OBESITY STUDY IN MALAYSIAN MALAYS WITH FOCUS ON CANDIDATE GENES AND BIOMARKERS

YAMUNAH DEVI A/P APALASAMY

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF GRADUATE STUDIES
UNIVERSITY OF MALAYA
KUALA LUMPUR

2012
UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate:
(I.C/Passport No:)

Registration/Matric No:

Name of Degree:

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

Field of Study:

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature

Date

Name:

Designation:
Dedication

I would like to dedicate my thesis to

my parents, Mr. Apalasamy & Mrs. Subbamah,

And

To Lord Shiva & Rudra
Abstract

Obesity is in rising prevalence globally and it has been associated with high mortality rate and other comorbidities. Obesity is a highly heritable disorder but genes responsible for hereditary variations remain to be largely elusive. Recent findings have shown that single nucleotide polymorphisms (SNPs) in the following genes predispose to the increased risk of obesity and obesity-related traits: leptin (LEP), melanocortin-4 receptor (MC4R), β2-adrenoeceptor (ADRB2), insulin-induced gene 2 (INSIG2), syndecan 3 (SDC3), fat mass and obesity associated (FTO), resistin (RETN) and adiponectin (ADIPOQ). Biomarkers such as adiponectin, leptin and resistin have been shown to be tightly linked to obesity related metabolic pathways. This study was aimed to investigate association between obesity and obesity-related parameters such as Body Mass Index (BMI), body weight, height, waist circumference, hip circumference, waist hip ratio, blood pressure, cholesterol and lipid parameters with SNPs and biomarker levels. A total of 672 Malaysian Malay subjects were studied. Genotyping was carried out using two methods, namely, Real-Time PCR Taqman® SNP genotyping assays and also Sequenom MassARRAY. Data were analyzed using SPSS 16.0 statistical software and Haploview version 4.2. After adjustment with age, gender, related biomarker levels and Bonferroni correction, the present study exhibited significant associations between FTO rs17817288 with LDL-Cholesterol; MC4R rs571312 with logBMI and systolic blood pressure; MC4R rs2229616 SNP with total cholesterol; ADRB2 rs1042714 SNP with diastolic blood pressure, RETN rs3219175 and rs34861192 SNPs with weight and log-resistin levels. Strong linkage disequilibrium (LD) pattern was observed in resistin, FTO, ADRB2 and LEP gene. There is low LD in ADIPOQ and MC4R gene regions in this population. The leptin haplotype designated as GCCCGAA in this study, was associated with obesity in
Malaysian Malays. This study suggests that the variants of the MC4R, ADRB2, LEP, RETN and FTO genes may have important roles for the development of obesity-related metabolic traits in the Malaysian Malay population. Levels of adiponectin and leptin in plasma were linked to obesity and metabolic abnormalities in Malaysian Malays but resistin appeared have less effect on obesity and metabolic abnormalities.
Abstrak

Obesiti kini adalah pada kadar yang semakin meningkat di seluruh dunia dan ianya dikaitkan dengan kadar kematian yang tinggi dan juga ko-morbiditi yang lain. Obesiti adalah satu gangguan kesihatan yang nilai pewarisannya amat tinggi tetapi faktor-faktor genetik utama yang benar-benar terlibat adalah sukar untuk dipastikan. Penemuan terkini telah menunjukkan bahawa polimorfisma-polimorfisma nukleotida tunggal (SNPs) pada gen-gen berikut mempengaruhi obesiti dan ciri-ciri yang berkaitan dengan obesiti: leptin (LEP), reseptor melanocortin-4 (MC4R), β2-adrenoseptor (ADRB2), perangsang insulin 2 (INSIG2), syndecan 3 (SDC3), gen kaitan jisim lemak dan obesiti (FTO), resistin (RETN) dan adiponectin (ADIPOQ). Biomarker seperti adiponectin, leptin dan resistin telah dikait rapat dengan laluan metabolik obesiti yang berkaitan. Tujuan kajian ini adalah untuk menyiasat perkaitan antara obesiti dan parameter-parameter yang berkaitan dengan obesiti seperti Index Jisim Badan, berat badan, ketinggian, lilitan pinggang, lilitan pinggul, nisbah pinggang pinggul, tekanan darah, kolesterol dan parameter lipid dengan SNP dengan aras biomarker. Sebanyak 672 subjek Melayu Malaysia telah dikaji. Ciri genotaip (“genotyping”) telah dijalankan dengan menggunakan dua cara iaitu Real-Time PCR Taqman® ujian SNP dan juga Sequenom MassARRAY. Data dianalisiskan dengan menggunakan SPSS 16.0 statistik perisian dan version Haploview 4.2. Selepas pelarasan dengan umur, jantina, aras biomarker dan pembetulan Bonferroni, kajian ini menunjukkan bahawa terdapat signifikans antara FTO rs17817288 dengan LDL-Kolesterol; MC4R rs571312 dengan logBMI dan dengan tekanan darah sistolik; MC4R rs2229616 dengan jumlah kolesterol; ADRB2 rs1042714 dengan tekanan darah sistolik; SNP-SNP RETN rs3219715 dan rs34861192 dengan berat badan dan tahap log-resistin. "Linkage disequilibrium" (LD) yang nyata diperhatikan bagi gen-gen resistin, FTO, ADRB2 dan
Publications

