, RFPE) in the presence of vertical and leverage point. The

design of experiment 1 is briefly discussed in subsection 3.2.1. In experiment 1, both

types of influence points affect the classical criterion; also, the robust criterion based on

M -estimators are affected by leverage points.

3.2.1 Experiment 1

For simplicity, a set of independent random uniform variable X on [-2,2] was generated

according to the simple regression model given as follows:

yi = Xi + εi, i = 1, ..., 19 (3.1)

where, the εi are iid, normally distributed with expectation 0 and variance (0.12). The

data has been presented in Table 3.1 and Figure ( 3.1). For the purpose of the present

study, only the problem that appears in more-complex situations is highlighted without a

model selection procedure.

In the first part of this experiment, the coordinate (0,y10) is added, then the value of

y ranges between (-1.5, 3). Figure ( 3.2) shows the situation. A similar approach used

for leverage points, by replacing the value X with (0, x10), then the value of x10 ranges

between [2.5, 4.5] and [-2.5,-4.5] (Figure ( 3.3)).

For each of the 10 values of y and 10 values of Xi, different classical variable selection
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criteria (AIC, R2, Cp, SIC, FPE, HQ) were recomputed.

Table 3.1: The data set

Xi yi
-1.2 1.2

-1.15 1.35
-1.1 1.02

-1.05 1.16
-1 0.95

-0.95 1.05
-0.9 0.73

-0.85 0.91
-0.8 0.85
x10 y10

0.8 -0.88
0.85 -0.61
0.9 -0.81

0.95 -0.97
1 -1.18

1.05 -1.08
1.1 -0.99

1.15 -1.11
1.2 -1.14

Figure 3.1: The data set
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Figure 3.2: Data and positions for y10

Figure 3.3: Data and positions for x10

In the same manner, different robust classical variable selection criteria (RAIC, R2
M ,

RCp, RSIC, RFPE, and RHQ) were recomputed.

3.2.2 Result- Experiment 1

Tables 3.2 and 3.3, reported the performance results of different classical variable selec-

tion criterion for each value of y10 and x10. When (x10, y10) = (0, 0), the lowest values

of AIC, Cp, SIC, FPE, HQ and highest values of R2 were obtained. In the presence

of the y10 or x10, the value of AIC, Cp, SIC, FPE, HQ increased and the value of R2

41

Univ
ers

ity
 of

 M
ala

ya



decreased.

Figures ( 3.4) to ( 3.11) (left panel) confirmed that the classical variable selection cri-

teria are highly sensitive to single vertical outlier. Furthermore, by letting y10 or x10 tend

to infinity, AIC, Cp, SIC, FPE, HQ will even tend to infinity and R2 will tend to zero.

Table 3.2: Different classical variable selection criterion for different value of y10 (vertical outliers)

y10 AIC R2 Cp SIC FPE HQ
3 3.2 0.680 12.746 -0.482 -6.254 -0.565

2.5 2.9 0.753 12.392 -0.839 -6.608 -0.922
2 2.4 0.824 11.821 -1.270 -7.179 -1.353

1.5 1.9 0.889 10.805 -1.811 -8.195 -1.893
1 1.2 0.942 8.768 -2.523 -10.231 -2.605

0.5 0.2 0.977 4.511 -3.475 -14.489 -3.557
0 -0.5 0.988 1.165 -4.156 -17.835 -4.238
−0.5 0.3 0.975 7.560 -3.371 -11.439 -3.453
−1 1.2 0.938 11.796 -2.441 -7.204 -2.524
−1.5 1.9 0.883 13.269 -1.750 -5.731 -1.833

Table 3.3: Different classical variable selection criterion for different value of x10 (leverage point)

x10 AIC R2 Cp SIC FPE HQ
4.5 3.3 0.488 565.78 -0.288 546.78 -0.467
4 3.2 0.546 469.76 -0.384 450.765 -0.587

3.5 3.0 0.610 366.08 -0.504 347.080 -0.739
3 2.8 0.679 258.889 -0.657 239.889 -0.935

2.5 2.6 0.751 156.079 -0.852 137.079 -1.189
0 -0.5 0.988 1.165 -1.107 -17.835 -4.238

-2.5 2.6 0.742 131.244 -4.156 112.244 -1.151
-3 2.9 0.669 209.494 -1.069 200.054 -0.902

-3.5 3.1 0.599 215.316 -0.819 293.631 -0.712
-4 3.2 0.535 220.160 -0.629 386.285 -0.563

Tables 3.4 and 3.5, reported the performance results of different robust variable selec-

tion criteria for each value of y10 and x10. When (x10, y10) = (0, 0), the lowest value of

RAIC, RCp,RSIC, and the highest value of R2 obtained. In the presence of y10 (Table

3.4), all robust criteria became constant when the outliers moved further a way from the
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origin. Figures ( 3.4) to ( 3.11) (right panel) confirmed that the robust variable selection

criteria based on M -estimator are stable to single vertical.

The performance of robust criteria in the presence of leverage point x10 were reported

in Table 3.5. The values of RAIC, RCp, and RSIC, increased, and the value of R2 de-

creased. Figures ( 3.4) to ( 3.11) (right panel) confirmed that the robust variable selection

criteria, based on M -estimators are highly affected to single leverage point.

Figures ( 3.4) to ( 3.11) summarized the results of the variable selection in regression

model. Robust criteria, based on M -estimators were much more robust than classical

methods (based on LS), and suffered from leverage points than from vertical outliers.

Table 3.4: Different robust variable selection criterion for different value of y10 (vertical outliers)

y10 RAIC R2
M RCp RSIC RFPE RHQ

3 3.7 0.922 -4.954 -4.023 -23.954 -4.350
2.5 3.7 0.920 -4.954 -4.023 -23.954 -4.350
2 3.7 0.920 -4.954 -4.023 -23.954 -4.350

1.5 3.7 0.922 -4.954 -4.022 -23.954 -4.350
1 3.7 0.916 -4.954 -4.022 -23.954 -4.350

0.5 3.7 0.918 -4.953 -4.022 -23.954 -4.350
0 3.6 0.920 1.612 -4.094 -17.388 -4.289
−0.5 3.7 0.917 -1.295 -4.022 -20.295 -4.039
−1 3.7 0.916 -1.294 -4.022 -20.294 -4.039
−1.5 3.7 0.920 -1.285 -4.022 -20.285 -4.036
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Table 3.5: Different robust variable selection criterion for different value of x10 (leverage point)

x10 RAIC R2
M RCp RSIC RFPE RHQ

4.5 3.9 0.909 30.472 -3.817 5.677 -3.419
4 3.7 0.916 15.392 -3.968 -0.095 -3.579

3.5 3.6 0.921 2.801 -4.108 -5.415 -3.747
3 3.6 0.923 0.692 -4.139 -9.576 -3.904

2.5 3.7 0.917 -0.363 -4.021 -11.219 -3.974
0 3.5 0.921 1.612 -4.094 -17.388 -4.289

-2.5 3.7 0.917 -5.727 -4.021 -19.569 -4.430
-3 3.7 0.922 -6.373 -4.139 -20.573 -4.503

-3.5 3.9 0.921 -4.110 -3.817 -17.052 -4.269
-4 4 0.915 -2.329 -3.662 -14.279 -4.118

Figure 3.4: Effect of adding one observation (0,y10) on the values of AIC and RAIC

Figure 3.5: Effect of adding one observation (0,y10) on the values of R2 and R2
M
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Figure 3.6: Effect of adding one observation (0,y10) on the values of Cp and RCp

Figure 3.7: Effect of adding one observation (0,y10) on the values of SIC and RSIC

Figure 3.8: Effect of adding one observation (x10,0) on the values of AIC and RAIC
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Figure 3.9: Effect of adding one observation (x10,0) on the values of R2 and R2
M

Figure 3.10: Effect of adding one observation (x10,0) on the values of Cp and RCp

Figure 3.11: Effect of adding one observation (x10,0) on the values of SIC and RSIC
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3.3 Practical Example

In this section, the effect of outliers and leverage point on classical and robust variable

selection methods is discussed regarding two real data sets: Belgian Telephone data Leroy

and Rousseeuw (1987) and Hawkins-Bradu-Kass data (Hawkins et al. (1984)).

3.3.1 Belgian Telephone Data

There is one variable in data Belgian Statistical Survey. The data set comprising the total

number (in tens of millions) of international phone calls made between the years 1950

and 1973, is presented in Appendix 1 and the scatter plot of phone via cell is depicted in

Figure ( 3.12). This time series of data contains heavy contamination from 1964 to 1969.

In the presence of outliers, Table 3.6 shows the low value of R2 and high values

of AIC, SIC, FPE, HQ and this suggested that there may be a scope to improve the

fitting of the model. When all outliers were omitted from data, then the high value of

R2 and the low values of AIC, SIC, FPE and HQ obtained. Figure ( 3.13) shows all

situations, the horizon axis of Figure (3.13) denotes different classical criteria, in which

"1" indicates R2, "2" indicates to AIC, "3" indicates to Cp, "4" indicates to SIC, "5"

indicates to FPE, and "6" indicates to HQ. The vertical axis represents the value of

the corresponding criterion with (blue line) and without outliers (red line). It can be seen

that the blue line obtained higher values, that means the value of criteria are affected

by outliers. Accordingly, classical method criteria are not foolproof methods of variable

selection.

Table 3.6: Different classical variable selection criteria for Belgian Telephone data with and without outliers

Set of variables AIC R2 Cp SC FPE HQ
With outliers (y,X) 3.53 0.296 2.00 3.63 34.25 3.56

Without outliers (y,X) -1.5 0.837 2.00 -1.4 0.21 -1.5
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Figure 3.12: Scatter plot of phone cell via year

Figure 3.13: Values of different variable selection with and without outliers for Belgian Telephone data
(1→ R2, 2→AIC, 3→Cp, 4→SIC, 5→FPE, 6→HQ)

3.3.2 Hawkins-Bradu-Kass Data

This data has been generated by Hawkins et al. (1984) for illustrating some of the merits

of robust technique (the full data set is given in Appendix 2). They pointed out that the

first 10 observations are bad leverage points; i.e. the first 10 observations are outliers

and the next 4 observations are good leverage points (see Imon, 2005). Figures ( 3.14)

to ( 3.16) showed the regression plot of yi via different variables (Hawkins, Bradu, Kass,

1984).
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Table 3.7 shows all robust criteria agree on the importance of one variable, Kass,

which appears in high value of R2
M and low values of AIC, RCP , and RSIC. Table 3.8

shows the result when all outliers and leverage points were omitted; the value of R2
M is

larger than that of the value with outliers, and the values of the other criteria are smaller

than those values with outliers.

Figures ( 3.17) to ( 3.20) compare the values of robust criterion for different cases versus

the number of set of variables in both situations, with and without outliers. The small

values of criteria are considered to show the best model.

Considering both examples, it can be concluded that the presence of outliers affect

the classical variable selection. Whereas, the robust variable selection methods based on

M -estimator have been affected by the presence of leverage points in data.

Table 3.7: The values of different robust variable selection criterion for Hawkins-Bradu-Kass data for
different cases with contamination points

Set of variables RAIC R2
M RCp RSIC

(y,Hawkins) 4.81 0.987 130.77 0.9
(y,Bradu) 4.14 0.988 32.55 0.26
(y,Kass) 3.62 0.991 -9.72 -0.26

(y,Hawkins,Bradu) 5.62 0.988 -7.53 -0.20
(y,Hawkins,Kass) 5.79 0.991 4.13 -0.03

(y,Bradu,Kass) 5.67 0.990 -4.38 -0.15
(y,Hawkins,Bradu,Kass) 7.76 0.991 4.00 -0.15

Table 3.8: The values of different robust variable selection criterion for different cases without contamina-
tion points

Set of variables RAIC R2
M RCp RSIC

(y,Hawkins) 3.39 0.976 15.47 -0.47
(y,Bradu) 3.25 0.975 5.93 -0.61
(y,Kass) 3.38 0.976 14.19 -0.48

(y,Hawkins,Bradu) 5.37 0.976 15.98 -0.42
(y,Hawkins,Kass) 5.22 0.976 5.89 -0.57

(y,Bradu,Kass) 5.33 0.976 13.27 -0.46
(y,Hawkins,Bradu,Kass) 7.15 0.977 4.00 -0.75
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Figure 3.14: The regression plot of y via Hawkins

Figure 3.15: The regression plot of y via Bradu

Figure 3.16: The regression plot of y via Kass
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Figure 3.17: The value of RAIC for different cases versus the no.of set of variables
(1→Hawkins, 2→Bradu, 3→Kass, 4→(Hawkins,Bradu), 5→(Hawkins,Kass), 6→(Bradu,Kass),
7→(Hawkins,Bradu,Kass))

Figure 3.18: The value of R2
M for different cases versus the no.of set of variables (1→Hawkins, 2→Bradu,

3→Kass, 4→(Hawkins,Bradu), 5→(Hawkins,Kass), 6→(Bradu,Kass), 7→(Hawkins,Bradu,Kass))
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Figure 3.19: The value ofRCp for different cases versus the no.of set of variables ((1→Hawkins, 2→Bradu,
3→Kass, 4→(Hawkins,Bradu), 5→(Hawkins,Kass), 6→(Bradu,Kass), 7→(Hawkins,Bradu,Kass))

Figure 3.20: The value of RSIC for different cases versus the no.of set of variables
(1→Hawkins, 2→Bradu, 3→Kass, 4→(Hawkins,Bradu) , 5→(Hawkins,Kass), 6→(Bradu,Kass),
7→(Hawkins,Bradu,Kass))

3.4 The LASSO Variable Selection and Consistency

Although LASSO has shown successes in many situations, it has some limitations. One

limitation of LASSO is that, in the case of p > n, LASSO can only, select at most n

variables (Osborne et al., 2000). Another limitation is inconsistency in variable selection;

Donoho and Huo (2001), Donoho and Elad (2003), and Donoho (2006) have showed that,

L1 approach is able to discover the sparse representation of the model, under certain con-
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ditions. It has also been shown that, variable selection with LASSO can be consistent, if

the underlying model satisfies some conditions Meinshausen and Bühlmann (2006).

On the other hand, Fan and Li (2001) conjectured that, the oracle properties do not

hold for LASSO. Zou (2006) derive the necessary condition of the LASSO variable

selection, as follows:

Consider the linear regression model in Eqn. ( 4.21). Let xi(1) and xi(2) the first q

and last p− q columns of xi respectively, and let C = 1
n

∑n
i=1 xTi xi where C is a positive

definite matrix. By setting C(11) = 1
n

xTn(1)xn(1)i, C(22) = 1
n

xTn(2)xn(2), C(12) = 1
n

xTn(1)xn(2),

and C(21) = 1
n

xTn(2)xn(1), the matrix C can then expressed in a block-wise form as follows:

C =

 C(11) C(12)

C(21) C(22)

 ,

where C(11) is q× q matrix and C(22) is (p− q)× (p− q) matrix. The LASSO estimates

are considerd, β̂
(n)

,

β̂
(n)

LASSO = arg min

[
n∑
i=1

(yi − XTβ)2 + λn

p∑
j=1

| βj |

]
, (3.2)

where λn varies with n. Let An =
{
j : β̂

(n)
j 6= 0

}
.

Definition 3.1. (Zou, 2006)

The LASSO variable selection is consistent if and only if

lim
n
P (An = A) = 1,

where A = {j : βj 6= 0}. The definition of the consistency is subject to the condition

given in Eqn. ( 3.3). To define this condition the following theorem are needed:
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Theorem 3.2. (Zou, 2006)

Suppose that

lim
n
P (An = A) = 1.

Then there exists some vector s = (s1, ..., sq)
T , sj = 1 or −1, such that

| C(21) C−1
(11)s |≤ 1. (3.3)

This theorem presents a necessary condition for consistency of the LASSO variable

selection. Proof of this theorem is based on Zou (2006). Note that when p = 2 the

necessary condition Eqn. ( 3.3) is always satisfied, because | C(21)C−1
(11)sgn(βA) | reduces

to | ρ |, the correlation between two predictors.

Lemma 3.3. (Zou, 2006)

If λn√
n
→ λ0 ≥ 0, then

√
n(β̂j − βj)→d arg min(V2), where

V2(u) = u′Cu− 2u′W + λ0

p∑
j=1

[ujsgn(βj)I(βj 6= 0)+ | uj | I(βj = 0)] ,

and, W ∼ N
(
0, σ2C−1

)
.

Proof of this lemma is given in Knight and Fu (2000).

Lemma 3.3 shows that the LASSO estimate is root-n consistent. However, based

on the asymptotic behaviour of variable selection, Lemma 3.3 actually implies that An

basically cannot be A with a positive probability, when λn = O(
√
n). The inconsistency

of LASSO estimation in the general case is proved through the following proposition.

Proposition 3.4. (Zou, 2006)

If λn√
n
→ λ0 ≥ 0, then

lim sup
n

P (An = A) < 1.
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The proof of this proposition is on Appendix 4.

It is concluded that if the condition in Eqn. ( 3.3) fails, the LASSO variable selection

is inconsistent. However, the asymptotic setup is somewhat unfair, because it forces the

coefficients to be equally penalized in the L1 penalty. So conclude that the LASSO

cannot be an oracle procedure.

Note that when p = 2 the necessary condition in Eqn. ( 3.3) is always satisfied, because

| C21C−1
11 sgn(βA) |

reduces to | ρ |, the correlation between two predictors (Zou, 2006).

Theorem 3.5. (Oracle Properties (Zou, 2006))

Suppose that λn/n → 0 and λnn(γ−1))/2 → ∞. Then the ada-LASSO estimates must

satisfy the following:

1. Consistency in variable selection:

lim
n
P (An = A) = 1.

2. Asymptotic normality:
√
n
(
β̂

(n)

A − βA

)
→d N(0, σ2 × C−1

11 ).

The proof of this theorem is in Appendix 5. Thus, the ada-LASSO procedure will be

more efficient than the traditional LASSO procedure to estimate the parameters and to

select the significant variables.
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3.5 Simulation Studies

3.5.1 Simulation Studies: Example 1

This section presents simulation examples as generated by Zhao and Yu (2006), to com-

pare ridge, LASSO, and ada-LASSO regularization methods in the simple case p = 3,

q = 1. The aim is to show some practical sense of the LASSO and ada-LASSO algo-

rithm behaviors when condition in Eqn. ( 3.3) holds and fails. First, the response y were

generated by

yi = xi1β1 + xi2β2 + xi3β3 + εi,

where the true regression coefficients are in two settings:

(a) β = {2, 3, 0}

(b) β = {−2, 3, 0}.

In both settings the x1 and x2 are i.i.d with mean 0 and variance 1 for i = 1, ..., 100. The

third predictor x3 is correlated with x1 and x2 by

x3 =
2

3
x1 +

2

3
x2 +

1

3
ε,

where ε ∼ N(0, 1). Here xn1 = (x1, x2), xn2 = x3, and

C11 =

 1 −0.05

−0.05 1

 ,

and

C21 = ( 0.65 0.65 ),
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obtain

C21C−1
11 = ( 2/3 2/3 ).

However, the necessary condition in Eqn.( 3.3) fails for setting (a) and holds for setting

(b). Ridge, LASSO and ada-LASSO were applied by moving the parameter λ from

λ = 0 to λ = 100. Figure ( 3.21) shows the ridge path solution for both setting (a) and

(b), which indicates that ridge does not set any coefficients to 0. Different LASSO so-

lutions are obtained which form the LASSO path as illustrated in Figure ( 3.22). Note

that in setting (a) LASSO did not shrink β3 to 0. For setting (b), with a proper amount

of regularization, LASSO correctly shrinks β3 to 0. Figure ( 3.23) shows that, the adap-

tive situation path is consistent with variable selection, and the regularization seemed to

prefers x1 and x2 and ignored x3.
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(a) The ridge path for setting(a)

(b) The ridge path for setting(b)

Figure 3.21: The ridge path
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(a) The LASSO path for setting(a)

(b) The LASSO path for setting(b)

Figure 3.22: The LASSO path
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(a) The ada-LASSO path for setting(a)

(b) The ada-LASSO path for setting(b)

Figure 3.23: The ada-LASSO path

3.5.2 Simulation Studies: Example 2

This section compares the performance of selection ability of the ridge, LASSO and

ada-LASSO. Here, the penalty parameters (λ) for all versions are chosen using five fold

cross-validation of Breiman and Spector (1992) who proposed using fivefold or ten fold

in practice. The adaptive weight ŵ = 1/ | β̂LS |γ with γ = 1.
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In this simulation, the linear regression model in Eqn. ( 1.1) are considered, where the

true regression coefficients are β = (3, 1.5, 0, 0, 2, 0, 0, 0), and εi ∼ N(0, σ2). xi, (i =

1, ..., n) are Gaussian vector N8(0.5,Σr), where, Σr is the covariance matrix with dif-

ferent level of correlation, (r = 0.3, 0.5, and 0.95). 200 data were simulated for three

different combinations of size (n = 60, 100, 300). On each data set, boxplots of eight

coefficients are provided.

However, as shown in Figures ( 3.24) to ( 3.26), n and r increased, the estimation of

ada-LASSO parameter seemed to perform better and produces sparse solution more ef-

fectively than LASSO. LASSO selected nearly the correct number of zero coefficients,

but, suffers from variability as shown in the boxplots. Thus, the ada-LASSO method

more efficient than traditional LASSO method to estimate the parameters and select the

significant variables. In contrast, the ridge regression, performed poorly in selection vari-

ables.
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(a) Ridge

(b) LASSO

(c) ada-LASSO

Figure 3.24: The ridge, LASSO, and ada-LASSO estimates for eight coefficients via 200 simulation with
r = 0.1, n = 60
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(a) Ridge

(b) LASSO

(c) ada-LASSO

Figure 3.25: The ridge, LASSO, and ada-LASSO estimates for eight coefficients via 200 simulation with
r = 0.5, n = 100
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(a) Ridge

(b) LASSO

(c) ada-LASSO

Figure 3.26: The ridge, LASSO, and ada-LASSO estimates for eight coefficients via 200 simulation with
r = 0.95, n = 300
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3.6 Practical Example (Ozone Data)

In this stage, the regularization path and selection ability of ridge, LASSO and ada-

LASSO are compared on Ozone data set which is available in R with a package cosso.

The Ozone data initially was used in Breiman and Friedman (1985)’s study. This data set

contains 330 observations. Each observation is a daily measurement, and 8 variables.

Table 3.9 shows an overview of the variables included in the data. The output variable

is Ozone reading. The interested here is to compared the trace of β(λ) for ridge, LASSO

and ada-LASSO criteria on all 8 variables. In each path the coefficient vectors start at

λ = 100 and β grows when λ goes from 100→ 0.

Figure ( 3.27) shows the path of three criteria result. For ridge regression, the coeffi-

cients jump away from zero and there is no sparse solution. LASSO behaved differently

and gave the sparse solution (zero solution) when the coefficients are small and behaves

like ridge once the coefficients are large. Comparing the ada-LASSO regression, found

the path more stable than LASSO. with some differences between the coefficients. The

most obvious ones are "invTemp" which get zero in the ada-LASSO and non-zero in

LASSO path. It may be because the ada-LASSO method dampens down the large cor-

relation between variables.

Table 3.10 demonstrates the correlation results among (i, j)th coefficients among

which the largest correlation between is "invTemp" , "milpress", and "temp".

Figure ( 3.28) shows boxplots of 100 λ values of different criterion estimates. For

ridge, there are no predictors to give estimated coefficients 0. As a result, ada-LASSO
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was more stable than LASSO.

Table 3.9: Variables of the Ozone data

Name Description

temp Temperature (degree C). Minimum 25 and maximum 93 in original scale.

invHt Inversion base height (feet). Minimum 111 and maximum 5000 in original scale.

press Pressure gradient (mm Hg). Minimum -69 and maximum 107 in original scale.

vis Visibility (miles). Minimum 0 and maximum 350 in the original scale.

milPress 500 millibar pressure height (m). Minimum 5320 and maximum 5950 in original scale.

hum Humidity (percent). Minimum 19 and maximum 93.

invTemp Inversion base temperature (degrees F). Minimum -25 and maximum 332 in original scale.

wind Wind speed (mph). Minimum 0 and maximum 21 in original scale.

Table 3.10: The correlation results among the (i, j)th of the Ozone data

(i, j) temp invHt press vis milPress hum invTemp wind
temp 1
invHt -0.5326 1
press 0.1892 0.0370 1

vis -0.3877 0.3866 -0.1258 1
milPress 0.8080 -0.5048 -0.1480 -0.3600 1

hum 0.3404 -0.2423 0.6477 -0.4010 0.0744 1
invTemp 0.8647 -0.7769 -0.0950 -0.4223 0.8520 0.2036 1

wind -0.0320 0.2065 0.3357 0.14722 -0.24366 0.2102 -0.1795 1
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(a) Ridge

(b) LASSO

(c) ada-LASSO

Figure 3.27: The ridge, LASSO, and ada-LASSO estimate for Ozone data
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(a) Ridge

(b) LASSO

(c) ada-LASSO

Figure 3.28: Boxplots of 100 λ values of the ridge, LASSO, and ada-LASSO coefficients estimates for
the eight predictors in the Ozone data
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3.7 Effect of Leverage Points on RobustLASSO Regression Methods (LAD-LASSO

and Huber-LASSO)

In statistical analysis, the existence of high leverage points in the data set should raise

some concern. The effect of leverage points on the variable selection method is known to

be severe. Here, it is useful to investigate the effect of leverage point in existing robust

methods (LAD-LASSO and Huber-LASSO) by introducing leverage points in the data

set.

3.7.1 Simulation Procedure

A simulation study was carried out to investigate the effect of leverage points on the ro-

bust variable selection (LAD-LASSO and Huber-LASSO) of regression models. For

simplicity, the case when λ = log(n) were considered. The statistical software applied

in this stage was CVX that is a package for specifying and solving convex programs in

Matlab (Grant et al., 2008). The following set of parameters were estimated: β1 = 0.5,

β2 = 1, β3 = 1.5, β4 = 2 and βj = 0 for 5 ≤ j ≤ p. The variables X = (x1, ..., xp)

were generated from n independent Gaussian vectors N20(0.5,Σr), r = 0.5 p = 20 and

n = 200.

The response variable y was generated according to the regression model in Eqn.

( 1.1), where, ε, the error terms follow a standard normal distribution. In order to investi-

gate the robustness of the methods against outliers, three situations were considered:

1. No ncontamination

2. Good leverage points

3. Bad leverage points
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such that the percentages of contamination used are c% = 10%, 20%, from the sam-

ple size n. For case (good leverage points), we considered the different percentages of

outliers (c% = 10%, 20%) on the variables X1, X2 and X4, that were generated from

a N(100, 0.52) distribution, then obtained Y from the liner regression model to get the

good leverage point. For case (bad leverage points), different percentages of outliers

(c% = 10%, 20%) on the variables X1, X2 and X4 were generated from a N(100, 0.52)

distribution. Below are the steps of the simulation:

(i) Generating the design matrix X ∼ N20(0.5,Σ0.5)

(ii) Generating ε of size n = 200 from N200(0, 1)

(iii) The true values of the coefficients were β1 = 0.5, β2 = 1, β3 = 1.5, β4 = 2 and

βj = 0 for 5 ≤ j ≤ p. Then y using Eqn. (1.1) were obtained.

(iv) Obtaining the unpenalized estimatorLAD (betaLAD=β̂LAD) and Huber (betaHU=β̂H).

And the tuning parameter λ was fixed and denoted by lambda.

(v) For uncontaminated model, the coefficients (β1, ..., β20) were fitted to the regression

model using the following CVX program to give the parameter LAD-LASSO and

Huber-LASSO estimates β̂LAD−LASSO and β̂Huber−LASSO.

(vi) For c% contaminated data, the first c × n/100 predictors X in (iv) were replaced by

the newly generated value X?. Then, the generated contaminated regression data

were fitted to give the parameter estimated β̂
?

LAD−LASSO and β̂
?

