METRICAL ANALYSES OF THE LOCATION OF THE MANDIBULAR CANAL USING CBCT

SAIF YOUSIF ABDULLAH

DISSEPTION SUBMITTED IN FULFILLMENT OF REQUIREMENTS FOR THE DEGREE IN MASTER OF DENTAL SCIENCE

DEPARTMENT OF ORAL AND MAXILLOFACIAL SURGERY

FACULTY OF DENTISTRY

UNIVERSITY OF MALAYA

KUALA LUMPUR

YEAR 2011
TABLE OF CONTENT

1) TITLE i
2) CONTENTS ii
3) DEDICATION viii
4) ACKNOWLEDGMENT ix
5) DECLARATION xi
6) ABSTRACT xii
7) LIST OF TABLES xiv
8) LIST OF FIGURES xvii
9) LIST OF SYMBOLS AND ABBREVIATIONS xix

CHAPTER 1: INTRODUCTION

1.1 Aim of the study 1
1.2 Statement of problem 1
1.3 Objectives of the study 3
1.4 Research Questions 4
1.5 Significance of the study 5
1.6 Limitations of the study 5

CHAPTER 2: REVIEW OF RELATED LITERATURE

2.1 Anatomical Consideration 6
2.2 Anatomical Variations 7
 2.2.1 Vertical position 7
2.2.2 Horizontal position 11
2.3 Bifid mandibular canal (MC) 12
2.4 Inferior alveolar neurovascular bundle 13
2.5 Injury of the inferior alveolar nerve 16
2.5.1 IAN nerve injury due to implant surgery
 2.5.1.1 Inferior alveolar nerve injury during traumatic local anaesthesia injection
 2.5.1.2 Inferior alveolar nerve injury by implant drill
 2.5.1.3 Inferior alveolar nerve injury by dental implant
 2.5.1.4 Inferior alveolar nerve injury – the mental nerve
2.5.2 IAN nerve injury due to other surgical procedure
2.6 Radiographic methods used to locate the mandibular canal
 2.6.1 Periapical radiographs
 2.6.2 Panoramic radiography
 2.6.3 Conventional tomography
 2.6.4 Computed tomography (CT)
2.7 Studies locating the mandibular canal preoperatively
2.8 Cone Beam Computed Tomography (CBCT) in dentistry
 2.8.1 Accuracy of using CBCT
 2.8.2 Image quality of CBCT
2.9 SimPlant interactive software

CHAPTER 3: RESEARCH METHODOLOGY
3.1 Introduction
3.2 The materials of the study
3.3 The subjects of the study
 3.3.1 Sample of the study
 3.3.2 The variables of the study
 3.3.3 Selection criteria of the samples
3.4 Methodology