Published:

Accepted:

Submitted

5. Y.D Apalasamy, F.M.Moy, S. Rampal, A.M Bulgiba, Z.Mohamed. G-2458A Lep Gene Polymorphism is associated with body mass index (BMI) in the Malaysian population. International Conference on Personalized Medicine, 5th Joint Conference on Pharmacogenetics of Central South University-Inje University-The Chinese University of Hong Kong held in cooperation with the Pacific Rim Association for Clinical Pharmacogenetics (PRACP), 19-20 September 2009, Hong Kong (Poster), International
Acknowledgement

My humble salutations to the Almighty for the blessings bestowed for the successful completion and realization of this PhD thesis of a research carried out in Pharmacogenomics laboratory in Department of Pharmacology, Faculty of Medicine, University of Malaysia, Kuala Lumpur. The whole time during this research gave me the golden opportunity to work with a number of people who deserve special mention for their valuable contribution to this research and thesis write up. It is indeed a great pleasure for me to convey my gratitude to all these great souls in this humble acknowledgement.

First, I would like to express my deepest gratitude to my supervisor Professor Datin. Dr. Zahurin Mohamed for her immense guidance, encouragement and support right from the initial stage up to the final completion of my PhD. Her enormous passion in this research field has continuously inspired and enriched my growth as a bio-medical student, a researcher and a future scientist. I am deeply honoured and indebted to be under her tutelage. I would like to extend my heartiest appreciation to my co-supervisor Associate Professor Dr. Moy Foong Ming for all the additional supervision and advice which significantly contributed to this research and thesis. Her constructive comments and encouragement has always triggered my intellectual maturity that I will ever benefit from. Further, my deepest thanks and appreciation to both co-investigators of this research project, Professor Awang Bulgiba Awang Mahmud and Associate Professor Dr. Sanjay Rampal for all their valuable advice and utmost support through research grants all the way during the study. I am grateful to them in every possible way.

My warmest thanks to the University of Malaya Wellness Program team and MBBS students (Clinical Residency Program 2009) for their tireless assistance during sample and
data collection. I take this opportunity to also thank Mr. Razi, Ms. Chin Yuen, Ms. Jayasutha and Ms. Devi for their proactive assistance and co-operation in dealing with research grants and administrative matters throughout this research. My sincere appreciation to the staff of Department of Pharmacology as well as Social and Preventive Medicine UM who have helped me in one way or the other during my research activities. Collective appreciation are owed to all my colleagues at Pharmacogenomics Laboratory and friends, in particular Gareth, Shamsul, Aizat, Siti, Syuhada, Minoo, Afiqah, Ern Chi, Yee Siang, Amir, Thanet, Narong, Joey, Dr. Bello, Suvarna, Rukumani, Kalaiyarasi, Sarulatha, Devika, Purenthira Rao, Prevathee, Renuga and many others, whose presence and encouragements have never failed to motivate and energise my spirit into this research.

Where would I be without my family? My parents deserve special for their unmeasurable support and prayers. I am ever indebted to my father, Mr. Apalasamy for nurturing the passion to learn since young and my mother, Mrs.Subbamah who constantly enlightened and inspired me to pursue in the intellectual arena. Special thanks to my siblings and family members - Amohan, Pirmila Devi, Khemavathi, Pragas Rau, Raja Ragunath Prasad and Nishanthinee Nair for all your love, support, blessings and care.

Last but not least, many thanks to my beloved institution, University of Malaya for the financial support through PPP grant (PS 383/2009B), Research University Grant (UMRG RG075/09 HTM) and University of Malaya Fellowship (SBUM).

God bless all. Thank you.