Huber−LASSO using

the CVX program .
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(vii) Finally, the steps (i)-(v) above repeated for simu = 100 times. For each parameter

(β1, ..., β20) = (β̂1, ..., β̂20), the median of Relative Prediction Errors (MRPE) were

calculated using the following formula:

MRPE = median(E(y − Xβ̂m)2), (3.4)

for m = 1, 2, ..., 100 simulation, to evaluate the selection ability, we plot the box-

plots of parameters estimation.

Discussion

The results were tabulated in Table 3.11 and Figures (3.29) to (3.35) for each situation.

Several observed results are as follows:

• For leverage point-free data set, the relative prediction errors and the model selec-

tion ability of LAD-LASSO and Huber-LASSO close to the ones of true model.

• When the data were contaminated with bad leverage point, the value for relative

prediction errors of each methods increased when the percentages of contamination
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increased. The bias and standard deviation was generally larger than the uncontam-

inated data set. In this case, both methods led to a poor estimation of coefficients

(see Figures (3.30) to (3.32)) and selected overfit models.

• In case of good leverage points, relative prediction errors for both methods gener-

ally got larger as the percentages of contamination increased, but still better than

the values with bad leverage point. LAD-LASSO and Huber-LASSO have better

model selection ability than the previous situation (see Figures (3.33) to (3.35)).

By looking the above mentioned results for uncontaminated data, robust LASSO meth-

ods performed well in the selection of the parameters of the regression model. However,

the methods were affected by the presence of leverage points in the data. The effect was

worse with higher percentage of bad leverage points in the data.

Table 3.11: Simulation result, the MRPE based on 100 replications

Methods LAD-LASSO Huber-LASSO

Uncontaminated 0.0300 0.0258

5% bad leverage 3.0857 6.3125

10% bad leverage 58.7081 58.0209

20% bad leverage 122.8706 121.7094

5% good leverage 0.0305 0.0321

10% good leverage 0.0330 0.0243

20% good leverage 0.0311 0.0272
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(a) LAD-LASSO

(b) Huber-LASSO

Figure 3.29: Boxplots of estimates for the 20 coefficients from 100 simulated data sets, uncontaminated
data

73

Univ
ers

ity
 of

 M
ala

ya



(a) LAD-LASSO

(b) Huber-LASSO

Figure 3.30: Boxplots of estimates for the 20 coefficients from 100 simulated data sets, 5% bad leverage
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(a) LAD-LASSO

(b) Huber-LASSO

Figure 3.31: Boxplots of estimates for the 20 coefficients from 100 simulated data sets, 10% bad leverage
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(a) LAD-LASSO

(b) Huber-LASSO

Figure 3.32: Boxplots of estimates for the 20 coefficients from 100 simulated data sets, 20% bad leverage
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(a) LAD-LASSO

(b) Huber-LASSO

Figure 3.33: Boxplots of estimates for the 20 coefficients from 100 simulated data sets, 5% good leverage
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(a) LAD-LASSO

(b) Huber-LASSO

Figure 3.34: Boxplots of estimates for the 20 coefficients from 100 simulated data sets, 10% good leverage
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(a) LAD-LASSO

(b) Huber-LASSO

Figure 3.35: Boxplots of estimates for the 20 coefficients from 100 simulated data sets, 10% good leverage

3.8 Summary

Throughout the work in this chapter, the experiment study has been carried out to see the

effect of verticals and leverage points on the variable selection methods. We illustrate

the sensitivity of classical method to vertical and also identified certain limitation of ro-

bust variable selection methods based on M -estimators. However, when leverage point

are presence in the data set, the robust variable selection based on M -estimator tends to

79

Univ
ers

ity
 of

 M
ala

ya



select wrong fit model.

On the other hands, robust LASSO methods based on LAD estimator and Huber

function are performed well in the selection of the parameters of the regression model.

Also, the methods were affected by the presence of leverage points in the data. The effect

was worse with higher percentage of bad leverage points in the data.

It can be concluded that the presence of outliers has an impact the classical variable

selection. Whereas, the robust variable selection methods based on M -estimation have

been affected by the presence of leverage points in data.
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CHAPTER 4

VARIABLE SELECTION BASED ON HIGH BREAKDOWN SCALE

ESTIMATOR

4.1 Introduction

Chapter two reviews a variety of robust variable selection criteria in regression model

which use M -estimator of coefficients in the procedures, namely the RAIC (Ronchetti,

1985), R2
M (Anderson-Sprecher, 1994), RCp (Ronchetti and Staudte, 1994), and RSIC

(Machado, 1993) statistics. M -estimators are efficient and highly robust to unusual values

of y, but leverage point can break them down completely. This is illustrated in Figures

( 3.8) to ( 3.11) that the value of RAIC, R2
M , RCp, and RSIC increase drastically even

if a one single leverage point is added to the data.

This chapter discusses the possibility of extending the idea of using robust estimators

in the model selection criteria by using high breakdown point estimators in the procedure.

It is known that almost all different model selection methods are expressed in terms of the

variance, which are computed in LS or M -estimation methods. In this study, instead of

working with the classical scale or M -estimators scale, high breakdown point estimators

for variable selection was used. This in turn reduces the effect of outliers and leverage

point. Subsequently modified robust model selection statistics are defined that is based on

high breakdown point estimators. The proposed methods were evaluated using influence

function. Simulation and real data were applied to investigate the performance power of
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the modified robust selection statistic and compared them with the classical methods as

well as the existing robust M -estimation methods.

4.2 Existing Approaches of Variable Selection

Consider the full model which is a standard linear regression model defined in Eqn.

( 4.21). For each setK ⊂ {1, ..., p}, the most common methods used to selection variables

in standard linear regression model are the Akaike Information Criteria (AIC), Mallow’s

(Cp), and Schwarz Information Criterion (SIC). These criteria are given as:

AIC = log

(
SSEK
n

)
+ 2k, (4.1)

Cp =
(n− k)SSEK

SSE
− n+ 2k, (4.2)

SIC = log

(
SSEK
n

)
+
k log(n)

n
, (4.3)

where, k = #(K), SSEK =
∑n

i=1 r
2
iK and riK = yi − µ̂ − xTiKβ̂LSK , the residuals

from the LS of reduced model based on the set K. Therefore, SSEp =
∑n

i=1 r
2
ip and

rip = yi − µ̂ − xTipβ̂LSp , the residuals from the LS of full model. The best subset K is

chosen as the one minimizing AIC, Cp, and SIC.

It is clear, that a few outliers may harm the values of AIC, Cp, and SIC. It is

noteworthy that all these criteria are computed by using the variance of the residuals

defined by:

V ar(rip) =
SSEp
n− p

. (4.4)
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Thus, the analogous to Eqns. ( 4.1), ( 4.2), and ( 4.3) are

AIC = log

(
(n− k)V ar(rik)

n

)
+ 2k, (4.5)

Cp =
(n− k)V ar(rik)

V ar(ri)
− n+ 2k, (4.6)

SIC = log

(
(n− k)V ar(rik)

n

)
+
k log(n)

n
. (4.7)

So, to robustify these criteria, only the variance was considered to be robust. The robust

variance of the residual process in Eqn. ( 4.4) is commonly computed as,

σ̂p =

[∑n
i=1 ρi(β̂)

n− p

]1/2

, (4.8)

where, ρi(β̂) is symmetric and non decreasing on [0,∞[. Furthermore, ρ(0) = 0 and ρ is

almost everywhere continuously differentiable, this the same as inM -estimate procedure.

In the presence of leverage points, theM -residuals are affected resulted in a large value of

σ̂p. As σ̂p may be over estimated in the presence of influence point, an alternative estimate

of the variance is needed.

If we take ρ(u) = u2, then σ̂p is a sum of squares and we get the classical variable

selection for Eqns. (4.5), (4.6), and (4.7). Instead of a squared loss function one could

take ρ(u) = |u|, which leads to the minimization of the sum of absolute values of the

residuals and yields the L1 regression estimator. the associated variable selection is given

by

AIC = log

(
(n− k)

∑n
i=1 |rik|

n

)
+ 2k, (4.9)

Cp =
(n− k)V ar(rik)∑n

i=1 |ri|
− n+ 2k, (4.10)
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SIC = log

(
(n− k)

∑n
i=1 |rik|

n

)
+
k log(n)

n
. (4.11)

The above measure, and a variant of it, have affected in the presence of leverage point.

A smooth and bounded ρ function is Tukey Biweight given in Eqn. (2.18). The re-

sulting estimator is then an S-estimator (Rousseeuw& Yohai, 1984), which we call the

Biweight S-estimator (BS). The constant d in Eqn. (2.18) determines the breakdown

point of the estimator, which is the maximal fraction of contamination that an estima-

tor can withstand. The following scale alternative is proposed. In new methods a high

breakdown and bounded estimate is used. Therefore, AIC, Cp, and SIC criteria must be

robustified along with a high breakdown and bounded influence error scale σ̂p.

4.3 A High Breakdown and Bounded Influence Variance (Scale)

Consider a high breakdown regression estimator defined by:

(µ̂, β̂) = arg min
(µ,β)

Sn (r1(µ,β), ..., rn(µ,β)) , (4.12)

where, Sn is a residual scale estimator verifying Sn = (ae1, ..., aen) = |a|(e1, ..., en) for

all e1, ..., en, and a ∈ R.

Now a high breakdown and bounded influence scale is defined by analogy with the

classical formula in Eqn. ( 4.4) as:

σ̂Sp =

[
S(ri)

n− p

]1/2

, (4.13)

where σ̂Sp is the high breakdown scale estimator for sub model. There is another residual
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scale σ̂S for every high breakdown regression estimator, where σ̂S is the high breakdown

scale estimator for full model. Thus, σ̂LMS , σ̂LTS , and σ̂BS are defined by fitting LMS,

LTS, and Biwieght S-estimation, respectively.

4.4 Different Variable Selection Criteria Based on High Breakdown and Bounded

Influence Scale Estimate

The proposed methods called ’High Breakdown and Bounded Influence Variable Selec-

tion Criteria’ are defined by using high breakdown and bounded influence scale estimator

σ̂S as follows:

AICS = log

(
(n− k)σ̂2

Sk

n

)
+ 2k, (4.14)

CpS =
(n− k)σ̂2

Sk

σ̂2
S

− n+ 2k, (4.15)

SICS = log

(
(n− k)σ̂2

Sk

n

)
+
k log(n)

n
. (4.16)

There is an additional value of AICS , CpS , and SICS for each regression estimate and

residual scale estimator S. Small value of AICS , CpS , and SICS reveals that the explana-

tory variables adequately explain the distribution of y. If the estimated scale is from LTS,

thus,

σ̂2
LTS = 1/H

H∑
i=1

r2
i (β̂LTS), (4.17)

where, H ∈ 1, ..., n, and
∣∣r[1]

∣∣ ≤ ∣∣r[2]

∣∣ ≤ ... ≤
∣∣r[n]

∣∣ denote the ordered absolute residu-

als. When H = n/2 is equivalent to finds the estimates corresponding to the half samples

having the smallest sum of squares of residuals. As such, breakdown point is 50%. When

H = [(n + p + 1)/2] is equivalent to LMS and when H = n, LTS and LS coincide:

β̂(LTS,n,N) = β̂(LS,N).
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Then, the robust variable selection based on LTS estimators are define as:

AICLTS = log

(
(n− k)σ̂2

LTSK

n

)
+ 2k, (4.18)

CpLTS =
(n− k)σ̂2

LTSK

σ̂2
LTS

− n+ 2k, (4.19)

SICLTS = log

(
(n− k)σ̂2

LTSK

n

)
+
k log(n)

n
. (4.20)

4.4.1 Experiment 2

In this experiment, experiment 1 (described in Chapter three) was repeated, for the AIC,

R2, Cp and SIC using high breakdown scale estimators including LMS, LTS and BS-

estimator.

4.4.2 Discussion

Figures (4.1) to (4.4) showed the results: The LMS, LTS, andBS-estimator show a very

robust behavior; there is only a slight loss in criteria, becoming constant when the outlier

moves further away from the origin.

Based on the results, it is evident that the variable selection methods based on high

breakdown point estimators show robust behavior in the presence of verticals or leverage

point.
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Figure 4.1: Effect of adding on observation (0,y10) on the values of AICLMS , AICLTS and AICBS (left
figures) and effect of adding on observation (x10,0) (right figures)
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Figure 4.2: Effect of adding on observation (0,y10) on the values of R2
LMS , R2

LTS and R2
BS (left figures)

and effect of adding on observation (x10,0) (right figures)
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Figure 4.3: Effect of adding on observation (0,y10) on the values ofCpLMS ,CpLTS andCpBS (left figures)
and effect of adding on observation (x10,0) (right figures)
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Figure 4.4: Effect of adding on observation (0,y10) on the values of SICLMS , SICLTS and SICBS (left
figures) and effect of adding on observation (x10,0) (right figures)
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4.5 Properties of the Proposed Robust Selection Criteria

In this section, properties of variable selection criteria through its influence function are

derived. The gross-error sensitivity is constructed of the proposed variable selection pro-

cedures, AICS , CpS , and SICS . Other studies on influence function of R2 can be found

in Croux and Dehon (2003).

4.5.1 Influence Functions of the Proposed Criteria

Consider the standard linear regression model with intercept µ given by:

yi = µ+ XT
i β + εi. (4.21)

Assume that the distribution of errors satisfying Fσ(X) = F0(X/σ), where σ is the resid-

ual scale parameter and F0 is symmetric with certain probability density function.

Suppose that εi ∼ Fσ(X), let X and y be independent stochastic variables with dis-

tribution H . The functional T is Fisher-consistent for the parameters (µ,β) at the model

distribution H as follows:

T (H) =

 a(H)

b(H)

 =

 µ

β

 . (4.22)

For a Fisher-consistent scale estimator, Fσ(X) = F0(X/σ) for all σ > 0. In general, the

influence function of T at the distribution F is defined as:

IF ((X, y), T,H) = lim
ε−→0

T
(
(1− ε)H + ε∆(X,y)

)
− T (H)

ε
=

∂

∂ε
(T (∆(X,y))), (4.23)
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where T (H) is the functional defined as the solution of the objective model and ∆(X,y)

is the distribution which contains outliers. The following theorem gives the influence

function of variable selection criteria, AIC, Cp, and SIC with any scale S.

4.5.2 Theorem 1

Let H be some distribution other than F . Take (X, y) ∼ H and denote ε the error term of

the model. Assume that S has the property that is differentiable with partial derivatives

equal to zero at the origin (0, 0). Then:

1.

IF ((X, y), AICS, H) =
2n

(n− k)
IF (rik/σk, S, F0) , (4.24)

2.

IF ((X, y), CpS, H) =
2(n− k)S2

k

S2
p

(IF (rik/σk, S, F0)− IF (rp/σp, S, F0)) ,

(4.25)

3.

IF ((X, y), SICS, H) =
2n

(n− k)
IF (rik/σk, S, F0) , (4.26)

where rik = yi − µ̂ − xTikβk, σ2
k = SSE/(n − k), Sk are computed from sub model K,

furthermore, σ2
p = SSE/(n− p) and Sp are computed from full model.

4.5.3 Proof of Theorem 1

Proof of Theorem 1 (1.)

By using the definition of influence function in Eqn. ( 4.23),

IF ((X, y), AIC,H) = ∂
∂ε

(AIC(∆(X,y)))|ε=0

= ∂
∂ε

log(n−k
n
.S2
k(Hε)) + 2k|ε=0
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=
n

(n− k).S2
k(H)

.
∂

∂ε
(S2

k(Hε))|ε=0 (4.27)

=
n

(n− k)σ2
k

.2σk
∂

∂ε
(Sk(Hε)|ε=0 (4.28)

where, AIC(∆(X,y))) = log(n−k
n
.S2
k(Hε)) + 2k, AIC(H) = log(n−k

n
.S2
k(H)) + 2k, and

S2
k(H) = σ2

k.

In the regression status there is a stochastic variable (X, y) at (p + 1) dimensional

distribution H . Therefore, the regression functional identical to Eqn. ( 4.12) is given by:

(a(H),b(H)) = arg min
(µ,β)

S
(
yi − µ− XT

i β
)

(4.29)

eventually obtain,

S2
k(H) = S2

(
yi − a(H)− XT

i b(H)
)

(4.30)

and,

Sk(Hε) = S
(
yi − a(Hε)− XT

i b(Hε)
)
. (4.31)

Suppose Bε is Bernoulli variable, which takes value 1 with success probability (1 − ε)

and value 0 with failure probability ε, ε > 0, a ∈ R, and b ∈ Rk, then,

Sk(Hε) = Sk
(
Bε(yi − a(Hε)− XT

i b(H)ε) + (1−Bε)(yi − a(Hε)− XT
i b(H)ε))

)
.

(4.32)

Equivalently

Sk(Hε) = Sk
(
Bε(yi − a− XT

i b) + (1−Bε)(yi − a− XT
i b)
)

+S (ε+ µ− a(Hε)) + S
(
ε+ βXT − b(H)εXT

)
. (4.33)
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If the derivative are computed at ε = 0 of Sk(Hε), ε indicate now for the error term,

obtain,

∂

∂ε
(S (ε+ µ− a(Hε))) |ε=0 = 0,

and

∂

∂ε

(
S
(
ε+ βXT − b(H)εXT

))
|ε=0 = 0,

then,

∂

∂ε
Sk(Hε)|ε=0 =

∂

∂ε
Sk
(
Bε(yi − a− XTb) + (1−Bε)(yi − a− XTb)

)
|ε=0

=
∂

∂ε
S((1− ε)Fσk + ε∆rik)|ε=0

= σk
∂

∂ε
S(
(
1− ε)F0 + ε∆rik/σk

)
|ε=0

= σkIF (rik/σk, S, Fσ) (4.34)

where rik = yi − µ̂− xTikβ̂k. Inserting Eqn. ( 4.34) into Eqn. ( 4.28) yields,

IF ((X, y), AIC,H) =
2n

(n− k)
IF (rik/σk, S, F0) (4.35)

Proof of Theorem 1 (2.)

IF ((X, y), Cp,H) =
∂

∂ε
(Cp(∆(X,y)))|ε=0

=
∂

∂ε

(
(n− k)S2

k(Hε)

S2
p(Hε)

− n+ 2k

)
|ε=0

=
2(n− k)Sk(H)S2

p(H) ∂
∂ε
Sk(Hε)

σ4
p

−
(n− k)S2

k .2Sp(H) ∂
∂ε
Sp(Hε)

σ4
p

|ε=0

=
2(n− k)σkσ

2
p
∂
∂ε
Sk(Hε)

σ4
p

−
2(n− k)σ2

kσ
2
p
∂
∂ε
Sp(Hε)

σ4
p

|ε=0

94

Univ
ers

ity
 of

 M
ala

ya



=
2(n− k)σkσp[σp

∂
∂ε
Sk(Hε)− σk ∂∂εSp(Hε)]

σ2
p

|ε=0 (4.36)

where, Cp(∆(X,y)) =
(n−k)S2

k(Hε)

S2
p(Hε)

− n+ 2k, Cp(H) =
(n−k)S2

k(H)

S2
p(H)

− n+ 2k, S(H)2
k = σ2

k,

and S(H)2
p(H) = σ2

p . In an analogous way to Eqn. ( 4.36) it can be shown that,

∂

∂ε
Sk(Hε) = σkIF (rik/σk, S, F0), (4.37)

and

∂

∂ε
Sp(Hε) = σpIF (rip/σp, S, F0), (4.38)

Inserting Eqn. ( 4.36) and Eqn. ( 4.37) into Eqn. ( 4.38) yields,

IF ((X, y), Cp,H) =
2(n− k)σk

σp
(σkσpIF (rik/σk, S, F0)− σkσpIF (rip/σp, S, F0))

=
2(n− k)σk

σ2
p

(IF (rik/σk, S, F0)− IF (rip/σp, S, F0)) . (4.39)

Proof of Theorem 1 (3.)

IF ((X, y), SIC,H) = ∂
∂ε

(SIC(∆(X,y)))|ε=0

= ∂
∂ε

log
(
n−k
n
.S2
k(Hε) + p log(n)

n

)
|ε=0

=
n

(n− k).S2
k(H)

.
∂

∂ε
(S2

k(Hε))|ε=0 (4.40)

=
n

(n− k)σ2
k

.2σk
∂

∂ε
(Sk(Hε)|ε=0 (4.41)

where, SIC(∆(X,y)) = log
(
n−k
n
.S2
k(Hε) + p log(n)

n

)
, SIC(H) = log

(
n−k
n
.S2
k(H) + p log(n)

n

)
,

and S2
k(H) = σ2

k.

In a similar way to Eqn. ( 4.36) can be shown, as

IF ((X, y), SIC,H) =
2n

(n− k)
IF (rik/σk, S, F0). (4.42)
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End of the proof of Theorem 1

Eqns. ( 4.35), ( 4.39), and ( 4.42) give the influence function of different variable selection

criteria using any scale S. Subsequently, the influence function of different classical

variable selection now follow Theorem 1 by using a well-known expression of influence

function of estimator of scale.

4.5.4 Proposition 1

Let (X, y) ∼ H where the distribution H verifies (H). Then

1.

IF ((X, y), AICS, H) =
2n

(n− k)EF0 [ρ′(ε)ε]
· ρ
(
yi − µ− βkxTik

σk

)
, (4.43)

2.

IF ((X, y), CpS, H) =
2(n− k)σk
σ2
pEF0 [ρ′(ε)ε]

·

(
ρ

(
yi − µ− βkxTik

σk

)
− ρ

(
yi − µ− βpxTip

σp

))
,

(4.44)

3.

IF ((X, y), SICS, H) =
2n

(n− k)EF0 [ρ′(ε)ε]
· ρ
(
yi − µ− βkxTik

σk

)
. (4.45)

Results and Discussion

The influence function of different variable selection criteria is bounded if the ρ-function

is bounded. Figure ( 4.5) showed the influence function for a bivariate normal distribution

H with associated regression parameters µ = 0 and β = 1 (Anderson-Sprecher, 1994).
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The classical criteria AIC, Cp, and SIC are non-robust, since ρ in Proposition 1

equals, (yi − µ − XTβ)2. Thus, IF ((X, y), AICLS, H), IF ((X, y), CpLS, H), and

IF ((X, y), SICLS, H) are unbounded in two directions, X and Y (see Figure ( 4.5)

(a)). For M -estimators, ρM = X.ρ(yi − µ − XTβ), therefore IF ((X, y), AICM , H),

IF ((X, y), CpM , H), and IF ((X, y), SICM , H) are unbounded influence function with

respect to the X direction. Figure ( 4.5) (b) shows that M -estimator is robust with re-

spect to vertical outliers, but breaks down in the presence of large leverage points. For

good leverage points, the IF ((X, y), AICM , H), IF ((X, y), CpM , H), and IF ((X, y),

SICM , H) tend to infinity, while bad leverage point with enormous X values can have

unbounded negative influence on robust variable selection criteria for M -estimator.

Whereas, the influence function for proposed criteria, IF ((X, y), AICLMS, H), IF ((X, y),

CpLMS, H), and IF ((X, y), SICLMS, H) are bounded and discontinuous (see Figure

( 4.5) (c) and 4.5 (d)). Note that a large zone outliers have zero influence, even when

they are bad leverage points. This is because they have a similar influence on the spread

of y as on the spread of the residuals. Bad leverage points with an outlying y value are

harmless, and give a zero value for influence function of high breakdown scale estimate.

On the other hand, bad leverage points with non outlying y values have a negative, but

bounded influence.

4.6 The Gross-Error Sensitivity of Variable Selection Criteria

The gross-error sensitivity of the different variable selection criteria is defined as the

supreme influence that an observation can have. If β = 0, then IF = 0, so it is assumed

that β 6= 0 and the observation (X, y) follows the regression line yi = µ + XTβ, where

S is LTS-scale estimate. Then, if X tend to ∞, the gross-error sensitivity of AICLTS ,
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CpLTS , and SICLTS will turn into:

γ∗(AICLTS, F ) = sup
(X,y)

IF ((X, y), AICLTS, H) =
2n

(n− k)EF0 [ρ′(ε)ε]
· ρ(∞), (4.46)

γ∗(CpLTS, F ) = sup
(X,y)

IF ((X, y), CpLTS, H) =
2(n− k)σk
σ2
pEF0 [ρ′(ε)ε]

· ρ(∞), (4.47)

γ∗(SICLTS, F ) = sup
(X,y)

IF ((X, y), SICLTS, H) =
2n

(n− k)EF0 [ρ′(ε)ε]
· ρ(∞). (4.48)

Briefly, if X tends to infinity, both LS and M -estimators gain ρ−function yields high

gross-error sensitivity. On the other hand, high breakdown and bounded influence esti-

mator compute with ρ−function which yield the lowest γ∗.

(a) LS Scale (b) M -estimator Scale

(c) LMS Scale (d) BS Scale

Figure 4.5: Plot of influence function of LS, M , LMS, and BS estimators of scales
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4.7 Simulations

In this section, several simulation studies are discussed that are conducted with the aim

to investigate the performance of the proposed criteria statistic for detecting best variable

in the linear regression model Eqn. ( 1.1) based on Eqns. ( 4.14), ( 4.15), and ( 4.16).

In this study, 50 independent replicates of 3 independent uniform random variables on

[-1,1] of xi1, xi2 and xi3, and 50 independent normally distributed errors εi ∼ N(0, 9)

were generated. The true model is given by yi = xi1 + xi2 + εi, for i = 1, ..., 50 using two

variables xi1 and xi2. In order to illustrate the robustness to outliers, the following cases

are considered:

• Vertical outliers (outliers in the y only)

• Bad leverage points (outliers in some X only)

• good leverage points (outliers in X follow the pattern of the majority of the data)

For vertical outliers case, we randomly generated different percentages of outliers (0%,

5%, 10%, 20%, 30%, and 40%) from N(50, 0.12) for each of the simulated cases. For

good leverage case, we considered the different percentages of outliers (0%, 5%, 10%,

20%, 30%, and 40%) on the variables X1 and X2 were generated from a N(100, 0.52)

distribution, then generated y to get good leverage points. For bad leverage case, different

percentages of outliers (0%, 5%, 10%, 20%, 30%, and 40%) on variables X1 and X2 were

generated from a N(100, 0.52) distribution. For each of these setting 1000 samples were

simulated.

4.7.1 Performance of Simulations

The purpose of this simulation is based on the following aims:

• AICLTS , AICLMS and AICBS are compared with AICLS and AICM
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• CpLTS , CpLMS and CpBS are compared with CpLS and CpM

• SICLTS , SICLMS and SICBS are compared with SICLS and SICM

4.7.2 Simulation Result

The resulting fit to the data is classified as one of the following:

• True model (correct fit)

• Models that contain all the variables in the true model plus other variables that are

redundant (Over fit)

• Models that contain only a few of the variables in the true model (Under fit)

• Models that fit none of the above (Wrong fit)

Tables 4.1 to 4.3 provided the results of different versions of AIC with and without

the presence of outliers and leverage point. AICLS performed better compared to robust

AIC with high percentage (84.6%) in uncontaminated data. However, as the percentage

of outliers increased to 5%, AICLS selected a large proportion of wrong fit models. The

AICM continues to yielded higher percentage compared to AICLS and these results hold

as the percentage of vertical outliers increased to 10%, then it tends to under fit. Thus,

AICM method ignored some of the important variables in the model. As expected, the

percentage of true model in all cases of AICS with high breakdown scale estimate was

always large in the presence of less than 20% vertical outliers. Then, the same behaviour

was obtained for AICM .

Table 4.2 reported the performance results of classical and robust AIC in the pres-

ence of outliers in X variables (bad leverage point). With 5% bad leverage points in the

data, AICLS tended to produce over fit model, AICM tended to produce either an under
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fit or wrong fit model, and the proposed criteria performed better. As the percentage of

bad leverage point increases to more than 20%, the AICLS and AICM tended to produce

wrong fit. All AICS with high breakdown scale estimate criteria, however tended to pro-

duce either correct fit or under fit the model. In the presence of outliers in X and yi (good

leverage points), AICLS tended to produce over fit. On the other hand, the robust AIC

tend to produce either correct fit or under fit model.