3.4.1 Methods

3.4.2 Measurements

3.4.3 Reliability of the measurements

3.5 Data analysis

CHAPTER 4: RESULTS AND DATA ANALYSIS

4.1 Introduction

4.2 Comparison of D locations on the right and left sides

4.3 Descriptive summary of D1

4.3.1 Comparison of D1 length between ethnicity (Race)

4.3.2 Descriptive summary of D1 location by gender

4.3.3 Comparison of D1 value by ethnicity and gender

4.3.3.1 Descriptive summary of D1 by gender among Malays

4.3.3.2 Descriptive summary of D1 by gender among Chinese

4.3.3.3 Descriptive summary of D1 by gender among Indians

4.3.4 Comparison of D1 value with age groups

4.4 Descriptive summary of D2

4.4.1 Comparison of D2 length between ethnicity (Race)

4.4.2 Descriptive summary of D2 location by gender

4.4.3 Comparison of D2 value by ethnicity and gender

4.4.3.1 Descriptive summary of D2 by gender among Malays

4.4.3.2 Descriptive summary of D2 by gender among Chinese

4.4.3.3 Descriptive summary of D2 by gender among Indians

4.4.4 Comparison of D2 value with age groups

4.5 Descriptive summary of D3

4.5.1 Comparison of D3 length between ethnicity (Race)
4.5.2 Descriptive summary of D3 location by gender 77
4.5.3 Comparison of D3 value by ethnicity and gender 78
 4.5.3.1 Descriptive summary of D3 by gender among Malays 78
 4.5.3.2 Descriptive summary of D3 by gender among Chinese 79
 4.5.3.3 Descriptive summary of D3 by gender among Indians 80
4.5.4 Comparison of D3 value with age groups 81
4.6 Descriptive summary of D4 82
 4.6.1 Comparison of D4 length between ethnicity (Race) 83
 4.6.2 Descriptive summary of D4 location by gender 84
 4.6.3 Comparison of D4 value by ethnicity and gender 85
 4.6.3.1 Descriptive summary of D4 by gender among Malays 85
 4.6.3.2 Descriptive summary of D4 by gender among Chinese 86
 4.6.3.3 Descriptive summary of D4 by gender among Indians 86
 4.6.4 Comparison of D4 value with age groups 87
4.7 Descriptive summary of D5 88
 4.7.1 Comparison of D5 length between ethnicity (Race) 89
 4.7.2 Descriptive summary of D5 location by gender 90
 4.7.3 Comparison of D5 value by ethnicity and gender 91
 4.7.3.1 Descriptive summary of D5 by gender among Malays 91
 4.7.3.2 Descriptive summary of D5 by gender among Chinese 92
 4.7.3.3 Descriptive summary of D5 by gender among Indians 93
 4.7.4 Comparison of D5 value with age groups 94
4.8 Descriptive summary of the mandibular canal diameter 95
 4.8.1 Comparison of the mandibular canal diameter between ethnicity (Race) 96
 4.8.2 Descriptive summary of the mandibular canal diameter by gender 96
 4.8.3 Comparison of the mandibular canal diameter by ethnicity and gender 97
4.8.4 Comparison of the mandibular canal diameter value with age groups

4.9 Descriptive summary of the mandibular foramen diameter

4.9.1 Comparison of the mandibular foramen diameter between ethnicity (Race)

4.9.2 Descriptive summary of the mandibular foramen diameter by gender

4.9.3 Comparison of the mandibular foramen diameter by ethnicity and gender

4.9.4 Comparison of the mandibular foramen diameter value with age groups

4.10 Bifid mandibular canal

4.10.1 Association between the bifid mandibular canals with ethnicity (Race)

4.10.2 Comparison of the bifid mandibular canal between gender

CHAPTER 5: DISCUSSION

5.1 Rational for choice of study topic

5.2 Specimen selection

5.3 Technique

5.3.1 The imaging system

5.3.2 Landmarks, Base line and Measurements

5.3.3 Reliable landmarks for mandibular canal position

5.4 Comparison of data between right and left jaw

5.5 Position of the mandibular canal

5.5.1 Apicocoronal position of the mandibular canal

5.5.2 Buccolingual position of mandibular canal

5.6 Age group

5.7 Diameter of the mandibular canal

5.8 Diameter of the mandibular foramen

5.9 Bifid Canal
CHAPTER 6: CONCLUSION, IMPLICATIONS AND SUGGESTIONS

6.1 Introduction 127
6.2 Summary of the findings 127
6.3 Implications of the study 129
6.4 Recommendations for further research 129
6.5 Closure 130

CHAPTER 7: DEVELOPMENT OF THE MANDIBULAR CANAL SIMULATION

SOFTWARE 131

REFERENCES 133

APPENDIX 1 145
Dedicated to:

My father, Yousif
My mother, Na’met
My beloved wife Maryam
My two flowers, Yousif & Teeba
ACKNOWLEDGEMENT

In the name of Allah, most gracious, most merciful

First of all, I would like to thank the Almighty Allah for granting me the will and strength to accomplish this research. I pray that Allah’s blessings upon me to continue throughout my life, and Allah’s blessing and peace be upon the messenger Mohammad (SAW).

This dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study.

Associate Prof. Dr. Palasuntharam Shanmuhasuntharam, my supervisor whose encouragement and guidance enabled me to develop an understanding of the subject;

My utmost gratitude to Professor Dr. Phrabhakaran A/L K N Nambiar, my second supervisor, whose sincerity and encouragement I will never forget. He has been my inspiration as I tried to overcome all the obstacles in the completion of this research work;

Dr. Marhazlinda Binti Jamaludin for her inputs especially in the statistical part of this study. She has shared valuable insights, knowledge and experience.

Professor Zainal Arrif Bin Abdul Rahman, the former Head of Department of Oral and Maxillofacial, for his kind concern and consideration regarding my academic requirements.

Dr. Siti Mazlipah Ismail, Head of Department of Oral and Maxillofacial, for the moral support despite being newly appointed;

Professor Dr. Rosnah Bt. Mohd Zain, Dean of the College of Dentistry, for the insights she had shared;

I also would like to thank and appreciate the efforts and moral support provided by the lecturers, my colleagues and the staff of the Department of Oral and Maxillofacial surgery, and all the staff in the Division of Oral radiology were an invaluable asset to my work.