Sincerely,

A. Yamunah Devi, 2012
TABLE OF CONTENTS

- ORIGINAL LITERARY WORK DECLARATION ..ii
- DEDICATION ..iii
- ABSTRACT ..iv
- ABSTRAK ...vi
- PUBLICATIONS ..viii
- PROCEEDINGS ...ix
- ACKNOWLEDGEMENT ..xi
- TABLE OF CONTENTS ..xiii
- LIST OF FIGURES ..xxiv
- LIST OF TABLES ...xxvi
- LIST OF ABBREVIATIONS AND SYMBOLSxxx

CHAPTER 1 INTRODUCTION

1.1 Introduction ..1
1.2 Objectives ...4

CHAPTER 2 LITERATURE REVIEW

2.1 Obesity ..5
 2.1.1 Definition of obesity ...5
2.1.2 Classification of obesity

2.1.3 Abdominal obesity

2.2 Prevalence of Obesity

2.3 Body weight regulation

2.4 Obesity and associated comorbidities

2.4.1 Obesity and cardiovascular risk

2.4.2 Obesity and insulin resistance

2.4.3 Obesity and diabetes mellitus

2.4.4 Obesity and dyslipidemia

2.4.5 Obesity and adipose tissue dysfunction

2.4.6 Obesity and Cancer

2.5 Aetiological factors of obesity

2.5.1 Genetic factors

2.5.2 Dietary intake

2.5.3 Physical activity

2.6 Heritability of obesity

2.6.1 Monogenic Obesity

2.6.2 Polygenic obesity
2.7 Genetic variation in human disease

2.7.1 Single nucleotide polymorphisms (SNPs)

2.7.2 Haplotypes

2.7.3 Complex chromosomal arrangements

2.7.4 Copy number variants

2.7.5 Epigenetics

2.8 Candidate genes in obesity

2.8.1 Fat mass and obesity associated gene (FTO)

2.8.2 Melanocortin-4 receptor gene (MC4R)

2.8.3 β2-adrenoceptor gene (ADRB2)

2.8.4 Leptin gene (LEP)

2.8.5 Resistin gene (RETN)

2.8.6 Insulin-induced gene 2 (INSIG2)

2.8.7 Adiponectin gene (ADIPOQ)

2.8.8 Syndecan 3 gene (SDC3)

2.9 Linkage Disequilibrium

2.10 Haplotype and Linkage Disequilibrium Coefficient
2.11 Adipocytokines...39

2.11.1 Leptin as a biomarker...40

2.11.2 Adiponectin as a biomarker...41

2.11.3 Resistin as a biomarker...43

2.12 Summary of development of obesity...45

CHAPTER 3 MATERIALS and METHODS

3.1 Recruitment of the subjects..48

3.2 Sample size estimation...49

3.3 Blood collection...50

3.4 Clinical measurements...50

3.5 Buccal swab collection ...51

3.6 DNA isolation from human buccal swabs..51

3.7 DNA measurement...52

3.8 SNPs selection...52

3.9 Genotyping of SNPs..53

3.9.1 Real-Time PCR for genotyping..53

3.9.1.1 PCR amplification...53

3.9.1.2 Allelic discrimination plate read and analysis..54

3.9.2 Sequenom MassARRAY® iPLEX gold platform(MALDI-TOF)...............................54

3.9.2.1 Preparation of the DNA samples..54

3.9.2.2 Amplification of target loci by PCR...55

xvi
3.9.2.3 Post-PCR: SAP reaction cleanup
3.9.2.4 Primer extension
3.9.2.5 Primer extension reaction resin cleanup
3.9.2.6 Spotting primer extension products on spectroCHIPS
3.9.2.7 Detection of primer extension products by mass spectrometry
3.10 Haplotyping
3.11 Enzyme-Linked Immunosorbent Assay (ELISA) for quantitative detection of Adipokines
 3.11.1 Measurement of Human Resistin using ELISA
 3.11.2 Measurement of Human Adiponectin using ELISA
 3.11.3 Measurement of Human Leptin using ELISA
3.12 Statistical analysis
 3.12.1 Hardy-Weinberg equilibrium
 3.12.2 T-test
 3.12.3 Mann-whitney U test
 3.12.4 Pearson’s correlation
 3.12.5 General Linear Method (GLM)
 3.12.6 Bonferroni correction

CHAPTER 4 RESULTS
4.1 Distribution of anthropometric and obesity-related parameters in the subjects
4.2 DNA quantification
4.3 Genetic profiling of obesity candidate genes
4.3.1 Genetic profiling of fat mass and obesity associated (FTO) gene