Tables 4.4 to 4.6 presented the results of the simulation study for different versions

of Mallows’s Cp methods. For data without outliers, the classical Cp worked better than

robust CpS . CpS selected a large proportion of correct fit model or over fit in this case. In

the presence of 5% contamination, the Cp performed worse than the CpS criteria. Like-

wise, when the percentage of outliers increased at most 10%, the classical Cp selected

a large proportion of under fit or wrong fit models, while robust CpS still selects higher

percentage of correct fit model. In case of good leverage point, Table 4.5 illustrated that

both Cp and RCp statistics pick up the right model with low percentage and preferred

the over fit model in all level of contamination. However, CpLTS and CpLMS selected

the correct fit and over fit models until 20% contamination. Next, CpLTS and CpLMS

selected the correct fit model with a high percentage, while, CpBS gave a good solution

here. Table 4.6 shows that the Cp and RCp would choose over fit model when 5% of

data are bad leverage points. Both of these methods worked worse for the case with a

high contamination level of bad leverage. Otherwise, the proposed methods picked the

true model with good percentage.

Tables 4.7 to 4.9 showed the detail of simulation result for different versions of SIC

methods. For uncontaminated data, the classical SICLS performed best compared to ro-
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bust SIC, whereas it selected a large proportion of under fit or wrong fit models for the

data with vertical outliers. As expected, the robust SIC will usually (that is, with higher

proportion) select the correct model. For bad leverage points, it was observed that SICLS

and SICM tended to produce either an over fit or wrong fit the model. However, the ro-

bust estimate produced comparable power in the presence of bad leverage points.

In general, robust variable selection criteria with M -estimation are robust in the pres-

ence of outliers in response variable (Y -direction). In the presence of high leverage point

(X-direction), the value of these criteria will be affected and differs significantly from the

true fit as the percentage of leverage point increases. But, the robust variable criteria with

high breakdown scale estimate less affected in all cases in the presence of outliers in X-

and Y -directions.
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Table 4.1: Percentage of selecting correct models from classical AICLS , robust AICM , AICLTS ,
AICLMS , AICBS , with vertical outliers

ε AICLS AICM AICLTS AICLMS AICBS
%
0 Correct fit 84.6% 54.4% 57.6% 65.2% 45.2%

Over fit 15.4% 0% 0% 0% 0%
Under fit 0% 43.6% 41.2% 34% 54.6%
Wrong fit 0% 2.0% 1.2% 0.8% 0.2%

5 Correct fit 2.8% 49.6% 56.8% 62.6% 45.4%
Over fit 2% 0% 0% 0% 0%

Under fit 22% 51% 42.8% 36.6% 54.6%
Wrong fit 73.2% 1.4% 0.4% 0.8% 0%

10 Correct fit 3.2% 45.0% 51% 56% 39.8%
Over fit 0.8% 0% 0% 0% 0%

Under fit 20.2% 52.4% 48% 43.8% 55.2%
Wrong fit 75.8% 2.6% 1.0% 0.2% 0%

20 Correct fit 4.2% 30.8% 49.4% 58% 34.2%
Over fit 0.2% 0% 0% 0% 0%

Under fit 22.8% 67.8% 49.6% 41.4% 65.8%
Wrong fit 72.8% 1.4% 1.0% 0.6% 0%

30 Correct fit 1.6% 0% 44.0% 51.2% 23.2%
Over fit 0.2% 0% 0% 0% 0%

Under fit 22.6% 73.8% 55.4% 48.2% 76.8%
Wrong fit 72.8% 26.2% 0.6% 0.6% 0%

40 Correct fit 2.2% 0% 37.6% 41.2% 12.4%
Over fit 0.6% 0% 0% 0% 0%

Under fit 22.8% 70.8% 62.4% 58.4% 87.4%
Wrong fit 74.4% 29.2% 0% 0.4% 0.2%
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Table 4.2: Percentage of selecting correct models from classical AICLS , robust AICM and robust
AICLTS , AICLMS , AICBS with bad leverage points

ε AICLS AICM AICLTS AICLMS AICBS
%
5 Correct fit 0% 0% 54.6% 60.8% 43.8%

Over fit 70.4% 0% 0% 0% 0%
Under fit 0% 64.4% 44% 38.4% 55.4%
Wrong fit 29.6% 35.6% 1.4% 0.8% 0.8%

10 Correct fit 0% 0% 63.8% 67.8% 51.0%
Over fit 63% 0% 0% 0% 0%

Under fit 0% 54.6% 34.6% 31.4% 48.8%
Wrong fit 37% 42.4% 1.6% 0.8% 0.2%

20 Correct fit 0% 0% 56.6% 63.4% 49.2%
Over fit 54.8% 0% 0% 0% 0%

Under fit 0.2% 60.8% 42.4% 35.8% 50.6%
Wrong fit 44.8% 39.2% 1.0% 0.8% 0.2%

30 Correct fit 0% 0% 56.6% 61.4% 46%
Over fit 37.6% 0% 0% 0% 0%

Under fit 0.25% 29.6% 42.6% 36% 53.8%
Wrong fit 60.4% 42.6% 0.8% 2.4% 0.2%

40 Correct fit 1.0% 0% 55.2% 64.6% 51.4%
Over fit 13.8% 0% 0% 0% 0%

Under fit 1.2% 54.4% 43.8% 33.8% 48.6%
Wrong fit 81% 45.4% 1.0% 1.6% 0%
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Table 4.3: Percentage of selecting correct models from classicalAICLS , robustAICM and robustAICLTS

,AICLMS , AICBS , with good leverage points

ε AICLS AICM AICLTS AICLMS AICBS
%
5 Correct fit 0.2% 47.0% 53.6% 58.4% 42.6%

Over fit 99.8% 0% 0% 0% 0%
Under fit 0% 50.4% 46% 41.2% 57.4%
Wrong fit 0% 2.6% 0.4% 0.4% 0%

10 Correct fit 0% 44.2% 54.6% 59.4% 40.4%
Over fit 99.6% 0% 0% 0% 0%

Under fit 0.2% 53.8% 44.6% 39.8% 59.6%
Wrong fit 0.2% 2.0% 0.8% 0.8% 0%

20 Correct fit 0.8% 32.4% 50.4% 56.2% 33.2%
Over fit 97.6% 0% 0% 0% 0%

Under fit 0.8% 66.6% 48.4% 43% 66.4%
Wrong fit 0.8% 1.0% 1.2% 0.8% 0.2%

30 Correct fit 1.8% 0% 46.0% 50.6% 27.0%
Over fit 97.8% 96.8% 0% 0% 0%

Under fit 2.8% 2.8% 53.6% 49.2% 72.8%
Wrong fit 0.6% 0.4% 0.4% 0.2% 0.2%

40 Correct fit 0.2% 0% 37.4% 37% 13.8%
Over fit 97.4% 100% 0% 0% 0%

Under fit 2.2% 0% 62.6% 62.6% 86.2%
Wrong fit 0.2% 0% 0% 0.4% 0%
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Table 4.4: Percentage of selecting correct models from classical CpLS , robust CpM , CpLTS , CpLMS ,
CpS , with vertical outliers

ε CpLS CpM CpLTS CpLMS CpS
%
0 Correct fit 83.8 56.8% 51.4% 54.6% 74.6%

Over fit 16.2% 42% 48.6% 45.4% 25.4%
Under fit 0% 0% 0% 0% 0%
Wrong fit 0% 0% 0% 0% 0%

5 Correct fit 2.0% 51.4% 54.2% 58% 76.6%
Over fit 0.6% 48.6% 45.8% 42% 23.4%

Under fit 61.4% 0% 0% 0% 0%
Wrong fit 36% 0% 0% 0% 0%

10 Correct fit 2.8% 55.2% 59.8% 62.6% 85.8%
Over fit 0.2% 44.8% 40.2% 37.4% 14.2%

Under fit 62.2% 0% 0% 0% 0%
Wrong fit 34.8% 0% 0% 0% 0%

20 Correct fit 3.4% 59.8% 71.2% 70.8% 91.4%
Over fit 1.0% 40.2% 28.8% 29.2% 8.6%

Under fit 61.2% 0% 0% 0% 0%
Wrong fit 4.4% 0% 0% 0% 0%

30 Correct fit 2.0% 19.6% 74.2% 75.8% 93.6%
Over fit 1.0% 75.4% 25.8% 24.2% 6.4%

Under fit 59.8% 0.8% 0% 0% 0%
Wrong fit 37.2% 4.2% 0% 0% 0%

40 Correct fit 3.2% 14% 88.2% 84.2% 99.2%
Over fit 0.4% 41.4% 11.8% 15.8% 0.8%

Under fit 60.2% 14.6% 0% 0% 0%
Wrong fit 36.2% 30.0% 0% 0% 0%
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Table 4.5: Percentage of selecting correct models from classical CpLS , robust CpM , CpLTS , CpLMS ,
CpS with good leverage points

ε CpLS CpM CpLTS CpLMS CpS
%
5 Correct fit 1.8% 7.6% 32.8% 34.2% 70.4%

Over fit 98.2% 92% 67.2% 65.8% 29.6%
Under fit 0% 0% 0% 0% 0%
Wrong fit 0% 0% 0% 0% 0%

10 Correct fit 2.6% 8% 33.4% 30% 69.4%
Over fit 97.4% 92% 66.6% 70% 30.6%

Under fit 0% 0% 0% 0% 0%
Wrong fit 0% 0% 0% 0% 0%

20 Correct fit 6.6% 9.8% 34.2% 38.2% 78%
Over fit 93.4% 90.2% 65.8% 61.2% 22%

Under fit 0% 0% 0% 0% 0%
Wrong fit 0% 0% 0% 0% 0%

30 Correct fit 0.2% 0.6% 13% 25% 85.4%
Over fit 99% 95.4% 87% 75% 14.6%

Under fit 0% 1.6% 0% 0% 0%
Wrong fit 0.8% 2.4% 0% 0% 0%

40 Correct fit 0% 0.4% 0.8% 2.8% 79%
Over fit 98% 99.2% 99.2% 97.2% 21%

Under fit 2.0% 0.4% 0% 0% 0%
Wrong fit 0.8% 2.4% 0% 0% 0%
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Table 4.6: Percentage of selecting correct models from classical CpLS , robust CpM , CpLTS , CpLMS ,
CpS with bad leverage points

ε CpLS CpM CpLTS CpLMS CpS
%
5 Correct fit 0% 0.8% 70.4% 71.6% 92.6%

Over fit 66.2% 69.4% 29.6% 28.4% 7.4%
Under fit 0% 0.8% 0% 0% 0%
Wrong fit 33.8% 29% 0% 0% 0%

10 Correct fit 0% 2.0% 87.6% 86.8% 98.8%
Over fit 64.4% 70.2% 12.4% 13.2% 1.2%

Under fit 0% 0.6% 0% 0% 0%
Wrong fit 35% 27.2% 0% 0% 0%

20 Correct fit 0% 2.0% 98.8% 98.4% 100%
Over fit 51.6% 65.6% 1.2% 1.6% 0%

Under fit 0.2% 0.6% 0% 0% 0%
Wrong fit 48.2% 31.8% 0% 0% 0%

30 Correct fit 0% 2.8% 100% 100% 100%
Over fit 16.2% 42% 0% 0% 0%

Under fit 1.6% 3.8% 0% 0% 0%
Wrong fit 82.2% 51.4% 0% 0% 0%

40 Correct fit 0.2% 2.6% 100% 100% 100%
Over fit 13.4% 36.4% 0% 0% 0%

Under fit 4.2% 5.6% 0% 0% 0%
Wrong fit 82.2% 55.4% 0% 0% 0%
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Table 4.7: Percentage of selecting correct models from classical SICLS , robust SICM , SICLTS ,
SICLMS , SICBS , with vertical outliers

ε SICLS SICM SICLTS SICLMS SICBS
%
0 Correct fit 94.0% 63.2% 38.0% 38.0% 74.2%

Over fit 6.0% 36.8% 62.0% 62.0% 25.8%
Under fit 0% 0% 0% 0% 0%
Wrong fit 0% 0% 0% 0% 0%

5 Correct fit 0% 66.2% 36.8% 36.8% 74.6%
Over fit 0.2% 33.8% 63.2% 63.2% 25.4%

Under fit 64.4% 0% 0% 0% 0%
Wrong fit 35.4% 0% 0% 0% 0%

10 Correct fit 0.6% 66.8% 46.8% 46.8% 83.4%
Over fit 0.2% 33.2% 53.2% 53.2% 16.6%

Under fit 67.4% 0% 0% 0% 0%
Wrong fit 31.8% 0% 0% 0% 0%

20 Correct fit 0.6% 68.2% 50.4% 50.4% 90.2%
Over fit 0% 31.8% 49.6% 49.6% 9.8%

Under fit 67.6.8% 0% 0% 0% 0%
Wrong fit 31.8% 0% 0% 0% 0%

30 Correct fit 0% 71.8% 62.6% 62.6% 93.6%
Over fit 0% 27.2% 37.4% 0% 6.4%

Under fit 68% 1% 0% 0% 0%
Wrong fit 32% 0% 0% 0% 0%

40 Correct fit 0.4% 65.8% 37.2% 37.2% 98.4%
Over fit 0% 16.4% 26.8% 26.8% 1.6%

Under fit 63.4% 13.2% 0% 0% 0%
Wrong fit 36.2% 4.6% 0% 0% 0%
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Table 4.8: Percentage of selecting correct models from classical SICLS , robust SICM and robust SICLTS ,
SICLMS , SICBS with good leverage points

ε SICLS SICM SICLTS SICLMS SICBS
%
5 Correct fit 6.8% 18.6% 41.6% 41.6% 78.4%

Over fit 93.2% 80.6% 58.4% 58.4% 21.6%
Under fit 0% 0.6% 0% 0% 0%
Wrong fit 0% 0.2% 0% 0% 0%

10 Correct fit 16.4% 22.0% 42.2% 42.2% 80.4%
Over fit 83.6% 77.2% 57.8% 57.8% 19.6%

Under fit 0.8% 0% 0% 0% 0%
Wrong fit 0% 0% 0% 0% 0%

20 Correct fit 34.0% 24.4% 48.4% 48.4% 85.4%
Over fit 65.8% 74.8% 51.6% 51.6% 14.6%

Under fit 0.2% 0.4% 0% 0% 0%
Wrong fit 0% 0.4% 0% 0% 0%

30 Correct fit 42.2% 23.8% 50.2% 50.2% 74.8%
Over fit 57.4% 74.0% 46.6% 46.6% 24.8%

Under fit 0.2% 1.4% 0.2% 0% 0.2%
Wrong fit 0.2% 0.6% 0% 0% 0.2%

40 Correct fit 51.8% 23.4% 42.8% 42.8% 31.6%
Over fit 42.4% 72.8% 54.6% 54.6% 65.4%

Under fit 5.4% 2.6% 0.4% 0.4% 2%
Wrong fit 0.4% 1.2% 2.2% 2.2% 1%
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Table 4.9: Percentage of selecting correct models from classical SICLS , robust SICM and robust SICLTS ,
SICLMS , SICBS , with bad leverage points

ε SICLS SICM SICLTS SICLMS SICBS
%
5 Correct fit 0% 3.8% 38.6% 38.6% 76.6%

Over fit 35.2% 47.2% 61.4% 61.4% 23.4%
Under fit 0.4% 4.4% 0% 0% 0%
Wrong fit 64.2% 44.6% 0% 0% 0%

10 Correct fit 0% 3.8% 43.8% 43.8% 81.8%
Over fit 38.0% 44.4% 56.2% 56.2% 18.2%

Under fit 0.6% 6% 0% 0% 0%
Wrong fit 61.4% 45.8% 0% 0% 0%

20 Correct fit 0% 3.4% 52.2% 52.2% 87.6%
Over fit 32.2% 39.8% 47.8% 47.8% 12.4%

Under fit 2.2% 7% 0% 0% 0%
Wrong fit 65.6% 49.8% 0% 0% 0%

30 Correct fit 0% 4.6% 62.0% 62.0% 94.2%
Over fit 31.2% 39.8% 37.8% 37.8% 5.4%

Under fit 4% 6.6% 0% 0% 0%
Wrong fit 64.8% 49% 0.2% 1.6% 0.4%

40 Correct fit 0% 6.0% 63.0% 63.0% 61.6%
Over fit 28.8% 38.4% 32.6% 32.6% 13.8%

Under fit 6.8% 6.8% 0% 0% 3.2%
Wrong fit 64.4% 48.8% 4.4% 4.4% 21.4%

4.8 Practical Example: (Stack Loss Data)

Stack Loss data appear in by Brownlee (1965). The data set consists of 21 observations

on three independent variables ((1) xi1 =Air.Flow: represents operation rate of plant; (2)

xi2 =Water.Temp: temperature of cooling water; and (3) xi3 =Acid.Conc) and contains

four outliers (cases 1, 3, 4, and 21) and high leverage points (cases 1, 2, 3 and 21). These

observations (10% of the data) are considered as leverage outliers. The data are given in

Appendix 3, and the following model is considered: model:

Stack.Loss = β0 + β1Air.Flow + β2Water.Temp + β3Acid.Conc.
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The least squares estimates are β̂0 = −39.920, β̂1 = 0.716, β̂2 = 1.295, and β̂3 = −0.152.

Thus, the regression line is

̂Stack.Loss = −39.920 + 0.716Air.Flow + 1.295Water.Temp− 0.152Acid.Conc.

(4.49)

In addition, the LMS estimator for this data given by

̂Stack.Loss = −34.5 + 0.714Air.Flow + 0.357Water.Temp + 0.000Acid.Conc.

However, the robust LMS estimator suggested that the true model contains x1 and x2.

the Q-Q plots (Figure ( 4.6) ) of the residuals associated with the fitted model and suggest

the occurrence of outliers in the data set. Hence, the best variable selection procedures

proposed in this chapter on the data set.

Figure 4.6: Q-Q plot for regression residuals of Stack Loss data

Best Variable Selection of Stack Loss Data

All 23 possible models are fitted with a combination of any of these covariant and com-

puted several criteria AIC, Cp, and SIC values for each model. The results are com-

parable to the simulations part. The classical AIC and SIC select a model for all three
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explanatory variables. Tables 4.10 to 4.12, however shows that AIC with M -estimation

selects either under fit (xi1) or wrong fit (xi3). A relatively high value of classical Cp

has suggested that this may be a scope to improve the fitting to the model based on the

outcome of robust RCp with the full model. The value of RCp is close to V p value given

in section 2.6, and for the true model xi1, xi2 ( xi1, xi2 have the positive LS value estima-

tion), the value of Vp is smaller than RCp. On the other hand, all robust criteria with high

breakdown point estimators methods the importance of two variables xi1 and xi2, because

the breakdown point of the estimators conciliates about 10% of outliers in the data.

Table 4.10: The different version of AIC selection variable criterion of Stack Loss data

Selected variables AIC RAIC AICLTS AICLMS AICBS
x1 6.7 8.0 4.7 4.3 5.5
x2 7.1 6.5 5.9 5.4 7.0
x3 8.4 7.3 7.0 6.4 7.3

x1, x2 8.2 9.0 5.5 4.7 6.9
x1, x3 8.7 8.9 6.9 6.3 7.6
x2, x3 9.1 9.0 8.1 7.3 8.8

x1, x2, x3 4.7 10.6 7.6 6.7 9.1

Table 4.11: The different version of Cp selection variable criterion of Stack Loss data

Selected variables Cp RCp (Vp) CpLTS CpLMS CpS
x1 13.3 -2.1(1.96) 93.7 158.2 14.8
x2 28.9 34.9(1.96) 404.9 565.6 221.9
x3 148.9 62.4(1.96) 1260.3 1557 309.9

x1, x2 2.95 4.47(2.95) -1.22 -2.92 -8.15
x1, x3 14.3 7.2(2.95) 124.9 155.9 23.24
x2, x3 30.1 61.6(2.95) 515.2 554.9 182.3

x1, x2, x3 4.0 3.9(3.93) 4.0 4.0 4.0
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Table 4.12: The different version of SIC selection variable criterion of Stack Loss data

Selected variables SIC SICM SICLTS SICLMS SICS
x1 3.010 4.273 1.023 0.581 1.796
x2 3.425 2.848 2.194 1.678 3.278
x3 4.706 3.556 3.258 2.642 3.562

x1, x2 2.721 3.392 -0.048 -0.909 1.378
x1, x3 3.124 2.787 1.325 0.672 2.007
x2, x3 3.553 3.480 2.522 1.769 3.221

x1, x2, x3 2.631 3.172 0.133 -0.821 1.664

4.9 Summary

In this chapter, different variable selection criteria (AIC, Cp, and SIC) were considered

to be used with high breakdown and bounded influence scale estimators. The influence

function of the variable selection criteria for linear regression model based on the gener-

alized scale approach was derived and discussed. The simulation study was carried out to

examine the effect of vertical outliers and leverage points on the variable selection meth-

ods. The application on real data set presented, too. In general, robust variable selection

criteria with M -estimation are robust in the presence of outliers in response variable (Y -

direction). In the presence of high leverage point (X-direction), the value of these criteria

will be affected and differs significantly from the true fit as the percentage of leverage

point increases. But, the robust variable criteria with high breakdown scale estimate are

less affected in all cases in the presence of outliers in X- and Y -directions.
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CHAPTER 5

LASSO REGRESSION THROUGH GM- AND MM- LOSS FUNCTION

5.1 Introduction

Tibshirani (1996) suggested the application of LASSO regression for variable selection

and estimation in regression equation. According to the author, this method can be used

when numerous correlated variables in a linear model. Applying this method also re-

markably reduces computational cost for large data. To fix the problem of consistent,

Zou (2006) modified LASSO estimator to adaptive-LASSO, β̂ada−LASSO that is given

in Eqn. (2.5).

Since the LASSO estimate is a non-linear and non-differentiable function of the re-

sponse values, it is difficult to obtain an accurate estimate of parameters. We may approx-

imate the solution by a ridge regression of the form β? = (XTX + λWT )−1XTy, where

W, is a diagonal matrix with diagonal elements |β̂j|, WT denotes the generalized inverse

of W, and λ is chosen.

Among all unbiased linear estimators, LS method gives unbiased and minimum vari-

ance in the case that the errors are independent and distributed identically and normally

with clean data sets. Nevertheless, LS and subsequently ada-LASSO can produce very

poor variable selection in the presence of outliers. That is why, a robust variable selection

techniques suitable for high-dimensional data sets, such as LASSO, have been consid-
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ered remarkably.

In this regard, Fan and Li (2001), Efron et al. (2004), and Owen (2007) proposed mod-

ification of LASSO in order to be less sensitive to the presence of outliers. Moreover,

the LASSO is addressed through the least absolute deviation (LAD-LASSO) estima-

tor, that is robust to outlier in response direction. This technique initially was proposed

by Wang and Jiang (2007) and later Lambert-Lacroix & Zwald (2011) extended it with

M -estimator. The author suggested to compute LASSO regression using Huber function

and named this as Huber-LASSO.

However, none of these robust LASSO achieves ’boundedness’ in the X-direction or

high breakdown point estimators. Furthermore, it is widely known that leverage points

resulted from bad data points in X-direction; have key effects on the M -estimators. At

present the robust LASSO with respect to leverage points receive less attention in liter-

ature. Recently, Alfons, Croux, & Gelper (2013) suggested combining LASSO and the

well known least trimmed squares (LTS) estimator known as sparseLTS to obtained

reliable estimates and variable selection especially in the presence of the laverage point.

The LTS has shown good performances in robust regression estimation.

This chapter combines LASSO regression with GM -estimator for errors in variables

regression and MM -estimator for high efficiency and high breakdown point estimators.

We called these modified methods of the robust LASSO regression based on GM - and

MM -estimators as GM -LASSO and MM -LASSO, respectively. It was expected that

the modified methods is less sensitive to outliers and possess a high breakdown point

since the influence of outliers is insensitive to highly robust and efficient GM -and MM -
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estimators. A simulation study is carried out to perform subset selection of the variables

and to investigate the power performance of the GM -LASSO and MM -LASSO.

5.2 Generalized M -estimators (GM ) for Linear Regression Model

The general β̂GM Krasker and Welsch (1982) is defined as the value β̂, which solves:

∑
wi(Xi)ψ

(
ri(β̂)

vi(Xi)σ̂

)
Xi = 0, (5.1)

where, wi(Xi) is a weight function, vi(Xi) initially depends on the model matrix X from

the initial LS regression to the data, and ψ is a bounded function as in the case of M -

estimation.

The wi and vi are calculated from the hat values (H = X(XTX)−1XT ) . Because hat

values range from 0 to 1, a weights of wi = vi =
√

1− hii which ensure that observa-

tions with high leverage receive less weight than observations with small leverage. Also,

vi is adjusted according to the size of the residual. However, the breakdown point for

GM -estimators, BP (β̂GM) = 1/(p + 1), is better than M -estimators, BP (β̂M) = 1/p

which ignores leverage points. In other words, good leverage points that fall in line with

the pattern in the bulk of the data by down-weights, results in a loss efficiency [see, Leroy

and Rousseeuw (1987)].

If both, w and v are equal 1, then the M -estimation has been obtained, which have

unbounded influence functions. With v = 1 , and wi =
√

1− hii, Mallows-type GM -

estimate (Mallows, 1975) is obtained, see (Hill, 1977).
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5.3 MM -estimators for Linear Regression Model

MM -estimators have been proposed by Yohai (1987) to improve the efficiency of the

high breakdown estimators and this a three-stage procedure. Starting with β̂0, a high-

breakdown point "initial" estimate for β, the second stage, a robust M -estimate of scale

σ̂ of the residuals, is then computed based on β̂0 satisfying:

1

n

n∑
i=1

ρ0

(
yi − XT

i β̂0

σ̂

)
= b. (5.2)

In the third stage, an M -estimate β̂ using IRLS procedure (see Eqn. ( 2.11)) has been

identified starting at β̂0. Then, the regression MM -estimation is defined as the solution

of:
n∑
i=1

ρ′1

(
yi − XT

i β̂0

σ̂

)
Xi = 0. (5.3)

The ρ′1 is a function satisfying the M -estimation assumptions (Huber (1973)), such that

ρ1(u) ≤ ρ0(u), and sup ρ1(u) = sup ρ0(u) = a. The MM - estimators posses simulta-

neous properties of high efficiency when the errors are normal distributed and that BP

is 0.5. Next we provide a brief description of the influence functions of GM and MM -

estimators.

5.4 The Influence Function of GM and MM Estimates

5.4.1 Definition the Influence Function of GM -Estimate

The influence function of the GM -estimate T at the distribution F and at the distribution

∆(Xi,yi), which (Xi, yi) contains outliers, has the following form,

IF (Xi, yi, T, F ) = V −1 (ψ, F ) XiwiXT
i ψ
(
yi − XT

i T (F )
)
, (5.4)
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where ψ = ρ′ bounded function and V is as in Eqn. ( 2.38). The right side in Eqn.

( 5.4) is similar to the influence function for the M -estimator, but, XiXT
i is replaced by

the weighted matrix XiwiXT
i , which may down weight large leverage points.

5.4.2 Definition the Influence Function of MM -Estimate

The influence function of the MM -estimate T at the distribution F and at the contami-

nated distribution ∆(Xi,yi), which (Xi, yi) contains outliers, has the following form,

IF (Xi, yi, T, F ) = V −1 (ψ, F ) XiXT
i ψ1

(
yi − XT

i T (F )
)
, (5.5)

where ψ = ρ′ bounded function and V is as in Eqn. ( 2.38). However, the MM -estimator

T is defined as any solution of
∑n

i=1 ψ1

[
ri(θ)
σn

]
Xi = 0, and which must also satisfy,

S(T1) ≤ S(T0) where, S(θ) =
∑n

i=1 ρ
(
ri(θ)
σn

)
and ρ1(0

0
) = 0.