I would like to express my gratitude to FnjanCom Sdn Bhd (867118-D) company and their programmers who helped us in coding the MC-SIM application mentioned in Chapter 7.
I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

Most of all, I would like to express my deepest gratitude to;

My father, Dr. Yousif Alsewaidi for making me what I am today.

My mother, Madam Na’met for her eternal love and care.

My wonderful, understanding and lovely wife, Maryam, for being a pillar of moral support and patience throughout this period. Thank you for your cooperation, collaboration and coordination.

My loving and precious children, Yousif and Teeba for all of their energizing, galvanizing and vitalizing acts which kept me going through this period.

My brother Aws, sister Mays, my cousin Ayhaab Mustafa, and my friends Khatab Omar, Haider Ahmed, Dr. Hesham Ismail, Noor haithem, Alaaeddin Alweish, Marwan Khalil, Kamal Aldosarry for their immense support in easing my burden and commitments during the period of my study.

Saif Yousif Abdullah

1st of July 2011
DECLARATION

I certify that this research report is based on my own independent work, except where acknowledged in the text or by reference. No part of this work has been submitted for degree or diploma to this or any other university.

Dr. Saif Yousif Abdullah
Signature:
Date:

<table>
<thead>
<tr>
<th>Supervisor. Ass. Prof. Dr. Palasuntharam Shanmuhasuntharam</th>
<th>Co-Supervisor Prof. Dr. Phrabhakaran A/L K N Nambiar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
</tr>
<tr>
<td>Department of Oral and Maxillofacial Surgery</td>
<td>Department of General Practice and Oral and Maxillofacial Imaging</td>
</tr>
<tr>
<td>Faculty of Dentistry</td>
<td>Faculty of Dentistry</td>
</tr>
<tr>
<td>University of Malaya</td>
<td>University of Malaya</td>
</tr>
<tr>
<td>Kuala Lumpur</td>
<td>Kuala Lumpur</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Malaysia</td>
</tr>
</tbody>
</table>
ABSTRACT

Introduction: The increased neurosensory disturbances and hemorrhage after surgical intervention in the mandibular canal region increased the demand for presurgical planning and proper assessment to avoid those complications.

Aims: Determine the path and course of the mandibular canal of dentate Malaysian patients, mandibular canal diameter, mandibular foramen diameter and the incidence of bifid canal using the Cone Beam Computed Tomography (CBCT).

Materials and Methods: The subjects for this study included imaging of 60 patients (30 males and 30 females) from the Division of Oral radiology, with ages ranging from 20 to 60 years (mean age, 47 years). The samples were selected according to gender, race and age groups. The position of the mandibular canal and mandibular canal diameter were measured at five different locations. Linear measurements were done in the coronal view just posterior to the mental foramen at 10 mm interval (D1, D2, D3, D4 and D5). Mandibular foramen diameter and incidence of bifid mandibular canal were also recorded. The samples were imaged using CBCT and SimPlant software and data analyzed through SPSS (v.12).

Results: In this study the mandibular canal was identified in all samples with 100% good visibility. The measured data were expressed as minimum, maximum, median, K-S value and mean ± standard deviation. The results showed that the position of the right mandibular canal is similar to the position on the left side of the jaw.

Apicocoronal position of the mandibular canal showed that the superior measurements were 14.85 ± 3.64 mm at D1, 13.94 ± 3.85 mm at D2, 12.99 ± 4.08 mm at D3 and 14.22 ± 1.52 mm at D4. The inferior measurements of the canal was 9.37 ± 1.69 mm at D1, 8.24 ±
1.69 mm at D2, 7.96 ± 1.93 mm at D3, 9.65 ± 2.54 at D4 and 15.21 ± 4.18 mm at D5. The buccolingual position were 3.89 ± 1.00 mm (buccal) and 4.33 ± 1.25 mm (lingual), 5.59 ± 1.20 mm (buccal) and 3.35 ± 1.20 mm (lingual), 6.71 ± 1.34 mm (buccal) and 3.25 ± 1.32 mm (lingual), 5.68 ± 1.63 mm (buccal) and 3.08 ± 1.46 mm (lingual), 4.24 ± 1.59 mm (buccal) and 2.12 ± 1.40 mm (lingual) at D1, D2, D3, D4 and D5 respectively.