4.3.1.1 Genetic effects of the FTO rs1077128 on obesity in Malaysian Malays

4.3.1.2 Genetic effects of the FTO rs10852521 on obesity in Malaysian Malays

4.3.1.3 Genetic effects of the FTO rs11075994 on obesity in Malaysian Malays

4.3.1.4 Genetic effects of the FTO rs1121980 on obesity in Malaysian Malays

4.3.1.5 Genetic effects of the FTO rs11642841 on obesity in Malaysian Malays

4.3.1.6 Genetic effects of the FTO rs11643744 on obesity in Malaysian Malays

4.3.1.7 Genetic effects of the FTO rs1333493 on obesity in Malaysian Malays

4.3.1.8 Genetic effects of the FTO rs1421085 on obesity in Malaysian Malays

4.3.1.9 Genetic effects of the FTO rs1421090 on obesity in Malaysian Malays

4.3.1.10 Genetic effects of the FTO rs1558902 on obesity in Malaysian Malays

4.3.1.11 Genetic effects of the FTO rs16945088 on obesity in Malaysian Malays

4.3.1.12 Genetic effects of the FTO rs16952517 on obesity in Malaysian Malays

4.3.1.13 Genetic effects of the FTO rs16952522 on obesity in Malaysian Malays

4.3.1.14 Genetic effects of the FTO rs17218700 on obesity in Malaysian Malays

4.3.1.15 Genetic effects of the FTO rs17817288 on obesity in Malaysian Malays

4.3.1.16 Genetic effects of the FTO rs17817449 on obesity in Malaysian Malays
4.3.2.3 Genetic effects of the MC4R rs2229616 on obesity in Malaysian Malays

4.3.2.4 LD and haplotype analysis of MC4R gene

4.3.3 Genetic profiling of β2-adrenoceptor gene (ADRB2)

4.3.3.1 Genetic effects of the ADRB2 rs1042713 on obesity in Malaysian Malays

4.3.3.2 Genetic effects of the ADRB2 rs1042714 on obesity in Malaysian Malays

4.3.3.3 Genetic effects of the ADRB2 rs1042717 on obesity in Malaysian Malays

4.3.3.4 Genetic effects of the ADRB2 rs1042718 on obesity in Malaysian Malays

4.3.3.5 Genetic effects of the ADRB2 rs1042719 on obesity in Malaysian Malays

4.3.3.6 LD and haplotype analysis of ADRB2 gene

4.3.4 Genetic profiling of Leptin gene (LEP)

4.3.4.1 Genetic effects of the LEP rs1349419 on obesity in Malaysian Malays

4.3.4.2 Genetic effects of the LEP rs12535708 on obesity in Malaysian Malays

4.3.4.3 Genetic effects of the LEP rs12535747 on obesity in Malaysian Malays

4.3.4.4 Genetic effects of the LEP rs7799039 on obesity in Malaysian Malays

4.3.4.5 Genetic effects of the LEP rs2167270 on obesity in Malaysian Malays

4.3.4.6 Genetic effects of the LEP rs2278815 on obesity in Malaysian Malays

4.3.4.7 Genetic effects of the LEP rs12706832 on obesity in Malaysian Malays

4.3.4.8 LD and haplotype analysis of LEP gene

4.3.5 Genetic profiling of resistin (RETN) gene

4.3.5.1 Genetic effect of the RETN rs34861192 on obesity in Malaysian Malays

4.3.5.2 Genetic effects of the RETN rs1862513 on obesity in Malaysian Malays

4.3.5.3 Genetic effects of the RETN rs3219175 on obesity in Malaysian Malays
4.3.5.4 LD and haplotype analysis of RETN gene……………………………………..142