In the present study, a slight modification of the robust LASSO regression technique

based on GM and MM estimators is proposed. The modified method is expected to be

more robust than the LAD-LASSO and the Huber-LASSO. The next section elaborates

this idea.

5.5 LASSO Regression Through GM - and MM - Loss Functions

In the present study, a slight modification of the Huber-LASSO defined in Eqn. (2.41) is

proposed. The GM - estimator of β is used instead of M -estimator in computing the loss

function in order to reduce the effect of outliers in both the y and X-direction. Likewise,

theMM -estimator of β is used instead ofM -estimator in Eqn. (2.41) to compute the loss
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function. However, the GM -LASSO and MM -LASSO estimator are given by:

β̂GM−LASSO = arg min

[
n∑
i=1

wi(Xi)ρ

(
yi − XT

i β̂

σ̂

)
+ λ

p∑
j=1

Ŵj|βj|

]
. (5.6)

β̂MM−LASSO = arg min

[
βMM + λ

p∑
j=1

Ŵj|βj|

]
. (5.7)

It can be see that, GM -LASSO and MM -LASSO combine the GM and MM , and

LASSO penalty, and hence the resulting estimators are expected to be robust against

leverage points and also enjoy sparse representation (variable selection).

5.6 The Estimation Procedure for The GM -LASSO

The procedure for the GM -LASSO regression method is as follows:

1. First, compute the weights wi(Xi). For this step, we can use the definition of the

Mallows-type GM estimate provided in the literature (Mallows, 1975), that is wi =

√
1− hii. The observations for which hii > 2p/n can be identified as the leverage

points. We can then compute positive weights wi through the relation wi = 1 or,

wi =
√

1− hii given that wi decrease as hii increases; the leverage points are then

assigned smaller weights.

2. Find the initial β(0)
GM−LASSO, such as the Huber-LASSO estimates.

3. At each iteration t, find X̃
(t−1)

= wiX(t−1) from the previous iteration.

4. For a fixed penalty parameter λ, establish that following:

β̂
(t)
GM−LASSO =

n∑
i=1

wi(X)ρM

(
yi − XT

i β

σ

)
+ λ

p∑
j=1

Ŵj|βj| =

n∑
i=1

ρM

(
yi − X̃i

T
β

σ

)
+ λ

p∑
j=1

Ŵj|βj|. (5.8)
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This equation is the Huber-LASSO criterion for the data set (yi, X̃i), which can

be solved by using either the available Huber-LASSO program (Lambert-Lacroix

and Zwald, 2011) or the MATLAB code CVX (Grant et al., 2008). We can also use

nodewise Huber-ada LASSO, the program performed in R by Saharon Rosset, Ji

Zhu (2003), which is available from

http://people.brunel.ac.uk/ mastvvv/Software/AdaptiveNodewiseGraph.R,

and

http://dept.stat.lsa.umich.edu/ jizhu/code/piecewise/robust/huber.r

5. Steps 2 and 3 above are repeated until the estimated coefficients converge.

5.7 Theoretical Discussion

5.7.1 Asymptotic Normality of GM -LASSO and MM -LASSO Regression

Arslan (2012) proposed the weightedLAD-LASSO estimators (WLAD-LASSO), which

is considered as an a special case of GM -LASSO estimator. In addition MM -LASSO

estimator are M -LASSO when vi = 1, wi = 1. Following Arslan (2012) and Lambert-

Lacroix and Zwald (2011) we can show that:

Result: Any minimized (µ̂, β̂) of Eqns. ( 5.6) and ( 5.7) then satisfies the following

oracle properties:

1. Consistency in variable selection.

2. Asymptotic normality.

The proof of the above result is adopted with the proof of Lambert-Lacroix and Zwald

(2011), Theorem 3.2 .
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5.7.2 The Sensitivity Curve (Measuring the Effect of an Outliers)

Consider good data set: x1, ..., xn−1, the particular estimator: Tn−1 = T (x1, ..., xn−1).

Let the contaminated data set: x1, ..., xn−1, x, and Tn = T (x1, ..., xn−1, x). The sensitivity

curve is defined as follows:

SC(x) = n(Tn − Tn−1). (5.9)

Since T is the GM -LASSO or MM -LASSO estimators with bounded function, then

theirs SC is bounded.

5.8 Choice of the Tuning Parameter

The suitable value of the shrinkage tuning parameter λ is not known in advance. Tib-

shirani (1996) proposed to select λ by estimating prediction performance through cross-

validation. The procedure for this is as follows:

1. Divide the data into roughly k equal parts, K0, K1, ..., Kk .

2. For each K, find the best subsets with the tuning parameter λ, to the other K − 1

parts, giving β̂−k(λ).

3. Compute the prediction error, PE(λ) =
∑

i∈K

(
yi − Xiβ̂

−k(λ)
)2

.

4. This gives the cross-validation error, CV (λ) = 1
K

∑K
k=1 PE(λ).

5. Do this for several λ and choose the value of λ that makes CV (λ) the smallest.
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Here we propose to select λ by optimizing the Bayes Information Criterion (BIC). The

BIC of a given model estimated with tuning parameter λ is given by

BIC(λ) = log(σ̂) + p · df(λ)
log(n)

n
, (5.10)

where σ̂ is the corresponding residual scale estimate, and df(λ) is the degree of freedom

of the model, given by the number of non-zero estimated parameters in β̂. The selecting

λ then minimizes BIC(λ) or CV (λ) over a grid of values in the interval [0, λ0].

5.9 Simulation Study

This simulation was conducted to show the performance of the proposed estimators of

GM -LASSO and MM -LASSO. Furthermore, we compared these methods with al-

ready established ones. The following estimators were used in this study: (1)LASSO, (2)

ada-LASSO, (3) LAD-LASSO, (4) Huber-LASSO, (5) GM -LASSO, and (6) MM -

LASSO.

The simulation based on the linear model is given in Eqn. ( 1.1). For LAD-LASSO,

Huber-LASSO, GM -LASSO and MM -LASSO, the penalty parameters were chosen

by applying the BIC. For LASSO and ada LASSO, we estimated λ using 10-fold

cross validation. The correspondent data set n = 200 observations. The parameters were

βtrue = (3, 1.5, 0, 2, 0, 0, 0, 0), and εi ∼ N(0, 1). The correlation between the ith and jth

vector was demonstrated as follows:

corr(i, j) = 0.5|i−j|, ∀i, j ∈ {1, 2, ..., 8}. (5.11)

To investigate the robustness of the methods against outliers and leverage points, the fol-
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lowing points were considered:

1. No contamination,

2. Vertical contamination (outliers on the response variables),

3. Bad Leverage points (outliers on the covariates),

4. Good Leverage points (outliers in X follow the pattern of the majority of the data).

For the vertical outliers, different percentages (c%= 5%, 10%, and 20%) of the error terms

in the regression model follow the normal N(20, 1), instead of a N(0, 1). However, for

bad leverage points with the same c%, contaminated variables X1 and X2 by generating

the predictor variables from a N(50, 1) distribution, instead of a N(0.5, 1). For good

leverage case, we considered the different percentages of outliers c% on the variables X1

and X2, that were generated from a N(50, 1) distribution, then generated y to get good

leverage points. The simulations were performed in R. To run the simulations, the pack-

age parcor (Kraemer and Schaefer, 2010) was used for LASSO and ada-LASSO, and

the package quantreg (Koenker, 2007) was used for LAD-LASSO.

The performance of the proposed methods was then determined by assessing summary

statistics based on 100 Monte Carlo trials. The statistics computed the sample mean

(Mean), β̄ of the parameters, β̂ as follows:

β̄j =

∑m
j=1 β̂j

m
, j = 1, 2, ..., 8, (5.12)

where β̂j is the parameter obtained for j = 1, ...,m; with m as the number of simulations.
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The median of Standard error (MSE) of the parameters, β̂ given by

MSE(β̂j) = median

√∑m
j=1(β̂j − β̄j)2

m− 1

 . (5.13)

The median of Relative Prediction Errors MRPE of parameter β̂j is given by

MRPE(β̂j) = median
(

(yi − XT
i β̂jm)2

)
. (5.14)

The sample standard deviation, std of parameter β̂j given by

std(β̂j) =

√∑m
j=1(β̂j − β̄)2

m
. (5.15)

In addition, the median number of zero coefficients is reported. To evaluate the accuracy

of the coefficient estimation, a boxplots of estimated parameters over the simulations is

presented.

Discussion and Result

The simulation results are represented in Tables 5.1 to 5.10 for each situation. In order to

provide the indicators defined below, a coefficient is considered to be zero if it absolute

value is strictly less than 0.01. Furthermore, the MSE, MRPE, and std should be

relatively small. The following results were observed in this study.

1. For the outlier-free data set, as shown in Table 5.1, both non-robust and robust

methods performed well in model selection (Figure ( 5.1)). AlthoughLAD-LASSO

showed excellent results with small values of MSE and MRPE, the median num-

ber of the zero coefficients (3 zero coefficients) revealed that we could over fit the

subset selection. ada-LASSO, Huber-LASSO, GM -LASSO and MM -LASSO
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selected the correct number of zero coefficients (5 zero coefficients). Indeed, the

model selection ability of Huber-LASSO was close to that of GM -LASSO. GM -

LASSO was more stable than MM -LASSO in this procedure, for example, the

std = 0 of GM -LASSO for β̂3, and the std = 0.0271 of GM -LASSO for β̂3.

2. By introducing vertical outliers, the non-robust methods (LASSO and ada-LASSO)

showed poor results compared with the robust methods. In this case, the values of

MSE, RMSE, and std for parameters were generally large than other. From the

perspective of error and model selection ability, LAD-LASSO obtained better re-

sults than non-robust methods (Tables 5.2 to 5.4 and Figures ( 5.2) to ( 5.4)).

Furthermore, the Huber-LASSO and GM -LASSO performed similar in terms of

summary statistics and model selection ability (both of them choose 5 zero coef-

ficients). The results also verified that MM -LASSO could correctly identify the

three significant variables (1,2, and 4) and zero variables (3,5,6,7, and 8). Remark-

ably, by increasing the percentage of contamination to 20%, MM -LASSO gave

better results, whereas Huber-LASSO and GM -LASSO selected fewer variables

in the final model.

3. With a low percentage of leverage points, GM -LASSO and MM -LASSO ob-

tained better results than Huber-LASSO andLAD-LASSO fromMSE andRMSE

(Tables 5.5 to 5.10 and Figures ( 5.5) to ( 5.10)). GM -LASSO selected numerous

noise variables as the percentage of contamination increased, whereas LASSO,

ada-LASSO, and LAD-LASSO performed unsatisfactorily in selection variables

when data suffered from leverage points.

In conclusion, the results revealed that the classical (non-robust) LASSO worked well

for data sets with only a few outlying observations. However, applying robust LASSO

based on M -estimators is not suggested for data sets with high contamination levels of
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outliers because the method is affected by the outliers presence in the data. Such an effect

worsens when a higher percentage of contaminated observations is evident in the data.

Therefore, in this situation, using LAD-LASSO and Huber- LASSO was suitable com-

pared with LASSO or ada-LASSO. Moreover, when leverage points were introduced,

GM -LASSO andMM -LASSO showed the best overall performance in model selection

ability.
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Table 5.1: The estimation of parameters for simulated data sets when no contaminated data

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 0.0668 0.0910 0.0105 0.0720 0.0646 0.0104 0.0014 0.0718

β̂1 3 2.9818 0.02382 0.0090 0.0813 2.9973 0.0087 0.0012 0.0810

β̂2 1.5 1.5798 0.0456 0.0156 0.0957 1.5752 0.0140 0.0041 0.0871

β̂3 0 0.0000 0.0985 0.0079 0.0663 0.0000 0.0016 0.0039 0.0151

β̂4 2 1.8910 0.0345 0.0098 0.0698 1.8970 0.0115 0.0034 0.0640

β̂5 0 0.0000 0.0291 0.0066 0.0619 0.0000 0.0000 0.0000 0.0000

β̂6 0 0.0000 0.02391 0.0058 0.0538 0.0000 0.0000 0.0000 0.0000

β̂7 0 0.0000 0.0341 0.0058 0.0541 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0363 0.00344 0.0074 0.0627 0.0000 0.0000 0.0000 0.0000

median NO. of 3 5

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 0.1069 0.0151 0.0015 0.0882 0.2453 0.0282 0.0082 0.1039

β̂1 3 2.8970 0.0125 0.0025 0.1059 2.4220 0.0141 0.0041 0.1057

β̂2 1.5 1.5389 0.0137 0.0089 0.1125 1.2182 0.0123 0.0021 0.1078

β̂3 0 0.0251 0.0075 0.0012 0.0692 0.0000 0.0000 0.0000 0.0000

β̂4 2 1.9250 0.0100 0.0025 0.0934 1.2067 0.0254 0.0012 0.1160

β̂5 0 0.0000 0.0072 0.0014 0.0673 0.0000 0.0000 0.0000 0.0000

β̂6 0 0.0435 0.0078 0.0024 0.0548 0.0000 0.0000 0.0000 0.0000

β̂7 0 0.0000 0.0074 0.0012 0.0684 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0478 0.0084 0.0023 0.0675 0.0000 0.0000 0.00000 0.0000

median NO. of 3 5

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 0.2420 0.0278 0.1030 0.0010 0.1429 0.0176 0.0017 0.0861

β̂1 3 2.4326 0.0147 0.1099 0.0010 2.2069 0.0325 0.0032 0.1629

β̂2 1.5 1.2232 0.0125 0.1112 0.0012 1.3597 0.0290 0.0029 0.1803

β̂3 0 0.0000 0.0000 0.0000 0.0000 0.00000 0.0030 0.0030 0.0271

β̂4 2 1.2102 0.0258 0.1173 0.0017 1.2140 0.0239 0.0023 0.1687

β̂5 0 0.0000 0.0000 0.0000 0.0000 0.00000 0.0011 0.0001 0.0104

β̂6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000

β̂7 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000

β̂8 0 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.0000

median NO. of 5 5

Zero coefficients
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(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.1: Boxplots of estimates for the eight coefficients from 100 simulated data sets, no contaminated
data
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Table 5.2: The estimation of parameters for simulated data sets when vertical

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 0.9710 0.0136 0.0097 0.1242 0.9130 0.0164 0.0091 0.1219

β̂1 3 2.5939 0.0396 0.0041 0.3553 2.6539 0.0448 0.0035 0.3714

β̂2 1.5 1.9158 0.0859 0.0042 0.4707 1.7502 0.0762 0.0025 0.5273

β̂3 0 -0.5229 0.0745 0.0052 0.3348 -0.0688 0.0344 0.0007 0.2996

β̂4 2 1.7960 0.0458 0.0020 0.4014 1.6091 0.0465 0.0039 0.4032

β̂5 0 0.0136 0.0342 0.0001 0.3173 0.0000 0.0322 0.0000 0.2991

β̂6 0 0.0000 0.0294 0.0000 0.2707 0.0000 0.0293 0.0000 0.2705

β̂7 0 0.0000 0.0297 0.0000 0.2755 0.0000 0.0279 0.0000 0.2577

β̂8 0 -0.1656 0.0344 0.0017 0.2689 0.0000 0.0288 0.0000 0.2686

median NO. of 3 5

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.0765 0.0182 0.0008 0.0893 0.0847 0.0114 0.0008 0.1043

β̂1 3 2.8406 0.0177 0.0016 0.1166 2.5249 0.0119 0.0048 0.1064

β̂2 1.5 1.6024 0.0202 0.0010 0.1325 1.4046 0.0296 0.0010 0.1447

β̂3 0 0.0000 0.0071 0.0000 0.0638 0.0000 0.0010 0.0000 0.0095

β̂4 2 2.0169 0.0143 0.0002 0.1117 1.5156 0.0159 0.0048 0.1354

β̂5 0 0.0000 0.0079 0.0000 0.0722 0.0000 0.0000 0.0000 0.0000

β̂6 0 -0.0056 0.0068 0.0001 0.0618 0.0000 0.0000 0.0000 0.0000

β̂7 0 -0.0336 0.0070 0.0003 0.0531 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0000 0.0070 0.0000 0.0655 0.0000 0.0000 0.0000 0.0000

median NO. of 3 5

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 0.0909 0.0113 0.0009 0.1041 0.1349 0.0165 0.0013 0.0828

β̂1 3 2.5172 0.0138 0.0048 0.1155 2.3412 0.0222 0.0066 0.1685

β̂2 1.5 1.4470 0.0331 0.0005 0.1478 1.1695 0.0203 0.0033 0.1882

β̂3 0 0.0000 0.0011 0.0000 0.0105 0.0000 0.0037 0.0000 0.0339

β̂4 2 1.5192 0.0158 0.0048 0.1360 1.5267 0.0250 0.0047 0.1784

β̂5 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂7 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

median NO. of 5 5

Zero coefficients
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(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.2: Boxplots of estimates for the eight coefficients from 100 simulated data sets, 5% vertical
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Table 5.3: The estimation of parameters for simulated data sets when 10% vertical

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 2.4561 0.0504 0.0246 0.1536 2.4762 0.0524 0.0248 0.1518

β̂1 3 1.9339 0.0861 0.0107 0.5756 2.2113 0.0829 0.0079 0.6090

β̂2 1.5 0.0000 0.1348 0.0150 0.5518 0.0000 0.1346 0.0150 0.6683

β̂3 0 0.0000 0.0451 0.0000 0.4051 0.0000 0.0381 0.0000 0.3390

β̂4 2 1.1166 0.0721 0.0088 0.5578 1.3094 0.0710 0.0069 0.5846

β̂5 0 0.8321 0.0896 0.0083 0.4049 1.0126 0.1112 0.0101 0.3593

β̂6 0 0.0000 0.0364 0.0000 0.3322 0.0000 0.0319 0.0000 0.2917

β̂7 0 0.4973 0.0703 0.0050 0.3948 0.7640 0.0938 0.0076 0.3353

β̂8 0 0.0000 0.0354 0.0000 0.3306 0.0000 0.0327 0.0000 0.3034

median NO. of 3 4

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 0.2569 0.0159 0.0026 0.1036 0.6988 0.0507 0.0070 0.1278

β̂1 3 2.9656 0 .0138 0.0003 0.1281 1.9885 0.0603 0.0101 0.2340

β̂2 1.5 1.2152 0.0284 0.0028 0.1234 0.0000 0.1246 0.0150 0.2485

β̂3 0 0.1317 0.0122 0.0013 0.0673 0.0000 0.0014 0.0000 0.0130

β̂4 2 1.9445 0.0137 0.0006 0.1257 0.8185 0.0701 0.0118 0.2967

β̂5 0 0.0000 0.0069 0.0000 0.0638 0.0000 0.0000 0.0000 0.0000

β̂6 0 0.0000 0.0072 0.0000 0.0667 0.0000 0.0000 0.0000 0.0000

β̂7 0 0.0000 0.0068 0.0000 0.0634 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0000 0.0068 0.0000 0.0638 0.0000 0.0000 0.0000 0.0000

median NO. of 3 5

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 0.6980 0.0507 0.0070 0.1294 0.0961 0.0143 0.0010 0.0950

β̂1 3 1.9943 0.0619 0.0101 0.2365 2.4587 0.0180 0.0054 0.1687

β̂2 1.5 0.0000 0.1259 0.0150 0.2523 0.7262 0.0451 0.0077 0.2152

β̂3 0 0.0000 0.0013 0.0000 0.0122 0.0000 0.0012 0.0000 0.0116

β̂4 2 0.8146 0.0718 0.0119 0.3027 1.1514 0.0296 0.0085 0.2182

β̂5 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂7 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

median NO. of 5 5

Zero coefficients
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(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.3: Boxplots of estimates for the eight coefficients from 100 simulated data sets, 10% vertical
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Table 5.4: The estimation of parameters for simulated data sets when 20% vertical

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 3.8845 0.0231 0.0388 0.1886 3.9024 0.0226 0.0390 0.1877

β̂1 3 1.7530 0.0711 0.0125 0.6390 2.2517 0.0835 0.0075 0.7752

β̂2 1.5 1.3426 0.0819 0.0016 0.7067 1.7045 0.1134 0.0020 0.8240

β̂3 0 0.0000 0.0467 0.0000 0.4272 0.0000 0.0409 0.0000 0.3750

β̂4 2 0.7641 0.0957 0.0124 0.6967 1.2475 0.0918 0.0075 0.8390

β̂5 0 0.0000 0.0416 0.0000 0.3877 0.0000 0.0456 0.0000 0.4242

β̂6 0 0.0000 0.0443 0.0000 0.4021 0.0000 0.0422 0.0000 0.3863

β̂7 0 0.0000 0.0519 0.0000 0.4841 0.0000 0.0507 0.0000 0.4714

β̂8 0 0.0000 0.0442 0.0000 0.4107 0.0000 0.0420 0.0000 0.3915

median NO. of 3 5

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 0.3998 0.0121 0.0040 0.0991 0.5892 0.0783 0.0059 0.5495

β̂1 3 2.6947 0.0298 0.0031 0.1435 2.1719 0.1290 0.0083 0.9489

β̂2 1.5 1.5708 0.0197 0.0007 0.1515 1.3070 0.1062 0.0019 0.5723

β̂3 0 0.0000 0.0107 0.0000 0.0913 0.0000 0.0000 0.0000 0.0000

β̂4 2 1.9352 0.0137 0.0006 0.1278 1.3871 0.1199 0.0061 0.7037

β̂5 0 0.0108 0.0087 0.0001 0.0805 0.0000 0.0000 0.0000 0.0000

β̂6 0 0.0238 0.0071 0.0002 0.0606 0.0000 0.0000 0.0000 0.0000

β̂7 0 0.0000 0.0088 0.0000 0.0808 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0000 0.0068 0.0000 0.0632 0.0000 0.0000 0.0000 0.0000

median NO. of 3 7

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 0.5925 0.0780 0.0059 0.5496 -0.0531 0.0255 0.0005 0.2265

β̂1 3 2.1694 0.1289 0.0083 0.9603 2.2441 0.0714 0.0076 0.6572

β̂2 1.5 1.3125 0.1066 0.0019 0.5791 1.2991 0.0645 0.0020 0.4602

β̂3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂4 2 1.3833 0.1197 70.0062 0.7139 1.5651 0.0776 0.0043 0.5437

β̂5 0 0.0000 0.0000 70.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂7 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

median NO. of 7 5

Zero coefficients
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(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.4: Boxplots of estimates for the eight coefficients from 100 simulated data sets, 20% vertical
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Table 5.5: The estimation of parameters for simulated data sets when 5% bad leverage point

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.8225 0.0561 0.0082 0.1935 -0.8217 0.0557 0.0082 0.1935

β̂1 3 1.6722 0.0393 0.0133 0.2645 1.7192 0.0378 0.0128 0.2677

β̂2 1.5 1.1000 0.0350 0.0040 0.2724 1.1976 0.0467 0.0030 0.3146

β̂3 0 -0.5362 0.0341 0.0054 0.3030 -0.7132 0.0484 0.0071 0.3415

β̂4 2 1.0953 0.0481 0.0090 0.3115 1.2163 0.0419 0.0078 0.3341

β̂5 0 0.0000 0.0649 0.0000 0.3323 0.0000 0.0672 0.0000 0.3698

β̂6 0 -0.9945 0.0641 0.0099 0.3026 -1.0506 0.0703 0.0105 0.3285

β̂7 0 0.0000 0.0677 0.0000 0.3379 0.0000 0.0687 0.0000 0.3781

β̂8 0 -0.8386 0.0360 0.0084 0.2809 -0.8820 0.0362 0.0088 0.2941

median NO. of 0 0

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.2616 0.0222 0.0026 0.1165 -0.4791 0.0384 0.0048 0.2583

β̂1 3 2.4431 0.0238 0.0056 0.1653 1.1661 0.0373 0.0183 0.3028

β̂2 1.5 1.2639 0.0172 0.0024 0.1572 0.7773 0.0530 0.0072 0.3000

β̂3 0 0.0000 0.0105 0.0000 0.0962 0.0000 0.0000 0.0000 0.0000

β̂4 2 1.6360 0.0193 0.0036 0.1791 0.0000 0.0265 0.0200 0.2085

β̂5 0 0.0000 0.0127 70.0000 0.1066 0.0000 0.0000 0.0000 0.0000

β̂6 0 -0.1156 0.0126 0.0012 0.1129 0.0000 0.0021 0.0000 0.0196

β̂7 0 0.0000 0.0220 0.0000 0.1615 0.0000 0.0083 0.0000 0.0751

β̂8 0 0.0000 0.0304 0.0000 0.1473 0.0000 0.0145 0.0000 0.1262

median NO. of 3 6

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.3631 0.0291 0.0036 0.2202 0.0995 0.0325 0.0010 0.2705

β̂1 3 1.8314 0.0311 0.0117 0.2590 1.2155 0.0311 0.0178 0.2836

β̂2 1.5 0.9163 0.0492 0.0058 0.3240 0.9088 0.0689 0.0059 0.2906

β̂3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂4 2 0.7789 0.0568 0.0122 0.3888 0.0000 0.0190 0.0200 0.1565

β̂5 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂7 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

median NO. of 5 6

Zero coefficients
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(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.5: Boxplots of estimates for the eight coefficients from 100 simulated data sets, 5% bad leverage
point
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Table 5.6: The estimation of parameters for simulated data sets when 10% bad leverage point

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.4997 0.0279 0.0050 0.2330 -0.4985 0.0277 0.0050 0.2320

β̂1 3 2.0660 0.0369 0.0093 0.2594 2.0742 0.0359 0.0093 0.2597

β̂2 1.5 0.5368 0.0449 0.0096 0.3046 0.5268 0.0463 0.0097 0.3259

β̂3 0 -0.3248 0.0384 0.0032 0.3076 -0.3165 0.0408 0.0032 0.3338

β̂4 2 1.3192 0.0347 0.0068 0.3177 1.3213 0.0335 0.0068 0.3023

β̂5 0 -0.5414 0.0357 0.0054 0.3318 -0.5434 0.0376 0.0054 0.3487

β̂6 0 -0.5485 0.0335 0.0055 0.3116 -0.5557 0.0370 0.0056 0.3440

β̂7 0 -0.3358 0.0405 0.0034 0.2992 -0.3213 0.0436 0.0032 0.3270

β̂8 0 -1.5307 0.0519 0.0153 0.2668 -1.5434 0.0510 0.0154 0.2722

median NO. of 0 0

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.7671 0.0474 0.0077 0.2708 -0.4928 0.0288 0.0049 0.2449

β̂1 3 2.1116 0.0497 0.0089 0.2996 2.1301 0.0555 0.0087 0.2723

β̂2 1.5 0.4956 0.0450 0.0100 0.3603 0.3003 0.0445 0.0120 0.3057

β̂3 0 0.0000 0.0510 0.0000 0.3845 0.0000 0.0285 0.0000 0.2484

β̂4 2 0.9479 0.0520 0.0105 0.4561 0.6494 0.0429 0.0135 0.3532

β̂5 0 -0.4631 0.0405 0.0046 0.3752 -0.3026 0.0302 0.0030 0.2792

β̂6 0 -0.3914 0.0408 0.0039 0.3711 -0.1773 0.0465 0.0018 0.3537

β̂7 0 0.0000 0.0673 0.0000 0.3544 -0.0377 0.0605 0.0004 0.3284

β̂8 0 -1.8870 0.0964 0.0189 0.3445 -1.7661 0.0895 0.0177 0.3114

median NO. of 1 2

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.4939 0.0282 0.0049 0.2414 0.4182 0.0352 0.0042 0.3143