The minimum mandibular canal diameter recorded was 2.00 mm and the maximum was 3.40 mm. In this study the average mean was 2.16 ± 0.30 mm with the least mean diameter at D2 location (2.01 ± 0.42 mm) and the largest mean diameter at D1 (2.25 ± 0.47 mm) and D5 (2.25 ± 0.43 mm). The average mandibular foramen diameter was measured to be 2.55 ± 0.43 mm.

The incidence of bifid mandibular canal was greatest in Malays (n=18), followed by Indians (n=9), while no bifid canal was noticed in the Chinese.

Conclusion: Position of the canal changes due to changes in the mandibular bone. Measurements showed that the mandibular canal curves toward the lingual side the more distal it is away from the mental foramen. Apicocoronal assessment of the canal reveals that it is curving downward towards the inferior mandibular border until D3 and then it curves upwards. This CBCT study reveals there are variations in the position of the mandibular canal. It is highly recommended that careful assessment and planning using computed tomographic imaging is done prior to any surgical intervention in the mandibular canal region to avoid untoward complications.

Keywords: Cone Beam Computed Tomography (CBCT), Mandibular Canal, Inferior Alveolar Nerve (IAN), Simplant Software, Malaysian Population, Indian, Chinese, Malays
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Selection of cases based on the gender and ethnicity (race)</td>
<td>48</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Age group distribution of samples</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Landmarks and base lines record</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Comparison of length measurements for all Ds locations on the right and left sides</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Descriptive statistics of D1 length measurements</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Comparison of D1 mean measurements by ethnicity (race)</td>
<td>62</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Comparison of D1 mean measurements between males and females</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Comparison of D1 mean measurements between gender among Malays</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Comparison of D1 mean measurements between gender among Chinese</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Comparison of D1 mean measurements between gender among Indians</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Comparison of D1 mean measurements between age groups</td>
<td>67</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Descriptive statistics of D2 length measurements</td>
<td>68</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Comparison of D2 mean measurements by ethnicity (race)</td>
<td>69</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Comparison of D2 mean measurements between males and females</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Comparison of D2 mean measurements between gender among Malays</td>
<td>71</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Comparison of D2 mean measurements between gender among Chinese</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Comparison of D2 mean measurements between gender among Indians</td>
<td>73</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Comparison of D2 mean measurements between age groups</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Descriptive statistics of D3 length measurements</td>
<td>75</td>
</tr>
<tr>
<td>Table 4.17</td>
<td>Comparison of D3 mean measurements by ethnicity (race)</td>
<td>76</td>
</tr>
<tr>
<td>Table 4.18</td>
<td>Comparison of D3 mean measurements between males and females</td>
<td>77</td>
</tr>
<tr>
<td>Table 4.19</td>
<td>Comparison of D3 mean measurements between gender among Malays</td>
<td>78</td>
</tr>
<tr>
<td>Table 4.20</td>
<td>Comparison of D3 mean measurements between gender among Chinese</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.21</td>
<td>Comparison of D3 mean measurements between gender among Indians</td>
<td>80</td>
</tr>
</tbody>
</table>
Table 4.22 Comparison of D3 mean measurements between age groups
Table 4.23 Descriptive statistics of D4 length measurements
Table 4.24 Comparison of D4 mean measurements by ethnicity (race)
Table 4.25 Comparison of D4 mean measurements between males and females
Table 4.26 Comparison of D4 mean measurements between gender among Malays
Table 4.27 Comparison of D4 mean measurements between gender among Chinese
Table 4.28 Comparison of D4 mean measurements between gender among Indians
Table 4.29 Comparison of D4 mean measurements between gender among Malays
Table 4.30 Descriptive statistics of D5 length measurements
Table 4.31 Comparison of D5 mean measurements by ethnicity (race)
Table 4.32 Comparison of D5 mean measurements between males and females
Table 4.33 Comparison of D5 mean measurements between gender among Malays
Table 4.34 Comparison of D5 mean measurements between gender among Chinese
Table 4.35 Comparison of D5 mean measurements between gender among Indians
Table 4.36 Comparison of D5 mean measurements between age groups
Table 4.37 Descriptive statistics of the mandibular canal diameter measurements