4.3.6 Genetic profiling of insulin-induced gene (INSIG2)……………………………145

4.3.6.1 Genetic effects of the INSIG2 rs7566605 on obesity in Malaysian Malays..146

4.3.7 Genetic profiling of adiponectin gene (ADIPOQ)147

4.3.7.1 Genetic effects of the ADIPOQ rs3774261 on obesity in Malaysian Malay…148

4.3.7.2 Genetic effects of the ADIPOQ rs17366568 on obesity in Malaysian Malays..149

4.3.7.3 LD pattern and haplotypes of ADIPOQ gene………………………………150

4.3.8 Genetic profiling of SDC3 3 gene………………………………………………153

4.4 Gene-gene interaction between FTO and MC4R………………………………..154

4.5 Analysis of obesity biomarkers…………………………………………………..156

4.5.1 Correlation between biomarkers and obesity-related traits.......................156

4.5.2 Gender effect on obesity biomarkers…………………………………………157

CHAPTER 5 DISCUSSION

5.1 Distribution of anthropometric and obesity-related parameters in the study subjects.159

5.2 Genetic profiling of obesity candidate genes……………………………………161

5.2.1 Genetic profiling of fat mass and obesity associated (FTO)…………………..162

5.2.1 Genetic profiling of MC4R……………………………………………………175

5.2.2 Genetic profiling of ADRB2 gene………………………………………………178
5.2.3 Genetic profiling of LEPTIN gene...183
5.2.4 Genetic profiling of RETN gene...186
5.2.5 Genetic profiling of INSIG2..188
5.2.6 Genetic profiling of ADIPOQ gene...191
5.2.7 Genetic profiling of SDC3 gene...193

5.3 Gene-gene interaction between the FTO and MC4R..193

5.4 Analysis of obesity biomarkers..194

5.5 Limitation and strength of study...196
 5.5.1 Limitations...196
 5.5.2 Strengths..197

CHAPTER 6 CONCLUSION AND FUTURE STUDIES

6.1 Conclusion...199

6.2 Future studies and recommendations..201

REFERENCES..204

APPENDICES...243

APPENDIX A:
 i) Ethic Approval..243
 ii) Consent Form...245
 iii) Patient Information sheet..246
APPENDIX B: Cluster Plots for SNPs...249

APPENDIX C: Genotype distribution tables of SNPs...277
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Location of FTO gene on chromosome 16</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Location of MC4R gene on chromosome 18</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Location of ADRB2 gene on chromosome 5</td>
<td>31</td>
</tr>
<tr>
<td>2.4</td>
<td>Location of LEP gene on chromosome 7</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Location of RETN gene on chromosome 19</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Location of INSIG2 gene on chromosome 2</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>Location of ADIPOQ gene on chromosome 3</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>Location of SDC3 gene on chromosome 1</td>
<td>37</td>
</tr>
<tr>
<td>2.9</td>
<td>Summary of development of obesity</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Haplotype block of FTO gene of non-obese and obese participants</td>
<td>105</td>
</tr>
<tr>
<td>4.2</td>
<td>Haplotype block of FTO gene of non-obese participants</td>
<td>107</td>
</tr>
<tr>
<td>4.3</td>
<td>LD patterns of MC4R gene in non-obese and obese participants</td>
<td>113</td>
</tr>
<tr>
<td>4.4</td>
<td>LD patterns of MC4R gene in non-obese participants</td>
<td>114</td>
</tr>
<tr>
<td>4.5</td>
<td>LD patterns of ADRB2 gene in non-obese and obese participants</td>
<td>122</td>
</tr>
<tr>
<td>4.6</td>
<td>LD patterns of ADRB2 gene in non-obese participants</td>
<td>123</td>
</tr>
<tr>
<td>4.7</td>
<td>Haplotype block of Leptin gene in non-obese and obese participants</td>
<td>134</td>
</tr>
<tr>
<td>4.8</td>
<td>Haplotype block of Leptin gene in non-obese participants</td>
<td>135</td>
</tr>
<tr>
<td>4.9</td>
<td>Haplotype block of resistin gene in non-obese and obese participants</td>
<td>143</td>
</tr>
<tr>
<td>4.10</td>
<td>Haplotype block of resistin gene in non-obese participants</td>
<td>144</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Cont.).

Figure 4.11 Haplotype block of adiponectin gene in non-obese and obese participants.151
Figure 4.12 Haplotype block of adiponectin gene in non-obese participants.................151
Figure 5.1 Climate zones of the world ...166
LIST OF TABLES