β̂1 3 2.1664 0.0541 0.0083 0.2757 1.0428 0.0315 0.0196 0.2674

β̂2 1.5 0.2834 0.0469 0.0122 0.3108 0.0000 0.0250 0.0150 0.2017

β̂3 0 0.0000 0.0266 0.0000 0.2324 0.0000 0.0000 0.0000 0.0000

β̂4 2 0.6764 0.0416 0.0132 0.3436 0.0000 0.0037 0.0200 0.0339

β̂5 0 -0.3129 0.0305 0.0031 0.2757 0.0000 0.0000 0.0000 0.0000

β̂6 0 -0.1895 0.0454 0.0019 0.3554 0.0000 0.0000 0.0000 0.0000

β̂7 0 -0.0313 0.0599 0.0003 0.3267 0.0000 0.0000 0.0000 0.0000

β̂8 0 -1.7766 0.0925 0.0178 0.3082 0.0000 0.0000 0.0000 0.0000

median NO. of 2 7

Zero coefficients

138

Univ
ers

ity
 of

 M
ala

ya



(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.6: Boxplots of estimates for the eight coefficients from 100 simulated data sets, 10% bad leverage
point
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Table 5.7: The estimation of parameters for simulated data sets when 20% bad leverage point

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.6083 0.0325 0.0061 0.2533 -0.6099 0.0328 0.0061 0.2572

β̂1 0 1.6951 0.0335 0.0130 0.3080 1.7420 0.0336 0.0126 0.3118

β̂2 3 0.9233 0.0393 0.0058 0.3503 0.9494 0.0441 0.0055 0.3842

β̂3 1.5 0.0000 0.0648 0.0000 0.3562 0.0000 0.0669 0.0000 0.3939

β̂4 0 0.4671 0.0952 0.0153 0.3820 0.5163 0.0936 0.0148 0.4079

β̂5 2 -0.3736 0.0408 0.0037 0.3576 -0.4336 0.0412 0.0043 0.3744

β̂6 0 -0.4047 0.0398 0.0040 0.3187 -0.4230 0.0421 0.0042 0.3507

β̂7 0 -0.3460 0.0455 0.0035 0.3587 -0.3132 0.0492 0.0031 0.3897

β̂8 0 -1.4170 0.0362 0.0142 0.2712 -1.4902 0.0402 0.0149 0.2832

median NO. of 0 1

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.5621 0.0365 0.0056 0.3104 -0.5468 0.0317 0.0055 0.2772

β̂1 3 1.4144 0.0440 0.0159 0.3203 1.4100 0.0373 0.0159 0.2959

β̂2 1.5 0.9872 0.0559 0.0051 0.4230 0.9707 0.0602 0.0053 0.3766

β̂3 0 0.0000 0.0531 0.0000 0.4064 0.0000 0.0298 0.0000 0.2594

β̂4 2 0.0000 0.1197 0.0200 0.4932 0.0000 0.0907 0.0200 0.4452

β̂5 0 -0.0389 0.0550 0.0004 0.3778 0.0000 0.0453 0.0000 0.3376

β̂6 0 -0.3139 0.0448 0.0031 0.3559 -0.2582 0.0409 0.0026 0.3166

β̂7 0 0.0000 0.0720 0.0000 0.4078 -0.0848 0.0592 0.0008 0.3741

β̂8 0 -1.5588 0.0555 0.0156 0.3329 -1.5139 0.0565 0.0151 0.3053

median NO. of 1 2

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.5087 0.0304 0.0051 0.2759 1.5053 0.0630 0.0151 0.5730

β̂1 3 1.4279 0.0373 0.0157 0.2960 0.0000 0.0628 0.0300 0.3771

β̂2 1.5 0.9728 0.0602 0.0053 0.3834 0.0000 0.0151 0.0150 0.1360

β̂3 0 0.0000 0.0294 0.0000 0.2551 0.0000 0.0061 0.0000 0.0564

β̂4 2 0.0000 0.0923 0.0200 0.4468 0.0000 0.0218 0.0200 0.1986

β̂5 0 0.0000 0.0455 0.0000 0.3343 0.0000 0.0148 0.0000 0.1365

β̂6 0 -0.2082 0.0449 0.0021 0.3206 0.0000 0.0103 0.0000 0.0947

β̂7 0 -0.1530 0.0545 0.0015 0.3766 0.0000 0.0189 0.0000 0.1734

β̂8 0 -1.5091 0.0551 0.0151 0.3154 0.0000 0.0345 0.0000 0.3130

median NO. of 2 7

Zero coefficients
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(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.7: Boxplots of estimates for the eight coefficients from 100 simulated data sets, 20% bad leverage
point
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Table 5.8: The estimation of parameters for simulated data sets when 5% good leverage point

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.3285 0.0236 0.0033 0.2141 -0.3282 0.0236 0.0033 0.2147

β̂1 3 2.4893 0.0475 0.0051 0.2423 2.4940 0.0466 0.0051 0.2448

β̂2 1.5 0.9051 0.0321 0.0059 0.2707 0.9011 0.0338 0.0060 0.2906

β̂3 0 -0.6937 0.0448 0.0069 0.2700 -0.6954 0.0466 0.0070 0.2866

β̂4 2 1.8251 0.0480 0.0017 0.3067 1.8270 0.0478 0.0017 0.3083

β̂5 0 -0.4915 0.0280 0.0049 0.2464 -0.4909 0.0311 0.0049 0.2759

β̂6 0 -0.4465 0.0303 0.0045 0.2832 -0.4443 0.0345 0.0044 0.3226

β̂7 0 -0.4934 0.0270 0.0049 0.2510 -0.4882 0.0310 0.0049 0.2873

β̂8 0 -0.9743 0.0259 0.0097 0.2022 -0.9813 0.0264 0.0098 0.2165

median NO. of 0 0

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.0973 0.0136 0.0010 0.1272 -0.0411 0.0327 0.0004 0.2584

β̂1 3 2.8095 0.0277 0.0019 0.1792 1.7599 0.0308 0.0124 0.2794

β̂2 1.5 1.3343 0.0213 0.0017 0.1787 0.3416 0.0418 0.0116 0.3194

β̂3 0 -0.1443 0.0170 0.0014 0.1133 0.0000 0.0006 0.0000 0.0051

β̂4 2 1.9028 0.0345 0.0010 0.1988 0.4634 0.0300 0.0154 0.2760

β̂5 0 -0.1358 0.0153 0.0014 0.1306 0.0000 0.0000 0.0000 0.0000

β̂6 0 -0.1997 0.0172 0.0020 0.1402 0.0000 0.0036 0.0000 0.0332

β̂7 0 -0.3392 0.0238 0.0034 0.1309 0.0000 0.0106 0.0000 0.0940

β̂8 0 -0.2253 0.0153 0.0023 0.1426 0.0000 0.0144 0.0000 0.1207

median NO. of 3 5

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.1419 0.0190 0.0014 0.1772 0.4967 0.0427 0.0050 0.2556

β̂1 3 2.1574 0.0203 0.0084 0.1887 1.8192 0.0319 0.0118 0.2535

β̂2 1.5 0.7503 0.0345 0.0075 0.2913 0.0000 0.0627 0.0150 0.2778

β̂3 0 0.0000 0.0004 0.0000 0.0036 0.0000 0.0000 0.0000 0.0000

β̂4 2 0.9779 0.0294 0.0102 0.2742 0.3293 0.0247 0.0167 0.2295

β̂5 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂7 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β̂8 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

median NO. of 5 5

Zero coefficients
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(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.8: Boxplots of estimates for the eight coefficients from 100 simulated data sets, 5% good leverage
point
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Table 5.9: The estimation of parameters for simulated data sets when 10% good leverage point

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.27337 0.0253 0.0027 0.2321 -0.2712 0.0253 0.0027 0.2317

β̂1 3 2.1172 0.0264 0.0088 0.2102 2.1213 0.0258 0.0088 0.2118

β̂2 1.5 1.0244 0.0323 0.0048 0.2978 1.0323 0.0354 0.0047 0.3244

β̂3 0 -0.6766 0.0428 0.0068 0.3070 -0.6944 0.0457 0.0069 0.3272

β̂4 2 1.3258 0.0401 0.0067 0.3481 1.3362 0.0388 0.0066 0.3305

β̂5 0 -0.3442 0.0306 0.0034 0.2521 -0.3384 0.0321 0.0034 0.2582

β̂6 0 -0.8450 0.0526 0.0084 0.2623 -0.8694 0.0558 0.0087 0.2876

β̂7 0 -0.1941 0.0431 0.0019 0.2395 -0.1623 0.0466 0.0016 0.2622

β̂8 0 -0.5894 0.0454 0.0059 0.2268 -0.6038 0.0464 0.0060 0.2322

median NO. of 0 0

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.3988 0.0284 0.0040 0.2516 -0.4104 0.0304 0.0041 0.2694

β̂1 3 2.3244 0.0481 0.0068 0.2866 2.1826 0.0555 0.0082 0.2768

β̂2 1.5 0.9556 0.0421 0.0054 0.3747 0.4630 0.0359 0.0104 0.3041

β̂3 0 -0.4962 0.0481 0.0050 0.3565 0.0000 0.0042 0.0000 0.0388

β̂4 2 0.9093 0.0563 0.0109 0.3921 0.3542 0.0491 0.0165 0.3235

β̂5 0 -0.1933 0.0361 0.0019 0.2926 0.0000 0.0122 0.0000 0.1056

β̂6 0 -0.9840 0.0702 0.0098 0.3286 -0.3883 0.0306 0.0039 0.2565

β̂7 0 0.0000 0.0620 0.0000 0.2961 -0.2243 0.0334 0.0022 0.2656

β̂8 0 -0.6297 0.0395 0.0063 0.2779 -0.4122 0.0370 0.0041 0.2516

median NO. of 3 5

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.4153 0.0300 0.0042 0.2602 0.2076 0.0427 0.0021 0.3178

β̂1 3 2.2379 0.0548 0.0076 0.2800 1.6459 0.0444 0.0135 0.2501

β̂2 1.5 0.4466 0.0380 0.0105 0.2962 0.3405 0.0315 0.0116 0.2929

β̂3 0 0.0000 0.0042 0.0000 0.0389 0.0000 0.0000 0.0000 0.0000

β̂4 2 0.3838 0.0503 0.0162 0.3153 0.0000 0.0239 0.0200 0.1887

β̂5 0 0.0000 0.0110 0.0000 0.0969 0.0000 0.0000 0.0000 0.0000

β̂6 0 -0.2965 0.0268 0.0030 0.2435 0.0000 0.0000 0.0000 0.0000

β̂7 0 -0.1941 0.0336 0.0019 0.2600 0.0000 0.0000 0.0000 0.0000

β̂8 0 -0.3268 0.0409 0.0033 0.2551 0.0000 0.0000 0.0000 0.0000

median NO. of 5 5

Zero coefficients
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(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.9: Boxplots of estimates for the eight coefficients from 100 simulated data sets, 10% good leverage
point
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Table 5.10: The estimation of parameters for simulated data sets when 20% good leverage point

LASSO ada-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.7574 0.0484 0.0076 0.2321 -0.7607 0.0485 0.0076 0.2319

β̂1 3 1.6672 0.0381 0.0133 0.2081 1.6755 0.0393 0.0132 0.2112

β̂2 1.5 1.2399 0.0442 0.0026 0.2794 1.2612 0.0474 0.0024 0.2957

β̂3 0 -0.6435 0.0396 0.0064 0.3123 -0.6808 0.0432 0.0068 0.3295

β̂4 2 1.5983 0.0392 0.0040 0.3131 1.6254 0.0396 0.0037 0.3115

β̂5 0 -0.2634 0.0375 0.0026 0.3002 -0.2574 0.0397 0.0026 0.3204

β̂6 0 -0.7498 0.0373 0.0075 0.2592 -0.7691 0.0391 0.0077 0.2825

β̂7 0 -0.4088 0.0269 0.0041 0.2443 -0.3972 0.0302 0.0040 0.2770

β̂8 0 -0.8958 0.0294 0.0090 0.2384 -0.9121 0.0312 0.0091 0.2520

median NO. of 0 0

Zero coefficients

LAD-LASSO Huber-LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.9754 0.0702 0.0098 0.3022 -0.8700 0.0592 0.0087 0.2713

β̂1 3 1.9581 0.0274 0.0104 0.2525 1.2475 0.0435 0.0175 0.2660

β̂2 1.5 1.0113 0.0434 0.0049 0.3457 0.4937 0.0316 0.0101 0.2940

β̂3 0 -0.5256 0.0497 0.0053 0.3729 0.0000 0.0032 0.0000 0.0295

β̂4 2 1.3267 0.0464 0.0067 0.4060 0.3493 0.0291 0.0165 0.2721

β̂5 0 0.0000 0.0502 0.0000 0.3452 0.0000 0.0053 0.0000 0.0494

β̂6 0 -1.1348 0.0749 0.0113 0.3059 -0.1593 0.0181 0.0016 0.1651

β̂7 0 -0.3978 0.0310 0.0040 0.2890 -0.1850 0.0276 0.0018 0.2503

β̂8 0 -0.7693 0.0385 0.0077 0.2766 -0.1607 0.0562 0.0016 0.2922

median NO. of 3 5

Zero coefficients

GM -LASSO MM -LASSO

Coefficients True Mean Median Median std Mean Median Median std

Values (MSE) (MRPE) (MSE) (MRPE)

β̂0 0 -0.8426 0.0572 0.0084 0.2741 0.6611 0.0735 0.0066 0.4912

β̂1 3 1.2892 0.0414 0.0171 0.2685 1.5515 0.0551 0.0145 0.2827

β̂2 1.5 0.4654 0.0311 0.0103 0.2903 0.0000 0.0365 0.0150 0.2747

β̂3 0 0.0000 0.0033 0.0000 0.0309 0.0000 0.0000 0.0000 0.0000

β̂4 2 0.3607 0.0294 0.0164 0.2752 0.0000 0.0136 0.0200 0.1165

β̂5 0 0.0000 0.0058 0.0000 0.0539 0.0000 0.0000 0.0000 0.0000

β̂6 0 -0.1456 0.0178 0.0015 0.1649 0.0000 0.0033 0.0000 0.0306

β̂7 0 -0.1597 0.0288 0.0016 0.2538 0.0000 0.0041 0.0000 0.0379

β̂8 0 -0.2062 0.0531 0.0021 0.2985 0.0000 0.0164 0.0000 0.1505

median NO. of 5 5

Zero coefficients
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(a) LASSO (b) ada-LASSO

(c) LAD-LASSO (d) Huber-LASSO

(e) GM -LASSO (f) MM -LASSO

Figure 5.10: Boxplots of estimates for the eight coefficients from 100 simulated data sets, 20% good lever-
age point

5.9.1 Simulation Study (Multicollinearity)

In this section, we performed a Monte Carlo simulation study to demonstrate the effi-

ciency of the proposed estimators, GM -LASSO and MM -LASSO in comparison with
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several existing estimators. We allowed various degrees of multicollinearity and non-

normal disturbance distributions to be present simultaneously in this simulation. There

are four estimators in the study, (i) ada-LASSO, (ii) LAD-LASSO, (iii) GM -LASSO

and (iv) MM -LASSO. The following model was used in this simulation study;

yi = β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + εi,

where β1 = β2 = β3 = 1, and β4 = β5 = β6 = 0. The sample size used was n = 50.

The value of ρ represents the correlation between the six explanatory variables. The

chosen values were 0.0, 0.5, 0.8. And, ε were generated from two different distributions,

i Standard normal distribution

ii Student-t distribution with degrees of freedom three.

The aim of this simulation study is to see the effect of combined problems of multi-

collinearity and outliers on the ada-LASSO, LAD-LASSO, GM -LASSO and MM -

LASSO estimators. The performances of the aforementioned estimators were assessed

by looking at parameter estimate and MRPEs on 1000 simulation runs.

Result and Discussion

Case 1 (Error distribution following the normal distribution):

Table 5.11 presented the parameter estimates and the respective Median of Relative Pre-

dictor Errors (MRPE) for simulated data sets with normal distribution with mean 0 and

variance 1. It is obvious that the MRPE of the ada-LASSO is relatively smaller than

the other estimators when the errors are normally distributed and multicollinearity is not

present. As expected, the ada-LASSO gave the best variable selection for the normal

case as shown in Figure ( 5.11).
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However, for normal error distribution and when a moderate correlation i.e. ρ = 0.5,

is present in the data, the GM -LASSO and MM -LASSO give smaller MRPEs for all

parameters estimated compared to the other two methods as shown in Table 5.12. We can

see in Figure ( 5.12) that all estimators correctly fit the zero and non-zero variables. The

GM -LASSO portrays the lowest variability among the three estimators.

For normal error distributions when the correlation is high in the data where ρ = 0.8,

the GM -LASSO and MM -LASSO outperform the other two estimators in variable se-

lection. This can be clearly seen in Table 5.13 based on theMRPE values. According to

Figure ( 5.13), the GM -LASSO and MM -LASSO correctly fits the zero and non-zero

coefficients while the ada-LASSO and LAD-LASSO tend to slightly over fit as there

are four non-zero coefficients instead.

Case 2 (Error distribution following Student-t distribution):

Table 5.14 shows the parameters estimates when the error distribution follows the t-

distribution with three degrees of freedom. Unlike the case discussed in Table 5.11 and

Figure ( 5.11), the ada-LASSO estimator no longer correctly fits the variables. Here,

when the error distribution has heavier tails, the MM -LASSO appears to be more supe-

rior compared to the other three estimators. This can be seen in Figure ( 5.14). When the

correlation is increased to 0.5 and 0.8, the GM -LASSO and MM -LASSO are still seen

to outperform the other two estimators, in which MM -LASSO is superior, this is clearly

shown in Tables 5.15 and 5.16 and Figures ( 5.15) and ( 5.16).
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Table 5.11: Parameter estimates and their MRPEs (bracketed) for simulated data sets with normal distribu-
tion errors with mean 0 and variance 1, where β1 = β2 = β3 = 1, and β4 = β5 = β6 = 0

Values of ρ = 0
Parameter estimates Ada-LASSO LAD-LASSO GM -LASSO MM -LASSO

β̂1 1.1900 (0.1836 ) 1.0972(0.1886) 1.2821(0.2274) 1.0645(0.2160)
β̂2 0.8821 (0.1909 ) 0.8218(0.2162) 0.8927 (0.4991) 0.7934(0.3026)
β̂3 0.8135 (0.2058) 0.9525 (0.2302) 0.9048(0.3478) 0.6012(0.3599)
β̂4 0.2216 (0.2695) 0.2437 (0.6258) 0.3192 (0.05329) 0.5845(0.4577)
β̂5 0.0000 (0.2352) 0.0000 (0.4722) 0.0000 (0.3773) 0.0000(0.3846)
β̂6 0.0000 (0.1486) 0.0000 (0.1171) 0.0000 (0.0000) 0.0000(0.0000)

(a) ada-LASSO (b) LAD-LASSO

(c) GM -LASSO (d) MM -LASSO

Figure 5.11: Boxplots of estimates for six coefficients from 1000 simulated data sets, with normal distribu-
tion errors with mean 0 and variance 1 and , ρ = 0
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Table 5.12: Parameter estimates and their MRPEs (bracketed) for simulated data sets with normal distribu-
tion errors with mean 0 and variance 1, where β1 = β2 = β3 = 1, and β4 = β5 = β6 = 0

Values of ρ = 0.5
Parameter estimates Ada-LASSO LAD-LASSO GM -LASSO MM -LASSO

β̂1 0.9475(0.3026) 1.6560 (0.4991) 0.9543 (0.2162) 0.9809 (0.1909)
β̂2 0.9391(0.3599) 1.4631 (0.3478) 0.9750(0.2302) 1.0467(0.2758)
β̂3 0.7104 (0.4577) 0.4706(0.6258) 0.6979 (0.0532) 0.6979 (0.2695)
β̂4 0.1112(0.3846) 0.3144 (0.4722) 0.1791 (0.3773) 0.0735 (0.2352)
β̂5 0.0000(0.1486) -0.2696 (0.1171) 0.0000 (0.0000) 0.0000(0.0000)
β̂6 -0.3065 (0.1506) -0.2441(0.1292) -0.2650(0.0000) -0.1800(0.0000)

(a) ada-LASSO (b) LAD-LASSO

(c) GM -LASSO (d) MM -LASSO

Figure 5.12: Boxplots of estimates for six coefficients from 1000 simulated data sets, with normal distribu-
tion errors with mean 0 and variance 1 and , ρ = 0.5
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Table 5.13: Parameter estimates and their MRPEs (bracketed) for simulated data sets with normal distribu-
tion errors with mean 0 and variance 1, where β1 = β2 = β3 = 1, and β4 = β5 = β6 = 0

Values of ρ = 0.8
Parameter estimates Ada-LASSO LAD-LASSO GM -LASSO MM -LASSO

β̂1 1.1900 (0.3026) 1.69721(0.4991) 1.2821(0.2162) 1.0645 (0.1909)
β̂2 0.8821 (0.3599) 0.8018(0.3478) 0.8927(0.2302) 0.7934(0.2758)
β̂3 0.8135(0.4577) 0.4525(0.6258) 0.9048(0.0532) 0.6012 (0.2695)
β̂4 0.2216 (0.3846) 0.2437(0.3773) 0.3192(0.4722) 0.5845 (0.2352)
β̂5 0.0000(0.1486) 0.0000 (0.1171) 0.0000(0.0000) 0.0000(0.0000)
β̂6 0.0000(0.1506) 0.0000(0.1292) 0.0000(0.0000) 0.0000(0.0000)

(a) ada-LASSO (b) LAD-LASSO

(c) GM -LASSO (d) MM -LASSO

Figure 5.13: Boxplots of estimates for six coefficients from 1000 simulated data sets, with normal distribu-
tion errors with mean 0 and variance 1 and , ρ = 0.8
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Table 5.14: Parameter estimates and their MRPEs (bracketed) for simulated data sets with Student’s t-
distribution errors with 3 degrees of freedom, where β1 = β2 = β3 = 1, and β4 = β5 = β6 = 0

Values of ρ = 0.0
Parameter estimates Ada-LASSO LAD-LASSO GM -LASSO MM -LASSO

β̂1 0.6788(0.1909) 0.3467(0.2162) 0.8699(0.1991) 0.9917(0.0026)
β̂2 0.5772(0.2758) 0.5763(0.2302) 0.8938(0.1478) 1.1246(0.0599)
β̂3 0.7029(0.2695) 0.6513(0.6258) 0.9649(0.0532) 1.0066(0.1577)
β̂4 0.2028(0.2352) 0.4769 (0.4722) 0.3590(0.1773) 0.0000(0.0846)
β̂5 0.2457(0.1486) 0.0000(0.1171) 0.0000(0.0000) 0.0000(0.0000)
β̂6 0.0000(0.1506) 0.0000(0.1292) 0.0000(0.0000) 0.0000(0.0000)

(a) ada-LASSO (b) LAD-LASSO

(c) GM -LASSO (d) MM -LASSO

Figure 5.14: Boxplots of estimates for six coefficients from 1000 simulated data sets, with Student’s t-
distribution errors with 3 degrees of freedom, ρ = 0.0
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Table 5.15: Parameter estimates and their MRPEs (bracketed) for simulated data sets with Student’s t-
distribution errors with 3 degrees of freedom, where β1 = β2 = β3 = 1, and β4 = β5 = β6 = 0

Values of ρ = 0.5
Parameter estimates Ada-LASSO LAD-LASSO GM -LASSO MM -LASSO

β̂1 0.7000 (0.6909) 0.6751(0.9162) 0.98333 (0.1991) 0.9164(0.1026)
β̂2 1.2811 (0.2758) 1.19134 (0.6302) 1.3450 (0.2078) 1.0649(0.1599)
β̂3 0.3098 (0.2695) 0.3238(0.6258) 0.9917 (0.0532) 0.9980(0.0577)
β̂4 0.2431 (0.2352) 0.1630 (0.4722) 0.2041 (0.1773) 0.0000(0.3846)
β̂5 0.0000 (0.1486) 0.0000 (0.1171) 0.0000 (0.0000) 0.0000(0.0000)
β̂6 0.1498 (0.1506) 0.0593(0.12929) 0.1547 (0.0000) 0.0000(0.0000)

(a) ada-LASSO (b) LAD-LASSO

(c) GM -LASSO (d) MM -LASSO

Figure 5.15: Boxplots of estimates for six coefficients from 1000 simulated data sets, with Student’s t-
distribution errors with 3 degrees of freedom, ρ = 0.5
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Table 5.16: Parameter estimates and their MRPEs (bracketed) for simulated data sets with Student’s t-
distribution errors with 3 degrees of freedom, where β1 = β2 = β3 = 1, and β4 = β5 = β6 = 0

Values of ρ = 0.8
Parameter estimates Ada-LASSO LAD-LASSO GM -LASSO MM -LASSO

β̂1 0.3788 (0.6909) 0.2467(0.5162) 0.8699 (0.1991) 1.0517(0.1026)
β̂2 0.4772 (0.7758) 0.4763 (0.4302) 0.9638(0.1478) 1.1246(0.0599)
β̂3 0.4529 (0.6695) 0.6813(0.4258) 0.9649 (0.0532) 1.0066(0.1577)
β̂4 0.2028 (0.2352) 0.4769 (0.6722) 0.0590 (0.3773) 0.0000(0.0846)
β̂5 0.2457 (0.1486) 0.7900 (0.6171) 0.0000 (0.0000) 0.0000(0.0000)
β̂6 0.0000 (0.1506) 0.0000 (0.1292) 0.0000 (0.0000) 0.0000(0.0000)

(a) ada-LASSO (b) LAD-LASSO

(c) GM -LASSO (d) MM -LASSO

Figure 5.16: Boxplots of estimates for six coefficients from 1000 simulated data sets, with Student’s t-
distribution errors with 3 degrees of freedom, ρ = 0.8

5.9.2 Simulation Study (p > n)

In this simulation we examine the performance of the GM -LASSO and MM -LASSO

for p > n model data set. We simulated 1000 data sets each having n = 15 observations

and p = 20 variables. The linear regression was used where β1 = β2 = β3 = 1 and
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βj = 0 for j = 4, 5, ..., 20. The X and ε come from standard normal distribution. The

correlation between variables is ρ = 0.5. We considered three situations of data set. First,

data with no outliers, second, data with 5% and 10% vertical, finally, data with 5% and

10% bad leverage. The median of mean square error (MSE) over 1000 simulated data set

are summarized and the median number of zero coefficients are also reported. Moreover,

we reported the boxplots of each situation.

Result and discussion

From Table 5.17 and Figure ( 5.17), we can see that the median (MSE) of the ada-

LASSO is 0.0636, where it is relatively smaller than the other estimators when the data

is uncontaminated. As expected, the ada-LASSO gave the best results here.

Tables 5.18 (data with verticals=5%) and 5.19 (data with verticals=10%) and Figures

( 5.18) (data with verticals=5%) and ( 5.19) (data with verticals=10%) show the result

for data with verticals, where the MSE of ada-LASSO in both 5% and 10% verticals

were, 1.1012 and 3.2740, and estimated only 4 zero coefficients. The robust methods

were better than the ada-LASSO. The Huber-LASSO and GM -LASSO’s performance

are almost as good as the MM -LASSO.

According to Tables 5.20 (data with bad leverage=5%) and 5.21 (data with bad lever-

age=10%), GM -LASSO and MM -LASSO perform better than all the other estimators.