Table 4.38 Comparison of the MC diameter measurements by ethnicity (race)
Table 4.39 Comparison of the MC diameter measurements between gender
Table 4.40 Comparison of the MC mean measurements between gender among races
Table 4.41 Comparison of the MC diameter measurements between age groups
Table 4.42 Descriptive statistics of mandibular foramen diameter measurements
Table 4.43 Comparison of mandibular foramen diameter mean measurements by ethnicity (race)
Table 4.44 Comparison of mandibular foramen diameter mean measurements between males and females
Table 4.45 Comparison of the MF diameter mean measurements between gender among races
Table 4.46 Comparison of mandibular foramen diameter mean measurements between age groups
Table 4.47 Frequency and Percentage of the bifid canal in sample studied 103
Table 4.48 Frequency and Percentage of the bifid canal among races 104
Table 4.49 Comparison of the bifid canal among gender 105
Table 5.1 Comparison of studies locating the mandibular canal vertically 114
Table 5.2 Comparison of studies locating the mandibular canal horizontally 117
Table 5.3 Comparison of the MC diameter among different research studies 124
Table 5.4 Comparison of the bifid mandibular canal occurrence in different studies 126
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>A reconstructed panoramic image displayed in a thin section to show the bilateral course of the mandibular canals</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Variations of the vertical position of the inferior alveolar nerve</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Bifid MC</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Illustrated diagram of the anatomy of trigeminal nerve</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Neurovascular bundle</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Illustrated diagrams for inferior alveolar nerve injury by implant drill</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Illustrated diagrams for inferior alveolar nerve injury by dental implant</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>The orthopantomograph shows the disrupted superior border of mandibular canal and cancellous bone which has few and thin trabeculae</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Computed tomographic images</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Cone beam computed tomography system showing the x-ray source and the receptor</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Illustrated diagrams for x-ray cone beam emission and detection</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>SimPlant Workstation</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Illustrated diagram for the measurements at the coronal view of the jaw</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Illustrating locations of measurements at every 1cm interval starting from the distal aspect of mental foramen backwards (D1-D5).</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Flow Chart showing the methodology of the study</td>
<td>55</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Mandibular canal position at each location considered in this study (D1-D5) -coronal view of CBCT image improved with SimPlant software</td>
<td>58</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>A. Mandibular canal diameter measurements, B. Mandibular foramen diameter measurements – coronal view of CBCT image improved with Simplant software.</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAN</td>
<td>Inferior alveolar nerve</td>
</tr>
<tr>
<td>CBCT</td>
<td>Cone Beam Computed Tomography</td>
</tr>
<tr>
<td>MC</td>
<td>Mandibular canal</td>
</tr>
<tr>
<td>MF</td>
<td>Mandibular foramen</td>
</tr>
<tr>
<td>B</td>
<td>Buccal</td>
</tr>
<tr>
<td>L</td>
<td>Lingual</td>
</tr>
<tr>
<td>I</td>
<td>Inferior</td>
</tr>
<tr>
<td>S</td>
<td>Superior</td>
</tr>
<tr>
<td>BSSO</td>
<td>Bilateral sagittal split osteotomy</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>MPR</td>
<td>Multiplanar Reconstruction</td>
</tr>
<tr>
<td>D1</td>
<td>The location of the mandibular canal at the distal aspect of mental foramen</td>
</tr>
<tr>
<td>D2</td>
<td>The location of the mandibular canal at 10 mm away from D1 distally</td>
</tr>
<tr>
<td>D3</td>
<td>The location of the mandibular canal at 10 mm away from D2 distally</td>
</tr>
<tr>
<td>D4</td>
<td>The location of the mandibular canal at 10 mm away from D3 distally</td>
</tr>
<tr>
<td>D5</td>
<td>The location of the mandibular canal at 10 mm away from D4 distally</td>
</tr>
<tr>
<td>MCd</td>
<td>The mandibular canal diameter measurements</td>
</tr>
<tr>
<td>ManFd</td>
<td>The mandibular foramen diameter measurements</td>
</tr>
<tr>
<td>2D</td>
<td>Two dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three dimensional</td>
</tr>
<tr>
<td>SCT</td>
<td>Spiral computerized tomography</td>
</tr>
<tr>
<td>HR-CT</td>
<td>High resolution computed tomography</td>
</tr>
<tr>
<td>HR-MRI</td>
<td>High resolution magnetic resonance imaging</td>
</tr>
<tr>
<td>IMB</td>
<td>Inferior mandibular border</td>
</tr>
<tr>
<td>LC</td>
<td>Virtual horizontal line touching the highest buccal point of the alveolar crest</td>
</tr>
</tbody>
</table>