Table 2.1 Classification of BMI...6
Table 2.2 Summary of effects of FTO variants in human.................................25
Table 3.1 Thermal cycling conditions for real-time PCR.................................53
Table 3.2 PCR cycling conditions for amplification of target loci.......................55
Table 3.3 PCR cycling conditions for primer extension reaction.....................57
Table 4.1 Anthropometric and obesity-related parameters in the study subjects...70
Table 4.2 Allelic distribution of FTO SNPs among obese and non-obese groups...73
Table 4.3 Genetic effects of the FTO rs1077128 on obesity parameters.............75
Table 4.4 Genetic effects of the FTO rs10852521 on obesity parameters............76
Table 4.5 Genetic effects of the FTO rs11075994 on obesity parameters............77
Table 4.6 Genetic effects of the FTO rs1121980 on obesity parameters.............78
Table 4.7 Genetic effects of the FTO rs11642841 on obesity parameters............79
Table 4.8 Genetic effects of the FTO rs11643744 on obesity parameters..........80
Table 4.9 Genetic effects of the FTO rs1333493 on obesity parameters.............81
Table 4.10 Genetic effects of the FTO rs1421085 on obesity parameters...........82
Table 4.11 Genetic effects of the FTO rs1421090 on obesity parameters..........83
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12</td>
<td>Genetic effects of the FTO rs1558902 on obesity parameters</td>
</tr>
<tr>
<td>4.13</td>
<td>Genetic effects of the FTO rs16945088 on obesity parameters</td>
</tr>
<tr>
<td>4.14</td>
<td>Genetic effects of the FTO rs16952517 on obesity parameters</td>
</tr>
<tr>
<td>4.15</td>
<td>Genetic effects of the FTO rs16952522 on obesity parameters</td>
</tr>
<tr>
<td>4.16</td>
<td>Genetic effects of the FTO rs17218700 on obesity parameters</td>
</tr>
<tr>
<td>4.17</td>
<td>Genetic effects of the FTO rs17817288 on obesity parameters</td>
</tr>
<tr>
<td>4.18</td>
<td>Genetic effects of the FTO rs17817449 on obesity parameters</td>
</tr>
<tr>
<td>4.19</td>
<td>Genetic effects of the FTO rs17818902 on obesity parameters</td>
</tr>
<tr>
<td>4.20</td>
<td>Genetic effects of the FTO rs1861867 on obesity parameters</td>
</tr>
<tr>
<td>4.21</td>
<td>Genetic effects of the FTO rs3751812 on obesity parameters</td>
</tr>
<tr>
<td>4.22</td>
<td>Genetic effects of the FTO rs4784323 on obesity parameters</td>
</tr>
<tr>
<td>4.23</td>
<td>Genetic effects of the FTO rs6499643 on obesity parameters</td>
</tr>
<tr>
<td>4.24</td>
<td>Genetic effects of the FTO rs7186521 on obesity parameters</td>
</tr>
<tr>
<td>4.25</td>
<td>Genetic effects of the FTO rs7190492 on obesity parameters</td>
</tr>
<tr>
<td>4.26</td>
<td>Genetic effects of the FTO rs7191513 on obesity parameters</td>
</tr>
<tr>
<td>4.27</td>
<td>Genetic effects of the FTO rs7204609 on obesity parameters</td>
</tr>
<tr>
<td>4.28</td>
<td>Genetic effects of the FTO rs7206790 on obesity parameters</td>
</tr>
<tr>
<td>4.29</td>
<td>Genetic effects of the FTO rs8050136 on obesity parameters</td>
</tr>
<tr>
<td>4.30</td>
<td>Genetic effects of the FTO rs9935401 on obesity parameters</td>
</tr>
<tr>
<td>4.31</td>
<td>Genetic effects of the FTO rs9939609 on obesity parameters</td>
</tr>
<tr>
<td>4.32</td>
<td>Genetic effects of the FTO rs9939973 on obesity parameters</td>
</tr>
<tr>
<td>4.33</td>
<td>Association analysis of FTO haplotype</td>
</tr>
<tr>
<td>4.34</td>
<td>Allelic distribution of MC4R SNPs among obese and non-obese groups</td>
</tr>
</tbody>
</table>
LIST OF TABLES (Cont.).

Table 4.35 Genetic effects of the MC4R rs571312 on obesity parameters110
Table 4.36 Genetic effects of the MC4R rs7227255 on obesity parameters111
Table 4.37 Genetic effects of the MC4R rs2229616 on obesity parameters112
Table 4.38 Association analysis of MC4R haplotype115
Table 4.39 Allelic distribution of ADRB2 SNPs among obese and non-obese groups..116
Table 4.40 Genetic effects of the ADRB2 rs1042713 on obesity parameters117
Table 4.41 Genetic effects of the ADRB2 rs1042714 on obesity parameters118
Table 4.42 Genetic effects of the ADRB2 rs1042717 on obesity parameters119
Table 4.43 Genetic effects of the ADRB2 rs1042718 on obesity parameters120
Table 4.44 Genetic effects of the ADRB2 rs1042719 on obesity parameters121
Table 4.45 Association analysis of ADRB2 haplotype124
Table 4.46 Allelic distribution of LEP SNPs among obese and non-obese groups125
Table 4.47 Genetic effects of LEP rs1349419 on obesity parameters126
Table 4.48 Genetic effects of LEP rs12535708 on obesity parameters127
Table 4.49 Genetic effects of LEP rs12535747 on obesity parameters128
Table 4.50 Genetic effects of LEP rs7799039 on obesity parameters129
Table 4.51 Genetic effects of LEP rs2167270 on obesity parameters130
Table 4.52 Genetic effect of LEP rs2278815 on obesity parameters131
Table 4.53 Genetics effects of LEP rs12706832 on obesity parameters132
Table 4.54 Association analysis of Leptin haplotype136
LIST OF TABLES (Cont.).