They selected approximately the correct number of zero coefficients which is 17, but suf-

fer from too much variability as shown in the boxplots (Figures ( 5.20) and ( 5.21)). The

ada-LASSO estimator does poorly and has higher median mean squared error than other

estimators.
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Table 5.17: Result simulation when p > n for no contaminated data sets

Methods Median (MSE) median no. of zero coefficients
ada-LASSO 0.0636 16

Huber-LASSO 0.4423 13
GM -LASSO 0.7805 5
MM -LASSO 0.7252 5

(a) ada-LASSO

(b) Huber-LASSO

(c) GM -LASSO

(d) MM -LASSO

Figure 5.17: Boxplots of estimates for 20 coefficients with no contaminated simulated data sets
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Table 5.18: Result simulation when p > n for data set with 5% verticals

Methods Median (MSE) median no. of zero coefficients
ada-LASSO 1.1012 4

Huber-LASSO 0.2114 16
GM -LASSO 0.5281 12
MM -LASSO 0.0028 17

(a) ada-LASSO

(b) Huber-LASSO

(c) GM -LASSO

(d) MM -LASSO

Figure 5.18: Boxplots of estimates for 20 coefficients with 5% verticals simulated data sets
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Table 5.19: Result simulation when p > n for data set with 10% verticals

Methods Median (MSE) median no. of zero coefficients
ada-LASSO 3.2740 4

Huber-LASSO 0.3081 12
GM -LASSO 0.5245 12
MM -LASSO 0.0247 15

(a) ada-LASSO

(b) Huber-LASSO

(c) GM -LASSO

(d) MM -LASSO

Figure 5.19: Boxplots of estimates for 20 coefficients with 10% verticals simulated data sets
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Table 5.20: Result simulation when p > n for data set with 5% bad leverage

Methods Median (MSE) median no. of zero coefficients
ada-LASSO 4.278 4

Huber-LASSO 2.4127 19
GM -LASSO o.6089 15
MM -LASSO 0.1090 17

(a) ada-LASSO

(b) Huber-LASSO

(c) GM -LASSO

(d) MM -LASSO

Figure 5.20: Boxplots of estimates for 20 coefficients with 5% bad leverage simulated data sets
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Table 5.21: Result simulation when p > n for data set with 10% bad leverage

Methods Median (MSE) median no. of zero coefficients
ada-LASSO 4.7210 3

Huber-LASSO 4.4278 19
GM -LASSO 0.6424 15
MM -LASSO 0.1127 16

(a) ada-LASSO

(b) Huber-LASSO

(c) GM -LASSO

(d) MM -LASSO

Figure 5.21: Boxplots of estimates for 20 coefficients with 10% bad leverage simulated data sets
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5.10 Practical Example

This section applying the proposed model selection methods on two data sets; the Ozone

data, and Prostate Cancer data.

5.10.1 Ozone data

This data have been described in Section 3.6. The correlation matrix in Table 3.10

suggested that, certain correlation is present between the covariances. For example, the

pairwise coefficient is 0.808 between Temperature (temp) and millibar pressure height

(milPress), 0.864 between temp and Inversion base temperature (invTemp), and 0.647 be-

tween Pressure gradient (press) and Humidity (hum), and so on.

We fit the following model with 8 candidate predictors:

Ozone = β0 + β1temp+ β2invHt+ β3press+ β4vis+ β5milPress

+β6hum+ β7invTemp+ β8wind.

The following methods were applied for comparison: LASSO, ada-LASSO, LAD-

LASSO, Huber-LASSO, GM -LASSO, and MM -LASSO. The prediction accuracy

of these methods were measured by compute the root mean squared prediction error

(RMSPE) given by RMSPE(β̂) =
√

1
n

∑n
i=1(Y − Xβ̂)2. The optimal value λ is se-

lected using cross-validation for LASSO and ada-LASSO methods, whereas λ is se-

lected using BIC for other methods.
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For comparison purposes, the results of the model based on the LS and MM estima-

tors are also reported; these are summarized in Table 5.22.

Discussion

Table 3.10 demonstrates the correlation results among (i, j)th coefficients among which

the largest correlation is between "invTemp" , "milpress", and "temp".

Table 5.22 shows that all parameters of the LS and MM models are nonzero and

their RMSPE are large (RMSPELS = 5.9123 and RMSPEMM = 5.1248) and sub-

stantially worse than all other variable selection methods. Furthermore, both non-robust

LASSO (LASSO and ada-LASSO) select a model with six explanatory variables and

three zero variables.

For robust Huber-LASSO and GM -LASSO methods, the number of selected vari-

ables is 4 variables, lower than for the LAD-LASSO criteria which selected 6 variables.

For MM -LASSO method, the number of selected variables is 3, lower than for the other

criteria with small value ofRMSPE (3.7297). Based on the smallest value ofRMSPE,

the MM -LASSO is the best method here.

Table 5.22: Estimation results of Ozone data

Variable LS MM LASSO ada- LAD- Huber- GM - MM -
LASSO LASSO LASSO LASSO LASSO

intercept -1.1681 -0.5965 -1.6758 -1.8422 -0.0124 1.8786 3.3786 -0.9643
temp 18.6244 18.7043 17.9711 18.5883 19.8520 16.8129 15.2957 18.3841
invHt -2.5980 -2.9994 -2.9138 -3.2466 -4.3513 -2.8686 -3.4073 0
press 0.2766 0.1918 0 0 0 0 0 0
vis -2.2896 -2.2520 -1.5399 -1.7336 -1.4379 0 0 0

milPress -4.3264 -3.7909 0 0 0 0 0 0
hum 5.2074 5.1369 5.4193 5.8341 5.0834 2.5183 1.7916 3.0894

invTemp 9.0848 7.1938 5.5373 5.2498 0 0 0 0
wind 1.4159 1.9789 0 0 2.6972 0 0 0

RMSPE 5.9123 5.1248 4.6744 4.4923 4.5277 4.4334 4.4578 3.7297
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5.10.2 Prostate Cancer Data

The prostate cancer data come from a study by Stamey et al. (1989), the study had a to-

tal of 97 observations of male patients aged from 41 to 79 years. Table 5.23 gives an

overview of the variables included in the data.

The response variable is the log(prostate specific antigen) (denoted by Ipsa). The ex-

planatory variables are log(cancer volume) (lcavol), log(prostate weight) (lweight), age,

log(benign prostatic hyperplasia amount) (lbph), seminal vesicle invasion (svi), log(capsular

penetration) (lcp), gleason score (gleason), percentage gleason scores 4 or 5 (pgg45), and

log(prostate specific antigen) (lpsa).

Discussion

Table 5.24 demonstrates correlation results among (i, j)th coefficients which the largest

correlation is between "icp" , "svi", and "pgg45".

Tibshirani (1996) applied LASSO for this data set, whereas in this example, robust

LASSO selection methods (such as LAD, Huber, GM , and MM based methods) ap-

plied to the Prostate Cancer data.

The results based on non-robust and robust LASSO are reported (see Table 5.25).

RMSE for non sparse methods (LS and MM ) is larger (RMSELS = 0.6747 and

RMSEMM = 0.6906) and worse than other variable selection methods. A similar re-

sults as in Tibshirani (1996) are obtained by both Huber-LASSO and MM -LASSO

(selected, (icavol), (iweight), (ibph), (svi), and (pgg45)).
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For GM -LASSO, we obtained RMSE=0.7116, with three zeros variables, so GM -

LASSO is superior here.

Table 5.23: Variables of the Prostate Cancer data

Name Description

lcavol log(cancer volume).

lweight log(prostate weight).

age age.

lbph log(benign prostatic hyperplasia amount).

svi seminal vesicle invasion.

lcp log(capsular penetration).

gleason Gleason score.

pgg45 percentage Gleason scores 4 or 5.

lpsa log(prostate specific antigen).

Table 5.24: The correlation results among the (i, j)th of the Prostate Cancer data

icavol iweight age ibph svi icp gleason pgg45
icavol 1.0000

iweight 0.1941 1.0000
age 0.2250 0.3075 1.0000
ibph 0.0273 0.4349 0.3502 1.0000
svi 0.5388 0.1088 0.1177 -0.0858 1.0000
icp 0.6753 0.1002 0.1277 -0.0070 0.6731 1.0000

gleason 0.4324 -0.0013 0.2689 0.0778 0.3204 0.5148 1.0000
pgg45 0.4337 0.0508 0.2761 0.0785 0.4576 0.6315 0.7519 1.0000
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Table 5.25: Estimation Results of Prostate Cancer Data

Variable LS MM LASSO ada- LAD- Huber- GM - MM -
LASSO LASSO LASSO LASSO LASSO

intercept 0.6694 0.7088 0.4339 0.0677 -0.0565 0.3280 2.4472 0.5809
icavol 0.5870 0.5870 0.5113 0.5628 0.5482 0.5131 0.5568 0.3418

iweight 0.4545 0.4403 0.3292 0.4161 0.4772 0.3531 0 0.3388
age -0.0196 -0.0204 0 0 -0.0228 0 -0.0138 0
ibph 0.1071 0.1309 0.0421 0.0139 0.1604 0.0525 0.1303 0.0767
svi 0.7662 0.7919 0.5436 0.5993 0.7777 0.5571 0.6551 0.6361
icp -0.1055 -0.1301 0 0 -0.0938 0 0 0

gleason 0.0451 0.0486 0 0 0.1826 0 0 0
pgg45 0.0045 0.0056 0.0012 0 0.0022 0.0016 0.0014 0.0020
RMSE 0.6747 0.6761 0.6906 0.6926 0.6827 0.6963 0.7116 0.7318

5.11 Summary

None- sparse estimators like GM - and MM - estimation are widely used in robust regres-

sion models. However, these estimators do not allow sparse model estimates and cannot

be applied to data when p > n. In this chapter, we present our proposed GM -LASSO

andMM -LASSOmethods for improving the robustness of the adaptive and Huber-based

LASSO methods. The GM -LASSO and MM -LASSO combine the properties of the

GM and MM regression method and the adaptive LASSO penalty. The simulation

results and the application in real data clearly show that the MM -LASSO performs bet-

ter than the other methods mentioned earlier. Moreover, the proposed methods perform

similarly to the Huber-LASSO given a data set with outliers and perform better than

the Huber-LASSO given a data set with high leverage points. However, the use of the

Huber-LASSO is discouraged for data sets that are highly contaminated with tailed er-

rors. Considering the ease in the computation of the GM -LASSO method using weight-

ing data and Huber-LASSO regression algorithms, theGM -LASSO andMM -LASSO

methods offer several advantages.
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CHAPTER 6

A DIAGNOSTIC-ROBUST MODEL SELECTION PROCEDURES

6.1 Introduction

Section 3.2 pointed out that most of the commonly used variable selection techniques for

model building are affected in the presence of vertical and high leverage points, and often

could produce very misleading conclusions. A robust version of this estimator is produced

by replacing the ordinary squared residuals (LS) by a function ρ(.), of residuals. Hence,

distinguishing outliers and high leverage points is important in variable selection proce-

dures analysis. This chapter aims to propose robust variable selection methods where the

suspected outliers and high leverage points are identified by regression diagnostics tools;

the best variables are then selected after performing diagnostic checks. The usefulness of

our newly proposed methods is compared with the classical non-robust criteria and the

existing criteria, based on M -estimators through simulations and real data sets.

6.2 Diagnostic-Regression Variable Selection Procedures

6.2.1 Variable Selection Methods in Small Samples with Diagnostic Tool

Akaike information criterion (AIC) (Akaike, 1998), Mallows’ Cp Mallows (1973b), and

Schwartz criterion (SIC) (Schwarz et al., 1978), powerful criteria for variables selection

are defined as follows:

Z = G(SSE) + c. (6.1)
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Here theG(SSE) is a function in terms of the sum of square error, SSE =
∑n

i=1 r
2
i , with

residual ri = yi − xTi β and c is a constant.

TheG(SSE) value equals log(SSE/n), SSE/σ2, and log(SSE/n) for theAIC, Cp

and SIC respectively, where n is the sample size. In the classical criteria, the β̂ is the

LS-estimator corresponding to the traditional square function.

A general idea to outlier diagnostic (see, Section 2.3.2) is to form a clean subset of

data that is free of outliers, . Let R be the set of indexes of the observations in the clean

subset, yR and xR be the subsets of observations indexed by R, β̂R are the estimated

regression coefficients computed from fitting the model to the set R. And let SSER be

the corresponding sum of squares residual that finds the estimates corresponding to the

clean samples having the smallest sum of squares of residuals. This study suggests using

SSER in different model selection criteria.

The diagnostic version of model selection criteria

Consider the diagnostic sum of squares error SSER, by replacing the value of SSE in

Eqn. ( 6.1) in terms of SSER , the criteria in Eqn. ( 6.1), can be expressed as follows:

ZR = G(SSER) + c, (6.2)

where SSER is compute from the diagnostic-LS (LSR) estimator defined as:

β̂LSR = arg min
R∑
i=1

(r2
R(βR))i. (6.3)
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Therefore, LSR corresponds to find the clean subset ofR observations whose least squares

fit produces the lowest sum of squared residuals, and has a high breakdown point. It is

resistant to outliers, including leverage points. In Eqn. ( 6.2), the estimates corresponding

to the R samples are having the smallest sum of residuals. This would be the most direct

implementation of the idea that one wants to find the model which fits best for the ma-

jority of the data. However, the distributional properties of LS residuals are much better

understood.

6.2.2 Variable Selection Methods in Large Data Sets Through Diagnostic ada-LASSO

A variable selection and regularized version of the diagnostic-LS is obtained by adding

an L1 penalty with penalty parameter λ to Eqn. ( 6.3), leading to the diagnostic-LASSO

(LASSOR) estimator

β̂LASSOR = arg min
βR

R∑
i=1

(yi − XTβR)2 + λ|βR|, (6.4)

define weight vector ŵR = 1/|β̂R|. The ada-LASSOR estimates β̂ada−LASSOR are given

by

β̂ada−LASSOR = arg min
R∑
i=1

(r2
R(βR))i + λ

p∑
j=1

ŵjR|βjR|. (6.5)

The ada-LASSOR has a high breakdown point. It is resistant to outliers, including lever-

age points.

6.2.3 Breakdown Point of Diagnostic Variable Selection Methods

The breakdown point of the diagnostic model selection with subset size nR ≤ n is given

by

ε?(β̂R;ZR) = (n− nR + 1)/n. (6.6)
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We suggest to take a value of R equal to a fraction α of the sample size, with α = 0.75,

such that the final estimate is based on a sufficiently large number of observations. This

guarantees a sufficiently high statistical efficiency, The resulting breakdown point is then

about (1 − α)100% = 25%. Notice that the breakdown point does not depend on the

dimension p. Even if the number of predictor variables is larger than the sample size, a

high breakdown point is guaranteed.

Applying Eqn. ( 6.6) to the LS and to the ada-LASSO (n − nR = 0) yields a finite

sample breakdown point of

ε?(β̂LS;Z) = 1/n, (6.7)

and

ε?(β̂ada−LASSO;Z) = 1/n. (6.8)

However, only one outlier can already send the variable selection and ada-LASSO val-

ues to infinity, this non-robust variable selection comes from the use of squared residuals.

Using other convex loss functions, as done in the robust variable selection using M -

estimators and LAD-LASSO, does not solve the problem and results in a breakdown

point of 1/n as well. The theoretical results on robustness are also reflected in the ap-

plication to the generated data in Section 6.3, where the classical variable selection are

much more influenced by the outliers than the diagnostic model selection methods.
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6.3 Simulation

6.3.1 Simulation Example 1 (Small Data Set)

A simulation study was carried out to investigate the performance of the AICR, CpR, and

SICR statistic for detecting best variables in the regression model based on Equations

AICR = log(SSER/nR) + 2p, (6.9)

CpR = SSERp/σ̂
2
full − nR + 2p, (6.10)

SICR = log(SSERp/nR) + (p log(nR))/nR. (6.11)

The simulation was based on three following aims:

(a) AICR are compared with non-robustAIC and robust based onM -estimationRAIC.

(b) CpR are compared with non-robust Cp and robust based on M -estimation RCp.

(c) SICR are compared with non-robust SIC and robust based on M -estimation RSIC.

In this simulation, 50 independent replicates of p = 3 independent uniform random

variables on [-1,1] of xi1, xi2 and xi3, and 50 independent normally distributed errors

εi ∼ N(0, 1) were generated. The true model is given by yi = xi1 + xi2 + εi, for

i = 1, ..., n, n = 50 and n = 100 using two variables xi1 and xi2. In order to illus-

trate the robustness to outliers, the following cases were considered:

1. Vertical outliers (outliers in the response only),

2. Bad leverage points (outliers on the covariates),

3. Good leverage points (outliers in outliers in X follows the the pattern of the majority

of the data).

171

Univ
ers

ity
 of

 M
ala

ya



For vertical outliers case, we randomly generated different percentages of outliers (0%,

5%, 10%, 20%, 30%, and 40%) from N(50, 0.12) for each of the simulated cases. For

good leverage case, we considered the different percentages of outliers (0%, 5%, 10%,

20%, 30%, and 40%) on the variables X1 and X2 were generated from a N(100, 0.52)

distribution, then generated y to get good leverage points. For bad leverage case, different

percentages of outliers (0%, 5%, 10%, 20%, 30%, and 40%) on variables X1 and X2 are

generated from a N(100, 0.52) distribution. For each of these setting 1000 samples were

simulated.

Simulation results

A summary of the simulation results is provided by reporting the proportions of selected

models that are

1. Correct fit, the true model only (x1 and x2).

2. Over fit, models containing all the variables in the true model plus some more that

are actually redundant.

3. Under fit, models with only a strict subset of the variables in true model.

4. Wrong fit, all models that are not over fit, not a correct fit nor under fit. These are

the models where some of the relevant variables might be present (though not all of

them) in addition to some of the redundant variables.

We first consider the vertical outliers case with outlying response values. Table 6.1

shows detailed simulation results for one of the simulation setting with all variable selec-

tion criteria, AIC, CP , and SIC methods. As expected, the classical criteria work better

than the robust criteria for the data without outliers (AIC = 82.2%, Cp = 81.0%, and
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SIC = 88% with true model). The classical criteria select a large proportion of under fit

or wrong fit models for the data with outliers, as shown in rows 2 to 5 in Table 6.1.

While a higher proportion of under fit and correct fit models are selected by robust

criteria based on M -estimator with at most 20% contamination level, a higher proportion

of correct fit models are selected by diagnostic criteria methods (AICR, CpR, and SICR).

All of these methods work better for the cases with contamination level of outliers and

break down at 40% of outliers in data. Similar results are obtained as the sample size

increases, for example see Table 6.4 for n = 100.

In the presence of good leverage points, (see Tables 6.3 and 6.6), a high proportion of

correct fit models selected classicalAIC. The methods based onRCp andRSIC provide

good fit estimate with large sample size, but tend to over fit for small sample sizes. The

diagnostic criteria methods performing well for any percentage of good leverage points.

In the presence of bad leverage point, the classical model selection criterion based on

LS- and robust criteria based on M -estimation often select the high proportion of over fit

or wrong fit model in this case. Interestingly, the diagnostic tool based methods tend to

correctly fit the true model more often.

The simulation results illustrate that the performance of the proposed method (AICR,

CpR, and SICR) yields a comparable power of selection, correct fit of those obtain in

classical or RAIC, RCp, and RSIC approaches for both cases in presence of vertical

and leverage points.
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Table 6.1: Percentage of times, a model is selected using (i) M -estimation, (ii) diagnostic method and (ii)
vertical outliers, n = 50

ε No. of Set of AICLS RAIC AICR CpLS RCp CpR SICLS RSIC SICR
(%) (Variables)

0 0 Intercept 0 0 0 0 0 0 0 0 0
x1 0.4 21.2 3.4 0.6 8.0 3.8 2.4 10.4 5.6
x2 1.2 21.6 3.6 1.2 8.8 0.0 3.4 11.2 7.4
x3 0.2 2.0 0.2 0.2 3.2 0.4 0.2 3.8 0.4

x1, x2 82.2 54.4 59.0 81.0 36.6 62.4 88.2 40.4 63.8
x1, x3 0.0 0.0 2.0 0.0 6.6 2.2 0.0 5.8 3.4
x2, x3 0.2 0.0 2.2 0.2 8.0 0.0 0.2 6.6 1.8

x1, x2, x3 15.8 0.0 29.4 16.8 28.8 31.2 5.6 21.8 17.6
5 2 Intercept 0 0 0 0 0 0 0 0 0

x1 6.6 23.2 1.8 6.8 5.8 2.2 16.6 7.8 6.6
x2 7.2 25 2.0 8.2 8.8 0.0 15.4 12.6 6.0
x3 0.2 2.0 0.4 0.4 2.8 1.2 0.4 3.6 1.0

x1, x2 70.8 49.8 63.2 70.4 34.8 64.4 63.2 39.6 67.4
x1, x3 1.2 0.0 1.0 1.2 7.6 1.0 0.8 6.8 1.0
x2, x3 0.4 0.0 1.4 0.2 8.6 0.0 0.2 7.4 2.2

x1, x2, x3 12.4 0.0 29.8 12.8 31.6 31.2 3.4 22.2 15.8
10 5 Intercept 0 0 0 0 0 0 0 0 0

x1 17.8 24.8 3.0 26.0 7.2 3.4 35.2 11.6 7.6
x2 20.2 26.2 3.0 30.6 5.4 0.0 37.8 9.0 6.2
x3 7.0 1.6 0.2 15.2 0.2 0.6 17.6 0.2 0.6

x1, x2 15.2 47.4 67.0 15.2 70.4 69.0 6.0 69.2 69.2
x1, x3 6.4 0.0 2.0 6.6 1.2 2.0 1.6 0.6 2.0
x2, x3 3.8 0.0 1.6 4.0 1.8 0.0 1.4 1.8 2.4

x1, x2, x3 2.4 0.0 23.2 2.4 13.8 25.0 0.4 7.6 12.0
20 10 Intercept 0 0 0 0 0 0 0 0 0

x1 16.6 36.6 4.0 27.4 11.2 4.6 32.4 14.4 9.8
x2 21.0 34.2 5.0 35.4 11.0 0.0 41.0 14.6 10.0
x3 7.4 1 0.0 17.2 0.2 0.2 20.0 0.6 0.4

x1, x2 8.4 28.2 68.4 8.4 70.4 73.2 3.2 67.0 67.4
x1, x3 4.4 0.0 2.0 4.6 0.8 1.8 1.4 0.6 1.6
x2, x3 4.8 0.0 1.8 5.0 0.4 0.0 1.4 0.4 1.4

x1, x2, x3 2.0 0.0 18.6 2.0 6.0 20.2 0.6 2.4 9.4
30 15 Intercept 0 0 0 0 0 0 0 0 0

x1 17.8 36.0 6.6 30.4 31.6 7.8 35.0 33.4 12.8
x2 18.4 41.6 7.4 33.6 35.8 0.0 37.8 37.0 14.8
x3 8.0 22.4 0.4 21.6 6.2 0.6 24.0 6.4 0.8

x1, x2 6.0 0.0 66.6 6.0 25.2 71.8 2.0 22.6 62.8
x1, x3 2.8 0.0 1.2 3.0 0.2 1.2 0.6 0.0 1.0
x2, x3 4.2 0.0 2.2 4.2 0.8 0.0 0.6 0.6 1.2

x1, x2, x3 1.2 0.0 15.2 1.2 0.2 18.6 0.0 0.0 6.6
40 20 Intercept 0 0 0 0 0 0 0 0 0

x1 18.6 34.8 9.6 35.0 31.0 11.6 37.2 32.0 18.8
x2 17.6 35.8 7.0 31.2 33.8 0.0 35.6 35.4 15.4
x3 8.0 29.4 0.6 19.2 24.8 1.6 23.6 26.6 1.2

x1, x2 5.8 0.0 63.8 5.8 4.2 69.8 2.0 3.2 53.4
x1, x3 3.2 0.0 3.2 3.4 2.2 3.0 1.0 0.8 2.6
x2, x3 4.0 0.0 2.2 4.0 2.8 0.0 0.6 1.4 1.8

x1, x2, x3 1.4 0.0 12.6 1.4 1.2 14.0 0.0 0.6 6.8
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Table 6.2: Percentage of times, a model is selected using (i)classical, (ii) M -estimation and (iii) diagnostic
method, with vertical outliers, with bad leverage points, n = 50

ε No. of Set of AICLS RAIC AICR CpLS RCp CpR SICLS RSIC SICR
(%) Leverage Variables

5 2 Intercept 0 0 0 0 0 0 0 0 0
x1 5.4 31.8 2.8 8.2 12.0 3.2 17.4 17.2 6.2
x2 3.8 35.2 3.4 9.4 11.6 0.0 19.4 18.4 7.6
x3 0.8 33.0 0.2 7.0 14.0 0.4 15.6 20.2 0.4

x1, x2 0.8 0.0 60.4 1.6 2.4 63.8 0.4 1.0 65.0
x1, x3 32.8 0.0 2.0 1.6 2.6 1.6 0.4 1.0 1.4
x2, x3 36.4 0.0 2.4 1.6 2.8 0.0 0.6 1.8 2.4

x1, x2, x3 15.4 0.0 28.6 70.6 54.6 31.0 46.2 40.4 17.0
10 5 Intercept 0 0 0 0 0 0 0 0 0

x1 2.2 34.4 4.4 6.6 12.2 4.2 15.6 18.6 8.4
x2 3.0 31.6 5.0 7.2 13.0 0.0 16.4 18.6 10.0
x3 1.4 34.0 0.6 8.0 12.0 1.2 17.4 18.6 1.2

x1, x2 0.0 0.0 57.4 0.8 2.0 62.0 0.2 1.4 62.6
x1, x3 36.6 0.0 2.0 1.4 1.8 2.2 1.0 0.8 1.2
x2, x3 36.6 0.0 3.4 1.4 2.2 0.0 0.0 1.6 3.4

x1, x2, x3 15.8 0.0 27.2 74.6 56.8 30.4 49.4 40.4 13.2
20 10 Intercept 0 0 0 0 0 0 0 0 0

x1 2.2 33.0 4.4 5.8 11.4 8.6 15.6 17.6 8.8
x2 2.4 34.4 3.2 10.6 12.2 0.0 19.6 19.2 8.6
x3 1.6 32.6 2.2 8.4 14.6 5.4 17.0 19.8 6.8

x1, x2 0.2 0.0 20.0 2.0 1.4 22.6 0.8 0.8 20.4
x1, x3 38.0 0.0 25.6 1.4 2.4 28.2 0.2 1.2 25.6
x2, x3 35.0 0.0 20.0 1.2 2.4 0.0 0.2 1.2 19.8

x1, x2, x3 14.6 0.0 18.8 70.6 55.6 35.2 46.6 40.2 10.0
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Table 6.3: Percentage of times, a model is selected using (i)classical, (ii) M -estimation and (iii) diagnostic
method, with good leverage points, n = 50

ε No. of leverage Set of variables AICLS RAIC AICR CpLS CpM CpR SICLS RSIC SICR
%
5 2 Intercept 0 2.6 0 0 0 0 0 0 0

x1 0.0 25.3 3.4 0 1.0 3.2 0 1.2 6.4
x2 0.0 25.1 1.8 0 0.0 0.0 0 1.0 3.8
x3 0.0 2.0 0.0 0 0.2 0.2 0 0.4 0.6

x1, x2 85.6 47.0 64.2 0 0.2 65.8 0 0.0 70.4
x1, x3 0.2 0.0 0.8 0 0.2 1.0 0 0.2 1.8
x2, x3 0.2 0.0 1.6 0 0.0 0.0 0 0.0 1.6

x1, x2, x3 14.0 0.0 28.2 100 98.4 29.8 100 97.2 15.4
10 5 Intercept 0 2.0 0 0 0 0 0 0 0

x1 0.0 26.6 2.4 0 0.0 2.6 0 0.0 5.0
x2 0.0 26.3 2.8 0 0.0 0.0 0 0.2 5.2
x3 0.0 0.0 0.0 0 0.2 0.2 0 0.2 0.2

x1, x2 81.0 44.2 62.8 0 0.0 67.2 0 0.0 70.2
x1, x3 0.2 0.0 1.2 0 0.0 1.0 0 0.0 1.4
x2, x3 0.0 0.0 0.4 0 0.0 0.0 0 0.2 1.2

x1, x2, x3 18.8 0.0 30.2 100 99.8 29.0 100 99.4 16.8
20 10 Intercept 0 0 0 0 0 0 0 0 0

x1 0.0 30.0 2.6 0 0.0 2.6 0 0.0 6.0
x2 0.0 36.6 1.8 0 0.2 0.0 0 0.6 5.6
x3 0.0 1.0 0.2 0 0.0 0.4 0 0.0 0.6

x1, x2 85.2 32.4 66.8 0 0.0 70.2 0 0.0 71.6
x1, x3 0.0 0.0 1.2 0 0.0 1.2 0 0.0 1.2
x2, x3 0.0 0.0 2.6 0 0.0 0.0 0 0.0 2.4

x1, x2, x3 14.8 0.0 24.6 100 99.8 25.6 100 99.4 12.6
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Table 6.4: Percentage of times, a model is selected using (i)classical, (ii) M -estimation and (iii) diagnostic
method, with vertical outliers, n = 100