Table 4.55 Allelic distribution of RETN SNPs among obese and non-obese groups.....137
Table 4.56 Genetic effects of the RETN rs34861192 on obesity parameters............138
Table 4.57 Genetic effects of the RETN rs34861192 on obesity parameters (Dominant)........139
Table 4.58 Genetic effects of the RETN rs1862513 on obesity parameters..............140
Table 4.59 Genetic effects of the RETN rs3219175 on obesity parameters..............141
Table 4.60 Genetic effects of the RETN rs3219175 on obesity parameters (Dominant)...142
Table 4.61 Association analysis of resistin haplotype..144
Table 4.62 Allelic distribution of INSIG2 rs7566605 ..145
Table 4.63 Genetic effects of the INSIG2 rs7566605 on obesity parameters..........146
Table 4.64 Allelic distribution of ADIPOQ SNPs..147
Table 4.65 Genetic effects of the ADIPOQ rs3774261 on obesity parameters..........148
Table 4.66 Genetics effects of the ADIPOQ rs17366568 on obesity parameters149
Table 4.67 Genetics effects of the ADIPOQ rs17366568 on obesity parameters (Dominant)......150
Table 4.68 Association analysis of ADIPOQ haplotype.......................................152
Table 4.69 Allelic distribution of the SDC3 rs2491132153
Table 4.70 Correlation between FTO rs17817288 and MC4R rs571312 SNPs...........154
Table 4.71 Correlation between FTO rs17817288 and MC4R rs2229616 SNPs........155
Table 4.72 Correlation analysis of the biomarkers..156
LIST OF TABLES (Cont.).

Table 4.73 Gender effect of Leptin and BMI ...157
Table 4.74 Gender effect of Adiponectin and resistin...158
Table 5.1 MAF of FTO SNPs from 1000 Genomes Project and Malaysian Malays…163
Table 5.2 MAF of FTO rs9939609 SNP gene in various populations.........................165
Table 5.3 Difference in MAF of FTO SNPs between Malaysian Malays and Caucasians….167
Table 5.4 MAF of MC4R SNPs from 1000 Genome Project and Malaysian Malays..176
Table 5.5 MAF of ADRB2 gene from 1000 Genomes Project and Malaysian Malays……179
Table 5.6 MAF of LEP gene from 1000 Genomes Project and Malaysian Malays184
Table 5.7 MAF of RETN gene from 1000 Genomes Project and Malaysian Malays187
Table 5.8 ADIPOQ gene from 1000 Genomes Project and Malaysian Malays191
LIST OF ABBREVIATIONS AND SYMBOLS

µg-Microgram
µl-Microliter
ADIPOQ-Adiponectin
ADRB2-β2-adrenoceptor
AGRP-Agouti related peptide
ASW-African ancestry in Southwest USA
BDNF-Brain-derived neurotrophic factor
BMI- Body mass index
BSA-Bovine serum albumin
CADM2-Cell adhesion molecule 2
CETP-Cholesteryl ester transfer protein
CEU-Utah residents with Northern and Western European ancestry
CHB-Han Chinese in Beijing, China
CHD-Chinese in Metropolitan Denver, Colorado
CHD-Coronary heart disease
CHS-Singaporean Chinese
CNVs-Copy Number Variantions
CRP- C-reactive protein
CTNNBL1-Catenin beta like 1
CVD-Cardiovascular disease
D'-Coefficient of linkage disequilibrium
DBP-Diastolic blood pressure
dbSNP-The single nucleotide polymorphism database
df-Degree of freedom
DNA-Deoxyribonucleic acid
DRD2-Dopamine D2 receptor
EDTA-Ethylenediaminetetraacetic acid
ER-Endoplasmic reticulum
LIST OF ABBREVIATIONS AND SYMBOLS (Cont.).

ETV5-ets variant 5
FANCL-Fanconi anemia, complementation group L
FTO-Fat mass and obesity associated gene
GHRL-Ghrelin
GIANT-Genetic Investigation of Antropometric Traits Consortium
GIH-Gujarati Indians in Houston, Texas
GLM-General linear method
Gln-Glutamine
Glu-Glutamic acid
GNB3G-Protein beta 3 subunit gene
GNPDA2-Glucosamine-6-phosphate deaminase 2
GPRC5B-G protein-coupled receptor, family C, group 5, member B
GWAS-Genome-wide association studies
HapMap-Haplotype Map
HC-Hip Circumference
HDL-C-High density lipoprotein-cholesterol
HMG-CoA-3-hydroxy-3-methylglutaryl-coenzyme A
HRP-Horseradish Peroxidase
HWE-Hardy-Weinberg equilibrium
IDF-International Diabetes Federation
IL-1- Interleukin-1
IL-Interleukin-6
INSIG2-Insulin-induced gene 2
INS-Insulin
INS-Singaporean Indians
JPT-Japanese from Tokyo, Japan
KCTD15-Potassium channel tetramerisation domain containing 15
kg-kilogram
LDL-Low density lipoprotein
LIST OF ABBREVIATIONS AND SYMBOLS (Cont.).

LD-Linkage disequilibrium
LEPR-Leptin receptor
HSL (LIPE)-Hormone-sensitive lipase
LRP1B-Low density lipoprotein receptor-related protein 1B
LWK-Luhya in Webuye, Kenya
m/z-Mass-to-charge ratio
MAF-Minor allele frequency
MALDI-TOF-Matrix-assisted laser desorption ionization –time-of-flight
MAP2K5-Mitogen-activated protein kinase kinase 5
MAS-Singaporean Malays
MC4R- Melanocortin-4 receptor
MCP-1-Monocyte chemotactic protein-1
MEX-Mexican ancestry in Los Angeles, California
ml-milliter
m-meter
mRNA- Messenger ribonucleic acid
MTCH2-Mitochondrial carrier 2
MTMR9-Myotubularin related protein 9
NCR3C1-Glucocorticoid receptor
NEFA-Nonesterified fatty acid
NEGR1-Neuronal growth regulator 1
NHMS- Third National Health and Morbidity Survey
nl-nanoliter
nm-nanometer
NTRK2-Neurotrophic tyrosine kinase, receptor type 2
NUDT3-Nudix (nucleoside diphosphate linked moiety X)-type motif 3
OD-Optical Density
PAI-1-Plasminogen activator inhibitor
PBS-Phosphate buffered saline
LIST OF ABBREVIATIONS AND SYMBOLS (Cont.).

PC1-Proconvertase 1
pg-pigogram
POMC-Pro-opiomelanocortin
PPARγ-Peroxisome proliferator activated receptor γ
PRKD1-Protein kinase D1
QPCTL-Glutamyl-peptide cyclotransferase-like
r²-Correlation coefficient
RBP4-Retinol binding protein-4
RETN-Resistin
RPL27A-Ribosomal protein L27a
SBP-Systolic blood pressure
SCAP-SREBP cleavage-activating protein
SDC3-Syndecan 3
sdLDL-Small, dense low-density lipoprotein
SDS-Sequence Detection System
SGVP-Singaporean Genome Variation Project
SH2B1-Adaptor protein 1
SLC39A8-Solute carrier family 39 (zinc transporter), member 8
SNP-Single nucleotide polymorphism
SREBPs-Sterol regulatory element binding proteins
T2DM DM-Type 2 Diabetes mellitus
TC-Total cholesterol
TG-Triglyceride
TMB-Tetramethyl-benzidine
TMEM160-Transmembrane protein 160
TMEM18-Transmembrane protein 18
TNF-α-Tumor necrosis factor-alpha
TNNI3K-TNNI3 interacting kinase
TSI-Toscans in Italy
LIST OF ABBREVIATIONS AND SYMBOLS (Cont.).

UCP1-Uncoupling protein 1
UCP2-Uncoupling protein 2
UCP3-Uncoupling protein 3
UPR-Unfolded protein response
WC-Waist circumference
WHO- World Health Organization
WHR-Waist-Hip-Ratio
YRI-Yoruba in Ibadan, Nigeria
ZNF608-Zinc finger protein 608
α-MSH-α-melanocyte-stimulating hormone
β2-AR-β2-adrenergic receptor
β3-AR-β3-Adrenergic receptor
χ2-Chi square