ε No. of Set of AICLS RAIC AICR CpLS RCp CpR SICLS RSIC SICR
(%) Verticals Variables

0 0 Intercept 0 0 0 0 0 0 0 0 0
x1 0.0 47.2 0.2 0 1.8 0.4 0.0 3.4 1.2
x2 0.0 0.0 0.0 0 1.2 0.0 0.0 2.8 0.6
x3 0.0 4.2 0.0 0 0.2 0.0 0.0 0.2 0.0

x1, x2 83.6 48.6 69.2 84 75.2 68.8 96.0 84.0 85.2
x1, x3 0.0 0.0 0.4 0 0.6 0.4 0.2 0.4 0.2
x2, x3 0.0 0.0 0.4 0 0.2 0.0 0.0 0.0 0.2

x1, x2, x3 16.4 0.0 29.8 16 20.8 30.4 3.8 9.2 12.6
5 5 Intercept 0 0 0 0 0 0 0 0 0

x1 13.0 46.2 0.0 15.0 1.4 0.0 31.2 2.8 1.4
x2 12.2 0.0 0.4 13.2 0.6 0.0 33.4 1.8 1.0
x3 0.8 4.6 0.0 1.6 0.0 0.0 3.4 0.0 0.0

x1, x2 53.6 49.2 73.2 54.6 80.4 74.6 30.8 88.4 88.6
x1, x3 2.2 0.0 0.0 2.2 0.0 0.0 0.2 0.0 0.2
x2, x3 3.0 0.0 0.0 2.8 0.0 0.0 0.2 0.0 0.0

x1, x2, x3 10.8 0.0 26.4 10.6 17.6 25.4 0.8 7.0 8.8
10 10 Intercept 0 0 0 0 0 0 0 0 0

x1 18.0 44.8 0.0 22.0 1.6 0.2 37.4 2.4 0.8
x2 21.4 0.0 0.0 25.0 1.6 0.0 41.8 3.2 0.8
x3 1.8 6.4 0.0 3.6 0.0 0.0 5.8 0.2 0.0

x1, x2 35.6 48.8 77.2 35.6 82.4 77.2 12.4 88.4 90.6
x1, x3 3.8 0.0 0.4 3.8 0.0 0.2 1.2 0.0 0.0
x2, x3 3.8 0.0 0.2 3.8 0.2 0.0 1.0 0.2 0.0

x1, x2, x3 6.2 0.0 22.2 6.2 14.2 22.4 0.4 5.6 7.8
20 20 Intercept 0 0 0 0 0 0 0 0 0

x1 22.6 45.8 0.0 30.8 1.4 0 42.4 3.6 0.8
x2 19.4 0.0 0.4 29.2 2.4 0 39.8 4.0 1.6
x3 2.4 6.0 0.0 8.8 0.0 0 11.2 0.0 0.0

x1, x2 19.4 48.2 85.4 19.4 89.2 85 5.2 89.4 93.0
x1, x3 4.4 0.0 0.0 4.4 0.0 0 0.2 0.0 0.0
x2, x3 3.6 0.0 0.0 3.6 0.0 0 0.8 0.0 0.0

x1, x2, x3 3.8 0.0 14.2 3.8 7.0 15 0.4 3.0 4.6
30 30 Intercept 0 0 0 0 0 0 0 0 0

x1 23.2 37.4 0.2 33.0 14.2 0.0 39.8 17.2 1.8
x2 24.4 0.0 1.0 33.6 17.6 0.0 42.8 20.4 3.6
x3 6.2 22.4 0.0 11.2 3.6 0.0 13.6 4.2 0.2

x1, x2 13.8 40.2 81.2 13.8 62.8 83.2 3.4 57.8 89.6
x1, x3 2.4 0.0 0.0 2.4 0.4 0.0 0.4 0.2 0.2
x2, x3 3.2 0.0 0.0 3.4 0.2 0.0 0.0 0.2 0.2

x1, x2, x3 2.6 0.0 17.6 2.6 1.2 16.8 0.0 0.0 4.4
40 40 Intercept 0 0 0 0 0 0 0 0 0

x1 20.4 35.0 1.0 33.6 36.6 1.2 42.6 37.6 4.6
x2 19.6 0.0 0.8 30.6 31.2 0.0 38.6 32.2 3.2
x3 5.0 28.6 0.0 11.2 20.4 0.0 14.6 21.2 0.2

x1, x2 15.0 36.4 81.0 15.0 9.4 83.6 3.6 8.2 86.8
x1, x3 3.4 0.0 0.6 3.4 0.8 0.6 0.4 0.2 0.0
x2, x3 3.2 0.0 0.0 3.2 1.2 0.0 0.2 0.4 0.2

x1, x2, x3 3.0 0.0 16.6 3.0 0.4 14.6 0.0 0.2 5.0
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Table 6.5: Percentage of times, a model is selected using (i)classical, (ii) M -estimation and (iii) diagnostic
method, with bad leverage points, n = 100

ε No. of Set of AICLS RAIC AICR CpLS RCp CpR SICLS RSIC SICR
(%) Leverage Variables

5 5 Intercept 0 0 0 0 0 0 0 0 0
x1 0.2 32.8 0.0 1.0 4.6 0 8.0 10.6 0.4
x2 0.2 34.0 0.2 1.2 5.8 0 7.0 11.4 0.6
x3 0.0 33.2 0.0 1.0 4.8 0 6.6 10.8 0.0

x1, x2 0.0 0.0 70.8 1.2 1.2 70 0.0 0.4 87.4
x1, x3 28.2 0.0 0.0 0.4 1.4 0 0.2 0.6 0.0
x2, x3 21.0 0.0 0.0 0.4 2.0 0 0.2 0.6 0.0

x1, x2, x3 49.6 0.0 29.0 94.8 80.2 30 78.0 65.6 11.6
10 10 Intercept 0 0 0 0 0 0 0 0 0

x1 0.0 34.6 0.0 1.6 5.2 0.0 6.8 12.2 1.4
x2 0.4 32.4 0.6 6.2 0.0 9.2 12.8 1.0 1.0
x3 0.4 33.0 0.0 1.2 6.2 0.0 8.2 11.8 0.0

x1, x2 0.0 0.0 71.2 0.6 1.4 72.6 0.0 0.4 87.6
x1, x3 26.4 0.0 0.4 0.6 2.4 0.4 0.0 0.6 0.4
x2, x3 25.0 0.0 0.0 0.4 1.4 0.0 0.0 0.2 0.2

x1, x2, x3 47.2 0.0 27.8 93.8 77.2 27.0 75.8 62.0 9.4
20 20 Intercept 0 0 0 0 0 0 0 0 0

x1 0.4 33.6 0.4 2.2 5.6 3.4 8.6 8.6 2.8
x2 0.0 32.4 1.0 1.0 6.0 0.0 8.0 11.0 4.2
x3 0.4 34.0 0.6 2.6 6.0 3.4 8.6 13.4 6.2

x1, x2 0.0 0.0 13.4 0.0 0.6 14.0 0.0 0.6 15.8
x1, x3 24.8 0.0 26.6 0.2 1.4 26.8 0.2 0.6 30.0
x2, x3 24.8 0.0 27.2 0.2 1.8 0.0 0.2 0.6 32.4

x1, x2, x3 49.2 0.0 28.6 93.8 78.6 52.4 74.4 65.2 8.6

178

Univ
ers

ity
 of

 M
ala

ya



Table 6.6: Percentage of times, a model is selected using (i)classical, (ii) M -estimation and (iii) diagnostic
method, with good leverage points, n = 100

ε No. of leverage Set of variables AICLS RAIC AICR CpLS RCp CpR SICLS RSIC SICR
%
5 2 Intercept 0 0 0 0 0 0 0 0 0

x1 0.0 41.2 0.0 0.0 0.2 0.0 0.0 0.4 0.4
x2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2
x3 0.0 14.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0

x1, x2 85.2 44.8 74.6 84.6 81.8 74.8 97.2 89.8 90.2
x1, x3 0.0 0.0 0.2 0.0 0.2 0.2 0.0 0.0 0.2
x2, x3 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2

x1, x2, x3 14.8 0.0 25.0 15.4 17.6 25.0 2.8 9.4 8.8
10 10 Intercept 0 0 0 0 0 0 0 0 0

x1 0.0 46.4 0.0 0.0 0.0 0.0 0 0.2 0.4
x2 0.0 0.0 0.0 0.0 0.0 0.0 0 0.2 0.4
x3 0.0 8.4 0.0 0.0 0.0 0.0 0 0.0 0.0

x1, x2 84.4 45.2 73.4 83.4 76.8 72.6 96 91.6 91.6
x1, x3 0.0 0.0 0.2 0.0 0.0 0.2 0 0.0 0.0
x2, x3 0.0 0.0 0.2 0.0 0.0 0.0 0 0.0 0.2

x1, x2, x3 15.6 0.0 26.2 16.6 23.2 27.2 4 8.0 7.4
20 20 Intercept 0 0 0 0 0 0 0 0 0

x1 0.0 47.4 0.2 0.0 0.0 0.2 0.0 0.2 0.2
x2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x1, x2 84.2 52.6 73.0 84.2 81.2 71.8 96.4 92.0 87.2
x1, x3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
x2, x3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x1, x2, x3 15.8 0.0 26.8 15.8 18.8 28.0 3.6 7.8 12.6
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6.3.2 Simulation Example 2 (Large Data Set Using GDFFITS Measure Diagnos-

tic )

This section presents a simulation study for comparing the performance of variousLASSO

estimators. In order to identify influential observations, ada-LASSOR was evaluated

using the GDFFITS measure proposed by Rahmatullah Imon (2005). In this simula-

tion, the data was generated with less than 25% contamination. ada-LASSO and LAD-

LASSO were also compared.

The simulations were performed in R-package ’parcor’ (Kraemer and Schaefer, 2010)

which was applied to compute the ada-LASSO solution based on k-fold cross-validation.

The initial weights for ada-LASSO were computed from a LASSO fit. A suitable value

for the shrinkage tuning parameter ’λ’ was selected by tenfold cross-validation. More-

over, the package ’quantreg’ (Koenker, 2007) was used for LAD-LASSO and λ was

chosen by applying the classical BIC criterion.

Next, the covariates, X = (x1, ..., xp) were generated from n independent Gaussian

vectors with correlation r = 0.5 and r = 0.8, p = 8 and n = 200. The parameter vector

βtrue = (3, 1.5, 0, 2, 0, 0, 0, 0). The response variable y, was then produced according

to the regression model where the error terms follow a standard normal distribution. In

order to investigate the robustness of the methods against outliers, three situations were

considered:

1. No contaminated,

2. Vertical contamination (outliers on the response variables),

3. Bad leverage points (outliers on the covariates),
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For each simulation, 100 replications were performed and the Relative Prediction Error

(MRPE) was computed using the following formula:

MRPE = median((yi − XTβg)
2),

for g = 1, ..., 100 simulations.

Result and Discussion

Table 6.7 lists the MRPE for each criterion described above, and Figures ( 6.1) to ( 6.7)

display the performance of the models selection through boxplots of the coefficient esti-

mation.

When no contamination, all LASSO versions performed well with respect to both

MRPE (MRPE = 0.4350) and variable selection. This can be observed from the ex-

tremely small values of MRPE with perfect selection of non-zero and zero coefficients.

The boxplot in Figure (6.1) shows the well selecting ability by all LASSO methods.

When vertical outliers are introduced, the non-robust ada-LASSO suffers from a

strong influence of these outliers. Although the boxplot shows to the correct mean coef-

ficients, the variance is quiet large, as shown in the boxplots ( Figures ( 6.2) to ( 6.4) ).

LAD-LASSO also shows good variable selection behavior, but the ada-LASSOR is the

best with respect to MRPE performance.

For the case with bad leverage points, ada-LASSOR exhibits its strengths and clearly

performs best (Figures ( 6.5) to ( 6.7)); the lowest values of MRPE were obtained for

ada-LASSOR. LAD-LASSO was highly influenced by the leverage points, which was
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reflected in the large MRPE, and was selected over the fit model (selected model con-

tained all βj, j = 1, ..., 8). On the other hand, the influence of the leverage was stronger

on ada-LASSO due to the high variability of the selection variable, and it suffered from

the largest MRPE among all the investigated methods.

Table 6.8 and Figures ( 6.8) to ( 6.14) show the result when disturbances are nor-

mal and the correlation is high, ada-LASSOR is superior. LASSO outperformed ada-

LASSOR in the case with no multicollinearity. However, when degree of multicollinear-

ity is high, ada-LASSOR is superior to them.

182

Univ
ers

ity
 of

 M
ala

ya



Table 6.7: Relative prediction error (MRPE) based on 100 replications, with r = 0.5

Situations ada-LASSOR ada-LASSO LAD-LASSO

No contaminated 0.4198 0.4535 0.4350

5% verticals 0.4392 0.7363 0.5481

10% verticals 0.4343 0.6867 0.5587

20% verticals 0.4253 0.6647 0.5471

5% leverage 0.4077 5.7562 5.4415

10% leverage 0.4487 5.9386 5.6834

20% leverage 0.4078 5.8864 5.4639

Table 6.8: Simulation result, relative prediction error (MRPE) based on 100 replications, for every method
with r = 0.8

Situations ada-LASSOR ada-LASSO LAD-LASSO

No contaminated 0.4002 0.4470 0.4333

5% verticals 0.4108 0.5661 0.4938

10% verticals 0.4096 0.6679 0.5418

20% verticals 0.4552 1.689 1.157

5% leverage 0.4120 0.6404 0.6062

10% leverage 0.4423 5.7266 5.7259

20% leverage 0.4668 6.115 5.9698
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.1: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.5, no
contaminated data
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.2: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.5, 5%
verticals

185

Univ
ers

ity
 of

 M
ala

ya



(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.3: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.5, 10%
verticals
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.4: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.5, 20%
verticals
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.5: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.5, 5%
leverage
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.6: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.5, 10%
leverage
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.7: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.5, 20%
leverage
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.8: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.8, no
contaminated data
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.9: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.8, 5%
verticals
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.10: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.8,
10% verticals
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.11: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.8,
20% verticals
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.12: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.8, 5%
leverage

195

Univ
ers

ity
 of

 M
ala

ya



(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.13: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.8,
10% leverage
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(a) ada-LASSOR

(b) LASSO

(c) LAD-LASSO

Figure 6.14: Boxplots of estimates for the eight coefficients from 100 simulated data sets with r = 0.8,
20% leverage
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6.3.3 Simulation Example 3 (Large Data Set)

A simulation study is carried out to investigate the performance of ada-LASSO based

on diagnostic method, namely ada− LASSOR statistic for selecting model in large data

of regression model. Four different situations are considered, uncontaminated data, data

with verticals, data with good leverage points and data with bad leverage points. In order

to identify influential observations, we use Studentized residuals defined in Eqn. (2.22).

The same procedure employed in Section 5.9 is used here to generate the data set.

Then fitted to give the parameter estimate is calculated using Eqn. ( 6.5). Then, the sam-

ple mean, the median of standard error (MSE) of the parameters, the median of relative

prediction errors MRPE of parameters, the sample standard deviation (SD) of parame-

ters are then calculated.

If the values of βada−LASSOR are close to the true value, then the procedure has cor-

rectly detected the best variables in the data. The process is carried out 100 times. The

performance of the procedure is then examined by plot the boxplot of the estimators in

the simulation.

Discussion

Tables 6.9 to 6.11 list the Mean, median of MSE, and median of RMSE for ada-

LASSO and Figures ( 6.15) to ( 6.17) display the models selection abilities through box

plots of coefficient estimation.

In the case of no contamination, ada-LASSOR performs well with respect to sum-

mary statistics and variable selection ability (see Figure ( 6.15)). This is due to having
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extremely small values of median(MSE) (Median(MSE) are 0.0099, 0.0131, ..,0.0028 )

and median(RMSE) and almost perfectly selected non-zero and zero coefficients.

When vertical outliers were introduced, the ada-LASSOR is still good with respect

to summary statistic. In a scenario with bad leverage points, ada-LASSOR exhibited its

strength and clearly performed best; the low values of summary statistic were obtained

for ada-LASSOR. The conclusions of this simulation are as the followings:

• The estimated mean for all parameters are consistently close to the true values.

• The MSE for all parameter estimations are generally small.

• The values for RMSE of each parameter are small.

• The standard deviation is consistently small for all parameter estimations

By looking the above results, the robust ada-LASSO with diagnostic tool estimation

method performs well in selecting the variables of the regression models.
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Table 6.9: The ada-LASSOR estimation of eight estimators for simulated data sets with different level of
verticals

No contaminated data set
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 -0.0408 0.0099 0.0004 0.0814
β̂1 3 3.0626 0.0131 0.0006 0.1124
β̂2 1.5 1.3545 0.0174 0.0014 0.1193
β̂3 0 0.0000 0.0023 0.0000 0.0220
β̂4 2 2.0523 0.0138 0.0005 0.1048
β̂5 0 0.0000 0.0044 0.0000 0.0410
β̂6 0 0.0000 0.0067 0.0000 0.0630
β̂7 0 0.0000 0.0039 0.0000 0.0369
β̂8 0 0.0000 0.0028 0.0000 0.0268

Data set with 5% verticals
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 0.0227 0.0092 0.0002 0.0797
β̂1 3 3.0246 0.01208 0.0002 0.1072
β̂2 1.5 1.4894 0.0130 0.0001 0.1215
β̂3 0 0.0000 0.00113 0.0000 0.0105
β̂4 2 1.9581 0.0096 0.0004 0.0883
β̂5 0 0.0000 0.0034 0.0000 0.0325
β̂6 0 0.0000 0.0022 0.0000 0.0212
β̂7 0 0.0000 0.0032 0.0000 0.0300
β̂8 0 0.0346 0.0048 0.0003 0.0264

Data set with 10% verticals
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 -0.0506 0.0121 0.0005 0.0844
β̂1 3 3.2226 0.0267 0.0022 0.1054
β̂2 1.5 1.1514 0.0371 0.0034 0.1252
β̂3 0 0.0000 0.0017 0.0000 0.0163
β̂4 2 2.0608 0.0140 0.0006 0.1000
β̂5 0 0.0000 0.0023 0.0000 0.0219
β̂6 0 0.0000 0.0026 0.0000 0.0246
β̂7 0 0.0000 0.0048 0.0000 0.0449
β̂8 0 0.0000 0.0033 0.0000 0.0307

Data set with 20% verticals
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 0.1696 0.0150 0.00169 0.1324
β̂1 3 3.0480 0.0167 0.0004 0.1440
β̂2 1.5 1.5141 0.0152 0.0001 0.1411
β̂3 0 0.0000 0.0076 0.0000 0.0708
β̂4 2 1.9537 0.0139 0.0004 0.1275
β̂5 0 0.0000 0.0103 0.0000 0.0959
β̂6 0 0.0000 0.0079 0.0000 0.0746
β̂7 0 0.0000 0.0032 0.0000 0.0299
β̂8 0 0.0000 0.0036 0.0000 0.0343

Data set with 30% verticals
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 0.4940 0.0262 0.0049 0.2351
β̂1 3 2.7426 0.0372 0.0025 0.2315
β̂2 1.5 1.3284 0.0351 0.0017 0.2861
β̂3 0 0.0000 0.0215 0.0000 0.2015
β̂4 2 1.6011 0.0504 0.0039 0.2300
β̂5 0 0.0000 0.0159 0.0000 0.1485
β̂6 0 0.0000 0.0212 0.0000 0.1982
β̂7 0 0.0000 0.0158 0.0000 0.1485
β̂8 0 0.0000 0.0181 0.0000 0.1699

Data set with 40% vertical
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 1.2621 0.0600 0.01262 0.1959
β̂1 3 3.3253 0.0400 0.0032 0.2614
β̂2 1.5 1.208 0.0413 0.0029 0.2841
β̂3 0 0.0000 0.0195 0.0000 0.1776
β̂4 2 2.5945 0.0750 0.0059 0.2555
β̂5 0 0.0000 0.0137 0.0000 0.1282
β̂6 0 0.0000 0.0204 0.0000 0.1896
β̂7 0 0.0000 0.0223 0.0000 0.2068
β̂8 0 0.0000 0.01621 0.0000 0.1512
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(a) No contaminated (b) 5% Verticals

(c) 10% Verticals (d) 20% Verticals

(e) 30% Verticals (f) 40% Verticals

Figure 6.15: Boxplots of ada-LASSOR estimates for the eight coefficients from 100 simulated data sets,
verticals
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Table 6.10: The adaLASSOR estimation of eight parameters for simulated data sets with different level of
bad leverage points

Data set with 5% bad leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 0.0878 0.0136 0.0008 0.0942
β̂1 3 3.0172 0.0121 0.0001 0.1118
β̂2 1.5 1.4820 0.0101 0.0001 0.0945
β̂3 0 0.0000 0.00103 0.0000 0.0096
β̂4 2 1.9761 0.0088 0.0002 0.0812
β̂5 0 0.0000 0.0025 0.0000 0.0236
β̂6 0 0.0000 0.0001 0.0000 0.0018
β̂7 0 0.0000 0.0000 0.0000 0.0000
β̂8 0 0.0000 0.0000 0.0000 0.0000

Data set with 10% bad leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 -0.0463 0.0102 5e-04 0.0834
β̂1 3 3.0748 0.0137 7e-04 0.1020
β̂2 1.5 1.5460 0.0137 5e-04 0.1044
β̂3 0 0.0000 0.0000 0e+00 0.0000
β̂4 2 1.9988 0.0092 0e+00 0.0863
β̂5 0 0.0000 0.0026 0e+00 0.0244
β̂6 0 0.0000 0.0000 0e+00 0.0000
β̂7 0 0.0000 0.0000 0e+00 0.0001
β̂8 0 0.0000 0.0000 0e+00 0.0000

Data set with 20% bad leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 -0.0129 0.0091 0.0001 0.0844
β̂1 3 2.6924 0.0362 0.0031 0.1191
β̂2 1.5 1.6491 0.0225 0.0015 0.1124
β̂3 0 0.0000 0.0000 0.0000 0.0000
β̂4 2 1.9156 0.0122 0.0008 0.0830
β̂5 0 0.0000 0.0033 0.0000 0.0308
β̂6 0 0.0000 0.0010 0.0000 0.0097
β̂7 0 0.0000 0.0024 0.0000 0.0221
β̂8 0 0.0000 0.0024 0.0000 0.0228

Data set with 30% bad leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 0.0256 0.0106 3e-04 0.0972
β̂1 3 3.0814 0.0147 8e-04 0.1100
β̂2 1.5 1.4538 0.0122 5e-04 0.1119
β̂3 0 0.0000 0.0000 0e+00 0.0000
β̂4 2 1.9916 0.0101 1e-04 0.0934
β̂5 0 0.0000 0.0022 0e+00 0.0200
β̂6 0 0.0000 0.0030 0e+00 0.0275
β̂7 0 0.0000 0.0000 0e+00 0.0000
β̂8 0 0.0000 0.0000 0e+00 0.0000

Data set with 40% bad leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 -0.0825 0.0236 0.0008 0.2203
β̂1 3 3.2165 0.0504 0.0022 0.3684
β̂2 1.5 1.2125 0.0419 0.0029 0.3584
β̂3 0 0.0000 0.0270 0.0000 0.2454
β̂4 2 2.1107 0.0287 0.0011 0.2020
β̂5 0 0.0000 0.0285 0.0000 0.2582
β̂6 0 0.0000 0.0226 0.0000 0.2030
β̂7 0 0.0000 0.0252 0.0000 0.2326
β̂8 0 0.0000 0.0535 0.0000 0.4749
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(a) 5% Bad Leverage (b) 10% Bad Leverage

(c) 20% Bad Leverage (d) 30% Bad Leverage

(e) 40% Bad Leverage

Figure 6.16: Boxplots of ada-LASSOR estimates for the eight coefficients from 100 simulated data sets,
bad leverage point
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Table 6.11: The ada-LASSOR estimation of eight parameters for simulated data sets with different level
of good leverage points

Data set with 5% good leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 -0.1754 0.0205 0.0018 0.0817
β̂1 3 3.1575 0.0197 0.0016 0.0975
β̂2 1.5 1.5006 0.0115 0.0000 0.1021
β̂3 0 -0.1309 0.0140 0.0013 0.0131
β̂4 2 2.0639 0.0129 0.0006 0.0973
β̂5 0 0.0000 0.0022 0.0000 0.0203
β̂6 0 0.0000 0.0034 0.0000 0.0318
β̂7 0 0.0000 0.0000 0.0000 0.0000
β̂8 0 0.0000 0.0009 0.0000 0.0085

Data set with 10% good leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 0.1418 0.0179 0.0014 0.0849
β̂1 3 2.8559 0.0205 0.0014 0.1087
β̂2 1.5 1.6157 0.0203 0.0012 0.1184
β̂3 0 0.0000 0.0000 0.0000 0.0000
β̂4 2 1.9430 0.0094 0.0006 0.0801
β̂5 0 0.0000 0.0000 0.0000 0.0000
β̂6 0 0.0000 0.0000 0.0000 0.0000
β̂7 0 0.0000 0.0000 0.0000 0.0000
β̂8 0 0.0000 0.0000 0.0000 0.0000

Data set with 20% good leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 -0.0114 0.0108 0.0001 0.0859
β̂1 3 3.1502 0.0151 0.0015 0.1045
β̂2 1.5 1.1850 0.0266 0.0032 0.1145
β̂3 0 0.0000 0.0000 0.0000 0.0000
β̂4 2 2.1633 0.0185 0.0016 0.0896
β̂5 0 0.0000 0.0000 0.0000 0.0000
β̂6 0 0.0000 0.0000 0.0000 0.0000
β̂7 0 0.0000 0.0000 0.0000 0.0000
β̂8 0 0.0000 0.0000 0.0000 0.0000

Data set with 30% good leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 0.1162 0.0125 0.0012 0.0952
β̂1 3 2.9537 0.0174 0.0005 0.0952
β̂2 1.5 1.5210 0.0185 0.0002 0.1172
β̂3 0 0.0000 0.0000 0.0000 0.0000
β̂4 2 1.9640 0.0103 0.0004 0.0904
β̂5 0 0.0000 0.0000 0.0000 0.0000
β̂6 0 0.0000 0.0000 0.0000 0.0000
β̂7 0 0.0000 0.0000 0.0000 0.0000
β̂8 0 0.0000 0.0000 0.0000 0.0000

Data set with 40% good leverage
Coefficients True Values Mean Median(MSE) Median(RMSE) std.dev

β̂0 0 0.0881 0.0125 9e-04 0.1024
β̂1 3 3.0430 0.0135 4e-04 0.1087
β̂2 1.5 1.4059 0.0117 9e-04 0.1071
β̂3 0 0.0000 0.0000 0e+00 0.0000
β̂4 2 2.0361 0.0097 4e-04 0.0791
β̂5 0 0.0000 0.0000 0e+00 0.0000
β̂6 0 0.0000 0.0000 0e+00 0.0000
β̂7 0 0.0000 0.0000 0e+00 0.0000
β̂8 0 0.0000 0.0000 0e+00 0.0000
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(a) 5% Good Leverage (b) 10% Good Leverage

(c) 20% Good Leverage (d) 30% Good Leverage

(e) 40% Good Leverage

Figure 6.17: Boxplots of ada-LASSOR estimates for the eight coefficients from 100 simulated data sets,
good leverage point

6.4 Examples

6.4.1 Example 1 (Small Data Sets)

In this example, the stack-loss dataset is considered. The data have been described in

Section 4.8. This data set has been extensively analyzed by many authors (see Leroy and

Rousseeuw (1987), Atkinson (1985); Rahmatullah Imon (2005)) and they report that this
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three-predictor real data set (air flow, cooling water inlet temperature and acid concen-

tration) contains 21 observations with four outliers (cases 1, 3, 4 and 21) and four high

leverage points (cases 1, 2, 3 and 21). The robust regression model was fitted to the data

set using M -estimator. The parameter estimates are given by, intercept, β̂0 = −41.0265,

β̂1 = 0.8293, β̂2 = 0.9261, and β̂3 = −0.1278, which suggest that the best variables of

data seem to be xi1, and xi2. Further, the correlation matrix of data is given by


1 0.7818 0.5001

0.7818 1 0.3909

0.5001 0.3909 1

 .

All 23 possible models fitted with a combination of any of these covariance and computed

several model selection methods values for each model.

Result and Discussion

Table 6.12 presents the best three selected models based on each criteria. The classical

AIC and SIC methods select a model with three explanatory variables (see Tables 6.13

and 6.15 ). As we see in Tables 6.12 and 6.14, the values of AIC and SIC small with

full model, while classical Cp selects model with two variables as showed in Table 6.13.

While AIC, Cp, and SIC based on M -estimation select a model with one variable

(under fit), three variables (over fit), and xi1, xi3 variables (wrong fit), respectively. This

is in line with the simulation results where robust RAIC has the tendency to select under

fit models in the presence of outliers and bad leverage points. It is observed that RCp has

the trend to select over fit models in the presence of bad leverage points.
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The proposed methods based on a deletion estimate of scale select the same best model

with two variables, Flow of cooling air (x1) and Cooling Water Inlet Temperature (x2).

Table 6.12: Stack-Loss data. the selected best variables from best three models based on different classical
criteria, robust criteria with M -estimation, and robust criteria using deletion estimate of scale

Criteria Selected variables

Best model Second best model Third best model

AIC x1, x2, x3 x1 x2

RAIC x2 x3 x1

AICR x1, x2 x1 x2

Cp x1, x2 x1, x2, x3 x1

RCp x1, x2, x3 x1, x2 x1

CpR x1, x2 x1, x2, x3 x1

SIC x1, x2, x3 x1, x2 x1

RSIC x1, x3 x2 x1, x2, x3

SICR x1, x2 x1, x2, x3 x1

Table 6.13: Values of the classical AIC, and robust RAIC, and AICR statistics for Stack-Loss data

Selected Variables AIC RAIC AICR

x1 6.7 8.0 5.3233

x2 7.1 6.5 6.0633

x3 8.4 7.3 6.6277

x1, x2 8.2 9.0 4.2795

x1, x3 8.7 8.9 6.2639

x2, x3 9.1 9.0 7.9139

x1, x2, x3 4.7 10.6 7.2575
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Table 6.14: Values of the classical Cp, and robust RCp, and CpR statistics for Stack-Loss data

Selected Variables Cp RCp (Vp) CpR

x1 13.3 -2.1(1.96) 19.9897

x2 28.9 34.9(1.96) 271.3652

x3 148.9 62.4(1.96) 420.7398

x1, x2 2.95 4.47(2.95) 2.0822

x1, x3 14.3 7.2(2.95) 21.0511

x2, x3 30.1 61.6(2.95) 226.0185

x1, x2, x3 4.0 3.9(3.93) 4.000

Table 6.15: Values of the classical SIC, and robust RSIC, and SICR statistics for Stack-Loss data

Selected Variables SIC SICM SICR

x1 3.010 4.273 0.6741

x2 3.425 2.848 2.4579

x3 4.706 3.556 3.0223

x1, x2 2.721 3.392 -0.0848

x1, x3 3.124 2.787 0.8559

x2, x3 3.553 3.480 2.5058

x1, x2, x3 2.631 3.172 0.0466

6.4.2 Example 2 (Small Data Sets)

In this example, Hawkins-Bradu-Kass dataset is used. The data have been described in

Section 3.3.2. This data available from the R library wle as data(artificial). Artificial

data set containing 75 observations with 10 outliers (cases 1 to 10) and 14 high leverage

points (cases 1 to 14). Scatter plots of Y on each three X′s as shown in Figures (3.14),
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(3.15), and (3.16), clearly separate 10 high leverage outliers, 4 high leverage points and 61

clean observations. The robust regression model based on M -estimator was fitted to the

data set. The parameter estimates are given by, intercept = -0.7848, βHawkins = 0.1791,

βBradu = 0.0062, βKass = 0.2715. Further, the correlation matrix of data is given by
1 0.9450 0.9606

0.9450 1 0.9786

0.9606 0.9786 1

 ,

which suggest that the data seem to be highly concentrated. All 23 possible models fit-

ted with a combination of any of these covariates and computed several model selection

methods values for each model (see Tables 6.17 to 6.19). The best three selected models

based on each version of AIC, Cp, and SIC methods are given in Table 6.16.

We observe from the table that all of the commonly used measures of selection model

fail to focus on best variables. Tables 6.17 to 6.19 present the commonly used model

selection AIC, Cp, and SIC together with robust RAIC, RCp, RSIC methods and

AICR, CpR, and SICR. It is clear from the results presented in this table that variable

selected by the classical selection methods are not correct enough. Though the robust

model selection based on M -estimation is also sensitive to high leverage points, the table

shows that they fail to choose the first variable (Hawkins). Robust model selection based

on the diagnostic tool suggests that first observation (Hawkins) is best variable. When

we apply the diagnostic checking based on LMS and hat matrix cases 1 to 14 return to

the contamination subset and thus the AICR, and CpR finally identify the first variable as

best variable. And SICR tends to chose Kass as best variable.
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Table 6.16: Hawkins-Bradu-Kass, the selected best variables from best three models based on different
classical criteria, robust criteria withM -estimation, and robust criteria using a deletion estimate of the scale

Criteria Selected variables

Best model Second best model Third best model

AIC Kass Hawkins Bradu

RAIC Kass Bradu Hawkins

AICR Hawkins Kass Bradu

Cp Hawkins, Bradu Hawkins, Bradu, Kass Hawkins

RCp Kass Hawkins, Bradu Bradu, Kass

CpR Hawkins Hawkins, Bradu Bradu

SIC Kass Bradu, Kass Hawkins

RSIC Kass Hawkins, Bradu Bradu, Kass

SICR Kass Hawkins Bradu

Table 6.17: Values of the classical AIC, and robust RAIC, and AICR statistics for Hawkins-Bradu-Kass
data

Selected Variables AIC RAIC AICR

(y, Hawkins) 5.68 4.81 2.74

(y, Bradu) 5.79 4.14 2.80

(y, Kass) 5.63 3.62 2.77

(y, Hawkins, Bradu) 7.68 5.62 4.73

(y, Hawkins, Kass) 7.62 5.79 4.69

(y, Bradu, Kass) 7.57 5.67 4.75

(y, Hawkins, Bradu, Kass) 9.56 7.76 6.66
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Table 6.18: Values of the classical Cp, and robust RCp, and CpR statistics for Hawkins-Bradu-Kass data

Selected Variables Cp RCp CpR

(y, Hawkins) 5.30 130.77 1.19

(y, Bradu) 8.90 32.55 2.26

(y, Kass) 17.93 -9.72 3.16

(y, Hawkins, Bradu) 2.93 -7.53 2.03

(y, Hawkins, Kass) 6.68 4.13 3.14

(y, Bradu, Kass) 10.84 -4.38 4.26

(y, Hawkins, Bradu, Kass) 4.00 4.00 4.00

Table 6.19: Values of the classical SIC, and robust RSIC, and SICR statistics for Hawkins-Bradu-Kass
data

Selected Variables SIC RSIC SICR

(y, Hawkins) 1.79 0.9 -1.04

(y, Bradu) 1.90 0.26 -1.02

(y, Kass) 1.75 -9.72 -1.063

(y, Hawkins, Bradu) 1.85 -0.20 -0.97

(y, Hawkins, Kass) 1.80 -0.03 -1.01

(y, Bradu, Kass) 1.75 -0.15 -0.99

(y, Hawkins,Bradu, Kass) 1.79 -0.15 -0.94

6.4.3 Example 3 (Large Data)

We consider the Ozone data which have been described in Section 3.6. We fit the robust

regression model to the data set using M -estimation. The parameter estimates are given

by, Intercept = -0.6099, temp= 18.6740, invHt = -2.8511, press =0.1824, vis = -2.3249,
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milPress= -4.1602, hum= 5.1124, invTemp = 7.8227, and wind =1.8313.

Now, we apply the ada-LASSOR statistic to detect best variables in the ozone data. The

ada-LASSO model is also fitted and compared with the LS estimator as in Table 6.20.

The root mean squared prediction error (RMSPE) for all methods are then computed.

The LS model yields a significant effect of the temp and hum, and itsRMSPE is 5.9123.

In spite of both ada-LASSO and robust ada-LASSOR yield zero coefficients of the mil-

Press and wind, the effect of press becomes non zero and the effect of invTemp becomes

zero in the ada-LASSOR. Three covariates (milPress, invTemp, and wind) vanish in the

ada-LASSOR. According to the reported values of RMSPE, the difference between

two values remains very small.

Table 6.20: Estimation results of Ozone data

Variable LS (p-value) ada-LASSO ada-LASSOR

intercept -1.1681(0.6119) -1.8422 1.6455

temp 18.6244(0.0000)? 18.5883 16.1934

invHt -2.5980(0.0643) -3.2466 -3.9626

press 0.2766(0.8899) 0 2.2340

vis -2.2896(0.0847) -1.7336 -1.7255

milPress -4.3264(0.2084) 0 0.0000

hum 5.2074(0.0002)? 5.8341 2.7150

invTemp 9.0848(0.0654) 5.2498 0.0000

wind 1.4159(0.5832) 0 0.0000

RMSPE 5.9123 4.4923 4.9983
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Table 6.21: Comparison in model selection of Ozone data

Variable LS ada-LASSO ada-LASSOR

intercept N N N

temp N N N

invHt N N N

press N Z N

vis N N N

milPress N Z Z

hum N N N

invTemp N N Z

wind N Z Z

N:Non zero variable; Z:Zero variable

6.4.4 Example 4 (Large Data)

In this section, we will consider the prostate cancer data again as given in Section 5.10.2.

The robust regression model on the data set is given by, Intercept = 0.7428, icavol =

0.5882, iweight = 0.4648, age = -0.0205, ibph = 0.1304, svi = 0.7923, icp = -0.1416,

gleason = 0.0282, and pgg45 = 0.0062. The parameter estimates using LS, ada-LASSO,

and LASSOR for prostate cancer data is given in Table 6.22. Note that the model se-

lection of parameter estimates of the ada-LASSO model are quite close to the LASSOR

estimates. The root mean squared prediction error (RMSPE) of estimators parameters

are obtained and are given in the last row of Table 6.22. The differences among the values

are reasonably small.
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Table 6.22: Estimation results of Prostate Cancer data

Variable LS ada-LASSO adaLASSOR

Intercept 0.6694 0.0677 -0.6145

icavol 0.5870 0.5628 0.5471

iweight 0.4545 0.4161 0.6102

age -0.0196 0 0

ibph 0.1071 0.0139 0

svi 0.7662 0.5993 0.5470

icp -0.1055 0 0

gleason 0.0451 0 0

pgg45 0.0045 0 0

RMSE 0.6748 0.6926 0.7294
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Table 6.23: Comparison in model selection of Prostate Cancer data

Variable LS ada-LASSO ada-LASSOR

Intercept N N N

temp N N N

invHt N N N

press N Z Z

vis N N Z

milPress N N N

hum N Z Z

invTemp N Z Z

wind N Z Z

N: Non zero variable; Z: Zero variable

6.5 Comparison Between the Proposed Methods

Since our generated data in simulation for variable selection based on high breakdown

scale estimate which is presented in Chapter 4, Section 4.7, is the same as the generated

data in simulation for diagnostic variable selection which is presented in Chapter 6, Sec-

tion 6.3, the methods in Chapters 4 and 6 are compared in this section.

For data without outliers, the results for AICLTS , CpLTS and SICLTS methods were

quite similar to diagnostic- methods, as we can seen from Tables 4.1, 4.4, and 4.7,

the percentage of selecting the true model was AICLTS = 57%, CpLTS = 65%, and

SICLTS = 45.2%, respectively, and for the diagnostic- methods presented in Table 6.1

was, AICR = 59%, CpR = 62%, and SICR = 63.8%. In addition, we can see that
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the diagnostic methods selected the true model with higher percentage than methods with

high break down scale when the verticals present in data. In addition, Tables 4.2, 4.6, and

4.9 show the results when bad leverage points are present in data (when 10% bad leverage

in data set, AICLTS = 63.8%, CpLTS = 33.4%, and SICLTS = 43%), which compara-

ble with Table 6.2 ( when 10% bad leverage in data set, AICR = 57%, CpR = 62%, and

SICR = 62%), however, the diagnostic-methods outperform all the other methods.

It can be concluded that, for the cleaned data, the variable selection methods based on

high breakdown scale estimate outperform the diagnostic-methods, otherwise, the diag-

nostic methods are superior.

Figures (5.1) and (6.1) show that the GM -LASSO is superior to the MM -LASSO

and diagnostic ada-LASSO methods when the data are uncontaminated. For contami-

nated data, Figures (5.2) to (5.10) and Figures (6.2) to (6.7) clearly show that diagnostic-

ada-LASSO estimator is superior.

6.6 Summary

A regression diagnostic measure is a robust regression method frequently used in prac-

tice. Nevertheless, it has not been applied to variable selection. This chapter introduced

the diagnostic- variable selection and diagnostic-ada-LASSO estimator, which combine

diagnostic measures and variable selection via selection criteria and ada-LASSO to over-

come outliers and variable selection problems. Furthermore, the simulation results illus-

trated the excellent performance of the diagnostic-variable selection method and showed

that it performed similar to or even better than the variable selection methods based on

M -estimators and high breakdown point scale estimators. As such, the advantage of pro-
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posed methods over the breakdown point was discussed.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

This study looks at some problems related to variable selection criteria in the regression

model. Few published works can be found on the problem of robust variable selection

criteria, and none of the subject area of robust variable selection with resisting to leverage

point outliers. In this study, we specifically choose theAIC (Akaike, 1973), Mallow’sCp

(Mallows, 1973b), Schwarz information criteria SIC (Akaike, 1998) as variable selection

procedures and LASSO regression models proposed by Tibshirani (1996) due to its in-

teresting properties. The first three methods deal with small data sets in regression model

and last one deals with multicollinearity and large data set in regression models. We look

at three problems associated with the model building methods in regression models.

Firstly, we look at the problem of effect leverage points in the existing robust variable

selection methods based on M -estimation. Hence, we first derive the influence function

of such measures and consider its properties; then we apply two different robust estima-

tors to select best variables in small data sets based on the high breakdown point scale;

LTS, LMS, and BS robust regression methods, which are frequently used in practice.

Nevertheless, they are not commonly used in selection models. This research had intro-

duced variable selection criterion based on the LTS, LMS, and BS scale, which are

robust against outliers and leverage points. The influence function of the variable selec-
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tion criteria for linear regression model based on the generalized scale approach has been

derived and discussed. From the cases considered, we conclude that the performance of

the variable selection procedures are good, with the high breakdown point scale of LTS,

LMS, and BS found to be superior than that methods based on M -estimation for small

sample size. For illustration, we apply the procedures on the Stack Loss data set. The sec-

ond methods based on regression diagnostics, the utility of our newly proposed methods

for the detection of regression best variables are studied by Monte Carlo simulations and

some well-known data sets.

Secondly, we look at the problem of selection variable in large data set in regression

models. The best variable of the data can be obtained using the Least Absolute Shrinkage

and Selection Operator LASSO regression method. However, the LASSO estimates are

shown to be sensitive to the occurrence of outliers. Hence, we apply three different statis-

tics to robust LASSO based on GM -, MM - loss function and procedure of detecting the

problem based on diagnostic tool statistic.

7.2 Contributions

This work has contributed to variable selection methods, analysis in the following ways:

1. We have shown that the classical model selection, such as, Akaike Information,

Mallows,sCp and Schwarz information criteria, of linear regression models are and

the existing criteria (RAIC, RCp, RSIC), based on M -estimators are not robust

toward the occurrence of leverage points. Therefore, it is important to develop

relevant methods to robustify criteria for further investigation purposes.

2. We derive the influence function of such criteria and study its properties.

3. We have considered two robust methods, procedures to robustify criteria in regres-
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sion models using high breakdown point estimators. In simulation, the procedures

have been shown to perform well in variable selection in the presence of outliers.

4. We have introduced LASSO variable selection in regression models for accommo-

dating multicollinearity and large data sets in the models. The relevant theory is

presented and, via simulation, the method is found to be sensitive to outliers in the

data.

5. We have looked at the problem of outliers and leverage points in the LASSO meth-

ods. The relevant, robust process of resolving the problem in the model has been

presented. We extend the idea of the Huber-LASSO approach in linear regression

case to the GM -LASSO and MM -LASSO to give the robust variable selection

against leverage pint.

6. We have developed a new robust variable selection and LASSO regression by us-

ing the regression diagnostics. The outliers in the regression model were identified

using suitable methods. We demonstrate that the diagnostic methods methods per-

form well when investigated via simulation.

7.3 Further Research

There are various possibilities for further inquiry in this field. Some suggestions are as

follows:

(i) While our study has concentrated on the AIC, Cp, SIC, LASSO as variable selec-

tion tool, it might be of interest to extend other robust variable selection methods

that currently mainly deal with M -estimators, to more advanced robust estimation

methods, such as GM or MM -estimators.

(ii) To develop some effective procedures of variable selection as in regression models.
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(iii) To extend the idea of LASSO with diagnostic tool statistic in linear regression case

to the logistic regression case to give the best variable selection of the model.

(iv) This study have considered regression model with continues variables; however, fu-

ture studies might consider mixed variables (i.e. continues and dummy) logistic

regression model.

We recognize that there are still many problems ready to be explored in variable se-

lection problem for future works.
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APPENDIX 1

Belgian Telephone Data

Obs. No. year calls
1 50 4.4
2 51 4.7
3 52 4.7
4 53 5.9
5 54 6.6
6 55 7.3
7 56 8.1
8 57 8.8
9 58 10.6
10 59 12.0
11 60 13.5
12 61 14.9
13 62 16.1
14 63 21.2
15 64 119.0
16 65 124.0
17 66 142.0
18 67 159.0
19 68 182.0
20 69 212.0
21 70 43.0
22 71 24.0
23 72 27.0
24 73 29.0
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APPENDIX 2

Hawkins-Bradu-Kass Data

Obs. No. Hawkins Bradu kass y
1 10.1 19.6 28.3 9.7
2 9.5 20.5 28.9 10.1
3 10.7 20.2 31.0 10.3
4 9.9 21.5 31.7 9.5
5 10.3 21.1 31.1 10.0
6 10.8 20.4 29.2 10.0
7 10.5 20.9 29.1 10.8
8 9.9 19.6 28.8 10.3
9 9.7 20.7 31.0 9.6

10 9.3 19.7 30.3 9.9
11 11.0 24.0 35.0 -0.2
12 12.0 23.0 37.0 -0.4
13 12.0 26.0 34.0 0.7
14 11.0 34.0 34.0 0.1
15 3.4 2.9 2.1 -0.4
16 3.1 2.2 0.3 0.6
17 0.0 1.6 0.2 -0.2
18 2.3 1.6 2.0 0.0
19 0.8 2.9 1.6 0.1
20 3.1 3.4 2.2 0.4
21 2.6 2.2 1.9 0.9
22 0.4 3.2 1.9 0.3
23 2.0 2.3 0.8 -0.8
24 1.3 2.3 0.5 0.7
25 1.0 0.0 0.4 -0.3
26 0.9 3.3 2.5 -0.8
27 3.3 2.5 2.9 -0.7
28 1.8 0.8 2.0 0.3
29 1.2 0.9 0.8 0.3
30 1.2 0.7 3.4 -0.3
31 3.1 1.4 1.0 0.0
32 0.5 2.4 0.3 -0.4
33 1.5 3.1 1.5 -0.6
34 0.4 0.0 0.7 -0.7
35 3.1 2.4 3.0 0.3
36 0.1 2.2 2.7 -1.0
37 0.1 3.0 2.6 -0.6
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Obs. No. Hawkins Bradu kass y
38 1.5 1.2 0.2 0.9
39 2.1 0.0 1.2 -0.7
40 0.5 2.0 1.2 -0.5
41 3.4 1.6 2.9 -0.1
42 0.3 1.0 2.7 -0.7
43 0.1 3.3 0.9 0.6
44 1.8 0.5 3.2 -0.7
45 1.9 0.1 0.6 -0.5
46 1.8 0.5 3.0 -0.4
47 3.0 0.1 0.8 -0.9
48 3.1 1.6 3.0 0.1
49 3.1 2.5 1.9 0.9
50 2.1 2.8 2.9 -0.4
51 2.3 1.5 0.4 0.7
52 3.3 0.6 1.2 -0.5
53 0.3 0.4 3.3 0.7
54 1.1 3.0 0.3 0.7
55 0.5 2.4 0.9 0.0
56 1.8 3.2 0.9 0.1
57 1.8 0.7 0.7 0.7
58 2.4 3.4 1.5 -0.1
59 1.6 2.1 3.0 -0.3
60 0.3 1.5 3.3 -0.9
61 0.4 3.4 3.0 -0.3
62 0.9 0.1 0.3 0.6
63 1.1 2.7 0.2 -0.3
64 2.8 3.0 2.9 -0.5
65 2.0 0.7 2.7 0.6
66 0.2 1.8 0.8 -0.9
67 1.6 2.0 1.2 -0.7
68 0.1 0.0 1.1 0.6
69 2.0 0.6 0.3 0.2
70 1.0 2.2 2.9 0.7
71 2.2 2.5 2.3 0.2
72 0.6 2.0 1.5 -0.2
73 0.3 1.7 2.2 0.4
74 0.0 2.2 1.6 -0.9
75 0.3 0.4 2.6 0.2
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APPENDIX 3

Stack Loss Data

Obs. No. Air.Flow Water.Temp Acid.Conc. stack.loss
1 80 27 89 42
2 80 27 88 37
3 75 25 90 37
4 62 24 87 28
5 62 22 87 18
6 62 23 87 18
7 62 24 93 19
8 62 24 93 20
9 58 23 87 15

10 58 18 80 14
11 58 18 89 14
12 58 17 88 13
13 58 18 82 11
14 58 19 93 12
15 50 18 89 8
16 50 18 86 7
17 50 19 72 8
18 50 19 79 8
19 50 20 80 9
20 56 20 82 15
21 70 20 91 15
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APPENDIX 4

Proof of Proposition 3.41

Let An = A implies that β̂j = 0 for all j ∈ A. Let u? = arg min(V2(u)). Note that

P (An = A) ≤ P
(√

nβ̂j = 0∀j 6∈ A
)
.

Lemma 3.3 show that

√
nβ̂A →d u

?
A.

Thus the weak convergence results that

lim sup
n

P
(√

nβ̂j = 0∀j 6∈ A
)
≤ P (u?A = 0∀j 6∈ A) .

Therefore, only need to show that

c = P (u?A = 0∀j 6∈ A) < 1.

There are two cases:

Case 1. λ0 = 0, then it is easy to see that u? = C−1W ∼ N(0, σ2C−1), and so c = 0.

Case 2. λ0 > 0, then V2(u) is not differentiable at uj = 0 ∀j ∈ A.

By the Karush-Kuhn-Tucker (KKT) optimality condition,

−2Wj + 2(Cu?)j + λ0sgn(β?A) = 0,∀j ∈ A (1)

and

| −2Wj + 2(Cu?)j |≤ λ0, ∀j 6∈ A. (2)
1The references of this proof are based on (Zou, 2006)
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If u?j = 0 for all j 6∈ A, then Eqn. ( 1) and Eqn. ( 2) become,

−2WA + 2C11u
?
A + λ0sgn(β?A) = 0 (3)

and,

| −2WAc + 2C21u
?
A |≤ λ0. (4)

component wise

Combining Eqn. ( 3) and Eqn. ( 4) gives

| −2WAc + 2C21C−1
11 (2WA − λ0sgn(β?A)) |≤ λ0 component wise.

Thus,

c ≤ P
(
| −2WAc + 2C21C−1

11 (2WA − λ0sgn(β?A)) |≤ λ0

)
< 1. (5)

Theorem .1. (Slutsky’s )2 Let an and bn are A sequence of random variables then : If

an →d a and bn →d b where a is a random variable and b is a constant, then

• an + bn →d a+ b

• anbn →d ab

• an/bn →d a/b provided P [b = 0] = 0.

2the Proof of this theorem available on Jacod and Protter (2000)
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APPENDIX 5

Proof of Theorem 3.53

Let β? = β + u√
n

, and

vn(u) =
n∑
i=1

(
yi − XT (βj +

u√
n

)

)2

+ λn

p∑
j=1

ŵj

∣∣∣∣βj +
u√
n

∣∣∣∣ . (6)

Let û(n) = arg min vn(u), then β̂
(n)

= β + û(n)
√
n

or û(n) =
√
n × (β̂

(n)
− β). Note that

vn(u)− vn(0) = Vn(u), where

Vn(u) =

[
uTCnu− 2Wu+

λn√
n

p∑
j=1

ŵj

√
n

(∣∣∣∣βj +
u√
n

∣∣∣∣− | βj |)
]
, (7)

where C→ 1
n

xTi xi and W→ (εixi)/
√
n ∼ N(0, σ2C).

Now consider the limiting behavior of the third term in Eqn. ( 7). If βj 6= 0, then

ŵj →p 1/ | βj |γ

and

√
n

(∣∣∣∣βj +
uj√
n

∣∣∣∣− |βj|)→ ujsgn(βj).

By Slutsky’s theorem,

λn/
√
nŵj

√
n

(∣∣∣∣βj +
uj√
n

∣∣∣∣− | βj |)→ 0.

If βj = 0, then
√
n
(∣∣∣βj +

uj√
n

∣∣∣− | βj |) =| uj | and λn/
√
nŵj = λn/

√
nnγ/2

(∣∣∣√nβ̂?j ∣∣∣)−γ ,

where
√
nβ̂?j = Op(1). thus, again by Slutsky’s theorem, see that V (n)(u) →d V (u) for

3The references of this proof are based on (Zou, 2006)
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every u, where

V (u) =


−2WA?uTA? + uTA?C(11)uA? , If uj = 0∀j 6∈ A?,

∞, elsewhere
(8)

V (n)(u) convex, and the unique minimum of V (u) is
(
C−1

11 WA? , 0
)T . Following the epi-

convergence results of (Geyer, 1994) and (Knight and Fu, 2000),

û(n) =


C−1

(11)WA? , If βj ∈ A?,

0, elsewhere.
(9)

Finally, WA? ∼ N(0, σ2C(11)) are observed; then the asymptotic normality part are

proved. Now the consistency part ∀j ∈ A? are showed, the asymptotic normality re-

sult indicates that β̂(n)
j? → βj thus P (j ∈ An)→ 1 . Then it suffices to show that

∀j′ 6∈ A?, P (j′ ∈ An)→ 0.

Consider the event j′ ∈ An. By the KKT optimality conditions, know that, 2xTi
(
y − Xβ̂

(n)
)

=

λnŵj′ . Note that λnŵj′/
√
n = λn/

√
nnγ/2 1

|
√
n

ˆβ
?

j′ |
→p ∞, whereas

2xTj′
(
y − xβ̂

(n)
)

√
n

= 2
xTj′X
√
n
(
β − β̂

(n)
)

n
+ 2xTj′

ε√
n
. (10)

By Eqn. ( 9) and Slutsky’s theorem,
2xT
j′X
√
n

(
β− ˆβ

(n)
)

n
→d some normal distribution and

2xT
j′ε√
n
∼ N (0, 4 ‖ xj′ ‖2 σ2). Thus

P (j′ ∈ An) ≤ P
[
2xTj′

(
y − Xβ̂

(n)
)

= λnŵj′

]
→ 0. (11)
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